
--...- -----, - -------- - ---- - - ----------_.-

Second Edition (March 1991)

This edition applies to Version 2 Release 1 Modification 2 of the IBM licensed program Customer Information Control
System/Multiple Virtual Storage (CICS/MVS), program number 5665-403, and to all subsequent versions, releases, and
modifications until otherwise indicated in new editions. Consult the latest edition of the applicable IBM system
bibliography for current information on this product.

This book is based on the Application Programmer's Reference for CICS/MVS 2.1, SC33-0512. Changes from that edition
are marked by vertical lines to the left of the changes.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the addresses given below.

A form for reader's comments appears at the back of this publication. If the form has been removed, address your
comments to:

International Business Machines Corporation, Department 6Rl H,
180 Kost Road, Mechanicsburg, PA 17055, U.S.A.

or to:

IBM United Kingdom Laboratories Limited, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England,
S021 2JN.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1991. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Special notices

The following paragraph does not apply to the United
Kingdom or any country where such provisions are
Inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to
you.

References in this publication to IBM products, programs,
or services do not imply that IBM intends to make these
available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM
product in this publication is not intended to state or imply
that only IBM's program or other product may be used.
Any functionally equivalent program that does not infringe
any of IBM's intellectual property rights may be used
instead of the IBM product. Evaluation and verification of
operation in conjunction with other products, except those
expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications
covering subject matter in this document. The furnishing
of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the
IBM Director of Commercial Relations, IBM Corporation,
Purchase, NY 10577.

This book is intended to help you write and prepare
programs that use the CICS command-level programming
interface. It contains reference information and guidance
about using EXEC CICS commands in application programs.
This book primarily documents General-Use Programming
Interface and Associated Guidance Information provided by
CICS.

© Copyright IBM Corp. 1982, 1991

General-Use programming interfaces allow the customer to
write programs that obtain the services of CICS.

However, this book also documents Product-Sensitive
Programming Interface and Associated Guidance
Information.

Product-Sensitive programming interfaces allow the
customer installation to perform tasks such as diagnosing,
modifying, monitoring, repairing, tailoring, or tuning of this
IBM software product. Use of such interfaces creates
dependencies on the detailed design or implementation of
the IBM software product. Product-Sensitive interfaces
should be used only for these specialized purposes.
Because of their dependencies on detailed design and
implementation, it is to be expected that programs written
to such interfaces may need to be changed in order to run
with new product releases or versions, or as a result of
service.

Product-Sensitive Programming Interface and Associated
Guidance Information is identified where it occurs, either
by an introductory statement to a chapter or section or by
the following marking:

Product-Sensitive Programming Interface

Product-Sensitive Programming Interface and Associated
Guidance Information

L End of Product-Sensitive Programming Interface ~

The following terms, denoted by an asterisk (*), used in
this publication, are trademarks or service marks of IBM
Corporation in the United States or other countries:

CICS/MVS, CICS/ESA, IBM, MVS/XA, VTAM, ACFIVTAM

iii

Preface

What this book Is about: This book describes the IBM*
Customer Information Control System/Multiple Virtual
Storage (CICS/MVS*) command level application
programming interface; it contains introductory and
reference information necessary to prepare assembler
language, COBOL, and PUI application programs, using
CICS commands, to execute under the IBM licensed
program CICS/MVS (5665-403).

Note: The INQUIRE and SET commands of the command
level application programming interface, together with the
spool commands of the CICS interface to JES, are primarily
for the use of the system programmer. The commands are
fully described in the CICSIMVS Customization Guide.

Who should read this book: The book is intended
primarily for use by application programmers, but will be
useful also for system programmers and systems analysts.

What you need to know to understand this book:
Experience in writing programs in assembler language,
COBOL, or PUI is assumed. No previous experience of
CICS is assumed.

However, a knowledge of the concepts and terminology
introduced in the CICSIMVS Facilities and Planning Guide
is required. This guide also contains details of system
requirements and a glossary applicable to CICS.

* IBM Trademark. For a list of trademarks see page iii.

© Copyright IBM Corp. 1982, 1991

How to use this book: This book is mainly for reference.
Each of the chapters (other than the introductory chapter)
of the parts of the book has a standard format. The first
section of a chapter describes, in general terms, functions
of the commands included in the chapter. For each
command, the following information is presented:

• The syntax of the command and its associated options

• Exceptional conditions that can occur

• A detailed description of what the command does

• And possibly one or more examples showing typical
coding of the command.

Finally, two alphabetic lists are given:

• A list of the options, with their functions, that can be
used in any of the commands in the chapter

• A list of the exceptional conditions, and their causes,
that can occur during execution of the commands.

Notes on terminology

• VTAM* refers to ACFIVTAM* and to the record
interface of ACFITCAM

• ASM is used sometimes as the abbreviation for
assembler language.

v

Book structure

"Part 1. Command level programming" on page
Introduces CICS commands and describes the basic
facilities that are available to the user. A chapter is
included about the command language translator and
the options that can be selected to modify the way in
which the translator operates.

"Part 2. Files and databases" on page 75
Deals with access to data sets in the user's CICS
system either through CICS file control or through
DUI.

"Part 3. Data communication operations" on page 131
Deals with communication with terminals, logical units,
and subsystems in the telecommunications network to
which the CICS system is connected.

"Part 4. Control operations" on page 271
Describes the facilities for controlling the operation of
application programs in the CICS system.

vi CICS/MVS 2.1.2 Application Programmer's Reference

"Part 5. Recovery and debugging" on page 309
Deals with facilities available for recovery from
abnormal termination, monitoring, tracing program
operation, and dumping areas of main storage.

"Part 6. The CICS built-in function command" on page 333
Describes the one built-in function (BIF DEEDIT)
available with the command-level interface.

"Appendixes" on page 337
Contain information on the following topics:

A. EXEC interface block
B. Translation tables for the 2980
C. CICS macros and equivalent commands
D. Sample programs (ASM)
E. Sample programs (COBOL)
F. Sample programs (PUI).

"Index" on page 473

CICS/MVS 2.1.2 library

General

CICS Library Guide

GC33-03S6-04

Master Index

SC33-0S13-01

User's Handbook

SX33-6061-01

Messages and Codes

SC33-0S14-02

Service

Problem Determination
Gui~e

SC33-0S16-01

Diagnosis Handbook

LX33-6062-0 1

Diagnosis Reference

L Y33-6077 -00

Data Areas

L Y33-6078-00

Evaluation and
planning

Brochure

GC33-0S03-00

CICS General Information

GC33-0 1SS-0 1

Facilities and Planning
Guide

SC33-0S04-0 1

Release Guide

GC33-0S0S-03

Data Tables General
Information

SC33-0684

Programming

CICS Application
Programming Primer

SC33-0674-00

Application Programmer's
Reference

SC33-0S12-01

Administration

Installation Guide

SC33-0S06-0 1

Customlzation Guide

SC33-0S07 -02

Resource Definition (Online)

SC33-0S08-01

Resource Definition (Macro)

SC33-0S09-02

Operations Guide

SC33-0S1 0-0 1

CICS-Supplled Transactions

SC33-0S11-0 1

Version 1 books

CICSNS Application
Programmer's Reference Manual
(Macro Level) (SC33-0079)

CICS/OSNS IBM 3270 Data
Stream Device Guide (SC33-0232)

CICS/OSNS IBM 4700/3600/3630
Guide (SC33-0233)

CICS/OSNS IBM 36S0/3680
Guide (SC33-0234)

CICS/OSNS IBM 3767/3770/6670
Guide (SC33-023S)

CICS/OSNS IBM 3790/3730/8100
Guide (SC33-0236)

Special topics

Intercommunication Guide

SC33-0S19-02

Recovery and Restart Guide

SC33-0S20-0 1

Performance Guide

SC33-0S21-01

XRF Guide

SC33-0S22-02

CICS Communicating with
CICS OS/2

SC33-0736-1

Data Tables Guide

SC33-0632-0 1

Preface vii

Books from related libraries

The reader of this book may also want to refer to the
following IBM publications:

Operator's Library: OSIVS2 MVS System Commands,
GC38-0229

OSIVS Display Consoles, GC38-0255

OSIVS Data Management Macro Instructions, GC26-3793

MVSIESA Operations: System Commands, GC28-1826-1

Resource Access Control Facility (RACF): Security
Administrator's Guide, SC28-1340-5

IMSIVS Messages and Codes Reference Manual,
SH20-9030

viii CICS/MVS 2.1.2 Application Programmer's Reference

IMSIVS Utilities Reference Manual, SH20-9029

IMSIVS Data Base Recovery Control Guide and Reference,
SH35-0027

IMSIESA Utilities Reference, SC26-4284

IMSIESA Messages and Codes, SC26-4290

IMSIESA System Administration Guide, SC26-4278

IMSIESA Operations Guide, SC26-4287

CICSICMS User's Guide, SC33-0285-0

An Introduction to the IBM 3270 Information Display
System, GA27-2739.

Contents

Special notices

Preface
Book structure
CICS/MVS 2.1.2 library

Part 1. Command level programming

Chapter 1.1. Introduction to command level

iii

v
vi
vii

programming \ 3
Commands instead of macros 3

I CICS syntax notation used in this book 3

Chapter 1.2. Command format and argument values 5
Command format 5
Argument values 5

Chapter 1.3. Command language translator 9
Translator data sets 9
Translated code 10
Translator options 13

Chapter 1.4. Programming techniques and restrictions 17
General programming techniques 17
Program size 19
BMS map size 19
The EXEC interface stubs 19
Assembler-language considerations 19
COBOL considerations 20
VS COBOL II considerations 24
VS COBOL" with the ANSI85 COBOL standards 36
PUI considerations 41

Chapter 1.5. Exceptional conditions 43
Handle exceptional conditions (HANDLE CONDITION) 45
Ignore exceptional conditions (IGNORE CONDITION) 45
Suspend condition handling (PUSH and POP) 46

Part 2. Files and databases
Introduction to files and databases 76

Chapter 2.1. General description of file control facilities 77
VSAM data sets 77
BDAM data sets
Data set identification
Accessing data sets from CICS application programs
Review of file control command options
Preventing transaction deadlocks
KEYLENGTH option for remote data sets

78
79
79
83
84
85

Chapter 2.2. File control - VSAM considerations 87
Record identification 87
CICS locking of VSAM records in recoverable files 87

© Copyright IBM Corp. 1982, 1991

Books from related libraries

Summary of changes

Questionnaire

List of exceptional conditions

Chapter 1.6. Access to system Information
Access to CICS storage areas (ADDRESS)
Values outside the application program (ASSIGN)

Chapter 1.7. Execution (command level) diagnostic
facility

Functions of EDF
Security rules
Installing EDF
Invoking EDF
EDF displays
Checking pseudoconversational programs
Program labels
EDF and EXEC DLI commands

Chapter 1.8. Command level interpreter
Invoking the command level interpreter
Screen layout
Program control
Security rules
Installing the command level interpreter

Chapter 1.9. Temporary storage browse
Using the transaction
CEBR commands .
Resource definition

viii

xiii

xv

1

46

51
51
52

57
57
58
58
58
59
64
64
64

67
67
67
72
72
72

73
73
73
74

................................ 75
Chapter 2.3. File control - BDAM considerations
Record identification
Browsing records from BDAM data sets
Adding records to BDAM data sets
BDAM exclusive control

Chapter 2.4. File control - commands, options, and
conditions

Read a record (READ)
Write a record (WRITE)
Update a record (REWRITE)
Delete a record (DELETE) - VSAM only
Release exclusive control (UNLOCK)
Start browse (STARTBR)
Read next record during a browse (READNEXT)

89
89
89
90
91

93
93
93
94
94
95
95
95

Ix

Read previous record during a browse (READPREV) -
VSAM only 96

Reset start of browse (RESETBR) 96
End browse (ENDBR) 96
File control options 97
File control exceptional conditions 98

Chapter 2.5. OL/I services (EXEC OLI command) 101
EXEC DLI command 101
General format of EXEC DLI command 101
General rules and conventions 104
Example of DUI requests using EXEC DLI 105

Part 3. Data communication operations

Chapter 3.1. Introduction to data communication
operations

Chapter 3.2-1. Introduction to basic mapping support
How BMS affects programming
BMS maps
BMS map definition
Cataloging BMS map sets
BMS commands
Facilities provided by BMS
Sample programs

Chapter 3.2-2. Minimum function BMS
IBM 3270 information display system
Screen layout design
Defining BMS maps
Writing programs to use BMS services
Exceptional conditions
Printed output

Chapter 3.2-3. Standard function BMS
Text processing
Printer support
Partition support
Applications of partitions under CICS
How CICS manages partitions
Summary of implementation and use of partitions
Application programming
Logical device components
10/63 magnetic slot reader control
Trigger fields
Outboard formatting
Block data format

Chapter 3.2-4. Full function BMS
Logical message handling .. .
Message routing
Message switching transaction (CMSG)
Returning mapped data to a program before output

Chapter 3.2-5. BMS macro and command reference
summary

Map set, map, and field definition

X CICS/MVS 2.1.2 Application Programmer's Reference

133

135
135
135
136
136
137
137
138

139
139
142
143
148
156
156

159
159
160
162
162
163
165
165
169
170
171
172
172

173
173
184
189
189

193
193

Chapter 2.6. OLII services (OLII CALL statement)
User interface block (UIB)
Schedule the PSB and obtain PCB addresses
Segment search arguments ..
I/O work area for DUI segments
Issue a DUI database call ...
Terminate a PSB in the CICS application program
Check the response to a DUI CALL
Example of DUI request using call

Chapter 2.7. OLII batch programs (shared DB)

117
117
118
118
119
119
119
120
122

129

131

Partition set definition 204
BMS related constants 205
Input commands 209
Output commands 209
BMS related ASSIGN options 212
BMS options 213
BMS exceptional conditions 217

Chapter 3.3. Terminal control 221
Commands and options for terminals and logical units 222
Commands and options for logical units 225
TCAM-supported terminals and logical units 229
BTAM programmable terminals 229
Teletypewriter programming 230
Display device operations 230
Standard CICS terminal support (BTAM or TCAM) 234
LUTYPE4 logical unit 235
LUTYPE6.1 logical unit 235
LUTYPE6.2 logical unit (VTAM only) 237
System/3 239
System/370 239
System/7 240
2260 display station 241
2265 display station 241
2741 communication terminal 241
2770 data communication system 242
2780 data transmission terminal 242
2980 general banking terminal system 243
3270 information display system (BTAM or TCAM) 244
3270 logical unit 245
3270 SCS printer logical unit 245
3270-display logical unit (LUTYPE2) and 3270-printer

logical unit (LUTYPE3) 246
3600 finance communication system (BTAM) 246
3600 pipeline logical unit 247
3600 (3601) logical unit 248
3600 (3614) logical unit 248
3630 plant communication system 249
3650/3680 host command processor logical unit 249
3650 host conversational (3270) logical unit 249
3650 host conversational (3653) logical unit 250
3650 interpreter logical unit 250
3650 pipeline logical unit 251

\ 3650/3680 full function logical unit
3660 supermarket scanning system
3735 programmable buffered terminal
3740 data entry system
3767 interactive logical unit
3770 batch logical unit .,.
3770 interactive logical unit
3770 full function logical unit
3780 communications terminal
3790 full function logical unit
3790 inquiry logical unit
3790 SCS printer logical unit
3790 (3270-display) logical unit
3790 (3270-printer) logical unit
4700 finance communication system
7770 audio response unit
Terminal control options

Part 4. Control operations

251
251
251
252
252
253
253
253
253
254
254
255
255
256
256
256
257

Chapter 4.1. Introduction to control operations 273

Chapter 4.2. Interval control 275
Request current date and time of day (ASKTIME) 275
Select the format of date and time (FORMATTIME) 276
Delay processing of a task (DELAY) 276
Request notification when specified time has expired

(POST) 276
Wait for an event to occur (WAIT EVENT) 277
Start a task (START) 277
Retrieve data stored for a task (RETRIEVE) 279
Cancel interval control requests (CANCEL) 280
Interval control options 280
Interval control exceptional conditions 283

Chapter 4.3. Task control 285
Suspend a task (SUSPEND) 285
Schedule use of a resource by a task (ENQ and DEQ) 285
Task control options 286
Task control exceptional condition 286
Controlling access sequence 286

Chapter 4.4. Program control 289
Application program logical levels 289
Link to another program anticipating return (LINK) 289
Transfer program control (XCTL) 290
Return program control (RETURN) 291

Part 5. Recovery and debugging

Chapter 5.1. Introduction to recovery and debugging 311
Sequential terminal support 311

Chapter 5.2. Abnormal termination recovery 313
Handle an abnormal termination exit (HANDLE

ABEND) 313
Terminate task abnormally (ABEND) 314

Terminal control exceptional conditions 262

Chapter 3.4. Batch data Interchange 265
Interrogate a data set (ISSUE QUERY) 266
Read a record from a data set (ISSUE RECEIVE) 266
Add a record to a data set (ISSUE ADD) 266
Update a record in a data set (ISSUE REPLACE) 266
Delete a record from a data set (ISSUE ERASE) 267
End processing of a data set (ISSUE END) 267
End processing of a data set abnormally (ISSUE

ABORT) 267
Send data to an output device (ISSUE SEND) 268
Request next record number (ISSUE NOTE) 268
Wait for an operation to be completed (ISSUE WAIT) 268
Batch data interchange options 268
Batch data interchange exceptional conditions 269

271

Load a program (LOAD) 291
Delete a loaded program (RELEASE) 291
Passing data to other programs . . . 292
Program control options 296
Program control exceptional conditions 297

Chapter 4.5. Storage control 299
Obtain and initialize main storage (GETMAIN) 299
Release main storage (FREEMAIN) 299
Storage control options 300
Storage control exceptional conditions 300

Chapter 4.6. Transient data control 301
Write data to transient data queue (WRITEQ TO) 302
Read data from transient data queue (READQ TO) 302
Delete an intrapartition transient data queue

(DELETEQ TO) 303
Transient data control options 303
Transient data control exceptional conditions 303

Chapter 4.7. Temporary storage control 305
Write data to a temporary storage queue (WRITEQ TS) 306
Read data from temporary storage queue (READQ TS) 306
Delete temporary storage queue (DELETEQ TS) 307
Temporary storage control options 307
Temporary storage control exceptional conditions 308

309

Abnormal termination recovery options 315
Abnormal termination recovery exceptional condition 315

Chapter 5.3. Trace control 317
Trace entry points 317
Event monitoring points 317
Trace facility control 317

Contents xi

Trace table format
CICS auxiliary trace facility
User trace entry point and event monitoring point

(ENTER)
Control the CICS trace facility (TRACE ON, TRACE

OFF)
Trace control options
Trace control exceptional conditions

Chapter 5.4. Dump control
Dump main storage (DUMP)
Dump control options

318
319

320

320
321
321

323
323
323

Part 6. The CICS built-In function command

Chapter 6.1. The field edit bullt·ln function (BIF
DEEDIT) command 335

Appendixes

Appendix A. EXEC interface block 339
EIB fields 339

Appendix B. Translation tables for the 2980 347

Appendix C. CICS macros and equivalent commands 351

Appendix D. Sample programs (assembler language) 353
Operator instruction program (ASM) 354
Inquiry/update sample program (ASM) 354
Browse sample program (ASM) 361
Order entry sample program (ASM) 368
Order entry queue print sample program (ASM) 372
Low balance report sample program (ASM) 375
Maps and screen layouts for ASM sample programs 378
Record descriptions for ASM sample programs 392

Appendix E. Sample programs (COBOL)
Operator instruction program (COBOL) .

xii CICS/MVS 2.1.2 Application Programmer's Reference

393
394

Dump control exceptional conditions

Chapter 5.5. Journal control
Create a journal record (JOURNAL)

325

Synchronize with journal output (WAIT JOURNAL)

327
328
329
329
329

Journal control options
Journal control exceptional conditions

Chapter 5.6. Recovery (sync points)
Establish a sync point (SYNCPOINT)
Sync point option
Sync point exceptional condition

331
331
331
332

... 333

337

Inquiry/update sample program (COBOL) 395
Browse sample program (COBOL) 401
Order entry sample program (COBOL) 407
Order entry queue print sample program (COBOL) 411
Low balance report sample program (COBOL) .. 414
Maps and screen layouts for COBOL sample programs 417
Record descriptions for Co,BOL sample programs 431

Appendix F. Sample programs (PUI) 433
Operator instruction program (PUI) 434
Inquiry/update sample program (PUI) 435
Browse sample program (PUI) 441
Order entry sample program (PUI) 447
Order entry queue print sample program (PUI) 451
Low balance report sample program (PUI) . . 454
Maps and screen layouts for PUI sample programs 457
Record descriptions for PUI sample programs 471

Index 473

Summary of changes

This edition is based on the CICSIMVS Application
Programmer's Reference manual (SC33-0512-0), and
incorporates updates and revisions as well as
enhancements introduced by CICS/MVS 2.1.1 and
CICS/MVS 2.1.2. These enhancements are described in the
CICSIMVS Release Guide.

The opportunity has also been taken to correct errors and
incorporate readers' comments.

I All changes that are new in this edition, other than
I editorial changes, are marked by revision bars in the left
I margin, like this paragraph.

© Copyright IBM Corp. 1982, 1991 xIII

Questionnaire

CICS/MVS Version 2 Release 1 Modification 2
Application Programmer's Reference

Publication No. SC33-0S12-01

To help us produce books that meet your needs, please fill in this questionnaire. A reader's comment form is also
included at the back of this book should you want to make more detailed comments. Whichever form you use, your
comments will be sent to the author's department for review and appropriate action.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.

1. Please rate the book on the points shown below

The book is:
accurate 2 3 lJ 5 inaccurate
readabl e 2 3 lJ 5 unreadab 1 e

well laid out 2 3 lJ 5 badly laid out
we 11 organ; zed 2 3 4 5 badly organized

easy to understand 2 3 lJ 5 i ncomprehensi b 1 e
adequately illustrated 2 3 4 5 inadequately illustrated

has enough examples 2 3 lJ 5 has too few examples

And the book a s a .Jho 1 e?
excellent 2 3 4 5 poor

2. Whi eh top; cs does the book handl e well? 3. And which does it handle badly?

4. Ilow could the book be improved? _______________________________ _

5. How often do you use thi s book? Less than once a month? 0 Monthly? 0 Weekly? 0 Oai ly? 0

6. What sort of work do you use CICS for? ____________________________ ~

7. How long have you been using CICS? ___ ~years/months

8. Ilave you any other comments to make? _____________________________ ~

Thank you for your time and effort. No postage stamp necessary if mailed in USA. (If you are outside the USA, please
mail this form to your local IBM office or representative who will be happy to forward your comments or you may mail
directly to either address in the Edition Notice on the back of the title page.) Be sure to print your name and address
below if you would like a reply.

Name .•••.•••••••••..••••••••.••.•••••••••••••••.•••.••.•••••••••..•••..•• Job Title

Company •.•••••••.••..•••••••••••••••••.•••.••••••••••• Addre ss •••••••••••••••••••..••••...••••••..•.••••.••.•••.•.••..••

•••••••••••••••••••.•••••••••••••••••.•••••••••.••••••••••••••••••.•••• • Zip ••

Reader's Comments
SC33-0512-01

Fold and Tape

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 6R1 H
180 KOST ROAD
MECHANICSBURG PA 17055-0786

111.111,"111,".1.1 •• 1.1.11".1,"11111 •• 1111".111

Please do not staple

-~- ------ -_ -- _--.,....

= .::: :5~S: (!)

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

Fold and Tape

Cut or FI
Along Lli

Cut or F
Along LI

@ Copyright IBM Corp. 1982, 1991

Par11. Command level programming

Chapter 1.1. Introduction to command level programming

Chapter 1.2. Command format and argument values

Chapter 1.3. Command language translator

Chapter 1.4. Programming techniques and restrictions

Chapter 1.5. Exceptional conditions

Chapter 1.6. Access to system Information

Chapter 1.7. Execution (command level) diagnostic facility

Chapter 1.8. Command level interpreter

Chapter 1.9. Temporary storage browse

3

5

9

17

43

51

57

67

73

1

Chapter 1.1. Introduction to command level programming

The IBM Customer Information Control System/Multiple
Virtual Storage (CICS/MVS*) command level application
programming interface allows you to request CICS
services by CICS commands. These commands are
statements that you can include at appropriate points in
your application program. They have a format similar to
the statements of the programming language in use.

You can include CICS commands in application programs
written in assembler language, COBOL, or PUI. The
commands are essentially the same in each language,
differing only in the delimiter used.

Application programs that include CICS commands are
processed by the command language translator, which
translates the commands into statements in the language
being used. You can then assemble (or compile) and link
edit your programs in the usual way. When your
application programs are executed, the statements
inserted by the translator invoke the EXEC Interface
program, which provides the service requested by each
command by invoking one or more CICS control programs.

Besides invoking CICS control programs, the EXEC
interface program obtains and provides addressability to
required areas of storage, which are n:~~~~sed
automatically when no longer required.

Generally, you need only select the required function and
code the appropriate command. You do not normally need
to know about CICS storage areas and control blocks; in
those cases when you do need access to such areas, the
command level interface provides commands for this
purpose, as described in "Chapter 1.6. Access to system
information" on page 51.

For a basic description of CICS, see the CICS Application
Programming Primer, which has been designed to help you
learn, step by step, how to write a realistic CICS
application program, using the CICS command level
interface and the COBOL programming language.

The primer answers questions like "What is CICS?," "Why
have CICS?," "What does CICS do?," "How does a
CICS-based system differ from a batch system?," "How
does CICS help you set up an online system?," and "How
do you use CICS?"

* IBM Trademark. For a list of trademarks see page iii.

© Copyright IBM Corp. 1982, 1991

For information about the performance of a CICS
application program, see the CICS/MVS Performance
Guide.

Commands Instead of macros

You are advised to use the command level interface
instead of the macro level interface for all new application
programs.

Usually, macro level programs will work as before unless
you need to use the new or enhanced functions introduced
in the more recent releases, because these functions are
only carried out at command level.

If you have an existing macro level program that you
enhance using CICS commands, you will sometimes get
unpredictable results because of addressability and
storage problems. (See "CICS macros used with CICS
commands" on page 18 for more details.)

It is therefore better to convert your macro level program
to command level and then add the enhancements using
CICS commands. There is a program that will do most of
this conversion for you. It is called the IBM CICS
Conversion Utility Program Offering (CICS/CVT) , program
number 5789-DPL.

Similar considerations apply if you have a command level
program that invokes a macro level program, and
vice-versa. You must ensure that addressability is
maintained across such invocations.

I CICS syntax notation used in this book

I In the CICS books, we show you CICS commands in a
I standard way.

I We do not include the EXEC CICS that always precedes
I each command's keyword; nor do we include the END
I EXEC statement used in COBOL programs, or the
I semicolon (;) used in PUI programs, which you must code
I at the end of each CICS command.

3

I We use a number of symbols to show you how to code the
I commands. These symbols are not part of the command,
I so never include them In your code. They are as follows:

Symbol Meaning

b or b A blank that you must code.

[] You can, but need not, code the enclosed
options.

{ } A set of alternatives-one of which you
must code.

I A logical "OR" symbol that separates
alternatives. If the alternatives are between
{ and }, you must code one of them. If they
are between [and], you may code one of
them.

-- Underlining Indicates that the option Is a
default that is assumed unless you specify
otherwise.

'" An ellipsis Indicates that you can code the
Immediately preceding identifier(s) more
than once.

Punctuation and Code exactly as shown.
uppercase
characters

Lowercase Code your own text, as appropriate (for
characters example, name).

For example, with READ FILE (name) you must code READ
FI LE and 0 unchanged, but are free to code any valid text
string to mean the name of the file.

I Thus, to show that either GTEQ, or EQUAL, or neither, can
I be coded (and that EQUAL is the default), the syntax
I notation is:

I [GTEQIEQUAL]

4 CICS/MVS 2.1.2 Application Programmer's Reference

Chapter 1.2. Command format and argument values

This chapter explains the general rules governing the use
of the CICS commands that are described in the chapters
that follow.

Command format

The general format of a CICS command is EXECUTE CICS
(or EXEC CICS) followed by the required function name,
and possibly by one or more options, as follows:

EXEC CICS function [option[(arg)]] •••

where:

• "function" describes the operation required (for
example READ).

• "option" describes any of the many optional facilities
available with each function. Some options are
followed by an argument in parentheses, others are
not. You can write options (including those that
require arguments) in any order.

• "arg" (short for argument) is a value such as
"data-value" or "name", as defined below.

An example of a CICS command (from "Chapter 2.4. File
control - commands, options, and conditions" on
page 93) is as follows:

EXEC CICS READ FILE(IFILEAI) INTO(FILEA)
RIDFLD(KEYNUM) UPDATE

You must add the appropriate end-of-command delimiter,
described in the next section.

Coding conventions

You can include CICS commands in an assembler
language, COBOL, or PLII program anywhere that an
executable statement can be included.

In assembler language:

• You must code the keyword EXEC in an operator
position. You can also label the command.

• You must use either a blank or a comma, but not both,
as the delimiter between options. The appearance of
'comma-blank' or 'period-blank' immediately following
an option shows that the rest of the line is a comment.

• The usual continuation conventions for macros apply
(use a nonblank character in column 72, and start the
continuation line in column 16).

In COBOL, you must delimit a command with 'END-EXEC'.
For example:

EXEC CICS ISSUE RESET END-EXEC

@ Copyright IBM Corp. 1982, 1991

This delimiter allows you to write a command within a
TH EN cI ause.

In PUI, you must delimit a command with a semicolon in
PUI. For example:

EXEC CICS ISSUE RESET;

In the following chapters, for simplicity, the syntax of each
of the commands that you can specify in an application
program is presented without the phrase EXEC CICS,
without the continuation conventions, and without the
end-of-command delimiter (END-EXEC or semicolon).

In the programming examples in the text, the phrase EXEC
CICS is added but not the continuation conventions or
end-of-command delimiter. When coding commands, you
must add these as appropriate for the programming
language you are using.

Argument values

The parenthesized argument values that follow options in a
CICS command are specified as follows:

• data-val ue
• data-area
• pointer-value (or ptr-value)
• pointer-ref (or ptr-ref)
• name
• label
• hhmmss.

When a CICS command offers the LENGTH option, the
LENGTH is generally expressed as a signed half-word
binary value. This puts a theoretical upper limit of 32767
bytes on the LENGTH. In practice (depending on issues of
recoverability, function shipping, and so on) the achievable
upper limit varies from command to command, but will be
somewhat less than the theoretical maximum.

Whatever the CICS command, to be on the safe side, do
not let the LENGTH you code exceed 24K bytes.

For journaled items, the length may be further restricted
by the buffer size of the journal.

For journal commands, the restriction~ apply to the sum of
the LENGTH and PFXLENG values (see "Chapter 5.5.
Journal control" on page 327).

Finally, for temporary storage, transient data, and file
control, the dataset definitions may themselves impose
further restrictions. You will find any such restrictions
documented in the books describing installation and
resource definition.

5

Most programmers are unlikely to find a 24K-byte limit a
hindrance; for the sake of efficiency and response time,
online programs will not often handle such large amounts
of data.

The argument values are defined in the sections that
follow.

Argument values in assembler language

Usually, an argument may be either the address of the
data or the data itself (in assembler language terms, either
a relocatable expression or an absolute expression).

A relocatable expression must not contain unmatched
brackets (outside quotes) or unmatched quotes (apart from
length attribute references). Provided this rule is obeyed,
any expression may be used, including literal constants
such as =AL2(100), forms such as 20(0,R11), and forms
that use the macro replacement facilities.

An absolute expression must be a single term that may be
either a length attribute reference or a self-defining
constant.

Care must be taken with equated symbols, which should be
used only when referring to registers (pointer references).
If an equated symbol is used for a length, say, it will be
treated as the address of the length and an unpredictable
error will occur.

• 'data-value' can be replaced by a relocatable
expression that is an assembler-language reference to
data of the correct type for the argument, or by a
constant of the correct type for the argument.

• 'data-area' can be replaced by a relocatable
expression that is an assembler-language reference to
data of the correct type for the argument.

• 'pointer-value' can be replaced by an absolute
expression that is an assembler-language reference to
a register.

• 'pointer-ref can be replaced by an absolute expression
that is an assembler-language reference to a register.

• 'name' can be replaced either by a character string in
quotes, or by an assembler-language relocatable
expression reference to a character string with a
length equal to the maximum length allowed for the
name. The value of the character string is the name
to be used by the argument.

• 'label' is intended to refer to a destination address to
which control is transferred. It can be replaced by the
label of the destination instruction or by the label of an
address constant for the destination. This constant
must not specify a length.

The expression used is =A(dest) where "dest" is a
relocatable expression denoting the destination.

6 CICS/MVS 2.1.2 Application Programmer's Reference

For example, the following commands are equivalent:

HANDLE CONDITION ERROR(DEST)
HANDLE CONDITION ERROR(ADCON)
HANDLE CONDITION ERROR(=A(DEST»

DEST BR 14
ADCON DC A(DEST)

• 'hhmmss' can be replaced by a self-defining decimal
constant or an assembler language reference to a field
defined as Pl4. The value must be of the form
OHHMMSS + where HH represents hours from 00
through 99, MM represents minutes from 00 through
59, and SS represents seconds from 00 through 59.

Many commands involve the transfer of data between the
application program and CICS. In most cases, the length
of the data to be transferred must be provided by the
application program. However, if a data area is specified
as the source or target, it is not necessary to provide the
length explicitly because the command language translator
will generate a default length.

Although the DESTIDlENG, FROMlENGTH, KEYlENGTH,
LENGTH, PFXlENG, TOLENGTH, and VOLUMELENG options
are shown as required options in the syntax for a
command, these options are always optional in an
assembler language program that specifies a data area
(except for the ENQ and DEQ commands). In most cases,
the lENGTH option must be specified if SET is used; the
syntax of each command and its associated options show
whether this rule applies.

Argument values in COBOL
• 'data-value' can be replaced by any COBOL data name

of the correct data type for the argument, or by a
constant that can be converted to the correct type for
the argument. The data type can be specified as one
of the following:

Halfword binary - PIC S9(4) CaMP

Fullword binary - PIC S9(8) CaMP

Character string - PIC X(n) where "n" is the number
of bytes.

• 'data-area' can be replaced by any COBOL data name
of the correct data type for the argument. The data
type can be specified as one of the following:

Halfword binary - PIC S9(4) CaMP

Fullword binary - PIC S9(8) CaMP

Character string - PIC X(n) where "n" is the number
of bytes.

In cases where the data type is unspecified, the data
area can refer to an elementary or group item.

• 'pointer-value' can be replaced by any Bll (base
locator for linkage) cell name, or by any COBOL data

1 / name that contains a copy of such a pointer in a BLL
cell.

• 'pointer-ref can be replaced by any BLL cell name.

• 'name' can be replaced by either of the following:

A character string in quotes (that is, a nonnumeric
literal). If this is shorter than the required length,
it is padded with blanks.

A COBOL data area with a length equal to the
length required for the name. The value in the
data area is the name to be used by the
argument. If the data area is shorter than the
required length, the excess characters are
undefined.

• 'label' can be replaced by any COBOL paragraph name
or a section name.

• 'hhmmss' can be replaced by a decimal constant or by
a data name of the form PIC S9(7) COMP-3. The value
must be of the form OHHMMSS + where HH
represents hours from 00 through 99, MM represents
minutes from 00 through 59, and SS represents
seconds from 00 through 59.

Argument values in PL/I
• 'data-value' can be replaced by any PLII expression

\1 that can be converted to the correct data type for the
,/ argument. The data type can be specified as one of

the following:

)

Halfword binary - FIXED BIN(15)

Fullword binary - FIXED BIN(31)

Character string - CHAR(n) where "n" is the number
of bytes.

'data-value' includes "data-area" as a subset.

• 'data-area' can be replaced by any PUI data reference
that has the correct data type for the argument. The
data type can be specified as one of the following:

Halfword binary - FIXED BIN(15)

Fullword binary - FIXED BIN(31)

Character string - CHAR(n) where "n" is the number
of bytes.

If the data type is unspecified, the data area can refer
to an element, array, or structure; for example,
FROM(P - > STRUCTURE) LENGTH(LNG). The
reference must be to connected storage.

The data area must also have the correct PUI
alignment attribute. This is ALIGNED for binary items,
and UNALIGNED for strings.

If data that is not in varying length string format is
read into a varying length string, the length bytes at
the beginning of the varying length string will be
corrupted.

• 'pointer-value' (which includes "pointer-ref' as a
subset) can be replaced by any PUI expression that
can be converted to POI NTER.

• 'pointer-ref can be replaced by any PUI reference of
type POINTER ALIGNED.

• 'name' can be replaced by either of the following:

A character string in quotes (that is, a literal
constant)

A PUI expression or reference whose value can
be converted to a character string with a length
equal to the maximum length allowed for the
name. The value of the character string is the
name to be used by the argument.

• 'label' can be replaced by any PUI expression whose
value is a label.

• 'hhmmss' can be replaced by a decimal constant or an
expression that can be converted to a FIXED
DECIMAL(7,0) value. The value must be of the form
OHHMMSS + where HH represents hours from 00
through 99, MM represents minutes from 00 through
59, and SS represents seconds from 00 through 59.

If the UNALIGNED attribute is added to the ENTRY
declarations generated by the CICS translator by a
DEFAULT DESCRIPTORS statement, data area or pointer
reference arguments to CICS commands must also be
UNALIGNED. Similarly for the ALIGNED attribute; data
area or pointer reference arguments must be ALIGNED.

Many commands involve the transfer of data between the
application program and CICS. In most cases, the length
of the data to be transferred must be provided by the
application program. However, if a data area is specified
as the source or target, it is not necessary to provide the
length explicitly because the command language translator
will generate a default length value of either
STG(data-area) or CSTG(data-area) as appropriate.

Although the DESTIDLENG, FROMLENGTH, KEYLENGTH,
LENGTH, PFXLENG, TOLENGTH, and VOLUMELENG options
may be shown as required options in the syntax for a
command, these options are always optional in a PUt
program that specifies a data area (except for the ENQ and
DEQ commands). In most cases, the LENGTH option must
be specified if SET is used; the syntax of each command
and its associated options show whether this rule applies.

Chapter 1.2. Command format and argument values 7

Chapter 1.3. Command language translator

The command language translator accepts as input a
source program written in assembler language, COBOL, or
PUI in which CICS commands have been coded, and
produces as output an equivalent source program in which
each command has been translated into a call macro or
statement in the language of the source program.

At execution time, the call macro or statement invokes the
EXEC interface program, which accepts the arguments
passed by the call macro or statement, sets up the
parameters in the CICS control blocks, and passes control
to the appropriate CICS facility.

The translator is executed in a separate job step. The job
step sequence for preparing an application program is
translate - assemble (or compile) - link-edit. Cataloged
procedures are supplied to assist the user; see the
CICS/MVS Installation Guide for details. The translator
requires a region of 256K bytes.

There are three separate translators: one for assembler
language, one for COBOL, and one for PUI. Each
translator reads its input from SYSIN.

For COBOL and PUI, the translator writes its output (the
translated source program) on SYSPUNCH, and writes the
source listing, error messages, and so on, on SYSPRINT.

For assembler language, the translator writes its output to
SYSPUNCH, which also contains error messages (if any) as
assembler comments. SYSPRINT contains only a list of
translator options, the number of messages produced
together with the highest message severity, and the return
code from the translator step.

All the translators also accept the commands that can be
used to access OUI databases. These commands are
identified by EXEC OLI and are translated in a similar way
to the EXEC CICS commands; they are described in
"Chapter 2.5. OUI services (EXEC OLI command)" on
page 101.

© Copyright IBM Corp. 1982, 1991

Translator data sets

Input data set

The input data set must be a sequential data set. It may
be on punched cards, on a direct-access device, or on
magnetic tape.

The input data set for assembler language can contain
either fixed-length or variable-length records.

The input data set for COBOL must contain fixed-length
records (blocked or unblocked).

The input data set for PUI can contain either fixed-length
or variable-length records.

The record length (LRECL) must not exceed 104 bytes.

output data set

The output data set must be a sequential data set. It may
be on punched cards, on a direct-access device, or on
magnetic tape.

The output data set must contain aO-byte fixed-length
records (blocked or unblocked).

Later copying or manipulating of statements originally
inserted by the CICS translator in an application program
may produce unpredictable results.

Listing data set

The listing data set must be a sequential data set.
Although the listing is usually printed, it can be stored on
any direct-access device or on magnetic tape.

The listing data set for COBOL must contain 121-byte
fixed-length blocked records (RECFM = FBA).

The listing data set for assembler language and PUI must
contain variable-length blocked records with a maximum
length of 121 bytes (RECFM=VBA).

9

Translated code

Assembler language

The invocation of a CICS assembler-language application
program obeys system standards. This means that, on
entry to the application program, registers 1, 15, 14, and 13
contain the following:

• Register 1 contains the address of the parameter list;
there are two entries in this list, as follows:

Address of the EIB (EXEC interface block)

Address of the COMMAREA; if there is no
COMMAREA, EIBCALEN will be zero.

• Register 15 contains the address of the entry point

• Register 14 contains the address of the return point

• Register 13 contains the address of the save area.

All other registers are undefined.

DFHECAll macro: For an assembler-language
application program, each command is replaced by an
invocation of the DFHECALL macro.

This macro expands to a system-standard call sequence
using registers 15, 14, 0, and 1:

• Register 15 contains the address of the entry point in
the EXEC interface program

• Register 14 contains the address of the return point in
your application program

• Register 0 is undefined

• Register 1 contains the address of the parameter list.

The entry point held in register 15 is resolved in the EXEC
interface processor (DFHEAI), which must be link-edited
with your application program.

You can specify the exit from the application program by a
CICS RETURN command in your source program.

10 CICS/MVS 2.1.2 Application Programmer's Reference

Alternatively, you can let the translator-inserted macro
DFHEIRET, which has been inserted before the END
statement, do it. This macro restores the registers and
returns control to the address in register 14.

During assembly, the DFHECALL macro builds an
argument list in dynamic storage, so that the application
program is reentrant, and then invokes the EXEC interface
program (DFHEIP). DFHEIP also obeys system standards,
as described above.

The translator inserts the following macros into your
source program and invokes the DFHECALL macro:

DFHEIENT. This macro is inserted after the first CSECT or
START instruction. It does prolog code; that is, it:

• Saves registers

• Obtains an initial allocation of the storage defined
by DFHEISTG (see below)

• Sets up a base register (default register 3)

• Sets up a dynamic storage register (default register
13)

• Sets up a register to address the EIB (default
regi ster 11).

DFHEIRET. This macro performs epilog code; that is, it:

• Restores registers

• Returns control to the address in register 14.

DFHEISTG and DFHEIEND. These macros define dynamic
storage; that is, they:

• Define the storage required for the parameter list

• Define a save area.

A copy book, DFHEIBLK, containing a DSECT that
describes the EIB is also included automatically.

The example in Figure 1 on page 11 shows a simple
assembler-language application program that uses the
BMS command SEND MAP to send a map to a terminal.
The lower part of the figure shows the output after
program INSTRUCT has been translated.

INSTRUCT CSECT
EXEC CICS SEND MAP('DFH$AGA') MAPONLY ERASE
END

The above source program ;s translated to:

DFHEIGBL , INSERTED BY TRANSLATOR
INSTRUCT CSECT

DFHEIENT INSERTED BY TRANSLATOR
* EXEC CICS SEND MAP('DFH$AGA') MAPONLY ERASE

DFHECALL =X ' 1804C0000800000000046204000020 1 ,(CHA7,=CL7 I DFH$AGA*
I), (______ RF,DFHEIV00)

DFHEIRET INSERTED BY TRANSLATOR
DFHEISTG INSERTED BY TRANSLATOR
DFHEIEND INSERTED BY TRANSLATOR
END

Figure 1. Translated code for a CICS command

Extensions to dynamic storage: You can extend
dynamic storage to provide extra storage for user
variables. You do this by defining these variables in your
source program in a DSECT called DFHEISTG.

The maximum amount of dynamic storage obtainable using
the DFHEISTG DSECT is 65264 bytes. (DFHEISTG is a
reserved name.) At translation, the translator inserts the

DFHEISTG macro immediately following your DFHEISTG
DSECT instruction. In this way the DSECT describes
dynamic storage needed for the parameter list, for the
command-level interface, and for any user variables.

The example in Figure 2 on page 12 shows a simple
assembler-language application program that uses such
variables in dynamic storage.

Chapter 1.3. Command language translator 11

DFHEISTG DSECT
COPY DFH$AGA INPUT MAP DSECT
COPY DFH$AGB OUTPUT MAP DSECT

MESSAGE DS CL39
INQUIRY CSECT

EXEC CICS RECEIVE MAP('DFH$AGA')
MVC NUMBO,KEYI
MVC MESSAGE,=CL(L'MESSAGE) 'THIS IS A MESSAGE'
EXEC CICS SEND MAP('DFH$AGB') ERASE
END

The above source program ;s translated to:

DFHEIGBL ,
DFHEISTG DSECT

DFHEISTG
COpy DFH$AGA
COpy DFH$AGB

MESSAGE OS CL39
INQUIRY CSECT

INSERTED BY TRANSLATOR

INSERTED BY TRANSLATOR
INPUT MAP DSECT
OUTPUT MAP DSECT

DFHEIENT INSERTED BY TRANSLATOR
* EXEC CICS RECEIVE MAP('DFH$AGA')

DFHECALL =X'lS02C0000ae0e000ee040ge0e00e20',(CHA7,=CL7'DFH$AGA*

*

'),(______ RF,DFH$AGAI)
MVC NUMBO,KEYI
MVC MESSAGE,=CL(L'MESSAGE) 'THIS IS A MESSAGE'
EXEC CICS SEND MAP('DFH$AGB') ERASE
DFHECALL =X'lS04C0e00aeeeee0eSS4E204SS0S2S',(CHA7,=CL7'DFH$AGB*

'),(______ RF,DFH$AGBO)
DFHEIRET INSERTED BY TRANSLATOR
DFHEISTG INSERTED BY TRANSLATOR
DFHEIEND INSERTED BY TRANSLATOR
END

Figure 2. Translated code for user variables

Multiple base registers: The values provided by the
automatic insertion of DFHEIENT may be inadequate for
application programs that produce a translated output
greater than 4095 bytes.

For example, by default, the translator sets up only one
base register (register 3) and, in some circumstances (for
example, when the DLI translator option has been
specified), the literals produced by the translator
initializing the DIB could fall outside the range of that
single base register.

To overcome this problem, you can prevent the translator
from automatically inserting its version of the DFHE1ENT
macro by specifying the NOPROLOG translator option.
This will enable you to specify your own DFHEIENT macro
with the CODEREG operand so that you can specify more
than one base register.

You must code your own version of the DFHEIENT macro,
which can have up to three operands, in place of the first
CSECT or START instruction in your source program. The
three operands are: '

• CODEREG - base registers

12 CICS/MVS 2.1.2 Application Programmer's Reference

• DATAREG - dynamic storage registers
• EIBREG - register to address the EIB.

For example, the source code shown in Figure 1 on
page 11 would become:

INSTRUCT DFHEIENT,
CODEREG=(2,3,4),
DATAREG=(13,5) ,
EIBREG=6
EXEC CICS SEND
MAP ('DFH$AGA')
MAPONLY ERASE
END

The symbolic register DFHEIPLR is equated to the first
DATAREG that is either explicitly specified or obtained by
default. Because register 13 points to the save area
defined in dynamic storage by DFHEISTG, you should use
register 13 as the first dynamic storage register.

DFHEIPLR will be assumed by the growth of a CICS
command to contain the value set up by DFHEIENT. Either
dedicate this register or ensure that it is restored before
each CICS command.

Assembler language programs that are translated with the
DLI option will have a DLI initialization call inserted after
each CSECT statement. Assembler language programs
larger than 4095 bytes which do not use the CODEREG
parameter of the DFHEIENT macro to establish multiple
base registers, must include an LTORG statement to
ensure that the literals, generated by either DFHEIENT or a
DLI initialization call, fall within the range of the base
register.

Usually, an LTORG statement is needed for every CSECT
that exceeds 4095 bytes in length.

Commands mixed with macros: An
assembler~language application program that uses both
the command level interface and the macro level interface
(that is, a mixture of commands and macros) must define
the macro global bit &DFHEIMX and set it to 1. This will
ensure that register 13 points to the CSA, and register 12
to the TCA. Here, DFHEIPLR will not be assumed by the
growth of a CICS command.

COBOL

For a COBOL application program, each command is
replaced by one or more COBOL MOVE statements
followed by a COBOL CAll statement.

MOVE statements assign constants to COBOL data
variables; this allows constants and names to be specified
as arguments to options in the commands. For example, a
command such as:

EXEC CICS RECEIVE MAP('A ') END-EXEC

may be translated to:

MOVE I I TO DFHEIV0
MOVE 'A' TO DFHC0070
CALL 'DFHEIl' USING DFHEIV0 DFHC0070 AI

I Declarations for the generated variables DFHEIVO and
DFHC0070 are included automatically in working storage;
their names are reserved. The string within the quotes
moved to DFHEIVO consists of characters, some of which
may be unprintable. Avoid using EXEC, CICS, DLI,
END~EXEC, or names starting with DFH, as names for user
variables.

The translator modifies the linkage section by inserting the
EIB structure as the first parameter, and inserts
declarations of the temporary variables that it requires
into the working-storage section.

PL/I

For a PUI application program, each command is always
replaced by a DO statement, a declaration of a generated
entry name, a CALL statement, and an END statement.
The ENTRY declaration ensures that the appropriate
conversions for argument values take place.

If a PUI on~unit consists of a single EXEC CICS command,
the command should be inside a BEGIN block, for example:

ON ERROR BEGIN;
EXEC CICS RETURN;
END;

In a similar way, if an EXEC CICS command is associated
with a PUI condition prefix, the command should be inside
a BEGIN block, for example:

(NOZERODIVIDE): BEGIN;
EXEC CICS GETMAIN
SET(ptr-ref)
LENGTH(data-value);
END;

If OPTIONS(MAIN) is specified, the translator modifies the
parameter list by inserting the EIB structure pointer as the
first parameter. If OPTIONS(MAIN) is not specified (that is,
if the program is to be link-edited to the main module), the
parameter list is not modified, and it is the application
programmer's responsibility to address the EIB structure in
the link-edited program if access to it is required. In any
case, where a program begins with a valid PUI
PROCEDURE statement, the translator will insert the
declaration of the EIB structure.

Translator options

The translator provides several optional facilities: for
example, to allow for different record formats and to
specify what information is required on the listing. The
translator options and their defaults (underlined) are listed
below.

Translator options are specified in the "'ASM statement for
assembler language, the CBl statement for COBOL, or in
the "'PROCESS statement for PUt. Except for VS COBOL II
programs translated with the ANSI85 option, these
statements must precede the source program; there Is no
batching facility for other languages or for VS COBOL II
without the ANSI85 option. The "'ASM statement must
obey the same syntax and continuation rules as the
assembler-language comment statement.

Translator options may also be specified in the PARM
operand of the EXEC job control statement that invokes the
translator.

If both methods are used, the options specified in the
"'ASM, CBl, or "'PROCESS statements override those in the

Chapter 1.3. Command language translator 13

EXEC job control statement, and the last setting for each
option takes precedence.

Translator options are written as a list within the XOPTS
keyword option, for example:

*ASM XOPTS(NOPROLOG NOEPILOG)

or

CBL XOPTS(QUOTE SPACE(2»

or

*PROCESS XOPTS(FLAG(W) SOURCE);

No characters, other than blanks, can appear before the
CBl statement on the COBOL options card.

The options may appear in any order. They may be
separated by one or more blanks or by a comma1 • If
coded in the PARM operand of the EXEC job control
statement, the XOPT keyword (and its associated
parentheses) is unnecessary; only options for the
translator are permitted.

For compatibility with previous releases, the CICS keyword
can be used as an alternative to XOPTS.

If the application program contains EXEC OLi commands,
the options OLi and CICS must be specified in an "'ASM,
CBl, or "'PROCESS statement, as follows:

*ASM XOPTS(DLI,CICS)

or

CBL XOPTS(DLI,CICS)

or

*PROCESS XOPTS(DLI,CICS);

The CBl or "PROCESS statement can also contain options
that apply to the following compiler. These options will be
ignored by the translator (that is, they will not be checked
for validity) but they will be copied through onto the output
data set. For example, a PUI application program
preceded by:

*PROCESS XOPTS(SOURCE),ATTRIBUTES;

will be passed to the PUI compiler preceded by:

*PROCESS ATTRIBUTES;

The following translator options apply to all three
languages (ASM, COBOL, and PUI) except where stated
otherwise.

ANSI85(VS COBOL II only)
specifies that the translator is to translate VS COBOL
II programs that implement the ANSI85 standards. If
this option is specified, the COBOL2 option is
assumed.

CICS
specifies that the translator is to process EXEC CICS
commands. This option may be specified either as an
alternative to, or as a suboption of, the XOPTS option.
If neither XOPTS nor CICS is specified, CICS is
assumed by default. This option must not be specified
for batch OUI application programs containing EXEC
OLi commands; XOPTS(OLl) must be specified instead.

COBOL2 (VS COBOL II only)
specifies that the translator is to translate VS COBOL
II programs.

DEBUGINODEBUG (COBOL and PLII only)

DLI

specifies whether the translator is to produce code
that passes the translator line number through to CICS
to be displayed by the execution (command level)
diagnostic facility (EOF).

specifies that the translator is to process EXEC DLI
commands.

EDFINOEDF
specifies whether the EOF is to apply to the program.
There is no performance advantage in specifying
NOEDF, but the option can be useful to prevent
commands in well debugged subprograms appearing
on EOF displays.

EPILOG INOEPILOG (ASM only)
specifies that the translator is to insert the DFHEIRET
macro. NOEPllOG prevents the translator inserting
the OFHEIRET macro. OFHEIRET is described on page
10.

NOFEIFE
produces translator informative messages which print
(in hexadecimal notation) the bit pattern corresponding
to the first argument of the translated call. This bit
pattern has the encoded information that the EXEC
interface program uses to determine which function is
required and which options are specified. If FE is
specified, all diagnostic messages are listed, whatever
the FLAG option specifies.

FLAG[(II~IEIS)] (COBOL and PLII only) - abbreviation: F
specifies the minimum severity of error that requires a
message to be listed.

FLAG(I)
All messages

FLAGIFLAG(W)
All except informative messages

FLAG(E)
All except warning and informative messages

1 Any keyword not enclosed In the brackets following the XOPTSICICS operand Is passed to the complier as a complier option.

14 CICS/MVS 2.1.2 Application Programmer's Reference

FLAG(S)
Only severe and unrecoverable error messages.

GOS (ASM only)
specifies whether the translator is to process EXEC
CICS GDS commands. For more information, see the
CICSIMVS Intercommunication Guide.

LANGLVL(1)!LANGLVL(2) (OSNS COBOL only)
specifies whether the translator is to analyze the
source program and generate code according to the
American National Standard X3.23-1968 (LANGLVL(1))
or X3.23-1974 (LANGLVL(2)) interpretations. The same
value for this option must be specified for the
translator and following compiler.

LlNECOUNT(n) (COBOL and PL/I only) - abbreviation: LC
specifies the number of lines to be included in each
page of translator listing, including heading and blank
lines. The value of "n" must be an integer in the
range 1 through 255; if "n" is less than 5, only the
heading and one line of listing will be included on each
page. The default is 60.

MARGINS(m,n[,c]) (PL/I only) - abbreviation: MAR
specifies the extent of the part of each input line or
record that contains PUI statements. The translator
does not process data that is outside these limits (but
it does include it in the source listings).

The option can also specify the position of an
American National Standard printer control character
to format the listing produced if the SOURCE option
applies; otherwise the input records will be listed
without any intervening blank lines.

"m" - column number of left-hand margin.

"n" - column number of right-hand margin. It
must be greater than "m".

"c" - column number of the American National
Standard printer control character. It must be
outside the values specified for "m" and "n". A
zero value for "c" means no printer control
character. Only the following printer control
characters can be used (b represents a blank):

b Skip 1 line before printing.

° Skip 2 lines before printing.

Skip 3 lines before printing.

+ No skip before printing.

Start new page.

The default is MARGINS(2,72,0) for fixed-length
records and MARGINS(10, 100,0) for variable-length
records.

PROLOG INOPROLOG (ASM only)
specifies that the translator is to insert the DFHEISTG,
DFHEIEND, and DFHEIENT macros. NOPROLOG
prevents the translator inserting the DFHEISTG,

DFHEIEND, and DFHEIENT macros. These macros are
described on page 10.

NUM INONUM (COBOL only)
specifies whether the translator is to use the line
numbers appearing in columns 1 through 6 of the card
as the line number in its diagnostic messages and
cross-reference listing. If NUM is not specified, the
translator generates its own line numbers.

OPMARGINS(m,n[,c]) (PLII only) - abbreviation: OM
specifies the translator output margins; that is, the
margins of the input to the following compiler.
Normally these will be the same as the input margins.
For the meaning of "m", "n", and "c" see MARGINS.
The default is OPMARGINS (2,72,0).

OPSEQUENCE(m,n)INOOPSEQUENCE (pLlI only) -
abbreviations: OS and NOS
specifies the position of the sequence field in the
output records. For the meaning of "m" and "n" see
SEQUENCE. The default is OPSEQUENCE(73,80).

OPTINOOPT (COBOL only)
specifies whether the translator is to generate
SERVICE RELOAD statements to address the EIB and
DFHCOMMAREA. You must specify this option if the
translated program is to be compiled using the
optimization feature of COBOL. If the program is not
optimized, you need not specify OPT.

OPTIONS INOOPTIONS - abbreviations: OP and NOP
specifies whether the translator is to include in the
listing a list of all the translator options used during
this translation.

QUOTEIAPOST (COBOL only)
suggests to the translator that the double quotation
marks (II) should be accepted as the character to
delineate literals; APOST suggests that the apostrophe
(I) should be accepted instead. The same value must
be specified for the translator and following compiler.

The CICS-supplied COBOL copy books use APOST.

SEQINOSEQ (COBOL only)
shows whether the translator is required to check the
sequence of source statements. If SEQ is specified
and a statement is not in sequence it is flagged.

If the ANSI8S option is specified, the translator does
no sequence checking and the SEQINOSEQ option is
ignored.

SEQUENCE(m,n) INOSEQUENCE (PLII only) -
abbreviations: SEQ and NSEQ
specifies the extent of the part of each input line or
record that contains a sequence number. This number
is included in the source listing and is used in the
error message and cross-reference listings. No
attempt is made to sort the input lines or records into
sequence. If no sequence field is specified, the
translator creates and prints its own sequence
numbers in the source listing; this is so that the error

Chapter 1.3. Command language translator 15

messages and cross-reference listings can refer to a
particular line in the source listing.

"m" - column number of left-hand margin.

"n" - column number of right-hand margin.

The extent must not exceed 8 characters and must not
overlap the source program (as specified in the
MARGINS option).

The default for fixed-length records is
SEQUENCE(73,80); for varying-length records, the
default is SEQUENCE(1 ,8).

SOURCEINOSOURCE (COBOL and PUI only)
specifies whether the translator is to produce a listing
of the source program.

16 CICS/MVS 2.1.2 Application Programmer's Reference

SPACE(!1213) (COBOL only)
shows the type of spacing to be used in the output
listing: SPACE(1) specifies single spacing; SPACE(2)
double spacing; and SPACE(3) triple spacing.

SPIEINOSPIE
specifies that the translator is to trap unrecoverable
errors. NOSPIE prevents the translator from trapping
unrecoverable errors; instead, a dump is produced.

VBREFINOVBREF (COBOL and PUI only)
specifies whether the translator is required to provide
a cross-reference list of all the commands used in its
input. For compatibility, XREF and NOXREF are still
accepted.

Chapter 1.4. Programming techniques and restrictions

This chapter contains information that will help improve
the performance and efficiency of an application program
in the CICS system.

The first section deals with general programming
techniques; this section gives advice about the
virtual-storage environment in which CICS application
programs operate. The rest of the chapter contains
information that is applicable only to programs written in
assembler language, COBOL, and PUI, and includes the
restrictions that apply to each language when CICS
commands are used.

This manual does not contain any guidance on the use of
programming language statements or programming
techniques that are unrelated to CICS; such information is
given in the appropriate language publications.

Files and queues are not defined within application
programs; these definitions are established with the help of
the system programmer. See the CICSIMVS Resource
Definition (Macro) manual for further information on these
defi ni tion s.

General programming techniques

To see how programming techniques can affect the
performance and efficiency of the CICS system, it is
necessary to understand something about the virtual
storage environment in which CICS operates. Two
concepts are important: multithreading and virtual-storage
paging.

Multithreading is a technique used by CICS which allows a
single copy of an application program to process several

I transactions concurrently. For example, the first section of
an application program may be processing one transaction.
When that section is completed (in general, signaled by the
execution of a CICS command that causes a wait),
processing of another transaction using a different section
of the application program may take place. (Compare this
with single threading, which is the execution of a program
to completion. Processing of one transaction is completed
before another transaction is started.)

Multithreading requires all CICS application programs to
be quasi-reentrant; that is, they must be serially reusable
between entry and exit points, and any instructions or data
altered in them must be restored. CICS application
programs using the command level interface obey this rule
automatically (if, in PUI programs, static storage is used
for read-only data). For these programs to stay reentrant,
variable data should not appear as static storage in PUI,

) nor as a DC in the program CSECT in assembler language.
For COBOL programs, quasi-reenter ability is ensured by a

© Copyright IBM Corp. 1982, 1991

fresh copy of working storage being obtained each time
the program is invoked.

Care must be taken if a program involves lengthy
calculations; because an application program retains
control from one CICS command to the next, processing of
other transactions is completely excluded. However, the
task control SUSPEND command can be used to allow
other transaction processing to proceed; see "Chapter 4.3.
Task control" on page 285 for details.

Virtual-storage paging is a technique used by CICS in a
virtual-storage environment. The key objective of
programming in this environment is the reduction of page
faults. A page fault occurs when a program refers to
instructions or data that do not reside in real storage, in
which case the page in virtual storage that contains the
referenced instructions or data must be paged into real
storage. The more paging required, the lower the overall
system performance.

Although an application program is not precluded from
direct communication with the operating system, the
results of such action are unpredictable and can degrade
performance.

An understanding of the following terms is necessary for
writing application programs to be run in a virtual-storage
environment:

• Locality of reference - the consistent reference,
during the execution of the application program, to
instructions and data within a relatively small number
of pages (compared with the total number of pages in
a program) for relatively long periods.

• Working set - the number and combination of pages
of a program required during a given period.

• Validity of reference - direct reference to the
required pages, without intermediate storage
references that retrieve useless data.

In general, the following techniques should be used:

1. To improve locality of reference, processing should be
sequential for both code and data, where possible.

a. The ideal application program executes
sequentially with no branch logic reference
beyond a small range of address space. However,
error-handling or unusual-situation routines should
be separated from the main section of a program;
they should be subprograms.

b. Subroutines should be placed near to the caller.

c. Subprograms that are short and used only once or
twice (other than error-handling or
unusual-situation routines) should be coded inline
in the calling program.

17

d. Try to keep the execution path in a straight line by
using XCTL commands to transfer control to other
programs when necessary, rather than LINK
commands.

e. Initialize data as close as possible to its first use.

f. Define arrays or other data structures in the order
in which they will be referred to. Refer to
elements within arrays in the order in which they
are stored; for example, in PUI programs, to rows
rather than columns.

g. Issue as few GETMAIN commands as possible.

h. In COBOL programs, avoid using EXAMINE or
VARIABLE MOVE operations, because these
expand into subroutine executions.

2. To minimize the size of the working set, the amount of
storage that a program refers to in a given period
should be as small as possible.

a. Write modular programs and structure the
modules according to frequency and anticipated
time of reference. Do not modularize merely for
the sake of size; consider duplicate code inline as
opposed to subroutines or separate modules.

b. Use separate subprograms whenever the flow of
the program suggests that execution will not be
sequential.

c. Do not tie up main storage while awaiting a reply
from a terminal user.

d. Use command-level file control locate-mode
input/output rather than move-mode.

e. In COBOL programs, specify constants directly,
rather than as data variables in the
worki ng-stor age secti on.

f. In PUI programs, use static storage for constant
data.

g. Avoid using LINK commands where possible,
because they generate requests for main storage.

3. To improve validity of reference, the correct page
should be determined directly.

a. Avoid long searches for data.

b. Use data structures that can be addressed
directly, such as arrays, rather than structures
that must be searched, such as chains.

c. Avoid indirect addressing and any methods that
simulate indirect addressing.

Do not use overlays (paging techniques) in an application
program. System paging is provided automatically and
has superior performance. The design of an application
program for a virtual-storage environment is similar to that
for a real environment. The system should have all

18 CICS/MVS 2.1.2 Application Programmer's Reference

modules resident so that code on unreferenced pages
need not be paged in.

If the program is dynamic, the entire program must be
loaded across adjacent pages before execution begins.
Dynamic programs can be purged from storage if they are
not in use and an unsatisfied storage request exists.
Allowing sufficient dynamic area to prevent purging is
more expensive than making them resident, because a
dynamic program will not share unused space on a page
with another program.

If you program in assembler language, the program mask
is undefined to CICS on entry to an application program.
You must set the program mask for any module that
requires a specific value for the mask. CICS does not
preserve the mask value across the interface to other
called programs, for example, when a LINK or XCTL
command is used.

CICS macros used with CICS commands

Take care when writing application programs that contain a
mixture of CICS commands and CICS macros, or in a
macro-level program that invokes a command-level
program and vice-versa.

Avoid mixtures of commands and macros whenever you
I can. Any program containing a mixture of CICS commands
I and CICS macros, and which is link-edited with the DFHEAI
I stub, is a command-level program and should return to the
I program that linked to it by using an EXECCICS RETURN
I command.

Using commands and macros that use the same·
component of CICS will often give wrong results. For
example, using a mixture of BMS commands and DFHTC
macros is likely to cause, an error in TIOA usage.

When a RECEIVE MAP command is used with the SET
option, the EXEC interface program always reuses the
terminal input/output area (TIOA) obtained. This TIOA
should be released in the command level program only.
Do not use a DFHSC TYPE=FREEMAIN, RELEASE=ALL
macro in the same or an invoked program, because the
TIOA is freed unknown to the EXEC interface program,
which will attempt to reuse it, giving unpredictable results.

I Lengths of areas passed to CICS commands

I When a CICS command includes a LENGTH operand, it
I usually accepts the length as a signed halfword binary
I value. This places a theoretical upper limit of 32K bytes
I on the length. In practice, the limits are less than this and
I vary for each command. The limits depend on data set
I definitions, recoverability requirements, buffer sizes, and
I local networking characteristics.

)

)

I COMMAREA: The maximum size of a dynamic log
I record is 32K bytes. If a COMMAREA is passed to a
I transaction defined with the DFHPCT operand
I RESTART = YES, CICS journal control adds a 5-byte header
I before writing the COMMAREA contents to the dynamic
I log. Therefore, in this case, the practical limit to the
I COMMAREA size is 32K bytes minus 5 bytes.

I For a COMMAREA passed between successive
I transactions in a pseudoconversational sequence, 32K
I bytes is the limit imposed by VTAM on the total data
I length. This limit applies to the entire transmitted
I package, which includes control data added by VTAM. The
I amount of control data increases if the transmission uses
I intermediate links.

I Journal records: For journal records, the journal buffer
I size may impose a limit lower than 24K bytes. For journal
I records, the limit applies to the sum of the LENGTH and
I PFXLENG values.

I Data set definitions: For temporary storage, transient
I data, and file control, the data set definitions can impose
I limits lower than 24K bytes. For details, see the
I CICSIMVS Operations Guide and the CICSIMVS Resource
I Definition (Macro) manual.

I Recommendation: For any command in any system, 24K
I bytes is a good working limit for LENGTH specifications.
I Subject to user-specified record and buffer sizes, this limit
I is unlikely either to cause an error or to place a constraint
I on applications.

I Note: The value in the LENGTH operand should never
I exceed the length of the data area addressed by the
I command.

Program size

The load module resulting from any application program
must not occupy more than 524,152 bytes of main storage,
except that an RMODE=ANY program on MVS/XA* can be
up to 16 megabytes in length (although this is not
recommended).

BMS map size

The load module of a BMS map that is loaded dynamically
using the LOAD command must not exceed 65,520 bytes in
size.

* IBM Trademark. For a list of trademarks see page Iii.

The EXEC interface stubs

Each application program you write must contain an
interface to CICS. This takes the form of an EXEC interface
stub, used by the CICS high level programming interface.
The stub must be link-edited with your application program
to provide communication between your code and the
EXEC interface program (DFHEIP).

I Note: COBOL and PUI application programs cannot be
I linked together.

There are stubs for each programming language.

Assembler: Each EXEC command is translated into an
invocation of the DFHECALL macro by the command
translator, and the external entry point invoked by
DFHECALL is resolved to an entry in the stub.

COBOL and PL/I: Each EXEC command is translated
into a COBOL or PUI CALL statement (as appropriate) by
the command translator. The external entry point invoked
by the CALL statement is resolved to an entry in the stUb.

The VS COBOL 1/ command level interface has an
assembler stub in the VS COBOL 1/ library. Similarly, a
PUI application program must include a PLII-supplied stub
as well as the EXEC interface stub. This stub will be
included by automatic library call.

See the CICSIMVS Operations Guide for more details.

Assembler-language considerations

Restrictions

The following instructions cannot be used in an
assembler-language program that is to be used as a CICS
application program:

• COM (identify blank common control section)
• ICTL (input format control)
• OPSYN (equate operation code).

MVS/XA restrictions

The following restrictions apply to an assembler-language
application program executing in 31-bit mode (that is, a
program written to use the extended addressing
capabilities of processors under MVS/XA).

• DUI DFHFC requests are not supported when running
in 31-bit mode.

Chapter 1.4. Programming techniques and restrictions 19

• BMS maps, map sets, and partition sets resident
above the l6-megabyte line are not supported.

• The WAIT EVENT interval control command is not
supported when the associated event control block
(ECB) resides above the l6-megabyte line.

• The COMMAREA option is restricted in a mixed
addressing mode transaction environment. For a
description of the restriction, see "Chapter 4.4.
Program control" on page 289.

Commands contained within macros and
COPY code

Macros that generate commands, and COpy code that
contains commands, must be translated and stored in the
source library in translated form for later inclusion by the
assembler.

Invoking assembler-language application
programs by a call statement

Assembler-language application programs containing
commands can be treated as separate CICS programs that
have their own program processing table (PPT) entries and
that can be invoked by assembler-language, COBOL, or
PUI application programs using LINK or XCTL commands
(see "Chapter 4.4. Program control" on page 289).

However, because assembler-language application
programs containing commands are invoked by a system
standard call, they can also be invoked by a COBOL or PUI
CALL statement or by an assembler-language CALL
macro. A single CICS application program with one PPT
entry may consist of a module containing separate CSECTs
linked together, although they may have been compiled or
assembled separately.

Also, assembler-language application programs containing
commands can be linked with other assembler-language
programs, or with programs in one of the high-level
languages (COBOL or PUI), but with only one of these.
When such an application program is linked with an
assembler-language application program, the main
program must be the one coded in the high-level language,
and the PPT must specify that high-level language.

The main program must be the only one containing the
CICS interface stub, and the link edit must be done so that
this stub is the first CSECT in the load module.

Because assembler-language application programs
containing commands are always passed the EIB and
COMMAREA parameters when they are invoked, the CALL
statement or macro must pass these two parameters
followed, optionally, by other parameters.

20 CICS/MVS 2.1.2 Application Programmer's Reference

An assembler-language application program that is called
by another application program must be preceded by the
DFHEIENT macro and followed by the DFHEIRET macro.

DL/I CALL interface: Normally, with MVS/XA, you link
edit your Assembler programs with the AMODE(3l) and
RMODE(ANY) options so that they can be loaded and
acquire working storage above the l6-megabyte line.
However, if a program uses the CALL DUI interface, the
program can reside above the 16-megabyte line, although
its call parameter list and the call parameters must reside
below the l6-megabyte line.

COBOL considerations

The following considerations apply to OSNS COBOL. For
information about VS COBOL II, which simplifies the
CICS-COBOL interface, see "VS COBOL" considerations"
on page 24.

As well as passing control to other programs by means of
LINK and XCTL commands, a CICS COBOL program can
invoke another COBOL or assembler program with a
standard COBOL CALL statement. However, the following
considerations may count against the use of a standard
COBOL CALL:

1. A called program remains in its last-used state after it
returns control, so a second CALL finds the program in
this state. LINK and XCTL commands, on the other
hand, always find the 'new' program in its initial state.

2. When you use the COBOL static CALL, you must
link-edit the calling and called programs together and
present them to CICS as a single unit, with one name
and one entry in the PPT.

Restrictions

The following restrictions apply to a COBOL program that
is to be used as a CICS application program. (See the
appropriate COBOL programmer's guide for more
information about these functions.)

1. You cannot use the entries in the environment division
and data division that are normally associated with
data management. However, you still need to code
the headers for both of these divisions.

2. You cannot use the file section of the data division.

3. You cannot use these special options:

REPORT WRITER
SEGMENTATION
SORT
TRACE

4. You cannot use compiler options that require the use
of operating system services:

COUNT
DYNAM
ENDJOB
FLOW
STATE
SYMDUMP
SYST
TEST

5. You cannot use the following COBOL statements that
require the use of operating system services:

ACCEPT
CURRENT-DATE
DATE
DAY
DISPLAY
EXHIBIT
INSPECT
SIGN IS SEPARATE
STOP RUN1
STRING
TIME
UNSTRING

1 A COBOL GOBACK is required to satisfy the
compiler's need for a logical "end of program." (The
translator expands all CICS commands to COBOL
CALLs, so the compiler expects a return to the calling
program. Control actually returns to CICS after the
RETURN command.)

6. Do not use the following COBOL statements:

CLOSE
OPEN
READ
WRITE

because you are provided with CICS commands for the
storage and retrieval of data, and for communication
with terminals.

7. When you link edit separate COBOL routines together,
only the first can invoke CICS or DUI.

8. The length of working storage plus the length of the
TGT (task global table), plus the length of the RSA (60
bytes), plus 24 bytes for SCP accounting, must not
exceed 64K bytes.

9. If both the identification and procedure divisions are
presented to the translator in the form of a source
program or copy book, the following coding is
produced or expanded:

DFHEIVAR
DFHEIBLK
DFHCOMMAREA
PROCEDURE DIVISION USING

DFHEIBLK DFHCOMMAREA

CICS corrmands

If no identification division is present, only the CICS
commands are expanded.

If the identification division only is present, only
DFHEIVAR, DFHEIBLK, and DFHCOMMAREA are
produced.

10. Statements that produce variable length areas, such
as OCCURS DEPENDING ON, cannot be used within the
working-storage section.

Compilers supported

You can use only the following COBOL compilers to
process your COBOL application programs:

• as Full COBOL Version 4 Compiler (5734-CB2).
• OS/VS COBOL Compiler (5740-CB1).
• VS COBOL II Compiler (5668-958).

Base locator for linkage (Bll)

The BLL mechanism is used to address storage outside the
working-storage section of an application program. It
operates by addressing the storage as if it is a parameter
to the program. The storage must be defined by means of
an 01-level data definition in the linkage section of the
program. The COBOL compiler generates code to address
the storage via the parameter list. When the program is
invoked, CICS sets up the parameter list in such a way that
the parameter list is itself addressable by the application
program.

The parameter list must be defined as the first parameter
to the program unless a communication area is being
passed to the program, in which case the DFHCOMMAREA
definition must precede it. (See "Passing data to other
programs" on page 292.)

In the following example, the first 02-level data name (that
is, FILLER) is set up by CICS to provide addressability to
the other fields in the parameter list. The other data
names are known as BLL cells, and address the remaining
parameters of the program. There is a one-to-one
correspondence between the 02-level data names of the
parameter list definition and the 01-level data definitions in
the linkage section.

Chapter 1.4. Programming techniques and restrictions 21

LINKAGE SECTION.
01 PARMLIST.

02 FILLER PIC 59(8) COMPo
02 A-POINTER PIC 59(8) COMPo
02 B-POINTER PIC S9(8) COMPo
02 C-POINTER PIC S9(8) COMPo

01 A-DATA.
02 PARTNO PIC 9(4).
02 QUANTITY PIC 9(4) •
02 DESCRIPTION PIC X(100).

01 B-DATA PIC X.
01 C-DATA PIC X.

In this example, A-POINTER addresses A-DATA, B-POINTER
addresses B-DATA, and C-POINTER addresses C-DATA.
The data names chosen for the Bll cells and for the
storage areas that they address are not significant, but the
names must be defined in the correct order so that the
necessary correspondence is established.

If a Bll cell is named in the SET option of a CICS
command, subsequent reference to the corresponding data
definition name will address the storage supplied by CICS
as a result of executing the command. For example,
suppose that a program is required to read a
variable-length record from a file, examine part of it, and
update it; all of this is to be done without providing storage
for the record within the program. Using the data
definitions shown in the example above, the program could
be written as follows:

EXEC CIC5 READ UPDATE DATA5ET('FILEA')
RIDFLD(PART-REQD) SET (A-POINTER)
LENGTH(A-LRECL) END-EXEC

IF A-LRECL LESS THAN 8 GO TO ERRORS.
IF QUANTITY GREATER ZERO

SUBTRACT 1 FROM QUANTITY
EXEC CICS REWRITE DATASET('FILEA')

FROM(A-DATA) LENGTH(A-LRECL)
END-EXEC.

CICS reads the record into an internal buffer and supplies
the address of the record in the buffer to the application
program. The application program updates the record in
the buffer and rewrites the record to the data set.

I If a storage area is defined in the linkage section,
I addressability to that area must be established before use.
I The area itself must be a valid and active CICS area.

Bll and chained storage areas: If access is required
to a series of chained storage areas (that is, areas each of
which contain a pointer to the next area in the chain), a
paragraph name must be inserted immediately following
any statement that establishes addressability to one of the
storage areas. For example:

22 CICS/MVS 2.1.2 Application Programmer's Reference

LINKAGE SECTION.
01 PARMLIST.

02 USERPTR PIC S9(8) COMPo

01 USERAREA.
02 FIELD PIC X(4).
02 NEXTAREA PIC S9(8) COMPo

PROCEDURE DIVISION.

MOVE NEXTAREA TO USERPTR.
ANYNAME.

MOVE FIELD TO TESTVAL.

In this example, storage areas mapped or defined by
USERAREA are chained. The first MOVE statement
establishes addressability to the next area in the chain.
The second MOVE statement moves data from the newly
addressed area, but only because a paragraph name
follows the first MOVE statement. If no paragraph name is
inserted, the reference to FIELD is taken as being to the
storage area that is addressed when the first MOVE
statement refers to NEXTAREA. Insertion of a paragraph
name causes the compiler to generate code to reestablish
addressability through USERPTR, so thatcthe reference to
FIELD (and the next reference to NEXTAREA) is to the
newly addressed storage area.

Bll and OCCURS DEPENDING ON clauses: If the
object of an OCCURS DEPENDING ON clause is defined in
the linkage section, a special technique is required to
ensure that the correct value is used at all times. In the
following example, FIELD-COUNTER is defined in the
linkage section. The MOVE FIELD-COUNTER TO
FIELD-COUNTER statement is required to ensure that
unpredictable results do not occur when referring to DATA.

LINKAGE SECTION.

01 FILE-REC.

02 FIELD-COUNTER PIC 9(4) COMPo ~
02 FIELDS PIC X(5) OCCURS 1 TO 5

TIMES DEPENDING ON FIELD-COUNTER.
02 DATA PIC X(20).

PROCEDURE DIVISION.

EXEC CICS READ DATASET('FILEA')
RIDFLD(KEYVAL)
SET(RECPTR)
END-EXEC.

MOVE FIELD-COUNTER TO FIELD-COUNTER.
MOVE DATA TO DATA-VAL.

The MOVE statement referring to FIELD-COUNTER causes
the compiler to reestablish the value it uses to compute
the current number of occurrences of FIELDS, and ensures
that it can determine the displacement of DATA correctly.

Bll and large storage areas: If an area greater than
I 4096 bytes is defined (but not as part of an OCCURS
I DEPENDING ON clause) in the linkage section, additional

statements may be required to establish addressability to
I the extra area. The ADD statement is placed after the
I statement that establishes addressability to the data area.
I No additional corresponding 01-level data name definition
I is added, so the usual one-to-one correspondence of BLL
I cells to the data areas is not maintained.

The extra statements are shown in the following example:

LINKAGE SECTION.
01 PARMLI ST .

02 FRPTR PIC 59(8) COMPo
02 FRPTRI PIC 59(8) COMPo

01 FILE-REC.
02 FIELDI PIC X(4000).
02 FIELD2 PIC X(1000).
02 FIELD3 PIC X(400).

PROCEDURE DIVISION.

EXEC CICS READ DATASET('FILEA')
RIDFLD(KEYVAL)
SET(FRPTR) END-EXEC.

ADD 4096 FRPTR GIVING FRPTRI.

No additional BLL cell is required if DFHCOMMAREA itself
is larger than 4096 bytes.

SERVICE RELOAD statement: If an application program
is to be compiled using the OS Full COBOL Version 4
compiler or the OSNS COBOL compiler, a special compiler
control statement must be inserted at appropriate places
within the program to ensure addressability to a particular
area defined in the linkage section. This control statement
has the form:

SERVICE RELOAD fieldname

where 'fieldname' is the symbolic name of a specific
storage area that is also defined in an 01-level statement
in the linkage section. The SERVICE RELOAD statement
must be used following each statement that modifies
addressability to an area defined in the linkage section,
that is, whenever the contents of a BLL cell is changed in
any way.

When using HANDLE CONDITION or HANDLE AID
commands, SERVICE RELOAD statements should be
specified at the start of the paragraph whose name is
specified in the HANDLE command. This applies to all
those BLL cells that may have been altered from the time
when the first HANDLE command activated the exit
routine, up to and including any CICS command that can
cause the HANDLE exit to be invoked.

If the BLL mechanism (described earlier in this chapter) is
used, addressability to the parameter list must be
established at the start of the procedure division. This is
done by adding a SERVICE RELOAD PARMLIST statement
at the start of the procedure division in the earlier
examples.

I For example, after a locate-mode input operation, the
I SERVICE RELOAD statement must be issued to establish
I addressability to the data. If areas larger than 4096 bytes
I are being addressed, the secondary BLL cells must first be
I reset before the SERVICE RELOAD statement is executed
I (resetting a BLL cell is described in the previous section).
I If an address is moved into a BLL cell, addressability must
I be established in the same way.

Chapter 1.4. Programming techniques and restrictions 23

An example for the SERVICE RELOAD statement is as
follows:

LINKAGE SECTION.
a1 PARMLIST.

02 FRPTR PIC 59(8) COMPo
02 FRPTRI PIC 59(8) COMPo
02 TSPTR PIC 59(8) COMPo

01 FILE-REC.
02 FIELD1 PIC X(4aea).
02 FIELD2 PIC X(1000).
02 FIELD3 PIX X(400).

I 01 TS-REC.
I 02 FIELD1 PIX X(400e).

I PROCEDURE DIVISION.
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

EXEC CICS HANDLE CONDITION
ERROR(GIVEUP)
LENGERR(BADLENGTH)
END-EXEC.

EXEC CICS READ DATASET(IFILEAI)
RIDFLD(PART-REQD)
SET(FRPTR)
LENGTH(A-LRECL)
END-EXEC.

ADD 4896 FRPTR GIVING FRPTR1.
SERVICE RELOAD FILE-REC.
MOVE FRPTR TO TSPTR.
SERVICE RELOAD TS-REC.

I .
I BADLENG.
I ADD 4096 FRPTR GIVING FRPTR1.
I SERVICE RELOAD FILE-REC.
I
I

If an address is moved into a Bll cell, addressability must
be established in the same way, for example:

MOVE B-POINTER TO A-POINTER SERVICE RELOAD A-DATA.

NOTRUNC complier option

If an argument to a command is greater than 9999 in
value, the NOTRUNC compiler option must be specified to
ensure successful execution.

24 CICS/MVS 2.1.2 Application Programmer's Reference

Program segments

Segments of programs to be copied into the procedure
division can be translated by the command language
translator, stored in their translated form, and later copied
into the program to be compiled.

Subsequent copying or manipulating of statements
originally inserted by the CICS translator in an application
program may produce unpredictable results.

VS COBOL II considerations

VS COBOL II has a simpler CICS command-level interface
than OSNS COBOL. You can compile OSNS COBOL
programs with the VS COBOL II compiler, but there are
some restrictions (see the VS COBOL /I General
Information manual, GC26-4042 and the VS COBOL /I
Application Programming Guide, SC26-4045). For
suggested changes to OSNS COBOL programs (only one
of which is essential) see "Converting to VS COBOL II" on
page 29.

VS COBOL II is a licensed program (number 5668-958) that
conforms to the standard set by American National
Standard COBOL, X3.23-1974.

All CICS VS COBOL II application programs must be
written using the CICS command level interface. A
program that issues a macro call will produce compiler
diagnostics if it is compiled using the VS COBOL II
compiler. (You may be able to compile such a program
using the preprocessor and assembler before the compile
step, but it will then fail at execution time, causing a
transaction abend.)

When you translate a VS COBOL II program, you must use
the COBOl2 translator option. For information about
translating, compiling, and link-editing VS COBOL II
programs, see the CICSIMVS Installation Guide.

Coding

With VS COBOL II, you must use only CICS commands to
invoke operating system services. You must not use CICS
macros or some COBOL statements. These statements
are listed under "Restrictions" on page 29.

The principal advantages of VS COBOL II over OSNS
COBOL for the CICS programmer are:

• Simplified based addressing, with the replacement of
Bll cell manipulation by pointer variables and the
ADDRESS special register.

• The ability to use COBOL CALL statements to call
assembler-language and other VS COBOL" programs.

• The provision of a LENGTH special register, which
CICS uses to deduce the length of data items. You no

longer need to specify a length in a CICS command
that specifies a data name in the FROM option, or, if
the data is fixed length, in the INTO option.

• The ability to use the RETURN-CODE special register
in a CICS application program. This register allows
you to set and access return codes in VS COBOL II
programs.

• The elimination of the SERVICE RELOAD statement. If
it is included, it is ignored. The VS COBOL II compiler
recognizes references to based addresses and
generates code to manipulate them (even when the
OPTIMIZE compiler option is used).

Based addressing

CICS application programs need to access data
dynamically when the data is in a CICS internal area and
only the address is passed to the program. Examples are:

• CICS areas such as the CSA, CWA, TWA, and TCTTE
user area (TCTUA) accessed using the CICS ADDRESS
command.

• Input data obtained by CICS commands such as READ
and RECEIVE with the SET option.

As well as defining the data area in its linkage section, an
OS/VS COBOL program that needs to access dynamically
addressed data must define and set internal COBOL areas
called BLL (base locator for linkage) cells. The order of
the data area definitions must be that of the corresponding
BLL cell definitions. The program may also need extra
statements (for example, SERVICE RELOAD) to ensure
correct addressing (see the description starting at "Base
locator for linkage (BLL)" on page 21).

VS COBOL II provides a much simpler method, using
pointer variables and the ADDRESS special register.
Figure 3 on page 26 gives a comparison between the
OS/VS COBOL and the VS COBOL II methods.

The ADDRESS special register holds the address of a
record defined in the linkage section with level 01 or 77.
This register can be used in the SET option of the CICS
GETMAIN, LOAD, READ, and READQ commands. A pointer
variable is defined with the USAGE IS POINTER clause to
handle chained lists. '

In VS COBOL II, you can use the SET statement to assign
the address of a linkage section area to a pointer variable,
or, conversely, the value of a pointer variable to the
ADDRESS special register of a linkage section area. The
latter has the effect of positioning the linkage section area
at the address held in the pointer variable.

For example, the statement

SET PTRX TO ADDRESS OF STRUCA

assigns the current value of the ADDRESS special register
of STRUCA to the pointer variable PTRX, while the
statement

SET ADDRESS OF STRUCA TO PTRX

assigns the current value of the PTRX pointer variable to
the ADDRESS special register of STRUCA; that is, it
positions STRUCA at the address in PTRX. (As with any
data field, you must initialize a pointer or ADDRESS
special register before you assign its value to another
field.)

Wherever in this book a CICS command description
includes 'ptr-ref, you can use as the 'ptr-ref a VS COBOL
II pointer variable or ADDRESS special register. For
example, you can specify the SET option of the CICS
GETMAIN, LOAD, READ, READQ, RECEIVE, or SEND
commands as follows:

SET (ADDRESS OF STRUCA) •... SET(PTRX)

If you use the second form of the SET option, you can use
the SET statement to move the pointer value, PTRX, to the
ADDRESS special register of any linkage section area.
Then you can use that area in the same way as STRUCA in
the first form of the option.

This technique has other advantages over the OSNS
COBOL method. You do not need to set additional address
variables when a data area exceeds 4096 bytes and, with
the elimination of BLL cell definitions, you can arrange
your linkage-section area definitions in any order you
choose.

For examples of the use of the ADDRESS command, the
ADDRESS special register, and the SET statement, see
Figure 4 on page 27.
This figure shows how an application can use a common
table of tax codes stored in the CICS program library.
Program 1 sets up addressability to the CWA, loads the
table and places its address in the CWA for use by
subsequent programs or other transactions. Because
addressability is established, you can process the table in
this program. .

The HOLD option is coded in the CICS LOAD command so
that the table TAXTAB remains loaded at the same storage
address after the current transaction terminates.

Program 2 shows how you can use the address in the CWA
to address the tax table from another program.

Figure 3 on page 26 shows the use of a CICS READ
command with the SET option as it is used in OS/VS
COBOL and VS COBOL II. The record read is
variable-length. The OSNS COBOL version has extra
statements to:

• Define the BLL cells,

• Compute the address of data beyond the first 4096
bytes of REC-1, and

Chapter 1.4. Programming techniques and restrictions 25

OS/VS COBOL

WORKING-STORAGE SECTION.
77 lRECl-RECI PIC S9(4) COMPo
lINKAGE SECTION.
91 BllCEllS.

02 FIllER
02 BLL-RECIA
02 BLL-RECIB
02 BLL-REC2

PIC S9(8) COMPo
PIC S9(8) COMPo
PIC S9(8) COMPo
PIC S9(8) COMPo

91 REC-I.
02 FLAGI PIC XCI).
92 MAIN-DATA PIC X(5090).
020PTL-DATA PIC X(I00e).

81 REC-2.
82 •••

PROCEDURE DIVISION.

EXEC CICS READ UPDATE .••
SET(BLl-RECIA)
LENGTH(lRECL-RECI)
END-EXEC.

ADD 4896, Bll-RECIA
GIVING Bll-RECIB.
SERVICE RELOAD REC-I.

IF FlAGI EQUAL 'Y'
MOVE OPTL-DATA TO

EXEC CICS REWRITE •••
FROM(REC-I)
LENGTH(LRECl-RECI)
END-EXEC.

VS COBOL II

WORKING-STORAGE SECTION.
77 lRECl-RECI PIC S9(4) COMPo
lINKAGE SECTION.

81 REC-I.
82 FLAGI PIC X(l).
92 MAIN-DATA PIC X(5988).
820PTL-DATA PIC X(Ie88).

81 REC-2.
82 .••

PROCEDURE DIVISION.

EXEC CICS READ UPDATE •••
SET (ADDRESS OF REC-I)
lENGTH(lRECl-RECI)
END-EXEC.

IF FLAG! EQUAL 'Y'
MOVE OPTl-DATA TO

EXEC CICS REWRITE •••
FROM(REC-l)
END-EXEC.

Figure 3. Addressing CICS data areas in locate mode. This figure shows the replacement of BLL cells and SERVICE RELOAD in OSIVS
COBOL by the use of ADDRESS special registers in VS COBOL II. If the records in the READ or REWRITE commands are fixed length, VS
COBOL II does not require a LENGTH option. This example assumes variable-length records. After the read, you can get the length of the
record from the field named in the LENGTH option, (here, LRECL-REC1). In the REWRITE command, you must code a LENGTH option If you
want to replace the updated record with a record of a different length.

• Ensure addressability following a statement that
modifies a Bll cell.

LENGTH option In CICS commands: CICS uses the
lENGTH special register to determine the length of a
referenced data item. Therefore, you no longer need to
code the following options on CICS commands that name a
data item in a FROM or INTO option.

lENGTH, FLENGTH, FROMLENGTH, MAXlENGTH, MAXFlENGTH,
DESTIDLENG, VOLUMELENG, FIELDLENGTH (EXEC DLI only),
SEGLENGTH (EXEC DLI only)

26 CICS/MVS 2.1.2 Application Programmer's Reference

If you want the program to read or write data of a length
different from that of the referenced variable, you must
still code the lENGTH option. Otherwise, you need not.

Figure 3 shows a CICS REWRITE command without a
lENGTH option. The length of the REC-1 data field is
implied. If you use the execution diagnostic facility (EDF)
to look at the command, you will see the length that has
been adopted by default.

Placing Address of External Area in CWA - Program 1
LINKAGE SECTION.
En COMMON-WA.

02 TAX-TABLE-ADDRESS USAGE IS POINTER.
02 ...

01 TAXTAB.
02 TAX-FLDA PIC 99.
02 ..••.....•••....

PROCEDURE DIVISION.
* SET UP ADDRESSABILITY TO THE CWA

EXEC CICS ADDRESS CWA(ADDRESS OF COMMON-WA) END-EXEC.
* LOAD EXTERNAL TABLE 'TAXTAB' PLACING ITS ADDRESS IN CWA

EXEC CICS LOAD PROGRAM('TAXTAB') SET(TAX-TABLE-ADDRESS) HOLD END-EXEC.
* THE ABOVE IS SUFFICIENT TO ENABLE OTHER PROGRAMS/TRANSACTIONS TO
* ADDRESS THE EXTERNAL TABLE
*
* TO PROCESS THE EXTERNAL TABLE IN THIS PROGRAM, PLACE ITS ADDRESS IN
* ADDRESS REGISTER OF THE 81 DEFINITION IN LINKAGE SECTION

SET ADDRESS OF TAXTAB TO TAX-TABLE-ADDRESS.
* PROCESS TAXTAB, IF DESIRED, USING 81 DEFINITION IN LINKAGE SECTION

MOVE TAX-FLDA TO

Use of the Global Table in Another Transaction - Program 2
LINKAGE SECTION.
01 COMMON-WA.

02 TAX-TABLE-ADDRESS USAGE IS POINTER.
02 ...

01 TAXTAB.
02 TAX-FLDA PIC 99.
02 ..•...•..••••.•.

PROCEDURE DIVISION.
* SET UP ADDRESSABILITY TO THE CWA, AND THEN TO TAXTAB

EXEC CICS ADDRESS CWA(ADDRESS OF COMMON-WA) END-EXEC.
SET ADDRESS OF TAXTAB TO TAX-TABLE-ADDRESS.

* NOW PROCESS TAXTAB USING 81 DEFINITION IN LINKAGE SECTION

MOVE TAX-FLDA TO

Figure 4. Addressing external storage

RETURN-CODE special register: Because CICS
supports calls to VS COBOL II programs, you can use the
RETURN-CODE special register in a called program to set
a return code before issuing an EXIT PROGRAM or
GOBACK statement. If control is returned to a calling VS
COBOL II program, that program can access the return
code in the RETURN-CODE special register.

In a called assembler program, you can set a return code
in register 15. In the calling VS COBOL II program, you
can access the return code in the RETURN-CODE special
register.

CICS commands change the RETURN-CODE special
register to an undefined value. Therefore:

• In the calling program, access the RETURN-CODE
special register on return from a called program
before you issue any CICS commands.

• In the called program, do not issue any CICS
commands after you have set the RETURN-CODE
special register.

Restrictions lifted: For VS COBOL II, CICS supports the
use of some statements that are not supported for OS/VS
COBOL. These are:

INSPECT
STOP RUN
STRING
UNSTRING
USE FOR DEBUGGING
DATE
TIME

Chapter 1.4. Programming techniques and restrictions 27

Returning from VS COBOL II program: Some "return"
operations are prohibited or cause errors with OSNS
COBOL under CICS. With VS COBOL ", the following are
permitted under CICS:

GOBACK
Returns control to another COBOL program or to CICS.

EXIT PROGRAM
Issued within a program invoked by COBOL CALL.
Returns control from a COBOL subprogram to a
COBOL main program.

EXIT PROGRAM
Issued within program invoked directly by CICS, or by
CICS LINK or XCTL. Ignore. Control is not returned to
CICS.

STOP RUN
Terminate run unit normally and return control to
CICS.

EXEC CICS XCTL
Terminate run unit normally.

EXEC CICS RETURN
Terminate run unit normally.

EXEC CICS ABEND
Abend the transaction.

In a VS COBOL II program running under CICS, if (due to a
program error) control passes beyond the last statement of
the program, VS COBOL" detects the condition, writes an
exception message (IGZ0371), and issues the command:

EXEC CICS ABEND ABCODE(I837) NOHANDLE.

(In OS/VS COBOL, if control is not transferred before
program-end, the result is an undefined error condition.)

CALL statement from VS COBOL II program: CICS
allows your VS COBOL" programs to use the CALL
statement to call other programs. With the CALL
statement, you can invoke:

• A VS COBOL II or assembler program link-edited into
the same load module as the calling program. This is
known as a static call.

• A separate VS COBOL II load module that does not
contain CICS commands or CICS dependencies. This
is known as a dynamic call.

A dynamically called VS COBOL" program can reside in
the link pack area or in a shared library. It can also be
shared with non-CICS regions.

If a program, invoked by a static CALL, is processed by the
CICS translator, the CALL statement must pass the
addresses of DFHEIBLK and DFHCOMMAREA as the first
two parameters, whether or not any other parameters are
passed. The call has the following form:

CALL 'PROG' USING DFHEIBLK DFHCOMMAREA
PARMI PARM2 ...

28 CICS/MVS 2.1.2 Application Programmer's Reference

In the called program PROG, the CICS translator inserts
DFHEIBLK and DFHCOMMAREA into the linkage section
and into the USING list of the procedure division
statement. You code the procedure division statement
normally, as follows:

PROCEDURE DIVISION USING PARMI PARM2 .•.

The translator inserts OFHEIBLK and OFHCOMMAREA into
this statement before PARM1.

Notes:

1. You must always use the NOOYNAM compiler option
(the default) when you compile a VS COBOL II
program that is to run with CICS, even if the program
issues dynamic calls.

2. In a CICS environment, you cannot call a VS COBOL II
program from an assembler program.

3. As in a non-CICS environment, you use the 'CALL
literal' and 'CALL IDENT' forms of the CALL statement
for static and dynamic calls respectively.

4. In a VS COBOL" program, you must use the CICS
LINK or XCTL commands to invoke load modules
containing programs of any language (including other
versions of COBOL).

Debugging facilities: You can use the CICS execution
diagnostic facility (EDF) with VS COBOL II. You use EDF by
invoking the CICS-supplied CEDF transaction. The
transaction under test can then be interrupted at defined
points. While the transaction is halted, you can obtain a
great deal of information about the state of the transaction,
and can also examine any area in the CICS region.

Under EOF, key PF5 gives you a display of working
storage, which includes displacements from the start of
working storage. If you use the VS COBOL" compiler
MAP option, you can locate any item in the display. In the
compiler map, find the BLW number (B) and displacement
(0) of the item. The displacement of the item from the
start of working storage is:

(B * X'I888') + D

When you examine a dump of the CICS region after a
transaction abend, you may see more commands than you
expect recorded in the CICS trace table. This is because
the VS COBOL" library routines use the CICS command
level interface. (When you use EDF, you do not see CICS
commands issued by the library routines, because these
routines are translated with the NOEDF option.)

If you compile your program with the FOUMP compiler
option, abnormal termination at execution time produces a
formatted dump of key program information. This dump is
written to the temporary storage queue, CEBRxxxx (where
xxxx is the TERMIO of the terminal associated with the
failing transaction). The use of the CICS HANDLE ABEND
command suppresses FDUMP.

VS COBOL" execution-time messages are also written to
CEBRxxxx.

You can use the CEBR CICS transaction to browse this
queue. When you are using terminal xxxx, CEBRxxxx is the
default queue-name for CEBR.

Restrictions

This section describes VS COBOL" language elements
that you cannot use under CICS, or whose use is restricted
or can cause problems under CICS.

In general, neither the CICS translator nor the VS COBOL
" compiler detects the use of COBOL words affected by the
following restrictions. The use of a restricted word in a
CICS environment may cause a failure at execution time.

So avoid using variable names such as 'CICS' or 'EXEC' in
your VS COBOL" programs.

Requests for operating system services: Do not use
VS COBOL" statements that invoke operating system
functions. Instead, use CICS commands. Do not use the
following statements:

ACCEPT
CAll 'identifier'
CAll 'literal' with DYNAM
CLOSE
DELETE
DISPLAY
MERGE
OPEN
READ
RERUN
REWRITE
SORT
START
STOP 'literal'
WRITE

Other facilities: Do not use:

• USE declaratives (except USE FOR DEBUGGING)

• ENVIRONMENT DIVISION and FilE SECTION entries
associated with data management, because CICS
handles data management

• User-specified parameters to the main program.

Compiler options: Do not use the following compiler
options:

DYNAM
GRAPHIC
NOLIB (if program is to be translated)
NORENT
NaRES
TRUNC
NOTRUNC is not recommended either

The following compiler options have no effect in a CICS
environment:

ADV
FASTSRT
OUTDD

Converting to VS COBOL II

Many of the changes in the CICS-COBOl interface occur
because VS COBOL" simplifies the procedures. This
means that you do not need to use some CICS-specific
OSNS COBOL programming techniques. Of the changes
described in this section, the only one that is mandatory is
the replacement (removal) of all PROCEDURE DIVISION
references to Bll cells.

Based addressing: You no longer need to define and
manipulate Bll cells. Indeed, you cannot manipulate Bll
cells for base address manipulation, as in the management
of chained lists. Review programs that use the CICS SET
option and Bll cells, and make the following changes:

1. Remove, from the linkage section, the entire structure
defining Bll cells and the FillER field. See Figure 3
on page 26.

2. Revise code that deals with chained storage areas to
take advantage of the ADDRESS special register and
POINTER variables.

3. Change every SET(Bll cell) option in CICS commands
to SET(ADDRESS OF A-DATA) or SET(A-POINTER)
where A-DATA is a structure in the linkage section and
A-POINTER is defined with the USAGE IS POINTER
clause.

4. Remove all SERVICE RELOAD statements.

5. Remove all program statements required in OSNS
COBOL to address structures in the linkage section
longer than 4K bytes. A typical statement is:

ADD 4896, D-PTRI GIVING D-PTR2.

6. Remove artificial paragraph names where Bll cells
are used to address chained storage areas (see "Bll
and chained storage areas" on page 22).

7. Review any program that uses BMS map data
structures in its linkage section. VS COBOL" makes it
easier to handle such maps, but it also eliminates one
disadvantage of having maps in working storage. The
points to consider are:

a. In OS/VS COBOL programs, working storage is
part of the compiled and saved program. Placing
the maps in the linkage section thus reduces the
size of the saved program, saving library space.
In VS COBOL II, working storage is not part of the
compiled program but is acquired dynamically.
This eliminates one disadvantage of placing maps
in working storage.

Chapter 1.4. Programming techniques and restrictions 29

b. If your map is in the linkage section, you can
acquire and release the map storage dynamically
with CICS GETMAIN and FREEMAIN commands.
This helps you to optimize storage use, and can
be useful in a long conversational transaction.
This advantage of linkage section maps still
applies in VS COBOL II.

c. If your map is in the linkage section, you must
issue a CICS GETMAIN command to acquire
storage for the map. With OSNS COBOL, you
must determine the necessary amount of storage,
which must be sufficient for the largest map in
your map sets. This can be difficult to determine,
and probably involves examining all the map
assemblies. With VS COBOL II, use the LENGTH
special register:

OS/VS COBOL VS COBOL II

EXEC CICS GETMAIN
SET (ADDRESS OF DATAREA)
LENGTH(LENGTH OF DATAREA)

d. In VS COBOL II, the processing of maps in the
linkage section is simplified by the elimination of
BLL cells.

Figure 5 shows the old and new metho-&"~ of processing
BMS maps in the linkage section. This example assumes
that the OSNS COBOL program ha~ been compiled with
the LANGLVL(1) option, and that ttl~ following map set has
been installed:

MAPSETI DFHMSD TYPE=DSECT,
TERM=2788,LANG=COBOL,
STORAGE=AUTO,
MODE=IN

WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.
77 FLD8 PIC X VALUE IS LOW-VALUE. 77 FLD8 PIC X VALUE IS LOW-VALUE.

LINKAGE SECTION. LINKAGE SECTION.

81 BLLCELLS.
02 FILLER PIC 59(8) COMPo
02 BLL-DATAA PIC 59(8) COMPo

01 DATAl COPY MAPSETI. 01 DATAl COpy MAPSETI.

PROCEDURE DIVISION. PROCEDURE DIVISION.

EXEC CICS GETMAIN LENGTH(leSe)
SET(BLL-DATAA) INITIMG(FLDS)
END-EXEC.

EXEC CICS GETMAIN
FLENGTH(LENGTH OF DATAl)
SET (ADDRESS OF DATAl)
INITIMG(FLD8) END-EXEC.

Figure 5. Addressing BMS map sets In the linkage section

The new ADDRESS special register used in the example is
described under "Based addressing" on page 25.

Artificial assignments: Remove artificial assignments
from an OCCURS .. DEPENDING ON object to itself. These
are needed in OS/VS COBOL to ensure addressability.

MVS/XA restrictions: These restrictions apply to a VS
COBOL II program running above the 16-megabyte line:

• BMS maps, map sets, and partitions resident above
the line are not supported.

• If the receiving program is link-edited with
AMODE=31, addresses passed to it must be 31 bits
long (or 24 bits long with the leftmost byte set to
zeros).

• If the receiving program is link-edited with
AMODE = 24, addresses passed to it must be 24 bits
long.

30 CICS/MVS 2.1.2 Application Programmer's Reference

DL/I CALL Interface: Normally, with MVS/XA, you link
edit your VS COBOL" programs with the options
AMODE(31) and RMODE(ANY), so that they can be loaded,
and acquire working storage, above the 16-megabyte line.
However, if a program uses the CALL DLII interface, the
program can reside above the 16-megabyte line, although
its call parameter list and the call parameters must reside
below the 16M byte line. You can ensure this by compiling
with the DATA(24) option. DUI DFHFC requests are not
supported when running in 31-bit mode.

If you link edit a CALL DLI program with the AMODE(24)
and RMODE(24) options, you can run it below the
16-megabyte line on a CICS system running with MVS/XA.

If you wish to continue using CALL DLI, review your
programs and make the following changes:

1, Remove Bll cells for addressing the user interface
block (UIB) and program control blocks (PCBs),

2, Retain the DLlUIB declaration and at least one PCB
declaration in the linkage section,

3, Change the PCB call to specify the UIB directly, as
follows:

CALL 'CBLTDLI ' USING PCB-CALL
PSB-NAME
ADDRESS OF DLIUIB.

WORKING-STORAGE SECTION.
77 PCB-CALL PIC X(4) VALUE 'PCB I.

77 GET-HOLD-UNIQUE PIC X(4) VALUE 'GHU I.

77 PSB-NAME PIC X(B) VALUE 'CBLPSB ' •
77 SSA1 PIC X(40) VALUE SPACES.
01 DLI -IO-AREA.

02 •..•••...••..
02 ••••.••••••••

LINKAGE SECTION.
DLIUIB COPY DLIUIB.
01 OVERLAY-DLIUIB REDEFINES DLIUIB.

02 PCBADDR USAGE IS POINTER.
02 FILLER PIC XX.

01 PCBADDR-LIST.
02 PCBADDR-AREA PIC X(40).

4, Obtain the address of the required PCB from the
address list in the UIB,

Figure 6 illustrates the whole of the above process, The
example in the figure assumes that you want to use the
second PCB in the address list. Therefore, when setting up
the ADDRESS special register of the linkage section group
item PCB, the program uses 2 to index the working storage
table, PCB-AD DRESS-LIST, To use the nth PCB, you use
the number n to index PCB-ADDRESS-LlST,

02 PCBADDR-ITEM REDEFINES PCBADDR-AREA USAGE IS POINTER
OCCURS 10 TIMES.

*DEFINE PCBADDR-LIST TO HAVE CHARACTERS EQUAL TO 4 TIMES THE NUMBER
*OF OCCURRENCES OF PCBADDR-ITEM

02 PCB-DBD-NAME PIC X(8).
02 PCB-SEG-LEVEL PIC XX.
02 PCB-STATUS-CODE PIC XX.

PROCEDURE DIVISION.
*SCHEDULE THE PSB AND ADDRESS THE UIB

CALL 'CBLTDLI ' USING PCB-CALL PSB-NAME ADDRESS OF DLIUIB.
*CHECK SUCCESS OF CALL

IF UIBFCTR IS NOT EQUAL LOW-VALUES THEN
error diagnostic code

*MOVE VALUE OF UIBPCBAL, ADDRESS OF PCB ADDRESS LIST (HELD IN UIB)
*(REDEFINED AS PCBADDR, A POINTER VARIABLE), TO
*ADDRESS SPECIAL REGISTER OF PCB-ADDRESS-LIST, DEFINED IN LINKAGE SECTION

SET ADDRESS OF PCB-ADDRESS-LIST TO PCBADDR.
*MOVE VALUE OF SECOND ITEM IN PCB-ADDRESS-LIST TO ADDRESS SPECIAL
*REGISTER OF PCB, DEFINED IN LINKAGE SECTION.

SET ADDRESS OF PCB TO PCB-ADDRESS-LIST(2).
*PERFORM DATABASE CALLS ••••••

MOVE •...•... TO SSAI.
CALL 'CBLTDLI ' USING GET-HOLD-UNIQUE PCB DLI-IO-AREA SSAI.

*CHECK SUCCESS OF CALLS ••.••••
IF UIBFCTR IS NOT EQUAL LOW-VALUES THEN

•••••• error diagnostic code

IF PCB-STATUS-CODE IS NOT EQUAL SPACES THEN
•••••• error diagnostic code

Figure 6, Using the DLII CALL interface

Chapter 1.4, Programming techniques and restrictions 31

Mixing languages

A run unit is a running set of one or more programs that
communicate with each other by VS COBOL" static CALL
statements. In a CICS environment, a run unit is entered
at the start of a CICS task, or invoked by a CICS LINK or
XCTL command. A run unit can be defined as the
execution of a single entry in the processing program table
(PPT).

Because CICS does not support a mixture of language
levels in a run unit, a VS COBOL II run unit can contain
only:

• VS COBOL" programs compiled with the same
compiler

• Assembler routines.

CICS supports only COBOL-to-COBOL and
COBOL-to-assembler calls. CICS does not support the use
of the macro-level interface by an assembler routine in a
VS COBOL" run unit.

However, a CICS transaction can consist of many run units,
each of which can be at a different language level. This
means that a single transaction can consist of programs
compiled by different compilers (including non-COBOL
compilers), provided that programs compiled by different
compilers communicate with each other only by using CICS
LINK or XCTL commands.

Note: In general, when you call a VS COBOL" program,
you must pass two special parameters if the called
program has been processed by the CICS translator (see
"CALL statement from VS COBOL II program" on
page 28). This rule is varied for calls to nested programs
in a unit of compilation translated with the ANSI85 option
(see "Nesting - what the application programmer must
do" on page 38).

Calling subprograms from VS COBOL II

In a CICS system, when control is transferred from the
active program to an external program but the transferring
program remains active and control can be returned to it,
the program to which control is transferred is called a
subprogram. There are three ways of transferring control
to a subprogram:

32 CICS/MVS 2.1.2 Application Programmer's Reference

EXEC CICS LINK
The calling program contains a CICS command in one
of these forms:

EXEC CICS LINK PROGRAM('subpgname')
EXEC CICS LINK PROGRAM(name)

In the first form, the called subprogam is explicitly
named as a literal string. In the second form, the
literal is replaced by the name of a COBOL data area
containing the name of the called subprogram.

Static COBOL call
The calling program contains a COBOL statement of
the form:

CALL 'subpgname'

The called subprogram is explicitly named as a literal
string.

Dynamic COBOL call
The calling program contains a COBOL statement of
the form:

CALL identifier

The identifier is the name of a COBOL data area that
must contain the name of the called subprogram.

Table 1 on page 33 gives the rules governing the use of
the three ways to call a subprogram.

Table 1 on page 33 refers to CICS application logical
levels, which are defined on page 289. Each LINK
command creates a new logical level, the called program
being at a level one lower than the level of the calling
program (CICS is deemed to be at level 0). Figure 7 on
page 35 shows logical levels and the effect of RETURN
commands and CALL statements in linked-to and called
programs.

Notes:

1. When control is passed by an EXEC CICS XCTL
command, the program receiving control cannot return
control to the calling program by an EXEC CICS
RETURN command or a GOBACK statement, and is
therefore not a subprogram.

2. In an ANSI85 unit of compilation, a called nested
program is internal to the calling program, and is
therefore not a subprogram.

Table 1 (Page 1 of 2). Calling a subprogram from VS COBOL /I

EXEC CICS LINK Static COBOL CALL Dynamic COBOL CALL

Translation The linked-to subprogram The called subprogram must be translated If It, or any subprogram
must be translated If It, or any Invoked from It, contains CICS commands or references to the
subprogram Invoked from It, EXEC Interface block (DFHEIBLK) or to the CICS communication
contains CICS function. area (DFHCOMMAREA).

Link-editing (See Note 2 on The linked-to subprogram The called subprogram must The called subprogram must be
page 34.) must be complied and be link-edited with the calling complied and link-edited as a

link-edited as a separate program to form a single load separate load module. Can
program. module (but the programs can reside In the link pack area or

be complied separately). This In a shared library. It can also
can produce large program be shared with non-CICS
modules, and It also stops regions.
two programs that call the
same program from sharing a
copy of that program.

CSD entries Both programs must be The calling program must be defined In the CSD. An attempt to
defined In the CSD If the call the calling program results In a COBOL message and abend
linked-to subprogram Is (1015).
unknown or unavailable, the

The called subprogram must be
LINK falls with the PGMIDERR
condition.

defined In the CSD. If the called
subprogram Is unknown or
unavailable, COBOL Issues a
message and abends (1029).

Return from called subprogram The linked-to subprogram The called subprogram must return using the COBOL GOBACK
must return using EXEC CICS statement. The use of EXEC CICS RETURN In the called
RETURN. subprogram terminates the calling program.

Language of called subprogram Any language supported by VS COBOL II or Assembler
CICS

Contents of called or linked-to Any fUnction supported by C/CS for the language (Including calls to external databases, for example,
subprogram 082, and OUI), with the exception that an Assembler subprogram cannot call a lower level

subprogram.

Passing parameters to the Data can be passed by any of the standard CICS methods (COMMAREA, TWA, TCTUA, TS queues)
subprogram provided that the called or linked-to subprogram Is processed by the CICS translator.

If the COMMAREA Is used, Its The CALL statement must pass DFHEIBLK and DFHCOMMAREA
address must be passed In as the first two parameters. See Note 1 on page 34.
the LI N K command. If the

In an ANSI85 unit of If the called subprogram uses
linked-to subprogram uses
24-blt addressing and the

compilation, a nested program 24-blt addressing and any

COMMAREA is above the Is not a subprogram, and the parameter Is above the

16-megabyte line, CICS
above rule can be varied. 16-megabyte line, COBOL

copies It below the
See "Nesti ng - what the Issues a message and abends

16-megabyte line and
application programmer must (1033).

recopies It on return.
do" on page 38.

Storage On each entry to the linked-to On the first entry to the called subprogram within a CICS logical
subprogram, a new initialized level, a new initialized copy of Its working storage Is provided. On
copy of its workl ng storage Is subsequent entries to the called subprogram at the same logical
provided, and the run unit is level, the same working storage Is provided In Its last-used state,
relnltiallzed (In some that Is, no storage Is freed, acquired, or Initialized. If performance
circumstances, this can cause Is unsatisfactory with LINK commands, COBOL calls may give
a performance degradation). Improved results.

Chapter 1.4. Programming techniques and restrictions 33

Table 1 (Page 2 of 2). Calling a subprogram from VS COBOL II

CICS condition/AID and abend
handling

Notes:

EXEC CICS LINK

On entry to the linked-to
subprogr~m, no condition or
abend handling is active.
Within the subprogram, the
normal CICS rules apply. If
an abend occurs while no
abend handling Is active,
CICS searches successively
higher logical levels (starting
with the caller) and passes
control to the label specified
In the first active HANDLE
ABEND found. If none Is
found, the transaction abends.

1. The CALL has the following form:

CALL 'PROG ' USING DFHEIBLK DFHCOMMAREA
PARMI PARM2 •••

In the called program PROG, the CICS translator
inserts DFHEIBLK and DFHCOMMAREA into the
linkage section and into the USING list of the
procedure division statement. You code the procedure
division statement normally, as follows:

PROCEDURE DIVISION USING PARMI PARM2 •••

and the translator inserts DFHEIBLK and
DFHCOMMAREA into this statement before PARMI.

2. You must always use the NODYNAM compiler option
(the default) when you compile a VS COBOL II
program that is to run with CICS, even if the program
issues dynamic calls.

34 CICS/MVS 2.1.2 Application Programmer's Reference

Static COBOL CALL I Dynamic COBOL CALL

On entry to the called subprogram, no abend or condition handling
Is active. Within the subprogram, the normal CICS rules apply. To
reinstate the caller's condition and abend handling, the called
subprogram can issue EXEC CICS POP HAN DLE. If this Is done,
the subprogram must Issue EXEC CICS PUSH HANDLE before
returning to the caller, otherwise COBOL abends (1013). If an
abend occurs In the called subprogram while there Is no abend
handling, the effect Is the same as that of an abend In the calling
program.

CICS +- LEVEL

1
e

I
GOBACK ~

I
STOP RUN ~

I
EXEC CICS RETURN ~

I LEVEL
Run Unit A CALL ~ 1

I
~ GOBACK

I
EXEC CICS LINK EXEC CICS RETURN ~

~

Program U Program V

GOBACK ~

STOP RUN ---.
Run Unit B

EXEC CICS RETURN ~

CALL ~

~ GOBACK

EXEC CICS XCTL EXEC CICS RETURN

Program W Program X
LEVEL , 2

CALL ~

~ GOBACK

GOBACK

"1
STOP RUN -1

STOP RUN ~ EXEC CICS RETURN --.
Run Unit C

EXEC CICS RETURN ~

I
Program Y I Program Z

Figure 7. Flow of control between VS COBOL If programs and run units in a CICS environment. 'Run unit' is defined in "Mixing
languages" on page 32.

Chapter 1.4. Programming techniques and restrictions 35

VS COBOL II with the ANSI85 COBOL
standards

VS COBOL II Release 1.3 supports the ANSI85 COBOL
standards. CICS/MVS Release 2.1 introduces a new
translator option, ANSI85, which supports most of these
standards. If invoked with the ANSI85 option, the
translator assumes the COBOL2 option.

CICS support for these standards takes the form of
changes to the translator. Because the translator is not a
compiler, it is not affected by a" the ANSI85 standards.
The standards that do affect the translator are:

• Blank lines intervening in literals
• Sequence numbers containing any character
• Lowercase characters supported in a" COBOL words
• REPLACE statement
• Batch compilation
• Nested programs
• Reference modification
• Global variables
• Interchangeability of comma, semicolon, and space
• Symbolic character definition.

If a standard is not fully supported by the translator, a
programming restriction is introduced. These restrictions
are explained in the following descriptions of the standards
and a summary is given after the descriptions. The
translator actions given in the descriptions assume that
the ANSI85 translator option has been specified.

As used here, a unit of compilation is a section of source
input from which the compiler produces a single object
program. A unit of compilation can consist of a containing
program and other programs nested within it.

Blank lines intervening in literals

Blank lines can appear anywhere in a COBOL source
program. A blank line is a line that contains only blanks
between margin C (the continuation column) and margin R
(the last character in the line) inclusive.

Translator action: If blank lines occur within literals in a
VS COBOL II source program, the translator eliminates
them from the translated output but includes them in the
translated listing.

(If the ANSI85 option is not specified, a blank line in a
literal causes a translator error.)

36 CICS/MVS 2.1.2 Application Programmer's Reference

Sequence numbers containing any character

New standard: In a COBOL source program, the
sequence number field can contain any character in the
computer's character set. The sequence number fields
need not be in any order and need not be unique.

Translator action: The translator makes no check on the
contents or sequence of the sequence number fields.

If the SEQ translator option is specified, the translator
issues a message saying that the SEQ option has no effect
when the ANSI85 option is specified.

Lowercase characters supported in all
COBOL words

New standard: Lowercase characters can occur
anywhere in any COBOL word, including user-defined
names, system names, and reserved words. A lowercase
character can be used wherever an uppercase character is
required by a COBOL compiler that does not conform to
the ANSI85 standards.

Translator action: The translator listing and output
preserve the case of COBOL text as entered.

In addition, the translator accepts:

• Mixed case in translator options.

• Mixed case in EXEC CICS commands, both for
keywords and for arguments to keywords.

(If the ANSI85 option is not specified, the translator
expects COBOL words to consist entirely of uppercase
characters.)

Notes:

1. The translator does not translate lowercase text into
uppercase. Some names in COBOL text - for
example, filenames and transaction IDs - must match
externally defined names. Such names should always
be entered in the same case as the external definition.

2. CBL and PROCESS cards must be in uppercase.

REPLACE statement

New standard: COBOL programs can include the new
REPLACE statement, which allows the replacement of
identified text by defined substitution text. The text to be
replaced and inserted is specified as in the REPLACING
option of the COPY statement, and can be pseudo-text, an
identifier, a literal, or a COBOL word.

REPLACE statements are processed after COPY
statements.

Translator action: The translator accepts REPLACE
statements but does not translate text between
pseudo-text delimiters, with one exception. CICS built-in
functions (DFHRESP and DFHVAlUE) are translated
wherever they occur. CICS commands should not be
placed between pseudotext delimiters.

Batch compilation

New standard: Separate COBOL programs can be
compiled together as one input file. An END PROGRAM
statement terminates each program. The END PROGRAM
statement is optional for the last program in the batch.

Translator action: The translator accepts separate
COBOL programs in a single input file, and interprets END
PROGRAM statements according to the new standard.

Translator options specified as parameters when invoking
the translator are in effect for the whole batch, but can be
overridden for a unit of compilation by options specified in
the CBl or PROCESS card that initiates the unit.

The options for a unit of compilation are determined
according to the following order of priority:

1. Options specified in the CBl or PROCESS card that
initiates the unit

2. Options specified when the translator is invoked

3. Default options.

Compiler and linkage editor: If you are using batch
compilation, you must take some additional action to
ensure that compilation and linkage editing are successful.

• Include the compiler NAME option as a parameter in
the JCl statement that invokes the compiler or in a
CBl statement for each top-level (non-nested)
program. This causes the inclusion of a NAME
statement at the end of each program. See Figure 8.

.••. program a ...•

NAME PROGA(R)

..•. program b ••••

NAME PROGB(R)

.... program c

NAME PROGC(R)

Figure B. Compiler output before editing

• Edit the compiler output to add INCLUDE and ORDER
statements for the CICS COBOL stub to each object

module. These statements cause the linkage editor to
include the stub at the start of each load module.
These statements can be anywhere in the module
although by convention they are at the start. You may
find it convenient to place them at the end of the
module, immediately before each NAME statement.
Figure 9 shows the output in Figure 8 after editing in
this way.

••.. program a ••••

INCLUDE COBLIB(DFHECI)
ORDER DFHECI
NAME PROGA(R)

.... program b ••••

INCLUDE COBLIB(DFHECI)
ORDER DFHECI
NAME PROGB(R)

•••• program c ••••

INCLUDE COBLIB(DFHECI)
ORDER DFHECI
NAME PROGC(R)

Figure 9. Linkage editor input

For batch compilation, you must vary the procedure
described in the CICSIMVS Operations Guide. The
following is a suggested method.

1. Split the supplied cataloged procedure, DFHEITCl, into
two procedures: PROC1 containing the translate and
compilation steps (TRN and COB), and PROC2
containing the lKED linkage editor step.

2. In PROC1, add the NAME option to the parameters in
the EXEC statement for the compiler, which then looks
like this:

IICOB EXEC PGM=IGYCRCTL,
II PARM=' ..•. ,NAME, •••• ',
II REGION=1024K

3. In PROC1, change the name and disposition of the
&&lOADSET compiler output data set. At least
remove the initial && from the data set name and
change the disposition to CATlG. The SYSUN
statement should then read:

IISYSLIN DO DSN=LOADSET,
II DISP=(NEW,CATLG),UNIT=&WORK,
II SPACE=(B0,(250,100»

4. Run PROC1.

5. Edit the compiler output in the lOADSET data set to
add the INCLUDE and ORDER statements as shown in
Figure 9. If you use large numbers of programs in
batches, you should write a simple program or REXX
EXEC to insert the ORDER and INCLUDE statements.

Chapter 1.4. Programming techniques and restrictions 37

6. In PROC2, add a DO statement for the library including
the CICS stub. The standard name of this library is
CICS21.COBUB. The INCLUDE statement for the stub
refers to this library by the DO name. In Figure 9 on
page 37, we assume you have used the DO name
COBUB. The suggested statement is:

IICOBlIB DD DSN=CICS21.COBlIB,
II DISP=SHR

7. In PROC2, replace the SYSUN concatenation with the
single statement:

IISYSlIN DD DSN=lOADSET,
II DISP=(OlD,DElETE)
The above statement assumes that you have renamed
the compiler output data set LOADSET.

8. Run PROC2.

Nested programs

New standard: Under the ANSI85 standard:

• COBOL programs can contain COBOL programs.

• Contained programs are included immediately before
the END PROGRAM statement of the containing
program.

• A contained program can also be a containing
program; that is, it can itself contain other programs.

• Each contained or containing program is terminated by
an END PROGRAM statement.

For an explanation of valid calls to nested programs and of
the COMMON attribute of a nested program, see the VS
COBOL /I Application Programming Guide.

Translator action: The translator treats top-level and
nested programs differently.

Top-level programs: The translator translates a top-level
program (a program that is not contained by any other
program) in the normal way, with one addition. The
translator uses the GLOBAL storage class for all
translator-generated variables in the working-storage
section.

Nested programs: The translator translates nested or
contained programs in a special way, as follows:

• A data division and linkage section are added if they
do not already exist.

• Declarations for DFHEIBLK (EXEC interface block) and
DFHCOMMAREA (communication area) are inserted
into the linkage section.

• EXEC CICS commands and CICS built-in functions are
. translated.

• The PROCEDURE DIVISION statement is not modified.
• No translator-generated temporary variables, used for

pre-call assignments, are inserted in the
working-storage section.

38 CICS/MVS 2.1.2 Application Programmer's Reference

Recognition of nested programs: If the ANSI85 option is
specified, the translator assumes that the input source
starts with a top-level program if the first non-comment
record is any of the following:

IDENTIFICATION DIVISION statement
CBl card
PROCESS card

If the first record is none of these, the translator treats the
input as part of the PROCEDURE DIVISION of a nested
program. The first CBL or PROCESS card indicates the
start of a top-level program and of a new unit of
compilation. Any IDENTIFICATION DIVISION statements
that are found before the first top-level program indicate
the start of a new nested program.

The practical effect of these rules is that nested programs
cannot be held in separate files and translated separately.
A top-level program and all its directly~and indirectly
contained programs constitute a single~.~Jnit of compilation
and should be submitted together to the translator.

Positioning of comments: The translator treats comments
that follow an END PROGRAM statement as belonging to
the next program in the input source. Comments that
precede an IDENTIFICATION DIVISION statement appear in
the listing after the IDENTIFICATION DIVISION statement.

To avoid confusion, always place comments:

• After the IDENTIFICATION DIVISION statement that
initiates the program to which they refer, and

• Before the END PROGRAM statement that terminates
the program to which they refer.

Nesting - what the application programmer must do

1. Submit a top-level containing program and all its
directly and indirectly contained programs as a single
unit of compilation.

2. In each nested program that contains EXEC
commands, CICS built-in functions, or references to
the EIB or COMMAREA, code DFHEIBLK and
DFHCOMMAREA as the first two parameters of the
PROCEDURE DIVISION statement as follows:

PROCEDURE DIVISION USING DFHEIBLK
DFHCOMMAREA PARMI PARM2 •••

3. In every call to a nested program that contains EXEC
commands, CICS built-in functions, or references to
the EIB or COMMAREA, code DFHEIBLK and
DFHCOMMAREA as the first two parameters of the
CALL statement as follows:

CAll 'PROGA' USING DFHEIBlK DFHCOMMAREA PARMI PARM2 •

4. For every call that forms part of the control hierarchy
between the top-level program and a nested program
that contains EXEC commands, CICS built-in functions,
or references to the EIB or COMMAREA, code
DFHEIBLK and DFHCOMMAREA as the first two
parameters of the CALL and PROCEDURE DIVISION

statements in the calling and called programs
respectively. This is necessary to allow addressability
to the EIB and COMMAREA to be passed to programs
not directly contained by the top-level program.

5. If it is not necessary to insert DFHEIBLK and
DFHCOMMAREA in the PROCEDURE DIVISION of a
nested program for any of the reasons given above (1,
3, and 4), calls to that program should not include
DFHEIBLK and DFHCOMMAREA in the parameter list
of the CALL 'statement.

Nesting - example: A unit of compilation (see
Figure 10) consists of a top-level program Wand three
nested programs, X, V, and Z, all directly contained by W.

Program W During initialization and termination, calls V
and Z to do initial CICS processing and
non-CICS file access. Calls X to do main
processing.

Program X Calls Z for non-CICS file access and V for
CICS processing.

Program V Issues CICS commands. Calls Z for non-CICS
file access

Program Z Accesses files in batch mode.

Figure 10. Nested program example-nesting structure

Applying the rules:

• Y must be COMMON to enable a call from X.

• Z must be COMMON to enable calls from X and V.

• Y issues CICS commands, therefore:

All calls to V must have DFHEIBLK and
DFHCOMMAREA as the first two parameters.

V's PROCEDURE DIVISION statement must have
DFHEIBLK and DFHCOMMAREA as the first two
parameters.

• Though X does not access the EI B or the
communication area, it calls V, which issues CICS
commands. Therefore both the call to X and X's
PROCEDURE DIVISION statement must have
DFHEIBLK and DFHCOMMAREA as the first two
parameters.

Figure 11 illustrates the above points.

IDENTIFICATION DIVISION.
PROGRAM-ID.W

PROCEDURE DIVISION.

CALL Z.

CALL Y USING DFHEIBLK DFHCOMMAREA.

CALL X USING DFHEIBLK DFHCOMMAREA.

IDENTIFICATION DIVISION.
PROGRAM-ID.X

PROCEDURE DIVISION USING DFHEIBLK DFHCOMMAREA.

CALL Z.

CALL Y USING DFHEIBLK DFHCOMMAREA.

END PROGRAM X

IDENTIFICATION DIVISION.
PROGRAM-ID.Y IS COMMON

PROCEDURE DIVISION USING DFHEIBLK DFHCOMMAREA.

CALL Z.

EXEC CICS

END PROGRAM Y

IDENTIFICATION DIVISION.
PROGRAM-ID.Z IS COMMON

PROCEDURE DIVISION.

END PROGRAM Z

END PROGRAM W

Figure 11. Nested program example - coding

Chapter 1.4. Programming techniques and restrictions 39

Reference modification

New standard: Reference modification is supported.
Reference modification is a method of referencing a
substring of a character data item by specifying the
starting (leftmost) position of the substring in the data item
and, optionally the length of the substring. The acceptable
formats are:

data-name (starting-position:)
data-name (starting-position: length)

Data-name can be subscripted or qualified or both. Both
starting-position and length can be arithmetic expressions.

Translator action: The translator accepts reference
modification wherever the name of a character variable is
permitted in a COBOL program or in an EXEC CICS
command.

Note: If a CICS command uses reference modification in
defining a data value, it must include a LENGTH option to
specify the data length. Otherwise the translator
generates a COBOL call with a LENGTH register reference
in the form:

LENGTH OF (reference modification)

This is rejected by the compiler.

Global variables

New standard: The GLOBAL variable storage class is
supported. A variable defined with the GLOBAL variable
storage class in a top-level program (see "Top-level
programs" on page 38) can be referred to in any of its
nested programs, whether directly or indirectly contained.

Translator action: The translator accepts the GLOBAL
keyword.

Comma and semicolon as delimiters

New standard: A separator comma is a comma followed
by a space. A separator semicolon is a semicolon followed
by a space. A separator comma or a separator semicolon
can be used as a separator wherever a space alone can be
used. (VS COBOL" Release 1.2 restricted the use of
commas and semicolons to positions specifically defined in
individual statement formats.)

Translator action: The translator accepts the use in
COBOL statements of a separator comma or a separator
semicolon wherever a space can be used. For example,
the translator accepts the statement:

IDENTIFICATION; DIVISION

40 CICS/MVS 2.1.2 Application Programmer's Reference

The translator does not support the use of the separator
comma and separator semicolon as delimiters in EXEC
CICS commands. The only acceptable word delimiter in an
EXEC CICS command continues to be a space.

Symbolic character definition

New standard: Symbolic characters can be defined in
the SPECIAL-NAMES paragraph after the ALPHABET
clause. A symbolic character is a program-defined word
that represents a one-character figurative constant.

Translator action: The translator accepts the use of
symbolic characters as specified in the standard.

Note: In general, the compiler does not accept the use of
figurative constants and symbolic characters as arguments
in CALL statements. For this reason, do not use figurative
constants or symbolic constants in CICS commands, which
are converted into CALL statements by the translator.
There is one exception to this restriction: a figurative
constant is acceptable in a CICS command as an argument
to pass a value provided it is of the correct data type. For
example, a numeric figurative constant can be used in the
LENGTH option.

Summary of restrictions

The following is a summary of the programming
restrictions associated with CICS translator suppport for
the ANSI85 COBOL standards.

• With the ANSI85 option, the translator varies the rule
for parameters to be passed by a static VS COBOL "
call (see "CALL statement from VS COBOL II program"
on page 28). For details, see "Nesting - what the
application programmer must do" on page 38.

• A REPLACE statement must not contain an EXEC CICS
command in pseudo-text.

• Programs cannot use a comma or semicolon as a word
separator in a CICS command.

• Programs cannot use a symbolic character as an
argument in a CICS command.

• Comments should not precede the IDENTIFICATION
DIVISION statement or follow the END PROGRAM
statement.

• CICS commands that use reference modification to
define a character data value must include a LENGTH
option to define the data length.

• A name that must match an external definition, for
example a filename or a transaction 10, must be coded
in the same case as the external definition.

PLII considerations

Restrictions

The following restrictions apply to a PUI program that is to
be used as a CICS application program. See the PLII
Optimizing Compiler Programmer's Guide for more
information about these facilities.

1. You cannot use the multitasking built-in functions:
COMPLETION
PRIORITY
STATUS

2. You cannot use the multitasking options:
EVENT
PRIORITY
TASK

3. Do not use the PUI statements:
READ
WRITE
GET
PUT
OPEN
CLOSE
DISPLAY
DELAY
REWRITE
LOCATE
DELETE
UNLOCK
STOP
HALT
EXIT
FETCH
RELEASE

You are provided with CICS commands for the storage
and retrieval of data, and for communication with
terminals. (However, you can use CLOSE, PUT, and
OPEN for SYSPRINT.)

See the PLII Optimizing Compiler Programmer's Guide
for information on when the use of these PUI
statements is necessary and the consequences of
using them.

4. You cannot use PUI Sort/Merge.

5. You cannot use static storage (except for read-only
data).

6. If you declare a variable with the attributes STATIC
and EXTERNAL, you must also include the INITIAL
attribute. If you do not, such a declaration will
generate a common CSECT that cannot be handled by
CICS.

7. You cannot use the PUI 48-character set option.

8. You cannot write your PUI programs with lowercase
keywords.

9. If a CICS command uses the SUBSTR built-in function
in defining a data value, it must include a LENGTH
option to specify the data length. Otherwise the
translator generates a PUI call including an invocation
of the CSTG builtin function in the form:

CSTG(SUBSTR(•• , •• , •• »

This is rejected by the compiler.

1 O. If you are using PUI and your load module requires
more than 64K bytes of dynamic storage to initialize,
this results in an APLG abend. If you are using
MVS/XA, this limit is increased to 1 Mbyte for areas
that you allocate explicitly above the 16-megabyte line
using an EXEC CICS GETMAIN command with the
FLENGTH option. However, all automatic storage and
DSA for PUI save areas are below the 16-megabyte
line even when the program is specified as AMODE(31)
and RMODE(ANY). This is because PUI has to do a
single GETMAIN below the line for this storage and
CICS has a restriction of 64K bytes in a single
GETMAIN below the 16-megabyte line.

You can avoid this happening in an XA AMOOE(31)
environment by doing the following. Instead of making
your biggest PUI structures and arrays AUTOMATIC,
define them as based on a POINTER variable, which
you initialize using EXEC CICS GETMAIN SET(pointer)
FLENGTH(length). Use FLENGTH instead of LENGTH,
and make the length more than 4K bytes so that it is
allocated above the 16-megabyte line. For example,
suppose you have a PUI program with these arrays
declared:

DCl A(1088,10) FLOAT

and

DCl B(100,10) CHAR(108)

These arrays need 40000 bytes (that is, 1000 x 10 x 4)
and 100000 bytes (that is, 100 x 10 x 100), respectively.
Code your PUI program as follows:

DCl (APOINTER, BPOINTER) POINTER;
DCl A(1008,18) FLOAT BASED(APOINTER),

B(100,18) CHAR(180) BASED(BPOINTER),
CSTG BUILTIN;

EXEC eICS GETMAIN SET(APOINTER) FlENGTH(ll);
EXEC CICS GETMAIN SET(BPOINTER) FlENGTH(l2);

This prevents an APLG abend occurring and means
that your program can use storage above the line that
would otherwise have been required below the line.

DLII CALL interface: Normally, with MVS/XA, you link
edit your PUI programs with the options AMOOE(31) and
RMODE(ANY) so that they can be loaded and acquire
working storage above the 16-megabyte line. However, if
a program uses the CALL OUI interface, the program can
reside above the 16-megabyte line, although its call
parameter list and the call parameters must reside below
the 16-megabyte line. OUI OFHFC requests are not
supported when running in 31-bit mode.

Chapter 1.4. Programming techniques and restrictions 41

PL/I ST AE execution-time option

If this option is specified, an abend occurring in the
transaction will be handled by PUI error handling routines
and the transaction may terminate normally, in which case
CICS facilities such as dynamic transaction backout (OTB)
will not be invoked.

Further information about PUI and the STAE option is
given in the CICS/MVS Recovery and Restart Guide.

Compilers supported

You can use only the following PUI compilers to process
your PUI application programs:

• OS PUI Optimizing Compiler, Version 1, Release 4.0.
• OS PLII Optimizing Compiler, Version 1, Release 5.1.

OPTIONS(MAIN) specification

If OPTIONS(MAIN) is specified in an application program,
that program can be the first program of a transaction, or
control can be passed to it by means of a LINK or XCTL
command.

If OPTIONS(MAIN) is not specified, it cannot be the first
program in a transaction, nor can it have control passed to
it by a LINK or XCTL command, but it can be link-edited to
a main program.

The definition of the EIB is generated in each program.
However, in programs other than that declared with
OPTIONS(MAIN), addressability to the EIB is the user's
responsibility.

Addressability is achieved by using the command:

EXEC CICS ADDRESS EIB(DFHEIPTR)

or by passing the EIB address or particular fields therein
as arguments to the CALL statement that invokes the
external procedure.

42 CICS/MVS 2.1.2 Application Programmer's Reference

Program segments

Segments of programs can be translated by the command
language translator, stored in their translated form, and
later included in the program to be compiled.

Subsequent copying or manipulating of statements
originally inserted by the CICS translator in an application
program may produce unpredictable results.

The external procedure must always be passed through
the CICS translator, even when all its commands are in
included segments.

Chapter 1.5. Exceptional conditions

A CICS "exceptional condition", or "condition" for short, is
defined as the reason why a CICS command cannot be
executed.

Conditions may occur at any time during the execution of a
command and, unless you specify otherwise in your
application program, a standard system (default) action for
each condition will be taken. Usually, this default action is
to terminate the tasl< abnormally.

There are about 70 conditions in all, each one identified by
name (for example LENGERR) and a corresponding
number. All the conditions are listed, in alphabetic order
of name, at the end of this chapter, and under EIBRCODE
in Appendix A, "EXEC interface block" on page 339. Their
numbers are listed in numeric order under EIBRESP, also
in Appendix A.

An application program can be in one of three possible
states with respect to a condition detected during the
attempted execution of a command:

1. HANDLE CONDITION active. Control goes to a label in
the program defined earlier by a HANDLE CONDITION
command.

This state occurs after the execution of a

HANDLE CONDITION condition(label)

or

HANDLE CONDITION ERROR(label)

2. Take no action. Control returns to the next instruction
following the command that has failed to execute. At
the same time, a return code is set in EIBRESP and
EIBRCODE corresponding to the condition
encountered.

This state occurs after the execution of an

IGNORE CONDITION condition

or an

IGNORE CONDITION ERROR

if there is no current active HANDLE CONDITION
command that includes a label.

This state also occurs during execution of a command
that includes one of the options NOHANDLE or RESP.

3. Standard system action (default action). For most
conditions, this is to terminate the task abnormally.
However, for the ENQBUSY, NOJBUFSP, NOSPACE,
NOSTG, QBUSY, SESSBUSY, and SYSBUSY conditions,
standard system action is to suspend the task until the
required resource becomes available, when execution
of the associated command is resumed.

This state occurs if neither a HANDLE CONDITION
condition(label) nor a HANDLE CONDITION
ERROR(label) has been executed.

© Copyright IBM Corp. 1982, 1991

This state also occurs after executing a HANDLE
CONDITION condition command without a label or
PUSH HANDLE.

Alternative to the HANDLE command

The NOHANDLE, RESP, and RESP2 options (described
below) are supplied as an alternative to the HANDLE
command just described.

You are recommended to use these options because they
allow you to write structured programs.

NOHANDLE option: You can use the NOHANDLE option
with any command to specify that you want no action to be
taken for any condition or attention identifier (AID)
resulting from the execution of that command. In this way
you can control the scope of the IGNORE CONDITION
command to cover specified conditions for all commands
(until a HANDLE CONDITION for the condition is executed).
Similarly, you can control the scope of the NOHANDLE
option to cover all conditions for specified commands.

RESP and RESP2 options: You can use the RESP and
RESP2 options with any command to test the response to
the execution of that command.

I If the HANDLE CONDITION overflow is not active, the
I overflow condition will not be raised and RESP or RESP2
I will therefore indicate a normal response by default.

RESP(xxx)
"xxx" is a user-defined fullword binary data area. On
return from the command, it contains a value
corresponding to the condition that may have been
raised, or to a normal return; that is,
xxx = DFHRESP(NORMAL). You can test this value by
means of DFHRESP, as follows:

EXEC CICS WRITEQ TS FROM(abc)
QUEUE(qname)
RESP(xxx)

If xxx=DFHRESP(NOSPACE) THEN ..•

The above form of DFHRESP applies to both COBOL
and PUI. For assembler, the test would be:

CLC xxx,DFHRESP(NOSPACE)
BE

Because the use of RESP implies NOHANDLE, you
must be careful when using RESP with the RECEIVE
command, because NOHANDLE overrides the HANDLE
AID command as well as the HANDLE CONDITION
command with the result that PF key responses will be
ignored.

43

RESP2(yyy)
"yyy" is a fullword binary value that further qualifies
the response to some commands. It is used in the
INQUIRE and SET commands, and in the spool
commands of the CICS interface to JES. These
commands are primarily for the use of the system
programmer, and are described in the CICSIMVS
Customization Guide.

ERROR exceptional condition: Apart from the
conditions associated with individual commands, there is a
general condition named ERROR whose default action also
is to terminate the task abnormally.

If no HANDLE CONDITION command is active for a
condition, but one is active for ERROR, control will be
passed to the label specified for ERROR.

A subsequent HANDLE CONDITION command (with or
without a label) for a condition overrides the HANDLE
CONDITION ERROR command for that condition.

Do not include commands in an error routine that may give
rise to the same condition that caused the branch to the
routine; take special care not to cause a loop on the
ERROR condition.

You can avoid a loop by including a HANDLE CONDITION
ERROR command as the first command in your error
routine. Reinstate the original error action at the end of
your error routine by including a second HANDLE
CONDITION ERROR command.

Unsupported function: A task will be abended
unconditionally if, in a command, you request an
unsupported function, even if you have specified a
HANDLE ERROR command or an IGNORE ERROR
command, or have included the RESP condition in that
command.

NOTAUTH exceptional condition: The NOTAUTH
condition is a general condition that can be associated with
individual commands. It is raised when a resource
security check has failed.

The reasons for the failure are the same as for the AEY7
abend code, as described in the CICSIMVS Messages and
Codes manual.

Summary of CONDITION commands and actions:
CICS maintains a table of conditions referred to by
HANDLE CONDITION and IGNORE CONDITION commands
in an application program. Execution of these commands
either updates the existing entry, or causes a new entry to
be made if the condition has not yet been the subject of
such a command. Each entry indicates one of the three
states described earlier.

44 CICS/MVS 2.1.2 Application Programmer's Reference

When the condition occurs, the following tests are made:

1. If the command has NOHANDLE or RESP, control
returns to the next instruction in the application
program except for the ALLOCATE, ENQ, GETMAIN,
JOURNAL, READQ TO, and WRITEQ TS commands,
where NOHANDLE will suspend execution of the
application program until the specified resource
becomes available. Otherwise the condition table is
scanned to ascertain what is to be done.

2. If an entry for the condition exists, this determines the
action.

3. If no entry exists and the default action for this
condition is to suspend execution:

• If the command has the NOSUSPEND or NOQUEUE
option, control returns to the next instruction.

• If the command does not have one of these
options, the task is suspended.

4. If no entry exists and the default action for this
condition is to abend, a second search is made for the
ERROR condition and this entry, if found, determines
the action. If it is not found, the task is abended.

The ALLOCATE, ENQ, GETMAIN, JOURNAL, READQ TO,
and WRITEQ TS commands can give rise to conditions for
which the default action is to suspend the execution of the
application program until the specified resource becomes
available. On these commands, the NOSUSPEND option is
provided to inhibit this waiting and to cause an immediate
return to the instruction in the application program
following the command.

Throughout this manual, where appropriate, conditions are
described together with the CICS default action at the end
of a chapter, and a list of conditions that apply to a
command is included within the syntax box for the
command.

Some conditions can occur during the execution of anyone
of a number of unrelated commands; for example, IOERR
can occur during file control operations, interval control
operations, and others. If you want the same action for all
occurrences, simply code a single HANDLE CONDITION
IOERR command at the beginning of your program.

If you want different actions, you must code HANDLE
CONDITION commands specifying different labels at
appropriate points in the program, or you can specify the
same label for all commands. You can test the EIBFN,
EIBRCODE, and EIBRESP fields (in the EXEC interface block
- EIB) to find out which condition has occurred and in
which command. The EIB is described in Appendix A,
"EXEC interface block" on page 339.

Handle exceptional conditions (HANDLE
CONDITION)

HANDLE CONDITION
condition[(label)] ...

condition [(label)]
'condition' specifies the name of the condition, and
'label' specifies the location within the program to be
branched to if the condition occurs.

If you omit the condition, the default action for the
condition is taken unless the default action is to
terminate the task abnormally, in which case the
ERROR condition occurs.

If you omit label, any HANDLE CONDITION command
for the condition is deactivated and the default action
for the condition is taken if the condition occurs.

You use this command to specify the label to which control
is to be passed if a condition occurs. You must include the
name of the condition and, optionally, a label to which
control is to be passed if the condition occurs. You must
ensure that the HANDLE CONDITION command is executed
before the command that may give rise to the associated
condition.

At the end of this chapter is a list of the conditions that
can be used in this command.

You cannot include more than sixteen conditions in the
same command, and each condition should be separated
by at least one space. You must specify additional
conditions in further HANDLE CONDITION commands. You
can also use the ERROR condition within the same list to
specify that all other conditions are to cause control to be
passed to the same I abel.

The HANDLE CONDITION command for a given condition
applies only to the program in which it is specified. The
HANDLE CONDITION command:

• Remains active while the program is executing, or
until:

An IGNORE CONDITION command for the same
condition is encountered, in which case the
HANDLE CONDITION command is overridden

Another HANDLE CONDITION command for the
same condition is encountered, in which case the
new command overrides the previous one.

• Is temporarily deactivated by the NOHANDLE or RESP
option on a command.

When control passes to another program, the HANDLE
CONDITION commands that were active in the calling
program are deactivated. When control returns to a
program from a program at a lower logical level, the

HANDLE CONDITION commands that were active in the
higher-level program before control was transferred from it
are reactivated, and those in the lower-level program are
deactivated. (See "Chapter 4.4. Program control" on
page 289 for information about logical levels.) This will
not apply if macro-level links are used; current active
conditions will remain active.

The following example shows you how to handle
conditions, such as DUPREC, LENGERR, and so on, that
can occur when you use a WRITE command to add a
record to a data set. Let us suppose that you want
DUPREC to be handled as a special case; that you want
standard system action (that is, to terminate the task
abnormally) to be taken for LENGERR; and that you want
all other conditions to be handled by the error routine
ERRHANDL. You would code:

EXEC CICS HANDLE CONDITION
ERROR(ERRHANDL)
DUPREC(DUPRTN) LENGERR

In an assembler-language application program, a branch to
a label caused by a condition will restore the registers in
the application program to their values in the program at
the point where the command that caused the condition is
issued. On MVS/XA, the addressing mode will be set to
that in effect at the point where the HANDLE CONDITION
command is issued.

In a PUI application program, a branch to a label in an
inactive procedure or in an inactive begin block, caused by
a condition, will produce unpredictable results.

Ignore exceptional conditions (IGNORE
CONDITION)

IGNORE CONDITION
condition condition

condition
specifies the name of the condition that is to be
ignored.

You use this command to specify that no action is to be
taken if a condition occurs (that is, control returns to the
instruction following the command that has failed to
execute and the EIB is set.) Execution of a command could
result in several conditions being raised. CICS checks
these in a predetermined order and only the first one that
is not ignored (by your IGNORE CONDITION command) will
be passed to your application program.

At the end of this chapter is a list of the conditions that
can be used in this command.

The IGNORE CONDITION command for a given condition
applies only to the program in which it is specified, and it

Chapter 1.5. Exceptional conditIons 45

remains active while the program is executing, or until a Condition Command Chapter
HANDLE CONDITION command for the same condition is
encountered, in which case the IGNORE CONDITION CBIDERR ALLOCATE (3.3)
command is overridden. CONVERSE (3.3)

EXTRACT ATTACH (3.3)
You cannot code more than sixteen conditions in the same SEND (3.3)
command, and each condition should be separated by at

(3.4) least one space. Additional conditions must be specified in CCERROR SPOOLOPEN
further IGNORE CONDITION commands. SPOOLWRITE (3.4)

DISABLED DELETE (2.4)

Suspend condition handling (PUSH and
I DELETEQ TD (4.6)

ENDBR (2.4)
POP) READ (2.4)

READNEXT (2.4)
The PUSH and POP commands enable you to suspend all READPREV (2.4)
current HANDLE CONDITION, IGNORE CONDITION, READQ TD (4.6)
HANDLE AID, HANDLE ABEND, and IGNORE commands. RESETBR (2.4)
This can be useful, for example, during a branch to a REWRITE (2.4)
subroutine embedded in a main program. STARTBR (2.4)

UNLOCK (2.4)
Normally, when a CICS program links to a subroutine, the WRITE (2.4)
program or routine that receives control inherits the WRITEQ TD (4.6)

current HANDLE commands. These commands may not be DSIDERR ENDBR (2.4)
appropriate within the called program. The called program DELETE (2.4)
can use the PUSH command to suspend existing HANDLE READ (2.4)
commands. The form of the PUSH command is: READ NEXT (2.4)

READPREV (2.4)

I PUSH HANDLE
RESETBR (2.4)
REWRITE (2.4)
STARTBR (2.4)

Before returning control to the caller, a called program can UNLOCK (2.4)
restore the original commands using the POP command, WRITE (2.4)
which has the form: DSSTAT ISSUE RECEIVE (3.5)

I POP HANDLE DUPKEY READ (2.4)
READ NEXT (2.4)
READPREV (2.4)

You can nest PUSH ... POP command sequences within a
task. Each PUSH command stacks a set of specifications; DUPREC WRITE (2.4)
the POP that follows it restores them. REWRITE (2.4)

List of exceptional conditions
ENDDATA RETRIEVE (4.2)

ENDFILE READ NEXT (2.4)
The following list shows all the conditions that can occur READPREV (2.4)
during the execution of CICS commands. Each condition is
followed by one or more commands during the execution ENDINPT RECEIVE (3.3)
of which the condition may occur. The numbers in
parentheses are the numbers of the chapters that describe ENQBUSY ENQ (4.3)
those commands. For the meaning of a condition and the
default action associated with that condition, see the list of ENVDEFERR RETRIEVE (4.2)
conditions at the end of the indicated chapter.

EOC CONVERSE (3.3)
RECEIVE (3.3)
RECEIVE MAP (3.2)
RECEIVE PARTN (3.2)

EODS CONVERSE (3.3)
ISSUE RECEIVE (3.5)

46 CICS/MVS 2.1.2 Application Programmer's Reference

RECEIVE (3.3) SEND MAP (3.2)
RECEIVE MAP (3.2)
RECEIVE PARTN (3.2) INVPARTN RECEIVE MAP (3.2)

EOF CONVERSE (3.3) RECEIVE PARTN (3.2)
RECEIVE (3.3) SEND CONTROL (3.2)

SEND MAP (3.2)
ERROR General exceptional SEND TEXT (3.2)

condition. (1. 5)
Not included in the list of INVPARTNSET SEND PARTNSET (3.2)
conditions in the syntax
of individual commands. INVREQ ALLOCATE (3.3)

ASSIGN (1.6)
EXPIRED DELAY (4.2) CANCEL (4.2)

POST (4.2) CONNECT PROCESS (3.3)
CONVERSE (3.3)

FUNCERR ISSUE ABORT (3.5) DELAY (4.2)
ISSUE ADD (3.5) DELETE (2.4)
ISSUE END (3.5) ENDBR (2.4)
ISSUE ERASE (3.5) ENTER (5.3)
ISSUE NOTE (3.5) EXTRACT ATTACH (3.3)
ISSUE QUERY (3.5) EXTRACT PROCESS (3.3)
ISSUE REPLACE (3.5) EXTRACT TCT (3.3)
ISSUE SEND (3.5) FREE (3.3)
ISSUE WAIT (3.5) ISSUE ABEND (3.3)

ISSUE CONFIRMATION (3.3)
IGREQCD CONVERSE (3.3) ISSUE COPY (3.3)

ISSUE SEND (3.5) ISSUE ENDFILE (3.3)
SEND (3.3) ISSUE ENDOUTPUT (3.3)
SEND CONTROL (3.2) ISSUE EODS (3.3)
SEND MAP (3.2) ISSUE ERASEAUP (3.3)
SEND PAGE (3.2) ISSUE ERROR (3.3)
SEND TEXT (3.2) ISSUE LOAD (3.3)

ISSUE PRINT (3.3)
IGREQID SEND CONTROL (3.2) ISSUE RESET (3.3)

SEND MAP (3.2) POST (4.2)
SEND TEXT (3.2) READ (2.4)

READ NEXT (2.4)
ILLOGIC DELETE (2.4) READPREV (2.4)

ENDBR (2.4) READQ TS (4.7)
READ (2.4) RECEIVE (3.3)
READNEXT (2.4) RESETBR (2.4)
READPREV (2.4) RETRIEVE (4.2)
RESETBR (2.4) RETURN (4.4)
REWRITE (2.4) REWRITE (2.4)
SPOOLCLOSE (3.4) ROUTE (3.2)
SPOOLOPEN (3.4) SEND (3.3)
STARTBR (2.4) SEND CONTROL (3.2)
UNLOCK (2.4) SEND MAP (3.2)
WRITE (2.4) SEND PAGE (3.2)

SEND PARTNSET (3.2)
INBFMH CONVERSE (3.3) SEND TEXT (3.2)

RECEIVE (3.3) SPOOLOPEN (3.4)
SPOOLCLOSE (3.4)

INVERRTERM ROUTE (3.2) START (4.2)
STARTBR (2.4)

INVLDC ROUTE (3.2) WAIT CONVID (3.3)
SEND CONTROL (3.2) WAIT EVENT (4.2)
SEND MAP (3.2) WAIT JOURNAL (5.5)
SEND TEXT (3.2) WRITE (2.4)

WRITEQ TS (4.7)
) INVMPSZ RECEIVE MAP (3.2)

INVTSREQ RETRIEVE (4.2)

Chapter 1.5. Exceptional conditions 47

SEND (3.3)
IOERR DELETE (2.4) SPOOLWRITE (3.4)

JOURNAL (5.5) WRITE (2.4)
READ (2.4) WRITEQ TO (4.6)
READ NEXT (2.4)
READPREV (2.4) MAPERROR SPOOLWRITE (3.4)
READQ TO (4.6)
READQ TS (4.7) MAPFAIL RECEIVE MAP (3.2)
RESETBR (2.4) SPOOLWRITE (3.4)
RETRIEVE (4.2)
REWRITE (2.4) NAMEERROR SPOOLOPEN (3.4)
SPOOLCLOSE (3.4)
SPOOLOPEN (3.4) NOJBUFSP JOURNAL (5.5)
SPOOLWRITE (3.4)
START (4.2) NONVAL ISSUE LOAD (3.3)
STARTBR (2.4)
UNLOCK (2.4) NOPASSBKRD RECEIVE (3.3)
WAIT JOURNAL (5.5)
WRITE (2.4) NOPASSBKWR SEND (3.3)
WRITEQ TO (4.6)
WRITEQ TS (4.7) NOSPACE REWRITE (2.4)

SPOOLCLOSE (3.4)
ISCINVREQ CANCEL (4.2) SPOOLOPEN (3.4)

DELETE (2.4) SPOOLWRITE (3.4)
DELETEQ TO (4.6) WRITE (2.4)
DELETEQ TS (4.7) WRITEQ TO (4.6)
ENDBR (2.4) WRITEQ TS (4.7)
READ (2.4)
READNEXT (2.4) NOSPOOL SPOOLCLOSE (3.4)
READPREV (2.4) SPOOLOPEN (3.4)
READQ TO (4.6) SPOOLWRITE (3.4)
READQ TS (4.7)
RESETBR (2.4) NOSTART ISSUE LOAD (3.3)
RETRIEVE (4.2)
REWRITE (2.4) NOSTG GETMAIN (4.5)
START (4.2)
STARTBR (2.4) NOTALLOC CONNECT PROCESS (3.3)
UNLOCK (2.4) CONVERSE (3.3)
WRITE (2.4) EXTRACT ATTACH (3.3)
WRITEQ TO (4.6) EXTRACT PROCESS (3.3)
WRITEQ TS (4.7) FREE (3.3)

ISSUE ABEND (3.3)
ITEMERR READQ TS (4.7) ISSUE CONFIRMATION (3.3)

WRITEQ TS (4.7) ISSUE DISCONNECT (3.3)
ISSUE ERROR (3.3)

JIDERR JOURNAL (5.5) ISSUE SIGNAL (3.3)
WAIT JOURNAL (5.5) POINT (3.3)

RECEIVE (3.3)
LENGERR CONNECT PROCESS (3.3) SEND (3.3)

CONVERSE (3.3) WAIT CONVID (3.3)
DUMP (5.4) WAIT TERMI NAL (3.3)
GETMAIN (4.5)
ISSUE RECEIVE (3.5) NOTAUTH CANCEL (4.2)
JOURNAL (5.5) DELETE (2.4)
READ (2.4) DELETEQ TO (4.6)
READ NEXT (2.4) DELETEQ TS (4.7)
READPREV (2.4) ENDBR (2.4)
READQ TO (4.6) LINK (4.4)
READQ TS (4.7) LOAD (4.4)
RECEIVE (3.3) JOURNAL (5.5)
RECEIVE PARTN (3.2) READ (2.4)
RETRIEVE (4.2) READQ TO (4.6)
REWRITE (2.4) READQ TS (4.7)

48 CICS/MVS 2.1.2 Application Programmer's Reference

READNEXT (2.4)
READPREV (2.4) RDATT CONVERSE (3.3)
RELEASE (4.4) RECEIVE MAP (3.2)
RESETBR (2.4) RECEIVE (3.3)
RETRIEVE (4.2)
RETURN (4.4)
REWRITE (2.4)
SPOOLCLOSE (3.4)
SPOOLOPEN (3.4) RETPAGE SEND CONTROL (3.2)
SPOOLWRITE (3.4) SEND MAP (3.2)
START (4.2) SEND PAGE (3.2)
STARTBR (2.4) SEND TEXT (3.2)
UNLOCK (2.4)
WAIT JOURNAL (5.5) ROLLEDBACK SYNCPOINT (5.6)
WRITE (2.4)
WRITEQ TO (4.6) RTEFAIL ROUTE (3.2)
WRITEQ TS (4.7)
XCTL (4.4) RTESOME ROUTE (3.2)

NOTFND CANCEL (4.2) SELNERR ISSUE ABORT (3.5)
DELETE (2.4) ISSUE ADD (3.5)
READ (2.4) ISSUE END (3.5)
READ NEXT (2.4) ISSUE ERASE (3.5)
READPREV (2.4) ISSUE NOTE (3.5)
RESETBR (2.4) ISSUE QUERY (3.5)
RETRIEVE (4.2) ISSUE REPLACE (3.5)
STARTBR (2.4) ISSUE SEND (3.5)

ISSUE WAIT (3.5)
NOT OPEN DELETE (2.4)

ENDBR (2.4) SESSBUSY ALLOCATE (3.3)
JOURNAL (5.5)
READ (2.4) SESSIONERR ALLOCATE (3.3)
READNEXT (2.4) CONVERSE (3.3)
READPREV (2.4) EXTRACT ATTACH (3.3)
READQ TO (4.6) FREE (3.3)
RESETBR (2.4) ISSUE DISCONNECT (3.3)
REWRITE (2.4) ISSUE SIGNAL (3.3)
STARTBR (2.4) POINT (3.2)
UNLOCK (2.4) RECEIVE (3.2)
WAIT JOURNAL (5.5) SEND (3.3)
WRITE (2.4) WAIT TERMI NAL (3.3)
WRITEQ TD (4.6)

SIGNAL CONVERSE (3.3)
OVERFLOW SEND MAP (3.2) RECEIVE (3.3)

SEND (3.3)
PARTNFAIL RECEIVE MAP (3.2) WAIT CONVID (3.3)

WAIT SIGNAL (3.3)
PGMIDERR HANDLE ABEND (5.2) WAIT TERMINAL (3.3)

LINK (4.4)
LOAD (4.4) SYSBUSY ALLOCATE (3.3)
RELEASE (4.4)
XCTL (4.4) SYSIDERR ALLOCATE (3.3)

CANCEL (4.2)
QBUSY READQ TO (4.6) DELETE (2.4)

DELETEQ TO (4.6)
QIDERR DELETEQ TO (4.6) DELETEQ TS (4.7)

DELETEQ TS (4.7) ENDBR (2.4)
READQ TD (4.6) READ (2.4)
READQ TS (4.7) REAONEXT (2.4)
WRITEQ TO (4.6) REAOPREV (2.4)
WRITEQ TS (4.7) REAOQ TO (4.6)

READQ TS (4.7)
QZERO READQ TO (4.6) RESETBR (2.4)

Chapter 1.5. Exceptional conditions 49

RETRIEVE (4.2)
REWRITE (2.4) TSIOERR PURGE MESSAGE (3.2)
START (4.2) SEND CONTROL (3.2)
STARTBR (2.4) SEND MAP (3.2)
UNLOCK (2.4) SEND PAGE (3.2)
WRITE (2.4) SEND TEXT (3.2)
WRIIEQ TO (4.6)
WRITEQ TS (4.7) UNEXPIN ISSUE ABORT (3.5)

ISSUE ADD (3.5)
TERMERR CONVERSE (3.3) ISSUE END (3.5)

ISSUE ABEND (3.3) ISSUE ERASE (3.5)
ISSUE CONFIRMATION (3.3) ISSUE NOTE (3.5)
ISSUE COpy (3.3) ISSUE QUERY (3.5)
ISSUE DISCONNECT (3.3) ISSUE RECEIVE (3.5)
ISSUE EODS (3.3) ISSUE REPLACE (3.5)
ISSUE ERASEAUP (3.3) ISSUE SEND (3.5)
ISSUE ERROR (3.3) ISSUE WAIT (3.5)
ISSUE LOAD (3.3) RECEIVE MAP (3.2)
ISSUE PRINT (3.3)
ISSUE SIGNAL (3.3) WRBRK CONVERSE (3.3)
RECEIVE (3.3) SEND CONTROL (3.2)
SEND (3.3) SEND (3.3)
WAIT SIGNAL (3.3) SEND MAP (3.2)

SEND PAGE (3.2)
TERMIDERR ISSUE COPY (3.3) SEND TEXT (3.2)

START (4.2)
WRONGSTAT SPOOLOPEN (3.4)

TRANSIDERR START (4.2)

50 CICS/MVS 2.1.2 Application Programmer's Reference

Chapter 1.6. Access to system information

You can write many application programs using the CICS
command-level interface without any knowledge of or
reference to the fields in the CICS control blocks and
storage areas. However, you might sometimes need to get
information that is valid outside the local environment of
your application program. You use the ADDRESS and
ASSIGN commands to access such information; these
commands are described in the following sections.

Not all fields are intended to be accessed by the
application program; see the CICSIVS Application
Programmer's Reference Manual (Macro Level), SC33-0079
for a list of the fields that are part of the application
programming interface (the API) and that will remain valid
from release to release. Details of each control block and
its fields are contained in the CICSIMVS Data Areas
manual.

When using the ADDRESS and ASSIGN commands, the
fields in the API can be read but should not be set or used
in any other way. Do not use any of the CICS fields as
arguments in CICS commands, because these fields may
be altered by the EXEC interface modules.

INQUIRE/SET commands

The INQUIRE and SET commands allow application
programs to access information about CICS resources.
The application program can retrieve and modify
information for CICS data sets, terminals, system entries,
mode names, system attributes, programs, and
transactions.

The commands are fully described in the CICSIMVS
Customization Guide.

EXEC interface block (EIB)

In addition to the usual CICS control blocks, each task in a
command-level environment has a control block called the
EXEC interface block (EIB) associated with it. The field
names and the data types of the fields in this control block
are described in Appendix A, "EXEC interface block" on
page 339.

An application program can access all of the fields in the
EIB by name. The EIB contains information that is useful
during the execution of an application program, such as
the transaction identifier, the time and date (initially when
the task is started, and subsequently if updated by the
application program), and the cursor position on a display
device. The EIB also contains information that will be
helpful when a dump is being used to debug a program.

© Copyright IBM Corp. 1982, 1991

Access to CICS storage areas (ADDRESS)

I ADDRESS
option(ptr-ref) •••

This command is used to obtain access to any of the
following areas: the EXEC interface block (EIB), the
common system area (CSA), the common work area
(CWA), the terminal control table user area (TCTUA), and
the transaction work area (TWA). No more than four
options can be specified in one ADDRESS command.

ADDRESS command options

Product-Sensitive Programming Interface

CSA
allows access to control blocks addressed by the CSA.
The pointer reference is set to the address of the CSA.
The CSA gives access to all fields in CICS control
blocks and storage areas.

L End of Product-Sensitive Programming Interface ~

CWA

EIB

is used to pass information between application
programs. The pointer reference is set to the address
of the CWA. If a CWA does not exist, the pointer
reference is set to X' FFOOOOOO I.

is used to obtain addressability to the EXEC interface
block in application routines other than the first
invoked by CICS (for which addressability to the EIB is
provided automatically).

TCTUA
is used to pass information between application
programs, but only if the same terminal is associated
with the application programs involved (which can be
in different tasks). The pointer reference is set to the
address of the TCTUA. If a TCTUA does not exist, the
pointer reference is set to X I FFOOOOOO I. The data
area contains the address of the TCTUA of the
principal facility, not that for any alternate facility that
may have been allocated.

TWA
is used to pass information between application
programs but only if they are in the same task. The
pointer reference is set to the address of the TWA. If
a TWA does not exist, the pointer reference is set to
X 1 FFOOOOOO 1 •

51

An example of the use of the ADDRESS command is given
in the next section. (Information can also be passed
between programs using the COMMAREA option of the
program control commands, described in "Chapter 4.4.
Program control" on page 289.)

If an ADDRESS command is included in a COBOL program
that is to be compiled using the optimization feature, it
must be followed by SERVICE RELOAD statements to
reload the Bll cell being used. (The SERVICE RELOAD
statement is described on page 23.)

Values outside the application program
(ASSIGN)

ASSIGN
option(data-area) •••

Condition: INVREQ

This command is used to obtain values outside the local
environment of the application program. The value
obtained is assigned to the data area specified in the
option.

The following values can be obtained:

• lengths of storage areas

• Values needed when communicating with the 2980
General Banking Terminal System (copied from the
TCTTE)

• Values needed during basic mapping support (BMS)
operations

• Values needed during batch data interchange

• Information on terminal characteristics, such as screen
size and supported features (copied from the TCTTE)

• Other information that may be useful to the application
programmer (copied from various CICS control blocks).

A complete list of ASSIGN command options is given at
the end of the chapter. Up to 16 options can be specified
in one ASSIGN command.

Remote transactions

Transaction routing is, as far as possible, transparent to
the ASSIGN command. In general, the values returned are
the same whether the transaction is local or remote.

However, if the application-owning region (AOR) and the
terminal-owning region (TOR) have different security
requirements, security-related options must return

52 CICS/MVS 2.1.2 Application Programmer's Reference

different (but usually equivalent) values to the AOR and
the TOR. The options affected are OPERKEYS,
OPSECURITY, and USERID. For details, see the CICSIMVS
Intercommunication Guide.

Examples of ADDRESS and ASSIGN
commands

The following example shows, in the different application
programming languages, how the ADDRESS command is
used to obtain access to the TWA, and how the ASSIGN
command is used to obtain the length of the TWA.
Included is a test for validity; if there is no TWA, the
ASSIGN TWAlENG command will obtain a length of zero.

ASM --------------------------------~
DSWORKA
WAPTR

COUNT

DFHEISTG
TWALENG
CODE

CONTINUE

DSECT
EQU 08
USING DSWORKA,WAPTR

os H

DSECT
OS H
CSECT
EXEC CICS ASSIGN *
TWALENG(TWALENG)
CLC TWALENG,=H'0'
BNH CONTINUE
EXEC CICS ADDRESS
TWA(WAPTR)
LH 6,COUNT
LA 6,1(6)
STH 6,COUNT
OS 0H

COBOL ------------------------------~

WORKING-STORAGE SECTION.
77 TWALENG PIC S9(4) COMPo

LINKAGE SECTION.
01 BLLCELLS.

02 FILLER PIC S9(8) COMPo
82 WAPTR PIC S9(8) COMPo

01 WORKAREA.
02 COUNT PIC S9(4) COMPo

PROCEDURE DIVISION.
EXEC CICS ASSIGN TWALENG
(TWALENG) END-EXEC
IF TWALENG GREATER THAN 8 THEN
EXEC CICS ADDRESS TWA(WAPTR)
END-EXEC
ADD 1 TO COUNT.

PLII --------------------------------~

DCl TWAlENG FIXED BIN(15);
DCl 1 WORKAREA BASED(WAPTR),

2 COUNT FIXED BIN(15);

EXEC CICS ASSIGN TWALENG(TWALENG);
IF TWALENG>0 THEN DO;

EXEC CICS ADDRESS TWA(WAPTR);
COUNT=COUNT+li
END;

ASSIGN command options

Where any of the following options apply to terminals or
terminal related data, the reference is always to the
principal facility.

If the principal facility is a remote terminal, the data
returned is obtained from the local copy of the information;
the request is not routed to the system to which the
remote terminal is attached.

ABC ODE
specifies a variable that is set to the current value of
the abend code (abend codes are documented in the
CICS/MVS Messages and Codes manual). If an abend
has not occurred, the variable is set to blanks. The
format of the value is a 4-byte character string.

APPLID
returns the value specified in the APPLID operand of
the DFHSIT system macro for the system owning the
transaction. The format of the value is an 8-byte
character string.

In a CICS XRF environment, the value returned is the
generic APPLID. An application program is unaffected
by a takeover from the active to the alternate.

/ BTRANS
specifies that the value required is an indicator
showing whether the terminal is defined as having the
background transparency capability (X' FF ') or not
(X' 00 '). If the task is not initiated from a terminal,
INVREQ occurs. The format of the value is a 1-byte
character.

COLOR
specifies that the value required is an indicator
showing whether the terminal is defined as having the
extended color capability (X' FF ') or not (X I 00 '). If the
task is not initiated from a terminal, INVREQ occurs.
The format of the value is a 1-byte character.

CWALENG
specifies that the length of the CWA is required. If no
CWA exists, a zero length is returned. No exceptional
condition occurs. The format of the value is halfword
binary.

DELIMITER
specifies that the value required is the data-link
control character for a 3600, copied from TCTTEDLM.
If the task is not initiated from a terminal, INVREQ
occurs. The format of the value is a 1-byte character.

DESTCQUNT
This option has two uses:

• Fo"owing a BMS ROUTE command, it specifies
that the value required is the number of different
terminal types in the route list, and hence the
number of overflow control areas that may be
required. A zero value is returned if fast-path
BMS only is in use.

• Within BMS overflow processing, it specifies that
the value required is the relative overflow control
number of the destination that has encountered
overflow. If this option is specified when overflow
processing is not in effect, the value obtained will
be meaningless. If no BMS commands have been
issued, INVREQ occurs.

The format of the value is halfword binary.

See "Routing and page overflow" on page 189.

DESTID
specifies that the value required is the identifier of the
outboard destination, padded with blanks on the right
to 8 characters. If this option is specified before a
batch data interchange command has been issued in
the task, INVREQ occurs. The format of the value is
an 8-byte character string.

DESTIDLENG
specifies that the value required is the length of the
destination identifier obtained by DESTID. If this
option is specified before a batch data interchange
command has been issued in the task, INVREQ occurs.
The format of the value is halfword binary.

EXTDS
specifies that the value required is an indicator
showing whether you can use the query structured
field (X I FF ') or not (X I 00 '), to enquire what features
the device can support. Further information on the
query structured field is given in Chapter 5 of the
CICS/OS/VS IBM 3270 Datastream Device Guide,
SC33-0232.

If this option is specified and there is no TCTTE for the
task, INVREQ occurs. The format of the value is a
1-byte character. Individual feature capabilities such
as color and highlight have their own assign options.

FACILITY
specifies that the value required is the identifier of the
facility that initiated the transaction. The value is
copied from the first 4 bytes pointed at by TCAFCAAA.
If this option is specified and there is no allocated
facility, INVREQ occurs.

Chapter 1.6. Access to system information 53

Fel

Note: Always use the QNAME option (described on
page 55) to get the name of the transient data
intrapartition queue whose trigger level caused the
transaction to be initiated. The format of the value is
a 4-byte character string.

specifies that the value required is the facility control
indicator, copied from TCAFCI, that indicates the type
of facility associated with the transaction; for example,
X' 01 ' indicates a terminal or logical unit. The
obtained value is always returned. No exceptional
condition occurs. The format of the value is a 1-byte
character.

GCHARS
specifies that the value required is the graphic
character set global identifier (the GCSGID). The
value is a number between 1 and 65,534 representing
the set of graphic characters that can be input or
output at the terminal. If the task is not initiated from
a terminal, INVREQ occurs. The format of the value is
halfword binary.

GCODES
specifies that the value required is the code page
global identifier (the CPGID). The value is a number
between 1 and 65,534 representing the EBCDIC code
page defining the code points for the characters that
can be input or output at the terminal. If the task is
not initiated from a terminal, INVREQ occurs. The
format of the value is halfword binary.

HILIGHT
specifies that the value required is an indicator
showing whether the terminal is defined as having the
extended highlight capability (X 1 FF ') or not (X 1 00 '). If
this option is specified and there is no TCTTE for the
task, INVREQ occurs. The format of the value is a
1-byte character.

INPARTN
specifies that the value required is the name of the
most recent input partition. If the task is not initiated
from a terminal, INVREQ occurs. The format of the
value is a 1-or 2-character name.

KATAKANA
specifies whether the principal facility supports
KATAKANA. If the task is not initiated from a
terminal, INVREQ occurs. The format of the value is a
1-byte character.

LDCMNEM
specifies that the value required is the logical device
code (LDC) mnemonic of the destination that has
encountered overflow. If this option is specified when
overflow processing is not in effect, the value obtained
will be meaningless. If no BMS commands have been
issued, INVREQ occurs. The format of the value is a
2-byte character string.

54 CICS/MVS 2.1.2 Application Programmer's Reference

LDCNUM
specifies that the value required is the LDC numeric
value of the destination that has encountered
overflow. This indicates the type of the LDC, such as
printer or console. If this option is specified when
overflow processing is not in effect, the value obtained
will be meaningless. No exceptional condition occurs.
The format of the value is a 1-byte character.

MAPCOLUMN
specifies that the value required is the number of the
column on the display containing the origin of the most
recently positioned map. If no map has yet been
positioned or if BMS routing is in effect, INVREQ
occurs. The format of the value is halfword binary.

MAPHEIGHT
specifies that the value required is the height of the
most recently positioned map. If no map has yet been
positioned, or if BMS routing is in effect, or if the task
is not initiated from a terminal, INVREQ occurs. A
zero value is returned if fast-path BMS only is in use.
The format of the value is halfword binary.

MAPLINE
specifies that the value required is the number of the
line on the display containing the origin of the most
recently positioned map. If no map has yet been
positioned, or if BMS routing is in effect, or if the task
is not initiated from a terminal, INVREQ occurs. A
zero value is returned if fast-path BMS only is in use.
The format of the value is halfword binary.

MAPWIDTH
specifies that the value required is the width of the
most recently positioned map. If no map has yet been
positioned, or if BMS routing is in effect, or if the task
is not initiated from a terminal, INVREQ occurs. A
zero value is returned if fast-path BMS only is in use.
The format of the value is halfword binary.

MSRCONTROL
specifies that the value required is an indicator
showing whether the terminal supports magnetic slot
reader (MSR) control (X 1 FF ') or not (X 1 00 '). If the
task is not initiated from a terminal,INVREQ occurs.
The format of the value is a 1-byte character.

NETNAME
specifies that the value required is the name of the
logical unit in the VTAM network. The format of the
value is an 8-byte character string. If the principal
facility is not a local terminal, the value returned is a
null string.

If the task is not initiated from a terminal, INVREQ
occurs.

NUMTAB
specifies that the value required is the number of the
tabs required to position the print element in the
correct passbook area of the 2980. If this option is

specified and there is no TCTTE for the task, INVREQ
occurs. The format of the value is a 1-byte character.

OPCLASS
specifies that the value required is the operator class,
copied from TCTTEOCL. If this option is specified and
there is no TCTTE for the task, INVREQ occurs. The
format of the value is a 3-byte character string.

OPERKEYS
specifies that the value required is the 8 bytes
representing the transaction security keys, copied
from fields in the TCTTE. For a remote terminal, the
value returned may, for security reasons, be forced to
the default value of 1 (see the CICSIMVS
Intercommunication Guide). If this option is specified
and there is no TCTTE for the task, INVREQ occurs.
The format of the value is an 8-byte character string.

OPID
specifies that the value required is the operator
identification, copied from TCTTEOI. If this option is
specified and there is no TCTTE for the task, INVREQ
occurs. The format of the value is a 3-byte character
string.

OPSECURITY
specifies that the value required is the first 3 bytes of
the field returned by the OPERKEYS option. This
option is provided to maintain compatibility with
previous releases.

OUTLINE
specifies that the value required is an indicator
showing whether the terminal is defined as having the
field outlining capability (X I FF ') or not (X '00 '). If the
task is not initiated from a terminal, INVREQ occurs.
The format of the value is a 1-byte character.

PAGENUM
specifies that the value required is the current page
number for the destination that has encountered an
overflow. If this option is specified when overflow
processing is not in effect, the value obtained will be
meaningless. A zero value is returned if fast-path
BMS only is in use. If no BMS commands have been
issued, INVREQ occurs. The format of the value is
halfword binary.

PARTNPAGE
specifies that the value required is the name of the
partition that most recently caused page overflow. A
blank value is returned if partitions are not in use, or if
fast-path BMS is in use. If no BMS commands have
been issued, INVREQ occurs. The format of the value
is a 1-or 2-character name.

PARTNS
specifies that the value required is an indicator
showing whether the terminal supports partitions
(X I FF ') or not (X I 00 '). If the task is not initiated from
a terminal, INVREQ occurs. The format of the value is
a 1-byte character.

PARTNSET
specifies that the value required is the name of the
application partition set. A blank value is returned if
there is no application partition set. If the task is not
initiated from a terminal, INVREQ occurs. The format
of the value is a 1-through S-character name.

PRINSYSID
applies only when the principal facility is one of the
following:

• An MRO session to another CICS system

• An LUS.1 session to another CICS or I MS system

• An LUS.2 (APPC) session to another CICS system,
or to another APPC system or device.

PRINSYSID speCifies that the value required is the
name by which the other system is known in the local
system; that is, the CONNECTION definition that
defines the other system. For a single-session APPC
device defined by a terminal definition, the returned
value is the terminal identifier (TRMIDNT).

If the principal facility is not an MRO, LUS.1, or LUS.2
session, or if the task has no principal facility, INVREQ
occurs.

The format of the value is a 4-byte character string.

Note: An EXEC CICS ASSIGN PRINSYSID command
cannot be used in a routed transaction to find the
name of the terminal-owning region (see the
CICSIMVS Intercommunication Guide).

PS specifies that the value required is an indicator
showing whether the terminal is defined as having the
programmed symbols capability (X I FF ') or not (X I 00 ').
If this option is specified and there is no TCTTE for the
task, INVREQ occurs. The format of the value is a
1-byte character.

QNAME
specifies that the value required is the name of the
transient data intrapartition queue that caused this
task to be initiated by reaching its trigger level. If the
task is not initiated by automatic task initiation (ATI),
INVREQ occurs. The format of the value is a 4-byte
character string.

RESTART
specifies that the value required is an indicator
showing whether a restart of the task (X I FF '), as
opposed to a normal start of the task (X I 00 '), has
occurred.

SCRNHT
specifies that the value required is the height of the
3270 screen defined for the current transaction. If this
option is specified and there is no TCTTE for the task,
INVREQ occurs. The format of the value is halfword
binary.

Chapter 1.6. Access to system Information 55

SCRNWD
specifies that the value required is the width of the
3270 screen defined for the current transaction. If this
option is specified and there is no TCTTE for the task,
INVREQ occurs. The format of the value is halfword
binary.

SIGDATA
specifies that the value required is the signal data
received from a logical unit, copied from TCTESIDI. If
this option is specified and there is no TCTTE for the
task, INVREQ occurs. The format of the value is a
4-byte character string.

SOSI
specifies that the value required is an indicator
showing whether the terminal is defined as having the
mixed EBCDIC/DBCS fields capability (X I FF ') or not
(X '00 '). The DBCS subfields within an EBCDIC field
are delimited by SO (shift out) and SI (shift in)
characters. If the task is not initiated from a terminal,
INVREQ occurs. The format of the value is a 1-byte
character.

STARTCODE
specifies that the value required is a code indicating
how a transaction has been started. The format of the
value is a 2-byte character string that can have the
following values:

Code Tx started by

Qo Transient data trigger level
5 START command (no data)
SO START command (with data)
TO Terminal input
U User-attached task

STATIONID
specifies that the value required is the station
identifier of a 2980. If this option is specified and
there is no TCTTE for the task, INVREQ occurs. The
format of the value is a 1-byte character.

SVSID
specifies that the value required is the name given to
the local CICS system. This value may be specified in
the SYSID option of a file control, interval control,
temporary storage, or transient data command, in
which case the resource to be accessed is assumed to
be on the local system. The format of the value is a
4-byte character string.

TCTUALENG
specifies that the value required is the length of the
terminal control table user area (TCTUA). If no TCTUA
exists, a zero length is returned. No exceptional
condition occurs. The format of the value is halfword
binary.

56 CICS/MVS 2.1.2 Application Programmer's Reference

I
I
I
I
I
I
I
I

TELLERID
specifies that the value required is the teller identifier
of a 2980. If this option is specified and there is no
TCTTE for the task, the I NVREQ condition occurs. The
format of the value is a 1-byte character.

TERMCODE
specifies that the value required is a code giving the
type and model number of the terminal associated
with the task, copied from TCTTETT and TCTTETM. If
the code returned in TCTTETT is TCTELU6, an EXEC
CICS INQUIRE CONNECTION command can be
executed to determine if this ISC session is using LU61
or APPC protocols. If this option is specified and there
is no TCTTE for the task, INVREQ occurs. The format
of the value is a 2-byte character string.

TWALENG
specifies that the value required is the length of the
transaction work area (TWA). If no TWA exists, a zero
length is returned. No exceptional condition occurs.
The format of the value is halfword binary.

UNATTEND
specifies that the value required is a code indicating
that the mode of operation of the terminal is
unattended (X I FF ') or attended (X I 00 '), copied from
TCTEMOP. If this option is specified and there is no
TCTTE for the task, INVREQ occurs. The format of the
value is a 1-byte character.

USERID
specifies that the value required is the user identifier
of whoever is signed on. This option will return a
blank string when there is no user identifier. If the
task is not initiated from a terminal, INVREQ occurs.
The format of the value is an 8-byte character string.
For a remote terminal, the value returned may, for
security reasons, be blanks (see the CICSIMVS
Intercommunication Guide).

VALIDATION
specifies that the value required is an indicator
showing whether the terminal is defined as having the
validation capability (X I FF ') consisting of the
mandatory fi", mandatory enter, and trigger attributes.
No validation capability is indicated by X I 00 I. If this
option is specified and there is no TCTTE for the task,
INVREQ occurs. The format of the value is a 1-byte
character.

Chapter 1.7. Execution (command level) diagnostic facility

The execution (command level) diagnostic facility (EDF)
enables you to test a command level application program
online without modifying the program or the program
preparation procedure. EDF intercepts execution of the
application program at various points and displays
information about it at these points. Also displayed are
any screens sent by the application program, so that you
can converse with the application program during testing
just as a user would on the production system.

EDF can only be used to test user application programs; it
cannot be used for system transactions that use the
command level interface. User application programs that
are to be debugged using EDF must be assembled or
compiled with the EDF translator option, which is the
default. If you specify NOEDF, the program cannot be
debugged using EDF.

EDF runs as a CICS transaction. You start it by a
transaction identifier (CEDF) or by a PF key named in the
program control table (PCT). You must also ensure that
the programs and maps that are used by EDF are specified
in the processing program table (PPT). EDF uses
temporary storage and BMS. You can use EDF only from a
3270 terminal that has a screen width of 80 columns or
more and a screen depth of 24 lines or more.

EDF is a command level diagnostic aid only, and
unpredictable results may occur if macros are coded, or
the terminal control table (TCT) is in application programs
monitored by EDF.

TCAM (a data stream access method) is supported by EDF,
but only in dual screen mode, and provided that the
terminals are not pooled.

VM PASSTHRU is not supported by EDF when testing in
single screen mode.

When the CEDF initialization screen is being displayed and
a COBOL program is the first to be executed, this program
is locked and any attempt to use it will cause a wait until
CEOF initialization is complete. At this time, if the task is
abended the program will remain locked until a master
terminal NEWCOPY command is executed to unlock it.

When using single screen mode with CEDF, automatic
message journaling should not be specified for CEDF or for
the user transaction.

If you want to test an application program that uses
partitions, or which does its own request unit (RU) chaining
(RU chaining is described in "Chaining of input data" on
page 226), you must run EDF on a terminal other than the
terminal on which that application program is executing.
In other words, EDF must be used in dual screen mode as
described in "Invoking EDF" on page 58.

© Copyright IBM Corp. 1982, 1991

If a SEND LAST command is issued, EDF is terminated
before the command is executed.

Functions of EDF

During execution of a transaction in debug mode, EDF
intercepts the execution of the application program at the
following points:

1. At transaction initialization:

After the EXEC interface block (EIB) has been
initialized, but before the application program is given
control.

2. At the start of the execution of every EXEC CICS and
EXEC DLI command:

After the initial trace entry has been made, but before
the requested action has been performed.

3. At the end of the execution of every command (except
ABEND, XCTL, and RETURN):

After the requested action has been performed, but
before the HANDLE CONDITION mechanism is invoked
and before the response trace entry is made.

4. At program termination.

5. At normal task termination.

6. When an ABEND occurs.

7. At abnormal task termination.

At all the above points of interception, EDF displays the
current status, by identifying the cause of interception. In
addition:

• At point 1, EDF displays the contents of the fields in
the EIB.

• At point 2, EDF displays the command, including
keywords, options, and argument values. The
command is identified by transaction identifier,
program name, the hexadecimal offset within the
program and, if the program has been translated with
the DEBUG translator option, the line number of the
command as given in the translator source listing.

• At point 3, EDF displays the same as at point 2, plus
the response from command execution.

• At points 6 and 7, EDF displays the values of the fields
in the EIB and the following items:

The abend code

If the abend code is ASRA (that is, a program
interrupt has occurred), the PSW at the time of
interrupt, and the source of the interrupt as
indicated by the PSW

57

If the PSW indicates that the instruction giving rise
to the interrupt is within the application program,
the offset of that instruction.

You can also display any of the following:

• The values of the fields in the EXEC interface block
(EIB) and the DUI interface block (018).

• The program's working storage in hexadecimal and
character form.

• The last ten displays, including all argument values,
responses, and so on.

• The contents (in hexadecimal) of any address location
within the CICS region.

At any of these points of interception, you can interact with
the application program in the following ways:

• If the current command is being displayed before it is
executed, you can modify any argument value by
overtyping the value that is displayed on the screen.
Alternatively, you can suppress execution of the
command (that is, convert it to a null operation), but
you cannot add or delete options.

• If the current command is being displayed after it has
been executed, you can modify certain argument
values and the response code by overtyping the
displayed value or response with the required value or
response.

• You can modify the program's working storage and
most fields of the EIB and DIB.

• You can request a display of the contents of any
temporary storage queue.

• You can switch offdebug mode (except at point 2) and
continue running the application normally.
Alternatively, you can force an abend.

• You can request command displays to be suppressed
until one or more of a set of specific conditions is
fulfilled. These conditions are:

A specific named command is encountered.

Any exceptional condition occurs for which the
system action is to raise ERROR.

A· specific exceptional condition occurs.

The command at a sp,ecific offset or on a, specific
line number (assuming the, program had been
translated with the DEBUG option) is encountered.

An . abend occurs.

The task terminates normally.

The task terminates abnormally.

Any DUI error status occurs.

A specific DUI error status occurs.

58 CICS/MVS 2.1.2 Application Programmer's Reference

Security rules

If a security key has been defined for EDF, the user
transaction must have the same type of security. If the
security is external, the transaction must be defined to that
security manager.

To invoke EDF, you must have a security key that matches
the security key defined for EDF in the PCT. In addition, to
test a particular transaction, you must have a security key
that matches the security key for that transaction. If this
condition is not satisfied, the EDF session is termil1ated
immediately.

By default, resource level security checks will be made
during execution of the transaction under test unless EDF
has been redefined as not requiring these checks. If such
checks indicate that you are not allowed access to the
resource, your transaction will raise the NOTAUTH
condition. Unless you allow for this by means of a
HANDLE CONDITION command, your transaction will be
abended.

Installing EDF

To ensure that EDF is available on the test system, the
system programmer must make one group entry in the
PCT and one group entry in the PPT (see either the
CICS/MVS Resource Definition (Online) manual or the
CICSIMVS Resource Definition (Macro) manual for details
of constructing a PCT and PPT).

EDF can send messages greater than 4K bytes in length.
If you are using VTAM, ensure that your NCP (network
control program) can handle data of this length.

Invoking EDF

You can run EDF on the same terminal as the transaction
to be tested, (this is called "single screen mode"), or on a
different terminal ("dual screen mode"). You cannot use
single screen mode if the transaction to be tested makes
use of extended attributes or partitions.

You start EDF in single screen mode either by:

• Entering transaction code CEDF or

• Pressing the appropriate PF key (if one has been
defined for EDF).

Next, you start the transaction to be tested by:

• Pressing the CLEAR key to clear the screen

• Entering the transaction code of the transaction to be
tested.

You start EDF in dual screen mode by entering:

eEDF xxx x

on the current terminal. This terminal must be in
TRANSCEIVE status (that is, it can both send and receive
data).

Here "xxxx" is the 4-character identifier of the terminal
(termid) on which the transaction to be tested is being run.
(This identifier is as defined in the TRMIDNT operand of
the DFHTCT TYPE=TERMINAL system macro.)

If a command level transaction is already running on that
terminal, EDF will associate itself with that transaction·
otherwise it will associate itself with the next command
level transaction started at that terminal.

The above also applies to a single system. If the
transaction running on the terminal has been transaction
routed, EDF will not associate itself with it, nor with any
other transaction that has been routed. EDF will associate
itself with the next command level transaction that runs on
the system to which the terminal is connected.

You must include the identifier of the session (sessionid)
when you want to test a transaction that is attached across
an MRO or LUS.1 session. Alternatively, you must provide
the sessionid to the system on which the attached
transaction is running. All CICS commands executed by
the attached transaction will be tested.

You can include the identifier of the system (sysid) when
you want to test transactions attached across LUS.2
sessions. In this case, EDF will associate itself with the
first transaction attached across an LU6.2 session
belonging to the specified system.

You can enter CEDF from a formatted screen. The effect is
the same as if you had pressed the PF key, that is, the
terminal at which CEDF is entered is put into EDF mode.
(No message is issued, so the formatted screen remains
intact.)

The full format of the command to initiate or terminate an
EDF session is:

CEDF [termidlsysidlsessionid]
[,ONI,OFF]

If you omit the terminal identifier, the terminal at which the
CEDF transaction is initiated is assumed.

You cannot define CEDF to be a remote transaction. The
only way to test a transaction running in a connected
system is by means of the CRTE routing transaction. You
use CRTE to set up a routing session with the connected
system. You can then use your terminal in single screen
mode, entering CEDF to invoke EDF within the routing

session. You cannot use PA or PF keys in a routing
session.

You cannot use EDF in dual-screen mode if the transaction
under test, or the terminal that invokes it, is owned by a
different system.

EDF displays

An example of a typical EDF display is given in Figure 12
on page 60. The five lines at the foot of the screen
provide a menu indicating the effect of the ENTER and PF
keys for that particular display. If the terminal does not
have PF keys, the same effect can be obtained by
positioning the cursor under the required instruction on the
screen and pressing the ENTER key. The cursor can be
correctly positioned by using the tab keys.

Although the menu may change from one display to
another, no function will move from one key to another as
a result of a menu change.

If the ENTER key is pressed while the cursor is not
positioned within the menu, the function specified for the
ENTER key is performed.

EDF uses the line immediately above the menu to display
messages to the user.

Up to ten displays are remembered and can be
redisplayed later. The number at the top right of the
screen indicates the current display number; it is possible
to recall any of the last ten displays, which are numbered
-01, -02, and so on, by overtyping this number.
Alternatively, PF10 and PF11 can be used to step back and
forward one display at a time. PF10 and PF11 become
undefined if there are no further displays backward or
forward respectively.

Argument values can be displayed in character or
hexadecimal format. If character format is requested,
numeric arguments are shown in signed numeric character
format. Each argument value is restricted to one line of
the display; if the value is too long, only the first few bytes
are displayed, followed by " to indicate that the value is
incomplete. If the argument is displayed in hexadecimal
format, the address of the argument is also displayed.
This enables the user to display the argument value in full
by requesting a display of that location and scrolling if
necessary.

The user can overtype any screen area at which the cursor
stops when the tabbing keys are pressed, such as the
response field. For example, the response can be changed
from "NORMAL" to "ERROR" or some other exceptional
condition, so as to test the program's error handling at this
point in the program. A list of areas that can be overtyped
is given later under "Overtyping EDF displays" on
page 63.

Chapter 1.7. Execution (command level) diagnostic facility 59

TRANSACTION: MENU PROGRAM: DFH$CMNU TASK NUMBER: 0000023 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
EXEC CICS SEND MAP

MAP ('MENU ')
MAPONLY
MAPSET ('DFH$CGA')
TERMINAL
ERASE

OFFSET:X'0005B6' LINE:00011
RESPONSE: NORMAL

EIBFN=X'1804'
EIBRESP=8

ENTER: CONTINUE
PFl UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PF10: PREVIOUS DISPLAY

PF2 SWITCH HEX/CHAR
PF5 WORKING STORAGE
PF8 SCROLL FORWARD
PFll: UNDEFINED

PF3 END EDF SESSION
PF6 USER DISPLAY
PF9 STOP CONDITIONS
PF12: ABEND USER TASK

Figure 12. Typical EDF display

The response of EDF to a user request is in accordance
with the following order of priority:

1. If the CLEAR key is used, EDF redisplays the screen
with any changes ignored.

2. If invalid changes are made, EDF accepts any valid
changes and redisplays the screen with a diagnostic
message.

3. If the display number is changed, EDF accepts any
other changes and displays the requested display.

4. If a PF key is used, or the ENTER key is pressed when
the cursor is in the PF key definition area, EDF accepts
any changes and performs the action requested by the
PF key.

S. If the ENTER key is pressed while the cursor is not in
the PF key definition area, and the screen has been
modified (other than the REPLY field), EDF redisplays
the screen with changes included.

6. If the ENTER key is pressed while the cursor is not in
the PF key definition area, and the screen has not
been modified (other than the REPLY field) and if the
ENTER key means CONTINUE, execution of the user
transaction continues, otherwise if the ENTER key
means CURRENT DISPLAY, EDF redisplays the current
status display.

60 CICS/MVS 2.1.2 Appl ication Programmer's Reference

Terminal sharing between transaction and
EDF

When both EDF and the user transaction are sharing the
same terminal, EDF restores the user transaction's display
at the following times:

• When the transaction requires input from the operator
• When the transaction's display is changed
• At the end of the transaction
• When EDF displays are suppressed
• When USER DISPLAY is requested.

When a SEND command is followed by a RECEIVE
command, the display sent by the SEND command appears
twice; once when the SEND command is executed, and
again when the RECEIVE command is executed. It is not
necessary to respond to the SEND command but, if a
response is made, EDF will remember it and redisplay it
when the screen is restored for the RECEIVE command.
The response passed to the transaction is that which is
made to the RECEIVE command.

When EDF restores the transaction display, it does not
sound the alarm or affect the keyboard in the same way as
the user transaction. The effect of the user transaction
options will be seen when the SEND command is executed,
but not when the screen is restored.

For same terminal use, when EDF restores the transaction
display on a device that uses color, programmed symbols,
or extended highlighting, the attributes will no longer be
present and the display will be in monochrome with no
programmed symbols, or extended highlighting.

If the inbound reply mode in the application program is set
to character (to enable the attribute setting keys), EDF will
reset this mode causing these keys to be disabled.

When EDF restores the transaction display, it locks the
keyboard until the transaction issues a RECEIVE command,
at which time EOF frees the keyboard.

If the EOF session is terminated part way through the
transaction, EOF restores the screen with the keyboard
locked if the last send/receive to the terminal is a RECEIVE
command; otherwise, the keyboard is unlocked. This will
usually, but not always, match the normal behavior of the
transaction.

Program function (PF) keys

The following list explains the meanings of the program
function (PF) key settings. Where a terminal has 24 PF
keys, EOF treats PF13 through PF24 as duplicates of PF1
through PF12 respectively.

ABEND USER TASK
terminates the task. EOF asks you to confirm this
action by displaying the message 'ENTER ABEND
CODE AND REQUEST ABEND AGAIN.' After entering
the code at the position indicated by the cursor, the
user must request this function again to abend the
task with a transaction dump identified by the
specified code. If 'NO' is entered, the task will be
abended without a dump.

Abend codes beginning with the character A are
reserved for use by CICS. Use of a CICS abend code
may cause unpredictable results.

This function cannot be used if an abend is already in
progress or the task is terminating.

BROWSE TEMP STORAGE
produces a display of the temporary storage queue
CEBRxxxx, where xxxx is the terminal identifier. The
queue name can be changed by using CEBR
commands. The CEBR transaction is described in
"Chapter 1.9. Temporary storage browse" on page 73.

CONTINUE
causes the user transaction to continue unless the
screen has been modified. In the latter case, EDF
redisplays the screen with changes incorporated.

CURRENT DISPLAY
displays the screen that was being displayed before
the user started examining other displays, such as
remembered displays, unless the screen has been
modified. In the latter case, EOF redisplays the screen
with changes incorporated.

DIB DISPLAY
shows the contents of the OIB; see "OUI interface
block (018)" on page 105 for a description of the fields
in the DIB.

EIB DISPLAY
shows the contents of the EIB and COMMAREA (if
any); see Appendix A, "EXEC interface block" on
page 339 for a description of the fields in the EI B.

END EDF SESSION
ends the debugging session, and takes the terminal
out of debug mode. The user transaction continues.

NEXT DISPLAY
used when examining displays, to step on to the next
remembered display. Repeated use stops at the
current display, when the 'next display' key is no
longer available.

PREVIOUS DISPLAY
shows the latest remembered display. Repeated use
stops at the earliest remembered display. Further use
merely causes the earliest remembered display to be
redisplayed.

REGISTERS AT ABEND
displays storage containing the values of the registers
in the event of an ASRA abend. The layout of the
storage is as follows:

• PSW at abend (8 bytes)
• Register values (0 through 15).

In some (very rare) cases, when a second program
check occurs in the system before EDF has captured
the values of the registers, this function will not
appear on the menu of the abend display. If this
happens, a second test run will generally prove to be
more informative.

REMEMBER DISPLAY
places a display that would not normally be
remembered, such as an EIB display, in the memory.
(Normally, only the command displays are
remembered.) The memory can hold up to ten
displays. All pages associated with the display are
remembered (and can be scrolled when recalled)
except for storage displays where only the page
currently displayed is remembered.

SCROLL BACK
scrolls a command or EIB display backward. A plus
sign (+) against the first option or field indicates there
are more options or fields preceding.

SCROLL BACK FULL
scrolls a working storage display a full screen
backward, displaying lower addresses.

SCROLL BACK HALF
scrolls a working storage display half a screen
backward, displaying lower addresses.

SCROLL FORWARD
scrolls a command or EIB display forward. A plus sign
(+) against the last option or field indicates there are
more options or fields following.

Chapter 1.7. Execution (command level) diagnostic facility 61

SCROLL FORWARD HALF
scrolls a working storage display half a screen
forward, displaying higher addresses.

SCROLL FORWARD FULL
scrolls a working storage display a full screen forward,
displaying higher addresses.

STOP CONDITIONS
displays, as shown in Figure 13 on page 63, a
skeleton menu with which the user can specify one or
more conditions that will cause EDF to stop the user
transaction, and start redisplaying commands, after
displays have been suppressed by the SUPPRESS
DISPLAYS function.

These functions are used to reduce the amount of
operator intervention required to check out a program
that is partly working.

The transaction can be stopped:

• When a specified type of command is reached.

• When a specified exceptional or error condition
occurs during execution of a command.

• When a specified offset or line is reached.

• At transaction abend.

• At normal task termination.

• At abnormal task termination.

The 'line number, which will be available on the source
listing if the program has been translated using the
DEBUG translator option, must be specified exactly as
it appears on the listing, including leading zeros, and
must be the line on which a command starts.

The offset specified must be the offset of the BALR
instruction corresponding to the command.

The correct line can be determined easily from the
translator output listing. The offset can be determined
from the code listing produced by the assembler or
compiler.

For transactions that contain DLI commands, the
qualifier CICS on the command line can be overtyped
with DLI to specify a DLI command. Also, the
transaction can be stopped when a specified error
status, or any error status, occurs.

DUI error status codes can be entered only when the
DLI command (not a CICS command) is about to be
executed. The transaction can be stopped when a
specified DUI error status code is entered. For a list
of valid status codes that may be entered in this
2-byte field, see page 105.

SUPPRESS DISPLAYS
suppresses all EDF displays until the next stop
condition occurs.

62 CICS/MVS 2.1.2 Application Programmer's Reference

SWITCH HEx/CHAR
switches the display between hexadecimal and
character representation. This is a mode switch;
subsequent displays will stay in the chosen mode until
the next time this key is pressed. This switch has no
effect on previously remembered displays, stop
condition displays, and working storage displays.

UNDEFINED
means that this key is not available with this type of
display.

USER DISPLAY
shows what the user would see if the terminal was not
in EDF mode. Hence, this function is usable only for
same terminal checkout.

WORKING STORAGE
displays the program's working storage, in a form
similar to that of a dump listing, that is, in both
hexadecimal and character representation. When this
key is used, two additional scrolling keys are provided,
and other PF keys allow the EIB (and the DIB if a DUI
command has been processed by EDF) to be
displayed.

The meaning of "working storage" depends on the
programming language of the application program, as
follows:

ASM
The storage defined in the current DFHEISTG
OS ECT.

COBOL

PLII

All data storage defined in the working-storage
section of the program.

The dynamic storage area (DSA) of the current
procedure.

Except for COBOL programs, working storage starts
with a standard-format save area, that is, registers
14-12 are stored at offset 12 and register 13 at
offset 4.

Working storage can be changed at the screen; either
the hexadecimal section or the character section may
be used. Also, the ADDRESS field at the head of the
display can be overtyped with a hexadecimal address;
storage starting at that address will then be displayed
when ENTER is pressed. This allows any location in
the partition to be examined. Further information on
the use of overtyping is given under "Overtyping EDF
displays" on page 63.

If the storage examined is not part of the user's
working storage (which is unique to the particular
transaction under test), the corresponding field on the
screen is inhibited to prevent the user from
overwriting storage that can affect more than one task
in the program.

TRANSACTION: XABC PROGRAM: UPDATE TASK NUMBER: eeeelll
DISPLAY ON CONDITION:

COMMAND: EXEC CICS
OFFSET:
LI NE NUMBER:
CICS EXCEPTIONAL CONDITION:
ANY CICS ERROR CONDITION
TRANSACTION ABEND
NORMAL TASK TERMINATION
ABNORMAL TASK TERMINATION

DLI ERROR STATUS:
ANY DLI ERROR STATUS

X I •••••• I

YES
YES
YES
YES

YES

DISPLAY: ee

ENTER: CURRENT DISPLAY
PFl UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : UNDEFINED

PF2 UNDEFINED
PF5 WORKING STORAGE
PF8 UNDEFINED

PF3 UNDEFINED
PF6 USER DISPLAY
PF9 UNDEFINED

PF10: UNDEFINED PFlI: UNDEFINED PFI2: REMEMBER DISPLAY

Figure 13. "Stop-Conditions" display

If the initial part of a working storage display line is
blank, the blank portion is not part of working storage.
This can occur because the display is doubleword
aligned.

At the beginning and end of a task, working storage is
not available. In these circumstances, EDF generates
a blank storage display so that the user can still
examine any storage area in the region by overtyping
the address field.

Overtyplng EDF displays

As mentioned above, certain areas of an EDF display can
be overtyped. These areas can be identified by use of the
tab keys; the cursor stops only at fields that can be
overtyped (excluding fields within the menu).

• Any command can be overtyped with 'NOOP' or 'NOP'
before execution; this suppresses execution of the
command. Use of the ERASE EOF key, or overtyping
with blanks, will give the same effect. When the
screen is redisplayed with NOOP, the original verb line
can be restored by erasing the whole verb line with
the ERASE EOF key.

• Any argument value can be overtyped, but not the
keyword of the argument. An optional argument
cannot be removed, nor can an option be added or
deleted. Overtyping must not extend beyond the
argument value displayed. Any modification that is
not overtyping of the displayed value is ignored (no

diagnostic message being generated). When an
argument is displayed in hexadecimal format, the
address of the argument location is also displayed.

• Numeric values always have a sign field, which can be
overtyped with a minus or a blank only.

• The response field can be overtyped with the name of
any exceptional condition, including ERROR, that can
occur for the current function, or with the word
'NORMAL'. The effect when EDF continues will be that
the program will take whatever action has been
prescribed for the specified response.

• The EIBRESP field can be over typed with any desired
hexadecimal value when it is displayed as part of the
EXEC interface block, but not when it is part of a
command display.

When a field representing a data area of a program is
overtyped, the entered value is placed directly into the
application program's storage. On the other hand, before
execution of a command, when a field representing a data
value (which may possibly be a constant) is overtyped, a
copy of the field is used; thus, other parts of the program
that might use the same constant for some unrelated
purpose will not be affected by the change. If, for
example, the map name is overtyped before executing a
SEND MAP command, the map actually used temporarily is
the map with the entered name; but the map name
displayed on response will be the original map name. (The
'previous display' key can be used to display the map
name actually used.)

Chapter 1.7. Execution (command level) diagnostic facility 63

When an argument is to be displayed in character format,
some of the characters may not be displayable (including
lowercase characters). EDF replaces each nondisplayable
character by a period. When overtyping a period, the user
must be aware that the storage may in fact contain a
character other than a period. The user may not overtype
any character with a period; if this is done, the change is
ignored and no diagnostic message is issued. Similarly,
when a value is displayed in hexadecimal format,
overtyping with a blank character is ignored and no
diagnostic message is issued.

When storage is displayed in both character and
hexadecimal format and changes are made to both, the
value of the hexadecimal field will take precedence should
the changes conflict; no diagnostic message is issued.

If invalid data is entered, the result is as follows,
regardless of the action requested by the user:

• The invalid data is ignored;

• A diagnostic message is displayed;

• The alarm is sounded if the terminal has the alarm
feature.

EDF does not translate lowercase characters to uppercase.
If uppercase translation is not specified for the terminal in
use, the user must take care to enter only uppercase
characters.

Checking pseudoconversational programs

On termination of the task, EDF displays a message saying
that the task is terminated and prompting the user to
specify whether or not debug mode is to continue into the
next task. This is to allow realistic debugging of
pseudoconversational programs. If the terminal came out
of debug mode between the tasks involved, each task
would start with fresh EDF settings, and the user would not
be able, for example, to display screens remembered from
previous tasks.

64 CICS/MVS 2.1.2 Application Programmer's Reference

Program labels

Some commands, such as HANDLE CONDITION, require
the user to specify a program label. The form of the
display program labels depends on the programming
language in use:

• For assembler language, the offset of the program
label is displayed; for example, ERROR (X'00030C')

• For COBOL, a null argument is displayed: for
example, ERROR ()

• For PUI, the address of the label constant is displayed;
for example, ERROR (X'001D0016').

If no label value is specified on a HANDLE CONDITION
command, EDF displays the condition name alone.

EDF and EXEC DLI commands

EDF supports EXEC DLI commands in the same way as it
supports EXEC CICS commands. However, the following
minor differences should be noted:

• The two-character DUI status code appears in the
RESPONSE field and the EIBRCODE field is not
displayed. The status code can be displayed in
character or hexadecimal format. If the status code is
changed to an invalid value, or to a value that would
have caused DUI to abend the user task, a warning
message is issued before continuing the user task.

• For commands that generate more than one CALL
statement, the offset is that of the last CALL.

• For the WHERE option, only the keyfield value (the
component following each comparison operator) can
be converted to hexadecimal. The address shown for
this option is that of the keyfield value. All the
components of a WHERE option, including comparison
and boolean operators, can be overtyped.

• For transactions that contain EXEC DLI commands, the
DUI interface block can be displayed, and additional
stop conditions can be specified.

Examples of typical displays for an EXEC DLI command are
given in Figure 14 on page 65, and in Figure 15 on
page 65.

TRANSACTION: XDLI PROGRAM: UPDATE TASK NUMBER: 0000111
STATUS: COMMAND EXECUTION COMPLETE

DISPLAY: 00

EXEC DLI GET NEXT
USING PCB (+00003)

FIRST
SEGMENT (IA I)
INTO (I I)
SEGLENGTH (+00012)

FIRST
VARIABLE

+SEGMENT (IB I)

OFFSET:X ' 000246 1

RESPONSE: I AD I
LINE: 00000510 EIBFN:X ' 000C '

ENTER: CONTINUE
PFl UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PF10: PREVIOUS DISPLAY

PF2 SWITCH HEX/CHAR
PF5 WORKING STORAGE
PFB SCROLL FORWARD
PF11: UNDEFINED

Figure 14. First page of typical EXEC DLI display

PF3 END EDF SESSION
PF6 USER DISPLAY
PF9 STOP CONDITIONS
PF12: ABEND USER TASK

TRANSACTION: XDLI PROGRAM: UPDATE TASK NUMBER: 0000111
STATUS: COMMAND EXECUTION COMPLETE

DISPLAY: 00

EXEC DLI GET NEXT
+ FIRST
SEGMENT (IC I)
SEGLENGTH (+00010)
LOCKED
INTO (I SMITH I)
WHERE (ACCOUNT = 112345 1

)

FIELDlENGTH (+00005)

OFFSET:X 1000246 1

RESPONSE: I AD I
0lINE: 00000510

ENTER: CONTINUE
PFl UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PF10: PREVIOUS DISPLAY

PF2 SWITCH HEX/CHAR
PF5 WORKING STORAGE
PFB SCROLL FORWARD
PF11: UNDEFINED

Figure 15. Second page of typical EXEC DLI display

EIBFN:X ' 000C I

PF3 END EDF SESSION
PF6 USER DISPLAY
PF9 STOP CONDITIONS
PF12: ABEND USER TASK

Chapter 1.7. Execution (command level) diagnostic facility 65

Chapter 1.8. Command level interpreter

The command level interpreter enables CICS commands to
be entered, syntax-checked, and executed interactively at
a 3270 terminal. The interpreter performs a dual role in
the operation of a CICS system:

• For the application programmer, it provides a
reference to the syntax of the whole of the CICS
command level application programming interface
(excluding OUI). Most of the commands can be
carried through to execution, and the results of
execution can be displayed. However, the interpreter
cannot be used to execute commands that refer to
partitions. This is because the display cannot be
restored after the screen has been partitioned.

• For the system programmer, it provides a means of
interaction with the system. For example, a corrupted
database record can be "repaired", a temporary
storage queue can be created or deleted, and so on.
It provides a useful extension to the facilities provided
by the CEMT master terminal transaction.

Invoking the command level Interpreter

The command level interpreter is a CICS application
program and runs as a CICS transaction. It is started by a
'CECI' or 'CECS' transaction identifier, followed optionally
by the command.

The general format is:

I CECIicECS [command]

where 'command' can be any of the CICS commands
(except EXEC DU) described in this manual.

The use of CECI will give the full facilities of the interpreter
right through to execution of the command.

For example, entering:

I CECI READ FILE('FILEA')

will give the screen display shown in Figure 16 on
page 68. A severe error message (indicated by S) is
displayed near the bottom of the screen.

If you are trying this command using the pregenerated
system, as described in the CICS/MVS Installation Guide,
you must first sign on as one of the operators defined in
the sample sign-on table, with RSLKEY = 1. See also
"Security rules" on page 72.

~ I Modifying the command input to:

~ READ FILE('FILEA') RIDFLD('009000')

© Copyright IBM Corp. 1982, 1991

will give the screen display shown in Figure 17 on
page 69 .. The error message has disappeared because the
requested record identification field has been supplied.

The command is now ready to be executed, and this is
achieved simply by pressing the ENTER key. The display
shown in Figure 18 on page 70 will appear showing the
result of execution.

It is possible to prevent unauthorized access by the
interpreter to resources such as data sets. See the
security rules later in this chapter.

A question mark (?) before the command always gives the
command syntax check display and prevents command
execution.

The use of CECS forces a question mark before the
command. This always gives the command syntax check
display and prevents command execution. In a system
where security is important, CECS can be made more
widely available than CECI.

Screen layout

The command interpreter uses a basic screen layout of
four areas, as shown in Figure 16 on page 68. These
areas are:

• Command input area (the first line of the screen)
• Status area (the second line of the screen)

Information area (21 lines on a 24 x 80 display)
• PF key values area (the last line of the screen).

Command input area

This is the first line of the screen. The command whose
syntax is to be checked or which is to be executed, is
entered on this line, either in the normal format described
in "Chapter 1.2. Command format and argument values"
on page 5 and as shown throughout this manual, or in an
abbreviated or condensed form that reduces the number of
keystrokes involved. The condensed form of the command
is obtained as follows:

• The keywords EXEC CICS are optional.

• The options of a command can be abbreviated to any
number of characters sufficient to make them unique.
Valid abbreviations are shown in uppercase characters
in syntax displays.

• The quotes around character strings are optional, and
all strings of characters will be treated as
character-string constants unless they are preceded
by an ampersand (&) in which case they are treated as
variables, as described on page 70.

67

READ FILE('FILEA')
STATUS: COMMAND SYNTAX CHECK

EXEC CICS READ
Fi 1 e ('FI LEA '
< SYsidO >
SEt() I IntoO
< LengthO >
RldfldO
< Keylength() < GEneric> >
< RBa I RRn 1 DEBRec I DEBKey > <
GTeq I Equal >
< Update >

S RIDFLD MUST BE SPECIFIED.

NAME=

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG Ie SB 11 SF

Figure 16. "Command syntax check" display

• Options of a command that receive a value from CICS
when the command is executed are called 'receivers',
and need not be specified. The value received from
CICS will be included in the syntax display after the
command has been executed.

The following example shows the condensed form of a
command. The file control command:

I EXEC CICS READ FILE('FILEA')
I RIDFLD('eegeee') INTO(data-area)

I can be entered on the command input line, as:

I READ FIL(FILEA) RID(eegeee)

Here, the INTO option is a receiver (as defined above), and
can be omitted.

Status area

This is the second line of the screen. It will contain one of
the following:

• COMMAND SYNTAX CHECK
• ABOUT TO EXECUTE COMMAND
• COMMAND EXECUTION COMPLETE (or COMMAND

NOT EXECUTED)
• EIB DISPLAY
• VARIABLES
• ERROR MESSAGES
• EXPANDED AREA

This status line describes the type of information in the
immediately following information area of the display.

68 CICS/MVS 2.1.2 Application Programmer's Reference

Information area

This area consists of the remainder of the screen between
the 'command input' and 'status' areas at the top, and 'PF
key values' at the bottom of the screen. This area is used
to display the syntax of the entered command, error
message information, the response to execution, and any
other information that can be obtained by using the PF
keys or the cursor.

A line at the bottom of this area is reserved for messages
that describe errors in the conversation with the user (for
example, 'INVALID PACKED DECIMAL'). These messages
are intensified to attract attention.

Command syntax check: When this status message
appears (as shown in Figure 16), it indicates that the
command that has been entered on the command input
line has been syntax checked but is not about to be
executed. This will always be the status for CECS or for
CECI with a question mark before the command. It is also
the status when the syntax check of the command gives
severe error messages and for those commands which are
not executable (for example, HANDLE CONDITION and
HANDLE AID).

The information area of the display for 'command syntax
check', 'about to execute command', and 'command
execution complete' contains information common to all
three displays.

)

READ FILE('FILEA') RIDFLD('009000 1
)

STATUS: ABOUT TO EXECUTE COMMAND
EXEC CICS READ

File('FILEA I

< SYsidO >
SEt 0 I Into 0
< Length() >
Rldfld(leegeee l)
< Keylength() < GEneric> >
< RBa I RRn 1 DEBRec I DEB Key >
< GTeq I Equal >
< Update >

NAME=

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG Ie SB 11 SF

Figure 17. 'About to execute command' display

The full syntax of the command is displayed together with
error information at the foot of the display. Options in the
syntax panel are intensified to show those specified on the
command input line, those assumed by default, and any
'receivers' .

You can modify the command on the command input line
at any time by overtyping and pressing ENTER.

When an argument is to be displayed in character format,
some of the characters may not be displayable (including
lowercase characters). CECI replaces each nondisplayable
character by a period. When overtyping a period, you
must be aware that the storage may in fact contain a
character other than a period. You cannot overtype any
character with a period; if you do, the change is ignored
and no diagnostic message is issued. Similarly, when a
value is displayed in hexadecimal format, overtyping with
a blank character is ignored and no diagnostic message is
issued.

If you need to overtype a character with a period, you can
do so by switching the display to hexadecimal format,
using PF2, and overtyping with hex 4B.

If the command has more options than can be held in one
display, a plus sign (+) will appear at the left-hand side of
the last option of the current display to indicate that there
are more. These can be displayed by using one of the
scrolling PF keys.

The syntax display differs slightly from the syntax shown
throughout the manual in the following ways:

• Square brackets [] are replaced by the less-than and
greater-than symbols < >.

• Braces { } are not used. If a mandatory option is
omitted, an error message will be displayed and
execution will not proceed until the option has been
specified.

• Parentheses () are used to indicate that an option
requires a value or data field but none has been
specified.

The error information consists either of a single error
message or an indication of the number and severity of the
messages generated.

The NAME= field on the syntax display can be used to
create a variable containing the current command. (See
"Variables" on page 70.)

About to execute command: This display (as shown in
Figure 17) appears when none of the reasons for stopping
at 'command syntax check' apply. Option values can be
modified by overtyping them in the syntax panel.

This is a temporary modification for the duration of the
command and does not affect the command input line. It
is similar to the modification of option values that is
possible with EDF when debugging an application program.

Chapter 1.8. Command level interpreter 69

READ FIlE('FIlEA') RIDFlD('999999')
STATUS: COMMAND EXECUTION COMPLETE NAME=
EXEC CICS READ
File('FIlEA ')
< SYsidO >
SEt 0 I

Into('UgegeeeI. COllINGTON SURREY, ENGLAND e987654321 ' •••)
<length(+ee98e) >
RIdfld('eegeee')
< Keylength() < GEneric> >
< RBa I RRn 1 DEBRec I DEB Key >
< GTeq I Equal >
< Update >

RESPONSE: NORMAL EIBRESp=+eeeeeeeeee
PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 19 SB 11 SF

Figure 18. "Command execution complete" display

Command execution complete: This display (as shown
in Figure 18) appears in response to the ENTER key after
an 'about to execute command' display. The command has
been executed and the results are displayed on the screen.
Any 'receivers' , whether specified or not, together with
their CICS-supplied values, are displayed intensified. If the
value of an option is too long for the line, only the first part
will be displayed followed by " ... " to indicate there is more.
Positioning the cursor, using the tab key at the start of the
option value, and pressing ENTER will produce an
expanded display of the whole option value.

Also displayed at the foot of the information area is the
appropriate response code (for example, NORMAL)
together with the contents of the EIBRESP field of the EIB.

Note: CECI will return INVREQ for some commands, even
if the selected options are correct, because CECI checks
eVery option of the invoked command, some of which may
be invalid at invocation. The command executed is the
command on the command line together with all receiver
parameters.

Because CECI is an interactive transaction, all commands
that execute under its control are processed as if the
NOHANDLE option were active, thus forcing all responses
back to CECI when execution has completed.

70 CICS/MVS 2.1.2 Application Programmer's Reference

Variables: This display will show, in response to pressing
key PF5, all the variables associated with the current
interpreter session, showing for each, its name, length, and
value.

Normally, the value supplied for an option in the command
input area is taken as a character string constant.
However, there is sometimes a requirement for this value
to be represented by a variable. The command interpreter
will recognize a value as a variable only if it is preceded
by an ampersand (&).

A variable is required when two associated commands are
to be connected through the values supplied in their
options; for example, READ INTO(data-area) UPDATE and
REWRITE FROM(data-area). A variable can be used to
make the data area in the FROM option the same as that
in the INTO option.

A variable is also useful when the values of options cause
the command to exceed the line length of the command

. input area. Creating variables with the required values
and specifying the variable names in the command will
enable a command to be accommodated.

Variables can also be used to contain commands, and
variable names can be entered in a command input line
that contains complete or partial commands.

Variables are deleted at the end of an interpreter session
unless action has been taken to save them, for example, in
temporary storage, as described below.

Variables, which can be of data type character, fullword,
halfword, or packed decimal, can be created as follows:

1. By naming the variable in a receiver. The variable will
be created when the command is executed. The data
type is implied by the type of receiver.

2. By adding one or more new entries to the list of
variables already defined. This list is displayed by
pressing key PF5. The display shows all defined
variables giving, for each, its name, length in bytes,
and its value. The value is displayed in character
form but PF2 can be used to switch from character to
hexadecimal. An expanded display of each variable
can be obtained by positioning the cursor under the &
of the name and pressing ENTER. To create a new
character variable, enter its name and its length and
press ENTER. The variable will be initialized to blanks,
which can then be overtyped. For a full word, halfword,
or packed variable, enter F, H, or P in the length field.
These fields are initialized to zero.

Variable names, lengths, and their values can be
modified by overtyping. Variables can be deleted by
positioning the cursor under the & of the name and
pressing ERASE EOF. Variables can be copied by
obtaining the expanded display of the variable and
overtyping the name field.

3. By associating a variable name with the value of an
option. Positioning the cursor, using the tab key at the
start of the line of the syntax display, and pressing
ENTER will produce an expanded display of the whole
option value. A variable name can now be assigned to
the data so displayed.

4. By entering a name in the NAME= field of the syntax
panel. This will create a variable containing the
current command.

Three variables are provided initially. The first, &DFHC, is
a sample. The second, &DFHW, contains a temporary
storage WRITEQ command, and the third, &DFHR, contains
a READQ command. It is possible to write a command to
temporary storage by entering &DFHC in the NAME= field
of the syntax panel, entering &DFHW in the command input
line, and executing the WRITEQ command. In this way, a
list of commands can be written. The command list can be
read and executed by alternately entering &DFHR and
&DFHC in the command input line.

Expanded area: This. display will use the whole of the
information area of .the screen to display areas selected by
means of the cursor. The cursor can be positioned at the
start of the value of an option on a syntax display, or
under the ampersand of a variable in a variables display.
Pressing ENTER will then give the expanded area display.
The scrolling keys can be used to display all the
information if it exceeds a full screen.

PF key values area

The single line at the foot of the screen provides a menu
indicating the effect of the ENTER and PF keys for the
display. Continuation of interpretation depends entirely
upon use of the ENTER key; unless this key is pressed, no
further action will occur.

The PF keys are self explanatory; if the terminal has no PF
keys, the same effect can be obtained by positioning the
cursor under the required item in the menu by means of
the tab keys and pressing ENTER. The following PF keys
are available:

PF1: HELP
displays a HELP panel giving more information on how
to use the command interpreter and 'on the meanings
of the PF keys.

PF2: SWITCH HEx/CHAR
switches the display between hexadecimal and
character representation. This is a mode switch; all
subsequent displays will stay in the chosen mode until
the next time this key is pressed.

PF3: END SESSION
ends the current session of the interpreter.

PF4: EIB DISPLAY
shows the contents of the EXEC interface block (EIB);
see Appendix A, "EXEC interface block" on page 339
for a description of the fields in the EIB.

PF5: VARIABLES
shows all the variables associated with the current
command interpreter session, giving for each its
name, length, and value.

PF6: USER DISPLAY
shows what the user would see if the terminal had
been executing a transaction that contained the
commands that have been executed using the
interpreter.

PF7: SCROLL BACK HALF
scrolls half a screenful backward.

PF8: SCROLL FORWARD HALF
scrolls half a screenful forward.

PF9: EXPAND MESSAGES
shows all the messages generated during the syntax
check of a command.

PF10: SCROLL BACK
scrolls backward.

PF11: SCROLL FORWARD
scrolls forward.

PF12: UNDEFINED
means that this key is not available with this type of
display.

Chapter 1.8. Command level Interpreter 71

Terminal sharing

When the command being interpreted is one that uses the
screen that the interpreter is using, the command
interpreter will manage the sharing of the screen between
the interpreter display and the user display.

The user display will be restored:

• When the command being executed requires input
from the operator.

• When the command being executed is about to modify
the user display.

• When USER DISPLAY is requested.

Thus when a SEND command is followed by a RECEIVE
command, the display sent by the SEND command appears
twice: once when the SEND command is executed, and
again when the RECEIVE command is executed. It is not
necessary to respond to the SEND command but, if a
response is made, the interpreter will remember it and
redisplay it when the screen is restored for the RECEIVE
command.

When the interpreter restores the user display, it does not
sound the alarm or affect the keyboard in the same way as
when a SEND command is executed.

Program control

The interpreter is itself a CICS application program, and
the execution of certain program control commands may
cause different results from an application program
containing those commands. For example, an EXEC CICS
ABEND command will be intercepted by the interpreter
rather than abending the interpreter (unless the CANCEL
option is specified).

72 CICS/MVS 2.1.2 Application Programmer's Reference

If the interpreter is used to link to a program, the
interpreter will not be aware of modifications to the user
display made by that program. If the interpreter executes
an XCTL command, control will be transferred to that
program and this will conclude the interpreter session.

Security rules

To invoke the command interpreter, the user must have a
security key that matches the security key defined in the
PCT.

The command level interpreter transaction identifier (CECI)
specifies, by default, that resource level security checking
is required for any resources referenced with the
interpreter. This checking applies to data sets, transient
data queues, temporary storage queues, programs,
transaction identifiers of the START command, and journal
file identifiers.

If the resource security level specified in the appropriate
CICS table (for example, the FCT for a data set) is not
matched by the authorization obtained from a sign-on, the
resource security check fails, and the response to the
command will be the NOTAUTH condition (EIBRESP = 70).
This response is given on the 'command execution
complete' display.

Installing the command level interpreter

To ensure that the command interpreter is available on the
system, the system programmer must make one group
entry in the PPT and in the PCT. (See the CICS/MVS
Resource Definition (Online) manual or CICS/MVS
Resource Definition (Macro) manual for information on
constructing a PPT and a PCT.)

Chapter 1.9. Temporary storage browse

You use the browse transaction (CEBR) to browse the
contents of CICS temporary storage queues.

You start the CEBR transaction directly by entering the
transaction identifier CEBR, and, optionally, a queue name.
You end the transaction by pressing PF3.

You can also start the CEBR transaction from EDF. Press
PF5 to obtain the working storage display, then PF2 to
invoke CEBR. (When you press PF3 to terminate CEBR,
after invoking it from EDF, CICS reinstates the EDF working
storage display.)

CEBR begins by generating the display shown in Figure 19
on page 74. As you can see from the figure, the display
shows the contents of a temporary storage queue
associated with the invoking terminal. That is, the
transaction's initial display refers to a queue called
CEBRxxxx (where 'xxxx ' is your terminal identifier).

You use CEBR commands (see below) or the PF keys to
process the queue. You can also use CEBR to copy
transient data queues to temporary storage, although you
cannot read an output extrapartition transient data queue.

) The CEBR transaction allows you to browse, copy, and
delete data on queues. You can also browse the output
from VS COBOL" library routines. Before you enable the
transaction, therefore, consider the possible consequences
of using it. In particular, ensure that data cannot be
browsed by unauthorized personnel. In other words, you
should employ resource level security.

Using the transaction

,: If you invoke the browse transaction from a terminal with
the identifier L77 A, you receive the display shown in
Figure 19 on page 74.

When this display appears, continue the transaction by
entering one of the CEBR commands into the command
line at the top of the screen.

The PF keys help you view the queue. There is a list of
these keys at the bottom of each CEBR display. If your
terminal does not have PF keys, you can simulate their use
by placing the cursor under the key description at the
bottom of the display and pressing ENTER.

If you want a full list of the commands that you can type
when CEBR is active, initiate the transaction by typing just
CEBR, then pressing PF1. This produces a HELP display.

~ You return from this to the main CEBR panel by pressing
) the ENTER key.

© Copyright IBM Corp. 1982, 1991

ceSR commands

Here is a list of the CEBR commands:

QUEUE xxxxxxxx
names a queue that you want to become the "current
queue". The value that you specify can be in
hexadecimal, for example, QUEUE X'C134'. CEBR
responds by displaying the data that is in the named
queue.

TERMINAL xxxx
changes the name of the queue. The four characters
represented by "xxxx " (the term-id) becom6 the last
four characters of the new queue name.

PURGE

TOP

erases the contents of the queue being browsed. If
the queue is recoverable, terminate the browse before
using the PURGE command, otherwise an abend will
occur. Do not use PURGE to erase the contents of an
internally generated queue, such as a BMS logical
message.

shows the first page of this queue.

BOTTOM
shows the last page of this queue.

FIND fstring
finds the next occurrence of the specified string,
making the line containing the string the second on the
display page. '/' is a delimiting character. It does not
have to be '/ " but must not be a character that
appears in the search argument. If there are blank
characters in the string, you must terminate it with the
delimiting character that started it.

LINE nnnn
makes the specified line the second line on the
displayed page.

COLUMN nnnn
moves the displayed area to this column of the queue.

GET xxxx
transfers the named transient data queue to
temporary storage. This allows you to browse the
contents of the queue. "xxxx" must be either the
name of an intrapartition transient data queue, or the
name of an extrapartition transient data queue that
has been opened for input.

73

CEBR TS QUEUE CEBRL77A RECORD 1 OF fl COL 1 OF fl
ENTER COMMAND ===>

********************** TOP OF QUEUE ************************************
********************** BOTTOM OF QUEUE *********************************

TEMPORARY STORAGE QUEUE CEBRL77A IS EMPTY
PFI HELP PF2 SWITCH HEX/CHAR
PF4 : VIEW TOP PF5 : VIEW BOTTOM
PF7 : SCROLL BACK HALF PF8: SCROLL FORWARD HALF
PFlfl: SCROLL BACK FULL PFll: SCROLL FORWARD FULL

Figure 19. Initial display produced by the browse transaction

PUT xxxx
transfers the temporary storage queue that is being
browsed to the named transient data queue. You can
use this command to prepare data for printing. "xxxx"
must be either the name of an intrapartition transient
data queue or the name of an extrapartition transient
data queue that has been opened for output.

Resource definition

If you want to use the temporary storage browse
transaction in your installation, you must generate a CICS
system that includes EDF in the PCT and the PPT. To do
this, code the EDF option of the FN operand of both the
DFHPCT TYPE=GROUP and DFHPPT TYPE = GROUP
system macros.

74 CICS/MVS 2.1.2 Application Programmer's Reference

PF3 TERMINATE BROWSE
PF6 REPEAT LAST FIND
PF9 UNDEFINED
PF12: UNDEFINED

To limit access to restricted data, specify RSLC-YES.in
your DFHPCT entry for the transaction. This will at least
ensure that users of the transaction can only browse
queues with a resource level given by RSL- PUBLIC.
Code a DFHTST TYPE = SECURITY system macro for each
queue that can be browsed. (See the CICSIMVS Resource
Definition (Online) manual and CICSIMVS Resource
Definition (Macro) manual for further information on these
topics.)

© Copyright IBM Corp. 1982, 1991

Part 2. Files and databases

Chapter 2.1. General description of file control facilities

Chapter 2.2. File control - VSAM considerations

Chapter 2.3. File control - BOAM considerations

Chapter 2.4. File control - commands, options, and conditions

Chapter 2.5. OLII services (EXEC OLI command)

Chapter 2.6. OUI services (OL/I CALL statement)

Chapter 2.7. OLII batch programs (shared DB)

77

87

89

93

101

117

129

75

Introduction to files and databases

CICS transactions can access files and databases, which
can be on either a local or remote system.

Flies are processed by the CICS file control program,
which allows you to read, add, update, delete (VSAM only),
and browse records in VSAM and BDAM data sets. When
you access files through the file control program, you do
not have such considerations as buffer management,
blocking and deblocking, and access method dependencies.
File control is described in Chapters 2.1 through 2.4.

DLII databases give you a greater degree of data
independence than file control does. You are presented
with a logical view of the database in terms of a hierarchy
of segments. OUI offers you facilities for manipulating
these segments and you do not need to know how they are
organized.

OUI databases are processed by the IBM Information
Management SystemNirtual Storage (IMS/VS) licensed

I program, or by IMS/ESA Version 1.3.

76 CICS/MVS 2.1.2 Application Programmer's Reference

CICS has two programming interfaces to OUI: the EXEC
OLI interface, and the OLII CALL interface.

The CICS-OUI interface invoked by means of the EXEC OLI
command is described in "Chapter 2.5. OUI services (EXEC
OLI command)" on page 101.

The CICS-DLII interface invoked by means of the OUI
CALL statement is described in "Chapter 2.6. DUI services
(OUI CALL statement)" on page 117.

You are recommended to use the 'EXEC OLI interface'
because it is simpler to use, can be used with EOF, and
can be used in programs executing "above the line" in a
31-bit environment.

The restrictions that an IMS application programmer must
observe when running a OL/I batch application program in
a shared database environment under CICS are described
in "Chapter 2.7. OLII batch programs (shared DB)" on
page 129.

Chapter 2.1. General description of file control facilities

eles file control provides the application programmer with
facilities to read, update, add, delete, and browse data in a
data set. To do this, eles processes files. To eleS, a file
is a logical view of a data set and is identified by an
8-character file name. Many files can refer to the same
physical data set. eles file control and eles application
programs are concerned only with files.

The operating system access methods manage the
external physical data sets, and eles file control
communicates with these access methods on behalf of
application programs.

In general, the application programmer does not need to
be concerned with the type of data set nor with the precise
physical organization of data in the data set.

A eles application program reads data from a data set
and writes data to a data set by way of a file referencing
that data set. The application accesses individual records
in the data set. Each such request to access a record is
made by means of a eles command, described in detail in
"Chapter 2.4. File control - commands, options, and
conditions" on page 93.

To access a record, the application program identifies a
file that references the data set as well as the record
within the data set. In addition, the application program
must specify the area of storage into which the record is to
be read or from which it is to be written.

Using eles file control, you can access data sets that are
managed by the following standard operating system
access methods:

• Virtual Storage Access Method (VSAM)
• Basic Direct Access Method (BDAM).

The data sets handled by these access methods are called
VSAM data sets and BDAM data sets. They are described
in the next two sections.

VSAM data sets

eles supports access to any of the three types of VSAM
data set, namely:

• Key-sequenced data set (KSDS)
• Entry-sequenced data set (ESDS)
• Relative record data set (RRDS).

© Copyright IBM Corp. 1982, 1991

Key-sequenced data set

A key-sequenced data set (KSDS) is one in which each of
its records is identified by means of a key. The key of any
record is stored as a field in a predefined position as part
of the record. Each key value must be unique in the data
set. When the data set is initially loaded with data and
when new records are added, the physical order of the
records is determined by the collating sequence of the key
field. This also determines the order in which records are
retrieved when the data set is read in sequence (browsed).

To enable VSAM to determine the physical location of a
record in a KSDS, VSAM creates and maintains an index
that relates the key of each record with the record's
relative location in the data set. When a record is added
to or deleted from a KSDS, the index is updated to reflect
the change.

Any record in a KSDS may also be identified by its address
relative to the beginning of the data set. However, this
address, known as the relative byte address (RBA), may
not remain constant: it may change whenever records are
added to or deleted from the data set.

Entry-sequenced data set

An entry-sequenced data set (ESOS) is one in which each
record is identified by its RBA. Records are stored in an
ESDS in the order in which they are initially loaded into the
data set. Further records added to an ESDS are always
stored after the last record in the data set. Records may
not be deleted from an ESDS, nor may their lengths be
altered. After a record has been stored in an ESDS, its
RBA will remain unchanged. When browsing through an 0

ESDS, records are retrieved in the order in which they
were added to the data set.

Relative record data set

A relative record data set (RROS) consists of a series of
fixed-length slots that have been predefined to VSAM and
in which records may be stored. A record in an RRDS is
identified by the relative record number (RRN) of the slot
in which it is stored. When a new record is added to an
RRDS, VSAM assigns the next sequential number in the
data set or the number supplied with the request.

Unlike records in a KSDS or an ESDS, records in an RRDS
must be of fixed length, equal to the size of a slot in the
RRDS.

77

VSAM data set organization

VSAM data sets are stored on direct-access storage
devices (DASD), sometimes called auxiliary storage. The
space allocated to a VSAM data set is divided by VSAM
into control areas, which are further divided into control
Intervals. Each control interval is of fixed predefined size
and will, in general, contain a number of records. When
VSAM reads a record on behalf of CICS file control from a
data set, it reads the whole control interval cont~ining the
record. The control interval is thus the unit of data
transmission between virtual and auxiliary storage.

VSAM allows a KSDS or ESDS to be defined so as to
permit records to extend over more than a single control
interval. These are called spanned records. CICS file
control imposes no restrictions on processing spanned
records: application programs can access spanned and
nonspanned records in exactly the same way.

VSAM paths and bases

It may be convenient for an application program to identify
records in a data set in terms of a secondary (alternate)
key instead of the primary identification described above.
An alternate key is defined in the same way as the primary
key in a KSDS, as a field of fixed length and fixed position
within the record. Any number of alternate keys may be
defined and, unlike the primary or base key, an alternate
key need not have a unique value.

As an example of primary and alternate keys, consider a
KSDS containing records for employees in an organization.
Each record is identified by a primary key, defined as the
employee number. The employee name, which need not
be unique, is used as an alternate key. The employee's
department might be defined as a further alternate key~

VSAM allows alternate keys to be defined for
key-sequenced and entry-sequenced data sets (though not
for relative record data sets). When the data set is
created, a secondary or alternate Index (AIX) is built for
each alternate key in the record and is related to the
primary or base data set. To access records using the
alternate key, a further VSAM object, an alternate Index
path must also be defined. The path then behaves as if it
were a KSDS in which records are accessed using the
alternate key.

When a record is updated by way of a path, the
corresponding AIX is updated to reflect the change. If the
record is updated directly by way of the base or by a
different path, the AIX will be updated only if, when
created, it was defined to VSAM as belonging to what is
termed the upgrade set of the base data set.

78 CICS/MVS 2.1.2 Application Programmer's Reference

A CICS application program need not be aware of whether
the file it is accessing is a path or the base. In a running
CICS system, accesses to a single base data set can be
made by way of the base and by any of the paths defined
over it, as long as each such access route has been
defined to CICS in the file control table (FCT).

If the same control interval or the same record in the base
data set is simultaneously updated by more than one
request, a VSAM exclusive control conflict or a CICS
record locking conflict may occur. CICS then causes the
request that suffered the conflict to wait until the conflict is
resolved before allowing the request to be completed.

VSAM share options

Every data set defined to VSAM is associated with a share
options attribute that can take a value of 1, 2, 3, or 4, and
which defines how the data set is to be shared among
users. In the CICS environment, different FCT entries
referring to the same base data set represent different
users.

For a data set defined with share options 1 or 2, if the file
is defined to be recoverable (LOG=YES in the FCT) , CICS
will ensure that integrity of data is preserved.

A data set defined with a share option of 3 or 4 can also
be updated concurrently through more than one FCT entry.
However, CICS is then unable to ensure that integrity of
data is preserved.

BDAM data sets

CICS supports access to keyed and non keyed BDAM data
sets. BDAM support makes use of the physical nature of a
record on a DASD device. BDAM data sets consist of
unblocked records with the following format:

Count Physical Data
(recorded)
key

L-----Phys i ca 1 record-------'

Keyed BDAM files have a physical key identifying the
BDAM record. The count area contains the physical key
length, the physical data length, and the record's data
location. Nonkeyed BDAM files have a zero key length in
the count area of the physical record.

CICS may define a further structure on top of BDAM data
sets. It introduces the concept of blocked data sets:

Count Physical Data
key

logrec 1 logrec 2

'------Phys i ca 1 record-------'
(block)

The data portion of the physical record may itself consist
of logical records. To CICS, the whole structure is defined
to be a block: the physical key now identifies the block.
CICS will support the retrieval of logical records from the
data part of the block. CICS also supports the concept of
unblocked records, in which case the structure reverts to
the original BDAM concept of one logical record per
physical record.

To retrieve a physical record from a BDAM file under
CICS, a record identification field (RIDFLD) has to be
defined in a cles file control command to specify how the
physical record should be retrieved. This may be done
using the physical key, by relative address, or by absolute
address.

If the data set is defined to cles to be blocked, the
physical record is seen by CICS as a block. Individual
records within the block can be retrieved (deblocked) in
two addressing modes: by key or by relative record. To
deblock by key, the key of the logical record (that is, the
key contained in the logical record) is used to identify
which record is required from the block. To deblock by
relative record, the record number in the block (relative to
zero) of the record to be retrieved, is used. The key or
relative record number used for deblocking is specified in
a subfield of the RIDFLD option used when accessing CICS
BDAM files. The addressing mode for CICS BDAM data
sets is set in the FCT using the RELTYPE keyword.

Record identification and BDAM record access are
described in more detail in "Chapter 2.3. File control -
BDAM considerations" on page 89.

Data set Identification

You use the FILE option in a file control command to
specify the symbolic name of an entry in the FCT which
identifies the file that, in turn, refers to the data set to be
accessed. The FCT entry must be defined in the cles
system and must have been associated with a physical
data set before the command can be executed.

This association is done in any of the following ways:

• The data set is defined by a job control statement for
the cles job. In this case, the FCT entry name is also
used as the DO name of the job control statement
defining the data set. The data set will normally be
allocated to cles at the time of CICS job initiation and
will remain allocated through to elcs termination.

• No job control statement for the data set is included.
Instead, the 44-character physical data set name is
specified in the FCT by means of the DSNAME option.
This, together with the DISP option, enables CICS to
allocate the data set dynamically as part of OPEN
processing (both for explicit OPEN requests and for
implicit requests resulting from the execution of a file
access command). The data set will be dynamically
deallocated by CICS at the time the file is closed.

• The data set name and the disposition of the data set
are specified neither by job control nor in the FCT.
Their values are set dynamically, either by means of
the EXEe CICS SET command in an application
program, or by issuing a CEMT command from the
operator's terminal, specifying DSNAME, and one of
the disposition options OLD or SHARE. At the time
these settings are made, the values are simply
recorded in the FeT; they are subsequently used for
dynamic allocation that takes place as part of OPEN
processing.

Any job control specifications take precedence over
assembled or dynamically set values in the FCT. Such
settings may be made but if, at the time of the OPEN, the
data set is found to have been allocated already by means
of job control, any dynamic settings will be overridden.

Accessing data sets from CICS application
programs

The following sections describe the facilities available to
application programs for accessing data sets by means of
flies. The description is presented in terms of VSAM data
sets, though most of the facilities apply equally to BDAM
data sets. Where there are differences, or particular
considerations that are appropriate only to BDAM, these
are noted in the text and in "Chapter 2.3. File control -
BDAM considerations" on page 89.

Retrieving records

Direct reading: A record in the data set is read by
means of the READ FILE command. The CICS file is
associated with an external VSAM or BDAM data set. The
command must include sufficient information to identify the
record to be retrieved and must also specify whether the
record is to be read into an area of storage provided by
the application program, or into a CICS buffer acquired by
file control. In the latter case, the address of the data in
the CICS buffer is returned to the program.

Chapter 2.1. General description of file control facilities 79

Direct reading from a KSDS: When reading from a
VSAM KSOS, the record to be retrieved is usually
identified by specifying the full key. It is, however, also
possible to specify a partial (generic) key. CICS then
retrieves from the data set the first record whose leftmost
characters match the partial key. Alternatively, it is
possible to retrieve the record in the data set whose key is
greater than or equal to the full key provided with the
command.

Finally, it is also possible to identify the record to be
retrieved by providing a generic key together with the
'greater than or equal' (GTEQ) option. The NOTFNO
condition will be returned if no record with the key
specified is found or, in the case of the GTEQ option, no
record is found with a key greater than or equal to the
specified key.

Direct reading from an ESDS: When reading from a
VSAM ESOS, an individual record is identified by a relative
byte address (RBA). For any record in an ESOS, its RBA
cannot change; the application program is therefore able
to keep an account of the values of the RBAs
corresponding to the records it wishes to access. An
access to a VSAM ESOS specifying an incorrect RBA, or an
RBA where there is no record, will return the ILLOGIC
condition.

Direct reading from an RRDS: When reading from a
VSAM RROS, the record to be retrieved is identified by its
relative record number (RRN). Again, the application
program needs to be aware of the RRN values of the
records it is to retrieve. For records not present in the
data set, the NOTFNO condition is returned.

Direct reading by way of a path: If a KSOS or an ESOS
has an alternate index and an alternate index path defined,
and if the alternate index path is defined to CICS by an
entry in the FCT, a record in the base data set can be
retrieved by means of an alternate key. In this case, the
generic option and the greater than or equal option may
also be used in exactly the same way as for a read from a
KSOS using the primary key.

If the alternate key provided in a READ command is not
unique, the first record in the data set having that key is
read and the DUPKEY condition is returned. To retrieve
other records having the same alternate key, a browse
operation has to be started at this point.

Sequential reading (browsing): Records may be read
in sequence (browsed) from the data set. A browse is
initiated using the STARTBR command in which a
particular record is identified in the same way as for a
direct read. However, the STARTBR command identifies
only the starting position for the browse; no record is
retrieved.

The READNEXT command reads records sequentially from
the data set, beginning at the starting point provided by

80 CICS/MVS 2.1.2 Application Programmer's Reference

the STARTBR command. The field specified in the RIOFLO
option on the REAONEXT command is updated by CICS
with the complete key, relative byte address, or relative
record number of the record retrieved each time a
REAONEXT command is executed.

Also available for use on VSAM data sets is the
READPREV command. This behaves in the same way as a
REAONEXT command, except that records are read
sequentially backward from the starting point provided by
the STARTBR command.

Browsing through a KSDS: When browsing through a
VSAM KSOS, a generic key may be used on the STARTBR
command. However, a browse initiated in this way may
only continue forward through a data set. The INVREQ
condition is raised if a REAOPREV is attempted during a
browse initiated using a generic key.

The 'key equal to' and 'key greater than or equal to'
options may be used on the STARTBR command. The
default, unlike the default on a direct read command, is the
'key greater than or equal to' option. If no record can be
found matching the key specified with the STARTBR
command, the NOTFNO condition is returned.

Only after the successful execution of a STARTBR
command can a REAONEXT or REAOPREV command be
executed successfully.

A forward browse through a VSAM KSOS can be started at
the beginning of the data set by specifying a key of
hexadecimal zeros, or by specifying options of GENERIC
and KEYLENGTH(O) on the STARTBR or RESETBR
command. In the latter case, the RIOFLO keyword is
required although its value is not used. Similarly, a
complete key of hexadecimal 'FF's on a STARTBR
command will point to the last record in the data set ready
for a backward browse.

Browsing through an ESDS: When browsing through a
VSAM ESOS, the GTEQ option is invalid on the STARTBR
command. If no record is found matching the RBA
specified in the STARTBR command, the ILLOGIC condition
is raised. As for a VSAM KSOS, keys of hexadecimal zeros
and 'FF's on a STARTBR command enable a forward
browse to start at the first record, and a backward browse
to start from the last record respectively.

Browsing through an RRDS: When browsing through a
VSAM RROS, the GTEQ option can be used on a STARTBR
command and is set by default even though, on a direct
READ, use of this option has no effect. A direct-read GTEQ
command specifying an RRN that does not exist will return
NOTFND because only the EQUAL option is taken.
However, a STARTBR GTEQ using the same RRN will
complete successfully, and set a pointer to the relevant
position in the data set for the start of the browse. The
first record in the data set is identified using hexadecimal
'1' and the last record by hexadecimal 'FF's.

Browsing by way of a path: Browsing may also be
performed by way of an alternate index path to a VSAM
KSDS or an ESDS. The browse is performed in exactly the
same way as for a VSAM KSDS, but the alternate key is
used. The records are thus retrieved in alternate key
order.

When nonunique alternate keys are involved, a browse
operation will retrieve all records with the same alternate
key. The READNEXT command will retrieve records in the
order in which they were added to the data set.
(READPREV could be used, but the records will be returned
in the same order as for READNEXT). When switching from
a direct read to a browse, the first record having a
nonunique key is retrieved twice: once for the READ
command, and again for the first READNEXT command.
The DUPKEY condition is returned for each retrieval
operation except the last. For example, if there are three
records with the same alternate key, the DUPKEY condition
will be returned upon retrieval of the first two, but not the
third. The application program can be designed to revert
from browsing to direct reading when the DUPKEY
condition no longer occurs.

Ending the browse: An attempt to browse past the last
record ina data set will raise the ENDFILE condition. A
browse is terminated using the ENDBR command. This
command should always be issued before an update
operation is performed on the same data set (read update,
delete with RIDFLD, or write), before a syncpoint, or before
task termination. Failure to do so will lead to
unpredictable results, including self-inflicted deadlock.

A browse can be reset at any time using the RESETBR
command. The command can be used to define a new
starting position for the browse, or it can be used to
change the type of search argument (key, relative byte
address, or relative record number) employed.

Simultaneous browse operations: CICS allows a
transaction to perform more than one browse on the same
data set at the same time. To distinguish between browse
operations, the REQID option is included on each browse
command.

Skip-sequential processing: For files accessing VSAM
data sets, it is possible to browse using skip-sequential
processing by altering the key, RBA, or RRN, in the
RIOFLO option of the READNEXT or REAOPREV command
to that of the next record required. This may even be
done on the first READNEXT or READPREV after a
STARTBR or RESETBR command. This procedure allows
quick direct access to records in a VSAM data set by
reducing index search time.

The RIOFLO option on the READNEXT or READPREV
command must be in the same form (key, RBA, RRN) as

) that used in the STARTBR command or last RESETBR
command. If generic keys are used on a forward browse,
the new RIDFLD must also be a generic key, although it

need not be of the same length. Including the KEYLENGTH
option on the READNEXT command has the same effect as
a RESETBR, because the keylength has been changed. To
continue browsing from this new point, remove the
KEYLENGTH option from subsequent READNEXT
commands.

If a 'key equal to' search is specified on a STARTBR or
RESETBR command, a READNEXT command using
skip-sequential processing may result in the NOTFND
condition being raised.

Specifying record length: A file may be defined in the
FCT as containing either fixed-length or variable-length
records. Fixed-length records may be defined only if the
VSAM Access Method Services definition also specifies
fixed-size records (average size equals maximum size),
and also if all the records in the data set are of that length.

For direct reading and browsing, if the file is defined as
containing fixed-length records, and if the application
program provides an area into which the record is to be
read, that area must be of the defined fixed length. If the
file contains variable-length records, the command must
also specify the length of the area provided. For
fixed-length records and for records retrieved into the
CICS-provided buffer, the length argument need not be
specified, although it may be useful to do so to check that
the record being read is not too long for the available data
area. If the length argument is provided, CICS uses the
length field to return the actual length of the record
retrieved.

Updating records

A record to be updated must first be retrieved using a
READ command with the UPDATE option. The record is
identified in exactly the same way as for a direct read.
After the record has been modified by the application
program, it is written back to the data set using the
REWRITE command.

In the case of a VSAM KSDS or ESOS, the record may, as
with a direct read, be accessed either by way of an FCT
entry that refers to the base, or to a path defined over it.

The REWRITE command cannot identify the record being
rewritten. In anyone transaction CICS allows only a single
update to a given data set to be in progress at any time;
the record being rewritten is therefore identified by the
previous READ UPDATE command.

A record that has been retrieved as part of a browse
operation may not be updated during the browse. The
application program must end the browse, read the desired
record with a direct command, and perform the update.
Failure to do this may cause a deadlock.

The record to be updated may, as in the case of a direct
read, be read into an area of storage supplied by the

Chapter 2.1. General description of file control facilities 81

application program, or into a CICS-provided buffer. If the
record is read into the CICS buffer, it may then be copied
into application program storage and rewritten from that
storage, or it may be modified and rewritten direct from
the CICS buffer.

For a VSAM KSDS, the base key in the record must not be
altered when the record is modified. Similarly, if the
update is being made by way of a VSAM path, the
alternate key used to identify the record must not be
altered either, although other alternate keys may be
altered. If the file definition allows variable-length records,
the length of the record may be changed.

The length of records in an ESDS or an RRDS can never
be altered.

Specifying record length: For a file defined as
containing fixed-length records, the length of record being
rewritten must equal the length defined to VSAM in the
Access Method Services definition. For variable-length
records, the length must be specified with both the READ
and the REWRITE commands.

Deleting records: In the case of a KSDS 'or RRDS,
instead of rewriting the record, the application program
may issue a DELETE command to erase it from the data
set. As in the case of the REWRITE command, the record
to be deleted must not be identified within the DELETE
command but is, by default, the most recently read record.
If the RIDFLD option is included in this form of the DELETE
command, an INVREQ condition is returned to the
application program.

The application program may wish to complete the update
operation without rewriting or deleting the record. This
can be done by means of the UNLOCK command. This
command releases any CICS storage acquired for the
READ and completes the VSAM request by issuing a VSAM
ENDREQ command.

Deleting records

As described above, a record in a VSAM KSDS or RRDS
may be deleted by first retrieving it for update and then
issuing a DELETE command. It is also possible to delete a
record in a single operation, again using the DELETE
command. In this case, the record to be deleted must be
identified as part of the command. The record is identified
in the same way as when reading a record, except that the
GTEQ option may not be used.

Records may never be deleted from an ESDS, irrespective
of whether the ESDS is being, accessed by way of the base
or by a path.

If a full key is provided with the DELETE command, a single
record with that key is deleted. This means that, if the
data set is being accessed by way of an AIX path that
allows nonunique alternate keys, only the first record with

82 CICS/MVS 2.1.2 Application Programmer's Reference

that key is deleted. At the completion of such an
operation, if further records exist with the same alternate
key, the DUPKEY condition is returned.

Deleting groups of records (generic delete): If a
generic key is provided with the DELETE command, instead
of deleting a single record, all the records in the data set
whose keys match the generic key will be deleted with the
single command. The number of records deleted is
returned to the application program if the NUMREC option
is included with the command. If access is by way of an
AIX path, the records deleted are all those whose alternate
keys match the generic key.

Adding records

New records are added to a data set by means of the
WRITE command, via a file referring to that data set. They
must always be written from an area provided by the
application program.

Adding to a KSDS: When a record is added to a VSAM
KSDS, the base key of the record identifies the position in
the data set where the record will be inserted. Although
the key is part of the record, CICS also requires the
application program to specify the key separately using the
RIDFLD option on the WRITE command.

A record added to a KSDS by way of an AIX path is also
inserted into the data set in the pOSition determined by the
base key. However, the command must also include the
AIX key as the record identifier.

Adding to an ESDS: A record added to an ESDS is
always added to the end of the data set. It is not possible
to insert a record in an ESDS between existing records.
After the operation is completed, the relative byte address
in the data set where the record was placed is returned to
the application program.

When adding a record to an ESDS by way of an AIX path,
the record is also placed at the end of the data set. The
command must include the AIX key in the same way as for
a KSDS path.

Adding to an RRDS: To add a record to an RRDS, the
WRITE command must include the relative record number
(RRN) as a record identifier. The record is then stored in
the data set in the position corresponding to the RRN.

Specifying record length: When writing to a fixed-length
VSAM file, the record length must be the same as the
value specified at the time the data set was created. In
this case, the application program need not include the
length with the command, although it may be convenient to
do so to check that the length agrees with that originally
defined to VSAM. If the file is defined as containing
variable-length records, the command must also include
the length of the record.

Sequential adding of records (MASSINSERT): A
group of records may be added to any VSAM data set
using the mass sequential insertion operation. This is
more efficient than issuing separate WRITE commands. A
mass sequential insertion operation consists of a series of
WRITE commands. Each command identifies the record to
be added in exactly the same way as for a direct WRITE,
but also includes the MASSINSERT option. When using the
mass insert operation to add records to a KSDS or RRDS,
or to a KSDS or ESDS by way of a path, t~e keys or RRN
values of consecutive records must be in ascending, but
not necessarily consecutive, order.

The operation must be completed by issuing an UNLOCK
command to ensure that all the records are written to the
data set and the position is released. A READ command
will not necessarily retrieve a record that has been added
by an incomplete mass insert operation. If an UNLOCK
command is not issued, the mass sequential insertion
operation will be completed when a syncpoint is issued, or
at task termination.

Review of file control command options

CICS application programs read data from, and write data
to, external data sets by way of files referencing those
data sets. Whenever you retrieve a record using the
READ command, add a record using the WRITE command,
delete a record using the DELETE command (except in the
case when you have read the record for update first), or
initiate a browse using the STARTBR command, you
identify the record by means of the RIDFLD option.
Further, during a browse using READNEXT or READPREV
commands, you must include this option to provide a
means for CICS to return the identifier of each record
retrieved.

RIDFLD option

RIDFLD identifies a field containing the record
identification appropriate to the access method and the
type of data set being accessed. The detailed formats are
described in Chapters 2.2 and 2.3.

When retrieving records from a VSAM KSDS, or from a
VSAM KSDS or ESDS by way of an alternate index path, or
when identifying a starting position for a browse in this
type of data set, you can include one or both of the further
options GTEQ and GENERIC with the command. These
options are used when the RIDFLD option by itself may not
identify a specific record in the data set.

When executing READNEXT or READPREV commands, the
application program would not normally set the RIDFLD
field. After each command, CICS updates this field with
the actual identifier of the record retrieved. The

application may, however, alter the RIDFLD value to
identify a new position from which the browse is to
continue.

INTO and SET options

When you retrieve a record using the READ, READNEXT, or
READPREV commands, the record is retrieved and placed
in main storage in accordance with the INTO or SET option
that you have specified.

• INTO specifies the area in main storage into which the
record is to be placed. For fixed-length records, you
need not include the LENGTH option. If you do, the
length specified must be the same as the defined
length, otherwise the LENGERR condition will occur.
For variable-length records you must always specify,
in the LENGTH option, the maximum length of record
that your application program will accept, otherwise
the LENGERR condition will occur. This condition will
also occur if the record exceeds this maximum length,
in which case the record is truncated to that length.
After the record has been retrieved, if the LENGTH
option has been included, the data area specified in
this option is set to the actual record length (before
any truncation occurred).

• SET specifies a pointer reference that is set to the
address of the buffer in main storage acquired by CICS
and large enough to hold the record. When using SET,
the LENGTH option need not be included. If it is
included, the data area specified is set to the actual
record length after the record has been retrieved.

FROM option

When you add records using the WRITE command, or
update records using the REWRITE command, you must
specify the record to be written by means of the FROM
option. FROM specifies the area in main storage which
contains the record to be written. In general, this area will
be part of storage owned by the application program. On
a REWRITE command, the FROM area will usually, though
not necessarily, be the same as the corresponding INTO
area specified on the READ UPDATE command. The length
of the record may be changed when rewriting to a
variable-length VSAM KSDS.

The LENGTH option must always be included when writing
to a variable-length file. If the valu~ specified exceeds the
maximum allowed in the data set definition, the LENGERR
condition will be returned when the command is executed.
When writing to a fixed-length file, CICS uses the length
specified in the Access Method Services data set definition
as the length of the record to be written. The LENGTH
option need not therefore be included. If it is, its value is
checked against the defined value and LENGERR is
returned if the values are not equa/.

Chapter 2.1. General description of file control facilities 83

Preventing transaction deadlocks

The application programmer should be aware of the need
to design applications in such a way as to prevent the
occurrence of transaction deadlocks. A deadlock may
occur when one transaction needs exclusive use of some
resource (for example, a particular record in a data set)
that is already held by a second transaction. The first
transaction will wait for the resource to become available
but, if the second transaction is not in a position to release
it because it, in turn, is waiting on some other resource
held by the first, both are deadlocked and the only way of
breaking the deadlock is to cancel one or both
transactions.

A transaction may have to wait for a resource for a
number of different reasons while executing file control
commands. First, for both VSAM and BDAM data sets, any
record that is in the process of being modified is held in
exclusive control by the access method for the duration of
the request. (In the case of VSAM, not only the record but
the complete control interval containing the record is held
in exclusive control). Secondly, if a transaction has
modified a record in a recoverable file, that record is
locked by CICS to the transaction even after the request
that performed the change has completed. That
transaction may continue to access and modify the same
record; other transactions, however, are obliged to wait
until the transaction releases the lock either by issuing a
sync point request or by terminating.

Whether a deadlock actually occurs depends on the
relative timing of the acquisition and release of the
resources by different concurrent transactions. Application
programs may continue to be used for some time before
encountering a set of circumstances which results in a
deadlock situation; for this reason, it is important to
recognize the possibility of deadlock at an early stage of
the application program design.

The following are examples of different types of deadlock:

• Two transactions are running concurrently and are
modifying records within a single recoverable file,
through the same FCT entry, in the following manner:

Trans.1: READ UPDATE rec.1 UNLOCK rec.1

Trans.2: DELETE rec.2

Trans.1: WRITE rec.2

Trans.2: READ UPDATE rec.1 REWRITE rec.1

Transaction 1 has acquired the record lock for record 1
(even though it has completed the READ UPDATE with
an UNLOCK). Transaction 2 has similarly acquired the
record lock for record 2. Each transaction is then in a
deadlock state because it wishes to acquire the lock
held by the other transaction.

84 CICS/MVS 2.1.2 Application Programmer's Reference

• Two transactions are running concurrently and are
modifying two recoverable files as follows:

Trans.1: READ UPDATE file 1 rec.1 REWRITE file 1 rec.1

Trans.2: READ UPDATE file 2 rec.2 REWRITE file 2 rec.2

Trans.1: READ UPDATE file 2 rec.2 REWRITE file 2 rec.2

Trans.2: READ UPDATE filel rec.1 REWRITE file J rec.1

In this case the record locks have been acquired on
different files as well as different records, however the
deadlock is similar to the first example.

• Two transactions are running concurrently and are
modifying a single recoverable KSDS, through the
same FCT entry, with the following sequence of
operations:

Trans.1: READ UPDATE rec.1

Trans.2: DELETE rec.3

Trans.1: WRITE rec.3

Trans.2: READ UPDATE rec.2

Suppose records 1 and 2 are stored in the same
control interval (CI). The first READ UPDATE has
acquired VSAM exclusive control of the CI containing
record 1. The DELETE operation has completed and
has acquired the CICS record lock on record 3. The
WRITE operation is forced to wait for the lock on
record 3 to be released before it can complete the
operation. Finally, the last READ UPDATE is forced to
wait for the VSAM exclusive control lock held by
transaction 1 to be released.

• A transaction is in progress of browsing through a
VSAM data set that uses shared resources
(LSRPOOLID not equal to NONE in the FCT). Before
completing the request with an ENDBR, the transaction
issues a further request to update the current record
or another record that happens to be in the same
control interval. Because VSAM already holds
exclusive control of the control interval on behalf of
the first request, the second request is forced to wait
indefinitely: the transaction has produced its own
deadlock.

To reduce the opportunity for deadlock, CICS recognizes
certain situations that may lead to it and prevents them
occurring by returning the INVREQ condition to the
application program. For example, CICS does not allow a
transaction to issue a READ UPDATE request to a
particular file if a previous READ UPDATE has not yet beer
completed with a REWRITE, DELETE or UNLOCK command.

CICS does not, however, detect every situation that may
cause a deadlock. The application programmer can avoid
deadlocks by following these rules:

1. All applications that update (modify) multiple
resources should do so in the same order. For
instance, if a transaction is updating more than one
record in a data set, it can do so in ascending key
order (or ascending alternate key order). A
transaction that is accessing more than one file should
always do so in the same predefined sequence of files.

2. An application that issues a READ UPDATE command
should follow it with a REWRITE, DELETE without
RIDFLD, or UNLOCK to release position before
performing any other operation on the data set
referenced by that file.

3. A sequence of WRITE MASSINSERT requests must use
ascending keys (or RRN values). The sequence must
terminate with the UNLOCK command to release
position. No other operation on the data set should be
performed before the UNLOCK command has been
issued.

4. An application must end all browses on a data set by
means of ENDBR commands (thereby releasing
position) before issuing a READ UPDATE, WRITE, or
DELETE with RIDFLD to the data set.

KEYLENGTH option for remote data sets

In general, execution of file control commands requires the
RIDFLD and KEYLENGTH options to be specified.
KEYLENGTH may be specified explicitly in the command, or
it may be determined implicitly from the FCT.

For files accessing remote data sets (that is, those for
which SYSID has been specified), KEYLENGTH should be
specified only if RIDFLD specified a key. If the remote
data set is being browsed, KEYLENGTH is not required for
the READNEXT or READPREV commands.

For a remote BDAM data set, where the DEBKEY or
DEBREC options have been specified, KEYLENGTH (when
specified explicitly) should be the total length of the key
(that is, all specified subfields).

Chapter 2.1. General description of file control facilities 85

Chapter 2.2. File control VSAM considerations

Record Identification

You identify records in VSAM data sets by key, by relative
byte address (RBA), or by relative record number (RRN).

To distinguish which format of record identification. is to be
used, the RBA and RRN options can be used on most file
commands that access VSAM data sets. The options
effectively define the format of the record identification
field (RIDFLD). If neither the RBA nor the RRN option is
specified, the RIDFLD option should contain a key to be
used for accessing a VSAM KSDS, or a VSAM KSDS or
ESDS by way of a path.

The RBA option specifies that the RIDFLD contains the
relative byte address of the record to be accessed. A
relative byte address is used to access a VSAM ESDS, and
it may also be used to access a VSAM KSDS. However, if
a KSDS is accessed in this way, the RBA of the record
may change during the transaction as a result of another
transaction adding records to, or deleting records from, the
same data set.

The RRN option specifies that the RIDFLD contains the
relative record number (the first record in a data set being
numbered 1) of the record to be retrieved.

Operations involving use of VSAM keys may specify either
a complete key or a generic (partial) key. (The one
exception to this rule is when a record is written to a
VSAM KSDS. In this instance, the complete key must be
specified in the RIDFLD option of the command.) When a
generic key is used, its length must be specified in the
KEYLENGTH option, and the GENERIC option must also be
specified on the command. A generic key cannot have a
keylength equal to the full keylength. That is, a generic
key is defined to be of a length' that is strictly less than
that of the complete key.

For both complete and generic keys, the GTEQ option may
also be specified on certain commands. The command
then positions at, or applies to, the record in the data set
with the next higher key if a matching key cannot be found.
When a data set is being accessed by way of an alternate
index path, the record identified is the one with the next
higher alternative when a matching record cannot be
found.

The application programmer should always, even when
using generic keys, use an area of storage for the RIDFLD
whose length is equal to the length of the complete key.
This is because during a browse operation, after retrieving
a record, CICS copies into the RIDFLD area the actual
identifier of the record retrieved. In some cases, CICS will
return to the application program a complete key, even
when a generic key was specified on the command. An

@ Copyright IBM Corp. 1982, 1991

example of this is a generic browse through a VSAM KSDS
where the complete key is returned to the application
program on each READNEXT and READPREV command.

CICS locking of VSAM records In
recoverable flies

In the previous chapter, the prevention of transaction
deadlocks was described in terms of the record locks CICS
acquires whenever records in a recoverable file are
modified. The locks are held on behalfof the transaction
performing the change until the transaction issues a sync
point request or terminates (at which time a syncpoint is
automatically performed). For VSAM recoverable file
processing, further considerations have to be borne in
mind.

Whenever a VSAM record is modified, CICS file control
locks the record by means of a CICS ENQUEUE request
using. the primary record identifier as the enqueue
argument. If a record is modified by way of a path, the
enqueue uses the base key or the base RBA as argument.
This means that CICS will permit only one transaction at a
time to perform its request, the other transactions having
to wait until the first has reached a syncpoint.

For the READ UPDATE, REWRITE-related commands, the
record lock is acquired as soon as the READ UPDATE has
been issued. For a DELETE command that has not been
preceded by a READ UPDATE, or for a WRITE command,
the record lock is acquired at the time the command is
executed. For a WRITE MASSINSERT command, which
consists of a series of commands, a separate record lock is
acquired at the time each individual WRITE command is
performed. Similarly, for a DELETE GENERIC command,
each record deleted acquires a separate lock on behalf of
the transaction issuing the request.

The record locks described above are known as update
locks because they are acquired whenever a record is
updated (modified). A further type of lock known as a
delete lock is also acquired by file control whenever a
DELETE, a WRITE, or a WRITE MASSINSERT operation is
being performed. A DELETE operation therefore acquires
two separate locks on the record being deleted.

The delete lock; separate from the update lock, is required
because of the method used by file control to implement
WRITE operations. In advance of executing a WRITE or
WRITE MASSINSERT command to a KSDS or RRDS, file
control finds and locks the empty range into which the new
record or records are to be inserted. The empty range is
locked by identifying the next existing record in the data
set and acquiring its delete lock.

87

The empty range is locked in order to prevent other
requests simultaneously adding records into the empty
range. Furthermore, the end of the empty range must not
be changed while the add operation is in progress. If
another transaction issues a request to add records into
the empty range or to delete the record at the end of the
range, the delete lock will force the transaction to wait
until the WRITE or WRITE MASSINSERT is completed. The

88 CICS/MVS 2.1.2 Application Programmer's Reference

record held with a delete lock may, however, be updated
by another transaction during the WRITE operation.

Unlike an update lock, a delete lock is held only for the
duration of a DELETE, WRITE, or WRITE MASSINSERT
operation. A MASSINSERT that adds records to the file
into more than one empty range will release the previous
delete lock as it moves into a new empty range.

Chapter 2.3. File control BDAM considerations

Record Identification

You identify records in BDAM data sets by a block
reference, a physical key (keyed data set), and a
deblocking argument (blocked data set). The record
identification (specified in the RIDFLD option) contains a
subfield for each, which, when used, must be in the above
order. The subfields are as follows:

Block reference - one of the following:

• Relative block address: 3-byte binary, beginning at
relative block number 0 (REL TYPE - BLK).

• Relative track and record (hexadecimal format):
2-byte TT, 1-byte R (RELTYPE-HEX).

The 2-byte TT begins at relative track O. The 1-byte R
begins at relative record 1.

• Relative track and record (zoned decimal format):
6-byte TTTTTT, 2-byte RR (REL TYPE - DEC).

• Actual (absolute) address: 8-byte MBBCCHHR
(REL TYPE operand omitted).

The type of block reference being used must be specified
in the RELTYPE operand of the DFHFCT TYPE- FILE
system macro that defines the CICS file to be associated
with the BDAM data set.

Physical key - required only if the data set has been
defined to contain recorded keys. If used, it must
immediately follow the block reference. Its length must be
the same as the length specified in the BLKKEYL operand
of the DFHFCT TYPE- FILE system macro that defines the
CICS file to be associated with the BDAM data set.

Deblocking argument - required only if specific records
are to be retrieved from a block. If used, it must follow
immediately the physical key (if present) or the block
reference. If omitted, an entire block will be retrieved.

The deblocking argument may be either a key (specify the
DEBKEY option on a READ or STARTBR command), in
which case its length must be the same as that specified in
the KEYLEN operand of the DFHFCT TYPE - FILE system
macro, or it may be a relative record number (specify the
DEBREC option on a READ or STARTBR command), in
which case it is a 1-byte binary number (first record-O).

The examples in Figure 20 on page 90 assume a physical
key of 4 bytes and a deblocking argument of 3 bytes.

@ Copyright IBM Corp. 1982, 1991

Browsing records from BDAM data sets

The record identification field must contain a block
reference (for example, TTR or MBBCCHHR) that conforms
to the addressing method defined for the data set.
Processing begins with the specified block and continues
with each subsequent block until the browse is terminated.

If the data set contains blocked records, processing begins
at the first record of the first block and continues with each
subsequent record, regardless of the contents of the
record identification field. That is, CICS uses only the
information held in the TTR or MBBCCHHR subfield of the
RIDFLD to identify the record. All other information, such
as physical key and relative record, or logical key, is
ignored. On completion of the READNEXT command, the
RIDFLD is updated by CICS with the complete identification
of the record retrieved.

For example, assume a browse is to be started with the
first record of a blocked, keyed data set, and deblocking by
logical key is to be performed.

Before issuing the STARTBR command, the TTR (assuming
that is the addressing method) of the first block should be
placed in the record identification field. After the first
READNEXT command, the record identification field might
contain X' 000001 0504', where 000001 represents the TTR
value, 05 represents the block key, and 04 represents the
logical record key.

As another example, assume that a blocked, non-keyed
data set is being browsed using relative record deblocking
and the second record from the second physical block on
the third relative track is read by a READNEXT command.
Upon return to the application program, the record
identification field contains X '0000020201 " where 000002
represents the track, 02 represents the block, and 01
represents the number of the record in the block relative
to zero.

The DEBREC and DEBKEY options must be specified on the
STARTBR command when browsing blocked data sets, for
the correct contents to be returned by CICS in the RIDFLD.
Specifying DEBREC on the STARTBR command will cause
the relative record number to be returned. The DEBKEY
option specified on the STARTBR command will cause the
logical record key to be returned.

89

Byte 191 2 3 4 5 6 7 8 9 19 11 12 13 14 15

JRElBlK#1 NI

IRElBlK#1 KEY

IT T RI PH-KEY KEY

1M B Bee H H RI N

IT T T T T T R RI PH-KEY KEY

IT T RI KEY

Figure 20. Examples of record Identification

The omission of DEBREC or DEBKEY when browsing a
blocked file has the following effect. The logical record is
retrieved from the block, the length parameter is set equal
to the logical record length, but the RIDFLD is not updated
with the full identification of the record. This method
should not be used. This should be contrasted with the
omission of the DEBREC or DEBKEY option from the READ
command when reading from a blocked BDAM data set. In
this case, the whole block is retrieved, and the length
parameter is set equal to the length of the block.

Adding records to BDAM data sets

When adding records to a BDAM data set, the following
considerations and restrictions apply:

1. When adding undefined or variable-length records
(keyed or non-keyed), the track on which each new
record is to be added must be specified. If space is
available on the track, the record is written following
the last previously written record, and the record
number Js placed in the IR' portion of the record
identification field of the record. The track
specification may be in any of the acceptable formats
except relative block. If zoned decimal relative format
is used, the record number is returned as a 2-byte
zoned decimal number in the seventh and eighth
positions of the record identification field.

90 CICS/MVS 2.1.2 Application Programmer's Reference

Search by relative block;
deblock by relative record

Search by relative block;
deblock by key

Search by relative track
and record and key;
deblock by key

Search by actual address;
deblock by relative record

Search by zoned decimal
relative track and record
and key; deblock by key

Search by relative track
and record; deblock by key

The extended search option allows the record to be
added to another track if no space is available on the
specified track. The location at which the record is
added is returned to the application program in the
record identification field being used.

When adding records of undefined length, the length of
the record must be specified in the LENGTH option.
When an undefined record is retrieved, the application
program must determine its length.

2. When adding keyed fixed-length records the data set
must first be formatted with dummy records or IIslots"
into which the records may be added. A dummy
record is signified by a key of hexadecimal IFF's. The
first byte of data contains the record number.

3. When adding non-keyed fixed length records, the block
reference must be given in the record identification
field. The new records are written in the location
specified, destroying the previous contents of that
location.

4. When adding keyed fixed-length records, track
information only is used to search for a dummy key
and record which, when found, is replaced by the new
key and record. The location of the new record is
returned to the application program in the block
reference subfield of the record identification field.

For example, for a record whose identification field is
as follows:

e 3 e ALPHA
T T R KEY

the search will start at relative track 3. When control
is returned to the application program, the record
identification field will be as follows:

a 4 6 ALPHA

showing that the record is now record 6 on relative
track 4.

5. When adding variable length blocked records, a 4-byte
record description field (RDF) must be included in each
record. The first 2 bytes specify the length of the
record (including the 4-byte RDF); the other 2 bytes
consist of zeros.

BDAM exclusive control

When a blocked record is read for update, CICS maintains
exclusive control of the containing block. An attempt to
read a second record from the block before the first is
updated (by a REWRITE command), or before exclusive
control is released (by an UNLOCK command), will cause a
deadlock.

Chapter 2.3. File control - BDAM considerations 91

Chapter 2.4. File control - commands, options, and conditions

This chapter shows the syntax of each file control
command, describes the purpose and format of each
command and its options, and gives a list of the
exceptional conditions that can arise during execution of a
file control command. These commands are concerned
with CICS files. A CICS file refers to an external VSAM or
BDAM data set. Many CICS files may refer to the same
data set.

Read a record (READ)

READ
FI LE 1 (name)
{INTO(data-area)ISET(ptr-ref)}
[LENGTH(data-area)]2
RIDFLD(data-area)
[KEYLENGTH(data-value)3[GENERIC]4]
[SYSID(name)]
[RBA4IRRN4IDEBKEysIDEBRECS]
[GTEQ I EQUAL] 4.
[UPDATE]

Conditions: DISABLED, FILENOTFOUND6,
DUPKEY4, ILLOGIC4, INVREQ, IOERR,
ISCINVREQ, LENGERR, NOTAUTH, NOTFND,
NOTOPEN, SYSIDERR

1 DATASET is also accepted, but
FILE is the preferred term

2 Mandatory with SYSID, and with
INTO when reading variable-length
records

3 Mandatory with SYSID unless RBA
or RRN is coded also, in which
case it is invalid

4 VSAM only
5 Blocked BDAM only
6 DSIDERR is equivalent

You use this command to read a record, via a file, from a
direct access data set on a local or remote system.

If you include the UPDATE option, you must identify the
record to be updated by the record identification field
specified in the RIDFLD option. Immediately upon
completion of a READ UPDATE command, the RIDFLD data
area is available for reuse by the application program.

You can specify only one update operation per data set
within a transaction at any given time. Further, to avoid
deadlock when accessing a VSAM data set, your next
command to the data set should be a REWRITE, DELETE
without RIDFLD, or UNLOCK.

© Copyright IBM Corp. 1982, 1991

The following example shows you how to read a record
from a data set, via a file named 'MASTER', into a
specified data area:

EXEC CICS READ
INTO(RECORD)
FILE('MASTER')
RIDFLD(ACCTNO)

The following example shows you how to read a record for
update from a VSAM data set using a generic key and
specifying a greater-or-equal key search.

EXEC CICS READ
INTO(RECORD)
LENGTH(RECLEN)
FI LE ('MASTVSAM')
RIDFLD(ACCTNO)
KEYLENGTH(4)
GENERIC
GTEQ
UPDATE

Write a record (WR ITE)

WRITE
FI LE 1 (name)
FROM(data-area)
[LENGTH(data-value)]2
RIDFLD(data-area)
[KEYLENGTH(data-value)]3
[SYSID(name)]
[RBAIRRN]4
[MASSINSERT] 4

Conditions: DISABLED, FILENOTFOUND5,
DUPKEY4, DUPREC, ILLOGIC4, INVREQ,
IOERR, ISCINVREQ, LENGERR, NOTFND6,
NOSPACE, NOTAUTH, NOTOPEN, SYSIDERR

1 DATASET is also accepted, but
FILE is the preferred term

2 Mandatory with SYSID, and with
FROM when writing variable-length
records

3 Mandatory with SYSID unless RBA or
RRN is coded also, in which case
it is invalid

4 VSAM only
5 DSIDERR is equivalent
6 means trying to write to a BDAM

track address that is not
defined for the dataset

93

You use this command to write a record to a direct access
data set on a local or remote system. For example:

EXEC CICS WRITE
FROM(RECORD)
LENGTH(DATLEN)
FILE ('MASTER')
RIDFLD(KEYFLD)

For a VSAM entry-sequenced data set (ESDS), the record
is always added at the end of the data set. VSAM does·
not use the identification field specified in RIDFLD when
calculating the RBA of the new record, but the new RBA is
returned to the application in the record identification field
specified in the RIDFLD option.

For a VSAM KSDS, the record is added in the location
specified by the associated key; this location may be
anywhere in the data set. For VSAM data sets, the key in
the record and the key in the RIDFLD identification field
must be the same.

Records for ESDS and KSDS data sets can be either fixed
length or variable length. Those for a relative record data
set must be fixed length. MASSINSERT operations must
proceed with ascending keys, and must be terminated by
an UNLOCK before any other request to the same data set.

Update a record (REWRITE)

REWRITE
FI LE 1 (name)
FROM(data-area)
[LENGTH(data-value)]2
[SYSID (name)]

Conditions: DISABLED, FILENOTFOUND4,
DUPREC, ILLOGIC3, INVREQ, IOERR,
ISCINVREQ, LENGERR, NOSPACE,
NOTAUTH, NOTOPEN, SYSIDERR

1 DATASET ;s also accepted, but
FILE ;s the preferred term

2 Mandatory with SYSID, and with
FROM when rewriting variable
length records

3 VSAM only
4 DSIDERR ;s equivalent

You use this command to update a record in a
direct-access data set on a local or remote system. You
must always precede this command with a READ UPDATE
to read the record to be updated. For example:

94 CICS/MVS 2.1.2 Application Programmer's Reference

EXEC CICS REWRITE
FROM(RECORD)
FILE('MASTER')

For VSAM data sets, you must not change the key field in
the record.

Delete a record (DELETE) - VSAM only

DELETE
FILEl(name)
[RIDFLD(data-area)2

[KEYLENGTH(data-value) 3

[GENERIC [NUMREC(data-area)]]]]
[SYSID(name)]
[RBAIRRN]

Conditions: DISABLED, FILENOTFOUND4,
DUPKEY, ILLOGIC, INVREQ,
IOERR, ISCINVREQ,
NOTAUTH, NOTFND, NOT OPEN ,
SYSIDERR

1 DATASET is also accepted, but
FILE is the preferred term

2 Mandatory with GENERIC
3 Mandatory with SYSID unless RBA

or RRN is coded also, in which
case it ;s invalid

4 DSIDERR is equivalent

You use the DELETE command to delete a record from a
KSDS or RRDS data set on a local or remote system. You
must identify the record to be deleted in the RIDFLD
option.

You can also delete a record that has been retrieved for
update (by a READ UPDATE command), instead of
rewriting it, by this command. In this case, you must not
·specify the RIDFLD option.

You can delete gro~ps of records in a similar way, except
that you identify the group by the GENERIC option.

The following example shows you how to delete a group of
records in a VSAM data set:

EXEC CICS DELETE
FILE('MASTVSAM')
RIDFLD(ACCTNO)
KEYLENGTH(4)
GENERIC
NUMREC(NUMDEL)

Release exclusive control (UNLOCK)

UNLOCK
FILEl (name)
[SYSID{name)]

Conditionsl DISABLED, FILENOTFOUND3,
ILLOGIC2, IOERR, ISCINVREQ, NOTAUTH,
NOTOPEN, SYSIDERR

1 DATASET is also accepted, but
FILE is the preferred term

2 VSAM only
3 DSIDERR is equivalent

You use this command to release exclusive control
position made in response to a READ command with the
UPDATE option. You use it if you retrieve a record for
update, and then decide that you do not want to update the
record after all. However, for a data set for which the
system programmer has specified auto logging, the
resource remains under the task control enqueue until
either a sync point command is executed or the task is
terminated. The record can be in a data set on a local or
remote system.

You can also use this command to terminate a VSAM
WRITE MASSINSERT operation.

Start browse (STARTBR)

STARTBR
FILE1{name)
RIDFLD{data-area)
[KEYLENGTH{data-value)2[GENERIC]3]
[REQID{data-value)]
[SYSID{name)]
[RBA3IRRN3IDEBKEY 4IDEBREC4]
[GTEQI EQUAL] 3

Conditionsl DISABLED, FILENOTFOUND5,
ILLOGIC3, INVREQ, IOERR, ISCINVREQ,
NOTAUTH, NOTFND, NOTOPEN, SYSIDERR

1 DATASET is also accepted, but
FILE is the preferred term

2 Mandatory with GENERIC or SYSID
unless RBA or RRN is coded
also, in which case
it is i nv ali d

3 VSAM only
4 Blocked BDAM only
5 DSIDERR is equivalent

You use this command to specify the record in a data set,
on a local or remote system, at which you want the browse
to start. No records will be read until a READNEXT
command (or, for VSAM only, a READPREV command) is
executed.

Read next record during a browse
(READNEXT)

READNEXT
FI LEl (name)
{INTO(data-area)ISET(ptr-ref)}
[LENGTH{data-area)]2
RIDFLD{data-area)
[KEYLENGTH(data-value)]3
[REQID(data-value)]
[SYSID(name)]
[RBAIRRN]4

Conditions: DISABLED, FILENOTFOUND6,
DUPKEY4 ENDFILE, ILLOGIC4, INVREQ,
IOERR, ISCINVREQ, LENGERR, NOTAUTH,
NOTFND, NOTOPEN, SYSIDERR5

1 DATASET is also accepted, but
FILE is the preferred term

2 Mandatory with SYSID, and with
INTO when reading variable
length records

3 Mandatory with SYSID unless RBA
or RRN is coded also, in which
case it ;s invalid

4 VSAM only
5 Not raised following successful

STARTBR to remote system if
that system becomes unavailable.
Abend AZI4 issued instead.

6 DSIDERR is equivalent

You use this command to read records in sequential order
from a data set on a local or remote system. You can also
use it during VSAM skip sequential processing,

If the NOTFND condition occurs during a browse, you must
include a RESETBR command to reset, or an ENDBR
command to terminate, the browse.

A READNEXT command following a READPREV command
will read the same record as that read by the READPREV
command.

Chapter 2.4. File control - commands, options, and conditions 95

Read previous record during a browse
(READPREV) - VSAM only

READPREV
FILE1(name)
{INTO(data-area)lsET(ptr-ref)}
[LENGTH(data-area)]2
RIDFLD(data-area)
[KEYLENGTH(data-value)] 3
[REQID(data-value)]
[SYSID(name)]
[RBAIRRN]

Conditions: DISABLED, FILENOTFOUND5,
DUPKEY, ENDFILE, ILLOGIC, INVREQ,
IOERR, ISCINVREQ, LENGERR, NOTAUTH,
NOTFND, NOTOPEN, SYSIDERR4

1 DATASET is also accepted, but
FILE is the preferred term

2 Mandatory with SYSID, and with
INTO when reading variable
length records

3 Mandatory with SYSID unless RBA
or RRN is coded also, in which
case it is invalid

4 Not raised following successful
STARTBR to remote system if
that system becomes unavailable.
Abend AZI4 issued instead.

5 DSIDERR is equivalent

You use this command only to read records in reverse
sequential order from a VSAM data set on a local or
remote system.

If you include a READPREV command immediately
following a STARTBR command, your STARTBR command
must specify the key of a record that exists on the data
set, otherwise the NOTFND condition will be raised for the
READPREV command.

AREADPREV command following a READNEXT command
will read the same record as that read by the READNEXT
command.

If you want to restart a browse using the RESETBR
command, you must supply a complete key. If the key you
supply does not exist, the NOTFND condition will be raised.

96 CICS/MVS 2.1.2 Application Programmer's Reference

Reset start of browse (RESETBR)

RESETBR
FILE1(name)
RIDFLD(data-area)
[KEYLENGTH(data-value)2[GENERIC]]
[REQID(data-value)]
[SYSID(name)]
[GTE~IEQUAL]3
[RBA RRN]3

Conditions: DISABLED, FILENOTFOUND4,
ILLOGIC3, INVREQ, IOERR, ISCINVREQ,
NOTAUTH, NOTFND, NOTOPEN, SYSIDERR

1 DATASET is also accepted, but
FILE is the preferred term

2 Mandatory with SYSID unless RBA
or RRN coded also, in which case
it is invalid

3 VSAM only
4 DSIDERR is equivalent

You can include this command at any time prior to issuing
any other browse command. It is similar to an ENDBR -
STARTBR sequence (but with less function), and gives the
BDAM user the sort of skip sequential capability that is
available to VSAM users through use of the READNEXT
command.

End browse (ENDBR)

ENDBR
FILE1(name)
[REQID(data-value)]
[SYSID(name)]

Conditions: DISABLED, FILENOTFOUND3,
ILLOGIC2, INVREQ, ISCINVREQ,
NOTAUTH, NOTOPEN, SYSIDERR

1 DATASET is also accepted, but
FILE is the preferred term

2 VSAM only
3 DSIDERR is equivalent

You use this command to end a browse on a data set on a
I local or remote system. An ENDBR is required only after a
I successful STARTBR.

Always issue an end browse (ENDBR) command before
performing any update operations on the same data set
(READ UPDATE, DELETE with RIDFLD, or WRITE), and
before a sync point.

File control options

FILE(name)
specifies the name of the file to be accessed. The file,
in turn, will be associated with an external data set.
The name must be alphanumeric, up to 8 characters in
length, and must have been defined in the file control
table (FCT).

If SYSID is specified, the data set to which this file
refers is assumed to be on a remote system
irrespective of whether or not the name is defined in
the FCT. Otherwise, the FCT entry will be used to
determine if the data set is on a local or remote -
system.

Note: DATASET(name) is also accepted, but FilE is
the preferred term.

DEBKEV (blocked BDAM only)
specifies that deblocking is to occur by key. If neither
DEBREC nor DEBKEY is specified, deblocking does not
occur.

If KEYlENGTH is specified, its value must be the sum
of the lengths of all three subfields comprising the key.

DEBREC (blocked BDAM only)
specifies that deblocking is to occur by relative record
(relative to zero). -If neither DEBREC nor DEBKEY is
specified, deblocking does not occur.

If KEYlENGTH is specified, its value must be the sum
of the lengths of all three subfields comprising the key.

EQUAL (VSAM only)
specifies that the search will be satisfied only by a
record having the same key (complete or generic) as
that specified in the RIDFlD option.

FROM(data-area)
specifies the record that is to be written to the data
set referred to by this file.

GENERIC (VSAM only)
specifies that the search key is a generic key whose
length is specified in the KEYlENGTH option. The
search for a record is satisfied when a record is found
that has the same starting characters (generic key) as
those specified.

GTEQ (VSAM only)
specifies that if the search for a record having the
same key (complete or generic) as that specified in the
RIDFlD option is unsuccessful, the first record having
a greater key will satisfy the search.

INTO(data-area)
specifies the data area into which the record retrieved
from the data set is to be written.

KEVLENGTH(data-value)
specifies the length (halfword binary) of the key that
has been specified in the RIDFLD option, except when
RBA or RRN is specified, in which case it is invalid.
This option must be specified if GENERIC is specified,
and it can be specified whenever a key is specified.
However, if the length specified is different from the
length defined for the data set and the operation is not
generic, the INVREQ condition occurs.

The INVREQ condition also occurs if a READ, DELETE,
or STARTBR command specifies GENERIC, and the
KEYlENGTH is not less than that specified in the
VSAM definition.

If KEYlENGTH is omitted from a READNEXT or
READPREV command used in a generic browse,
normal browsing occurs.

If KEYlENGTH is included in a READNEXT or
READPREV command used in a generic browse, a new
browse is started using the keylength specified and
the key in the RIDFlD option. If the data set is
remote, and SYSID is specified, specifying KEYlENGTH
will not start a new generic browse on a READNEXT or
READPREV command.

If KEYlENGTH(O) is used with the object of reading the
first record in the data set, the GTEQ option must also
be specified, otherwise the NOTFND condition will be
raised. GTEQ is the default for STARTBR and
RESETBR, but not for READ.

The use of this option with remote data sets is
discussed further in "KEYlENGTH option for remote
data sets" on page 85.

LENCTH(parameter)
specifies the length (as a halfword binary value) of the
record to be retrieved or written by the READ,
READNEXT, READPREV, WRITE and REWRITE
commands. On completion of a retrieval operation,
(READ, READ N EXT, READPREV) the LENGTH
parameter is set to the length of the retrieved record.

This option must be specified with SYSID. It must also
be specified with the INTO and FROM options on file
control commands involving variable-length records.
It need not be specified for fixed-length records, but its
inclusion is recommended because:

• It causes a check to be made that the record
being read or written is not too long for the
available data area

• When reading or browsing fixed-length records
into an area longer than the record being
accessed, the lENGERR condition will be raised
for assembler-language, PUI, and VS COBOL II
applications if the LENGTH option is not specified.

When reading or browsing into a target data area
longer than the record being read, the contents of the
target data area, from the end of the retrieved record
to the end of the target data area, are unpredictable.

Chapter 2.4. File control - commands, options, and conditions 97

For a READ, READNEXT or READPREV command with
the I NTO option, the LENGTH parameter must be a
data area that specifies the largest record the
program will accept. If the retrieved record is longer
than the value specified in the LENGTH option, the
record is truncated to the specified value and the
LENGERR condition is raised. In this case, the
LENGTH data-area is set to the length of the record
prior to truncation.

For a READ, READNEXT or READPREV command with
the SET option, the LENGTH option need not be
specified but, if it is, the parameter must be a data
area.

For a WRITE or REWRITE command, the parameter
must specify a data value that is the actual length of
the record that is to be written. When writing
fixed-length records, the LENGTH option need not be
specified. However, if it is, its value is compared
against the record length defined for the data set and
the LENGERR condition is raised if the values are not
equal.

MASSINSERT (VSAM only)
specifies that the WRITE command is part of a
mass-insert operation.

NUMREC(data-area)
specifies a halfword binary data area that is set to the
number of records that have been deleted.

RBA (VSAM only)
specifies that the record identification field specified in
the RIDFLD option contains a relative byte address.

REQID(data-value)
specifies as a halfword binary value a unique request
identifier for a browse, used to control multiple browse
operations on a data set. If this option is not
specified, a default value of zero is assumed.

RIDFLD(data-area)
specifies the record identification field. The contents
can be a key, a relative byte address, or relative
record number (for VSAM data sets), or a block
reference, physical key, and deblocking argument (for
BDAM data sets). For a relative byte address or a
relative record number, the format of this field must
be fullword binary. When adding records to a keyed
data set, the field must contain the complete key.

If you are executing the READ command under CEDF
without specifying the KEYLENGTH option, and if the
data set is initially closed, RIDFLD will be displayed
with a default value of 4 bytes on the 'About to
execute' panel. On the 'Execution complete' panel,
however, RIDFLD will be displayed with the length of
the key defined for the data set.

Because no keylength was specified with the
command, the key length from the FCT is used and,
because the data set remains closed until the
execution of the command, the FCT will not have been

98 CICS/MVS 2.1.2 Application Programmer's Reference

updated to reflect the true key length. The default
value of 4 bytes will therefore be displayed on the
'About to execute' panel.

RRN (VSAM only)
specifies that the record identification field specified In
the RIDFLD option contains a relative record number.
This option should only be used with files referencing
relative record data sets.

SET(ptr-ref)
specifies the pointer reference which is to be set to
the address of the retrieved record.

In assembler language, if the DUPKEY exceptional
condition occurs, the register specified will not have
been set, but can be loaded from DFHEITP1.

The pointer reference is valid until the next READ
command for the same file or until completion of a
corresponding REWRITE or DELETE command in the
case of READ UPDATE SET. If the user wishes to
retain the data within the field addressed by the
pointer, it should be moved to the user's own area.

SYSID(name)
specifies the name of the system whose resources are
to be used for intercommunication facilities. The name
may be up to four characters in length.

When this option is specified, LENGTH and
KEYLENGTH must be specified in some situations
where normally they need not be, as follows.

If neither RBA nor RRN is specified, KEYLENGTH must
be specified; it cannot be found in the FCT.

If SET is not specified, LENGTH must either be
specified explicitly or must be capable of being
defaulted from the INTO or FROM option using the
length attribute reference in assembler language, or
STG and CSTG in PUI. LENGTH must be specified
explicitly in COBOL.

UPDATE
specifies that the record is to be obtained for updating
or (for VSAM only) deletion. If this option is omitted, a
read only operation is assumed.

File control exceptional conditions

DISABLED
occurs if a file is disabled. A file may be disabled
because:

• It was initially defined as disabled and has not
since been enabled

• It has been disabled by an EXEC CICS SET
command or by the CEMT transaction.

DSIDERR
equivalent to FILENOTFOUND.

Default action: terminate the task abnormally.

DUPKEY (VSAM only)
occurs if a record is retrieved by way of an alternate
index with the NONUNIQUEKEY attribute, and another
alternate index record with the same key follows. It
does not occur as a result of a READNEXT command
that reads the last of the records having the
nonunique key.

In assembler language, if the SET option is being used,
the register specified will not have been set, but can
be loaded from DFHEITP1.

Default action: terminate the task abnormally.

DUPREC
occurs if an attempt is made to add a record to a data
set, via a file, or to an alternate index with the
UNIQUEKEY attribute, in which the same key already
exists.

It may also occur when an attempt is made to add a
record to a data set whose upgrade set has an
alternate index with the UNIQUEKEY attribute, if ~'-,
corresponding alternate key already exists in the '
alternate index.

Default action: terminate the task abnormally.

ENDFILE
occurs if an end-of-file condition is detected during a
browse.

Default action: terminate the task abnormally.

FllENOTFOUND
occurs if a file name referred to in the FILE option
cannot be found in the FCT.

Default action: terminate the task abnormally.

ILLOGIC (VSAM only)
occurs if a VSAM error occurs that does not fall within
one of the other CICS response categories. Further
information is available in the EXEC interface block
(see Appendix A, "EXEC interface block" on page 339
for details).

Default action: terminate the task abnormally.

INVREQ
occurs if any of the following situations exist:

• A requested file control operation is not allowed
according to the file entry specification in the FCT.

• A REWRITE command, or a DELETE command
without the RIDFLD option, is issued for a file for
which no previous READ UPDATE command has
been issued.

• A READNEXT, READPREV, ENDBR, or RESETBR
command is issued for a file for which no previous
STARTBR command has been issued, or for which
a STARTBR was not successful.

• A READPREV command is issued for a file for
which the previous STARTBR command has the
GENERIC option.

• The KEYLENGTH option is specified (but the
GENERIC option is not specified), and the specified
length does not equal the length defined for the
data set to which this file refers.

• The KEYLENGTH and GENERIC options are
specified, and t~e length specified in the
KEYLENGTH option is either less than zero, or
greater than or equal to the length of a full key.

• A DELETE command is issued for a file referring to
a BDAM data set, or to a VSAM ESDS data set.

• A DELETE command with the RIDFLD option
specified is issued for a file referencing a VSAM
data set when a READ UPDATE command is
outstanding.

• Following a READ UPDATE command for a file, a
WRITE or READ UPDATE command is issued for a
file referencing the same data set before exclusive
control is released by a REWRITE, UNLOCK, or
DELETE command.

• An attempt is made to start a browse with a
REQID already in use for another browse.

• The type of record identification (for example, key
or relative byte address) used to access a data
set during a browse is changed by a READNEXT or
READPREV command.

• For a WRITE command, when writing records
containing imbedded keys, the key in the record
area (FROM option) and the key in RIDFLD do not
match.

Default action: terminate the task abnormally.

IOERR
occurs if there is an 1/0 error during a file control
operation. An 1/0 error is any unusual event that is
not covered by I a :;ICS exceptional condition.

Further information is available in the EXEC interface
block (see Appendix A, "EXEC interface block" on
page 339 for details).

Default action: terminate the task abnormally.

ISCINVREQ
occurs when the remote system indicates a failure
which does not correspond to a known condition.

Default action: terminate the task abnormally.

LENGERR
occurs if any of the following situations exist:

• The LENGTH option is not specified for a read
(without the SET option specified) or write
operation involving variable-length records.

• The length specified for a write operation exceeds
the maximum record size; the record is truncated.

• The length of a record read during a read
operation (with the INTO option specified) exceeds

Chapter 2.4. File control - commands, options, and conditions 99

the value specified in the LENGTH option; the
record is truncated, and the data area supplied in
the LENGTH option is set to the actual length of
the record.

• An incorrect length is specified for a read or write
operation involving fixed length records.

Default action: terminate the task abnormally.

NOSPACE
occurs if no space is available on the direct access
device for adding records to a data set.

Default action: terminate the task abnormally.

NOTAUTH
occurs when a resource security check has failed. Use
of SYSID will always raise the NOTAUTH condition
when resource security level checking is in effect
(RSLC = YES in the PCT). The reasons for the failure
are the same as for abend code AEY7, as described in
the CICSIMVS Messages and Codes manual.

Default action: terminate the task abnormally.

NOTFND
occurs if an attempt to retrieve or delete a record
based on the search argument provided is
unsuccessful. It may occur on a READPREV command
immediately following a STARTBR command which
specifies the key of a record that does not exist on the
data set.

Default action: terminate the task abnormally.

NOTOPEN
occurs if one of the following situations exist:

• The requested file is CLOSED and UNENABLED.
The CLOSED, UNENABLED state is reached after a
close request has been received against an OPEN
ENABLED file and the file is no longer in use. This
state can also be specified as the initial state by
means of the FILSTAT parameter of the DFHFCT
TYPE = FILE system macro.

• The requested file is still open and in use by other
requests, but a close request against the file has
been received. Existing users are allowed to
complete.

100 CICS/MVS 2.1.2 Application Programmer's Reference

This condition can occur only during the execution of
the following commands:

• READ

• WRITE

• The first command in a WRITE MASSINSERT
sequence

• DELETE

• The first command in a DELETE GENERIC
sequence

• STARTBR

Other commands cannot raise this condition because
they are part of an active request.

This condition does not occur if the request is made to
either a CLOSED, ENABLED file or a CLOSED,
DISABLED file. In the first case, the file is opened as
part of executing the request. In the second case, the
DISABLED condition is raised.

This condition may also occur when a file control
command refers to a file defined as REMOTE, where
the remote system is a release of CICS earlier than
1.7. The condition can then occur in response to any
file control command.

Default action: terminate the task abnormally.

SYSIDERR
occurs when the SYSID option specifies either a name
which is not defined in the intersystem table or a
system to which the link is closed.

Default action: terminate the task abnormally.

Chapter 2.5. DL/I services (EXEC DLI command)

DUI is a general-purpose database control system that
executes in a virtual-storage environment under MVS.
DUI simplifies the creation of databases by CICS
application programs. It also simplifies the subsequent
maintenance of those databases by CICS application
programs.

Execution of an application program containing EXEC DLII
commands requires the installation of the IMSNS licensed
program (program number 5740-XX2) Version 1.3.

This chapter outlines the EXEC DLI commands that can be
used in command level application programs that are used
to access DUI databases. These application programs can
be written in assembler language, COBOL, or PUI.

These commands have a syntax and format that are
similar to CICS commands (they use EXEC DLI instead of
EXEC CICS). Full details of the commands are given in the
publication IMS/VS Application Programming for
C/CS/OS/VS Users.

For online application programs, the commands are
translated by the appropriate command language
translator (see "Chapter 1.3. Command language
translator" on page 9) into calls to the CICS link edit stub.
At execution, OFHEIP is invoked which in turn invokes a
OUI interface program to perform the requested
operations.

For batch and shared database application programs, the
OUI link edit stub is invoked.

I Application programs may reside above the 16-megabyte
I line but, for OUI calls or EXEC OLi commands, the save
I area, parameter list, and all the parameters must be below
\ I the 16-megabyte line.

EXEC DLI command

The EXEC OLi command is similar to the EXEC CICS
command, yet provides the same facilities as the existing
call OUI interface, as described in "Chapter 2.6. DLII
services (OUI CALL statement)" on page 117. You can
use a simpler, more flexible, and easier-to-read command
format to request the same OUI facilities. Perhaps as
important, you can use EOF to test EXEC OLi commands in
an application program; you cannot do that if you use DUI
calls. EDF is described in "Chapter 1.7. Execution
(command level) diagnostic facility" on page 57.

CICS trace facilities record events for EXEC OU requests in
the same way as for DUI call statements.

© Copyright IBM Corp. 1982, 1991

There are no exceptional conditions for DUI commands,
though you can code HANDLE ABEND commands to handle
abends issued by DUI, including those caused by error
status codes.

This chapter describes the EXEC DU commands, options,
and arguments that you can code. Typica"y, the
procedure for accessing a DUI database is as follows:

1. Schedule your access to the database. That is, tell the
system that you want access, and define the kind of
access.

2. Perform operations involving the database. That is,
read or update data, or request statistics.

3. Terminate access.

4. Request a checkpoint or other system services.

The range of EXEC DLI commands available differs
according to the environment in which your program is to
run. The following table shows which commands you can
use in a given environment.

Command Online Shared DB Batch

GET NEXT YES YES YES
GET NEXT

IN PARENT YES YES YES
GET UNIQUE YES YES YES
INSERT YES YES YES
REPLACE YES YES YES
DELETE YES YES YES
STATISTICS YES NO YES
LOAD NO NO YES
CHECKPOINT NOl YES YES
SCHEDULE YES NO NO
TERMINATE YES NO NO
ROLL NO NO YES
ROLLBACK NO NO YES
LOG NO NO YES
RESTART NO NO YES
SYMCHKP NO NO YES

luse the EXEC DLI TERMINATE cotmland.

General format of EXEC DLI command

The general format of the EXEC DLI command is as
follows:

EXEC DlI function
[option[(argument)]] ••.

101

The following panels show the syntax of the EXEC DLI
commands. For simplicity, the syntax panels omit the
keywords EXEC DLI that should appear at the beginning of
each command in your program.

Each function keyword has two forms: a full form, and an
abbreviated form. Again for simplicity, the abbreviated
forms are shown in the syntax panels, the full form being
shown immediately following the panel.

This manual does not explain the meanings of the options
of EXEC DLI commands. For such meanings, see IMS/VS
Application Programming for CICS/OS/VS Users.

Schedule the PSB

SCHD
{PSB(name)IPSB«data-area»}

The full form of the command is SCHEDULE.

Get one or more segments

{GUIGNIGNP}
[USING PCB(integer-expr)]
[KEYFEEDBACK(data-area)]

[FEEDBACKLEN(integer-expr)]

For each parent segment:
[VARIABLE]
[FIRSTILASTlcURRENT]
[SEGMENT(name)ISEGMENT«data-area»]
[SEGLENGTH(integer-expr)]
[OFFSET(integer-expr)]
[LOCKED]
[SETPARENT]
[INTO(data-area)]
[WHERE(where clause)

[FIELDLENGTH(integer-expr)]]
[KEYS(data-area)

KEYLENGTH(integer-expr)]

For the object segment:
[VARIABLE]
[FIRST I LAST]
[SEGMENT(name)ISEGMENT«data-area»]
[SEGLENGTH(integer-expr)]
[OFFSET(integer-expr)]
[LOCKED]
INTO(data-area)
[WHERE(where clause)

[FIELDLENGTH(integer-expr)]]
[KEYS(data-area)

KEYLENGTH(integer-expr)]

The full form of the command is GET UNIQUE, GET NEXT,
or GET NEXT IN PARENT.

102 CICS/MVS 2.1.2 Application Programmer's Reference

Insert one or more segments

ISRT
[USING PCB(integer-expr)]

For each parent segment:
[VARIABLE]
[FIRSTILASTlcURRENT]
[SEGMENT(name)ISEGMENT«data-area»]
[SEGLENGTH(integer-expr)]
[FROM(data-area)]
[WHERE(where clause)

[FIELDLENGTH(integer-expr)]]
[KEYS(data-area)

KEYLENGTH(integer-expr)]

For the object segment:
[VARIABLE]
[FIRST I LAST]
[SEGMENT(name)ISEGMENT«data-area»]
[SEGLENGTH(integer-expr)]
[OFFSET(integer-expr)]
FROM(data-area)

The full form of the command is INSERT.

Load a segment (batch only)

LOAD
[USING PCB(integer-expr)]
[VARIABLE]
[SEGMENT(name)ISEGMENT«data-area»]
FROM(data-area)
[SEGLENGTH(integer-expr)]

Replace one or more segments

REPL
[USING PCB(integer-expr)]

For each parent segment:

[VARIABLE]
[SEGMENT(name)ISEGMENT«data-area»]
[SEGLENGTH(integer-expr)]
[OFFSET(integer-expr)]
[FROM(data-area)]

For the object segment:

[VARIABLE]
[SEGMENT(name)ISEGMENT«data-area»]
[SEGLENGTH(integer-expr)]
[OFFSET(integer-expr)]
FROM(data-area)

The full form of the command is REPLACE.

Delete a segment

DLET
[USING PCB(integer-expr)]
[VARIABLE]
[SEGMENT(name)ISEGMENT«data-area»]
FROM(data-area)
[SEGLENGTH(integer-expr)]

The full form of the command is DELETE.

Return pool statistics

STAT
[USING PCB(integer-expr)]
INTO(data-area)
[LENGTH(integer-expr)]
[VSAMINONVSAM]
[FORMATTED I UNFORMATTED I SUMMARY]

The full form of the command is STATISTICS.

I Terminate access to the PSB

I TERM

The full form of the command is TERMINATE.

When you issue a TERM command, the resources
associated with the previously scheduled PSB, are
released, and become available for scheduling by other
tasks. (The issuing of a sync point is part of this
operation.)

Request a basic checkpoint

CHKP
ID(data-area)I('char-expr ')

The full form of the command is CHECKPOINT.

Back out updates and abend (batch only)

I ROLL

Back out updates and return control (batch
only)

I ROll

The full form of the command is ROLLBACK.

Write record to system log (batch only)

LOG
FROM(data-area)
[LENGTH(integer-expr)]

Request a symbolic checkpoint (batch only)

SYMCHKP
ID(data-area) I ('char-expr')
[AREAl (data-area)

[LENGTHl(integer-expr)]]

[AREA7(data-area)
[LENGTH7(integer-expr)]]

The full form of the command is SYMBOLIC CHECKPOINT.

Invoke extended restart (batch only)

XRST
[ID(data-area)I('char-expr ')]
[MAXLENGTH(integer-expr)]
[AREAl (data-area)

[LENGTHl(integer-expr)]]

[AREA7(data-area)
[LENGTH7(integer-expr)]]

RETRIEVE
USING PCB(integer-expr)
KEYFEEDBACK(data-area)
[FEEDBACKLEN(integer-expr)]

The full form of the command is RESTART.

Chapter 2.5. DUI services (EXEC DLI command) 103

General rules and conventions

As a general rule, you need only specify LENGTH
parameters in COBOL application programs.

On the GET, INSERT, and REPLACE commands, you can
repeat the segment-oriented keywords (that is, all those
except USING PCB and KEYFEEDBACK) for each segment,
but you must name them in hierarchical order, that is, the
last segment named must be the object segment.

You must code keywords preceding the keyword SEGMENT
immediately preceding the segment to which they apply,
but within themselves they may be coded in any order.

Similarly, you must code keywords that follow the keyword
SEGMENT immediately following the segment to which they
apply, but within themselves they may be coded in any
order.

You cannot code either FIRST or CURRENT on GET
UNIQUE commands, but you must code the SEGMENT
option for the object segment on GET UNIQUE commands.

You can specify the name of a segment, or a PSB, either
as a literal or as a variable. If you specify it as a variable,
you must code the name of the data area containing its
current value in double parentheses, as shown in the
syntax displays.

You cannot code the KEYS option and the WHERE option
for the same segment. You can specify KEYS only once
per command, and you must specify it in the highest level
segment in the command.

A where clause has the following form:

WHERE(fieldname operator valo~
[ANDIOR fieldname operator value •••])

[FIELDLENGTH(integer-exprl
[,integer-expr2, •••])]

'fieldname' must be the name of a field as defined in the
database description (the DB D).

'value' is a reference to a data area containing the value
to be compared. Alternatively, in an assembler or PUI
program, 'value' can be a literal character string in single
quotes, for example:

WHERE (STATUS='SINGLE')

You can specify values for the WHERE operand as Boolean
expressions. Such expressions help to identify the

104 CICS/MVS 2.1.2 Application Programmer's Reference

segment to be accessed. For example, you could use the
following expression to identify, from a personnel.
database, all subjects with certain predefined attributes.
You can specify up to 12 Boolean qualifiers in a single
statement.

WHERE(AGE > SEVENTEEN AND
AGE < TWENTY ONE AND
HAIR = BLONDE OR
IQ > ONESIXZERO)

You must specify delimiters for COBOL and PUI EXEC DlI
commands, in the same way as EXEC CICS commands, by
END-EXEC for COBOL and by a semicolon for PUl, for
example:

For COBOL:

EXEC DLI GU SEGMENT(SKILL)
INTO(SKILlSTRUCT)

For PL/I:

WHERE (SKIllTYPE=PlUMBER)
END-EXEC

EXEC DlI GU SEGMENT(SKILL)
INTO(SKILLSTRUCT)
WHERE(SKIllTYPE=PlUMBER);

I When coding EXEC DlI commands with a fieldname, you
I can use special characters (# or $) if single quotes are put
I around the name in parentheses.

When using EXEC DlI commands in assembler language
application programs, you must obey the conventions for
EXEC CICS commands (see "Coding conventions" on
page 5) as well as the following rules that apply to
expressions in the WHERE clause:

1. The WHERE clause must not contain macro variables
(identified by the prefix '&') because '&' is treated as a
Boolean operator by the CICS translator.

2. The operator following a comparison operator in a
WHERE clause is restricted to one of the following:

• A literal character string in single quotes

• An assembler language relocatable expression not
containing operators, for example:

WHERE(PTNO"" -'0000') valid
WHERE(PTNO < LAB3) valid
WHERE(PTNO < LAB3(2,R1» valid
WHERE(PTNO < LAB3 + 2) not valid

OL/llnterface block (018)

Whenever you make an EXEC DLI request, DLI responds by
storing information in the DUI interface block (the DIS) in
your program. A DIS is inserted automatically into your
program by the CICS command translator. The DIB
contains the following named fields:

Fields of the DIB --------------,

Field ASM COBOL PL/I

DIBSTAT CL2
DIBSEGM CLB
DIBSEGLV CL2
DIBKFBL H

DIBSTAT

PIC XX
PIC X(B)
PIC XX
PIC S9(4)

COMP

CHAR(2)
CHAR(B)
CHAR(2)
FIXED
BIN(15,e)

is the DUI status code. It indicates the degree to
which your DLII request has been successful. The
status code returned can be one of the following:

bb (blanks) request successful

GA crossed hierarchical boundary into higher level

GB end of data set; beyond last segment

GD segment position lost or insert had missing
segment specification

GE segment not found

GG position set at start of database after GET with
processing option GO

GK different segment type at same level returned

II segment to insert already exists

LB segment to load already exists (batch only)

NI secondary index to insert already exists (batch
programs only)

TG TERM attempted when PSB not scheduled.

A full list of status codes is given in the application
programming reference manual for IMSNS.

Any other status code indicates that the DLII interface
program has found an unrecoverable error. Such an
error abends your CICS transaction. The abend code
generated by the error has the form DHxx, where xx is
the DLII status code.

DIBSEGM
is the name of the object segment or the lowest level
parent segment actually retrieved.

DIBSEGLV
gives the hierarchical level of the object segment or
lowest level parent segment actually retrieved.

DIBKFBL
is the halfword binary value, when KEYFEEDBACK has
been specified, representing the actual length of the
key returned to the KEYFEEDBACK area. It normally
represents the concatenated key of the segment
named in DISSEGM, but may be truncated if the area
you provide is not long enough.

Example of OL/I requests using EXEC OLI

The following example shows, in assembler language,
COBOL, and PUI, the use of the EXEC DLI command in a
CICS application program to request DUI services.

Chapter 2.5. OUI services (EXEC Oll command) 105

ASMexamp~~EXECDUcommands ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

*ASM XOPTS(CICS,DLI)
*
* PROGRAM: SAMPLE
* ASSEMBLER LANGUAGE EXEC DLI ONLINE PROGRAM
*
* RELEASE DEPENDENCIES: CICS/MVS 2.1, IMS/VS 1.3
*
R2 EQU 2
R3 EQU 3
R4 EQU 4
Rll EQU 11
R12 EQU 12
R13 EQU 13
*
DFHEISTG DSECT
SEGKEYA OS CL4
SEGKEYB OS CL4
SEGKEYC OS CL4
SEGKEYI OS CL4
SEGKEY2 OS CL4
CONKEYB OS CLB
SEGNAME OS CLB
SEGLEN OS H
PCBNUM OS H
AREAA OS CLBa
AREAB OS ClB8
AREAC OS CLB8
AREAG OS CL258
AREAS TAT os CL369

COPY MAPSET

* INITIALIZATION
* HANDLE ERROR CONDITIONS IN ERROR ROUTINE
* HANDLE ABENOS (DLI ERROR STATUS CODES) IN ABEND ROUTINE
* RECEIVE INPUT MESSAGE

SAMPLE DFHEIENT CODEREG=(R2,R3),DATAREG=(RI3,RI2),EIBREG=Rll

EXEC CICS HANDLE CONDITION ERROR(ERRORS)
EXEC CICS HANDLE ABEND LABEL(ABENDS)
EXEC CICS RECEIVE MAP ('SAMPMAP') MAPSET('MAPSET')

* ANALYZE INPUT MESSAGE AND PERFORM NON-DlI PROCESSING

* SCHEDULE PSB NAMED 'SAMPLEl'

EXEC DLI SCHD PSB(SAMPLEl)
BAL R4,TESTOIB CHECK STATUS

* RETRIEVE ROOT SEGMENT AND ALL ITS DEPENDANTS

MVC SEGKEYA,=C'A3ae'
EXEC OLI GU USING PCB(l) SEGMENT(SEGA) INTO(AREAA) X

SEGLENGTH(B9) WHERE(KEYA=SEGKEYA) FIELDLENGTH(4)
BAL R4,TESTOIB CHECK STATUS

106 CICS/MVS 2.1.2 Application Programmer's Reference

ASM example of EXEC DLI commands (continued)

GNP LOOP EQU *
EXEC DLI GNP USING PCB(l) INTO(AREAG) SEGLENGTH(250)
CLC DIBSTAT,=C1GE 1 LOOK FOR END
BE LOOPDONE DONE AT IGEI
BAL R4,TESTDIB CHECK STATUS
B GNP LOOP

LOOPDONE EQU *

* INSERT NEW ROOT SEGMENT

MVC AREAA,=CL80 IDATA FOR NEW SEGMENT INCLUDING KEY 1
EXEC DLI ISRT USING PCB(l) SEGMENT(SEGA) FROM(AREAA) X

SEGLENGTH(80)
BAL R4,TESTDIB CHECK STATUS

* RETRIEVE 3 SEGMENTS IN PATH AND REPLACE THEM

*

MVC SEGKEYA,=C 1A20e l

MVC SEGKEYB,=C 1B240 1
MVC SEGKEYC,=C 1C241 1
EXEC DLI GU USING PCB(l) X

SEGMENT(SEGA) WHERE(KEYA=SEGKEYA) FIELDLENGTH(4) X
INTO(AREAA) X
SEGLENGTH(80) X
SEGMENT(SEGB) WHERE(KEYB=SEGKEYB) FIELDLENGTH(4) X
INTO{AREAB) X
SEGLENGTH(80) X
SEGMENT(SEGC) WHERE(KEYC=SEGKEYC) FIELDLENGTH(4) X
INTO(AREAC) X
SEGLENGTH(B0)

BAL R4,TESTDIB

* UPDATE FIELDS IN THE 3 SEGMENTS
*

EXEC DLI REPL USING PCB(l)
SEGMENT(SEGA) FROM(AREAA) SEGLENGTH(S0)
SEGMENT(SEGB) FROM{AREAB) SEGLENGTH(S0)
SEGMENT{SEGC) FROM(AREAC) SEGLENGTH(S0)

BAL R4,TESTDIB CHECK STATUS

X
X
X

* INSERT NEW SEGMENT USING CONCATENATED KEY TO QUALIFY PARENT

MVC AREAC,=CL80 IDATA FOR NEW SEGMENT INCLUDING KEY I
MVC CONKEYB,=CIA200B240I
EXEC DLI ISRT USING PCB(l) X

SEGMENT{SEGB) KEYS(CONKEYB) KEYLENGTH(8) X
SEGMENT(SEGC) FROM(AREAC) SEGLENGTH(80)

BAL R4,TESTDIB CHECK STATUS

* RETRIEVE SEGMENT DIRECTLY USING CONCATENATED KEY
* AND THEN DELETE IT AND ITS DEPENDANTS

MVC CONKEYB,=C 1A200B230 1
EXEC DLI GU USING PCB(l) X

Chapter 2.5. DUI services (EXEC DLI command) 107

ASMexamp~~EXECDUcommands~ontlnue~ ~~~~~~~~~~~~~~~~~~~~~~~~~

SEGMENT(SEGB)
KEYS(CONKEYB) KEYLENGTH(8)
INTO(AREAB) SEGLENGTH(80)

BAL R4,TESTDIB CHECK STATUS
EXEC DLI DLET USING PCB(l)

SEGMENT(SEGB) SEGLENGTH(80) FROM(AREAB)
BAL R4,TESTDIB CHECK STATUS

* RETRIEVE SEGMENT BY QUALIFYING PARENT WITH CONCATENATED KEY,
* OBJECT SEGMENT WITH WHERE OPTION USING A LITERAL,
* AND THEN SET PARENTAGE
* * USE VARIABLES FOR PCB INDEX, SEGMENT NAME, AND SEGMENT LENGTH

MVC CONKEYB,=C'A20SB230'
MVC SEGNAME,=CL8'SEGA'
MVC SEGLEN,=H'80'
MVC PCBNUM,=H'l'
EXEC DLI GU USING PCB(PCBNUM)

SEGMENT«SEGNAME»
KEYS(CONKEYB) KEYLENGTH(8) SETPARENT
SEGMENT(SEGC) INTO(AREAC) SEGLENGTH(SEGLEN)
WHERE(KEYC='C520')

BAL R4,TESTDIB CHECK STATUS

* RETRIEVE DATA BASE STATISTICS

EXEC DLI STAT USING PCB(l) INTO(AREASTAT)
VSAM FORMATTED LENGTH(360)

BAL R4,TESTDIB CHECK STATUS

* RETRIEVE ROOT SEGMENT USING BOOLEAN OPERATORS

MVC SEGKEYl,=C'A050'
MVC SEGKEY2,=C'Al50'
EXEC DLI GU USING PCB(l) SEGMENT(SEGA) INTO(AREAA)

SEGLENGTH(80) FIELDLENGTH(4,4,4,4)
WHERE(KEYA>SEGKEYl AND KEYA<SEGKEY2 OR
KEYA>'A275' AND KEYA<'A350')

BAL R4,TESTDIB CHECK STATUS

* TERMINATE PSB WHEN DLI PROCESSING IS COMPLETED

EXEC DLI TERM

* SEND OUTPUT MESSAGE

EXEC CICS SEND MAP('SAMPMAP') MAPSET('MAPSET')
EXEC CICS WAIT TERMINAL·

* COMPLETE TRANSACTION AND RETURN TO CICS

108 CICS/MVS 2.1.2 Application Programmer's Reference

X
X

X

X
X
X
X

X

X
X
X

ASM example of EXEC OLI commands (continued) ~~~~~~~~~~~~~~~~~~~~~~~~~

EXEC CICS RETURN

* CHECK STATUS IN DIB

TESTDIB EQU *

CLC DIBSTAT,=C' IS STATUS BLANK
BER R4 YES - RETURN

* HANDLE DLI STATUS CODES REPRESENTING EXCEPTIONAL CONDITIONS
*

BR R4 RETURN
ERRORS EQU *
* HANDLE ERROR CONDITIONS
*
ABE NOS EQU *
* HANDLE ABENDS INCLUDING DLI ERROR STATUS CODES
*

END

Chapter 2.5. DUI services (EXEC DLI command) 109

COBOLexamp~ofEXECDUcommands ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CBL LIB,APOST,XOPTS(CICS,DLI)
IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE.

* COBOL EXEC DLI ONLINE PROGRAM
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 SEGKEYA PIC X(4).
77 SEGKEYB PIC X(4).
77 SEGKEYC PIC X(4).
77 SEGKEY1 PIC X(4).
77 SEGKEY2 PIC X(4).
77 SEGKEY3 PIC X(4).
77 SEGKEY4 PIC X(4).
77 CONKEYB PIC XeS).
77 SEGNAME PIC XeS).
77 SEGLEN COMP PIC S9(4).
77 PCBNUM COMP PIC S9(4).
01 AREAA PIC X(80).

* DEFINE SEGMENT I/O AREA
01 AREAB PIC X(S0).
01 AREAC PIC X(80).
01 AREAG PIC X(250).
01 AREASTAT PIC X(360).

COPY MAPSH.
PROCEDURE DIVISION.

* ***
* INITIALIZATION
* HANDLE ERROR CONDITIONS IN ERROR ROUTINE
* HANDLE ABENDS (DLI ERROR STATUS CODES) IN ABEND ROUTINE
* RECEIVE INPUT MESSAGE
* ***

*

*

EXEC CICS HANDLE CONDITION ERROR(ERRORS) END-EXEC.

EXEC CICS HANDLE ABEND LABEL(ABENDS) END-EXEC.

EXEC CICS RECEIVE MAP ('SAMPMAP ') MAPSET('MAPSET ') END-EXEC.
* ANALYZE INPUT MESSAGE AND PERFORM NON-DLI PROCESSING
* ***
* SCHEDULE PSB NAMED 'SAMPLE1 1

* ***********************************.'***************************
EXEC DLI SCHD PSB(SAMPLE1) END-EXEC.
PERFORM TEST-DIB THRU OK.

110 CICS/MVS 2.1.2 Application Programmer's Reference

COBOLexamp~ of EXEC DLI commands (continued) ~~~~~~~~~~~~~~~~~~~~~~~

* ***
* RETRIEVE ROOT SEGMENT AND ALL ITS DEPENDANTS
* ***

MOVE 'A300' TO SEGKEYA.
EXEC DLI GU USING PCB (1) SEGMENT(SEGA) INTO(AREAA)

SEGLENGTH(S8) WHERE(KEYA=SEGKEYA) FIELDLENGTH(4)
END-EXEC.
PERFORM TEST-DIB THRU OK.

GNPLOOP.
EXEC DLI GNP USING PCB(l) INTO(AREAG) SEGLENGTH(250)
END-EXEC.
IF DIBSTAT EQUAL TO 'GE' THEN GO TO LOOPDONE.
PERFORM TEST-DIB THRU OK.
GO TO GNPLOOP.

LOOPDONE.
* ***
* INSERT NEW ROOT SEGMENT
* ***

MOVE 'DATA FOR NEW SEGMENT INCLUDING KEY' TO AREAA.
EXEC DLI ISRT USING PCB(l) SEGMENT(SEGA) FROM(AREAA)

SEGLENGTH(S0) END-EXEC.
PERFORM TEST-DIB THRU OK.

* ***
* RETRIEVE 3 SEGMENTS IN PATH AND REPLACE THEM
* ***

MOVE 'A200' TO SEGKEYA.
MOVE 'B240' TO SEGKEYB.
MOVE 'C241 ' TO SEGKEYC.
EXEC DLI GU USING PCB(l)

SEGMENT(SEGA) WHERE(KEYA=SEGKEYA) FIELDLENGTH(4)
INTO(AREAA)
SEGLENGTH(S0)

SEGMENT(SEGB) WHERE(KEYB=SEGKEYB) FIELDLENGTH(4)
INTO(AREAB)
SEGLENGTH(S0)

SEGMENT(SEGC) WHERE(KEYC=SEGKEYC) FIELDLENGTH(4)
INTO(AREAC)
SEGLENGTH(S0)

END-EXEC.
PERFORM TEST-DIB THRU OK.

* UPDATE FIELDS IN THE 3 SEGMENTS
EXEC DLI REPL USING PCB(l)

SEGMENT(SEGA) FROM(AREAA) SEGLENGTH(S8)
SEGMENT(SEGB) FROM(AREAB) SEGLENGTH(S0)
SEGMENT(SEGC) FROM(AREAC) SEGLENGTH(S0)

END-EXEC.
PERFORM TEST-DIB THRU OK.

* ***
* INSERT NEW SEGMENT USING CONCATENATED KEY TO QUALIFY PARENT
* ***

MOVE 'DATA FOR NEW SEGMENT INCLUDING KEY ' TO AREAC.
MOVE 'A200B248I TO CONKEYB.
EXEC DLI ISRT USING PCB(l)

SEGMENT(SEGB) KEYS(CONKEYB) KEYLENGTH(8)
SEGMENT(SEGC) FROM(AREAC) SEGLENGTH(80)

END-EXEC.
PERFORM TEST-DIB THRU OK.

Chapter 2.5. DUI services (EXEC DLI command) 111

* ***
* RETRIEVE SEGMENT DIRECTLY USING CONCATENATED KEY
* AND THEN DELETE IT AND ITS DEPENDANTS
* ***

MOVE 'A299B239I TO CONKEYB.
EXEC DLI GU USING PCB(l)

SEGMENT (SEGB)
KEYS(CONKEYB) KEYLENGTH(S)
INTO(AREAB) SEGLENGTH(S9)

END-EXEC.
PERFORM TEST-DIB THRU OK.
EXEC DLI DLET USING PCB(l)

SEGMENT(SEGB) SEGLENGTH(S9) .FROM(AREAB) END-EXEC.
PERFORM TEST-DIB THRU OK.

* ***
* RETRIEVE SEGMENT BY QUALIFYING PARENT WITH CONCATENATED KEY,
* OBJECT SEGMENT WITH WHERE OPTION,
* AND THEN SET PARENTAGE
* * USE VARIABLES FOR PCB INDEX, SEGMENT NAME, AND SEGMENT LENGTH
* ***

MOVE 'A299B239I TO CONKEYB.
MOVE 'C529 1 TO SEGKEYC.
MOVE 'SEGA ' TO SEGNAME.
MOVE S9 TO SEGLEN.
MOVE 1 TO PCBNUM.
EXEC DLI GU USING PCB(PCBNUM)

SEGMENT«SEGNAME»
KEYS(CONKEYB) KEYLENGTH(8) SETPARENT

SEGMENT(SEGC) INTO(AREAC) SEGLENGTH(SEGLEN)
WHERE(KEYC=SEGKEYC) FIELDLENGTH(4) END-EXEC.

PERFORM TEST-DIB THRU OK.
* ***
* RETRIEVE DATA BASE STATISTICS
* ***

EXEC DLI STAT USING PCB(l) INTO(AREASTAT)
VSAM FORMATTED LENGTH(369) END-EXEC.

PERFORM TEST-DIB THRU OK.
* ***
* RETRIEVE ROOT SEGMENT USING BOOLEAN OPERATORS
* ***

MOVE 'A959' TO SEGKEYl.
MOVE 'Al59 1 TO SEGKEY2.
MOVE 'A275 1 TO SEGKEY3.
MOVE 'A359 1 TO SEGKEY4.
EXEC DLI GU USING PCB(l) SEGMENT(SEGA) INTO(AREAA)

SEGLENGTH(S9) FIELDLENGTH(4,4,4,4)
WHERE(KEYA>SEGKEYl AND KEYA<SEGKEY2 OR

KEYA>SEGKEY3 AND KEYA<SEGKEY4)
END-EXEC.
PERFORM TEST-DIB THRU OK.

* ***
* . TERMINATE PSB WHEN DLI PROCESSING IS COMPLETED
* ***

EXEC DLI TERM END-EXEC.
* ***
* SEND OUTPUT MESSAGE
* ***

112 CICS/MVS 2.1.2 ApplicatIon Programmer's Reference

COBOLexamp~ofEXECDUcommand.~ontinue~ ~~~~~~~~~~~~~~~~~~~~~~~

EXEC CICS SEND MAP('SAMPMAP ') MAPSET('MAPSET ') END-EXEC.
EXEC CICS WAIT TERMINAL END-EXEC.

* ***
* COMPLETE TRANSACTION AND RETURN TO CICS
* ***

EXEC CICS RETURN END-EXEC.
* ***
* CHECK STATUS IN DIB
* ***

TEST -DIB.
IF DIBSTAT EQUAL TO I I THEN GO TO OK.

* HANDLE DLI STATUS CODES REPRESENTING EXCEPTIONAL CONDITIONS
OK.
ERRORS.

* HANDLE ERROR CONDITIONS
ABENDS.

* HANDLE ABENDS INCLUDING DLI ERROR STATUS CODES

Chapter 2.5. DUI services (EXEC DLI command) 113

PLnexamp~ofEXECDUcommands ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

* PROCESS INClUDE,GN,XOPTS(CICS,DlI);
SAMPLE: PROCEDURE OPTIONS(MAIN);

/* PROGRAM: Pl/I EXEC DlI ONLINE PROGRAM
DCl
DCl
DCl
DCl
DCl
DCl
DCl
DCL
DCl
DCl
DCL 1

/*
DCl 1
DCl 1
DCl 1
DCL 1

SEGKEYA CHAR (4);
SEGKEYB CHAR (4);
SEGKEYC CHAR (4)
SEGKEYI CHAR (4)
SEGKEY2 CHAR (4)
SEGKEY3 CHAR (4)
SEGKEY4 CHAR (4)
CONKEYB CHAR (B)
SEGNAME CHAR (B)
PCBNUM FIXED BIN (15);
AREAA CHAR (B0);
DEFINE SEGMENT I/O AREA
AREAB
AREAC
AREAG
AREASTAT

%INClUDE MAPSET

CHAR (B0);
CHAR (B0);
CHAR (250);
CHAR (360);

*/

*/

/* ** */
/* INITIALIZATION * /
/* HANDLE ERROR CONDITIONS IN ERROR ROUTINE */
/* HANDLE ABENDS (DlI ERROR STATUS CODES) IN ABEND PROGRAM */
/* RECEIVE INPUT MESSAGE */
/* ** */
EXEC CICS HANDLE CONDITION ERROR(ERRORS);
/* */
EXEC CICS HANDLE ABEND PROGRAM('ABENDS');
/* */
EXEC CICS RECEIVE MAP ('SAMPMAP') MAPSET('MAPSET');
/* ANALYZE INPUT MESSAGE AND PERFORM NON-DlI PROCESSING */
/* ** */
/* SCHEDULE PSB NAMED 'SAMPlEl' */
/* ** */
EXEC DlI SCHD PSB(SAMPlEl);
CALL TEST_DIB;
/* ** */
/* RETRIEVE ROOT SEGMENT AND All ITS DEPENDANTS */
/* ** */
SEGKEYA = 'A300';
EXEC DlI GU USING PCB(l) SEGMENT(SEGA) INTO(AREAA)
WHERE(KEYA=SEGKEYA);
CAll TEST_DIB;

GNPLOOP:
EXEC DlI GNP USING PCB(l) INTO(AREAG);
IF DIBSTAT = 'GE' THEN GO TO lOOPDONE;
CALL TEST_DIB;
GO TO GNPLOOP;

LOOPDONE:
/* ** */
/* INSERT NEW ROOT SEGMENT */
/* ** */

114 CICS/MVS 2.1.2 Application Programmer's Reference

PLnexamp~~EXECDUcommands~onffnue~ ~~~~~~~~~~~~~~~~~~~~~~~~~

AREAA = 'DATA FOR NEW SEGMENT INCLUDING KEY';
EXEC DLI ISRT USING PCB(l) SEGMENT(SEGA) FROM(AREAA);
CALL TEST_DIB;
/* ** */

/ / RETRIEVE 3 SEGMENTS IN PATH AND REPLACE THEM
/* ** */
SEGKEYA = 'A2BB';
SEGKEYB = 'B248';
SEGKEYC = 'C24l';
EXEC DLI GU USING PCB(l)

SEGMENT(SEGA) WHERE(KEYA=SEGKEYA)
INTO(AREAA)

SEGMENT(SEGB) WHERE(KEYB=SEGKEYB)
INTO(AREAB)

SEGMENT(SEGC) WHERE(KEYC=SEGKEYC)
INTO(AREAC);

CALL TEST_DIB;
/* UPDATE FIELDS IN THE 3 SEGMENTS
EXEC DLI REPL USING PCB(l)

SEGMENT(SEGA) FROM(AREAA)
SEGMENT(SEGB) FROM(AREAB)
SEGMENT(SEGC) FROM(AREAC);

CALL TEST DIB;

*/

/* ** */
/* INSERT NEW SEGMENT USING CONCATENATED KEY TO QUALIFY PARENT */
/* ** */
AREAC = 'DATA FOR NEW SEGMENT INCLUDING KEY';
CONKEYB = 'A288B248';
EXEC DLI ISRT USING PCB(l)

SEGMENT(SEGB) KEYS(CONKEYB)
SEGMENT(SEGC) FROM(AREAC);

CALL TEST_DIB;
/* ** */
/* RETRIEVE SEGMENT DIRECTLY USING CONCATENATED KEY */
/* AND THEN DELETE IT AND ITS DEPENDANTS */
/* ** */
CONKEYB = 'A288B238';
EXEC DLI GU USING PCB(l)

SEGMENT(SEGB)
KEYS(CONKEYB)
INTO(AREAB);

CALL TEST DIB;
EXEC DLI DLET USING PCB(l)

SEGMENT(SEGB) FROM(AREAB);
CALL TEST_DIB;
/* ** */
/* RETRIEVE SEGMENT BY QUALIFYING PARENT WITH CONCATENATED KEY,*/
/* OBJECT SEGMENT WITH WHERE OPTION */
/* AND THEN SET PARENTAGE */
/* */
/* USE VARIABLES FOR PCB INDEX, SEGMENT NAME */
/* ** */
CONKEYB = 'A289B239';

Chapter 2.5. DUI services (EXEC DLI command) 115

SEGNAME = 'SEGA';
SEGKEYC = 'C520 1

;

PCBNUM = 1;
EXEC DLI GU USING PCB(PCBNUM)

SEGMENT«SEGNAME»
KEYS(CONKEYB) SETPARENT

SEGMENT(SEGC) INTO(AREAC)
WHERE(KEYC=SEGKEYC);

CALL TEST DIB;
1* ** *1
1* RETRIEVE DATA BASE STATISTICS *1
1* **
EXEC DLI STAT USING PCB(l) INTO(AREASTAT) VSAM FORMATTED;
CALL TEST_DIB;
1* **
1* RETRIEVE ROOT SEGMENT USING BOOLEAN OPERATORS

*/

*1
*1

1* ** *1
SEGKEYI 'Aese ' ;
SEGKEY2 'A15e ' ;
SEGKEY3 'A275 1

;

SEGKEY4 'A35e ' ;
EXEC DLI GU USING PCB(l) SEGMENT(SEGA) INTO(AREAA)

WHERE(KEYA>SEGKEYI AND KEYA<SEGKEY2 OR
KEYA>SEGKEY3 AND KEYA<SEGKEY4);

CALL TEST DIB;
1* ** *1
1* TERMINATE PSB WHEN DLI PROCESSING IS COMPLETED *1
1* ** *1
EXEC DLI TERM;
1* ** *1
1* SEND OUTPUT MESSAGE *1
1* ** *1
EXEC CICS SEND MAP('SAMPMAP') MAPSET('MAPSET');
EXEC CICS WAIT TERMINAL;
1* ** *1
1* COMPLETE TRANSACTION AND RETURN TO CICS *1
1* ** *1
EXEC CICS RETURN;
1* ** *1
1* CHECK STATUS IN DIB *1
1* ** *1

TEST_DIB: PROCEDURE;
IF DIBSTAT =' 'THEN GO TO OK;
1* HANDLE DLI STATUS CODES REPRESENTING EXCEPTIONAL CONDITIONS *1

OK:
END;
ERRORS:

1* HANDLE ERROR CONDITIONS
END SAMPLE;

116 CICS/MVS 2.1.2 Application Programmer's Reference

*1

Chapter 2.6. DL/I services (DL/I CALL statement)

For assembler language, COBOL, and PUI application
programs using the EXEC CICS command level interface,
OUI CALL statements are similar to OUI database CALL
statements running in batch mode or under IMSNS data
communication. (For assembler-language application
programs, the CALLOLI macro, rather than the CALL
macro, should be used when running under CICS.)

However, the OUI command level interface provides a
simpler method (using the EXEC OLi command) of
accessing OLII databases.

This chapter describes the OLII CALL statement method of
accessing OLII databases in an online environment only.
The use of the EXEC OLi command is described in
"Chapter 2.5. OLII services (EXEC OLi command)" on
page 101.

The two methods of accessing OLII databases cannot both
be used in the same task. However, it is possible for
different tasks in the same system to use different
methods.

The CICS application program can request OUI services by
means of a OUI CALL statement. In response to such a
request, control is passed to a CICS-OUI routine that acts
as an interface between the CICS application program and
OUI. This interface routine checks the validity of the CALL
list, sets up OUI to handle the request, and passes control
and the CALL list to OUI. When the interface routine
regains control, it, in its turn, returns control to the calling
program, unless a OUI pseudoabend has occurred, in
which case the CICS task is abnormally terminated.

I Application programs may reside above the 16-megabyte
I line but, for OUI calls or EXEC OLi commands, the save

, I area, parameter list, and all the parameters must be below
I the 16-megabyte line.

Under CICS, two or more tasks may require access to the
same application program at the same time. Because
CICS application programs must be quasi-reenterable, OUI
areas that may be modified under CICS, such as PCB
pointers, segment search arguments, and I/O work areas,
should be placed in dynamic storage. For assembler
language this will be in the OFHEISTG OS ECT, for COBOL
in working storage, and for PUI in AUTOMATIC storage.

The OUI database access capabilities of a CICS application
program are defined in a program specification block (PSB)
which is created, by the system programmer, by means of
a PSB generation utility program.

The PSB contains one or more program communication
blocks (PCBs) that describe the database access
requirements of each OUI database to be accessed by the
application program.

© Copyright IBM Corp. 1982, 1991

A CICS application program designed to access OLII
databases must schedule its access to OUI. Scheduling
involves, for example, ensuring that the PSB is valid, that
the application is not already scheduled, that the
referenced databases are open and enabled, and that
there is no intent conflict between the PSB and already
scheduled PSBs from other application programs.
Negative responses to any of the above will prevent
scheduling.

The scheduling call, if successful, returns a list of
addresses of the PCBs within the scheduled PSB. The
application program in a subsequent CALL statement can
specify, from this list, the address of the PCB
corresponding to the database to be accessed.

If the scheduling call is unsuccessful, an INVREQ (invalid
request) indicator is returned in response to subsequent
OUI CALL statements in the application program.

A task may schedule only one PSB at a time. Any attempt
to schedule a second PSB while one is still scheduled
causes the INVREQ indicator to be returned.

A sync point request (see "Chapter 5.6. Recovery (sync
points)" on page 331) by a task that is scheduled to use
OUI resources implies the release of those resources.
This means that if, after issuing a sync point request,
access to a OUI database is required, the PSB must be
rescheduled. The previous position of the database has
been lost.

To access DLII databases, the following steps are required.

1. Issue a OUI call to schedule the PSB and obtain PCB
addresses.

2. Issue a OUI call to access the required database.

3. Check the status code and UIBRCOOE immediately
following each OUI call.

4. Issue a OLII call, when all OLII access is complete, to
terminate the connection by releasing the pse. The
OUI call also causes a sync point to be taken.
(Otherwise, the PSB is released automatically when
the transaction is terminated.)

User Interface block (UIB)

The CICS-OUI routine that acts as the interface between
the CICS application program and OUI passes information
to the application program in a User Interface Block (UIB).
A definition of the UIB should only be included in the
application program if the ule is to be referenced. The
UIB is acquired by the interface routine when an
application program issues a schedule request specifying a

117

pointer reference to be set with the address of the UIB.
The UIB contains the address of the PCB address list
(UIBPCBAL) from the schedule request and, for each OUI
request, the response (UIBRCOOE) from the interface
routine, as follows:

Fields of the UIB ---------------,

Field ASH COBOL PL/I

UIBPCBAL OS A PIC 9(8) POINTER
COMP

UIBRCODE DS 0XL2 PIC XX

UIBFCTR OS X

UIBOLTR OS X

PIC X

PIC X

BIT (8)

BIT(8)

The fields UIBFCTR and UIBOLTR are overlays for the first
and second bytes respectively of the return code (see
"Check the response to a OUI CALL" on page 120).

ASM
The UIB definition is included by invoking the OLlUIB
macro.

COBOL

PL/I

The UIB definition is included by a COpy OLlUIB
statement in the linkage section of the program.

The UIB definition is included by a O/OINCLUOE OLlUIB
statement.

Examples of these are given at the end of the chapter. A
COBOL application program must not include both
OFHTCAOS and OLlUIB OSECTS, otherwise duplicate labels
will be generated.

Schedule the PSB and obtain PCB
addresses

The format of the CALL statement to request scheduling of
the PSB and to obtain the associated PCB addresses is as
follows:

ASM:

CALLOLI ASMTOLI,([parmcount,]
function,psbname,ptr-ref)

COBOL:

CALL 'CBLTOLI' USING [parmcount,]
function,psbname,ptr-ref

PUt:

CALL PLITOLI(parmcount,
function,psbname,ptr-ref)

118 CICS/MVS 2.1.2 Application Programmer's Reference

where:

'parmcount'
is a binary fullword containing a count of the
arguments that follow. (Required only for PUI.)

'function'
is the name of the field containing the four-character
function 'PCBb'.

'psbname'
is an 8-byte field containing the PSB generation name
(1 through 8 characters) accessed by the application
program. It is left justified and padded right with
blanks as appropriate.

If the PSB name is specified as ''''' padded right with
blanks, a default name is supplied. This default is the
name of the application program associated with this
task in the CICS program control table (the peT).

If the call is successful, field UIBPCBAL in the UIB will
contain the address of the list of PCB addresses. The
order of the addresses is the same as the PCBs within
the PSB as specified when the PSB is generated.

If the call is unsuccessful, the reason for the failure
will be indicated in field UIBRCOOE in the UIB.

'ptr-ref'
is a pointer reference that will be set to the address of
the UIB after the call has been processed. The UIB
contains the address of the PCB address list and the
response from the CICS-OLII interface.

Segment search arguments

Segment search arguments (SSAs) are used to identify
segments of a OUI database. SSAs may be simple
segment names or they may be qualified to include
constraints made upon the values of fields within the
named segment types.

All I MSNS database command codes are supported,
including the "Q" code (although corresponding dequeuing
must be performed by a CICS sync point, or by a OUI
TERM call, because the OEQ call is not supported).

For information on how to build an SSA, see IMS/VS
Application Programming for CICS/OS/VS Users.

Except for a read only operation, when it is unnecessary,
SSAs used by a CICS application program must be in
dynamic storage because of the requirement for the
program to be quasi-reenter able.

• For assembler language programs, the SSAs should
be placed in the dummy section called OFHEISTG.

• For COBOL programs, the SSAs should be in the
working storage section.

• For PUI programs, the SSAs should be in AUTOMATIC
storage.

110 work area for DLII segments

An 110 work area is required by DUI to hold the segment
being retrieved or to hold the segment being written to the
database. Like SSAs, this work area must be in dynamic
storage. The address of the work area is specified as the
address of the first byte of the data area.

Issue a DLII database call

The format of the CALL statement to request DUI services
is as follows:

ASM:

CALLDLI ASMTDLI[,([parmcount,]function
,pcb,workarea[,ssal,ssa2, •••])]

COBOL:

CALL 'CBLTDLI' USING [parmcount,]
function,pcb,
workarea[,ssal,ssa2, •••]

PLlt:

CALL PLITDLI ([parmcount,]function
,pcb,workarea[,ssal,ssa2, •••])

where:

'parmcount'
is the name of a binary fullword containing a count of
the arguments that follow.

'function'
is the 2 through 4 byte name of the function to be
performed. Valid function names for a CICS
application program are as follows:

'GU'

'GN'

get a unique segment identified by SSAs.

get the next segment in the database, optionally
qualified by SSAs.

'GNP'
get the next segment within the scope of the
current hierarchy in the database, optionally
qualified by SSAs.

'GHU'
as for "GU", but in addition, hold the segment for
subsequent update.

'GHN'
as for "GN", but in addition, hold the segment for
subsequent update.

'GHNP'
as for "GN P", but in addition, hold the segment for
subsequent update.

'ISRT'
insert a new segment at the current position; also
used in the initial load of a database.

'REPL'
replace a segment at the current position.

'OLET'
delete the segment at the current position.

'pcb'
is a field containing the address of the PCB
corresponding to the database specified in the call.
This address is one of the addresses returned in the
address list by the scheduling call.

'workarea'
specifies the work area that contains the segment
being passed to DUI or is to contain the segment
being retrieved from DUI.

'ssa1,ssa2, .. .'
are the names of the segment search arguments.

For details of these calls, see IMS/VS Application
Programming for CICS/OS/VS Users.

Terminate a PSB in the C~.~S application
program

When all DUI operations have been completed, the PSB
should be terminated (or released). This is done either by
issuing an explicit termination call, or on termination of the
task. Th, I ~Ieasing application program can reuse the PSB
or a different PSB as required.

The DUI CALL statement is used to terminate a PSB. It
causes all database records used by the application
program, and all associated log records to be written out.
It also causes a CICS sync point to be taken, which
commits all activity performed by this task, both related to
DUI and to CICS recoverable resources.

Changes performed prior to the execution of the command
will not be backed out either in the event of dynamic
transaction backout for a single failing task, or in the event
of an emergency restart following an abnormal termination
of the system. A CICS sync point generates implicitly a
DUI termination call. (A sync point is specified by the
SYNCPOINT command, as described in "Chapter 5.6.
Recovery (sync points)" on page 331.) CALL statements
and sync points should be specified only at points in the
transaction where logically related processing ends.

The PSB must be rescheduled explicitly after it has been
terminated (by a CALL or sync point) if further access to
the database is required, because the position of the
database has been lost by the release mechanism.

Chapter 2.6. DUI services (DUI CALL statement) 119

The format of the CALL statement to terminate a PSB is as
follows:

ASM:

CALLDLI ASMTDLI,([parmcount,]function)

COBOL:

CALL 'CBLTDLI ' USING [parmcount,]function

PL/I:

CALL PLITDLI (parmcount,function);

where:

'parmcount'
is the name of the binary fullword containing the
parameter count value of one.

'function'
is the name of the field containing the four-character
function 'TERM' or 'Tbbb'.

Check the response to a OL/I CALL

The response to a OUI CALL statement should always be
checked so that, if unsuccessful, alternative processing can
be initiated.

Check the CICS-OL/I response codes in
UIBRCOOe

First use the response code in field UIBRCODE in the UIB
for the task to check that the CICS-OUI interface has been
used correctly by the application program (for example,
the required PSB not being found in the directory of PSBs
would cause a response code to be returned).

Initially, one of three response codes appears in field
UIBFCTR, as follows:

Contents of field UIBFCTR -----------,

Condition ASM COBOL PL/I

NORESP X' 00 1 12-0-1-8-9 00000000

INVREQ X' 08 1 12-8-9 00001000

NOTOPEN X' 0C ' 12-4-8-9 00001100

NORESP means "normal response". For the two
responses INVREQ and NOTOPEN, further information
appears in field UIBOLTR, as shown below. (UIBFCTR and
UIBOLTR are known collectively as UIBRCOOE.)

120 CICS/MVS 2.1.2 Application Programmer's Reference

If the code for INVREQ appears in UIBFCTR, one of the
following codes appears in UIBOLTR:

Field UIBDL TR for INVREQ

Condition ASM COBOL PL/I

Invalid X' 00 1 12-0-1 00000008
argument -8-9
passed
to DL/I

PSBNF X' 01 1 12-1-9 00000001

PSBSCH X' 03 1 12-3-9 00088811

PSBFAIL X' 05 1 12-5-9 80000101

TERMNS X' 07 1 12-7-9 00000111

FUNCNS X' 08 1 12-8-9 00001000

MPS batch X' 89 1 12-9-9 00001001

DLINA X'FF ' 12-11-0 11111111
-7-8-9

The above conditions have the
following meanings:

PSBNF PSB not found
PSBSCH PSB scheduled
PSBFAIL PSB initialization failed
TERMNS PSB terminate failure
FUNCNS function unscheduled
MPS an MPS batch program

batch attempted to issue a PCB
call for a read-only PSB
or for a nonexclusive PSB
if program isolation is
active

DLINA DL/I not active

If the code for NOTOPEN appears in UIBFCTR, one of the
following codes appears in UIBOLTR:

Field UIBDLTR for NOTOPEN -----------,

Condition ASH COBOL PL/I

Intent X'02' 12-2-9 00000010
scheduling
confl i ct

NOTOPEN will never be returned to the
application. If a schedule request is made
against a closed database, PSBFAIL will be
returned. A database cannot be closed until
all activity against it has been quiesced.
While this is taking place, no further
scheduling is allowed.

If fields UIBFCTR and UIBOLTR are normal, examine the
OUI status codes in the program control block (the PCB).
These status codes are listed in the IMSIVS Application
Programming for CICSIOSIVS User's manual.

Check the Dl/l function

You can also check that the specified OUI function has
been performed correctly according to the rules of OUI (for
example, a segment that cannot be located from the
specified SSA would cause an error indication). This type
of error is detected internally by OUI and is explained in
the appropriate OUI application programming reference
manual.

OLII may also issue a pseudoabend which causes the task
to be terminated rather than control to be returned to the
cles application program. The task is terminated with an
ABEND code of ADLA.

Chapter 2.6. OUI services (OUI CALL statement) 121

Example of DL/I request using call
The following example shows, in assembler language, COBOL, and PUI, the use of OUI CALL statements in a CICS
application program to request DLII services.

ASM example of DLII call ----------------------------------,

OFHEISTG OSECT
UIBPTR OS F
IOAREA os 8CL48
AREAl OS CL3
AREA2 OS CL37

OLIUIB
USING UIB,B

PCBPTRS OSECT
* PSB ADDRESS LIST
PCBIPTR OS F
PCBI DSECT

USING PCBI,6
OBPCIOBO OS CLB
OBPCILEV OS CL2
DBPCISTC DS CL2
DBPCIPRO DS CL4
DBPCIRSV DS F
DBPClSFD OS CLB
DBPCIMKL OS F
DBPCINSS OS F
DBPCIKFD OS 8CL256
DBPCINM DS 0CL12
DBPCINMA OS 8CLl4
DBPCINMP OS CLl7
ASMUIB CSECT

PSBNAME
PCB FUN
REPLFUN
TERM FUN
GHUFUN
SSAI
GOODRC
GOODSC
SKIP
*

*

B SKIP
DC CLB'ASMPSB'
DC CL4'PCB'
DC CL4'REPL'
DC CL4'TERW
DC CL4'GHU'
DC CL9'AAAA4444'
DC XLl'88'
DC CL2'
DS 0H

SCHEDULE PSB AND OBTAIN PCB ADDRESSES
CALLDLI ASMTDLI,(PCBFUN,PSBNAME,UIBPTR)
L B,UIBPTR
CLC UIBFCTR,X'88'
BNE ERROR!

GET PSB ADDRESS LIST
L 4,UIBPCBAL
USING PCBPTRS,4

* GET ADDRESS OF FIRST PCB IN LIST
L 6,PCBIPTR

* ISSUE DL/I CALL: GET A UNIQUE SEGMENT
CALLDLI ASMTDLI,(GHUFUN,PCBI,IOAREA,SSAI)
CLC UIBFCTR,GOODRC
BNE ERROR2
CLC DBPCISTC,GOOOSC
BNE ERROR3

* PERFORM SEGMENT UPDATE ACTIVITY
MVC AREAl, ...••..
MVC AREA2,••.

122 CICS/MVS 2.1.2 Application Programmer's Reference

ASM example ofD~1 ca"(continued) ~~~~~~~~~~~~~~~~~~~~~~~~~~~

* ISSUE DL/I CALL: REPLACE SEGMENT AT CURRENT POSITION
CALLDLI ASMTDLI,(REPLFUN,PCBl,IOAREA,SSAl)
CLC UIBFCTR,GOODRC
BNE ERROR4
CLC DBPClSTC,GOODSC
BNE ERROR5
B TERM

ERRORI OS 8H
*
ERROR2
*
ERROR3
*

ERROR4
*
ERROR5
*
TERM
*

B
OS

B
OS

B
OS

B
OS

OS

INSERT ERROR DIAGNOSTIC CODE
TERM
8H
INSERT ERROR DIAGNOSTIC CODE
TERM
8H
INSERT ERROR DIAGNOSTIC CODE
TERM
8H
INSERT ERROR DIAGNOSTIC CODE
TERM
9H
INSERT ERROR DIAGNOSTIC CODE
8H
RELEASE THE PSB

CALLDLI ASMTOLI,(TERMFUN)
EXEC CICS RETURN
END ASMUIB

Chapter 2.6. our services (OUr CALL statement) 123

(1)

(2)
(3)

(4)

124

COBOL example of OUI call ---------:......---------~-----'---'-------,

IDENTIFICATION DIVISION.

*

*

*

*

*

*

PROGRAM-ID. 'CBLUIB'.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 PSB-NAME PIC X(B) VALUE 'CBLPSB '.
77 PCB-FUNCTION PIC X(4) VALUE 'PCB '.
77 TERM-FUNCTION PIC X(4) VALUE 'TERM'.
77 GHU-FUNCTION PIC X(4) VALUE 'GHU '.
77 REPL-FUNCTION PIC X(4) VALUE 'REPL'.
77 SSA1 PIC X(9) VALUE 'AAAA4444 '.
77 SUCCESS-MESSAGE PIC X(48).
77 GOOD-STATUS-CODE PIC XX VALUE '
77 GOOD-RETURN-CODE PIC X VALUE LOW-VALUE.
81 MESSAGE.

82 MESSAGE1 PIC X(38).
82 MESSAGE2 PIC XX.

01 DLI-IO-AREA.
02 AREAl PIC X(3).
82 AREA2 PIC X(37).

LINKAGE SECTION.
81 BLLCELLS.

82 FILLER PIC S9(8) CaMP.
02 UIB-PTR PIC S9(8) CaMP .
82 B-PCB-PTRS PIC S9(B) COMPo
02 PCB1-PTR PIC S9(8) COMPo
COPY DLIUIB.

01 PCB-PTRS.
02 B-PCB1-PTR PIC 9(B) COMPo

01 PCBl.
82 PCB1-DBD-NAME PIC X(B).
02 PCB1-SEG-LEVEL PIC XX.
02 PCB1-STATUS-CODE PIC XX.
02 PCB1-PROC-OPT PIC XXXX.
82 FILLER PIC S9(5) COMPo
02 PCB1-SEG-NAME PIC X(B).
02 PCBI-LEN-KFB PIC S9(5) COMPo
02 PCB1-NU-SENSEG PIC S9(5) COMPo
02 PCBI-KEY-FB PIC X(256).

PROCEDURE DIVISION.
SCHEDULE PSB AND OBTAIN PCB ADDRESSES

CALL 'CBLTDLI' USING PCB-FUNCTION, PSB-NAME, UIB-PTR.
IF UIBFCTR IS NOT EQUAL LOW-VALUES THEN

INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.

MOVE UIBPCBAL TO B-PCB-PTRS.
MOVE B-PCBl-PTR TO PCBl-PTR.

ISSUE DL/I CALL: GET A UNIQUE SEGMENT
CALL 'CBLTDLI' USING GHU-FUNCTION, PCBl, DLI-IO-AREA, SSAI.
SERVICE RELOAD UIB-PTR
IF UIBFCTR IS NOT EQUAL GOOD-RETURN-CODE THEN

INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.

IF PCBI-STATUS-CODE IS NOT EQUAL GOOD-STATUS-CODE THEN
INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.
PERFORM SEGMENT UPDATE ACTIVITY

CICS/MVS 2.1.2 Application Programmer's Reference

COBOLaxamp~~DUlca"~on~nua~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

MOVE ••••••• TO AREAl.

Notas:

MOVE ••••••• TO AREA2.
* ISSUE DL/I CALL: REPLACE SEGMENT AT CURRENT POSITION

CALL 'CBLTDLI' USING REPL-FUNCTION, PCBl, DLI-IO-AREA, SSAl.
IF UIBFCTR IS NOT EQUAL GOOD-RETURN-CODE THEN

* INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.

IF PCBl-STATUS-CODE IS NOT EQUAL GOOD-STATUS-CODE THEN
* INSERT ERROR DIAGNOSTIC CODE

EXEC CICS RETURN END-EXEC.
* RELEASE THE PSB

CALL 'CBLTDLI' USING TERM-FUNCTION.
EXEC eICS RETURN END-EXEC.

1. The linkage section must start with a definition of this type to provide addressability to a parameter list which will
contain the addresses of storage outside the working storage of the application program. The first 02 level
definition is used by CICS to provide addressability to the other fields in the list. There is a one to one
correspondence between the other 02 level names and the 01 level data definitions in the linkage section.

2. This will be expanded as shown in "User interface block (UIB)" on page 117.

3. The UIB will return the address of an area containing the PCB ,,'1resses. This definition is required to obtain the
actual PCB addresses.

4. The PCBs are defined in the linkage section.

Chapter 2.6. DUI services (DUI CALL statement) 125

PLII example of DL/I call --------------------------------,

PlIUIB: PROC OPTIONS(MAIN);
DCl PSB NAME CHAR(B) STATIC INIT('PlIPSB I);
DCl PCB-FUNCTION CHAR(4) STATIC INIT('PCB I);
DCl TERM FUNCTION CHAR(4) STATIC INIT('TERM');
DCl GHU FUNCTION CHAR(4) STATIC INIT('GHU I);
DCL REPL FUNCTION CHAR(4) STATIC INIT('REPl ');
DCL SSAl-CHAR(9) AUTOMATIC INIT('AAAA4444 I);
DCl PARM CT 1 FIXED BIN(3l) STATIC INIT(l);
DCL PARM-CT-3 FIXED BIN(3l) STATIC INIT(3);
DCl PARM-CT-4 FIXED BIN(3l) STATIC INIT(4);
DCL GOOD-RETURN CODE BIT(S) STATIC INIT('0 I B);
DCl GOOD=STATUS=CODE CHAR(2) STATIC INIT(1 I);

(1) %INClUDE DlIUIB;
(2) DCL 1 PCB_POINTERS BASED(UIBPCBAl),

2 PCBl_PTR POINTER;
DCl lOLl 10 AREA,

2 AREAl CHAR(3),
2 AREA2 CHAR(37);

(3) DCll PCBl BASED(PCBl PTR),
2 PCBl DBD NAME-CHAR(S),
2 PCBl-SEG-lEVEl CHAR(2) ,
2 PCBl-STATUS CODE CHAR(2) ,
2 PCBl=PROC_OPTIONS CHAR(4),
2 PCB1 RESERVE DLI FIXED BIN (31,0),
2 PCB1-SEGNAME-FB CHAR(S),
2 PCB1-lENGTH FB KEY FIXED BIN(31,0),
2 PCB1-NUMB SENS-SEGS FIXED BIN(31,0),
2 PCB1=KEY_FB_AREA CHAR(17);

/* SCHEDULE PSB AND OBTAIN PCB ADDRESSES */
CALL PLITDLI(PARM_CT_3,PCB_FUNCTION,PSB_NAME,UIBPTR);
IF UIBFCTR,=GOOD RETURN CODE THEN DO;

/* ISSUE DL/I CALL: GET A UNIQUE SEGMENT */
END;
CALL PLITDLI(PARM_CT_4,GHU_FUNCTION,PCBl,DLI_IO_AREA,SSAl);
IF UIBFCTR,=GOOD_RETURN_CODE THEN

IF PCBl_STATUS_CODE=GOOD STATUS CODE THEN
DO;

/* PERFORM SEGMENT UPDATE ACTIVITY */
/* INSERT ERROR DIAGNOSTIC CODE */

END;
IF PCB1 STATUS CODE,=GOOD STATUS CODE THEN DO;

/* INSERT ERROR DIAGNOSTIC CODE */
AREAl= ..•.... ;
AREA2= •...... ;

/* ISSUE DL/I: REPLACE SEGMENT AT CURRENT POSITION */
CALL PLITDLI(PARM_CT_4,REPL_FUNCTION,PCBl,DlI_IO_AREA,SSAl);
END;

END;
IF UIBFCTR,=GOOD_RETURN_CODE THEN DO;

/* ANALYZE UIB PROBLEM */

/* ISSUE DIAGNOSTIC MESSAGE */
END;

126 CICS/MVS 2.1.2 Application Programmer's Reference

PUI example of DLII call (continued) ------------------------------,

ELSE IF PCBl STATUS CODE~=GOOD STATUS CODE THEN DO;
/* EXAMINE PCBl_STATUS_CODE */ -

Notes:

/* ISSUE DIAGNOSTIC MESSAGE */
END;

/* RELEASE THE PSB */
CALL PLITDLI(PARM_CT_l,TERM_FUNCTION);
EXEC CICS RETURN;
END PLIUIB;

1. This will be expanded as shown in "User interface block (UIB)" on page 117.

2. The UIB will return the address of an area containing the PCB addresses. This definition is required to obtain the
actual PCB addresses.

3. The PCBs are defined based on the addresses passed in the UIB.

Chapter 2.6. DUI services (DUI CALL statement) 127

Chapter 2.7. DL/I batch programs (shared DB)

The IMS batch application programmer must be aware of
certain restrictions that exist when OUI batch application
programs run in a shared database environment under
CICS. These restrictions, which apply to batch application
programs and utilities, are as follows.

Two types of OUI requests may be issued by a batch
shared database application program:

• All database access calls and EXEC OLI commands
(GN, GU, GNP, ISRT, REPL, and OLET)

• System service calls (CHKP, LOG, and ROLL) or the
EXEC OLI CHKP command.

The ROLL call results in message OFH3731 being
issued. The system action for this message states
that any updates to OUI databases since the last
checkpoint, or since the start of the job step, are
backed out (assuming that the dynamic transaction
backout facility is active in the CICS system). The
batch job step is abended with a user abend code of
3731.

If the application program issues a CHKP and the CICS
shared database session is in quiesce, that is, if the
master terminal has issued

CEMT PERFORM SHUTDOWN

or

CEMT SET IRC CLOSE

the application program will terminate immediately after
the CHKP with a user abend code of 3707 or 3708.

The first byte of a log record used in a LOG call must be
equal to or greater than X 'AO I, as in IMS DB. An

I additional restriction when using shared database is that
the second byte of the record must be X I 00 I. If these
restrictions are not observed, a PCB status code of GL is
returned, and the record is not logged.

IMS application programs that use GSAM program
specification blocks (PCBs) or PCBs with PROCOPT= Lor
LS (that is, those used for loading a database) are not
supported in the batch shared database environment.

In all other respects, IMS batch application programs run
satisfactorily in a shared database session without being
compiled or link edited again. IMS/360 application

I programs, however, are not supported. The IMS batch
I application program may reside above the 16-megabyte
I line but, for OUI calls and EXEC OLI commands, the CALL

© Copyright IBM Corp. 1982, 1991

I parameter list, the CALL parameters, and the save area
I must reside below the line.

The IMS batch application programmer should be aware
that resources used by batch programs must be released
as soon as possible (by means of CHKP) so that online
programs are not delayed by waiting for these resources.

Application programs that are used in a shared database
session may issue SPIE and STAE macros. When a OUI
request is made by the application program, the batch
region controller modules will issue their own SPIE macro
for the duration of the request, and will then restore the
user's SPIE, if any.

There are certain abnormal terminations from which
recovery cannot be attempted. Indeed, in these situations,
the batch region controller will have broken the link
between the batch regions and CICS. Therefore, the user
application program should not use a STAE (or ESTAE) exit
unless the exit continues the abend.

If the user application program or STAE routine completes
by returning to the batch region controller, the controller
will assume that the application program has completed
successfully and may indicate to CICS that any OUI
database updates should be committed rather than backed
out.

If the application program wishes to indicate that the
updates should be backed out, it should issue an operating
system ABEND macro or a OUI ROLL call. If a program
check occurs and the user has no SPIE exit, an abend will
be forced.

Use of PUI SPIE and STAE options has the effect of raising
the ERROR condition on program check and system
abends respectively.

If the user requires dynamic transaction backout, the
ERROR condition should be allowed to continue if an ON
ERROR unit is present (the ON ERROR unit should not
attempt to issue any OUI calls).

If a PUI application program completes with a return code
of 2000 or more, it will be assumed that the application
program has failed. An abend (user code 3734) will be
issued and, if dynamic transaction backout is active, any
OUI updates will be backed out to the previous checkpoint
(or to the start of the program if no previous checkpoint
exists).

PUI gives a return code of 2000 or more if the ERROR
condition is raised and execution is allowed to continue.

129

© Copyright IBM Corp. 1982, 1991

Part 3. Data communication operations

Chapter 3.1. Introduction to data communication operations

Chapter 3.2-1. Introduction to basic mapping support

Chapter 3.2-2. Minimum function BMS

Chapter 3.2-3. Standard function BMS

Chapter 3.2-4. Full function BMS

Chapter 3.2-5. BMS macro and command reference summary

Chapter 3.3. Terminal control

Chapter 3.4. Batch data interchange

133

135

139

159

173

193

221

265

131

Chapter 3.1. Introduction to data communication operations

Three methods are available to the CICS application
programmer for communicating with the terminals and
logical units in the subsystems of the network that forms
part of the CICS system. The methods dealt with are:

• Basic mapping support (BMS)
• Terminal control
• Batch data interchange.

See the C/CSIOSIVS IBM 3270 Data Stream Device Guide
for full details of programming for the IBM 3270
Information Display System and similar terminals, such as
the IBM 8775 Display Terminal.

Basic mapping support provides commands and options
that can be used to format data in a standard manner.
BMS converts data streams provided by the application
program to conform to the requirements of the devices.
Conversely, data received from a device is converted by
BMS to a standard form. However, not all devices
supported by CICS can be used with BMS and, for those
that cannot, terminal control must be used. Also, in some
cases, the overhead incurred to achieve data stream

© Copyright IBM Corp. 1982, 1991

independence may outweigh the advantages. BMS is
described in Chapters 3.2-1 through 3.2-5.

Terminal control is the basic method for communicating
with devices, whereas both BMS and batch data
interchange extend the facilities of terminal control to
simplify further the handling of data streams. Both BMS
and batch data interchange use terminal control facilities
when invoked by an application program. Terminal control
provides commands and options that can be specified in
various combinations according to the requirements of the
devices. However, application programs written in this
way are dependent on the data formatting requirements of
these devices and a detailed knowledge of the devices is
required. Terminal control is described in "Chapter 3.3.
Terminal control" on page 221.

Batch data Interchange provides commands and options
that may be used, possibly in conjunction with BMS
commands, to communicate with the 6670 logical unit and
with the batch logical units of the 3770 and 3790
subsystems. Batch data interchange is described in
"Chapter 3.4. Batch data interchange" on page 265.

133

Chapter 3.2-1. Introduction to basic mapping support

Basic mapping support (BMS) is an interface between CICS
and its application programs. The three versions of BMS
are:

• Minimum function BMS
• Standard function BMS
• Full function BMS.

Each version formats input and output display data in
response to BMS commands in the application programs.
To do this, it uses device information from CICS system
tables and formatting information from maps you have
prepared for your application program.

BMS commands have a simple, generalized form, because
formatting information is stored separately, in what are
called maps. This makes it easier to write your application
programs and makes them less susceptible to changes to
the system or its devices. Such changes can be made
independently of your application programs simply by
changing the maps.

A single BMS command in an application program can
address more than one kind of device. This is because
BMS gets information about the terminal from a system
table. It interprets commands differently for different
device types.

How BMS affects programming

A CICS application program does not use ordinary
programming language commands to perform input and
output. Instead, it uses BMS commands, or terminal
control commands, or both. BMS provides most of the
input and output facilities required by application
programs, and is easier to use than terminal control.
Nevertheless, you might have special requirements that
favor the use of terminal control.

BMS allows you to separate the tasks of display design
and CICS application programming. It interprets
generalized application program output commands, and
generates data streams for specific output devices. (Such
data streams are said to be device dependent.)
Conversely, it transforms incoming data streams to a form
acceptable to application programs. It obtains information
about the format of the data stream for the terminal from
the terminal control table terminal entry (the TCTTE) for
the task, not from the application program. The same BMS
input or output commands in an application program can
be used with different kinds of device.

You can design several versions of a display map, each
exploiting the advantages of a different device. By
defining data as having field format, you can use
application program commands to address predefined
fields in a display by name, without knowing the positions

© Copyright IBM Corp. 1982, 1991

of those fields. The same fields must appear in all
versions of a display, but can be arranged differently in
different versions. This is most useful when an installation
uses devices with a variety of screen sizes. A suffixing
mechanism enables BMS to associate a display version
with the kind of device to which it applies.

The process of changing field data to and from its
displayable form is called mapping.

As an alternative to field data format, you can display data
in text data format. Text format presents data as a series
of lines on a display or printer. To format text data, BMS
breaks the data into strings that are, as nearly as possible,
the same width as the display device. Rather than
breaking a word or character string that cannot fit at the
end of a line, BMS places it whole at the beginning of the
next line.

BMS maps

Maps tell BMS how to format (map) field data for display.
They are not needed for text data output. Every BMS field
data mapping command names a map that contains
formatting (mapping) instructions. Each map has two
forms, physical and symbolic.

BMS formats a display for a given device by embedding
control characters in the data stream. A physical map tells
it how to do this.

A symbolic description map is a source language data
structure that the assembler or compiler uses to resolve
source program references to fields in the map. Symbolic
description maps are described in more detail in "Chapter
3.2-2. Minimum function BMS" on page 139.

The physical map and the symbolic description map are
generated separately. However, a complete map definition
contains enough data to produce both types. You only
need to change the TYPE operand in the definition to
produce one type rather than the other.

You will be told later how to produce physical maps and
symbolic description maps.

Every map must be part of a map set, even a single map.
You usually group related maps together into one of these
map sets. You define a map set by coding a series of
CICS macro instructions. The first of these macros defines
the map set itself, the second defines the first or only map;
and others define fields within those maps.

When a CICS task uses a map, CICS loads the entire map
set that includes that map, into storage. The map set
remains in storage until the task either ends or requests a

135

map from a different map set. Obviously, if several maps
are used by the same application or transaction, it makes
sense to define them in the same map set, thus ensuring
that eles loads them all at once.

You could define a single map set to suit every terminal
attached to a elcs system. However, it may be necessary
or desirable to format the same data differently for
different devices. For example, the same transaction can
be initiated from displays of various screen sizes.
Alternatively, a program might communicate with a device
that has a special feature, such as screen partitioning. The
map set definition macro enables you to associate a
special version of a map set with a terminal type or model.

SMS map definition

You define map sets, maps, and fields within maps by
means of the following macros:

DFHMSD - defines a map set
DFHMDI - defines a map
DFHMDF - defines a field

The macros define the size, shape, position, potential
content, and characteristics of the various elements that
make up a display. It is best to design the layout and
content of a display before attempting to code the macros.

You can also use the IBM licensed program Screen
Definition Facility/CICS (SDF/CICS) to define, edit, and
generate BMS maps interactively. By using SDF/CICS, you
avoid having to code map definition macros. SDF/CICS
runs as a CICS application program. However, this
description of BMS assumes that you are going to use the
macros, and describes the procedure.

A map definition always starts with the DFHMSD macro.
You use the TYPE == MAP operand to generate a physical
map; you use the TYPE = DSECT operand to generate a
symbolic description map, for example:

DFHMSD TVPE=DSECT

The DFHMSD macro starts the definition of the map set. It
is always followed by a DFHMDI macro for the first (or
only) map in the map set, for example:

DFHMSD TVPE=DSECT
DFHr~DI •..

After the DFHMDI macro, there follow, optionally, one or
more DFHMDF macros defining the individual fields within
the map:

DFHMSD TVPE=DSECT
DFHMDI
DFHMDF
DFHMDF

136 CICS/MVS 2.1.2 Application Programmer's Reference

If there is more than one map in your map set, repeat the
sequence of DFHMDI and DFHMDF macros for each
subsequent map in the set. End the map set definition with
a DFHMSD macro with the TYPE = FINAL operand. The
sequence of macros would look like this:

DFHMSD TVPE=DSECT
DFHMDI
DFHMDF
DFHMDF
DFHMDI
DFHMDF
DFHMDF
DFHMDF
DFHMSD TVPE=FINAL

You specify attributes of map sets, maps, and fields by
using operands in the appropriate macros. You can
specify the same operand in more than one of the macros
defining a single map, selecting a different value each
time. For example, you can specify a value for COLOR in
a field definition that is different from that in the
corresponding map definition. Both can differ from the
value in the map set definition.

An operand in a DFHMDF macro overrides, for that field,
the same operand in a DFHMDI macro. Similarly, an
operand of DFHMDI overrides, for a map, the same
operand of DFHMSD. If an operand is omitted from
DFHMDF, the macro will adopt the same operand value
from DFHMDI. If it is omitted from both DFHMDF and
DFHMDI, the operand in DFHMSD is adopted. If omitted
altogether, an operand will adopt the default for DFHMDF.

Some facilities of 3270 devices, such as color, are not
provided by all terminal models. Attempts to use a facility
that the terminal does not provide are ignored. This
means that different 3270 terminals do not necessarily
need different maps.

Cataloging BMS map sets

You can use the same set of DFHMSD, DFHMDI, and
DFHMDF macros to define both the physical maps and
symbolic description maps of a map set. You assemble
and link edit physical maps, storing them in the CICS
program library. You also assemble symbolic description
maps, but you store the assembler output from these,
which is a source language data structure, in the source
library. You copy the structure into any application
program, that refers to the map set, before assembling or
compiling that program. The TYPE operand of the
DFHMSD macro governs whether the assembler produces
a physical map or a symbolic description map.

A physical map must have an entry in the processing
program table (the PPT) before it can be loaded by CICS.
The simplest way of creating such an entry is by using the
CEDA transaction. This transaction is described in the
CICSIMVS Resource Definition (Online) manual.
Alternatively, you can use the DFHPPT system macro, as
described in the CICSIMVS Resource Definition (Macro)
manual.

BMS commands

Input and output operations are performed by BMS in
response to commands in your application program.
These commands have a similar form to other CICS
commands. A command requesting BMS services names
the map containing the mapping information. Non-CICS
application program statements, that is, normal assembler
language, COBOL, or PUI statements can refer to fields in
a map by name. Using BMS commands, not only can you
read and change the contents of fields, you can also
determine or modify their attributes (for example, length or
color).

Facilities provided by BMS

As stated earlier, BMS exists in three pregenerated
versions: minimum, standard, and full. The version
available on your system will have been decided before
CICS system generation. Each version provides a different
level of function, and therefore requires a different amount
of virtual storage. The minimum version uses considerably
less storage than the other two. You can only use
minimum BMS at the command level. Both standard and
full can be used at command and macro level.

If you use either the full version or the standard version,
you can benefit from the size of the minimum version.
This is because the minimum version is a discrete
component of the other two, provides their most commonly
used functions, and can be paged into real storage
independently of their other component modules. This is
likely to reduce the size of your CICS working set if most of
your BMS requests can be satisfied by the minimum
version.

The support provided by each version is as follows:

Minimum BMS ----------------,

Function provided:

• SEND MAP command

• RECEIVE MAP command

• SEND CONTROL command

• Default and alternate screens

• Extended attributes

• Map set suffixes

• Screen coordination with null map

• Field and block data

Devices supported:

All 3270 displays and printers except SNA character
string printers, which are defined as such in the TCT.

Standard BMS -----------------,

Function provided:

• All function of minimum PLUS

• SEND TEXT command

• Outboard formats

• Partitions

• Control of an MSR

• NLEOM mode for 3270 printers

• Subsystem LDC controls

Devices supported:

All devices supported by BMS

Full BMS ----------------,

Function provided:

• All function of standard PLUS

• Terminal operator paging

• Cumulative mapping

• Page overflow

• Cumulative text processing

• Message routing

• Message switching

• Returning BMS-generated data stream to program
before output

• Report controller

Devices supported:

All devices supported by BMS

Chapter 3.2-1. Introduction to basic mapping support 137

Sample programs

Appendixes 0, E, and F contail1 sample programs that
illustrate, among other things, various aspects of
programming for BMS.

Read these programs as you study new topics. Each
sample program illustrates different aspects of BMS.
Some of the samples do not apply to minimum BMS.
Others do not apply to standard BMS either.

138 CICS/MVS 2.1.2 Application Programmer's Reference

Chapter 3.2-2. Minimum function BMS

Minimum function BMS supports the IBM 3270 and IBM
3270-like range of displays and printers (but not SCS
printers). For convenience, 'minimum function BMS' will
be shortened to 'minimum BMS'. This chapter introduces:

• The IBM 3270 Information Display System

• The principles of display layout design

• The way in which you specify display layouts to CICS

• The commands and options provided by minimum
BMS for communicating with a display that has a
predefined layout.

The information in this chapter applies equally well to the
IBM 3270-like displays, for example the IBM 8775 Display
Terminal.

IBM 3270 Information display system

The 3270 data stream conveys both displayable data
characters and nondisplayable control characters between
the host processor and a terminal. Using BMS commands,
you do not have to understand the format of the data
stream. Nevertheless, you need to know the range of
things the data stream allows you to do. This section
describes the features of 3270 terminals, and discusses
how you can use them. See the CICSIOSIVS IBM 3270
Data Stream Device Guide for more information on the
3270 data stream, and the features available on 3270 and
3270-like terminals.

Input operations

The operations you perform at a 3270 terminal need not
always result in data being sent to the host processor. For
example, you can press the alphanumeric keys indefinitely
without sending data. However, certain actions (such as
pressing ENTER) always cause your terminal to send a
data stream, even if you have not provided any data.

Apart from the alphanumeric keys, the keys that you can
press without sending data are:

• Repeat-action keys
• Forward and backward tabbing keys
• New line tabbing key
• Horizontal cursor positioning keys
• Vertical cursor positioning keys
• Backspace key
• Erase input (ERASE INPUT) key
• Erase end-of-field (ERASE EOF) key
• Insert mode (INS MODE) key
• Delete (DEL) key.

These and special features of individual models make it
easier for you to enter data. The feat~res are described in

© Copyright IBM Corp. 1982, 1991

the 3270 Information Display System Operator's Guide,
GC27 -27 42 and the IBM 8775 Display Terminal User's
Guide.

When you have typed data onto a display, you will
probably want to send it to the host processor. You do this
by one of the following:

• Pressing the ENTER key
• Pressing a program function (PF) key
• Using an identification card reader
• Using a magnetic slot reader and hand scanner
• Detecting a light-pen attention field.

Although CICS will send modified data when you press PF
keys, the keys are not normally used for this. Generally,
you assign a specified meaning to the key itself.

If you want to get the attention of the host processor
without sending data, you can:

• Press the CLEAR key
• Press a program access (PA) key.

If you want to send data without having to enter it
explicitly, you can:

• Use a light pen
• Press the cursor select key.

An attention identifier (AID) character is always sent to the
host processor whenever a 3270 input operation is
performed. This indicates the cause of the input operation.

CICS ensures that an application program receives input
data intended for it. The AID allows the application
program to react differently, depending on the input
operation. The effect of different combinations of data and
AIDs depends entirely upon the design of the application
program.

output operations

A terminal can receive data from an application program,
as well as send data to it. Some of the data can be
displayed, the rest consists of device controls. By building
data streams containing device controls, you can, for
example:

• Sound the audible alarm (if the terminal has one)
• Unlock the keyboard for input
• Reset the modified data tag (the MDT) of each field
• Print the contents of a screen
• Erase all unprotected fields
• Position the cursor.

The way you use these features is up to you. However,
they can improve the usability of your application program.

139

Display field concepts

An application program can divide a screen into more than
one field. The fields combine to produce a complete
screenful of data.

A field starts with an attribute character, continues with
data characters, and ends at the next attribute character.
A field can contain only a single character or it can span
several lines, as the last character on a line is logically
fOllowed by the first character on the next line.

BMS does not allow a field to "wrap around" from the end
of one line to the start of the next. Nor does it allow a field
to "wrap around" from the bottom of the screen to the top.

Normally, an image is divided into several fields by the
program but it is possible to have an image with no fields
(no attribute characters). This occurs when you press the
CLEAR key; such unformatted images are not supported by
BMS. An application program can use the HANDLE AID
command to detect the use of the CLEAR key. This
command is described in "HANDLE AID command" on
page 154. An attempt to read from a cleared. screen
raises the MAPFAIL condition.

Attribute character: The attribute character is always
the first character of a field. It occupies a character
position on the screen but appears as a blank. An
extended data stream is used to communicate with a
device that supports extended color, highlighting,
programmed symbols, or validation. The single blank
attribute character on a display produced by such a data
stream can represent several attribute bytes.

Attribute bytes can convey the following field attributes.

• Unprotected

You can enter any keyboard character into an
unprotected field.

• Numeric-only

A numeric-only field is unprotected and only the digits
o through 9 and the special characters period, dash,
and COUP' may be entered. If the keyboard numeric
lock feature is installed on the 3270 and the operator
attempts to enter any other characters, the keyboard
is locked. If the keyboard numeric lock feature is not
installed, any data can be entered in the field. On a
data entry keyboard, a numeric-only field causes a
numeric shift to occur.

• Protected

Data cannot be entered in a protected field. If the
operator attempts to enter data, the keyboard is
locked. Stopper fields following variable-length data
fields are normally defined with protected attribute
characters. If the operator attempts to enter more
characters than the variable-length data field can

140 CICS/MVS 2.1.2 Application Programmer's Reference

contain, the stopper field following it will cause the
keyboard to be locked.

• Autosklp

An autoskip field is a protected field that automatically
skips the cursor to the next unprotected field.
Keyword fields and stopper fields following
fixed-length data fields are normally defined with
autoskip attribute characters.

Note: The unprotected, numeric-only, protected, and
autoskip characteristics of the attribute character are
mutually exclusive. Only one may be selected for
each field.

• Normal Intensity

A normal intensity field displays the data at the
normal operating intensity.

• Bright intensity

A bright intensity field displays the data at a brighter
than normal intensity. This is often used to highlight
keywords, errors, or operator messages.

• Base color

The IBM 3279 Model 2A or 3A display device produces
a base color image by using the PROTECT and
INTENSIFY attributes of the 3270 standard data stream
to select four colors: white, red, blue, and green. A
switch on the display control panel permits the
operator to select default color, causing the display to
behave as a monochrome 3270 display, with WHITE
representing INTENSIFY. The protect bit retains its
protect function when conveying color information.

• Extended color

The IBM 3279 Model 2B or 3B uses extended color
attributes in an extended data stream to determine the
colors of display elements. The data stream can
specify the colors of multicharacter fields. Seven
colors can be selected: blue, red, pink, green,
turquoise, yellow, and neutral.

An IBM 3279 Model 2B or 3B will act as a Model 2A or
3A until it detects an extended color attribute byte in
the data stream. It will display the image in default
color or base color, according to the setting of the
switch on the control panel.

As soon as an extended color attribute is received, the
display treats the whole image as an extended color
image. Fields that have no color attribute adopt the
default colors (green for normal intensity, white for
bright). If the color control switch has been set to
base color, the part of the image that has already
been displayed will change from base color to default
color. Such a change, which could disturb an operator,
can be avoided by applying an extended color
attribute to the first field in any image that uses
extended color.

The device interprets extended color attributes to
determine the colors of fields in an image.

• Extended highlighting

Extended highlighting can be applied to characters, or
character fields, in a display that uses the extended
data stream. It can take one of three forms: BLINK,
REVERSE, or UNDERLINE.

• Nondisplay

A nondisplay field does not display the data on the
screen for operator viewing and does not print the
field data. This might be used to enter security data
when the screen is visible to others. This attribute
characteristic should be used with care, as the
operator loses the ability to verify the data entered in
a nondisplay field. This field might also be used to
store messages on the screen. The messages can be
displayed later by changing the attribute character to
bright or normal intensity.

Note: The normal, bright, and nondisplay
characteristics of the attribute character are mutually
exclusive. Only one may be selected for each field.

• Programmed symbols

As well as the standard display symbol sets, the 3278,
the 8775, the 3279 Model 2B or 3B, and the 3290 can
have optional additional symbol store, enabling them
to display up to six 191-character symbol sets, whose
fonts and codes are defined by the user. Characters
in different display fields can be selected from
different symbol sets. This feature uses the extended
data stream.

The definition of the programmed symbols must be
sent to the terminal before programmed symbols can
be used. This is discussed further in the CICSIOSIVS
IBM 3270 Data Stream Device Guide.

• Light pen detectable

A light pen detectable field is sensitive to the light pen
(a special feature) and the cursor select key. Two
types of detectable fields are possible: a delayed
detectable field and an immediately detectable field.

If a delayed detectable field is selected by the
operator using the light pen, the modified-data tag
(MDT) is turned on. If an immediately detectable field
is selected, the modified-data tag is turned on and
transmission occurs. See An Introduction to the IBM
3270 Information Display System.

• Validation

The extended data stream can be used to define an
input field in an 8775 display as one of the following:

Mandatory fill
Input field must be filled before pressing ENTER.

Mandatory enter
The operator must key data into the input field
before pressing ENTER.

Trigger
Every time the cursor leaves a data field that has
the trigger attribute and that has been modified by
the operator, the terminal transmits the contents
of the field to CICS.

Note: Although mandatory fill and mandatory enter
force you to enter data into a field, your program can
provide an "escape" mechanism for an operator who
does not know what data to enter. Terminals that
have the validation feature usually have ERROR keys
to help you do this. Such keys generate the character
X '3F I. Your program can test for this character in
input fields whenever a validation operation is
performed. The supplied DFHERROR constant makes
it unnecessary for you to remember the character
value. "Attribute constants" on page 150 shows how
this and other constants can help you modify data
structures.

• Modified data tag (MDT)

The modified data tag is turned on when fields are
modified by the operator. When the operator presses
the ENTER key or a PF key, only fields that have been
modified by the operator or selected by the light pen
are transmitted to the processor. The program may
send fields to the 3270 with the modified-data tag
already on to guarantee that the field will be returned
with the next transmission.

• Insert·cursor Indicator

The insert-cursor indicator is not a field attribute.
Instead, it places the cursor under the first data
character of the field. If the insert cursor indicator is
specified for more than one field, the cursor is placed
under the first data character of the last field
specified. If no insert cursor is specified, the cursor is
placed at position zero (row 1, column 1) on the
screen.

• Background transparency

Determines whether the background of an
alphanumeric field is transparent or opaque; that is,
whether an underlying (graphic) presentation space is
visible between the characters.

• Field outlining

Allows lines to be included above, below, to the left, or
to the right of a field. You can use these lines in any
combination to construct boxes around fields or groups
of fields.

• SOISI creation

Indicates that the field may contain a mixture of
EBCDIC and DBCS data. The DBCS subfields within an
EBCDIC field are delimited by SO (shift out) and SI
(shift in) characters. SO and SI both occupy a single

Chapter 3.2-2. Minimum function BMS 141

screen position (normally displayed as a blank). They
can be included in any non-DBCS field on output
provided they are correctly paired. The terminal user
can transmit them inbound if they are already present
in the field, but he may only add them to an EBCDIC
field if the field has the SOSI attribute.

Screen layout design

The features of the 3270 system allow screen layouts to be
designed for operator convenience and efficiency. The
success of an online system depends on its ease-of-use,
screen clarity, and terminal operator acceptance.

The following features of some 3270 displays make it
easier for the layout designer to fulfil the requirements:

• Color
• Field highlighting
• Programmed symbols
• Easy correction
• Numeric shift for numeric data
• Validation
• Field delimiters or stoppers (to control the length of

data entered).

The first step in designing 3270 screen layouts is to divide
the screen into functional areas such as a title area, an
application data area, and a message area.

Title area: The title area of a screen should identify the
program that displayed the data. Data fields from the
same file can appear in the same screen locations for
different applications, permitting the operator to become
familiar with fields by their screen location. A title can be
used to help the operator recognize the application. The
title area is normally the top one or two lines of the screen
and may contain a page number (if more than one page is
needed), field headings, and other data besides the title.

Application data area: The application data area
comprises the main portion of the screen. Data from one
or more records in the same file or multiple files is entered
or displayed, depending on the application requirements.

Three kinds of field are usually found in this area:
keyword, data, and stopper.

Keyword fields contain constant data sent by the program
to identify the contents of a data field. For example, a
keyword field containing 'ACCOUNT BALANCE:' might
precede and identify a data field containing '$129.54'. A
keyword field might also be used in a data entry
application to identify the data being entered. For
example,

QUANTITY:

means enter the quantity.

142 CICS/MVS 2.1.2 Application Programmer's Reference

Data fields contain file data that the application program
retrieves from files and displays. The data may appear
exactly as stored in the file, or it may be edited by the
program. Data fields may also be left blank for the
operator to enter data. The application program can use
the entered data to make changes to a record or to alter
the processing of the program. In some cases, it may be
appropriate for the program to display characters in an
entry data field to guide the operator in entering the data.
For example,

DATE: MMDDYY

means enter month, day, year, each having two
characters.

Stopper fields (see "Attribute character" on page 140) on
data entry screens restrict the length of the data fields.
Stopper fields containing no data are used to define the
space between data fields and to stop the operator from
entering too many characters in a field.

For example, a field containing a street address may be 20
characters long, but for screen layout reasons an entire
line of 40 characters is provided for this field. To prevent
the operator from keying more than 20 characters on this
line, the program should define a stopper field starting in
the twenty-first position of the line. The stopper field
should be protected from data entry to restrict the
operator to the 20-character field.

The BMS map definition macros do not allow you to define
a zero length field. Thus a stopper field occupies two
screen positions, one for the attribute byte, and one for a
blank data character.

Message area: The message area of a screen is used to
send instruction messages to assist the operator in
processing a transaction. This area should be separate
from the application data area to allow communication with
the operator, without disturbing the application data. The
message area is normally the bottom one or two lines of
the screen.

Screen sizes: The 3270 Information Display System is
available in several screen sizes. Some 3270 devices are
available with two screen sizes: the DEFAULT (small) size
and the ALTERNATE (large) size. The system programmer
specifies the screen sizes in the terminal control table
(TCT) , and specifies, in the program control table (PCT) for
each transaction, which of the two possible sizes that
transaction will use.

If ERASE is not specified on a terminal control or BMS
output command, the screen will be unchanged from its
previous screen size setting, that is, the previous
transaction selection, or the default if the operator has just
switched on or has cleared the screen.

In normal practice, this means that an application program
should specify ERASE with its first output request. On

receipt of a CLEAR key indication, CICS will preserve the
selected screen size, so that an ERASE is not needed for
output requests following the first.

Defining BMS maps

This section describes the three macros DFHMSD,
DFHMDI, and DFHMDF, that are used to define BMS map
sets, maps, and fields. It shows how to use the macros to
define a simple map set, and how to catalog this map set
for use by application programs.

As you read about the macros, you will probably find it
helps to study the sample map definitions in Appendixes 0,
E, and F.

You must code the macros according to assembler
language source coding rules. You must define all maps
(including a single map) as part of a map set. You always
start your map set definition with a DFHMSD TYPE = MAP
or TYPE = DSECT macro, and must always end it with a
DFHMSD TYPE = FINAL macro.

Defining a map set

You use the DFHMSD macro to define a set of maps, that
is, a 'map set'. The macro consists of operands that define
characteristics of the map, or maps, comprising the map
set. Some operands specified ; DFHMSD can be
overridden, for individual mal--'; ,I fields that make up the
map set, by operands in the map (DFHMDI) and field
(DFHMDF) definition macros. The full syntax of the map
set definition macro, and a description of its operands, is
given in "Chapter 3.2-5. BMS macro and command
reference summary" on page 193. However, using
minimum BMS you will not use all of the operands.

You must produce at least two versions of any map set
: that you define. One must contain the operand

TYPE = DSECT, the other TYPE = MAP. The map set source
files can be stored before assembly. Alternatively, the
value of the TYPE operand can be supplied by the
SYSPARM mechanism before assembly. This avoids the
need for two similar map sets, which differ only in their
TYPE operand. The SYSPARM mechanism is described in
the CICSIMVS Installation Guide.

Operands of DFHMSD: You use DFHMSD to specify the
following:

• The name of your map set (by labeling the DFHMSD
macro).

• Whether it is a physical map or a symbolic description
map (TYPE operand).

• Whether it is to be used for input, output, or both
(MODE operand).

• Which programming language will be used to code the
application programs that will use the map or maps in
the map set (LANG operand). If programs written in
different languages are to use the same map set, you
must prepare a separate version of the symbolic
description map for each language.

• Whether maps within the map set will occupy the
same area in storage, each overlaying the last as it is
loaded (STORAGE and BASE operands). Assuming
that you do not want them to overlay each other, you
code STORAGE = AUTO. See "Getting storage for a
data structure" on page 151.

• Whether 3270 terminal control commands (such as
sounding the alarm) are to be activated during
transmission (CTRL operand).

• Whether maps in the map set have attributes that use
the extended data stream; for example, color,
highlighting, programmed symbols, or validation
(MAPATIS and DSATIS operands for maps and
DSECTs respectively).

EXTATI is accepted for compatibility with previous
releases. KEXTATI is accepted for compatibility with
the IBM Japan 5550 support feature.

• The default values of the extended attributes, where
applicable (COLOR, HILIGHT, OUTLINE, PS, SOSI,
TRANSP, and VALlDN operands).

• Whether the map set name is to be suffixed (TERM or
SUFFIX operand). See "Assembling and cataloging
BMS maps" on page 146.

The syntax of the DFHMSD macro is as follows:

mapset DFHMSD
TYPE={DSECTIMAP}

, TIOAPFX=YES
,{STORAGE=AUTOIBASE=name}

[,MODE={INIOUTIINOUT}]
[,LANG={ASMTCOBOLlpLIIRPG}]
[,CTRL=([PRINT]

[,FREEKB] [,ALARM] [,FRSET])]

[,MAPATTS=(attrl,attr2, ...)]
[,DSATTS=(attrl,attr2, •••)]
[,COLOR={DEFAULTlcolor}]
[,VALIDN={[MUSTFILL] [,MUSTENTER]

[,TRIGGER]}]
[,HILIGHT={OFF1BLINKIREVERSEI
UNDERLI NE}]
[,PS={BASElpsid}]
[,OUTLINE={BOXI([LEFT][,RIGHT]

[,OVER] [rUNDER])}]
[,SOSI={NO YES}]
[,TRANSP={YESINO}]

[,SUFFIX=suffixl
,TERM={3279-113279-2}]

Chapter 3.2-2. Minimum function BMS 143

Most of the operands are self explanatory. For more
information, see the description of the operand in "Map
definition macro operand summary" on page 195.

Defining maps within a map set

Each map in a map set is defined using the DFHMDI
macro. This macro is similar in form to DFHMSD. It
allows you to override some of the options inherited from
DFHMSD, and to specify some new ones. The full syntax
of the macro is shown in "Chapter 3.2-5. BMS macro and
command reference summary" on page 193.

You use DFHMDI to specify the following:

• The name of a map (by labeling the DFHMDI macro).

• Its size; that is, the depth in number of lines and the
width in number of columns. (SIZE operand.)

• The position (line and column) of its top left-hand
corner. (LINE and COLUMN operands.)

• Whether 3270 terminal control commands (such as
sounding the alarm) are to be activated during
transmission (CTRL operand.)

• Whether maps in the map set have attributes that use
the extended data stream; for example, color,
highlighting, programmed symbols, or validation
(MAPATTS and DSATTS operands for maps and
DSECTs respectively).

EXTATT is accepted for compatibility with previous
releases. KEXTATT is accepted for compatibility with
the the IBM Japan 5550 support feature.

• The default values of the extended attributes, where
applicable (COLOR, HILIGHT, OUTLINE, PS, SOSI,
TRANSP, and VALlDN operands.)

• That the map contains no fields; that is, it is a null
map. You would find this useful if you wanted to
reserve part of the screen for a program other than
BMS (FIELDS operand).

144 CICS/MVS 2.1.2 Application Programmer's Reference

The syntax of the DFHMDI macro is as follows:

map DFHMDI
[,SIZE=(line,column)]
[, LI NE=number]
[,COLUMN=number]
[,JUSTIFV=BOTTOM]
[,CTRL=([PRINT]

[,FREEKB] [,ALARM] [,FRSET])]

[,EXTATT={NOIMAPONLVIVES}]
[,COLOR={DEFAULTlcolor}]
[,VALIDN={[MUSTFILL] [,MUSTENTER]

[,TRIGGER]}]
[,HILIGHT={OFFIBLINKIREVERSEI

UNDERLI NE}]
[,PS={BASElpsid}]

[,FIELDS={YESINO}]

[,SUFFIX=suffixl
,TERM={3270-113270-2}]

[,MAPATTS=(attrl,attr2, .•.)]
[,DSATTS=(attrl,attr2, .•.)]
[,OUTLINE={BOxl([LEFT][,RIGHT]

[,OVER][rUNDER])}]
[,SOSI={NO YES}]
[,TRANSP={YESINO}]

A map set definition must contain at least one map
definition. Where you have more than one map, you code
their definitions one after another, the end of one being
marked by the next DFHMDI macro or by a DFHMSD
TYPE = FINAL macro.

All maps in a map set are loaded whenever anyone of
them is used. If all the maps in a map set are used during
a single invocation of the program, the single load of all
maps is more efficient than loading each map as it is
required. Ensure that you use unique names for maps
within a map set, or within multiple map sets that are
copied into one application program.

Another reason for loading several maps at the same time
is that more than one of them can appear on the screen at
one time. This is because a map definition can specify
where a map is to be placed on the screen. When BMS
sends a map to a display, it does not erase the existing
contents of the display unless you code the ERASE option.
Instead, it uses your program data, plus constant map
data, to overlay part of the screen. Therefore, if you
design your maps so that they occupy different parts of a
screen, you can display them at the same time.
Alternatively, you can design some maps in a map set so
that they overlay one another. In this way, you can erase
parts of the contents of the screen without affecting the
rest.

Data fields: A map usually consists of one or more data
fields. Each field contains display data, and has a set of
associated attributes that are initialized by coding
operands in a DFHMDF macro. All field definition macros
following a map definition macro belong to that map. The
end of one field definition is indicated either by the
beginning of another, by the next DFHMDI macro, or by a
DFHMSD TYPE = FINAL macro.

Maps without fields: You can define maps that have no
fields. You do this to reserve part of the screen for use by
another program. By defining such a null map, BMS has
no affect on data that appears in the reserved part of the
screen. You would use null maps in this way if you wanted
to build a composite display containing both BMS text data
and graphics data. If the graphics data is produced by
GDDM, ensure that a GDDM PSRSRV call is included to
prevent programmed symbol sets that are being used by
BMS from being corrupted by GDDM.

There are other considerations when coordinating use of a
screen between BMS and other programs, see "Accessing
data outside the program" on page 153.

Defining fields within a BMS map

The DFHMDF macro is used to specify initial attributes to
be given to fields within a map.

You use DFHMDI to specify the following:

• The one-to-seven character name of the field. You
only have to name fields if your application program
refers to them. Only named fields appear in the
symbolic description map.

• The position of the start of the field relative to the map
origin. This is the position of the attribute byte for the
field (POS operand.)

• The length of the field excluding its attribute byte
(LENGTH operand). Specifying the length of a field
does not cause BMS to delimit it with "stopper" fields;
you must do that yourself either by making successive
fields contiguous, or by inserting fields with
ATTRB=PROT.

A field cannot extend beyond the right-hand edge of
the map, that is, it cannot "wrap" around the display.

• Whether data placed in the field is to be left-or
right-justified. (JUSTIFY operand.)

• What character must be used to pad a justified field.
(JUSTIFY= BLANK or JUSTIFY=ZERO.)

• The initial contents of the field. (INITIAL or XINIT
operand.)

• Attributes of the field, for example, skip, protect,
nondisplay. (ATTRB operand.)

• Extended data stream attributes of the field. (COLOR,
HILIGHT, OUTLINE, PS, SOSI, TRANSP, and VALlDN
operands.)

• A picture to be used to edit input. (PICIN and PICOUT
operands.)

These functions are a subset of those provided by the
standard and full BMS systems. The syntax of the full
DFHMDF macro, and a definition of its operands can be
found in "Chapter 3.2-5. BMS macro and command
reference summary" on page 193.

The syntax of the DFHMDF macro is as follows:

fld OFHMOF
[,POS={numberl (line,column)}]
[,LENGTH=number]
[,JUSTIFY=

([{LEFTIRIGHT}][,{BLANKIZERO}])]
[,INITIAL='character data'l

XINIT='hexadecimal datal]
[,ATTRB=([{ASKIPlpROTluNPROT

[,NUM]}][,{BRTINORMIORK}]
[,OET][,IC][,FSET])]

[,CASE=MIXEO]

[,GRPNAME=group-name]
[,OCCURS=number]
[,PICIN='value ']
[,PICOUT='value ']

[,COLOR={DEFAULTlcolor}]
[,VALION={[MUSTFILL] [,MUSTENTER]

[,TRIGGER]}]
[,PS={BASElpsid}]
[,HILIGHT={OFFIBLINKIREVERSEI

UNOERLI NE}]
[,OUTLINE={BOX1([LEFT][,RIGHT]

[,OVER][rUNOER])}]
[,SOSI={NO YES}]
[,TRANSP={YESINO}]

Field groups: Although most of the operands of DFHMDF
explain themselves, the operands OCCURS, PICIN, PICOUT,
and GRPNAME need more explanation. OCCURS, PICIN,
and PICOUT are described in detail in "Map definition
macro operand summary" on page 195. The GRPNAME
operand will be described here.

Very often, an output data display field has to contain
several subfields, all sharing the same display attributes,
each of which might have to be modified separately. At
output, subfields that have not been modified by the
program can adopt default data values from the output
map. For example, a display can include a date field,
comprising a 'day' subfield, a 'month' subfield, and a 'year'
subfield. The contents of the year subfield remain constant
over a relatively long period. Its value can safely be taken
from a map. However, the day value and month value

Chapter 3.2-2. Minimum function BMS 145

must be updated regularly. Similarly, on input the terminal
operator can enter data in each subfield separately.

You use the GRPNAME operand to define a group of
subfields that combine to produce a field. The start of the
group is indicated by a DFHMDF macro with the GRPNAME
operand. This operand defines the first subfield, and
specifies the attributes and name of the group. It is
followed by other OFHMOF macros, one for each of the
other subfields. Each of these must specify the group
name, but cannot specify attribute values. The definition
of the group is terminated by a OFHMOF macro that
specifies a different group name, by one that specifies no
group name, or by a OFHMOI or OFHMSO macro.

Briefly, a group of fields in a map would appear as follows
in the map definition:

MAPSET DFHMSD

MAP DFHMDI ...•

DD

MM

VV

DFHMDF GRPNAME=DATE,POS=40,
LENGTH=2,ATTRB= ..•

DFHMDF GRPNAME=DATE,POS=46,
LENGTH=2

DFHMDF GRPNAME=DATE,POS=52,
LENGTH=2

FIELD DFHMDF LENGTH=5,COLOR=GREEN, ...
DFHMSD TVPE=FINAL

The POS operand specifies the position of the attribute
byte of the field even though subfields of'a'group do not
have to be attributes. If the subfields are positioned
contiguously with no intervening blanks, the POS of the
second and succeeding subfields must be the last
characters of the previous subfield.

Terminating a map set definition

The macro OFHMSO TYPE = FINAL terminates a map set
definition. It is coded as follows:

I mapset DFHMSD TYPE=FINAL

The name of the map set, if specified, must match that
specified by the OFHMSO TYPE = INITIAL macro.

146 CICS/MVS 2.1.2 Application Programmer's Reference

Example of map set definitions

Appendixes 0, E, and F contain sample programs in
assembler language, COBOL, and PUI respectively. The
programs show various aspects of CICS application
programming, including map definition. You will probably
find it useful to study the sample map definitions now.

Assembling and cataloging BMS maps

You assemble a BMS map definition to generate either a
symbolic description map or a physical map. The
CICSIMVS Installation Guide describes how to assemble
and catalog the maps.

Symbolic description map: A symbolic description map
set definition (DFHMSO TYPE = OS ECT) is assembled, and
cataloged in the source statement library. The member

. name is usually the samE{as the map set name, but it need
not be. Alternatively, the symbolic description map can be
copied or inserted directly into the application program.

Physical map: A physical map set definition (OFHMSO
TYPE = MAP) is assembled, link edited, and cataloged in
the CICS load library.

When you catalog the physical map, consider whether to
add a suffix to its name (specified with the NAME
statement). The reason for suffixing a map is that you
might want to produce alternative versions of it for
different terminal models.

Map set suffixing: If you want to execute the same
transaction from more than one type of terminal, you might
need to use BMS map set suffixing. If you are prepared to
use the same map to format data for all your terminals,
you need 'not read the rest of this section. If however, you
wish to organize output data according to the terminal in
use, making best use of its features, you ought to consider
suffixing map sets.

For example, if you have displays with screens of different
sizes, you might want to arrange display fields differently
for each size of screen, ensuring that each display appears
"balanced." You add a different suffix to each version of
the same map.

When a mapping operation is requested by a BMS
command, CICS adds a suffix to the map set name
specified in the command, and attempts to load a map set
with that suffixed name.

To understand why you might suffix a map set name, you
must understand how CICS uses suffixes. Figure 21 on
page 147 summarizes the map set selection logic used by
BMS.

Yes

Upon receiving a
mapping request,
BMS reads the
unsuffixed name
of the map set
from the BMS
command.

Does
the program

<control table entry ~
for this transaction /' -
specify SCRN8ZE=

AL~:~E_? ______________ ~.~ ________________ __

Determine the type
and model of the
terminal from the
terminal control
table terminal entry.
Find the
corresponding
suffix.

t

Figure 21. BMS map set suffixing logic

Load it and use
it for mapping
operations

Chapter 3.2-2. Minimum function BMS 147

Minimum BMS supports only 3270 terminals. There are
only two TERM values that have meaning under minimum
BMS: TERM = 3270-1 and TERM =3270-2. Their maps
should be suffixed Land M respectively.

By default, terminal type 3270-1 is a 40-column display;
3270-2 is an 80-column display. If your terminal has
different characteristics, you must use a suffix of your own
choice, using the SUFFIX operand. For example, a 3278
Model 5 display device has a screen that is 132 characters
wide, and 27 characters deep. Maps that use the full
display must have special suffixes. If you do not need to
distinguish between maps for the two types, you need
produce only one version, and should give it an unsuffixed
name.

Finally, ask your system programmer to ensure that your
physical maps are cataloged with the correct suffixes. In
particular, note the following points about suffixing:

1. If you specify TERM or SUFFIX on your DFHMSD
macro, ensure that the physical map set is cataloged
using the correctly suffixed name.

2. You can code SUFFIX, instead of TERM, on DFHMSD if
you need to create a special version of a map. By
specifying SCRNSZE=ALTERNATE when you define
the CEDA profile for the transaction that uses the map,
you tell BMS to try to load a special version of the
map. This is the version of the physical map whose
suffix is specified by the AL TSFX operand of the TCT
entry for the terminal. (If you do not use CEDA, you
must code SCRNSZE=ALTERNATE on the PCT entry
for your transaction.)

Table entries such as those described above are usually
defined by a system programmer.

If all your map sets are unsuffixed, you get better
performance if NODDS is specified for the BMS operand of
the DFHSIT system macro. However, if your system has
been initialized with the default DDS option, you will get
better performance if all your map sets are suffixed.
Figure 21 on page 147 shows why this is so.

Writing programs to use B MS services

The layout of a BMS input or output display is defined by
one or more maps. These can define display data fields
that can be addressed by name from the application
program. This means that the attributes (that is, color,
highlighting, and so on) and contents of such fields can be
changed dynamically. This section describes how this can
be done.

Application programs use BMS SEND and RECEIVE
commands to send and receive display data. This section
shows the syntax of these and other commands, and
demonstrates their use. It also explains how to produce a
printed copy of a screen image.

148 CICS/MVS 2.1.2 Application Programmer's Reference

BMS commands are not accepted by the assembler or
compilers. They must be translated, as are other CICS
commands, before being assembled or compiled.

Copying symbolic description maps

Earlier in this chapter, under "Defining BMS maps" on
page 143, we describe how to define, assemble, and
catalog the symbolic version of a map set. The cataloged
version of a map set (the symbolic storage definition) is an
application data structure, which must be copied into any
application program that refers to fields in its maps.

Appendixes 0, E, and F show examples of application
program data structures for assembler language, COBOL,
and PUI respectively. It might help if you pause to study
these before proceeding further.

The following examples show you how to copy these
structures for each programming language. In these
examples, mapsetname1, mapsetname2, and
mapsetname3 are the names of members in the source
library that contain the assembly of a BMS symbolic map
definition. These member names are the same as the
names used to catalog the symbolic description map set,
as described in "Assembling and cataloging BMS maps"
on page 146. The following examples assume that the
source library has been assigned to SYSLIB by suitable job
control language as described in the CICSIMVS Installation
Guide.

1. An assembler language program must contain COPY
instructions for each symbolic storage definition. You
can specify that all definitions must occupy the same
area (that is, by overlays). If this is what you want,
the second and subsequent COPY instructions must be
preceded by ORG instructions to reposition the
assembler to the start of the data area.

COpy mapsetnamel
COPY mapsetnal11e2
COpy mapsetname3

2. A COBOL program must cdntain a COBOL COPY
statement for each symbolic map definition.
Generally, you should code the COpy statements in
the working storage section of a program. This saves
you from having to acquire storage for them.

WORKING STORAGE SECTION.
COPY l11apsetnamel.
COpy mapsetname2.
COPY mapsetname3.

3. A PUI program must contain a %INCLUDE statement
for each symbolic storage definition.

%INCLUDE mapsetnamel;
%INCLUDE mapsetname2;
%INCLUDE mapsetname3;

Alternatively, the assembled symbolic description map set
can be inserted directly into your application program, as
described in "Assembling and cataloging BMS maps" on
page 146.

Processing data structures under 8MS

An application program can read or modify the attributes
or initial data of any named field in an application data
structure. The form of an input map data structure differs
from that of an output map structure.

When designing a map, you assign names to fields that
contain variable data. The symbolic map data structure
contains extended versions of these fields, each one
consisting of subfields. Each subfield can be referred to by
its name, which is the name assigned in the symbolic map
definition, plus a single letter suffix. Each kind of subfield
has a different suffix.

Furthermore, the whole input data structure, or output data
structure, can be addressed by its suffixed name. The
suffixed name of an input map is its original name
extended by the suffix '1'. The corresponding suffix for the
output map is '0'. For assembler maps only, the start and
end of the data structure are labeled automatically with
the map name extended by the suffixes'S' and "E'
respectively. The suffix 'L' is added to the mapname to
produce a label denoting the actual length of the map.
You need to determine the length of the DSECT, for
example, if you wish to initialize its contents to X '00 I.

Input map data structures: The suffixes used to
address subfields, and the contents of those subfields, in
input maps are:

o (ASM only) The first byte of the first occurrence of a
field defined by the OCCURS operand of the DFHMDF
macro.

F a flag byte. This is normally set to X I 00'. If the field
has been modified but no data is sent (that is, the field
is cleared), the flag byte is set to X '80 I.

input data read from the display. It is set to X I 00 I if
no data is entered for that field. If the input process is
inhibited by a light pen, the first byte of the input data
subfield will be set to X I FF I, the rest of the field being
set to nulls (X I 00 '). The use of the light pen is
discussed under "Handling light pen AIDs" on
page 155.

L a halfword binary length value. This defines the
number of characters that are typed into the data field
before it is read by BMS.

N (ASM only) The first byte of the next occurrence of a
field defined by the OCCURS operand.

If MODE= INOUT is specified, the 'fieldname.A' subfield will
be defined in the input map data structure. (Compiler

errors will occur if a MOVE statement modifying an
attribute byte is qualified to refer to the output map.)

Input field suffixes: Having read data, a program can
process it by issuing ordinary application programming
commands that address fields by name.

Consider a field, called INPUT, in an input map. A program
can test that either its length field INPUTL contains a value
greater than 0 (data has been entered) or that its flag byte
INPUTF indicates that the field has been cleared. Provided
one of these is true, it can, for example, move the first
INPUTL characters from INPUTI to another data area.

The suffix on the data structure for the whole map enables
you to manipulate the whole data structure. For example,
you can write simple commands to copy the whole
structure into another data area.

Output map data structures: The suffixes used to
address subfields, and the contents of those subfields, in
output maps are:

A an attribute byte defining the characteristics of the field
(for example, protected or unprotected).

C an attribute byte specifying the color of the field. This
will be ignored if the terminal does not support the
extended data stream.

o (ASM only) The first byte of the first occurrence of a
field defined by the OCCURS operand of the DFHMDF
macro.

H an attribute byte defining the highlighting to be used
within a field in a display. This will be ignored if the
terminal does not support the extended data stream.

M an attribute byte defining that SOISI creation is to be
used.

N (ASM only) The first byte of the next occurrence of a
field defined by the OCCURS operand.

o output data to be sent to the display. The program will
usually store data in such a field before sending the
map. If the contents of the field begin with a null
(X '00 ') character, the whole field will be ignored, the
contents of the display field being taken from the
physical map. If you want to send a blank field, you
must store blanks (X '40 ') in the symbolic map data
structure. Being nonnull, this will override the contents
of the physical map.

P an attribute byte defining the programmed symbol set
to be used within a field in a display. This will be
ignored if the terminal does not support the extended
data stream.

If you want to use programmed symbols, you must
ensure that a suitable symbol set has been sent to the
device. The CICSIOSIVS IBM 3270 Data Stream Device
Guide describes how to do this.

Chapter 3.2-2. Minimum function BMS 149

T an attribute byte defining that background transparency
is to be used.

U an attribute byte defining the outline to be used.

V an attribute byte defining the kind of validation to be
performed on data typed into a display field. This will
be ignored if the terminal does not support the
extended data stream.

Subfields with suffixes H, P, V, C, U, M, and T are only
generated if the corresponding attribute types are included
in the DSATTS operand of the DFHMDI or DFHMSD
macros. If EXTATT=YES is specified, subfields with
suffixes H, P, V, and C are generated. If KEXTATT=YES is
specified in addition to EXTATT=YES,subfields with
suffixes U and M are also generated.

As with input data fields, a program can address individual
subfields in an output field, verifying or changing their
contents. For example, an application program can check
a calculated data value, say BALANCE. If the value is
found to be negative, the color attribute constant
(BALANCEC) in a field called BALANCE can be set to
produce red characters when displayed. The data value in
the field will occupy subfield BALANCEO.

You can also manipulate the whole output data structure
using its suffixed name. For example, you could copy data
into it from another area. More importantly, you can write
commands to set the whole data structure to nulls (X I 00 I)

before using its corresponding physical map in an output
operation. By doing this, you ensure that fields and
attributes in the output display inherit the default contents
of the physical map, not whatever happens to be in the
symbolic data structure. The following code shows how
you might do this in assembler language, COBOL, and PUI
respectively.

ASM XC MAPO(MAPE-MAPO),MAPOl

COBOL MOVE LOW-VALUES TO MAPO

Pl/I DCl STR BASED CHAR(32767);

SUBSTR(ADDR(MAPO)->STR,l,
STG(MAPO»=LOW(STG(MAPO»

'Data structure must be less than or equal to 256 bytes.
You must use another method if the structure is larger
than this.

Attribute constants: Subfield suffixing allows an
application program to change the data within a data
structure. However, the bit patterns representing
particular attributes are difficult to remember, so CICS
provides a list of named standard attribute bytes. You can
code these names in a program instead of their
hexadecimal equivalents. To use them, you must copy the
list (a copy book supplied by IBM and stored in the system

150 CICS/MVS 2.1.2 Application Programmer's Reference

source library at installation) into your program, using the
name DFHBMSCA. The constants and their meanings are
shown under "BMS related constants" on page 205.

Using attribute constants and subfield suffixing, a program
can modify field attributes using simple commands. The
following examples illustrate how you could: (1) put data
into an output data field, (2) set the color attribute of the
output data field, and (3) set the highlighting attribute of
the output data field.

ASM MVC ACCOUNTO,CUSTNO .•...•.• (1)
MVC ACCOUNTC,DFHBLUE .•.••.• (2)
MVC ACCOUNTH,DFHBLINK .•••.. (3)

COBOL MOVE CUSTNO TO ACCOUNTO •••• (1)
MOVE DFHBLUE TO ACCOUNTC ••• (2)
MOVE DFHBLINK TO ACCOUNTH .. (3)

PL/I ACCOUNTO=CUSTNO;•••.. (1)
ACCOUNTC=DFHBLUE;•..•.• (2)
ACCOUNTH=DFHBLINK;••... (3)

Additional installation defined named attribute constants
can be created and cataloged in DFHBMSCA in the source
library.

The value of an attribute constant can be determined by
referring to the publication An Introduction to the IBM 3270
Information Display System.

Invalid data: BMS does not check the validity of attribute
and data values in the symbolic data structure. Invalid
data may be transmitted to the terminal. Some terminals
will detect this invalid data and send error information to
CICS. This error information is handled by CICS code and
usually results in an abnormal termination of the
transaction with an ATNI abend code. This abend can be
intercepted by user-written terminal or node error
programs (TEPs or NEPs) as described in the CICSIMVS
Customization Guide.

Sending data to a display

You use the SEND MAP command to send mapped data to
a display. You can send three kinds of data, depending on
what options you specify, as follows:

• constant display data (with attributes) such as
headings, footings, prompt fields, and comments

• variable display data (with attributes) such as user
data or warning messages

• device control data such as instructions to clear the
screen, or sound an alarm, before displaying data.

The syntax of the command is:

SEND MAP (name)
[MAPSET(name)]
[FROM(data-area) LENGTH(data-value)I

DATAONLVIMAPONLV]

[devcntrl ...]

The MAP option names the map that is used to format the
data, and the MAPSET option names the map set to which
the map belongs. If the map set has the same name as
the map, you do not need to specify MAPSET.

In its simplest form, the SEND MAP command is used as
follows:

1. The application program assigns values to variables
named in the symbolic description map.

2. The program issues a SEND MAP command. This uses
the application data in the application data structure to
replace default data and attributes in the physical
map, and sends the modified map to the display.

For example, if a map set called DISPLAY contains an
output map of the same name, the map can be displayed
using the command:

SEND MAP('DISPLAY')

Another map, called ERROR, in the same map set can be
displayed by:

SEND MAP('ERROR') MAPSET('DISPLAY')

By default, BMS displays application data or attribute data
from the application data structure rather than default data
from the physical map. To override this for a given field,
your program must set the corresponding subfield in the
data structure to hexadecimal zeros (X '00') before issuing
a SEND MAP command.

Composite displays: If your program sends a
succession of maps to a display, the final form of the
display depends on both the design of the maps, and the
form of the SEND MAP command. For example, if the final
map fills the screen, or the SEND MAP command includes
the ERASE option (see "Device control options" on
page 152) it obliterates a" previous output. However, if
you design your maps to occupy different parts of the
screen, or to overlay each other only partially (see
"Defining maps within a map set" on page 144), you can
combine them to produce the final display.

Refreshing and modifying displays: You use the
MAPONLY option of the SEND MAP command to build a
display using data from the physical map, without inserting
user data. This can be useful when sending a menu to a
display, as no data is sent with the map, and input data
fields regain their default data values (perhaps blank).

You use the DATAONLY option to modify the variable data
in a display that has already been created by a SEND MAP
command. BMS transmits variable data but no physical
map data.

You cannot issue a SEND MAP DATAONLY command if the
screen is unformatted (that is, if there has been no
preceding SEND MAP).

No data is sent for fields that you have cleared to nulls
(X'OO'). You can use a SEND MAP DATAONLY to ensure
that only changed fields are sent.

Getting storage for a data structure: You have now
seen how to map data from one or more data structures.
Depending on how you define your map sets, a program
might have to issue commands to acquire main storage for
the data structures it uses. It does this by issuing
GETMAIN commands. You can usually avoid having to
code GETMAIN commands by coding STORAGE = AUTO on
the DFHMSD macro.

It has been assumed so far in this chapter that every
output map has its own data structure. However, you
might decide that this uses too much storage. To save
storage, you can specify that different maps are to use the
same storage area. You do this by coding BASE=name
(or nothing at a"), instead of STORAGE=AUTO, on the
DFHMSD macro. This section describes what happens
when you code each operand for each language, and how
it affects application programs.

However you acquire storage, you must clear its contents
(to X'OO') before issuing a SEND MAP command. If you do
not do this, existing data in storage can modify the output
display unpredictably. If you use GETMAIN to acquire
storage, you can clear the storage by coding the INITIMG
option.

Here are the rules for assembler language (ASM), COBOL,
and PLII:

ASM

STORAGE = AUTO If you code this operand, each map wi"
need its own storage. To acquire the storage
automatically (without coding GETMAIN commands),
code your COpy statements for map sets immediately
after the DFHEISTG statement. If you do this, the
DFHEIENT macro acquires storage for you. This is the
best way of getting the storage. It is demonstrated in
the "Low balance report sample program (ASM)" on
page 375.

If you do not code the COpy statements after DFHEISTG,
you must code GETMAIN commands before you use
maps.

BASE = name You cannot code this for assembler language
maps.

Chapter 3.2-2. Minimum function BMS 151

nothing specified the assembler generates ORG
statements that cause maps in the set to overlay each
other. Code your COPY commands for map sets
immediately after the DFHEISTG statement (as for
STORAGE = AUTO). CICS acquires storage
automatically, but only enough to hold the largest map
in the set.

If you do not code the COpy statements immediately
after DFHEISTG, you must perform your own GETMAIN,
specifying the size of the largest map in the set.

Note: There is more information on using the BASE
operand under "Map definition macro operand summary"
on page 195.

COBOL

STORAGE = AUTO The data structure must be copied into
the working storage section. CICS acquires storage
automatically for every map; you do not have to code a
GETMAIN command.

BASE = name the map set must be copied into the linkage
section. You must code a GETMAIN command to
acquire enough main storage to contain the largest map
in the set.

nothing specified if the map set is copied into the working
storage section, you do not have to code a GETMAIN
command, but you should place the largest map first in
the set.

If the map set is copied into the linkage section, you
must code a GETMAIN command to get storage for it.

Note: When you use GETMAIN to get main storage for a
COBOL map, you must ensure that you establish
addressability for the map. For more information, see
"Base locator for linkage (BLL)" on page 21 and the
coding example in the description of the BASE option
under "Map definition macro operand summary" on
page 195.

PLII

STORAGE = AUTO CICS acquires storage automatically for
every map; you do not have to code a GETMAIN
command.

BASE = name you must code a GETMAIN command that
gets at least enough main storage to contain the largest
symbolic map in the map sets sharing this database.

nothing specified you must code a GETMAIN command that
sets the pointer BMSMAPBR to the address of the
acquired data area. The GETMAIN must get at least
enough storage to contain the largest map in the sets.

152 CICS/MVS 2.1.2 Application Programmer's Reference

Alternative data structures: The examples so far have
shown SEND MAP commands that contain literal map
names. If the map name referenced by your program is to
be a variable, you need to code additional options, FROM
and LENGTH, on the SEND MAP command.

FROM enables you to display data stored in a data area
other than the data structure for the symbolic description
map. In the command syntax summary, 'data-area'
represents the name of the alternative data area.

FROM and MAPONLY are mutually exclusive.

LENGTH specifies the length of the data string stored in
the FROM data area. It need not be coded unless the data
to be mapped occupies less than the whole data area.

I Note: LENGTH must be specified if the data to be mapped
I is less than the data area receiving the map.

Device control options: As well as transmitting
application data to a display, BMS can relay device control
commands. An application program uses options of the
SEND command to specify which controls are to be
activated. Alternatively, it can use the BMS SEND
CONTROL command, which transmits device control
commands without also sending application data. In the
syntax display for SEND MAP, these options are indicated
by 'devcntrl...'. For example, the command

SEND MAP(IERROR 1
) MAPSET(IDISPLAY 1

) ERASE

erases the screen before data is displayed.

You can code one or more of the following device control
options in a SEND MAP command:

ALARM sound audible alarm on displaying data.

CURSOR specify position of cursor after output. The
cursor position is a halfword binary value, representing
the absolute screen address of the cursor. However,
you need not always specify a value. For more
information, see "Cursor positioning" on page 153.

ERASE erase screen and place cursor in top left-hand
corner of screen before output.

The first SEND MAP command of any CICS application
program should specify ERASE. This ensures that the
size of the screen is set to default or alternate,
according to the SCRNSZE operand of the DFHPCT
TYPE = ENTRY system macro.

ERASEAUP erase all unprotected fields before output.

FORMFEED send a form feed character as the first
character in the device-dependent data stream.

FREEKB unlock the keyboard for data input.

FRSET reset all modified data tags (to 'not modified' state)
before output.

PRINT start printing (when terminal is a printer).

Sending device controls without display
data

You use the BMS SEND CONTROL command to transmit
device control orders without also sending data.

The BMS SEND CONTROL command allows you to send
any of the device orders listed in "Device control options."
The command has the following syntax:

SEND CONTROL
[ERASEAUpIERASE]
[ALARM]
[FREEKB]
[FRSET]
[CURSOR[(data-value)]]
[PRINT]
[FORMFEED]

Cursor positioning

You can control the positioning of the display cursor in two
different ways, as described below.

Normal cursor positioning: You can specify a two-byte
cursor position on the BMS SEND commands. This enables
you to specify the absolute value of the cursor position on
the screen after the SEND has been performed. The first
location on the display screen is address O.

You specify the address in parentheses after the CURSOR
keyword, as follows:

CURSOR(44)

If you omit the CURSOR option, BMS will search the map
for a field with the IC attribute. (You would have given it
this attribute by coding ATTRB = IC on the DFHMDF macro
for the field.) If there is more than one field with the IC
attribute, BMS places the cursor at the beginning of the
last one. If there is no such field, BMS places the cursor
at screen address O.

If you omit the CURSOR option from the SEND CONTROL
command, the cursor position remains unchanged.

Symbolic cursor positioning: You can use symbolic
cursor positioning instead of coding an explicit value on
the CURSOR option of the SEND MAP command. To
position the cursor symbolically you must mark a field in
the symbolic map data structure with a special symbol. If
CICS finds this symbol in a data field, it places the cursor
under the first data byte in the field on the output screen.

To use symbolic cursor positioning, you must:

1. Specify MODE = INOUT in the DFHMSD macro.

2. Set the length of the of the field (to which the cursor is
to be positioned) to -1.

3. Execute the SEND command, specifying CURSOR
without an argument.

Accessing data outside the program

Sometimes your program needs access to information held
by CICS. The ASSIGN command allows it such access.

Some ASSIGN options apply exclusively to BMS; there is a
full list of these under "BMS related ASSIGN options" on
page 212. However, the only ASSIGN options you can use
under minimum BMS are those concerned with null maps.
(Null maps have already been described under "Maps
without fields" on page 145.) The ASSIGN options you can
use are:

MAPLINE requests the number of the line, on a display,
that contains the map's origin.

MAPCOLUMN requests the number of the column, on a
display, that contains the map's origin.

MAPWIDTH returns the width of the map.

MAPHEIGHT returns the height of the map.

For example, you can write a mixed GDDM/BMS
application program using a BMS SEND-MAP statement to
position the 'graphic hole'; using a CICS ASSIGN command
to determine the size and position of this graphic hole; and
using the returned size and position in a GDDM create
graphic field (GSFLD) call.

Receiving data. from a display

You use the RECEIVE MAP command to receive data from
a display. The data from the display is mapped into a data
area in an application program.

The syntax of the command is:

RECEIVE MAP (name)
[MAPSET(name)]
[INTO(data-area)ISET(ptr-ref)]
[FROM(data-area) LENGTH(data-value)I

TERMINALI[ASIS]]

The MAP option names the map that is used to convert the
data to its unformatted form, and the MAPSET option
names the map set to which the map belongs. If the map
set has the same name as the map, you do not need to
specify MAPSET.

For example, in its simplest form, the RECEIVE MAP
command is coded as:

RECEIVE MAP(IDISPLAY 1
)

This command tells BMS to map the input data into a
symbolic map data structure called DISPLAY. The example
assumes that the name of the map set is also DISPLAY.

Chapter 3.2-2. Minimum function BMS 153

Another map, MENU, in the same map set can be read by:

RECEIVE MAP('MENU') MAPSET('DISPLAY')

This command tells BMS to map the input data into a
symbolic map data structure called MENU.

After a RECEIVE MAP command, your program can
determine the inbound cursor position by inspecting the
halfword binary value stored in EIBCPOSN. Similarly, it
can determine the type of attention identifier (AID) by
inspecting EIBAID.

You cannot issue RECEIVE MAP or RECEIVE PARTN
commands in a nonterminal task, because these tasks do
not have a TIOA or a TCTTE. The INVREQ condition will be
raised if you attempt this.

Receiving data into an alternative data structure: The
sample RECEIVE MAP commands shown above use a
literal for the name of the map or map set. You can also
use a variable for these names, in which case you must
use one of the options INTO or SET.

If you code INTO, display data will be mapped into the
named data area rather than into the data structure for the
sYmbolic description.

If you code SET, BMS acquires a data area for you, maps
the display data into it, and stores the address of the data
area in the named pointer reference. This data area
includes the 12-byte TIOA prefix.

The rules for getting main storage for an input operation
are the same as for output. For more information, see
"Getting storage for a data structure" on page 151.

BMS sets the receiving area to nulls (X' 00') before
performing the RECEIVE. So you should save any data in
this area before performing a RECEIVE. Furthermore, if
you depend on BMS to set a data area to nulls for you
during a RECEIVE, you should be aware of the MAPFAIL
condition. If this arises, BMS does not set the input map
to nulls.

If an operator types into a BMS input map, but does not fill
one of the fields, BMS justifies the input data, and pads the
empty part of the field according to predefined rules.
These depend upon what you specify with the JUSTIFY
operand of the DFHMDF macro. For more information on
JUSTI FY, see page 199.

The MAPFAIL condition can arise unexpectedly after a
RECEIVE MAP command. For example, it arises if you
press a PA or PF key when CICS is waiting to perform a
RECEIVE command. Therefore, always consider coding a
HANDLE CONDITION command for the MAPFAIL condition.

154 CICS/MVS 2.1.2 Application Programmer's Reference

Uppercase translation: By default, the data to be
mapped is assumed to come from a terminal. The terminal
control table entry for the terminal can specify that all
input data is to be translated to uppercase
(FEATURE= UCTRAN). You can override this for any
individual RECEIVE command by specifying ASIS.
However, ASIS has no effect for a RECEIVE MAP command
if that command maps the data that initiated the
transaction.

Mapping data from another data area: Sometimes,
however, you need to perform an input mapping operation
in two stages; accepting and storing the input data in one
stage, mapping it in the second. For example, your
program might receive (but not map) data using a terminal
control RECEIVE command. It would then have to map the
data from CICS storage.

You use the FROM and LENGTH options of the RECEIVE
MAP command to specify that data is to be mapped from a
data area instead of from a terminal. FROM names the
data area; LENGTH indicates the number of bytes of data
to be mapped. If the data is produced by a terminal
control RECEIVE command or by a BMS RECEIVE PARTN
command, the LENGTH value of the RECEIVE MAP
command must match that specified in the original
RECEIVE command.

The terminal control RECEIVE command is described in
"Chapter 3.3. Terminal control" on page 221. The
RECEIVE PARTN command is described on page 168.

I Note: The data obtained from a RECEIVE BUFFER
I command cannot be mapped because the data will not
I contain set buffer address (SBA) orders, and a MAPFAIL
I condition will be raised.

Responding to terminal input

As we have seen at the beginning of this chapter, certain
operator actions cause an AID to be transmitted to CICS.
Each such action generates a different AID. The AID is a
one-byte character, and can be tested by an application
program. This can be used as a mechanism for controlling
program flow. the HANDLE AID command controls
conditional branching caused by AIDs.

HANDLE AID command

I HANDLE AID
option[(label)] ...

You use the HANDLE AID command to pass control to a
specified label when CICS receives an AID from a display
device; control is passed after the input operation is
completed. In the absence of a HANDLE AID for an AID,
control returns to the application program at the point
immediately following the input request.

You can suspend the HANDLE AID command by means of
the PUSH and POP commands as described in "Chapter
1.5. Exceptional conditions" on page 43.

A HANDLE AID command takes precedence over a
HANDLE CONDITION command. If an AID is received
during an input operation, for which a HANDLE AID is
active, control passes to the label specified in that request
regardless of any exceptional conditions, for example
MAPFAIL, that occur (provided they do not stop receipt of
the AID).

The HANDLE AID options that can be specified under
minimum BMS are:

ANYKEY any PA key, any PF key, or the CLEAR key, but
not ENTER

CLEAR for the key of that name

CLRPARTN for the key of that name

ENTER for the key of that name

LlGHTPEN for a light pen attention

OPERID for the operator identification card reader, the
magnetic slot reader (MSR), or the extended MSR

PA1, PA2, or PA3 any of the program access keys

PF1 through PF24 any of the program function keys

TRIGGER which means that the display cursor has left a
field described as a trigger field which has been
modified by the terminal operator.

A HANDLE AID command for a specified AID remains
active until the task is terminated or until another HANDLE
AID is issued for that AID. (If no label is specified in the
new request, the existing HANDLE AID command is
suspended.)

A HANDLE AID command is valid only for the program in
which it is issued. Each new program in a task starts
without any active HANDLE AID settings. When control
returns to a program from a program at a lower logical
level, the HANDLE AID commands that were active in the
higher-level program before control was transferred from it
are reactivated, and any HANDLE AID commands activated
in the lower-level program are deactivated.

If CICS detects an OPERID AID, the code that handles the
AID can inspect the EXEC interface block (the EIB) to find
out which of the magnetic stripe readers (MSR OR MSRE)
has been used. MSR generates an AID of X I E6 I, MSRE
generates an AID of X I E7 1

•

If an AID covered by the general option ANYKEY is
received and there is no active HANDLE AID command for
the specified AID but there is an active HANDLE AID
ANYKEY command, control will pass to the label specified
in this command. A HANDLE AID command for an AID
overrides the HANDLE AID ANYKEY command as far as
that AID is concerned.

The following example shows a HANDLE AID command
that specifies one label (LAB1) for the PA1 key AID, a
second label (LAB2) for the PA2 and PA3 key AIDs, all of
the PF key AIDs except PF10, and the CLEAR key AID:

EXEC CICS HANDLE AID
PAl(LABl)
ANYKEY(LAB2)
PFUl

You cannot code more than 16 options in a single HANDLE
AID command.

Rather than using HANDLE AID, a program can examine
the value of the EIBAID field in the EIB to find out which
attention key has been pressed. The 3270 terminal
transmits an AID character, which is stored in field EIBAID.
The program can compare the contents of EIBAID with the
constants supplied in the CICS copy book DFHAID. The
contents of DFHAID relevant to minimum BMS are shown
below. For the full list of contents, see "Attention identifier
constants (DFHAID)" on page 208.

Constant

DFHENTER
DFHCLEAR
DFHPAI-DFHPA3
DFHPFl-DFHPF24
DFHOPID
DFHMSRE
DFHTRIG
DFHPEN

Meaning

ENTER key
CLEAR key
PAl-PA3 keys
PFI-PF24 keys
OPERID or MSR
Extended(standard) MSR
Trigger field
SELECTOR PEN or

CURSOR SELECT key

Handling light pen AIDs: There are two different kinds
of light pen detectable fields: immediate and deferred.
You indicate an immediate field by storing a blank (X '40')
in its first byte. You show that it is a deferred field by
storing a question mark (?) in its first byte. In either case,
you must ensure that the attribute byte for the field
indicates that it is light pen detectable.

When an operator selects an immediate field, the display
device transmits an AID plus the contents of the field. It
sets the first byte of the returned field to X I FF I to indicate
that the field is a light pen field.

When an operator selects a deferred light pen detectable
field, the display device changes the field's question mark
to a 'greater than' (» sign. This indicates that the field
has been selected. No data is transmitted at this point.
By reselecting the > sign, the operator can cancel the
selection, resetting the question mark. Data is eventually
transmitted when another operation, for example pressing
the ENTER key, or selecting an immediate detectable field,
generates an AID. Before the data field is returned to
BMS, its first byte is set to X I FF I to indicate that the field
is a light pen field.

Deferred fields are useful when an operator has to select a
series of items in a display. Deferring the input operation

Chapter 3.2-2. Minimum function BMS 155

until all the selections have been made improves
efficiency.

The CLEAR, PA 1, PA2, and PA3 keys do not transmit data
to CICS. They normally signal a special operator request
that does not require data, such as print, page forward,
page backward, or exit from a repeating transaction. In
practice, the PF keys are also often used for this purpose.

Exceptional conditions

CICS exceptional conditions have already been introduced
under "Chapter 1.5. Exceptional conditions" on page 43.
BMS commands in your program can raise a number of
exceptional conditions. These, and the default system
action they invoke, are listed under "BMS exceptional
conditions" on page 217.

You are only likely to encounter two exceptional conditions
when using minimum BMS, as follows:

MAPFAIL occurs, on input only, if the data to be mapped
has a length of zero or does not contain a set buffer
address (SBA) order. This is what happens if you press
a PA key, the CLEAR key, or either ENTER or a PF key
without data.

Default action: terminate the task abnormally.

ERROR See under "ERROR exceptional condition" on
page 44 for an explanation of the ERROR condition.

An exceptional condition is not necessarily an error
condition. Sometimes you might even wish to treat an
exceptional condition as part of the normal course of
events.

You use the HANDLE CONDITION command to respond to
exceptional conditions.

Printed output

Very often you will find that you want printed output (hard
copy) as well as, or instead of, the screen images
produced by a transaction. You have a choice of methods
of producing such output. Which one you choose depends
on your requirements. This section describes the methods
available; briefly, they are:

• Hardware print key feature

• CICS local copy key

• The ISSUE PRINT command

• Asynchronous page build transaction.

156 CICS/MVS 2.1.2 Application Programmer's Reference

Hardware print key feature: Some display terminals
models have a hardware print key. Pressing one of these
keys initiates a print process involving only the terminal,
its controller, and a printer attached to the controller. This
allows you to print the contents of your display screen.
Neither the host processor, nor CICS, nor your application
program can control this process.

CICS local copy key: In the absence of a hardware print
key, you may want your program's end-user operators to
be able to print copies of the screen contents using a PA
(program access) key. If that is so, you must ensure that
your CICS system has been designed to allow it. The local
copy key causes CICS to print the contents of a screen on
the first eligible and available 3270 printer.

To define a terminal to use a local copy key, see the
CICSIMVS Resource Definition (Macro) manual or the
CICSIMVS Resource Definition (Online) manual.

For more information, see the CICSIOSIVS IBM 3270 Data
Stream Device Guide.

ISSUE PRINT command: The format of the command is:

I ISSUE PRINT

The ISSUE PRINT command prints the contents of a screen
on the first eligible and available 3270 printer.

For more information on defining print keys, see the
CICSIOSIVS IBM 3270 Data Stream Device Guide.

Asynchronous page build transaction: The methods of
printing described so far have the advantage of being
simple to implement. However, they do not provide the
flexibility often needed in commercial applications. In
particular, they do not allow your program to combine
mapped output data to produce an entire printed page.
There are two ways of achieving this under minimum BMS.
Both apply only to non-SCS 3270 printers. For additional
printer support you must use standard function BMS (see
"Printer support" on page 160). Before looking at the two
methods, let us first consider how a program uses a 3270
printer.

A 3270 printer contains a page buffer. BMS moves data
into this page buffer when instructed to do so by SEND
MAP or SEND CONTROL commands. The page buffer is
printed only when BMS receives a SEND MAP or SEND
CONTROL command containing the PRINT option.
Likewise, it is erased only if BMS receives a SEND MAP or
SEND CONTROL command that specifies the ERASE option.
These properties of the printer make it possible for a
program to build a single page of printed output from a
series of maps.

Two ways of printing a page built from multiple maps are:

1. Using the interval control START command

You use the START command (see "Start a task
(START)" on page 277) to initiate a secondary CICS
task. This will be a print task if the TERMID option of
the command names a printer as its principal facility.
Your initial transaction can pass data to the print task
by specifying the FROM and LENGTH options of the
START command. If the primary transaction has
already created a series of output data structures in
the FROM area, the secondary transaction can map
the data into the printer buffer, then initiate printing
using a BMS SEND with the PRINT option.

2. Using a transient data queue with a trigger level

You can send symbolic map data structures to a
transient data queue using the WRITEQ command.
CICS can be made to initiate a print transaction when
a certain number of records have been written to the
queue. The name of the transaction to be initiated,
the identifier of the printer that is to be its principal
facility, and the trigger level at which it is started, are
defined in the destination control table (OCT).

Output from several instances of your transaction may
be interleaved on the transient data queue. This can
be avoided if all the data to be printed by an instance
of your transaction is stored in a single transient data
queue item. Alternatively, each instance of your
transaction can obtain exclusive control of the
transient data queue by ENQ and DEQ commands.

Blank lines and 3270 printers: Every line in a map for a
3270 printer must contain field data (blanks if necessary),
because the 3270 does not print empty lines (that is, lines
of null characters).

Setting the printer page width: BMS builds device
dependent data streams for 3270 printers by computing
'set buffer address' (SBA) orders based on the page width
specified by the PGESIZE or AL TPGE options of the
DFHTCT TYPE=TERMINAL system macro, or by the
PAGESIZE or ALTPAGE attributes of the TYPETERM
definition.

The 3270 printer, however, prints the data using a line
width specified in the write control character (WCC). This
line width must be set to 40, 64, or 80 columns, or the
printer platen width. The WCC line width is set by BMS
from the TCT page width, unless it is overridden by the
L40, L64, or L80 options of the SEND MAP or SEND
CONTROL command that specifies the PRINT option.

Unexpected results will occur if the TCT page width is not
40, 64, or 80 columns, or is not the printer platen width.
Unexpected results will also occur if the WCC page width is
set by the application program to be different from the TCT
page width. Normally, your program should not specify
one of these options in a BMS SEND command. For this
reason, the command syntax panels in this chapter do not
show the options, even though you can code them.

Form feed characters: You can code an option, called
FORMFEED, on the SEND MAP and SEND CONTROL
commands. This generates a form feed (X I OC I) character
at the start of the data stream. If you code this option for
a terminal that does not support form feed, CICS simply
ignores the request. To indicate that a terminal supports
form feed, you must code "FF = YES" on its DFHTCT
TYPE=TERMINAL system macro, or use the FORMFEED
attribute of the TYPETERM definition.

The form feed character occupies screen position 1 (the
top left hand corner) on a 3270 display or printer. It can
be overwritten by other data sent to the terminal, in which
case form feed will not occur.

The FORMFEED option on 3270 displays is particularly
useful if the screen is to be printed using the hardware
local copy key or the CICS PAl print key facility. Its use
ensures that the screen image is printed on a fresh page.

Be careful when using the FORMFEED option on a SEND
CONTROL command. The SEND CONTROL command will
always generate a complete blank page. Thus a SEND
CONTROL FORMFEED will skip to a new page and also
send this as a blank page. However, as described earlier,
3270 printers sometimes suppress null lines so that a blank
page will be printed as a single line.

Chapter 3.2-2. Minimum function BMS 151

Chapter 3.2-3. Standard function BMS

This chapter describes the features provided by standard
function BMS that are additional to those provided by
minimum function BMS as described in "Chapter 3.2-2.
Minimum function BMS" on page 139. For convenience,
'standard function BMS' will be shortened to 'standard
BMS'.

Standard BMS supports all terminals and printers in the
3270 family of devices (for example 3180, 3270-PC, 3279,
3286, 3290, LUTYPE2, LUTYPE3, and SCSPRT). It also
supports the terminal types and associated terminal
features listed below. This list does not include all
terminals supported by CICS; some devices can only be
used through the terminal control interface.

CRLP or TRMTVPE=TCAM terminals
Magnetic Tape
Sequential Disk
TWX Model 33/35
!El50
2740-1,-2 (no buffer receive)
2741
2740-2 (buffer receive)
2770
2780
3780
3767/70 Interactive LU
2980 Models 1 and 2
2980 Model 4
3688 (3681) LU
3658 Host Convers (3653) LU
3658 Interpreter LU
3658 Host Convers (3278) LU
3778 Batch LU
LUTVPE4

Standard BMS provides the following function in addition
to that provided by minimum BMS:

• Text processing. The SEND TEXT command allows
your application program to send data to a terminal.
BMS splits the text into lines that fit the target
terminal, ensuring that words do not split across line
boundaries.

• Printer support. The NLEOM option of the SEND MAP
and SEND TEXT commands tells BMS to build a device
dependent data stream for 3270 printers. Such a data
stream allows greater flexibility in page width settings
for 3270 printers, and avoids the suppression of null
lines in printed output.

• Partition support. Some terminals allow your
application program to divide the display area into a
number of independent "logical terminals" or
partitions that it can address individually.

• Logical device components. Some terminals (for
example, the 3601, LUTYPE4, and 3790) have more

© Copyright IBM Corp. 1982, 1991

than one component, such as a printer and a console.
BMS can treat each of these components as a
separate terminal.

• 10/63 Magnetic slot reader control. Support for
application program control of the 10/63 magnetic slot
reader attached to an 8775 or a 3643 terminal.

• Trigger fields. Support for the TRIGGER validation
attribute. This allows a program to start processing
input data without the terminal operator having to
press the ENTER key. This can make data entry more
efficient.

• Outboard formatting. This is a process that helps to
reduce line traffic.

• Block data format. (See "Block data format" on
page 172.) Thi sis an alternative to field data format,
but you are recommended not to use it.

Text processing

Use the SEND TEXT command to send text to a terminal.
Its syntax under standard BMS is:

SEND TEXT
FROM(data-area)
LENGTH(data-value)
[CURSOR(data-value)]
[FORMFEED]
[ERASE]
[PRINT]
[FREEKB]
[ALARM]
[NLEOM]
[LDC(name) I [ACTPARTN(name)]
[OUTPARTN(name)]]
[MSR(data-value)]

Conditions: INVLDC, INVPARTN,
INVREQ, RETPAGE, WRBRK

Use FROM to specify the data area containing the text to
be sent, and LENGTH to specify the length of this area.

When formatting the text, BMS flows it from one line to the
next and left-justifies it (just like the text you are reading
here). BMS splits the text into a series of lines, starting
each line with a single character. On a 3270 display
screen, this is the attribute byte; it is unprotected, normal
intensity, so it looks like a blank character on the screen.
On a non-display device, this is a single blank character.
(So your maximum line length will always be one character

159

less than the physical terminal page width.2) BMS also
pads the ends of lines with blanks to avoid splitting words.

If the FROM data area contains more text than will fit on a
single page, BMS creates more than one page. These
overwrite each other on a display terminal, unless you
code the PAGING option (which is available only under full
BMS).

New line characters (X '15') and character attribute
controls embedded in the text are honored. So are blanks
(X '40 '), with one exception:

If a line of text ends with a non-blank character, and the
next character is a blank, BMS discards the blank before
starting the new line. It puts the next character of the text
into the first text column (that is, column two) of the new
line. This is the one case where a blank is not honored. (If
a line of text ends with a blank and the next character is
also a blank, BMS honors the blanks, processing the data
without discarding what would otherwise be one or more
leading blanks on the new line.)

The other options of the SEND TEXT command have the
same effect as the corresponding options of the SEND MAP
command, as described on page 209.

Character attribute control

When data is destined for a device that supports the
extended data stream, you can include SA (set attribute)
orders in the data area specified in the FROM option.
These orders enable you to apply extended attributes to
characters or words in the data stream. Orders for
extended attributes not supported by a terminal are
removed from the data stream by BMS. If a sequence of
orders is less than three characters long, or contains an
invalid attribute type, the transaction is terminated
abnormally with abend code ABMX.

Attributes remain effective until overridden by subsequent
orders. Attributes are reset to their default values by a
subsequent SEND TEXT command.

As described in "Attribute constants" on page 150, copy
book DFHBMSCA contains a selection of predefined
constants that you can use in your programs. Here is a
simple PLII statement that will color a single word blue:

TEXTSTR='data 'I IOFHSAI IOFHCOLORI I
OFHBLUEI I 'blueword 'I I
OFHSA II OFHCOLOR II
OFHOFCOLI I 'rest of data';

SEND TEXT FROM(TEXTSTR) LENGTH(188);

Printer support

This section discusses the differences between 3270
printers, 3270 printers using the NLEOM option, and other
printers. It also contains guidelines on writing application
programs that are independent of printer type.

3270 printers without the NLEOM option

IBM 3270 printers (whose DFHTCT TYPE=TERMINAL
macro does not specify TRMTYPE=SCSPRT, or whose
DEVICE attribute on their TYPETERM definition is not
SYSPRINT) differ from other types of printer, because they
contain a page buffer. Data is moved into this page buffer
by SEND MAP, SEND TEXT, and SEND CONTROL
commands. The page buffer is printed only if those
commands specify the PRINT option. The page buffer is
erased only if those commands specify the ERASE option.
This has the following consequences:

1. A printer page can be composed of several small
maps. The first SEND MAP specifies the ERASE
option, and the last SEND MAP specifies the PRINT
option.

2. If successive printer pages are required with a single
map on each page, each SEND MAP command must
specify both the ERASE and PRINT options.

Other printers do not have page buffers. Instead, for such
printers, each SEND MAP, SEND TEXT, or SEND CONTROL
command prints a complete page. A single page cannot
be composed of several small maps, unless the ACCU M
option (full BMS only) is used.

For 3270 printers, null lines are suppressed; that is, they
are not printed. Every line in a map for a 3270 printer
should contain a field; a blank field will suffice.

If you are using 3270 printers without the NLEOM option,
ensure that your TCT terminal entry PGESIZE and ALTPGE
settings, or the PAGESIZE or AL TPAGE attributes of the
TYPETERM definition, are 40, 64, 80, or the printer platen
width, otherwise unpredictable results will occur. This is
discussed further in "Setting the printer page width" on
page 157.

2 Specify the terminal page width by the PGESIZE or ALTPGE operands of the DFHTCT TYPE=TERMINAL system macro, or by the
PAGESIZE or ALTPAGE attributes of the TYPETERM definition.

160 CICS/MVS 2.1.2 Application Programmer's Reference

3270 printers with the NLEOM option

If you omit the NLEOM option from SEND MAP or SEND
TEXT commands, BMS builds a device dependent data
stream that includes SBA (set buffer address) orders.
These orders position fields on the printer page.

If you include the NLEOM option on SEND MAP or SEND
TEXT commands, BMS builds a device dependent data
stream using new line and blank characters to position
fields on the printer page. The data stream is terminated
by an EOM (end of message) order, which stops printing.

If you use the NLEOM option, note the following:

1. The printer buffer is printed only if the PRINT option is
specified in a SEND MAP, SEND TEXT, or SEND
CONTROL command.

2. The printer buffer is cleared only if the ERASE option
is specified in a SEND MAP, SEND TEXT, or SEND
CONTROL command. Successive BMS output
commands specifying NLEOM, but not ERASE, build
successive pieces of that data stream in the printer
page buffer. However, as the first piece of data
stream is terminated by an EOM order, this is the only
data that can be printed.

A printer page cannot be composed of several small
maps if NLEOM is used, unless ACCUM is also
specified. The ACCUM option is supported only by full
BMS.

3. The printer buffer can never contain null lines, even if
the map contains blank lines. Blank lines in the map
are represented by new line characters in the printer
page buffer.

4. Use of NLEOM may allow larger pages to be printed.
This is because NLEOM uses the buffer more
efficiently. It eliminates spacing with null characters in
the print buffer.

5. Use of NLEOM allows you to specify a page width
other than 40, 64, 80, or the printer platen width in
your TCT.

SCS and other non-3270 printers

A 3270 printer whose DFHTCT TYPE=TERMINAL macro
specifies TRMTYPE = SCSPRT, or whose TYPETERM
definition specifies DEVICE(SCSPRINT), or a non-3270
printer, does not have a page buffer. As a result the
NLEOM, PRINT, and ERASE options on SEND MAP, SEND
TEXT, and SEND CONTROL commands are ignored. Each
BMS output command causes a complete page to be
printed.

BMS generates a data stream for these terminals using
blanks and new line characters to position data. It also
uses horizontal and vertical tab characters to position data
in the following circumstances:

1. The DFHTCT TYPE=TERMINAL macro specifies either
H F = YES or VF = YES, or both. The equivalent
attributes for the TYPETERM definition are
HORIZFORM and VERTICALFORM respectively.

2. The DFHMSD map set definition macro defines a tab
map using the HTAB and VTAB operands.

The use of tab characters may result in a shorter data
stream.

The horizontal and vertical tabs generated by BMS assume
that the application program has previously set up the tabs
on the printer using a terminal control SEND command.
The CICS/OS/VS IBM 3270 Data Stream Device Guide
describes how to do this.

FORMFEED option

The FORM FEED option has been described for minimum
BMS. However, 3270 printers and non-3270 printers
respond differently to the option on the SEND CONTROL
command. Use the FORMFEED option on SEND CONTROL
with care.

A SEND CONTROL FORM FEED command directed to an
SCS printer with form feed support will start a new page,
and then print a blank page (all BMS output commands
directed to an SCS printer transmit an entire page). A
SEND CONTROL FORM FEED PRINT command directed to a
3270 printer with form feed support will similarly start a
new page, and then transmit an entire page of null lines (if
NLEOM is not specified). However, the 3270 printer will
suppress these null lines, replacing them all with a single
new line.

Printers and BMS text

Note the following if your application program uses the
BMS SEND TEXT command to communicate with a printer.

Text output to SCS printers and, if NLEOM is specified, to
other 3270 printers can be formatted in two ways,
depending on the specification of PRINTERCOMP on the
profile definition if you are using resource definition online
(ROO) or PTRCOMPINPTRCOMP if you are using the PCT
macro.

PRINTERCOMP(NO), which is the default, produces printed
output consistent with the format that would be produced
on a 3270 display, that is, the first character of each line,
and of each separate SEND TEXT request if this continues
a line, is a blank, corresponding to the 3270 attribute byte
on the display.

BMS starts each line of output with a single blank. The
maximum available line width is one character less than
the printer page width.

Chapter 3.2-3. Standard function BMS 161

If you use cumulative text processing, discussed in
"Cumulative text formatting" on page 181, bear in mind
that BMS precedes each block of text (that is, the text
specified in a single SEND TEXT command) by a single
blank attribute byte. Do not split single words across
multiple text blocks.

PRINTERCOMP(YES) allows use of the full width of the
page for printed data, and suppresses the initial blank on
each line.

PRINTERCOMP(NO) is recommended for new applications,
unless the full width of the page is required. This option
ensures consistent results if the application is run on
different printer types.

PRINTERCOMP(YES) should be used if the full width of the
page is required and the application will always run on
SCS printers or the SEND TEXT requests include the
NLEOM option. PRINTERCOMP(YES) provides printed
output compatible with that produced in CICS Version 1.5
and before.

In both cases, new line characters (X' 15') embedded in
the text data are always honored. If, for example, you
want to print lines of 120 characters, you must embed new
line characters in your text data and ensure that your TCT
page width setting is at least 121 characters (subject to the
description on printer line widths in "3270 printers without
the NLEOM option" on page 160).

Printers and device independence

Use the following guidelines if your application program is
to function, under standard BMS, on both 3270 and SCS
printers:

1. Each printer page should contain a single map or block
of text. Both the ERASE and PRINT options should be
specified on the SEND MAP and SEND TEXT
commands. Alternatively, the ACCUM option should
be used; this requires full BMS.

2. If the NLEOM option is not used for 3270 printers, a
field (perhaps a blank field) should be defined on each
line of the map.

3. The 3270 printer page width should be 40, 64, or 80, or
the printer platen width, or the NLEOM option should
be used.

Partition support

Application programs can use simple BMS commands to
manage a partitioned display.

An IBM device that supports partitions can divide its
screen to produce up to eight working areas, called
partitions. When you write a CICS transaction for a

162 CICS/MVS 2.1.2 Application Programmer's Reference

partitioned display, you can treat each partition as a
different display. You can send data from different
programs, or different program steps, in the transaction to
different partitions (though different transactions cannot
communicate with different partitions at the same time).
This enables you to design very complex interactive
transactions without making operator procedures too
complicated to be practical.

The design of the terminal makes it easy for operators to
use a properly designed transaction using partitions. Only
one partition can be "active" at a time. This active
partition contains the cursor.

The normal display controls (such as the cursor control
key, the enter key, and cursor wraparound) apply to the
active partition only, not to the whole display. For
example, pressing ENTER after typing data into an input
display menu transmits data from the active partition only.
An operator can concentrate on the contents of a single
partition, using the terminal keyboard to communicate with
that partition alone. A special key, the PARTITION JUMP
key, allows you to change the active partition at will.

The CLEAR key erases the entire screen, as for any other
display device. However, for keyboards that contain a
CLEAR PARTITION key, the contents of the active partition
can be erased without affecting other partitions.

A CICS program can determine from which partition the
data it receives has been sent. It can also control which
partition is active.

When you define a partition, you allocate it an area of the
display screen, called a 'viewport', and a portion of the
device's buffer storage, called its 'presentation space'. If
the presentation space is larger than the viewport, the
partition can be scrolled (vertically, but not horizontally).

Screen partitioning is a relatively new concept, and you
are unlikely to have experience of using it. The following
examples may help you to appreciate the range of possible
applications.

Applications of partitions under CICS

You can modify tables and maps to execute existing
transactions from a partitioned screen. However, the full
benefit of partitioning can best be obtained by designing
new transactions.

How existing programs can use partitions

Sending a different map to each partition: You can
execute existing CICS BMS applications on partitioned
screens simply by modifying maps. Each map can be sent
to a different partition.

Cursor movement on a partitioned screen is restricted to
the viewport of the active partition (for example, the tab
key does not move the cursor out of the viewport). You
can use this fact to improve the usability of displays built
from several maps.

Defining an error partition: Terminal operators can find
transactions easier to use if you define an error message
partition. CICS sends error messages to an error partition
whenever possible, thereby keeping the contents of the
transaction's display intact.

How new application programs can use
partitions

Overlapping operator keystrokes: One source of
operator frustration is the delay sometimes experienced
when performing a repetitive data entry task. After filling
a screen with data and pressing ENTER, the operator has
to wait for the application program to respond before
further typing.

A data entry transaction using a terminal with two
partitions can display two copies of the same data entry
panel. After filling the first panel, the operator presses
ENTER to transmit the data, then presses the PARTITION
JUMP key. While CICS is processing the input from the
first, the operator can type data into the second partition.
Further input to the first partition is inhibited until the
application program responds to it. Error messages
associated with the first panel are sent to the first
partition, and do not affect the data being entered in the
second partition. If you define an error partition, the error
message need not affect either data entry partition.

Sample programs are provided in COBOL and PUI which
illustrate overlapped keystroking into two BMS partitions.
The source code for these programs is in the CICS/MVS
library CICS212.SAMPLIB and is named
DFH$CPKO(COBOL) and DFH$PPKO(PL 1).

Scrolling: Scrolling can remove the need for BMS
terminal paging, when handling larger amounts of data
than will fit onto a partition's viewport. (Terminal paging is
a function of full BMS.) As well as simplifying operator
procedures, scrolling reduces line traffic. It can also
improve response time, because after data has been
transmitted to the terminal, scrolling can be performed
without involving the host processor. If the quantity of
data to be sent to the screen exceeds the size of the
presentation space, BMS paging must also be used.

You can use scrolling even when there is only one
partition. This can be especially useful, because you can
use all available buffer storage in the terminal to store a
single message.

Look aside querying: An operator performing order
entry in one partition can activate another partition to
make look aside queries. These can include checks on
stock levels, prices, or customer credit levels. Without
partitions this could only be achieved by complicated
programming and a high level of data transmission. Using
partitions, a partially completed order need not be
transmitted to the host processor before releasing the
screen for an inquiry. The order can be entered in one
partition, the inquiry in another.

Sample programs are provided in COBOL and PUI which
illustrate overlapped keystroking into one BMS partition
while look aside queries can be made using another BMS
partition. The source code for these programs is in the
CICS/MVS 2.1 library CICS170.SAMPLIB and is named
DFH$CPLA(COBOL) and DFH$PPLA(PL 1).

Data comparison: An operator can compare two or
more sets of data by displaying them simultaneously in
different scroll able partitions. To do this without partitions,
an application program would probably use BMS page
chaining. However, page chaining is only available under
full BMS.

The data to be compared could be taken from two different
parts of the same document, or from two separate
documents.

Tutorial information: One of the partitions on a screen
can be reserved for use as a HELP panel. This can be
useful as a training aid for new operators, or as memory
aid when you are using a transaction that is rarely needed.

How CICS manages partitions

CICS partitions a display according to definitions stored in
a partition set. You create a partition set by coding and
assembling a series of macro instructions. Every different
partition configuration requires its own set of macros.

To partition a display, CICS loads a partition set into the
internal buffer of the display device. You can use the
CEDA transaction (or the DFHPCT system macro) to name
a partition set to be loaded for a particular transaction.
CICS loads this partition set when the transaction first
sends data to the display. If you do not define such a
transaction partition set, CICS sets a display device to its
base (unpartitioned) state before initiating the transaction.
The terminal does not have to remain in this state
throughout the transaction: the BMS command SEND
PARTNSET, allows you to load a partition set, dynamically,
from your application program.

Chapter 3.2-3. Standard function BMS 163

You use BMS SEND and RECEIVE commands to
communicate with a display that has been partitioned. The
commands allow you to name the partition with which you
wish to communicate.

Map suffixing and partitions: BMS map set suffixes
relate different versions of a map set to different terminal
models. This allows you to format the same data
differently on different screen types, in response to the
same programming request, as shown in Figure 21 on
page 147.

Suffixing can also relate versions of maps to particular
partitions. Each partition on a display can be treated as a
separate screen. The same transaction may be initiated
from partitions of various sizes, and thus might need a
different version of each map for each partition. When
selecting a map set to perform an input or output
operation, BMS loads the version with a suffix specified in
the definition for that partition. If such a version does not
exist, BMS uses the unsuffixed version.

Partitioning concepts

CICS makes it easy to write programs to use partitioned
displays. Nevertheless, there are several concepts that
you must understand before you can design such
programs. This section outlines the concepts, and
introduces some new terms.

Partitions: A partition is an addressable subset of the
internal resources of a display device. It consists of a
fixed part of its screen, and a fixed part of its internal
storage. The part of the screen allocated to a partition is
called its viewport. The internal storage containing data to
be displayed is called its presentation space. A partition's
presentation space contains only display data that CICS
sent to that partition. If it is larger than the viewport, only
part of the data it contains can be displayed at one time.
The part being displayed is called the partition's window.

Partition set: Although your programs can address
individual partitions, CICS can deal only with partition sets.
A partition set is a group of partitions designed to share
the same screen. CICS must load the whole partition set
onto a terminal before it can communicate with any of the
partitions. This does not mean that you have to have
more than one partition in a set; you can have a set that
contains only one partition. By defining a single partition,
you can use all of the available display buffer as the
presentation space for that partition. This enables you to
scroll large amounts of data.

164 CICS/MVS 2.1.2 Application Programmer's Reference

Application partition set: CICS does not load a partition
set into a display's buffer until your application program
issues an output request. The partition set it loads
becomes the application partition set. By default, this is
the partition set that is named in the PCT when your
transaction is added to the CICS system. Alternatively, it
is the partition set named by the most recent SEND
PARTNSET command that your program issued.

Output partition: CICS directs output data to the
partition named in the OUTPARTN option of the SEND
MAP, SEND TEXT, or SEND CONTROL command. If
OUTPARTN is not coded on a SEND command, BMS sends
the data to the first partition in the partition set. If the
display has not been partitioned, or cannot be partitioned,
BMS ignores the OUTPARTN option.

Active partition: The active partition is the partition that
contains the cursor. It can be scrolled vertically. While a
partition is active, the cursor 'wraps around' at the
viewport boundaries, and the ENTER key (or any input key)
transmits data from that partition only. The active
partition can be changed either by coding the ACTPARTN
operand on a SEND MAP, SEND TEXT, or SEND CONTROL
command, or by using the PARTITION JUMP key.

Input partition: Although a program can activate a
particular partition, the terminal operator can use the
partition jump key to activate a different one instead. If
the program logic requires input from a particular partition,
you must code the INPARTN option on the RECEIVE MAP
command. This option tells BMS from which partition it
must receive data. If it receives data from the wrong
partition, BMS moves the display cursor into the correct
input partition. It does not change the contents of other
partitions, except to display a message in the error
partition (if there is one).

Although the RECEIVE MAP command can be used to
receive data from any partition on a screen, it must specify
the correct map for the partition that supplied the data. A
new command, RECEIVE PARTN, can be used to read data
from an unspecified partition into a data area (and to
discover which partition it comes from). This command is
fully discussed in "Determining the actual input partition"
on page 168. The data can then be mapped, according to
the partition it has been read from, using a RECEIVE MAP
FROM command. For example, a PUI application program
might contain the following:

RECEIVE PARTN(PNAME) INTO(A);
IF PNAME='Pl' THEN

RECEIVE MAP(MAPl) FROM(A);
IF PNAME='P2' THEN

RECEIVE MAP(MAP2) FROM(A);

Unpartitioned or "Base" state: CICS can only create an
application partition set on the instructions of either your
application program or its PCT entry. If it receives no such
instructions, it sets the terminal to base state before
sending data to it. In this state, the terminal behaves as
an ordinary (unpartitionable) display device.

Symbol sets and character size: The IBM 3290 can
contain up to six of your own symbol sets, in which you
can specify the size of the characters. Any of your symbol
sets can be loaded or replaced under program control.
The 3290 also contains two standard character sets.

During customer set up (CSU), you must ensure that the
3290 divides the screen in an appropriate fashion, by
specifying a character cell size, which becomes the default.
You can override this default by coding CHARSZE when
you define a partition. Character cell definition is
discussed further in "Character cells in partitions" on
page 168.

Summary of implementation and use of
partitions

The rest of this section describes what you must do if you
want to use partitions fully. The following summarizes the
steps involved.

1. Ensure that the version of BMS loaded during CICS
initialization supports partitions. This is part of the
Installation task.

2. Define partition sets (Application Programming).

3. Write application programs that use the partition sets
(Application Programming).

4. Define BMS maps for partitions (Application
Programming).

5. Assemble partition sets and store in the CICS program
library. This is part of the Resource Definition task.

6. Assemble programs and maps (Application
Programming).

7. Create TCT entries for the terminals. This is part of
the Resource Definition task.

The IBM 3290 can be configured as more than one
logical unit, in which case it should have more than
one definition in the TCT.

8. Use CEDA (or DFHPCT and DFHPPT) to define and
install resource groups containing entries for related
programs, map sets, partition sets, transactions, and
profiles. This is part of the Resource Definition task.

9. Document new operator procedures for users of the
new devices. This is a prerequisite for the Operation
task.

Application programming

CICS partition support is based on the concept of the
partition set. Partition sets are analogous to map sets.
They are defined using partition definition macros.

As map set definition allows a programmer to design a
program and its maps separately, so partition set definition
can be performed apart from application programming.
This means that predesigned partition sets can be used to
control transmission of data requested using simple CICS
commands. The commands you code to communicate with
a display that supports partitions are described later. The
next section describes how to define partition sets and
prepare them for use.

Defining partition sets

Partitions are defined by coding the macros DFHPSD
(partition set definition) and DFHPDI (partition definition).
Each partition definition must be part of a partition set
definition.

Partition set definition macro (DFHPSD): This section
describes the partition set definition macro, DFHPSD. Each
DFHPSD macro is followed by one or more DFHPDI
macros, and is ended with a DFHPSD TYPE = FINAL macro.

The format of the partition set definition macro is:

partnset DFHPSD
[SUFFIX=user-suffix]

[,ALTSCRN=(lines,columns)]
[,CHARSZE=(vpels,hpels)]

The operands have the following meanings:

partnset is a 1-to 6-character partition set name.

SUFFIX= user-suffix is a 1-character user suffix for this
version of the partition set. It allows different versions
of a partition set to be associated with different
terminals. Partition sets are selected according to the
same rules as map sets. For more information, see
Figure 21 on page 147.

AL TSCRN(lines,columns) specifies the size, in characters,
of the usable area of the target terminal. This is
normally the same as the ALTSCRN operand of the
DFHTCT TYPE=TERMINAL entry for the terminal. You
use ALTSCRN to ensure that the viewports of partitions
within a partition set fit into the usable area of the
screen.

CHARSZE(vpels,hpels) specifies the size of the character
cell, on a display, to be allocated to each character
displayed in partitions of the partition set. You specify
the size as 'vpels' (the number of vertical picture
elements), and as 'hpels' (the number of horizontal
picture elements). For guidance on the choice of values,

Chapter 3.2-3. Standard function BMS 165

see the description of CHARSZE in "Character cells in
partitions" on page 168. The values specified in this
operand become the defaults for all partitions in the
partition set. You can override this default for individual
partitions by coding CHARSZE in the DFHPDI macro.

Partition definition macro (DFHPDI): A partition set
contains one or more partitions. Each partition is defined
by coding a partition definition macro.

The format of the partition definition macro is:

[partn] DFHPDI
VIEWPOS=(lines,columns)

,VIEWSZE=(lines,columns)
[,BUFSZE=(lines,columns)]
[,CHARSZE=(vpels,hpels)]
[,MAPSFX=mapset-suffix]
[,ATTRB=ERROR]

The operands have the following meanings:

partn is a 1 or 2 character partition name. It allows you to
refer to the partition in your application programs.

Every partition in a partition set must have a different
name. Only the error partition can be unnamed (see
A TIRB = ERROR operand).

VI EWPOS = (IInes,columns) specifies the position of the top
left hand corner of this partition's viewport. You specify
the position in numbers of lines and numbers of
columns.

The DFHPDI macro checks that viewports do not
overlap. If the ALTSCRN operand of the DFHPSD macro
has been coded, DFHPDI also checks that all viewports
fit within the usable area of the terminal screen.

VIEWSZE = (lines,columns) specifies the size, in lines and
columns, of the partition viewport. The DFHPDI macro
checks that viewports do not overlap. If you code the
ALTSCRN operand of the DFHPSD macro, DFHPDI will
check that the partitions all fit within the usable area of
the terminal screen.

BUFSZE = (lines,columns) specifies the size of the
partition's presentation space. Device limitations mean
that the 'columns' value must be equal to the 'columns'
vallie specified by the VIEWSZE operand. The 'lines'
value can be greater than or, by default, equal to the
value specified by the VIEWSZE operand. A greater
lines value implies that the target terminal supports
vertical scrolling. The default value of 'lines' is the
same as the value specified by the VIEWSZE operand.

CHARSZE(vpels,hpels) specifies the size of the character
cell, on an IBM 3290 (or similar) display, to be allocated
to each character displayed in the partition. You specify
the size as 'vpels' (the number of vertical picture
elements), and as 'hpels' (the number of horizontal
picture elements). If you code the CHARSZE operand on

166 CICS/MVS 2.1.2 Application Programmer's Reference

the DFHPDI macro, you must also code it on the
DFHPSD macro, specifying the default cell size.

MAPSFX= map set-suffix is the partition's 1-character map
set suffix. BMS uses the suffix to select map set
versions in the same way as the AL TSFX operand of the
DFHTCT TYPE-TERMINAL macro. For more information
on map set suffixing, see Figure 21 on page 147. If the
MAPSFX operand is omitted, a suffix L is assumed if the
'columns' value of the BUFSZE operand is less than or
equal to 40; otherwise M is assumed.

A TIRB = ERROR specifies that error messages are to be
directed to this partition whenever possible. The
partition is cleared before an error message is
displayed. Attributes specified on the ERRATT operand
of the DFHTCT TYPE==TERMINAL macro will be honored,
but the LASTLINE operand will be ignored.

An error message partition can be used directly by a
BMS application program, but CICS error messages may
be written to this partition, destroying any user data it
contains.

If you do not define an error message partition, CICS
will send error messages to a cleared unpartitioned
screen, obeying any ERRATT operand specified on the
DFHTCT TYPE-TERMINAL macro. You are
recommended to define an error message partition
whenever possible.

Note: The information given here on positioning viewports
is necessarily brief. For more information, consult the
component description for the device you are using.

End of partition set (DFHPSD TYPE = FINAL macro):
This macro ends a partition set definition. Its format is:

I [partnset] DFHPSD TYPE=FINAl

If you code a label on this macro, it should match the label
on the DFHPSD macro that started the partition definition.

Assembling and cataloging a partition set

When you have defined a partition set, you must assemble
it and store it in the program library. Its name must be
given an appropriate suffix, if necessary. You use the
dynamic addition transaction (CEDA) to create a PPT entry
for it. Otherwise you must create a PPT entry using the
DFHPPT system macro.

Specifying a partition within a map set

You use the PARTN operand of the map definition macros
(DFHMSD and DFHMDI) to associate an output partition or
input partition with a map or map set. The format of the
operand is:

PARTN=(name[,ACTIVATE])

If you code the operand in DFHMSD, it sets the default
partition name for all maps in the map set. You can
override the default, for individual maps, by the same
operand on DFHMDI. The partition becomes the active
partition if you specify ACTIVATE. The PARTN operand
allows some existing BMS transactions to exploit multiple
partitions by map and table changes only.

Any partition operands associated with a map are
overridden by the corresponding options on the BMS SEND
or RECEIVE commands.

How you code programs to manage
partitions

This section describes the commands or keywords you
must code in your application programs if you wish to use
BMS partition management services. It describes
commands that enable you to:

• Handle exceptional conditions caused by your
partitioning commands

• Load the application partition set

• Name the partition in which BMS must display data

• Change the active partition

• Name a partition from which BMS must receive input
data

• Read data from a partition into a data area before
mapping it

• Obtain information about the state of a device's
partitions.

The rest of this section explains how CICS support of
partitions affects CICS outboard formatting, terminal
sharing, and shared use of a screen by BMS and another
display manager.

Handling conditions raised by partition operations: A
new HANDLE AID keyword (CLRPARTN) allows an
application to intercept CLEAR PARTITION requests from
the keyboard.

The HANDLE CONDITION command can recognize new
error conditions raised by partition management. These
conditions are described in "Exceptional conditions" on
page 169.

Loading the application partition set: The SEND
PARTNSET command loads the correctly suffixed version of
a partition set into CICS storage from the CICS program
library. The partition set becomes the application partition
set, and is loaded onto the terminal when the next BMS
output command is executed.

SEND PARTNSET[(name)]

Conditions: INVPARTNSET, INVREQ

PARTNSET(name) specifies the 1 to 6 character name of
the partition set to be loaded. If 'name' is omitted, the
terminal is set to base (unpartitioned) state.

Note: A SEND PARTNSET command must not be followed
immediately by a RECEIVE command. The two commands
must be separated by a SEND MAP, SEND TEXT, or SEND
CONTROL command, so that the partition set is sent to the
terminal.

Setting the current output partition: The
OUTPARTN(name) option of the BMS SEND MAP, SEND
TEXT, and SEND CONTROL commands names the partition
to which data is to be sent. The partition name can be one
or two characters long. This option is ignored if the
terminal does not support partitions, or if no application
partition set has been specified.

An OUTPARTN option in a SEND MAP command overrides
an OUTPARTN operand coded in a BMS map definition
macro.

The OUTPARTN option and the LDC option cannot both be
specified in the same command (see later in the chapter).

If OUTPARTN is omitted, and a partition set has been
loaded, the data is sent to the first partition defined in the
partition set.

Conditions: INVPARTN, INVREQ

Setting the active partition: The ACTPARTN(name)
option of the BMS SEND MAP, SEND TEXT, and SEND
CONTROL commands names the partition to be activated.
The cursor is moved into the active partition, and the
keyboard is reset for that partition.

The ACTPARTN option is ignored if the terminal does not
support partitions, or if there is no application partition set.
If the operand is not coded, no partition is activated, and
the cursor does not move.

The ACTPARTN option and the LDC option cannot both be
specified in the same command (see later in the chapter).

Conditions: INVREQ, INVPARTN

Setting the expected input partition: The
INPARTN(name) option of the BMS RECEIVE MAP
command names the 'expected input partition' for an input
operation. The option is ignored if the terminal does not
support partitions, or if there is no application partition set.
If INPARTN is omitted, input data is accepted from any
partition. If INPARTN is coded, and input is received from
a partition other than the expected input partition, CICS
takes the following action:

Chapter 3.2-3. Standard function BMS 167

1. It activates the expected input partition (moving the
cursor and unlocking the keyboard).

2. It sends the following message to the error message
partition named in the application partition set:

DFH41ge INPUT DATA ENTERED
FROM THE WRONG PARTITION.
RE-ENTER IN PARTITION
CONTAINING THE CURSOR.

No message is issued if no error message partition
has been defined.

Data sent to CICS from the wrong partition is not
destroyed. It can be sent when the expected input has
been transmitted.

3. It reissues the BMS RECEIVE command.

Steps 1 to 3 are performed three times. If data is still
entered from the wrong partition, BMS raises the
PARTNFAIL condition.

INPARTN and FROM cannot both be specified in the same
RECEIVE MAP command.

Conditions: INVPARTN, PARTNFAIL

Determining the actual input partition: Sometimes you
want a CICS application program to accept input from any
partition, mapping the data differently according to its
origin. You can make it do this by using the RECEIVE
PARTN command. The data is received and mapped in
separate steps. The RECEIVE PARTN command is followed
by code to discover the name of the input partition. Then,
mapping is performed using a map designed to
compensate for the characteristics of the partition. You
code a RECEIVE PARTN command to read data into a data
area, and a RECEIVE MAP FROM command to map the
data.

RECEIVE PARTN(data-area)
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[ASIS]

Conditions: INVPARTN, LENGERR

The options have the following meanings:

PARTN names the two byte data area into which CICS
must put the partition name of the actual input partition.

INTO or SET specify the data area into which CICS must
put the inbound data stream. The real terminal AID will
be returned in EIBAID, and the inbound cursor position
in EIBCPOSN.

LENGTH specifies the name of a data area into which CICS
must put the length of the received data string. If INTO
is used, LENGTH must be initialized to the length of the
INTO area before the RECEIVE command is executed.

168 CICS/MVS 2.1.2 Application Programmer's Reference

ASIS specifies that data must not be translated to
uppercase, even if the terminal has been defined with
FEATURE = UCTRAN.

ASSIGN command: You use the ASSIGN command to
ask CICS for information about your application program
environment. There are four options that produce
information about partitions, as follows:

PARTNSET specifies that the value required is the one
through six character name of the application partition
set. A blank value is returned if there is no application
partition set.

INPARTN specifies that the value required is the one or
two character name of the most recent input partition.
A blank value is returned if partitions are not in use.

PARTNPAGE specifies that the value required is the one or
two character name of the partition that most recently
caused page overflow. A blank value is returned if
partitions are not in use.

PARTNS specifies that the value required is a one byte
indicator showing that the terminal supports partitions
(X I FF I) or does not (X I 00 I).

Character cells In partitions: You use the CHARSZE
operand of the DFHPSD and DFHPDI macros to define the
size (in pels) of the character cells used in an individual
partition.

You establish a default cell size for a partition set when
you code the CHARSZE operand on the DFHPSD macro.

If you do not specify CHARSZE, the 3290 adopts the cell
size specified at CSU for all partitions.

In all cases, it will then select the optimum character size
for that cell size. If CHARSZE is specified on any DFHPDI
macro, it must be specified on all DFHPDI macros within
the same partition set, or on the DFHPSD macro.

A cell size set by the DFHPSD macro can be overridden for
individual partitions using the CHARSZE operand on the
DFHPDI macro. However, if you code CHARSZE on the
DFHPDI macro, you must also code CHARSZE on the
DFHPSD macro; do not let it default to the size chosen
during CSU. The assembler will not accept a partition set
that has CHARSZE specified in DFHPSD but not in DFHPDI.

A cell size is specified as the number of vertical picture
elements (vpels), and the number of horizontal picture
elements (hpels).

If you decide to define partitions that have different values
of CHARSZE, you have to work in units of pels when
calculating the sizes and positions of partitions. That is,
the partition height is the product of the number of rows in
the partition and the vertical CHARSZE dimension (vpels);
the partition width is the product of the number of columns
and the horizontal CHARSZE component (hpels).

The screen has a physical limitation of 750 by 960 pels.
This means that you fit the maximum amount of data onto
the screen by using a CHARSZE of 6 by 12 with a display
area measuring 160 characters by 62 characters. If you
use the 160 by 62 screen size but have characters larger
than 6 by 12, your partitions will overflow the screen at the
bottom and right. During assembly, the partition set
definition macros warn you that overflow will occur.

When data is sent to a partition, the 3290 selects the
appropriate character set and places characters at the top
left hand corners of their cells. If the cell size defined by
CHARSZE exceeds the character sizes defined in the
character set used, characters will appear widely
separated. Conversely, if the cell size is smaller than the
defined character size, the characters will be truncated at
the bottom and right.

Partitions and outboard formats: 3270 outboard
formatting (see "Outboard formatting" on page 172)
works with multiple partitions.

Partitions and terminal sharing: You can use partitions
with terminal sharing. However, systems involved in
terminal sharing should always use the same partition set
name to refer to the same partition set.

Partitions and GDDM: CICS output and GDDM output
cannot be displayed on the same screen if partitions are
being used.

Exceptional conditions: A program using BMS partition
management can encounter the following additional
exceptional conditions. You can code HANDLE CONDITION
commands to override the default action taken by CICS.
Unless otherwise stated, the default action is to terminate
the task abnormally.

INVPARTNSET partition set is invalid; that is, it is not a
partition set.

INVREQ the last request was invalid. This condition
indicates a different error for each BMS request that
caused it. For more information, see the full description
in "Chapter 3.2-5. BMS macro and command reference
summary" on page 193.

INVPARTN the partition named by an INPARTN,
OUTPARTN, or ACTPARTN operand, or returned by a
RECEIVE PARTN command, is not a member of the
application partition set.

LENGERR the INTO area named by the RECEIVE PARTN
command is too small for the inbound data. This
condition does not terminate the task abnormally;
instead, CICS truncates data to the size of the INTO
area.

PARTNFAIL data has been entered from the wrong
partition three times in succession.

Logical device components

The 3601, 3770 batch, 3770, 3790 batch and LUTYPE4
terminals may be configured with a number of
subcomponents, such as a printer and a console. Each of
these subcomponents is a logical device component, and
is handled by BMS output commands as if it were a
separate terminal.

Defining logical device components

Logical device components are similar to partitions, but
unlike partitions, are statically defined by the DFHTCT
system macros. See the CICSIMVS Resource Definition
(Macro) manual for more information on DFHTCT.

The following is defined for each logical device component:

• A 2-character component name.

• A 1-character code, indicating the device type (for
example line printer, card punch). This code is
assigned by CICS when the logical device component
is defined. Possible codes are listed in the CICSIMVS
Resource Definition (Macro) manual.

• A BMS page size. BMS positions map and text data
within this area.

• A BMS page status (AUTOPAGE or NOAUTOPAGE).
This is discussed further in "Chapter 3.2-4. Full
function BMS" on page 173.

Sending data to a logical device component

A BMS generated data stream can be directed to a
particular logical device component by specifying the LDC
option on the SEND MAP, SEND TEXT, or SEND CONTROL
command. This option specifies a 2 character mnemonic,
corresponding to an LDC definition in the TCT.

If BMS output is directed to a logical device component,
but the LDC option is omitted from the SEND MAP
command, the output is sent to any logical device
component associated with the map. The target
component is identified by the LDC operand of DFHMSD.
You can override the choice of component to which data is
to be sent by coding the LDC option on a BMS SEND
command. If there is no component associated with the
map, or the LDC option is omitted from a SEND TEXT or
SEND CONTROL command, the data is sent to the "default
logical device component". This default is specified by the
DFHTCT macros which define the logical device
components for the terminal, and depends on the terminal
type. This is discussed further in "Chapter 3.2-5. BMS
macro and command reference summary" on page 193.

Chapter 3.2-3. Standard function BMS 169

10/63 magnetic slot reader control

Some IBM display terminals support a magnetic slot
reader (an MSR), a device that reads data from small
magnetic cards, as an optional feature. Some control the
reader themselves, but others (such as the IBM 8775 and
the IBM 3643) let you control functions of the reader from
your programs.

An MSR has colored indicator lights and an audible alarm
to prompt operator actions. You can control these
components of an MSR from an application program.

Application programming

You can code application program commands to control an
MSR attached to a terminal such as the 8775 or 3643. You
use the MSR option of the BMS SEND MAP, SEND TEXT,
and SEND CONTROL commands to identify a four-byte field
containing device control data. The format of the option is:

MSR(data-value)

where 'data-value' is the name of the four-byte device
control data field. Named constants supplied with CICS
provide the most useful combinations of device control
commands. A list of the supplied constants appears below.
Users can create other constants if they are needed.

Checking that a device supports MSR control: The
MSRCONTROL option of the ASSIGN command allows an
application program to determine whether a target
terminal supports MSR control. The format of the
command is:

ASSIGN MSRCONTROL(data-area)

where 'data-area' is the name of a one-byte data area into
which CICS places its response to the ASSIGN command.
The response is hexadecimal X' FF' if the terminal
supports MSR control, X '00' if it does not.

The ASSIGN command is described in "Chapter 1.6. Access
to system information" on page 51.

Supplied constants: A selection of MSR control bit
patterns has been created for CICS and stored in the copy
book DFHMSRCA. Table 2 on page 171 shows the
meaning of each bit. You can use this information to
create new constants to add to DFHMSRCA. The patterns
are stored as named constants that can be loaded by
application program commands. Provision of such
constants saves you from having to build a commonly used
bit pattern whenever it is required. The constants supplied
in DFHMSRCA are as follows:

170 CICS/MVS 2.1.2 Application Programmer's Reference

Constant Meaning

DFHMSRST MSR reset. All lights and buzzers off. MSR available
for input.

DFHMSCON Transaction ready for more input. Green and yellow
on; emit short buzz; IN PROCESS (user) mode set.

DFHMSFIN Input complete. Green on; emit short buzz; IN
PROCESS mode reset.

DFHMSALR Operator alert. Green, yellow, and red on; emit long
buzz; IN PROCESS mode reset.

DFHMSALS Operator alert. Green, yellow,and red on; emit long
buzz; IN PROCESS mode set.

DFHMSIPY IN PROCESS state set. Yellow on.

DFHMSIPN IN PROCESS state reset.

DFHMSLKY MSR operation inhibited. Yellow on.

DFHMSLKN MSR input allowed. Green on. Yellow on.

DFHMSAEY MSR auto enter on. Yellow on.

DFHMSAEN MSR auto enter off. Yellow on.

DFHMSLBN Long buzzer suppressed. Yellow on.

DFHMSLBY Long buzzer permitted. Yellow on.

DFHMSSBN Short buzzer suppressed. Yellow on.

DFHMSSBY Short buzzer permitted. Yellow on.

DFHMSNOP Leave all MSR settings unchanged.

The SEND CONTROL, SEND MAP, or SEND TEXT commands
that include the MSR option have no effect until the next
RECEIVE command is executed, or until the task
terminates. For example, SEND CONTROL MSR commands
must be interspersed with RECEIVE commands.

Table 2. MSR control byte values

Byte (purpose) Bit

1 (STATE MASK) 0

If a bit is on in the
STATE MASK, the
state it represents
Is adopted by the
device if the
corresponding bit Is
also on in the
STATE VALUE byte.- 2

3

4

2 (STATE VALUE)

Modifies state to on
or off if the
corresponding bit is
set on In STATE
MASK.

3 (INDICATOR 0
MASK)

Performs a similar
function to STATE 2

MASK, but for 3
Indicators.

4

4 (INDICATOR
VALUE)

Performs similar
function to STATE
VALUE.

Trigger fields

Value

USER

LOCK

AUTO

AI1S

AI2S

Meaning

User mode. Turn
the yellow light on
If the same bit Is on
In STATE VALUE.

Locked/Unlocked.
If locked, MSR Input
Is Inhibited.

Autoenter on/off. If
set on, any card
read by the MSR
will cause an
ENTER operation.
If off, only a secure
card causes an
ENTER.

Suppress audible
alarm 1

Suppress audible
alarm 2

Ught 1 (Green)

Light 2 (Yellow)

Ught 3 (Red)

Audible Alarm 1
(long buzz)

Audible Alarm 2
(short buzz)

You can use display trigger fields to initiate input to an
application program. A trigger field is one that is
transmitted to the host processor as soon as the terminal
operator has modified the field and then tries to move the
cursor out of it. The trigger attribute is ignored if the
operator has not modified the trigger field.

Application programming

CICS application programs can receive data from trigger
fields. Any keystroke (for example, the tab key) that
makes the cursor leave a trigger field containing modified
data causes the terminal to transmit an attention identifier
(AID), plus the contents of the field, to CICS. The value of
the AID is X'7F'.

You define trigger fields during map definition. Application
programs that use trigger fields should contain the
HANDLE AID TRIGGER command, passing control to a
label that processes trigger input. The code at this label
should process the input rapidly, as a long delay can
inhibit input. This is because, after sending trigger data,
the terminal stores further keystrokes, but cannot process
them until the host processor acknowledges the trigger.
The operator can perform up to 30 keystrokes during the
wait.

Following receipt of a trigger field, the application program
must validate the trigger field data, and respond to the
8775 terminal as follows:

• If validation is successful, the application program
should issue a SEND MAP, SEND TEXT, or SEND
CONTROL command specifying the FREEKB option and
omitting the ERASE and ERASEAUP options. The
command must address the partition containing the
trigger field; it allows the 8775 terminal to process
stored keystrokes.

• If validation is unsuccessful, the application program
can instruct the 8775 to discard stored keystrokes, as
follows:

By issuing a SEND MAP, SEND TEXT, or SEND
CONTROL command that does not specify the
FREEKB option, and/or is not directed to the
partition containing the trigger field. Typically,
this SEND command would issue an error
message indicating why the trigger field input was
rejected.

By issuing a SEND MAP, SEND TEXT, or SEND
CONTROL command specifying the ERASE,
ERASEAUP, or ACTPARTN options.

By issuing a RECEIVE MAP, RECEIVE PARTN, or a
terminal control RECEIVE command.

By terminating the transaction.

Defining maps to provide trigger validation: Parts of a
display can be assigned the trigger validation attribute by
coding the VALlDN -TRIGGER operand in one or more of
the map definition macros, DFHMSD, DFHMDI, and
DFHMDF. The form of the operand is:

[,VAlIDN=([MUSTFIll][,MUSTENTER]
[,TRIGGER])]

Chapter 3.2-3. Standard function BMS 171

As for other map set definition macro operands, values
established in the DFHMSD macro apply, by default, to
maps within the set, and fields within those maps.

CICS-supplied trigger constants: As well as being able
to define maps with trigger fields, you can write programs
that set the trigger attribute of a field dynamically in an
application program. Copybook DFHBMSCA contains
constants that provide the bit settings for the attribute
byte. The constants are listed in "Chapter 3.2-5. BMS
macro and command reference summary" on page 193.

Handling the trigger AID: The TRIGGER option of the
HANDLE AID command allows a program to pass control to
a handling routine upon receiving input from a trigger field.
The form of the command is:

HANDLE AID TRIGGER(label)

where 'label' is the name of a program statement to which
control is passed when the program receives a TRIGGER
AID.

Outboard formatting

Outboard formatting is a technique for reducing the
amount of line traffic between the host processor and an
attached subsystem. The reduction is achieved by sending
only variable data across the network. This data is
combined with constant data by a program within the
subsystem. The formatted data can then be displayed.

You can use outboard formatting with either a 3650 Host
Communication Logical Unit, or an 8100 Series processor
with DPPX and DPS Version 2. Maps used by the 3650
must be redefined using the 3650 transformation definition
language before they can be used. For more information,
see the section describing BMS in the CICSIOS/VS IBM
365013680 Guide. Maps to be used with the 8100 must be
generated on the 8100 using either a utility of SDF/CICS or
the interactive map definition component of the licensed
program DPS Version 2. For more information on either of
these methods, see the DPPXIDPS Version 2 System
Programming Guide.

If a program in the host processor sends a lot of mapped
data to subsystems, you can reduce line traffic by telling

172 CICS/MVS 2.1.2 Application Programmer's Reference

BMS to transmit only the variable data in maps. The
subsystem must then perform the mapping operation when
it receives the data. BMS prefixes the variable data with
information that identifies the subsystem map to be used
to format the data.

Terminals that support outboard formatting will have
BMSFEAT=OBFMT specified in their TCT entries. When a
program issues a SEND MAP command for such a terminal,
and the specified map definition contains OBFMT = YES,
BMS assumes that the subsystem is going to format the
data. It therefore generates an appropriate data stream.

If you send a map that has OBFMT=YES to a terminal that
does not support outboard formatting, BMS will ignore the
OBFMT operand.

Users of full BMS may be interested to know that floating
maps, which are discussed in "Chapter 3.2-4. Full function
BMS" on page 173, can be sent to an 8100 processor for
outboard formatting.

Block data format

A symbolic description map can be generated using block
data format by specifying DATA = BLOCK on the DFHMSD
and DFHMDI map definition macros.

The block data format of the symbolic map is an image of
the source map. This image contains one character for
each character position in the source map. If the source
map is 80 columns wide by 5 lines deep, the symbolic map
data structure will contain 412 characters, including a 12
byte TIOA prefix. The fields in the symbolic map are
positioned as in the source map. A field positioned at
column 10 line 2 in the above source map would have an
attribute field 101 characters from the start of the symbolic
map (allowing a 12 byte TIOA prefix), and a data field 102
bytes from the start of the symbolic map. As there is only
room for one attribute field in the block data format, block
data cannot have extended attributes.

The block data symbolic map format can be useful if an
application program has built a printer page image and
wishes to display it on a screen. Most applications,
however, will find the normal field data symbolic map
format more useful.

Chapter 3.2-4. Full function BMS

This chapter describes the additional facilities provided by
full function BMS. For convenience, 'full function BMS' will
be shortened to 'full BMS'. Full BMS supports the same
range of devices as standard BMS, but provides extra
function, as follows:

• Logical message handling. This enables you to
request:

Terminal operator paging using the PAGING option

Cumulative output data formatting using the
ACCU M option

Combined use of ACCUM and PAGING.

• Message routing. The ROUTE command allows an
application program to build device dependent data
streams for several terminals simultaneously.

• Message switching. The message switching
transaction (CMSG) allows a terminal operator to send
a message to a list of terminals, or a list of terminal
operators.

• Facilities for intercepting formatted device-dependent
data and relaying it to a terminal later. This facility
enables you to develop output routines to modify data
streams before output. This is not recommended, as
the format of the device-dependent data stream
cannot be guaranteed.

You use the SET option to intercept output data, and
then relay it using the SEND TEXT MAPPED command.

Logical message handling

A logical message is a collection of formatted output data
produced by chaining several smaller items of data. You
build a logical message by coding a series of BMS SEND
commands, each having either the ACCUM option or
PAGING option, or both. When you build a page of
message data, CICS does not send the data until you issue
a SEND PAGE command. However, if you produce more
than a pageful of data, it will send the data in installments
(one every time page overflow occurs).

You complete a logical message by issuing a SEND PAGE
command. Alternatively, you can cancel the message by
issuing the PURGE MESSAGE command.

If you issue a SYNCPOINT command, or terminate your
transaction, before issuing SEND PAGE, CICS usually
assumes that you meant to issue SEND PAGE.
Consequently, it terminates the message, and sends the
data. However, if your logical message does not contain a
single complete page, the logical message will be lost.
You must therefore always explicitly code a SEND PAGE
command before the SYNCPOI NT command or before the

© Copyright IBM Corp. 1982, 1991

transaction is terminated, and not rely on any implied
SEND PAGE command.

The PAGING option tells BMS to send the output data to
temporary storage, from where an operator can retrieve it
using the terminal operator paging transaction. With this
transaction, the operator can view the pages in any order,
and as often as necessary. When the message is no
longer needed, the operator can delete it and continue
normal transaction processing.

The ACCUM option tells BMS to accumulate pages of
output data, and to send each page when it is complete.
BMS sends the pages directly to the termina~ unless
PAGING or SET is specified as well as ACCUM. If PAGING
is specified, BMS accumulates them on temporary storage.
If SET is specified, BMS returns completed pages to the
application program, as described below. This is an
economical way of building pages of display data, because
CICS fits as much data as possible on each page before
sending it.

It is usual to build logical messages using both the ACCUM
and PAGING options, in combination with floating maps or
cumulative text (which are discussed later). If you do this,
BMS optimizes the use of the available display area on the
target terminal, building several pages each containing a
pageful of data. It then writes each page to CICS
temporary storage, and initiates the terminal operator
paging transaction when the SEND PAGE command is
encountered, see "Example of how to use paging" on
page 181.

The following rules apply while a BMS logical message is
active:

1. Only one BMS logical message can be active at a
time.

2. All SEND MAP, SEND TEXT and SEND CONTROL
commands in a BMS logical message must specify the
same combination of ACCUM, PAGING, SET,
TERMINAL, and REQID options as the BMS command
that started the logical message.

3. A ROUTE or SEND PARTNSET command cannot be
issued.

4. SEND CONTROL commands can be used with either
SEND MAP or SEND TEXT commands. However, SEND
MAP and SEND TEXT commands can be mixed in a
BMS logical message only if the text data and mapped
data are sent to different partitions or LDCs.

With only one exception, the INVREQ condition is raised if
any of these rules are violated. The exception is that the
IGREQID condition is raised if the REQID for a SEND
command differs from the REQID for the whole message.

113

The ACCUM option and the PAGING option are discussed
later in this section; the SYNCPOINT command is described
in "Chapter 5.S. Recovery (sync points)" on page 331. The
SEND PAGE and PURGE MESSAGE commands, which apply
only to logical messages, are described below.

8MS message recovery/restart: Following a warm or
emergency restart, you can retrieve logical messages
under certain circumstances.

BMS provides message recovery for routed and non routed
logical messages. Recoverable messages must satisfy the
following requirements:

• The PAGING option must have been specified in the
BMS SEND commands that built the logical message.

• The BMS default REQID ('**') or the specified REQID
for the logical message must have been identified to
the temporary storage program (via the DFHTST
macro) as recoverable.

• The task that built the message must have reached its
logical end of task.

• The temporary storage program and the interval
control program must also support recovery.

• Should any of the pages have been retrieved, the
paging session will be effectively restarted. For a
warm restart where the paging session has been
started from a terminal that had an operator signed on
to it, the message will only be retrievable by the same
operator on the same terminal.

• The message has not been purged.

Terminal operator paging and display data accumulation
are described later. First, consider the SEND PAGE and
PURGE MESSAGE commands.

SEND PAGE command: The syntax of the SEND PAGE
command is as follows. This command is only available on
full function BMS.

SEND PAGE
[RELEASE[TRANSID(name)]IRETAIN]
[TRAILER(data-area)]
[SET (ptr-ref)]
[AUTOPAGE[CURRENTIALL] I NOAUTOPAGE]
[OPERPURGE]
[FMHPARM]
[LAST]

Conditions: IGREQCD, INVREQ,
RETPAGE, TSIOERR, WRBRK

The SEND PAGE command causes BMS to generate a
device dependent data stream for the last (perhaps the
only) page of data. Typically this last page is only partially
full.

174 CICS/MVS 2.1.2 Application Programmer's Reference

Options can be included to specify how much control the
termir!al operator should have over the disposition of the
logical message (AUTOPAGE, NOAUTOPAGE, and
OPERPURGE), to determine whether control should return
to the application program after transmission of the logical
message (RELEASE and RETAIN), to add trailer data to a
text logical message (TRAILER), and to return the device
dependent data stream for the last page of a logical
message to the application program (SET).

The TRAILER option is only relevant to text messages, and
is discussed in "Cumulative text formatting" on page 181.

All options except SET and TRAILER apply only to paging
logical messages. Their use is described under "Logical
messages for terminal operator paging" on page 175.

PURGE MESSAGE command: The PURGE MESSAGE
command simply deletes the current logical message,
including any pages of device dependent data stream
already written to CICS temporary storage. The
application program may then build a new logical
message.

The syntax of the PURGE MESSAGE command is as
follows. This command is only available with full BMS.

PURGE MESSAGE

Condition: TSIOERR

Logical messages for direct terminal output

If the TERMINAL option (the default) is used for this logical
message, the SEND PAGE command immediately sends the
last page of the device dependent data stream to the
terminal. The RETAIN and RELEASE options are then
ignored.

You can use the ACCUM and TERMINAL options together
to build a single page out of several maps or blocks of
text. Data stream generation and transmission for this
single page is then deferred until the logical message is
terminated by a SEND PAGE command. This gives better
performance on a display device than a series of separate
BMS SEND commands.

This form of processing is essential if a printer page for a
non-3270 printer or a 3270 printer whose DFHTCT
TYPE=TERMINAL macro specifies TRMTYPE=SCSPRT is
composed of several maps or text blocks. Otherwise, each
BMS SEND MAP, SEND TEXT, or SEND CONTROL command
will send a whole page, using a form feed or an
appropriate number of blank lines. This is discussed in
"Chapter 3.2-3. Standard function BMS" on page 159.

Logical messages with the SeT option

If the SET option is used for this logical message, the
SEND PAGE command returns the last page of a device
dependent data stream to the application program. This is
further discussed in "Returning mapped data to a program
before output" on page 189. The RETAIN and RELEASE
options are ignored if they are specified with SET.

Logical messages for terminal operator
paging

If the PAGING option is specified on BMS SEND MAP, SEND
TEXT, and SEND CONTROL commands, the device
dependent data stream built by BMS is sent to CICS
temporary storage for subsequent retrieval by an operator
using the terminal operator paging transaction. A
separate temporary storage queue is used for each BMS
logical message. The queue name is determined by CICS,
using the value of any REQID operand of the SEND MAP,
SEND TEXT, and SEND CONTROL commands as the first 2
characters of the queue name. If the REQID option is
omitted, the first 2 characters of the queue name are '**'.
The REQID option allows application programs to send
some BMS logical messages to recoverable temporary
storage, and some to nonrecoverable temporary storage,
as discussed in "BMS message recovery/restart" on
page 174.

The temporary storage queue for a BMS logical message
is deleted by a PURGE MESSAGE command, or (ignoring
routing) by the terminal operator purging the message at
the end of a terminal operator paging session.

The application program terminates the logical message,
and initiates the terminal operator paging transaction by
the SEND PAGE command, whose syntax is shown in
"SEND PAGE command" on page 174.

If the PAGING option is used for this logical message, the
SEND PAGE command writes the last page of device
dependent data stream to CICS temporary storage. The
SEND PAGE command then initiates the terminal operator
paging transaction. This initiation is controlled by the
RETAIN and RELEASE options as follows:

• If RETAIN is specified, the terminal operator paging
transaction is initiated immediately. The first page is
sent to the terminal (or the first page in each
partition), and the terminal operator can use the
terminal operator paging commands described in
"Terminal operator paging commands" on page 176.
The terminal operator paging transaction operates
conversationally in this mode. When the terminal
operator terminates the paging session by purging the
message, control is returned to the application
program following the SEND PAGE RETAIN command.

The application program retains control after a paging
session.

The OPERPURGE option specifies that CICS is to
delete the BMS logical message only when the
terminal operator requests deletion by an explicit page
purge command. If the option is omitted, CICS deletes
the message if the operator enters data that is not a
paging command.

If OPERPURGE is not specified on the SEND PAGE
command, the terminal operator can terminate the
paging session by entering data which is not a valid
terminal operator paging command. This data can be
accessed by the application program issuing a
RECEIVE MAP or a terminal control RECEIVE following
the SEND PAGE RETAIN command.

• If RELEASE is specified, the terminal operator paging
transaction immediately displays the first page of data
(or the first page in each partition). The application
program transaction is then terminated, and the
paging session continues pseudoconversationally.
When the terminal operator terminates the paging
session by purging the message, control is returned to
CICS. CICS will then initiate any transaction specified
by the TRANSID option of the SEND PAGE RELEASE
command. The application program releases control
after the SEND PAGE command.

A SEND PAGE RELEASE must be the last executed
command in a transaction. SEND PAGE RELEASE can
be thought of as a combination of SEND PAGE RETAIN
and a CICS RETU RN command.

• If neither RETAIN nor RELEASE is specified, the
terminal operator paging transaction is initiated for
execution when the current application transaction
terminates. The terminal operator paging transaction
is queued for execution on the target terminal,
following any other transactions queued for that
terminal.

The AUTOPAGE and NOAUTOPAGE options overwrite any
paging status specified by the PGESTAT option of the
DFHTCT TYPE=TERMINAL macro. The PGESTAT value is
honored if neither AUTOPAGE nor NOAUTOPAGE is
specified on the SEND PAGE command. AUTOPAGE
specifies that each page of the logical message is to be
sent to the terminal without terminal operator paging
commands. This is frequently used for printers.

The options CURRENT and ALL apply to 2741 terminals
only, and are discussed in "Map definition macro operand
summary" on page 195.

If an error occurs during the processing of a SEND PAGE
command, control is returned to the application program,
and the RETAIN or RELEASE specification is ignored. The
logical message is not considered complete. The
application program should either retry the SEND PAGE
operation or delete the logical message.

Chapter 3.2-4. Full function BMS 175

Terminal operator paging commands: The terminal
operator commands provided by the terminal operator
paging transaction are discussed in the CICSIMVS
CICS-Supplied Transactions manual. They are summarized
here for completeness.

The terminal operator paging transaction is usually
initiated automatically by a BMS application program
issuing a SEND PAGE command for a logical message that
was built using the PAGING option. However, the terminal
operator has to start the paging transaction explicitly (by
entering CSPG) if automatic transaction initiation (ATI) is
not available with the terminal (see the TRMSTAT operand
of the DFHTCT TYPE=TERMINAL system macro), and
terminal operator paging was initiated with a SEND PAGE
specifying neither RELEASE nor RETAIN.

The terminal operator paging transaction provides the
following facilities:

Page retrieval: The terminal operator can enter a
command (or use a PF key if these have been defined via
the SKRxxx options of the DFHSIT macro) to retrieve the
first, last, nth, next, or previous page. If partitions are
used, the page retrieval command relates to the partition
in which it was entered. If LDCs are used, the LOC name
is entered as part of the page retrieval command.

Page query: The terminal operator may obtain a list of
logical messages queued for his terminal. This list
includes the BMS assigned message identifier, and any
TITLE option specified by the ROUTE command of the
application program that built the message. The terminal
operator may use the message identifiers to retrieve
pages for a specified message.

Set to autopage: The terminal operator of a printer
keyboard terminal may request that all remaining pages
(for all partitions or LDCs) be sent without further operator
intervention.

Page copy: The terminal operator may copy the current
page to another terminal (generally a printer). BMS does
any reformatting that may be needed, if the target terminal
for the copy has a smaller page size than the source
terminal.

Page chaining: The terminal operator may invoke another
transaction, which communicates with the terminal in the
normal way. This invoked transaction may in turn build
pages, which if the SEND PAGE command in the invoked
transaction specified RETAIN or RELEASE are 'chained' to
the pages built by the original transaction. The terminal
operator may then retrieve pages for either transaction,
possibly for comparison purposes.

The normal BMS application is unlikely to use page
chaining.

176 CICS/MVS 2.1.2 Application Programmer's Reference

Page purge: When the terminal operator has finished
reviewing the pages of a logical message it can be purged
by an explicit page purge command, or implicitly by
entering data which is not a paging command. However,
this implicit purging is only possible if the OPERPURGE
option was not specified on the SEND PAGE command
which initiated the paging session.

The process is more complex if page chaining is used. The
terminal operator can purge various levels of chained
pages.

The PAGE PURGE command purges all pages in all
partitions or LOCs for the appropriate logical message.

Cumulative output proceSSing (ACCUM
option)

If the ACCUM option is used in a BMS logical message, a
device dependent data stream is generated on 'page
overflow'. BMS disposes of each page of a device
dependent data stream as follows:

1. If the TERMINAL option (the default) is used for this
logical message, BMS immediately sends the page to
the terminal. This may be useful for printers, but
successive pages will overwrite each other on a
screen.

2. If the SET option is used for this logical message, BMS
returns the page to the application program.

3. If the PAGING option is used for this logical message,
BMS writes the page of device dependent data stream
to CICS temporary storage.

The page overflow condition is fully discussed in "Handling
page overflow" on page 180. Briefly, page overflow
occurs when the next BMS map or block of text will no
longer fit on the current page of the target terminal.

Floating maps, header and trailer maps: In minimum
and standard BMS, all maps were positioned absolutely, as
specified by the LI N E = number and COLU M N = number
operands of the DFHMOI map definition macro. In full
BMS, maps can "float". That is, they can be positioned
relative to the previous map. This is done by coding
L1NE=SAMEINEXT or COLUMN=SAMEINEXT on the
DFHMDI map definition macro. Floating maps can be sent
to a terminal by successive SEND MAP ACCUM
commands, until no more will fit on the current page. Page
overflow then occurs, and can be handled as described in
"Handling page overflow" on page 180.

Avoid using floating maps, header maps, or trailer maps in
a RECEIVE MAP command. This is because the floating
map will be positioned on an empty page and the
meanings of the LINE, COLUMN, and JUSTIFY operands of
the DFHMDI macro are modified as explained in "Map
definition macro operand summary" on page 195.

A map can be defined as a TRAILER map by specifying
TRAILER = YES on the DFHMDI map definition macro.
JUSTIFY = LAST is usually also specified to position the
map at the bottom of the page. BMS allows for trailer
maps in determining on each BMS SEND MAP ACCUM
command whether the map referenced by this command
witt fit on the current page. BMS does this by leaving
space for the largest trailer map in the map set referenced
by the SEND MAP ACCUM command. If several map sets
are used to compose a page, each map set which contains
floating maps should also contain a trailer map (a dummy
map which is not otherwise used will suffice) to allocate
space for the actual trailer map(s) transmitted by the page
overflow process.

A dummy trailer map may also be needed to allocate the
overall trailer area if the application program sends
several trailer maps. Its depth must be at least equal to
the combined depths of the trailer maps. This is illustrated
in the following diagrams:

No durnmy trailer required

TR1

TR2 TR3

Dummy trailer required

An attempt to place more lines of trailer data on the page
than are available, causes the trailer data to be placed on
a separate page by itself.

A map can be defined as a HEADER map by specifying
HEADER = YES on the DFHMDI map definition macro.
JUSTIFY = FIRST is usually also specified to complete
processing of the previous page, and to begin a new page.
An attempt to place more header data on the page than
the page can contain causes multiple pages to be created.

If a header map is not used, JUSTIFY = FIRST must be
specified for the first map used to start a new page.
Failure to specify this will result in a further page being
sent for each SEND MAP command (as each map will be
placed at the bottom of a page, causing page overflow).

Map positioning: This section explains the full capability
of the BMS map positioning algorithm. In practice,
however, it is unlikely that this full capability is needed. If
JUSTIFY = RIGHT is avoided on the DFHMDI map definition
macro, BMS will fill the page from top left to bottom right.
Any unused areas to the top and left of the current map
are thus unavailable for maps on this page.

The position of a map on a screen is determined by two
major factors: the current contents of the screen, and the
values coded for the LINE, COLUMN, and JUSTIFY
operands of the DFHMDI macro. Positioning is also
affected if the DFHMDI macro specifies HEADER = YES or
TRAILER=YES, and by the depth of the deepest trailer
map in the map set.

At any instant, the part of the screen that is still available
for maps is in the form of either an L, a reversed L, a
rectangle, or an inverted T, as shown by the unshaded
area in the following diagram. The most likely case is a
rectangle.

Chapter 3.2-4. Full function BMS 177

Next
free line

Current
line

Free area

Trailer

The shape and size of this area is represented internally
by four variables: current line, next free line, next column
from left, and next column from right.

Two other pointers are maintained that are relevant to
map pi acement though they do not affect the area
available: left reference column and right reference
column, which are used when COLUMN=SAME is
specified.

The trailer size is equal to the number of lines that would
be occupied by the deepest trailer map in the map set
currently in use. It is determined when the map set is
assembled, and is copied from the map set whenever one
is loaded. The trailer size is assumed to be zero if a
HANDLE CONDITION OVERFLOW command is not in effect.

The area defined by trailer size is not available for
mapping unless no overflow label has been specified or
the map has TRAILER = YES specified in its DFHMDI
macro.

If JUSTIFY = FIRST is specified, the map is placed on a new
page, so that the only maps above it are the header maps
used in overflow processing. The LINE operand may also
be used with JUSTIFY= FIRST to place the map below the
top of the page.

If JUSTIFY = LAST is specified, the map is placed as low as
possible on the page. For a nontrailer map, this is
immediately above the trailer area; for a trailer map, it is
at the bottom of the page. In the absence of an overflow
label, the trailer area is null and JUSTIFY = LAST places
the map at the bottom of the page.

178 CICS/MVS 2.1.2 Application Programmer's Reference

A map defined with JUSTIFY = LAST cannot be used in
input operations unless it was previously put out without
the ACCUM option, in which case JUSTIFY= LAST is
ignored and the map is positioned at the top of the page.
JUSTIFY=BOTTOM is equivalent to JUSTIFY=LAST for
cumulative mapping, and provides a similar capability for
noncumulative mapping, and for input.

For SEND MAP commands (without ACCUM) and RECEIVE
MAP commands, JUSTIFY = BOTTOM causes the map to be
positioned at the bottom of the screen if the number of
lines in the map is specified in the SIZE operand. Space is
not reserved for any trailer maps in the map set.
JUSTIFY = BOTTOM is ignored if the number of lines in the
map is not specified in the SIZE operand. If
JUSTIFY=BOTTOM and LINE are both specified, the value
specified in LINE will be ignored.

JUSTIFY = BOTTOM is intended to allow the positioning of
a map at the bottom of a screen whatever the screen size,
and to allow input from such a map without the application
program having to take account of the screen size in use.
It can be used, for example, if command input is required
to be from the bottom lines of the screen on a variety of
display models.

The LINE operand specifies the line of the screen on which
the first line of the map is to be placed. The initial
determination of this line is made without regard to the
specification of the COLUMN operand or the columns
available on the screen on that particular line. If the map
will not fit on the chosen line, the first subsequent line that
will satisfy the column requirements is selected.

If LlNE=SAME or L1NE= NEXT is specified, the initial line
selected for the start of the map is the current line or the
next free line, respectively. If a number is specified in the
LINE operand, the line with that number is selected,
provided the number is greater than or equal to the
number of the current line; if not, the overflow condition is
raised so that the map can be placed on the next page.

The line selected becomes the new current line and, if it is
below the next free line, the next free line is reset to the
same line; the next column from the left and right are also
reset, to the left and right margins respectively.

If the line selected is such that the end of the map extends
into the trailer area for a non-trailer map or beyond the
end of the page for a trailer map, the overflow condition is
raised and the map will be placed on the first available line
of the next page when the request is reissued after
handling the overflow.

The COLUMN specification may be either NEXT, SAME, or
a number and is processed in conjunction with the LEFT or
RIGHT specification of the JUSTIFY operand.
JUSTIFY = LEFT is the default and implies that the column
specification is related to the left-hand margin.
Conversely, JUSTIFY = RIGHT implies that the column

specification is related to the right-hand margin. For the
purposes of this explanation, it is assumed hereafter that
JUSTIFY= LEFT has been specified (or applied by default).

If COLUMN = NEXT is specified, the column chosen for the
map is the next column from the left. If a numeric value is
specified, the column with that number is chosen, counting
from the left. If COLUMN =SAME is specified, the left
reference column is chosen. (The left reference column is
the one that was most recently specified by number with
JUSTIFY= LEFT.)

The map is then checked to ensure that its right margin is
not to the right of the next column from the right. If it is,
the map will not fit into the remaining space, so a new line
must be selected. This will be either the next full line or, if
the map is too deep, the first available line on the next
page.

Finally, the column pointers are updated by setting the
next column from the left to the right margin of the map,
and, if COLUMN = number was specified, by setting the left
reference column to the specified column number.

Map positioning examples: The effects of the
mechanisms described above are illustrated by the
following examples. The examples show the interactions
between SIZE, LINE, COLUMN, and JUSTIFY= LEFT or
RIGHT. Header and trailer maps and JUSTIFY = FIRST or
LAST are not brought into the examples.

In processing a BMS command, BMS determines whether
the area of the page required by the map is wholly

When JUSTIFY= RIGHT is coded, as in the following
definition:

MAPA DFHMDI •.• ,LINE=3,COLUMN=35,
JUSTIFY=RIGHT, •..

all columns to the right of the rightmost map column, for
the full depth of the map, are unavailable, as shown in the
following diagram:

35

3

When two or more maps are placed so that they share
certain lines, as in the following definitions:

MAPA DFHMDI ••• ,LINE=3,COLUMN=2,
JUSTIFY=LEFT, •••

MAPB DFHMDI ••• ,LINE=4,COLUMN=28,
JUSTIFY=LEFT, •••

all columns beneath a map that ends higher are
unavailable to the depth of the map that ends lowest, as
shown in the following diagram:

2 20

available or whether any part of it has been used by an 3
earlier command. "Used" means actually filled by a map
or rendered unavailable.

When the LINE operand of the DFHMDI macro is coded, all
lines above the specified line are unavailable.

When JUSTIFY = LEFT is coded (or applied by default), as
in the following definition:

MAPA DFHMDI •.. ,LINE=3,COLUMN=5,
JUSTIFY=LEFT, •.•

all columns to the left of the leftmost map column, for the
full depth of the map, are unavailable, as shown (by the
cross hatching) in the following diagram:

5

3

Similarly unavailable are all columns to the left (if the
higher map is left justified) or to the right (if the higher
map is right justified) of the "used" area beneath the
higher map. The following two diagrams illustrate similar
situations:

MAPA DFHMDI ••• ,LINE=3,COLUMN=2,
JUSTIFY=LEFT, .••

MAPB DFHMDI •.• ,LINE=4,COLUMN=35,
JUSTIFY=RIGHT, •••

Chapter 3.2-4. Full function BMS 179

3

3

2 35

MAPA DFHMDI .•• ,LINE=3,COLUMN=48,
JUSTIFY=RIGHT, •••

MAPB DFHMDI ..• ,LINE=3,COLUMN=1,
JUSTIFY=LEFT, •..

The effect of several different maps on one page is shown
in Figure 22 on page 181.

If an area of the page directly specified for a map has
already been used by a previous map, the. overflow
condition is raised. This condition is handled as described
in the next section.

Handling page overflow: Page overflow occurs when
the number of lines in the requested map plus the number
of lines in the largest trailer map in the map set (if there
are any trailer maps) is greater than the number of lines
remaining in the page being built.

When page overflow occurs, BMS transfers control to a
label in the application program. It does not call a
subroutine. There is no easy way of returning from the
overflow processing to the application program command
that caused overflow.

The label to which control is transferred is specified by a
HANDLE CONDITION OVERFLOW command. The data
which was to have been mapped, but which caused the
overflow, is not mapped by BMS and remains unaltered.

180 CICS/MVS 2.1.2 Application Programmer's Reference

If partitions or LDCs are used, pages are accumulated
separately for each partition or LDC. This complicates
page overflow processing, as discussed in "Page overflow
and partitions or LDCs."

Overflow can occur on a logical message being built for
routing; Again this complicates page overflow, as
discussed in "Routing and page overflow" on page 189.

This simple process is inadequate if the "body" of the page
is composed of several different kinds of map. The
application program must remember which map name it is
about to process by a SEND MAP ACCUM command so
that it can resend this map and its associated application
data in the event of page overflow.

BMS maintains the overflow environment for as long as
the application program issues BMS commands using
maps defined as headers or trailers. While in the overflow
environment, the overflow condition is not raised, as this
may result in an infinite loop. The first use of a map that
is not defined as a header or trailer terminates overflow
processing.

If an overflow label has not been specified via a HANDLE
CONDITION OVERFLOW command, no overflow occurs and
new pages are forced out automatically.

An overview of overflow processing is given in Figure 23
on page 182.

Page overflow and partitions or LDCs: Pages are
accumulated separately for each partition or LOC. Thus
page overflow occurs on a partition or LDC basi s. Page
numbers are maintained on a partition or LDC basis, so
that the ASSIGN PAGENUMcommand returns the page
number for the most recently overflowed partition or LDC.

The ASSIGN PARTNPAGE command returns the partition
name of the most recently overflowed partition. Similarly
the ASSIGN LOCMNEM command returns the name of the
most recently overflowed LOC.

If LDCs are used, the overflow processing code in the
application program must send header and trailer maps to
the LDC which has just overflowed. Otherwise the INVREQ
condition is raised.

If partitions are used, the overflow processing code in the
application program is not obliged to send header and
trailer maps to the partition which has just overflowed.
However, the application program must then avoid sending
a header or trailer map to a different partition, which
causes that partition to overflow.

Figure 22. Many BMS maps on one page

Map D

JUSTIFY
= LEFT

Example of how to use paging: This section shows you
how to build a BMS logical message and how to handle
page overflow. An order entry application is assumed, in
particular a transaction to display customer orders on a
screen with 80 columns and an arbitrary number of lines.

This transaction uses the following maps:

1. A header map (called URDHEAD) containing the
customer's name and address, the order number, and
column headings for the following order lines. This
map is to be displayed at the top of every page. It is
defined with HEADER=YES, JUSTIFY=FIRST, LlNE=1,
and COLUMN = 1.

2. A floating map (called ORDLlNE) containing part
number, part description, quantity, and price. A
number of these will be displayed on the screen,
depending on the size of the screen and the number of
different parts in the customer order. This map is
defined with LlNE= NEXT and COLUMN = 1.

3. A trailer map (called ORFTRL) containing a page
number and instructions for the operator on how to
view the next page. This map is displayed at the
bottom of each page, including the last. This map is
defined with TRAILER=YES and JUSTIFY=LAST.

The PLII version of the program for this transaction is
shown in Figure 24 on page 183.

Map C

JUSTIFY
= RIGHT

Map A

JUSTIFY
= RIGHT

Cumulative text formatting

By specifying the ACCUM option on the SEND TEXT
command, you can accumulate blocks of text from multiple
SEND TEXT ACCUM commands and can format them to
produce complete pages of text by BMS.

I Note: The standard-function SEND TEXT command allows
I you to send one or more lines to the output device and is
I not limited by page boundary. When the SEND TEXT
I command is used with the ACCUM option, the output is
I page-bounded. This means that, if the output device is a
I printer, the lines of text that are printed are automatically
I followed by a form feed.

You can use the HEADER and TRAILER options to specify
data to be placed at the top and bottom of each page. As
a page boundary can occur as a result of any SEND TEXT
ACCUM command, the HEADER and TRAILER options
should be repeated on each SEND TEXT ACCUM command
in the BMS logical message. Automatic page numbering at
a user specified location in the header and trailer data is
possible.

A text logical message must be terminated by a SEND
PAGE or PURGE MESSAGE command in the normal way.
The TRAILER option of the SEND PAGE command allows
trailer data to be specified for the last partially full page.

Chapter 3.2-4. Full function BMS 181

Application program
issues a
SEND MAP ACCUM
command

BMS processes
the command

BMS returns control

Yes

BMS returns control to the
appl ication program at the

OVERFLOW label.

1. Application program uses the
ASSIGN PAGENUM command to
find the current page number.

2. Application program moves
page number and other data
into the TRAI LER map, and
issues a SEND MAP ACCUM
command for the trailer map.

3. Application program starts a
page by transmitting a
H EADER map (which specifies
JUSTI FY=FI RST) using SEND
MAP ACCUM ERASE.

4. Application program issues a
SEND MAP ACCUM for the map
that caused page overflow.

to the application "
program following the 0
SEND MAP ACCUM
command

Figure 23. Overflow processing

The OVERFLOW condition is not raised by the SEND TEXT
command. There is no simple way for the application
program to gain control at the end of each page of text (it
can be done using the SET option and the RETPAGE
condition as discussed in "Returning mapped data to a
program before output" on page 189).

The JUSTIFY, JUSFIRST, and JUSLAST options allow the
application program to position a block of text on a
particular line (JUSTIFY) or to position the block of text on
the top (JUSFIRST) or bottom (JUSLAST) of the page.

The data areas named in the HEADER and TRAILER
options have the following format:

L L P C I PNFLD I
<---IDATA---'>

182 CICS/MVS 2.1.2 Application Programmer's Reference

where:

LL is a halfword binary field containing the length of the
header or trailer data. (The value does not include the 4
bytes of LL, P, and C characters.)

P is a one-byte field whose contents indicate whether page
numbering is required or not. If the field contains a
character other than a blank (X '40'), page numbering is
required. (X' OC ' , X' 15 ' , X' 17 " X' 26 " and X' FF' are
reserved and cannot be used).

The character specified is the character that is
embedded in the header or trailer data in the positions
(a maximum of 5) where the page number is to appear.
If the field contains a blank, page numbering is not
required.

/* OUTPUT THE FIRST HEADER MAP FOR THE FIRST PAGE */
"Move Customer data to symbolic map for ORDHEAD;

SEND MAPSET('SAMPLE') MAP('ORDHEAD') ACCUM PAGING ERASE;
/* ISSUE A HANOLE CONDITION OVERFLOW */

HAND[E CONDITION OVERFLOW(OVLAB);
/* MAIN PROCESSING LOOP. OUTPUT ORDER LINES UNTIL THE ENTIRE */
/* ORDER HAS BEEN DISPLAYED */

LOOP:
DO UNTIL(ALLDONE);

Move order line data into the symbolic map for ORDLINE;
SEND MAPSET('SAMPLE') MAP('ORDLINE') ACCUM PAGING;
Set ALLDONE to TRUE if this is the last order line;

END;
/* ALL ORDER LINES OUTPUT. OUTPUT FINAL TRAILER */

PAGENO=PAGENO+l;
Move PAGENO into symbo 11 c map for ORDTRL;
SEND MAPSET('SAMPLE') MAP('ORDTRL') ACCUM PAGING;

/* TERMINATE LOGICAL MESSAGE WITH A SEND PAGE */
SEND PAGE RETAIN;
GOTO CONTI NUE;

OVLAB:
/* PAGE OVERFLOW PROCESSING. OUTPUT TRAILER MAP TO END */
/* THE CURRENT PAGE. */

ASSIGN PAGENUM(PAGENO);
Move PAGENO into symbolic map for ORDTRL;
SEND MAPSET('SAMPLE') MAP('ORDTRL') ACCUM PAGING;

/* OUTPUT A HEADER MAP WITH THE ERASE OPTION TO START THE */
/* NEXT PAGE. */

SEND MAPSET('SAMPLE') MAP('ORDHEAD') ACCUM PAGING ERASE;
/* RE ISSUE A SEND MAP FOR THE ORDER LINE WHICH CAUSED */
/* PAGE OVERFLOW, AND RETURN TO THE MAIN LOOP */

SEND MAPSET('SAMPLE') MAP('ORDLINE') ACCUM PAGING;
GOTO lOOP;

/* LOGICAL MESSAGE HAS BEEN DELIVERED. CONTINUE PROCESSING */
CONTINUE:

Figure 24. Example of paging

C is a reserved one-byte field.

PNFLD is the page number field. This field can be
embedded anywhere in the header or trailer data in the
required page number position. It can contain from 1
through 5 occurrences of the character specified by P.
These characters will be replaced by the current page
number, up to a maximum of 32,767, as a page is built.
A SEND PAGE command will causes the page number to
be reset to 1.

The following is a PUI example of a valid header or trailer
data area:

DATA is the header or trailer data to be placed at the
beginning or end of each page of output. Embedded
new-line characters (X' 15') may be used to provide
multiple heading or footing lines.

DCl
1 HEADAREA,
2 HEADlL FIXED BIN(15) INIT(14),
2 HEADP CHAR(l) INIT('@'),
2 HEADPAD CHAR(!),
2 HEAD CHAR(14) INIT('PAGE NO. @@');

Cumulative processing and device controls

Device controls are handled as follows for each page of
cumulative BMS output:

1. The ERASE, ERASEAUP, NLEOM, and FORMFEED
options are honored if they are used on ANY of the
BMS SEND commands which contributed to this page.

2. The most recent values of the CURSOR, ACTPARTN,
FMHPARM, and MSR options are honored for this
page.

Chapter 3.2-4. Full function BMS 183

3. The most recent value of the 3270 write control
character (WCC) is honored for this page. The WCC is
set by the ALARM, FREEKB, PRINT, FRSET, L40, L64,
L80, and HONEOM options. Some (or all) of these
options may be omitted from the most recent BMS
SEND command which contributes to this page. BMS
does not merge together the WCC options for all the
BMS SEND commands contributing to this page. It is
essential that all the required WCC options are
specified on the last BMS SEND command for each
page.

Cumulative processing and partitions

BMS handles page overflow on a partition basis, using the
size of the current partition's presentation space as the
page size.

It is possible for a CICS transaction to build a single logical
message, directed to several partitions (all of which must
be in the same partition set). The logical message is
terminated in the normal manner by a BMS SEND PAGE
command, and is purged by a PURGE statement.

If the ACCUM option is used, pages of maps or text are
built on a partition basis.

Take care when using the ACCUM option with multiple
partitions, especially if headers and trailers are to appear
in different partitions. At any time, there is only one page
overflow exit for all partitions. Avoid an infinite loop of
page overflows. These drive the overflow exit, making
header or trailer partitions overflow. You can avoid such
loops by coding the IGNORE CONDITION OVERFLOW
command.

All the partitions in a single logical message must have the
same disposition (that is, they must be all TERMINAL, all
PAGING, or all SET).

A program can perform cumulative mapping in one
partition of a multiple partition logical message, and
cumulative text in another.

A program cannot issue a SEND PARTNSET request while
building a logical message.

Cumulative processing and logical device
components

If logical device components are in use, BMS cumulative
processing accumulates data separately for each logical
device component. Page overflow occurs on a logical
device component basis. Terminal operator paging
commands operate on a logical device component basis.
It is also possible to accumulate map data for one logical
device component, and text data for a different logical
device component.

184 CICS/MVS 2.1.2 Application Programmer's Reference

All the logical device components participate in the same
BMS logical message. This is terminated by a single SEND
PAGE or PURGE MESSAGE command. All pages in all
logical device components are deleted when the terminal
operator purges the message.

Message routing

You use message routing to build a logical message and
route it to one or more terminals. The message is
scheduled, for each designated terminal, to be delivered as
soon as the terminal is available to receive messages, or
at a specified time. Terminal operators who receive the
message use terminal operator paging commands to view
it. A variety of operands on the ROUTE command allow
you flexibility when specifying the message destinations.

A ROUTE command initiates a message routing operation.
It is followed by SEND MAP, SEND TEXT, or SEND
CONTROL commands to build the logical message to be
routed. These commands must specify the ACCUM option,
and usually also specify the PAGING option (they can
specify the SET option, though this is unlikely). A SEND
PAGE command terminates the logical message, and
causes it to be routed. When individual logical messages
are routed to a terminal, they are not necessarily retrieved
by the terminal operator in the sequence in which they
were issued. If a specific sequence of pages is required,
the pages must be sent as one message.

The SEND MAP, SEND TEXT, or SEND CONTROL commands
that build the message must specify the ACCUM option.
Other SEND MAP or SEND TEXT commands can be
interleaved with these commands to send messages to the
terminal that initiated the transaction while the message to
be routed is being built. This is useful if a screen oriented
transaction is building data for a printer. The screen
oriented transaction can use normal SEND MAP (without
the ACCUM option) and RECEIVE MAP commands to
communicate with the screen, and can simultaneously
build a routed message for a printer, using SEND MAP
ACCUM PAGING commands.

Another consideration of routing to different types of
terminal is the handling of overflow conditions. This is
discussed in "Routing and page overflow" on page 189.

The message routing facility of BMS is useful for
developing message switching and broadcasting
applications, and for interacting with a screen while
collecting data for a printer. CICS provides a generalized
message switching application program that uses the
message routing facility of BMS (see the CICSIMVS
CICS-Supplied Transactions manual for details). It is not
possible to route a multiple partition or multiple LDC
logical message. Any OUTPARTN, ACTPARTN, or LDC
options on the BMS SEND commands are ignored while
routing is in effect.

Defining a ROUTE list

The ROUTE command is used to define a route list. It has
the followi ng syntax:

ROUTE
[INTERVAL(hhnmss)lITIME(hhmmss)]
[ERRTERM[(name)]]
[TITLE(data-area)]
[LIST(data-area)]
[OPCLASS(data-area)]
[REQIO(name)]
[LOC (name)]
[NLEOM]

Conditions: INVERRTERM, INVLOC,
INVREQ, RTEFAIL, RTESOME

1 INTERVAL(e) is the default

The options LIST and OPCLASS allow the designation of
those terminals or logical units, or particular operators, to
which the logical message is to be scheduled for delivery.
Whether the logical message will actually be delivered
(that is, received at the terminal) depends on many
factors, such as availability of the terminal, or of a specific
operator, within a certain time after the logical message is
ready to be delivered.

The LIST option specifies a list of terminals and/or
operators to receive the routed logical message. If no list
is provided, the logical message will be scheduled for
delivery to all terminals supported by BMS (unless the
OPCLASS option is specified and has some effect). The
message is only delivered to operators specified in the
LIST if they remained signed on at the same terminal, as
they were signed on at, when the ROUTE command was
issued.

There is a limit to the number of terminals to which a
message can be sent. The maximum cannot be defined
because it is dependent on the other operands specified on
the routing command, but the transaction will be abended
with an abend code of ABMC if the limit is exceeded.

The OPCLASS option specifies the classes of operators to
receive the routed logical message. OPCLASS can be
used alone, or in conjunction with LIST.

The uses and format of the route list and of the information
to be provided in the OPCLASS option are described in
"Route list and operator class codes (LIST and OPCLASS)"
on page 187.

The logical message can be delivered at a specified time
(TIME option) or after a certain interval has elapsed
(INTERVAL option); if neither option is specified, or if
INTERVAL(O) is specified, the logical message will be
delivered as soon as possible.

If a logical message is to be routed to more than one type
of terminal, BMS builds a different logical message
containing the appropriate device dependent data stream
for each terminal type. Each message is stored on
temporary storage until all terminals of this terminal type
have received the message.

If a terminal is scheduled to receive a message but is not
eligible, the message is stored until one of the following
conditions occurs:

• A change in terminal status allows the message to be
sent.

• A period specified by the PRGDLAY option of the
DFHSIT macro has elapsed, causing the message to
be deleted by BMS.

• The message is deleted by the destination terminal
operator.

If a logical message is to be routed to terminals with
alternate screen sizes (for example, the 3278), the choice
of alternate or default screen size is made depending on
the value specified using the SCRNSZE option of CEDA (or
the SCRNSZE operand of DFHPCT TYPE = ENTRY) for the
transaction issuing the ROUTE command. (See the
CICS/MVS Resource Definition (Online) manual or the
CICS/MVS Resource Definition (Macro) manual.)

If a ROUTE command followed by one or more BMS output
commands is not terminated by a SEND PAGE command
before a subsequent ROUTE command is issued, the
INVREQ exceptional condition occurs. A ROUTE command
may be issued immediately following another ROUTE
command. In this case, the first ROUTE command is
nullified, and the second determines the routing
environment.

Any partition or LDC related options on the BMS SEND
commands specifying the ACCUM option are ignored while
routi ng is in effect.

If a message cannot be delivered within a certain time, it
will be deleted (purged); the time is specified in the
PRGDLAY (purge delay) operand of the DFHSIT macro. If
the PRGDLAY operand is omitted, undelivered messages
await delivery indefinitely. IF PRGDLAY is specified, an
error message is generated whenever a message is
purged. The destination of this error message depends on
the ERRTERM specification in the ROUTE command as
follows:

If ERRTERM(name) is specified, the error message is
sent to the named terminal.

If ERRTERM is specified without a name, the error
message is sent to the terminal associated with the
task that sent the purged message.

If ERRTERM is omitted, the error message is not sent.

Chapter 3.2-4. Full function 8MS 185

In all cases, CICS lets the master terminal operator know
how many messages have been deleted for each
destination.

Disposition and message routing

A logical message can be built using either of two
dispositions: PAGING or SET. The first BMS output
command following the ROUTE command (with some
exceptions noted below) determines the disposition of the
logical message. Once established, the disposition must
remain unchanged until the logical message is completed
by a SEND PAGE command, or is deleted by a PURGE
MESSAGE command. An output request specifying a
disposition that is not in effect results in the INVREQ
condition.

PAGING is the normal disposition and results in the logical
message being written to temporary storage, and the
terminal operator paging transaction being initiated for
each terminal in the route list.

The SET option is rarely used in conjunction with routing.
SET causes the logical message to be returned to the
application program which is then responsible for its
delivery, as discussed in "Returning mapped data to a
program before output" on page 189.

Interleaving conversation with message
routing

A task can converse with the terminal to which it is
currently attached while it is building a logical message,
for example for a printer. The attached terminal is known
as the direct terminal; a terminal to which the message is
to be routed is known as a routing terminal. If any
RECEIVE MAP, RECEIVE PARTN, or RECEIVE commands
are encountered while the message is being built, they are
processed as usual.

The following rules apply to a direct terminal:

• TERMINAL must be specified or implied in any SEND
command that is to go to the direct terminal.

• The ACCUM option with a disposition of TERMINAL is
invalid and results in the INVREQ condition.

• The direct terminal may be included in the routing
environment without impairing the ability to converse
with it while under ROUTE. Data routed to the direct
terminal will be delivered as though the ROUTE
command had been issued from another terminal ..

The following shows an e.xample of a sequence of
commands for a. logical message, and summarizes briefly
what action CICS takes in response to each.

186 CICS/MVS 2.1.2 Application Programmer's Reference

SEND TEXT TERMINAL - Transmit to direct
terminal.

ROUTE - Establish routing environment.

SEND MAP TERMINAL - Transmit to
direct terminal.

RECEIVE MAP - Receive from direct
terminal.

SEND TEXT PAGING ACCUM - First output
command eligible for routing
establishes disposition of
PAGING.

SEND MAP TERMINAL - Transmit to
direct terminal.

SEND TEXT SET(A) - Invalid request;
routed logical message has
already established a disposition
of PAGING.

SEND TEXT PAGING ACCUM - Continue
building routed logical message.

SEND MAP(Y) PAGING ACCUM - Invalid
request; routed logical message
cannot be built with both SEND
TEXT and SEND MAP commands.

SEND MAP(Y) TERMINAL ACCUM - Invalid
request; cannot issue SEND MAP
ACCUM or SEND TEXT ACCUM command
to direct terminal while
building a routed logical
message.

SEND TEXT PAGING ACCUM - Continue
building routed logical message •.

SEND PAGE - Complete and send
logical message and terminate
routing operation.

SEND TEXT TERMINAL - Send to
direct terminal.

TITLE option of the ROUTE comn:-a,nd

The title na·med in the.TITLE option is displayed with the
logical message identifier when th~ terminal operator page
query command is entered (see the CICSIMVS
CICS-Supplied Transactions manual). This title serves as
an additional message identifier, displayed upon request
with the message identifier, not on the logical message.

The value in the 2-byte length field preceding the title
includes the bytes used for the length field. The length
field and title, in total, may be up to 64 bytes long. For
example:

Ix'eSIA'IMONTHLYbINVENTORYbREPORTI

2-byte
length title

24-byte
field field

Route list and operator class codes (LIST
and OPCLASS)

The system programmer specifies the terminal or logical
unit identifiers for all the terminals of the CICS system in
the terminal control table (TCT). (For logical units with
LOC support, LOC mnemonics are specified in the LOC
table.) Also, an operator identifier must be specified for
each operator, and up to 24 operator class codes (in the
range 1 through 24) can be specified for particular
operators, using the OPIOENT and OPCLASS operands,
respectively, of the sign-on-table system macro (OFHSNT
TYPE = ENTRY).

When an operator signs on at a terminal, CICS associates
the operator and the optional class codes with that
terminal until the operator signs off again. The application
program can provide a route list in the LIST option to
specify which terminals, or logical units, or operators are
to receive the logical message; alternatively, or in
addition, up to 24 operator class codes can be specified for
use with a ROUTE operation, by using the OPCLASS
option.

Before a logical message is delivered, all of the following
conditions must be fulfilled:

• The terminal or logical unit must be supported by BMS
and be operational.

• The logical message must be ready for delivery (TIME
or INTERVAL options satisfied).

• The purge delay must not have expired.

Whether or not a logical message will be delivered at a
specific terminal then depends on the use of the LIST and
OPCLASS options, as follows:

• LIST and OPCLASS are omitted. All terminals will
receive the message.

• LIST is specified but OPCLASS is omitted. The route
list can contain three types of entry, each type having

a different effect. All three types of entry can be
included in the same list. The types of entry are:

Entries specifying a particular terminal (or logical
unit) identifier but no operator identifier. Each
specified terminal will receive the message.

Entries specifying a particular terminal (or logical
unit) identifier and an operator identifier. Each
specified terminal will receive the message if or
when the specified operator is signed on at the
terminal.

Entries specifying only an operator identifier.
Each specified operator must be signed on at a
terminal supported by BMS when the ROUTE
command is issued; otherwise the route list entry
for that operator is ignored (skipped). CICS will
then schedule the message for delivery to each
terminal at which a specified operator is signed
on. If a particular operator is signed on at more
than one terminal, CICS will schedule the message
for delivery to the one whose entry appears first
in the terminal control table. Each terminal for
which the message is scheduled will then receive
the message (when it is ready for delivery if the
specified operator is still signed on at the terminal
or when the operator signs on again.

• LIST is omitted but OPCLASS is specified. CICS will
schedule the message for delivery to all terminals at
which an operator having at least one of the specified
operator class codes is signed on when the ROUTE
command is issued. Each terminal for which the
message is scheduled will then receive the message
(when it is ready for delivery) if or when an operator
(not necessarily the same one as before) having at
least one of the specified operator class codes is
signed on at the terminal.

• LIST and OPCLASS are both specified. The effect of
the OPCLASS specification for the different types of
route list entries is as follows:

Entries specifying no operator identifier. The
effect is the same as if only the OPCLASS option
were specified, but is restricted to those terminals
(or logical units) specified in the route list.
However, in this case, an operator with a
matching operator class does not need to be
signed on.

Entries specifying an operator identifier (and
possibly a terminal or logical unit identifier). The
OPCLASS specification is ignored for these route
list entries, and the effect is the same as if only
the LIST option were specified.

Chapter 3.2-4. Full function BMS 187

Route list format

The route list specified in the LIST option must conform to
a fixed format. The list consists of 16-byte entries as
follows:

Bytes Contents

9-3 Terminal or logical unit
identifier (4 characters,
including trailing blanks), or
blanks

4,5 LOC mnemonic (2 characters)
for logical units with LOC
support, or blanks

6-8 Operator identifier, or blanks

9 Status flag for the route entry

19-15 Reserved; must contain blanks

The end of the list is designated by a binary halfword
initialized to - 1.

The status flag (byte 9) indicates to the application
program the status of the destination when the ROUTE
command is issued. Upon return, the application program
can investigate the status flag byte for each entry and take
appropriate action. The status flag byte settings and their
meanings are as follows:

ENTRY SKIPPED
A route list entry was excluded. If an entry has been
excluded, another flag indicating why the entry was
skipped may be on in the status byte. This second flag
could be any of the other flags shown in the table. If
the OPERATOR NOT SIGNED ON flag is on, only an
operator identifier was specified in the route list entry
and the specified operator was not signed on at any
terminal. The settings are X ' 80 ' for ASM, 12-0-1-8 for
COBOL, and 10000000 for PUt.

INVALID TERMINAL IDENTIFIER
indicates that the terminal identifier specified in the
route list entry does not have a corresponding entry in
the terminal control table. This entry is also flagged
as ENTRY SKIPPED. The settings are X 140 I for ASM,
no punches for COBOL, and 01000000 for PUI.

TERMINAL NOT SUPPORTED UNDER BMS
indicates that the terminal identifier specified in the
route list entry is for a type of terminal that is not
supported under BMS; or the terminal table entry
indicated that the terminal was not eligible for routing.

188 CICS/MVS 2.1.2 Application Programmer's Reference

This entry is also flagged as ENTRY SKIPPED. The
settings are X '20 ' for ASM 11-0-1-8-9 for COBOL, and
00100000 for PUI.

OPERATOR NOT SIGNED ON
indicates that the specified operator is not signed on.
Anyone of the following conditions causes this flag to
be set:

• Both an operator identifier and a terminal
identifier were specified, and the specified
operator was not signed on at the terminal. This
entry is not skipped.

• An operator identifier was specified without a
terminal identifier, and the operator was not
signed on at any terminal. This entry is also
flagged as ENTRY SKIPPED.

• The OPCLASS option was specified with the
ROUTE command and a terminal identifier was
specified in the route list entry, but the operator
signed on at the terminal did not have any of the
specified operator classes. This entry is not
skipped.

The settings are X I 10 1 for ASM, 12-11-1-8-9 for
COBOL, and 00010000 for PUI.

OPERATOR SIGNED ON AT UNSUPPORTED TERMINAL
indicates that only an operator identifier was specified
in the route list entry, and that operator was signed on
a terminal not supported by BMS. This entry is also
flagged as ENTRY SKIPPED. The unsupported terminal
identifier is returned in that route list entry's terminal
identifier field. The settings are X 108 1 for ASM, 12-8-9
for COBOL, and 00001000 for PUI.

INVALID LDC MNEMONIC
indicates that one of the following situations exists:

• The LDC mnemonic specified in the route list does
not appear in the LDC list associated with the TCT.

• The device type generated in the system LDC
table for the specified or implied LOC mnemonic is
not the same as the device type for the first LDC
specified in the route environment.

The settings are X '04 1 for ASM, 12-4-9 for COBOL,
and 00000100 for PUt.

A symbolic storage definition of the user-supplied route list
is available in the source library (or libraries) under the
member name DFHURLDS. This definition can be used as
an aid in building the route list, and if necessary, in testing
the status flag byte for each entry upon return from a
ROUTE command that refers to a list.

The list can be supplied in noncontiguous areas called
segments, in which case every segment except the last is
terminated with (at least) an 8-byte entry with contents as
follows:

Bytes Contents

O,1 ASM: binary halfword
initialized to -2

COBOL:
PIC 59(4) CaMP VALUE -2.

Pl/I:
DCl FIXED BIN(15) INIT(-2)

2,3 Reserved

4-7 Chain address to the first
entry of the next segment

The I ast segment (that is, the end of the route list) ends
with a binary halfword initialized to -1.

Routing and page overflow

The routing process builds a separate logical message
containing the appropriate device dependent data stream
for each terminal type mentioned in the route list.
Because different types of terminal may have different
page sizes, the overflow condition is likely to occur at
different times in page building. BMS returns control to an
overflow label in the application program, where the
application program can determine by appropriate ASSIGN
options which type of terminal caused the overflow, the
current page number for that terminal type, and the total
number of terminal types in the route list.

This is done using the ASSIGN command with either the
DESCOUNT or PAGENUM options, as follows:

1. The ASSIGN DESTCOUNT command may be issued
following a ROUTE command. It returns a count of the
number of terminal types to receive the routed
message. This count tells the application program
how many logical messages will be built by BMS, and
hence how many 'overflow control areas' the
application program should allocate. These overflow
control areas may be useful for the application
program to remember, for example, the current page
number for each terminal type. However, it is not
necessary to use overflow control areas.

2. The ASSIGN DESTCOUNT command may be issued
following page overflow to return the relative overflow
control number of the terminal type that has
encountered the overflow. This number indicates
which overflow control area should be referenced,
perhaps through one or more trailer maps.

3. The ASSIGN PAGENUM command returns the page
number for the terminal type that has encountered the
overflow.

Message switching transaction (CMSG)

CICS provides a message switching transaction (CMSG),
which uses BMS text, routing, and paging. This transaction
allows a terminal operator to send a text message to one
or more other terminal operators. This transaction is
discussed in the CICSIMVS CICS-Supplied Transactions
manual.

Returning mapped data to a program before
output

SET option

The SET option of the SEND MAP, SEND TEXT, and SEND
CONTROL commands causes completed pages of a device
dependent data stream to be returned to the application
program, and sets a pointer to the address of a list of
completed pages. The application program can use the
SET option to:

1. Implement its own terminal operator paging scheme.
It will thus save the returned pages in temporary
storage, and subsequently retrieve them from
temporary storage and send them to the terminal by a
SEND TEXT MAPPED command.

2. Fill a screen with text data, and gain control when the
screen is full. This can be done by issuing:

a. A HANDLE CONDITION RETPAGE(label) command.
BMS passes control to the specified label on the
SEND TEXT ACCUM SET command which causes
"page overflow".

b. SEND TEXT ACCUM SET commands to send the
text.

c. A SEND PAGE SET command followed by a SEND
TEXT MAPPED command in the code which
handles the RETPAGE condition.

3. Modify the device dependent data stream returned by
BMS. This is not recommended because the format of
the data stream is not guaranteed to remain
unchanged.

A single BMS command can generate more than one page
of output; there may be more than one entry in the list for
a given type of terminal. (Pages may be built for multiple
terminal types by a single BMS command if routing is in
effect.)

I The data stream returned by BMS contains
I device-dependent data, so it is recommended that EXEC
I CICS SEND TEXT MAPPED be used to send the data to the
I device, rather than SEND TEXT NOEDIT or a terminal
I control SEND.

Chapter 3.2-4. Full function BMS 189

The entries for each type of terminal immediately follow
one another in the list. Each entry contains a single byte
terminal code (described in the next section) and a 3-byte
address of a terminal input/output area (TIOA) containing a
device dependent data stream plus header information.
The layout of the TIOA is as follows:

Field Contents

TIOASAA 8 bytes of storage accounting Information

TIOATDL 2 bytes Indicating length of data field TIOADBA, 2
bytes reserved

TIOADBA Data field containing device-dependent data stream

The page list is terminated by an entry with a X I FF I value
for the terminal code. The page list is reused following a
SEND PAGE or PURGE MESSAGE command.

At this point, the page buffers addressed by the page list
are on the user's storage chain, and are disassociated
from BMS control. The application program should free
these pages by means of FREEMAIN commands, when the

I pages are no longer needed. The address specified in the
I FREEMAIN command should be the address in the storage
I chain plus 8 bytes; that is, beginning from TIOATDL, not
I TIOASAA (which is contained in the first 8 bytes, and must
I not be FREEMAINed). See the TIOA layout earlier in this
I section for a description of these areas. The storage

containing the page list should not be freed; the list will be
reused by BMS to reduce processing time. The page list
may be altered by the next BMS output command
specifying the SET option.

Terminal code table

A terminal code table is established within BMS for
reference in servicing BMS-supported terminals. There is
one entry in this table for each terminal supported under
BMS. A terminal code appears in the list of completed
pages made available to the application program when the
SET option is specified in a BMS output command. The
code is available also in the EIBRCODE field of the EXEC
interface block when the INVMPSZ condition occurs; for a
description of this field, see Appendix A, "EXEC interface
block" on page 339. This terminal type code is only of
interest if BMS message routing is in effect. The codes
are as follows:

190 CICS/MVS 2.1.2 Application Programmer's Reference

Code Terminal or Logical Unit

A CRLP or TRMTVPE=TCAM terminals
B Magnetic Tape
C Sequential Disk
D TWX Model 33/35
E 1858
F 2748-1,-2 (no buffer receive)
G 2741
H 2748-2 (with buffer receive)
I 2778
J 27a8
K 37a8
L1 3278 (48-character width)
M2 3278 (as-character width)
N Not used
o Not used
~3 3767/78 Interpreter LU
Q~ 29a8 Models 1 and 2
R 29a8 Model 4
S Not used
T Not used
U 3688 (3681) LU
V 3658 Host Convers (3653) LU
W 3658 Interpreter LU
X 3658 Host Convers (3278) LU
V1 3778 Batch LU
Z Not used

1 Used also for 3778 and 3798 batch
data interchange logical units, and
LUTVPE4 logical units.

2 Includes all LUTVPE2 and LUTVPE3
logical units.

3 Used also for the 3798 full function
logical unit and the SCS printer
logical unit.

SEND TEXT MAPPED command

This command sends a page of a device dependent data
stream previously built by BMS, and returned to the
application program via the SET option. The command
syntax is:

SEND TEXT
MAPPED
FROM(data-area)
[LENGTH{data-value)]
[PAGINGITERMINAL[WAIT]]
[REQID(name)]

Conditions: IGREQCD, IGREQID,
RETPAGE, TSIOERR, WRBRK

This command must only be used to output a device
dependent data stream previously built by BMS. It
references a 4-byte 'Page Control Area (PCA), which BMS
placed at the end of the device dependent data stream.
The length of device dependent data stream set in the
TIOATDL field of the page buffer returned by the SET
option, does not include the PGA. The LENGTH option of
the SEND TEXT MAPPED command should be set from this
TIOATDL, and hence does not include the PGA. However,
if the application program copies the page buffer returned
by the SET option, it should include the PCA in the copied
data.

SEND TEXT NOEDIT command

This command sends a page of a device dependent data
stream built by the application program. The data stream
cannot contain structured fields. This command differs
from a terminal control SEND, as the data stream may be
written to temporary storage and interfaced to the terminal
operator paging transaction (specify the PAGING option).
Also the device dependent data stream may be sent to a
partition (specify the OUTPARTN option).

The syntax of this command is:

SEND TEXT
NOEDIT
FROM(data-area)
[LENGTH(data-value)]
[REQID(name)]
[OUTPARTN(name)]
[PAGINGITERMINAL[WAIT]]
[ERASE]
[PRINT]
[FREEKB]
[ALARM]

Conditionsl IGREQCD, IGREQID,
INVREQ, RETPAGE, TSIOERR, WRBRK

The device dependent data stream in the FROM area
cannot use structured fields.

If the OUTPARTN option is specified, the data stream is
sent to the specified partition.

Chapter 3.2-4. Full functIon BMS 191

Chapter 3.2-5. BMS macro and command reference summary

This chapter shows the syntax of each BMS macro and
command, separating the various operands and options
into those appropriate to minimum, standard, and full
function BMS. It describes the purpose and format of each
macro and its operands, each command and its options,
and points to related guidance information in the other
BMS chapters. This chapter is for reference only; it
contains no guidance information.

Map set, map, and field definition

This section describes the three map definition macros
DFHMSD, DFHMDI, and DFHMDF. It shows the syntax of
the macros, then lists and defines the operands.

Ensure that the names of maps, and names of fields within
a map set (or within multiple map sets that are copied into
one application program) are unique.

Map set definition macro (DFHMSD)

A DFHMSD macro defines a map set; it begins:

DFHMSD TYPE=MAP (or TYPE=DSECT)

and ends:

DFHMSD TYPE=FINAL

© Copyright IBM Corp. 1982, 1991

The syntax of the DFHMSD macro is:

Minimum BMS

mapset DFHMSD
TYPE={DSECTIMAP}

[,MODE={INIOUTIINOUT}]
[,LANG={ASMTCOBOLlpLI1RPG}]
[,STORAGE=AUTOI,BASE=name]
[,CTRL=([PRINT][,length]

[,FREEKB] [rALARM] [rFRSET])]
[,EXTATT={NO MAPONLY YES}]
[,COLOR={DEFAULTlcol or}]
[,HILIGHT={OFFIBLINKI

REVERSE I UNDERLINE}]
[,PS={BASElpsid}]
[,VALIDN=([MUSTFILL]

[,MUSTENTER] [,TRIGGER])]
[,TERM=typel,sUFFIX=n]
[,TIOAPFX={YESINO}]
[,MAPATTS=(attrl,attr2, ..•)]
[,DSATTS=(attrl,attr2, ..•)]
[,OUTLINE={BOXI([LEFT][,RIGHT]

[,OVER] [rUNDER])}]
[, SOSI={NO YES}]
[,TRANSP={YESINO}]

Standard BMS

[,PARTN=(name[,ACTIVATE])]
[, LDC=mnemoni c]
[,OBFMT={YESINO}]
[,HTAB=tab[,tab] ...]
[,VTAB=tab[,tab] ...]
[,DATA={FIELDIBLOCK}]
[,FLDSEP=[charIX'hex-char']]

'mapset' is the 1- through 7-character name of the map
set.

A DFHMSD macro contains one or more map definition
macros, each of which contains one or more field definition
macros.

Map definition macro (DFHMDI)

The DFHMDI macro defines a map within the map set
defined by the previous DFHMSD macro. A map contains
zero or more fields. The syntax of this macro is:

193

Minimum BMS

map DFHMDI
[,SIZE=(line,column)]
[,CTRL=([PRINT][,length]
[,FREEKB] [,ALARM] [,FRSET])]
[,EXTATT={NOIMAPONLVIVES}]
[,COLOR={DEFAULTlcolor}]
[,HILIGHT={OFFIBLINKI

REVERSE I UNDERLINE}]
[,PS={BASElpsid}]
[,VALIDN={[MUSTFILL]

[,MUSTENTER] [,TRIGGER]}]
[,COLUMN=number]
[, LINE=number]
[,FIELDS=NO]
[,MAPATTS=(attrl,attr2, •.•)]
[,DSATTS=(attrl,attr2, .•.)]
[,OUTLINE={BOxl([LEFT][,RIGHT]

[,OVER][rUNDER])}]
[,SOSI={NO YES}]
[,TRANSP={VESINO}]
[,JUSTIFV=BOTTOM]

Standard BMS

[,PARTN=(name[,ACTIVATE])]
[,OBFMT={VESINO}]
[,DATA={FIELDIBLOCK}]
[,TIOAPFX={VESINO}]
[,FLDSEP=[charIX'hex-char']]

Full BMS

[,COLUMN={numberINEXTISAME}]
[,LINE={numberl NEXT I SAME}]
[,JUSTIFV=([{LEFTIRIGHT}]

[,{FIRSTILAST}])]
[, HEADER=VES]
[, TRAI LER=VES]

'map' is the 1- through 7-character name of the map.

Note for COBOL users: If the maps are for use in a COBOL
program, and STORAGE = AUTO has not been specified in
the DFHMSD macro, they must be specified in descending
size sequence. (Size refers to the generated 01 level data
areas and not to the size of the map on the screen.) For
more information, see "Getting storage for a data
structure" on page 151.

Field definition macro (DFHMDF)

The DFHMDF macro defines a field within a map defined
by the previous DFHMDI macro. The syntax of this macro
is:

194 CICS/MVS 2.1.2 Application Programmer's Reference

Minimum BMS

[fld] DFHMDF
[,POS={numberl(line,column)}]
[,LENGTH=number]
[,JUSTIFV=([{LEFTIRIGHT}]

[,{BLANKIZERO}])]
[,INITIAL='char data'i

XINIT=hex data]
[,ATTRB=
([{ASKIPlpROTIUNPROT[,NUM]}]

[,{BRTINORMIDRK}]
[,DET][,IC][,FSET])]

[, COLOR={DEFAULT I color}]
[,PS={BASEI~sid}]
[,HILIGHT={OFFIBLINKIREVERSEI

UNDERLI NE}]
[,VALIDN=([MUSTFILL]

[,MUSTENTER] [,TRIGGER])]
[,GRPNAME=group-name]
[,OCCURS=number]
[,PICIN='value']
[,PICOUT='value']
[,OUTLINE={BOXI([LEFT][,RIGHT]

[,OVER] [rUNDER])}]
[,SOSI={NO YES}]
[,TRANSP={VESINO}]
[,CASE=MIXED]

'tid' is the 1-through 7 -character name of the field.

If 'fld' is omitted, application programs cannot access the
field to change its attributes or alter its contents. For an
output map, omitting the field name may be appropriate
when the INITIAL operand is used to specify the contents
of a field. If a field name is specified and the map that
includes the field is used in a mapping operation, nonnull
data supplied by the user overlays data supplied by
initialization (unless default data only is being written).

The performance of input mapping operations is optimized
if DFHMDF macros are arranged in numeric order of the
pas operand.

You cannot define more than 1023 named fields for a
COBOL or' PLII input/output map.

Ending a map set definition

A map set definition ends with a macro of the form:

I [mallset] DFHMSD TYPE=FINAL

'mapset' is optional, but if used it must be the same as
that on the,.DFHMSD macro that began the map set.

Map definition macro operand summary

This section lists and describes the operands of the three
map definition macros, DFHMSD, DFHMDI, and DFHMDF.

AlTRB
is applicable only to fields to be displayed on a 3270 (it
is ignored if sent to a non-3270 terminal) and specifies
device dependent characteristics and attributes, such
as the capability of a field to receive data or the
intensity to be used when the field is output. If AlTRB
is specified within a group of fields, it must be
specified in the first field entry. A group of fields
appears as one field to the 3270. Therefore, the
AlTRB specification refers to all of the fields in a
group as one field rather than as individual fields. See
An Introduction to the IBM 3270 Information Display
System for further information.

This operand applies only to 3270 data stream
devices; it will be ignored for other devices, except
that ATTRB = DRK is honored for the SCS Printer
Logical Unit. It will also be ignored (except for
ATTRB = DRK) if the NLEOM option is specified on the
SEND MAP command for transmission to a 3270
printer. In particular, ATTRB = DRK should not be
used as a method of protecting secure data on output
on non-3270, non-SCS printer terminals. It could
however, be used for making an input field nondisplay
for secure entry of a password from a screen.

For input map fields, DET and NUM are the only valid
options; all others are ignored.

ASKIP specifies that data cannot be keyed into the
field and causes the cursor (current location pointer)
to skip over the field.

PROT specifies that data cannot be keyed into the
field. .

If data is to be copied from one device to another
attached to the same 3270 control unit, the first
position (address 0) in the buffer of the device to be
copied from must not contain an attribute byte for a
protected field. When preparing maps for 3270s,
ensure that the first map of any page does riot
contain a protected field starting at position O.

UNPROT specifies that data can be keyed into the
field.

NUM ensures that the data entry keyboard is set to
numeric shift for this field unless the operator
presses the alpha shift key, and prevents entry of
nonnumeric data if the Keyboard Numeric Lock
feature is installed.

BRT specifies that a high intensity display of the field
is required. By virtue of the 3270 attribute
character bit assignments, a field specified as BRT
is also potentially detectable. However, for the field

to be recognized as detectable by BMS, DET must
also be specified.

NORM specifies that the field intensity is to be normal.

ORK specifies that the field is nonprint/nondisplay.
DRK cannot be specified if DET is specified.

OET specifies that the field is potentially detectable.

The first character of a 3270 detectable field must
be one of the following:

? > & blank

If ? or >, the field is a selection field; if & or blank,
the field is an attention field. (See the publication
An Introduction to the IBM 3270 Information Display
System for further details of detectable fields.)

A field for which BRT is specified is potentially
detectable to the 3270, by virtue of the 3270
attribute character bit assignments, but is not
recognized as such by BMS unless DET is also
specified.

DET and DRK are mutually exclusive.

If DET is specified for a field on a map with
MODE = IN, only one data byte is reserved for each
input field. This byte is set to X I 00 I, and remains
unchanged if the field is not selected. If the field is
selected the byte is set to X I FF I.

No other data is supplied, even if the field is a
selection field and the ENTER key has been pressed.

If the data in a detectable field is required, all of the
following conditions must be fulfilled:

1. The field must begin with one of the following
characters:

? > & blank

and DET must be specified in the output map.

2. The ENTER key (or some other attention key)
must be pressed after the field has been
selected, although the ENTER key is not
required for detectable fields beginning with a &
or a blank.

3. DET must not be specified for the field in the
input map. DET must, however, be specified in
the output map. See "Chapter 3.2-2. Minimum
function BMS" on page 139 for more
information on BMS support of the light pen.

IC specifies that the cursor is to be placed in the first
position of the field. The IC attribute for the last
field for which it is specified in a map is the one that
takes effect. If not specified for any fields in a map,
the default location is zero. Specifying IC with
ASKIP or PROT causes the cursor to be placed in an
unkeyable field.

This option can be overridden by the CURSOR
option of the SEND MAP command that causes the
write operation.

Chapter 3.2-5. BMS macro and command reference summary 195

FSET specifies that the modified data tag (MDT) for
this field should be set when the field is sent to a
terminal.

Specification of FSET causes the 3270 to treat the
field as though it has been modified. On a
subsequent read from the terminal, this field is read,
whether or not it has been modified. The MDT
remains set until the field is rewritten without
ATTRB = FSET or until an output mapping request
causes the MDT to be reset.

Either of two sets of defaults may apply when a field
to be displayed on a 3270 is being defined but not
all parameters are specified. If no ATTRB
parameters are specified, ASKIP and NORM are
assumed. If any parameteris specified, UNPROT
and NORM are assumed for that field unless
overridden by a specified parameter.

BASE = name
specifies that the same storage base will be used for
the symbolic description maps from more than one
map set. The same name is specified for each map
set that is to share the same storage base. Because
all map sets with the same base describe the same

. storage, . data related to a previously used map set
may be overwritten when a new map set is used.
Furthermore, different maps within the same map set
will also overlay one another.

This operand is not valid for assembler language
programs, and cannot be used when STORAGE = AUTO
has been specified.

For example, assume that the following macros are
used to generate symbolic description maps for two
map sets:

MAPSETI DFHMSD TVPE=DSECT,
TERM=27S0,LANG=COBOL,
BASE=DATAREA1,MODE=IN

MAPSET2 DFHMSD TVPE=DSECT,
TERM=3270,LANG=COBOL,
BASE=DATAREA1,MODE=OUT

The symbolic description maps of this example might
be referred to in a COBOL application program as',·
follows:

196 CICS/MVS 2.1.2 Application Programmer's Reference

LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.

02 TIOABAR PIC S9(8) COMPo
02 MAPBASE1 PIC S9(S) COMPo

01 DFHTIOA COPY DFHTIOA.
01 DATAREA1 PIC X(1920).
01 name COpy MAPSETI.
01 name COPY MAPSET2.

EXEC CICS GETMAIN LENGTH(1000)
SET(MAPBASE) INITIMG(0)
END-EXEC

MAPSET1 and MAPSET2 both redefine DATAREA1;
only one 02 statement is needed to establish
addressability. However, the program can only use
the fields in one of the symbolic description maps at a
time.

If BASE= DATAREA1 is deleted from this example, an
additional 02 statement is needed to establish
addressability for MAPSET2; the 01 DATAREA1
statement is not needed. The program could then
refer to fields concurrently in both symbolic
description maps.

The GETMAIN command should specify enough
storage to contain the largest map of all those that
share the same storage base. In this case, the
programmer has decided that the largest map requires
1000 bytes of storage.

In PUI application programs, the name specified in the
BASE operand is used as the name of the pointer
variable on which the symbolic description map is
based. If this operand is omitted, the default name
(BMSMAPBR) is used for the pointer variable. The
PUI programmer is responsible for establishing
addressability for the based structures.

Note: The BASE operand is also described under
"Getting storage for a data structure" on page 151.

CASE=MIXED
specifies that the field contains both uppercase and
lowercase data that is to be converted to uppercase if
FEATURE = KATAKANA has been included in the
terminal definition.

This should be specified if a field is known to contain
lowercase latin characters but may be displayed on a
Katakana display. It should not be specified if the field
may contain valid Katakana characters.

COLOR
indicates the individual color, or the default color for
the map set (where applicable). This is overridden by
the COLOR operand of the DFHMDI macro, which is in
turn overridden by the COLOR operand of the
DFHMDF macro.

The valid colors are blue, red, pink, green, turquoise,
yellow, and neutral.

If COLOR is specified when EXTATT= NO, a warning is
issued and the option ignored. If COLOR is specified,
but EXTATT is not, EXTATT= MAPONLY will be
assumed. .

The COLOR operand is ignored unless the terminal
supports color, as indicated.by the FEATURE operand
of the DFHTCT TYPE=TERMINAL system macro.

COLUMN
specifies the column in a line at which the map is to
be placed, that is, it establishes the left or right map
margin. The JUSTIFY operand of the DFHMDI macro
controls whether map and page margin selection and
column counting are to be from the left or right side of
the page. The columns between the specified map
margin and the page margin are not available for
subsequent use on the page for any lines included in
the map.

number is the column from the left or right page
margin where the left or right map margin is to be
established.

NEXT indicates that the left or right map margin is to
be placed in the next available column from the left
or right on the current line.

SAME indicates that the left or right map margin is to
be established in the same column as the last

CTRL

non header or nontrailer map used that specified
COLUMN = number and the same JUSTIFY
parameters as this macro.

For input operations, the map will be positioned
either at the extreme left hand or right hand side
depending on whether JUSTIFY= LEFT or RIGHT has
been specified.

See "Map positioning" on page 177 for a detailed
description of BMS map positioning.

defines characteristics of IBM 3270 terminals. The
CTRL operand on the DFHMSD macro is overridden by
the CTRL option on the DFHMDI macro, which is in
turn overridden by the ALARM, FREEKB and so on,
options on the SEND MAP command.

If CTRL is used with cumulative BMS paging (that is,
the ACCUM option is used on the BMS SEND MAP
commands), it must be specified on the last (or only)
map of a page, unless it is overridden by the ALARM,
FREEKB and so on, options on the SEND MAP
command.

PRINT must be specified if the printer is to be started;
if omitted, the data is sent to the printer buffer but
is not printed. This operand is ignored if the map
set is used with 3270 displays without the Printer
Adapter feature.

length indicates the line length on the printer; length
can be specified as L40, L64, LBO, or HONEOM. L40,
L64, and LBO force a new line after 40, 64, or BO
characters, respectively. HONEOM causes the
default printer line length to be used. If this option
is omitted, BMS will set the line length from the TCT
page size. This is further discussed under "Printed
output" on page 156.

FREEKB causes the keyboard to be unlocked after the
map is written. If FREEKB is not specified, the
keyboard remains locked; data entry from the
keyboard is inhibited until this status is changed.

ALARM activates the 3270 audible alarm. For
non-3270 VTAM terminals it sets the alarm flag in
the FMH. (This feature is not supported by
interactive and batch logical units.)

FRSET specifies that the modified data tags (MOTs) of
all fields currently in the 3270 buffer are to be reset
to a not-modified condition (that is, field reset)
before map data is written to the buffer. This allows
the DFHMDF macro with the ATTRB operand to
control the final status of any fields written or
rewritten in response to a BMS command.

DATA
specifies the format of the data.

FIELD specifies that the data is passed as contiguous
fields each field having the format:

"LL" is two bytes specifying the length of the data
as input from the terminal (these two bytes are
ignored in output processing). "A" is a byte into
which the programmer can place an attribute to
override that specified in the map used to process
this data (see copy book DFHBMSCA in "BMS
related constants" on page 205).

If you specify EXTATT=YES, the field will have the
form

where C, P, H, and V are the color, program symbol,
highlight, and validation attribute bytes,
respectively. See "Chapter 3.2-2. Minimum function
BMS" on page 139 for further information on field
data.

BLOCK specifies that the data is passed as a
continuous stream in the following format:

IAldata fieldlspacel

Chapter 3.2-5. BMS macro and command reference summary 197

This stream is processed as line segments of the
length specified in the map used to process the
data. The data is in the form that it appears on the
terminal; that is, it contains data fields and
interspersed blanks corresponding to any spaces
that are to appear between the fields on output.
EXTATT=YES cannot be used if DATA = BLOCK is
specified.

Block data is further discussed in "Chapter 3.2-3.
Standard function BMS" on page 159. Its use is not
recommended.

DSATTS
specifies the attribute types to be included in the
symbolic description map. These types can be one or
more of the following: COLOR, HILIGHT, OUTLINE, PS,
SOSI, TRANSP, and VALIDN. Any type included in
DSATTS should also be included in MAPATTS.

EXTATT
this operand is supported for compatibility with
previous releases. For new maps, the operands
DSATTS and MAPATTS should be used instead.

NO is equivalent to neither of the operands DSATTS
and MAPATTS being specified.

YES is equivalent to:

MAPATTS=(COLOR,HILIGHT,PS,VALIDN)
DSATTS=(COLOR,HILIGHT,PS,VALIDN)

MAPONLY is equivalent to:

MAPATTS=(COLOR,HILIGHT,PS,VALIDN)

FIELDS
specifies whether or not the map contains fields. If
you specify FI ELDS = NO, you create a null map that
defines a "hole" in BMS's view of the screen. BMS
cannot change the contents of such a hole after it has
created it by sending a null map.

FLDSEP
can be up to 4 characters indicating the field separator
sequence for input from non-3270 devices. Input from
non-3270 devices can be entered as a single string of
data with the field separator sequence delimiting
fields. The data between the field separators is moved
to the input fields in the map in order.

GRPNAME
is the name (1-through 7-characters) used to generate
symbolic storage definitions and to combine specific
fields under one group name. The same group name
must be specified for each field that is to belong to the
group.

If this operand is specified, the OCCURS operand
cannot be specified.

The fields in a group must follow on; there can be gaps
between them, but not other fields from outside the
group. A field name must be specified for every field

198 CICS/MVS 2.1.2 Application Programmer's Reference

that belongs to the group, and the POS operand must
be also specified to ensure the fields follow each
other. All the DFHMDF macros defining the fields of a
group must be placed together, and in the correct
order (upward numeric order of the POS operand).

For example, the first 20 columns of the first six lines
of a map can be defined as a group of six fields, so
long as the remaining columns on the first five lines
are not defined as fields.

The ATTRB operand specified on the first field of the
group applies to all of the fields within the group.

A display field cannot extend beyond the right hand
edge of a map. The length of the display field built by
a group of subfields is thus limited to the width of the
map.

Field groups are described under "Field groups" on
page 145.

HEADER
allows the map to be used during page building
without terminating the overflow condition (see
"Floating maps, header and trailer maps" on page 176
for further details). This operand may be specified for
more than one map in a map set.

HILIGHT
specifies the default highlighting attribute for all fields
in all maps in a map set. This is overridden by the
HILIGHT operand of the DFHMDI, which is in turn
overridden by the HILIGHT operand of the DFHMDF.

OFF is the default and indicates that no highlighting is
used.

BLINK specifies that the field must blink.

REVERSE specifies that the character or field is
displayed in reverse video, for example, on a 3278,
black characters on a green background.

UNDERLINE specifies that a field is underlined.

If HILIGHT is specified when EXTATT= NO, a warning
is issued and the option ignored. If HILIGHT is
specified, but EXTATT is not, EXTATT=MAPONLY will
be assumed.

The HILIGHT operand is ignored unless the terminal
supports highlighting, as indicated by the FEATURE
operand of the DFHTCT TYPE=TERMINAL system
macro.

HTAB
specifies one or more tab positions for use with
interactive and batch logical units and SCS printers
having horizontal forms control.

INITIAL (or XINIT)
specifies constant or default data for an output field.
INITIAL is used to specify data in character form; XINIT
is used to specify data in hexadecimal form. INITIAL
and XINIT are mutually exclusive.

For fields with the DET attribute, initial data that
begins with one of the following characters:

? > & blank

should be supplied.

The number of characters that can be specified in the
INITIAL operand is restricted to the continuation
limitation of the assembler to be used or to the value
specified in the LENGTH operand (whichever is the
smaller).

Hexadecimal data is written as an even number of
hexadecimal digits, for example, XINIT=C1C2. If the
number of valid characters is smaller than the field
length, the data will be padded on the right with
blanks. For example, XINIT=C1C2 might result in an
initial field of 'AB '.

If hexadecimal data is specified that corresponds with
line or format control characters, the results will be
unpredictable. The XINIT operand should therefore be
used with care.

JUSTIFY
There are two uses for the operand. On DFHMDI, you
use it to specify the position of the map on the page.
On DFHMDF, it specifies the position of a field within a
BMS map.

These are the keywords you can specify on DFHMDI:

LEFT specifies that the map is to be positioned starting
at the specified column from the left margin on the
specified line.

RIGHT specifies that the map is to be positioned
starting at the specified column from the right
margin on the specified line.

FIRST specifies that the map is to be positioned as the
,first map on a new page. Any partially formatted
p~ge from preceding BMS commands is considered
to be complete. This operand can be specified for
only one map per page.

LAST indicates that the map is to be positioned at the
bottom of the current page. This operand can be
specified for multiple maps to be placed on one
page. However,' maps ,other than the first map for
which it is specified must be able to be positioned
horizontally without requiring that more lines be
used. '

BOTTOM for a SEND MAP ACCUM command has the
same effect as LAST, above. For a SEND MAP
command (without ACCUM) and a RECEIVE MAP
command, JUSTIFY= BOnOM will position the map
at the bottom of the screen if the number of lines in
the map is specifi~d in the SIZE operand. No
account will be taken of trailer maps in the map set.
JUSTIFY = B0Tl"0M is equivalent to specifying

LI N E = (screendepth - mapdepth + 1)

on the map definition, but it allows the same map to
be used for different screen sizes.
JUSTIFY = BOnOM is ignored if the number of lines
is not specified as well. If JUSTIFY = BonOM and
LINE are both specified, the value specified in LINE
will be ignored.

LEFT and RIGHT are mutually exclusive, as are FIRST
and LAST. If neither FIRST nor LAST is specified, the
data is mapped at the next available position as
determined by other parameters of the map definition
and the current mapping operation. FIRST and LAST
are ignored unless ACCUM is specified on SEND MAP
commands; otherwise only one map is placed on each
page.

See "Map positioning" on page 177 for a more
detailed description.

The JUSTIFY operand on DFHMDF specifies the field
justifications for input operations. This operand is
ignored for TCAM-supported 3600 and 3790, and for
VTAM-supported 3600, 3650, and 3790 terminals,
because input mapping is not available.' '

These are the keywords you can specify on DFHMDF:

LEFT specifies that data in the input field is' left
justified.

RIGHT specifies that data in the input field is right
justified.

BLANK specifies that blanks are to be inserted in any
unfilled positions in an input field. '

ZERO specifies that zeros are to be inserted in any
unfilled positions in an input field.

LEFT and RIGHT are mutually exclusive, as are BLANK
and ZERO. If certain parameters are specified but
others are not, assumptions are made as follows:

Specified Assumed

LEFT
RIGHT
BLANK
ZERO

BLANK
ZERO
LEFT
RIGHT

If JUSTIFY is, omitted, but the NUM attribute is
specified, RIGHT and ZERO are assumed. If JUSTIFY
is omitted, but attributes other than NUM are
specified, LEFT and BLANK are assumed.

Note: If a field is initialized by an output map or
contains data from any other source, data that is
keyed as input will only overwrite equivalent length
existing data; surplus existing data will remain in the
field and could cause unexpected interpretation of the
new data.

LANG
specifies the source language of the application
programs into which the symbolic description maps in
the map set will be copied. This option need only be

Chapter 3.2-5. BMS macro and command reference summary 199

LDC

coded for DFHMSD TYPE = DSECT. If a map set is to
be used by more than one program, and the programs
are not all written in the same source language, a
separate version of the map set must be defined for
each programming language.

specifies the code to be used by CICS to determine
the logical device mnemonic that is to be used for a
BMS output operation and transmitted in the function
management header to the logical unit if no LDC
operand has been specified on any previous BMS
output in the logical message. This operand is used
only for TCAM and VTAM-supported 3600 terminals,
and batch logical units. For more information see
"Logical device components" on page 169.

LENGTH
specifies the length (1 through 256 bytes) of the field.
This specified length should be the maximum length
required for application program data to be entered
into the field; it should not include the one-byte
attribute indicator appended to the field by CICS for
use in subsequent processing. The sum of the lengths
of the fields within a group must not exceed 256 bytes.
LENGTH can be omitted if PICIN or PICOUT is specified
but is required otherwise. A length of zero may be
specified only if the label (field name) is omitted from
the DFHMDF; that is, the field is not part of the
application data structure, and the application program
cannot modify the attributes of the field. A field with
zero length may be used to delimit an input field on a
map.

The map dimensions specified in the SIZE operand of
the DFHMDI macro instruction defining a map may be
smaller than the actual page size or screen size as
defined for the terminal. The LENGTH specification in
a DFHMDF macro cannot cause the map-defined
boundary on the same line to be exceeded. That is,
the length declared for a field cannot exceed the
number of positions available from the starting
position of the field to the final position of the
map-defined line. For example, given an 80-position
page line, the following map definition and field
definition are valid:

DFHMDI SIZE=(2,40), ••.
DFHMDF POS=22,LENGTH=17, ...

but the following definitions are not acceptable:

DFHMDI SIZE=(2,40), ••.
DFHMDF POS=22,LENGTH=30, •••

LINE
specifies the starting line on a page in which data for a
map is to be formatted.

number is a value from 1 to 240, specifying a starting
line number. A request to map data on a line and
column that has been formatted in response to a
preceding BMS command causes the current page

200 CICS/MVS 2.1.2 Application Programmer's Reference

to be treated as though complete. The new data is
formatted at the requested line and column on a
new page.

NEXT specifies that formatting of data is to begin on
the next available completely empty line. If
LlNE= NEXT is specified in the DFHMDI macro, it is
ignored for input operations and LINE = 1 is
assumed.

SAME specifies that formatting of data is to begin on
the same line as that used for a preceding BMS
command. If COLUMN = NEXT is specified in the
DFHMDI macro, it is ignored for input operations
and COLUMN == 1 is assumed. If the data does not
fit on the same line, it is placed on the next
available completely-empty line.

See "Map positioning" on page 177 for a detailed
description of map positioning.

MAPATTS
specifies the attribute types to be included in the
physical map. These types can be one or more of the
following: COLOR, HILIGHT, OUTLINE PS, SOSI,
TRANSP, and VALIDN. This list must include all the
attribute types to be specified for individual fields in
the map (DFHMDF macro).

Where possible these values will be deduced from
operands already specified in the DFHMSD and
DFHMDI macros. For example, if COLOR = BLUE has
been specified, MAPATTS = COLOR will be assumed.

MODE
specifies whether the map is to be used for input,
output, or both.

OBFMT
specifies whether outboard formatting is to be used.
This operand is available only for 3650 logical units, or
for an 8100 series processor running DPS Release 2
and defined to CICS as an LUTYPE2 logical unit. For
more information, see "Chapter 3.2-3. Standard
function BMS" on page 159.

The OBFMT option on DFHMSD is overridden by the
OBFMT option on DFHMDI.

YES specifies that all maps within this map set can be
used in outboard formatting, except those for which
OBFMT = NO is specified in the DFHMDI macro.

NO specifies that no maps within this map set can be
used in outboard formatting, except those for which
OBFMT=YES is specified in DFHMDI.

OUTLINE
allows lines to be included above, below, to the left, or
to the right of a field. You can use these lines in any
combination to construct boxes around fields or groups
of fields.

OCCURS
specifies that the indicated number of entries for the
field are to be generated in a map and that the map
definition is to be generated in such a way that the
fields are addressable as entries in a matrix or an
array. This permits several data fields to be
addressed by the same name (subscripted) without
generating a unique name for each field. OCCURS
and GRPNAME are mutually exclusive; that is,
OCCURS cannot be used when fields have been
defined under a group name. If this operand is
omitted, a value of 1 is assumed.

PARTN
specifies the default partition to be associated with
maps in this map set. If the ACTIVATE option is
specified, the specified partition will also be activated
when maps in this map set are output to a terminal
which supports partitions. This option is overridden by
the PARTN option of the DFHMDI macro, which is in
turn overridden by any OUTPARTN and/or ACTPARTN
option on the SEND MAP command, or the INPARTN
option on a RECEIVE MAP command.

The PARTN option is ignored if the target terminal
does not support partitions, or if there is no partition
set associated with the transaction.

PICIN (COBOL and PLII only)
specifies a picture to be applied to an input field in an
IN or INOUT map; this picture serves as an editing
specification which is passed to the application
program, thus permitting the user to exploit the editing
capabilities of COBOL or PUI. BMS checks that the
specified characters are valid picture specifications for
the language of the map.

However, the validity of the input data is not checked
by BMS or the high level language when the map is
used, so any desired checking must be performed by
the application program. The length of the data
associated with "value" should be the same as that
specified in the LENGTH operand if LENGTH is
specified. If both PICIN and PICOUT (see below) are
used, an error message is produced if their calculated
lengths do not agree; the shorter of the two lengths is
used. If PICIN or PICOUT is not coded for the field
definition, a character definition of the field is
automatically generated regardless of other operands
that are coded, such as ATIRB = NUM.

As an example, assume the following map definition is
created for reference by a COBOL application
program:

MAPX DFHMSD TYPE=DSECT,
LANG=COBOL,
MODE=INOUT

MAP DFHMDI LINE=l,COLUMN=l,
SIZE=(1,88)

F1 DFHMDF POS=0,LENGTH=30
F2 DFHMDF POS=48,LENGTH=10,

PICOUT='$$$,$$8.00'
F3 DFHMDF POS=68,LENGTH=6,

PICIN='9999V99',
PICOUT='ZZ9.99'

DFHMSD TYPE=FINAL

This generates the following DSECT:

91 MAPI.
02 FIL PIC S9(4) COMPo
02 FIA PIC X.
02 FILLER REDEFINES FlA.

83 FIF PIC X.
02 FlI PIC X(38).
02 FILLER PIC X.
82 F2L PIC S9(4) COMPo
02 F2A PIC X.
02 FILLER REDEFINES F2A.

03 F2F PIC X.
02 F21 PIC X(10).
02 FILLER PIC X.
02 F3L PIC 59(4) COMPo
02 F3A PIC X.
02 FILLER REDEFINES F3A.

83 F3F PIC X.
02 F3I PIC 9999V99.
02 FILLER PIC X.

91 MAPO REDEFINES MAPI.
02 FILLER PIC X(3).
02 FlO PIC X(30).
02 FILLER PIC X.
92 FILLER PIC X(3).
92 F20 PIC $$$,$$9.00.
02 FILLER PIC X.
02 FILLER PIC X(3).
92 F30 PIC ZZ9.99.
02 FILLER PIC X.

Note: The valid picture values for COBOL maps are:

A P S V X 9 / and (

The valid picture values for PUI maps are:

ABE F G H I K M P R S T V
X Y and Z

123 6 7 B 9 / + - , • *
$ and (

See the appropriate language reference manual for
the correct syntax of the PICTURE attribute.

PICOUT (COBOL and PUI only)
is similar to PICIN, except that a picture to be applied
to an output field in the OUT or INOUT map is
generated.

Chapter 3.2-5. BMS macro and command reference summary 201

POS

Note: The valid picture values for COBOL maps are:

ABE P S V X Z 0 9 , • + - $
CR DB / and (

The vaJid picture values for PUI maps,are:

ABE F G H I K M P R S T V
X Y and Z

123 6 789 / + - , • * $
CR DB and (

See the appropriate language reference manual for
the correct syntax of the PICTURE attribute.

specifies the location of a field. This operand specifies
the indiv'idually addressable character location in a
map at which the attribute byte that precedes the field
is positioned.

number specifies the displacement (relative to zero)
from the begi,nning of the map being defined.

(line,column) specify lines and columns (relative to
one) within the map being defined.

The location of data on the output medium is
dependent on DFHMDI parameters as well.

The first position of a field is reserved for an
attribute byte. When supplying data for input
mapping from non-3270 devices, the input data must
allow space for this attribute byte. Input data must
not s,tart in column 1 but may start in column 2.

The POS operand always contains the location of
the first position in a field, which is normally the
attribute byte when communicating with the 3270.
For the second and subsequent fields of a group,
the POS operand points to an assumed attribute
byte position, ahead of the start of the data, even
though no actual attribute byte is necessary. If the
fields follow on immediately from one another, the
POS operand should point to the last character
position in the previous field in the group.

When a position number is specified which
represents the last character position in the 3270,
two special rules apply:

• The IC attribute should not be coded. The
cursor may be set to location zero by using the
cursor option of the SEND MAP, SEND
CONTROL, or SEND TEXT command.

• If the field is to be used in an output mapping
operation with the DATA=ONLY specification,
an attribute byte for that field must be supplied
in the symbolic map data structure by the
application program.

PS specifies that programmed symbols are to be used.
This is overridden by the PS operand of the DFHMDI
macro, which is in turn overridden by the PS operand
of the DFHMDF macro.

202 CICS/MVS 2.1.2 Application Programmer's Reference

BASE specifies that the base ~ymbol set is to be used.

psid speq!fie,s a single EBCDIC char~'cter,' or a
hexadecimal code. of the form X I nn I , that -identifies
the set of programmed' symbols tobe used.

If PS is specified when EXTATT= NO, a warning is
issued and the option ignored. If PS is specified, but
EXTATT is not, EXTATT= MAPONLY will be assumed.

The PS operand is ignored unless the terminal
supports programmed symbols, as indicated by the
FEATURE operand of the DFHTCT TYPE=TERMINAL
system macro.

SIZE
specifies the size of a map.

line is a value from 1 through 240, specifying the depth
of a map as a number of lines.

column is a value from 1 through~40, specifying the
width of a map as a number of columns.

SOSI

This operand is required in the following cases:

• An associated DFHMDF macro with the POS
operand is used.

• The map is to be referred to in a SEND MAP
command with the ACCUM option"

• The map is to be used when referring to input
data from other than a 3270 terminal in a
RECEIVE MAP command.

indicates that the field may contain a mixture of
EBCDIC and DBCS data. The DBCS subfields within an
EBCDIC field are delimited by SO (shift out) and SI
(shift in) characters. SO and SI both occupy a single
screen position (normally displayed as a blank). They
can be included in any non-DBCS field on output
provided they are correctly paired. The terminal user
can transmit them inbound if they are already present
in the field, but can add them to an, EBCDIC field only
if the field has. the SOSI attribute.

STORAGE = AUTO
The meaning of this operand depends upon the
language in which application programs are written, as
follows:

assembler language specifies that individual maps
within a map set are to occupy separate areas of
storage instead of overlaying one another.

COBOL specifies that the symbolic description maps in
the map set are to occupy separate (that is, not
redefined) areas of storage. This operand is used
when the symbolic description maps are copied into
the working storage section and the storage for the
separate maps in the map set is to be used
concurrently.

PLII specifies that the symbolic description' maps are
to be declared as having the AUTOMATIC storage
class. If STORAGE = AUTO is not specified, they are
declared as BASED.

You cannot specify both BASE = name and
STORAGE=AUTO for the same map set. For more
information, see "Getting storage for a data structure"
on page 151. If STORAGE=AUTO is specified and
TIOAPFX is not, TIOAPFX = YES is assumed.

SUFFIX
specifies a one character user-defined device
dependent suffix for this map set, as an alternative to
a suffix generated by the TERM operand. The suffix
specified by this option should match the value of the
ALTSFX option of the DFHTCT TYPE=TERMINAL
macro. Use a numeric value to avoid conflict with
suffixes generated by the TERM operand.

Map set suffixing is discussed under "Map set
suffixing" on page 146.

TERM
specifies the type of terminal or logical unit (LU)
associated with the map set. If no terminal type or LU
is specified, 3270 is assumed. The terminal types and
LUs you can specify, together with their generated
suffixes, are shown in the table.

In addition, note the following:

For TCAM-connected terminals (other than 3270 or
SNA devices), use either CRLP or ALL; for
TCAM-connected 3270s or SNA devices, select the
appropriate parameter in the normal way.

If ALL is specified, ensure that device dependent
characters are not included in the map set and that
format characteristics such as page size are suitable
for all input/output operations (and all terminals) in
which the map set will be applied. For example, some
terminals are limited to 480 bytes, others to 1920
bytes; the 3604 is limited to six lines of 40 characters
each. Within these guidel:,es, use of ALL can offer
important advantages. Because an assembly run is
required for each map generation, the use of ALL,
indicating that one map is to be used for more than
one terminal, can result in significant time and storage
savings.

However, better run time performance for maps used
by single terminal types will be achieved if the
terminal type (rather than ALL) is specified.
Alternatively, BMS support for device dependent map
sets can be bypassed by specifying NODDS in the BMS
operand of the DFHSIT system macro. For more
information, see the CICS/MVS Resource Definition
(Macro) manual.

TIOAPFX
specifies whether BMS should include a filler in the
symbolic description maps to allow for the unused
TIOA prefix.

TYPE Suffix

CRLPl
TAPE
DISK
TWX
!El5e
2740
2741
2770
2780
3780
3270-1 (40-column)
3270-2 (a0-column)
INTLU/3767/3770I/SCS2
2980
2980-4
3270 3 blank
3601
3653 4

3650Ups
3650/3270 6

BCHLU/3770B7
ALL (all the above)

A
B
C
D
E
F
G
I
J
K
L
M
P
Q
R

U
V
W
X
Y
blank

1 Card-reader-in/line-printer-out

2 All interactive LUs including
3790 full function LU and SCS
printer LUs (3270 and 3790).

3 Default if TERM omitted. Same
as ALL; used when no need to
distinguish between models.

4 Plus host-conv (3653) LU.

5 Plus i~terpreter LU.

6 Plus host-conv (3270) LU.

7 Plus all batch and BOI LUs.

YES specifies that the filler should be included in the
symbolic description maps. If TIOAPFX = YES is
specified, all maps within the map set have the
filler, except when TIOAPFX = NO is specified on the
DFHMDI macro. TIOAPFX=YES should always be
used for command level application programs.

NO is the default and specifies that the filler is not to
be included. The filler may still be included for a
map ifTIOAPFX=YES is specified on DFHMDI.

TRAILER
allows the map to be used during page building
without terminating the overflow condition (see
"Floating maps, header and trailer maps" on
page 176). This operand may be specified for more
than one map in a map set. If a trailer map is used

Chapter 3.2-5. BMS macro and command reference summary 203

other than in the overflow environment, the space
normally reserved for overflow trailer maps is not
reserved while mapping the trailer map.

TRANSP
determines whether the background of an
alphanumeric field is transparent or opaque, that is,
whether an underlying (graphic) presentation space is
visible between the characters.

TYPE
specifies the type of map to be generated using the
definition. Both types of map must be generated
before the map set can be used by an application
program. If aligned symbolic description maps are
required, you must ensure that you specify
SYSPARM = ADSECT and SYSPARM = AMAP when you
assemble the symbolic and physical maps
respectively.

OSECT specifies that a symbolic description map is to
be generated. Symbolic description maps must be
copied into the source program before it is
translated and compiled.

MAP specifies that a physical map is to be generated.
Physical maps must be assembled or compiled, link
edited, and cataloged in the CICS program library
before an application program can use them.

If both map and DSECT are to be generated in the
same job, the SYSPARM option can be used in the
assembler job execution step, as described in the
CICSIMVS Installation Guide.

VAll ON
specifies that validation is to be used on an 8775
terminal. This is overridden by the VALlDN operand of
the DFHMDI macro, which is in turn overridden by the
VALlDN operand of the DFHMDF macro.

MUSTFILL specifies that the field must be filled
completely with data. An attempt to move the
cursor from the field before it has been filled, or to
transmit data from an incomplete field, will raise the
inhibit input condition.

MUSTENTER specifies that data must be entered into
the field, though need not fill it. An attempt to move
the cursor from an empty field will raise the inhibit
input condrtion.

TRIGGER specifies that this field is a trigger field.
Trigger fields are discussed in "Chapter 3.2-3.
Standard function BMS" on page 159.

The VALlDN operand is ignored unless the terminal
supports validation, as indicated by the FEATURE
operand of the DFHTCT TYPE=TERMINAL system
macro.

204 CICS/MVS 2.1.2 Application Programmer's Reference

VTAB
specifies one or more tab positions for use with
interactive and batch logical units and SCS printers
having vertical forms control.

XINIT
See INITIAL, earlier in the list.

Partition set definition

Partitions are defined by coding the macros DFHPSD
(partition set definition) and DFHPDI (partition definition).
Each partition definition must be part of a partition set
definition.

Partition set definition macro (DFHPSD)

This section shows the syntax of the DFHPSD macro, which
defines a partition set. Each partition set definition
contains a single DFHPSD macro, followed by one or more
DFHPDI macros, and ending with a DFHPSD TYPE = FINAL
macro.

The format of the DFHPSD macro is:

partnset DFHPSD
[SUFFIX=user-suffix]

[,ALTSCRN=(lines,columns)]
[,CHARSZE=(vpels,hpels)]

'partnset' is a 1 through 6 character partition set name.

Partition definition macro (DFHPDI)

A partition set contains one or more partitions. Each
partition is defined by coding a partition definition macro.
The format of the macro is:

[partn] DFHPDI
VIEWPOS=(lines,columns)

,VIEWSZE=(lines,columns)
[,BUFSZE=(lines,columns)]
[,CHARSZE=(vpels,hpels)]
[,MAPSFX=mapset-suffix]
[,ATTRB=ERROR]

'partn' is a 1 or 2 character partition name. It allows you
to refer to the partition in your application programs.

Every partition in a partition set must have a different
name. Only the error partition can be unnamed (see
A TIRB = ERROR operand).

Ending a partition set definition

This macro ends a partition set definition. Its format is:

I [partnset] DFHPSD TYPE=FINAl

The partnset name (if specified) must match that specified
on the DFHPSD macro that started the partition set
definition.

Partition definition macro operand summary

The operands have the following meanings:

AL TSCRN(lines,columns)
specifies the size, in characters, of the usable area of
the target terminal. This is normally the same as the
ALTSCRN operand of the DFHTCT TYPE=TERMINAL
entry for the terminal. You use ALTSCRN to ensure
that the viewports of partitions within a partition set fit
into the usable area of the screen.

A TTRB = ERROR
specifies that error messages are to be directed to
this partition whenever possible. The partition is
cleared before an error message is displayed.
Attributes specified on the ERRATT option of the
DFHTCT TYPE=TERMINAL macro will be honored, but
the LASTLINE option will be ignored.

BUFSZE = (lines,columns)
specifies the size of the presentation space for the
partition. Device limitations mean that the "columns"
value must be equal to the "columns" value specified
by the VIEWSZE operand. The "lines" value can be
greater than or, by default, equal to the value
specified by the VIEWSZE operand. A greater lines
value implies that the target terminal supports vertical
scrolling. The default value of "lines" is the same as
the value specified by the VIEWSZE operand.

CHARSZE(vpels,hpels)
specifies the size of the character cell to be reserved
for each character displayed in a partition. This
operand can be specified on the DFHPSD macro alone,
or on both the DFHPSD and DFHPDI macros. Values
specified on the DFHPDI macro override, for that
partition only, the default values specified on the
DFHPSD macro. For guidance on using CHARSZE, see
"Character cells in partitions" on page 168.

MAPSFX= mapset-suffix
is the partition's 1-character map set suffix. BMS uses
the suffix to select map set versions in the same way
as the ALTSFX operand of the DFHTCT
TYPE=TERMINAL macro. If this operand is omitted, a
suffix L is assumed if the "columns" value of the
BUFSZE operand is less than or equal to forty;
otherwise M is assumed. Suffixing in general is

discussed more fully in "Map set suffixing" on
page 146.

SUFFIX= user-suffix
is a 1-character user suffix for this version of the
partition set. It allows different versions of a partition
set to be associated with different terminals. When
the partition set is to be loaded, CICS looks for a
version whose suffix matches the ALTSFX operand
specified on the DFHTCT TYPE=TERMINAL macro. If
it cannot find the correct partition set version, it loads
a version with the default suffix (M or L). If it cannot
find a suffixed version either, it loads an unsuffixed
one. If it cannot find this, it raises the APCT abend.

VIEWPOS = (lines,columns)
specifies the position of the top left hand corner of this
partition's viewport. You specify the position in
numbers of lines and numbers of columns.

The DFHPDI macro checks that viewports do not
overlap. If the ALTSCRN operand of the DFHPSD
macro has been coded, DFHPDI also checks that all
viewports fit within the usable area of the terminal
screen.

VIEWSZE = (lines,columns)
specifies the size, in lines and columns, of the
partition's viewport. The DFHPDI macro checks that
viewports do not overlap. If you code the ALTSCRN
operand of the DFHPSD macro, DFHPDI will check that
the partitions all fit within the usable area of the
terminal screen.

Note: The information given here on positioning viewports
is necessarily brief. For more information, consult the
component description for the device you are using.

BMS related constants

Standard attribute and printer control
character list (DFHBMSCA)

The standard list DFHBMSCA simplifies the provision of
field attributes and printer control characters. The list is
obtained by copying copy book DFHBMSCA into the
application program. The symbolic names for the various
combinations of attributes and control characters are given
in Table 3 on page 206. Combinations other than shown
must be generated separately; a bit map to help you do
this is given in Figure 25 on page 207.

The value of an attribute constant can be determined by
reference to the 3274 Control Unit Reference Summary.

For assembler language users, the list consists of a set of
EQU statements. For COBOL users, the list consists of a
set of 01 statements that can be copied into the working
storage section. For PUI users, the list consists of

Chapter 3.2-5. BMS macro and command reference summary 205

DECLARE statements defining elementary character
variables.

The symbolic name DFHDFT must be used in the
application structure to override a map attribute with the
default. On the other hand, to specify default values in a
set attribute (SA) sequence in text build, the symbolic
names DFHDFCOL, DFHBASE, or DFHDFHI should be used.

Table 3. Standard list DFHBMSCA

Constant Meaning

DFHBMPEM Printer end-of-message

DFHBMPNL Printer new-line

DFHBMASK Autoskip

DFHBMUNP Unprotected

DFHBMUNN Unprotected and numeric

DFHBMPRO Protected

DFHBMBRY Bright

DFHBMDAR Dark

DFHBMFSE MDT set

DFHBMPRF Protected and MDT set

DFHBMASF Autosklp and MDT set

DFHBMASB Autosklp and bright

DFHBMPSO Shift out value X'OE'

DFHBMPSI Shift In value X'OF'

DFHBMEOF Field erased

DFH BM DET Field detected

DFHSA1 Set attribute (SA) order

DFHERROR Error code

DFHCOLOR1 Color

Programmed symbols

DFHHLT1 Highlight

DFH32701 Base 3270 field attribute

DFHVAL Validation

DFHOUTLN Field outlining attribute code

DFHBKTRN Background transparency attribute code

DFHALL 1 Reset all to defaults

DFHDFT Default

DFHDFCOL1 Default color

DFHBLUE Blue

DFHRED Red

DFHPINK Pink

DFHGREEN Green

DFHTURQ Turquoise

DFHYELLO Yellow

DFHNEUTR Neutral

DFHBASE1 Base programmed symbols

206 CICS/MVS 2.1.2 Application Programmer's Reference

Table 3. Standard list DFHBMSCA

Constant Meaning

DFHDFHI1 Normal

DFHBLINK Blink

DFHREVRS Reverse video

DFHUNDLN Underscore

DFHMFIL2 Mandatory fill

DFHMENT2 Mandatory enter

DFHMFE Mandatory fill and mandatory enter

DFHMT Trigger

DFHMFT Mandatory fill and trigger

DFHMET Mandatory enter and trigger

DFHUNNOD Unprotected, nondlsplay, nonprlnt, nondetectable,
MDT

DFHUNIMD Unprotected, intensify, light pen detectable, MDT

DFHUNNUM Unprotected, numeric, MDT

DFHUNINT Unprotected, numeric, intensify, light pen detectable,
MDT

DFHUNNON Unprotected, numeric, nondisplay, nonprint,
nondetectable, MDT

DFHPROTI Protected, Intensify, light pen detectable

DFHPROTN Protected, nondisplay, nonprint, nondetectable

DFHMFET Mandatory fill and mandatory enter and trigger

DFHDFFR Default outline

DFHUNDER Underline

DFHRIGHT Right vertical line

DFHOVER Overline

DFHLEFT

DFHBOX

DFHSOSI

Left vertical line

Underline and right vertical and overllne and left
vertical

SOSI=yes

DFHTRANS Background transparency

DFHOPAQ No background transparency

Notes:

1. For text processing only. Use for constructing
embedded set attribute orders in user text.

2. Cannot be used in set attribute orders.

prot a/n hi spd ndp mdt ebcd asci char

U 48 28 b (bl ank)
U Y C1 41 A
U Y C4 44 D
U Y Y C5 45 E
U H Y C8 48 H
U H y y C9 49 I
U Y 4C 3C <
U Y Y 4D 28 (
U N 58 26 &
U N Y D1 4A J
U N y 04 40 M
U N y Y D5 4E N
U N H y 08 51 Q
U N H Y Y 09 52 R
U N Y 5C 2A *
U N Y Y 5D 29
P 68 20 - (hyphen)
P Y 61 2F /
P y E4 55 U
P y Y E5 56 V
P H Y E8 59 y
p H y y E9 5A Z
P Y 6C 25 %
P Y Y 60 5F (underscore)
P S F8 38 8
P S Y F1 31 1
P S Y F4 34 4
P S Y Y F5 35 5
P S H Y F8 38 8
P S H Y y F9 39 9
P S Y 7C 48 @

P S Y Y 70 27 I (apostrophe)

The attributes in the headings are:

prot = protected spd = selector pen detectable
a/n = autoskip or numeric ndp = non-display print
hi = high intensity mdt = modified data tag

The hex codes in the headings are:

ebcd = extended binary-coded decimal interchange code
asci = American National Standard Code for Information Interchange
char = graphic character equivalent to hex code

The characters in the body of the above table mean the following:

H = High N = Numerlc S = Automatic skip
P = Protected U = Unprotected Y = Yes

Figure 25. Bit map for attributes other than those listed in DFHBMSCA

Chapter 3.2-5. BMS macro and command reference summary 207

Magnetic slot reader (MSR) control value
constants (DFHMSRCA)

A selection of MSR control bit patterns has been created
for CICS and stored in copy book DFHMSRCA. The
patterns are stored as named constants that can be loaded
by simple application program commands. Provision of
such constants saves the programmer from having to build
a commonly used bit pattern whenever it is required. The
constants supplied in DFHMSRCA are as follows:

Standard list DFHMSRCA ----------------------------------,

Constant Meaning

DFHMSRST MSR reset. All lights and buzzers off. MSR available for input.
OFHMSCON Transaction ready for more input. Green and yellow on; emit

short buzz; IN PROCESS (user) mode set.
DFHMSFIN Input complete. Green on; emit short buzz; IN PROCESS mode reset.
OFHMSALR Operator alert. Green, yellow, and red on; emit long buzz; IN

PROCESS mode reset.
DFHMSALS Operator alert. Green, yellow, and red on; en~t long buzz;

IN PROCESS mode set.
DFHMSIPY IN PROCESS state set. Yellow on.
DFHMSIPN IN PROCESS state reset.
DFHMSLKY MSR operation inhibited. Yellow on.
DFHMSLKN MSR input a 11 owed. Green on. Ye 11 ow on.
DFHMSAEY MSR auto enter on. Yellow on.
DFHMSAEN MSR auto enter off. Yellow on.
DFHMSLBN Long buzzer suppressed. Yellow on.
DFHMSLBY Long buzzer permitted. Yellow on.
DFHMSSBN Short buzzer suppressed. Yellow on.
OFHMSSBY Short buzzer permitted. Yellow on.
DFHMSNOP Leave all MSR settings unchanged.

Attention Identifier constants (DFHAID)

The constants supplied in copy book DFHAID are as follows:

Standard list DFHAID -----.-----------------------------....,

Constant

DFHENTER
OFHCLEAR
OFHPAI-DFHPA3
OFHPFl-DFHPF24
DFHOPID
DFHMSRE
DFHTRIG
DFHPEN
DFHCLRP
DFHSTRF

Meaning

ENTER key
CLEAR key
PAI-PA3 keys
PFl-PF24 keys
OPERID or MSR
Extended(standard) MSR
Trigger field
SELECTOR PEN or CURSOR SELECT key
CLEAR PARTITION key
Structured field pseudo-AID

208 CICS/MVS 2.1.2 Application Programmer's Reference

Input commands

RECEIVE MAP command: The full syntax of the
RECEIVE MAP command is shown below. The keywords
are separated into those supported by minimum, standard,
and full BMS.

Minimum BMS

RECEIVE MAP (name)
[MAPSET(name)]
[INTO(data-area)ISET(ptr-ref)]
[FROM(data-area) LENGTH(data-value)I

TERMINAL[ASIS]]

Standard BMS

[INPARTN(name)]

Conditions: EOC, EODS, INVMPSZ,
INVPARTN, INVREQ, MAPFAIL,
PARTNFAIL, RDATT, UNEXPIN

The RECEIVE MAP command maps input data from a
terminal into a data area in an application program. The
process is described in "Receiving data from a display" on
page 153. The INPARTN option is fully described in
"Setting the expected input partition" on page 167.

I When you use the RECEIVE MAP FROM command, the
I value of the LENGTH option must not exceed the length of
I the FROM data area.

Data from certain logical units is not mapped, but is left
unaltered. See the appropriate CICS subsystem guide to
see if this is true for a particular logical unit.

Following a RECEIVE MAP command, the inbound cursor
position is placed in EIBCPOSN, and the terminal attention
identifier (AID) placed in EIBAID.

RECEIVE PARTN command: The full syntax of the
RECEIVE PARTN command is shown below. This command
is available only on standard and full function BMS.

Standard BMS

RECEIVE PARTN(data-area)
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[ASIS]

Conditions: EOC, EODS, I NVPARTN,
INVREQ, LENGERR

This command reads data from a partition on an 8775
terminal. It indicates which partition the data came from,
and puts the data into the INTO or SET data area. You can
then treat the data as though it had originated from a
terminal in base (unpartitioned) state. This command is
fully described in "Determining the actual input partition"
on page 168.

Following a RECEIVE PARTN command, the inbound cursor
position is placed in EIBCPOSN, and the terminal attention
identifier (AID) placed in EIBAID.

Output commands

SEND PARTNSET command: The full syntax of the
SEND PARTNSET command is shown below. This
command is available only on standard and full function
BMS.

Standard BMS

SEND PARTNSET[(name)]

Conditions: INVPARTNSET, INVREQ

This command associates the partition set specified by the
PARTNSET option with the application program. If the
partition set name is omitted, the terminal is reset to the
base (unpartitioned) state. This command is fully
described in "Loading the application partition set" on
page 167.

Chapter 3.2-5. BMS macro and command reference summary 209

SEND MAP command: The full syntax of the command
is shown below. The options are separated into those
supported by minimum, standard, and full function BMS.

Minimum BMS

SEND MAP (name)
[MAPSET(name)]
[FROM(data~area) LENGTH(data-value)I

DATAONLyIMAPONLY]
[CURSOR[(data-value)]]
[FORMFEED]
[ERASEIERASEAUP]
[PRINT]
[FREEKB]
[ALARM]
[FRSET]

Standard BMS

[NLEOM]
[MSR(data-value)]
[OUTPARTN(name)]
[ACTPARTN(name)]
[FMHPARM(name)]
[LDC(name)]

Full BMS

[ACCUM]
[SET(ptr-ref)IPAGINGI
TERMINAL[WAIT] [LAST]]

[REQID(name)]
[L4SIL64ILsslHONEOM]

Conditions: IGREQCD, IGREQID,
INVLDC, INVMPSZ, INVPARTN, INVREQ,
OVERFLOW, RETPAGE, TSIOERR, WRBRK

I With the FROM option, the data area must contain a
I 12-byte TIOA prefix. The LENGTH data value includes the
I length of the 12-byte TIOA prefix.

You use the SEND MAP command to send mapped output
data to a terminal. The process is described in "Sending
data to a display" on page 150.

I See page 197, 'CTRL', for information on the priorities by
I which certain options override others.

210 CICS/MVS 2.1.2 Application Programmer's Reference

SEND TEXT command: The full syntax of the SEND
TEXT command is shown below. The options are
separated into those supported by standard and full BMS.

Standard BMS

SEND TEXT
FROM(data-area)
LENGTH(data-value)
[CURSOR(data-value)]
[FORMFEED]
[ERASE]
[PRINT]
[FREEKB]
[ALARM]
[NLEOM]
[LDC(name)]
[OUTPARTN(name)]
[ACTPARTN(name)]
[MSR(data-value)]

Full BMS

[SET(ptr-ref)IPAGINGI
TERMINAL[WAIT] [LAST]]

[REQID(name)]
[HEADER(data-area)]
[TRAILER(data-area)]
[JUSTIFY(data-value)IJUSFIRSTI

JUS LAST]
[ACCUM]
[L4SIL64ILSsIHONEOM]

Conditions: IGREQCD, IGREQID,
INVLDC, INVPARTN, INVREQ, RETPAGE,
TSIOERR, WRBRK

This command is used to send text data without mapping.
The text is split into lines of the same width as the
terminal, such that words are not broken across line
boundaries. If the text exceeds a page it is split into pages
that fit on the terminal with application defined headers
and trailers. It is described under "Text processing" on
page 159.

I The command can be used to accumulate blocks of text to
I produce pages of text. This use is described in detail in
I "Cumulative text formatting" on page 181.

SEND TEXT MAPPED command: The full syntax of the
SEND TEXT MAPPED command is shown below. This
command is only available on full BMS.

Full BMS

SEND TEXT MAPPED
FROM(data-area)
LENGTH(data-value)
[PAGINGITERMINAL[WAIT] [LAST]]
[REQID(name)]

Conditions: IGREQID, RETPAGE,
TSIOERR, WRBRK

This command is used to send data previously generated
by a BMS SEND command specifying the SET option. It is
described under "SEND TEXT MAPPED command" on
page 190.

SEND TEXT NOEDIT command: The full syntax of the
SEND TEXT NOEDIT command is shown below. This
command is only available on full BMS.

Full BMS

SEND TEXT NOEDIT
FROM(data-area)
LENGTH(data-value)
[ERASE]
[PRINT]
[FREEKB]
[ALARM]
[OUTPARTN(name)]
[PAGINGITERMINAL[WAIT] [LAST]]
[REQID(name)]
[L4eIL64ILBelHONEOM]

Conditions: IGREQCD, IGREQID,
INVPARTN, TSIOERR, WRBRK

This command is used to output a user generated data
stream. It differs from a terminal control SEND in that data
may be output to temporary storage (using the PAGING
option), or routed like any other BMS data. It is described
under "SEND TEXT NOEDIT command" on page 191.

SEND CONTROL command: The full syntax of the
SEND CONTROL command is shown below. The options
are separated into those supported by minimum, standard,
and full BMS.

Minimum BMS

SEND CONTROL
[CURSOR[(data-value)]]
[FORMFEED]
[ERASE I ERASEAUP]
[PRINT]
[FREEKB]
[ALARM]
[FRSET]

Standard BMS

[MSR(data-value)]
[OUTPARTN(name)]
[ACTPARTN(name)]
[LDC(name)]

Full BMS

[ACCUM]
[SET(ptr-ref)IPAGINGI

TERMINAL[WAIT] [LAST]]
[REQID(name)]
[L4eIL64ILBeIHONEOM]

Conditions: IGREQCD, IGREQID,
INVLDC, INVPARTN, INVREQ, RETPAGE,
TSIOERR, WRBRK

This command is used to send device controls to a
terminal, without also sending map or text data. It is
described under "Sending device controls without display
data" on page 153.

SEND PAGE command: The syntax of the SEND PAGE
command is shown below. This command is only available
on full BMS.

Full BMS

SEND PAGE
[RELEASE[TRANSID(name)] I RETAIN]
[TRAILER(data-area)]
[SET(ptr-ref)]
[AUTOPAGE[CURRENTIALL] I NOAUTOPAGE]
[OPERPURGE]
[FMHPARM(name)]
[LAST]

Conditions: IGREQCD, INVREQ,
RET PAGE , TSIOERR, WRBRK

This command is used to complete a BMS logical message.
If this is a paging message, the last page of the logical
message is transmitted to temporary storage and the
terminal operator paging transaction is initiated. If it is a
terminal logical message, the last page is transmitted to

Chapter 3.2-5. BMS macro and command reference summary 211

the terminal. Its basic form is described under "SEND
PAGE command" on page 174.

PURGE MESSAGE command: The syntax of the PURGE
MESSAGE command is shown below. This command is
only available on full BMS.

Full BMS

PURGE MESSAGE

Condition: TSIOERR

This command is used to discontinue the building of a BMS
logical message. The portions of the logical message
already built in main storage or in temporary storage are
deleted. It is described under "PURGE MESSAGE
command" on page 174.

ROUTE command: The syntax of this command is
shown below. This command is only available on full BMS.

Full BMS

ROUTE
[INTERVAL(hhmmss)lITIME(hhmmss)]
[ERRTERM[(name)]]
[TITLE(data-area)]
[LIST(data-area)]
[OPCLASS(data-area)]
[REQID(name)]
[LDC(name)]2
[NLEOM]

Conditions: INVERRTERM, INVLDC,
INVREQ, RTEFAIL, RTESOME

1 INTERVAL(0) is the default

2 Logical units only.

This command is used to route a BMS logical message to
one or more terminals and/or terminal operators. Its uses
are discussed under "Message routing" on page 184.

8MS related ASSIGN options

The following options of the ASSIGN command may be
useful to BMS application programs. The ASSIGN
command is described in "Chapter 1.6. Access to system
information" on page 51.

DESTCOUNT
this option has two uses.

• Fo"owing a BMS ROUTE command, it specifies
that the value required is the number of different

212 CICS/MVS 2.1.2 Application Programmer's Reference

terminal types in the route list, and hence the
number of overflow control areas that may be
required.

• Within BMS overflow processing, specifies that the
value required is the relative overflow control
number of the destination that has encountered
overflow. If this option is specified when overflow
processing is not in effect, the value obtained will
be meaningless. If no BMS commands have been
issued, the INVREQ condition occurs. The format
of the value is halfword binary.

INPARTN
specifies that the value required is the name of the
most recent input partition. The format of the value is
a one or two byte character.

LDCMNEM
specifies that the value required is the mnemonic of
the LOC which overflowed most recently. For more
information, see "Page overflow and partitions or
LOCs" on page 180. The returned value is
meaningless unless overflow processing is being
performed. The format of the value is a one or two
byte character.

LDCNUM
specifies that the value required is the LOC numeric
value of the destination that has encountered
overflow. This indicates the type of the LOC, such as
printer or console. If this option is specified when
overflow processing is not in effect, the value obtained
will be meaningless. No exceptional condition occurs.
The format of the value is a one-byte character.

MAPCOLUMN
specifies that the value required is the number of the
column on the display containing the origin of the most
recently positioned map. If no map has yet been
positioned, or if BMS routing is in effect, the INVREQ
condition is raised. The format of the value is
halfword binary.

MAPHEIGHT
specifies that the value required is the height of the
most recently positioned map. If no map has yet been
positioned, or if BMS routing is in effect, the INVREQ
condition is raised. The format of the yalue is
halfword binary.

MAPLINE
specifies that the value required is the number of the
line on the display containing the origin of the most
recently positioned map. If no map has yet been
positioned, or if BMS routing is in effect, the INVREQ
condition is raised. The format of the value is
halfword binary.

MAPWIDTH
specifies that the value required is the width of the
most recently positioned map. If no map has yet been
positioned, or if BMS routing is in effect, the INVREQ

condition is raised. The format of the value is
halfword binary.

PAGENUM
specifies that the value required is the current page
number for the destination that has encountered an
overflow. If this option is specified when overflow
processing is not in effect, the value obtained will be
meaningless. If no BMS commands have been issued,
the INVREQ condition occurs. The format of the value
is halfword binary.

PARTNPAGE
specifies that the value required is the one through
two character name of the partition that most recently
caused page overflow. A blank value is returned if
partitions are not in use.

PARTNSET
specifies that the value required is the one through six
character name of the application partition set. A
blank value is returned if there is no application
partition set.

BMS options

ACCUM
specifies that this command is one of a number of
commands that are used to build a logical message.
The logical message is completed by a SEND PAGE
command, or deleted by a PURGE MESSAGE
command. For more details see "Logical message
handling" on page 173.

ACTPARTN(name)
specifies the 1-or 2-character name of the partition
that is to be activated. Activating a partition moves
the cursor into the specified partition, and unlocks the
keyboard for the specified partition.

This option is ignored if the target terminal does not
support partitions, or if there is no application partition
set.

ALARM

ALL

specifies that the 3270 audible alarm feature is to be
activated. For logical units supporting FMHs (except
interactive and batch logical units), ALARM signals
BMS to set the alarm flag in the FMH.

specifies that if the ATTN key on a 2741 is pressed
while a BMS logical message is being sent to the
terminal, and the WRBRK condition is not active,
transmission of the current page is to cease and no
additional pages are to be transmitted. The logical
message is deleted.

ASIS
specifies that the specification FEATURE = UCTRAN in
the TeT for the terminal is to be overridden.
Lowercase characters in the data stream are not
translated to uppercase.

This option is not applicable to the initial input data for
a transaction. For example, if a transaction is initiated
by another transaction, and begins by receiving data
originally output by that transaction, it cannot
suppress upper case translation on the data.

AUTOPAGE
specifies that each page of a BMS logical message is
to be sent to the terminal as soon as it is available. If
paging upon request is specified for the terminal by
the PGESTAT operand of DFHTCT TYPE=TERMINAL
macro, AUTOPAGE overrides it for this logical
message.

AUTOPAGE is assumed for 3270 printers; it does not
apply to 3270 display terminals. If neither AUTOPAGE
nor NOAUTOPAGE is specified, the terminal has the
paging status specified for it by the DFHTCT
TYPE=TERMINAL macro.

CURRENT
specifies that if the ATTN key on a 2741 is pressed
while a BMS logical message is being sent to the
terminal, and the WRBRK condition is not active,
transmission of the current page is to cease and
transmission of the next page (if any) is to begin.

CURSOR [(data-value)]
specifies the position to which the 3270 or 3604 cursor
is to be returned upon completion of a SEND MAP,
SEND TEXT, or SEND CONTROL command.

The data value must be a halfword binary value that
specifies the cursor position relative to zero; the range
of values that can be specified depends on the size of
the screen being used. If no data value is specified,
symbolic cursor positioning is assumed, as described
in "Cursor positioning" on page 153.

This option overrides any IC option of the ATTRB
operand of the DFHMDF macro. If ACCUM is being
used, the most recent value of CURSOR specified is
used to position the cursor.

DATAONLY
specifies that only application program data is to be
written. The attribute characters (3270 only) must be
specified for each field in the supplied data. If the
attribute byte in the user supplied data is set to X '00 I ,

the attribute byte on the screen will be unchanged.
Any default data or attributes from the map are
ignored. This is described under "Refreshing and
modifying displays" on page 151.

ERASE
specifies that the screen printer buffer or partition is
to be erased and the cursor returned to the upper left
corner of the screen before this page of output is

Chapter 3.2-5. BMS macro and command reference summary 213

displayed. (This option applies only to the 3270, or
8775, and to the 3604 Keyboard Display.) The first
output operation in any transaction, or in a series of
pseudoconversational transactions, should always
specify ERASE. For transactions attached to 3270
screens or printers, this will also ensure that the
correct screen size is selected, as defined for the
transaction by the SCRNSZE keyword of CEDA DEFINE
PROFILE or the SCRNSZE operand of DFHPCT.

ERASEAUP
specifies that before this page of output is displayed,
all unprotected character locations in the partition or
the entire screen are to be erased. (This option
applies only to the 3270 and 8775.)

ERRTERM[(name)]
specifies the name of the terminal to be notified if the
message is deleted because it is undeliverable. The
message number, title identification, and destination
are indicated. If no name is specified, the originating
terminal is assumed.

This option is operative only if the PRGDLAY operand
has been specified in the DFHSIT macro.

FMHPARM(name)
specifies the name (1 through 8 characters) of the
outboard map to be used. (This option applies only to
3650 logical units with outboard formatting.)

FORM FEED
specifies that a new page is required. For 3270
printers and displays, the form feed character is
positioned at the start of the buffer. The application
program must thus ensure that this buffer position is
not overwritten by map or text data.

This option is fully discussed under "Printed output" on
page 156. It is ignored if the target terminal does not
support formfeed (that is, the DFHTCT
TYPE=TERMINAL system macro does not specify
FF=YES).

The FORMFEED option can appear on any SEND TEXT
ACCUM command. You need specify it only once
within a physical page because it always forces a
form feed at the start of the physical page. To force a
formfeed at the start of a particular SEND TEXT
ACCUM command, use the JUSFIRST option (see
below) instead.

FREEKB
specifies that the 3270 keyboard should be unlocked
after the data is written. If FREEKB is omitted, the
keyboard remains locked.

The keyboard lock status is maintained separately for
each partition on a terminal which supports partitions.

FROM(data-area)
specifies the data area containing the data to be
processed by a SEND MAP or SEND TEXT command,
or data to be mapped by a RECEIVE MAP command.

214 CICS/MVS 2.1.2 Application Programmer's Reference

FRSET
specifies that the modified data tags (MOTs) of all
fields currently in the 3270, (or partition) buffer are to
be reset to the not-modified condition (that is, field
reset) before any map data is written to the buffer.

This allows the ATTRB operand of the DFHMDF macro
for the requested map to control the final status of
fields written or rewritten in response to a BMS
command.

HEADER(data-value)
specifies the header data to be placed at the
beginning of each page of text data. The format of the
header is described under "Cumulative text
formatting" on page 181.

HONEOM
specifies that the default printer line length is to be
used. This length should be the same as that specified
in the PGESIZE or ALTPAGE operand of the DFHTCT
TYPE = TERM I NAL system macro, and the same as the
printer platen width, otherwise the data may not
format correctly.

INPARTN (name)
specifies the 1 or 2 character name of the partition in
which the terminal operator is expected to enter data.
If the terminal operator enters data in some other
partition, the INPARTN partition is activated, the
keyboard is unlocked for the partition, and an error
message is output to any error message partition.
This option is ignored if the terminal does not support
partitions, or if there is no application partition set.

INTERVAL(hhmmss)
specifies the interval of time after which the data is to
be transmitted to the terminals specified in the ROUTE
command.

I NTO(data-area)
on a RECEIVE MAP command specifies the data area
into which the mapped data is to be written.

On a RECEIVE PARTN command, the INTO option
specifies the area into which the input data stripped of
partition controls is to be written. The length of this
area must be specified by the LENGTH option. If the
area is not large enough to hold the input data, the
input data is truncated, and the LENGERR condition
raised. The length option data area is set to the
length of data received, prior to any truncation.

JUSFIRST
specifies that the text data is to be placed at the top of
the page. Any partially formatted page from previous
requests is considered to be complete. If the HEADER
option is specified, the header precedes the data. See
also the description of the JUSTIFY option.

JUSLAST
specifies that the text data is to be positioned at the
bottom of the page. The page is considered to be
complete after the request has been processed. If the
TRAILER option is specified, the trailer follows the
data. See also the description of the JUSTIFY option.

JUSTIFY(data-value)
specifies the line of the page at which the text data is
to be positioned. The data value must be a halfword
binary value in the range 1 through 240. Although
they may not be specified as constants, the special
values - 1 and - 2 can be supplied dynamically to
signify JUSFIRST or JUSLAST, respectively.

LAST
specifies that this is the last output operation for a
transaction and, therefore, the end of a bracket. If
RELEASE is specified, LAST is assumed unless the
SENO PAGE command is terminating a routing
operation. This option applies to logical units only.

LDC(name)
specifies a two-character mnemonic to be used to
determine the logical device code (LOG) to be
transmitted in the FMH to the logical unit. The
mnemonic represents an LOG entry specified in the
OFHTGT TYPE = LOG system macro.

When an LOG is specified, BMS uses the device type,
the page size, and the page status associated with the
LOG mnemonic to format the message. These values
are taken from the extended local LOG table for the
LU, if it has one. If the LU has only a local
(unextended) LOG table, the values are taken from the
system LOG table. The numeric value of the LOG is
obtained from the local LOG table, unless this is an
unextended table and the value is. not specified, in
which case it is taken from the system table.

If the LOG option of a SENO MAP or ROUTE command
is omitted, the LOG mnemonic spec.ified in the
OFHMSO macro is used. If the LOG option has also
been omitted from the OFHMSO macro, the action
depends on the type of logical unit, as follows:

3601 LU - the first entry in the local or extended local
LOG table is used, if there is one. If a default cannot
be obtained in this way, a null LOC numeric value
(X'OO') is used. Th~ page size used is the value that
is specified in the OFHTGT TYPE=TERMINAL system
macro, or (1,40) if such a value is not specified.

LUTYPE4 LU, batch LU, or batch data Interchange LU
- the local LOG table is not used to supply a default
LOC; instead, the message is directed to the LU
console (that is, to any medium that the LU elects to
receive such messages. For a batch data interchange
LU, this does not imply sending an LOC in an FMH).
The page size is obtained in the manner described for
the 3601 LU.

For message routing, the LOG option of the ROUTE
command takes precedence over all other sources. If

this option is omitted and a route list is specified (LIST
option), the LOG mnemonic in the route list is used; if
the route list contains no LOG mnemonic, or no route
list is specified, a default LOG is chosen as described
above.

LENGTH(data-value)
specifies the length of the data to be formatted as a
halfword binary value.

On a RECEIVE PARTN command, the LENGTH option
must be set to the length of any INTO area prior to the
command. After the command, BMS sets the LENGTH
option to the length of data received prior to any
truncation if the INTO area is too small.

LI ST(data-area)

L40

L64

LBO

specifies the data area that contains a list of terminals
and/or operators to which data is to be directed; If
this option is omitted, all terminals supported by BMS
receive the data (unless the OPGLASS option has
some effect). For more information, see "Route list
and operator class codes (LIST and OPGLASS)" on
page 187.

specifies the line length for a 3270 printer; a carrier
return and line feed are forced after 40 characters
have been printed on a line. Unexpected results will
occur if this differs from the page width specified by
the PAGESIZE or ALTPGE options of the DFHTCT
TYPE=TERMINAL macro.

specifies the line length for a 3.270 printer; a carrier
return and line feed are forced after 64 characters
have been printed on a line. Unexpected results will
occur if this differs from the page width specified by
the PAGESIZE or ALTPGE options of the DFHTGT
TYPE=TERMINAL system macro.

specifies the line length for a 3270 printer; a carrier
return and line feed are forced after 80 characters
have been printed on a line. Unexpected results will
occur if this differs from the page width specified by
the PAGESIZE or ALTPGE options of the OFHTGT
TYPE=TERMINAL system macro.

MAP(name)
specifies the name (1 through 7 characters) of the map
to be used.

MAPONLY
specifies that only default data from the map is to be
written. If this option is specified, the FROM option
must not be specified.

MAPSET(name)
specifies the unsuffixed name (1 through 7 characters)
of the map set to be used. The map set must reside in
the CICS program library, and an entry for it must
exist in the processing program table (PPT). If this

Chapter 3.2-5. BMS macro and command reference summary 215

option is not specified, the name given in the MAP
option is assumed to be that of the map set.

MSR(data-value)
specifies the 4-byte data value which controls the
10/63 magnetic stripe reader attached to an 8775 or
3643 terminal. A set of constants is provided in
DFHMSRCA to assist in setting this 4 byte area. This
option is ignored if the terminal's DFHTCT
TYPE=TERMINAL macro does not specify
FEATURE=MSRCNTRL. You will find more
information about this under "10/63 magnetic slot
reader control" on page 170.

NLEOM
specifies that data for a 3270 printer or a 3275 display
with the printer adapter feature should be built with
blanks and new-line (NL) characters, and that an
end-of-message (EM) character should be placed at
the end of the data. As the data is printed, each NL
character causes printing to continue on the next line,
and the EM character terminates printing.

This option must be specified in the first SEND MAP or
SEND TEXT command used to build a logical message,
and in the ROUTE command if the message is to be
routed. The option is ignored if the device receiving
the message (dir~ct or routed) is not one of those
noted above.

If this option is used, buffer updating and attribute
modification of fields previously written into the buffer
are not aiiowed. CiCS inciudes the ERASE option with
every write to the terminal.

The NL character occupies a buffer position. A
number of buffer positions, equivalent to the value of
the PGESIZE or ALTPGE operand of the DFHTCT
system macro for that terminal, is unavailable for
data. This may cause data to wrap around in the
buffer; if this occurs, the PGESIZE value must be
reduced.

The NLEOM option overrides the ALARM option if the
latter is present.

The NLEOM option is further discussed under "Printer
support" on page 160.

NOAUTOPAGE
specifies that pages of a BMS logical message are to
be sent one at a time to the terminal. BMS sends the
first page to the terminal when the terminal becomes
available or upon request of the terminal operator.
Subsequent pages are sent to the terminal in response
to requests from the terminal operator. (See the
CICSIMVS CICS-Supplied Transactions manual for
further information.)

If automatic paging is specified for the terminal by the
PGESTAT operand of the DFHTCT TYPE-TERMINAL
system macro, NOAUTOPAGE overrides it for this
logical message. For logical units, NOAUTOPAGE

216 CICS/MVS 2.1.2 Application Programmer's Reference

applies to all pages for all LDCs in the logical
message.

NOAUTOPAGE does not apply to 3270 printers.

OPCLASS(data-area)
specifies the data area that contains a list of operator
classes to which the data is to be routed. The classes
are supplied in a three-byte field, each bit position
corresponding to one of the codes in the range 1
through 24 but in reverse order, that is, the first byte
corresponds to codes 24 through 17, the second byte
to codes 16 through 9, and the third byte to codes 8
through 1.

OPERPURGE
specifies that CICS is to delete the BMS logical
message only when the terminal operator requests
deletion. If the option. is omitted, cles deletes the
message if the operator enters data that is not a
paging command.

OUTPARTN (name)
specifies the 1-through 2-character name of the
partition to which data is to be sent. This option is
ignored if the terminal does not support pa~titions,. or
if there is no application partition set associated With
the terminal. If there is an application partition set,
and the OUTPARTN option is omitted, data is sent to
the partition named by the PARTN operand of the
DFHMSD or DFHMDI map definition macro. If maps
are not used, or if there is no PARTN operand, the
output is sent to the first partition in the partition set.

PAGING
specifies that the output data is not to be sent
immediately to the terminal, but is to be placed in
temporary storage and displayed in response to
paging commands entered by the terminal operator.

If PAGING is specified with a REQID that is defined as
recoverable in the temporary storage table (TST),
CICS provides message recovery for logical messages
if the task has reached a sync point.

PARTN (data area)
is set by BMS to the 1 or 2 character name of the
input partition.

PARTNSET[(name)]
specifies the 1 through 6 character name of a partition
set to be associated with the application program. If
no name is specified, the terminal is set to
unpartitioned state.

PRINT
specifies that a print operation is to be started at a
3270 printer or at a 3275 with the printer adapter
feature, or that data on an LUTYPE2 (3274/76 or 3790)
is to be printed on a printer allocated by the controller.
If this option is omitted, the data is sent to the printer
buffer but is not printed.

RELEASE
specifies that, after a SEND PAGE command, control is
to be returned to the program at the next higher
logical level, or to CICS (if the issuing program is at
the highest logical level), after the pages have been
written to the ter,minal. For more details of the effect
of this option, see "Logical messages for terminal
operator paging" on page 175.

REQID(name)
specifies a 2-character prefix to be used as part of a
temporary storage identifier for CICS message
recovery. Only one prefix can be specified for each
logical message. The default prefix is **.

BMS message recovery is provided for a logical
message only if the PAGING option is specified in the
BMS SEND commands and if the sync point has been
reached.

RETAIN
specifies that, after a SEND PAGE command, control is
to be returned to the application program after the
pages have been written to the terminal. For more
details of the effect of this option, see "Logical
messages for terminal operator paging" on page 175.

SET(ptr-ref)
specifies the pointer that is to be set to the address of
the input or output data.

For input, the pointer is set to the address of the
12-byte prefix to the mapped data.

For output, the SET option specifies that the completed
pages are to be returned to the application program.
The pointer is set to the address of a list of completed
pages. See "Chapter 3.2-4. Full function BMS" on
page 173 for further details.

The application program regains control either
immediately following the BMS SEND command (if the
current page is not yet completed), or at the label
specified in a HANDLE CONDITION RETPAGE command
if the page has been completed.

TERMINAL
specifies that input data is to be read from the
terminal that originated the transaction, or that output
data is to be sent to that terminal.

TI M E(hhmmss)
specifies the time of day at which data is to be
transmitted to the terminals specified in the ROUTE
command.

TITLE(data-area)
specifies the data area that contains the title to be
used with a routing logical message. This title will
appear as part of the response to a page query
command. For the format of the title, see "TITLE
option of the ROUTE command" on page 186.

TRAI LER(data-area)
specifies the text data area that contains trailer data
to be placed at the bottom of each output page (with a
SEND TEXT command) or at the bottom of the last
page only (with a SEND PAGE command). For the
format of the trailer data, see "Cumulative text
formatting" on page 181.

TRANSID(name)
specifies the transaction identifier to be used with the
next input message from the terminal to which the
task is attached. The identifier can consist of up to 4
alphanumeric characters; it must have been defined in
the program control table (peT). TRANSID is valid
only if SEND PAGE RELEASE is specified.

If this option is specified in a program that is not at
the highest logical level, the specified transaction
identifier will be used only if a new transaction
identifier is not provided in another SEND PAGE
command (or in a RETURN program control command)
issued in a program at a higher logical level.

WAIT
specifies that control should not be returned to the
application program until the output operation has
been completed.

If WAIT is not specified, control will return to the
application program once the output operation has
started. A subsequent input or output command
(terminal control, BMS, or batch data interchange) will
cause the application program to wait until the
previous command has been completed.

BMS exceptional conditions

Some of the following exceptional conditions may occur in
combination with others. CICS checks for these conditions
in the following order:

LENGERR
OVERFLOW
IGREQCD
TSIOERR
INVREQ
RETPAGE
MAPFAIL
RTEFAIL
RTESOME
I NVERRTERM
IGREQID
INVLDC
INVMPSZ
EODS
I NVPARTNSET
INVPARTN
PARTNFAIL
UNEXPIN
EOC

Chapter 3.2-5. BMS macro and command reference summary 217

If more than one of these conditions occurs, only the first
one found to be present is passed to the application
program.

EOC
occurs if the request/response unit (RU) 'is received
with the end-of-chain (EOC) indicator set. It applies
only·to logical units.

Default action: ignore th~ condition.

EODS
occurs if 1'10 data is received (only an FMH): It applies
only to 3770 batch LUs and to 3770 and 3790 batch
data interchange LUs.

Default action: terminate the task a~nbrmally.

IGREQCD
occurs when ao attempt is made to ex~cute a SEND
MAP, SEND PAGE, SEND TEXT, orSENDCONTROL
cpmmand after a SIGNAL data flow control command
with an RCD (request change direction) code has been
received from an LUTYPE4 LU.

Default action: terminate the task abnormally.

IGREQID
occurs if th~prefix specified in the REQID option on a
BMS SEND command is different from that established
by a previous REQID option, or by default for this
logical message (REQID (**)).

Default action: terminate the task abnormally.

INVERRTERM
occurs if the terminal identifier specified in the
ERRTERM option of a ROUTE command is invalid or is
assigned to a type of terminal that does not support
BMS.

Default action: terminate the task abnormally.

INVLDC
occurs if the specified LDC mnemonic is not included
in the LDC list for the logical unit.

Default action: terminate the task abnormally.

INVMPSZ
occurs if the specified map is too wide for the
terminal, or if a HANDLE CONDITION OVERFLOW
command is active and the specified map is too long
for the terminal.

Default action: terminate the task abnormally.

INVPARTN
occurs if the specified partition is not defined in the
partition set associated with the application program.

Default action: terminate the task abnormally.

INVPARTNSET
occurs if the partition set named in the SEND
PARTNSET command is not a valid partition set (for
example, it may be a map set).

218 CICS/MVS 2.1.2 Application Programmer's Reference

Defaul~ action:. terminate the task abnormally.

INVREQ
occurs if a request for BMS services is invalid for any
of the following reasons:

• The disposition (TERMINAL, PAGING, or SET) of a
BMS logical message is changed prior to its
completion by a SEND PAGE command.

• A SEND PARTNSET command is issued while a
logical message is acti·ve. .

• Text data is output to the same partition or LDC
~s mapped data while a BMS logical message is
active. If neither partitions nor LDCs are in use,
text data is output to the same logical message as
mapped data.

• A separate SEND TEXT ACCUMor SEND MAP
ACCUM command is issued to the terminal that
originated the transaction while a routed logical
message is being built.

• The TRAILER option is specified in a SEND PAGE
command when terminating a logical message
built with SEND MAP commands only.

• An output mapping command is issued for a map
without field specifications by specifying the FROM
option without the DATAONLY option.

• During overflow processing data is sent to a
different LDC than the LDC that caused page
overflow.

• Partitions are in use, the OUTPARTN option has
not been coded on a SEND MAP command, but the
PARTN operand has been coded in the map set
definition. If the condition arises, it suggests that
different versions of the map set have different
PARTN values, and that the suffix deduced for the
partition is not the same as the suffix of the
loaded map set.

• The length of a header on a SEND TEXT command
is negative.

• The length of a trailer on a SEND TEXT or SEND
PAGE command is negative.

• Bytes 10 through 15 of a route list entry do not
contain blanks on a ROUTE command.

• RECEIVE MAP and RECEIVE PARTN commands
cannot be issued in a nonterminal task, because
these tasks do not have a TIOA or a TCTTE.

Default action: terminate the task abnormally.

LENGERR
occurs if the INTO area of a RECEIVE PARTN command
is not large enough to hold the input data.

Default action: truncate the data to fit within the INTO
area.

MAPFAIL
occurs if the data to be mapped has a length of zero
or does not contain a set-buffer-address (SSA)
sequence. It applies only to 3270 devices. The
receiving data area will contain the unmapped input
data stream. The amount of unmapped data moved to
the user's area will be limited to the length specified in
the LENGTH option of the RECEIVE MAP command.

This condition also arises if a program issues a
RECEIVE MAP command to which the terminal
operator responds by pressing a CLEAR or PA key or
pressing ENTER or a PF key without entering data.

Default action: terminate the task abnormally.

OVERFLOW
occurs if the mapped data does not fit on the current
page. This condition is only raised if a HANDLE
CONDITION OVERFLOW command is active.

Default action: ignore the condition.

PARTNFAIL
occurs if the terminal operator persists in entering
data in a partition other than that specified by the
INPARTN option of the RECEIVE MAP command.

Default action: terminate the task abnormally.

RDATT
occurs if a RECEIVE MAP command is terminated by
the operator using the ATTN key rather than the
RETURN key. It applies only to the 2741
Communications Terminal, and only if 2741 read
attention support has been generated for CICS.

Default action: ignore the condition.

RETPAGE
occurs if the SET option is specified and one or more
completed pages are ready for return to the
application program.

Default action: return control to the application
program at the point immediately following the BMS
SEND command.

RTEFAIL
occurs if a ROUTE command would result in the
message being sent only to the terminal that initiated
the transaction.

Default action: return control to the application
program at the point immediately following the ROUTE
command.

RTESOME
occurs if any of the terminals specified by options of a
ROUTE command will not receive the message.

Default action: return control to the application
program at the point immediately following the ROUTE
command.

TSIOERR
occurs if there is an unrecoverable temporary storage
input/output error.

Default action: terminate the task abnormally.

UNEXPIN
Raised when unexpected or unrecognized data is
received. This only applies to batch data interchange
terminals.

Default action: terminate the task abnormally.

WRBRK
occurs if a SEND command is interrupted by the
terminal operator pressing the ATTN key. It applies
only to the 2741 Communication Terminal, and only if
write break support has been generated for CICS.

Default action: ignore the condition.

Chapter 3.2-5. BMS macro and command reference summary 219

Chapter 3.3. Terminal control

The CICS terminal control program provides for
communication between user-written application programs
and terminals and logical units, by means of terminal
control commands.

Terminal control uses the standard access methods
available with the host operating system, as follows:

• BTAM (Basic Telecommunications Access Method) is
used by CICS for most start-stop and BSC terminals.
Optionally, TCAM (Telecommunications Access
Method) can be specified.

• SAM (Sequential Access Method) is used where
keyboard terminals are simulated by sequential
devices such as card readers and line printers.

• VTAM (Virtual Telecommunications Access Method) or
TCAM (Telecommunications Access Method) is used
for systems network architecture (SNA) terminal
systems.

Terminal control polls terminals to see if they are ready to
transmit or receive data. Terminal control handles code
translation, transaction identification, synchronization of
input and output operations, and the line control necessary
to read from or write to a terminal.

The application program is freed from having to physically
control terminals. During processing, an application
program is connected to one terminal for one task and the
terminal control program monitors which task is associated
with which terminal. The task to be initiated is determined
as described in "Terminal-oriented task identification" on
page 223.

Terminal control is used for communication with terminals.
In SNA systems, however, it is used also to control
communication with logical units or with another CICS
system.

A logical unit (LU) represents either a terminal directly, or
a program stored in a subsystem controller which in turn
controls one or more terminals.

The CICS application program communicates, by means of
the logical unit, either with a terminal or with the stored
program. For example, a 3767 terminal is represented by
a single logical unit without an associated user-written
application program. In contrast, a 3790 subsystem is
represented by a 3791 controller, user-written 3790
application programs, and one or more 3790 terminals;
when the subsystem is configured, one or more logical
units are designated by the user.

Terminal control is used also for communicating with a
remote system by means of distributed transaction
processing (DTP). SNA protocols are available, through

© Copyright IBM Corp. 1982, 1991

terminal control commands, to initiate and terminate a
conversation (a session) with a remote LU6.1 Logical Unit.

This conversation is carried on between a principal facility
and one or more alternate facilities.

A principal facility for a task is a terminal, LU6.1 session,
or LU6.2 session that is made available to the application
program when the task is initiated.

An alternate facility for a task is an LU6.1 session, or an
LU6.2 session acquired as needed by the application
program. In general, terminal-control commands that refer
to an alternate facility should include the SESSION option,
or for LU6.2, the CONVID option.

The ALLOCATE and FREE commands allow the application
program to acquire and release these alternate facilities
and allow both principal and alternate facilities to be used
at the same time.

For LU6.1, the BUILD ATTACH and EXTRACT ATTACH
commands, together with the ATTACHID option of the
SEND command, allow the application program to attach a
transaction in a remote system.

For LU6.2, the CONNECT PROCESS command allows the
application program to attach a transaction in the remote
system.

Fields in the EIB allow access to indicators that give the
status of the conversation after execution of RECEIVE or
CONVERSE commands. For example, EIBEOC, EIBATT, and
EIBFMH provide more information about the received data,
and EIBSYNC, EIBFREE, and EIBRECV provide more
information about the session.

The INVITE option of the SEND command allows the
optimization of SNA flows that occur when communicating
with another transaction, or with IMS.

Distributed transaction processing is described fully in the
CICS/MVS Intercommunication Guide.

Commands and options that apply specifically to logical
units are described later in the chapter.

Terminal control commands are provided to request the
following services that are applicable to most, or all, of the
types of terminal or logical unit supported by CICS:

• Read data from a terminal or logical unit (RECEIVE).

• Write data to a terminal or logical unit (SEND).

• Converse with a terminal or logical unit (CONVERSE).

• Synchronize terminal input/output for a transaction
(WAIT TERMINAL).

• Send an asynchronous interrupt (ISSUE SIGNAL).

221

• Relinquish use of a communication line (ISSUE
RESET).

• Disconnect a switched line or terminate a session with
a logical unit (ISSUE DISCONNECT).

It is possible to read records from a card reader and read
records from or write records to a disk data set, magnetic
tape unit, or a line printer defined by the system
programmer as a card-reader-inlline-printer-out (CRLP)
terminal. For more information, see "Sequential terminal
support" on page 311.

Other services available in response to terminal control
commands apply to specific types of terminal. The
permissible commands and options that can be used by
specific terminal types are detailed later in the chapter.
Because many types of terminal are supported by CICS,
many special services are provided. (For a list of
terminals supported by CICS, see the CfCS/MVS Facilities
and Planning Guide.) In particular, a large number of
commands are provided for communicating with display
devices such as the IBM 3270 Information Display System;
these are described in "Display device operations" on
page 230.

The options that follow the command depend on the
terminal or logical unit (and sometimes, access method)
used and the operations required. Options included in a
terminal control command that do not apply to the device
being used will be ignored.

Exceptional conditions that occur during the execution of
terminal control commands are handled as described in
"Chapter 1.5. Exceptional conditions" on page 43.

Commands and options for terminals and
logical units

The commands and options described in this section apply
to a" terminals and logical units. There may, however, be
others that apply to specific devices. If so, details are
given later in the chapter under headings for the device
types.

Fullword lengths

For all terminal control commands, fu"word length options
can be used instead of halfword length options. In
particular, where the following options are used, the
corresponding alternative can be specified instead:

222 CICS/MVS 2.1.2 Application Programmer's Reference

Option

LENGTH
TOLENGTH
FROMLENGTH
MAXLENGTH

Alternative

FLENGTH
TOFLENGTH
FROMFLENGTH
MAXFLENGTH

Application programs should be consistent in their use of
fu"word and halfword options on terminal control
commands. The maximum value that can be specified as a
parameter on any length keyword is 32,767.

Read from terminal or logical unit (RECEIVE)

The RECEIVE command is used to read data from a
terminal or logical unit. The INTO option is used to specify
the area into which the data is to be placed. Alternatively,
a pointer reference can be specified in the SET option.
CICS acquires an area large enough to hold the data and
sets the pointer reference to the address of that data.

The contents of this area is available to the task until the
I next terminal I/O command. However, the area does not

belong to the task and will be released by CICS while
processing the next request. Therefore, this area cannot
be passed back to CICS for further processing.

The application can use MAXLENGTH to specify the
maximum length of data that the program will accept. If
the MAXLENGTH option is omitted on a RECEIVE command
for which the INTO option is specified, the maximum length
of data the program will accept can be specified in the
LENGTH option. If the MAXLENGTH option is omitted on a
RECEIVE command for which the SET option is specified,
CICS will acquire enough storage to hold all the available
data.

If the data exceeds the specified maximum length and the
NOTRUNCATE option is specified, the remaining data will
be made available to satisfy subsequent RECEIVE
commands. If NOTRUNCATE is not specified, the data is
truncated and the LENGERR condition is raised. In this
event, if the LENGTH option is specified, the named data
area is set to the actual data length (before truncation
occurs) when data has been received. The first RECEIVE
command in a task started by a terminal will not issue a
terminal control read but will simply copy the input buffer,
even if the data length is zero. A second RECEIVE
command must be issued to cause a terminal control read.

When a PA key is defined in the SIT to mean PRINT, and
that key is pressed in response to a RECEIVE command, it
has no effect on the application program. The RECEIVE
command is satisfied, and the application allowed to
continue, when another attention (that is, one of the other
PA keys, any of the PF keys, the ENTER key, or the light
pen) is made at the keyboard.

Write to terminal or logical unit (SEND)

The SEND command is used to write data to a terminal or
logical unit. The options FROM and LENGTH specify
respectively the data area from which the data is to be
taken and the length (in bytes) of the data. For a
transaction started by automatic transaction initiation
(ATI), a SEND command should always precede the first
RECEIVE in a transaction.

WAIT option of SEND command: Unless the WAIT
option is specified also, the transmission of the data
associated with the SEND command is deferred until a
later event, such as a sync point, occurs. This deferred
transmission reduces the flows of data by allowing data
flow controls to be transmitted with the data.

Transmission is not deferred for distributed transaction
processing when interregion communication (IRC) is in use.
See the CICSIMVS Intercommunication Guide for further
information.

Synchronize terminal 1/0 for a transaction
(WAIT TERMINAL)

This command is used to ensure that a terminal operation
has completed before further processing occurs in a task
under which more than one terminal or logical unit
operation is performed. Alternatively, the WAIT option can
be specified in a SEND command. (A wait is always
carried out for a RECEIVE command.)

Either method may cause execution of a task to be
suspended. If suspension is necessary, control is returned
to CICS. Execution of the task is resumed when the
operation is completed.

Even if the WAIT option is not specified in a SEND
command, the EXEC interface program will ensure that the
operation is completed before issuing a subsequent
RECEIVE or SEND command.

It is the user's responsibility to code an explicit wait
between two terminal control operations if mixing
command and macro level requests.

Converse with terminal or logical unit
(CONVERSE)

For most terminals or logical unit types a conversational
mode of communication can be used. The CONVERSE
command is used for this purpose. In general, the
CONVERSE command can be considered as a combination
of a SEND command followed immediately by a WAIT

TERMINAL command and then by a RECEIVE command.
However, not all options of the SEND and RECEIVE
commands are valid for the CONVERSE command.
Specific rules are given in the syntax descriptions for
different devices later in the chapter. The TOLENGTH
option is equivalent to the LENGTH option of the RECEIVE
command, and the FROMLENGTH option is equivalent to
the LENGTH option of the SEND command.

Send an asynchronous interrupt (ISSUE
SIGNAL)

This command is used, in a transaction in receive mode, to
signal to the sending transaction that a mode change is
needed. The execution of the command will raise the
SIGNAL condition on the next SEND or RECEIVE command
executed in the sending transaction, and a previously
executed HANDLE CONDITION command for this condition
can be used either to action the request or to ignore it.

Relinquish a communication line (ISSUE
RESET)

This command is used to relinquish use of a
communication line. The command applies only to binary
synchronous devices using BTAM. The next BTAM
operation will be a read or write initial.

Disconnect a switched line (ISSUE
DISCONNECT)

This command is used to break a line connection between
a terminal and the processor, or to break a session
between TCAM or ACFIVTAM logical units, when the
transaction is completed. If the terminal is a buffered
device, the data in the buffers will be lost.

When used with a VTAM terminal, ISSUE DISCONNECT,
~hich does not become effective until the task completes,
signs off the terminal, frees the COMMAREA, clears the
next TRANID, stops any BMS paging, and, if autoinstall is
in effect, deletes the terminal definition

Terminal-oriented task identification

When CICS receives input from a terminal to which no task
is attached, it has to determine which transaction should
be initiated. The methods by which the user can specify
the transaction to be initiated and the sequence in which
CICS checks these specifications are as follows (see also
Figure 26 on page 224).

Chapter 3.3. Terminal control 223

o

Send
"invalid tranid"
message
to terminal

Initiate specified
transaction

Initiate specified
transaction

Initiate
transaction
specified by
terminal input

Figure 26. Terminal oriented task identification

Initiate CQRY

Initiate CSPG

The system macros referred to in the following tests are
described in the CICSIMVS Resource Definition (Macro)
manual. Where applicable, the CEOA transaction can be

224 CICS/MVS 2.1.2 Application Programmer's Reference

Initiate
transaction
specified in
attach FMH

Initiate
transaction
specified by
term input AI D

used, instead of system macros, to define the resources,
as described in the CICSIMVS Resource Definition (Online)
manual.

Test 0:
(a) Is this terminal defined as to be queried?

(b) Has query been run to this terminal?

If yes to (a) and no to (b), the query transaction,
CQRY, is initiated before any other transaction.

Test 1:
Is the input from a PA key (of a 3270 terminal) that has
been defined at system initialization as the print
request key?

If yes, printing of the data displayed on the screen is
initiated.

Test 2:
(a) Is this terminal of a type supported by BMS
terminal paging?

(b) Is the input a paging command? (The terminal
operator can enter paging commands defined in the
DFHSIT system macro.)

If yes to both (a) and (b), the transaction CSPG, which
processes paging commands, is initiated.

Test 3:
If an attach FMH is present in the data stream and
Tests 4 and 5 are not fulfilled, the transaction specified
in the attach FMH is initiated. The architectured
attach names are converted to "CSMI".

Test 4:
Does the terminal control table entry for the terminal
include a transaction identifier (specified by the
TRANSID operand of the DFHTCT TYPE=TERMINAL
system macro).

If yes, the specified transaction is initiated.

Test 5:
Is a transaction specified by the TRANSID option of a
program control RETURN command (or by the
application program moving the transaction name into
TCANXTID)?

If yes, the specified transaction is initiated.

Test 6:
(a) Is the terminal a 3270 (including 3270 logical unit
and 3650 host-conversational (3270) logical unit,
connected via VTAM)?

(b) Is the input from a PA key, PF key, light pen
attention, or operator identification card reader?

(c) Is this input specified by the TASKREQ operand of
the DFHPCT TYPE = ENTRY system macro?

If yes to (a), (b), and (c), the program specified by the
PROGRAM operand of the same DFHPCT
TYPE = ENTRY system macro is given control.

Test 7:
Is a valid transaction identification specified by the
first one to four characters of the terminal input?

If yes, the specified transaction is initiated.

For all PA keys and some LPAs (light-pen attention)
there cannot be terminal input. If there is no terminal
input an "invalid transaction identification" message is
sent to the terminal.

If none of the above tests is met, an invalid transaction
identification exists, and message DFH2001 (INVALID
TRANSACTION IDENTIFICATION xxxx - PLEASE
RESUBMIT) is sent to the terminal.

The IBM 3735 Programmable Buffered Terminal makes an
exception to this sequence when operating in inquiry
mode. The test of input from the terminal (test 7 above) is
given highest priority.

Commands and options for logical units

An application program communicates with a TCAM or
VTAM logical unit in much the same way as it does with a
TCAM or BTAM terminal (that is, by using the terminal
control commands described above). However,
communication with logical units is governed by the
conventions (protocols) that apply to each type of logical
unit. This section describes the additional commands and
options provided by CICS to enable application programs
to comply with these protocols.

The types of logical units and the related protocols for
each of the SNA subsystems supported by CICS are
described in the CICS guides for the subsystems. (See the
"CICS/MVS 2.1.2 library" on page vii.)

Send/receive mode

For SNA logical units, only one of the two ends of the
session can be in send mode at anyone time, that is, one
is in send mode, the other is in receive mode. An
application program in send mode can issue any
commands for the logical unit. On the other hand, one in
receive mode, can issue only RECEIVE commands until the
mode is changed back to send. The EIB indicator EIBRECV
informs the application program that it is in receive mode
and that it must perform the above operations.

If the above protocols are not followed, the transaction will
be abended, unless the read ahead queueing feature
(RAQ = YES) is specified by the system programmer. This
feature allows the application program to ignore the
EIBRECV indicator and to send and receive at any time.
However, it should only be used with transactions that
support both bisynchronous devices and logical units.

For displays, the transaction would normally be in send
mode, provided that the INVITE option is not used, and can
ignore the EIBRECV indicator. Displays work with a subset
of the full protocols (see the CICSIMVS Facilities and
Planning Guide for further information).

Chapter 3.3. Terminal control 225

Send/receive protocol (invite option)

The INVITE option of a SEND command informs the session
partner that it is now in send mode and that it should send
a reply. At the same time it places the transaction in
receive mode. The transaction should now issue a
RECEIVE command as its next operation.

Chaining of input data

The unit of data from a logical unit is the request/response
unit (RU). One or more RUs can be grouped together and
treated as a chain.

The last RU in a chain (even if it is the only RU in the
chain) raises an end-of-chain (EOC) condition. When this
occurs, a HANDLE CONDITION EOC command will give
control to a user-written routine, which can do any
additional processing required when the complete chain
has been received.

For logical units that do not send chained data (for
example, the 3270 logical unit), the EOC condition occurs
for every RECEIVE request. For logical units that send
chained data, the EOC condition usually occurs for every
RECEIVE request, but it may not, depending on the length
of the data and on whether the terminal control table
CHNASSY operand is specified by the system programmer.
The syntax descriptions for individual logical units in this
chapter omit the EOC condition unless it is likely that
meaningful use may be made of the fact that it has not
been received. The IGNORE CONDITION command can be
used to ignore the EOC condition in cases where it is
raised on every RECEIVE command.

The EOC condition may occur simultaneously with the
EODS (end-of-data-set) and/or INBFMH (inbound-FMH)
conditions. When this happens, the user-written routine for
the EOOS or INBFMH conditions will be given control
rather than the EOC routine.

The system programmer specifies, in the TCITE, whether
or not chaining is to occur. If chain assembly is specified,
instead of an input request being satisfied by one ~U at a
time until the chain is complete, the whole chain is
assembled and is sent to the CICS application program
satisfying just one request. This ensures that the integrity
of the whole chain is known before it is presented to the
application program.

Chaining of output data

As in the case of input data, output data is transmitted as
request/response units (RUs). If the length of the data to
be sent exceeds the RU size,CICS breaks up the data into
RUs and transmits these RUs as a chain. During
transmission from CICS to the logical unit, the RUs are
marked FOC (first-of-chain), MOC (middle-of-chain), orEOC

226 CICS/MVS 2.1.2 Application Programmer's Reference

(end-of-chain) to denote their position in the chain. An RU
that is the only one in a chain is marked OC (only-in-chain).

If the system programmer specified that the application
program can control the chaining of outbound data, the
application program uses the CNOTCOM Pl
(chain-not-complete) option of the SEND command to
indicate continuation of the chain. In general, the
CNOTCOMPL option should not be used. Once an output
request with CNOTCOMPL specified has been made,
subsequent output requests may not use the FMH, LAST,
or (for the 3600 (3601) logical unit) LDC options until the
beginning of the next chain (that is, the first output request
following an output request in which CNOTCOMPL is
omitted).

For BTAM terminals, it indicates that the block sent as a
result of the SEND command does not complete the
message. If this option is omitted, the message will be
regarded as complete when the SEND command has been
fulfilled.

Logical record presentation

Each RECEIVE command results in one RU (or one chain of
RUs if chain assembly is specified) being presented to the
application program. An RU may consist of one or more
logical records. If an RU contains more than one logical
record, the records will be separated by new line (NL),
interrecord separator (IRS), or transparent (TRN)
characters. Except for LUTYPE4 devices, a logical record
cannot be transmitted in more than one RU; the end of the
RU is always the ,end of the logical record. Data from an
LUTYPE4 may cO'1tain Iqgical records that span RUs, in
which case, chain assembly should be specified.

The system programmer can specify in the PCT; for
specific application programs, that the application program
will be presented with logical records instead of with RUs
or chains. For those application programs for which this
option is specified, each RECEIVE,command results in one
logical record being presented to the application program,
regardless of whether chain assembly is specified or not.

If the logical records are separated by IRS or TRN
characters, these are removed, and do not appear in the
data. Therefore, a blank card will have a length of zero. If
NL characters are used to separate the logical records,
they are not removed, and the NL character from the end
of each logical record appears at the end of the data. If
the delimiter is a transparent (TRN) character, CICS will
pass up to 256 bytes in one logical record. This logical
record can contain any characters, including NL and IRS
characters, all of which will be treated as data.

All communication features for logical units are still in
operation, that is, notification of end-of-chain conditions,
and (for batch logical units only) notification of
end-of-data-set conditions and presentation of the inbound
FMH at the beginning of a chain, still occurs.

If chain assembly has been specified, a logical record ends
with a delimiter (NL, IRS, or TRN), or the end of the
assembled chain. The end of chain notification occurs in
the last logical record of the chain.

Definite response

The type of response requested by CICS for outbound data
is generally determined by the system programmer in the
PCT (DFHPCT TYPE=OPRGRP); it can be specified that all
outbound data for an application program will require a
definite response, or that exception response protocol is to
be used, that is, a response will be made only if an error
occurs.

If exception response protocol is used, an exception
response may not be received and handled immediately
after it arises.

The use of definite response protocol has some
performance disadvantages, but may be necessary for
some application programs. To provide a more flexible
method of specifying the protocol to be used, the DEFRESP
option is provided for use on the SEND command. One
example of the use of this option is to request a definite
response for every tenth output command, exception
response being the general rule.

Because a definite response can be requested only on the
last element in the chain, the DEFRESP and CNOTCOMPL
options are mutually exclusive.

Function management header (FMH)

A function management header (FMH) is a field that can be
included at the beginning of an input or output message. It
is used to convey information about the message and how
it should be handled. For some logical units, the use of an
FMH is mandatory, for others it is optional, and in some
cases FMHs cannot be used at all.

For output, the FMH can be built by the application
program or by CICS. For input, the FMH can be passed to
the application program or it can be suppressed by CICS.

The FMH option of the SEND command is used to specify
that the application program will provide the FMH in the
data to be transmitted.

Note: If the FMH option is used, the FMH data must
conform to the SNA standards for FMH data, otherwise
abend ATCY or unpredictable results can occur.

The ATTACHID option specifies a set of values that CICS
puts into an LUS attach FMH which is concatenated ahead
of the user data.

Further information about FMHs is given in the CICS
guides for the subsystems. (See the "CICS/MVS 2.1.2
library" on page viL)

Inbound FMH: An application program can request
notification when an FMH is included in the data received
from a batch logical unit.

Whether or not inbound FMHs will be passed to the
application program is specified in the INBFMH attribute of
the PROFILE definition, when using ROO, or in the INBFMH
operand of the DFHPCT TYPE = ENTRY system macro. It
can be specified that no inbound FMHs will be passed, or
that only the FMH at the end of the data set will be
passed, or that all inbound FMHs will be passed.

If inbound FMHs are to be passed to the application
program, a HANDLE CONDITION INBFMH command will
allow control to be passed to a user-written routine
whenever an inbound FMH is received. These user-written
routines can investigate the contents of the FMH and take
some action depending on, for example, the device from
which the data has come. The contents of the FM H can be
accessed also by means of the EIBFMH field of the EIB.

If an inbound FMH, containing an attach FMH, is passed to
the application program, the attach FMH can be removed
as long as this has been allowed for by the system
programmer in the PCT. The values of the attach FMH
may be examined by using the EXTRACT ATTACH
command.

When input data is received as a chain of RUs, only the
first (or only) RU of the chain is preceded by an FMH.

I Outbound FMH: When CICS builds the outbound FMH,
I the application must reserve the first 3 bytes of the
I message for the FMH. When sending output data to a
I logical unit, use the FMH option of the SEND command
I when the application builds the FMH, but omit the option
I when CICS builds the FMH.

Unsolicited input

If unsolicited input arrives from a logical unit, it is queued
and used to satisfy future input requests for that logical
unit. However, for 3270 logical units, unsolicited input will
be discarded if the PUNSOL operand is specified in the
DFHSG PROGRAM = TCP system macro.

Bracket protocol (LAST option)

Bracket protocol prevents the interruption of a transaction
between CICS and a logical unit. A bracket can, generally,
be begun either by CICS or by the logical unit, or ended
only by CICS unless it is for an LUS.1 or LUS.2 Logical
Unit, in which case the logical unit can end it. A bracket
also can delimit conversation between CICS and the logical
unit or merely the transmission of a series of data chains
in one direction.

Chapter 3.3. Terminal control 227

Bracket protocol is used when CICS communicates with
some logical units. The use of brackets is usually
transparent to the application program.

Only on the last output request of a task to a logical unit
does the bracket protocol become apparent to the
application program. On the last output request to a
logical unit, the application program may specify the LAST
option on the SEND command. The last output request is
defined as either the last SEND command specified for a
task without chain control; or as the output request that
transmits the FOC or OC marker of the last chain of a
transaction with chain control. The LAST option causes
CICS to transmit an end-bracket indicator with the final
output message to the logical unit. This indicator notifies
the logical unit that the current transaction is ending. If
the LAST option is not specified, CICS waits until the task
detaches before sending the end-bracket indicator.
Because an end-bracket indicator is transmitted only with
the first RU of a chain, the LAST option is ignored for a
transaction with chain control unless FOC or OC is also
specified.

Including a FREE command after a SEND command with
the LAST option may be useful if the transaction does not
terminate immediately after issuing the SEND command.
This allows another transaction to be initiated from the LU
or from CICS.

Suspend a task (WAIT SIGNAL)

WAIT SIGNAL

Cond;tion: SIGNAL

This command is used, for a principal facility only, to
suspend a task until a SIGNAL condition occurs. Some
logical units can interrupt the normal flow of data to the
application program by a SIGNAL data-flow-control
command to CICS, signaling an attention, which in turn
causes the SIGNAL condition to occur.

The HANDLE CONDITION SIGNAL command will cause a
branch to an appropriate user-written routine when an
attention is received.

Terminate a session (ISSUE DISCONNECT)

ISSUE DISCONNECT
SESSION(name)

Cond;tions: NOTALLOC, TERMERR

This command is used to terminate a session between
CICS and a logical unit, but only if the system programmer

228 CICS/MVS 2.1.2 Application Programmer's Reference

has specified RELREQ = (,YES) in the DFHTCT
TYPE=TERMINAL system macro for the logical unit, or
DISCREQ=YES in DEFINE TYPETERM for RDO.

VTAM application routing (ISSUE PASS)

ISSUE PASS
LUNAME(nameldata-area)
[FROM(data-area) LENGTH(data-value)]

Conditions: INVREQ, LENGERR

This command is used to disconnect the terminal from
CICS after the task has terminated, and transfer it to the
VTAM application defined in the LUNAME option.

This command requires that AUTH = PASS is coded in the
VTAM APPL macro for the CICS system that owns the
terminal, and DISCREQ=YES in DEFINE TYPETERM or
RELREQ = (,YES) in the DFHTCT TYPE=TERMINAL macro
for any terminal where this function might be used.

If the LUNAME specified is the name of another CICS
system, you can use the EXTRACT LOGON MSG command
to access the data referred to by this command.

Because of a VTAM limitation, the maximum length of the
user data is restricted to 255 bytes.

Note: There is a SIT operand (CLSDSTP=NOTIFY I NONOTIFY)
that allows you to have the node error program (NEP)
notified of whether the PASS was successful or not. The
NEP can be coded to reestablish a session ended by an
unsuccessful PASS. For full details of how this is done,
see the section on the NEP in the CICSIMVS Customization
Guide.

Sync point processing (ISSUE PREPARE)

ISSUE PREPARE
[CONVID(data-area)ISESSION(name)]

Condit;ons: INVREQ, NOTALLOC

The ISSUE PREPARE command applies only to distributed
transaction processing over LUTYPE6.2 links. It enables a
sync point initiator to prepare a sync point slave for
syncpointing by sending only the first flow
(prepare-to-commit) of the sync point exchange.
Depending on the reply from the sync point slave, the
initiator can proceed with the sync point by issuing a
SYNCPOINT command, or initiate back out by issuing a
SYNCPOINT ROLLBACK command. For further details, see
the CICSIMVS Intercommunication Guide.

Receipt of VT AM logon data (EXTRACT
LOGONMSG)

EXTRACT LOGONMSG
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)

This command is used to access VTAM logon data. This
data may have been specified by the terminal operator at
logon or in the ISSUE PASS command, for example. This
data is only available if LGNMSG = YES is specified in the
SIT. The data can only be extracted once. It is possible to
force the first transaction that runs on the terminal to be
that which issues EXTRACT LOGONMSG by using the
GMTRAN option in the SIT.

All the logon data will be extracted and its length placed in
the field specified by the LENGTH option. Because the
LENGTH option cannot be used to limit the amount of data
extracted, it is recommended that a field of 256 bytes is
always used for this option.

Return a facility to CICS (FREE)

FREE
[CONVID(data-area)ISESSION(name)]

Conditions: INVREQ, NOTALLOC

This command is used to return a facility (a principal
facility or a previously allocated alternate facility) to CICS
when a transaction owning it no longer requires it. The
facility then can be allocated for use by other transactions.

If you omit to specify either SESSION or CONVID, the
principal facility will be freed. Facilities not freed explicitly
will be freed by CICS when the task terminates.

If you are running EDF in dual terminal mode and the
transaction issues the FREE command, EDF will be
switched off without warning.

TCAM-supported terminals and logical units

Because TCAM permits many applications to share a
single network, the CICS-TCAM interface supports data
streams rather than specific terminals or logical units.

Operations for terminals supported by TCAM use the same
options as the terminals supported by other access
methods. With the exception of the BUFFER option for the
3270, all options applicable for input operations are
supported by CICS-TCAM. However, the exceptional
conditions ENDINPT and EOF will not occur.

All output requests are the same for TCAM as for other
CICS supported terminals, except that:

• The ISSUE RESET command cannot be used

• The ISSUE COpy and ISSUE PRINT commands for the
3270 cannot be used

• The DEST option is available on the SEND command,
in addition to other appropriate options.

With the exception of 3650 Logical Units, operations for
logical units supported by TCAM use the same options as
logical units supported by VTAM.

BTAM programmable terminals

When BTAM is used by CICS for programmable binary
synchronous communication line management, CICS
initializes the communication line with a BTAM read initial
(TI); the terminal response must be a write initial (TI) or
the equivalent. If an application program makes an input
request, CICS issues a read continue (TT) to that line; if the
application program makes an output request, CICS issues
a read interrupt (RVI) to that line. If end of transmission
(EOT) is not received on the RVI, CICS issues a read
continue (TT) until the EOT is received.

When TCAM is used, all of this line control is handled by
the message control program (the MCP) rather than by
CICS.

The programmable terminal response to a read interrupt
must be "end of transmission" (EOT). The EOT response
may, however, be preceded by writes, in order to exhaust
the contents of output buffers; this is provided the input
buffer size is not exceeded by this data. The input buffer
size is specified by the system programmer during
preparation of the TCT. CICS issues a read continue until
it receives an EOT, or until the input message is greater
than the input buffer (an error condition).

After receiving an EOT, CICS issues a write initial (TI) or
the equivalent (depending on the type of line). The
programmable terminal response must be a read initial (TI)
or the equivalent.

If the application program makes another output request,
CICS issues a write continue (TT) to that line. If the
application program makes an input request after it has
made an output request, CICS turns the line around with a
write reset (TR). (CICS does not recognize a read
interrupt.)

To ensure that binary synchronous terminals (for example,
System/370, 1130, 2780) remain coordinated, CICS
processes the data collection or data transmission
transaction on any line to completion, before polling other
terminals on that line.

Chapter 3.3. Terminal control 229

The programmable terminal actions required for the above
activity, with the corresponding user application program
commands and CICS actions, are summarized in Figure 27
on page 231.

Automatically initiated transactions attached to a device
will cause message

DFH2S93 AUTO OUTPUT HAS BEEN REQ,
PLEASE PREPARE TO RECEIVE

to be sent to the device which must be prepared to receive
it.

Input data is deblocked to ETX, ETB, RS, and US
characters. These characters are moved with the data but
are not included in the data length. Characters such as NL
(new line), CR (carriage return), LF (line feed), and EM are
included as data in a CICS application program.

Teletypewriter programming

The teletypewriter (World Trade only) uses two different
control characters for print formatting, as follows:

< carriage return, (X I 22 ' in ITA2
code or X1 15 ' in EBCDIC)

line feed, (X I 28 ' in ITA2 code
or X125 ' in EBCDIC)

The character < should always be used first otherwise
following characters (data) may be printed while the
typebar is moving to the left.

Message format

Message begin: To start a message on a new line at the
left margin, the message text must begin with X '1517 '
(EBCDIC). CICS recognizes the X '17' and changes it to
X '25 ' (XI17' is an IDLE character).

Message body: To write several lines with a single
transmission, the lines must be separated by X' 1525 ' , or if
multiple blank lines are required, by X' 152525 ... 25 1

•

Message end before next input: To allow input of the next
message on a line at the left margin, the preceding
message must end with X' 1517 I. CICS recognizes X '15 '
and changes the character following it to X '25 1 •

Message end before next output: In the case of two or
more successive output messages, the "message begin"
and the "message end" look the same; that is X '1517 ' ,
except for the last message (see above). To make the
"message end" of the preceding message distinguishable
from the "message begin" of the next message, the next to
I ast character of the "message end" must not be X' 15 ' .

230 CICS/MVS 2.1.2 Application Programmer's Reference

Message length

Messages for teletypewriter terminals should not exceed a
length of about 3000 bytes or approximately 300 words.

Connection through VT AM

Both the TWX Model 33/35 Common Carrier Teletypewriter
Exchange and the WTTY Teletypewriter (World Trade only)
can be connected to CICS through BTAM, or through VTAM
using NTO.

If a device is connected through VTAM using NTO, the
protocols used are the same as for the 3767 Logical Unit,
and the application program can make use of these
protocols (for example, HANDLE CONDITION SIGNAL).
However, the data stream is not translated to a 3767 data
stream but remains as that for a TWXIWfTY.

Display device operations

Besides the standard terminal control commands for
sending and receiving data, several additional commands
and lists are provided for use with display devices such as
the 3270.

The commands are:

• Print displayed information (ISSUE PRINT).

• Copy displayed information (ISSUE COPY).

• Erase all unprotected fields (ISSUE ERASEAUP).

• Input operation without data (RECEIVE).

• Handling attention identifiers (HANDLE AID).

The lists are:

• Standard Attention Identifier List (DFHAID).

• Standard Attribute and Printer Control Character List
(DFHBMSCA).

For devices with switchable screen sizes, the size of the
screen that can be used, and the size to be used for a
given transaction, are defined by CICS table generation.
These values can be obtained by means of the ASSIGN
command, described in "Chapter 1.6. Access to· system
information" on page 51.

The ERASE option should always be included in the first
SEND command to clear the screen and format it according
to the transmitted data. This first SEND with ERASE will
select also the screen size to be used, as specified in the
PCT and TCT. If ERASE is omitted, the screen size will be
the same as its previous setting, which may be incorrect.

Use of the CLEAR key outside of a transaction will set the
screen to its default size.

User Application
Program Command

RECEIVE

SEND

SEND

RECEIVE

CICSl Actions

Read initial (TI)

Read continue (TT)

Read interrupt (RVI)2

Read continue (TT)3

Write initial (TI)

Write continue (TT)

Write reset (TR)4

Read initial (TI)

Programmable
Terminal Action

Write initial (TI)

Write continue (TT)

Write reset (TR) or

Write continue
Write reset

Read initial (TI)

Read continue (TT)

Read continue (TT)

Write i niti a 1 (TI)

1 CICS issues the macro shown, or, if the line is switched, the equivalent.
The user-written programmable terminal program must issue the equivalent
of the BTAM operation shown.

2 An RVI sequence is indicated by the DECFLAGS field of the data event control
block (DECB) being set to X'02 1 and a completion code of X' 7F ' being
returned to the event control block (ECB).

3 The read continue is issued only if the EOTcharacter is not received on the
read interrupt.

4 Write reset is issued only for point-to-point terminals.

Figure 27. BTAM programmable terminal programming

Print displayed information (iSSUE PRINT)

If the 3270 print request facility is included in the terminal
control program at CICS system generation, the. ISSUE
PRINT command will cause the displayed data to be
printed on the first available, print-request-eligible printer.

For a BTAM-supported 3270, this is a printer on the same
control unit.

For a 3270 Logical Unit or a 3650 host-conversational
(3270) Logical Unit, it is a printer defined by the PRINTTO
or ALTPRT operands of the OFHTCT TYPE=TERMINAL
system macro, by ROO, or by a printer supplied by the
autoinstall user program.

For a 3270-display Logical Unit with the PTRAOAPT feature
(LUTYPE2 specified in the TRMTYPE operand and
PTRAOAPT specified in the FEATURE operand of the
OFHTCT TYPE=TERMINAL system macro) used with a
3274 or 3276, iUs a printer allocated by the printer
authorization matrix. See An Introduction. to the IBM 3270
Information Display System.

For a 3790 (3270-display) Logical Unit, it is a printer
allocated by the 3790.

For a printer to be available, it must be in service and not
currently attached to a task.

For a BTAM printer to be eligible, it must be attached to
the same control unit as the display, must have a buffer
capacity equal to or greater than that of the display, and
must have FEATURE = PRINT specified in the associated
OFHTCT TYPE=TERMINAL system macro.

For a 3270 logical unit to be eligible, it must have been
specified by the PRINTTO or ALTPRT operand of the
OFHTCT TYPE=TERMINAL system macro, by ROO, or by a
printer supplied by the autoinstall user program, and it
must have the correct buffer capacity; FEATURE = PRINT is
not necessary. If COPY is specified with the ALTPRT or
PRINTTO operands, the printer must be on -the same
control unit.

If an ISSUE PRINT command is executed, then the printer
involved must be owned by the same CICS system that
owns the terminal that is running the transaction.

Chapter 3.3. Terminal control 231

For some 3270 displays, it is possible also to print the
displayed information without using CICS. See An
Introduction to the IBM 3270 Information Display System.

Copy displayed Information (ISSUE COPY)

The ISSUE COpy command is used to copy the format and
data contained in the buffer of a specified terminal into the
buffer of the terminal that started the transaction. This
command cannot be used for an LUTYPE2. Both terminals
must be attached to the same remote control unit. The
terminal whose buffer is to be copied is identified in the
TERMID option. If the terminal identifier is invalid, that is,
it does not exist in the TCT, the TERMIDERR condition will
occur. The copy function to be performed is defined by the
copy control character (CCC) specified in the CTLCHAR
option of the ISSUE COPY command.

The WAIT option of the ISSUE COPY command ensures
that the operation has been completed before control is
returned to the application program.

Erase all unprotected fields (ISSUE
ERASEAUP)

The ISSUE ERASEAUP command is used to erase all
unprotected fields of a 3270 buffer, by the following
actions:

1. All unprotected fields are cleared to nulls (X '00').

2. The modified data tags (MOTs) in each unprotected
field are reset to zero.

3. The cursor is positioned to the first unprotected field.

4. The keyboard is restored.

The WAIT option of the ISSUE ERASEAUP command
ensures that the operation has been completed before
control is returned to the application program.

Input operation without data (RECEIVE)

The RECEIVE command with no options causes input to
take place and the EIB to be updated. However, data
received by CICS is not passed on to the application
program and is lost. A wait will be implied. Two of the
fields in the EIB that are updated are described below:

Cursor position (EIBCPOSN) - For every terminal control
(or BMS) input operation associated with a display device,
the screen cursor address (position) is placed in the
EIBCPOSN field in the EIB. The cursor address is in the
form of a halfword binary value and remains until updated
by a new input operation.

Attention identifier (EIBAID) - For every terminal control
(or BMS) input operation associated with a display device,
an attention identifier (AID) is placed in field EIBAID in the
EIB. The AID indicates which method the terminal

232 CICS/MVS 2.1.2 Application Programmer's Reference

operator has used to initiate the transfer of information
from the device to CICS; for example, the ENTER key, a
program function key, the light pen, and so on. The field
contents remain unaltered until updated by a new input
operation. Field EIBAID can be tested after each terminal
control (or BMS) input operation to determine further
processing and a standard attention identifier list (DFHAID)
is provided for this purpose. Alternatively, the HANDLE
AID command can be used to pass control to specified
labels when the AIDs are received. The standard attention
identifier list and the HANDLE AID command are described
in the next two sections.

Standard attention identifier list (DFHAID)

The standard attention identifier list, DFHAID, simplifies
testing the contents of the EIBAID field. The following list
is obtained by copying DFHAID into the application
program and shows the symbolic name for the attention
identifier (AID) and the corresponding 3270 function.

Constant

DFHENTER
DFHCLEAR
DFHPAl-DFHPA3
DFHPFl-DFHPF24
DFHOPID
DFHMSRE
DFHTRIG
DFHPEN

Meaning

ENTER key
CLEAR key
PAl-PA3 keys
PFl-PF24 keys
Operid or MSR
Extended (standard) MSR
Trigger field
Light pen attention

For COBOL users, the list consists of a set of 01
statements that must be copied into the working-storage
section. For PL/I users, the list consists of DECLARE
statements defining elementary character variables.

Handling attention identifiers (HANDLE AID)

I HANDLE AID
option[(label)] •..

This command is used to specify the label to which control
is to be passed when an AID is received from a display
device. Control is passed after the input command is
completed; that is, any data received in addition to the AID
has been passed to the application program.

In the absence of a HANDLE AID command, control returns
to the application program at the point immediately
following the input command. You can suspend the
HANDLE AID command by means of the PUSH and POP
commands as described in "Chapter 1.5. Exceptional
conditions" on page 43.

In an assembler language application program, a branch to
a label caused by receipt of an AID, for which a HANDLE
AID command is active, will restore the registers in the

application program to their values in the program at the
point where the command that received the AID is issued.
On MVS/XA, the addressing mode will be set to that in
effect at the point where the HANDLE AID command is
issued.

No more than 16 options are allowed in the same
command.

A HANDLE AID command will take precedence over a
HANDLE CONDITION command. The HANDLE CONDITION
command is described in "Chapter 1.5. Exceptional
conditions" on page 43. If an AID is received during an
input operation for which a HANDLE AID command is
active, control will pass to the label specified in that
command regardless of any conditions that may have
occurred (but which did not stop receipt of the AID).

A print key specified in the SIT will take precedence over a
HANDLE AID command.

The options that can be specified are:

• ANYKEY (any PA key, any PF key, or the CLEAR key,
but not ENTER)

• CLEAR (for the key of that name)

• CLRPARTN (for the key of that name)

• ENTER (for the key of that name)

• LlGHTPEN (for a light pen attention)

• OPERID (for the operator identification card reader,
the magnetic slot reader (MSR), or the extended MSR)

• PA1, PA2, or PA3 (any of the program access keys)

• PF1 through PF24 (any of the program function keys)

• TRIGGER (for a trigger field attention).

The HANDLE AID command for a given AID applies only to
the program in which it is specified, remaining active until
the program is terminated, or until another HANDLE AID
command for the same AID is encountered, in which case
the new command overrides the previous one.

When control returns to a program from a program at a
lower logical level, the HANDLE AID commands that were
active in the higher-level program before control was
transferred from it are reactivated, and those in the
lower-level program are deactivated. For more
information about logical levels see "Chapter 4.4. Program
control" on page 289.

If no HANDLE AID command is active for any PA key, any
PF key, or the CLEAR key, but one is active for ANYKEY,
control will be passed to the label specified for ANYKEY. A
HANDLE AID command for an AID overrides the HANDLE
AID ANYKEY command for that AID.

The following example shows a HANDLE AID command
that specifies one label for the PA 1 key, a second label for
PA2 and PA3, all of the PF keys except PF10, and the

CLEAR key. If a PF10 AID is received, control returns to
the application program at the instruction immediately
following the input command.

EXEC CICS HANDLE AID PAl(LABl)
ANYKEY(LAB2) PF10

If a task is initiated from a terminal by means of an AID,
the first RECEIVE command in the task will not read from
the terminal but will copy only the input buffer (even if the
length of the data is zero) so that control may be passed
by means of a HANDLE AID command for that AID.

A BMS RECEIVE MAP command with the FROM option will
not cause a HANDLE AID command to be invoked because
no terminal input is involved.

Standard attribute and printer control
character list (DFHBMSCA)

The standard list DFHBMSCA simplifies the provision of
field attributes and printer control characters. The list is
obtained by copying copy book DFHBMSCA into the
application program. The symbolic names for the various
combinations of attributes and control characters are given
below. Combinations other than shown must be generated
separately.

Constant Meaning

DFHBMPEM
DFHBMPNL
DFHBMASK
DFHBMUNP
DFHBMUNN
DFHBMPRO
DFHBMBRY
DFHBMDAR
DFHBMFSE
DFHBMPRF
DFHBMASF
DFHBMASB
DFHBMPSO
DFHBMPSI
DFHBMEOF
DFHBMDET
DFHSAl
DFHERROR
DFHCOLORl
DFHPSl
DFHHLP
DFH3270 1

DFHVAL
DFHOUTLN
DFHBKTRN
DFHALLl
DFHDFT
DFHDFCOLl
DFHBLUE
DFHRED
DFHPINK
DFHGREEN

Printer end-of-message
Printer new line
Autoskip
Unprotected
Unprotected and num
Protected
Bright
Dark
MDT set
Protected and MDT set
ASKP and MDT set
Auto and bright
Shift out value X'0E'
Shift in value X'0F'
Field erased
Field detected
Set attribute (SA) order
Error code
Color
PS
Highlight
Base 3270 field attribute
Validation
Field outlining attr code
Background transp attr code
Reset all to defaults
Default
Default color
Blue
Red
Pink
Green

Chapter 3.3. Terminal control 233

DFHTURQ
DFHYELLO
DFHNEUTR
DFHBASEl
DFHDFHIl
DFHBLINK
DFHREVRS
DFHUNDLN
DFHMFIL2
DFHMENT2
DFHMFE

DFHMT
DFHMFT

DFHMET

DFHUNNOD

DFHUNIMD

DFHUNNUM

DFHUNINT

DFHUNNON

DFHPROTI

DFHPROTN

DFHMFET

DFHDFFR
DFHUNDER
DFHRIGHT
DFHOVER
DFHLEFT
DFHBOX
DFHSOSI
DFHTRANS
DFHOPAQ

Turquoise
Yellow
Neutra 1
Base PS
Normal
Blink
Reverse video
Underscore
Mandatory fi 11
Mandatory enter
Mandatory fill and

mandatory enter
Trigger
Mandatory fill and
trigger

Mandatory enter and
trigger

Unprotected non-display
non-print non-detectable
MDT

Unprotected intensify
light pen detectable
MDT

Unprotected numeric
MDT

Unprotected numeric
intensify light pen
detectable MDT

Unprotected numeric
intensify light pen
non-display non-print
non-detectable MDT

Protected intensify
light pen detectable

Protected
non-display non-print
non-detectable

Mandatory fill and
mandatory enter and
trigger

Default outl i ne
Under
Right
Overline
Left
Left+over+right+under lines
SOSI=yes
Background transparency
No background transparency

1 For text processing only.
Use for

constructing embedded set attribute
orders in user text

2 Cannot be used in set attribute orders

234 CICS/MVS 2.1.2 Application Programmer's Reference

For assembler language users, the list consists of a set of
EQU statements. For COBOL users, the list consists of a
set of 01 statements that must be copied into the working
storage section. For PUI users, the list consists of
DECLARE statements defining elementary character
variables.

The symbolic name DFHDFT must be used in the
application structure to override a map attribute with the
default. On the other hand, to specify default values in a
set attribute (SA) sequence in text build, the symbolic
names DFHDFCOL, DFHBASE, or DFHDFHI should be used.

Standard CICS terminal support (BT AM or
TCAM)

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH{data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: LENGERR, NOTALLOC

SEND
FROM(data-area)
LENGTH(data-value)
[DEST(name)]
[WAIT]

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[DEST{name)]
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Condition: LENGERR

ISSUE RESET

ISSUE DISCONNECT

These commands can be used by all terminals supported
by CICS that are not dealt with separately in the following
sections.

LUTYPE4 logical unit

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, EODS, INBFMH,
LENGERR, SIGNAL, TERMERR

SEND
FROM(data-area)
LENGTH(data-value)
[WAIT]
[INVITE I LAST]
[CNOTCOMPLIDEFRESP]
[FMH]

Conditions: IGREQCD, SIGNAL,
TERMERR

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[DEFRESP]
[MAXLENGTH[(data-value)]]
[FMH]
[NOTRUNCATE]

Conditions: EOC, EODS, IGREQCD,
INBFMH, LENGERR, SIGNAL, TERMERR

WAIT SIGNAL

Conditions: SIGNAL, TERMERR

ISSUE DISCONNECT

Conditions: SIGNAL, TERMERR

LUTYPE6.1 logical unit

RECEIVE
[SESSION(name)]
{INTO (data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, INBFMH, NOTALLOC,
LENGERR, SIGNAL, TERMERR

SEND
[SESSION(name)]
[WAIT]
[INVITE I LAST]
[ATTACHID(name)]
[FROM(data-area)]
[LENGTH(data-area)]
[FMH]
[DEFRESP]

Conditions: CBIDERR, NOTALLOC,
SIGNAL, TERMERR

CONVERSE
[SESSION(name)]
[ATTACHID(name)]
[FROM(data-area)]
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]
[FMH]
[DEFRESP]

Conditions: CBIDERR, EOC, INBFMH,
LENGERR, NOTALLOC, SIGNAL, TERMERR

ALLOCATE
{SESSION(name)ISYSID(name)}
[PROFILEfname)]
[NOQUEUE NOSUSPEND]

Conditions: CBIDERR, EOC, INVREQ,
SESSBUSY, SESSIONERR, SYSBUSY,
SYSIDERR

Chapter 3.3. Terminal control 235

LUTYPE6.1 Logical Unit (Continued)

BUILD ATTACH
ATTACHID(name)
[PROCESS(name)]
[RESOURCE(name)]
[RPROCESS(name)]
[RRESOURCE(name)]
[QUEUE(name)]
[IUTYPE(name)]
[DATASTR(name)]
[RECFM(name)]

EXTRACT ATTACH
[ATTACHID(name)ISESSION(name)]
[PROCESS(data-area)]
[RESOURCE(data-area)]
[RPROCESS(data-area)]
[RRESOURCE(data-area)]
[QUEUE(data-area)]
[IUTYPE(data-area)]
[DATASTR(data-area)]
[RECFM(data-area)]

Conditions: CBIDERR, INVREQ,
NOTALLOC

EXTRACT TCT
NETNAME(name)
{SYSID(data-area)ITERMID(data-area)}

Condition: INVREQ

FREE
[SESSION(name)]

Conditions: INVREQ, NOTALLOC,

POINT
[SESSION(name)]

Condition: NOTALLOC

WAIT SIGNAL

WAIT TERMINAL
[SESSION(name)]

Conditions: NOTALLOC, SIGNAL

236 CICS/MVS 2.1.2 Application Programmer's Reference

LUTYPE6.1 Logical Unit (Continued)

ISSUE DISCONNECT
[SESSION(name)]

Conditions: NOTALLOC, TERMERR

ISSUE SIGNAL
[SESSION(name)]

Conditions: NOTALLOC, TERMERR

The ALLOCATE command is used to acquire an alternate
facility and to select optionally a set of terminal control
processing options. If SYSID is specified, CICS will make
available to the application program one of the sessions
associated with the named system. The name of this
session can be obtained from field EIBRSRCE in the EIB. If
SESSION is specified, CICS will make the named session
available.

The BUILD ATTACH command is used to specify a set of
values to be placed in the named attach header control
block. This control block contains values that are to be
sent in an LUG attach FMH which is constructed by CICS,
and is sent only when a SEND ATTACHID or CONVERSE
ATTACHID command is executed. The specified values
override existing values in the control block; unspecified
values are set to default values.

The EXTRACT ATTACH command is used to retrieve a set
of values held in an attach header control block or that
have been built previously. This control block contains
values received in an attach FMH or that have been built
previously.

The EXTRACT TCT command is used to allow the
eight-character VTAM network name for a terminal or
logical unit to be converted into a corresponding
four-character name by which it is known in the local CICS
system.

The FREE command is used to return a facility to CICS
when a transaction owning it no longer requires it. The
facility can then be allocated for use by other transactions.
A facility can be freed only when it is in free mode
(EIBFREE set to X I FF ').

The POINT command is used to obtain information about a
named facility, such as whether it owns the given facility.
All these commands, except EXTRACT TCT, WAIT SIGNAL,
ISSUE SIGNAL, and ISSUE DISCONNECT, can be used on
an MRO session. For more information on MRO and IRC
see the CICSIMVS Intercommunication Guide.

Session status information

This information consists of several fields that contain
application-oriented and session-oriented information when
an LUS.1 session is in progress. These fields are located
in the EIB.

Session status information is set to zeros at the start of
execution of every command and is updated whenever a
RECEIVE or CONVERSE command naming an LUS.1 session
is executed. If the information is to be retained across the
execution of several commands, the user must take steps
to preserve it.

Application-oriented information

The application-oriented information determines the action
taken by function processing logic. The information
consists of, for example, indicators (such as end-of-chain),
an attach header, and user data.

The user data is moved to an area specified in the
application program; alternatively the address of the user
data is passed to the application program.

The indicators, together with an attach header indicator,
are passed to the application program in the EIB. The
EXTRACT ATIACH command (described earlier in the
chapter) can be used to process the attach header data if
such data exists.

The following application-oriented fields, each one byte in
length, appear in the EIB: EIBATI, EIBEOC, and EIBFMH.

Session-oriented information

The session-oriented information determines the action
taken by session-handling logic, for example, sync point
requested. This information is available to the application
program in fields EIBSYNC, EIBFREE, EIBRECV, and EIBSIG
in the EIB, and should be processed in that order, before
further operations, such as SEND, RECEIVE, CONVERSE, or
FREE, are performed on the session.

LUTYPE6.2 logical unit (VTAM only)

RECEIVE
[CONVID(data-area)]
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, LENGERR,
NOTALLOC, SIGNAL, TERMERR

SEND
[CONVID(data-area)]
[FROM(data-area)]
[LENGTH(data-value)]
[INVITE I LAST]
[CONFIRMIWAIT]

Conditions: INVREQ, LENGERR,
NOTALLOC, SIGNAL, TERMERR

CONVERSE
[CONVID(data-area)]
FROM(name)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, LENGERR, NOTALLOC,
SIGNAL, TERMERR

Chapter 3.3. Terminal control 237

LUTYPE6.2 Logical Unit (Continued)

ALLOCATE
SYSID(name)
[PROFILE(name)]
[NOQUEUEINOSUSPEND]

Conditions: CBIDERR, INVREQ,
SESSBUSY, SYSBUSY, SYSIDERR

FREE
[CONVID(data-area)]

Conditions: INVREQ, NOTALLOC,

CONNECT PROCESS
CONVID(data-area)
PROCNAME(data-area)
PROCLENGTH(data-value)
SYNCLEVEL(data-value)
[PIPLIST(data-area)

PIPLENGTH(data-value)]

Conditions: INVREQ, NOTALLOC,
LENGERR

EXTRACT PROCESS
[PROCNAME(data-area)

PROCLENGTH(data-area)]
[CONVID(data-area)]
[SYNCLEVEL(data-area)]
[PIPLIST(ptr-ref)

PIPLENGTH(data-area)]

Conditions: INVREQ, NOTALLOC

ISSUE ABEND
[CONVID(data-area)]

Conditions: INVREQ, NOTALLOC,
TERMERR

ISSUE CONFIRMATION
[CONVID(data-area)]

Conditions: INVREQ, NOTALLOC,
TERMERR

238 CICS/MVS 2.1.2 Application Programmer's Reference

LUTYPE6.2 Logical Unit (Continued)

ISSUE ERROR
[CONVID(data-area)]

Conditions: INVREQ, NOTALLOC,
TERMERR

ISSUE SIGNAL
[CONVIO(data-area)]

Conditions: NOTALLOC, TERMERR

WAIT
CONVID(data-area)]

Condition: NOTALLOC

A program written to communicate across an LUS.1 link
can be migrated to communicate across an LUS.2 link. For
further details see the CICS/MVS Intercommunication
Guide.

Synchronization levels

LUS.2 application programs can run at three
synchronization levels, as follows:

o No synchronization capability

1 Commit only synchronization

2 Full synchronization.

For further details of synchronization levels, see the
CICS/MVS Intercommunication Guide.

The ALLOCATE command is used to acquire an alternate
facility and to select optionally a set of terminal control
processing options. CICS will make available to the
application program one of the sessions associated with
the named system. CICS returns, in EIBRSRCE in the EIB,
the 4-byte CONVID (conversation identifier) that the
application program uses in all subsequent commands that
relate to the conversation.

The CONNECT PROCESS command allows an application to
specify a process name and synchronization level to be
passed to CICS and used when the remote process (or
transaction) is attached.

The EXTRACT PROCESS command allows an application
program to access conversation related data that is
specified to CICS when the program is attached. The
attach receiver does not have to execute an EXTRACT
PROCESS command unless it requires this information.

The ISSUE ABEND command allows an application
program to abend the conversation with the connected
LU6.2 system.

The ISSUE CONFIRMATION command allows an application
program to respond positively when the CONFIRM option
has been specified on a SEND command executed by a
process in a connected LU6.2 system.

The ISSUE ERROR command allows an application
program to inform a process in a connected LU6.2 system
that some program detected error has occurred. For
example, a remote CICS application is notified by having
EIBERR set, with EIBERRCD=X'0889'. The actions
required to recover from the error are the responsibility of
logic contained in both application programs. The
application program can use this command to respond
negatively when the CONFIRM option has been specified
on a SEND command executed by a process in a connected
LU6.2 system.

The WAIT CONVID command allows an application program
to ensure that any accumulated application data from a
SEND or CONNECT PROCESS command is transmitted to
the connected LU6.2 process before further processing
continues.

Session-oriented information

For LUS.2 programs, this information is available in fields
EIBSYNC, EIBSYNRB, EIBFREE, EIBRECV, EIBSIG, EIBCONF,
EIBERR, and EIBERRCD in the EIB, and should be
processed before further operations, such as SEND,
RECEIVE, CONVERSE, or FREE are performed on the
session.

Guidance on writing applications for LU6.2, including the
use of these fields and other fields in the EIB, is given in
the CICSIMVS Intercommunication Guide.

System/3

RECEIVE
{INTO(data-area)lsET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]
[ASIS]

Condition: LENGERR

SEND
FROM(data-area)
LENGTH(data-value)
[DEST(name)]
[WAIT]
[ASI~]
[CNOTCOMPL]

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[DEST(name)]
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Condition: LENGERR

System/370

Support and command syntax as for System/3.

Chapter 3.3. Terminal control 239

System/7

RECEIVE
{INTO(data-area)lsET(ptr-ref)}
LENGTH(data-area)
[PSEUDOBIN]1
[AS IS]

Condition: LENGERR

SEND
FROM(data-area)
LENGTH(data-value)
[DEST(name)]
[WAIT]
[PSEUDOBIN] 1
[ASIS]

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[DEST(name)]

Condition: LENGERR

ISSUE RESET

ISSUE DISCONNECT

1 Start-stop only

Transactions are normally initiated from the Systeml7 by
issuing a four-character transaction code which is
transmitted in BCD mode. Pseudobinary mode can be
used only while communicating with an active CICS
transaction; it cannot be used to initiate the transaction.
The message length is given as the number of words to be
transmitted (not as the number of characters).

When a transaction is initiated on a Systeml7, CICS
services that System/7 only for the duration of the
transaction; that is, to ensure efficient use of the line, any
other Systeml7s on the same line are locked out for the
duration of the transaction. CICS application programs for

240 CICS/MVS 2.1.2 Application Programmer's Reference

the multipoint System/7 should be designed with the
shortest possible execution time.

The first word (two characters) of every message received
by the System/7 must be an identification word, except
words beginning with "@"(X '20') which are reserved by
CICS.

When the PSEUDOBIN option is specified, the length of the
data area provided by the application program must be at
least twice that of the data to be read.

In the case of a System/7 on a dial-up (switched) line, the
System/7 application program must, initially, transmit a
four-character terminal identification. (This terminal
identification is generated during preparation of the TCT
through use of the DFHTCT TYPE=TERMINAL,
TRM I DNT = parameter specification.) CICS responds with
either a "ready" message, indicating that the terminal
identifier is valid and that the System/7 may proceed as if
it were on a leased line, or an INVALID TERMINAL
IDENTIFICATION message, indicating that the terminal
identifier sent by the System/7 did not match the
TRM I DNT = parameter specified.

Whenever CICS initiates the connection to a dial-up
Systeml7, CICS writes a null message, consisting of three
idle characters, prior to starting the transaction. If there is
no program resident in the System/7 capable of supporting
the Asynchronous Communication Control Adapter (ACCA),
BTAM error routines cause a data check message to be
recorded on the CICS (host) system console. This is
normal if the task initiated by CICS is to IPL the Systeml7.
Although the data check message is printed, CICS ignores
the error and continues normal processing. If a program
capable of supporting the ACCA is resident in the
Systeml7 at the time this message is transmitted, no data
check occurs.

When a disconnect is issued to a dial-up System/7, the
"busy" bit is sometimes left on in the interrupt status word
of the ACCA. If the line connection is reestablished by
dialing from the System/7 end, the 'busy' condition of the
ACCA prevents message transmission from the Systeml7.
To overcome this problem, the System/7 program must
reset the ACCA after each disconnect and before message
transmission is attempted. This can be done by issuing
the following instruction:

PWRI 8,8,3,8 RESET ACCA

This procedure is not necessary when the line is
reconnected by CICS (that is, by an automatically initiated
transaction).

2260 display station

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]
[LEAVEKB]

Condition: LENGERR

SEND
FROM(data-area)
LENGTH(data-value)
[CTLCHAR(data-value)]
[DEST(name)]
[LINEADDR(data-value)]
[WAIT]
[LEAVEKB]

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]
[CTLCHAR(data-value)]
[DEST(name)]
[LINEADDR(data-value)]

Condition: LENGERR

ISSUE RESET

ISSUE DISCONNECT

The LlNEADDR option specifies on which line of a 2260
screen writing is to begin. A line number in the range 1
through 12 must be provided in the application program.

2265 display station

Support and command syntax for the 2265 is as for the
2260 Display Station except that a line number in the
range 1 through 15 must be provided in the application
program.

2741 communication terminal

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: LENGERR, RDATT
(not TCAM)

SEND
FROM(data-area)
LENGTH(data-value)
[DEST(name)]
[WAIT]

Condition: WRBRK

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]
[DEST(name)]

Conditions: LENGERR, RDATT, WRBRK

ISSUE RESET

ISSUE DISCONNECT

Read attention

If the terminal operator presses the attention key on the
2741 after typing a message, it is recognized as a read
attention if:

• Read attention support is generated into the system.

• The message is read by a RECEIVE command.

When this occurs, control is transferred to a CICS read
attention exit routine, if it has been generated into the
system. This routine is a skeleton program that can be
tailored by the system programmer to carry out actions
such as the following:

• Perform data analysis or modification on a read
attention.

• Return a common response to the terminal operator
following a read attention.

Chapter 3.3. Terminal control 241

• Return a response and request additional input that
can be read into the initial input area or into a new
area.

• Request new I/O without requiring a return to the task ,
to request additional input.

When the read attention exit routine is completed, control
is returned to the application program at the address
specified in the HANDLE CONDITION RDATT command.
The return is made whenever one of the following occurs:

• The exit routine issues no more requests for input.

• The exit routine issues a RECEIVE request and the
operator terminates the input with a carriage return.
(If the operator terminates the input with an attention,
the exit routine is reentered and is free to issue
another RECEIVE request.)

If a HANDLE CONDITION RDATT command is not included
in the application program or read attention support has
not been generated, the attention is treated as if the return
key had been pressed.

Write break

If the terminal operator presses the attention key on the
2741 while a message is being received, it is recognized as
a write break if:

• Write break support is generated into the system by
the system programmer.

• A HANDLE CONDITION WRBRK command is active in
the application program.

When this occurs, the remaining portion of the message is
not sent to the terminal. The write is terminated as though
it were successful, and a new-line character (X 115 I) is sent
to cause a carrier return. Control is returned to the
application program at the address specified for the
WRBRK condition.

If a HANDLE CONDITION WRBRK command is not included
in the application program or if write break support has not
been generated, the attention is treated as an I/O error.

2770 data communication system

Support and command syntax for the 2770 is as for
System/3. The 2770 recognizes a read interrupt and
responds by transmitting the contents of the I/O buffer.
After the contents of the buffer have been transmitted, the
2770 responds to the next read continue with an EDT. If
the I/O buffer is empty, the 2770 transmits an EOT. CICS

242 CICS/MVS 2.1.2 Application Programmer's Reference

issues a read interrupt and read continue to relinquish use
of the line and to enable the application program to write
to the 2770.

Input from a 2770 consists of one or more logical records.
CICS provides one logical record for each read request to
the application program. The size of a logical record
cannot exceed the size of the I/O buffer. If the input spans
multiple buffers, multiple reads must be issued by the
application program.

The 2265 component of the 2770 Data Communication
System is controlled by data stream characters, not BTAM
macro instructions; appropriate screen control characters
should be included in the output area.

For 2770 input, data is deblocked to ETX, ETB, RS, and US
characters. These characters are moved with the data to
the input area but are not included in the data length;
characters such as NL, CR, and LF are passed in the input
area as data.

2780 data transmission terminal

Support and command syntax for the 2780 is as for
System/3. The 2780 recognizes a read interrupt and
responds by transmitting the contents of the I/O buffer.
After the contents of the buffer have been transmitted, the
2780 responds to the next read continue with an EDT. If
the I/O buffer is empty, the 2780 transmits an EDT. CICS
issues a read interrupt and read continue to relinquish use
of the line and to enable the application program to write
to the 2780.

~nput from a 2780 consists of one or more logical records.
CICS provides one logical record for each read request to
the application program. The size of a logical record
cannot exceed the size of the I/O buffer. If the input spans
multiple buffers, multiple reads must be issued by the
application program.

Output to a 2780 requires that the application program
contains an appropriate "escape sequence" for component
selection associated with the output message. (For
programming details, see the publication Component
Description: IBM 2780 Data Transmission Terminal.)

For 2780 input, data is deblocked to ETX, ETB, RS, and US
characters. These characters are moved with the data to
the input area but are not included in the data length;
characters such as NL, CR, and LF are passed in the input
area as data.

2980 general banking terminal system

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]
PASSBK

Conditions: LENGERR, NOPASSBKRD

SEND
FROM(data-area)
LENGTH(data-value)
[DEST(name)]
{PASSBKICBUFF}

Condition: NOPASSBKWR

Passbook control

All input and output requests to the passbook area of a
2980 are dependent on the presence of a passbook. The
PASSBK option is used to specify the passbook area. The
conditions NOPASSBKRD and NOPASSBKWR will occur on
input and output requests respectively when a passbook is
not present. These conditions can be handled by a
HANDLE CONDITION command and appropriate handling
routines.

If the passbook is present on an input request, the
application program generally writes back to the passbook
area to update the passbook. If the NOPASSBKWR
condition occurs, CICS allows immediate output to the
terminal. In a routine for the NOPASSBKWR condition, the
application program should send an error message to the
journal area of the terminal to inform the 2980 operator of
this error condition. To allow the operator to insert the
required passbook, CICS causes the transaction to wait
23.5 seconds before continuing.

On regaining control from CICS after sending the error
message, the application program can attempt again to
update the passbook when it has ensured that the print
element is positioned correctly in the passbook area. This
is generally accomplished by issuing two carrier returns
followed by the number of tabs required to move the print
element to the correct position. (See "The DFH2980
structure" later in the section.)

If the NOPASSBKWR condition occurs during the second
attempt to write to the passbook area, the application
program can send another error message or take some
alternative action (for example, place the terminal "out of
service").

The presence of the Auditor Key on a 2980 Administrative
Station Model 2 is controlled by the SEND PASSBK
command and may be used in a manner similar to that
described above.

Output control

The unit of transmission for a 2980 is called a segment. A
segment is equivalent to the buffer size of the 2972 Control
Unit. However, for the passbook and journal areas, CICS
allows an application program to send messages that
exceed the buffer size. For the passbook area, the
maximum length of message is limited to one line of a
passbook to avoid spacing (indexing) past the bottom of
the passbook. For the journal area, the maximum length of
message is specified in the LENGTH option of the SEND
command.

For example, consider a 2972 buffer size of 48 characters
and a 2980 Teller Station Model 4 passbook print area of
100 characterslline. The application program can send a
message of 100 characters to this area; CICS segments the
message to adjust to the buffer size. The application
program must insert the passbook indexing character
(X' 25') as the last character written in one output request
to the passbook area. This is done to control passbook
indexing and thereby achieve positive control of passbook
presence.

If a message contains embedded passbook index
characters, and segmentation is necessary because of the
length of the message, the output is terminated if the
passbook spaces beyond the bottom of the passbook; the
remaining segments are not printed.

Output to a common buffer

The SEND CBUFF command is used to transmit data to a
common buffer. The data is translated to the character set
of the receiving 2980 model. If more than one 2980 model
type is connected to the 2972 Control Unit, the lengths are
truncated if they exceed the buffer size.

The DFH2980 structure

The DFH2980 structure contains constants that may be
used when writing only COBOL or PLII application
programs for the 2980. The structure is obtained by
copying DFH2980 into the application program.

For COBOL, DFH2980 is copied into the working storage
section; for PLlI, DFH2980 is included using a %INCLUDE
statement.

The station identification is given in the field STATIONID,
whose value must be determined by the ASSIGN
command. To test whether a normal or alternate station is

Chapter 3.3. Terminal control 243

being used, the STATIONID field is compared with values
predefined in DFH2980. The values are:

STATION-#-A or STATION-#-N (COBOL)

(PL/I)

where # is an integer (0 through 9) and A and N signify
alternate and normal stations. (The break symbol is "-"
(minus) for COBOL, and "_" (underline) for PUL)

The teller identification on a 2980 Teller Station Model 4 is
given in the one-byte character field TELLERID. An
ASSIGN command must be used to determine the
TELLERID value.

Tab characters (X'05') must be included in the application
program. The number of tabs required to position the print
element to the first position of a passbook area is given in
the field NUMTAB. An ASSIGN command must be used to
determine the NUMTAB value. The value of NUMTAB is
specified by the system programmer and may be unique to
each terminal.

Other tab characters are inserted as needed to control
formatting.

Any of the DFH2980 values TAB-ZERO through TAB-NINE
for COBOL and PUI, may be compared with NUMTAB to
determine the number of tab characters that need to be
inserted in an output message to obtain correct positioning
of the print element. The tab character is included in
DFH2980 as TABCHAR.

Thirty special characters are defined in DFH2980.
Twenty-three of these can be referred to by the name
SPECCHAR-# or SPECCHARJI (for American National
Standard COBOL or PUI) where #is an integer (0 through
22). The seven other characters are defined with names
that imply their usage, for example, TABCHAR. For further
information on these thirty characters, see Appendix B,
"Transl ation tables for the 2980" on page 347.

Several other characters defined in DFH2980, such as
HOLDPCF or TCTIEPCR, are intended for use in application
programs using CICS macros and should not be required in
application programs using CICS commands.

244 CICS/MVS 2.1.2 Application Programmer's Reference

3270 information display system (8T AM or
TeAM)

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]
[ASIS]
[BUFFER] (not TCAM)

Condition: LENGERR

SEND
FROM(data-area)
LENGTH(data-value)
[OEST(name)] (TCAM only)
[WAIT]
[STRFIELOI[[ERASE]

[CTLCHAR(data-value)]]]

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]
[STRFIELOI[[ERASE]

[CTLCHAR(data-value)]]]

Condition: LENGERR

ISSUE PRINT

ISSUE COPY
TERMID(name)
[CTLCHAR(data-value)]
[WAIT]

Conditions TERMIOERR

ISSUE ERASEAUP
[WAIT]

ISSUE RESET

ISSUE DISCONNECT

(not TCAM)

(not TeAM)

3270 logical unit

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[ASIS]
[BUFFER]
[NOTRUNCATE]

Conditions: LENGERR, TERMERR

SEND
FROM(data-area)
LENGTH(data-value)
[WAIT]
[I NVITE I LAST]
[STRFIELOI[[ERASE]

[CTLCHAR(data-value)]]]
[OEFRESP]

Condition: TERMERR

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
[STRFIELOI[[ERASE]

[CTLCHAR(data-value)]]]
TOLENGTH(data-area)
[MAXLENGTH[(data-value)]]
[DEFRESP]
[NOTRUNCATE]

Conditions: LENGERR, TERMERR

ISSUE PRINT

Condition: TERMERR

ISSUE COPY
TERMIO(name)
[CTLCHAR(data-value)]
[WAIT]

Conditions: LENGERR, TERMERR

ISSUE ERASEAUP
[WAIT]

Condition: TERMERR

ISSUE DISCONNECT

3270 SCS printer logical unit

SEND
FROM(data-area)
LENGTH(data-value)
[DEST(name)]
[WAIT]
[INVITE I LAST]
[CNOTCOMPLloEFRESP]
[OEFRESP]
[STRFIELD]

Condition: TERMERR

CONVERSE
FROM{data-area)
FROMLENGTH{data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[MAXLENGTH[(data-value)]]
[OEST(name)]
[DEFRESP]
[STRFIELD]
[NOTRUNCATE]

Condition: TERMERR

ISSUE DISCONNECT

The SCS printer logical unit accepts a character string as
defined by SNA (Systems Network Architecture). Some
devices connected under SNA can send a signal which can
be detected by the HANDLE CONDITION SIGNAL command,
which in turn can invoke an appropriate handling routine.
If necessary, a WAIT SIGNAL command can be used to
make the application program wait for the signal. The PA
keys on a 3287 can be used in this way, or with a RECEIVE
command.

Chapter 3.3. Terminal control 245

3270-display logical unit (LUTYPE2) and
3270-prlnter logical unit (LUTYPE3)

RECEIVE
[INTO{data-area)ISET(ptr-ref)]
LENGTH{data-area)
[MAXLENGTH[(data-value)]]
[ASIS]
[BUFFER]
[NOTRUNCATE]

Conditions: LENGERR, TERMERR

SEND
FROM(data-area)
LENGTH(data-value)
[WAIT]
[INVITE I LAST]
[DEST(name)]
[STRFIELDI[[ERASE]

[CTLCHAR(data-value)]]]
[DEFRESP]

Condition: TERMERR

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
[STRFIELDI[[ERASE]

[CTLCHAR(data-value)]]]
TOLENGTH(data-area)
[MAXLENGTH[(data-value)]]
[DEST(name)]
[DEFRESP]
[NOTRUNCATE]

Condition: LENGERR, TERMERR

ISSUE PRINT

Condition: TERMERR

ISSUE ERASEAUP
[WAIT]

Condition: TERMERR

ISSUE DISCONNECT

246 CICS/MVS 2.1.2 Application Programmer's Reference

3600 finance communication system (BT AM)

RECEIVE
[INTO(data-area)ISET(ptr-ref)]
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Condition: LENGERR

SEND
FROM(data-area)
LENGTH(data-value)
[DEST(name)]
[WAIT]
[ASIS]

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]
[DEST(name)]

Condition: LENGERR

ISSUE RESET

ISSUE DISCONNECT

Input

The unit of transmission from a 3601 Finance
Communication Controller to CICS is a segment consisting
of the start-of-text data link control character (STX), the
one byte identification of the 3600 logical work station that
issued the processor write, the data, and either an
end-of-block (ETB) or an end-of-text (ETX) control
character.

A logical work station sends a message either in one
segment, in which case the segment ends with ETX, or in
more than one segment, in which case only the last
segment ends with ETX, all others ending with ETB.

The input area passed to the user-written application
program consists of the data only. The one-byte field
TCTTEDLM, which may be obtained by means of an
ASSIGN DELIMITER command, contains flags describing
the data-link control character (ETB, ETX, or IRS) that
ended the segment. The application program can issue
terminal control commands to read the data until it
receives a segment ending with ETX. If blocked data is

transmitted, it is received by CICS as blocks of segments.
Only the first segment in a block starts with the STX
control character, and all segments are separated by IRS
characters. None of the segments contain ETB or ETX
characters except the last, which has the ETX character.

For blocked input, the flags in TCTIEDLM only indicate end
of segment, not end of message. The CICS application
program still receives only the data, but user-defined
conventions may be required to determine the end of the
message.

The field TCTIEDLM also indicates the mode of the input,
either transparent or nontransparent. Blocked input is
nontransparent.

The terminal control program does not pass input
containing a 'start of header' (SOH) data link control
character to a user-written application program. If it
receives an SOH it sets an indicator in TCTIEDLM, passes
the input to the user exit in the terminal control program,
and then discards it.

Output

When an application program issues a SEND command, the
terminal control program determines, from the value
specified in the BUFFER parameter of the DFHTCT
TYPE=TERMINAL system macro, the number of segments
to be built for the message. It sends the message to the
3600 logical unit either in one segment consisting of a
start-of-text character (STX), the data, and an end-of-text
character (ETX); or in more than one segment, in which
case only the last ends with ETX, all others ending with
ETB.

The host input buffer of the 3600 controller and the input
segment of the receiving logical unit must be large enough
to accommodate the data sent by CICS. However, space
for the data link control characters need not be included.
The 3600 application program reads the data from the,
host, by means of an LREAD, until it has received the
entire message.

CICS system output messages begin with 'DFH' followed by
a four-byte message number and the message text. These
messages are sent in nontransparent mode. CICS
user-written application programs should not send
messages starting with "DFH" to the 3601.

Resend message

When a logical unit sends a message to the host and a
short-on-storage condition exists or the input is unsolicited
(the active task associated with the terminal has not
issued a read), the terminal control program sends a
"resend" message to the logical unit. The format of this
message is DFH1033 RE-ENTER followed by X 1 15 ' (a 3600
new line character) followed by the first eight bytes of the
text of the message being rejected. No message is sent to
the destinations CSMT or CSTL.

The first eight bytes of data sent to CICS can be used by
the 3600 application program to define a convention to
associate responses received from CICS with transactions
sent to the host, for example, sequence numbers could be
used.

If a CICS user-written application program has already
issued a SEND command when a resend situation occurs,
the resend message is not sent to the 3601 until the
user-written' application program message has been sent.
A 3600 logical unit cannot receive a resend message while
receiving a segmented message.

Only one resend message at a time can be queued for a
logical unit. If a second resend situation occurs before
CICS has written the first, a resend message, containing
the eight bytes of data that accompanied the second input
transaction from the 3600 logical unit, is sent.

The resend message is sent in transparent mode if the
input data from the 3601 to be retransmitted is received by
CICS in transparent mode. Otherwise it is sent in
nontransparent mode.

3600 pipeline logical unit

SEND
FROM(data-area)
LENGTH(data-value)
[WAIT]

Condition: TERMERR

ISSUE DISCONNECT

Chapter 3.3. Terminal control 247

3600 (3601) logical unit

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditionsl EOC, EODS, INBFMH,
LENGERR, SIGNAL, TERMERR

SEND
FROM{data-area)
LENGTH{data-value)
[LDC{name)IFMH]
[DEST(name)]
[WAIT]
[INVITE I LAST]
[CNOTCOMPLIDEFRESP]

Conditions: SIGNAL, TERMERR

CONVERSE
FROM{data-area)
FROMLENGTH{data-value)
[INTO{data-area)ISET{ptr~ref)]
TOLENGTH(data-area)
[LDC(name)IFMH]
[DEST(name)]
[DEFRESP]
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, EODS, INBFMH,
LENGERR, SIGNAL, TERMERR

WAIT SIGNAL

Conditionl SIGNAL

ISSUE DISCONNECT

Condition: SIGNAL

A logical device code (LOC) is a code that can be included
in an outbound FMH to specify the disposition of the data
(for example, to which subsystem terminal it should be
sent). Each code can be represented by a unique LOC
mnemonic.

The installation can specify up to 256 two-character
mnemonics for each TCTTE, and two or more TCTTEs can
share a list of these mnemonics. Corresponding to each
LOC mnemonic for each TCTTE is a numeric value (0
through 255).

248 CICS/MVS 2.1 ~2 Application Programmer's Reference

A 3600 device and a logical page size are also associated
with an LOC. "LOC" or "LOC value" is used in this
publication in reference to the code specified by the user.
"LOC mnemonic" refers to the two-character symbol that
represents the LOC numeric value.

When the LOC option is specified in the SEND command,
the numeric value associated with the mnemonic for the
particular TCTTE, is inserted in the FMH. The numeric
value associated with the LOC mnemonic is chosen. by the
installation, and is interpreted by the 3601 application
program.

3600 (3614) logical unit

RECEIVE
{INTO(data-area)lsET(ptr-ref)}
LENGTH{data-area)
[MAXLENGTH[{data-value)]]
[NOTRUNCATE]

Conditions: LENGERR, TERMERR

SEND
FROM{data-area)
LENGTH(data-value)
[DEST(name)]
[WAIT]
[INVITE I LAST]
[CNOTCOMPLIDEFRESP]

Condition. TERMERR

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[DEFRESP(name)]
[DEST(name)]
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditionsl LENGERR, TERMERR

ISSUE DISCONNECT

The data stream and communication format used between
a CICS application program and a 3614 is determined by
the 3614. The application program is therefore device
dependent when handling 3614 communications.

For further information about designing 3614 application
programs for CICS, see the CICSIOSIVS IBM
47001360013630 Guide.

3630 plant communication system

Support and command syntax as for the 3600 (3601)
Logical Unit and the 3600 Pipeline Logical Unit as
described earlier in this chapter for the 3600 Finance
Communication System.

3650/3680 host command processor logical
unit

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, LENGERR, TERMERR

SEND
FROM(data-area)
LENGTH(data-value)
[WAIT]
[INVITE I LAST]
[CNOTCOMPLloEFRESP]
[FMH]

Conditions: TERMERR

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[FMH]
[OEFRESP]
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: LENGERR, TERMERR

ISSUE DISCONNECT

3650 host conversational (3270) logical unit

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, LENGERR, TERMERR

SEND
FROM(data-area)
LENGTH(data-value)
[CTLCHAR(data-value)]
[WAIT]
[ERASE]
[INVITE I LAST]
[CNOTCOMPLloEFRESP]
[FMH]

Condition: TERMERR

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)lsET(ptr-ref)]
TOLENGTH(data-area)
[CTLCHAR(data-value)]
[ERASE]
[DEFRESP]
[FMH]
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: LENGERR, TERMERR

ISSUE PRINT

Condition: TERMERR

ISSUE ERASEAUP
[WAIT]

Condition: TERMERR

ISSUE DISCONNECT

Chapter 3.3. Terminal control 249

3650 host conversational (3653) logical unit

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, LENGERR, TERMERR

SEND
FROM(data-area)
LENGTH(data-value)
[WAIT]
[INVITEI LAST]
[CNOTCOMPLloEFRESP]

Condition: TERMERR

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[OEFRESP]
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, LENGERR, TERMERR

ISSUE DISCONNECT

250 CICS/MVS 2.1.2 Application Programmer's Reference

3650 interpreter logical unit

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, EODS, INBFMH,
LENGERR, TERMERR

SEND
FROM(data-area)
LENGTH(data-value)
[WAIT]
[I NVITE I LAST]
[DEFRESP]
[FMH]

Condition: TERMERR

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[DEFRESP]
[FMH]
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, EODS, INBFMH,
LENGERR, TERMERR

ISSUE LOAD
PROGRAM(name)
[CONVERSE]

Conditions: NONVAL, NOSTART, TERMERR

ISSUE EODS

Condition: TERMERR

ISSUE DISCONNECT

The ISSUE LOAD command specifies the name of the 3650
application program that is to be loaded.

The ISSUE EODS command can be used to send an
end-of-data-set function management header to the 3650.

3650 pipeline logical unit

Support and command syntax as for the 3600 Pipeline
Logical Unit.

3650/3680 full function logical unit

Support and command syntax as for the 3790 Full Function
Logical Unit.

3660 supermarket scanning system

Support and command syntax as for System/3.

3735 programmable buffered terminal

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOF (not TeAM), LENGERR

SEND
FROM(data-area)
LENGTH(data-value)
[DEST(name)]
[WAIT]
[ASIS]

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[DEST(name)]
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOF (not TCAM) , LENGERR

ISSUE RESET

ISSUE DISCONNECT

The 3735 Programmable Buffered Terminal may be
serviced by CICS in response to terminal-initiated input

(Autoanswer), or as a result of an automatic (Autocall) or
time-initiated transaction.

3735 transactions - autoanswer

The 3735 transaction is attached by CICS upon receipt of
input from a 3735. Data is passed to the application
program in 476-byte blocks; each block (one buffer) may
contain several logical records. The final block may be
shorter than 476 bytes; zero-length final blocks are not,
however, passed to the application program. If the block
contains several logical records, the application program
must perform any necessary deblocking and gathering of
partial logical records.

Input data from a 3735 should be spooled to an
intermediate data set (for example, an intrapartition
destination) to ensure that all data has been captured
before deblocking and processing that data.

The application program must follow 3735 conventions and
read to end-of-file before attempting to write FOPs (form
description programs) or data to the 3735. For this reason,
the application program must include a HANDLE
CONDITION command for the EOF condition. When control
passes to the EOF routine, FOPs or data may be written to
the 3735, or, optionally, CICS requested to disconnect the
line.

The 3735 may transmit the EOF condition immediately
upon connection of the line, in which case, a HANDLE
CONDITION command for the EOF condition must be issued
before any other terminal control commands.

The application program must format all special message
headers for output to the 3735 (for example, SELECTRIC,
POWERDOWN). If FOPs are to be transmitted to a 3735
with ASCII transmission code, the ASIS option must be
included in the SEND command for each block of FOP
records.

An ISSUE DISCONNECT command must be issued when all
output has been transmitted to the 3735. If the application
program ends during batch write mode before this
command is executed, CICS forces a 3735 'receive abort'
condition and all data just transmitted is ignored.

3735 transactions - autocall or
time-Initiated

In automatic or time-initiated transactions, all
considerations stated above apply when CICS dials a 3735,
except that EOF cannot occur.

CICS connects the line and allows the first terminal control
command to indicate the direction of data transfer. If this
first command is SEND and the 3735 has data to send, the
3735 causes the line to be disconnected.

Chapter 3.3. Terminal control 251

3740 data entry system

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOF (except TCAM),
ENDINPT (except TCAM) ,
LENGERR

SEND
FROM(data-area)
LENGTH(data-value)
[OEST(narne)]
[WAIT]
[ASIS]

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[DEST(narne)]
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Condition: LENGERR

ISSUE ENDFILE [ENDOUTPUT]

ISSUE END OUTPUT [ENDFILE]

ISSUE RESET

ISSUE DISCONNECT

In batch mode, many files are exchanged between the 3740
and CICS in a single transmission. The transmission of an
input batch must be complete before an output
transmission can be started.

On input, the EOF (end-of-file) condition is raised by CICS
when a null block (indicating the end of a physical file) is
received from the 3740. A HANDLE CONDITION EOF
command should be included to specify that processing of
the file is to continue. Eventually, the ENDINPUT condition
is raised by CICS when all input has been received. No
more RECEIVE commands will be executed and a HANDLE

252 CICS/MVS 2.1.2 Application Programmer's Reference

CONDITION ENDINPUT command should be included to
specify that control is to be returned to CICS so that the
3740 can be set to receive data.

On output, the ISSUE ENDFILE and ISSUE ENDOUTPUT
commands are used to indicate the end-of-file and
end-of-output conditions, respectively, to the 3740. These
two conditions may be specified in one command if
required, for example: ISSUE ENDFILE ENDOUTPUT.

3767 interactive logical unit

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, LENGERR, SIGNAL,
TERMERR

SEND
FROM(data-area)
LENGTH(data-value)
[DEST(narne)]
[WAIT]
[INVITE I LAST]
[CNOTCOMPLloEFRESP]

Conditions: SIGNAL, TERMERR

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[DEST(narne)]
[DEFRESP]
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, LENGERR, SIGNAL,
TERMERR

WAIT SIGNAL

Condition: SIGNAL

ISSUE DISCONNECT

Condition: SIGNAL

3770 batch logical unit

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, EODS, INBFMH,
LENGERR, SIGNAL, TERMERR

SEND
FROM(data-area)
LENGTH(data-value)
[DEST(name)]
[WAIT]
[INVITE I LAST]
[CNOTCOMPLIDEFRESP]
[FMH]

Conditions: SIGNAL, TERMERR

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[DEST(name)]
[DEFRESP]
[FMH]
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, EODS, INBFMH,
LENGERR, SIGNAL, TERMERR

WAIT SIGNAL

Condition: SIGNAL

ISSUE DISCONNECT

Condition: SIGNAL

3770 Interactive logical unit

Support and command syntax for the 3770 interactive
logical unit is as for the 3767 Interactive Logical Unit.

3770 full function logical unit

Support and command syntax for the 3770 full function
logical unit is as for the 3790 Full Function Logical Unit.

3780 communications terminal

Support and command syntax for the 3780 communication
terminal is as for the System/3.

Chapter 3.3. Terminal control 253

3790 full function logical unit

RECEIVE
{INTO(data-area)lsET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, EODS, INBFMH,
LENGERR, SIGNAL, TERMERR

SEND
FROM(data-area)
LENGTH(data-value)
[DEST(name)]
[WAIT]
[INVITE I LAST] .
[CNOTCOMPLIDEFRESP]
[FMH]

Conditions: SIGNAL, TERMERR

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[DEST(name)]
[FMH]
[DEFRESP]
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, EODS, INBFMH,
LENGERR, SIGNAL, TERMERR

WAIT SIGNAL

Condition: SIGNAL

ISSUE DISCONNECT

Condition: SIGNAL

254 CICS/MVS 2.1.2 Application Programmer's Reference

3790 Inquiry logical unit

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, EODS, INBFMH,
LENGERR, TERMERR

SEND
FROM(data-area)
LENGTH{data-value)
[DEST(name)]
[WAIT]
[INVITE I LAST]
[CNOTCOMPLIDEFRESP]
[FMH]

Condition: TERMERR

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[DEST(name)]
[FMH]
[DEFRESP]
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: EOC, EODS, INBFMH,
LENGERR, TERMERR

ISSUE DISCONNECT

3790 SCS printer logical unit

SEND
FROM(data-area)
LENGTH(data-value)
[DEST(name)]
[WAIT]
[INVITE I LAST]
[CNOTCOMPLIDEFRESP]
[DEFRESP]

Condition: TERMERR

ISSUE DISCONNECT

3790 (3270-dlsplay) logical unit

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[ASIS]
[BUFFER]
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: LENGERR, TERMERR

SEND
FROM(data-area)
LENGTH(data-value)
[DEST(name)]
[CTLCHAR(data-value)]
[WAIT]
[ERASE]
[INVITE I LAST]
[DEFRESP]

Condition: TERMERR

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[DEST(name)]
[DEFRESP]
[CTLCHAR(data-value)]
[ERASE]
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Conditions: LENGERR, TERMERR

ISSUE PRINT

Condition: TERMERR

ISSUE ERASEAUP
[WAIT]

Condition: TERMERR

ISSUE DISCONNECT

Chapter 3.3. Terminal control 255

3790 (3270-printer) logical unit

SEND
FROM(data-area)
LENGTH(data-value)
[CTLCHAR(data-value)]
[WAIT]
[ERASE]
[INVITE I LAST]
[OEFRESP]

Condition: TERMERR

ISSUE PRINT

Condition: TERMERR

ISSUE ERASEAUP
[WAIT]

Condition: TERMERR

ISSUE DISCONNECT

4700 finance communication system

Support and command syntax for the 4700 Finance
Communication System is as for the 3600 Finance
Communication System.

256 CICS/MVS 2.1.2 Application Programmer's Reference

7770 audio response unit

RECEIVE
{INTO(data-area)ISET(ptr-ref)}
LENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Condition: LENGERR

SEND
FROM(data-area)
LENGTH(data-value)
[OEST(name)]
[WAIT]

CONVERSE
FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
TOLENGTH(data-area)
[MAXLENGTH[(data-value)]]
[NOTRUNCATE]

Condition: LENGERR

ISSUE RESET

ISSUE DISCONNECT

CICS cannot distinguish between special codes
(characters) entered at audio terminals (for example, the
2721 Portable Audio Terminal); however, an application
program can make use of these codes. The special codes
that can be entered from a 2721 are as follows:

Key

CALL END
CNCL

VERIFY
RPT
EXEC
F1
F2
F3
F4
F5
ee
eee
!DENT

Code(hex)

37
18
3B or 7B
20
3D
26
B1
B2
B3
B4
85
Ae
3B or Be
11, 12, 13, or 14
plus two other characters

For further information concerning the 2721, see the
publication IBM 2721 Portable Audio Terminal Component
Description.

The special codes AO and 3B (or BO) are also generated by
the keys * and # respectively of a "Touch-Tone" telephone.
(Touch-Tone is the trademark of the American Telephone
and Telegraph Company.)

If the SET option has been specified in the associated
command, codes 26, 37, and 3B (each of which causes a
hardware interrupt) will immediately follow the data, but
will not be included in the value set by the LENGTH option.

If the end-of-inquiry (EOI) Disable Feature (Feature No.
3540) is installed on the 7770 Model 3, the option of
including either or both # and 000 as data is available.

If, after receiving at least one code from a terminal, no
other codes have been received by the 7770 for a period of
five seconds, the 7770 generates an EOI hardware
interrupt that ends the operation.

Terminal control options

ASIS
for System/370, System/3, System/7, 2770, 2780, and
3740: indicates that output is to be sent in transparent
mode (with no recognition of control characters and
accepting any of the 256 possible combinations of
eight bits as valid transmittable data).

For System/7: indicates that the data being written or
read is not to be translated.

For 3735: prevents translation of the Form Description
Program (FOP) records that are to be transmitted to a
3735 using ASCII code.

For 3270 and VTAM terminals: specifies a temporary
override of the uppercase translation feature of CICS
to allow the current task to receive a message
containing both uppercase and lowercase data.

This option has no effect on the first RECEIVE
command of a transaction, as terminal control will
perform a read initial and use the terminal defaults to
translate the data.

This option has no effect if the screen contains data
prior to a transaction being initiated. This data will be
read and translated in preparation for the next task
and the first RECEIVE command in that task will
retrieve the translated data.

ATTACHID(name)
specifies, for a BUILD ATTACH command, that the set
of values specified is to be placed in an attach header
control block identified by the specified name
(maximum of eight characters).

specifies, for a SEND or CONVERSE command, that an
attach header (created by a BUILD ATTACH command)
is to precede, and be concatenated with, the user data
supplied in the FROM option. 'Name' (maximum of
eight characters) identifies the attach header control
block to be used in the local task.

specifies, for an EXTRACT ATTACH command, that
values are to be retrieved from an attach header
control block. 'Name' (maximum of eight characters)
identifies this control block to the local task. If the
option is omitted, the attach header control block to be
used is that associated with the facility named in the
SESSION option.

BUFFER
specifies that the contents of the 3270 buffer are to be
read, beginning at buffer location one and continuing
until all contents of the buffer have been read. All
character and attribute sequences (including nulls)
appear in the input data stream in the same order that
they appear in the 3270 buffer.

CBUFF
specifies that data is to be written to a common buffer
in a 2972 Control Unit. The WAIT option is implied.

CONFIRM
indicates that an application using a synchronization
level 1 or 2 conversation requires a response from the
remote application. A remote CICS application can
respond positively by executing an ISSUE
CONFIRMATION command, or negatively, by executing
an ISSUE ERROR command, in which case the sending
application will have EIBERR and EIBERRCD set. CICS
will not return control to the sending application until
the response is received.

CONVERSE
specifies that the 3650 application program will
communicate with the host processor. If this option is
not specified, the 3650 application program cannot
communicate with the host processor.

CONVI D(data-area)
specifies the symbolic identifier (maximum of four
characters) of an LUTYPE6.2 conversation. This option
specifies the alternate facility to be used. If this option
is omitted, the principal facility for the task will be
used.

CTLCHAR(data-value)
specifies a one-byte write control character (WCC) that
controls a SEND command, or the copy control
character (CCC) that controls an ISSUE COPY
command, for a 3270. A COBOL user must specify a
data area containing this character. If the option is
omitted from a SEND command, all modified data tags
are reset to zero and the keyboard is restored. If the
option is omitted from an ISSUE COpy command, the
contents of the entire buffer (including nulls) are
copied.

DATASTR {(name) I(data-area)}
this corresponds to the data stream profile field,
ATTDSP, in an LUTYPE6.1 attach FMH.

For communication between two CICS systems, no
particular significance is attached by CICS to the data

Chapter 3.3. Terminal control 257

stream profile field in an attach FMH. For most CICS
applications, the option may be omitted when a value
of "user defined" will be assumed.

For communication between a CICS system and
another subsystem, see the manuals for the
subsystem for information on how to use the data
stream profile field in an attach FMH.

When EIBATT is set during execution of a RECEIVE or
CONVERSE command, the EXTRACT ATTACH
command may be used to examine the data stream
profile field received in the attach FMH.

The value is halfword binary; only the low-order byte
is used. If this option is omitted, "user defined" is
assumed. The bits in the binary value are used as
follows:

8-7 reserved - must be set to
zero

8-11 eeee - user defined
1111 - SCS data stream
111e - 327e data stream
11e1 - structured field
11SS - logical record

management

12-15 defined by the user if
bits 8-11 are set to esse;
otherwise reserved (must
be set to zero).

A value of "structured field" indicates that chains
begin with four bytes of data that are used to interpret
the following data; the four bytes consist of overall
length (2 bytes), class identifier (1 byte), and subclass
identifier (1 byte). A value of "logical record
management" indicates that chains can be split into
separate fields by the data receiver.

These values may be used for communication between
a CICS system and another subsystem; for further
details of structured fields and logical record
management, see the manuals for the subsystem.

If the option is omitted from the BUILD ATTACH
command, a value of "user defined" is assumed.

DEFRESP
indicates that a definite response is required when the
output operation has been completed.

DEST(name)
specifies the four-byte symbolic name of the TCAM
destination to which the message is to be sent. This
option is meaningful only for terminals for which
DEVICE = TCAM has been specified in the DFHTCT
TYPE = SDSCI system macro.

ERASE
specifies that the screen is to be erased and the
cursor returned to the upper left corner of the screen
before writing occurs. Normally, ERASE should be

258 CICS/MVS 2.1.2 Application Programmer's Reference

specified in the first output command of a transaction.
This will clear the screen ready for the new output
data.

However, when switching from one screen size to
another on a transaction basis, bear in mind that if
ERASE is not specified in the first output command of
the transaction, the screen size will be unchanged
from its previous setting, that is, the previous
transaction setting, or the default screen size if the
CLEAR key has been pressed.

FMH
specifies that a function management header has been
included in the data that is to be written. If the
ATTACHID option is specified as well, the
concatenated FMH flag will be set in the attach FMH.

FROM(data-area)
specifies the data that is to be written to the terminal
or logical unit. For the ISSUE PASS command it
contains the logon user data that is to be passed to
the application named in the LUNAME option. This
option may be omitted if ATTACHID is specified on an
LUTYPE6.1 command, or if INVITE, CONFIRM, or LAST
is specified on an LUTYPE6.2 SEND command.

FROMLENGTH(data-value)
see LENGTH(parameter}. The FROM LENGTH option of
the CONVERSE command is equivalent to the LENGTH
option of a SEND command.

I NTO(data-area)
specifies the receiving field for the data read from the
terminal or logical unit.

INVITE
specifies that the next terminal control command to be
executed for this facility is a RECEIVE. This allows
optimal flows to occur.

IUTYPE{(name)l(data-area)}
this corresponds to the interchange unit field, ATTIU,
in an LUTYPE6.1 attach FMH.

For communication between two CICS systems, no
particular significance is attached by CICS to the
interchange unit field in an attach FMH. For most
CICS applications the option may be omitted, when a
value of "multiple chain" will be assumed.

For communication between a CICS system and
another subsystem, .. see the manuals for the
subsystem for information on how to use the
interchange unit field in an attach FMH.

When EIBATT is set during execution of a RECEIVE or
CONVERSE command, the EXTRACT ATTACH
command may be used to examine the interchange
unit field received in the attach FMH.

The value is halfword binary; only the low-order 7 bits
being used. The bits in the binary value are used as
follows:

0-10 reserved - must be set to
zero

11 8 - not end of multi chain
interchange unit

1 - end of multichain
interchange unit

12,13 reserved - must be set to
zero

14,15 a0 - multi chain interchange
unit

81 - single chain
interchange unit

10 - reserved
11 - reserved

If the option is omitted from the BUILD ATTACH
command, values of "not end of multichain
interchange unit" and "multiple chain" are assumed.

LAST
specifies that this is the last output operation for a
transaction and therefore the end of a bracket

LDC(name)
specifies the two-character mnemonic used to
determine the appropriate logical device code (LDC)
numeric value. The mnemonic represents an LDC
entry in the DFHTCT TYPE = LDC macro.

LEAVEKB
specifies that the keyboard is to remain locked at the
completion of the data transfer.

LENGTH(parameter)
specifies the length (as a halfword binary value) of the
data transmitted by RECEIVE and SEND commands.

For a RECEIVE command with the INTO option, but
without the MAXLENGTH option, the parameter must
be a data area that specifies the maximum length that
the program will accept If the value specified is less
than zero, zero is assumed. If the length of the data
exceeds the value specified, but the NOTRUNCATE
option is not specified, the data is truncated to that
value and the LENGERR condition occurs. When the
data has been received, the data area is set to the
original length of the data.

For a RECEIVE command with the SET option, the
parameter must be a data area. When the data has
been received, the data area is set to the length of the
data.

For a SEND command, the parameter must be a data
value that is the length of the data that is to be
written.

For an ISSUE PASS command, the parameter is a data
value that is the length of the data specified in the
FROM option.

LlNEADDR(data-value)
specifies that the writing is to begin on a specific line
of a 2260/2265 screen. The data value is a halfword
binary value in the range 1 through 12 for a 2260, or 1
through 15 for a 2265.

LUNAME(data-area)
specifies the name of the VTAM application to which
the terminal is to be passed.

MAXLENGTH(data-value)
specifies, as a halfword binary value, the maximum
amount of data that CICS is to recover in response to
a RECEIVE or CONVERSE command. If INTO is
specified, MAXLENGTH will override the use. of
LENGTH and TOLENGTH as an input to CICS. If SET is
specified, MAXLENGTH provides a means whereby the
program can limit the amount of data it receives at
one time. If the length of data exceeds the value
specified and the NOTRUNCATE option is not present,
the data is truncated to that value and the LENGERR
condition occurs. The data area specified in the
LENGTH or TOLENGTH option is set to the original
length of data.

If the length of data exceeds the value specified and
the NOTRUNCATE option is present, CICS will retain
the remaining data and use it to satisfy subsequent
RECEIVE commands. The data area specified in the
LENGTH or TOLENGTH option is set to the length of
data returned.

If no operand is coded for MAXLENGTH, CICS will
default a value in the same way that it currently
defaults a value for the LENGTH option if this is
omitted.

NETNAME(name)
specifies the eight-character name of the logical unit in
the VTAM network.

NOQUEUE
specifies that the request to allocate a session or a
system is not to be queued when a suitable session or
system cannot be acquired immediately. The
SESSBUSY or SYSBUSY condition will be raised and it
will be handled as described on page 43.

NOSUSPEND
is an alternative keyword for NOQUEUE. It means the
same.

NOTRUNCATE
specifies that when the data available exceeds the
length requested in a RECEIVE or CONVERSE
command, the remaining data is not to be discarded
but is to be retained for retrieval by subsequent
RECEIVE commands.

PASSBK
specifies that communication is with a passbook at a
2980. The WAIT option is implied.

Chapter 3.3. Terminal control 259

PIPLENGTH(parameter)
for a CONNECT PROCESS command, parameter is a
data value that specifies the total length of the list
specified by PIPLIST. Its format is halfword binary.

For an EXTRACT PROCESS command, parameter is a
data area into which is returned the total length of the
PIP (process initialization parameter) list. Its format is
halfword binary.

PIPLIST(parameter)
for a CONNECT PROCESS command, parameter is a
data area containing the PIP data that is to be sent to
the remote system. The PIP list consists of variable
length records, each containing a single PIP.

For an EXTRACT PROCESS command, parameter is a
pointer reference that is set to the address of a
CICS-provided data area containing a PIP list. This list
contains variable length records in the same format as
the list in the CONNECT PROCESS command. A
returned value of zero means that no PIP data has
been received by CICS.

PROCESS{(name)l(data area)}
this corresponds to the process name, ATIDPN, in an
LU6.1 attach FM H.

For communication between two CICS systems, a
transaction running in one system can acquire a
session to the second system and can identify the
transaction to be attached; in the second system the
identification is carried in the first chain of data sent
across the session.

In general, the first four bytes of data will identify the
transaction to be attached. However an attach FMH,
identifying the transaction to be attached, may be built
and sent; the PROCESS option on the BUILD ATIACH
command is used to specify the transaction name.
(The receiving CICS system will use just the first 4
bytes of the process name as a transaction name).

No significance is attached by CICS to process names
in attach FMHs sent in chains of data other than the
first.

For communication between a CICS system and
another subsystem, see the manuals for the
subsystem for information on how to use the process
name field in an attach FMH.

When EIBATI is set during execution of a RECEIVE or
CONVERSE command, the EXTRACT ATIACH
command may be used to examine the process name
received in the attach FMH.

PROCLENGTH(data-area)
specifies, on a CON N ECT PROCESS command, the
length (as a halfword binary value) of the process
name specified by the PROCNAME option. On an
EXTRACT PROCESS command, it specifies a halfword
data area that is set by CICS to the length of the
process name.

260 CICS/MVS 2.1.2 Application Programmer's Reference

PROCNAME{(name)l(data area)}
on a CONNECT PROCESS command, it specifies the
process (in CICS terms, the transaction) that is to be
connected in the remote system.

On an EXTRACT PROCESS command, it specifies the
data area into which the process name specified by
the remote system which caused the task, is to be
started. The data area must be 32 bytes long. The
process name will be padded on the right with blanks
if it is shorter that 32 bytes.

PROFILE(name)
specifies the name (maximum of eight characters) of a
set of session processing options, held in the PCT, that
are to be used during execution of terminal control
commands for the session specified in the SYSID or
SESSION options. If this option is omitted, a set of
processing options, called DFHCICSA, will be selected.

PROGRAM(name)
specifies the name (maximum of eight characters) of
the 3600 application program that is to be loaded.

PSEUDOBIN
specifies that the data being written or read is to be
translated from System/7 pseudobinary representation
to hexadecimal on a RECEIVE command or from
hexadecimal to pseudobinary on a SEND command.

QUEUE{(name)l(data-area)}
this corresponds to the queue name, ATIDQN, in an
attach FMH.

For communication between two CICS systems, no
significance is attached by CICS to the queue name in
an attach FMH.

For communication between a CICS system and
another subsystem, see the manuals for the
subsystem for information on how to use the queue
name field in an attach FMH.

When EIBATI is set during execution of a RECEIVE or
CONVERSE command, the EXTRACT ATIACH
command may be used to examine the queue name
received in the attach FMH.

RECFM{(name)l(data area)}
this corresponds to the deblocking algorithm field,
ATIDBA, in an LU6.1 attach FMH.

For communication between two CICS systems, no
particular significance is attached by CICS to the
deblocking algorithm field in an attach FMH. For most
CICS applications, the option may be omitted when a
value of "chain of RUs" will be assumed.

For communication between a CICS system and
another subsystem, see the manuals for the
subsystem for information on how to use the
deblocking algorithm field in an attach FMH.

When EIBATI is set during execution of a .RECEIVE or
CONVERSE command, the EXTRACT ATIACH

command may be used to examine the deblocking
algorithm field received in the attach FMH.

The value is halfword binary; only the low-order 8 bits
being used. The bits in the binary value are used as
follows:

0-7 reserved - must be set to
zero

8-15 X'00' - reserved
X' 01 1 - variable length

variable blocked
X' 02 1 - reserved
X'03' - reserved
X' 04' - chain of RUs
X'05 1

to X'FF' - reserved

If the option is omitted from the BUILD ATTACH
command, a value of "chain of RUs" is assumed.

RESOURCE{(name)l(data-area)}
this corresponds to the resource name, ATTPRN, in an
LUS.1 attach FMH.

For communication between two CICS systems, no
significance is attached by CICS to the resource name
in an attach FMH.

For communication between a CICS system and
another subsystem, see the manuals for the
subsystem for information on how to use the resource
name field in an attach FMH.

When EIBATT is set during execution of a RECEIVE or
CONVERSE command, the EXTRACT ATTACH
command may be used to examine the resource name
received in the attach FMH.

RPROCESS{(name)l(data-area)}
this corresponds to the return process name,
ATTRDPN, in an LUS.1 attach FMH.

For communication between two CICS systems, no
significance is attached by CICS to the return process
name in an attach FMH.

For communication between a CICS system and
another subsystem, see the manuals for the
subsystem for information on how to use the return
process name field in an attach FMH.

When EIBATT is set during execution of a RECEIVE or
CONVERSE command, the EXTRACT ATTACH
command may be used to examine the return process
name received in the attach FMH.

RRESOURCE{(name)l(data-area)}
this corresponds to the return resource name,
ATTRPRN, in an LUS.1 attach FMH.

For communication between two CICS systems, no
significance is attached by CICS to the return resource
name in an attach FMH.

For communication between a CICS system and
another subsystem, see the manuals for the

subsystem for information on how to use the return
resource name field in an attach FMH.

When EIBATT is set during execution of a RECEIVE or
CONVERSE command, the EXTRACT ATTACH
command may be used to examine the return resource
name received in the attach FMH.

SESSION(name)
specifies the symbolic identifier (maximum of four
characters) of a session TCTTE. This option specifies
the alternate session to be used. If this option is
omitted, the principal facility for the task will be used.

SET(ptr-ref)
specifies the pointer reference that is to be set to the
address of the data read from the terminal or logical
unit.

STRFIELD
specifies that the data area specified in the FROM
option contains structured fields. If this option is
specified, the contents of all structured fields must be
handled by the application program. The CONVERSE
command, rather than a SEND command, must be
used if the data area contains a read partition
structured field. (Structured fields are described in the
CICSIOSIVS IBM 3270 Data Stream Device Guide.)
CTLCHAR and ERASE are mutually exclusive with
STRFIELD, and their use with STRFIELD will generate
an error message.

SYNC LEVEL {(data-area Idata-value)}
specifies, on a CONNECT PROCESS command, as a
halfword binary value, the synchronization level for
the current conversation. The possible values are: 0
none, 1 commit only, 2 all. On an EXTRACT PROCESS
command, specifies a halfword data area that is set by
CICS to the SYNC LEVEL value. For further information
about synchronization levels see the CICSIMVS
Intercommunication Guide.

SVSID{(name)l(data-area)}
specifies the name (maximum of four characters) of a
system TCTSE. This option specifies that one of the
sessions to the named system is to be allocated.

When used with the EXTRACT TCT command, this
option specifies the variable to be set to the
equivalent local name of the system.

TERMIO{(name)/(data-area)}
specifies the name (up to four characters in length) of
the terminal whose buffer is to be copied. The
terminal must have been defined in the TCT.

When used with the EXTRACT TCT command this
option specifies the variable to be set to the
equivalent local name of the terminal.

TOLENGTH(data-area)
see LENGTH(parameter). The TOLENGTH option of the
CONVERSE command is equivalent to the LENGTH
option of a RECEIVE command.

Chapter 3.3. Terminal control 261

WAIT
specifies that processing of the command must be
completed before any subsequent processing is
attempted.

If the WAIT option is not specified, control is returned
to the application program once processing of the
command has started. A subsequent input or output
request (terminal control, BMS, or batch data
interchange) to the terminal associated with the task
will cause the application program to wait until the
previous request has been completed.

Terminal control exceptional conditions

Some of the following exceptional conditions may occur in
combination with others. CICS checks for these conditions
in the following order: 1 EODS, 2 INBFMH, 3 EOC. If more
than one of these conditions occurs, only the first one
found to be present is passed to the application program.

However, EIBRCODE will be set to indicate all the
conditions that have occurred.

CBIOERR
occurs if the named set of terminal-control processing
options cannot be found.

Default action: terminate the task abnormally.

ENDINPT

EOC

occurs when an end-of-input indicator is received.

Default action: terminate the task abnormally.

occurs when a request/response unit (RU) is received
with the end-of-chain indicator set. Field EIBEOC also
contains this indicator.

Default action: ignore the condition.

EODS

EOF

occurs when an end-of-data-set indicator is received.

occurs when an end-of-file indicator is received.

Default action: terminate the task abnormally.

IGREQCD
occurs when an attempt is made to execute a SEND or
CONVERSE command after a SIGNAL data-flow control
command with an RCD (request change direction) code
has been received from an LUTYPE4 logical unit.

Default action: terminate the task abnormally.

INBFMH
occurs if a request/response unit (RU) contains a
function management header (FMH). Field EIBFMH
contains this indicator and it should be used in
preference to INBFMH. The IGNORE CONDITION
command can be used to ignore the condition.

262 CICS/MVS 2.1.2 Application Programmer's Reference

Default action: terminate the task abnormally.

INVREQ
occurs, for various commands, as follows:

• ALLOCATE - the LU specified is already
allocated.

• FREE - the LU specified is in the wrong state.

• CONNECT PROCESS - SYNCLVL 2 has been
requested, but cannot be supported on the session
in use.

• EXTRACT ATTACH - invalid data.

• SEND - the CONFIRM option has been specified
but LU6.2 conversation is not SYNCLVL 1.

• EXTRACT TCT - invalid NETNAME.

• EXTRACT PROCESS - invalid CONVID.

INVREQ also occurs if:

• An invalid command has been issued for the
terminal or LU in use.

• An invalid command has been issued for the
LU6.2 conversation type in use.

Default action: terminate the task abnormally.

LENGERR
occurs, for a RECEIVE or CONVERSE command, if data
is discarded by CICS because its length exceeds the
maximum the program will accept and the
NOTRUNCATE option is not specified.

Occurs also if an out of range value is supplied in the
LENGTH option on the SEND command, the
FROMLENGTH option on the CONVERSE command, or
the PROCLENGTH option on the CONNECT PROCESS
command.

This condition will also occur if:

• The value specified in the PIPLENGTH option is
less than zero.

• The value specified in the PIPLENGTH option
exceeds the CICS implementation limit of 32,767.

• A PIP length element has a value less than 4.

• The sum of the length elements in the PIPLIST
does not equal the value specified by PI PLENGTH.

Default action: terminate the task abnormally.

NONVAL
occurs if a 3650 application program name is invalid.

Default action: terminate the task abnormally.

NOPASSBKRD
occurs if no passbook is present on an input operation.

NOPASSBKWR
occurs if no passbook is present on an output
operation.

NOSTART
the requested 3650 application program.

Default action: terminate the task abnormally.

NOTALLOC
occurs if the facility specified in the command is not
owned by the application.

Default action: terminate the task abnormally.

ROATT
occurs if a RECEIVE command is terminated by the
attention (ATTN) key rather than the return key.

Default action: ignore the condition.

SESSBUSY
occurs if the request for a session cannot be serviced
immediately.

Default action: queue the request until a session is
available.

SESSIONERR
occurs if the name specified in the SESSION option of
the ALLOCATE command is not that of a session
TCTTE, or if the session cannot be allocated because it
is out of service ..

Default action: terminate the task abnormally.

SIGNAL
control command is received from a logical unit or
session. It is raised by execution of the next SEND,
RECEIVE, or WAIT TERMINAL command that refers to
the logical unit or session. It is raised also by
execution of a WAIT SIGNAL command, in which case
the data-flow control command has been received
from the principal facility. EIBSIG will always be set
when an inbound signal is received.

Default action: ignore the condition.

SVSBUSY
occurs if the request for a session cannot be serviced
immediately.

Default action: queue the request until a session is
available.

SYSIOERR
occurs if CICS is unable to provide the application
program with a suitable session. This will occur if:

1. The name specified in the SYSID option is not
recognized by CICS, or

2. The mode name derived from the PROFI LE option
is not one of the mode names defined for the
LU6.2 system entry, or

3. All of the sessions in the group specified by SYSID
and mode name are out of service, or if all
sessions are out of service.

Default action: terminate the task abnormally.

TERMERR
occurs for a terminal related error, such as a session
failure. This condition applies to VTAM-connected
terminals only. Because of the asynchronous nature
of this condition, the application program should
check, using CONFIRM or SYNCPOINT, to make sure
any errors still outstanding have been resolved before
it relinquishes control.

If you want to handle this condition, you must first
issue a FREE command to free the session. Failure to
do this will result in an INVREQ condition, and an
abend code ATCV if the condition is not handled.

Default action: terminate the task abnormally with
abend code ATN I.

TERMIOERR
occurs if the specified terminal identifier cannot be
found in the terminal control table (TCT).

Default action: terminate the task abnormally.

WRBRK
occurs if a SEND command is terminated by the
attention key.

Default action: ignore the condition.

Chapter 3.3. Terminal control 263

Chapter 3.4. Batch data interchange

The CICS batch data interchange program provides for
communication between an application program and a
named data set (or destination) that is part of a batch data
interchange logical unit in an outboard controller, or with a
selected medium on a batch logical unit or an LUTYPE4
logical unit. This medium indicates the required device
such as a printer or console.

The term "outboard controller" is a generalized reference
to a programmable subsystem, such as the IBM 3770 Data
Communication System, the IBM 3790 Data Communication
System, or the IBM 8100 System running DPCX, which uses
SNA protocols. (Details of SNA protocols and the data sets
that can be used are given in the CICSIOSIVS IBM
37671377016670 Guide and CICSIOSIVS IBM
37901373018100 Guide.)

Batch data interchange commands are provided to:

• Initiate transfer of a data set to the CICS application
program (ISSUE QUERY).

• Read a record from a data set or read data from an
input medium (ISSUE RECEIVE).

• Transmit data to a named data set or to a selected
medium (ISSUE SEND).

• Add a record to a data set (ISSUE ADD).

• Update (replace) a record in a data set (ISSUE
REPLACE).

• Delete a record from a data set (ISSUE ERASE).

• Terminate processing of a data set (ISSUE END).

• Terminate processing of a data set abnormally (ISSUE
ABORT).

• Request the next record number in a data set (ISSUE
NOTE).

• Wait for an operation to be completed (ISSUE WAIT).

Where the controller is an LUTYPE4 logical unit, only the
ISSUE ABORT, ISSUE END, ISSUE RECEIVE, ISSUE SEND,
and ISSUE WAIT commands can be used.

Where the data set is a DPCX/DXAM data set, only the
ISSUE ADD, ISSUE ERASE, and ISSUE REPLACE
commands can be used.

The HANDLE CONDITION command is used to deal with
any exceptional conditions that occur during execution of a
batch data interchange command. See "Chapter 1.5.
Exceptional conditions" on page 43 for further information
about exceptional conditions.

© Copyright IBM Corp. 1982, 1991

Destination selection and Identification

All batch data interchange commands except ISSUE
RECEIVE include options that specify the destination. This
is either a named data set in a batch data interchange
logical unit, or a selected medium in a batch logical unit or
LUTYPE4 logical unit.

Selection by named data set: The DESTID and
DESTIDLENG options must always be specified, to supply
the data set name and its length (up to a maximum of
eight characters). For destinations having diskettes, the
VOLUME and VOLUMELENG options may be specified, to
supply a volume name and its length (up to a maximum of
six characters); the volume name identifies the diskette
that contains the data set to be used in the operation. If
the VOLUME option is not specified for a multidiskette
destination, all diskettes are searched until the required
data set is found.

Selection by medium: As an alternative to naming a data
set as the destination, various media can be specified by
means of the CONSOLE, PRINT, CARD, or WPMEDIA 1-4
options. These media can be specified only in an ISSUE
ABORT, ISSUE END, ISSUE SEND, or ISSUE WAIT
command.

Definite-response

CICS uses terminal control commands to carry out the
functions specified in batch data interchange commands.
For those commands that cause terminal control output
requests to be made, the DEFRESP option can be specified.
This option has the same effect as the DEFRESP option of
the SEND terminal control command; that is, to request a
definite response from the outboard controller, irrespective
of the specification of message integrity for the CICS task
(by the system programmer). The DEFRESP option can be
specified for the ISSUE ADD, ISSUE ERASE, ISSUE
REPLACE, and ISSUE SEND commands.

Waiting for function completion

For those batch data interchange commands that cause
terminal control output requests to be made, the NOWAIT
option can be specified. This option has the effect of
allowing CICS task processing to continue; unless the
option is specified, task activity is suspended until the
batch data interchange command is completed. The
NOWAIT option can be specified only on the ISSUE ADD,
ISSUE ERASE, ISSUE REPLACE, and ISSUE SEND
commands.

After a batch data interchange command with the NOWAIT
option has been issued, task activity can be suspended, by

265

the ISSUE WAIT command, at a suitable point in the
program to wait for the command to be completed.

Interrogate a data set (ISSUE QUERY)

ISSUE QUERY
DESTID(data-value)
[DESTIDLENG(data-value)]
[VOLUME(data-value)

[VOLUMELENG(data-value)]]

Conditions: FUNCERR, SELNERR,
UNEXPIN

This command is used to request that a sequential data set
in an outboard controller be transmitted to the host
system. The application program should either follow this
command with ISSUE RECEIVE commands to obtain the
resulting inbound data, or terminate the transaction to
allow CICS to start a new transaction to process the data.

Read a record from a data set (ISSUE
RECEIVE)

ISSUE RECEIVE
{INTO(data-area)ISET(ptr-ref)}
[LENGTH(data-area)]

Conditions: DSSTAT, EODS, LENGERR,
UNEXPIN

This command is used to read a record from an outboard
controller. The I NTO option specifies the area into which
the data is to be placed. The LENGTH option must include
a data area that contains the maximum length of record
that the program will accept. If the record length exceeds
the specified maximum length, the record is truncated and
the LENGERR condition occurs. After the retrieval
operation, the data area specified in the LENGTH operand
is set to the record length (before any truncation
occurred).

Alternatively, a pointer reference can be specified in the
SET option. CICS then acquires an area of sufficient size
to hold the record and sets the pointer reference to the
address of that area. After the retrieval operation, the
data area specified in the LENGTH option is set to the
record length.

The outboard controller might not send the data from the
data set specified in the ISSUE QUERY command. The
ASSIGN command must be used to obtain the value of
DESTID, which identifies the data set that has actually

266 CICS/MVS 2.1.2 Application Programmer's Reference

been transmitted; also the value of DESTIDLENG, which is
the length of the identifier in DESTID.

Add a record to a data set (ISSUE ADD)

ISSUE ADD
DESTID(data-value)
[DESTIDLENG(data-value)]
[VOLUME(data-value)

[VOLUMELENG(data-value)]]
FROM(data-area)
[LENGTH(data-value)]
[NUMREC(data-value)]
[DEFRESP]
[NOWAIT]
[RIDFLD(data-area) RRN]

Conditions: FUNCERR, SELNERR,
UNEXPIN

This command is used to add. records to a sequential or
keyed direct data set in an outboard controller. The FROM
option is used to specify the data to be written, and the
LENGTH option specifies its length.

The RIDFLD option is only needed with this command
when it applies to a DPCX/DXAM data set. In this case, it
specifies the relative record number of the record to be
added. When RIDFLD is used, NUMREC must be 1 (the
default).

Update a record in a data set (ISSUE
REPLACE)

ISSUE REPLACE
DESTID(data-value)
[DESTIDLENG(data-value)]
[VOLUME(data-value)

[VOLUMELENG(data-value)]]
FROM(data:-area)
[LENGTH(data-value)]
[NUMREC(data-value)]
RIDFLD(data-area)
[[KEYLENGTH(data-value)]

[KEYNUMBER(data-value)]IRRN]
[DEFRESP]
[NOWAIT]

Conditionsl FUNCERR, SELNERR,
UNEXPIN

This command is used to update (replace) a record in
either a relative (addressed direct) or an indexed (keyed
direct) data set in an outboard controller.

The FROM option is used to specify the data to be written
to the data set and the LENGTH option specifies the length
of the data.

The RIDFLD option specifies the relative record number of
the first record to be replaced for a relative data set, or
the embedded key in the data specified by the FROM
option for an indexed data set.

For a relative data set, the RRN option must be specified,
because the RIDFLD option contains a relative record
number. In addition, the NUMREC option must specify the
number of records to be replaced consecutively, starting
with the one specified in RIDFLD.

For an indexed data set, the RIDFLD option specifies the
key embedded in the data specified in the FROM option.
In addition, the KEYLENGTH option must specify the length
of the key. The NUMREC option cannot be specified
because only one record is replaced.

For a DPCX/DXAM data set, KEYNUMBER specifies the
number (1 through 8) of the index to be used to access the
record to be updated.

Delete a record from a data set (ISSUE
ERASE)

ISSUE ERASE
DESTID(data-value)
[DESTIDLENG(data-value)]
[VOLUME(data-value)

[VOLUMELENG(data-value)]]
RIDFLD(data-area)
[[KEYLENGTH(data-value)]

[KEYNUMBER(data-value)]IRRN]
[NUMREC(data-value)]
[DEFRESP]
[NOWAIT]

Conditions: FUNCERR, SELNERR,
UNEXPIN

This command is used to delete a record from a keyed
direct data set in an outboard controller, or erase a record
from a DPCX/DXAM relative record data set. The RIDFLD
option specifies the key of the record to be deleted; the
length of the key must be specified in the KEYLENGTH
option.

For a DPCX/DXAM data set, NUMREC must be set to 1 (the
default). KEYNUMBER specifies the index (1 through 8)

used to find the record to be erased. Also, RIDFLD and
RRN can be used to erase a record from a relative record
data set. In this case, KEYNUMBER cannot be specified.

End processing of a data set (ISSUE END)

ISSUE END
[OESTID(data-value)

[DESTIDLENG(data-value)]I
[SUBADOR(data-value)]

[CONSOLElpRINTlcARDI
WPMEDIAllwPMEDIA21
WPMEDIA3IwPMEDIA4]]

[VOLUME(data-value)
[VOLUMELENG(data-value)]]

Conditions: FUNCERR, SELNERR,
UNEXPIN

This command is used to end communication with a data
set in an outboard controller or with the selected medium.
The data set specified in the DESTID option, or the
selected medium, is de-selected normally. The options
CONSOLE, PRINT, CARD, WPMEDIAl-4 are alternatives to
DESTID and DESTIDLENG.

End processing of a data set abnormally
(ISSUE ABORT)

ISSUE ABORT
[DESTID(data-value)

[DESTIDLENG(data-value)]I
[SUBADDR(data-value)]

[CONSOLElpRINTlcAROI
WPMEDIAI I WPMEDIA21
WPMEDIA3IwPMEDIA4]]

[VOLUME(data-value)
[VOLUMELENG(data-value)]]

Conditions: FUNCERR, SELNERR,
UNEXPIN

This command is used to end communication with a data
set in an outboard controller, or with the selected medium,
abnormally. The data set specified in the DESTID option is
deselected abnormally. The options CONSOLE, PRINT,
CARD, WPMEDIA 1-4 are alternatives to DESTID and
DESTIDLENG.

Chapter 3.4. Batch data interchange 267

Send data to an output device (ISSUE SEND)

ISSUE SEND
[DESTID(data-value)

[DESTIDLENG(data-value)]I
[SUBADDR(data-value)]

[CONSOLElpRINTlcARDI
WPMEDIAllwPMEDIA21
WPMEDIA3IwPMEDIA4]]

[VOLUME(data-value)
[VOLUMELENG(data-value)]]

[LENGTH(data-value)]
FROM(data-area)
[NOWAIT]
[DEFRESP]

Conditions: FUNCERR, IGREQCD,
SELNERR, UNEXPIN

This command is used to send data to a named data set in
an outboard controller, or to a selected medium in a batch
logical unit or an LUTYPE4 logical unit. The options
CONSOLE, PRINT, CARD, WPMEDIA1-4 are alternatives to
DESTID and DESTIDLENG.

Request next record number (ISSUE NOTE)

ISSUE NOTE
DESTID(data-value)
[DESTIDLENG(data-value)]
[VOLUME(data-value)

[VOLUMELENG(data-value)]]
RRN
RIDFLD(data-area)

Conditions: FUNCERR, SELNERR,
UNEXPIN

This command is used to find the relative record number
of the next record in an addressed direct data set. The
number is returned in the data area specified in the
RIDFLD option. The RRN option must be specified,
because a relative record number is involved.

268 CICS/MVS 2.1.2 Application Programmer's Reference

Wait for an operation to be completed
(ISSUE WAIT)

ISSUE WAIT
[DESTID(data-value)

[DESTIDLENG(data-value)]I
[SUBADDR(data-value)]

[CONSOLElpRINTlcARDI
WPMEDIAllwPMEDIA21
WPMEDIA3IwPMEDIA4]]

[VOLUME(data-value)
[VOLUMELENG(data-value)]]

Conditions: FUNCERR, SELNERR,
UNEXPIN

This command is used to cause task activity to be
suspended until the previous batch data interchange
command is completed. This command is meaningful only
when it follows an ISSUE ADD, ISSUE ERASE, ISSUE
REPLACE, or ISSUE SEND command. The options
CONSOLE, PRINT, CARD, WPMEDIA 1-4 are alternatives to
DESTID and DESTIDLENG.

Batch data interchange options

CARD
specifies that the output medium is a card
reader/punch device. This option is not valid with
DESTID and DESTIDLENG.

CONSOLE
specifies that the output medium is that provided for
messages to the operator. This option is not valid
with DESTID and DESTIDLENG.

DEFRESP
specifies that all terminal control commands issued as
a result of the batch data interchange command will
request a definite response from the outboard batch
program, irrespective of the specification of message
integrity for the CICS task (by the system
programmer).

DESTID(data-value)
specifies the name of the data set in the outboard
destination. The data value must be a character string
of up to eight characters. This option is not valid with
CONSOLE, CARD, PRINT, or WPMEDIA1-4.

DESTIDLENG(data-value)
specifies the length of the name specified in the
DESTID option as a halfword binary value. This option
is not valid with CONSOLE, CARD, PRINT, or
WPMEDIA1-4.

FROM(data-area)
specifies the data that is to be written to the data set.

I NTO(data-area)
specifies the receiving field for the data read from the
data set. The INTO option implies move-mode access.

KEYLENGTH(data-value)
specifies the length of the key specified in the RIDFLD
option as a halfword binary value.

KEYNUMBER(data-value)
specifies the number, as a halfword binary value, of
the index to be used to locate the record. There can
be eight indexes (1 through 8). The default is 1. If the
number is invalid, the FUNCERR condition will be
raised. This option applies only to DPCX/DXAM and is
mutually exclusive with RRN.

LENGTH(parameter)
specifies a halfword binary value to be used with
ISSUE ADD, ISSUE RECEIVE, ISSUE REPLACE, and
ISSUE SEND commands.

For an ISSUE ADD, ISSUE REPLACE, or ISSUE SEND
command, the parameter must be a data value that is
the length of the data that is to be written.

For an ISSUE RECEIVE command with the INTO option,
the parameter must be a data area that specifies the
maximum length of data that the program is prepared
to handle. If the value specified is less than zero, zero
is assumed. If the length of the data exceeds the
value specified, the data is truncated to that value and
the LENGERR condition occurs. On completion of the
retrieval operation, the data area is set to the original
length of the data.

For an ISSUE RECEIVE command with the SET option,
the parameter must be a data area. On completion of
the retrieval operation, the data area is set to the
length of the data.

NOWAIT
specifies that the CICS task will continue processing
without waiting for the batch data interchange
command to complete. If this option is not specified,
the task activity will be suspended until the command
is completed.

NUMREC(data-value)
for a relative data set, specifies as a halfword binary
value the number of logical records to be added,
replaced, or deleted. Records are replaced
sequentially starting with the one identified by the
RIDFLD option.

For an indexed data set, NUMREC cannot be specified
because only one record is replaced.

PRINT
specifies that the output is to the print medium.

RIDFLD(data-area)
specifies the record identification field for use with
ISSUE REPLACE and ISSUE ERASE commands; it also
specifies a data area in which the relative record

number of the next record is returned in an ISSUE
NOTE command.

For ISSUE REPLACE, ISSUE ADD, or ISSUE ERASE
commands for a relative data set, the RIDFLD option
must specify a fullword binary integer being the
relative record number (starting from zero) of the
record. The RRN option is also required.

For ISSUE REPLACE and ISSUE ERASE commands for
an indexed data set, the RIDFLD option specifies the
key which is embedded in the data specified by the
FROM option. The KEYLENGTH option is also
required.

RRN
specifies that the record identification field specified in
the RIDFLD option contains a relative record number.
If the option is not specified, RIDFLD is assumed to
specify a key.

SET(ptr-ref)
specifies the pointer reference that is to be set to the
address location of the data read from the data set.
The SET option implies locate-mode access.

SU BADDR(data-value)
specifies the medium subaddress as a decimal value
(in the range 0 through 15) which allows media of the
same type, for example, 'printer l' or 'printer 2', to be
defined. Value 15 means a medium of any type. The
default is 00.

VOLUME(data-value)
specifies the name of a diskette in an outboard
destination that contains the data set specified in the
DESTID option. The data value must be a character
string of up to six characters.

VOLU M ELENG(data-value)
specifies the length of the name specified in the
VOLUME option as a halfword binary value.

WPMEDIA 1 through WPMEDIA4
specifies that for each specific LUTYPE4 device, a
word processing medium is defined to relate to a
specific input/output device.

Batch data interchange exceptional
conditions

DSSTAT
occurs when the destination status changes in one of
the following ways:

• The data stream is aborted.

• The data stream is suspended.

Default action: terminate the task abnormally.

Chapter 3.4. Batch data Interchange 269

EODS
occurs when the end of the data set is encountered.

Default action: terminate the task abnormally.

IGREQCD
occurs when an attempt is made to execute an ISSUE
SEND command after a SIGNAL RCD data-flow control
code has been received from an LUTYPE4 logical unit.

Default action: terminate the task abnormally.

FUNCERR
occurs when an error occurs during execution of the
command. Destination selection is unaffected and
other commands for the same destination" may be
successful.

Default action: terminate the task abnormally.

270 CICS/MVS 2.1.2 Application Programmer's Reference

LENGERR
occurs if the length of the retrieved data is greater
than the value specified by the LENGTH option for a
move-mode ISSUE RECEIVE command.

Default action: terminate the task abnormally.

SELNERR
occurs when an error occurs during destination
selection. The destination is not selected and other
commands for the same destination are unlikely to be
successful.

Default action: terminate the task abnormally.

UNEXPIN
occurs when some unexpected or unrecognized
information is received from the outboard controller.

Default action: terminate the task abnormally.

© Copyright IBM Corp. 1982, 1991

Chapter 4.1. Introduction to control operations

Chapter 4.2. Interval control

Chapter 4.3. Task control

Chapter 4.4. Program control

Chapter 4.5. Storage control

Chapter 4.6. Transient data control

Chapter 4.7. Temporary storage control

Part 4. Control operations

273

275

285

289

299

301

305

271

Chapter 4.1. Introduction to control operations

This part of the manual collects together several groups of
operations that are not specifically database or data
communication operations, but that control the execution
of tasks within a CICS system. These groups of operations
are as follows:

• Interval control - comprising functions whose
execution is dependent on time.

• Task control - comprising functions to temporarily
relinquish control or to synchronize resource usage.

• Program control - comprising functions affecting the
flow of control between application programs.

© Copyright IBM Corp. 1982, 1991

• Storage control - comprising functions to obtain and
release areas of main storage.

• Transient data control - comprising functions for the
transfer of data between CICS tasks and between the
CICS region and other regions.

• Temporary storage control - comprising functions for
the temporary storage of data.

Each group of operations is described in a separate
chapter within this part.

273

Chapter 4.2. Interval control

The CICS interval control program, in conjunction with a
time-of-day clock maintained by CICS, provides functions
that can be performed at the correct time; such functions
are called time-controlled functions. The time of day is
obtained from the operating system at intervals whose
frequency, and thus the accuracy of the time-of-day clock,
depends on the task mix and the frequency of task
switching operations.

Using interval control commands you can:

• Request the current date and time of day (ASKTIME)

• Select the format of date and time (FORMATIIME)

• Delay the processing of a task (DELAY)

• Request notification when specified time has expired
(POST)

• Wait for an event to occur (WAIT EVENT)

• Start a task and store data for the task (START)

• Retrieve data stored (by a START command) for a task
(RETRIEVE)

• Cancel the effect of previous interval control
commands (CANCEL).

Exceptional conditions that occur during execution of an
interval control command are handled as described in
"Chapter 1.5. Exceptional conditions" on page 43.

Expiration times: The time at which a time-controlled
function is to be started is c'alled the expiration time. You
can specify expiration times absolutely, as a time of day,
or as an interval that is to elapse before the function is to
be performed.

An interval is measured relative to the current time and so
the expiration time will always be after the current time
(assuming a nonzero interval is specified). An absolute
time is measured relative to midnight prior to the current
time and may therefore be prior to the current time.

CICS treats as expired a request for an absolute time that
is equal to the current time or that precedes the current
time by up to 6 hours. If you specified an absolute time,
and it precedes the current time by more than 6 hours,
CICS adds 24 hours, that is, the requested function is
performed at the time you specified but on the next day.

Examples of the START command specifying absolute
time-of-day requests, are as follows:

EXEC CICS START TIME(123000)

This command, issued at 1000 hours on Monday, will
expire at 1230 hours on the same Monday.

© Copyright IBM Corp. 1982, 1991

EXEC CICS START TIME(090000)

This command, issued at 1000 hours on Monday, will
expire immediately because the specified time is within the
preceding 6 hours.

EXEC eIes START TIME(e2eeee)

This command, issued at 1000 hours on Monday, will
expire at 0200' hours on Tuesday because the specified
time is more than 6 hours before the current time.

EXEC CIes START TIME(33eeee)

This command, issued at 1000 hours on Monday, will
expire at 0900 hours on Tuesday.

Because each end of an intersystem link may be in a
different time zone, you must use the INTERVAL form of
expiration time when the transaction to be started is in a
remote system.

Request Identifiers: As a means of identifying the
request and any data associated with it, a unique request
identifier is assigned by CICS to each DELAY, POST, or
START command. You can specify your own request
identifier by means of the REQID option; if you do not,
CICS assigns (for POST and START only) a unique request
identifier and places it in field EIBREQID in the EXEC
interface block (EIB). Specify a request identifier if you
want the request to be canceled at some later time by a
CANCEL command.

Request current date and time of day
(ASKTIME)

I ASKTIME
[ABSTIME (data-area)]

You use this command to update the date and CICS
time-of-day clock, and the fields EIBDATE and EIBTIME in
the EIB. These two fields contain initially the date and
time when the task started. The command returns the
current time in the form of the number of milliseconds
since 0000 hours on January 1, 1900. See Appendix A,
"EXEC interface block" on page 339 for details of the EIB.

The following example shows you how the ABSTIME option
works:

EXEC eIeS ASKTIME ABSTIME(utime)

After execution, 'utime' might contain the value
002694057952138 in milliseconds.

275

Select the format of date and time
(FORMATTIME)

FORMATTIME
ABSTIME(data-value)
[YYDOO(data-area)]
[YYMMOO(data-area)]
[YYOOMM(data-area)]
[ODMMYY(data-area)]
[MMDOYY(data-area)]
[DATE(data-area)]
[OATEFORM(data-area)]
[DATESEP[(data-area)]]
[DAYCOUNT(data-area)]
[OAYOFWEEK(data-area)]
[OAYOFMONTH(data-area)]
[MONTHOFYEAR(data-area)]
[YEAR(data-area)]
[TIME(data-area)

[TIMESEP[(data-area)]]]

You use this command to transform the absolute date
and/or time into any of a variety of formats, as described
in the list of options at the end of the chapter.

The following example shows the effect of some of the
options of the command:

EXEC CICS FORMATTIME ABSTIME(utime)
OATESEP('-') DDMMYY(date)
TIME(time) TIMESEP

After execution, 'date' would contain 15-05-85, and 'time'
would contain 08: 12:32.

Delay processing of a task (DELAY)

DELAY
[INTERVAL (hhmnss) 11 TIME (hhmnss)]
[REQID(name)]

Conditions: EXPIRED, INVREQ

1 INTERVAL(0) is the default

You use this command to suspend the processing of the
issuing task for a specified interval of time or until a
specified time of day. It supersedes any previously
initiated POST command for the task.

The following example shows you how to suspend the
processing of a task for 5 minutes:

EXEC CICS DELAY
INTERVAL(500)
REQID{'GXLBZQMR')

276 CICS/MVS 2.1.2 Application Programmer's Reference

The following example shows you how to suspend the
processing of a task until 1245 hours:

EXEC CICS DELAY
TIME (124500)
REQID('UNIQCODE')

Request notification when specified time
has expired (POST)

POST
[INTERVAL(hhmnss)lITIME(hhmnss)]
SET(ptr-ref)
[REQIO(name)]

Conditions: EXPIRED, INVREQ

1 INTERVAL(0) is the default

You use this command to request notification that a
specified time has expired. In response to this command,
CICS makes a timer event control area available for
testing. This 4-byte control area is initialized to binary
zeros, and the pointer reference specified in the SET
option is set to its address. This area is available for the
duration of the task issuing the POST command.

When the time you specified has expired, the timer event
control area is posted; that is, its first byte is set to X 140 I

and its third byte to X 180 I. You can test posting in either
of the following ways:

• By checking the timer event control area at intervals.
You must give CICS the opportunity to post the area;
that is, the task must relinquish control of CICS before
you test the area. Normally, this condition is satisfied
as a result of other commands being issued; if a task
is performing a long internal function, you can force
control to be relinquished by issuing a SUSPEND
command, described in "Chapter 4.3. Task control" on
page 285.

• By suspending task activity by a WAIT EVENT
command until the timer event control area is posted.
This action is similar to issuing a DELAY command,
the difference being that with a POST - WAIT EVENT
sequence, you can do some processing after issuing
the POST command, whereas a DELAY command
suspends task activity at once. No other task should
attempt to wait on the event set up by a POST
command. The timer event control area can be
released for a variety of reasons (see below). If this
happens, the result of any other task issuing a WAIT
on the event set up by the POST is unpredictable.

However, other tasks can CANCEL the event if they
have access to the REQID associated with the POST
command. (See CANCEL command and description of
REQID option.)

A ti mer event control area provided for a task is not
released or altered (except as described above) until one
of the following events occurs:

• The task issues a subsequent DELAY, POST, or START
command.

• The task issues a CANCEL command to cancel the
POST command.

• The task is terminated, normally or abnormally.

• Any other task issues a CANCEL command for the
event set up by the POST command.

A task can have only one POST command active at any
given time. Any DELAY, POST, or START command
supersedes a previously issued POST command by the
task.

The following example shows you how to request a timer
event control area for a task, to be posted after 30
seconds:

EXEC CICS POST
INTERVAL(30)
REQID('RBL3D I)
SET(PREF)

The following example shows you how to provide a timer
event control area for the task, to be posted when the
specified time of day is reached. Because no request
identifier is specified in the command, CICS automatically
assigns one and returns it to the application program in
the EIBREQID field in the EIB.

EXEC CICS POST
TIME (PACKTIME)
SET(PREF)

Wait for an event to occur (WAIT EVENT)

WAIT EVENT
ECADDR(ptr-value)

Condition: INVREQ

You use this command to synchronize a task with the
completion of an event initiated by the same task or by
another task. The event would normally be the posting, at
the expiration time, of a timer event control area provided
in response to a POST command, as described in the
preceding section. The WAIT EVENT command provides a
method of directly relinquishing control to some other task
until the event being waited on is completed.

You must specify, in the ECADDR option, a pointer value
giving the address of an event control area, which must
conform to the format and standard posting conventions
for an event control block (ECB); it will normally be the

timer event control area created by a POST command. For
a program executing in 31-bit mode on MVS/XA, the
INVREQ condition will be raised if the specified event
control area address is above the 16-megabyte line.

The following example shows you how to suspend
processing of a task until the specified event control area
is posted:

EXEC CICS WAIT EVENT ECADDR(PVALUE)

start a task (START)

You use the START command to start a task, on a local or
remote system, at a specified time. The starting task may
pass data to the started task and may also specify a
terminal to be used by the started task as its principal
facility. The TRANSID, TERMID, and FROM options specify
the transaction to be executed, the terminal to be used,
and the data to be used, respectively.

I CEDF is an exception to the START command - it is not
I valid as a TRANSID name, so do not attempt to start CEDF
I in this way.

You can specify the FMH option if the FROM option is
specified. The FMH option indicates that the data, to be
passed to the started task, contains function management
headers.

The syntax of the command is as follows:

START
[INTERVAL(hhmmss)lITIME(hhmmss)]
TRANSID(name)
[REQID(name)]
[FROM(data-area)

LENGTH(data-value) [FMH]]
[TERMID(name)]
[SYSID(name)]
[RTRANSID(name)]
[RTERMID(name)]
[QUEUE(name)]
[NOCHECK]
[PROTECT]

Conditions: INVREQ, IOERR,
ISCINVREQ, NOTAUTH, SYSIDERR,
TERMIDERR, TRANSIDERR

1 INTERVAL(0) ;s the default

Further data may be passed to the started task in the
RTRANSID, RTERMID, and QUEUE options. For example,
one task can start a second task passing it a transaction
name and a terminal name to be used when the second
task starts a third task; the first task may also pass the
name of a queue to be accessed by the second task.

Chapter 4.2. Interval control 277

If data is to be passed, it will be queued using the request
identifier specified in the REQID option, if one is provided.
This identifier should be recoverable (in temporary storage
terms) if the PROTECT option is also specified, or
nonrecoverable if PROTECT is not specified, otherwise
unpredictable results can occur. Such problems cannot

I occur if REQID is not used. An IOERR will occur if a
I START operation uses a REQID(name) that already exists.

The NOCHECK option specifies that no response (to
execution of the START command) is expected by the
starting transaction. For START commands naming tasks
to be started on a local system, error conditions will be
returned, whereas those for tasks to be started on a
remote system will not be returned. The NOCHECK option
allows CICS to improve performance when the START
command has to be shipped to a remote system; it is also
a prerequisite if the shipping of the START command is
queued pending the establishing of links to the remote
system.

START commands are queued by means of the LOCALQ
operand of the DFHPCT TYPE= REMOTE system macro as
described in the CICSIMVS Resource Definition (Macro)
manual, or by means of the LOCALQ operand of the
TRANSACTION definition as described in the CICSIMVS
Resource Definition (Online) manual.

One or more constraints have to be satisfied before the
transaction to be executed can be started, as follows:

1. The specified interval must have elapsed or the
specified expiration time must have been reached (see
IIExpiration times" on page 275). The INTERVAL
option should be specified when a transaction is to be
executed on a remote system; this avoids
complications arising when the local and remote
systems are in different time zones.

2. If the TERMID option is specified, the named terminal
must be available.

3. If the PROTECT option is specified, the starting task
must have taken a successful sync point. This option,
coupled to extensions to system tables, reduces the
exposure to lost or duplicated data caused by failure
of a starting task.

4. If the transaction to be executed is on a remote
system, the format of the data must be declared to be
the same as that at the local system. This is done by
the DATASTR and RECFM operands of the DFHTCT
TYPE = SYSTEM system macro. For CICS-CICS, these
are always the default values. For CICS-IMS, care
should be taken to specify the correct values.

Execution of a START command naming a transaction in
the local system will supersede any outstanding POST
command executed by the starting task.

278 CICS/MVS 2.1.2 Application Programmer's Reference

Starting tasks without terminals

If the task to be started is not associated with a terminal,
each START command results in a separate task being
started. This happens regardless of whether or not data is
passed to the started task.

The following example shows how to start a specified task,
not associated with a terminal, in one hour:

EXEC CICS START
TRANSIO('TRNL I)
INTERVAL(10000)
REQIO('NONGL I)

Starting tasks with terminals but without
data

Only one task is started if several START commands, each
specifying the same transaction and terminal, expire at the
same time or prior to terminal availability.

The following example shows how to request initiation of a
task associated with a terminal. Because no request
identifier is specified in this example, CICS assigns one
and returns it to the application program in the EIBREQID
field in the EXEC interface block.

EXEC CICS START
TRANSID('TRNl')
TIME(185000)
TERMID(I STA5 1

)

Starting tasks with terminals and data

Data is passed to a started task if one or more of the
FROM, RTRANSID, RTERMID, and QUEUE options is
specified. Such data is accessed by the started task
through execution of a RETRIEVE command as described
later in the chapter.

It is possible to pass many data records to a new task by
issuing several START commands, each specifying the
same transaction and terminal.

Execution of the first START command will ultimately
cause the new task to be started and allow it to retrieve
the data specified on the command. The new task will also
be able to retrieve data specified on subsequently
executed START commands that expire before the new
task is terminated. If such data has not been retrieved
before the new task is terminated, another new task will be
started and will be able to retrieve the outstanding data. If
this second new task fails to retrieve the outstanding data,
a third task will be started, and so on, up to a maximum of
5 times, after which, the data will be lost.

The following example shows how to start a task
associated with a terminal and pass data to it:

EXEC CICS START
TRANSI D (I TRN2 I)

TIME (173000)
TERMID (' STA3 I)

REQID(DATAREC)
FROM(DATAFLD)
LENGTH(100)

Retrieve data stored for a task (RETRIEVE)

RETRIEVE
[INTO(data-area)ISET(ptr-ref)]
[LENGTH(data-area)]
[RTRANSID(data-area)]
[RTERMID(data-area)]
[QUEUE(data-area)]
[WAIT]

Conditions: ENDDATA, ENVDEFERR,
INVREQ, INVTSREQ, IOERR, LENGERR,
NOTAUTH, NOTFND

You use this command to retrieve data stored by expired
START commands. It is the only method available for
accessing such data.

The INTO option specifies the area into which the data is to
be placed.

You must specify, in the LENGTH option, a data area that
contains the maximum length of record that the application
program will accept. If the record length exceeds the
specified maximum, it is truncated and the LENGERR
condition occurs. After the retrieval operation, the data
area specified in the LENGTH option is set to the record
length (before any truncation occurred).

Alternatively, a pointer reference can be specified in the
SET option. CICS then acquires an area large enough to
hold the record and sets the pointer reference to the
address of that area. After the retrieval operation, the
data area specified in the LENGTH option is set to the
record length.

A task that is not associated with a terminal can access
only the single data record associated with the original
START command; it does so by issuing a RETRIEVE
command. The storage occupied by the data associated
with the task is released upon execution of the RETRIEVE
command, or upon termination of the task if no RETRIEVE
command is executed prior to termination.

A task that is associated with a terminal can access all
data records associated with all expired START commands
having the same transaction identifier and terminal
identifier as the START command that started the task; it
does so by issuing consecutive RETRIEVE commands.
Expired data records are presented to the task upon
request in expiration time sequence, starting with any data
stored by the command that started the task, and including
data from any commands that have expired since the task
started. Each data record is retrieved from temporary
storage using the REQID of the original START command
as the identification of the record in temporary storage.

When all expired data records have been retrieved, the
ENDDATA exceptional condition occurs. The storage
occupied by the single data record associated with a
START command is released after the data has been
retrieved by a RETRIEVE command; any storage occupied
by data that has not been retrieved is released when the
CICS system is terminated.

The WAIT option specifies that, if all expired data records
have already been retrieved, the task is suspended until
further expired data records become available. The
transaction that issues a WAIT option must be running on a
terminal and, to pass an expired data record, you need to
issue a START command from some other transaction that
explicitly states the terminal id as well as the transaction
id.

The ENDDATA exceptional condition will be raised:

• If no data is available after the deadlock time interval
(as specified in the DTIMOUT operand of the DFHPCT
TYPE = ENTRY system macro).

• If CICS enters shutdown and the transaction is still
suspended. An attempt to reissue the RETRIEVE
command with the WAIT option after this event (that
is, system shutdown) will cause an abend with a code
of AICB.

If the retrieved data contains FMHs, as specified by the
FMH option on the associated START command, field
EIBFMH in the EIB will be set to X' FF'. If no FMH is
present, EIBFMHwill be set to X '00 I.

If an input/output error occurs during a retrieval operation,
the IOERR exceptional condition occurs. The operation can
be retried by reissuing the RETRIEVE command.

The following example shows how to retrieve data stored
by a START command for the task, and store it in the user
provided data area called DATAFLD.

EXEC CICS RETRIEVE
INTO(DATAFLD)
LENGTH(LENG)

Chapter 4.2. Interval control 279

The following example shows how to request retrieval of a
data record stored for a task into a data area provided by
GIGS; the pointer reference (PREF) specified by the SET
option is set to the address of the storage area reserved
for the data record.

EXEC CICS RETRIEVE
SET (PREF)
LENGTH(LENG)

Cancel interval control requests (CANCEL)

CANCEL
[REQID(name)

[TRANSID(name)] [SYSID(name)]]

Conditions: INVREQ, ISCINVREQ,
NOTAUTH, NOTFND, SYSIDERR

You use this command to cancel a previously issued
DELAY, POST, or START command. If you include the
SYSID option, the command is shipped to a remote
system. If you omit SYSID, the TRANSID option, if present,
will determine where the command is to be executed. The
effect of the cancellation varies depending on the type of
command being canceled, as follows:

• A DELAY command can be canceled only prior to its
expiration, and only by a task other than the task that
issued the DELAY command (which is suspended for
the duration of the request). The REQID used by the
suspended task must be specified. The effect of the
cancellation is the same as an early expiration of the
original DELAY. That is, the suspended task becomes
dispatchable as though the original expiration time has
been reached.

• When a POST command issued by the same task is to
be canceled, no REQID should be specified.
Cancellation can be requested either before or after
expiration of the original request. The effect of the
cancellation is as if the original request had never
been made.

• When a POST command issued by another task is to
be canceled, the REQID of that command must be
specified. The effect of the cancellation is the same as
an early expiration of the original POST request. That
is, the timer event control area for the other task is
posted as though the original expiration time had been
reached.

• When a START command is to be canceled, the REQID
of the original command must be specified. The effect
of the cancellation is as if the original command had
never been made. The cancellation is effective only
prior to expiration of the original command.

280 CICS/MVS 2.1.2 Application Programmer's Reference

Interval control options

ABSTIME(parameter)
For the ASKTIME command, "parameter" specifies the
user data area into which the time, in milliseconds
since 0000 hours on January 1, 1900, is to be stored.

For the FORMATTIME command, "parameter"
specifies the data value, in milliseconds since 0000
hours on January 1, 1900, which is to be converted to
an alternative format.

The format of the parameter is:

ASM: PL8
COBOL: PIC S9(15) COMP-3
PL/I: FIXED DEC(15)

DATE(data-area)
specifies the variable that is to receive the date in the
format specified in the SIT DATFORM operand. The
returned value is in 8 character format, and a
separator is present or not depending on the DATESEP
option. You normally use this option only when a date
is needed for output purposes. Where a date is
needed for analysis, you must request the date in
explicit form, for example, MMOOVY.

DATEFORM(data-area)
specifies the format of the installation defined date.
GICS returns VYMMDD, DDMMVY, or MMDDVY (6
characters) according to the DATFORM operand of the
DFHSIT system macro.

DATESEP(data-value)
specifies as a single character field the character to be
inserted as the separator between the year and the
month, between the day and the month, or between
the year and the day if form VYDDD is specified.

If you omit this option no separator is supplied.

If you omit "data-value", a slash / is assumed as the
separator.

DAVCOU NT(data-area)
returns in 'data-area' the number of days since
January 1, 1900 (day 0) as a 31-bit binary number.
You will find this useful if you need to compare the
current date with a previous date that has, for
example, been stored in a data set.

DAYOFWEEK(data-area)
returns in 'data-area' the relative day number of the
week as a 31-bit binary number. Sunday = 0,
Saturday = 6. This number can be converted to a
textual form of day in any language.

DAVOFMONTH(data-area)
returns in "data-area" the relative day number of the
month as a 31-bit binary number.

DDM MVV(data-area)
specifies the user field (8 characters) in which CICS is
to return the date, for example, 21/10/84.

ECADDR(ptr-value)
specifies the address of the timer event control area
that must be posted before task activity can be
resumed.

FMH
specifies that the user data to be passed to the started
task contains function management headers.

FROM(data-area)
specifies the data that is to be stored for a task that is
to be started at some future time.

INTERVAL(hhmmss)
specifies the expiration time for an interval control
function as an interval of time that is to elapse from
the time at which the interval control command is
issued. The time specified is added to the current
clock time by CICS when the command is executed to
calculate the expiration time.

This option is used in DELAY commands (to specify the
time for which the task should be suspended), POST
commands (to specify when the posting of the timer
event control area should occur), and START
commands (to specify when a new task should be
started).

'hhmmss' can be replaced by a decimal constant; or,
for ASM, by a reference to a field defined as PL4; for
COBOL, by a data name of the form PIC 59(7) COMP-3;
or for PUI, by an expression that can be converted to
FIXED DEC(7,0). The value must be of the form
OHHMMSS + where 'HH' represents hours from 00
through 99, 'MM' represents minutes from 00 through
59, and '55' represents seconds from 00 through 59.

INTO(data-area)
specifies the user data area into which retrieved data
is to be written. If this option is specified, move-mode
access is implied.

LENGTH(parameter)
specifies a halfword binary value to be used with
START and RETRIEVE commands.

For a START command, the parameter must be a data
value that is the length of the data that is to be stored
for the new task.

For a RETRIEVE command with the INTO option, the
parameter must be a data area that specifies the
maximum length of data that the program is prepared
to handle. If the value specified is less than zero, zero
is assumed. If the length of the data exceeds the
value specified, the data is truncated to that value and
the LENGERR condition occurs. On completion of the
retrieval operation, the data area is set to the original
length of the data.

For a RETRIEVE command with the SET option, the
parameter must be a data area. On completion of the
retrieval operation, the data area is set to the length
of the data.

M MDOVV(data-area)
specifies the 8 character user field in which CICS is to
return the date, for example, 07/10/84.

MONTHOFYEAR(data-area)
data-area is set to the relative month number of the
year as a 31-bit binary number. January=1,
December = 12. You can convert this number, in your
application program, to the name of the month in any
language.

NOCHECK
specifies that, for a remote system, CICS should
optimize the execution of the START command to
improve performance by providing less error checking
and slightly less function. For more information, see
the section on improving the performance of
intersystem START requests in the CICSIMVS
Intercommunication Guide.

PROTECT
specifies that, in addition to the constraints described
earlier in the chapter, the new task will not be started
until the starting task has taken a sync point. If the
starting task abends before the sync point is taken, the
request to start the new task is canceled. If the REQID
option is specified as well, the request identifier should
be a name defined as recoverable to temporary
storage. If the STARTed transaction is remote,
PROTECT specifies that it must not be scheduled until
the local transaction has successfully completed a
synchronization point (syncpoint). For more
information on the PROTECT option with remote
transactions, see the CICSIMVS Intercommunication
Guide.

QUEUE{(name)l(data area)}
when used in a START command, "name" specifies
the name of the queue that may be used by the
transaction specified also in the START command.
The name can be up to 8 characters in length.

When used in a RETRIEVE command, "data area"
specifies the name of the queue that may be accessed
by the transaction issuing the RETRIEVE command.
The data area must be 8 characters in length.

REQIO(name)
specifies a unique name (up to 8 characters) to
identify a command. This name will be used as a
temporary storage identifier. The temporary storage
queue thus identified must be defined as a local queue
on the eles system where the START command will
be processed. The START command will be processed
on the system identified by the SYSID option or on the
local system if SYSID is omitted.

Chapter 4.2. Interval control 281

If specified in a START command that also specifies
FROM, the data in the FROM option is stored in
temporary storage using the name specified in REQID
as the name of the temporary storage queue.

This option can be used in a DELAY, POST, or START
command when another task is to be provided with the
capability of canceling an unexpired command; and in
CANCEL commands, except those canceling a POST
command issued by the same task (for which, the
REQID option is ignored if it is specified).

If this option is omitted from a POST command, CICS
generates a unique request identifier in the EIBREOID
field of the EXEC interface block. This applies also to
a START command unless the NOCHECK option is
specified, in which case field EIBREOID is set to blanks
and cannot be used subsequently to cancel the START
command.

RTERMID{(name)l(data area)}
When used in a START command, "name" specifies a
value, for example a terminal name, that may be
retrieved when the transaction, specified in the
TRANSID option in the START command, is started.
The name can be up to 4 characters in length.

When used in a RETRIEVE command, "data area"
specifies an area which may be used in the TERMID
option of a START command that may be executed
subsequently. The data area must be 4 characters in
length.

RTRANSID{(name)l(data area)}
When used in a START command, "name" specifies a
value, for example a transaction name, that may be
retrieved when the transaction, specified in the
TRANSID option in the START command, is started.
The name can be up to 4 characters in length.

When used in a RETRIEVE command, "data area"
specifies an area which may be used in the TRANSID
option of a START command that may be executed
subsequently. The data area must be 4 characters in
length.

SET(ptr-ref)
When used with a POST command, SET specifies the
pointer reference to be set to the address of the
4-byte timer event control area generated by CICS.
This area is initialized to binary zeros; on expiration of
the specified time, the first byte is set to X '40', and
the third byte to X' 80' .

When used with a RETRIEVE command, SET sp,ecifies
the pointer reference to be set to the address of the
retrieved data. If this option is specified, locate-mode
access is implied.

SYSID(name) remote systems only
specifies the name of the system whose resources are
to be used for intercommunication facilities. The name
can be up to 4 characters in length. The START
command will be executed on the specified system.

282 CICS/MVS 2.1.2 Application Programmer's Reference

TERMID(name)
specifies the symbolic identifier of the terminal
associated with a transaction to be started as a result
of a START command. This option is required when
the transaction to be started must communicate with a
terminal; it should be omitted otherwise. The name
must be alphanumeric, up to 4 characters in length,
and must have been defined in the terminal control
table (TCT) by the system programmer.

The terminal identifier must be defined as either a
local or a remote terminal in the TCT on the system in
which the START command is executed, when the
start of the transaction takes effect.

TIME(parameter)
The parameter 'hhmmss' specifies the expiration time
for an interval control function. See the section
'Expiration Times' earlier in the chapter.

This option is used in DELAY commands (to specify the
time for which the task should be suspended), POST
commands (to specify when the posting of the timer
event control area should occur), and START
commands (to specify when a new task should be
started).

'hhmmss' can be replaced by a decimal constant; or,
for ASM, by a reference to a field defined as PL4; for
COBOL, by a data name of the form PIC S9(7) COMP-3;
or for PLlI, by an expression that can be converted to
FIXED DEC(7,0). The value must be of the form
OHHMMSS + where "HH" represents hours from 00
through 99, "MM" represents minutes from 00 through
59, and "SS" represents seconds from 00 through 59.

When used in a FORMATTIME command, "data-area"
is set as an 8 character field to the current 24-hour
clock time in the form hh:mm:ss, where the separator
is determined by the TIMESEP option.

TIMESEP(data-value)
specifies the character to be used as the separator in
the returned time. If you omit this option, no
separator is assumed, and 6 bytes are returned in an
8 character field. If you omit the 'data-value', a colon:
is used as a separator. '

TRANSID(name)
specifies the symbolic identifier of the transaction to
be executed by a task started as the result of a START
command, or to be canceled by a CANCEL command.
The name can be up to 4 characters in length and
must have been defined in the program control table
(PCT) by the system programmer.

If SYSID is specified, the transaction is assumed to be
on a remote system irrespective of whether or not the
name is defined in the PCT. Otherwise the entry in the
PCT will be used to determine if the transaction is on a
local or remote system.

WAIT
specifies that, if all expired data records have already
been retrieved, the task is to be put into a wait state
until further expired data records become available.
The ENDDATA condition will be raised only if CICS is
shut down before any expired data records become
available.

YEAR(data-area)
specifies the full number of the year as a 31-bit binary
number, for example, 1984,2001.

VYDDD(data-area)
specifies the user field (6 characters) in which CICS is
to return the date, for example, 84/301.

VVDDMM(data-area)
specifies the user field (8 characters) in which CICS is
to return the date, for example, 84/30/10.

VVMMDD(data-area)
specifies the user field (8 characters) in which CICS is
to return the date, for example, 84/10/21.

Interval control exceptional conditions

ENDDATA
occurs if any of the following situations exists:

• No more data is stored for a task issuing a
RETRIEVE command. It can be considered a
normal end of file response when retrieving data
records sequentially.

• The RETRIEVE command is issued by a task that is
started by a START command which did not
specify the FROM option.

• The RETRIEVE command is issued by a task that is
not started by a START command.

Default action: terminate the task abnormally.

ENVDEFERR
occurs when a RETRIEVE command specifies an option
not specified by the corresponding START command.

Default action: terminate the task abnormally.

EXPIRED
occurs if the time specified in a POST or DELAY
command has already expired when the command is
issued.

Default action: ignore the condition.

INVREQ
occurs if an invalid type of interval control command is
received for processing by CICS, or if the ECB resides
above the 16-megabyte line.

Default action: terminate the task abnormally.

INVTSREQ
occurs if there is no support for a temporary storage
read request issued by CICS during execution of a
RETRIEVE command. This situation can occur when a
dummy temporary storage program is included in the
system by the system programmer in place of a
functional temporary storage program.

Default action: terminate the task abnormally.

IOERR
occurs if an input/output error occurs during a
RETRIEVE or START operation. The operation can be
retried by reissuing the RETRIEVE command.

This condition also occurs if a START operation:

• Attempts to write to temporary storage and the
temporary storage data set Is full.

• Uses a REQID(name) that already exists.

Default action: terminate the task abnormally.

ISCINVREQ
occurs when the remote system indicates a failure
which does not correspond to a known condition.

Default action: terminate the task abnormally.

LENGERR
occurs in move-mode retrieval if the length specified
is less than the actual length of the stored data.

Default action: terminate the task abnormally.

NOTAUTH
occurs when a resource security check has failed. Use
of SYSID will always raise the NOTAUTH condition
when resource security level checking is in effect
(RSLC = YES in the PCT). The reasons for the failure
are the same as for abend code AEY7, as described in
the CICSIMVS Messages and Codes manual.

Default action: terminate the task abnormally.

NOTFND
occurs if any of the following situations exists:

• The request identifier specified in a CANCEL
command fails to match an unexpired interval
control command.

• A RETRIEVE command is issued but some prior
task retrieved the data stored under the request
identifier directly through temporary storage
requests and then released the data.

• The request identifier associated with the START
command is not unique; when a RETRIEVE
command is issued, CICS cannot find the data.

Default action: terminate the task abnormally.

Chapter 4.2. Interval control 283

SYSIDERR
occurs when the SYSID option specifies either a name
which is not defined in the intersystem table or a
system to which the link is closed.

Default action: terminate the task abnormally.

TERMIDERR
occurs in either of the following cases:

• The terminal identifier in a START command
cannot be found in the terminal control table.

• A START command has defined TERMID to have
the same value as an LUTYPE62 conversation
identifier (the CONVID returned by a previous
ALLOCATE command).

Default action: terminate the task abnormally.

TRANSIDERR
occurs if the transaction identifier specified in a START
command cannot be found in the program control
table.

Default action: terminate the task abnormally.

284 CICS/MVS 2.1.2 Application Programmer's Reference

'\
/

Chapter 4.3. Task control

The CICS task control program provides functions that
synchronize task activity, or that control the use of
resources.

CICS processes tasks according to priorities assigned by
the system programmer. Control of the processor is given
to the highest priority task that is ready to be processed
and is returned to the operating system when no further
work can be done by CICS or by user-written application
programs.

Task control commands are provided to:

• Suspend a task (SUSPEND).

• Schedule the use of a resource by a task (ENQ and
DEQ).

A task can issue the SUSPEND command to relinquish
control and allow tasks higher on the active chain to
proceed. This facility can be used to prevent
processor-intensive tasks from monopolizing the
processor. As soon as no other task higher on the active
chain is waiting to be processed, control is returned to the
issuing task; that is, the task remains dispatchable.

Scheduling the use of a resource by a task is sometimes
useful in order to protect the resource from concurrent use
by more than one task, that is, to make the resource
serially reusable. Each task that is to use the resource
issues an ENQ (enqueue) command. The first task to do so
has the use of the resource immediately, but subsequent
ENQ commands for the resource, issued by other tasks,
result in those tasks being suspended until the resource is
available. Each task using the resource should issue a
DEQ (dequeue) command when it has finished with it. The
resource then becomes available and the next task to have
issued an ENQ command is resumed and given use of the
resource. The other tasks obtain the resource in turn, in
the order in which they enqueued upon it.

The exceptional condition, ENQBUSY, that can occur during
execution of a task control command is handled as
described in "Chapter 1.5. Exceptional conditions" on
page 43.

Suspend a task (SUSPEND)

I SUSPEND

This command is used to relinquish control to a task of
higher dispatching priority. Control is returned to the task
issuing the command as soon as no other task of a higher
priority is ready to be processed.

© Copyright IBM Corp. 1982, 1991

Schedule use of a resource by a task (ENQ
and DEQ)

ENQ
RESOURCE(data-area)
[LENGTH(data-value)]
[NOSUSPEND]

Conditions: ENQBUSY, LENGERR

DEQ
RESOURCE(data-area)
[LENGTH{data-value)]

Conditions: LENGERR

The ENQ and DEQ commands can be used to enqueue
upon and dequeue from a resource that is to be protected
from concurrent use by more than one task.

The ENQ command causes further execution of the task
issuing the ENQ command to be synchronized with the
availability of the specified resource; control is returned to
the task when the resource is available.

The ENQBUSY condition allows a conditional ENQ to be
used. If a resource is not available when enqueued, the
ENQBUSY condition is raised. The execution of a HANDLE
CONDITION ENQBUSY command will return control to the
task at the ENQBUSY label, without waiting for the
resource to become available.

The DEQ command causes a resource currently enqueued
upon by the task to be released for use by other tasks. If
a task enqueues upon a resource but does not dequeue
from it, CICS automatically releases the resource during
sync point processing or when the task is terminated.

If more than one ENQ command is issued for the same
resource by a given task, the resource remains owned by
that task until the task issues a matching number of DEQ
commands.

The resource to be enqueued upon must be identified by
one of the following methods:

• Specifying a data area that is the resource.

• Specifying a data variable that contains a unique
character-string argument (for example, an employee
name) that represents the resource. The character
string may be up to 255 bytes in length. The length of
the string must be supplied in the LENGTH option.

285

When issuing the DEQ command, the resource to be
dequeued from must be identified by the method used
when enqueuing upon the resource. If no enqueue has
been issued for the resource, the dequeue will be ignored.

The following examples show how to enqueue upon a
resource using the two methods shown above.
Substituting "DEQ" for "ENQ" in these examples illustrates
the ways in which a resource can be released.

EXEC CICS ENQ
RESOURCE (RESNAME)

or

EXEC CICS ENQ
RESOURCE(SOCSECNO)
LENGTH(9)

Task control options

LENGTH(data-value)
specifies that the resource to be enqueued upon (or
dequeued from) is a data variable of length given by
the data value. The data value is a halfword binary
value in the range 1 through 255. If the LENGTH
option is specified in an ENQ command, it must also be
specified in the DEQ command for that resource, and
the values of these options must be the same. This
option is required if the resource is specified as a
character string; it should not be specified otherwise.

NOSUSPEND
specifies that application program suspension for the
ENQBUSY condition is to be inhibited. This condition
will be handled as described in "Chapter 1.5.
Exceptional conditions" on page 43.

RESOURCE(data-area)
specifies either the resource to be enqueued upon (or
dequeued from) or a data variable that contains a
character string (for example an employee name) that
represents the resource. In the latter case, the length
of the string must be specified by the LENGTH option.

Task control exceptional condition

ENQBUSY
occurs when an ENQ command specifies a resource
that is unavailable.

Default action: wait for the resource to become
available.

286 CICS/MVS 2.1.2 Application Programmer's Reference

I LENGERR
I occurs when the LENGTH option is outside the range 1
I through 255.

I Default action: terminate the task abnormally.

I Controlling access sequence

I Using the ENQ/DEQ mechanism alone, you cannot ensure
I that two or more tasks issuing ENQ and DEQ commands
I will access a resource in a given sequence relative to each
I other. If you wish two or more tasks to access a .esource
I in a specific order, use one or more EXEC CICS WAIT
I commands in conjunction with one or more hand-posted
I ECBs.

I To hand';post an ECB, a CICS task sets a four-byte field to
I either the cleared state of binary zeroes, or the posted
I state of X '40008000 '. The task can use an EXEC C ICS
I START command to start another task and pass the
I address of the ECB. The started task receives the address
I through an EXEC CICS RETRIEVE command.

I Either task can set the ECB or wait on it. Use the ECB to
I control the sequence in which the tasks access resources.
I Two tasks can share more than one ECB if necessary. You
I can extend this technique to the control of as many tasks
I as you wish.

Notes:

1. Only one task can wait on an ECB at one time.

2. In an MVS/XA environment, always create ECBs at
addresses below the 16MB line.

If two tasks need to access a resource once each in a
specified order, one ECB is sufficient. In the more realistic
case, where repeated alternate access is required, two
ECBs are necessary. Figure 28 on page 287 gives an
example of the logic required. The example uses two
ECBs, ECB 1 and ECB2, addressed by the pOinters
ECB1_PTR and ECB2_PTR, which are held in an eight-byte
area addressed ECBS _PTR.

ECBS _PTR--+ ,------., ..

These tasks will go on exchanging data through the TIS
queue for ever. In practice some code would be included to
close the process down in an orderly way.

TASK A

Delete TIS queue
Clear ECBl (set to x1eeeeeeee ')
Clear ECB2
EXEC CICS START TASK B and pass
the pointer to the list of ECB
pointers, ECBS_PTR.

START OF LOOP
EXEC CICS WAIT EVENT

ECADDR(ECBl_PTR)
Clear ECBl
Read TIS queue
< act on data from queue >
Delete TIS queue
Write to TIS queue
Post ECB2

GO TO START OF LOOP

I Figure 28. Example of task control

TASK B

EXEC CICS RETRIEVE the
pointer ECBS_PTR.

START OF LOOP
Write to TIS queue
Post ECBl (set to X'4eeeaeee ')
EXEC CICS WAIT EVENT

ECADDR(ECB2 PTR)
Clear ECB2 -
Read TIS queue
< act on data from queue >
Delete TIS queue

GO TO START OF LOOP

Chapter 4.3. Task control 287

Chapter 4.4. Program control

The CICS program control program governs the flow of
control between application programs in a CICS system.
The name of an application program referred to in a
program control command must have been defined as a
program to CICS.

Program control commands are provided to:

• Link one user-written application program to another,
anticipating subsequent return to the requesting
program (LINK). The COMMAREA option allows data
to be passed to the requested application program.

• Transfer control from one user-written application
program to another, with no return to the requesting
program (XCTL). The COMMAREA option allows data
to be passed to the requested application program.

• Return control from one user-written application
program to another or to eles (RETURN). The
COMMAREA option allows data to be passed to a
newly-initiated transaction.

• Load a designated application program, table, or map
into main storage and return control to the requesting
program (LOAD).

• Delete a previously loaded application program, table,
or map from main storage (RELEASE).

Exceptional conditions that occur during execution of a
program control command are handled as described in
"Chapter 1.5. Exceptional conditions" on page 43.

The HANDLE ABEND command can be used to deal with
abnormal terminations. See "Chapter 5.2. Abnormal
termination recovery" on page 313 for further information
about this command.

Application program logical levels

Application programs running under CICS are executed at
various logical levels. The first program to receive control
within a task is at the highest logical level. When an
application program is linked to another, expecting an
eventual return of control, the linked-to program is
considered to reside at the next lower logical level. When
control is simply transferred from one application program
to another, without expecting return of control, the two
programs are considered to reside at the same logical
level.

© Copyright IBM Corp. 1982, 1991

Link to another program anticipating return
(LINK)

LINK
PROGRAM(name)
[COMMAREA(data-area)

[LENGTH(data-value)]]

Condition: NOTAUTH, PGMIDERR,
LENGERR

This command is used to pass control from an application
program at one logical level to an application program at
the next lower logical level. If the linked-to program is not
already in main storage, it will be loaded. When the
RETURN command is executed in the linked-to program,
control is returned to the program initiating the linkage at
the next sequential executable instruction.

The following example shows how to request a link to an
application program called PROG1:

EXEC GIGS LINK PROGRAM('PROGI')

The COM MAREA option can be used to pass data to the
linked-to program. For further details, see "Passing data
to other programs" on page 292, the description of
COMMAREA on page 296, and the description of TRANSID
on page 296.

The LENGTH option specifies the length of the data being
passed. The LENGTH value being passed must not be
greater than the length of the data area specified in the

I COMMAREA option. If it is, the results are unpredictable
I and may result in the LENGERR condition being set.

The linked-to program operates independently of the
program that issues the LINK command with regard to
handling exceptional conditions, attention identifiers, and
abends. For example, the effects of HANDLE commands in
the linking program are not inherited by the linked-to
program, but the original HANDLE commands are restored
on return to the linking program. Figure 29 on page 290
illustrates the concept of logical levels.

289

LEVEL 0

CICS

LEVEL 1

PROGA

LINK

LEVEL 2

PROG B PROG C

XCTL LINK

RETURN

Figure 29. Application program logical/eve/s

Transfer program control (XCTL)

XCTL
PROGRAM(name)
[COMMAREA(data-area)

[LENGTH(data-value)]]

Condition: NOTAUTH, PGMIDERR, LENGERR

This command is used to transfer control from one
application program to another at the same logical level.
The program from which control is transferred is released.

290 CICS/MVS 2.1.2 Application Programmer's Reference

LEVEL 3

PROG 0 PROG E

XCTL

RETURN

If the program to which control is transferred is not
already in main storage, it will be loaded.

The following example shows how to request a transfer of
control to an application program called PROG2:

EXEC CICS XCTL PROGRAM('PROG2')

The COMMAREA option can be used to pass data to the
invoked program. For further details, see "Passing data to
other programs" on page 292.

The LENGTH option specifies the length of the data to be
passed. The LENGTH value being passed must not be
greater than the length of the data area specified in the

I COMMAREA option. If it is, the results are unpredictable
I and may result in the LENGERR condition being set.

Return program control (RETURN)

RETURN
[TRANSID(name)

[COMMAREA(data-area)
[LENGTH(data-value)]]]

Condition: INVREQ, LENGERR

This command is used to return control from an application
program either to an application program at the next
higher logical level or to CICS.

When the RETURN command is issued in a lower-level
program (that is, a linked-to program), control will be
passed back to the level that is one logical level higher
than the program returning control. If the task is
associated with a terminal, the TRANSID option can be
used at the lower level to specify the transaction identifier
of the next transaction to be associated with that terminal.
The transaction identifier will come into play only after the
highest logical level has relinquished control to CICS using
the RETURN command, and after input has been received
from the terminal. Any input entered from the terminal,
other than an attention key, will be interpreted wholly as
data. In addition, the COMMAREA option can be used to
pass data to the new task that will be started. For further
details, see "Passing data to other programs" on
page 292.

I No resource security checking occurs on the RETURN
I TRANSID command. However, transaction security
I checking is still available when CICS attaches the returned
I transaction.

The LENGTH option specifies the length of the data to be
passed. The LENGTH value being passed must not be
greater than the length of the data area specified in the

I COMMAREA option. If it is, the results are unpredictable
I and may result in the LENGERR condition being set. The

COMMAREA and LENGTH options can be used only when
the RETURN command is returning control to CICS; the
INVREQ condition will occur otherwise. If the COMMAREA
option specifies a zero value as the address of the data
area, INVREQ is returned.

Load a program (LOAD)

LOAD
PROGRAM(name)
[SET(ptr-ref)]
[LENGTH(data-area) I

FLENGTH{data-area)]
[ENTRY(ptr-ref)]
[HOLD]

Condition: NOTAUTH, PGMIDERR

This command is used to fetch application programs,
tables, or maps from the library where they reside and
load them into main storage. This facility is used to load
an application program that will be used repeatedly,
thereby reducing system overhead through a single load,
to load a table to which control is not to be passed, or to
load a map to be used in a mapping operation. (See
"Chapter 3.2-1. Introduction to basic mapping support" on
page 135 for further details about maps.)

CICS sets the pointer reference specified in the SET option
to the address of the loaded program, table, or map; if the
LENGTH or FLENGTH option is specified, the data area
provided will be set to the length involved. (See also the
RELOAD operand of the DFHPPT TYPE = ENTRY macro as
described in the CICSIMVS Resource Definition (Macro)
manual, or the RELOAD attribute for the PPT as described
in the CICSIMVS Resource Definition (Online) manual.)

If the HOLD option is specified, the loaded program, table,
or map remains in main storage until a RELEASE command
is issued; if HOLD is not specified, the program, table, or
map remains in main storage until a RELEASE command is
issued or until the task that issued the LOAD command is
terminated normally or abnormally.

The following example shows how to load a user-prepared
table called TB 1 :

EXEC CICS LOAD PROGRAM('TBl ') SET(PTR)

Delete a loaded program (RELEASE)

RELEASE
PROGRAM(name)

Condition: NOTAUTH, PGMIDERR

This command is used to delete from main storage a
program, table, or map previously loaded by a LOAD
command. If the HOLD option is specified in the LOAD
command, the loaded program is deleted only in response
to a RELEASE command. If the HOLD option is not
specified, the loaded program can be deleted by a

Chapter 4.4. Program control 291

RELEASE, er it will be deleted autematically when the task
that issued the LOAD is terminated.

The follewing example shows how to delete an application
program, called PROG4, leaded in respense to' a LOAD
cemmand:

EXEC eICS RELEASE PROGRAM('PROG4')

Passing data to other programs

Yeu can pass data to anether pregram when centrol is
passed to' that ether pregram by means ef a pregram
centrel cemmand.

The COMMAREA eptien ef the LINK and XCTL cemmands
specifies the name ef a data area (knewn as a
communication area) in which data is passed to' the
pregram being inveked. In the receiving program you
must give this data area the name DFHCOMMAREA.

In a similar manner, the COMMAREA optien ef the
RETURN command specifies the name ef a cemmunicatien
area in which data is passed to' the transactien identified in
the TRANSID eptien. See the descriptien ef COMMAREA
en page 296. (The TRANSID eptien specifies a transactien
that will be initiated when input is received from the
terminal associated with the task.) See the descriptien ef
TRANSID on page 296. The length of the communicatien
area is specified in the LENGTH optien; PLII programs need
net specify the length.

The invoked program receives the data as a parameter.
The pregram must centain a definition ef a data area to'
allew access to' the passed data.

In an assembler language pregram, the data area sheuld
be a DSECT. The register used to' address this DSECT
must be leaded frem DFHEICAP, which is in the DFHEISTG
DSECT.

I In a COBOL program, if a pregram passes a COMMAREA
I as part ef a LINK, XCTL, or RETURN cemmand, the data
I area can be in either werking sterage er the linkage
I section. A pregram receiving a COMMAREA sheuld have
I the data specified in the linkage section. This applies
I whether the pregram is the receiving pregram during a
I LINK er XCTL command where a COMMAREA is passed, er
I the initial program where a COMMAREA and TRANSID
I have been specified en the RETURN cemmand ef a
I previously called task.

In a PLII pregram, the data area can have any name, but it
must be declared as a based variable, based on the
parameter passed to the program. The pointer to this
based variable sheuld be declared explicitly as a peinter
rather than contextually by its appearance in the
declaration for the area. This will prevent the generation
ef a PLII errer message. NO' ALLOCATE statement can be

292 CICS/MVS 2.1.2 Application Programmer's Reference

executed within the receiving pregram fer any variable
based en this peinter. This peinter must net be updated by
the application program.

The receiving data area need net be of the same length as
the original cemmunicatien area; if access is required enly
to' the first part ef the data, the new data area can be
sherter. It must net be lenger than the length ef the
communicatien area being passed, because the results in
this situatien are unpredictable.

The inveked pregram can determine the length ef any
cemmunicatien area that has been passed to' it by
accessing the EIBCALEN field in the EIB ef the task. If nO'
cemmunicatien area has been passed, the value ef
EIBCALEN will be zerO'; etherwise, EIBCALEN will always
centain the value specified in the LENGTH eptien ef the
LINK, XCTL, er RETURN cemmand, regardless of the size
ef the data area in the inveked pregram.

When a cemmunication area is passed by means ef a LINK
cemmand, the inveked pregram is passed a pointer to' the
cemmunicatien area itself. Any changes made to the
centents of the data area in the inveked pregram are
available to' the inveking pregram, when centrel returns to'
it; to' access any such changes, the pregram names the
data area specified in the eriginal COMMAREA eptien.

When a communicatien area is passed by means ef an
XCTL cemmand, a cepy ef that area is made unless the
area to' be passed has the same address and length as the
area that was passed to' the program issuing the
command. For example, if program A issues a LINK
cemmand to pregram B which, in turn, issues an XCTL
cemmand to' pregram C, and if B passes to C the same
communicatien area that A passed to B, program C will be
passed addressability to the cemmunication area that
belongs to' A (net a cepy ef it) and any changes made by C
will be available to A when centrol returns to it.

A cemmunication area can be passed by means ef a
RETURN cemmand issued at the highest logical level when
centrel returns to' CICS; in this case, a cepy of the
cemmunicatien area is made, and addressability to the
cepy is passed to the first program ef the next transactien.

The invoked pregram can access field EIBFN in the EIB to'
determine which type ef cemmand inveked the program.
The field must be tested befere CICS cemmands are
issued. If a LINK er XCTL invoked the program, the
appropriate cede will be feund in the field; if RETURN is
used, nO' CICS cemmands will have been issued in the
task, and the field will contain zeros.

Data can also be passed between application programs
and transactions in other ways. For example, the data can
be stored in a CICS storage area outside the local
environment of the application program, such as the
transactien werk area (TWA); see "Chapter 1.6. Access to'
system informatien" on page 51 fer details. Anether way

is to store the data in temporary storage; see "Chapter 4.7.
Temporary storage control" on page 305 for details.

MVS/XA mixed addressing mode transactions:
Transactions that use either of the two types of addressing
mode (AMODE=24 or AMODE=31) can be mixed only on
MVS/XA, which supports the 31-bit addressing mode.

CICS supports the use of the LINK, XCTL, and RETURN
commands between programs with different addressing
modes and between programs with the same addressing
mode.

The following restrictions apply to programs passing data
by means of a communication area named by the
COMMAREA option.

• Addresses passed within a communication area to an
AMODE=31 program must be 31 bits long. Do not use
3-byte addresses with flag data packed into the top
byte, unless the called program is specifically
designed to ignore the top byte.

• Addresses passed as data to an AMODE = 24 program
must be below the 16-megabyte line if they are to be
interpreted correctly by the called program.

These restrictions apply to the address of the
communication area itself, as well as to addresses within
it. However, a communication area above the
16-megabyte line can be passed to an AMODE = 24
subprogram. CICS copies the communication area into an
area below the 16-megabyte line for processing. It copies
it back again when control returns to the linking program.

eles does not validate any data addresses passed within a
communication area between programs with different
addressing modes.

Examples of passing data

The following examples, in assembler language, COBOL,
and PUI, show how the LINK command causes data to be
passed to the program being linked to; the XCTL command
is coded in a similar way.

ASM example - LINK ------------,

OFHEISTG OSECT Invoking program
COMREG os 8CL28
FIELD OS CL3

PROGI

COMREG
FIELD

PROG2

CSECT

MVC FIELO,=C'ABC'
EXEC CI CS LI NK
PROGRAM('PROG2')
COMMAREA(COMREG) LENGTH(3)

END

DSECT Invoked program
OS CL3

CSECT

L COMPTR,DFHEICAP
USING COMREG,COMPTR
CLC FIELD,=C'ABC '

END

Chapter 4.4. Program control 293

COBOL example - LINK ----------,

Invoking program
IDENTIFICATION DIVISION.
PROGRAM 10. 'PROG1'.

WORKING-STORAGE SECTION.
91 COM-REGION.

02 FIELD PICTURE X(3).

PROCEDURE DIVISION.
MOVE 'ABC' TO FIELD.
EXEC CICS LINK PROGRAM('PROG2')

COMMAREA(COM-REGION)
LENGTH(3) END-EXEC.

Invoked program
IDENTIFICATION DIVISION.
PROGRAM-ID. 'PROG2'.

lINKAGE SECTION.
91 DFHCOMMAREA.

02 FIELD PICTURE X(3).

PROCEDURE DIVISION.
IF EIBCALEN GREATER ZERO
THEN IF FIELD EQUALS 'ABC'

294 CICS/MVS 2.1.2 Application Programmer's Reference

PUlexample - LINK ------------,

Invoking program
PROGl: PROC OPTIONS(MAIN);
DCl 1 COM REGION AUTOMATIC,

2 FIELD CHAR(3) ,

FIElD='ABC';
EXEC CICS lINK PROGRAM('PROG2')

COMMAREA(COM_REGION) lENGTH(3);
END;

PROG2: Invoked program
PROC(COMM_REG_PTR) OPTIONS(MAIN);
DCL COMM REG PTR PTR;
DCl 1 COM REGION BASED(COMM REG

PTR), - -
2 FIELD CHAR(3) ,

IF EIBCALEN>0 THEN 00;
IF FIELD='ABC' THEN

END;

END;

The following examples, in assembler language, COBOL,
and PUI, show how the RETURN command is used to pass
data to a new transaction.

ASM example - RETURN --------~

DFHEISTG DSECT Invoking program
TERMSTG os 9Cl29
FIELD OS Cl3
DATAFlD OS Cl17

PROGI CSECT

MVC FIELD,=C'ABC'
EXEC CICS RETURN
TRANSID ('TRN2 ')
COMMAREA(TERMSTG)

END

TERMSTG DSECT Invoked program
FIELD OS CL3
DATAFLD OS CLl7

PROG2 CSECT

CLC EIBCALEN,=H'9'
BNH LABEL2
L COMPTR,DFHEICAP
USING TERMSTG,COMPTR
CLC FIElD,=C'XVZ'
BNE LABEll
MVC FIELD,=C'ABC'

LABEll OS 9H

LABEL2 OS 9H

END

COBOL example - RETURN ----------,

Invoking program
IDENTIFICATION DIVISION.
PROGRAM-ID. 'PROGl'.

WORKING-STORAGE SECTION.
91 TERMINAL-STORAGE.

92 FIELD PICTURE X(3).
92 DATAFLD PICTURE X(17).

PROCEDURE DIVISION.
MOVE 'ABC' TO FIELD.
EXEC CICS RETURN TRANSID('TRN2')

COMMAREA(TERMINAl-STORAGE)
LENGTH(29) END-EXEC.

Invoked program
IDENTIFICATION DIVISION.
PROGRAM-ID.
'PROG2'

LINKAGE SECTION.
91 DFHCOMMAREA.

92 FIELD PICTURE X(3).
92 DATAFLD PICTURE X(17).

PROCEDURE DIVISION.
IF EIBCALEN GREATER ZERO THEN
IF FIELD EQUALS 'XVZ'
MOVE 'ABC' TO FIELD.
EXEC CICS RETURN END-EXEC.

Chapter 4.4. Program control 295

PUI example - RETURN

Invoking program
PROGl: PROC OPTIONS(MAIN);
DCL 1 TERM_STORAGE,

2 FIELD CHAR(3),

FIELD= 'XYZ' ;
EXEC CICS RETURN TRNID('TRN2')

COMMAREA(TERM_STORAGE);
END;

PROG2: Invoked program
PROC(TERM_STG_PTR) OPTIONS(MAIN);
DCl TERM_STG_PTR PTR;
DCL 1 TERM STORAGE

BASED (TERM_STG_PTR),
2 FIELD CHAR(3),

IF EIBCALEN>0 THEN DO;
IF FIElD='XYZ' THEN FIELD='ABC';
END;

EXEC CICS RETURN;
END;

Program control options

COMMAREA(data-area)
specifies a communication area that is to be made
available to the invoked program. For LINK
commands, a pointer to the data area is passed; for
XCTL commands, a pointer to the data area is passed
or a copy of it (see "Passing data to other programs"
on page 292) and for RETURN commands, because
the data area is freed before the next program is
invoked, a copy of the data area is created and a
pointer to the copy is passed.

The communication area specified on a RETURN
command will be passed to the next command level
program that runs at the terminal. If the terminal is in
TRANSCEIVE status, the next command level program
is not guaranteed to be part of the transaction
specified by TRANSID. It could be part of a
transaction started by automatic task initiation (ATI).
To ensure that the communication area is passed to
the correct program, the terminal must not be in
TRANSCEIVE status.

ENTRY(ptr-ref)
specifies the pointer reference that is to be set to the
address of the entry point in the program, table, or
map that has been loaded.

296 CICS/MVS 2.1.2 Application Programmer's Reference

FLENGTH(data-area)
specifies a fullword binary area to be used with the
LOAD command. On completion of the load operation,
the data area is set to the length of the loaded
program, table, or map. FLENGTH and LENGTH are
mutually exclusive.

HOLD
specifies that the loaded program, table, or map is not
to be deleted (if still resident) when the task issuing
the LOAD command is terminated; deletion is to occur
only in response to a RELEASE command, from this
task or from another task.

LENGTH(parameter)
specifies a halfword binary value to be used with LINK,
XCTL, RETURN, and LOAD commands.

For a LINK, XCTL, or RETURN command, the
parameter must be a data value that is the length in
bytes of the communication area. If a negative value
is supplied, zero is assumed. The maximum length
that you can specify is 32763 bytes. If you want to
specify anything greater, use FLENGTH. The LENGTH
operand is mutually exclusive with the FLENGTH
operand, which can be coded only on a LOAD
command.

For a LOAD command, the parameter must be a data
area. On completion of the LOAD operation, the data
area is set to the length of the loaded program, table,
or map.

PROGRAM(name)
specifies the identifier of the program to which control
is to be passed unconditionally (for a LINK or XCTL
command); or the identifier of a program, table, or
map to be loaded (for a LOAD command) or deleted
(for a RELEASE command). The specified name can
consist of up to eight alphanumeric characters and
must have been defined as a program to CICS.

SET(ptr-ref)
specifies the pointer reference that is to be set to the
address at which a program, table, or map is loaded.

TRANSID(name)
specifies the transaction identifier to be used with the
next input message entered from the terminal with
which the task that issued the RETURN command has
been associated. The specified name can consist of
up to four characters and must have been defined as a
transaction to CICS.

If the terminal is in TRANSCEIVE status, a transaction
started by ATI may be run before the next transaction
started by terminal input. If this happens and the
transaction identifier of the transaction started by ATI
is the same as that specified in the TRANSID option,
CICS will assume that the transaction started by ATI
performs the same function and will erase the memory
of the "name" specified in the TRANSID option.

Program control exceptional conditions

INVREQ
occurs if any of the following situations exists:

• A RETURN command with the COMMAREA option
is issued in a program that is not at the highest
logical level.

• A RETURN command with the COMMAREA option
is issued but the supplied address is zero.

• A RETURN command with the TRANSID option is
issued in a task that is not associated with a
terminal.

I LENGERR
I occurs if the length specified is greater than the length
I of the data area specified in the COMMAREA option
I and, while that data was being copied, a destructive
I overlap occurred because of the incorrect length.

I Default action: terminate the task abnormally.

NOTAUTH
occurs when a resource security check has failed. The
reasons for the failure are the same as for abend code
AEY7, as described in the CICSIMVS Messages and
Codes manual.

Default action: terminate the task abnormally.

PGMIDERR
occurs if a program, table, or map cannot be found in
the PPT, in the library, or is disabled. PGMIDERR also
occurs on MVS/XA if an application program executing
in 24-bit mode issues a LOAD command for a program
residing above the l6-megabyte line.

Default action: terminate the task abnormally.

Chapter 4.4. Program control 297

Chapter 4.5. Storage control

The CICS storage control program controls requests for
main storage to provide intermediate work areas and any
other main storage not provided automatically by CICS but
needed to process a transaction. You can initialize the
acquired main storage to any bit configuration; for
example, zeros or EBCDIC blanks.

Storage control commands are provided to:

• Get and initialize main storage (GETMAIN).

• Release main storage (FREEMAIN).

CICS releases all main storage associated with a task
when the task is terminated normally or abnormally. This
includes any storage acquired, and not subsequently
released, by your application program.

If there is insufficient main storage to satisfy a GETMAIN
command, the NOSTG exceptional condition will occur.

Exceptional conditions that occur during execution of a
storage control command are handled as described in
"Chapter 1.5. Exceptional conditions" on page 43.

Obtain and initialize main storage
(GETMAIN)

This command is used to obtain a specified amount of
main storage and, optionally, to initialize that storage to a
specified bit configuration.

I The storage obtained cannot be used as a terminal
I input/output area (TIOA) for subsequent terminal control
I input/output operations. Storage violations may occur if
I this is contravened.

The pointer reference specified in the SET option is set to
the address of the acquired storage. The acquired storage
is doubleword-aligned.

GETMAIN
SET (ptr-ref)
{LENGTH(data-value)I

FlENGTH(data-value)}
[INITIMG(data-value)]
[NOSUSPEND]
[SHARED]

Conditions: lENGERR, NOSTG

© Copyright IBM Corp. 1982, 1991

Storage should be released when no longer needed; it will
I then be available to other tasks. Storage not released by
I the task is released by CICS when the task is terminated,
I unless you code the SHARED option in the GETMAIN
I command.

The LENGTH and FLENGTH options are mutually exclusive.
On MVS/XA, if an application program executing in 31-bit
mode uses the FLENGTH option, the storage may be
allocated from above the 16-megabyte line. If an
application program is executing in 24-bit mode or if the
LENGTH option is used, the storage will always be
allocated from below the 16-megabyte line.

The following example shows how to obtain a 1024-byte
area of main storage. Declare BLANK in your program as
a character representing a space.

EXEC CICS GETMAIN SET(PTR)
lENGTH(le24) INITIMG(BlANK)

Release main storage (FREEMAIN)

I FREEMAIN
~ATA(data area)

This command is used to release main storage previously
acquired by a GETMAIN command. If the task itself does
not release the acquired storage, it is released by CICS
when the task is terminated. The following example shows
how to release main storage:

EXEC CICS FREEMAIN DATA(RECORD)

I Some examples of GETMAIN and FREEMAIN are as follows:

I Assembler

I ~REA OS CLIee

I EXEC CICS GETMAIN SET(9) lENGTH(lee)
I USING AREA,9
I EXEC CICS FREEMAIN DATA(AREA)

I PL/I
I DCl AREA_PTR POINTER, I: AREA CHAR(lee BASED(ARERA_PTR);

I EXEC CICS GETMAIN SET(AREA_PTR) lENGTH(lee);
I .
I EXEC CICS FREEMAIN(AREA);

299

I COBOL

I DATA DIVISION.
I WORKING STORAGE SECTION.
I 91 WORKING-STORAGE.
I 92 AREA-POINTER USAGE IS POINTER.

I LINKAGE SECTION.
I 91 AREA PIC X(H10).

I PROCEDURE DIVISION.

I EXEC CICS GETMAIN SET (AREA-POINTER) LENGTH(100). I ~ET ADDRESS OF AREA TO AREA-POINTER.

I EXEC CICS FREEMAIN(AREA).

Storage control optiol!s

DATA(data area)
releases the main storage located at the data area.

This storage must have been acquired by a previous
GETMAIN command (except in the case of BMS pages
- see page 190).

You specify the data area (that is, the address of the
storage) that was acquired by GETMAIN, not the
pointer reference that was set to that address (see
"Chapter 1.2. Command format and argument values"
on page 5 for a description of argument values). So,
in assembler, it must be a relocatable expression that
is a data reference; in COBOL, it must be a data name;
and in PLlI, it must be a data reference.

The length of storage released will be the length
obtained by the GETMAIN and not necessarily the
length of the data area.

FLENGTH(data-value)
specifies the length of main storage required as a
fullword binary value. The maximum length that you
can specify is 65,504 bytes, except for an application
program executing in 31-bit mode on MVS/XA when
the maximum length is 1,073,741,824 bytes (that is, 1
gigabyte).

FLENGTH and LENGTH are mutually exclusive.

The following table shows which requests are eligible
to be satisfied by storage from above the 16-megabyte
line (ANY), which requests are forced below the line
(BELOW), and which result in a length error
(LENGERR). Requests that are described as ANY will
be satisfied by storage below the line if MVS decides
that there is insufficient storage above.

300 CICS/MVS 2.1.2 Application Programmer's Reference

FLENGTH 24-bit 31-bit
value mode mode

1 - 4095 BELOW BELOW

4096 - 65504 BELOW ANY

65505 - 1024M LENGERR ANY

>1024M LENGERR LENGERR

INITIMG(data-value)
specifies the one-byte hexadecimal initialization value
for the acquired main storage. In COBOL programs, a
data value cannot be used. Instead the option should
name a one byte data area containing the value.

LENGTH(data-value)
specifies the length of main storage required as a
halfword binary value. The maximum length that you
can specify is 32767 bytes. If you want to specify
anything greater, use FLENGTH.

LENGTH and FLENGTH are mutually exclusive.

NOSUSPEND
specifies that application program suspension for the
NOSTG condition is to be inhibited. This condition will
be handled as described on page 43.

SET(ptr-ref)
specifies the pointer reference to be set to the address
of the acquired main storage. The pointer reference
addresses the user data, and not the CICS control
information that precedes the acquired main storage.

I SHARED
I specifies that CICS will not release the storage at the
I end of the task. This enables task-to-task
I communication. When storage acquired with this
I option is no longer needed, release it with a
I FREEMAIN command.

Storage control exceptional conditions

LENGERR
occurs if the value specified for FLENGTH exceeds the
maximum length.
Default action: terminate the task abnormally.

NOSTG
occurs if the requested main storage cannot be
obtained.
Default action: suspend task activity until the required
main storage can be provided.

Chapter 4.6. Transient data control

The eles transient data control program provides a
generalized queuing facility. Data can be queued (stored)
for subsequent internal or external processing. Selected
data, specified in the application program, can be routed to
or from predefined symbolic destinations, either
intrapartition or extra partition.

Destinations are intrapartition if associated with a facility
allocated to the elcs region, and extrapartition if the data
is directed to a destination that is external to the CICS
region. The destinations must be defined in the
destination control table (the DCT) by the system
programmer when the CICS system is generated.

Transient data control commands are provided to:

• Write data to a transient data queue (WRITEQ TD).

• Read data from a transient data queue (READQ TD).

• Delete an intrapartition transient data queue
(DELETEQ TD).

If TD is omitted, the command is assumed to be for
temporary storage (see "Chapter 4.7. Temporary storage
control" on page 305).

Exceptional conditions that occur during execution of a
transient data control command are handled as described
in "Chapter 1.5. Exceptional conditions" on page 43.

Intrapartition destinations: Intrapartition destinations
are queues of data on direct-access storage devices for
use with one or more programs running as separate tasks.
Data directed to or from these internal destinations is
called intrapartition data; it must consist of variable-length!
records. Intrapartition destinations can be associated with
either a terminal or an output data set. Intrapartition data
may ultimately be transmitted upon request to the
destination terminal or retrieved sequentially from the
output data set.

Typical uses of intrapartition data include message
switching, broadcasting, database access, and routing of
output to several terminals (for example, for order
distribution), queuing of data (for example, for assignment
of order numbers or priority by arrival), and data collection
(for example, for batched input from 2780 Data
Transmission Terminals).

The storage associated with an intrapartition queue can be
reused. The system programmer can specify, for each
symbolic destination, whether or not storage tracks are to
be reused as the data on them is read. If the storage is
specified to be nonreusable, an intrapartition queue
continues to grow, irrespective of whether the data has
been read, until a DELETEQ TD command is issued when
the whole of an intrapartition queue is deleted and the
storage associated with it is released.

© Copyright IBM Corp. 1982, 1991

Extrapartition destinations: Extrapartition destinations
are queues (data sets) residing on any sequential device
(DASD, tape, printer, and so on), which are accessible by
programs outside (or within) the CICS region. In general,
sequential extra partition destinations are used for storing
and retrieving data outside the CICS region. For example,
one task may read data from a remote terminal, edit the
data, and write the results to a data set for subsequent
processing in another region. Logging data, statistics, and
transaction error messages are examples of data that can
be written to extrapartition destinations. In general,
extrapartition data created by CICS is intended for
subsequent batched input to non-CICS programs. Data can
also be routed to an output device such as a line printer.

Data directed to or from an external destination is called
extrapartition data and consists of sequential records that
are fixed-length or variable-length, blocked or unblocked.
The record format for an extrapartition destination must be
defined in the DCT by the system programmer. (See the
CICSIMVS Resource Definition (Macro) manual for details.)

Indirect destinations: Intrapartition and extrapartition
destinations can be used as indirect destinations. Indirect
destinations provide some flexibility in program
maintenance in that data can be routed to one of several
destinations with only the DCT, not the program, having to
be changed.

When the OCT has been changed, application programs
continue to route data to the destination using the original
symbolic name; however, this name is now an indirect
destination that refers to the new symbolic name.
Because indirect destinations are established by means of
DCT table entries, the application programmer need not
usually be concerned with how this is done. Further
information is available in the CICSIMVS Resource
Definition (Macro) manual.

Automatic task initiation (ATI): For intrapartition
destinations, CICS provides the option of automatic task
initiation. A basis for automatic task initiation is
established by the system programmer by specifying a
nonzero trigger level for a particular intrapartition
destination in the DCT. (See the description of the
OFHOCT TYPE = INTRA macro in the CICSIMVS Resource
Definition (Macro) manual.) When the number of entries
(created by WRITEQ TO commands issued by one or more
programs) in the queue (destination) reaches the specified
trigger level, a task specified in the definition of the
destination is automatically initiated. Control is passed to
a program that processes the data in the queue; the
program must issue repetitive REAOQ TO commands to
deplete the queue.

301

Once the queue has been depleted, a new automatic task
initiation cycle begins. That is, a new task is scheduled for
initiation when the specified trigger level is again reached,
whether or not execution of the prior task has terminated.

If an automatically initiated task does not deplete the
queue, access to the queue is not inhibited. The task may
be normally or abnormally terminated before the queue is
emptied (that is, before a QZERO exceptional condition
occurs in response to a READQ TO command). If the
destination is a terminal, the same task is reinitiated
regardless of the trigger level. If the destination is a data
set, the task is not reinitiated until the specified trigger
level is reached. If the trigger level of a queue is zero, no
task is automatically initiated. To ensure that termination
of an automatically initiated task occurs when the queue is
empty, the application program should test for a QZERO
condition rather than for some application-dependent
factor such as an anticipated number of records; only the
QZERO condition indicates a depleted queue.

Write data to transient data queue (WRITEQ
TO)

WRITEQ TD
QUEUE(name)
FROM(data-area)
[LENGTH(data-value)]
[SYSIO(name)]

Conditions: DISABLED, IOERR,
ISCINVREQ, LENGERR, NOSPACE,
NOTAUTH, NOTOPEN, QIDERR, SYSIDERR

This command is used to write transient data to a
predefined symbolic destination. The destination (queue)
is identified in the QUEUE option.

The FROM option specifies the data to be written to the
queue, and the LENGTH option specifies the record length.
The LENGTH option need not be specified for extrapartition
queues of fixed-length records if the length is known and a
data area of the correct size is available. If SYSID is
specified, LENGTH must be specified as well.

The following example shows how to write data to a
predefined symbolic destination; in this case, the control
system message log (CSML):

EXEC CICS WRITEQ TO
QUEUE (I CSML I)

FROM(MESSAGE)
LENGTH(LENG)

302 CICS/MVS 2.1.2 Application Programmer's Reference

Read data from transient data queue
(REAOQ TO)

REAOQ TO
QUEUE(name)
{INTO(data-area)ISET(ptr-ref)}
[LENGTH(data-area)]
[SYSID(name)]
[NOSUSPEND]

Conditions: DISABLED, IOERR,
ISCINVREQ, LENGERR, NOTAUTH,
NOTOPEN, QBUSY, QIOERR, QZERO,
SYSIOERR

This command is used to read transient data from a
predefined symbolic source. The source (queue) is
identified in the QU EU E option.

Reading a record from an intrapartition transient data
queue defined as reusable is destructive; it can only be
read once.

The INTO option specifies the area into which the data is to
be placed. The LENGTH option must specify a data area
that contains the maximum length of record that the
program will accept. If the record exceeds this value, it is
truncated and the LENGERR condition occurs. After the
retrieval operation, the data area specified in the LENGTH
option is set to the record length (before any truncation
occurred). The LENGTH option need not be specified for
extrapartition queues of fixed-length records if the length is
known and a data area of the correct size is available. If
SYSID is specified, LENGTH must be specified as well.

Alternatively, a pointer reference can be specified in the
SET option. CICS then acquires an area large enough to
hold the record and sets the pointer reference to the
address of that area. The area is retained until another
transient data command is executed. After the retrieval
operation, the data area specified in the LENGTH option is
set to the record length.

If automatic task initiation is being used (see "Automatic
task initiation (ATI)" on page 301), the HANDLE
CONDITION QZERO command should be included to ensure
that termination of an automatically initiated task only
occurs when the queue is empty.

The following example shows how to read a record from an
intrapartition data set (queue), which in this case is the
control system message log (CSML), into a data area
specified in the request:

EXEC CICS READQ TO
QUEUE (I CSML I)

INTO(OATA)
LENGTH(LENG)

The following example shows how to read a record from an
extrapartition data set (queue) having fixed-length records
into a data area provided by CICS; the pointer reference
specified by the SET option is set to the address of the
storage area reserved for the data record. It is assumed
that the record length is known.

EXEC CICS READQ TO
QUEUE(EXl)
SET(PREF)

Delete an Intrapartition transient data queue
(DELETEQ TO)

DELETEQ TD
QUEUE(name)
[SYSID(name)]

Conditions: DISABLED, ISCINVREQ,
NOTAUTH, QIDERR, SYSIDERR

This command is used to delete all of the transient data
associated with a particular intrapartition destination
(queue). All storage associated with the destination is
released (deallocated).

This command must be used to release the storage
associated with a destination specified as nonreusable in
the DCT. Otherwise, the storage remains allocated to the
destination; the data and the amount of storage associated
with the destination continue to grow whenever a WRITEQ
TD command refers to the destination.

Transient data control options

FROM(data-area)
specifies the data that is to be written to the transient
data queue.

INTO(data-area)
specifies the user data area into which the data read
from the transient data queue is to be placed. If this
option is specified, move-mode access is implied.

LENGTH(parameter)
specifies a halfword binary value to be used with
WRITEQ TD and READQ TD commands.

For a WRITEQ TD command, the parameter must be a
data value that is the length of the data that is to be
written.

For a READQ TD command with the INTO option, the
parameter must be a data area that specifies the
maximum length of data that the program is prepared

I * IBM Trademark. For a list of trademarks see page Iii.

to handle. If the value specified is less than zero, zero
is assumed. If the length of the data exceeds the
value specified, the data is truncated to that value and
the LENGERR condition occurs. On completion of the
retrieval operation, the data area is set to the original
length of the data.

For a READQ TD command with the SET option, the
parameter must be a data area. On completion of the
retrieval operation, the data area is set to the length
of the data.

NOSUSPEND
specifies that application program suspension for the
QBUSY condition is to be inhibited. This condition will
be handled as described on page 43.

QUEUE(name)
specifies the symbolic name of the queue to be written
to, read from, or deleted. The name must be
alphanumeric, up to four characters in length, and
must have been defined in the DCT by the system
programmer.

When used with the READQ TD command, the name
used should not be that of the system spool file
otherwise unpredictable results or an abnormal
termination will occur.

If SYSID is specified, the data set is assumed to be on
a remote system irrespective of whether or not the
name is defined in the OCT. Otherwise the entry in
the DCT will be used to determine if the data set is on
a local or remote system.

SET(ptr-ref)
specifies a pointer reference that is to be set to the
address of the data read from the queue. If this option
is specified, locate-mode access is implied.

SYSID(name) remote systems only
specifies the name of the system whose resources are
to be used for intercommunication facilities. The name
can be up to four characters in length.

Transient data control exceptional
conditions

I DISABLED
I occurs if a transient data command is function shipped
I to a CICS/ESA* system and the queue has been
I disabled on that system.

I Default action: terminate the task abnormally.

IOERR
occurs when an input/output error occurs and the data
record in error is skipped. Also occurs for an
extrapartition destination if the data length does not

Chapter 4.6. Transient data control 303

match the size specified in the RECSIZE operand of
the DFHDCT TYPE=SDSCI system macro.

Also occurs for an intrapartition destination if the data
length exceeds the maximum permissible length for an
intrapartition data set.

This condition occurs so long as the queue can be
read; a QZERO condition occurs when the queue
cannot be read, in which case a restart may be
attempted.

Default action: terminate the task abnormally.

ISCINVREQ
occurs when the remote system indicates a failure
which does not correspond to a known condition.

Default action: terminate the task abnormally.

LENGERR
occurs in any of the following situations:

• The LENGTH option is not coded for an input
(without the SET option) or output operation
involving variable-length records.

• The length specified on output is greater than the
maximum record size specified for the queue in
the OCT.

• The record read from a queue is longer than the
length specified for the input area; the record is
truncated and the data area supplied in the
LENGTH option is set to the actual record size.

• An incorrect length is specified for an input or
output operation that involves fixed-length
records.

• The LENGTH option is not coded for an input
operation (without the SET option) from, or an
output operation to, a destination other than disk,
involving fixed-length records.

Default action: terminate the task abnormally.

NOSPACE
occurs if no more space exists on the intrapartition
queue. When this happens, no more data should be
written to the queue because it may be lost.

Default action: terminate the task abnormally.

304 CICS/MVS 2.1.2 Application Programmer's Reference

NOTAUTH
occurs when a resource security check has failed. Use
of SYSID will always raise the NOTAUTH condition
when resource security level checking is in effect
(RSLC = YES in the PCT). The reasons for the failure
are the same as for abend code AEY7, as described in
the C/CSIMVS Messages and Codes manual.

Default action: terminate the task abnormally.

NOTOPEN
occurs if the destination is closed.

Default action: terminate the task abnormally.

QBUSY
occurs if a READQ TO command attempts to access a
record in an intrapartition queue that is being written
to or is being deleted by another task. This condition
applies only to input; output requests are always
queued until the intrapartition queue is no longer busy.

Default action: the task issuing the READQ TO
command waits until the queue is no longer being
used for output.

However, the NOSUSPEND option on page 303
overrides this default action.

QIDERR
occurs if the symbolic destination to be used with a
transient data control command cannot be found.

Default action: terminate the task abnormally.

QZERO
occurs when the destination (queue) accessed by a
READQ TD command is empty, or the end of the
transient data queue has been reached.

Default action: terminate the task abnormally.

SYSIDERR
occurs when the SYSID option specifies either a name
which is not defined in the intersystem table, or a
system to which the link is closed.

Default action: terminate the task abnormally.

Chapter 4.7. Temporary storage control

The CICS temporary storage control program provides the
application programmer with the ability to store data in
temporary storage queues, either in main storage, or in
auxiliary storage on a direct-access storage device. Data
stored in a temporary storage queue is known as
temporary data.

Temporary storage control commands are provided to:

• Write data to a temporary storage queue (WRITEQ TS).

• Update data in a temporary storage queue (WRITEQ
TS REWRITE).

• Read data from a temporary storage queue (READQ
TS).

• Delete a temporary storage queue (DELETEQ TS).

If TS is omitted, the command is assumed to be for
temporary storage, not for transient data which has similar
commands.

Exceptional conditions that occur during execution of a
temporary storage control command are handled as
described in "Chapter 1.5. Exceptional conditions" on
page 43.

Temporary storage queues: Temporary storage queues
are identified by symbolic names of up to eight characters
assigned by the originating task. Temporary data can be
retrieved by the originating task or by any other task using
the symbolic name assigned to it. Specific items (logical
records) within a queue are referred to by relative position
numbers. To avoid conflicts caused by duplicate names, a
naming convention should be established, for example, the
operator identifier, terminal identifier, or transaction
identifier could be used as a prefix or suffix to each
programmer-supplied symbolic name.

Temporary storage queues remain intact until they are
deleted by the originating task or by any other task; prior
to deletion, they can be accessed any number of times.
Even after the originating task is terminated, temporary
data can be accessed by other tasks through references to
the symbolic name under which it is stored.

Temporary data can be stored either in main storage or in
auxiliary storage. Generally, main storage should be used
if the data is needed for short periods of time; auxiliary
storage should be used if the data is to be kept for long
periods of time. Data stored in auxiliary storage is
retained after CICS termination and can be recovered in a
subsequent restart, but data in main storage cannot be
recovered. Main storage might be used to pass data from

© Copyright IBM Corp. 1982, 1991

task to task, or for unique storage that allows programs to
meet the requirement of CICS that they be quasi-reentrant
(that is, serially reusable between entry and exit points of
the program).

Typical uses of temporary storage control: A
temporary storage queue having only one record can be
treated as a single unit of data that can be accessed using
its symbolic name. Using temporary storage control in this
way provides a typical "scratch pad" capability. This type
of storage should be accessed using the READQ TS
command with the ITEM(1) option; failure to do so may
cause the ITEMERR condition to be raised.

In general, temporary storage queues of more than one
record should be used only when direct access or repeated
access to records is necessary; transient data control
provides facilities for efficient handling of sequential data
sets.

Some uses of temporary storage queues follow:

• Terminal paging. A task could retrieve a large master
record from a direct-access data set, format it into
several screen images (using basic mapping support),
store the screen images temporarily in auxiliary
storage, and then ask the terminal operator which
"page" (screen image) is desired. The application
programmer can provide a program (as a generalized
routine or unique to a single application) to advance
page by page, advance or back up a relative number
of pages, and so on.

• A suspend data set. Assume a data collection task is
in progress at a terminal. The task reads one or more
units of input and then allows the terminal operator to
interrupt the process by some kind of coded input. If
not interrupted, the task repeats the data collection
process. If interrupted, the task writes its
"incomplete" data to temporary storage and
terminates. The terminal is now free to process a
different transaction (perhaps a high-priority inquiry).
When the terminal is available to continue data
collection, the operator initiates the task in a "resume"
mode, causing the task to recall its suspended data
from temporary storage and continue as though it had
not been interrupted.

• Preprinted forms. An application program can accept
data to be written as output on a preprinted form.
This data can be stored in temporary storage as it
arrives. When all the data has been stored, it can first
be validated and then transmitted in the order
required by the format of the preprinted form.

305

Write data to a temporary storage queue
(WRITEQ T8)

WRITEQ TS
QUEUE(name)
FROM(data-area)
[LENGTH{data-value)]
[ITEM(data-area) [REWRITE]]
[SYSID (name)]
[MAINIAUXILIARY]
[NOSUSPEND]

Conditions:INVREQ, IOERR,
ISCINVREQ, ITEMERR, LENGERR,
NOSPACE, NOTAUTH, QIDERR, SYSIDERR

This command is used to store temporary data (records) in
a temporary storage queue in main or auxiliary storage.

If you use the MAIN option on this command to write data
to a temporary storage queue on a remote system, the
data is stored in main storage provided that the remote
system is accessed by the CICS multi region operation
(MRO) facility and that the remote system is at the same
release level as the requesting system. If these conditions
are not met, the data is stored in auxiliary storage.

The queue is identified in the QUEUE option. The FROM
and LENGTH options are used to specify the record that is
to be written to the queue, and its length.

If the ITEM option is specified, CICS assigns an item
number to the record in the queue, and sets the data area
supplied in that option to the item number. If the record
starts a new queue, the item number assigned is 1;
subsequent item numbers follow on sequentially.

The REWRITE option specifies that records are to be
updated, in which case the ITEM option must also be
specified to identify the item (record) that is to be replaced
by the data identified in the FROM option. If the specified
queue exists, but the specified item cannot be found, the
ITEM ERR condition occurs. If the specified queue does not
exist, the QIDERR condition occurs.

The following example shows how to write a record to a
temporary storage queue in auxiliary storage:

EXEC CICS WRITEQ TS
QUEUE(UNIQNAME)
FROM(MESSAGE)
LENGTH(LENGTH)
ITEM(DREF)

306 CICS/MVS 2.1.2 Application Programmer's Reference

The following example shows how to update a record in a
temporary storage queue in main storage:

EXEC CICS WRITEQ TS
QUEUE ('TEMPQI')
FROM(DATAFLD)
LENGTH(48)
ITEM(ITEMFLD)
REWRITE
MAIN

Read data from temporary storage queue
(READQ T8)

READQ TS
QUEUE(name)
{INTO(data-area)lsET(ptr-ref)}
[LENGTH(data-area)]
[NUMITEMS(data-area)]
[ITEM(data-area) I NEXT]
[SYSID(name)]

Conditions: INVREQ, IOERR,
ISCINVREQ, ITEMERR, LENGERR,
NOTAUTH, QIDERR, SYSIDERR

This command is used to retrieve data from a temporary
storage queue in main or auxiliary storage. The queue is
identified in the QUEUE option.

The INTO option specifies the area into which the data is to
be placed. The LENGTH option must specify a data area
that contains the maximum length of record that the
program will accept. If the record length exceeds the
specified maximum length, it is truncated and the
LENGERR condition occurs. After the retrieval operation,
the data area specified in the LENGTH option is set to the
record length (before any truncation occurred).

Alternatively, a pointer reference can be specified in the
SET option. CICS then acquires an area large enough to
hold the record and sets the pointer reference to the
address of the record. The area is retained until another
READQ TS command is executed. After the retrieval
operation, the data area specified in the LENGTH option is
set to the record length.

The ITEM and NEXT options are used to specify which
record (item) within a queue is to be read. If the ITEM
option is specified, the record with the specified item
number is retrieved. If the NEXT option is in effect (either
explicitly or by default), the next record after the last
record to be retrieved (by any task) is retrieved.
Therefore, if different tasks are to access the same queue
and each task is to start at the beginning of the queue, the
ITEM option must be used.

The following example shows how to read the first (or only)
record from a temporary storage queue into a data area
specified in the request:

EXEC CICS READQ TS
QUEUE{UNIQNAME)
INTO{DATA)
LENGTH{LDATA)

The following example shows how to read the next record
from a temporary storage queue into a data area provided
by CICS; the pointer reference specified by the SET option
is set to the address of the storage area reserved for the
data record.

EXEC CICS READQ TS
QUEUE{DESCRQ)
SET{PREF)
LENGTH{LENG)
NEXT

Delete temporary storage queue (DELETEQ
T8)

DELETEQ TS
QUEUE{name)
[SYSID{name)]

Conditions: ISCINVREQ, NOTAUTH,
QIDERR, SYSIDERR

This command is used to delete all the temporary data
associated with a temporary storage queue. All storage
associated with the queue is freed.

Temporary data should be deleted at the earliest possible
time to avoid using excessive amounts of storage.

Temporary storage control options

AUXILIARY
specifies that the temporary storage queue is on a
direct-access storage device in auxiliary storage.

FROM(data-area)
specifies the data that is to be written to temporary
storage.

I NTO(data-area)
specifies the data area into which the data is to be
written. The data area may be any variable, array, or
structure. If this option is specified, move-mode
access is implied.

ITEM(parameter)
specifies a halfword binary value to be used with
WRITEQ TS and READQ TS commands.

When used with a WRITEQ TS command in which the
REWRITE option is not specified, 'parameter' must be
a data area that is to be set to the item (record)
number assigned to this record in the queue. If the
REWRITE option is specified, the data area specifies
the item in the queue that is to be replaced.

When used with a READQ TS command, 'parameter'
specifies the item number of the logical record to be
retrieved from the queue. The parameter must be a
data value that is to be taken as the relative number
of the logical record to be retrieved. This number may
be the number of any item that has been written to the
temporary storage queue.

LENGTH(parameter)
specifies the length (as a halfword binary value) of the
data to be used with WRITEQ TS and READQ TS
commands.

For a WRITEQ TS command, the parameter must be a
data value that is the length of the data that is to be
written.

For a READQ TS command with the I NTO option, the
parameter must be a data area that specifies the
maximum length of data that the program is prepared
to handle. If the value specified is less than zero, zero
is assumed. If the length of the data exceeds the
value specified, the data is truncated to that value and
the LENGERR condition occurs. On completion of the
retrieval operation, the data area is set to the original
length of the data.

For a READQ TS command with the SET option, the
parameter must be a data area. On completion of the
retrieval operation, the data area is set to the length
of the data.

MAIN
specifies that the temporary storage queue is in main
storage.

NEXT
specifies that the next sequential logical record
following the last record to be retrieved (by any task)
is to be retrieved.

NOSUSPEND
specifies that application program suspension for the
NOSPACE condition is to be inhibited. This condition
will be handled as described on page 43.

NUMITEMS
specifies a halfword binary field into which CICS stores
a number indicating how many items there are in the
queue.

QUEUE(name)
specifies the symbolic name of the queue to be written
to, read from, or deleted. If the queue name appears
in the TST, and the entry is marked as remote, the
request is shipped to a remote system. The name
must be alphanumeric, up to eight characters in ,

Chapter 4.7. Temporary storage control 307

length, and unique within the eles system, and must
not be solely binary zeros. Do not use the characters
X I DF I as a queue name prefix; these characters are
reserved for eles use. Also, using any of the
following in queue name prefixes can have
unpredictable consequences:

• Embedded blanks
• Hexadecimal X I AA I through X I AF I
• Hexadecimal X I SA I through X I SF I

• Hexadecimal X I CA I through X I CF I

• Hexadecimal X I DA I through X I DF I

• Hexadecimal X I EA I through X I EF I

• Hexadecimal X I FA I through X I FF I

REWRITE
specifies that the existing record in the queue is to be
overwritten with the data provided. If the REWRITE
option is specified, the ITEM option must also be
specified. If the specified queue does not exist, the
QIDERR condition occurs. If the correct item within an
existing queue cannot be found, the ITEM ERR
condition occurs but the data is not stored.

SET(ptr-ref)
specifies the pointer reference that is to be set to the
address of the retrieved data. If this option is
specified, locate-mode access is implied.

SYSID(name) (remote systems only)
specifies the name of the system whose resources are
to be used for intercommunication facilities. The name
can be up to four characters in length.

Temporary storage control exceptional
conditions

INVREQ
occurs when a WRITEQ TS command specifies a
queue:

• That is locked and awaiting ISC session recovery
(see the CICS/MVS Installation Guide for details.),
or

• With a symbolic name that is all binary zeros.

This condition also occurs for a READQ TS or
DELETEQ TS command when the record to be
retrieved has been created by a DFHTS TYPE = PUT
macro.

Default action: terminate the task abnormally.

IOERR
occurs when there is an unrecoverable input/output
error.

Default action: terminate the task abnormally.

'308 CICS/MVS 2.1.2 Application Programmer's Reference

ISCINVREQ
occurs when the remote system indicates a failure
which does not correspond to a known condition.

Default action: terminate the task abnormally.

ITEMERR
occurs when the item number specified or implied by a
READQ T8 command, or a WRITEQ T8 command with
the REWRITE option, is invalid (that is, outside the
range of entry numbers assigned for the queue).

Default action: terminate the task abnormally.

LENGERR
occurs if:

• the length of the stored data is greater than the
value specified by the LENGTH option for
move-mode input operations, or

• the length of the stored data specified by the
WRITEQ TS command is zero or negative.

Default action: terminate the task abnormally.

NOSPACE
occurs when insufficient space is available in the
temporary storage data set to contain the data.

Default action: suspend the task until space becomes
available as it is released by other tasks; then return
normally.

NOTAUTH
occurs when a resource security check has failed. Use
of SYSID will always raise the NOTAUTH condition
when resource security level checking is in effect
(RSLC = YES in the peT). The reasons for the failure
are the same as for abend code AEY7, as described in
the CICS/MVS Messages and Codes manual.

Default action: terminate the task abnormally.

QIDERR
occurs when the queue specified by a READQ TS
command, or by a WRITEQ TS command with the
REWRITE option cannot be found, either in main
storage or in auxiliary storage.

Default action: terminate the task abnormally.

SYSIDERR
occurs when the SYSID option specifies either a name
which is not defined in the intersystem table, or a
system to which the link is closed.

Default action: terminate the task abnormally.

© Copyright IBM Corp. 1982, 1991

Part 5. Recovery and debugging

Chapter 5.1. Introduction to recovery and debugging

Chapter 5.2. Abnormal termination recovery

Chapter 5.3. Trace control

Chapter 5.4. Dump control

Chapter 5.5. Journal control

Chapter 5.6. Recovery (sync points)

311

313

317

323

327

331

309

Chapter 5.1. Introduction to recovery and debugging

eles application programs are executed in an interactive
environment. As a result, the operating system, eles
itself, and the application programs must be responsive to
many factors. Because the network on which the eles
system is based consists of a variety of terminals and
subsystems from which requests for services are received
at random, the relationships between application programs
and data set activity differ from one moment to the next.

elcs provides the following aids to the testing, monitoring,
and debugging of application programs:

• Execution (Command Level) Diagnostic Facility (EDF).
Allows commands to be displayed in source form on a
screen, both before and after execution so that they
can be checked and altered if necessary. This facility
is described in "Chapter 1.7. Execution (command
level) diagnostic facility" on page 57.

• Sequential terminal support. Enables sequential
devices, such as card readers and disk units, to
simulate online interactive terminals or subsystems of
a cles network so that early testing can be carried
out.

• Abnormal termination recovery. The HANDLE ABEND
command can be used to deal with abnormal
termination conditions, and the ABEND command can
be used to cause a task to be terminated abnormally.

• Trace facility. A trace table containing entries that
reflect the execution of various CICS commands, and
entries generated by application programs, can be
written to main storage and, optionally, to an auxiliary
storage device.

• Dump facility. Specified areas of main storage can be
dumped onto a sequential data set, either tape or disk,
for subsequent off-line formatting and printing using a
elcs utility program.

• Journals. Facilities are provided for creating entries in
"journals". A journal is a set of special-purpose
sequential data sets, which are used for statistical or
monitoring purposes; for example, the system log is a
journal.

• Recovery. When a task is abnormally terminated,
CICS can restore certain resources to their original
state so that a transaction can be resubmitted for
restart with no further action by the operator. The
SYNCPOINT command can be used to subdivide a
program so that only the uncompleted part of a
transaction need be resubmitted.

Sequential terminal support, for which no special CICS
commands are required, is described below. The other
facilities, and the commands that enable the application
programmer to make use of them, are discussed in the
other chapters of this part.

© Copyright IBM Corp. 1982, 1991

Sequential terminal support

Even at the simplest level of program testing, the
programmer should take the following into consideration.
It is inefficient and error-prone to test a program from a
terminal if all test data must be keyed into the system
from that terminal for each test case. The programmer
cannot easily retain a backlog of proven test data and
quickly test programs through the key-driven terminal as
changes are made.

CICS allows the application programmer to test a program
without the use of a telecommunication device. It is
possible for the system programmer to specify through the
terminal control table (TCT) that sequential devices be
used as terminals. These sequential devices may be card
readers, line printers, disk units, or magnetic tape units. In
fact, the terminal control table can include combinations of
sequential devices such as: card reader and line printer
(CRLP), one or more disk or tape data sets as input, one or
more disk or tape data sets as output. A TCT that contains
references to these sequential terminals can also define
other true telecommunications terminals in the system.

The input data submitted from a sequential device must be
prepared in the form in which it would come from a
telecommunication device. The input data must start with
a transaction identification code of up to four characters,
unless the transaction identification is predefined in the
TCT. If there is more data, and the transaction
identification code has less than four characters, a
system-defined transaction code delimiter or a blank must
precede the extra data. If a sequential device is being
used as a terminal, an end-of-data indicator (a 0-2-8
punched card code (X I EO I) or the equivalent as specified
when the elcs system is generated) must follow the input
message or the system-defined data termination character.
The input is processed sequentially and must be
unblocked. The sequential access method (SAM) is used
to read and write the necessary inputs and outputs. The
operating system utilities can be used to create the input
data sets and print the output data sets.

Using this approach, it is possible to prepare a stream of
transaction test cases to do the basic testing of a program
module. As the testing progresses, the user can generate
additional transaction streams to validate the
multiprogramming capabilities of the programs or to allow
transaction test cases to be run concurrently.

For operational convenience, it is usually appropriate to
place a terminating transaction at the end of each input
stream. For tests that use a single input stream, the
transaction can be CEMT SHUTDOWN with appropriate

311

responses following the initial message to respond to the
CEMT queries about the mode of shutdown. In a
batch-only testing environment, this enables CICS to be
terminated in an orderly manner without operator
intervention.

Where more than one sequential input stream is used, only
one should include the CEMT PERFORM SHUT transaction.
Others can be terminated with CSSF GOODNIGHT.

At some point in testing, it is necessary to use
telecommunication devices to ensure that the transaction
formats are satisfactory, that the terminal operational
approach is satisfactory, and that the transactions can be
processed on the terminal. The terminal control table can
be altered to contain more and different devices as the
testing requirements change.

When testing has proved that transactions can be
processed concurrently and the necessary data sets
(actual or duplicate) for online operation have been
created, the user begins testing in a controlled
environment with the telecommunication devices. In this
controlled environment, the transaction test cases should
represent all functions of the eventual system, but on a
smaller, measurable scale. For example, a company
whose information system will work with 15 district offices
may select one district office for the controlled test.
During the controlled test, all transactions, data set
activity, and output activity from the system should be
monitored closely.

Requests for input or output from a sequential terminal are
expressed by means of terminal control commands in the
normal way. In response to a RECEIVE command, where
the terminal has been described in the terminal control

312 CICS/MVS 2.1.2 Application Programmer's Reference

table as a CRLP, DISK, or TAPE terminal, data is read from
the input data set until anyone of the following situations
occurs:

• An end-of-data indicator is detected in the input
stream. (The indicator must be defined by the user
when the CICS system is generated.)

• Sufficient input has been read to fill the input area
associated with the line used for transmission. If an
end-of-data indicator is not detected before the input
area is filled, all further data preceding an end-of-data
indicator is bypassed and treated as a system error,
which is passed to the user-installation terminal error
program (DFHTEP).

• End-of-file (EOF) is detected. The input operation is
considered complete. Any subsequent RECEIVE
command is treated as a system error, which is
passed to the user-installation terminal error program
(DFHTEP) with a response code of 4.

In response to a SEND command for a CRLP terminal, lines
are written in print format as follows:

• If there is no new-line (X' 15 ') character within the
number of characters contained in one print line of the
specified line size (as defined by the system
programmer in the LPLEN option of the DFHTCT
TYPE=TERMINAL macro), the output is written in
fixed-length lines of the size specified.

• If new-line characters are encountered, a new line is
begun for each one.

Writing of output continues until the end of the user data is
reached. For more information about terminal control
commands, see "Chapter 3.3. Terminal control" on
page 221.

Chapter 5.2. Abnormal termination recovery

During abnormal termination of a task, a program-level
abend exit facility is provided in CICS so that you can
include an exit routine of your own that can be executed
when required. An example of a function performed by
such a routine is the "cleanup" of a program that has
started but not completed normally.

The HANDLE ABEND command activates or reactivates an
abend exit within your application program; you can also
use this command to cancel a previously activated exit.

The ABEND command terminates a task abnormally, and
causes an active exit routine to be executed; you can also
use this command to request a dump.

A HANDLE ABEND command overrides any preceding such
command in any application program at the same logical
level. Each application program of a transaction can have
its own exit, but only one exit at each logical level can be
active. (Logical levels are explained in "Chapter 4.4.
Program control" on page 289.)

When a task is abnormally terminated, CICS searches for
an active exit, starting at the logical level of the
application program in which the abend occurred, and
proceeding, if necessary, to successively higher levels.
The first active exit found, if any, is given control. This
procedure is shown in Figure 30 on page 314, which also
shows how subsequent abend exit processing is
determined by the user-written exit routine.

To prevent recursive abends in an exit routine, CICS
deactivates an exit upon entry to the exit routine. If a
retry of the operation is attempted, the application
programmer can branch to a point in the program that was
in control at the time of the abend and issue a HANDLE
ABEND RESET command to reactivate the exit. This
command can also be used to reactivate an exit (at the
logical level of the issuing program) that was canceled
previously as described above.

See the section dealing with creating a program abend exit
in the CICSIMVS Customization Guide for additional
information about exit routines, and the CICSIMVS
Messages and Codes manual for a list of the transaction
abend codes generated for abnormal terminations initiated
by CICS.

© Copyright IBM Corp. 1982, 1991

Handle an abnormal termination exit
(HANDLE ABEND)

HANDLE ABEND
[PROGRAM(name)I

LABEL(label)ICANCELIRESET]

Condition: PGMIDERR (PROGRAM only)

This command is used to activate, cancel, or reactivate an
exit for abnormal termination processing. You can
suspend the command by means of the PUSH and POP
commands as described in "Chapter 1.5. Exceptional
conditions" on page 43.

When activating an exit, you must use the PROGRAM
option to specify the name of a program to receive control,
or (except for PLII programs) the LABEL option to specify a
program label to which control will branch, when an
abnormal termination condition occurs. A HANDLE ABEND
PROGRAM or HANDLE ABEND LABEL command overrides
any previous such request in any application program at
the same logical level.

I A HANDLE ABEND is not effective while a transaction is
I being processed by a task-related user exit interface
I module (DFHERM) - for example, a EXEC DLI command or
I a DB2 transaction. An abend in this case will cause a
I dump to be taken. If you do not want this to happen,
I consult your system programmer about adding a global
I user exit that can suppress the dump.

If intersystem communication is being used, an abend in
the remote system may cause a branch to the specified
program or label, but subsequent requests to use
resources in the remote system will fail.

If an abend occurs as a result of a BMS command, control
will not be returned to CICS to clean up the control blocks.
Results will be unpredictable if the command is retried.

A HANDLE ABEND command with the CANCEL option will
cancel a previously established exit at the logical level of
the application program in control.

A HANDLE ABEND command with the RESET option will
reactivate an abnormal termination exit that was canceled
by a HANDLE ABEND CANCEL command or by CICS. This
command would usually be issued in an abnormal
termination exit routine.

313

Task ABEND

Look at the next
highest level

Figure 30. ABEND exit processing

Deactivate
the exit

Terminate the task

When the label specified in a HANDLE ABEND LABEL
command receives control, the registers are set as follows:

ASM: R15 - Abend label.
R0-14 - Contents at the time
of last CICS service request.

COBOL: Control returns to the HANDLE
A~END cOl11l1and with the
registers restored; COBOL GO
TO statement is then
executed.

On MVS/XA, the addressing mode will be set to the
addressing mode in which the HANDLE ABEND command
has been issued.

The following example shows how to establish a program
as an exit:

EXEC CICS HANDLE ABEND
PROGRAM('EXITPGM ')

314 CICS/MVS 2.1.2 Application Programmer's Reference

Link to program
or branch to label

Action taken in
exit program
or routine ABEND

Terminate the task

Terminate task abnormally (ABEND)

ABEND
[ABCODE(name)]
[CANCEL]

This command is used to request that a task be terminated
abnormally.

The main storage associated with the terminated task is
released; optionally, a dump of this storage can be
obtained first by using the ABCODE option to specify a
four-character abnormal termination code, which CICS will
place in the dump to identify it.

If the CANCEL option is specified, all abnormal termination
exits, if any, established by HANDLE ABEND commands at
any.level in the task are canceled before the task is
terminated. If the PUI STAE execution-time option has

been specified, an abnormal termination exit will have
been established by PUI. This exit is revoked by the
CANCEL option. (See the PLII Optimizing Compiler
Programmer's Guide for further information.)

The following example shows how to terminate a task
abnormally:

EXEC CICS ABEND ABCODE('BCDE')

Abnormal termination recovery options

ABCODE(name)
specifies that main storage related to the task that is
being terminated is to be dumped and provides a
name to identify the dump. The specified name may
consist of up to four characters.

CANCEL
specifies that exits established by HANDLE ABEND and
ABEND commands are to be canceled; in effect they
are ignored. A HANDLE ABEND CANCEL command
cancels a previously established exit at the logical
level of the application program in control. An ABEND
CANCEL command cancels all exits at any level in the
task (and terminates the task abnormally).

LABEL(label)
specifies the program label to which control will
branch if abnormal termination occurs. This option
cannot be used for PLII application programs.

PROGRAM(name)
specifies the name of the program to which control is
to be passed if the task is terminated abnormally. The
name can consist of up to eight alphanumeric
characters and must have been defined in the
processing program table (PPT).

RESET
specifies that an exit canceled by a HANDLE ABEND
CANCEL command, or by CICS, is to be reactivated.

Abnormal termination recovery exceptional
condition

PGMIDERR
occurs if a program cannot be found in the PPT or is
disabled.

Default action: terminate the task abnormally.

Chapter 5.2. Abnormal termination recovery 315

Chapter 5.3. Trace control

The CICS trace control program is a debugging and
monitoring aid for application programmers and IBM field
engineers. This facility makes use of a trace table, which
resides in main storage, and which consists of entries
produced in response to trace control commands. CICS
auxiliary trace allows you to write trace records on a
sequential device for later analysis.

Using trace control commands, you can:

• Specify user trace entry points or user event
monitoring points (ENTER)

• Switch the CICS trace facility on or off (TRACE ON and
TRACE OFF).

Trace entry points

The points at which trace entries are produced during CICS
operation are of two types: system trace entry points and
user trace entry points.

System trace entry points These are points within CICS at
which trace control requests are made. The only system
trace entry points that need concern the command level
application programmer are for the EXEC interface
program. These produce entries in the trace table
whenever a CICS command is executed. Two trace entries
are made: the first when the command is issued, and the
second when CICS has performed the required function
and is about to return control to the application program.
Between them, these two trace entries allow the flow of
control through an application program to be traced, and a
check to be made on which exceptional conditions, if any,
occurred during its execution. (The ABEND, RETURN,
TRACE ON, TRACE OFF, and XCTL commands produce
single entries only.)

User trace entry points These are additional points within
your application program that you can include in the trace
table to allow complete program debugging. For example,
you could specify an entry for a program loop containing a
counter value showing the number of times that the loop
had been entered. A trace entry is produced wherever the
ENTER command is executed. Each trace entry request,
which can be given a unique identifier, causes eight bytes
of data to be placed in the trace table.

© Copyright IBM Corp. 1982, 1991

Event monitoring points

A user event monitoring point (EMP) can be defined in an
application program by means of the MONITOR option of
the ENTER command. At a user EMP, information can be
added to the user fields in accounting and performance
class monitoring data records. The classes of data records
to be eligible for the addition of user information are
specified by the ACCOUNT and PERFORM options. The
actual user information to be recorded is defined in the
monitoring control table. The user information recorded, in
conjunction with similar data recorded automatically by the
system, can be used as input to offline analysis and
reporting programs. More information on the use of
monitoring is given in the CICSIMVS Customization Guide.

Trace facility control

The CICS trace facility is controlled by a number of trace
flags; the flags are stored within CICS and the TRACE ON
and TRACE OFF commands are used to turn them on or
off.

There is a master system trace flag, which must be on
before any system trace entries are produced, and a
separate system flag for each type of system trace entry.
The master system trace flag can be turned on or off
independently of individual system trace flags; thus the
system trace pattern of activity can be left intact but
controlled as a single unit. When the master system trace
flag and one or more system trace flags are on, the
relevant system trace entries are produced for all active
tasks, and tasks that become active subsequently, until the
flags are turned off again.

The TRACE command can be used to control the system
trace flags for other parts of CICS, should it be necessary
to debug a program down to the level of the CICS macro
instructions issued by the EXEC interface program; for
further details, see "Control the CICS trace facility (TRACE
ON, TRACE OFF)" on page 320.

There is a master user trace flag, and an individual user
trace flag for each task. If the master user trace flag is on,
requested user trace entries are produced for all active
tasks, and tasks that become active subsequently, until the
flag is turned off again. Each individual user trace flag
controls user trace entries only for the task that turns the
fI ag on or off.

The master terminal operator can turn the whole CICS
trace facility on or off by entering suitable commands; all
flags are turned on or off together when this method is
used.

317

Trace table format

The CICS trace table is located in main storage; you can
gain access to it by investigating a CICS dump. How to get
a CICS dump is described in "Chapter 5.4. Dump control"
on page 323.

The trace table consists of a trace header and a variable
number of fixed-length entries produced by the trace
control commands.

The format of the trace header is:

Trace header -----------------,

Bytes Contents

0-3 Address of last-used entry.
4-7 Address of first entry in

the table.
8-11 Address of last entry in

the table.
12-31 Reserved.

Each entry in the trace table is 32 bytes in length and is
aligned on a 32-byte boundary. The trace table area is of
a fixed size specified by the system programmer, and
entries are placed in the table in a wraparound manner;

that is, when the table is full, the next entry is placed at
the head of the table, overwriting the original entry.

The general format of a trace table entry in storage is as
follows. A different layout is used in the interpreted
display of trace table entries in a CICS dump and in
auxiliary trace output. See the CICSIMVS Problem
Determination Guide for further information.

Trace entry • general format

Bytes Contents

o
1,2
3,4
5-7
8-11
12-15
16-23
24-27
28-31

Trace identifier (binary).
TCA type of request (binary).
Reserved.
TCA identifier (packed dec).
Data field A.
Data field B.
Resource name (character).
Register 14.
Time stamp.

The formats of the EXEC interface program trace entry on
issuance of a command, on completion of a command, and
of a user trace, are shown in the following tables.

In these tables, the numbers in parentheses are the bit
positions of the associated byte.

Traceen~yon ~suanceofcommand ---~--------------------------~

Bytes Contents

o
1
2(0-3)
2 (4-7)
3,4
5-7
8-11

12,13
14,15
16-23
24-27
28-31

X' E1 1 trace identifier.
Not used.
X' 0 1

, identifying the first entry for the c0rn11and.
X' 4 1

, identifies entry as a system entry.
Not used.
User task sequence number (packed decimal).
ASM: address of the dynamic storage described by

OFHEISTG OSECT.
COBOL: address of the working storage section.
PL/I: address of the dynamic storage area (OSA).
Not used.
Code identifying the CICS conmand. (See EIBFN in Appendix A.)
Not used.
Return point in application program.
Time stamp.

318 CICS/MVS 2.1.2 Application Programmer's Reference

Trace entry on completion of command --------------------------------,

Bytes Contents

9
1
2(9-3)
2(4-7)
3,4
5-7
8-13

14,15

16-23
24-27

28-31

X'E1' trace identifier.
EIBGDI - "go to depending on index" field (COBOL only).
X'F', identifying the second entry for the command.
X'4', identifies entry as a system entry.
Not used.
User task sequence number (packed decimal).
Code identifying the condition raised during execution of
the command. (See EIBRCODE in Appendix A.) Zero means
no condition raised.
Code i dent ifyi ng the connland (same as bytes 14 and 15 in the
entry on issuance of the command, above).
Not used.
Return point in application program; if code in bytes
8-13 is nonzero, these bytes contain address of label
given in HANDLE CONDITION command associated with response.
Time stamp.

User trace entry ---------------------------------------.,

Bytes Contents

Trace identifier; the binary value specified in the TRACEID
option of the ENTER command.
Not used.
Not used.
X'2', identifies entry as a user entry.
Not used.
User task sequence number (packed decimal).

1
2(0-3)
2(4-7)
3,4
5-7
8-15
16-23
24-27
28-31

Data field supplied in the FROM option of the ENTER cOlnnand.
Name supplied in the RESOURCE option of the ENTER cOlnnand.
Return point in application program.
Time stamp.

For system trace entries only, if consecutive, identical
entries for the trace table are generated, the first entry
has the form of a standard entry, but subsequent identical
entries are replaced by a single special entry, immediately
following the first entry. The trace identifier of this special
entry (in byte 0) is X' FD'; bytes 24 through 27 contain a
packed decimal number that shows how many repeated
entries have been replaced by this single entry.

Trace table entries with the trace identifiers X' FE' or
X' FF' indicate the turning on or turning off, respectively,
of the trace facility. Details of these and other CICS trace
entries are given in the CICSIMVS Problem Determination
Guide.

CICS auxiliary trace facility

All trace entries that are written to the trace table will also
be written to the auxiliary trace data sets, if the auxiliary
trace facility is active. Auxiliary trace entries are recorded
only when main storage trace is also active. Whereas the
entries written to the trace table wrap around, the auxiliary
trace data sets contains all of the trace table entries that
have been made.

The CICS trace utility program (DFHTUP) can be used to
process and print selected trace entries from the data set
(for example, all the EXEC interface program trace entries).
The printout shows the trace entries in the same format as
that used to display the main storage trace table in a CICS
formatted dump.

You will find more information on using the auxiliary trace
facility in the CICSIMVS Operations Guide.

Chapter 5.3. Trace control 319

User trace entry point and event monitoring
point (ENTER)

ENTER
TRACEID(data-value)
[FROM(data-area)]
[RESOURCE{name)]
[ENTRYNAME(name)]
[ACCOUNT]
[MONITOR]
[PERFORM]

Condition: INVREQ

This command is used to specify a point within an
application program at which a user trace table entry is to
be produced (if the trace facility has been turned on for
this type of entry).

This command is used also to define a user event
monitoring point (specify MONITOR). The classes of
monitoring data for which user information is to be
collected at this user event monitoring point can be
specified by the ACCOUNT and PERFORM options.

A trace identifier in the range 0 through 199 must be
provided in the TRACEID option; this will appear in the first
byte of the trace table entry that is produced. Optionally, 8
bytes of data can be supplied in the FROM option; this
data will appear in bytes 8 through 15 of the trace table
entry.

Additionally, an 8-character name may be supplied in the
RESOURCE option; this name will appear in the resource
field (bytes 16 through 23) of the trace table entry.

For a user event monitoring point, the TRACEID specified
should match the identification number of a TYPE = EMP
entry in the monitoring control table that defines the user
information to be collected. If no such entry exists, the
ENTER command will have no effect. This provides a way
of coding optional recording points which are activated by
the use of an appropriate monitoring control table.

If both the ACCOU NT and PERFORM options are specified
in the application program, the corresponding entry in the
monitoring control table can specify recording of either
accounting or performance data, or both. If only one
option is specified at the user EMP, only that class of
recording is possible. Thus greater flexibility is obtained
by specifying both options for the user EMP and controlling
run-time activity by a suitably coded monitoring control
table.

320 CICS/MVS 2.1.2 Application Programmer's Reference

The following example shows how to specify that a user
trace table entry should be produced:

EXEC CICS ENTER TRACEID(123)
FROM(MSG)

Control the CICS trace facility (TRACE ON,
TRACE OFF)

TRACE
{ONIOFF}
[SYSTEM]
[EI]
[USER]
[SINGLE]

This command is used to control the CICS trace facility by
turning on and off the various trace flags. (See "Trace
facility control" on page 317 for details of trace flags.)

A TRACE ON or TRACE OFF command without options
controls the entire CICS trace facility but leaves the
established pattern of trace activity undisturbed.

The SYSTEM option controls the master system trace flag,
which must be on before any system trace table entries
are produced. The EI option controls the
EXEC-interface-program system trace flag. The USER
option controls the master user trace flag, and the SINGLE
option controls the user trace flag for the task.

The following example shows how to turn on the master
system and EXEC interface program system trace flags to
start tracing of CICS commands:

EXEC CICS TRACE ON SYSTEM EI

Macro-level trace facilities

If debugging at the macro level is necessary, an additional
option, ALL, can be used, specifying that the entire CICS
trace facility is to be controlled by the TRACE ON and
TRACE OFF commands. It has the same effect as a master
terminal trace control instruction and affects all master,
system, and user trace flags.

The following options can only be used in conjunction with
the SYSTEM option but no system trace entries will be
produced unless the master system trace flag is on. Each
option specifies that the system trace entries produced by
the associated program are controlled by the TRACE ON
and TRACE OFF commands. The options can be specified
in any combination and in any order.

Option CICS Program

BF Built-in Function
BM Basic Mapping Support
DC Dump Control
01 Batch Data Interchange
FC File Control
IC Interval Control
IS ISC
JC Journal Control
KC Task Control
PC Program Control
SC Storage Control
SP Sync Point
TC Terminal Control
TO Transient Data
TS Temporary Storage
UE User Exit Interface

Trace control options

ACCOUNT
specifies, for a user event monitoring point, that user
information is to be collected in the accounting class
monitoring data records.

EI specifies that tracing of CICS commands through the
EXEC interface program is affected by the TRACE ON
or TRACE OFF command.

ENTRVNAME(name)
specifies a qualifier (up to 8 characters in length) for a
user event monitoring point. If this option is omitted,
a default entry name of USER will be assumed.

FROM(data-area)
specifies an 8-byte data area whose contents are to be
entered into the data field of the trace table entry.
When used for monitoring, the data area is regarded
as two successive full word fields. These correspond,
in order, to the areas DATA1 and DATA2, the required
contents of which depend on the option specified in
the DFHMCT TYPE = EMP system macro. If the FROM
option is omitted, two fullwords of binary zeros are
passed as the values of DATA1 and DATA2.

MONITOR
specifies that a user event monitoring point, rather
than a trace entry point, is to be recorded.

PERFORM
specifies, for a user event monitoring point, that user
information is to be collected in the performance class
monitoring data records.

RESOURCE(name)
specifies an 8-character name which is to be entered
into the resource field of the trace table entry.

SINGLE
specifies that the TRACE ON or TRACE OFF command
applies to user entries of the single task issuing the
request for the duration of the task. This option is
only effective if user tracing is already active, or if you
specify the 'user' option along with this one.

SYSTEM
specifies that all trace entries made from within CICS
are affected by the TRACE ON or TRACE OFF
command.

This option controls the master system trace flag but
does not change the status of individual system trace
flags; the established pattern of system trace activity
remains intact but is controlled as a single unit. (This
characteristic is useful when macro-level trace
facilities are in use, as described earlier in the
chapter.)

TRACEID(data-value)
specifies the trace identifier for a user trace table
entry as a halfword binary value in the range 0
through 199. When used for monitoring, the data
value is the user-event monitoring point identifier as
specified in the DFHMCT TYPE = EMP system macro.

USER
specifies that all user entries for all current
transactions are affected by the TRACE ON or TRACE
OFF command.

Trace control exceptional conditions

INVREQ
occurs when TRACEID is greater than 199.

Chapter 5.3. Trace control 321

Chapter 5.4. Dump control

The CICS dump control program allows you to specify
areas of main storage to be dumped, by means of the
DUMP command, onto a sequential data set, which can be
either on tape or on disk. The contents of the data set can
be formatted subsequently and printed offline (or while the
dump data set is closed) using the CICS dump utility
program (DFHDUP).

Only one dump co~91 command is processed at a time. If
you issue additional dump control commands while a dump
is in progress, activity within the tasks associated with
those commands is suspended until the dump is
completed. Remaining dump commands are processed in
the order in which they are made. The use of the DUMP
command will cause certain fields (for example, EIBFN and
EIBRCODE) in the EIB and the TCA to be overwritten.

Options of the DUMP command allow you to dump the
following areas of main storage in various combinations:

• Task-related storage areas: selected main storage
areas related to the requesting task. You would
normally use a dump of these areas to test and debug
your application program. (CICS automatically
provides this service if the related task is terminated
abnormally.)

• CICS control tables:

File control table (FCT)

Destination control table (DCT)

Program control table (PCT)

Processing program table (PPT)

System initialization table (SIT)

Terminal control table (TCT).

A dump of these tables is typically the first dump
taken in a test in which the base of the test must be
established; subsequent dumps are usually of the
task-related storage type.

• Task-related storage areas and CICS control tables (a
complete dump): a complete dump is sometimes
appropriate during execution of a task, but do not use
this facility excessively. CICS control tables are
primarily static areas; you will find that specifying one
CICS control tables dump and a number of task related
storage dumps is generally more efficient than
specifying a comparable number of complete dumps.

Program storage will not be dumped for programs defined
in the PPT as RELOAD = YES.

You will also get a list of the CICS nucleus modules and
active PPT programs, indexed by address, at the end of the
printed dump.

© Copyright IBM Corp. 1982, 1991

The dump produced by the DUMP command displays the
registers belonging to DFHEDC at the point of invocation of
the dump control program at the macro level, not the
registers belonging to the application at the time that the
DUMP command is issued.

Dump main storage (DUMP)

DUMP
OUMPCOOE(name)
[FROM(data-area)

LENGTH(data-value)
IFLENGTH(data-value)]

[COMPLETE]
[TASK]
[STORAGE]
[PROGRAM]
[TERMINAL]
[TABLES]
[OCT]
[FCT]
[PCT]
[PPT]
[SIT]
[TCT]

This command is used to dump any or all of the main
storage areas related to a task, any or all of the CICS
tables (FCT, DCT, PCT, PPT, SIT, TCT) , or all of these
together.

The following example shows how to request a dump of the
entire task-related storage areas, the terminal control
table, and a specified data area:

EXEC CICS DUMP
TASK
TCT
FROM(AREAl)
LENGTH(200)
DUMPCODE('DUMl ')

Dump control options

You can specify the dump control options in any
combination; only one copy of each area or table will be
dumped, even if you have specified it more than once.

If you do not specify any options, that is you specify simply
EXEC CICS DUMP, the areas dumped will be the same as
those dumped when you specify the TASK option, except
that the DUI control blocks will not be dumped.

323

COMPLETE
dumps all main storage areas related to a task, all of
the CICS tables, and the DUI control blocks.

OCT
dumps the destination control table.

DUMPCODE(name)

FCT

specifies a name (up to four characters) that identifies
the dump.

dumps the file control table.

FLENGTH(data-value)
specifies, as a fullword binary value, the length of the
storage area (specified in the FROM option) that is to
be dumped. The maximum length that you can specify
is 16,777,215 bytes.

FLENGTH and LENGTH are mutually exclusive.

FROM(data-area)
dumps the specified data area which must be a valid
area, that is, storage allocated by the operating
system within the CICS region. In addition, the
following areas are dumped:

• Task control area (TCA) and, if applicable, the
transaction work area (TWA).

• Common system area (CSA), including the user's
portion of the CSA (CWA).

• Trace table (only when the CICS trace facility is
active).

• Contents of general-purpose registers upon entry
to dump control from the requesting task.

• Either the terminal control table terminal entry
(TCTTE) or the destination control table entry
associated with the requesting task.

Whenever the TCTTE is dumped, the terminal control
table user area (if any) and the message control
blocks (if any) associated with the TCTTE are dumped.
The latter are used by basic mapping support.

LENGTH

PCT

PPT

specifies the length (halfword binary) of the data area
specified in the FROM option.

LENGTH and FLENGTH are mutually exclusive.

dumps the program control table.

dumps the processing program table.

PROGRAM
specifies that program storage areas associated with
this task are to be dumped, as follows:

• Task control area (TCA) and, if applicable, the
transaction work area (TWA).

324~;i CICS/MVS 2.1:2 Applic;,ation Programmer's Reference

SIT

• Common system area (CSA), including the user's
portion of the CSA (CWA).

• Trace table (only when the CICS trace facility is
active).

• All program storage areas containing user-written
application program{s) active on behalf of the
requesting task.

• Register save areas (RSAs) indicated by the RSA
chain off the TCA.

• Contents of general-purpose registers upon entry
to dump control from the requesting task.

• Either the terminal control table terminal entry
(TCTTE) or the destination control table entry
associated with the requesting task.

Whenever the TCTTE is dumped, the terminal control
table user area (if any) and the message control
blocks (if any) associated with the TCnE are dumped.

dumps the system initialization table.

STORAGE
specifies that storage areas associated with this task
are to be dumped, as follows:

• Task control area (TCA) and, if applicable, the
transaction work area (TWA).

• Common system area (CSA), including the user's
portion of the CSA (CWA).

• Trace table (only when the CICS trace facility is
active).

• Contents of general-purpose registers upon entry
to dump control from the requesting task.

• All transaction storage areas chained off the TCA
storage accounting field.

• Either the terminal control table terminal entry
(TCTTE) or the destination control table entry
associated with the requesting task.

Whenever the TCTTE is dumped, the terminal control
table user area (if any) and the message control
blocks (if any) associated with the TCnE are dumped.

TABLES
dumps the. OCT, FCT, PCT, PPT, SIT, and the TCT.

TASK
specifies that storage areas associated with this task
are to be dumped, as follows:

• Task control area (TCA) and, if applicable, the
transaction work area (TWA).

• Common system area (CSA), including the user's
portion of the CSA (CWA).

• Trace table (only when the CICS trace facility is
active).

TeT

• All program storage areas containing user-written
application programs active on behalf of the
requesting task.

• Contents of general-purpose registers upon entry
to dump control from the requesting task.

• All transaction storage areas chained off the TCA
storage accounting field.

• Either the terminal control table terminal entry
(TCTTE) or the destination control table entry
associated with the requesting task.

• Register save areas (RSAs) indicated by the RSA
chain off the TCA.

• All terminal input/output areas (TIOAs) chained off
the terminal control table terminal entry (TCTTE)
for the terminal associated with the requesting
task.

• DUI control blocks.

Whenever the TCTTE is dumped, the terminal control
table user area (if any) and the message control
blocks (if any) associated with the TCTTE are dumped.

dumps the terminal control table.

TERMINAL
specifies that storage areas associated with the
terminal are to be dumped, as follows:

• Task control area (TCA) and, if applicable, the
transaction work area (TWA).

• Common system area (CSA), including the user's
portion of the CSA (CWA).

• Trace table (only when the CICS trace facility is
active).

• All terminal input/output areas (TIOAs) chained off
the terminal control table terminal entry (TCTTE)
for the terminal associated with the requesting
task.

• Contents of general-purpose registers upon entry
to dump control from the requesting task.

• Either the terminal control table terminal entry
(TCTTE) or the destination control table entry
associated with the requesting task.

Whenever the TCTTE is dumped, the terminal control
table user area (if any) and the message control
blocks (if any) associated with the TCTTE are dumped.
The latter are used by basic mapping support.

Dump control exceptional conditions

There are no dump control exceptional conditions.

Chapter 5.4. Dump control 325

Chapter 5.5. Journal control

CICS provides facilities for creating and managing Journals
during CICS execution. A journal is a set of
special-purpose sequential data sets. Journals may
contain any and all data the user needs to facilitate
subsequent reconstruction of events or data changes. For
example, a journal might act as an audit trail, a change-file
of database updates and additions, or a record of
transactions passing through the system (often called a
log). Each journal can be written from any task.

Only the CICS facilities dealing with the creation of journal
records (journal output) using journal control commands
are dealt with here; the CICSIMVS Resource Definition
(Macro) manual contains information about reading journal
data sets (journal input), which involves the use of CICS
journal control macros.

Journal control commands are provided to allow the
application programmer to:

• Create a journal record (JOURNAL).

• Synchronize with (wait for completion of) journal
output (WAIT JOURNAL).

Exceptional conditions that occur during execution of a
journal control command are handled as described in
"Chapter 1.5. Exceptional conditions" on page 43.

Journal records: Data may be directed to any journal
specified in the journal control table (JCT), which defines
the journals available during a particular CICS execution.
The JCT may define one or more journals on tape or direct
access storage. Each journal is identified by a number
known as the journal identifier. This number may range
from 2 through 99; the value 1 is reserved for a journal
known as the system log.

When a journal record is built, the data is moved to the
journal buffer area. All buffer space and other work areas
needed for journal operations are acquired and managed
by CICS. The user task supplies only the data to be
written to the journal.

Journal records are built into blocks compatible with
standard variable-blocked format. CICS uses the
sequential access method of the host operating system to
write the blocks to auxiliary storage.

Each journal record begins with a standard length field
(LLbb), a user-specified identifier, and a system-supplied
prefix. This data is followed in the journal record by any
user-supplied prefix data (optional), and finally by the
user-specified data .. Journal control is designed so that the
application programmer requesting output services need
not be concerned further with the detailed layout and
precise contents of journal records. The programmer

© Copyright IBM Corp. 1982, 1991

needs to know only which journal to use, what user data to
specify, and what user-identifier to supply.

Journal output synchronization: When a journal record
is created by issuing the JOURNAL command with the
WAIT option, the requesting task can wait until the output
has been completed. By specifying that this should
happen, the application programmer ensures that the
journal record is written on the external storage device
associated with the journal before processing continues;
the task is said to be synchronized with the output
operation.

The application programmer can also request
asynchronous journal output. This causes a journal record
to be created in the journal buffer area and, optionally,
initiates the data output operation from the buffer to the
external device, but allows the requesting task to retain
control and thus to continue with other processing. The
task may check and wait for output completion (that is,
synchronize) at some later time by issuing the WAIT
JOURNAL command.

The basic process of building journal records in the buffer
space of a given journal continues until one of the
following events occurs:

• A request specifying the STARTIO option is made
(from any task) for output of a journal record.

• A request is rejected because of insufficient journal
buffer space.

• The available buffer space is reduced below an
amount that is specified by the system programmer.

• One second elapses after the last occasion on which
any task issued an implied or explicit wait on records
in this journal buffer.

When anyone of these occurs, all journal records present
in the buffer, including any deferred output resulting from
asynchronous requests; are written to auxiliary storage as
one block.

The advantages that may be gained by deferring journal
output are:

• Transactions may get better response times by waiting
less.

• The load of physical I/O requests on the host system
may be reduced.

• Journal data sets may contain fewer but larger blocks
and so better utilize auxiliary storage devices.

However, these advantages are achievable only at the cost
of more buffer space and greater programming complexity.
It is necessary to plan and program to control
synchronizing with journal output. Additional decisions

327

that depend on the data content of the journal record and
how it is to be used must be made in the application
program. In any case, the full benefit of deferring journal
output is obtained only when the load on the journal is
high.

The STARTIO option is used with JOURNAL output
requests to specify that the journal output operation is to
be initiated immediately. For asynchronous output
requests, control returns directly to the requesting
program. The STARTIO option should not be used
unnecessarily because, if every journal request used
STARTIO, no improvement over synchronous output
requests, in terms of reducing the number of physical I/O
operations and increasing the average block size, would be
possible.

If the journal buffer space available at the time of the
request is not sufficient to contain the journal record, the
NOJBUFSP exceptional condition occurs. If no HANDLE
CONDITION request is active for this condition, the
requesting task loses control, the contents of the current
buffer are written out, and the journal record is built in the
resulting freed buffer space before control returns to the
requesting task.

If the requesting task is not willing to lose control (for
example, if some housekeeping must be performed before
other tasks get control), a HANDLE CONDITION command
should be issued. If the NOJBUFSP condition occurs, no
journal record is built for the request, and control is
returned directly to the requesting program at the location
provided in the HANDLE CONDITION request. The
requesting program can perform any housekeeping needed
before reissuing the journal output request.

Create a journal record (JOURNAL)

JOURNAL
JFILEIO(data-value)
JTYPEIO(data-value)
FROM(data-area)
[LENGTH(data-value)]
[REQIO(data-area)]
[PREFIX(data-value)

PFXLENG(data-value)]]
[STARTIO]
[WAIT]
[NOSUSPEND]

Conditions: IOERR, JIDERR, LENGERR,
NOJBUFSP, NOTAUTH, NOTOPEN

This command is used to create a journal record. The
request can be for synchronous or asynchronous output;

328 CICS/MVS 2.1.2 Application Programmer's Reference

definitions of these terms, and detailed information
regarding the synchronization of journal output, are
contained in "Journal output synchronization" on
page 327. The following options must be specified.

• JFILEID specifies the journal to receive the data.
(JFILEID(1) specifies the system log.)

• JTYPEID specifies a two-character identifier for the
journal record.

• FROM specifies the user data to be included in the
journal record.

• LENGTH specifies the length of the user data. This
length does not include anything reserved for CICS.

The following are optional:

• PREFIX specifies the user prefix data for the journal
record.

• PFXLENG specifies the length of the prefix data.

To request synchronous journal output the WAIT option
must be specified. For asynchronous output, (WAIT option
not specified), the REQID option can be included to provide
an identifier for the journal record; the identifier can be
used later in a WAIT JOURNAL command to synchronize
the task with the creation of the journal record.

The STARTIO option can be included in a synchronous or
asynchronous request to specify that the journal output
operation should start immediately. STARTIO reduces
absolute waiting time at the expense of general system
performance and input/output load.

The following example shows how to request synchronous
journal output and wait for the output operation to be
completed:

EXEC CICS JOURNAL
JFILEID(2)
JTYPEID(I XX I)
FROM(KEYDATA)
LENGTH(8)
PREFIX(PROGNAME)
PFXLENG(6)
WAIT

In this example, because STARTIO is not specified, the
task will wait until the journal buffer is full or until output is
initiated by a STARTIO request in another task. CICS
limits the wait to one second.

The following example shows how to request deferred
(asynchronous) journal output:

EXEC CICS JOURNAL
FROM(COMOATA)
LENGTH(10)
JFI LEID(1)
JTYPEID (I SO I)
REQID(ENTRYID)

Synchronize with Journal output (WAIT
JOURNAL)

WAIT JOURNAL
JFILEID(data-value)
[REQID(data-value)]
[STARTIO]

Conditionsl INVREQ. IOERR. JIDERR.
NOTAUTH, NOTOPEN

This command is used to synchronize the task with the
output of one or more journal records that have been
created but whose output has been deferred; that is, with
asynchronous journal output requests.

The JFILEID option specifies the journal identifier, and the
REQID option optionally specifies a particular journal
record. If the REQID option is not specified, the task is
synchronized with the output of the the last record created
for the journal specified in the JFILEID option.

The journal records in the journal buffer area may already
be written out to auxiliary storage, or the journal record
output operation may be in progress. If the output
operation has already been completed, control returns
immediately to the requesting task; if not, the requesting
task waits until the operation has been completed. If
STARTIO is specified, output is initiated immediately.

If the requesting program has made a succession of
successful asynchronous output requests to the same
journal, it is necessary to synchronize on only the last of
these requests to ensure that all of the journal records
have reached auxiliary storage. This may be done either
by issuing a stand-alone WAIT JOURNAL command, or by
making the last output command itself synchronous (by
specifying the WAIT option in the JOURNAL command).

The following example shows how to request
synchronization with the output of a journal record:

EXEC CICS WAIT JOURNAL
JFILEID(4)
REQIO(ENTRYID)

Journal control options

FROM(data-area)
specifies the user data to be built into the journal
record.

JFILEID(data-value)
specifies a halfword numeric value in the range 1
through 99 to be taken as the journal identifier. The
value 1 specifies that the system log data set is the
journal for this operation.

JTYPEID(data-value)
specifies a two-character identifier to be placed in the
journal record to identify its origin.

LENGTH(data-value)
specifies, as a halfword binary value, the length in
bytes of the user data to be built into the journal
record. The minimum value is 1 and the maximum
value is (buffer size - 72) minus PFXLENG.

NOSUSPEND
specifies that application program suspension for the
NOJBUFSP condition is to be inhibited. This condition
will be handled as described on page 43.

PFXLENG(data-value)
specifies, as a halfword binary value, the length in
bytes of the user prefix data to be included in the
journal record. The maximum value is (buffer size -
72) minus LENGTH.

PREFIX(data-value)
specifies the user prefix data to be included in the
journal record. A data area must be provided in
COBOL programs.

REQID(parameter)
specifies a fullword binary variable. For a JOURNAL
command, the REQID option specifies that
asynchronous output is required; the parameter must
be a data area. CICS sets the variable to a number
that depends upon the position in the data set of the
record being created.

When used with a WAIT JOURNAL command, the
REQID option specifies a variable set to a number that
refers to the journal record that has been created but
possibly not yet written out; the parameter is a data
value.

STARTIO
specifies that output of the journal record is to be
initiated immediately. If WAIT is specified for a journal
with a low utilization, STARTIO should be specified
also to prevent the requesting task waiting for the
journal buffer to be filled. Very high utilization
ensures that the buffer is flushed quickly, so that
STARTIO is unnecessary.

WAIT
specifies that synchronous journal output is required.
The journal record is written out; the requesting task
waits until the record has been written.

Chapter 5.5. Journal control 329

Journal control exceptional conditions

INVREQ
occurs if a WAIT JOURNAL command is issued before
any JOURNAL command has been issued in the same
task.

Default action: terminate the task abnormally.

IOERR
occurs if the physical output of a journal record was
not accomplished because of an unrecoverable I/O
error.

Default action: terminate the task abnormally.

JIDERR
occurs if the specified journal identifier does not exist
in the journal control table (JeT).

Default action: terminate the task abnormally.

LENGERR
occurs if the computed length for the journal record
exceeds the total buffer space allocated for the journal
data set, as specified in the JeT entry for the data set,
or if the length specified for the prefix or for the data
is negative.

Default action: terminate the task abnormally.

330 CICS/MVS 2.1.2 Application Programmer's Reference

NOJBUFSP
occurs if the journal buffer space allocated by the
system programmer is not sufficient to contain a
journal record.

Default action: write out the contents of the current
buffer; suspend task activity until the JOURNAL
command is satisfied.

NOTAUTH
occurs if a resource security check has failed. The
reasons for the failure are the same as for abend code
AEY7, as described in the CICSIMVS Messages and
Codes manual.

Default action: terminate the task abnormally.

NOTOPEN
occurs if the journal command cannot be satisfied
because the specified journal was never opened, and
is not available.

Default action: terminate the task abnormally.

Chapter 5.6. Recovery (sync points)

To facilitate recovery in the event of abnormal termination
of a CICS task or of failure of the CICS system, the system
programmer can, during CICS table generation, define
certain resources (for example, files) as recoverable. If a
task is terminated abnormally, these resources are
restored to the condition they were in at the start of the
task, which can then be rerun. The process of restoring
the resources associated with a task is termed backout.

If an individual task fails, backout is performed by the
dynamic transaction backout program. If the CICS system
fails, backout is performed as part of the emergency
restart process. The CICSIMVS Facilities and Planning
Guide and the CICSIMVS Customization Guide describe
these facilities, which in general have no effect on the
coding of application programs.

However, for long-running programs, it may be undesirable
to have a large number of changes, accumulated over a
period of time, exposed to the possibility of backout in the
event of task or system failure. This possibility can be
avoided by using the SYNCPOINT command to split the
program into logically separate sections termed logical
units of work (LUWs); the end of an LUW is called a
synchronization point (sync point).

In addition to those defined with the SYNCPOINT command,
sync points also occur at the end of a task and at each
DLII termination or checkpoint (CHKP) call. For the
purposes of backout, each of these sync points is treated
as though it marked the end of a task. If failure occurs
after a sync point but before the task has been completed,
only changes made since the sync point are backed out.

LUWs should be entirely logically independent, not merely
with regard to protected resources, but also with regard to
execution flow. Typically, an LUW would comprise a
complete conversational operation bounded by SEND and
RECEIVE commands. A browse is another example of an
LUW. An ENDBR command must therefore precede the
sync point.

In addition to a DUI termination call being considered to
be a sync point, the execution of a SYNCPOINT command
will cause CICS to issue a DLII termination call. If a DUI
PSB is required in a subsequent LUW, it must be
rescheduled by means of a PCB call.

A BMS logical message started but not completed when a
SYNCPOINT command is executed is forced to completion
by an implied SEND PAGE command. However, do not rely
on this, because a logical message whose first page is
incomplete will be lost. You must also code an explicit
SEND PAGE command before the SYNCPOINT command or
before termination of the transaction.

© Copyright IBM Corp. 1982, 1991

Consult the system programmer if sync points are to be
issued in a transaction that is eligible for transaction
restart.

Establish a sync point (SYNCPOINT)

SYNCPOINT [ROLLBACK]

Condition: ROLLEDBACK

This command is used to divide a task (usually a long
running one) into smaller LUWs. Each SYNCPOINT
command causes a sync point to be established to mark
the completion of an LUW.

Sync point option

ROLLBACK
specifies that all changes to recoverable resources
made by the task since its last sync point are to be
backed out.

This option can be used, for example, to tidy up in a
HANDLE ABEND routine, or to revoke database
changes after the application program finds
unrecoverable errors in its input data.

If the LUW updates remote recoverable resources
using an MRO or LUS.2 session, the ROLLBACK option
is propagated to the backend transaction.

When a distributed transaction processing
conversation is in use, the remote application program
will have the EIB fields EIBSYNRB, EIBERR, and
EIBERRCD set. For the conversation to continue, the
remote application program should execute a
SYNC POI NT ROLLBACK command.

When the mirror transaction is involved in the LUW
using an MRO or LUS.2 session, the mirror will honor
the rollback request, revoke changes, and then
terminate normally.

This option is not supported across LUS.1 VTAM
sessions to the mirror or backend transactions. In
these cases, the frontend transactions could be
abended to cause the backend transactions to back
out. This option must not be used if remote
recoverable resources have been updated in the same
LUW (because those resources will not be backed out)
unless an LUS.2 or MRO session is in use. To back
out remote recoverable resources, the transaction
could be abended.

When a distributed transaction processing
conversation is in use, the remote application program

331

will have the EIB fields EIBSYNRB, EIBERR, and
EIBERRCD set. For the conversation to continue, the
remote application program should execute a
SYNCPOINT ROLLBACK command.

This option can be used, for example, to tidy up in a
HANDLE ABEND routine, or to revoke database
changes after the application program finds
unrecoverable errors in its input data.

This option cannot be used for transactions involved in
function shipping or transaction routing on an LUS.1
session.

332 CICS/MVS 2.1.2 Application Programmer's Reference

Sync point exceptional condition

ROLLEDBACK
occurs when a SYNCPOINT command is driven into
rollback by a remote system that is unable to commit
the sync point. All changes made to recoverable
resources in the current LUW will have been backed
out.

Default action: terminate the task abnormally.

Part 6. The CICS built-in function command

© Copyright IBM Corp. 1982, 1991

Chapter 6.1. The field edit built-in function (BIF DEEDIT) command

The built-in function, DEEDIT, is provided by means of the
BIF DEEDIT command. BFP=YES must be specified in the
DFHSIT system macro for this built-in function to work.

BIF DEEDIT
FIELD(data-area)
[LENGTH(data-value)]

This command specifies that alphabetic and special
characters are to be removed from an EBCDIC data field,
the remaining digits being right justified and padded left
with zeros as necessary.

This field is specified by the FIELD option and its length, in
bytes, by the LENGTH option. A field of 1 byte will be
returned unaltered, no matter what the field contains.

If the field ends with a minus sign or a 'CR', a negative
zone (X I D ') is placed in the rightmost (low-order) byte.

If the zone portion of the rightmost byte contains one of
the hexadecimal characters X I A' through X' F I, and the
numeric portion contains one of the hexadecimal digits

@ Copyright IBM Corp. 1982, 1991

X I 0' through X' 9 I, the rightmost byte is returned
unaltered (see the first example below). This permits the
application program to operate on a zoned numeric field.
The returned value is in the field that initially contained the
unedited data.

For example, execution of the command:

EXEC CICS BIF DEEDIT
FIELD(CONTG)
LENGTH(9)

removes all characters other than digits from CONTG, a
nine-byte field, and returns the edited result in that field to
the application program. Two examples of the contents of
CONTG before and after execution of the command are:

Original value

14-6794/8

$25.68

Returned value

991467848

eeeee2568

A decimal point is an EBCDIC special character and as
such is removed.

There are no exceptional conditions with DEEDIT.

335

Appendixes

Appendix A EXEC Interface block

Appendix B Translation tables for the 2980

Appendix C CICS macros and equivalent commands

Appendix 0 Sample programs (assembler language)

Appendix E Sample programs (COBOL)

Appendix F Sample programs (PLlI)

© Copyright IBM Corp. 1982, 1991 337

Appendix A. EXEC interface block

This appendix describes the fields of the EXEC interface
block (EIB) referred to in "Chapter 1.6. Access to system
information" on page 51. An application program can
access a" of the fields in the EIB of the associated task by
name but must not change the contents of any of them.

For each field, the contents and format (for each of the
application programming languages ASM, COBOL, and
PL/I) are given. A" fields contain zeros in the absence of
meaningful information. Fields are listed in alphabetic
order.

EIB fields

EIBAID
contains the attention identifier (AID) associated with
the last terminal control or basic mapping support
(BMS) input operation from a display device such as
the 3270.

A5M: CLl
COBOL: PIC X(I)
PL/I: CHAR(1)

EIBATT
indicates that the RU contains attach header data
(X' FF').

ASM: Cll
COBOL: PIC X(I)
PL/I: CHAR(1)

EIBCALEN
contains the length of the communication area that
has been passed to the application program from the
last program, using the COMMAREA and LENGTH
options. If no communication area is passed, this field
contains zeros.

ASM: H
COBOL: PIC S9(4) CaMP
PL/I: FIXED BIN(15)

EIBCOMPL
indicates, on a terminal control RECEIVE command
whether the data is complete (X' FF'). If the
NOTRUNCATE option has been used on the RECEIVE
command, CICS will retain data in excess of the
amount requested via the LENGTH or MAXLENGTH
option. EIBRECV will be set indicating that further
RECEIVE commands are required. EIBCOMPL will not
be set until the last of the data has been retrieved.

EIBCOMPL will always be set when a RECEIVE
command without the NOTRUNCATE option is
executed.

ASM: ell
COBOL: PIC X(I)
PL/I: CHAR(1)

© Copyright IBM Corp. 1982, 1991

EIBCONF
indicates that a CONFIRM request has been received
(X' FF') for an LU6.2 conversation.

ASM: ell
COBOL: PIC X(I)
PL/I: CHAR(l)

EIBCPOSN
contains the cursor address (position) associated with
the last terminal control or basic mapping support
(BMS) input operation from a display device such as
the 3270.

ASM: H
COBOL: PIC S9(4) CaMP
PL/I: FIXED BIN(15)

EIBDATE
contains the date the task is started (this field is
updated by the ASKTIME command). The date is in
packed decimal form (OOVYDDD +).
ASM: PL4
COBOL: PIC 59(7) COMP-3
PL/I: FIXED DEC(7,0)

EIBDS
contains the symbolic identifier of the last data set
referred to in a file control request.

ASM: CLB
COBOL: PIC XeS)
PL/I: CHAR(S)

EIBEOC
indicc:..es that an end-of-chain indicator appears in the
RU just received (X' FF').

ASM: Cll
COBOL: PIC XCI)
PL/I: CHAR (1)

EIBERR
indicates that an error has been received (X' FF') on
an LU6.2 conversation.

ASM: Cll
COBOL: PIC XCI)
PL/I: CHAR(1)

EIBERRCD
when EIBERR is set, contains the error code that has
been received. The following values can be returned
in the first two bytes of EIBERRCD:

X' 0889' Conversation error detected

X'0824' SYNCPOINT ROLLBACK requested

ASM: CL4
COBOL: PIC X(4)
PL/I: CHAR(4)

339

EIBFMH 043A ISSUE PASS
indicates that the user data just received or retrieved 043C EXTRACT LOGONMSG
contains an FMH (X I FF I).

0602 READ ASM: Cll 0604 WRITE COBOL: PIC XCI) 0606 REWRITE PLfI: CHAR(1) 9698 DELETE
EIBFN 969A UNLOCK

contains a code that identifies the last CICS command 969C STARTBR
to be issued by the task (updated when the requested 969E READNEXT

0610 READPREV function has been completed).
0612 ENDBR

Note: The INQUIRE and SET commands of the 9614 RESETBR
command level application program interface, together
with the spool commands of the CICS interface to JES, 9892 WRITEQ TO
are primarily for the use of the system programmer; 9894 READQ TO
they are not described in this book. For details of the 9896 DELETEQ TO
commands, see the CICSIMVS Customization Guide.

0A02 WRITEQ TS However, the EIBFN codes for these commands are
included in the following list. 0A04 READQ TS

9A06 DELETEQ TS
ASM: CL2
COBOL: PIC X(2) 9C02 GETMAIN
PLfI: CHAR(2) 0C94 FREEMAIN

Code Command 9E02 LINK
0E94 XCTL

9292 ADDRESS 0E06 LOAD
0204 HANDLE CONDITION 0E08 RETURN
9206 HANDLE AID 9E9A RELEASE
9298 ASSIGN 9E9C ABEND
920A IGNORE CONDITION 0E0E HANDLE ABEND
929C PUSH
020E POP 1002 ASKTIME

1004 DELAY
0402 RECEIVE 1996 POST
0494 SEND 1098 START
0406 CONVERSE 199A RETRIEVE
9408 ISSUE EODS 100C CANCEL
040A ISSUE COPY
940C WAIT TERMI NAL 1202 WAIT EVENT
040E ISSUE LOAD 1204 ENQ
04H) WAIT SIGNAL 1206 DEQ
9412 ISSUE RESET 1298 SUSPEND
9414 ISSUE DISCONNECT
0416 ISSUE ENDOUTPUT 1402 JOURNAL
9418 ISSUE ERASEAUP 1494 WAIT JOURNAL
041A ISSUE ENDFILE
941C ISSUE PRINT 1602 SYNCPOINT
041E ISSUE SIGNAL
9420 ALLOCATE 1892 RECEIVE MAP
9422 FREE 1894 SEND MAP
9424 POINT 1806 SEND TEXT
9426 BUILD ATTACH Ie0e SEND PAGE
0428 EXTRACT ATTACH le0A PURGE MESSAGE ..
942A EXTRACT TCT 180C ROUTE
942C WAIT CONVID 189E RECEIVE .PARTN
942E EXTRACT PROCESS 18H) SEND PARTNSET
0430 ISSUE ABEND 1812 SEND CONTROL
0432 CONNECT PROCESS
0434 ISSUE CONFIRMATION lA02 TRACE
9436 ISSUE ERROR lA94 ENTER
0438 ISSUE PREPARE

340 CICS/MVS 2.1.2 Application Programmer's Reference

)
IC92 DUMP

IE92 ISSUE ADD
IE94 ISSUE ERASE
IE96 ISSUE REPLACE
IE9S ISSUE ABORT
IE9A ISSUE QUERY
IE9C ISSUE END
IE9E ISSUE RECEIVE
IE19 ISSUE NOTE
IE12 ISSUE WAIT
lE14 ISSUE SEND

2992 BIF DEEDIT

2292 ENABLE
2994 DISABLE
2996 EXTRACT EXIT

4A92 ASKTIME ABSTIME
4A94 FORMATTIME

4C92 INQUIRE DATASET
4C04 SET DATASET

4E02 INQUIRE PROGRAM
4E94 SET PROGRAM

5902 INQUIRE TRANSACTION
5004 SET TRANSACTION

5292 INQUIRE TERMINAL
5204 SET TERMINAL
5296 INQUIRE NET NAME

5492 INQUIRE SYSTEM
5494 SET SYSTEM

5892 INQUIRE CONNECTION
5894 SET CONNECTION

5A02 INQUIRE MODENAME
5A94 SET MODENAME

EIBFREE
indicates that the application program cannot continue
using the facility. The application program should
either free the facility or should terminate so that the
facility is freed by CICS (X' FF').

ASM: CLl
COBOL: PIC X(l)
PL/I: CHAR(l)

EIBNODAT
indicates that no data has been sent by the remote
application (X' FF '). A message has been received
from the remote system that conveyed only control
information. For example, if the remote application
executed a SEND command with the WAIT option, any
data would be sent across the link. If the remote
application then executed a SEND INVITE command
without using the FROM option to transmit data at the

same time, it would be necessary to send the INVITE
instruction across the link by itself. In this case, the
receiving application finds EIBNODAT set. The use of
this field is restricted to application programs holding
conversations across LU6.2 links only.

ASM: CLl
COBOL: PIC X(l)
PL/I: CHAR (1)

EIBRCODE
contains the CICS response code returned after the
function requested by the last CICS command to be
issued by the task has been completed. For a normal
response, this field contains hexadecimal zeros
(6X '00 I).

Almost all of the information in this field can be used
within application programs by the HANDLE
CONDITION command.

ASM: CL6
COBOL: PIC X(6)
PL/I: CHAR(6)

The following list contains the values of the various
bytes together with the names of the conditions
associated with the return codes. For a complete list
of response codes, see the CICSIMVS Problem
Determination Guide.

Note: The INQUIRE and SET commands of the
command level application interface, together with the
spool commands of the CICS interface to JES are
primarily for the use of the system programmer; they
are not described in this book. For details of the
commands, see the CICSIMVS Customization Guide.

EIBFN (Byte 0)

Byte(of EIBRCODE)

r

EIBRCOOE Value

rCOnditi on

02 0 E0 INVREQ
02 0 El LENGERR

94 0 04 EOF
04 0 10 EODS
04 0 Cl EOF
04 0 C2 ENDINPT
04 0 00 SYSIDERR3
04 0 02 SESSIONERR3
04 0 03 SYSBUSY
04 0 04 SESSBUSY
04 0 05 NOTALLOC
04 0 Ee INVREQ4
04 0 El LENGERR5
04 0 E3 WRBRK
04 0 E4 RDATT
04 0 E5 SIGNAL
04 e E6 TERMIDERR

Appendix A~ EXEC Interface block 341

04 0 E7 NOPASSBKRD
04 0 E8 NOPASSBKWR
04 0 EA IGREQCD
04 0 EB CBIDERR
04 0 F1 TERMERR
04 1 20 EOC
04 1 40 INBFMH
04 3 F6 NOSTART
04 3 F7 NONVAL

06 0 01 DSIDERR
06 0 02 ILLOGICl
06 0 08 INVREQ
06 0 0C NOT OPEN
06 0 00 DISABLED
06 0 0F ENDFILE
06 0 80 IOERRl
06 0 81 NOTFND
06 0 82 OUPREC
06 0 83 NOSPACE
06 0 84 DUPKEY
06 0 00 SYSIDERR3
06 0 01 ISCINVREQ
06 0 06 NOTAUTH
06 0 E1 LENGERR

08 0 01 QZERO
08 0 02 QIDERR
08 0 04 IOERR
08 0 08 NOTOPEN
08 0 10 NOSPACE
08 0 C0 QBUSY
08 0 00 SYSIDERR3
08 0 Dl ISCINVREQ
08 0 D6 NOTAUTH
08 0 El LENGERR

0A 0 01 ITEMERR
0A 0 02 QIDERR
0A 0 04 IOERR
0A 0 08 NOSPACE
0A 0 20 INVREQ
0A 0 00 SYSIDERR3
0A 0 01 ISCINVREQ
0A 0 06 NOTAUTH
0A 0 El LENGERR

0C 0 El LENGERR
0C e E2 NOSTG

0E 0 01 PGMIOERR
0E 0 06 NOTAUTH
0E 0 E0 INVREQ

10 0 01 ENODATA
10 0 04 IOERR
10 0 11 TRANSIDERR
10 0 12 TERMIDERR
10 0 14 INVTSREQ
10 0 20 EXPIRED
10 0 81 NOTFND
10 0 00 SYSIDERR3
18 8 01 ISCINVREQ

342 CICS/MVS 2.1.2 Application Programmer's Reference

10 0 06 NOTAUTH
10 0 E1 LENGERR
10 0 E9 ENVDEFERR
10 0 FF INVREQ

12 0 32 ENQBUSY
12 0 E0 INVREQ
12 0 E1 LENGERR

14 0 01 JIOERR
14 0 02 INVREQ
14 0 05 NOTOPEN
14 0 06 LENGERR
14 0 07 IOERR
14 0 09 NOJBUFSP
14 0 06 NOTAUTH

16 0 01 ROLLEDBACK

18 0 01 INVREQ
18 0 02 RET PAGE
18 0 04 MAPFAIL
18 0 08 INVMPSZ2
18 0 20 INVERRTERM
18 0 40 RTESOME
18 0 80 RTEFAIL
18 0 El LENGERR
18 0 E3 WRBRK
18 0 E4 ROATT
18 1 02 PARTNFAIL
18 1 04 INVPARTN
18 1 08 INVPARTNSET
18 1 10 INVLDC
18 1 20 UNEXPIN
18 1 40 IGREQCD
18 1 S0 TSIOERR
18 2 01 OVERFLOW
18 2 04 EOOS
18 2 08 EOC
18 2 10 IGREQIO

lA 0 E0 INVREQ

IE 0 04 OSSTAT
IE 0 08 FUNCERR
IE 0 0C SELNERR
IE 0 10 UNEXPIN
IE 0 El LENGERR
IE 1 11 EODS
IE 1 2B IGREQCO
IE 2 20 EOC

4A 3 01 ERROR

56 3 80 NOTFNO
56 3 10 INVREQ
56 3 11 IOERR
56 3 12 NOSPACE
56 3 14 ENDFILE
56 3 15 ILLOGIC
56 3 16 LENGERR
56 3 46 NOTAUTH
56 3 49 WRONGSTAT

56 3 4A NAMEERROR
56 3 4C CCERROR
56 3 40 MAPERROR
56 3 59 NOSPOOL

The following notes apply to the above list of
conditions.

Notes:

1. When ILLOGIC or IOERR occurs during file control
operations, further information is provided in field
EIBRCODE, as follows:

bytes 1-4 = BDAM response
byte 1 = VSAM return code
byte 2 = VSAM error code

Details of these response codes are given in the
Data Management Macro Instructions manual.

2. When INVMPSZ occurs during BMS operations,
byte 3 of field EIBRCODE contains the terminal
code; see "Terminal code table" on page 190.

3. When SYSIDERR occurs, further information is
provided in

94ee Request for an invalid function.
e4e4 NOQUEUE option specified but no session

available.
949a Modename not found3.
94ec Modename invalid3•
9419 Task canceled or timed out during

execu t i on3.
9414 Mode group not available3•
e418 Mode group draining3•
eaee Sysid out of service or released.
e8e4 Session could not be bound.
ecee Name not that of a TCTSE.
ece4 Name not that of a valid TCTSE.

4. When SESSIONERR occurs, further information is
provided in bytes 1 and 2 of EIBRCODE, as
follows:

9aee SYSID out of service.
eae4 Session out of service4•

ecee Name not that of a TeTTE.

5. When INVREQ occurs during terminal control
operations, further information is provided in byte
3 of EIBRCODE as follows:

I 3 APPC only

I 4 LUTYPE6.1 only

e4 ALLOCATE command - TCTTE
already allocated.

98 FREE command - TCTTE in
wrong state.

ac CONNECT PROCESS command -
SYNCLVL 2 has been r~quested
but cannot be supported on
the session in use.

Ie EXTRACT ATTACH command -
invalid data.

14 SEND command - CONFIRM
option has been specified
but conversation is not
SYNCLVL 1.

18 EXTRACT TCT command -
invalid netname.

lC An invalid command has been
issued for the terminal or
logical unit in use.

2e An invalid command has been
issued for the LU6.2
conversation type in use.

2a GETMAIN failure on ISSUE
PASS command.

6. When LENGERR occurs during terminal control
operations, further information is provided in byte
1 of EIBRCODE, as follows:

ea Input data is overlong and
has been truncated.

e4 On output commands, an
invalid (FROM}LENGTH has
been specified. either less
than zero or greater than
32767.

a8 On input commands. an
invalid (TO)LENGTH has
been specified. greater
than 32767.

ec Length error has occurred
on ISSUE PASS command.

EIBRECV
indicates that the application program is to continue
receiving data from the facility by executing RECEIVE
commands (X I FF I).

ASM: CLl
COBOL: PIC X(I)
PL/I: CHAR(1)

Appendix A. EXEC Interface block 343

EIBREQID 31 EXPIRED
contains the request identifier assigned to an interval 32 RETPAGE
control command by CICS; this field is not used when 33 RTEFAIL
a request identifier is specified in the application 34 RTESOME
program. 35 TSIOERR

36 MAPFAIL
ASM: CL8 37 I NVERRTERM
COBOL: PIC X(8) 38 INVMPSZ
PL/I: CHAR(8) 39 IGREQID

EIBRESP 48 OVERFLOW
contains a binary number corresponding to the 41 INVLDC

42 NOSTG condition that has· been raised. These numbers are 43 JIDERR
listed below in decimal. 44 QIDERR
Note: The INQUIRE and SET commands of the 45 NOJBUFSP
command level application interface, together with the 46 DSSTAT
spool commands of the CICS interface to JES, are 47 SELNERR
primarily for the use of the system programmer; they 48 FUNCERR
are not described in this book. For details of the 49 UNEXPIN
commands, see the CICSIMVS Customization Guide. 58 NOPASSBKRD
However, the EIBRESP codes for these commands are 51 NOPASSBKWR

included in the following list. 52
53 SYSIDERR

ASM: F 54 ISCINVREQ
COBOL: PIC S(9) COMP 55 ENQBUSY
PL/I: FIXED BIN(31) 56 ENVDEFERR

57 IGREQCD
No. 58 SESSIONERR
Condition 59 SVSBUSV

68 SESSBUSY
81 ERROR 61 NOTALLOC
82 RDATT 62 CBIDERR
83 WRBRK 63 INVEXITREQ
84 EOF 64 INVPARTNSET
85 EODS 65 INVPARTN
86 EOe 66 PARTNFAIL
07 INBFMH 67
88 ENDINPT 68
89 NONVAL 69
18 NOSTART 78 NOTAUTH
11 TERMIDERR 71
12 DSIDERR 72
13 NOTFND 73 WRONGSTAT
14 DUPREC 74 NAMEERROR
15 DUPKEY 75
16 INVREQ 76 CCERROR
17 IOERR 77 MAPERROR
18 NOSPACE 78
19 NOT OPEN 79
28 ENDFILE 88 NOSPOOL
21 ILLOGIC 81 TERMERR
22 LENGERR 82 ROLLEDBACK
23 QZERO 83 END
24 SIGNAL 84 DISABLED
25 QBUSY 85 ALLOCERR
26 ITEMERR 86 STRELERR
27 PGMIDERR 87 OPENERR
28 TRANSIDERR 88 SPOLBUSY
29 ENDDATA 89 SPOLERR
38 INVTSREQ 90 NODEIDERR

344 CICS/MVS 2.1.2 Application Programmer's Reference

EIBRESP2
contains more detailed information that may help
explain why the RESP condition has been raised. This
field will contain meaningful values (as decimal
numbers) only for the INQUIRE, SET, and spool
commands.

ASM: F
COBOL: PIC S(9) CaMP
PL/I: FIXED BIN(31)

Note: The INQUIRE and SET commands of the
command level application interface, together with the
spool commands of the CICS interface to JES, are
primarily for the use of the system programmer; they
are not described in this book. For details of these
commands, see the CICSIMVS Customization Guide.

EIBRLDBK
indicates rollback

ASM: CLl
COBOL: PIC X(l)
PL/I: CHAR(1)

EIBRSRCE
contains the symbolic identifier of the resource being
accessed by the latest executed command. For file
control commands this will be the name of the data
set. For transient data and temporary storage
commands it will be the name of the queue. For
terminal control commands it will be the name of the
terminal or logical unit, except for Ise commands
when it will be the name of the LUS.1 session or the
LUTYPE6.2 conversation.

Identifiers less than eight characters in length are
padded on the right with blanks.

ASM: CLB
COBOL: PIC X(B)
PL/I: CHAR(B)

EIBSIG
indicates that SIGNAL has been received (X I FF I).

ASM: CLl
COBOL: PIC X(l)
PL/I: CHAR(1)

EIBSYNC
indicates that the application program must take a
sync point or terminate. Before either is done, the
application program must ensure that any other
facilities, owned by it, are put into the send state, or
are freed (X I FF I).

ASM: CLl
COBOL: PIC X(l)
PL/I: CHAR(1)

EIBSYNRB
indicates that the application program should issue a
SYNCPOINT ROLLBACK command (X I FF I). This field
is only set in application programs holding a
conversation on an LUS.2 or MRO link.

ASM: CLl
COBOL: PIC X(l)
PL/I: CHAR(1)

EIBTASKN
contains the task number assigned to the task by
CICS. This number will appear in trace table entries
generated while the task is in control.

ASM: PL4
COBOL: PIC S9(7) COMP-3
PL/I: FIXED DEC(7,0)

EIBTIME
contains the time at which the task is started (this field
is updated by the ASKTIME command). The time is in
packed decimal form (OHHMMSS +).

ASM: PL4
COBOL: PIC S9(7) COMP-3
PL/I: FIXED DEC(7,0)

EIBTRMID
contains the symbolic terminal identifier of the
principal facility (terminal or logical unit) associated
with the task.

ASM: CL4
COBOL: PIC X(4)
PL/I: CHAR(4)

EIBTRNID
contains the symbolic transaction identifier of the task.

ASM: CL4
COBOL: PIC X(4)
PL/I: CHAR(4)

Appendix A. EXEC interface block 345

Appendix B. Translation tables for the 2980

This appendix contains translation tables for the components of the IBM 2980 General Banking Terminal System. The line
codes and processor codes listed are unique to CICS and are represented as standard EBCDIC characters .

------------- . --------- ---------
KEY ENGRAVING LINE PROCESSOR CODE HLL
No. Top(LC) Front (UC) Code Numeric(LC) Alpha(UC) IO

0 ~lSG ACK 1 F1 AA F1
1 SEND AGAIN Q 08 09 08
2 CORR A Cl C3 Cl
3 HOLD OVROE 2 F2 C8 F2
4 VOID Z E9 E5 E9
5 ACCT INQ W E6 08 E6
6 ACCT TFR S E2 AB E2 2
7 CIF 3 F3 AC F3 3
8 MISC X E7 AD E7 4
9 CLSO ACCT E C5 E7 C5

10 NO BOOK 0 C4 AE C4 5
11 MORT LOAN 4 F4 AF F4 6
12 C C3 BO C3 7
13 NE\~ ACCT R 09 Bl 09 8
14 BOOK BAL F C6 B2 C6 9
15 INST LOAN 5 F5 B3 F5 10
16 SPEC TRAN V E5 B4 E5 11
17 SAV BOND T E3 B5 E3 12
18 SAV G C7 B6 C7 13
19 XMAS CLUB 6 F6 B7 F6 14
20 B C2 4B C2
21 OOA Y E8 B8 E8 15
22 00 H C8 B9 C8 16
23 HaN ORO 7 F7 BA F7 17
24 0 N 05 FO 05
25 7 U E4 F7 E4
26 4 J 01 F4 01
27 CSHR CHK 8 F8 BB F8 18
28 1 M 04 F1 04
29 8 I C9 F8 C9
30 5 K 02 F5 02
31 CASH RECO 9 F9 Be F9 19
32 2 6B F2 6B
33 9 0 06 F9 06
34 6 L 03 F6 03
35 UTIL BILL 0 Fa E4 FO
36 3

"
4B F3 4B

37 OEP + P 07 4E 07
38 \4ITH - $ 5B 60 5B
39 FEES 60 C6 60
40 TOTL I 61 E3 61
41 CASH IN * 5C BO 5C 20
42 CASH CHK II 7B BE 7B 21
43 VAL & 50 STATION ID 50
44 TAB 05 05 05 TAB CHAR
45 ALPHA ENTRY 36
46 Nut-1 ENTRY 06
47 SEND 26-ETB

B3-ETX
48 RETURN 15 15 15 JRNLCR
49 NUH ENTRY 06
513 SPACE 40 40 413
58 MSGLIGHT 17 17 17 HSGLITE

._--_ ..• _----- ._-------.. - -----_ .. _--- . __ ._---_._- --_._---- ------ "------_. -_._--

Figure 31. 2980-1 teller station character seUtrans/ate table

© Copyright IBM Corp. 1982, 1991 347

KEY ENGRAVING
No. Top(LC) Front (UC)

9 = 1
1 Q
2 A
3 2
4 Z
5 W
6 S
7 ; 3
8 X
9 E

19 0
11 : 4
12 C
13 R
14 F
15 % 5
16 V
17 T
18 G
19 ' 6
29 B
21 Y
22 H
23 > 7
24 N
25 U
26 J
27 * 8
28 H
29 I
39 K
31 (9
32 1 ,

33 0
34 L
35) 9
36 .., .
37 P
38 I $
39
49 "1 /
41 c 1

42 II #

43 + &
44 TAB
45 LOCK
46 SHIFT
47 BACKSPACE
48 RETURN
49 SHIFT
59 (SPACE)
53 SEND

----- -------------

LI
Co

NE
de
--

I
8
1
2
9
6
2
3
7
5
4
4
3
9
6
5
5
3
7
6
2
8
8
7
5
4
1
8

F
o
C
F
E
E
E
F
E
C
C
F
C
o
C
F
E
E
C
F
C
E
C
F
o
E
o
F
o
C
o
F
6
o
o
F
4
o
5
6
6
5
7
5
9
3
o
1
1
o
4

4

26-
03-

9
2
9
B
6
3
0
B
7
B
9
1
C
B
9
5
6
6
6
5
6
0
ETB
ETX

PROCESSOR CODE
Numeric (LC) Alpha (UC)

--
F1 (1) 7E (-)
98 (q) 08 (Q)
81 (a) Cl (A)
F2 (2) 4C «)
A9 (z) E9 (Z)
A6 (w) E6 (W)
A2 (5) E2 (S)
F3 (3) 5E (;)
A7 (x) E7 (X)
85 (e) C5 (E)
84 (d) C4 (0)
F4 (4) 7A (:)
83 (c) C3 (C)
99 (r) 09 (R)
86 (f) C6 (F)
F5 (5) 6C (%)
A5 (v) E5 (V)
A3 (t) E3 (T)
87 (g) C7 (G)
F6 (6) 70 (')
82 (b) C2 (B)
A8 (y) E8 (Y)
88 (h) C8 (H)
F7 (7) 6E (»
95 (n) 05 (N)
A4 (u) E4 (U)
91 (j) 01 (J)
F8 (8) 5C (*)
94 (m) 04 (H)
89 (i) C9 (I)
92 (k) 02 (K)
F9 (9) 40 (0
6B (,) 4F (I)
96 (0) 06 (0)
93 (1) 03 (L)
F0 (9) 50 0)
4B (.) 5F (-.)
97 (p) 08 (P)
5B ($) 5A (I)
69 (-) 60 L)
61 (f) 6F (?)
79 (I) 4A (c)
7B (#) 7F (")
59 (&) 4E (+)
05 05
36 36
96 06
19 16
15 15
96 96
40 40

Figure 32. 2980-2 administrative station character set/translate table

348 CICS/MVS 2.1.2 Application Programmer's Reference

HLL
10

BCKSPACE

) ---

KEY
No

ENGRAVING

o
1
2
3
4
5
6
7
8
9

HI
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51

Top(LC)

CK $

CK 1/

IHO 2

IHO 1

CODE

AHT

0B

ACCT II

7 ...
4
1
8
0
5
2
9 ...
6
3
VAL
TAB
ALPHA
NUHERIC
SEND

RETURN
NmtERIC
SPACE
FEED OPEN

- -----"---_.-

Front (UC)

-
Q
A
0
Z
W
S
1
X
E
0
2
C
R
F
3
V
T
G
4
B
Y
H
5
N
U
J
6
N
I
K
7 ...
0
L
8

P
$
9 ...
1<

II
&

LINE PROCESSOR CODE
Code Numeri c (LC) Alpha (UC)

,--

09 BC 60
03 03 08
Cl C1 Cl
C9 B7 C9
E9 4B E9
E6 5C E6
E2 5B E2
5B 4F F1
E7 AE E7
C5 C5 C5
C4 6F C4
48 BF F2
C3 C3 C3
60 68 09
C6 C6 C6
E8 BB F3
E5 A8 E5
E3 Al E3
C7 C7 C7
5C BE F4
C2 C2 C2
61 61 E8
07 07 C8
08 B2 F5
05 05 05
E4 AF E4
01 01 01
C8 7B F6
04 E7 04
06 06 C9
02 02 02
F7 F7 F7
6B BLANK 6B
F4 F4 06
F1 F1 03
F8 F8 F8
FO Fe 4B
F5 F5 07
F2 F2 5B
F9 F9 F9
7B B8 7B
F6 F6 5C
F3 F3 7B
50 58 50
05 05 05
36
06

26--ETB
03-ETX

15 15 15
06
40 48 40
04

Figure 33. 2980-4 teller station character set/translate table

--
HLL
10

19

14

5

22
23

21

9

6

7

OPENCH

Appendix B. Translation tables for the 2980 349

Appendix C. CICS macros and equivalent commands

This appendix provides a list of the macro instructions TVPE=SEND ISSUE SEND
available to the CICS application programmer, and shows TYPE=WAIT ISSUE WAIT
for each macro instruction the command that will perform
the same function. Command options may have different

DFHFC defaults or functions from macro-level operands having
similar names. Some CICS macros do not have an TYP;=CHECK HANDLE CONDITION

equivalent command; for example, there is only one CICS TYPE=DELETE DELETE RIDFLD
(DL/I types)

built-in function that can be invoked by a command. TYPE=ESETL ENDBR

Although the TYPE=CHECK macro performs a similar TVPE=GET READ
TVPE=GET,

function to the HANDLE CONDITION command, it is used in TYPOPER=UPDATE READ UPDATE
a completely different way. TVPE=GETAREA
Macro Command TYPE=GETNEXT READ NEXT

TYPE=GETPREV READPREV
TVPE=PUT,

DFHBFTA TVPOPER=DELETE DELETE
TVPE=PUT,

TYPOPER=NEWREC WRITE
DFHBIF TYPE=PUT,
TYPE=DEEDIT BIF DEED IT TYPOPER=UPDATE REWRITE

TYPE=RELEASE UNLOCK
TYPE=RESETL RESETBR

DFHBMS TYPE=SETL STARTBR
TYPE=CHECK HANDLE CONDITION
TYPE=IN RECEIVE MAP
TYPE=MAP RECEIVE MAP FROM DFHIC
TVPE=OUT SEND TEXT TVPE=CANCEL CANCEL
TVPE=OUT,MAP= SEND MAP TYPE=CHECK HANDLE CONDITION
TVPE=PAGEBLD SEND MAP ACCUM TVPE=GET RETRIEVE
TYPE=PAGEOUT SEND PAGE TYPE=GETIME ASKTIME
TVPE=PURGE PURGE MESSAGE TYPE=INITIATE START
TVPE=RETURN SEND{MAPITEXT} SET TVPE=POST POST
TVPE=ROUTE ROUTE TYPE=PUT START FROM
TVPE=STORE SEND{MAPITEXT} PAGING TYPE=RETRV RETRIEVE
TVPE=TEXTBLD SEND TEXT ACCUM TVPE=WAIT DELAV

DFHDC DFHJC
TVPE=CICS DUMP TABLES TVPE=CHECK HANDLE CONDITION
TVPE=COMPLETE DUMP COMPLETE TYPE=GETJCA
TVPE=PARTIAL TVPE=PUT JOURNAL WAIT

LI ST =PROGRAM DUMP PROGRAM TYPE=WAIT WAIT JOURNAL
LIST=TERMINAL DUMP TERMINAL TYPE=WRITE JOURNAL
LIST=TRANSACTION DUMP STORAGE
LIST=SEG~ENT DUMP FROM

TVPE=TRANSACTION DUMP [TASK] DFHKC
TYPE=ATTACH
TVPE=CHAP

DFHDI TYPE=DEQ DEQ
TVPE=ABORT ISSUE ABORT TVPE=ENQ ENQ
TVPE=ADD ISSUE ADD TVPE=NOPURGE
TVPE=CHECK HANDLE CONDITION TypE=PURGE
TYPE=END ISSUE END TVPE=WAIT SUSPEND
TYPE=ERASE ISSUE ERASE TYPE=WAIT,ECADDR WAIT EVENT
TVPE=NOTE ISSUE NOTE
TYPE=QUERV ISSUE QUERV
TYPE=RECEIVE ISSUE RECEIVE DFHMDF
TYPE=REPLACE ISSUE REPLACE

© Copyright IBM Corp. 1982, 1991 351

DFHMDI TVPE=PUT SEND WAIT
TVPE=READ RECEIVE(WAIT assumed)

DFHMSD TVPE=READB RECEIVE BUFFER
TVPE=READL RECEIVE LEAVEKB
TVPE=RESET ISSUE RESET

DFHPC TVPE=SIGNAL WAIT SIGNAL
TYPE=ABEND ABEND TVPE=WAIT WAIT TERMINAL
TYPE=CHECK HANDLE CONDITION TVPE=WRITE SEND
TYPE=COBADDR TVPE=WRITEL SEND LEAVEKB
TVPE=DELETE RELEASE
TVPE=LINK LINK
TVPE=LOAD LOAD DFHTD
TYPE=RESETXIT HANDLE ABEND RESET TVPE=CHECK HANDLE CONDITION
TYPE=RETURN RETURN TYPE=FEOV
TYPE=SETXIT HANDLE ABEND TVPE=GET READQ TO
TVPE=XCTL XCTL TVPE=PURGE DELETEQ TO

TVPE=PUT WRITEQ TO

DFHSC
TYPE=FREEMAIN FREEMAIN DFHTR
TYPE=GETMAIN GETMAIN TYPE=ENTRV ENTER

TVPE=OFF TRACE OFF
TVPE=ON TRACE ON

DFHSP
TVPE=USER SVNCPOINT
TYPE=ROLLBACK SVNCPOINT ROLLBACK DFHTS

TVPE=CHECK HANDLE CONDITION
TVPE=GETl READQ TS

DFHTC TVPE=GETQ READQ TS
TYPE=CBUFF SEND CBUFF TYPE=PURGE DELETEQ TS
TYPE=CONVERSE CONVERSE TVPE=PUTl WRITEQ TS
TVPE=COPV ISSUE COPY TVPE=PUTQ WRITEQ TS
TVPE=DISCONNECT ISSUE DISCONNECT TVPE=RELEASE DELETEQ TS
TYPE=EODS ISSUE EODS
TYPE=ERASEAUP ISSUE ERASEAUP 1 Because single units of information cannot be handled by
TYPE=GET RECEIVE the command level interface, data stored by a OFHTS
TYPE=PAGE TYPE = PUT macro cannot be retrieved by a REAOQ TS
TYPE=PASSBK SEND PASSBK command or be deleted by a DELETEQ TS command.
TYPE=PRINT ISSUE PRINT Conversely, data stored by a WRITEQ TS command cannot
TYPE=PROGRAM ISSUE LOAD be retrieved by a DFHTS TYPE = GET macro.

352 CICS/MVS 2.1.2 Application Programmer's Reference

)
Appendix D. Sample programs (assembler language)

The assembler language sample programs described in
this appendix are included, in both source and executable
form, on the CICS distribution tape. The CICS/MVS
Installation Guide describes how these sample programs,
and associated resources, can be defined to CICS and how
the programs can be executed online.

This appendix describes six CICS sample application
programs, written in assembler language, as follows:

• Operator instruction
• Inquiry/update
• Browse
• Order entry
• Order entry queue print
• Low balance report.

These programs illustrate basic applications (such as
inquire, browse, add, and update) that can serve as a
framework for your installation's first programs. The
programs operate using a VSAM file, known as FILEA,
consisting of records containing details of individual
customer accounts. Each program has a short description
of what the program does, a listing of its source code, and
a series of program notes. Numbered coding lines in the
source listing correspond to the numbered program notes.

All the sample programs are for use with the IBM 3270
Information Display System.

The sample BMS maps include examples of how the
COLOR, EXTATI, and HILIGHT attributes are specified in
the map definition macros. However, due to production
limitations, the associated screen layouts do not show you
all the effects of these attributes.

You can add attributes without changing the application
program by specifying EXTATI= MAPONLY in the DFHMSD
map set definition macro. If you include an attribute that
specifies a facility not available at the terminal, it will be
ignored.

+OPERATOR INSTRUCTIONS

+OPERATOR INSTR
+FILE INQUIRY
+FILE BROWSE
+FILE ADD
+FILE UPDATE

- ENTER AMNU
- ENTER AINQ AND NUMBER
- ENTER ABRW AND NUMBER
- ENTER AADD AND NUMBER
- ENTER AUPD AND NUMBER

+PRESS CLEAR TO EXIT
+ENTER TRANSACTION:+ +NUMBER+ +

© Copyright IBM Corp. 1982, 1991

The statements listed are those of the sample programs
supplied with the initial release of CICS. Sample programs
shipped with subsequent program temporary fixes (PTFs)
may differ from these listings.

The BMS maps (which are unaligned) and the file record
descriptions used by these sample programs are included
at the end of the appendix.

After CICS is running, type AMNU onto a clear screen and
press the enter key. The AMNU transaction identifier
invokes the "Operator Instruction" sample program, which
is a short program that produces a menu containing the
transaction identifiers for two of the other sample
programs, namely 'Inquiry/Update' and 'Browse'.

If you clear the screen, remember to reenter the
transaction identifier, as no data is accepted from an
unformatted screen.

You can run the sample programs using EDF but, because
the CEDF transaction is defined with RSLC = YES, you must
first sign on to CICS as an operator with an appropriate
resource security level key.

The menu, on a screen that is 40 characters wide by 12
lines deep, is shown in the box above. The plus (+) sign
in this and subsequent displays shows the position of the
attribute byte. In an actual display, this position contains a
blank.

To invoke any of the transactions AMNU, AINQ, ABRW,
AADD, or AUPD, do as instructed, entering the 4-character
transaction identifier and, when necessary, the 6-digit
account number in the fields highlighted in the bottom line
of the display. These special account numbers include the
sequence 100000, 111111, 200000, 222222, ... ,999999.

These transaction identifiers give you access to the
inquiry, add, and update functions of the 'Inquiry/Update'
program, and access to the 'Browse' program.

You can invoke the three remaining sample programs
'Order Entry', 'Order Entry Queue Print', and 'Low Balance
Report' separately by entering their transaction identifiers
(AORD, AORO, and AREP respectively) onto a clear
screen.

353

Operator instruction program (ASM)

Description

The operator instruction sample program displays map
DFH$AGA in response to the EXEC CICS SEND MAP
command.

The map displays a menu that lists the transaction
identifiers associated with two of the sample programs,
"Inquiry /Update", and 'Browse', and gives instructions for
the operator.

Source listing

TITLE 'DFH$AMNU - CICS/MVS SAMPLE FILEA OPERATOR INSTRUCTION M*
ENU - ASSEMBLER'

DFH$AMNU CSECT
1 EXEC CICS SEND MAP('DFH$AGA') MAPONLY ERASE
2 EXEC CICS RETURN

END

Program notes
1. The BMS command erases the screen and displays

map DFH$AGA.

2. The RETURN command ends the program.

Inquiry/update sample program (ASM)

Description

The inquiry/update sample program lets you make an
inquiry about, add to, or update records in a file. You can
select one of these by entering the appropriate transaction
identifier (AINQ, AADD, or AUPD) in the menu that is
displayed when you start operations by entering AMNU.

To make an inquiry, enter AINQ and an account number
into the menu. The program maps in the account number
and reads the record from FILEA. The required fields from
the file area, and a title 'FILE INQUIRY' are moved to the
map dsect for DFH$AGB. DFH$AGB, containing the record
fields, is displayed at your screen.

To add a record, enter AADD and the account number into
the menu. The account number and a title 'FILE ADD' are

354 CICS/MVS 2.1.2 Application Programmer's Reference

moved to the map area of DFH$AGB. DFH$AGB,
containing empty data fields, is displayed at your screen.
The data fields entered are mapped into DFH$AGB and
moved to the file record area which is then written to
FILEA. The addition is recorded on an update log (LOGA),
which is a transient data queue. The operator instruction
screen is displayed with the message 'RECORD ADDED'.

To update a record, enter AUPD and the account number
into the menu, as before. The program reads and displays
the requested FI LEA record. Modified data fields are
mapped in to DFH$AGB and edited. The sample program
only suggests the type of editing you might want to do.
Insert editing steps needed to ensure valid changes to the
file. Those fields that have been changed are moved to
the data record and the record is rewritten to FILEA. The
update is recorded on LOGA. The message 'RECORD
UPDATED' is moved to the dsect for DFH$AGA, the
operator instruction menu map, which is then displayed at
your screen.

This program is an example of pseudoconversational
programming, in which control is returned to CICS together
with a transaction identifier whenever a response is
requested from the operator. Associated with each return
of control to CICS is a storage area containing details of
the previous invocation of the transaction. -

Source I~tingfor DFHSAALL ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TITLE 'OFH$AALL - CICS/MVS SAMPLE FILEA INQUIRY/UPDATE - ASSEM*
BLER'

DFHEISTG DSECT

RET REG
R06
R07
R0a
Reg
FILEDS

COPY OFH$AGA
COPY OFH$AGB
EQU 2
EQU 6
EQU 7
EQU 8
EQU 9
DS 0C

MAP A
MAP B
SET UP REGISTER USAGE

COPY DFH$AFI L
COMPTR EQU 4

RECORD DESCRIPTION FOR FILEA
POINTER TO COMMAREA

COPY DFH$ALOG
COPY OFHBMSCA

lOG FILE RECORD DESCRIPTION
BMS ATTRIBUTE BYTES

MESSAGES DS CL39 TEMP STORE FOR MESSAGES
KEYNUM DS CL9 TEMP STORE FOR FILE RECORD KEY

LENGTH OF COMMAREA COMLEN OS IH
DFH$AALL CSECT
1 CLC EIBTRNID,=CL(L'EIBTRNID)'AINQ' IS INVOKING T-ID 'AINQ'?

BE OKTRANIO OK HERE, SO CONTINUE
CLC EIBTRNID,=CL(L'EIBTRNID)'AUPD' IS IT 'AUPD'?
BE OKTRANID OK HERE, SO CONTINUE
CLC EIBTRNIO,=CL(L'EIBTRNID)'AADD' FINALLY, IS IT 'AADD'?
BNE ERRORS IF NOT, GO TO ERROR ROUTINE

OKTRANIO DS 0H CORRECT INVOKING TRANSACTION ID HERE

*

2 LH COMPTR,EIBCALEN HAS A COMMAREA BEEN RETURNED?

3
4
5

6

7

LTR COMPTR,COMPTR
BNZ COMRETND ••• YES, SO GO GET MAP
EXEC CICS HANDLE CONDITION MAPFAIL(MFAIL) ERROR(ERRORS)
EXEC CICS RECEIVE MAP('DFH$AGA')
CLC KEYL,=H'0' IF ACCOUNT NUMBER NOT ENTERED
BE BADLENG GO DISPLAY ERROR MS.
TRT KEYI,CHEKTAB CHECK FOR NUMERIC ACCOUNT NUM,
BNZ BADCHARS NO GOOD - DISPLAY ERROR MS.
MVC KEYNUM,KEYI SAVE KEY TO FILE.
XC DFH$AGBO(DFH$AGBE-OFH$AGBO),DFH$AGBO CLEAR MAP
CLC EIBTRNID,=CL(L'EIBTRNID)'AADD' IS INVOKING T-ID 'AADD'?
BNE INQUPD •• NO, SO GO TEST FOR OTHER ID'S
MVC TITLEO,=CL(L'TITLEO) 'FILE ADD' SET UP TITLE
MVC MSG30,=CL(L'MSG30) 'ENTER DATA AND PRESS ENTER KEY'
MVC NUMB,KEYI PUT KEY IN COMMAREA
MVC NUMBO,KEYI ••• AND ON MAP ENTRY
MVI AMOUNTA,DFHBMUNN ATTRIBUTE SET TO UNPROTECTED,

NUMERIC, DISPLAY, MDT BIT NOT SET
MVC AMOUNTO,=C'$0000.00' PROMPTING FIELD FOR MAP
MVC eOMLEN,=H'7' SET UP LENGTH OF COMMAREA TO BE RTND
BAL RETREG,MAPSEND GO SEND MAP
B CICSCONT GO RETURN CONTROL TO CICS

INQUPD DS 0H HERE INVOKING T-ID IS AINQ, OR AUPD
B EXEC eIes HANDLE CONDITION NOTFND(NOTFOUND)
9 EXEC CICS READ DATASET('FILEA') INTO(FILEA) RIDFLD(KEYNUM)

CLC EIBTRNID,=CL(L'EIBTRNID)'AINQ' IS INVOKING T-ID AINQ?
BNE UPDTSECT •• NO, SO BRANCH TO AUPD ROUTINE

Appendix D. Sample programs (assembler language) 355

Souree"~~gfurDFH$AALL~ontlnue~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

10 MVC TITLEO,=CL(L'TITLEO) 'FILE INQUIRY' SET UP TITLE ON MAP
MVC MSG30,=CL(L'MSG30) 'PRESS ENTER TO CONTINUE'
BAL RETREG,MAPBUILD GO BUILD MAP

* PROTECT ALL FIELDS ON MAP
11 MVI NAMEA,DFHBMPRO

MVI ADDRA,DFHBMPRO
MVI PHONEA,DFHBMPRO
MVI DATEA,DFHBMPRO
MVI AMOUNTA,DFHBMPRO
MVI COMMENTA,DFHBMPRO

12 BAL RETREG,MAPSEND GO SEND MAP
EXEC CICS RETURN TRANSID('AMNU')

UPDTSECT OS 0H UPDATE ROUTINE
13 MVC TITLEO,=CL(L'TITLEO) 'FILE UPDATE' SET UP MAP TITLE

MVC MSG30,=CL(L'MSG30) 'CHANGE FIELDS AND PRESS ENTER'
14 MVC COMLEN,=H'S0' STORE LENGTH OF COMMAREA
15 BAL RETREG,MAPBUILD GO BUILD MAP

BAL RETREG,MAPSEND GO SEND MAP
B CICSCONT GO RETURN CONTROL TO CICS

*
*
*
*

HERE A COMMAREA HAS BEEN RETURNED, AND IS THEREFORE SECOND
INVOCATION OF THIS PROGRAM

*
*
*
*

COMRETND DS 0H HERE COMMAREA HAS BEEN RETURNED
16 L COMPTR,DFHEICAP GET ADDRESSABILITY TO COMMAREA
17 EXEC CICS HANDLE CONDITION MAPFAIL(NOTMODF) ERROR(ERRORS)

18
DUPREC(DUPREC) NOTFND(NOTFOUND)

EXEC CICS RECEIVE MAP('DFH$AGB')
CLC EIBTRNID,=CL(L'EIBTRNID)'AUPD' IS INVOKING T-ID AUPD?
BNE SECADD .• NO, SO BRANCH TO SECOND AADD ROUT

*

19 EXEC CICS READ UPDATE DATASET('FILEA') INTO(FILEA) *

20

OKREC
21
22

23

RIDFLD(NUMB-FILEDS(COMPTR»
CLC FILEREC,FILEREC-FILEDS(COMPTR) RECORD CHANGED ON FILE?
BE OKREC •. NO, SO BRANCH AND CONTINUE
MVC MSG10,=CL(L'MSG10) 'RECORD UPDATED BY OTHER USER, TRY AGA*

IN'
MVI MSG1A,DFHBMASB BRIGHTEN MESSAGE ON SCREEN
MVI MSG3A,DFHPROTN DARK AND PROTECTED ATTRIBUTE
BAL RETREG,MAPBUILD GO BUILD MAP
EXEC CICS SEND MAP('DFH$AGB') DATAONLY
MVC COMLEN,=H'80' SET UP LENGTH OF COMMEREA
B CICSCONT GO RETURN CONTROL TO CICS
DS 0H HERE RECORD IS OK FOR UPDATE
BAL RETREG,CHECK GO TEST RECORD TO BE UPDATED
MVI STAT,C'U' MOVE 'UPDATE' BYTE TO FILE RECORD
BAL RETREG,FILESTUP GO SET UP FILE RECORD
MVC MESSAGES,=CL(L'MESSAGES) 'RECORD UPDATED' SET UP MESSAGE
B AMNU COMPLETE, GO FINISH.

356 CICS/MVS 2.1.2 Application Programmer's Reference

Soureeli~~gfurDFH$AALL~ontinue~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECADD os 0H SECOND ADD ROUTINE
MVC NUMB,NUMB-FILEDS(COMPTR) MOVE SAVED RECORD KEY TO FILE

24 BAL RETREG,CHECK GO CHECK RECORD TO BE ADDED
XC FILEDS,FILEDS RECORD IS OK HERE,SO CLEAR FILE AREA

25 MVI STAT,C'A' MOVE 'ADDED' BYTE TO FILE RECORD
BAL RETREG,FILESTUP GO WRITE RECORD ON FILE

26 MVC MESSAGES,=CL(L'MESSAGES) 'RECORD ADDED' SET UP MESSAGE
B AMNU COMPLETE, GO FINISH.

CICSCONT DS 0H THIS ROUTINE RETURNS CONTROL TO CICS
27 EXEC CICS RETURN TRANSID(EIBTRNID) COMMAREA(FILEDS) *

LENGTH(COMLEN)
AMNU DS 0H ENDING ROUTINE
28 XC DFH$AGAO(DFH$AGAE-DFH$AGAO),DFH$AGAO CLEAR MAP

MVI MSGA,DFHBMASB BRIGHTEN MESSAGE FIELD ON MAP
MVC MSGO,MESSAGES MOVE ANY MESSAGE TO MAP AREA

29 EXEC CICS SEND MAP('DFH$AGA') ERASE
30 EXEC CICS RETURN

*
*
*

GENERAL ROUTINES
*
*
*

MAPBUILD DS 0H ROUTINE TO BUILD MAP DFH$AGB
31 MVC NUMBO,NUMB MOVE FILE KEY TO MAP AREA

MVC NAMEO,NAME MOVE NAME TO MAP AREA
MVC ADDRO,ADDRX MOVE ADDRESS TO MAP AREA
MVC PHONEO,PHONE MOVE PHONE TO MAP AREA
MVC DATEO,DATEX MOVE DATE TO MAP AREA
MVC AMOUNTO,AMOUNT MOVE AMOUNT TO MAP AREA
MVC COMMENTO,COMMENT MOVE COMMENT TO MAP AREA
BR RET REG RETURN

MAPSEND DS 0H ROUTINE TO SEND MAP DFH$AGB
32 EXEC CICS SEND MAP('DFH$AGB') ERASE

BR RETREG RETURN
DS 0H ANY INPUT FROM SCREEN? CHECK

ROUTINE
33 LA

LA
LA
LA
ICM
CLCL
BE
CLC
BE

R06,DFH$AGBO R6 POINTS TO START OF MAP DFH$AGB

UPNAMCHK DS
OC
BZR

ADNAMCHK TRT
BM
BR

FILESTUP DS
34 OC

BZ
MVC

ADRTST OC
BZ
MVC

R07,(DFH$AGBE-DFH$AGBO) R7 CONTAINS LENGTH OF MAP B
R0B,HEXZERO RB POINTS TO HEXZERO
R09,L'HEXZERO R9 CONTAINS LENGTH OF HEXZERO
R09,B'1000',HEXZERO X'00' INTO TOP BYTE OF R9
Re6,R08 DOES MAP CONTAIN ANY INPUT?
NOTMODF .• NO, SO RAISE NOTMODIFIED
EIBTRNID,=CL(L'EIBTRNID)'AADD' IS INVOKING T-ID 'ADDS'?
ADNAMCHK .. YES, SO GO TO 'AADD' NAME CHECK
0H UPDATE TRANSACTION HERE
NAMEI,NAMEI HAS NAME BEEN CHANGED?
RET REG .. NO, SO DON'T CHECK IT
NAMEO,TAB .. YES, IS IT ALPHABETIC?
DATAERR .. NO, SO RAISE ERROR
RETREG .. YES, SO RETURN
0H ROUTINE TO SET UP FILE RECORD
NAMEI,NAMEI HAS NAME BEEN ENTERED?
ADRTST .. NO, BRANCH
NAME,NAMEI .. YES, PUT IN IN FILE AREA
ADDRI,ADDRI HAS ADDRESS BEEN ENTERED?
PHNTST .. NO, BRANCH
ADDRX,ADDRI .• YES, PUT IN IN FILE AREA

Appendix D. Sample programs (assembler language) 357

Source listing ~r DFH$AALL(continued) ~~~~~~~~~~~~~~~~~~~~~~~~~

PHNTST OC PHONEI,PHONEI HAS PHONE BEEN ENTERED?
BZ DATTST •• NO, BRANCH
MVC PHONE,PHONEI •• YES, PUT IN IN FILE AREA

DATTST OC DATEI,DATEI HAS DATE BEEN ENTERED?
Bl AMTTST •• NO, BRANCH
MVC DATEX,DATEI •• YES, PUT IN IN FILE AREA

AMTTST OC AMOUNTI,AMOUNTI HAS AMOUNT BEEN ENTERED?
BZ CHEKTRAN •. NO, BRANCH
TRT AMOUNTI,CHEKTAB IS AMOUNT NUMERIC
BNZ DATAERR NO, ASK FOR CORRECT AMOUNT
MVC AMOUNT,AMOUNTI •. YES, PUT IN IN FILE AREA
B COMTST

CHEKTRAN CLC EIBTRNID,=CL(L'EIBTRNIO) 'AAOO' IS INVOKING T-IO 'ADDS'?
BNE COMTST

* PUT VALID AMOUNT IN NEW RECORD
MVC AMOUNT,=CL8'$8880.88'

COMTST OC COMMENTI,COMMENTI HAS COMMENT BEEN ENTERED?
BZ CONTINUE .• NO, CONTINUE
MVC CO~1MENT , COMMENT! .• YES, PUT I N IN FI LE AREA

CONTINUE OS 8H FILE RECORD IS NOW SET UP
35 MVC LOGREC,FILEREC MOVE FILE RECORD TO LOG AREA

MVC LDAY,EIBDATE MOVE DATE TO LOG AREA
MVC LTIME,EIBTIME MOVE TIME TO LOG AREA
MVC LTERML,EIBTRMID MOVE TERMINAL-ID TO LOG AREA

36 EXEC CICS WRITEQ TO QUEUE('LOGA') FROM(LOGA) LENGTH(92)
CLC EIBTRNID,=CL(L'EIBTRNID)'AUPD' UPDATE REQUIRED?
BNE ADDWRITE .. NO, SO BRANCH

37 EXEC CICS REWRITE DATASET('FILEA') FROM{FILEA)
BR RETREG FINISHED, SO RETURN

ADDWRITE OS 8H ADD FUNCTION REQUIRED
38 EXEC CICS WRITE DATASET('FILEA') FROM(FILEA) *

RIDFLD(NUMB-FILEDS(COMPTR»
BR RETREG FINISHED, SO RETURN

DATAERR OS 9H GENERAL ROUTINES
39 MVI NAMEA,DFHBMFSE PRESERVE CONTENTS OF SCREEN

MVI ADDRA,DFHBMFSE BY SETTING THE MODIFIED DATA TAG
MVI PHONEA,DFHBMFSE ON THE FIELDS ON THE SCREEN.
MVI DATEA,DFHBMFSE
MVI AMOUNTA,DFHUNNUM NUMERIC AND MODIFIED FLAGS
MVI COMMENTA,DFHBMFSE
MVI MSG3A,DFHBMASB BRIGHTEN ERROR MESSAGE
MVI MSG1A,DFHPROTN DARK AND PROTECTED ATTRIBUTE

49 MVC MSG30,=CL(L 'MSG30) I DATA ERROR - CORRECT AND PRESS ENTER'
41 EXEC CICS SEND MAP('DFH$AGB') DATAONLY

CLC EIBTRNID,=CL(L'EIBTRNID)'AUPD ' UPDATE REQUIRED?
BE UPDTERR •. YES, SO BRANCH

42 MVC COMLEN,=H ' 71
•• NO,SET UP COMLEN

B CICSCONT GO RETURN CONTROL TO CICS
UPDTERR OS 9H

MVC COMLEN,=H ' 80 1 UPDATE, SET UP REQUIRED COMLEN
B CICSCONT

NOTMODF OS 8H SCREEN NOT CHANGED
43 MVC MESSAGES,=CL(L'MESSAGES)'RECORD NOT MODIFIED ' MESSAGE

B AMNU COMPLETE, GO FINISH
DUPREC OS 9H DUPLICATE RECORD

MVC MESSAGES,=CL(L'MESSAGES)'DUPLICATE RECORD I MESSAGE
B AMNU COMPLETE, GO FINISH

358 CICS/MVS 2.1.2 Application Programmer's Reference

Souree"stlngfurDFH$AALL~ontlnue~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

BADLENG DS 0H
MVC MESSAGES,=CL(L'MESSAGES) 'PLEASE ENTER AN ACCOUNT NUMBER'
B AMNU

BADCHARS DS 0H
MVC MESSAGES,=CL(L'MESSAGES) 'ACCOUNT NUMBER MUST BE NUMERIC'
B AMNU

NOT FOUND DS 0H RECORD NOT FOUND
MVC MESSAGES,=CL(L'MESSAGES) 'INVALID NUMBER - PLEASE REENTER'
B AMNU COMPLETE, GO FINISH

MFAIL DS 0H
MVC MESSAGES,=CL(L'MESSAGES) 'PRESS CLEAR TO EXIT'
B AMNU

ERRORS DS 0H GENERAL ERROR ROUTINE
44 EXEC CICS DUMP DUMPCODE('ERRS')

MVC MESSAGES,=CL(L'MESSAGES) 'TRANSACTION TERMINATED'
B AMNU COMPLETE, GO FINISH

HEXZERO DC X'00' CONSTANT FOR COMPARISONS
TAB DC 256X'FF' TRANSLATE TABLE FOR NAME

ORG TAB+C" BLANK
DC X'00'
ORG TAB+C',' CHAR ','
DC X'00'
ORG TAB+C'-' CHAR I_I

DC X'00'
ORG TAB+C"" CHAR QUOTE
DC X'00'
ORG TAB+C'A' CHARS 'A' - 'I'
DC 9X'00'
ORG TAB+C'J' CHARS 'J' - 'R'
DC 9X'00'
ORG TAB+C'S' CHARS'S' - 'Z'
DC BX'00'
ORG

CHEKTAB DC
ORG
DC
ORG
DC
ORG
DC
ORG
DC
ORG

256X'FF'
CHEKTAB+C'¢'
X'00'
CHEKTAB+C' , '

TRANSLATE TABLE FOR AMOUNT
ALTERNATE CURRENCY

END

X'00'
CHEKTAB+C'$'
~'00'
CHEKTAB+C'0'
10X'00'

Program notes

ALLOW FULL STOP

ALLOW CURRENCY

NUMBERS 0-9

1. The possible invoking transaction identifiers are
tested.

2. The length of the COMMAREA is tested. If not zero
then this is the validation stage of an add or update.

3. The program exits are set up.

4. The menu map DFH$AGA is received. The account
number, if entered, is mapped into KEYI in the dsect
for DFH$AGA.

5. The account number is validated and saved.

6. If the program" is invoked by AADD, a title and
command message are moved to the map area. The
record key is moved to the map area and saved in

COMMAREA. The amount field has the attribute byte
set to numeric.

7. The add screen is displayed and the program
terminates to await a reply from the terminal.

8. For an inquiry or update the exit for the
record-not-found condition is set up.

9. The file control READ command reads the file record
into the file area.

10. If the program is invoked by AI NQ, a title and
command message are moved to the map area. The
file record fields are moved to the map area by a
subroutine.

11. All field attributes are set to protected.

Appendix D. Sample programs (assembler language) 359

12. The inquiry screen is displayed and the program MESSAGES. The operator instruction map area is
terminates. The TRANSID of AMNU causes the cleared. The message is moved to the map area and
operator instruction program to be invoked when the highlighted.
next response is received from the terminal. 29. The operator instruction map DFH$AGA is displayed

13. If the program is invoked by AUPD, a title and on an erased screen.
command message are moved to the map area. 30. The program terminates by returning to CICS. No

14. The length of the COMMAREA to be returned is set up. transaction identifier or COMMAREA is specified.

15. Data is moved to the map dsect and displayed. 31. This subroutine moves fields from the FILEA record to
Control is returned to CICS. the map dsect for DFH$AGB.

16. Control is passed here when a test at OKTRANID finds 32. MAPSEND sends the map DFH$AGB to the screen
that a COMMAREA has been received. This part of specifying that the screen is to be erased before the
the program maps in data for an add or update map is displayed.
request, performs validation and updates FI LEA. 33. Any required editing steps should be inserted here. A

17. The error exits are set up. suitable form of editing should be used to ensure valid

18. The RECEIVE MAP command maps in the variables records are placed on the file.

from the screen. 34. FI LESTU P creates or updates the account record and

19. If this is an update request a file control READ writes it to FILEA. Any field which has been entered is

UPDATE command reads the existing record using the moved to the account record.

number stored in COMMAREA by the last invocation of 35. The record fields, the date, the time, and the termid
this program. are moved to the update log record area.

20. If the current file record is not the same as the one 36. The record is written to the update log which is a
saved in COMMAREA then another user has updated transient data queue.
the record. A warning message is displayed, with 37. For an update request the updated account record is
fields from the record read from FILEA, for reentry of rewritten to FI LEA.
the updates.

21. A subroutine checks that updates are valid.
38. For an add request the new account record is written

to the file.
22. The update flag is set in the modified record and the 39. When a data error is detected the screen is

record is updated on FILEA. redisplayed for errors to be corrected. The modified
23. The message 'RECORD UPDATED' is moved to the data tag is set on for all the data fields so that all data

message area for display on the operator instruction is received at the next RECEIVE MAP.
screen. 40. An error message is moved to the map area.

24. If this is an add request a subroutine is called to check 41. The contents of map DFH$AGB are sent to the screen.
that the entered data is valid. The constant information on the screen is not

25. The add flag is set in the new record and the record is refreshed as a result of the use of the DATAON L Y
written to FILEA. option.

26. The message 'RECORD ADDED' is moved to the 42. The size of the COMMAREA is set to 7 for an add
message area for display on the operator instruction request or to 80 for an update request. Code at
screen. CICSCONT returns to CICS passing this value in the

27. After the FILE ADD or FILE UPDATE screen has been LENGTH operand.

displayed the program branches here to return to 43. These short error routines set up an error message in
CICS awaiting a response from the terminal. The MESSAGES and branch to AMNU to display the
RETURN gives CICS the transaction identifier for the message in the operator instruction menu DFH$AGA.
next transaction at this terminal together with a 44. If a CICS command fails with the ERROR condition or if
COMMAREA containing all information that the an unknown transaction identifier is used to invoke
program needs to continue the update. The this program, a dump is taken and the message
COMMAREA is passed to the next invocation of this 'TRANSACTION TERMINATED' is moved to MESSAGES
program, see note 2 above. for display on the operator instruction screen.

28. This code gets control when an add or update is
complete. An information or error message is in

360 CICS/MVS 2.1.2 Application Programmer's Reference

Browse sample program (ASM)

Description

The browse program sequentially retrieves a page or set
of records for display, starting at a point in a file specified
by the terminal operator.

To start a browse, type ABRW and an account number into
the menu and press the enter key. If you omit the account
number browsing begins at the start of the file. Pressing
PF1 or typing F retrieves the next page or pages forward.
To re-examine the previous records displayed, press PF2
or type B. This lets you page backward.

The browse program uses READNEXT to forward page to
the end of the file and READPREV to backward page to the
start of the file.

Appendix D. Sample programs (assembler language) 361

Sourceli~ingforDFH$ABR~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TITLE 'DFH$ABRW - CICS/MVS SAMPLE FILEA BROWSE - ASSEMBLER'
DFHEISTG DSECT

X'SS'
CLl
CLl
CLl
X

FILE STATUS - HI

CONSTANT FOR CLEARING MAPS
CURRENT OPERATION (FIB)
LAST OPERATION (FIB)

OR LO END OR NORMAL (H/L/N)
FLAGS •..

HEXZERO OS
CURROP OS
LAS TOP OS
STATUS OS
FLAGS OS
PFIRST EQU X'SS'

SCLlS
CL6
CL6
CL6
CLse

FIRST BROWSE IS BACKWARD ..
KEYS OS
RID OS
RIDB OS
RIDF OS
MESSAGES OS
*

*

COPY DFHBMSCA
COPY DFH$AFIL
COPY DFH$AGA
COPY DFH$AGC

DFH$ABRW CSECT

DATA-AREA FOR RIDFLD
TO BUILD PREV BACK PAGE
TO BUILD NEXT FWD PAGE

STANDARD BMS ATTRIBUTES
FILEA RECORD DESCRIPTION
'GENERAL MENU' MAP
'BROWSE FILEA' MAP

1 MVI KEYS,X'FS'
MVC KEYS+l(L'KEYS-l),KEYS
MVI MESSAGES,X'4S'
MVC MESSAGES+l(L'MESSAGES-l),MESSAGES

's' INTO TOP BYTE
SET KEYS TO ZERO
, , I NTO TOP BYTE
CLEAR MESSAGES

*

*

*

2

3

EXEC CICS HANDLE AID
CLEAR(SMSG)
PFl (PAGEF)
PF2(PAGEB)

EXEC CICS HANDLE CONDITION
ERROR(ERRORS)
MAPFAIL(SMSG)
NOTFND(NOTFOUND)

4 EXEC CICS RECEIVE MAP('DFH$AGA')

* SIMPLE CHECKS OF INPUT DATA *

5 CLC KEYL,=H'S' WAS ACCOUNT NUMBER OMITTED?

BE NOACCNUM YES - FRONT OF FILE BY DEFAULT.
*
6 TRT KEYI ,CHEKTAB CHECK ACCOUNT NUMBER IS NUMERIC,

BNZ BADCHARS IT ISN'T - GO DISPLAY MESSAGE.
MVC RID,KEYI
CLC RID,=C'9ggggg' IF ACCOUNT NUMBER IS MAXIMUM
BNE SETRID SET RECORD KEY HIGH TO
MVC RID,=6X'FF' BROWSE BACKWARD FIRST TIME.

SETRID MVC RIDF,RID
MVC RIDB,RID
B BRWSNOW

*
BAOCHARS MVC MESSAGES,=CL(L'MESSAGES) 'ACCOUNT NUMBER MUST BE NUMERIC'

B AMNU
*

362 CICS/MVS 2.1.2 Application Programmer's Reference

*
*
*

*
*
*

)
Source IlstlngforDFH$ABR~(contlnued) ~~~~~~~~~~~~~~~~~~~~~~~~~~~

NOACCNUM MVC
MVC
B

RID,=C'000000'
RIDF,=C'000000'
BRWSNOW

o DIGITS ENTERED

* ESTABL~SH START POINT *

BRWSNOW OS 0H

*

MVI STATUS,C'N' SET FILE STATUS NORMAL
7 EXEC CICS STARTBR DATASET('FILEA') RIDFLD(RID)

CLC RID,=6X'FF'
BNE PAGEF

TREAT AS HI-EOF,
01 FLAGS,PFIRST SET FIRST BROWSE BACK FLAG.
MVI STATUS,C'H' AND
B PAGEB PAGE BACKWARDS

* BUILD NEXT FORWARD PAGE *

PAGEF

8

*

*

*

OS 0H
MVI CURROP,C'F'
EXEC CICS HANDLE CONDITION

ENDFILE(TOOHIGH)

LA
LA
LA
LA
LA
ICM
MVCL

4,1
6,DFH$AGCO
7, (DFH$AGCE-DFH$AGCO)
8,HEXZERO
9,L'HEXZERO
9,B'100',HEXZERO
6,8

Mve RIO,RIOF

NEXTLINE OS 0H
9 EXEC CICS READ NEXT

*
10

*
NEXT2
11

CH
BNE
MVC
MVC
MVC
MVC
B

OS
CH
BNE
MVC
MVC
MVC
B

INTO(FILEA)
DATASET('FILEA')
RIOFLD(RID)

4,=H'I'
NEXT2
NUMBER10,NUMB
NAME10,NAME
AMOUNTlO,AMOUNT
RIDB,RID
NEXTCONT

0H
4,=H'2'
NEXT3
NUMBER20,NUMB
NAME20 , NAME
AMOUNT20,AMOUNT
NEXTCONT

IN CASE PF1 WAS USED

CLEAR MAP
SET COUNTER TO 1
R6->START OF MAP DFH$AGC
R7-> LENGTH OF DFH$AGC
R8-> X'00'
R9-> LENGTH OF HEXZERO
X'00' INTO TOP BYTE OF R9
MOVE X'00' INTO DFH$AGCO

RIOF->NEXT FORWARD PAGE

FIRST LINE?
•• NO, GO TEST FOR 2ND LINE
MOVE NUMBER TO MAP AREA
MOVE NAME TO MAP AREA
MOVE AMOUNT TO MAP AREA
RIDB->EXISTING Ale NO.
GOTO NEXTCONT

SECOND LINE?
•• NO, TEST FOR THIRD LINE
MOVE NUMBER TO MAP AREA
MOVE NAME TO MAP AREA
MOVE AMOUNT TO MAP AREA
GOTO NEXTCONT

*

*
*
*

Appendix D. Sample programs (assembler language) 363

*
NEXT3 os 9H

CH 4,=H'3' THIRD LINE?
BNE NEXT4 •• NO, TEST FOR FOURTH LINE
MVC NUMBER30,NUMB MOVE NUMBER TO MAP AREA
MVC NAME30 , NAME MOVE NAf·1E TO MAP AREA
MVC AMOUNT30,AMOUNT MOVE AMOUNT TO MAP AREA
B NEXTCONT GOTO NEXTCONT

*
NEXT4 OS 9H

CH 4,=H'4' FOURTH LINE?
BNE NEXTCONT •• NO, GOTO NEXTCONT
MVC NUMBER40 , NUMB MOVE NUMBER TO MAP AREA
MVC NAME40,NAME MOVE NAME TO MAP AREA
MVC AMOUNT40,AMOUNT MOVE AMOUNT TO MAP AREA

*
NEXTCONT OS 9H

LA 4,1(,4) INCREMENT COUNT
CH 4,=H'5' FINISHED?
BNE NEXTLINE .• NO, GO BUILD NEXTLINE

*
MVC RIDF,RID RIDF->NEXT FORWARD PAGE

12 EXEC CICS SEND MAP('DFH$AGC') ERASE
B RECEIVE

* BUILD PREVIOUS BACK PAGE *

PAGEB OS eH

MVI CURROP,C'B' IN CASE PF2 WAS USED
EXEC CICS HANDLE CONDITION *

ENDFILE(TOOLOW)
* CLEAR MAP

LA 4,1 SET COUNTER TO 1
LA 6,DFH$AGCO R6->START OF MAP DFH$AGC
LA 7, (DFH$AGCE-DFH$AGCO) R7-> LENGTH OF DFH$AGC
LA 8,HEXZERO R8-> x'ee'
LA 9,L'HEXZERO R9-> LENGTH OF HEXZERO
ICM 9,B '1ge' ,HEXZERO X'SS' INTO TOP BYTE OF R9
MVCL 6,8 MOVE x'es' INTO DFH$AGCO

*
MVC RID,RIOB RIOB->PREVIOUS BACK PAGE
MVC RIDF ,RIDB RIOF->NEXT FORWARD PAGE

*
CLI LASTOP,C'B' SWITCHING DIRECTION?
BE PREVLINE NO. - NO SPECIAL ACTION

* YES - DO EXTRA READPREV
CLI STATUS,C'H' - UNLESS AT HI EOF
BE PREVLINE

PREVXTRA OS SH
EXEC CICS READPREV *

INTO(FILEA) *
DATASET('FILEA') *
RIDFLD(RID)

*

364 CICS/MVS 2.1.2 Application Programmer's Reference

Source listing for DFH$ABRW (continued)

PREVLINE DS t:lH
13 EXEC CICS READPREV

INTO(FILEA)
DATASET('FILEA')
RIDFLD(RID)

* PUT FIELDS IN ASCENDING ORDER
CH 4,=H'4' FOURTH LI NE?
BNE PREV2 •. NO, GO TEST FOR 3RD LINE
MVC NUMBER10,NUMB MOVE NUMBER TO MAP AREA
MVC NAME10,NAME MOVE NAME TO MAP AREA
MVC AMOUNTlO,AMOUNT MOVE AMOUNT TO MAP AREA
B PREVCONT GOTO PREVCONT

*
PREV2 DS BH

CH 4,=H'3' THIRD LINE?
BNE PREV3 •. NO, TEST FOR 2ND LINE
MVC NUMBER20,NUMB MOVE NUMBER TO MAP AREA
MVC NAME20,NAME MOVE NAME TO MAP AREA
MVC AMOUNT20,AMOUNT MOVE AMOUNT TO MAP AREA
B PREVCONT GOTO PREVCONT

*
PREV3 DS BH

CH 4,=H'2' SECOND LINE?
BNE PREV4 •• NO, TEST FOR FIRST LINE
MVC NUMBER30, NUMB MOVE NUMBER TO MAP AREA
MVC NAME30,NAME MOVE NAME TO MAP AREA
MVC AMOUNT30,AMOUNT MOVE AMOUNT TO MAP AREA
B PREVCONT GOTO PREVCONT

*
PREV4 DS t:lH

CH 4,=H'1' FIRST LINE?
BNE PREVCONT •• NO, PREVCONT
MVC NUMBER40, NUMB MOVE NUMBER TO MAP AREA
MVC NAME 40, NM1E MOVE NAME TO MAP AREA
MVC AMOUNT40,AMOUNT MOVE AMOUNT TO MAP AREA

*
PREVCONT DS BH

LA 4,1(,4) INCREMENT COUNT
CH 4,=H'5' FINISHED?
BNE PREVLINE •. NO, GO BUILD NEXT LINE

*
MVC RIDB,RID RIDB->NEXT FORWARD PAGE
TM FLAGS,PFIRST DID WE START AT HI-EOF?
BO HIGHMSG YES TELL HIM.
EXEC CICS SEND MAP('DFH$AGC') ERASE

* RECEIVE NEXT PAGING REQUEST *

RECEIVE DS 9H

NI FLAGS,X'FF'-PFIRST
MVC LASTOP,CURROP

14 EXEC CICS RECEIVE MAP('DFH$AGC')
CLI DIRI,C'F'
BE PAGEF
CLI DIRI,C'B'

SET OF FIRST TIME FLAG.
REMEMBER LAST OPERATION

PAGE FORWARD REQUIRED?
•• YES, GO TO PAGEF ROUTINE
PAGE BACK REQUIRED?

*
*
*

Appendix D. Sample programs (assembler language) 365

Source listing for DFHSABRW (continued)

BE PAGEB •• YES, GO TO PAGEB ROUTINE
EXEC CICS SEND CONTROL FREEKB FRSET. IGNORE - RESET KEYBOARD.
B RECEIVE

* HANDLE END OF FILE CONDITIONS *

TOOHIGH OS 0H
15 MVI STATUS,C'H' SET STATUS 'HI END'

MVC RIDF,RID
MVC RIDB,RID
MVI DIRO,X'40 1

HIGHMSG MVC MSGI0,=CL(L'MSGIO) 'HI END OF FILE'
MVI MSGIA,DFHBMASB MSG=BRT
EXEC CICS SEND MAP('DFH$AGC') ERASE
B RECEIVE

*
TOOLOW DS 0H
16 MVI STATUS,C'L' SET STATUS 'LO END'

MVC RIOF,=C'000000 1

MVC RIDB,=C '000000'
MVI DIRO,X'40 1

MVI MSG2A,DFHBMASB MSG=BRT
MVC MSG20,=CL(L'MSG20)'LO END OF FILE'
EXEC CICS SEND MAP('DFH$AGC') ERASE
B RECEIVE

* HANDLE GENERAL CONDITIONS *

NOT FOUND DS 0H
17 MVC MESSAGES,=CL(L'MESSAGES) 'END OF FILE - PLEASE RESTART'

AMNU B

*
SMSG DS 0H
18 MVC MESSAGES,=CL(L'MESSAGES)'PRESS CLEAR TO EXIT'

*
ERRORS
19

B AMNU

DS 0H
EXEC CICS DUMP DUMPCODE('ERRS')
MVC MESSAGES,=CL(L'MESSAGES) 'TRANSACTION TERMINATED I

* DISPLAY GENERAL MENU THEN EXIT *

AMNU
29

21

DS 0H
XC DFH$AGAO(DFH$AGAE-DFH$AGAO),DFH$AGAO
MVI MSGA,DFHBMASB
MVC MSGO,MESSAGES
EXEC CICS SEND MAP('DFH$AGA') ERASE
EXEC CICS RETURN

CLEAR MAP A
BRIGHTEN MESSAGE
MOVE MSGS TO MAP

* DEFINE THE 256 BYTE TRANSLATE TABLE*

*
*
CHEKTAB DC 256X'FF'

ORG CHEKTAB+X'F0'
DC ISX'SS'
ORG END

FOR LOCATING NON-NUMERIC DIGITS BY
MEANS OF THE "TRT" INSTRUCTION

366 CICS/MVS 2.1.2 Application Programmer's Reference

Program notes
1. Work areas are initialized to begin the browse.

2. The exits for CLEAR, PF1 and PF2 are set up.

3. The error exits are set up.

4. This command maps in the account number from the
operator instruction screen.

5. If no account number is entered browsing begins at
the start of the file.

6. If the format of the account number is valid the
number is used to set the program's browse pointers,
otherwise an error message is displayed on the
operator instruction menu. Entering the maximum
value (999999) for the account number begins a
backward browse from the end of the file.

7. The STARTBR command establishes the browse
starting point.

8. The forward browse end of file exit is set up.

9. The READNEXT reads the first record, and
subsequently the next record, into the file area.

10. The account number, name, and amount are moved to
the first line of the browse map area.

11. The same basic commands are repeated to read and
set up the next three lines. The same file area is used
for each read.

12. The screen is erased and the full page is displayed at
the terminal.

13. Backward browsing uses the READPREV command to
read the previous record and stores records in the
map area starting at the bottom line. Note the need
for an extra READPREV when changing from forward
to backward browsing.

14. When the RECEIVE command executes control will go
to one of the HANDLE AID exits (see note 2) if CLEAR,
PF1 or PF2 is pressed. The program explicitly tests for
F or B if no exit is taken. Any other terminal response
is ignored.

15. If the end of file is reached any records read to that
point are displayed together with a highlighted
message 'HI END OF FILE'.

16. If the start of file is reached on a READPREV
(backward browse) then the ENDFILE condition occurs
and TOOLOW gets control. Any records read up to
that point are displayed, together with a highlighted
message 'LO END OF FILE'.

17. If the NOTFND condition occurs at the start browse
(note 7) the message 'END OF FILE - PLEASE
RESTART' is moved to MESSAGES for display on the
operator instruction screen.

18. If the CLEAR key is pressed or when a MAPFAIL
occurs a message 'PRESS CLEAR TO EXIT' is moved
to MESSAGES for display on the operator instruction
screen.

19. In some error situations a dump is taken and the
message 'TRANSACTION TERMINATED' is moved to
MESSAGES for display on the operator instruction
screen.

20. This code displays the operator instruction menu with
a message which has been stored in MESSAGES.

21. The program terminates by returning to CICS.

Appendix D. Sample programs (assembler language) 367

Order entry sample program (ASM)

Description

The order entry sample application program provides a
data entry facility for customer orders for parts from a
warehouse. Orders are recorded on a transient data
queue which is defined so as to start the order entry queue
print transaction automatically when a fixed number of
orders have been accumulated. The queue print
transaction sends the orders to a printer terminal at the
warehouse.

To begin order entry, type AORD onto a blank screen and
press ENTER. The order entry program displays the map
DFH$AGK on the screen requesting the operator to enter
order details, that is, customer number, part number, and
the quantity of that part required. The customer number
must be valid, that is, it must exist on FILEA. The order

368 CICS/MVS 2.1.2 Application Programmer's Reference

details are mapped in and checked, an invalid order is
redisplayed for correction. When valid an order is written
to the transient data queue L860 and the order entry
screen is redisplayed ready for the next order to be
entered. If CLEAR is pressed the order entry program
terminates.

L860, the name of the transient data queue, is also the
name of the terminal where the order entry queue print
transaction is to be triggered when the number of items on
the queue reaches 30. A definition of the transient data
queue is included in the sample destination control table
listed in the CICSIMVS Installation Guide.

The trigger level may be changed using the CEMT
command, as follows:

CEMT SET QUEUE(L860) TRIGGER(n)

where n is the destination trigger level (any integer from 0
through 32767).

Source listing for DFH$AREN

TITLE 'DFH$AREN - CICS/MVS SAMPLE FILEA ORDER ENTRY - ASSEMBLE*
R'

DFHEISTG DSECT

*
FLAGS
FLERR
*

COPY DFH$AGK
COPY DFH$AL86
COPY DFH$AFIL
COPY DFHBMSCA

OS IB
EQU X'40'

DFH$AREN CSECT
1 EXEC CICS HANDLE AID CLEAR(ENDA)

*

MAP DEFINITION
TO Q REC DESCRIPT
FILE OF ACCOUNTS
STD BMS ATTRIBUTE

ERROR FLAGS
FLERR-INPUTCHECKS

2 EXEC CICS HANDLE CONDITION MAPFAIL(MAPFAIL)
NOTFND(NOTFOUND) ERROR(ERRORS)

*
* CLEAR MAP VARS

XC DFH$AGKO(DFH$AGKE-OFH$AGKO),DFH$AGKO
*
* ERASE+DISPLAY MAP
3 EXEC CICS SEND MAP('OFH$AGK') ERASE

* PROCESS THE INPUTTED FIELDS *

RECEIVE OS 0H
* RECEIVE INPUTDATA
4 EXEC CICS RECEIVE MAP('DFH$AGK')

NI FLAGS,X'FF'-FLERR SET FLERR TO e
*

MVI CUSTNOA,DFHUNNUM SET MDT=1 IN CASE
~1VI PARTNOA,DFHUNNUM FIELDS NEED TO BE
MVI QUANTA,DFHUNNUM RE-ENTERED

*
* CHECK FOR NUMERIC
5 TRT CUSTNOI,CHEKTAB

BZ TSTPART
MVI CUSTNOA,DFHUNINT ATTR=BRI+UNPROT'D+NUMERIC
01 FLAGS,FLERR SET FLERR TO 1

*
TSTPART TRT PARTNOI,CHEKTAB

BZ TSTQUANT
MVI PARTNOA,DFHUNINT ATTR=BRI+UNPROT'D+NUMERIC
01 FLAGS,FLERR SET FLERR TO 1

*
TSTQUANT TRT QUANTI ,CHEKTAB

BZ CHKFLERR
MVI QUANTA,DFHUNINT ATTR=BRI+UNPROT'D+NUMERIC
01 FLAGS,FLERR SET FLERR TO 1

* SIMPLE VALIDATION OF INPUT DATA*

CHKFLERR TM

BZ
6 MVI

*

FLAGS,FLERR
QBUILD
MSG2A,DFHBMASB

ERASE+DISPLAY MAP

*

Appendix D. Sample programs (assembler language) 369

Source l~tlngforDFH$AREN(contlnued) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

EXEC CICS SEND MAP('DFH$AGK') ERASE
B RECEIVE

* CHECK CUSTOMER NUMBER EXISTS *

7
QBUILD
B

~XEC CICS READ DATASET('FILEA') INTO(FILEA) RIDFLD(CUSTNOI)
MVC CUSTNO,CUSTNOI
MVC PARTNO,PARTNOI
MVC QUANTITY,QUANTI
MVC TERMID,EIBTRMID

* WRITE VALID ORDER TO TO QUEUE *

9 EXEC CICS WRITEQ TO QUEUE('LB60') FROM(LB60) LENGTH(22)

10 EXEC CICS SEND MAP('DFH$AGK') MAPONLY ERASE
B RECEIVE GET MORE INPUT

* HANDLE ERRORS AND RESTART *

*
NOT FOUND OS 0H INVALID CUSTOMER ACCOUNT NO.
11 MVI CUSTNOA,DFHUNINT

MVI PARTNOA,DFHUNNUM
MVI QUANTA,DFHUNNUM
MVI MSGIA,DFHBMASB

ATTR=BRI+UNPROT'D+NUMERIC
MDT=1 TO PRESERVE
•••• THESE FIELDS
ERROR MSG=BRIGHT

EXEC CICS SEND MAP('DFH$AGK')
B RECEIVE GET MORE INPUT

*
MAPFAIL OS 0H NO DATA ENTERED IN INPUT FIELDS
12 XC DFH$AGKO(DFH$AGKE-DFH$AGKO),DFH$AGKO CLEAR MAP

MVI MSG2A,DFHBMASB ERROR MSG=BRIGHT
EXEC CICS SEND MAP('DFH$AGK')
B RECEIVE GET MORE INPUT

* EXIT PROGRAM *

ERRORS
13

OS 0H GENERAL ERROR CONDITIONS

ENDA
14

*

MVI MSG2A,DFHBMASB
MVC MSG20,=C'TRANSACTION TERMINATED'
EXEC CICS SEND MAP('DFH$AGK')
EXEC CICS DUMP DUMPCODE('ERRS')
B EXIT
OS 0H
EXEC CICS SEND TEXT FROM (PRESMSG) ERASE

EXEC CICS SEND CONTROL FREEKB
EXIT EXEC CICS RETURN
PRESMSG DC CL28'PROCESSING COMPLETED'

ERROR MSG=BRIGHT

QUIT PROGRAM

SET INPUT INH OFF

*
*
*

DEFINE THE 256 BYTE TRANSLATE TABLE *
FOR LOCATING NON-NUMERIC DIGITS BY *
MEANS OF THE "TRT" INSTRUCTION *

CHEKTAB DC

ORG
DC
ORG
END

256X'FF'
CHEKTAB+X'F0'
18X'00'

370 CICS/MVS 2.1.2 Application Programmer's Reference

Program notes
1. The CLEAR key exit is set up.

2. The error exits are set up.

3. The screen is erased and the order entry map is
displayed at the terminal.

4. This RECEIVE MAP causes a read from the terminal
and maps in the customer number, part number, and
quantity. The program remains in virtual storage until
the terminal response is received. Compare this
technique with that used in the pseudoconversational
inquiry/update sample program. If no data is received,
CICS branches to the MAPFAIL exit (note 2).

5. The order details are checked, and invalid orders are
redisplayed for correction. The user should add
further editing steps necessary to ensure only valid
orders are accepted.

6. The error message 'DATA ERROR - REENTER' is a
constant in the map load module and is sent to the
terminal, with any other constant information, unless
DATAONLY is specified on the SEND MAP. The
message is normally dark (non-display). This
instruction overrides the dark attribute and the
message appears in high intensity when the SEND
MAP command is executed.

7. The file control READ command attempts to read the
customer record from FILEA. If no record exists for
the customer CICS branches to the NOTFND exit
(note 2).

8. The order details are moved from the input map to the
queue area.

9. The WRITEQ TO command writes the order record to a
sequential file, a transient data queue.

10. The order entry map is redisplayed ready for the next
order. Only the map load module is used to build the
screen display, MAPONLY causes the data in the map
dsect area to be ignored.

11. If there is no record for the customer on FILEA, CICS
raises the NOTFND condition and branches here. The
modified data tags are set on all data fields and an
error message 'NUMBER NOT FOUND - REENTER' is
set to display in high intensity (see note 6). The order
is redisplayed for correction.

12. If no fields are entered, the MAPFAIL condition occurs.
The message 'DATA ERROR-REENTER' is displayed in
high intensity (see note 6).

13. If an error occurs a dump is taken, and the message
'TRANSACTION TERMINATED' is displayed in high
intensity in the data error message area. The
program terminates leaving the order entry screen
displayed.

14. When the CLEAR key is pressed the program
terminates. The message 'PROCESSING COMPLETED'
is displayed on a blank screen, the keyboard is freed
and control is returned to CICS.

Appendix D. Sample programs (assembler language) 371

Order entry queue print sample program
(ASM)

Description

The order entry queue print sample program sends
customer orders to a printer terminal at the warehouse.
The order entry sample program, described earlier,
records customer orders on a transient data queue which
is read by this program.

The queue print transaction can be invoked in one of three
ways:

• You can type the transaction identifier AORQ onto a
clear screen. The program finds that the terminal
identifier is not L860 and issues a START command to
begin printing in one hour. The message
'PROCESSING COMPLETED' is displayed and your
terminal is available for other work.

• One hour after you enter AORQ, the queue print
transaction is automatically invoked by CICS interval
control. In this case the terminal identifier, specified
by the START, is L860 so the program prints the
orders at the warehouse.

312 CICS/MVS 2.1.2 Application Programmer's Reference

• The queue print transaction is "triggered" when the
number of items (customer orders) on the transient
data queue reaches 30. The trigger level is specified
in the destination control table (OCT) entry for L860.
In this case the terminal identifier is the same as the
queue name (L860) and the program will print the
orders. The trigger level may be changed using the
command:

CEMT SET QUEUE(L860) TRIGGER(n)

When invoked with a terminal identifier of L860 the
program reads each order, checks the customer's credit
and either prints the order at the warehouse or writes the
rejected order to LOGA, the same transient data queue as
used by the inquiry/update sample program. When all the
orders have been processed, or if there were no orders to
process, the message 'ORDER QUEUE IS EMPTY' is printed
at the warehouse.

Source listing for DFHSACOM ------------------------------,

TITLE 'DFH$ACOM - CICS/MVS SAMPLE FILEA ORDER ENTRY QUEUE PRIN*
T - ASSEMBLER'

DFHEISTG DSECT
COPY DFH$AGL
COPY DFH$ALB6
COPY DFH$AFI L

MAP
Q RECORD
FILE RECORD

LOGORD DS 0CL92 RECORD TO BE WRITTEN ONTO LOGA
LOATE DS PL7
LTIME DS PL7
LITEM DS CL22
COMMNT DS CL11
FILLER OS CL51
QLENGTH DS 1H SIZE OF Q RECORD
DFH$ACOM CSECT

1
2

QREAD
3
4
5

6

7

MVC COMMNT,=C'OROER ENTRY'
MVI FILLER,X'40'
MVC FILLER+1(L'FILLER-1),FILLER
EXEC CICS HANDLE CONDITION ERROR(ERRORS)QZERO(ENDA)
CLC EIBTRMID(4),=C'LB60' TERMID='LB60'?
BNE TIME IF NOT START TRANSACTION LATER
XC DFH$AGLO(DFH$AGLE-DFH$AGLO),DFH$AGLO CLEAR MAP
MVC QLENGTH,=H'+22' INITIALIZATION
DS 0H
EXEC CICS READQ TO INTO(LB60)LENGTH(QLENGTH)QUEUE('LB60')
EXEC CICS READ DATASET('FILEA') INTO(FILEA) RIDFLD(CUSTNO)
CLC AMOUNT(B),=C'$0100.00' IS ORDER VALID?
BNH LWRITE IF,>100 BRANCH AND WRITE LOG
MVC ADDRO,ADDRX SET UP MAP
MVC NAMO,NAME
MVC PARTO,PARTNO
MVC NUMBO,CUSTNO
MVC LITEM,ITEM
MVC QUANTO,QUANTITY
EXEC CICS SEND MAP('DFH$AGL') ERASE PRINT LB0
B QREAD GET NEXT RECORD

LWRITE DS 0H
8 MVC LDATE,EIBDATE SET UP LOG RECORD

MVC LTIME,EIBTIME
MVC LITEM, ITEM

9 EXEC CICS WRITEQ TD QUEUE('LOGA') FROM(LOGORD) LENGTH(92)
B QREAD GET NEXT RECORD

ERRORS DS 0H
10 EXEC CICS DUMP DUMPCODE('ERRS')

ENDA

11

TIME
*
*
*
*
*

B FIN BRANCH TO END
DS 0H
XC DFH$AGLO(DFH$AGLE-DFH$AGLO),DFH$AGLO CLEAR MAP
MVC TITLEO,=CL(L'TITLEO) 'ORDER QUEUE IS EMPTY' SET UP TITLE
EXEC CICS SEND MAP('DFH$AGL') DATAONLY ERASE LB0 PRINT
DS 0H

IF THE COMMENT DELIMITER IS REMOVED
FROM THE NEXT THREE ASSEMBLER
INSTRUCTIONS, THE APPLICATION WILL
BE RESTARTED IN AN HOUR IF THE TIME
OF DAY RIGHT NOW IS NOT LATER THAN

Appendix D. Sample programs (assembler language) 373

Source l~tingforDFHSACOM(continued) ~~~~~~~~~~~~~~~~~~~~~~~~~~~

* 1400 HRS.
* IF THE CODE IS LEFT UNCHANGED THE
* APPLICATION WILL BE RESTARTED
* UNCONDITIONALLY AFTER AN HOUR HAS
* ELAPSED
* EXEC CICS ASKTIME
* CP EIBTIME,=P'0140000' TIME AFTER 1400 HOURS?
* BH FIN •• YES, SO STOP
12 EXEC CICS START TRANSID('AORQ') INTERVAL(lS0S0) TERMID('L860')
FIN OS SH
13 EXEC CICS SEND TEXT FROM (PRESMSG) ERASE

EXEC CICS SEND CONTROL FREEKB
EXEC CICS RETURN

PRESMSG DC CL20'PROCESSING COMPLETED'
END

Program notes
1. The error exits are set up.

2. The termid is tested to see whether this transaction is
started from a terminal or at the printer.

3. A queue item (customer order) is read into the
program.

4. The file control READ command reads the record into
a record area so that the amount may be checked.

5. The amount (bank balance) is tested. If it is over $100
then the order is acceptable, otherwise the order is
rejected. This test is only a suggestion; a suitable
form of editing should be inserted here to ensure valid
orders are sent to the warehouse.

6. The order details are moved to the map area for
DFH$AGL.

7. The order map is sent to the printer terminal at the
warehouse.

8. The current date and time, and details of the rejected
order, are moved to a log record area.

374 CICS/MVS 2.1.2 Appli .. ~atlon Programmer's Reference

9. The WRITEQ TO command writes details of the
rejected order to LOGA, a transient data queue.

10. If the ERROR condition occurs on any CICS command
a dump is taken and the program terminates.

11. When the queue is empty, the message 'ORDER
QUEUE IS EMPTY' is moved to the map area which is
then sent to the printer terminal at the warehouse.

12. The START command starts the AORQ transaction
(this program), after a one hour delay, with a terminal
identifier of L860. (The time interval could be
changed, for demonstration purposes, by changing the
INTERVAL value.) If the comment delimiters are
removed from the three preceding statements,
EIBTIME is refreshed and, if the time is before 1400
hours, the transaction is started in one hour. If the
comment delimiters are not removed, the transaction
is started unconditionally in one hour.

13. The message 'PROCESSING COMPLETED' is sent to
the terminal associated with this invocation of AORQ,
either the printer at the warehouse or the screen on
which AORQ was entered. The program terminates by
returning control to CICS.

Low balance report sample program (ASM)

Description

The low balance report sample program produces a report
that lists all entries in the data set FILEA for which the
amount is less than or equal to $50.00.

The program shows page building techniques and the use
of the terminal paging facilities of BMS.

The pages are built from four maps that comprise map set
DFH$AGD, using the paging option so that the data is not
displayed immediately but instead is stored for later
retrieval. The HEADING map is inserted at the head of
each page. The detail map (DFH$AGD) is written
repeatedly until the overflow condition occurs. The
FOOTING map is then written at the foot of the page and
the HEADING map written at the top of the next page. The
command to write the detail map that caused overflow is
then repeated. When all the data has been written the
FINAL map is written at the bottom of the last page and
the transaction terminated.

The transaction is invoked by entering AREP onto a clear
screen. The program does a sequenti al scan through the
file selecting each entry that obeys the search criterion.

The terminal operator then enters paging commands to
display the data, clearing the screen before entering each
paging command.

Source listing for DFH$AREP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TITLE 'DFH$AREP - CICS/MVS SAMPLE FILEA LOW BALANCE INQUIRY - *
ASSEMBLER I

DFHEISTG DSECT
KEYNUM OS CL6
TERMLENG OS H
TERMDATA OS CLI
*
*
*
EDVAL
PAGEN
WORKREG
RET REG

OS CL3
OS CL2
EQU 7
EQU 4
COPY DFH$AGD
COPY DFH$AFI L

DFH$AREP CSECT

KEY TO FILE
MAXIMUM LENGTH OF KEYED DATA
INPUT AREA FOR KEYED DATA
(IN PRACTICE LENGTH OF KEYED DATA
WILL BE ZERO AS OPERATOR WILL ONLY
PRESS ENTER)

PAGE NUMBER EDITING FIELD
PAGE NUMBER FIELD

LINK REG
OUTPUT MAP
FILEA'S RECORD DESCRIPTION

I MVC KEYNUM(6),=C '888888 1 SET RECORD KEY TO ZERO
2 EXEC CICS HANDLE CONDITION ERROR(ERRORS) OVERFLOW(OFLOW)

ENDFILE(ENDFILE) LENGERR(ENDTASK)
MVI PAGENA,X ' 88 1 MOVE X'88 1 TO ATTRIBUTE
MVC PAGEN,PAGEI INITIALIZE PAGE NUMBER TO I
BAL RETREG,MAPNUM MOVE PAGENUMBER TO MAP AREA

*

3
4 EXEC CICS SEND MAP('HEADING ') MAPSET('DFH$AGD') ACCUM PAGING *

ERASE
5 EXEC CICS STARTBR DATASET('FILEA') RIDFLD(KEYNUM)

REPEAT OS 8H
6 EXEC CICS READ NEXT INTO(FILEA) DATASET('FILEA')

RIDFLD (KEYNUM)
7 CLC AMOUNT,LOWLIM COMPARE AMOUNT ON RECORD WITH LIM

BH REPEAT •• OK, GREATER THAN $58, TRY NEXT
XC DFH$AGDO(DFH$AGDE-DFH$AGDO),DFH$AGDO CLEAR MAP

B MVC AMOUNTO,AMOUNT MOVE AMOUNT ON FILE TO MAP
MVC NUMBERO,NUMB MOVE ACOUNT NUMBER TO MAP
MVC NAMEO,NAME MOVE NAME TO MAP

9 EXEC CICS SEND MAP('DFH$AGD') MAPSET('DFH$AGD') ACCUM PAGING
B REPEAT GO BUILD NEXT MAP

* END ROUTINE AND GENERAL ROUTINES *

MAPNUM OS

UNPK
01
MVC
BR

8H ROUTINE PUTS PAGE NUM IN CHAR FORM
EDVAL,PAGEN
EDVAL+L'EDVAL-I,X'F9 1 ZERO FILL PAGE NUMBER
PAGENO,EDVAL MOVE PAGE NUMBER TO OUTPUT MAP
RET REG RETURN

*

Appendix D. Sample programs (assembler language) 375

Soureel~tingfurDFH$AREP~ontinue~ ~~~~~~~~~~~~~~--~~~~~~~~~~~~~

ENDFILE DS 8H END OF FILE CONDITION RAISED
18 EXEC CICS SEND MAP ('FINAL') MAPSET ('DFH$AGD') MAPONLY *

ACCUM PAGING
11 EXEC CICS SEND PAGE
12 EXEC CICS SEND TEXT FROM (OPINSTR) ERASE
13 EXEC CICS ENDBR DATASET('FILEA')
* A RECEIVE COMMAND IS ISSUED TO GIVE
* THE TERMINAL OPERATOR A CHANCE TO
* READ THE PROMPTING MESSAGE.
*
*
*
*
*
*
*
*
*

14
ENDTASK
15
ERRORS
16

OFLOW
17

18

19

PAGEl
LOWLIM
OPINSTR

LA WORKREG,1
STH WORKREG,TERMLENG

THE TRANSACTION WILL TERMINATE WHEN
THE OPERATOR PRESSES THE ENTER KEY.

PAGING COMMANDS CAN THEN BE ISSUED.

NO HARM IS DONE IF THE OPERATOR
TYPES IN DATA BEFORE PRESSING THE
ENTER KEY.

EXEC CICS RECEIVE INTO(TERMDATA) LENGTH(TERMLENG)
EQU *
EXEC CICS RETURN
DS 8H
EXEC CICS HANDLE CONDITION ERROR
EXEC CICS PURGE MESSAGE
EXEC CICS ABEND ABCODE('ERRS')
DS 8H PAGE BUILT HERE
EXEC CIes SEND MAP('FOOTING ') MAPSET('DFH$AGD') *

MAPONLY ACCUM PAGING ERASE
AP PAGEN,=P ' l' INCREMENT PAGE COUNT
MVI PAGENA,X'88' MOVE X'88' INTO ATTRIBUTE
BAL RETREG,MAPNUM GO SET UP PAGE NUMBER ON MAP
EXEC CIes SEND MAP('HEADING ') MAPSET('DFH$AGD') AceUM PAGING *

ERASE
EXEC CICS SEND MAP('DFH$AGD ') MAPSET('DFH$AGD') ACCUM PAGING
B REPEAT
DC PL2'1' INITIAL PAGE NUM
DC CL8'$8S58.8S' LOWER LIMIT FOR OK AMOUNT
DC CL52'PRESS THE ENTER KEY AND FOLLOW WITH PAGING COMMANDS*

OPERATOR INSTRUCTION
END

Program notes 7. The search criterion for creating the report is that the
customer has a bank balance which is $50 or less.

1. The initial key value is set up for the START BROWSE
command.

2. The program exits are set up.

3. A page number of 1 is moved to the heading map.

4. This BMS command sets up the heading in the page
build operation. BMS builds the pages in temporary
storage.

5. The STARTBR command sets up the file browse to
begin at the first record with a key equal to or greater
than the RIDFLD, in this case the first record on file.

6. This command reads the next customer record from
FILEA.

376 CICS/MVS 2.1.2 Application Programmer's Reference

8. Fields are moved from the selected customer record
to the map area for the detail line.

9. The customer detail map is set up for subsequent
paging.

10. When the ENDFILE condition is raised, the last map is
sent to BMS.

11. The SEND PAGE command makes all the pages of the
report available for paging, at the terminal, when the
current transaction terminates.

12. A message is sent to the terminal. This message will
be displayed before the pages of the low balance
report.

13. The file browse is terminated.

14. This RECEIVE MAP command reads from the terminal
and allows the terminal operator to read the
prompting message before the first page of the report
is displayed.

15. The program ends, the first page of the report will now
be displayed.

16. If the ERROR condition occurs on a CICS command
this routine gains control. Handling of the ERROR
condition is suppressed, any data sent to BMS so far
is purged and the program terminates abnormally with
a transaction dump.

17. If the OVERFLOW condition occurs, when a detail line
is sent to BMS, CICS branches here. This routine
completes the current page and starts the next one.
This BMS command sets up the footing for the current
page.

18. This BMS command sets up the heading for the next
page.

19. This BMS command sends the detail line which caused
the OVERFLOW condition.

Appendix D. Sample programs (assembler language) 377

Maps and screen layouts for ASM sample
programs

The preceding sample programs assume that the following
map sets have been cataloged with names the same as
the map names.

The names of the source maps are a" of the form
DFH$AMx, whereas output generated by the assembly of
maps is in the form DFH$AGx. Use different names for the
map source and the generated dsect only if you want to
store both in the same source library.

DFH$AGA map definition ---------------------------------,

TITLE 'FILEA - MAP FOR OPERATOR INSTRUCTIONS - ASSEMBLER'
MAPSETA DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET), *

LANG=ASM,TIOAPFX=YES,EXTATT=MAPONLY,COLOR=BLUE
DFH$AGA DFHMDI SIZE=(12,40)

DFHMDF POS=(1,10),LENGTH=21,INITIAL='OPERATOR INSTRUCTIONS', *
HILIGHT=UNDERLINE

DFHMDF POS=(3,1),LENGTH=29,INITIAL='OPERATOR INSTR - ENTER AMN*
U'

DFHMDF POS=(4,1),LENGTH=38,INITIAL='FILE INQUIRY - ENTER AIN*
Q AND NUMBER'

DFHMDF POS=(5,1),LENGTH=38,INITIAL='FILE BROWSE - ENTER ABR*
W AND NUMBER'

DFHMDF POS=(6,1),LENGTH=38,INITIAL='FILE ADD - ENTER AAD*
o AND NUMBER'

DFHMDF POS=(7,1),LENGTH=38,INITIAL='FILE UPDATE - ENTER AUP*
o AND NUMBER'

MSG DFHMDF POS=(11,1),LENGTH=39,INITIAL='PRESS CLEAR TO EXIT'
DFHMDF POS=(12,1),LENGTH=18,INITIAL='ENTER TRANSACTION:'
DFHMDF POS=(12,20),LENGTH=4,ATTRB=IC,COLOR=GREEN, *

HI LIGHT=REVERSE
DFHMDF POS=(12,25),LENGTH=6,INITIAL='NUMBER'

KEY DFHMDF POS=(12,32),LENGTH=6,ATTRB=NUM,COLOR=GREEN, *
HI LIGHT=REVERSE

DFHMDF POS=(12,39),LENGTH=1
DFHMSD TYPE=FINAL
END

378 CICS/MVS 2.1.2 Application Programmer's Reference

The assembler language DSECT produced as a result of the above statements would be as follows:

DSECT generated by DFH$AGA --------------------------------,

OS BH
OFH$AGAI OS
OFH$AGAO OS

BC •
BC •
12C •

MSGL
MSGF
MSGA
MSGI
MSGO

KEYL
KEYF
KEYA
KEYI
KEY 0

OS
SPACE
OS CL2.
OS BC.
OS C.
OS BCL39.
OS CL39.
SPACE
OS CL2.
OS BC.
OS C.
OS BCL6.
OS CL6.
SPACE

DFH$AGAE EQU *
* * * END OF MAP DEFINITION * * *

SPACE 3
ORG

ENSURE ALIGNMENT
INPUT MAP ORIGIN
OUTPUT MAP ORIGIN

TIOA PREFIX

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

END OF MAP DEFINITION

MAPSETAT EQU * * END OF MAP SET
* * * END OF MAP SET DEFINITION * * *

SPACE 3

DFH$AGA screen layout ----------,

+OPERATOR INSTRUCTIONS

+OPERATOR INSTR - ENTER AMNU
+FILE INQUIRY - ENTER AINQ AND NUMBER
+FILE BROWSE - ENTER ABRW AND NUMBER
+FILE ADD - ENTER AADD AND NUMBER
+FILE UPDATE - ENTER AUPD AND NUMBER

+PRESS CLEAR TO EXIT
+ENTER TRANSACTION:+XXXX+NUMBER+XXXXXX+

Appendix 0: Sample programs (assembler language) 379

DFH$AGB map definition --------------------------------.,

TITLE 'FILEA - MAP FOR FILE INQUIRY/UPDATE - ASSEMBLER'
MAPSETB DFHMSD TYPE=&SVSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET), *

LANG=ASM,TIOAPFX=VES,EXTATT=MAPONLV
DFH$AGB DFHMDI SIZE=(12,40)
TITLE DFHMDF POS=(1,15),LENGTH=12

DFHMDF POS=(3,1),LENGTH=8,INITIAL='NUMBER:',COLOR=BLUE
NUMB DFHMDF POS=(3,10),LENGTH=6

DFHMDF POS=(3,17),LENGTH=1
DFHMDF POS=(4,1),LENGTH=8,INITIAL='NAME: ',COLOR=BLUE

NAME DFHMDF POS=(4,10),LENGTH=20,ATTRB=(UNPROT,IC)
DFHMDF POS=(4,31),LENGTH=1
DFHMDF POS=(5,1),LENGTH=8,INITIAL='ADDRESS: ',COLOR=BLUE

ADDR DFHMDF POS=(5,10),LENGTH=20,ATTRB=UNPROT
DFHMDF POS=(5,31),LENGTH=1
DFHMDF POS=(6,1),LENGTH=8,INITIAL='PHONE: ',COLOR=BLUE

PHONE DFHMDF POS=(6,10),LENGTH=8,ATTRB=UNPROT
DFHMDF POS=(6,19),LENGTH=1
DFHMDF POS=(7,1),LENGTH=8,INITIAL='DATE: ',COLOR=BLUE

DATE DFHMDF POS=(7,10),LENGTH=8,ATTRB=UNPROT
DFHMDF POS=(7,19),LENGTH=1
DFHMDF POS=(8,1),LENGTH=8,INITIAL='AMOUNT: ',COLOR=BLUE

AMOUNT DFHMDF POS=(8,10),LENGTH=8,ATTRB=NUM
DFHMDF POS=(8,19),LENGTH=1
DFHMDF POS=(9,1),LENGTH=8,INITIAL='COMMENT: ',COLOR=BLUE

COMMENT DFHMDF POS=(9,10),LENGTH=9,ATTRB=UNPROT
DFHMDF POS=(9,20),LENGTH=1

MSGI DFHMDF POS=(11,1),LENGTH=39
MSG3 DFHMDF POS=(12,1),LENGTH=39

DFHMSD TVPE=FINAL
END

380 CICS/MVS 2.1;2 Application Programmer's Reference

., The assembler language DSECT produced as a result of the above statements would be as follows:

DSECT generated by DFHSAGB

DS aH ENSURE ALIGNMENT
DFH$AGBI DS ac • INPUT MAP ORIGIN
DFH$AGBO DS ac • OUTPUT MAP ORIGIN

DS 12C • TIOA PREFIX
SPACE

TITLEL DS CL2 . INPUT DATA FIELD LENGTH
TITLEF DS ec • DATA FIELD FLAG
TITLEA DS C • DATA FIELD ATTRIBUTE
TITLEI DS eC112 • INPUT DATA FIELD
TITLEO OS C112 • OUTPUT DATA FIELD

SPACE
NUMBL OS CL2 . INPUT DATA FIELD LENGTH
NUMBF DS ec • DATA FIELD FLAG
NUMBA DS C • DATA FIELD ATTRIBUTE
NUMBI DS eCl6 • INPUT DATA FIELD
NUMBO DS CL6 • OUTPUT DATA FIELD

SPACE
NAMEL OS CL2 • INPUT DATA FIELD LENGTH
NAMEF os BC • DATA FIELD FLAG
NAMEA OS C . DATA FIELD ATTRIBUTE
NAMEI OS BCl2B . INPUT DATA FIELD
NAMEO OS Cl2e . OUTPUT DATA FIELD

SPACE
ADDRl OS Cl2 • INPUT DATA FIELD LENGTH
ADDRF DS BC • DATA FIELD FLAG
ADDRA DS C . DATA FIELD ATTRIBUTE
ADDRI DS aCl2B • INPUT DATA FIELD
ADDRO DS CL29 . OUTPUT DATA FIELD

SPACE
PHONEl OS Cl2 • INPUT DATA FIELD LENGTH
PHONEF DS BC . DATA FIELD FLAG
PHONEA DS C • DATA FIELD ATTRIBUTE
PHONE! DS BCL8 • INPUT DATA FIELD
PHONEO DS CL8 • OUTPUT DATA FIELD

SPACE
DATEl DS Cl2 . INPUT DATA FIELD LENGTH
DATEF DS BC • DATA FIELD FLAG
DATEA DS C • DATA FIELD ATTRIBUTE
DATEI DS eClS . INPUT DATA FIELD
DATEO DS Cl8 • OUTPUT DATA FIELD

SPACE
AMOUNTL DS Cl2 • INPUT DATA FIELD LENGTH
AMOUNTF DS BC • DATA FIELD FLAG
AMOUNTA OS C • DATA FIELD ATTRIBUTE
AMOUNTI DS eClS . INPUT DATA FIELD
AMOUNTO DS ClB . OUTPUT DATA FIELD

SPACE
COMMENTL OS Cl2 . INPUT DATA FIELD LENGTH
COM~1ENTF DS BC • DATA FIELD FLAG
COMMENTA OS C . DATA FIELD ATTRIBUTE
COMt~ENTI DS BCL9 . INPUT DATA FIELD
COMMENTO DS Cl9 • OUTPUT DATA FIELD

SPACE

Appendix D. Sample programs (assembler language) 381

DSECTgenerated by DFHSAGB(contlnued) ~~~~~~~~~~~~~~~~~~~~~~~~~~

MSGIL
MSGIF
MSGIA
MSGlI
MSGIO

MSG3L
MSG3F
MSG3A
MSG3I
MSG30

OS
OS
OS
DS
OS

SPACE
DS
DS
DS
OS
DS

CL2 •
ec .
C •
eCL39 •
CL39 •

CL2 •
ec .
c .
eCL39 •
CL39 •

SPACE
DFH$AGBE EQU *
* * * END OF MAP DEFINITION * * *

SPACE 3
ORG

MAPSETBT EQU * * END OF MAP SET
* * * END OF MAP SET DEFINITION * * *

SPACE 3

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

END OF MAP DEFINITION

DFHSAGB screen layout -~~~-~~~-~

+XXXXXXXXXXXX

+NUMBER: +XXXXXX+
+NAME: +XXXXXXXXXXXXXXXXXXXX+
+ADDRESS:+XXXXXXXXXXXXXXXXXXXX+
+PHONE: +XXXXXXXX+
+DATE: +XXXXXXXX+
+AMOUNT: +XXXXXXXX+
+COMMENT:+XXXXXXXXX+

+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

382 CICS/MVS 2.1.2 Application Programmer's Reference

DFHSAGC map definition ---------------------------------,

TITLE 'FILEA - MAP FOR FILE BROWSE - ASSEMBLER'
MAPSETC OFHMSO TYPE=&SYSPARM,MOOE=INOUT,CTRL=(FREEKB,FRSET),

LANG=ASM,TIOAPFX=YES,EXTATT=MAPONLY
OFH$AGC OFHMOI SIZE=(l2,40)
OIR DFHMDF POS=(l,l),LENGTH=l,ATTRB=IC

NUMBERl
NAMEl
AMOUNTl
NUMBER2
NAME2
AMOUNT2
NUMBER3
NAME3
AMOUNT3
NUMBER4
NAME4
AMOUNT4
MSG0

MSGl

MSG2

OFHMDF POS=(l,3),LENGTH=l
OFHMDF POS=(l,15),LENGTH=ll,INITIAL='FILE BROWSE',

COLOR=BLUE,HILIGHT=UNDERLINE
OFHMDF POS=(3,l),LENGTH=6,INITIAL='NUMBER',COLOR=BLUE
DFHMOF POS=(3,l7),LENGTH=4,INITIAL='NAME',COLOR=BLUE
DFHMDF POS=(3,32),LENGTH=6,INITIAL='AMOUNT',COLOR=BLUE
DFHMDF POS=(4,1),LENGTH=6
DFHMDF POS=(4,9),LENGTH=20
DFHMDF POS=(4,30),LENGTH=8
DFHMDF POS=(5,l),LENGTH=6
DFHMDF POS=(5,9),LENGTH=20
DFHMDF POS=(5,30),LENGTH=8
DFHMDF POS=(6,l),LENGTH=6
DFHMDF POS=(6,9),LENGTH=20
DFHMDF POS=(6,30),LENGTH=8
DFHMDF POS=(7,l),LENGTH=6
DFHMOF POS=(7,9),LENGTH=20
DFHMDF POS=(7,38),LENGTH=8
DFHMDF POS=(l0,l),LENGTH=39,COLOR=BLUE,

INITIAL='PRESS CLEAR TO END BROWSE OPERATION'
DFHMDF POS=(ll,l),LENGTH=39,COLOR=BLUE,

INITIAL='PRESS PFl OR TYPE F TO PAGE FORWARD'
DFHMDF POS=(l2,l),LENGTH=39,COLOR=BLUE,

INITIAL='PRESS PF2 OR TYPE B TO PAGE BACKWARD'
DFHMSD TYPE=FINAL
END

*

*

*

*

*

Appendix D. Sample programs (assembler language) 383

The assembler language DSECT produced as a result of the above statements would be as follows:

DSECT generated by DFH$AGC

DS eH ENSURE ALIGNMENT
DFH$AGCI DS ec • INPUT MAP ORIGIN
DFH$AGCO DS ec . OUTPUT MAP ORIGIN

DS l2C • TIOA PREFIX
SPACE

DIRL DS CL2 . INPUT DATA FIELD LENGTH
DIRF OS ec . DATA FIELD FLAG
DIRA DS C • DATA FIELD ATTRIBUTE
DIRI DS eCll • INPUT DATA FIELD
DIRO DS Cll . OUTPUT DATA FIELD

SPACE
NUMBERIL DS CL2 . INPUT DATA FIELD LENGTH
NUMBERIF DS ec • DATA FIELD FLAG
NUMBERIA DS C • DATA FIELD ATTRIBUTE
NUMBERlI DS eCL6 • INPUT DATA FIELD
NUMBERIO DS CL6 . OUTPUT DATA FIELD

SPACE
NAMElL DS CL2 . INPUT DATA FIELD LENGTH
NAMEIF DS 0C . DATA FIELD FLAG
NAMEIA DS C • DATA FIELD ATTRIBUTE
NAMElI DS eCL2e • INPUT DATA FIELD
NAMElO DS CL2e • OUTPUT DATA FIELD

SPACE
AMOUNTlL DS CL2 • INPUT DATA FIELD LENGTH
AMOUNTIF DS ec . DATA FIELD FLAG
AMOUNTlA DS C . DATA FIELD ATTRIBUTE
AMOUNTlI DS eCLS • INPUT DATA FIELD
AMOUNTlO OS CL8 . OUTPUT DATA FIELD

SPACE
NUMBER2L OS CL2 • INPUT DATA FIELD LENGTH
NUMBER2F OS 0C . DATA FIELD FLAG
NUMBER2A DS C • DATA FIELD ATTRIBUTE
NUMBER2I DS 0CL6 • INPUT DATA FIELD
NUMBER20 OS CL6 . OUTPUT DATA FIELD

SPACE
NAME2L DS CL2 • INPUT DATA FIELD LENGTH
NAME2F OS 0C . DATA FIELD FLAG
NAME2A OS C • DATA FIELD ATTRIBUTE
NAME2I OS 0CL20 • INPUT DATA FIELD
NAME20 DS CL20 . OUTPUT DATA FIELD

SPACE
AMOUNT2L OS CL2 • INPUT DATA FIELD LENGTH
AMOUNT2F DS 0C . DATA FIELD FLAG
AMOUNT2A DS C • DATA FIELD ATTRIBUTE
A~10UNT2I DS 0CLS • INPUT DATA FIELD
A~1OUNT20 DS CL8 • OUTPUT DATA FIELD

SPACE
NUMBER3L OS CL2 . INPUT DATA FIELD LENGTH
NUMBER3F OS 0C . DATA FIELD FLAG
NUMBER3A OS C . DATA FIELD ATTRIBUTE
NUMBER3I DS eCL6 . INPUT DATA FIELD
NUMBER30 OS CL6 . OUTPUT DATA FIELD

SPACE
NAME3L DS CL2 . INPUT DATA FIELD LENGTH

384 CICS/MVS 2.1.2 Application Programmer's Reference

DSECTgenerated by DFH$AGC (continued) ~~~~~~~~~~~~~~~~~~~~~~~~~

NAME3F os 0C. DATA FIELD FLAG
NAME3A DS C. DATA FIELD ATTRIBUTE
NAME3I OS 0CL20. INPUT DATA FIELD
NAME30 DS CL20. OUTPUT DATA FIELD

SPACE
AMOUNT3L OS
AMOUNT3F DS
AMOUNT3A OS
AMOUNT3I OS
AMOUNT30 DS

SPACE
NUMBER4L OS
NUt1BER4F OS
NUMBER4A OS
NUMBER4I OS
NUMBER40 DS

NAME4L
NAME4F
NAME4A
NAME4I
NAME40

SPACE
OS
DS
DS
DS
DS

SPACE
AMOUNT4L DS
AMOUNT4F DS
AMOUNT4A DS
M10UNT4I DS
AMOUNT40 DS

MSG0L
MSG0F
MSG0A
MSG0I
MSGElO

MSGIL
MSGIF
MSGIA
MSGlI
MSGIO

MSG2L
MSG2F
MSG2A
MSG2I
MSG20

SPACE
OS
DS
DS
DS
OS

SPACE
OS
OS
OS
OS
DS

SPACE
OS
OS
OS
DS
DS

SPACE

CL2 .
0C .
C .
0CLB •
CLB .

CL2 .
ElC •
C •
eCL6 .
CL6 .

CL2 .
ec .
C •
eCL2e •
CL20 .

CL2 .
0C .
C •
eCL8 .
CL8 .

CL2 .
0C .
C •
0CL39 •
CL39 •

CL2 •
ec .
C .
0CL39 •
CL39 •

CL2 •
ec .
C •
0CL39 •
CL39 •

DFH$AGCE EQU *
* * * END OF MAP DEFINITION * * *

SPACE 3
ORG

MAPSETCT EQU * * END OF MAP SET
* * * END OF MAP SET DEFINITION * * *

SPACE 3

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

END OF MAP DEFINITION

Appendix D. Sample programs (assembler language) 385

DFHSAGC screen layout -----------,

+FI LE BROWSE

+NUMBER +NAME +AMOUNT
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXXXX
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXXXX
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXXXX
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXXXX

+PRESS CLEAR TO END BROWSE OPERATION
+PRESS PFI OR TYPE F TO PAGE FORWARD
+PRESS PF2 OR TYPE B TO PAGE BACKWARD

DFHSAGD map definition --------------------------------.,

TITLE 'FILEA - MAPSET FOR LOW BALANCE REPORT - ASSEMBLER I

MAPSETD

DFH$AGD
NUMBER
NAME
AMOUNT
HEADING

PAGEN

FOOTING

FINAL

DFHMSD TYPE=&SYSPARM,MODE=OUT,CTRL=(FREEKB,FRSET),
LANG=ASM,STORAGE=AUTO,EXTATT=MAPONLY,COLOR=BLUE

DFHMDI SIZE=(1,40),COLOR=GREEN
DFHMDF POS=(1,1),LENGTH=6
DFHMDF POS=(1,9),LENGTH=20
DFHMDF POS=(1,30),LENGTH=8
DFHMDI SIZE=(3,40),HEAOER=YES
DFHMDF POS=(1,5),LENGTH=18,INITIAL='LOW BALANCE REPORT I ,

HILIGHT=UNDERLINE
DFHMDF POS=(1,30),LENGTH=4,INITIAL='PAGE '
DFHMDF POS=(1,35),LENGTH=3
DFHMDF POS=(3,1),LENGTH=6,INITIAL='NUMBER '
DFHMDF POS=(3,17),LENGTH=4,INITIAL='NAME '
DFHMDF POS=(3,32) ,LENGTH=6,INITIAL= I AMOUNT I

DFHMDI SIZE=(2,40),TRAILER=YES,JUSTIFY=LAST
DFHMDF POS=(2,1),LENGTH=38,

INITIAL='PRESS CLEAR AND TYPE PIN TO SEE PAGE N'
DFHMDI SIZE=(2,40),TRAILER=YES,JUSTIFY=LAST
DFHMDF POS=(2,10)~LENGTH=14,INITIAL='END OF REPORT. I

DFHMSD TYPE=FINAL
END

386 CICS/MVS 2.1.2 Application Programmer's Reference

*

*

*

The assembler language DSECT produced as a result of the above statements would be as follows:

DSECT generated by DFH$AGD --------------------------------,

OFH$AGDO DS
DS

SPACE
DS

NUMBERA DS
NUMBERO DS

NAMEA
NAMEO

SPACE
DS
OS
OS

SPACE
DS

AMOUNTA OS
AMOUNTO OS

SPACE

DS aH
ac .
12C •

Cl2 •
C •
Cl6 .

CL2 •
C •
CL2a •

CL2 •
C •
CLB .

OFH$AGDE EQU *
* * * END OF MAP DEFINITION * * *

SPACE 3

HEADINGO OS
OS

SPACE

PAGENA
PAGE NO

OS
OS
OS

SPACE

DS aH
ac .
12C •

CL2 •
C •
CL3 •

HEADINGE EQU *
* * * END OF MAP DEFINITION * * *

SPACE 3
OS 0H

ae . FOOTINGO OS
DS

SPACE
12C •

FOOTINGE EQU *
* * * END OF MAP DEFINITION * * *

SPACE 3
DS aH

FINALO OS 0C •

ENSURE ALIGNMENT

TIOA PREFIX

INPUT DATA FIELD lENGTH
DATA FIELD ATTRIBUTE

DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD ATTRIBUTE

DATA FIELD

INPUT DATA FIELD lENGTH
DATA FIELD ATTRIBUTE

DATA FIELD

END OF MAP DEFINITION

ENSURE ALIGNMENT

TIOA PREFIX

INPUT DATA FIELD LENGTH
DATA FIELD ATTRIBUTE

DATA FIELD

END OF MAP DEFINITION

ENSURE ALIGNMENT

TIOA PREFIX

END OF MAP DEFINITION

ENSURE ALIGNMENT

DS
SPACE

12C . TIOA PREFIX

FINALE EQU *
* * * END OF MAP DEFINITION * * *

SPACE 3
ORG

END OF MAP DEFINITION

MAPSETDT EQU * * END OF MAP SET
* * * END OF MAP SET DEFINITION * * *

SPACE 3

Appendix D. Sample programs (assembler language) 387

DFH$AGD screen layout -----------,

+LOW BALANCE REPORT

+NUMBER +NAME
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX

+PAGE+XXX

+AMOUNT
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

+PRESS CLEAR AND TYPE PIN TO SEE PAGE N

DFH$AGK map definition ----------------------------------,

TITLE 'FILEA - MAP FOR ORDER ENTRY - ASSEMBLER'
MAPSETK DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET), *

TIOAPFX=YES,LANG=ASM,EXTATT=MAPONLY
DFH$AGK DFHMDI SIZE=(12,40)

DFHMDF POS=(01,10),LENGTH=11,ATTRB=(BRT,ASKIP), *
INITIAL='ORDER ENTRY',COLOR=BLUE,HILIGHT=UNDERLINE

MSGI DFHMDF POS=(03,04),LENGTH=26,ATTRB=(DRK,ASKIP), *
INITIAL='NUMBER NOT FOUND - REENTER', *
COLOR=RED,HILIGHT=BLINK

MSG2 DFHMDF POS=(04,04) ,LENGTH=22,ATTRB=(DRK,ASKIP) , *
INITIAL='DATA ERROR - REENTER', *
COLOR=RED,HILIGHT=BLINK

DFHMDF POS=(05,04),LENGTH=09,ATTRB=PROT, *
INITIAL='NUMBER :'

CUSTNO DFHMDF POS=(0S,14),LENGTH=06,ATTRB=(IC,NUM)
DFHMDF POS=(0S,21),LENGTH=01
DFHMDF POS=(06,04),LENGTH=09,ATTRB=PROT,COLOR=BLUE, *

INITIAL='PART NO :'
PARTNO DFHMDF POS=(06,14),LENGTH=06,ATTRB=NUM

DFHMDF POS=(06,21),LENGTH=01
DFHMDF POS=(07,04),LENGTH=e9,ATTRB=PROT,COLOR=BLUE, *

INITIAL='QUANTITV:'
QUANT DFHMDF POS=(07,14),LENGTH=06,ATTRB=NUM

DFHMDF POS=(07,21),LENGTH=01
DFHMDF POS=(09,01),LENGTH=38,ATTRB=ASKIP,COLOR=BLUE, *

INITIAL='PRESS ENTER TO CONTINUE,CLEAR TO QUIT'
DFHMSD TVPE=FINAL .
END

388 CICS/MVS 2.1.2 Application Programmer's Reference

The assembler language DSECT produced as a result of the above statements would be as follows:

DSECTgeneratedbyDFH$AGK ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

OS eH ENSURE ALIGNMENT
INPUT MAP ORIGIN
OUTPUT MAP ORIGIN

DFH$AGKI DS
DFH$AGKO DS

DS

ec .
ec .
12C • TIOA PREFIX

MSGIL
MSGIF
MSGIA
MSGII
MSGIO

MSG2L
MSG2F
MSG2A
MSG2I
MSG20

SPACE
OS
DS
OS
DS
DS

SPACE
DS
DS
DS
DS
OS

SPACE
CUSTNOL OS
CUSTNOF DS
CUSTNOA DS
CUSTNOI DS
CUSTNOO DS

SPACE
PARTNOL DS
PARTNOF DS
PARTNOA DS
PARTNOI DS
PARTNOO OS

QUANTL
QUANTF
QUANTA
QUANTI
QUANTO

SPACE
OS
OS
OS
DS
DS

CL2 .
ec .
C .
eCL26 •
CL26 •

CL2 •
ec .
C •
eCL22 •
CL22 •

CL2 •
ec .
C •
eCL6 .
CL6 •

CL2 .
ec .
C •
eCL6 •
CL6 •

CL2 •
ec .
C •
eCL6 •
CL6 •

SPACE
DFH$AGKE EQU *
* * * END OF MAP DEFINITION * * *

SPACE 3
ORG

MAPSETKT EQU * * END OF MAP SET
* * * END OF MAP SET DEFINITION * * *

SPACE 3

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

END OF MAP DEFINITION

DFH$AGK screen layout -~~~----~----.

+ORDER ENTRY

+NUMBER NOT FOUND REENTER
+DATA ERROR REENTER
+NUMBER :+XXXXXX+
+PART NO :+XXXXXX+
+QUANTITY:+XXXXXX+

+PRESS ENTER TO CONTINUE,CLEAR TO QUIT

Appendix D. Sample programs (assembler language) 389

DFH$AGL map definition ---------------------------------,

TITLE 'FILEA - MAP FOR ORDER ENTRY QUEUE PRINT - ASSEMBLER I

MAPSETL DFHMSD TYPE=&SYSPARM,MODE=OUT, *
TIOAPFX=YES,LANG=ASM

DFH$AGL DFHMDI SIZE=(8S,S8)
TITLE DFHMDF POS=(81,81),LENGTH=43, *

INITIAL='NUMBER NAME ADDRESS'
NUMB DFHMDF POS=(82,01),LENGTH=86
NAM DFHMDF POS=(02,12),LENGTH=20
ADDR DFHMDF POS=(02,37),LENGTH=20

DFHMDF POS=(03,81),LENGTH=89, *
INITIAL='PART NO :'

PART DFHMDF POS=(83,11),LENGTH=86
DFHMDF POS=(04,81),LENGTH=89, *

INITIAL='QUANTITY: '
QUANT DFHMDF POS=(84,11),LENGTH=06

DFHMDF POS=(8S,01),LENGTH=1, *
INITIAL= I I

DFHMSD TVPE=FINAL
END

390 CICS/MVS 2.1.2 Application Programmer's Reference

\
;' The assembler language DSECT produced as a result of the above statements would be as follows:

DSECT generated by DFH$AGL -------------------------------,

DFH$AGLO OS
OS

SPACE

TITLEA
TITLEO

NUMBA
NUMBO

NAMA
NAMa

ADORA
ADORO

PARTA
PARTO

QUANTA
QUANTa

OS
OS
OS

SPACE
OS
OS
OS

SPACE
OS

OS
OS
SPACE

DS
DS
OS

SPACE
DS
DS
DS

SPACE
OS

DS
DS

SPACE

os BH
BC •
12C •

CL2 •
C •
CL43 •

CL2 •
C •
CL6 •

CL2 •
C •
CL2El .

CL2 •
C .
CL2B •

CL2 .
C •
CL6 •

CL2 •
C •
CL6 .

DFH$AGLE EQU *
* * * END OF MAP DEFINITION * * *

SPACE 3
ORG

ENSURE ALIGNMENT

TIOA PREFIX

INPUT DATA FIELD LENGTH
DATA FIELD ATTRIBUTE

DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD ATTRIBUTE

DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD ATTRIBUTE

DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD ATTRIBUTE

DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD ATTRIBUTE

DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD ATTRIBUTE

DATA FIELD

END OF MAP DEFINITION

MAPSETLT EQU * * END OF MAP SET
* * * END OF MAP SET DEFINITION * * *

SPACE 3

DFH$AGL print format ----------------------------------,

+NUMBER NAME
+XXXXXX +XXXXXXXXXXXXXXXXXXXX
+PART NO :+XXXXXX
+QUANTITY:+XXXXXX
+X

ADDRESS
+XXXXXXXXXXXXXXXXXXXX

Appendix D. Sample programs (assembler language) 391

Record descriptions for ASM sample
programs

FILEA record description

The sample programs use the FILEA record description. It
is defined in copy code DFH$AFIL and has the following
format:

FIlEA os 0ClBe
FIlEREC os eClBe
STAT OS ClI
NUMB OS Cl6
NAME OS Cl2e
AOORX os Cl20
PHONE OS Cl8
OATEX OS Cl8
AMOUNT OS ClB
COMMENT OS Cl9

LOGA record description

The sample programs use the LOGA record description
when an audit trail is written to a transient data file. It is
defined in copy code DFH$ALOG and has the following
format:

lOGA OS eCl92
LOGHOR OS 0CLl2
LOAY OS Pl4
LTIME OS PL4
LTERML OS CL4
LOGREC OS eClBe
LSTAT OS ClI
lNUMB OS Cl6
LNAME OS Cl20
LAOOR OS CL20
LPHONE OS Cl8
lOATE OS CL8
lAMOUNT OS CL8
LCOMMENT OS CL9

392 CICS/MVS 2.1.2 Application Programmer's Reference

L860 record description

The Order Entry Queue Print sample program uses the
L860 record description when it writes to the transient
dat~ queue 'L860'. It is defined in copy code DFH$AL86
and has the following format:

l860 OS 0CL22
ITEM OS 0Cl22
CUSTNO OS CL6
PART NO OS CL6
QUANTITY DS CL6
TERMIO OS Cl4

Appendix E. Sample programs (COBOL)

The COBOL sample programs described in this appendix
are included, in source form, on the CICS distribution tape.
The CICS/MVS Installation Guide describes how these
sample programs, and associated resources, can be
defined to CICS and how the programs can be executed
online.

This appendix describes six CICS sample application
programs, written in COBOL, as follows:

• Operator instruction
• Inquiry/update
• Browse
• Order entry
• Order entry queue print
• Low balance report.

These programs illustrate basic applications (such as
inquire, browse, add, and update) that can serve as a
framework for your installation's first programs. The
programs operate using a VSAM file, known as FILEA,
consisting of records containing details of individual
customer accounts. Each program has a short description
of what the program does, a listing of its source code, and
a series of program notes. Numbered coding lines in the

I source listing correspond to the numbered program notes.
The programs contain COPY statements coded according
to the 1968 COBOL standard.

All the sample programs are for use with the IBM 3270
Information Display System.

The sample BMS maps include examples of how the
COLOR, EXTATT, and HILIGHT attributes are specified in
the map definition macros. However, due to production
limitations, the associated screen layouts do not show you
all the effects of these attributes.

You can add attributes without changing the application
program by specifying EXTATT=MAPONLY in the DFHMSD
map set definition macro. If you include an attribute that
specifies a facility not available at the terminal, it will be
ignored.

+OPERATOR INSTRUCTIONS

+OPERATOR INSTR - ENTER MENU
+FILE INQUIRY - ENTER INQY AND NUMBER
+FILE BROWSE - ENTER BRWS AND NUMBER
+FILE ADD - ENTER ADDS AND NUMBER
+FILE UPDATE - ENTER UPDT AND NUMBER

+PRESS CLEAR TO EXIT
+ENTER TRANSACTION:+

© Copyright IBM Corp. 1982, 1991

+NUMBER+ +

The statements listed are those of the sample programs
supplied with the initial release of CICS. Sample programs
shipped with subsequent program temporary fixes (PTFs)
may differ from these listings.

The BMS maps (which are unaligned) and the file record
descriptions used by these sample programs are included
at the end of the appendix.

Once CICS is running, type MENU onto a clear screen and
press the enter key. The MENU transaction identifier
invokes the 'Operator Instruction' sample program, which
is a short program that produces a menu containing the
transaction identifiers for two of the other sample
programs, namely 'Inquiry/Update' and 'Browse'.

If you clear the screen, remember to reenter the
transaction identifier, as no data is accepted from an
unformatted screen.

You can run the sample programs using EDF but, because
the CEDF transaction is defined with RSLC = YES, you must
first sign on to CICS as an operator with an appropriate
resource security level key.

The menu, on a screen that is 40 characters wide by 12
lines deep, is as shown in the box above. The plus (+)
sign in this and subsequent displays shows the position of
the attribute byte. In an actual display, this position
contains a blank.

To invoke any of the transactions MENU, INQY, BRWS.
ADDS, or UPDT, do as instructed, entering the
four-character transaction identifier and six-digit account
number in the fields highlighted in the bottom line of the
display. These specific account numbers include the
sequence 100000, 111111, 200000, 222222, ... , 999999.

These transaction identifiers give you access to the
inquiry, add, and update functions of the 'Inquiry/Update'
program, and access to the 'Browse' program.

You can invoke the three remaining sample programs
'Order Entry'. 'Order Entry Queue Print', and 'Low Balance
Report' separately by entering their transaction identifiers
(OREN. OREQ, and REPT respectively) onto a clear screen.

393

Operator instruction program (COBOL)

Description

The operator instruction sample program displays map
DFH$CGA in response to the EXEC CICS SEND MAP
command.

The map displays a menu that lists the transaction
identifiers associated with two of the sample programs,
'Inquiry IUpdate', and 'Browse', and gives instructions for
the operator.

* DFH$CMNU - CICS/VS SAMPLE FILEA OPERATOR INSTRUCTION MENU *

*

IDENTIFICATION DIVISION.
PROGRAM-ID. FILECMNU.
ENVIRONMENT DIVISION.
DATA DIVISION.

PROCEDURE DIVISION.
EXEC CICS SEND MAP('MENU ') MAPSET('DFH$CGA ')

MAPONLY ERASE END-EXEC.
EXEC CICS RETURN END-EXEC.
GOBACK.

Program notes
1. The BMS command erases the screen and displays

map DFH$CGA.

2. The RETURN command ends the program.

394 CICS/MVS 2.1.2 Application Programmer's Reference

Inquiry/update sample program (COBOL)

Description

The inquiry/update sample program lets you make an
inquiry about, add to, or update records in a file. You can
select one of these by entering the appropriate transaction
identifier (INQY, ADDS, or UPDT) in the menu that is
displayed when you start operations by entering MENU.

To make an inquiry, enter INQY and an account number
into the menu. The program maps in the account number
and reads the record from FILEA. The required fields from
the file area, and a title 'FILE INQUIRY' are moved to the
map dsect for DFH$CGB. DFH$CGB, containing the record
fields, is displayed at your screen.

To add a record, enter ADDS and the account number into
the menu. The account number and a title 'FILE ADD' are
moved to the map area of DFH$CGB. DFH$CGB,
containing empty data fields, is displayed at your screen.
The data fields entered are mapped into DFH$CGB and

moved to the file record area which is then written to
FILEA. The addition is recorded on an update log (LOGA),
which is a transient data queue. The operator instruction
screen is displayed with the message 'RECORD ADDED'.

To update a record, enter U PDT and the account number
into the menu, as before. The program reads and displays
the requested FILEA record. Modified data fields are
mapped in to DFH$CGB and edited. The sample program
only suggests the type of editing you might wish to do.
Insert editing steps needed to ensure valid changes to the
file. Those fields that have been changed are moved to
the data record and the record is rewritten to FILEA. The
update is recorded on LOGA. The message 'RECORD
UPDATED' is moved to the dsect for DFH$CGA, the
operator instruction menu map, which is then displayed at
your screen.

This program is an example of pseudoconversational
programming, in which control is returned to CICS together
with a transaction identifier whenever a response is
requested from the operator. Associated with each return
of control to CICS is a storage area containing details of
the previous invocation of the transaction.

Appendix E. Sample programs (COBOL) 395

Source listing for DFH$CALL ---------------------------------,

* DFH$CALL - CICS/VS SAMPLE FILEA INQUIRY/UPDATE - COBOL *

IDENTIFICATION DIVISION.
PROGRAM-ID. FILECALL.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 MESSAGES PIC X(39).
77 TEMP-NAME PIC X(20).
77 KEYNUM PIC 9(6).
77 COMLEN PIC S9(4) COMPo

COPY DFH$CGA.
COPY DFH$CGB.

* NEXT FIELD TO VERIFY AMOUNTI
01 AMOUNTN.

03 AMOUNTN1 PIC X.
03 AMOUNTN25 PIC X(4).
03 AMOUNTN6 PIC X.
03 AMOUNTN78 PIC X(2).

01 FILEA. COPY DFH$CFIL.
01 LOGA. COPY DFH$CLOG.

COPY DFHBMSCA.
01 COMMAREA. COpy DFH$CFIL.
LINKAGE SECTION.
01 DFHCOMMAREA. COPY DFH$CFIL.
PROCEDURE DIVISION.

1 IF EIBTRNID NOT = 'INQY'
AND EIBTRNID NOT = 'ADDS'
AND EIBTRNID NOT = 'UPDT' THEN GO TO ERRORS.

2 IF EIBCALEN NOT = 0 THEN
3 MOVE DFHCOMMAREA TO COMMAREA GO TO READ-INPUT.
4 EXEC CICS HANDLE CONDITION MAPFAIL(MFAIL)

ERROR(ERRORS} END-EXEC.
5 EXEC CICS RECEIVE MAP('MENU'} MAPSET('DFH$CGA'} END-EXEC.

IF KEYL = ZERO THEN GO TO BADLENG.
6 MOVE KEYI TO KEYNUM.

IF KEYI IS NOT NUMERIC THEN GO TO BADCHARS.
MOVE LOW-VALUES TO DETAILO.

7 IF EIBTRNID = 'ADDS' THEN
MOVE 'FILE ADD' TO TITLEO
MOVE 'ENTER DATA AND PRESS ENTER KEY' TO MSG30

8 MOVE KEYI TO NUMB IN COMMAREA, NUMBO
9 MOVE DFHBMUNN TO AMOUNTA

MOVE '$0000.00' TO AMOUNTO
MOVE 7 TO COMLEN GO TO MAP-SEND.

10 EXEC CICS HANDLE CONDITION NOTFND(NOTFOUND) END-EXEC.
11 EXEC CICS READ DATASET('FILEA'} INTO(FILEA} RIDFLD(KEYNUM}

END-EXEC.
IF EIBTRNID = 'INQY' THEN

12 MOVE 'FILE INQUIRY' TO TITLEO
MOVE 'PRESS ENTER TO CONTINUE' TO MSG30

* PROTECT ALL THE MAP FIELDS
MOVE DFHBMPRO TO NAMEA
MOVE DFHBMPRO TO ADDRA

13 MOVE DFHBMPRO TO PHONEA
MOVE DFHBMPRO TO DATEA
MOVE DFHBMPRO TO AMOUNTA
MOVE DFHBMPRO TO COMMENTA

396 CICS/MVS 2.1.2 Application Programmer's Reference

Source "sting~r DFH$CALL (continued) ~~~~~~~~~~~~~~~~~~~~~~~~~~

14 PERFORM MAP-BUILD THRU MAP-SEND
15 EXEC CICS RETURN TRANSID('MENU') END-EXEC.

IF EIBTRNID = 'UPDT' THEN
16 MOVE 'FILE UPDATE I TO TITLEO

MOVE 'CHANGE FIELDS AND PRESS ENTER' TO MSG30
17 MOVE FILEREC IN FILEA TO FILEREC IN COMMAREA

MOVE B8 TO COMLEN.
MAP-BUILD.

MOVE NUMB IN FILEA TO NUMBO.
MOVE NAME IN FILEA TO NAMEO.

IB MOVE ADDRX IN FILEA TO ADDRO.
MOVE PHONE IN FILEA TO PHONEO.
MOVE DATEX IN FILEA TO DATEO.
MOVE AMOUNT IN FILEA TO AMOUNTO.
MOVE COMMENT IN FILEA TO COMMENTO.

MAP-SEND.
19 EXEC CICS SEND MAP('DETAIL') MAPSET('DFH$CGB')

ERASE END-EXEC.
FIN.

GO TO CICS-CONTROL.
28 READ-INPUT.
21 EXEC CICS HANDLE CONDITION MAPFAIL(NOTMODF) NOTFND(NOTFOUND)

ERROR(ERRORS) DUPREC(DUPREC) END-EXEC.
22 EXEC CICS RECEIVE MAP('DETAIL') MAPSET('DFH$CGB') END-EXEC.

IF EIBTRNID = 'UPDT ' THEN
23 EXEC CICS READ UPDATE DATASET('FILEA') INTO(FILEA)

RIDFLD(NUMB IN COMMAREA) END-EXEC
24 IF FILEREC IN FILEA NOT = FILEREC IN COMMAREA THEN

MOVE 'RECORD UPDATED BY OTHER USER, TRY AGAIN' TO MSGIO
MOVE DFHBMASB TO MSGIA
MOVE DFHPROTN TO MSG3A
PERFORM MAP-BUILD
EXEC CICS SEND MAP('DETAIL') MAPSET('DFH$CGB') END-EXEC
MOVE B0 TO COMLEN
MOVE FILEREC IN FILEA TO FILEREC IN COMMAREA
GO TO CICS-CONTROL

ELSE
25 MOVE lUI TO STAT IN FILEA

PERFORM CHECK THRU FILE-WRITE
MOVE 'RECORD UPDATED' TO MESSAGES GO TO MENU.

26 IF EIBTRNID = 'ADDS' THEN
MOVE LOW-VALUES TO FILEREC IN FILEA
MOVE 'AI TO STAT IN FILEA
PERFORM CHECK THRU FILE-WRITE
MOVE 'RECORD ADDED I TO MESSAGES GO TO MENU.

* CHECK FIELDS ADDED/UPDATED
CHECK.

IF NAMEI = LOW-VALUES AND
ADDRI = LOW-VALUES AND

27 PHONE I = LOW-VALUES AND
DATEI = LOW-VALUES AND
AMOUNTI = LOW-VALUES AND
COMMENT I = LOW-VALUES GO TO NOTMODF.

* INSP-NAME CHANGES ALL NON-ALPHABETIC CHARACTERS THAT ARE
* VALID IN A NAME TO SPACES SO THAT AN ALPHABETIC TEST MAY
* BE DONE ON THE NAME. THE CHANGED NAME IS RETURNED IN FIELD
* TEMP-NAME.

PERFORM INSP-NAME.
IF EIBTRNID = 'ADDS' THEN

IF TEMP-NAME NOT ALPHABETIC THEN GO TO DATA-ERROR.

Appendix E. Sample programs (COBOL) 397

Source l~tlngforDFH$CALL(contlnued) ~~~~~~~~~~~~~~~~~~~~~~~~~~

IF EIBTRNID = 'UPDT ' THEN
IF NAMEI NOT = LOW-VALUES
AND TEMP-NAME NOT ALPHABETIC THEN GO TO DATA-ERROR.

* AMOUNT I MUST BE IN FORMAT ¢NNNN.NN OR $NNNN.NN
IF AMOUNTI = LOW-VALUE THEN GO TO FILE-WRITE.
MOVE AMOUNTI TO AMOUNTN.
IF (AMOUNTNI = '¢I OR '$') AND

(AMOUNTN25 IS NUMERIC) AND
(AMOUNTN6 = I. I) AND
(AMOUNTN78 IS NUMERIC)

THEN GO TO FILE-WRITE
ELSE

THEN GO TO DATA-ERROR.

INSP-NAME.
MOVE NAMEI TO TEMP-NAME
INSPECT TEMP-NAME REPLACING ALL 1.1 BY SPACES.
INSPECT TEMP-NAME REPLACING ALL I_I BY SPACES.
INSPECT TEMP-NAME REPLACING ALL QUOTES BY SPACES.

FILE-WRITE.
IF EIBTRNID = 'ADDS ' THEN MOVE NUMB IN COMMAREA TO

NUMB IN FILEA.
IF NAMEI NOT = LOW-VALUE MOVE NAMEI TO NAME IN FILEA.

28 IF ADDRI NOT = LOW-VALUE MOVE ADDRI TO ADDRX IN FILEA.
IF PHONE I NOT = LOW-VALUE MOVE PHONE I TO PHONE IN FILEA.
IF DATEI NOT = LOW-VALUE MOVE DATEI TO DATEX IN FILEA.
IF AMOUNTI NOT = LOW-VALUE MOVE AMOUNTI TO AMOUNT IN FILEA.
IF AMOUNTI = LOW-VALUE AND EIBTRNID = 'ADDS ' THEN

MOVE 1$0000.00 1 TO AMOUNT IN FILEA.
IF COMMENTI NOT = LOW-VALUE THEN

MOVE COMMENTI TO COMMENT IN FILEA.
MOVE FILEREC IN FILEA TO LOGREC.
MOVE EIBDATE TO LDAY.

29 MOVE EIBTIME TO LTIME.
MOVE EIBTRMID TO LTERML.

39 EXEC CICS WRITEQ TD QUEUE('LOGA') FROM(LOGA) LENGTH(92)
END-EXEC.

IF EIBTRNID = 'UPDT ' THEN
31 EXEC CICS REWRITE DATASET('FILEA') FROM(FILEA) END-EXEC

ELSE
32 EXEC CICS WRITE DATASET('FILEA') FROM(FILEA)

DATA-ERROR.
MOVE DFHBMASB TO MSG3A.

RIDFLD(NUMB IN COMMAREA)
END-EXEC.

33 MOVE 'DATA ERROR - CORRECT AND PRESS ENTER I TO MSG30
* THE FIELD ATTRIBUTE IS SET TO
* MODIFIED SO DATA WILL DISPLAY
* AMOUNT IS SET NUMERIC ALSO

MOVE DFHUNNUM TO AMOUNTA.
34 MOVE DFHBMFSE TO NAMEA, ADORA, PHONEA, DATEA,

COMMENTA.
35 EXEC CICS SEND MAP('DETAIL ') MAPSET('DFH$CGB')

DATAONLY END-EXEC.
36 IF EIBTRNID = 'ADDS' THEN MOVE 7 TO COMLEN

ELSE MOVE 89 TO COMLEN.

398 CICS/MVS 2.1.2 Application Programmer's Reference

Sourcel~tlngforDFH$CALL(contlnued) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CICS-CONTROL.
37 EXEC CICS RETURN TRANSID(EIBTRNID) COMMAREA(COMMAREA)

LENGTH(COMLEN) END-EXEC.
38 NOTMODF.

MOVE 'RECORD NOT MODIFIED' TO MESSAGES.
GO TO MENU.

DUPREC.
MOVE 'DUPLICATE RECORD' TO MESSAGES.
GO TO MENU.

BADLENG.
MOVE 'PLEASE ENTER AN ACCOUNT NUMBER' TO MESSAGES.
GO TO MENU.

BADCHARS.
MOVE 'ACCOUNT NUMBER MUST BE NUMERIC' TO MESSAGES.
GO TO MENU.

NOTFOUND.
MOVE 'INVALID NUMBER - PLEASE REENTER' TO MESSAGES.
GO TO MENU.

MFAIL.
MOVE 'PRESS CLEAR TO EXIT' TO MESSAGES.
GO TO MENU.

ERRORS.
39 EXEC CICS DUMP DUMPCODE('ERRS') END-EXEC.

MOVE 'TRANSACTION TERMINATED' TO MESSAGES.
40 MENU.

MOVE LOW-VALUE TO MENUO.
MOVE DFHBMASB TO MSGA.
MOVE MESSAGES TO MSGO.

41 EXEC CICS SEND MAP('MENU') MAPSET('DFH$CGA') ERASE END-EXEC.
42 EXEC CICS RETURN END-EXEC.

GOBACK.

Program notes
1. The possible invoking transaction-ids are tested.

2. The length of the COMMAREA is tested. If not zero
then this is the validation stage of an add or update.

3. If it has a length, the COMMAREA returned is moved
to working storage in the program.

4. The program exits are set up.

5. The menu map DFH$CGA is received. The account
number, if entered, is mapped into KEYI in the dsect
for DFH$CGA.

6. The account number is validated and saved.

7. If program is invoked by 'ADDS', a title and command
message are moved to the map area. The record key
is moved to the map area and saved in COMMAREA.

8. The record key is moved to the COMMAREA and to
the map area.

9. For the ADDS transaction, the amount field has the
attribute byte set to numeric so only numeric data can
be entered.

10. For an inquiry or update the exit for the
record-not-found condition is set up.

11. The file control READ command reads the file record
into the file area.

12. If program is invoked by 'INQY', a title and command
message are moved to the map area.

13. All field attributes are protected.

14. The file record fields are moved to the map area, and
the inquiry screen is displayed.

15. This invocation of the program terminates. The
TRANSID of MENU causes the operator instruction
program to be invoked when the next response is
received from the terminal.

16. If program is invoked by"UPDT' a title and command
message are moved to the map area.

1t The file record is moved to the COMMAREA and the
length of the COMMAREA to be returned is set up.

18. The fields from the file area are moved to the map
area.

19. MAP-SEND sends the map DFH$CGB to the screen
specifying that the screen is to be erased before the
map is displayed.

20. Control is passed here when the test of EIBCALEN, at
the beginning of the program, finds that a COMMAREA
has been received. This part of the program maps in
data for an add or update request, performs validation
and updates FI LEA.

21. The error exits are set up,

Appendix E. Sample programs (COBOL) 399

22. The RECEIVE MAP command maps in the variables 34. The modified data tag is set on for all the data fields
from the screen. so that all the data is received at the next RECEIVE

23. If this is an update request a file control READ MAP.

UPDATE reads the existing record using the number 35. The contents of map DFH$CGB are sent to the screen.
stored in COMMAREA by the last invocation of this The constant information on the screen is not
program. refreshed as a result of the use of the DATAONLY

24. If the current file record is not the same as the one option.

saved in the COM MAREA then another user has 36. The size of the COMMAREA is set to 7 for an add
updated the record. A warning message is displayed, request or to 80 for an update request.
with fields from the record read from FILEA, for 37. After the FILE ADD or FILE UPDATE screen has been
reentry of the updates. displayed the program branches here to return to

25. The update flag is set in the record area and the CICS awaiting a response from the terminal. The
message 'RECORD UPDATED' is moved to the RETURN gives CICS the transaction identifier for the
message area ready for display of the operator next transaction at this terminal together with a
instruction screen. COMMAREA containing all the information that the

26. If this is an add request the add flag is set in the new program needs to continue the update. The

record and the message 'RECORD ADDED' is moved COMMAREA is passed to the next invocation of this

to the message area ready for display of the operator program, see note 2 on page 399.

instruction screen. 38. These short error routines set up an error message in

27. Any required editing steps should be inserted here. A MESSAGES and branch to MENU to display the

suitable form of editing should be used to ensure valid message is the operator instruction menu DFH$CGA.

records are placed on the file. 39. If a CICS command fails with the ERROR condition or if

28. This code creates or updates the account record. Any an unknown transaction identifier is used to invoke

field which has been entered is moved to the account this program, a dump is taken and the message

record. 'TRANSACTION TERMINATED' is moved to MESSAGES
for display on the operator instruction screen.

29. The record fields, the date, the time, and the terminal
40. This code gets control when an add or update is identification are moved to update log record area.

complete. An information or error message is in
30. The record is written to the update log which is a MESSAGES. The operator instruction map area is

transient data queue. cleared. The message is moved to the map area and

31. For an update request the updated account record is highlighted.

rewritten to FILEA. 41. The operator instruction map DFH$CGA is displayed

32. For an add request the new account record is written on an erased screen.

to FILEA. 42. The program terminates by returning to CICS. No

33. When a data error is detected the screen is transaction identifier or COMMAREA is specified.

redisplayed for errors to be corrected. An error
message is moved to the map area and highlighted.

400 CICS/MVS 2.1.2 Application Programmer's Reference

Browse sample program (COBOL)

Descri ption

The browse program sequentially retrieves a page or set
of records for display, starting at a point in a file specified
by the terminal operator.

To start a browse, type BRWS and an account number into
the menu and press the enter key. If you omit the account
number browsing begins at the start of the file.

Depressing the PF1 key or typing F causes retrieval of the
next page or paging forward. If you wish to reexamine the
previous records displayed, press PF2 or type B. This lets
you page backward.

The browse program uses READNEXT to forward page to
the end of the file and READPREV to backward page to the
start of the file.

Appendix E. Sample programs (COBOL) 401

Source listing for DFH$CBRW -------------------------------,

I

* DFH$CBRW - CICS/VS SAMPLE FILEA BROWSE - COBOL *

IDENTIFICATION DIVISION.
PROGRAM-ID. FILECBRW.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 I PIC 999 USAGE IS COMPo
77 MESSAGES PIC X(39) VALUE' '.

* GOING FWD OR BACK .•. F/B, AT LO/HI END OF FILE
77 CURROP PIC XCI) VALUE' ,
77 LASTOP PIC XCI) VALUE ' ,
77 STATS PIC XCI) VALUE ' ,

* DATA-AREAS FOR RIDFLD
77 RID PIC 9(6) VALUE IS ZERO.

* BUILDS PREV BACK PAGE
77 RIDB PIC 9(6) VALUE IS ZERO.

* BUILDS NEXT FWD PAGE
77 RIDF PIC 9(6) VALUE IS ZERO.

*
* BMS STD ATTRIBUTES

COPY DFHBMSCA.
* FILEA RECORD DESCRIPT'N

en FILEA. COPY DFH$CFIL.
* GENERAL MENU MAP

COPY DFH$CGA.
* BROWSE FILEA MAP

COPY DFH$CGC.
*
*

PROCEDURE DIVISION.
EXEC CICS HANDLE CONDITION

ERROR(ERRORS)
MAPFAIL (SMSG)
NOTFND(NOTFOUND) END-EXEC.

*
2 EXEC CICS RECEIVE MAP('MENU') MAPSET('DFH$CGA') END-EXEC.

*
3 EXEC CICS HANDLE AID

CLEAR(SMSG)
PFI (PAGE-FORWARD)
PF2 (PAGE-BACKWARD) END-EXEC.

* SIMPLE CHECKS OF INPUT DATA *

4 IF KEYL NOT = ZERO THEN
IF KEYI IS NUMERIC THEN

* VALID INPUT

*

MOVE KEYI TO RID
MOVE KEYI TO RIDF
MOVE KEYI TO RIDB

ELSE

MOVE
'ACCOUNT NUMBER MUST BE NUMERIC'

TO MESSAGES
GO TO MENU

402 CICS/MVS 2.1.2 Application Programmer's Reference

NOT NUMERIC

Source listlngfor DFH$CBR~(contlnued) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ELSE
*

MOVE 1000000 1 TO RID
MOVE 1000000 1 TO RIDF.

ACCOUNT NO OMITTED

* ESTABLISH START POINT *

5 EXEC CICS STARTBR DATASET(IFILEAI)
RIDFLD(RID) END-EXEC.

*
6 IF RID NOT EQUAL 1999999 1 THEN GO TO PAGE-FORWARD.

7

8

9

IE)

*
MOVE IHI TO STATS.
GO TO PAGE-BACKWARD.

* BUILD NEXT FORWARD PAGE *

PAGE-FORWARD.
MOVE IFI TO CURROP.

* TOP END OF FI LE
EXEC CICS HANDLE CONDITION

ENOFI LE (TOOHIGH) END-EXEC.
* RESET MAP IC I

MOVE LOW-VALUES TO BROWSEO.
* RID>NEXT FPAGE

MOVE RIDF TO RID.
MOVE 1 TO 1.

NEXT -LINE.
* MOVE FIELDS>MAP

EXEC CICS READNEXT INTO(FILEA)
DATASET(IFILEAI)
RIDFLD(RID) END-EXEC.

* READ 4 RECORDS
IF I = 1 THEN

MOVE NUMB TO NUMBERIO
MOVE NAME TO NAMEIO
MOVE AMOUNT TO AMOUNTIO

* RIDB NEEDS EXISTING AIC
MOVE RID TO RIDB

ELSE IF I = 2 THEN
MOVE NUMB TO NUMBER20
MOVE NAME TO NAME20
MOVE AMOUNT TO AMOUNT20

ELSE IF I = 3 THEN
MOVE NUMB TO NUMBER30
MOVE NAME TO NAME30
MOVE AMOUNT TO AMOUNT30

ELSE IF I = 4 THEN
MOVE NUMB TO NUMBER40
MOVE NAME TO NAME40
MOVE AMOUNT TO AMOUNT40.

ADD 1 TO 1.
IF I NOT EQUAL 5 THEN GO TO NEXT-LINE.

* RID>NEXT FPAGE
MOVE RID TO RIDF.
EXEC CICS SEND MAP(IBROWSE I) MAPSET(IDFH$CGC I)

ERASE END-EXEC.
* GET NEXT RQUEST

GO TO PROMPT.

Appendix E. Sample programs (COBOL) 403

* BUILD PREVIOUS BACK PAGE *

11 PAGE-BACKWARD.

*

*

*

*

*

*

*

MOVE IBI TO CURROP.

EXEC CICS HANDLE CONDITION
ENDFILE(TOOLOW) END-EXEC.

MOVE LOW-VALUES TO BROWSEO.

MOVE RIDB TO RID.

MOVE RIDB TO RIDF.

IF LASTOP EQUAL 'B' THEN GO TO PREVo
IF STATS EQUAL 'H' THEN GO TO PREVo
EXEC CICS READPREV INTO(FILEA)

PREVo
MOVE 1 TO 1.

PREV-LINE.

DATASET(IFILEA')
RIDFLD(RID) END-EXEC.

* MOVE FIELDS>MAP
EXEC CICS READPREV INTO(FILEA)

DATASET(IFILEAI)
RIDFLD(RID) END-EXEC.

LOW END OF FI LE

RESET MAP IC I

RID>PREV BPAGE

RIDF>NEXT FPAGE

* READ 4 RECORDS IN
* ASCENDING ORDER

*

*

*

IF I = 4 THEN
MOVE NUMB TO NUMBERIO
MOVE NAME TO NAMEIO
MOVE AMOUNT TO AMOUNTIO

ELSE IF I = 3 THEN
MOVE NUMB TO NUMBER20
MOVE NAME TO NAME20
MOVE AMOUNT TO AMOUNT20

ELSE IF I = 2 THEN
MOVE NUMB TO NUMBER30
MOVE NAME TO NAME30
MOVE AMOUNT TO AMOUNT30

ELSE IF I = 1 THEN

ADD 1 TO I.

MOVE NUMB TO NUMBER40
MOVE NAME TO NAME40
MOVE AMOUNT TO AMOUNT40.

IF I NOT EQUAL 5 THEN GO TO PREV-LINE.

MOVE RID TO RIDB.
EXEC CICS SEND MAP(IBROWSE I) MAPSET(IDFH$CGC I)

ERASE END-EXEC.

GO TO PROMPT.

RID>NEXT BPAGE

GET NEXT RQUEST

* PROMPT FOR NEXT PAGING REQUEST*

404 CICS/MVS 2.1.2 Application Programmer's Reference

Sou~ell~~g~rDFH$CBRW~ontinue~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

PROMPT.
MOVE CURROP TO LASTOP.

12 EXEC CICS RECEIVE MAP('BROWSE') MAPSET('DFH$CGC') END-EXEC.
IF DIRI EQUAL 'F' THEN GO TO PAGE-FORWARD.
IF DIRI EQUAL 'B' THEN GO TO PAGE-BACKWARD.

* INVALID-RESEND
EXEC CICS SEND MAP('BROWSE ') MAPSET('DFH$CGC ') END-EXEC.
GO TO PROMPT.

* HANDLE END OF FILE CONDITIONS *

13 TOOHIGH.
MOVE 'H' TO STATS.
MOVE RID TO RIDF.
MOVE RID TO RIDB.
MOVE I I TO DIRO.
MOVE 'HI-END OF FILE' TO MSGI0.

* BRT+PROT ATTR
MOVE DFHBMASB TO MSGIA.
EXEC CICS SEND MAP('BROWSE ') MAPSET('DFH$CGC ')

ERASE END-EXEC.
GO TO PROMPT.

14 TOOLOW.

*

MOVE ILl TO STATS.
MOVE leeeeee l TO RIDF.
MOVE leeeeee l TO RIDB.
MOVE I I TO DIRO.
MOVE 'LO-END OF FILE' TO MSG20.

MOVE DFHBMASB TO MSG2A.
EXEC CICS SEND MAP('BROWSE ') MAPSET('DFH$CGC ')

ERASE END-EXEC.
GO TO PROMPT.

BRT +PROT A TTR

* HANDLE GENERAL CONDITIONS *

15 NOTFOUND.
MOVE lEND OF FILE - PLEASE RESTART I TO MESSAGES.
GO TO MENU.

SMSG.
MOVE 'PRESS CLEAR TO EXIT ' TO MESSAGES.
GO TO MENU.

ERRORS.
16 EXEC CICS DUMP DUMPCODE('ERRS ') END-EXEC.

MOVE 'TRANSACTION TERMINATED I TO MESSAGES.

* DISPLAY GENERAL MENU THEN EXIT *

MENU.
* RESET MAP 'A'

MOVE LOW-VALUE TO MENUO.
MOVE DFHBMASB TO MSGA.
MOVE MESSAGES TO MSGO.

17 EXEC CICS SEND MAP('MENU ') MAPSET('OFH$CGA ')
ERASE END-EXEC.

18 EXEC CICS RETURN END-EXEC.
GOBACK.

Appendix E. Sample programs (COBOL) 405

Program notes 12. When the RECEIVE command executes control will go
to one of the HANDLE AID exits (see note 3) if CLEAR,

1. The error exits are set up. PF1 or PF2 is pressed. The program explicitly tests for
2. This command maps in the account number from the F or B if no exit is taken. Any other terminal response

operator instruction screen. is ignored.

3. The exits for CLEAR, PF1 and PF2 are set up. 13. If the end of file is reached, on a READNEXT, any

4. If the format of the account number is valid the
records read to that point are displayed, together with

number is used to set up the program's browse
a highlighted message 'HI-END OF FILE'.

pointers. If no account number is entered browsing 14. If the start of file is reached on a READPREV
begins at the start of the file. (backward browse) then the ENDFILE condition occurs

5. The STARTBR command establishes the browse
and TOOLOW gets control. Any records read up to

starting point.
that point are displayed together with a highlighted
message 'LO-END OF FILE'.

6. Entering the maximum value (999999) for the account
15. If the NOTFND condition occurs at the start browse the

number begins a backward browse from the end of
message 'END OF FILE - PLEASE RESTART' is moved

file.
to MESSAGES for display on the operator instruction

7. The forward browse end of file exit is set up. screen.

8. The READNEXT reads the first record into the file area. 16. In some error situations a dump is taken and the

9. The screen is built with 4 records. message 'TRANSACTION TERMINATED' is moved to
MESSAGES for display on the operator instruction

10. The screen is erased and the page is displayed at the screen.
terminal.

17. This code displays the operator instruction menu with
11. The backward browse is similar to the forward browse. a message which has been stored in MESSAGES.

Note the need for an extra READPREV when changing
18. The program terminates by returning to CICS. from forward to backward browsing.

406 CICS/MVS 2.1.2 Application Programmer's Reference

Order entry sample program (COBOL)

Description

The order entry sample application program provides a
data entry facility for customer orders for parts from a
warehouse. Orders are recorded on a transient data
queue which is defined so as to start the order entry queue
print transaction automatically when a fixed number of
orders have been accumulated. The queue print
transaction sends the orders to a printer terminal at the
warehouse.

To begin order entry, type OREN onto a blank screen and
press ENTER. The order entry program displays the map
OFH$CGK on the screen requesting the operator to enter
order details, that is, customer number, part number, and
the quantity of that part required. The customer number
must be valid, that is, it must exist on F/LEA. The order

details are mapped in and checked, an invalid order is
redisplayed for correction. When valid an order is written
to the transient data queue L860 and the order entry
screen is redisplayed ready for the next order to be
entered. If CLEAR is pressed the order entry program
terminates.

L860, the name of the transient data queue, is also the
name of the terminal where the order entry queue print
transaction is to be triggered when the number of items on
the queue reaches 30. A definition of the transient data
queue is included in the sample destination control table
listed in the CICSIMVS Installation Guide. The TRANS/O
specified in the OCT entry for L860 must be changed from
AORQ to OREQ for the COBOL program to be triggered.

The trigger level may be changed using CEMT, as follows:

CEMT SET QUEUE(L860) TRIGGER(n)

where n is the destination trigger level (any integer from 0
through 32767).

Appendix E. Sample programs (COBOl) 407

Source listing for DFH$CREN

* DFH$CREN - CICS/VS SAMPLE FILEA ORDER ENTRY - COBOL *

*

*

IDENTIFICATION DIVISION.
PROGRAM-ID. FILECREN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 ERROR-FLAG PIC 9.
77 PRESMSG PICTURE X(20) VALUE 'PROCESSING COMPLETED'.

COPY DFH$CGK.
01 FILEA. COPY DFH$CFIL.
01 L860. COPY DFH$CL86.

COPY DFHBMSCA.

PROCEDURE DIVISION.

* HANDLE CONDITIONS
1 EXEC CICS HANDLE AID CLEAR(ENDA) END-EXEC.
2 EXEC CICS HANDLE CONDITION MAPFAIL(MAPFAIL)

*
*

MOVE LOW-VALUES TO ORDERO.
*

NOTFND(NOTFOUND)
ERROR(ERRORS) END-EXEC.

CLEAR MAP

3 EXEC CICS SEND MAP('ORDER') MAPSET('DFH$CGK')
ERASE END-EXEC.

* PROCESS INPUT *

RECEIVM.
4 EXEC CICS RECEIVE MAP('ORDER') MAPSET('DFH$CGK') END-EXEC.

*
MOVE 0 TO ERROR-FLAG.
MOVE DFHBMFSE TO CUSTNOA, PARTNOA, QUANTA.

* CHECK DATA *

*

5 IF CUSTNOI NOT NUMERIC THEN
MOVE DFHUNINT TO CUSTNOA MOVE 1 TO ERROR-FLAG.

*
IF PARTNOI NOT NUMERIC THEN

MOVE DFHUNINT TO PARTNOA MOVE 1 TO ERROR-FLAG.
*

IF QUANTI NOT NUMERIC THEN
MOVE DFHUNINT TO QUANTA MOVE 1 TO ERROR-FLAG.

*
* DATA ERROR-REENTER

IF ERROR-FLAG = 1 THEN
6 MOVE DFHBMASB TO MSG2A

EXEC CICS SEND MAP('ORDER') MAPSET('DFH$CGK') END-EXEC
GO TO RECEIVM.

* READ CUST RECORD*

*

408 CICS/MVS 2.1.2 Application Programmer's Reference

Source nstingfurDFH$CREN (continued) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

7 EXEC CICS READ DATASET('FILEA') INTO(FILEA) RIDFLD(CUSTNOI)
ENu-EXEC.

MOVE CUSTNOI TO CUSTNO.
8 MOVE PARTNOI TO PARTNO.

MOVE QUANTI TO QUANTITY.
MOVE EIBTRMID TO TERMID.

* WRITE VALID ORDER*

*

9 EXEC CICS WRITEQ TO QUEUE('L860') FROM(L860) LENGTH(22)
END-EXEC.

Ie EXEC CICS SEND MAP('ORDER') MAPSET('DFH$CGK')
MAPONLY ERASEAUP END-EXEC.

GO TO RECEIVM.
*

* PROCESS ERRORS *

11 NOT FOUND .

*

MOVE DFHBMASB TO MSGIA.
EXEC CICS SEND MAP('ORDER') MAPSET('DFH$CGK') END-EXEC.
GO TO RECEIVM.

12 MAPFAIL.
MOVE LOW-VALUES TO ORDERO.
MOVE DFHBMASB TO MSG2A.
EXEC CICS SEND MAP('ORDER') MAPSET('DFH$CGK') END-EXEC.
GO TO RECEIVM.

* EXIT FROM PROGRAM*

*

13 ERRORS.
MOVE 'TRANSACTION TERMINATED' TO MSG20.
MOVE DFHBMASB TO MSG2A.
EXEC CICS SEND MAP('ORDER') MAPSET('DFH$CGK') END-EXEC.
EXEC CICS DUMP DUMPCODE('ERRS') END-EXEC.

*
14 ENDA.

EXEC CICS SEND TEXT FROM(PRESMSG) LENGTH(28)
EXEC CICS SEND CONTROL FREEKB END-EXEC.
EXEC CICS RETURN END-EXEC.
GOBACK.

ERASE END-EXEC.

Program notes
1. The CLEAR key exit is set up.

2. The error exits are set up.

3. The screen is erased and the order entry map is
displayed at the terminal.

5. The order details are checked, invalid orders are
redisplayed for correction. Error fields are highlighted
and have MDT set on. The user should add further
editing steps necessary to ensure only valid orders
are accepted.

4. This RECEIVE MAP causes a read from the terminal
and maps in the customer number, part number and
quantity. The program remains in virtual storage until
the terminal response is received. Compare this
technique with that used in the pseudoconversational
inquiry/update sample program. If no data is received
CICS branches to the MAPFAIL exit (note 2).

6. The error message 'DATA ERROR - REENTER' is a
constant in the map load module and is sent to the
terminal, with any other constant information, unless
DATAONLY is specified on the SEND MAP. The
message is normally dark (non-display). This
instruction overrides the dark attribute and the
message appears in high intensity when the SEND
MAP is executed.

Appendix E. Sample programs (COBOL) 409

7. The file control READ command attempts to read the
customer record from FILEA. If no record exists for
the customer CICS branches to the NOTFND exit (note
2).

8. The order details are moved from the input map to the
queue area.

9. The WRITEO TO command writes the order record to a
sequential file, a transient data queue.

10. The order entry map is redisplayed ready for the next
order. Only the map load module is used to build the
screen display, MAPONLY causes the data in the map
dsect area to be ignored. ERASEAUP erases all the
unprotected data on the screen, that is, the customer
number, part number and quantity.

11. If there is no record for the customer on FILEA, CICS
raises the NOTFND and branches here. The attribute

410 CICS/MVS 2.1.2 Application Programmer's Reference

for the customer number field is set to high intensity
with MDT on and an error message 'NUMBER NOT
FOUND - REENTER' is set to display in high intensity
(see note 6 on page 409). The order is redisplayed for
correction.

12. If no fields are entered, the MAPFAIL condition occurs.
The message 'DATA ERROR - REENTER' is displayed
in high intensity (see note 6 on page 409).

13. Ifan error occurs a dump is taken, and the message
'TRANSACTION TERMINATED'is displayed in high
intensity in the data error message area. The
program terminates leaving the order entry screen
displayed.

14. When the CLEAR key is pressed the program
terminates. The message 'PROCESSING COMPLETED'
is displayed on a blank screen, the keyboard is freed
and control is returned to CICS.

Order entry queue print sample program
(COBOL)

Description

The order entry queue print sample program sends
customer orders to a printer terminal at the warehouse.
The order entry sample program, described earlier,
records customer orders on a transient data queue which
is read by this program.

The queue print transaction can be invoked in one of three
ways:

• You can type the transaction identifier OREQ onto a
clear screen. The program finds that the terminal
identifier is not L860 and issues a START command to
begin printing in one hour. The message
'PROCESSING COMPLETED' is displayed and your
terminal is available for other work.

• One hour after you enter OREQ, the queue print
transaction is automatically invoked by CICS interval

control. In this case the terminal identifier, specified
by the START, is L860 so the program prints the
orders at the warehouse.

• The queue print transaction is 'triggered' when the
number of items (customer orders) on the transient
data queue reaches 30. The trigger level is specified
in the destination control table (OCT) entry for L860.
In this case the terminal identifier is the same as the
queue name (L860) and the program will print the
orders. The TRANSID specified in the OCT entry for
L860 must be changed from AORQ to OREQ for the
COBOL program to be triggered. The trigger level
may be changed using CEMT, as follows:

CEMT SET QUEUE(L860) TRIGGER(n)

When invoked with a terminal identifier of L860 the
program reads each order, checks the customer's credit
and either prints the order at the warehouse or writes the
rejected order to LOGA, the same transient data queue as
used by the inquiry/update sample program. When all the
orders have been processed, or if there were no orders to
process, the message 'ORDER QUEUE IS EMPTY' is printed
at the warehouse.

Appendix E. Sample programs (COBOL) 411

* DFH$CCOM - CICS/VSSAMPLE FILEA ORDER ENTRY QUEUE PRINT *

IDENTIFICATION DIVISION.
PROGRAM-ID. FILECCOM.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 Q-LENGTH PIC 9(4) COMP VALUE 22.
77 PRESMS,G PIC, X(29) VALUE I PROCESSING COMPLETED I.
91 LOGORD.

92 LOGTIME.
93, LDAY PIC S9(7) COMP-3.
93 LTIME PIC S9(7) COMP-3.

92 LITEM PIC X(22).
92 COMMENT PIC X(II) VALUE 'ORDER ENTRY'.
92 FILLER PIC X(51) VALUE SPACES.

COPY DFH$CGL.
91 FILEA. COPY DFH$CFIL.
91 L860. COPY DFH$CL86.

COpy DFHBMSCA.
PROCEDURE DIVISION.

1 EXEC CICS HANDLE CONDITION ERROR(ERRORS)
QZERO(ENDA) END-EXEC.

2 IF EIBTRMID NOT = 'LB60 ' THEN
GO TO ASK-TIME.

MOVE LOW-VALUES TO PRINTO.
Q-READ.

3 EXEC CICS READQ TO INTO(La60) LENGTH(Q-LENGTH)
QUEUE('L860 ') END-EXEC.

MAP-BUILD.
4 EXEC CICS READ DATASET('FILEA') INTO(FILEA) RIDFLD(CUSTNO)

5 IF AMOUNT > 1$9199.90 1 THEN
MOVE ADDRX TO ADDRO
MOVE NAME TO NAMO

6 MOVE PARTNO TO PARTO
MOVE CUSTNO TO NUMBO
MOVE ITEM TO LITEM
MOVE QUANTITY TO QUANTa

END-EXEC.

7 EXEC CICS SEND MAP('PRINT ') MAPSET('DFH$CGL')
ERASE PRINT La9 END-EXEC

ELSE
MOVE EIBDATE TO LDAY

B MOVE EIBTIME TO LTIME
MOVE ITEM TO LITEM

9 EXEC CICS WRITEQ TO QUEUE('LOGA')
FROM(LOGORD) LENGTH(92) END-EXEC.

GO TO Q-READ.
ERRORS.

10 EXEC CICS DUMP DUMPCODE('ERRS') END-EXEC.
GO TO FIN.

ENDA.
MOVE LOW-VALUES TO PRINTO

11 MOVE 'ORDER QUEUE IS EMPTY' TO TITLEO

*

EXEC CIes SEND MAP('PRINT ') MAPSET('DFH$CGL ')
DATAONLY ERASE PRINT Le9 END-EXEC.

ASK-TIME.
IF THE COMMENT DELIMITER IS

412 CICS/MVS 2.1.2 Application Programmer's Reference

)
Source l~tlngfurDFH$CCOM (contlnued) ~~~~~~~~~~~~~~~~~~~~~~~~~~~

* REMOVED FROM THE NEXT TWO COBOL
* STATEMENTS, THE APPLICATION WILL
* BE RESTARTED IN AN HOUR IF THE
* TIME OF DAY RIGHT NOW IS NOT LATER
* THAN 1400 HRS.
* IF THE CODE IS LEFT UNCHANGED THE
* APPLICATION WILL BE RESTARTED
* UNCONDITIONALLY AFTER AN HOUR HAS
* ELAPSED
* EXEC CICS ASKTIME END-EXEC.
* IF EIBTIME NOT> 140eee THEN

12 EXEC CICS START TRANSID('OREQ') INTERVAL(leeee)
TERMID('L860 ') END-EXEC.

FIN.
13 EXEC CICS SEND TEXT FROM(PRESMSG) LENGTH(2e) ERASE END-EXEC

EXEC CICS SEND CONTROL FREEKB END-EXEC.
EXEC CICS RETURN END-EXEC.
GOBACK.

Program notes 9. The WRITEQ TO command writes details of the
rejected order to LOGA, a transient data queue.

1. The error exits are set up.

2. The terminal-id is tested to see whether this
transaction was started from a terminal or at the
printer.

3. A queue item (customer order) is read into the
program.

4. The file control READ command reads the record into
a record area so that the amount may be checked.

5. The amount (bank balance) is tested. If it is over $100
then the order is acceptable, otherwise the order is
rejected. This test is only a suggestion; a suitable
form of editing should be inserted here to ensure valid
orders are sent to the warehouse.

6. The order details are moved to the map area for
DFH$CGL.

7. The order map is sent to the printer terminal at the
warehouse.

8. The current date and time, and details of the rejected
order, are moved to a log record area.

10.

11.

12.

13.

If the ERROR condition occurs on any CICS command
a dump is taken and the program terminates.

When the queue is empty, the message 'ORDER
QUEUE IS EMPTY' is moved to the map area which is
then sent to the printer terminal at the warehouse.

The START command starts the OREQ transaction
(this program), after a one hour delay, with a terminal
identifier of L860. (The time interval coulet be
changed, for demonstration purposes, by changing the
INTERVAL value). If the comment delimiters are
removed from the two preceding statements, EIBTIME
is refreshed and, if the time is before 1400 hours, the
transaction is started in one hour. If the comment
delimiters are not removed, the transaction is started
unconditionally in one hour.

The message 'PROCESSING COMPLETED' is sent to
the terminal associated with this invocation of OREQ,
either the printer at the warehouse or the screen on
which OREQ was entered. The program terminates by
returning control to CICS.

Appendix E. Sample ,programs (COBOL) 413

Low balance report sample program
(COBOL)

Description

The low balance report sample program produces a report
that lists all entries in the data set FILEA for which the
amount is less than or equal to $50.00.

The program illustrates page building techniques and the
use of the terminal paging facilities of BMS.

The transaction is invoked by entering REPT onto a clear
screen. The program does a sequential scan through the
file selecting each entry that obeys the search criterion.

414 CICS/MVS 2.1~2 Application Programmer's Reference

The pages are built from four maps which comprise map
set DFH$CGD, using'·the paging option so that the data is
not displayed immediately but instead is stored for later
retrieval. The HEADING map is inserted at the head of
each page. The detail map (DFH$CGD) is written
repeatedly until the overflow condition occurs. The
FOOTING map is then written at the foot of the page and
the HEADING map written at the top of the next page. The
command to write the detail map that caused overflow is
then repeated. When all the data has been written the
FINAL map is written at the bottom of the last page and
the transaction terminated.

The terminal operator then enters paging commands to
display the data, clearing the screen before entering each
paging command.

* DFH$CREP - CICS/VS SAMPLE FILEA lOW BALANCE INQUIRY *

IDENTIFICATION DIVISION.
PROGRAM-ID. FILECREP.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 LOWLIM PIC X(8) VALUE '$0050.00'.
77 KEYNUM PIC 9(6) VALUE 0.

* THE INPUT AREA FOR KEYED DATA AND THE
* MAXIMUM LENGTH OF KEYED DATA FOLLOW.
* IN PRACTICE THE OPERATOR WILL ONLY
* PRESS ENTER.

77 TERMDATA PIC X(I).
77 TERMLENG PIC S9(4) COMPo
77 PAGEN PIC 9(3) VALUE 1.
77 OPINSTR PIC X(52) VALUE 'PRESS THE ENTER KEY AND FOLLOW

COPY DFH$CGD.
01 FILEA. COPY DFH$CFIL.
PROCEDURE DIVISION.

'WITH PAGING COMMANDS. '.

1 EXECUTE CICS HANDLE CONDITION ERROR(ERRORS)
OVERFLOW(OFLOW) ENDFILE(ENDFILE)
LENGERR(ENDTASK) END-EXEC

MOVE LOW-VALUE TO PAGENA
2 MOVE PAGEN TO PAGENO
3 EXEC CICS SEND MAP('HEADING') MAPSET('DFH$CGD') ACCUM

PAGING ERASE END-EXEC
4 EXEC CICS STARTBR DATASET('FILEA') RIDFLD(KEYNUM) END-EXEC.

REPEAT.
5 EXEC CICS READNEXT INTO(FILEA) RIDFLD(KEYNUM)

DATASET('FILEA') END-EXEC
MOVE AMOUNT TO AMOUNTO

6 IF AMOUNTO GREATER THAN LOWLIM GO TO REPEAT.
MOVE LOW-VALUE TO LINEO
MOVE AMOUNT TO AMOUNTO

7 MOVE NUMB TO NUMBERO
MOVE NAt~E TO NAMEO

8 EXEC CICS SEND MAP('LINE') MAPSET('DFH$CGD')
ACCUM PAGING END-EXEC

GO TO REPEAT.
ENDFILE.

9 EXEC CICS SEND MAP('FINAL') MAPSET('DFH$CGD')
MAPONLY ACCUM PAGING END-EXEC

10 EXEC CICS SEND PAGE END-EXEC
11 EXEC CICS SEND TEXT FROM(OPINSTR) LENGTH(52) ERASE END-EXEC
12 EXEC CICS ENDBR DATASET('FILEA') END-EXEC

* A RECEIVE COMMAND IS ISSUED TO GIVE THE
* TERMINAL OPERATOR A CHANCE TO READ THE
* PROMPTING MESSAGE.
*
*
*
*
*
*
*
*

THE TRANSACTION WILL TERMINATE WHEN THE
OPERATOR PRESSES THE ENTER KEY.

PAGING COMMANDS CAN THEN BE ISSUED

NO HARM IS DONE IF THE OPERATOR TYPES IN
DATA BEFORE PRESSING THE ENTER KEY.

Appendix E. Sample programs (COBOL) 415

Source listing for DFH$CREP(continued) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

13 EXEC CICS RECEIVE INTO(TERMDATA) LENGTH(TERMLENG) END-EXEC.
ENDTASK.

14 EXEC CICS RETURN END-EXEC.
GOBACK.

ERRORS.
15 EXEC CICS HANDLE CONDITION ERROR END-EXEC

EXEC CICS PURGE MESSAGE END-EXEC
EXEC CICS ABEND ABCODE('ERRS') END-EXEC.

OFLOW.
16 EXEC CICS SEND MAP('FOOTING ') MAPSET('DFH$CGD ')

MAPONLY ACCUM PAGING END-EXEC
ADD 1 TO PAGEN
MOVE PAGEN TO PAGENO

17 EXEC CICS SEND MAP('HEADING ') MAPSET('DFH$CGD')
ACCUM PAGING ERASE END-EXEC.

18 EXEC CICS SEND MAP('LINE') MAPSET('DFH$CGD')
ACCUM PAGING END-EXEC

GO TO REPEAT.

Program notes 11.

1. The program exits are set up.

2. A page number of 1 is moved to the heading map. 12.
3. This BMS command sets up the heading in the page 13.

build operation. BMS builds the pages in temporary
storage.

4. The STARTBR command sets up the file browse to
begin at the first record with a key equal to or greater 14.
than the RIDFLD, in this case the first record on file.

5. This command reads the next customer record from 15.
FILEA.

6. The search criterion for creating the report is that the
customer has a bank balance which is $50 or less.

7. Fields are moved from the selected customer record
to the map area for the detail line. 16.

8. The cllstomer detail map is set up for subsequent
paging.

9. When the ENDFILE condition is raised, the last map is
sent to BMS.

17.
10. The SEND PAGE command makes all the pages of the

report available for paging, at the terminal, when the
18. current transaction terminates.

416 CICS/MVS 2.1.2 Application Programmer's Reference

A message is sent to the terminal. This message will
be displayed before the pages of the low balance
report.

The file browse operation is terminated.

The RECEIVE MAP command reads from the terminal
and allows the terminal operator to read the
prompting message before the first page of the report
is displayed.

The program ends, the first page of the report will now
be displayed.

If the ERROR condition occurs on a CICS command
this routine gains control. Handling of the ERROR
condition is suppressed, any data sent to BMS is
purged and the program terminates abnormally with a
transaction dump.

If the OVERFLOW condition occurs, when a detail line
is sent to BMS, CICS branches here. This routine
completes the current page and starts the next one.
This BMS command sets up the footing for the current
page.

This BMS command sets up the heading for the next
page.

This BMS command resends the detail line which
caused the OVERFLOW condition.

Maps and screen layouts for COBOL sample
programs

The preceding sample programs assume that the following
map sets have been cataloged with names the same as
the map names.

The names of the source maps are all of the form
DFHSCMx, whereas output generated by the assembly of
maps is in the form DFH$CGx. Use different names for the
map source and the generated dsect only if you wish to
store both in the same source library.

DFHSCGA map definition -----------------------------------,

TITLE 'FILEA - MAP FOR OPERATOR INSTRUCTIONS - COBOL'
DFH$CGA DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET), *

LANG=COBOL,TIOAPFX=YES,EXTATT=MAPONLY,COLOR=BLUE
MENU DFHMDI SIZE=(12,40)

DFHMDF POS=(1,10),LENGTH=21,INITIAL='OPERATOR INSTRUCTIONS', *
HILIGHT=UNDERLINE

DFHMDF POS=(3,1),LENGTH=29,INITIAL='OPERATOR INSTR - ENTER MEN*
U'

DFHMDF POS=(4,1),LENGTH=3B,INITIAL='FILE INQUIRY - ENTER INQ*
Y AND NUMBER'

DFHMDF POS=(5,1),LENGTH=38,INITIAL='FILE BROWSE - ENTER BRW*
S AND NUMBER'

DFHMDF POS=(6,1),LENGTH=3B,INITIAL='FILE ADD - ENTER ADD*
S AND NUMBER'

DFHMDF POS=(7,1),LENGTH=3B,INITIAL='FILE UPDATE - ENTER UPD*
T AND NUMBER'

MSG DFHMDF POS=(11,1),LENGTH=39,INITIAL='PRESS CLEAR TO EXIT'
DFHMDF POS=(12,1),LENGTH=18,INITIAL='ENTER TRANSACTION:'
DFHMDF POS=(12,20),LENGTH=4,ATTRB=IC,COLOR=GREEN, *

HI LIGHT=REVERSE
DFHMDF POS=(12,25),LENGTH=6,INITIAL='NUMBER'

KEY DFHMDF POS=(12,32),LENGTH=6,ATTRB=NUM,COLOR=GREEN, *
HI LIGHT=REVERSE

DFHMDF POS=(12,39),LENGTH=1
DFHMSD TYPE=FINAL
END

Appendix E. Sample programs (COBOL) 417

The symbolic storage definition produced as a result of the above statements would be as follows:

DSECT generated by DFH$CGA ------------------------------,

01 MENUI.
02 FILLER PIC X(12).
02 MSGL COMP PIC S9(4).
02 MSGF PICTURE X.
02 FILLER REDEFINES MSGF.

03 MSGA PICTURE X.
02 MSGI PIC X(39).
02 KEYL COMP PIC S9(4).
02 KEYF PICTURE X.
02 FILLER REDEFINES KEYF.

03 KEYA PICTURE X.
02 KEYI PIC X(6).

01 MENUO REDEFINES MENur.
02 FILLER PIC X(12).
02 FILLER PICTURE X(3).
02 MSGO PIC X(39).
02 FILLER PICTURE X(3).
02 KEYO PIC X(6).

DFH$CGA screen layout ----------,

-f-OPERATOR INSTRUCTIONS

+OPERATOR INSTR ENTER MENU
+FILE INQUIRY ENTER INQY AND NUMBER
+FILE BROWSE ENTER BRWS AND NUMBER
+FILE ADD ENTER ADDS AND NUMBER
+FILE UPDATE ENTER UPDT AND NUMBER

+PRESS CLEAR TO EXIT
+ENTER TRANSACTION:+XXXX+NUMBER+XXXXXX+

418 CICS/MVS 2.1.2 Application Programmer's Reference

DFH$CGB map definition ----------------------------------,

TITLE 'FILEA - MAP FOR FILE INQUIRY/UPDATE - COBOL '
DFH$CGB OFHMSO TYPE=&SYSPARM,MOOE=INOUT,CTRL=(FREEKB,FRSET), *

LANG=COBOL,TIOAPFX=YES,EXTATT=MAPONLY
DETAIL DFHMOI SIZE=(12,40)
TITLE OFHMDF POS=(1,15),LENGTH=12

OFHMOF POS=(3,1),LENGTH=8,INITIAL='NUMBER: ' ,COLOR=BLUE
NUMB OFHMOF POS=(3,18),LENGTH=6

OFHMOF POS=(3,17),LENGTH=1
OFHMOF POS=(4,1),LENGTH=B,INITIAL='NAME: ',COLOR=BLUE

NAME DFHMDF POS=(4,10),LENGTH=20,ATTRB=(UNPROT,IC)
DFHMOF POS=(4,31),LENGTH=1
DFHMDF POS=(5,1),LENGTH=8,INITIAL='ADDRESS: ',COLOR=BLUE

AD OR OFHMDF POS=(5,10),LENGTH=20,ATTRB=UNPROT
OFHMOF POS=(5,31),LENGTH=1
OFHMDF POS=(6,1),LENGTH=B,INITIAL='PHONE: ',COLOR=BLUE

PHONE OFHMOF POS=(6,10),LENGTH=8,ATTRB=UNPROT
OFHMOF POS=(6,19),LENGTH=1
DFHMDF POS=(7,1),LENGTH=8,INITIAL='DATE: ',COLOR=BLUE

DATE OFHMDF POS=(7,10),LENGTH=B,ATTRB=UNPROT
OFHMDF POS=(7,19),LENGTH=1
OFHMOF POS=(B,l),LENGTH=B,INITIAL='AMOUNT: ',COLOR=BLUE

AMOUNT OFHMOF POS=(8,10),LENGTH=8,ATTRB=NUM
OFHMDF POS=(B,19),LENGTH=1
OFHMDF POS=(9,1),LENGTH=B,INITIAL='COMMENT: ' ,COLOR=BLUE

COMMENT DFHMOF POS=(9,10),LENGTH=9,ATTRB=UNPROT
DFHMDF POS=(9,20),LENGTH=1

MSGI DFHMDF POS=(11,1),LENGTH=39
MSG3 OFHMDF POS=(12,1),LENGTH=39

DFHMSO TYPE=FINAL
END

Appendix E. Sample programs (COBOL) 419

The symbolic storage definition produced as a result of the above statements would be as follows:

DSECT generated by DFHSCGB --------------------------------,

91 DETAIL!.
82 FILLER PIC X(12).
82 TITLEL COMP PIC S9(4).
92 TITLEF PICTURE X.
92 FILLER REDEFINES TITLEF.

83 TITLEA PICTURE X.
82 TITLEI PIC X(12).
92 NUMBL COMP PIC S9(4).
92 NUMBF PICTURE X.
82 FILLER REDEFINES NUMBF.

83 NUMBA PICTURE X.
82 NUMBI PIC X(6).
92 NAMEL COMP PIC S9(4).
82 NAMEF PICTURE X.
82 FILLER REDEFINES NAMEF.

83 NAMEA PICTURE X.
82 NAMEI PIC X(29).
02 ADDRL COMP PIC S9(4).
02 ADDRF PICTURE X.
82 FILLER REDEFINES ADDRF.

93 ADDRA PICTURE X.
82 ADDRI PIC X(28).
82 PHONEL COMP PIC S9(4).
82 PHONEF PICTURE X.
82 FILLER REDEFINES PHONEF.

83 PHONEA PICTURE X.
82 PHONE I PIC X(8).
82 DATEL COMP PIC S9(4).
82 DATEF PICTURE X.
92 FILLER REDEFINES DATEF.

83 DATEA PICTURE X.
82 DATEI PIC X(8).
82 AMOUNTL COMP PIC S9(4).
82 AMOUNTF PICTURE X.
82 FILLER REDEFINES AMOUNTF.

83 AMOUNTA PICTURE X.
82 AMOUNTI PIC X(8).
82 COMMENTL COMP PIC S9(4).
82 COMMENTF PICTURE X.
82 FILLER REDEFINES COMMENTF.

83 COMMENTA PICTURE X.
02 COMMENTI PIC X(9).
82 MSG1L COMP PIC S9(4).
82 MSG1F PICTURE X.
92 FILLER REDEFINES MSG1F.

83 MSG1A PICTURE X.
02 MSGII PIC X(39).
82 MSG3L COMP PIC S9(4).
02 MSG3F PICTURE X.
82 FILLER REDEFINES MSG3F.

83 MSG3A PICTURE X.
02 MSG3I PIC X(39).

81 DETAILO REDEFINES DETAILI.
02 FILLER PIC X(12).
82 FILLER PICTURE X(3).
82 TITLED PIC X(12).
82 FILLER PICTURE X(3).

420 CICS/MVS 2.1.2 Application Programmer's Reference

DSECTgeneratedbyDFH$CGB(continued) ~~~~~~~~~~~~~~~~~~~~~~~~~

02 NUMBO PIC X(6).
02 FILLER PICTURE X(3).
02 NAMEO PIC X(20).
02 FILLER PICTURE X(3).
02 AOORO PIC X(20).
02 FILLER PICTURE X(3).
02 PHONEO PIC X(8).
02 FILLER PICTURE X(3).
02 OATEO PIC X(8).
02 FILLER PICTURE X(3).
02 AMOUNTO PIC X(8).
02 FILLER PICTURE X(3).
02 COMMENTO PIC X(9).
02 FILLER PICTURE X(3).
02 MSGIO PIC X(39).
02 FILLER PICTURE X(3).
02 MSG30 PIC X(39).

DFH$CGB screen layout -~---------,

+XXXXXXXXXXXX

+NUMBER: +XXXXXX+
+NAME: +XXXXXXXXXXXXXXXXXXXX+
+AOORESS:+XXXXXXXXXXXXXXXXXXXX+
+PHONE: +XXXXXXXX+
+OATE: +XXXXXXXX+
+AMOUNT: +XXXXXXXX+
+COMMENT:+XXXXXXXXX+

+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Appendix E. Sample programs (COBOL) 421

DFH$CGC map definition --------------~~----------------,

TITLE 'FILEA - MAP FOR FILE BROWSE - COBOL'
DFH$CGC DFHMSD TYPE=&SYSPARM.MODE=INOUT.CTRL=(FREEKB,FRSET). *

LANG=COBOL.TIOAPFX=YES.EXTATT=MAPONLY
BROWSE DFHMDI SIZE=(12,49)
DIR DFHMDF POS=(l,l),LENGTH=l.ATTRB=IC

DFHMDF POS=(1,3).LENGTH=1
DFHMDF POS=(1,15),LENGTH=11,INITIAL='FILE BROWSE', *

COLOR=BLUE.HILIGHT=UNDERLINE
DFHMOF POS=(3,1),LENGTH=6.INITIAL='NUMBER',COLOR=BLUE
DFHMDF POS=(3,17),LENGTH=4,INITIAL='NAME',COLOR=BLUE
DFHMDF POS=(3,32),LENGTH=6,INITIAL='AMOUNT',COLOR=BLUE

NUMBERI DFHMDF POS=(4,1),LENGTH=6
NAME 1 DFHMDF POS=(4,9),lENGTH=29
AMOUNT 1 DFHMDF POS=(4,39),LENGTH=8
NUMBER2 DFHMDF POS=(5,1),LENGTH=6
NAME2 DFHMDF POS=(5,9),LENGTH=20
AMOUNT2 DFHMDF POS=(5,39),LENGTH=8
NUMBER3 DFHMDF POS=(6,1),LENGTH=6
NAME3 DFHMDF POS=(6,9),LENGTH=20
AMOUNT3 DFHMDF POS=(6,30),LENGTH=8
NUMBER4 OFHMDF POS=(7,1),LENGTH=6
NAME4 DFHMDF POS=(7,9),LENGTH=20
AMOUNT4 DFHMDF POS=(7,30),LENGTH=8
MSG9 DFHMDF POS=(19,1),LENGTH=39,COLOR=BLUE, *

INITIAL='PRESS CLEAR TO END BROWSE OPERATION'
MSGI DFHMDF POS=(11,1),LENGTH=39,COLOR=BLUE, *

INITIAL='PRESS PFI OR TYPE F TO PAGE FORWARD'
MSG2 DFHMDF POS=(12,1),LENGTH=39,COLOR=BLUE; *

INITIAL='PRESS PF2 OR TYPE B TO PAGE BACKWARD'
DFHMSD TYPE=FINAL
END

422 CICS/MVS 2.1.2 Application Programmer's Reference

The symbolic storage definition produced as a result of the above statements would be as follows:

DSECTgener~edbyDFH$CGC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

81 BROWSE!.
82 FILLER PIC X(12).
82 DIRL COMP PIC 59(4).
82 DIRF PICTURE x.
02 FILLER REDEFINES DIRF.

83 DIRA PICTURE X.
82 DIRI PIC X(l).
82 NUMBER1L COMP PIC 59(4).
82 NUMBER1F PICTURE X.
02 FILLER REDEFINES NUMBER1F.

83 NUMBER1A PICTURE X.
02 NUMBER1I PIC X(6).
82 NAME1L COMP PIC 59(4).
82 NAME1F PICTURE X.
82 FILLER REDEFINES NAME1F.

83 NAME1A PICTURE X.
82 NAME1I PIC X(20).
82 AMOUNT1L COMP PIC 59(4).
82 AMOUNT1F PICTURE X.
02 FILLER REDEFINES AMOUNTlF.

03 AMOUNTlA PICTURE X.
82 AMOUNTlI PIC X(8).
82 NUMBER2L COMP PIC S9(4).
82 NUMBER2F PICTURE X.
02 FILLER REDEFINES NUMBER2F.

83 NUMBER2A PICTURE X.
82 NUMBER2I PIC X(6).
02 NAME2L COMP PIC 59(4).
82 NAME2F PICTURE X.
82 FILLER REDEFINES NAME2F.

83 NAME2A PICTURE X.
02 NAME2I PIC X(20).
02 AMOUNT2L COMP PIC S9(4).
02 AMOUNT2F PICTURE X.
02 FILLER REDEFINES AMOUNT2F.

03 AMOUNT2A PICTURE X.
82 AMOUNT2I PIC X(8).
82 NUMBER3L CaMP PIC S9(4).
02 NUMBER3F PICTURE X.
02 FILLER REDEFINES NUMBER3F.

03 NUMBER3A PICTURE X.
02 NUMBER3I PIC X(6).
02 NAME3L CaMP PIC S9(4).
82 NAME3F PICTURE X.
82 FILLER REDEFINES NAME3F.

03 NAME3A PICTURE X.
02 NAME3I PIC X(20).
82 AMOUNT3L COMP PIC 59(4).
82 AMOUNT3F PICTURE X.
82 FILLER REDEFINES AMOUNT3F.

03 AMOUNT3A PICTURE X.
02 AMOUNT3I PIC X(8).
02 NUMBER4L COMP PIC 59(4).
02 NUMBER4F PICTURE X.
02 FILLER REDEFINES NUMBER4F.

03 NUMBER4A PICTURE X.
02 NUMBER4I PIC X(6).

Appendix E. Sample programs (COBOL) 423

DSECTgener~edbyDFH$CGC~ontinue~ ~~~~~~~~~~~~~~~~~~~~~~~

02 NAME4L COMP PIC S9(4).
02 NAME4F PICTURE X.
02 FILLER REDEFINES NAME4F.

83 NAME4A PICTURE X.
82 NAME4I PIC X(28).
02 AMOUNT4L COMP PIC S9(4).
02 AMOUNT4F PICTURE X.
02 FILLER REDEFINES AMOUNT4F.

03 AMOUNT4A PICTURE X.
92 AMOUNT4I PIC XeS).
02 MSG0L COMP PIC S9(4).
82 MSG9F PICTURE X.

01 BROWSEI.
92 FILLER REDEFINES MSG0F.

93 MSG9A PICTURE X.
02 MSG0I PIC X(39).
92 MSG1L COMP PIC S9(4).
92 MSG1F PICTURE X.
82 FILLER REDEFINES MSGIF.

03 MSG1A PICTURE X.
92 MSGII PIC X(39).
02 MSG2L COMP PIC S9(4).
02 MSG2F PICTURE X.
02 FILLER REDEFINES MSG2F.

03 MSG2A PICTURE X.
92 MSG2I PIC X(39).

01 BROWSEO REDEFINES BROWSEI.
92 FILLER PIC X(12).
02 FILLER PICTURE X(3).
02 DIRO PIC X(I).
92 FILLER PICTURE X(3).
92 NUMBERIO PIC X(6).
92 FILLER PICTURE X(3).
92 NAMEIO PIC X(20).
02 FILLER PICTURE X(3).
02 AMOUNTIO PIC XeS).
92 FILLER PICTURE X(3).
02 NUMBER20 PIC X(6).
02 FILLER PICTURE X(3).
02 NAME20 PIC X(20).
02 FILLER PICTURE X(3).
82 AMOUNT20 PIC XeS).
92 FILLER PICTURE X(3).
02 NUMBER30 PIC X(6).
02 FILLER PICTURE X(3).
02 NAME30 PIC X(20).
02 FILLER PICTURE X(3).
02 AMOUNT30 PIC XeS).
02 FILLER PICTURE X(3).
02 NUMBER40 PIC X(6).
02 FILLER PICTURE X(3).
02 NAME40 PIC X(20).
02 FILLER PICTURE X(3).
02 AMOUNT40 PIC XeS).
02 FILLER PICTURE X(3).
82 MSG80 PIC X(39).
82 FILLER PICTURE X(3).
02 MSGIO PIC X(39).
02 FILLER PICTURE X(3).
02 MSG20 PIC X(39).

424 CICS/MVS 2.1.2 Application Programmer's Reference

DFHSCGC screen layout ---------....,

+FILE BROWSE

+NUMBER +NAME +AMOUNT
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX

+PRESS CLEAR TO END BROWSE OPERATION
+PRESS PFI OR TYPE F TO PAGE FORWARD
+PRESS PF2 OR TYPE B TO PAGE BACKWARD

Appendix E. Sample programs (COBOL) 425

DFHSCGD map definition ------------------------------

DFH$CGD

LINE
NUMBER
NAME
AMOUNT
HEADING

PAGEN

FOOTING

FINAL

TITLE 'FILEA - MAPSET FOR LOW BALANCE REPORT - COBOL'
DFHMSDTYPE=&SYSPARM,MODE=OUT,CTRL=(FREEKB,FRSET),

LANG=COBOL,STORAGE=AUTO, EXTATT=MAPONLY, COLOR=BLUE
DFHMDI SIZE=(1,48),COLOR=GREEN
DFHMDF POS=(1,1),LENGTH=6
DFHMDF POS=(1,9),LENGTH=28
DFHMDF POS=(1,38),LENGTH=8
DFHMDI SIZE=(3,48),HEADER=YES
DFHMDF POS=(1,5),LENGTH=18,INITIAL='LOW BALANCE REPORT',

HILIGHT=UNDERLINE
DFHMDF POS=(1,38),LENGTH=4,INITIAL='PAGE'
DFHMDF POS=(1,35),LENGTH=3
DFHMDF POS=(3,1),LENGTH=6,INITIAL='NUMBER'
DFHMDF POS=(3,17),LENGTH=4,INITIAL='NAME'
DFHMDF POS=(3,32),LENGTH=6,INITIAL='AMOUNT'
DFHMDI SIZE=(2,48),TRAILER=YES,JUSTIFY=LAST
DFHMDF POS=(2,1),LENGTH=38,

INITIAL='PRESS CLEAR AND TYPE PIN TO SEE PAGE N'
DFHMDI SIZE=(2,48),TRAILER=YES,JUSTIFY=LAST
DFHMDF POS=(2,18),LENGTH=14,INITIAL='END OF REPORT.'
DFHMSD TYPE=FINAL
END

*

*

*

The symbolic storage definition produced as a result of the above statements would be as follows:

DSECTgenerated byDFH$CGD ------~.---------------------~
81 LINEO.

82 FILLER PIC X(12).
82 FILLER PICTURE X(2).
82 NUMBERA PICTURE X.
82 NUMBERO PIC X(6).
82 FILLER PICTURE X(2).
82 NAME A PICTURE X.
82 NAMEO PIC X(28).
82 FILLER PICTURE X(2).
82 AMOUNTA PICTURE X.
82 AMOUNTO PIC X(8).

01 HEADINGO.
82 FILLER PIC X(12).
02 FILLER PICTURE X(2).
02 PAGENA PICTURE X.
82 PAGENO PIC X(3).

81 FOOTINGO.
02 FILLER PIC X(12).

81 FINALO.
82 FILLER PIC X(12).

426 CICS/MVS 2.1.2 Application Programmer's Reference

DFH$CGD screen layout ----------,

flOW BALANCE REPORT +PAGE+XXX

+NUMBER +NAME +AMOUNT
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXX~XX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX

+PRESS CLEAR AND TYPE PIN TO SEE PAGE N

Appendix E. Sample programs (COBOL) 427

DFHSCGK map definition ----------------------------------,

TITLE 'FILEA - MAP FOR ORDER ENTRY - COBOL'
DFH$CGK DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET), *

TIOAPFX=YES,LANG=COBOL,EXTATT=MAPONLY
ORDER DFHMDI SIZE=(12,40)

DFHMDF POS=(01,10),LENGTH=11,ATTRB=(BRT,ASKIP), *
INITIAL='ORDER ENTRY',COLOR=BLUE,HILIGHT=UNDERLINE

MSGI DFHMDF POS=(03,04),LENGTH=26,ATTRB=(DRK,ASKIP), *
INITIAL='NUMBER NOT FOUND - REENTER', *
COLOR=RED,HILIGHT=BLINK

MSG2 DFHMDF POS=(04,04),LENGTH=22,ATTRB=(DRK,ASKIP), *
INITIAL='DATA ERROR - REENTER', *
COLOR=RED,HILIGHT=BLINK

DFHMDF POS=(0S,04),LENGTH=09,ATTRB=PROT, *
INITIAL='NUMBER :'

CUSTNO DFHMDF POS=(05,14),LENGTH=06,ATTRB=(IC,NUM)
DFHMDF POS=(05,21),LENGTH=01
DFHMDF POS=(06,04),LENGTH=09,ATTRB=PROT,COLOR=BLUE, *

INITIAL='PART NO :'
PARTNO DFHMDF POS=(06,14),LENGTH=06,ATTRB=NUM

DFHMDF POS=(06,21),LENGTH=01
DFHMDF POS=(07,04),LENGTH=09,ATTRB=PROT,COLOR=BLUE, *

INITIAL='QUANTITY: '
QUANT DFHMDF POS=(07,14),LENGTH=06,ATTRB=NUM

DFHMDF POS=(07,21),LENGTH=01
DFHMDF POS=(09,01),LENGTH=38,ATTRB=ASKIP,COLOR=BLUE, *

INITIAL='PRESS ENTER TO CONTINUE,CLEAR TO QUIT'
DFHMSD TYPE=FINAL
END

428 CICS/MVS 2.1.2 Application Programmer's Reference

The symbolic storage definition produced as a result of the above statements would be as follows:

DSECTgenerated by DFH$CGK ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

01 ORDERI.
02 FILLER PIC X(12).
82 MSGIL COMP PIC S9(4).
82 MSGIF PICTURE X.
02 FILLER REDEFINES MSGIF.

03 MSGIA PICTURE X.
82 MSGII PIC X(26).
82 MSG2L COMP PIC S9(4).
82 MSG2F PICTURE X.
02 FILLER REDEFINES MSG2F.

03 MSG2A PICTURE X.
02 MSG2I PIC X(22).
02 CUSTNOL COMP PIC S9(4).
82 CUSTNOF PICTURE X.
02 FILLER REDEFINES CUSTNOF.

83 CUSTNOA PICTURE X.
02 CUSTNOI PIC X(6).
02 PARTNOL COMP PIC S9(4).
02 PARTNOF PICTURE X.
02 FILLER REDEFINES PARTNOF.

03 PARTNOA PICTURE X.
02 PARTNOI PIC X(6).
02 QUANTL COMP PIC S9(4).
02 QUANTF PICTURE X.
02 FILLER REDEFINES QUANTF.

03 QUANTA PICTURE X.
02 QUANTI PIC X(6).

01 ORDERO REDEFINES ORDERI.
02 FILLER PIC X(12).
82 FILLER PICTURE X(3).
02 MSGIO PIC X(26).
82 FILLER PICTURE X(3).
02 MSG20 PIC X(22).
02 FILLER PICTURE X(3).
02 CUSTNOO PIC X(6).
02 FILLER PICTURE X(3).
02 PARTNOO PIC X(6).
82 FILLER PICTURE X(3).
02 QUANTO PIC X(6).

DFH$CGK screen layout ~~~~-------,

+ORDER ENTRY

+NUMBER NOT FOUND REENTER
+DATAERROR REENTER
+NUMBER :+XXXXXX+
+PART NO :+XXXXXX+
+QUANTITY:+XXXXXX+

+PRESS ENTER TO CONTINUE, CLEAR TO QUIT

Appendix E. Sample programs (COBOL) 429

DFHSCGL map definition -------------------------------.,

TITLE 'FILEA - MAP FOR ORDER ENTRY QUEUE PRINT - COBOL '
DFH$CGL DFHMSD TYPE=&SYSPARM,MODE=OUT,

TIOAPFX=YES,LANG=COBOL
PRINT DFHMDI SIZE=(05,a0)
TITLE DFHMDF POS=(01,01),LENGTH=43,

INITIAL='NUMBER NAME ADDRESS I

NUMB DFHMDF POS=(02,01),LENGTH=86
NAM DFHMDF POS=(82,12),LENGTH=28
ADDR DFHMDF POS=(82,37),LENGTH=28

DFHMDF POS=(93,81),h~NGTH=89,
INITIAL='PART)NO :1

PART DFHMDF POS=(83,11),LENGTH=86
DFHMDF POS=(84,81),LENGTH=89,

INITIAL='QUANTITY: I

QUANT DFHMDF POS=(84,11),LENGTH=86
DFHMDF POS=(8S,81),LENGTH=1,

INITIAL= I I

DFHMSD TVPE=FINAL
END

*

*

*

*

*

The symbolic storage definition produced as a result of the above statements would be as follows:

DSECT generated by DFH$CGL ------------------------------,

01 PRINTO.
02 FILLER PIC X(12).
02 FILLER PICTURE X(2).
82 TITLEA PICTURE X.
92 TITLEO PIC X(43).
82 FILLER PICTURE X(2).
82 NUMBA PICTURE X.
82 NUMBO PIC X(6).
92 FILLER PICTURE X(2).
82 NAMA PICTURE X.
82 NAMO PIC X(28).
82 FILLER PICTURE X(2).
02 ADORA PICTURE X.
02 ADDRO PIC X(28).
02 FILLER PICTURE X(2).
02 PARTA PICTURE X.
02 PARTO PIC X(6).
82 FILLER PICTURE X(2).
82 QUANTA PICTURE X.
02 QUANTO PIC X(6).

DFH$CGL print layout

+NUMBER NAME
+XXXXXX +XXXXXXXXXXXXXXXXXXXX
+PART NO :+XXXXXX
+QUANTITY:+XXXXXX
+X

ADDRESS
+XXXXXXXXXXXXXXXXXXXX

430 CICS/MVS 2.1.2 Application Programmer's Reference

Record descriptions for COBOL sample
programs

FILEA record description

The FILEA record description is used by the sample
programs. It is defined in copy code DFH$CFIL and has
the following format:

02 FILEREC.
03 5TAT
03 NUMB
83 NAME
83 ADDRX
03 PHONE
03 DATEX
03 AMOUNT
83 COMMENT

PIC X.
PIC X(6).
PIC X(20).
PIC X(20).
PIC XeS).
PIC XeS).
PIC XeS).
PIC X(9).

LOGA record description

The LOGA record description is used by the sample
programs when an audit trail is written to a transient data
file. It is defined in copy code DFH$CLOG and has the
following format:

02 LOGHDR.
03 LDAY
03 L TIME
83 LTERML

82 LOGREC.
83 L5TAT
83 LNUMB
03 LNAME
83 LADDR
83 LPHONE
83 LDATE
83 LAMOUNT
83 LCOMMENT

PIC 59(7) COMP-3.
PIC 59(7) COMP-3.
PIC X(4).

PIC X.
PIC X(6).
PIC X(28).
PIC X(28).
PIC X(S).
PIC XeS).
PIC XeS).
PIC X(9).

La60 record description

The L860 record description is used by the Order Entry
Queue Print sample program when it writes to the
transient data queue 'L860'. It is defined in copy code
DFH$CL86 and has the following format:

82 ITEM.
83 CU5TNO
03 PARTNO
83 QUANTITY
83 TERMID

PIC X(6).
PIC X(6).
PIC X(6).
PIC X(4).

Appendix E. Sample programs (COBOL) 431

Appendix F. Sample programs (PL/I)

The PUI sample programs described in this appendix are
included, in source form, on the CICS distribution tape.
The CICS/MVS Installation Guide describes how)these
sample programs, and associated resources, can be
defined to CICS and how the programs can be executed
online.

This appendix describes six CICS sample application
programs, written in PUI, as follows:

• Operator instruction
• Inquiry/update
• Browse
• Order entry
• Order entry queue print
• Low balance report.

These programs illustrate basic applications (such as
inquire, browse, add, and update) that can serve as a
framework for your installation's first programs. The
programs operate using a VSAM file, known as FILEA,
consisting of records containing details of individual
customer accounts. Each program has a short description
of what the program does, a listing of its source code, and
a series of program notes. Numbered coding lines in the
source listing correspond to the numbered program notes.

All the sample programs are for use with the IBM 3270
Information Display System.

The sample BMS maps include examples of how the
COLOR, EXTATT, and HILIGHT attributes are specified in
the map definition macros. However, due to production
limitations, the associated screen layouts do not show you
all the effects of these attributes.

You can add attributes without changing the application
program by specifying EXTATT MAPONLY in the DFHMSD
map set definition macro. If you include an attribute that
specifies a facility not available at the terminal, it will be
ignored.

+OPERATOR INSTRUCTIONS

+OPERATOR INSTR
+FILE INQUIRY
+FILE BROWSE
+FILE ADO
+FILE UPDATE

- ENTER PMNU
- ENTER PINQ AND NUMBER
- ENTER PBRW AND NUMBER
- ENTER PADD AND NUMBER
- ENTER PUPD AND NUMBER

+PRESS CLEAR TO EXIT
+ENTER TRANSACTION:+ +NUMBER+ +

© Copyright IBM Corp. 1982, 1991

The statements listed are those of the sample programs
supplied with the initial release of CICS. Sample programs
shipped with subsequent program temporary fixes (PTFs)
may differ from these listings.

The BMS maps (which are unaligned) and the file record
descriptions used by these sample programs are included
at the end of the appendix.

Once CICS is running, type PMNU onto a clear screen and
press the enter key. The PMNU transaction identifier
invokes the 'Operator Instruction' sample program, which
is a short program that produces a menu containing the
transaction identifiers for two of the other sample
programs, namely 'Inquiry/Update' and "Browse'.

If you clear the screen, remember to reenter the
transaction identifier, as no data is accepted from an
unformatted screen.

You can run the sample programs using EDF but, because
the CEDF transaction is defined with RSLC = YES, you must
first sign on to CICS as an operator with an appropriate
resource security level key.

The menu, on a screen that is 40 characters wide by 12
lines deep, is as shown in the box above. The plus (+)
sign in this and subsequent displays shows the position of
the attribute byte. In an actual display, this position
contains a blank.

To invoke any of the transactions PMNU, PINQ, PBRW,
PADD, or PUPD, do as instructed, entering the
four-character transaction identifier and, when necessary,
the six-digit account number in the fields highlighted in the
bottom line of the display. These specific account numbers
include the sequence 100000, 111111, 200000, 222222 ... ,
999999.

These transaction identifiers give you access to the
inquiry, add, and update functions of the "Inquiry/Update'
program, and access to the 'Browse' program.

You can invoke the three remaining sample programs
'Order Entry', 'Order Entry Queue Print', and 'Low Balance
Report' separately by entering their transaction identifiers
(PORD, PORQ, and PREP respectively) onto a clear screen.

433

Operator instruction program (PL/I)

Description

The operator instruction sample program displays map
DFH$PGA in response to the EXEC CICS SEND MAP
command.

The map displays a menu that lists the transaction
identifiers associated with two of the sample programs,
'Inquiry/Update', and 'Browse', and gives instructions for
the operator.

Source listing

/**/
/* DFH$PMNU CICS/VS SAMPLE FILEA OPERATOR INSTRUCTION MENU */
/**/

MENU: PROC OPTIONS(MAIN);
1 EXEC CICS SEND MAP('DFH$PGA') MAPONLY ERASE;
2 EXEC CICS RETURN;

END;

Program notes
1. The BMS command erases the screen and displays

map DFH$PGA.

2. The RETURN command ends the program.

434 CICS/MVS 2.1;2 Application· Programmer's Reference

Inquiry/update sample program (PL/I)

Description

The inquiry/update sample program lets you make an
inquiry about, add to, or update records in a file. You can
select one of these by entering the appropriate transaction
identifier (PINQ, PADD, or PUPD) in the menu that is
displayed when you start operations by entering PMNU.

To make an inquiry, enter PINQ and an account number
into the menu. The program maps in the account number
and reads the record from FILEA. The required fields from
the file area, and a title 'FILE INQUIRY' are moved to the
map dsect for DFH$PGB. DFH$PGB, containing the record
fields, is displayed at your screen.

To add a record, enter PADD and the account number into
the menu. The account number and a title 'FILE ADD' are
moved to the map area of DFH$PGB. DFH$PGB,
containing empty data fields, is displayed at your screen.
The data fields entered are mapped into DFH$PGB and

moved to the file record area which is then written to
FILEA. The addition is recorded on an update log (LOGA),
which is a transient data queue. The operator instruction
screen is displayed with the message 'RECORD ADDED'.

To update a record, enter PUPD and the account number
into the menu, as before. The program reads and displays
the requested FILEA record. Modified data fields are
mapped in to DFH$PGB and edited. The sample program
only suggests the type of editing you might wish to do.
Insert editing steps needed to ensure valid changes to the
file. Those fields that have been changed are moved to
the data record and the record is rewritten to FILEA. The
update is recorded on LOGA. The message 'RECORD
UPDATED' is moved to the dsect for DFH$PGA, the
operator instruction menu map, which is then displayed at
your screen.

This program is an example of pseudoconversational
programming, in which control is returned to CICS together
with a transaction identifier whenever a response is
requested from the operator. Associated with each return
of control to CICS is a storage area containing details
associated with the previous invocation of this transaction.

Appendix F. Sample programs (PUI) 435

/**/
/* DFH$PAll - CICS/VS SAMPLE FIlEA INQUIRY/UPDATE - Pl/I */
/**/
UPDATE: PROC(COMPOINT) OPTIONS(MAIN);

DCl MESSAGES CHAR(39);
DCl COMlEN FIXED BIN(15);
DCl KEYNUM PICTURE 1(6)9 1;
%INClUDE DFH$PGA;
%INClUDE DFH$PGB;
%INClUDE DFH$PFIl;
%INClUDE DFH$PlOG;
%INClUDE DFHBMSCA;
DCl CHSTR CHAR(256) BASED;
DCl COMPOINT PTR;
DCl COMMAREA lIKE FIlEA BASED(COMPOINT);

1 IF EIBCAlEN,=0 THEN GO TO READ INPUT;
2 EXEC CICS HANDLE CONDITION ERROR(ERRORS) MAPFAIl(MFAIl);

AllOCATE COMMAREA;
3 EXEC CICS RECEIVE MAP('DFH$PGA ');
4 IF KEYl=0 THEN GO TO BADlENG;

IF VERIFY(KEYI,'0123456789 1),=0 THEN GOTO BADCHARS;
/* KEYI CONTAINS 6 NUMERIC DIGITS */ .

KEYNU~1=KEYI ;
SUBSTR(ADDR(DFH$PGBO)->CHSTR,I,STG(DFH$PGBO»

=lOW(STG(DFH$PGBO»;
SElECT(EIBTRNID);

WHEN('PADD ') DO;
5 TITlEO='FIlE ADD';

MSG30='ENTER DATA AND PRESS ENTER KEY';
NUMBO,COMMAREA.NUMB=KEYI;
AMOUNTA=DFHBMUNN;
AMOUNTO='$0000.00 1;
COMlEN =7;

6 CAll MAP_SEND;
GO TO CICS_CONTROl;

END;
WHEN('PINQ I,

'PUPD') DO;
7 EXEC CICS HANDLE CONDITION NOTFND(NOTFOUND);
8 EXEC CICS READ DATASET('FIlEA') INTO(FIlEA)

IF EIBTRNID='PINQ' THEN
DO;

9 TITlEO='FIlE INQUIRY ' ;

RIDFlD(KEYNUM);

MSG30 ='PRESS ENTER TO CONTINUE ' ;
CAll MAP BUILD;

/* PROTECT All FIELDS ON MAP */
10 NAMEA,ADDRA,PHONEA,DATEA,AMOUNTA,

COMMENTA = DFHBMPRO;
11 CAll MAP SEND;

EXEC CICS RETURN TRANSID('PMNU ');
END;

ELSE DO;
12 TITlEO='FIlE UPDATE ' ;

MSG30 ='CHANGE FIELDS AND PRESS ENTER';
13 COMMAREA.FIlEREC=FIlEA.FIlEREC;

436 CICS/MVS 2.1.2 Application Programmer's Reference

)
Source listing for DFH$PALL (continued) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

14 CALL MAP_BUILD;
CALL ~1AP _SEND;

15 COMLEN=B0;

END;

GO TO CICS_CONTROL;
END;

16 OTHERWISE GO TO ERRORS;
END;

MAP_BUILD: PROC;
17 NUMBO = FILEA.NUMB;

END;

NAMEO = FILEA.NAME;
ADDRO = FILEA.ADDRX;
PHONEO = FILEA.PHONEj
DATEO = FILEA.DATEXj
AMOUNTO = FILEA.AMOUNT;
COMMENTO = FILEA.COMMENT;
RETURN;

MAP SEND: PROCj
18 - EXEC CICS SEND MAP('DFH$PGB ') ERASE;

RETURN;
END;
READ INPUT:

19
20

21

22

23

EXEC CICS HANDLE CONDITION MAPFAIL(NOTMODF) DUPREC(DUPREC)
ERROR(ERRORS) NOTFND(NOTFOUND);

EXEC CICS RECEIVE MAP('DFH$PGB')j
SELECT(EIBTRNID)j

WHEN (, PUPD ')
DO;

EXEC CICS READ UPDATE DATASET('FILEA') INTO(FILEA)
RIDFLD(COMMAREA.NUMB)j

IF STRING(FILEA.FILEREC)~=STRING(COMMAREA.FILEREC) THEN
DO;

MSGI0='RECORD UPDATED BY OTHER USER, TRY AGAIN'j
MSGIA=DFHBMASB;
MSG3A=DFHPROTN;
CALL MAP BUILD;
EXEC CICS SEND MAP('DFH$PGB ') DATAONLY;
COMMAREA.FILEREC=FILEA.FILERECj
COMLEN=80;
GO TO CICS_CONTROL;

END;
ELSE

DO;
24 FILEA.STAT='U ' ;

MESSAGES='RECORD UPDATED ' ;
END;

END;
WHEN('PADD') DO;

25 FILEA.STAT='A'j
MESSAGES='RECORD ADDED';

END;
26 OTHERWISE GO TO ERRORS;

END;
27 IF NAMEL = e &

ADDRL = 0 &
PHONEL = e &
DATEL = e &

Appendix p;, Sample programs (PUI) 437

- Sou~e"~lng~rDFHSPALL~ontlnue~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

AMOUNTL = 9 &
COMMENTL = 9 THEN
GO TO NOTMODF;

28 SELECT(EIBTRNID);
WHEN('PADD ') IF

VERIFY(NAMEI,'ABCDEFGHIJKLMNOPQRSTUVWXYZ .-1 11)~=e THEN
GO TO DATA ERROR;

WHEN('PUPD I) -
DO;

IF NAMEL~=9 THEN
IF VERIFY(NAMEI,'ABCDEFGHIJKLMNOPQRSTUVWXYZ .-11 I)~=e

THEN
GO TO DATA_ERROR;

IF AMOUNTL~=e THEN
IF VERIFY(AMOUNTI,'91234567B9.$¢')~=9 THEN

GO TO DATA_ERROR;

OTHERWISE;
END;

END;

29 IF EIBTRNID='PADD ' THEN
FILEA.NUMB=COMMAREA.NUMB;

IF NAMEL ~= 9 THEN FILEA.NAME=NAMEI;
IF AOORL ~= 9 THEN FILEA.ADDRX=ADDRI;
IF PHONEL ~= 9 THEN FILEA.PHONE=PHONEI;
IF OATEL ~= 9 THEN FILEA.DATEX=DATEI;
IF At·10UNTL ~= 9 THEN FILEA.AMOUNT=AMOUNTI;
ELSE IF EIBTRNID = 'PADD ' THEN FILEA.AMOUNT='$ee99.ge ' ;
IF COMMENTL~=e THEN FILEA.COMMENT=COMMENTI;

39 LOGREC=FILEA.FILEREC;
LDAY =EIBDATE;
L TIME=EI BTIME;
LTERML=EIBTRMID;

31 EXEC CICS WRITEQ TD QUEUE('LOGA ') FROM(LOGA) LENGTH(92);
IF EIBTRNID='PUPD ' THEN

32 EXEC CICS REWRITE DATASET('FILEAt) FROM(FILEA);
ELSE

33 EXEC CICS WRITE DATASET('FILEA') FROM(FILEA)

GO TO PMNU;
DATA_ERROR:

34 MSG3A=DFHBMASB;

RIDFLD(COMMAREA.NUMB);

MSG30=tDATA ERROR - CORRECT AND PRESS ENTERt;
/* PRESERVE CONTENTS OF SCREEN BY SETTING MODIFIED DATA TAG*/
/* AMOUNT IS MADE NUMERIC AND MODIFIED*/

AMOUNTA=DFHUNNUM;
35 NAMEA, ADORA, PHONEA, DATEA, COMMENTA=DFHBMFSE;
36 EXEC CICS SEND MAP(tDFH$PGB t) DATAONLY;
37 IF EIBTRNID=tPADD ' THEN COMLEN=7;

ELSE COMLEN=89;
CICS CONTROL:

38 - EXEC CICS RETURN TRANSID(EIBTRNID) COMMAREA(COMMAREA)
LENGTH(COMLEN);

NOTMODF:

438 CICS/MVS 2.1.2 Application Programmer's Reference

Source listing for DFH$PALL (continued) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

39 MESSAGES='RECORD NOT MODIFIED ' ;
GO TO PMNU;

DUPREC:

BADLENG:

MESSAGES='DUPLICATE RECORD ' ;
GO TO PMNU;

MESSAGES='PLEASE ENTER AN ACCOUNT NUMBER ' ;
GOTO PMNU;

BADCHARS:
MESSAGES='ACCOUNT NUMBER MUST BE NUMERIC'j
GO TO PMNUj

NOTFOUND:

MFAIL:

ERRORS:

MESSAGES='INVALID NUMBER - PLEASE REENTER'j
GO TO PMNUj

MESSAGES='PRESS CLEAR TO EXIT';
GOTO PMNUj

40 EXEC CICS DUMP DUMPCODE('ERRS ');
MESSAGES='TRANSACTION TERMINATED';

PMNU:
41 SUBSTR(ADDR(DFH$PGAO)->CHSTR,l,STG(DFH$PGAO»

=LOW(STG(DFH$PGAO»j
MSGA=DFHBMASBj
MSGO=MESSAGESj

42 EXEC CICS SEND MAP('DFH$PGA ') ERASE;
43 EXEC CICS RETURN;

END;

Program notes
1. The length of the COMMAREA is tested. If not zero

then this is the validation stage of an add or update.

2. The program exits are set up.

3. The menu map DFH$PGA is received. The account
number, if entered, is mapped into KEYI in the dsect
for DFH$PGA.

4. The account number is validated and saved.

5. If the program is invoked by PADD, a title and
command message are moved to the map area. The
record key is moved to the map area and saved in
COMMAREA. The amount field has the attribute byte
set to numeric.

6. The add screen is displayed and the program
terminates to await a reply from the terminal.

7. For an inquiry or update the exit for the
record-not-found condition is set up.

8. The file control READ command reads the file record
into the file area.

9. If the program is invoked by PINQ, a title and
command message are moved to the map area. The
file record fields are moved to the map area by a
subroutine.

10. All field attributes are set to protected.

11. The inquiry screen is displayed and the program
terminates. The TRANSID of PMNU causes the
operator instruction program to be invoked when the
next response is received from the terminal.

12. If the program is invoked by PUPD, a title and
command message are moved to the map area.

13. The file record is saved in COMMAREA.

14. Data is moved to the map dsect and displayed.

15. The length of the COMMAREA to be returned is set up
and control is returned to CICS.

16. An unknown transaction identifier is treated as an
error.

17. This subroutine moves fields from the FILEA record to
the map dsect for DFH$PGB ready for display.

18. MAP_SEND sends the map DFH$PGB to the screen
specifying that the screen is to be erased before the
map is displayed.

19. Control is passed here when the test of EIBCALEN, at
the beginning of the program, finds that a COMMAREA
has been received. This part of the program maps in
data for an add or update request, performs validation
and updates FILEA.

20. The error exits are set up.

21. The RECEIVE MAP command maps in the variables
from the screen.

Appendix F. Sample programs (PUI) 439

22. If this is an update request a file control READ 34. When a data error is detected the screen is
UPDATE command reads the existing record using the redisplayed for errors to be corrected. An error
number stored in COMMAREA by the last invocation of message is moved to the map area and highlighted.
this program. 35. The modified data tag is set on for all the data fields

23. If the current file record is not the same as the one so that all data is received at the next RECEIVE MAP.
saved in COMMAREA then another user has updated 36. The contents of map DFH$PGB are sent to the screen.
the record. A warning message is displayed, with The constant information on the screen is not
fields from the record read from FI LEA, for reentry of refreshed as a result of the use of the DATAON L Y
the updates. option.

24. The update flag is set in the record area and the 37. The size of the COMMAREA is set to 7 for an add
message 'RECORD UPDATED' is moved to the request or to 80 for an update request.
message area ready for display on the operator
instruction screen. 38. After the FILE ADD or FILE UPDATE screen has been

25. If this is an add request the add flag is set in the new
displayed the program branches here to return to
CICS awaiting a response from the terminal. The

record and the message 'RECORD ADDED' is moved RETURN gives CICS the transaction identifier for the
to the message area ready for display on the operator next transaction at this terminal together with a
instruction screen. COMMAREA containing all information that the

26. An unknown transaction identifier is treated as an program needs to continue the update. The
error. COMMAREA is passed to the next invocation of this

27. If all length fields in the input map are zero then no program, see note 1 on page 439.

data has been entered on the screen. 39. These short error routines set up an error message in

28. Any required editing steps should be inserted here. A MESSAGES and branch to PMNU to display the

suitable form of editing should be used to ensure valid message in the operator instruction menu DFH$PGA.

records are placed on the file. 40. If a CICS command fails with the ERROR condition or if

29. This code creates or updates the account record. Any an unknown transaction identifier is used to invoke

field which has been entered is moved to the account this program, a dump is taken and the message

record. 'TRANSACTION TERMINATED' is moved to MESSAGES
for display on the operator instruction screen.

30. The record fields, the date, the time, and the termid
41. This code gets control when an ~add or update is are moved to the update log record area.

complete. An information or error message is in
31. The record is written to the update log which is a MESSAGES. The operator instruction map area is

transient data queue. cleared. The message is moved to the map area and

32. For an update request the updated account record is highlighted.

rewritten to FILEA. 42. The operator instruction map DFH$PGA is displayed on

33. For an add request the new account record is written an erased screen.

to the file. 43. The program terminates by returning to CICS. No
transaction identifier or COMMAREA is specified.

440 CICS/MVS 2.1.2 Application Programmer's Reference

Browse sample program (PL/I)

Description

The browse program sequentially retrieves a page or set
of records for display, starting at a point in a file specified
by the terminal operator.

To start a browse, type PBRW and an account number into
the menu and press the enter key. If you omit the account
number browsing begins at the start of the file.

Depressing the PF1 key or typing F causes retrieval of the
next page or paging forward. If you wish to re-examine the
previous records displayed, press PF2 or type B. This lets
you page backward.

The browse program uses READNEXT to forward page to
the end of the file and READPREV to backward page to the
start of the file.

Appendix F. Sample programs (PUI) 441

Source listing for DFHSPBRW ----------------------------~----.

/**/
/* DFH$PBRW - CICS/VS SAMPLE FILEA BROWSE - PL/I */
/**/
BROWSE: PROC OPTIONS(MAIN);

%INCLUDE DFHBMSCA;
%INCLUDE DFH$PFIL;
%INCLUDE DFH$PGA;
%INCLUDE DFH$PGC;

DCL
(ADDR,
HIGH,
LOW,
STG,
SUBSTR,
VERIFY) BUILTIN;

DCl I FIXED BIN(15);

DCL (RID,
RIDB,
RIDF)

PIC '999999 1 INIT(0);

DCl (CURROP,
LASTOP,

STATUS) CHAR(l) INIT(' I);

DCL MESSAGES CHAR(39)
DCL STRING CHAR(256)

INIT(");
BASED;

/*STANDARD ATTRIBUTE CHARACTERS*/
/*FILEA RECORD DESCRIPTION */
/*'GENERAL MENU'=MAP'A ' */
/*'BROWSE FILEA'=MAP'B ' */

/*BUILT IN FUNCTIONS */

/*USED AS RIDFlD PARAM */
/*FOR BUILDING PREV PAGE*/
/*FOR BUILDING NEXT PAGE*/

/* ~OTE CURRENT OPERATION */
/* LAST OPERATION */
/* F = GOING FORWARDS, */
/* B = GOING BACKWARDS. */
/*STATUS H = AT TOP OF FILE */
/* L = AT BOTTOM. */

1 EXEC CICS HANDLE AID CLEAR(SMSG)
PF1(PAGE FORWARD)
PF2(PAGE=BACKWARD);

2 EXEC CICS HANDLE CONDITION ERROR(ERRORS)
MAPFAIl(SMSG)
NOTFND(NOTFOUND);

3 EXEC CICS RECEIVE MAP('DFH$PGA ');
*/

/*READ FIRST A/C NO.

/***/
/* SIMPLE CHECKS OF INPUT DATA */
/***/

SELECT(KEYL) ;
WHEN(0) DO; /*DEFAULT=000000 */

4 RID =000000;

OTHERWISE

5

RIDF=000000;
END;

DO;
IF VERIFY(KEYI, '0123456789 1)=0 THEN

DO;
RID =KEYI; /* NUMERIC AIC NO.*/
RIDF=KEYI;
RIDB=KEYI;

442 CICS/MVS 2.1.2 Application Programmer's Reference

~ Source l~ting~rDFHSPBR~(continued) ~~~~~~~~~~~~~~~~~~~~~~~~~~

END;

END;

ELSE

END;

DO;
MESSAGES='ACCOUNT NUMBER MUST BE NUMERIC';
GOTO PMNU;

END;

6 EXEC CICS STARTBR DATASET('FILEA') RIDFLD(RID); /*ESTABLISH 'START'*/
IF RID~=999999 THEN

GOTO PAGE_FORWARD;
7 STATUS='H';

GOTO PAGE BACKWARD;
/***/
/* HANDLE PAGING REQUESTS */
/***/
PAGE FORWARD:

CURROP='F';
B EXEC CICS HANDLE CONDITION ENDFILE(TOOHIGH);

SUBSTR(ADDR(DFH$PGCO)->STRING,I,STG(DFH$PGCO» = LOW(STG(DFH$PGCO»;
/*RESET FIELDS + ATTRB IN MAP C*/

RID =RIDF;
9 CALL BUILDNEXT;

/*IF LAST REQUEST=BACKPAGE THEN*/
/*NEED RIDF FOR FORWARD PAGING */

RIDF=RID; I*USE RIDF FOR NEXT PAGE */
19 EXEC CICS SEND MAP('DFH$PGC') ERASE

GOTO RECEIVE;

PAGE BACKWARD:
11 CURROP='B';

EXEC CICS HANDLE CONDITION ENDFILE(TOOLOW);

SUBSTR(ADDR(DFH$PGCO)->STRING,I,STG(DFH$PGCO» = LOW(STG(DFH$PGCO»;
/*RESET FIELDS + ATTRB IN MAP C*/

RID =RIDB;
RIDF=RIDB;
IF LASTOP='B' THEN

GOTO PREVLINE;
IF STATUS='H' THEN

GOTO PREVLINE;

PREVXTRA:

/*USE RIDB FOR BACKWARD PAGING */
/*SAVE RIDF FOR FORWARD PAGING */

EXEC CICS READPREV INTO(FILEA) DATASET('FILEA') RIDFLO(RIO);

PREVLINE:
CALL BUILDPREV;
RIDB=RID; /*SAVE RIDB FOR PREVIOUS PAGE */
EXEC CICS SEND MAP('DFH$PGC') ERASE

RECEIVE:
LASTOP=CURROP;

12 EXEC CICS RECEIVE MAP('OFH$PGC');
SELECT (DIRI) ;

WHEN('F') GOTO PAGE_FORWARD;

Appendix F. Sample programs (PUI) 443

Source listing for DFH$PBR~(continued) ~~~~~~~~~~~~.~~~~~~~~~~~~~.~~~~

WHEN(tBt) GOTO PAGE_BACKWARD;
OTHERWISE

END;

DO;
EXEC CICS SEND MAP(tDFH$PGC t);
GOTO RECEIVE;

END;

/***/
/* HANDLE END OF FILE CONDITIONS */
/***/
TOOHIGH:

13 STATUS=tHt;
RIDF RID;
RIDB = RID;
DIRO = ' ';
MSGI0='HI-END OF FILE';
MSGIA=DFHBMASB;
EXEC CICS SEND MAP(tDFH$PGC') ERASE;
GOTO RECEIVE;

TOOLOW:
14 STATUS='L'j

RIDF 000000;
RIDB = 000000;
01 RO = ' ';
MSG20=tLO-END OF FILEt;
MSG2A=DFHBt1ASB;
EXEC CICS SEND MAP('DFH$PGC') ERASE;
GOTO RECEIVE;

/***/
/* HANDLE GENERAL CONDITIONS */
/***/

NOTFOUND:
15 MESSAGES='END OF FILE - PLEASE RESTART';

EXEC CICS ENDBR DATASET('FILEA');
GOTO P~lNU;

SMSG:
16 MESSAGES='PRESS CLEAR TO EXIT';

GOTO PMNU;

ERRORS:
17 EXEC CICS DUMP DUMPCODE('ERRS');

MESSAGES='TRANSACTION TERMINATED';
/***/
/* DISPLAY GENERAL MENU THEN EXIT*/
/***/

PMNU:
18 SUBSTR(ADDR(DFH$PGAO)->STRING,I,STG(DFH$PGAO))

MSGA=DFHBMASB;
MSGO=MESSAGES;
EXEC eICS SEND MAP('DFH$PGA') ERASE;

19 EXEC eIeS RETURN;

LOW(STG(DFH$PGAO));

/***/
/* INTERNAL PROCEDURES MOVE REQUIRED FIELDS TO MAP */
/***/

444· CICS/MVS 2.1.2 Application Programmer's Reference

Source "s~ng ~r DFH$PBR~(con~nued) ~~~~~~~~~~~~~~~~~~~~~~~~~~

BUILDNEXT: PROC;
28

DO 1=1 TO 4;
21 EXEC CICS READNEXT INTO(FILEA) DATASET('FILEA') RIDFLD(RID);

SELECT(!) ;
WHEN(l) DO;

22 NUMBER10 = NUMB;
NAMEl 0 = NAME;
AMOUNT10 = AMOUNT;
RIDB = RID; /*RIDB NEEDS AN EXISTING A/C NO.*/

END;
WHEN(2) DO;

23 NUMBER20 = NUMB;
NAME20 = NAME;
AMOUNT20 = AMOUNT;

END;
WHEN(3) DO;

NUMBER30 = NUMB;
NAME30 = NAME;
AMOUNT30 = AMOUNT;

END;
WHEN(4) DO;

END;
END;

NUMBER40 = NUMB;
NAME40 = NAME;
AMOUNT40 = AMOUNT;

END;

END BUILDNEXT;
BUILDPREV: PROC;

DO 1=1 TO 4;
24 EXEC CICS READPREV INTO(FILEA) DATASET('FILEA') RIDFLD(RID);

SELECT(I) ;
WHEN(4) DO; /*PUT FIELDS IN ASCENDING ORDER*/

NUMBER10 = NUMB;
NAME10 = NAME;
AMOUNT10 = AMOUNT;

END;
WHEN(3) DO;

NUMBER20 = NUMB;
NAME20 = NAME;
AMOUNT20 = AMOUNT;

END;
WHEN(2) DO;

NUMBER30 = NUMB;
NAME30 = NN4E;
AMOUNT30 = AMOUNT;

END;
WHEN(1) DO;

END;
END;

END BUILDPREV;

END BROWSE;

NUMBER40 = NUMB;
NAME40 = NAME;
AMOUNT40 = AMOUNT;

END;

Appendix F. Sample programs (PUI) 445

Program notes 14. If the start of file is reached on a READPREV
(backward browse) then the ENDFILE condition occurs

1. The exits for CLEAR, PF1 and PF2 are set up. and TOOLOW gets control. Any records read up to

2. The error exits are set up. that point are displayed, together with a highlighted

3. This command maps in the account number from the
message 'LO-END OF FILE'.

operator instruction screen. 15. If the NOTFND condition occurs at the start browse

4. If no account number is entered browsing begins at
(note 6) the message 'END OF FILE - PLEASE
RESTART' is moved to MESSAGES for display on the

the start of the file. operator instruction screen.
5. If the format of the account number is valid the 16. If the CLEAR key is pressed or when a MAPFAIL

number is used to set the program's browse pointers, occurs a message 'PRESS CLEAR TO EXIT' is moved
otherwise an error message is displayed on the to MESSAGES for display on the operator instruction
operator instruction menu. screen.

6. The STARTBR command establishes the browse 17. In some error situations a dump is taken and the
starting point. message 'TRANSACTION TERMINATED' is moved to

7. Entering the maximum value (999999) for the account MESSAGES for display on the operator instruction
number begins a backward browse from the end of the screen.
file. 18. This code displays the operator instruction menu with

8. The forward browse end of file exit is set up. a message which has been stored in MESSAGES.

9. A subroutine builds a page for display. 19. The program terminates by returning to CICS.

10. The screen is erased and the full page is displayed at 20. BUILDNEXT browses forward through FILEA building a
the terminal. screen, or page, of accounts for di spl ay.

11. The backward browse procedure is similar to the 21. The READNEXT reads the first record, and
forward browse. Note the need for an extra subsequently the next record, into the file area.
READPREV when changing from forward to backward 22. The account number, name, and amount are moved to
browsing. the first line of the browse map area.

12. When the RECEIVE command executes control will go 23. The same basic commands are repeated to read and
to one of the HANDLE AID exits (see note 1) if CLEAR, set up the next three lines. The same file area is used
PF1 or PF2 is pressed. The program explicitly tests for for each read.
F or B if no exit is taken. Any other terminal response
is ignored. 24. Backward browsing uses the READPREV command to

13. If the end of file is reached, on a READNEXT, any
read the previous record and stores records in the

records read to that point are displayed together with
map area starting at the bottom line.

a highlighted message 'HI-END OF FILE'.

446 CICS/MVS 2.1.2 Application Programmer's Reference

Order entry sample program (PL/I)

Description

The order entry sample application program provides a
data entry facility for customer orders for parts from a
warehouse. Orders are recorded on a transient data
queue which is defined so as to start the order entry queue
print transaction automatically when a fixed number of
orders have been accumulated. The queue print
transaction sends the orders to a printer terminal at the
warehouse.

To begin order entry, type PORD onto a blank screen and
press ENTER. The order entry program displays the map
DFH$PGK on the screen requesting the operator to enter
order details, that is, customer number, part number, and
the quantity of that part required. The customer number
must be valid, that is, it must exist on FILEA. The order
details are mapped in and checked, an invalid order is

redisplayed for correction. When valid an order is written
to the transient data queue L8S0 and the order entry
screen is redisplayed ready for the next order to be
entered. If CLEAR is pressed the order entry program
terminates.

L860, the name of the transient data queue, is also the
name of the terminal where the order entry queue print
transaction is to be triggered when the number of items on
the queue reaches 30. A definition of the transient data
queue is included in the sample destination control table
listed in the CICS/MVS Installation Guide. The TRANSID
specified in the OCT entry for L8S0 must be changed from
AORQ to PORQ for the PUI program to be triggered.

The trigger level may be changed using the CEMT
command, as follows:

CEMT SET QUEUE(L860) TRIGGER(n)

where n is the destination trigger level (any integer from 0
through 32767).

Appendix F. Sample programs (PUI) 447

/**/
/* DFH$PREN - CICS/VS SAMPLE FILEA ORDER ENTRY - PL/I */
/**/
ORDER: PROC OPTIONS(MAIN);

%INCLUDE DFHBMSCA;
%INClUDE DFH$PFIl;
%INCLUDE DFH$Pl86;
%INClUDE DFH$PGK;

/*STANDARD ATTRIBUTE CHARACTERS*/
/*COllECTION OF ACCOUNTS */
/*RECORD DESCRIPTION FOR l860 */
/*MAP DEFINITION * /

DCl

DCl

DCl

(ADDR,
lOW,
STG,
SUBSTR,
VERIFY) BUILTIN;

CHSTR CHAR(256) BASED;

ERROR FLAG BIT (1) INIT('8'B);
DCL PRESMSG CHAR(28) STATIC

INIT('PROCESSING COMPLETED');

/*BUIlT IN FUNCTIONS */

1 EXEC CICS HANDLE AID CLEAR(ENDPORD); /*EXIT FOR 'CLEAR' */
2 EXEC CICS HANDLE CONDITION MAPFAIl(MAPFAIL) /*EXITS FOR ERRORS */

ERROR (ERRORS)
NOTFND (NOTFOUND);

/***/
/* ZEROIZE PLI STRUCTURE=DFH$PGK*/
/***/

SUBSTR(ADDR(DFH$PGKO)->CHSTR,l,STG(DFH$PGKO»=LOW(STG(DFH$PGKO»;

3 EXEC CICS SEND MAP('DFH$PGK') ERASE; /*ERASE SCREEN + DISPLAY MAP*/

RECEIVE:
4 EXEC CICS RECEIVE MAP('DFH$PGK'); /*MAP IN CUSTNO,PARTNO & QUANT */

ERROR_FLAG='C:)'B;
CUSTNOA,PARTNOA,QUANTA=DFHBMFSE; /*MDT=l IN CASE NEED TO REINPUT*/

/***/
/* SIMPLE VALIDATION OF DATA */
/***/

5 IF VERIFY(CUSTNOI,'1234567890')~=8 THEN
DO;

CUSTNOA = DFHUNINT;
ERROR_FLAG = 'lIB;

END;

IF VERIFY(PARTNOI,'1234567890')~=8 THEN
DO;

PARTNOA = DFHUNINT;
ERROR_FLAG = 'lIB;

END;

448 CICS/MVS 2.1.2 Application Programmer's Reference

Source listing for DFH$PREN (continued) -------------

IF VERIFY{QUANTI,'12345678981)~=8 THEN
DO;

QUANTA = DFHUNINT;
ERROR FLAG = '1 I B;

END;

IF ERROR_FLAG THEN
DO;

6 MSG2A=DFHBMASB;
EXEC CICS SEND MAP{'DFH$PGK ') ERASE;
GOTO RECEIVE;

END;

/*DATA ERROR-REENTER */

/***/
/* READ RECORD,CHECK CUSTNO EXISTS*/
/***/

7 EXEC CICS READ DATASET{'FILEA') INTO{FILEA) RIDFLD(CUSTNOI);
B CUSTNO = CUSTNOI;

PARTNO = PARTNOI;
QUANTITY = QUANTI;
TERMID = EIBTRMID;

/***/
/* WRITE VALID ORDER TO TO QUEUE */
/***/

9 EXEC CICS WRITEQ TO QUEUE ('L860 ') FROM (L8GO) LENGTH(22);

10 EXEC CICS SEND MAP('DFH$PGK ') MAPONLY ERASEAUP;
GOTO RECEIVE;

/***/
/* HANDLE ERRORS THEN RESTART */
/***/

11 NOTFOUND:
CUSTNOA = DFHUNINT;
MSG1A = DFHBMASB;
EXEC CICS SEND MAP('DFH$PGK ');
GOTO RECEIVE;

12 MAPFAIL:

/*INVALID ACCOUNT NO */

/*NUMBER NOT FOUND */

/*NO DATA IN FIELDS */

SUBSTR(ADDR(DFH$PGKO)->CHSTR,l,STG(DFH$PGKO»=LOW(STG(DFH$PGKO»;

MSG2A=DFHBMASB;
EXEC CICS SEND MAP('DFH$PGK ');
GOTO RECEIVE;

/*DATA ERROR -REENTER*/

/***/
/* EXIT FROM PROGRAM * /
/***/

ERRORS:
13 MSG20='TRANSACTION TERMINATED';

MSG2A=DFHBMASB;

/*GENERAL ERROR COND */

/*DATA ERROR -REENTER*/

Appendix F. Sample programs (PUI) 449

Source "~ing ~r DFHSPREN (continued) ~~~~~~~~~~~~~~~~~~~~~~~~~~

EXEC CICS SEND MAP('DFH$PGK ');
EXEC CICS DUMP DUMPCODE('ERRS ');
GOTO EXIT;

ENDPORD: /*EXIT-'CLEAR'WAS HIT*/
14 EXEC CICS SEND TEXT FROM(PRESMSG) ERASE;

EXEC CICS SEND CONTROL FREEKB; /*SET INPUT-INHIB OFF*/
EXIT:
EXEC CICS RETURN;
END;

Program notes
1. The CLEAR key exit is set up.

2. The error exits are set up.

3. The screen is erased and the order entry map is
displayed at the terminal.

4. This RECEIVE MAP causes a read from the terminal
and maps in the customer number, part number, and
quantity. The program remains in virtual storage until
the terminal response is received. Compare this
technique with that used in the pseudoconversational
inquiry/update sample program. If no data is received
CICS branches to the MAPFAIL exit (note 2).

5. The order details are checked, invalid orders are
redisplayed for correction. Error fields are highlighted
and have MDT set on. The user should add further
editing steps necessary to ensure only valid orders
are accepted.

6. The error message 'DATA ERROR - REENTER' is a
constant in the map load module and is sent to the
terminal, with any other constant information, unless
DATAONLY is specified on the SEND MAP. The
message is normally dark (non-display). This
instruction overrides the dark attribute and the
message appears in high intensity when the SEND
MAP command is executed.

7. The file control READ command attempts to read the
customer record from FILEA. If no record exists for
the customer CICS branches to the NOTFND exit (note
2).

450 CICS/MVS 2.1.2 Application Programmer's Reference

8. The order details are moved from the input map to the
queue area.

9. The WRITEQ TO command writes the order record to a
sequential file, a transient data queue.

10. The order entry map is redisplayed ready for the next
order. Only the map'load module is used to build the
screen display, MAPONL Y causes the data in the map
dsect area to be ignored. ER~SEAUP erases all the
unprotected data on the screen, that is, the customer
number, part number, and quantity.

11. If there is no record for the customer on FILEA, CICS
raises the NOTFND condition and branches here. The
attribute for the customer number field is set to high
intensity with MDT on and an error message 'NUMBER
NOT FOUND - REENTER' is set to display in high
intensity (see note 6). The order is redisplayed for
correction.

12. If no fields are entered, the MAPFAIL condition occurs.
The message 'DATA ERROR-REENT~R' is displayed in
high intensity (see note 6).

13. If an error occurs a dump is taken, and the message
'TRANSACTION TERMINATED' is displayed in high
intensity in the data error message area. The
program terminates leaving the order entry screen
displayed.

14. When the CLEAR key is pressed the program
terminates. The message 'PROCESSING COMPLETED'
is displayed on a blank screen, the keyboard is freed
and control is returned to CICS.

Order entry queue print sample program
(PL/I)

Description

The order entry queue print sample program sends
customer orders to a printer terminal at the warehouse.
The order entry sample program, described earlier,
records customer orders on a transient data queue which
is read by this program.

The queue print transaction can be invoked in one of three
ways:

• You can type the transaction identifier PORO onto a
clear screen. The program finds that the terminal
identifier is not L860 and issues a START command to
begin printing in one hour. The message
'PROCESSING COMPLETED' is displayed and your
terminal is available for other work.

• One hour after you enter PORO, the queue print
transaction is automatically invoked by CICS interval
control. In this case the terminal identifier, specified
by the START, is L860 so the program prints the
orders at the warehouse.

• The queue print transaction is "triggered" when the
number of items (customer orders) on the transient
data queue reaches 30. The trigger level is specified
in the destination control table (OCT) entry for L860.
In this case the terminal identifier is the same as the
queue name U-860) and the program will print the
orders. ThefRANSID specified in the OCT entry for
L860 must qe changed from AORQ to PORQ for the
PUI program to be triggered. The trigger level may
be changed using the command:

CEMT SET QUEUE(L860) TRIGGER(n)

When invoked with a terminal identifier of L860 the
program reads each order, checks the customer's credit
and either prints the order at the warehouse or writes the
rejected order to LOGA, the same transient data queue as
used by the inquiry/update sample program. When all the
orders have been processed, or if there were no orders to
process, the message 'ORDER QUEUE IS EMPTY' is printed
at the warehouse.

Appendix F. Sample programs (PUI) 451

/**/
/* DFH$PCOM - CICS/VS SAMPLE FILEA ORDER ENTRY QUEUE PRINT */
/**/
QPRINT: PROC OPTIONS(MAIN);

%INCLUDE DFH$PFIL;
%INCLUDE DFH$PL86;
%INCLUDE DFH$PGL;
DCL Q_LENGTH FIXED BIN(15) INIT(22);
DCL 1 lOGORD,

2 lOGTIME,
3 lDATE FIXED DEC(7,e),
3 LTIME FIXED DEC(7,0),

2 LITEM CHAR(22),
2 COMMENT CHAR(II) INIT('ORDER ENTRY'),
2 FILLER CHAR(51) INIT(I I);

DCl CHSTR CHAR(256) BASED;
DCL PRESMSG CHAR(20) STATIC

INIT('PROCESSING COMPLETED ');
1 EXEC CICS HANDLE CONDITION ERROR(ERRORS) QZERO(ENDA);
2 IF EIBTRMID,='L860 ' THEN

GO TO TIME;
SUBSTR(ADDR(DFH$PGLO)->CHSTR,I,STG(DFH$PGLO»

=LOW(STG(DFH$PGLO»;
Q READ:
3- EXEC CICS READQ TD INTO(L860) LENGTH(Q_LENGTH) QUEUE('L860 ');
MAP BUILD:
4 - EXEC CICS READ DATASET('FILEA') INTO(FILEA) RIDFLD(CUSTNO);
5 IFAMOUNT>'$8108.88 1 THEN 00;
6 ADDRO = ADDRX;

PARTO = PARTNO;
NAMO = NAME;
NUMBO = CUSTNO;
QUANTO = QUANTITY;

7 EXEC CICS SEND MAP('DFH$PGL ') ERASE PRINT La0;
END;
ELSE DO;

8 LDATE = EIBDATE;
LTIME = EIBTIME;
LITEM = STRING(ITEM);

9 EXEC CICS WRITEQ TO QUEUE('LOGA ') FROM(LOGORD) LENGTH(92);
END;
GO TO Q_READ;

ERRORS:
18 EXEC CICS DUMP DUMPCODE('ERRS ');

GO TO FIN;
ENDA:

SUBSTR(ADDR(DFH$PGLO)->CHSTR,I,STG(DFH$PGLO»
=LOW(STG(DFH$PGLO»;

11 TITLEO='ORDER QUEUE IS EMPTY ' ;

TIME:
EXEC CICS SEND MAP('DFH$PGL ') DATAONLY ERASE PRINT Lae;

/* IF THE COMMENT DELIMITERS ARE */
/* REMOVED FROM THE NEXT TWO PL/I */
/* STATEMENTS, THE APPLICATION WILL*/
/* BE RESTARTED IN AN HOUR IF THE */
/* TIME OF DAY RIGHT NOW IS NOT */
/* LATER THAN 1400 HRS. IF THE */
/* CODE IS LEFT UNCHANGED THE */
/* APPLICATION WILL BE RESTARTED */

452 CICS/MVS 2.1.2 Application Programmer's Reference

SourcelistlngforDFHSPCOM (contlnued) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

/* UNCONDITIONALLY AFTER AN HOUR */
/* HAS ELAPSED */

/* EXEC CICS ASKTIME; */
/* IF EIBTIME~>14eeee THEN */

12 EXEC CICS START TRANSID('PORQ') INTERVAL(leeee)
TERMID(I L860 I);

FIN:
13 EXEC eIes SEND TEXT FROM(PRESMSG) ERASE;

EXEC CICS SEND CONTROL FREEKB; /*SET INPUT-INHIB OFF*/

EXEC eICS RETURN;
END;

Program notes
1. The error exits are set up.

2. The termid is tested to see whether this transaction is
started from a terminal or at the printer.

3. A queue item (customer order) is read into the
program.

4. The file control READ command reads the record into
a record area so that the amount may be checked.

5. The amount (bank balance) is tested. If it is over $100
then the order is acceptable, otherwise the order is
rejected. This test is only a suggestion; a suitable
form of editing should be inserted here to ensure valid
orders are sent to the warehouse.

6. The order details are moved to the map area for
DFH$PGL.

7. The order map is sent to the printer terminal at the
warehouse.

8. The current date and time, and details of the rejected
order, are moved to a log record area.

9. The WRITEQ TO command writes details of the
rejected order to LOGA, a transient data queue.

10. If the ERROR condition occurs on any CICS command
a dump is taken and the program terminates.

11. When the queue is empty, the message 'ORDER
QUEUE IS EMPTY' is moved to the map area which is
then sent to the printer terminal at the warehouse.

12. The START command starts the PORQ transaction
(this program), after a one hour delay, with a terminal
identifier of L860. (The time interval could be
changed, for demonstration purposes, by changing the
INTERVAL value.) If the comment delimiters are
removed from the two preceding statements, EIBTIME
is refreshed and, if the time is before 1400 hours, the
transaction is started in one hour. If the comment
delimiters are not removed, the transaction is started
unconditionally in one hour.

13. The message 'PROCESSING COMPLETED' is sent to
the terminal associated with this invocation of PORQ,
either the printer at the warehouse or the screen on
which PORQ was entered. The program terminates by
returning control to CICS.

Appendix F. Sample programs (PUI) 453

Low balance report sample program (PL/I)

Description

The low balance report sample program produces a report
that lists all entries in the data set FILEA for which the
amount is less than or equal to $50.00.

The program illustrates page building techniques and the
use of the terminal paging facilities of BMS.

The transaction is invoked by entering PREP onto a clear
screen. The program does a sequential scan through the
file selecting each entry that obeys the search criterion.

454 CICS/MVS 2.1.2 Application Programmer's Reference

The pages are built from four maps which comprise map
set DFH$PGD, using the paging option so that the data is
not displayed immediately but instead is stored for later
retrieval. The HEADING map is inserted at the head of
each page. The detail map (DFH$PGD) is written
repeatedly until the OVERFLOW condition occurs. The
FOOTING map is then written at the foot of the page and
the HEADING map written at the top of the next page. The
command to write the detail map that caused overflow is
then repeated. When all the data has been written the
FINAL map is written at the bottom of the last page and
the transaction terminated.

The terminal operator then enters paging commands to
display the data, clearing the screen before entering each
paging command.

Source listing for DFH$PREP --------------------------------:....,

/**/
/* DFH$PREP - CICS/VS SAMPLE FILEA LOW BALANCE INQUIRY - PL/I */
/**/

REPORT: PROC OPTIONS(MAIN);
DCL LOWLIM CHAR(S) INIT('$0050.00');
DCL KEYNUM PIC'999ggg' INIT(0);
DCL PAGEN PIC'999' INIT(l);
DCL OPINSTR CHAR(52) STATIC

INIT('PRESS THE ENTER KEY AND FOLLOW WITH PAGING COMMANDS.');
DCL TERM DATA CHAR(l);
DCL TERM-LENG FIXED BIN(15);
DCL STRING CHAR(256) BASED;
%INCLUDE DFH$PGD;
%INCLUDE DFH$PFIL;

1 EXEC CICS HANDLE CONDITION ERROR(ERRORS) OVERFLOW(OFLOW)
ENDFILE(ENDFILE) LENGERR(END_TASK);

PAGENA=LOW(1) ;
2 PAGENO=PAGEN;
3 EXEC CICS SEND MAP('HEADING') MAPSET('DFH$PGD') ACCUM PAGING ERASE;
4 EXEC CICS STARTBR DATASET('FILEA') RIDFLD(KEYNUM);

REPEAT:
5 EXEC CICS READNEXT INTO(FILEA) DATASET('FILEA') RIDFLD(KEYNUM);
6 IF AMOUNT<=LOWLIM THEN

00;
SUBSTR(ADDR(DFH$PGDO)->STRING,l,STG(DFH$PGDO»=

LOW(STG(DFH$PGDO»;
7 AMOUNTO = AMOUNT;

NUMBERO = NUMB;
NAMEO = NAME;

8 EXEC CICS SEND MAP('DFH$PGD') MAPSET('DFH$PGD') ACCUM PAGING;
END;

GOTO REPEAT;

ENDFILE:
9 EXEC CICS SEND MAP('FINAL') MAPSET('DFH$PGD') MAPONLY ACCUM PAGING;

10 EXEC CICS SEND PAGE;
11 EXEC CICS SEND TEXT FROM(OPINSTR) ERASE;
12 EXEC CICS ENDBR DATASET('FILEA');

TERM LENG=l;

/* A RECEIVE IS ISSUED TO GIVE THE
TERMINAL OPERATOR A CHANCE TO
READ THE PROMPTING MESSAGE.
THE TRANSACTION WILL TERMINATE
WHEN THE OPERATOR PRESSES THE
ENTER KEY */

/* NO HARM DONE IF OPERATOR TYPES IN
DATA IN ADDITION TO PRESSING THE
ENTER KEY */

13 EXEC-CICS RECEIVE INTO(TERM_DATA) LENGTH(TERM_LENG);
END_TASK:

14 EXEC CICS RETURN;
ERRORS:

15 EXEC CICS HANDLE CONDITION ERROR;
EXEC CICS PURGE MESSAGE;
EXEC CICS ABEND ABCODE('ERRS');

OFLOW:

Appendix F. Sample programs (PUI) 455

Source "~lng~rDFHSPREP(contlnued) ~~~~~~~~~~~~~~~~~~~~~~~~~~

16 EXEC CICS SEND MAP('FOOTING ') MAPSET('DFH$PGD ')

PAGEN = PAGEN+l;
PAGENA = LOW(I);
PAGENO = PAGEN;

MAPONLY ACCUM PAGING;

17 EXEC CICS SEND MAP('HEADING ') MAPSET('DFH$PGD ')
ACCUM PAGING ERASE;

18 EXEC CICS SEND MAP('DFH$PGD ') MAPSET('DFH$PGD ') ACCUM PAGING;
GOTO REPEAT;
END;

Program notes 11. A message is sent to the terminal. This message will

1. The program exits are set up.
be displayed before the pages of the low balance
report.

2. A page number of 1 is moved to the heading map. 12. The file browse is terminated.
3. This BMS command sets up the heading in the page 13. This RECEIVE MAP command reads from the terminal

build operation. BMS builds the pages in temporary and allows the terminal operator to read the
storage. prompting message before the first page of the report

4. The STARTBR command sets up the file browse to is displayed.
begin at the first record with a key equal to or greater 14. The program ends, the first page of the report will now
than the RIDFLD, in this case the first record on file. be displayed.

5. This command reads the next customer record from 15. If the ERROR condition occurs on a CICS command
FILEA. this routine gains control. Handling of the ERROR

6. The search criterion for creating the report is that the condition is suppressed, any data sent to BMS so far
customer has a bank balance which is $50 or less. is purged and the program terminates abnormally with

7. Fields are moved from the selected customer record a transaction dump.

to the map area for the detail line. 16. If the OVERFLOW condition occurs, when a detail line

8. The customer detail map is set up for subsequent is sent to BMS, CICS branches here. This routine

paging. completes the current page and starts the next one.
This BMS command sets up the footing for the current

9. When the ENDFILE condition is raised, the last map is page.
sent to BMS.

17. This BMS command sets up the heading for the next
10. The SEND PAGE command makes all the pages of the page.

report available for paging, at the terminal, when the
18. This BMS command resends the detail line which current transaction terminates.

caused the OVERFLOW condition.

456 CICS/MVS 2.1.2 Application Programmer's Reference

Maps and screen layouts for PL/I sample
programs

The preceding sample programs assume that the following
map sets have been cataloged with names the same as
the map names.

The names of the source maps are all of the form
DFH$PMx, whereas output generated by the assembly of
maps is in the form DFH$PGx. Differing names are
required for the map source and the generated dsect only
if you wish to store both in the same source library.

DFH$PGA map definition --------------------------------..

TITLE 'FILEA - MAP FOR OPERATOR INSTRUCTIONS - PL/I'
MAPSETA DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET),LANG=PLI, *

STORAGE=AUTO,TIOAPFX=YES,EXTATT=MAPONLY,COLOR=BLUE
DFH$PGA DFHMDI SIZE=(12,49)

DFHMDF POS=(1,19),LENGTH=21,INITIAL='OPERATOR INSTRUCTIONS', *
HILIGHT=UNDERLINE

DFHMDF POS=(3,1),LENGTH=29,INITIAL='OPERATOR INSTR - ENTER PMN*
U'

DFHMDF POS=(4,l),LENGTH=38,INITIAL='FILE INQUIRY - ENTER PIN*
Q AND NUMBER '.

DFHMDF POS=(5,1),LENGTH=38,INITIAL='FILE BROWSE - ENTER PBR*
W AND NUMBER'

DFHMDF POS=(6,1),LENGTH=38,INITIAL='FILE ADD - ENTER PAD*
D AND NUMBER'

DFHMDF POS= (7,1) , LENGTH=38, INITIAL= I FI LE UPDATE - ENTER PUP*
o AND NUMBER'

MSG DFHMDF POS=(11,1),LENGTH=39,INITIAL='PRESS CLEAR TO EXIT'
DFHMDF POS=(12,1),LENGTH=18,INITIAL='ENTER TRANSACTION:'
DFHMDF POS=(12,29),LENGTH=4,ATTRB=IC,COLOR=GREEN, *

HI LIGHT=REVERSE
DFHMDF POS=(12,25),LENGTH=6,INITIAL='NUMBER'

KEY DFHMDF POS=(12,32),LENGTH=6,ATTRB=NUM,COLOR=GREEN, *
HILIGHT=REVERSE

DFHMDF POS=(12,39),LENGTH=1
DFHMSD TYPE=FINAL
END

Appendix F. Sample programs (PUI) 457

The symbolic storage definition produced as a result of the above statements would be as follows:

DSECT generated by DFH$PGA -----------------------------

DECLARE 1 DFH$PGAI AUTOMATIC UNALIGNED,
2 DFHMSI CHARACTER (12),
2 MSGL FIX~D BINARY (15,0),
2 MSGF CHARACTER (1),
2 MSGI CHARACTER (39),
2 KEYL FIXED BINARY (15,0),
2 KEYF CHARACTER (1),
2 KEYI CHARACTER (6),
2 FILL0055 CHARACTER (1);

DECLARE 1 DFH$PGAO BASED(ADDR(DFH$PGAI» UNALIGNED,
2 DFHMS2 CHARACTER (12),
2 DFHMS3 FIXED BINARY (15,e),
2 MSGA CHARACTER (1),
2 MSGO CHARACTER (39),
2 DFHMS4 FIXED BINARY (15,e),
2 KEYA CHARACTER (1),
2 KEYO CHARACTER (6),
2 FILL0055 CHARACTER (1);

/* END OF MAP DEFINITION * /

DFH$PGA screen layout ------------,

-f-OPERATOR INSTRUCTIONS

+OPERATOR INSTR - ENTER PMNU
+FILE INQUIRY - ENTER PINQ AND NUMBER
+FILE BROWSE - ENTER PBRW AND NUMBER
+FIlE ADD - ENTER PADD AND NUMBER
+FILE UPDATE - ENTER PUPD AND NUMBER

+PRESS CLEAR TO EXIT
+ENTER TRANSACTION:+XXXX+NUMBER+XXXXXX+

458 CICS/MVS 2.1.2 Application Programmer's Reference

DFH$PGB map definition

TITLE 'FILEA - MAP FOR FILE INQUIRY/UPDATE - PL/I '
MAPSETB DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET),LANG=PLI, *

STORAGE=AUTO,TIOAPFX=YES,EXTATT=MAPONLY
DFH$PGB DFHMDI SIZE=(12,40)
TITLE DFHMDF POS=(1,15),LENGTH=12

DFHMDF POS=(3,1),LENGTH=8,INITIAL='NUMBER: ',COLOR=BLUE
NUMB DFHMDF POS=(3,10),LENGTH=6

DFHMDF POS=(3,17),LENGTH=1
DFHMDF POS=(4,1),LENGTH=8,INITIAL='NAME: ',COLOR=BLUE

NAME DFHMDF POS=(4,10),LENGTH=20,ATTRB=(UNPROT,IC)
DFHMDF POS=(4,31),LENGTH=1
DFHMDF POS=(5,1),LENGTH=8,INITIAL='ADDRESS: ' ,COLOR=BLUE

AOOR OFHMOF POS=(5,10),LENGTH=20,ATTRB=UNPROT
DFHMDF POS=(5,31),LENGTH=1
DFHMDF POS=(6,1),LENGTH=8,INITIAL='PHONE: ',COLOR=BLUE

PHONE DFHMDF POS=(6,10),LENGTH=8,ATTRB=UNPROT
OFHMDF POS=(6,19),LENGTH=1
OFHMDF POS=(7,1),LENGTH=8,INITIAL='OATE: ',COLOR=BLUE

DATE OFHMDF POS=(7,10),LENGTH=8,ATTRB=UNPROT
OFHMDF POS=(7,19),LENGTH=1
DFHMDF POS=(8,1),LENGTH=8,INITIAL='AMOUNT: ',COLOR=BLUE

AMOUNT DFHMDF POS=(8,10),LENGTH=8,ATTRB=NUM
DFHMDF POS=(8,19),LENGTH=1
DFHMDF POS=(9,1),LENGTH=8,INITIAL='COMMENT: ' ,COLOR=BLUE

COM~1ENT DFHMDF POS= (9,10) , LENGTH=9, A TTRB=UNPROT
DFHMDF POS=(9,20),LENGTH=1

MSGI DFHMDF POS=(11,1),LENGTH=39
MSG3 DFHMDF POS=(12,1),LENGTH=39

DFHMSD TYPE=FINAL
END

Appendix F. Sample programs (PUI) 459

The symbolic storage definition produced as a result of the above statements would be as follows:

DSECTgeneratedbyDFH$PGB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

DECLARE 1 DFH$PGBI AUTOMATIC UNALIGNED,
2 DFHMSI CHARACTER (12),
2 TITLEL FIXED BINARY (15,0),
2 TITLEF CHARACTER (1),
2 TITLEI CHARACTER (12),
2 NUMBL FIXED BINARY (15,0),
2 NUMBF CHARACTER (1),
2 NUMBI CHARACTER (6),
2 NAMEL FIXED BINARY (15,0),
2 NAMEF CHARACTER (1),
2 NAMEI CHARACTER (28),
2 ADDRL FIXED BINARY (15,8),
2 ADDRF CHARACTER (1),
2 ADDRI CHARACTER (20),
2 PHONEL FIXED BINARY (15,0),
2 PHONEF CHARACTER (1),
2 PHONEI CHARACTER (8),
2 DATEL FIXED BINARY (15,8),
2 DATEF CHARACTER (1),
2 DATEI CHARACTER (8),
2 AMOUNTL FIXED BINARY (15,0),
2 AMOUNTF CHARACTER (1),
2 AMOUNTI CHARACTER (8),
2 COMMENTL FIXED BINARY (15,0),
2 COMMENTF CHARACTER (1),
2 COMMENTI CHARACTER (9),
2 MSG1L FIXED BINARY (15,0),
2 MSGIF CHARACTER (1),
2 MSGII CHARACTER (39),
2 MSG3L FIXED BINARY (15,8),
2 MSG3F CHARACTER (1),
2 MSG3I CHARACTER (39),
2 FILL0092 CHARACTER (1);

DECLARE 1 DFH$PGBO BASED(ADDR(DFH$PGBI» UNALIGNED,
2 DFHMS2 CHARACTER (12),
2 DFHMS3 FIXED BINARY (15,O),
2 TITLEA CHARACTER (1),
2 TITLEO CHARACTER (12),
2 DFHMS4 FIXED BINARY (15,0),
2 NUMBA CHARACTER (1),
2 NUMBO CHARACTER (6),
2 DFHMS5 FIXED BINARY (15,0),
2 NAMEA CHARACTER (1),
2 NAMEO CHARACTER (20),
2 DFHMS6 FIXED BINARY (15,0),
2 ADDRA CHARACTER (1),
2 ADDRO CHARACTER (28),
2 DFHMS7 FIXED BINARY (15,0),
2 PHONEA CHARACTER (1),
2 PHONEO CHARACTER (8),
2 DFHMS8 FIXED BINARY (15,0),
2 DATEA CHARACTER (1),
2 DATEO CHARACTER (8),
2 DFHMS9 FIXED BINARY (15,0),
2 AMOUNTA CHARACTER (1),
2 AMOUNTO CHARACTER (8),
2 DFHMS10 FIXED BINARY (15,0),

460 CICS/MVS 2.1.2 Application Programmer's Reference

DSECTgener~edbyDFHSPGB~ontinue~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

2 COMMENTA CHARACTER (1),
2 COMMENTO CHARACTER (9),
2 DFHMSII FIXED BINARY (15,0),
2 MSGIA CHARACTER (1),
2 MSG10 CHARACTER (39),
2 DFHMSI2 FIXED BINARY (15,0),
2 MSG3A CHARACTER (1),
2 MSG30 CHARACTER (39),
2 FILL0092 CHARACTER (1);

/* END OF MAP DEFINITION */

DFH$PGB screen layout -~-~~~--~----.

+XXXXXXXXXXXX

+NUMBER: +XXXXXX+
+NAME: +XXXXXXXXXXXXXXXXXXXX+
+ADDRESS:+XXXXXXXXXXXXXXXXXXXX+
+PHONE: +XXXXXXXX+
+DATE: +XXXXXXXX+
+AMOUNT: +XXXXXXXX+
+COMMENT:+XXXXXXXXX+

+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Appendix F. Sample programs (PUI) 461

DFH$PGC map definition --------------------------------,

TITLE 'FILEA - MAP FOR FILE BROWSE - PL/I '
MAPSETC DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET),LANG=PLI, *

STORAGE=AUTO,TIOAPFX=YES,EXTATT=MAPONLY
OFH$PGC DFHMDI SIZE=(12,40)
OIR OFHMDF POS=(l,l),LENGTH=l,ATTRB=IC

NUMBER 1
NAMEl
AMOUNTl
NUMBER2
NAME2
AMOUNT2
NUMBER3
NAME3
AMOUNT3
NUMBER4
NAME4
AMOUNT4
MSG9

MSGI

MSG2

DFHMOF POS=(1,3),LENGTH=1
DFHMDF POS=(1,15),LENGTH=11,INITIAL='FILE BROWSE ' ,

COLOR=BLUE,HILIGHT=UNOERLINE
DFHMDF POS=(3,1),LENGTH=6,INITIAL='NUMBER ' ,COLOR=BLUE
DFHMDF POS=(3,17),LENGTH=4,INITIAL='NAME ' ,COLOR=BLUE
DFHMDF POS=(3,32),LENGTH=6,INITIAL='AMOUNT',COLOR=BLUE
DFHMDF POS=(4,1),LENGTH=6
DFHMDF POS=(4,9),LENGTH=20
DFHMDF POS=(4,30)~LENGTH=8
DFHMDF POS=(5,l),LENGTH=6
DFHMDF POS=(5,9),LENGTH=20
DFHMDF POS=(5,30),LENGTH=8
DFHMDF POS=(6,1),LENGTH=6
DFHMDF POS=(6,9),LENGTH=20
DFHMDF POS=(6,30),LENGTH=8
DFHMDF POS=(7,1),LENGTH=6
DFHMDF POS=(7,9),LENGTH=20
DFHMDF POS=(7,30),LENGTH=8
DFHMDF POS=(19,1),LENGTH=39,COLOR=BLUE,

INITIAL='PRESS CLEAR TO END BROWSE OPERATION'
DFHMDF POS=(11,l),LENGTH=39,COLOR=BLUE,

INITIAL='PRESS PFI OR TYPE F TO PAGE FORWARD'
DFHMDF POS=(12,l),LENGTH=39,COLOR=BLUE,

INITIAL='PRESS PF2 OR TYPE B TO PAGE BACKWARD'
DFHMSO TYPE=FINAL
END

462 CICSIMVS 2.1.2 Application Programmer's Reference

*

*

*

*

The symbolic storage definition produced as a result of the above statements would be as follows:

DSECTgenerated by DFH$PGC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

DECLARE 1 DFH$PGCI AUTOMATIC UNALIGNED,
2 DFHMSI CHARACTER (12),
2 DIRL FIXED BINARY (15,0),
2 DIRF CHARACTER (1),
2 DIRI CHARACTER (1),
2 NUMBERIL FIXED BINARY (15,0),
2 NUMBERIF CHARACTER (1),
2 NUMBERII CHARACTER (6),
2 NAMEIL FIXED BINARY (15,0),
2 NAME1F CHARACTER (1),
2 NAME1I CHARACTER (20),
2 AMOUNTIL FIXED BINARY (15,0),
2 AMOUNT1F CHARACTER (1),
2 AMOUNTII CHARACTER (8),
2 NUMBER2L FIXED BINARY (15,0),
2 NUMBER2F CHARACTER (1),
2 NUMBER2I CHARACTER (6),
2 NAME2L FIXED BINARY (15,0),
2 NAME2F CHARACTER (1),
2 NAME2I CHARACTER (20),
2 AMOUNT2L FIXED BINARY (15,0),
2 AMOUNT2F CHARACTER (1),
2 AMOUNT2I CHARACTER (8),
2 NUMBER3L FIXED BINARY (15,0),
2 NUMBER3F CHARACTER (1),
2 NUMBER3I CHARACTER (6),
2 NAME3L FIXED BINARY (15,O),
2 NAME3F CHARACTER (1),
2 NAME3I CHARACTER (28),
2 AMOUNT3L FIXED BINARY (15,8),
2 AMOUNT3F CHARACTER (1),
2 AMOUNT3I CHARACTER (8),
2 NUMBER4L FIXED BINARY (15,0),
2 NUMBER4F CHARACTER (1),
2 NUMBER4I CHARACTER (6),
2 NAME4L FIXED BINARY (15,0),
2 NAME4F CHARACTER (1),
2 NAME4I CHARACTER (20),
2 AMOUNT4L FIXED BINARY (15,0),
2 AMOUNT4F CHARACTER (1),
2 AMOUNT4I CHARACTER (8),
2 MSG0L FIXED BINARY (15,O),
2 MSG0F CHARACTER (1),
2 MSG8I CHARACTER (39),
2 MSGIL FIXED BINARY (15,O),
2 MSGIF CHARACTER (1),
2 MSGII CHARACTER (39),
2 MSG2L FIXED BINARY (15,0),
2 MSG2F CHARACTER (1),
2 MSG2I CHARACTER (39),
2 FILL0084 CHARACTER (1);

DECLARE 1 DFH$PGCO BASED(ADDR(DFH$PGCI» UNALIGNED,
2 DFHMS2 CHARACTER (12),
2 DFHMS3 FIXED BINARY (15,e),
2 DIRA CHARACTER (1),
2 DIRO CHARACTER (1),
2 DFHMS4 FIXED BINARY (15,e),
2 NUMBERIA CHARACTER (1),
2 NUMBERI0 CHARACTER (6),

Appendix F. Sample programs (PUI) 463

DSECTgeneratedbyDFHSPGC(continued) ~~~~~~~~~~~~~~~~~~~~~~~~

2 DFHMS5 FIXED BINARY (15,0),
2 NAMEIA CHARACTER (1),
2 NAMEI0 CHARACTER (28),
2 DFHMS6 FIXED BINARY (15,8),
2 AMOUNTIA CHARACTER (1),
2 AMOUNTI0 CHARACTER (8),
2 DFHMS7 FIXED BINARY (15,8),
2 NUMBER2A CHARACTER (1),
2 NUMBER20 CHARACTER (6),
2 DFHMS8 FIXED BINARY (15,8),
2 NAME2A CHARACTER (1),
2 NAME20 CHARACTER (20),
2 DFHMS9 FIXED BINARY (15,0),
2 AMOUNT2A CHARACTER (1),
2 AMOUNT20 CHARACTER (8),
2 DFHMS10 FIXED BINARY (15,0),
2 NUMBER3A CHARACTER (1),
2 NUMBER30 CHARACTER (6),
2 DFHMSl1 FIXED BINARY (15,0),
2 NAME3A CHARACTER (1),
2 NAME30 CHARACTER (20),
2 DFHMS12 FIXED BINARY (15,8),
2 AMOUNT3A CHARACTER (1),
2 AMOUNT30 CHARACTER (8),
2 DFHMS13 FIXED BINARY (15,8),
2 NUMBER4A CHARACTER (1),
2 NUMBER40 CHARACTER (6),
2 DFHMS14 FIXED BINARY (15,0),
2 NAME4A CHARACTER (1),
2 NAME40 CHARACTER (28),
2 DFHMS15 FIXED BINARY (15,8),
2 AMOUNT4A CHARACTER (1),
2 AMOUNT40 CHARACTER (8),
2 DFHMS16 FIXED BINARY (15,8),
2 MSG0A CHARACTER (1),
2 MSG00 CHARACTER (39),
2 DFHMS17 FIXED BINARY (15,8),
2 MSG1A CHARACTER (1),
2 MSG10 CHARACTER (39),
2 DFHMS18 FIXED BINARY (15,8),
2 MSG2A CHARACTER (1),
2 MSG20 CHARACTER (39),
2 FILL0084 CHARACTER (1);

/* END OF MAP DEFINITION */

464 CICS/MVS 2.1.2 Application Programmer's Reference

DFH$PGC screen layout -------------,

+FI LE BROWSE

+NUMBER +NAME +AMOUNT
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX

+PRESS CLEAR TO END BROWSE TRANSACTION
+PRESS PFI OR TYPE F TO PAGE FORWARD
+PRESS PF2 OR TYPE B TO PAGE BACKWARD

Appendix F. Sample programs (PUI) 465

DFH$PGD map definition ----------------------------------,

TITLE 'FILEA - MAPSET FOR,LOW BALANCE R~PORT - PL/I'
MAPSETD DFHMSD TYPE=&SYSPARM,MODE=OUT,CTRL=(FREEKB,FRSET),LANG=PLI, *

STORAGE=AUTO,TIOAPFX=YES,EXTATT=MAPONLY,COLOR=BLUE
DFH$PGD DFHMDI SIZE=(I,40),COLOR=GREEN
NUMBER DFHMDF POS=(I,I),LENGTH=6
NAME DFHMDF POS=(I,9),LENGTH=20
AMOUNT DFHMDF POS=(I,30),LENGTH=8
HEADING DFHMDI SIZE=(3,40),HEADER=YES

DFHMDF POS=(I,5),LENGTH=I8,INITIAL='LOW BALANCE REPORT', *
HILIGHT=UNDERLINE

DFHMDF POS=(I,30),LENGTH=4,INITIAL='PAGE'
PAGEN DFHMDF POS=(I,35),LENGTH=3

DFHMDF POS=(3,I),LENGTH=6,INITIAL='NUMBER'
DFHMDF POS=(3,I7),LENGTH=4,INITIAL='NAME'
DFHMDF POS=(3,32) ,LENGTH=6,INITIAL= 'AMOUNT ,

FOOTING DFHMDI SIZE=(2,40),TRAILER=YES,JUSTIFY=LAST
DFHMDF POS=(2,I),LENGTH=38, *

INITIAL='PRESS CLEAR AND TYPE PIN TO SEE PAGE N'
FINAL DFHMDI SIZE=(2,40),TRAILER=YES,JUSTIFY=LAST .

DFHMDF POS=(2,I0),LENGTH=I4,INITIAL='END OF REPORT.'
DFHMSD TYPE=FINAL
END

The symbolic storage definition produced as a result of the above statements would be as follows:

DSECT generated by DFH$PGD

DECLARE 1 DFH$PGDO AUTOMATIC UNALIGNED,
2 DFHMSI CHARACTER (12),
2 DFHMS2 FIXED BINARY (15,0),
2 NUMBERA CHARACTER (1),
2 NUMBERO CHARACTER (6),
2 DFHMS3 FIXED BINARY (15,0),
2 NAMEA CHARACTER (1),
2 NAMEO CHARACTER (20),
2 DFHMS4 FIXED BINARY (15,0),
2 AMOUNTA CHARACTER (1),
2 AMOUNTO CHARACTER (8),
2 FILL0022 CHARACTER (1);

/* END OF MAP DEFINITION */
DECLARE 1 HEADINGO AUTOMATIC UNALIGNED,

2 DFHMS5 CHARACTER (12),
2 DFHMS6 FIXED BINARY (15,0),
2 PAGENA CHARACTER (1),
2 PAGENO CHARACTER (3),
2 FILL0043 CHARACTER (1);

1* END OF MAP DEFINITION */
DECLARE 1 FOOTINGO AUTOMATIC UNALIGNED,

2 DFHMS7 CHARACTER (12),
2 FILL8849 CHARACTER (1);

1* END OF MAP DEFINITION */
DECLARE 1 FINALO AUTOMATIC UNALIGNED,

2 DFHMS8 CHARACTER (12),
2 FILL0057 CHARACTER (1);

1* END OF MAP DEFINITION */

466 CICS/MVS 2.1.2 Application Programmer's Reference

DFH$PGD screen layout -------------------------------

+LOW BALANCE REPORT

+NUMBER +NAME
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX

+PAGE+XXX

+AMOUNT
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXX XXX XX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

+PRESS CLEAR AND TYPE PIN TO SEE PAGE N

Appendix F. Sample programs (PUI) 467

DFH$PGK map definition -----------------------------------,

TITLE 'FILEA - MAP FOR ORDER ENTRY - PL/I'
MAPSETK DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET),LANG=PLI, *

STORAGE=AUTO,TIOAPFX=YES,EXTATT=MAPONLY
DFH$PGK DFHMDI SIZE=(12,48)

MSGI

MSG2

DFHMDF POS=(81,18),LENGTH=II,ATTRB=(BRT,ASKIP),
INITIAL='ORDER ENTRY',COLOR=BLUE,HILIGHT=UNDERLINE

DFHMDF POS=(83,04),LENGTH=26,ATTRB=(DRK,ASKIP),
INITIAL='NUMBER NOT FOUND - REENTER',
COLOR=RED,HILIGHT=BLINK

OFHMDF POS=(84,04),LENGTH=22,ATTRB=(DRK,ASKIP),
INITIAL='OATA ERROR - REENTER',
COLOR=RED,HILIGHT=BLINK

DFHMDF POS=(05,04),LENGTH=89,ATTRB=PROT,
INITIAL='NUMBER :'

CUSTNO DFHMDF POS=(05,14),LENGTH=06,ATTRB=(IC,NUM)
DFHMDF POS=(85,21),LENGTH=81
DFHMDF POS=(86,04),LENGTH=89,ATTRB=PROT,COLOR=BLUE,

INITIAL='PART NO :'
PART NO DFHMDF POS=(86,14),LENGTH=86,ATTRB=NUM

QUANT

DFHMDF POS=(86,21),LENGTH=81
OFHMDF POS=(07,04),LENGTH=09,ATTRB=PROT,COLOR=BLUE,

INITIAL='QUANTITY: '
DFHMDF POS=(07,14),LENGTH=06,ATTRB=NUM
DFHMDF POS=(07,21),LENGTH=81
DFHMDF POS=(89,81),LENGTH=38,ATTRB=ASKIP,COLOR=BLUE,

INITIAL='PRESS ENTER TO CONTINUE,CLEAR TO QUIT'
OFHMSD TYPE=FINAL
END

468 CICS/MVS 2.1.2 Application Programmer's Reference

*

*
*

*
*

*

*

*

*

The symbolic storage definition generated as a result of the above statements would be as follows:

OSEeT generated by OFH$PGK -------------------------------,

DECLARE 1 DFH$PGKI AUTOMATIC UNALIGNED,
2 DFHMSI CHARACTER (12),
2 MSGIL FIXED BINARY (15,0),
2 MSGIF CHARACTER (1),
2 MSGII CHARACTER (26),
2 MSG2L FIXED BINARY (15,0),
2 MSG2F CHARACTER (1),
2 MSG2I CHARACTER (22),
2 CUSTNOL FIXED BINARY (15,0),
2 CUSTNOF CHARACTER (1),
2 CUSTNOI CHARACTER (6),
2 PARTNOL FIXED BINARY (15,0),
2 PARTNOF CHARACTER (1),
2 PARTNOI CHARACTER (6),
2 QUANTL FIXED BINARY (15,0),
2 QUANTF CHARACTER (1),
2 QUANTI CHARACTER (6),
2 FILL086I CHARACTER (1);

DECLARE 1 DFH$PGKO BASED(ADDR(DFH$PGKI» UNALIGNED,
2 DFHMS2 CHARACTER (12),
2 DFHMS3 FIXED BINARY (15,0),
2 MSGIA CHARACTER (1),
2 MSGIO CHARACTER (26),
2 DFHMS4 FIXED BINARY (15,0),
2 MSG2A CHARACTER (1),
2 MSG20 CHARACTER (22),
2 DFHMS5 FIXED BINARY (15,8),
2 CUSTNOA CHARACTER (1),
2 CUSTNOO CHARACTER (6),
2 DFHMS6 FIXED BINARY (15,0),
2 PARTNOA CHARACTER (1),
2 PARTNOO CHARACTER (6),
2 DFHMS7 FIXED BINARY (15,8),
2 QUANTA CHARACTER (1),
2 QUANTO CHARACTER (6),
2 FILL8861 CHARACTER (1);

/* END OF MAP DEFINITION */

OFH$PGK screen layout ------------,

+ORDER ENTRY

+NUMBER NOT FOUND REENTER
+DATA ERROR REENTER
+NUMBER :+XXXXXX+
+PART NO :+XXXXXX+
+QUANTITY:+XXXXXX+

+PRESS ENTER TO CONTINUE, CLEAR TO QUIT

Appendix F. Sample programs (PUr) 469

DFH$PGL map definition ---------------------------------,

TITLE 'FILEA - MAP FOR ORDER ENTRY QUEUE PRINT - PL/I'
MAPSETL DFHMSD TYPE=&SYSPARM,MODE=OUT,LANG=PLI,

STORAGE=AUTO,TIOAPFX=YES
DFH$PGL DFHMDI SIZE=(05,S0)
TITLE DFHMDF POS=(01,01),LENGTH=43,

INITIAL='NUMBER NAME ADDRESS'
NUMB DFHMDF POS=(02,01),LENGTH=06
NAM DFHMDF POS=(02,12),LENGTH=20
ADDR DFHMDF POS=(02,37),LENGTH=20

DFHMDF POS=(03,01),LENGTH=09,
INITIAL='PART NO :'

PART DFHMDF POS=(03,11),LENGTH=06
DFHMDF POS=(04,01),LENGTH=09,

INITIAL='QUANTITY:'
QUANT DFHMDF POS=(04,11),LENGTH=06

DFHMDF POS=(05,01),LENGTH=1,
INITIAL=' ,

DFHMSD TYPE=FINAL
END

*

*

*

*

*

The symbolic storage definition generated as a result of the above statements would be as follows:

DSECTgenerated by DFH$PGL -----------------------------~
DECLARE 1 DFH$PGLO AUTOMATIC UNALIGNED,

2 DFHMS1 CHARACTER (12),
2 DFHMS2 FIXED BINARY (15,0),
2 TITLEA CHARACTER (1),
2 TITLEO CHARACTER (43),
2 DFHMS3 FIXED BINARY (15,0),
2 NUMBA CHARACTER (1),
2 NUMBO CHARACTER (6),
2 DFHMS4 FIXED BINARY (15,0),
2 NAMA CHARACTER (1),
2 NAMO CHARACTER (20),
2 DFHMS5 FIXED BINARY (15,0),
2 ADORA CHARACTER (1),
2 ADORa CHARACTER (20),
2 DFHMS6 FIXED BINARY (15,0),
2 PARTA CHARACTER (1),
2 PARTO CHARACTER (6),
2 DFHMS7 FIXED BINARY (15,0),
2 QUANTA CHARACTER (1),
2 QUANTO CHARACTER (6),
2 FILL0039 CHARACTER (1);

/* END OF MAP DEFINITION */

DFH$PGL print format ----------------------------------,

+NUMBER NAME ADDRESS
+xxxxxxxxxxxxxxxxxxxx +xxxxxx +xxxxxxxxxxxxxxxxxxxx

+PART NO :+xxxxxx
+QUANTITY:+xxxxxx
+x

470 CICS/MVS 2.1.2 Application Programmer's Reference

Record descriptions for PL/I sample
programs

FI LEA record description

The FILEA record description is used by the sample
programs. It is defined in copy code DFH$PFIL and has the
following format:

DCL 1 FILEA,
2 FILEREC,

3 STAT CHAR(l),
3 NUMB PIC ' (6)9 1

,

3 NAME CHAR(20),
3 ADDRX CHAR(20),
3 PHONE CHAR(8),
3 DATEX CHAR(8),
3 AMOUNT CHAR(8),
3 COMMENT CHAR(9);

LOGA record description

The LOGA record description is used by the sample
programs when an audit trail is written to a transient data
file. It is defined in copy code DFH$PLOG and has the
following format:

DCL 1 LOGA,
2 LOGHDR,

3 LDAY FIXED DEC (7,O),
3 LTIME FIXED DEC (7,O),
3 LTERML CHAR(4) ,
2 LOGREC,
3 LSTAT CHAR(l),
3 LNUMB CHAR(6) ,
3 LNAME CHAR(20),
3 LADDR CHAR(28) ,
3 LPHONE CHAR(8),
3 LDATE CHAR(8),
3 LAMOUNT CHAR(8),
3 LCOMMENT CHAR(9);

L860 record description

The L860 record description is used by the Order Entry
Queue Print sample program when it writes to the
transient data queue 'L860'. It is defined in copy code
DFH$PL86 and has the following format:

DCl 1 L860,
2 ITEM,

3 CUSTNO CHAR(6) ,
3 PARTNO CHAR(6),
3 QUANTITY CHAR(6),
3 TERMID CHAR(4);

Appendix F. Sample programs (PUI) 471

Index

A
ABCODE option 53, 315
ABEND command 314
abend user task (EDF) 61
ABEND (abnormal termination) exit 313
abnormal termination

exceptional condition 315
options 315
reactivate an exit 313
recovery 313

absol ute expression 6
ABSTIME option 280
access to DUI database

DUI CALL statement 117
EXEC DUI command 101

access to system information
ADDRESS command 51
ASSIGN command 52
CICS storage areas 51
EXEC interface block (EIB) 51

ACCOUNT option 321
ACCUM option 176, 213
activate an ABEND exit 313
active partition 162, 164
ACTPARTN option 167,213
adding records

to BDAM data set 90
to BDI data set 266
to VSAM data set 82

address
cursor 232
PCB 118

ADDRESS command 51
ADDRESS register, VS COBOL II 24
AID (see attention identifier)
AIX (alternate index) 78
ALARM option 152, 213
ALIGNED attribute (PUI) 7
ALL option 213
ALLOCATE command 236,238
alternate facility 221
alternate index path 78
alternate index (AIX) 78
alternate key 78
alternate screen size 142
ALTSCRN operand 205
ampersand (CL interpreter) 70
ANSI85 standards, VS COBOL II 36-40
ANSI85 translator option 14
ANYKEY option 155, 233

© Copyright IBM Corp. 1982, 1991

API (application programming interface) 51
APLG abend 41
APOST option 15
application data area of screen 142
application partition set 164, 167
application program logical levels 32, 35, 289
application program using commands and macros 13
application programming interface (API) 51
application-oriented information (LU6) 237
APPLID option 53
argument value

assembler language 6
COBOL 6
PUI 7

ASIS option
basic mapping support 154, 213
terminal control 257

ASKTIME command 275
Assembler

DUI CALL interface 20
assembler language

argument value 6
coding conventions 5
LENGTH option default 6
program exit 10
programming techniques 19
register contents 10
restrictions 19
sample programs 353
translated code 10

assembling a map 146
assembling a partition set 166
ASSIGN command 52
asynchronous interrupt 223
asynchronous journal output 327
asynchronous page build 156
ATI (see automatic task initiation)
ATTACHID option 257
attention condition (SIGNAL) 228
attention identifier (AID)

constants 208
HANDLE AID command 154
input without data 232
list (DFHAID) 232
3270 input operation 139

A TTRB operand 195, 205
attribute character 140, 150
attribute constants 150
attribute control character list (DFHBMSCA) 205,233
attribute, extended 160
audible alarm (MSR) 170

473

Audio Response Unit (7770) 256
audio terminal (2721) 256
autoanswer transaction (3735) 251
autocall transaction (3735) 251
automatic task initiation (ATI) 301
AUTOPAGE option 174,213
autoskip field 140
AUXILlARYoption 307
auxiliary storage temporary data 305
auxiliary trace facility 319

B
background transparency 141
backout of resources 331
backout updates (DUI) 103
base color 140
base locator for linkage (Bll)

chained storage areas 22
large storage areas 23
OCCURS DEPENDING ON clauses 22
storage addressing 21

BASE operand 196
base state 165
basic mapping support (BMS)

an introduction 135
assembling maps 146
block data format 172
BMS and GDDM 145
cataloging maps 146
CMSG message switching transaction 189
completing a logical message 174
coordinating BMS and another screen manager 153
cumulative mapping 176
cumulative output processing 176
cursor position 153
deleting a logical message 174
determining the actual input partition (RECEIVE

PARTN) 209
device control options 152
exceptional conditions 156, 217
field data format 149
field definition macro 145, 194
field group 145
floating maps 176
full function BMS 173
GDDM coordination 145, 153
header and trailer maps 176
input field suffix 149
input partition (RECEIVE PARTN) 168
invalid data 150
loading a partition set 167
logical device components 169
logical message 173
map definition macro 144, 193
map positioning 177

474 CICS/MVS 2.1.2 Application Programmer's Reference

basic mapping support (BMS) (continued)
map set definition macro 143, 193
map set suffixing 146
map set termination 146
map sets 135
map size 19
mapping input data 153, 209
mapping output data 150
maps 148
minimum function BMS 139
null map 144
options 213
outboard formatting 172
output field suffixes 149
page overflow 176, 180
partition definition macro 166, 204
partition set definition macro 165, 204
physical map 146
pregenerated versions 137
printer support 160
returning mapped data to a program 189
routing a logical message (ROUTE) 184
SCS and non-3270 printers 161
sending a user defined data stream (SEND TEXT

NOEDIT) 191
sending data previously mapped by BMS (SEND TEXT

MAPPED) 190
sending data to a display 150
sending device controls without data (SEND

CONTROL) 153
sending text data (SEND TEXT) 159
standard function BMS 159
symbolic map 146, 148
terminal code table 190
terminal operator paging 175
3270 printer using NlEOM 161
3270 printer without NlEOM 160

batch compilation, VS COBOL II (ANSI85) 37
batch data interchange 265

add record to data set 266
delete a record from data set 267
destination identification 265
exceptional conditions 269
interrogate a data set 266
options 268
read record from data set 266
request next record number 268
send data to output device 268
terminate data set 267
update a record in data set 266
wait for function completion 268

batch logical unit (3770) 253
batch mode application (3740) 252
BDAM

browsing operations 89

BDAM (continued)
data sets 78, 89, 90
exclusive control 91

BIF DEEDIT (built-in function) 335
blank lines and 3270 printer 157
blank lines, VS COBOL II (ANSI85) 36
Bll (see base locator for linkage)
block data format (BMS) 172
block reference 89
blue parameter of COLOR operand 196
BMS logical message (see logical messages)
BMS (see basic mapping support)
Boolean expression 104
BOTIOM command (CEBR) 73
bracket protocol (LAST option) 227
bright intensity field 140
browse operation

BDAM 89
ending 96
read next record during 95
read previous record 96
reset starting point 96
specify starting point 95
VSAM 80

browse temporary storage (EDF) 61
browse transaction (CEBR) 73
BTAM programmable device 229
BTRANS option 53
BUFFER option 257
BUFSZE operand 205
BUilD ATTACH command 236
built-in function (BIF DEEDIT) 335

C
CAll statement 20

in VS COBOL II 28,32-36
CAlLDLI macro 117
CANCEL command 280
CANCEL option 315
CARD option 268
cataloging a map 146
cataloging a partition set 166
CBIDERR condition 262
CBl statement (COBOL) 13
CBUFF option 257
CEBR (browse transaction) 73
CECI (see command level interpreter) 67
CECS (see command level interpreter) 67
CEDF transaction 58
cell size for partitions 168
chained storage area, COBOL 22
chaining of data 226
character attribute 160
character cell size 165, 168

CHARSZE operand 205
checking a DUI call 120
checkout, program 57
CICS and the XRF environment 53
CICS option 14
CLEAR key 155, 162
CLEAR option 155, 233
CLEAR PARTITION key 162
ClRPARTN option 233
CMSG message switching transaction 189
COBOL

argument value 6
base locator for linkage (Bll) 21
compilers supported 21
program segments 24
restrictions 20
sample programs 393
translated code 13

COBOL2 option 14
CODEREG argument 12
coding conventions 5
COLOR operand 196
COLOR option 53
COLUMN command (CEBR) 73
COLUMN operand 177, 197
comma and semicolon as delimiters, VS COBOL II

(ANSI85) 40
command

argument values 5
end-of-command delimiter 5
execution (Cl interpreter) 69
format 5
macro equivalent 351
syntax check 68

command language translator
data set 9
optional facilities 13
translated code 10

command level interpreter (CECIICECS)
an introduction 67
command input area 67
information area 68
installing 72
invoking 67
PF key values area 71
program control 72
screen layout 67
security rules 72
status area 68
terminal sharing 72
variables 70

COMMAREA
length of 19

COMMAREA option 296

Index 475

common buffer, output to (2980) 243
communication area (DFHCOMMAREA) 21
communication line, relinquishing 223
compiler options 14
compilers supported

COBOL 21
PUI 42

COMPLETE option 324
conditions (exceptional conditions) 43
CONFIRM option 257
CONNECT PROCESS command 238
CONSOLE option 268
constants

AID values (DFHAID) 208
attribute values (DFHBMSCA) 205
for examining EIBAID field 155, 208
for MSR control values 208
for printer format controls 205
for 3270 attributes 205
MSR control (DFHMSRCA) 208
printer control values (DFHBMSCA) 205
3270 attributes 150

control
exclusive, BDAM 91
exclusive, VSAM 87
pass with return 289
pass without return 290
return 291
trace 320

control area, VSAM 78
control interval, VSAM 78
CONVERSE command 223
CONVERSE option 257
converse with terminal or LU 223
CONVID option 257
copy

displayed information 232
symbolic description map 148

copy book
DFHAID 208
DFHBMSCA 150,205
DFHEIBLK 10
DFHMSRCA 208

copybook DFHAID 155
create a journal record 328
CSA option 51
CTLCHAR option 257
CTRL operand 197
cumulative output processing 176
cumulative text processing 181
CURRENT option 213
CURSOR option 152,213
cursor position

basic mapping support 153
terminal control 232

476 CICS/MVS 2.1.2 Application Programmer's Reference

CURSOR SELECT key 155
CWA option 51
CWALENG option 53

D
data

chaining 226
temporary storage 305

data communication operations 133
data com pari son 163
data definition 17
data fields on screen 142
data initialization 17
data integrity 78
data interchange (see batch data interchange)
DATA operand 197
DATA option 300
data records
data set

access from CICS application programs 79
batch data interchange 265
BDAM ,89
blocked 78
identification 79
translator 9
VSAM 87

data-area argument 5
data-value argument 5
DATAONLYoption 151,213
DATAREG argument 12
DATASTR option 257
data, passing to other program 292
date field of EIB 51
DATE option 280
DATEFORM option 280
DATESEP option 280
DAYCOU NT option 280
DAYOFMONTH option 280
DAYOFWEEK option 280
DCT option 324
DDMMYV option 281
deadlock prevention 87
DEBKEY option 97
deblocking argument 89
DEBREC option 97
DEBUG option 14
debugging 57,309
default action for conditions 43
default screen size 142
deferred journal output 327
deferred light pen field 155
defining a map set 143
defining partition sets 165
definite response protocol

batch data interchange 265

definite response protocol (continued)
terminal control 227

DEFRESP option
batch data interchange 268
terminal control 227, 258

DELAY command 276
delay processing of task 276
DELETE command 94
delete lock 87
DELETEQ TD command 303
DELETEQ TS command 307
deleting

batch data interchange record 267
file control record 94
loaded program 291
temporary storage queue 307
transient data queue 303

DELIMITER option 53
delimiter, end-of-command 5
DEQ command 285
dequeue from resource 285
DEST option 258
DESTCOUNT option 53, 189, 212
DESTID option

ASSIGN command 53
batch data interchange 268

DESTI DLENG option
ASSIGN command 53
batch data interchange 268

destination
extrapartition 301
identification 265
indirect 301
intrapartition 301

detect an attention condition 228
device control options (BMS) 152,183
device dependent data stream 135
DFHAID copy book 208, 232
DFHBMSCA copy book 150,205,233
DFHCOMMAREA (communication area) 21
DFHEAI interface processor 10
DFHECALL macro 10
DFHEIBLK copy book 10
DFHEICAL macro - use DFHECALL 10
DFHEIEND macro 10
DFHEIENT macro 10

CODEREG 12
DATAREG 12
defaults 12
EIBREG 12

DFHEIPLR symbolic register 12
DFH EI RET macro 10
DFHEISTG macro 10
DFHMDF field definition macro 145, 194

DFHMDI map definition macro 144, 193
DFHMSD map set definition macro 143, 193
DFHMSRCA copy book 170, 208
DFHPDI partition definition macro 166, 204
DFHPSD partition set definition macro 204
DFHRESP builtin function 43
DFH2980 structure 243
DIB (DLII interface block) 105
direct terminal 186
DISABLED condition 98
disconnect a switched line 223
display device operations 230

attention identifier list (DFHAID) 232
attention identifier (AID) 232
copy displayed information 232
cursor address 232
erase all unprotected fields 232
input operation without data 232
pass control on receipt of an AID 232
print displayed information 231
standard attribute/printer control character list

(DFHBMSCA) 205, 233
display partitioning 162
display register (EDF) 61
display trigger field 171
disposition and message routing 186
distributed transaction processing (DTP) 221
DLI option 14
DLII

access scheduling 117
and EDF 64
call check 120
CALL statement 117
database access 117
database call 119
EXEC DLI command 101
interface block (DIB) 105
response codes 120
restriction in IMS batch 129
sync points 331
work area 119

DSATTS operand 198
DSIDERR condition 98
DSSTAT condition 269
DTP (distributed transaction processing) 221
dual screen mode (EDF) 58
DUMP command 323
dump control 323
DUMPCODE option 324
DUPKEY condition 99
DUPREC condition 99
dynamic call 28
dynamic program 18
dynamic storage 10

Index 477

E
ECADDR option 281
EDF option 14, 74
EDF (see execution diagnostic facility)
EI option 321
EIB (see EXEC interface block)
EIBAID field 155, 339

examining contents 208
EIBAlT field 339
EIBCALEN field 339
EIBCOMPL field 339
EIBCONF field 339
EIBCPOSN field 339
EIBDATE field 275,339
EI BDS field 339
EIBEOC field 339
EIBERR field 339
EIBERRCD field 339
EIBFMH field 340
EIBFN field 44
EIBFREE field 341
EIBNODAT field 341
EIBRCODE field 44, 341
EIBRECV field 343
EIBREG argument 12
EIBREQID field 344
EIBRESP field 344
EIBRESP2 field 345
EIBRLDBK field 345
EIBRSRCE field 345
EIBSIG field 345
EIBSYNC field 345
EIBSYNRB field 345
EIBTASKN field 345
EIBTIME field 275, 345
EIBTRMID field 345
EIBTRNID field 345
end browse operation 96
end of message (EOM) order 161
END-EXEC delimiter (COBOL) 5
end-of-command delimiter 5
ENDBR command 96
ENDDATA condition 283
ENDFILE condition 99
ENDINPT condition 262
ENO command 285
ENOBUSY condition 286
enqueue upon resource 285
ENTER command 320
ENTER key 71, 155
ENTER option 155, 233
ENTRY option 296
entry poi nt, trace 317
entry to assembler program 10

478 CICS/MVS 2.1.2 Application Programmer's Reference

entry-sequenced data set (ESDS) 77
ENTRYNAME option 321
ENVDEFERR condition 283
EOC condition

basic mapping support 218
terminal control 262

EODS condition
basic mapping support 218
batch data interchange 270
terminal control 262

EOF condition 262
EOM (end of message) order 161
EPILOG option 14
EQUAL option 97
equated symbols 6
erase all unprotected fields 232
ERASE option 152,213

terminal control 258
ERASEAUP option 152, 214
ERROR condition 44
error handling 17
ERRTERM option 214
ESDS (entry-sequenced data set) 77
establish a sync point 331
event

control area, timer 276
monitoring point 317
waiting for 277

exceptional conditions
abnormal termination recovery 315
basic mapping support 156, 217
batch data interchange 269
description 43
file control 98
HANDLE CONDITION command 45
IGNORE CONDITION command 45
interval control 283
journal control 330
list of 46
partitions 169
program control 297
storage control 300
task control 286
temporary storage control 308
terminal control 262
trace control 321
transient data control 303

exclusive control
BDAM 91
releasing (UNLOCK) 95
VSAM 87

EXEC CICS command format 5
EXEC DLI command 64, 101
EXEC interface block (EIB)

description 51

EXEC interface block (EIB) (continued)
fields 339

EXEC interface stubs 19
execution diagnostic facility (EDF)

CEBR initiation 73
CEDF transaction 58
displays 59, 63
dual screen mode 58
EXEC DLI command 64, 101
functions 57
installing 58
invoking 58
program labels 64
pseudoconversational program 64
security rules 58
single screen mode 58
terminal sharing 60

exit from ASM program 10
exit (see abnormal termination recovery)
expanded area (CL interpreter) 71
expiration time

notification when reached 276
specifying 275

EXPIRED condition 283
EXTATI operand 198
EXTDS option 53
extended aUri bute 160
extended color 140
EXTRACT A TI ACH command 236
EXTRACT LOGONMSG command 229
EXTRACT PROCESS command 238
EXTRACT TCT command 236
extrapartition destination 301

F
FACILITY option 53
facility, alternate 221
facility, principal 221
FCI option 54
FCT option 324
FE option 14
field concepts, 3270 140
field data format (BMS) 149
field definition macro (BMS) 145, 194
field edit built-in function 335
field group 145
field of EIB 51
FIELD option 335
field outlining 141
field separator operand 198
fields, EIB 339
file control

an overview 77
BDAM data sets 89
data set identification 79

file control (continued)
deleting VSAM records 94
end browse operation 96
exceptional conditions 98
options 97
read a record 93
read next record 95
read previous record 96
release exclusive control 95
reset start for browse 96
specify start for browse 95
update a record 94
VSAM data sets 87
writing new record (WRITE) 93

FILE option 97
FILENOTFOUND condition 99
FIND command (CEBR) 73
flag byte, route list 188
FLAG option 14
FLDSEP operand 198
FLENGTH option 222, 296, 300, 324
floating maps 176
FM H option 258, 281
FMH (see function management header)
FMHPARM option 214
form feed control (BMS) 157
format

command 5
data 135
trace table 318

FORMATIIME option 276
FORMFEED option 152, 161,214
FREE command 229, 236
free main storage 299
FREEKB option 152, 214
FREEMAIN command 299
FREEMAIN restriction 18
FROM option

basic mapping support 214
batch data interchange 268
dump control 324
file control 97
interval control 281
journal control 329
temporary storage control 307
terminal control 258
trace control 321
transient data control 303

FROMFLENGTH option 222
FROMLENGTH option 258
FRSET option 152, 214
full function BMS 173
full function logical unit (3790) 254
full word length option 222

Index 479

FUNCERR condition 270
function management header (FMH) 227
function that is unsupported 44

G
GCHARS option 54
GCODES option 54
GDDM coordination (BMS)

GDDM GSFLD call 153
GDDM PSRSRV call 145
graphic hole 153
restriction with partitions 169

GDS option 15
General Banking Terminal System (see 2980)
generic key 80
GENERIC option 97
GET command (CEBR) 73
get main storage 299
GETMAIN command 299
global variables, VS COBOL" (ANSI85) 40
graphic hole 153
green parameter of COLOR operand 196
GRPNAME operand 145, 198
GTEQ option 97

H
HANDLE ABEND command 313
HANDLE AID command 154, 172,232
HANDLE CONDITION command 45
hardware print key 156
HEADER operand 177

map definition macros 198
HEADER option 181,214
hhmmss argument 5
highlighting 141
HILIGHT operand 198
HILIGHT option 54
HOLD option 296
HONEOM option 214
horizontal picture element 165
host command processor LU (3650/3680) 249
host conversational (3270) LU (3650) 249
host conversational (3653) LU (3650)
hpel (horizontal picture element) 165
HTAB operand 198

IC attribute 153
identification

BDAM record 89
data set 79
destination 265
VSAM record 87

480 CICS/MVS 2.1.2 Application Programmer's Reference

IGNORE CONDITION command 45
IGREQCD condition

basic mapping support 218
batch data interchange 270
terminal control 262

IGREQID condition 218
ILLOGIC condition 99
immediate light pen field 155
INBFMH condition 262
inbound FMH 227
index, alternate (AIX) 78
indicator lights (MSR) 170
indirect destination 301
INITIAL operand 198
initialize main storage 299
initiate a task (see start a task)
INITIMG option 300
INPARTN option 54,212,214
input data

chaining of 226
unsolicited 227

input data set 9
input operation without data 232
input operations 139
input partition 164, 167
INQUIRE command 51
inquiry logical unit (3790) 254
insert-cursor indicator 141
installing EDF 58
installing the CL interpreter 72
integrity of data 78
interactive logical units 252
interface processor DFH EAI 10
interface stubs, EXEC 19
interleaving conversation with message routing 186
interpreter

installation 72
invoking 67
screen layout 67
security rules 72
variables 70

interpreter logical unit (3650) 250
interrogate a data set 266
interval control

cancel interval control command 280
delay processing of task 276
exceptional conditions 283
expiration time 275
format of date and time 276
notification when specified time expires 276
options 280
request current time of day 275
retrieve data stored for task 279
specifying request identifier 275
start a task 277

interval control (continued)
wait for event to occur 277

INTERVAL option
basic mapping support 214
interval control 281

INTO option
basic mapping support 214
batch data interchange 269
file control 97
interval control 281
temporary storage control 307
terminal control 258
transient data control 303

intrapartition destination 301
INVERRTERM condition 218
I NVITE option 226, 258
INVLDC condition 218
INVMPSZ condition 218
invoking EDF 58
invoking the CL interpreter

CECI transaction 67
CECS transaction 67

INVPARTN condition 218
INVPARTNSET operand 218
I NVREQ condition

basic mapping support 218
file control 99
interval control 283
journal control 330
program control 297
temporary storage control 308
terminal control 262
trace control 321

INVTSREQ condition 283
10ERR condition

file control 99
interval control 283
journal control 330
temporary storage control 308
transient data control 303

ISCINVREQ condition
file control 99
temporary storage control 308
transient data 304

ISSUE ABEND command 238
ISSUE ABORT command 267
ISSUE ADD command 266
ISSUE CONFIRMATION command 239
ISSUE COpy command 232
ISSUE DISCONNECT command 223, 228
ISSUE END command 267
ISSUE ENDFILE command 252
ISSUE ENDOUTPUT command 252
ISSUE EODS command 250

ISSUE ERASE command 267
ISSUE ERASEAUP command 232
ISSUE ERROR command 239
ISSUE LOAD command 250
ISSUE NOTE command 268
ISSUE PASS command 228

effects of NOTIFY 228
ISSUE PREPARE command 228
ISSUE PRINT command 156, 231
ISSUE QUERY command 266
ISSUE RECEIVE command 266
ISSUE REPLACE command 266
ISSUE RESET command 223
ISSUE SEND command 268
ISSUE SIGNAL command 223
ISSUE WAIT command 268
ITEM option 307
ITEM ERR condition 308
IUTYPE option 258
110 work area in DUI 119

J
JFILEID option 329
JIDERR condition 330
JOURNAL command 328
journal control

create a journal record 328
exceptional conditions 330
journal records 327
options 329
output synchronization 327

journal records
JTYPEID option 329
JUSFIRST option 214
JUSLAST option 215
JUSTIFY operand

effect on map positioning 177
map definition macros 199

JUSTIFY option 215

K
KATAKANA option 54
key

alternate (secondary) 78
generic 80
physical 89

key-sequenced data set (KSDS) 77
KEYLENGTH option

batch data interchange 269
file control 97
remote data set 85

KEYNUMBER option 269
keystroke overlapping 163

Index 481

keyword fields on screen 142
keyword length 222
KSDS (key-sequenced data set) 77

L
label argument 5
LABEL option 315
LANG operand 199
LANGLVL option 15
LAST option 215

bracket protocol 227
terminal control 259

LDC operand 200
LDC option

basic mapping support 215
description of 248
terminal control 259

LDCMNEM option 54, 212
LDCNUM option 54,212
LEAVEKB option 259
LENGERR condition 218, 286

batch data interchange 270
file control 99
interval control 283
journal control 330
program control 297
storage control 300
temporary storage control 308
terminal control 262
transient data control 304

length of 19
length of passed area 18
LENGTH operand 200
LENGTH option

basic mapping support 215
batch data interchange 269
built-in function 335
default (assembler language) 6
default (PLlI) 7
dump control 324
file control 97
interval control 281
journal control 329
program control 296
storage control 300
task control 286
temporary storage control 307
terminal control 259
transient data control 303

LENGTH register, VS COBOL II 24
levels, application program logical 289
light pen

detectable field 141
handling in program 155

482 CICS/MVS 2.1.2 Application Programmer's Reference

light pen detectable field 155
LlGHTPEN option 155, 233
LINE command (CEBR) 73
LINE operand 177,200
line width for printer 157
LlNEADDR option 259
LlNECOUNT option 15
line, communication 223
LINK command 289

in VS COBOL II 32-36
link to program anticipating return 289
LIST option

basic mapping support 215
listing data set 9
literal constant 6
load a map set 146
load a program, table, or map 291
LOAD command 291
load module size 19
local copy key 156
locality of reference 17
locate-mode

SERVICE RELOAD statement 23
to minimize the working set 18

lockout (see deadlock prevention)
logical device code (LDC option) 248
logical device components

basic support 169
page overflow 180

logical levels, application program 32, 35, 289
logical messages (BMS)

completing a logical message 174
cumulative text processing 181
device controls 183
direct terminal output 174
example of use 181
floating maps 177
introduction 173
map positioning 177
message recovery 174
page overflow 180
PAGING output 175
purging a logical message 174

logical record presentation 226
logical unit of work (LUW) 331
logical units

batch 253
conversing with (CONVERSE) 223
facilities for 225
interactive 252
LUTYPE6.1 235
LUTYPE6.2 237
pipeline 247
reading data from 266

terminal control 222

logical units (continued)
writing data to 266

terminal control 223
3270 Information Display System 245
3270 SCS Printer 245
3270-Display (LUTYPE2) 246
3600 Pipeline 247
3600 (3601) 248
3600 (3614) 248
3650 Host Conversational (3270) 249
3650 Host Conversational (3653) 250
3650 Interpreter 250
3650 Pipeline 247
3650/3680 Host Command Processor 249
3767 Interactive 252
3770 Batch 253
3770 Interactive 252
3790 Full Function 254
3790 Inquiry 254
3790 SCS printer 255
3790 (3270-Display) 255
3790 (3270-Printer) 256

look aside query 163
lowercase characters, VS COBOL II (ANSI85) 36
LUNAME option 259
LUTYPE2 (3270-Display LU) 246
LUTYPE4

batch data interchange 265
logical record presentation 226
logical unit 235

LUTYPE6.1 Logical Unit 235
LUTYPE6.2 Logical Unit 237
LUW (logical unit of work) 331
L40 option 215
L64 option 215
L80 option 215

M
macro global bit (&DFHEIMX) 13
macro instruction

command equivalent 351
field definition, DFHMDF 145
map definition, DFHMDI 144
map set definition, DFHMSD 143
partition definition (DFHPDI) 166
partition set definition (DFHPSD) 165
used with commands 13

macros
used with commands 18

magnetic slot reader (MSR)
audible alarm 170
DFHMSRCA copy book 170
DFHMSRCA set of constants 170
indicafor lights 170
MSRCONTROL option 170

MAIN option 307
main storage

dumping (DUMP) 323
initialize 299
obtain 299
releasing (FREEMAIN) 299
temporary data 305

map definition macro (BMS) 193
map definition macro, BMS 144
MAP option 215
map positioning 177
map set definition macro 143
map set definition macro (BMS) 193
map set loading 146
map set name 146
map set suffixing 146
map set suffixing and partitions 164
map size 19
MAPATTS operand 200
MAPCOLUMN option 54, 212
MAPFAIL condition 156,219
MAPHEIGHT option 54,212
MAPLINE option 54, 212
MAPONLYoption 151,215
mapping input data (RECEIVE MAP) 153
maps

ASM sample programs 378
assembling 146
cataloging 146
COBOL sample programs 417
copying symbolic description 148
physical 135
PUI sample programs 457
symbolic 135
temporary modification 149

MAPSET option 215
MAPSFX operand 205
MAPWIDTH option 54,212
MARGINS option 15
MASSINSERT option 98
MAXFLENGTH option 222
MAXLENGTH option 259
MDT (modified data tag) 141
message

teletypewriter 230
title 186

message area of screen 142
message length, teletypewriter 230
message recovery (BMS) 174
message routing 184
message switching transaction, CMSG 189
minimum function BMS 139
mixed addressing mode transaction 293
mixed mode application program 13, 18

Index 483

MMDDVY option
MODE operand 200
modified data tag (MDT) 141
modular program 18
MONITOR option 321
monitoring point (ENTER command) 317
MONTHOFYEAR option 281
move-mode 18
MSR option 216
MSR (magnetic slot reader) 170
MSRCONTROL option 54, 170
multiple base registers 12
multithreading 17
MVS/XA restrictions 19

VS COBOL II programs 30
MVS/XA transaction 293, 299

N
name argument 5
naming restriction 13
nested programs, VS COBOL II (ANSI85) 38
N ETNAM E option 54, 259
neutral parameter of COLOR operand 196
N EXT option 307
NLEOM option 216
NOAUTOPAGE option 174,216
NOCHECK option 281
NODEBUG option 14
NOEDF option 14
NOEPI LOG option 14
NOHANDLE option 43
NOJBUFSP condition 330
nondisplay field 141
NONUM option 15
NONVAL condition 262
NOOPSEQUENCE option 15
NOOPT option 15
NOOPTIONS option 15
NOPASSBKRD condition 262
NOPASSBKWR condition 262
NOPROLOG option 15
NOQUEUE option 259
normal intensity field 140
NOS EQ option 15
NOSEQUENCE option 15
NOSOURCE option 16
NOSPACE condition

file control 100
temporary storage control 308
transient data control 304

NOSPIE option 16
NOSTART condition occurs if the 3651 is unable to

initiate 263
NOSTG condition 300

484 CICS/MVS 2.1.2 Applicatipn Programmer's Reference

NOSUSPEND option 44,259
ENQ command 286
GETMAIN command 300
JOU RNAL command 329
READQ TD command 303
WRITEQ TS command 307

NOTALLOC condition 263
NOTAUTH condition 44

file control 100
interval control 283
journal control 330
program control 297
temporary storage control 308
transient data control 304

NOTFN D condition
file control 100
interval control 283

NOTOPEN condition
file control 100
journal control 330
transient data control 304

NOTRUNC compiler option 24
NOTRUNCATE option 259
NOVBREF option 16
NOWAIT option 269
·NOXREF option 16
null lines and 3270 printer 157
null map 144
NUM option 15
numeric-only field (3270 attribute character) 140
NUMITEMS option 307
NUMREC option

batch data interchange 269
file control 98

NUMTAB option 54

o
OBFMT operand 200
OCCURS operand 201
OPCLASS option

ASSIGN command 55
basic mapping support 216

operator cI ass codes 187
operator identification card reader 155
OPERID option 155, 233
OPERKEYS option 55
OPERPURGE option 174,216
OPID option 55
OPMARGINS option 15
OPSECURITY option 55
OPSEQUENCE option 15
OPT option 15
option length 222
options

abnormal termination recovery 315

options (continued)
ADDRESS command 51
ASSIGN command 53
basic mapping support 213
batch data interchange 268
dump control 323
execution time (PUI STAE) 42
file control 97
HANDLE AID command 233
HANDLE CONDITION command 45
interval control 280
journal control 329
program control 296
STAE (PUI) 42
storage control 300
task control 286
temporary storage control 307
terminal control 257
trace control 321
transient data control 303
translator 13

OPTIONS option 15
OPTIONS(MAIN) specification 13,42
OS/VS COBOL

mixing with VS COBOL II 32
outboard formatting

basic mapping support 172
effect of partitions 169

outbound FM H 227
OUTLINE operand 200
OUTLINE option 55
output control (2980) General Banking Terminal

System 243
output data set 9
output data, chaining of 226
output operations 139
output partition 164
output to common buffer (2980) 243
OVERFLOW condition 180,219
overlapping keystroking 163
overlays 18
overtyping EDF displays 63

P
PA option 155, 233
PA (program access) key 155
page buffer (3270) 160
page fault 17
page overflow example 181
page overflow (BMS) 180
page width for printer 157
PAGENUM option 55,213
PAGING option 175, 216
paging (see terminal operator paging) 175

partition definition macro (BMS) 166, 204
PARTITION JUMP key 162
partition set 163, 164
partition set definition macro (BMS) 165, 204
partition set suffixing 146
partitions

active partition 162
base state 165
character cell 168
cumulative processing 184
cursor 162
description 162
display control 162
ENTER key 162
exceptional conditions 169
GDDM restriction 169
outboard format 184
outboard formatting 169
page overflow 180
PARTITION JUMP key 162
partition set 163
presentation space 164
terminal sharing 184
transaction partitions 163
unpartitioned state 165
viewport 164
window 164
within a map set 166

PARTN operand 201
PARTN option

basic mapping support 216
PARTNFAIL condition 219
PARTNPAGE option 55, 213
PARTNS option 55
PARTNSET option 55, 213, 216
PASSBK option 259
passbook control (2980) 243
passing

session 228
passing control

anticipating return (LINK) 289
on receipt of an AID (HANDLE AID) 232
without return (XCTL) 290

passing data
to new tasks 279
to other program 292

PCB address 118
PCB (program communication block) 117
PCT option 324
pel (picture element) 168
PERFORM option 321
PF option 155, 233
PF (program function) key

BMS 155
CL interpreter 71

Index 485

PF (program function) key (continued)
EDF 59

PF (program function) key (CECIICECS) 71
PFXLENG option 329
PGMIDERR condition

abnormal termination recovery 315
program control 297

physical key 89
physical map 135
PICIN operand 201
PICOUT operand 201
picture element (pel) 168
pink parameter of COLOR operand 196
pipeline logical unit 247
PI PLENGTH option 260
PIPUST option 260
PUI

argument value 7
compilers supported 42
DUI CALL interface 41
LENGTH option default 7
OPTIONS(MAIN) specification 42
PROCEDURE statement 13
program segments 42
restrictions 41
sample programs 433
STAE option 42, 314
translated code 13

POINT command 236
pointer-ref argument 5
pointer-value argument 5
POP HANDLE command 46
POS operand 146, 202
POST command 276
posting timer event control area 276
PPT option 324
PREFIX option 329
pregenerated modules 137
presentation space 164
principal facility 221
PRINSYSID option 55
print displayed information 231
PRINT option 152

basic mapping support 216
batch data interchange 269

printer and BMS text 161
printer control character list (DFHBMSCA) 205, 233
printers

basic mapping support (BMS) 160
device independence 161
FORM FEED option 161
NLEOM option 161
printing displayed data 156
SCS and non-3270 printers 161
starting a printer task 156

486 CICS/MVS 2.1.2 Application Programmer's Reference

printers (continued)
3270 printer page width 156
3270 printer using NLEOM 161
3270 printer without NLEOM 160
3270 printers and blank lines 156

printing contents of screen 156
PROCESS option 260
PROCLENGTH option 260
PROCNAME option 260
PROFI LE option 260
program access (PA) key 155
program communication block (PCB) 117
program control

CL interpreter 72
deleting loaded program 291
exceptional conditions 297
linking to another program 289
load a program, table, or map 291
options 296
passing data to other program 292
program logical levels 289
returning program control 291
transfer program control 290

program function key (see PF key)
program labels in EDF 64
PROGRAM option

abnormal termination recovery 315
dump control 324
program control 296
terminal control 260

program segments
COBOL 24
PUI 42

program size 19
program specification block (PSB) 117
program testing 57
programmed symbols 141
programming techniques

COBOL 20
general 17
PUI 41

programs
checking out pseudoconversational 64

programs, sample (ASM) 353
programs, sample (COBOL) 393
programs, sample (PUI) 433
PROLOG option 15
protected field 140
PROTECT, option

START 281
PS operand 202
PS option 55
PSB release 119
PSB scheduling 118

PSB (program specification block) 117
PSEUDOBIN option 260
pseudoconversational programming 64
PURGE command (CEBR) 73
PURGE MESSAGE command 174
PUSH HANDLE command 46
PUT command (CEBR) 74

Q
QBUSY condition 304
QIDERR condition

temporary storage control 308
transient data control 304

QNAME option 55
quasi-reenterability 17
query structured field 53
question mark (CL interpreter) 67
QUEUE command (CEBR) 73
QUEUE option 260

interval control 281
temporary storage control 307
transient data control 303

queue, temporary storage 305
QUOTE option 15
QZERO condition 304

R
RBA option 98
RBA (relative byte address) 77
RDATT condition

basic mapping support 219
terminal control 263

reactivate an ABEND exit 313
read ahead queueing feature 225
read attention 241
READ command 93
reading

batch data interchange record 266
data from a display (RECEIVE MAP) 153
data from temporary storage queue 306
data from terminal or LU 222
data from transient data queue 302
file control record 93
next record when browsing 95
previous record in VSAM browse 96

READNEXT command 95
READPREV command 96
READQ TD command 302
READQ TS command 306
RECEIVE command 222
RECEIVE MAP command 153, 209
RECEIVE PARTN command 168,209
RECFM option 260

record
deleting VSAM 94
identification 87, 89
journal 327
reading 93, 266
requesting next number 268
updating 94, 266
writing new (adding) 93, 266

record descriptions
ASM sample programs 392
COBOL sample programs 431
PUI sample programs 471

recovery
abnormal termination 313
and debugging 309
sequential terminal support 311
sync point 331 _

red parameter of COLOR operand 196
reenterability 17
reference modification, VS COBOL II (ANSI85) 40
register contents in ASM 10
relative byte address (RBA) 77
relative record data set (RRDS) 77
relative record number (RRN) 77
RELEASE command 291
RELEASE option 174, 217
releasing

aPSB 119
area of main storage 299
exclusive control (UNLOCK) 95

relinquish communication line 223
RELOAD operand of DFHPPT macro 291
relocatable expression 6
remote data set, KEYLENGTH option 85
REPLACE statement, VS COBOL II (ANSI85) 36
REQID option 174

basic mapping support 217
file control 98
interval control 281
journal control 329

request/response unit (RU) 226
RESET option 315
reset start for browse 96
RESETBR command 96
RESOURCE option 261, 286, 321
resource scheduling 285
RESP option 43
RESP values 344
response codes (DUI) 120
RESP2 option 43
RESP2 values 345
RESTART option 55
restrictions

assembler language 19
COBOL 20

Index 487

restrictions (continued)
IMS batch programs 129
MVS/XA 19
PUI 41
31-bit mode 19

RETAIN option 174,217
RETPAGE condition 219
RETRIEVE command 279
retrieve data stored for task 279
RETURN CODE register, VS COBOL" 25
RETURN command 291
return facility to CICS 229
return program control 291
returning mapped data to a program 189
REWRITE command 94
REWRITE option 308
RIDFLD option

batch data interchange 269
file control 98

ROLLBACK option 331
ROLLED BACK condition 332
ROUTE command 184
route list (LIST option) 187, 188
routing messages (ROUTE) 186
routing terminal 186
RPROCESS option 261
RRDS (relative record data set) 77
RRESOURCE option 261
RRN option

batch data interchange 269
file control 98

RTEFAIL condition 219
RTERMID option 282
RTESOME condition 219
RTRANSID option 282
RU (request/response unit) 226
run unit in VS COBOL" 32, 35

S
SA (set attribute) order 160
sample program

browse (ASM) 361
browse (COBOL) 401
browse (PLII) 441
inquiry/update (ASM) 354
inquiry/update (COBOL) 395
inquiry/update (PUI) 435
low balance report (ASM) 375
low balance report (COBOL) 414
low balance report (PLII) 454
operator instruction (ASM) 354
operator instruction (COBOL) 394
operator instruction (PLII) 434
order entry queue print (ASM) 372
order entry queue print (COBOL) 411

488 CICS/MVS 2.1.2 Application Programmer's Reference

sample program (continued)
order entry queue print (PUI) 451
order entry (ASM) 368
order entry (COBOL) 407
order entry (PUI) 447

SSA (set buffer address) order 161
schedule a PSB 118
schedule access (DUI) 117
schedule use of resource by task 285
Screen Definition Facility/CICS (SDF/CICS) 136
screen I ayout design

application data area 142
data fields 142
input operations 139
keyword fields 142
message area 142
output operations 139
requirements 142
stopper fields 142
title area 142

screen layout (CL interpreter)
command input area 67
information area 68
status area 68

screen partitioning 162
screen size 142
SCRNHT option 55
SCRNWD option 56
scrolling 162
SCS printer logical unit (3790) 255
SDF/CICS (Screen Definition Facility/CICS) 136
secondary key 78
security rules

CL interpreter 72
EDF 58

segment search argument (SSA) 118
segments, program

COBOL 24
PLII 42

SELNERR condition 270
semicolon delimiter (PUI) 5
send asynchronous interrupt 223
SEND command 223
SEND CONTROL command 153,211
send data to output device 268
SEND MAP command 150,210
SEND PAGE command 174
SEND PARTNSET command 167
SEND TEXT command 159, 161,210
SEND TEXT MAPPED command 190
SEND TEXT NOEDIT command 191
SEND/RECEIVE mode 225
SEND/RECEIVE protocol 226
SEQ option 15

sequence numbers, VS COBOL II (ANSI85) 36
SEQUENCE option 15
sequential retrieval

See browsing 93
sequential terminal support 311
SERVICE RELOAD elimination, VS COBOL II 25
SERVICE RELOAD statement (COBOL) 23
SESSBUSY condition 263
SESSION option 261
session-oriented information (LU6) 237
SESSIONERR condition 263
set attribute (SA) order 160
set buffer address (SBA) order 161
SET command 51
SET option 189

basic mapping support 217
batch data interchange 269
file control 98
interval control 282
program control 296
storage control 300
temporary storage control 308
terminal control 261
transient data control 303

share option, VSAM 78
SHARED option

storage control 300
SIGDATA option 56
SIGNAL condition 228
SIGNAL condition occurs when an inbound SIGNAL

data-flow 263
SINGLE option 321
single screen mode (EDF) 58
single threading 17
SIT option 324
SIZE operand 202
skip-sequential processing 81
SOSloperand 202
SOS I option 56
SOURCE option 16
SO/SI creation 141
SPACE option 16
spanned records 78
SPIE option 16
SSA (segment search argument) 118
STAE option (PUI) 42, 314
standard attribute/printer control character list

(DFHBMSCA) 205, 233
standard CICS terminal support 234
standard function BMS 159
start a task 278
START command 277
STARTBR command 95
STARTCODE option 56

STARTIO option 329
static call 28
STATIONID option 56
status flag byte, route list 188
status of partition 165
stopper fields on screen 142
storage area length 53
storage control 299
STORAGE operand 202
STORAGE option 324
storage (see main storage)
STRFIELD option 261
stub (see interface processor)
stubs, EXEC interface 19
SUBADDR option 269
subprogram, calling from VS COBOL II 32-36
subroutines 17
SUFFIX operand 146, 203, 205
suffixing, map/partition sets 146
supplied constants (DFHMSRCA) 170
suspend a task 228, 285
SUSPEND command 285
switched line disconnection 223
symbol set 165
symbolic characters defined in program, VS COBOL II

(ANSI85) 40
symbolic cursor positioning 153
symbolic description map

block data format 172
copying 148
definition 135
field data format 149

symbolic register DFHEIPLR 12
sync point 331
synchronization level 238
synchronizing

journal output 327
journal output (WAIT JOURNAL) 329
terminal input/output 223

SYNCLEVEL option 261
SYNCPOI NT command 331
syntax notation 3
syntax style 5
SYSBUSY condition 263
SYSID option

ASSIGN command 56
file control 98
interval control 282
temporary storage control 308
terminal control 261
transient data control 303

SYSIDERR condition 304
EIBRCODE values 343
file control 100
interval control 284

Index 489

SYSIDERR condition (continued)
temporary storage control 308
terminal control 263

system information, access to 51
SYSTEM option 321
system trace entry point 317
System/3 239
System/370 239
System/7 240

T
tab character 161
TABLES option 324
task control 285
task identification 223
task initiation (see start a task)
TAS K option 324
task suspension 228
TCAM-supported logical units 229
TCAM-supported terminals 229
TCT option 325
TCTUA option 51
TCTUALENG option 56
techniques, programming 17
teletypewriter programming 230
TELLERID option 56
temporary storage

auxiliary 305
browse transaction (CEBR) 73
exceptional conditions 308
main 305
options 307
queue 305

TERM operand 203
TERMCODE option 56
TERMERR condition

terminal control 263
TERMID option

interval control 282
terminal control 261

TERMIDERR condition
interval control 284
terminal control 263

terminal code table 190
TERMINAL command (CEBR) 73
terminal control

an overview 221
bracket protocol (LAST option) 227
BTAM programmable device 229
chaining of input data 226
chaining of output data 226
converse with terminal or LU 223
definite response 227
detecting attention condition (SIGNAL) 228
disconnect a switched line 223

490 CICS/MVS 2.1.2 Application Programmer's Reference

terminal control (continued)
display device operations 230
exceptional conditions 262
facilities for logical units 225
facilities for terminals 223
facilities for terminals and LUs 222
FMH, inbound 227
FMH, outbound 227
function management header (FMH) 227
handle attention identifier 154
interactive logical units 252
logical record presentation 226
LUTYPE2 (3270-Display LU) 246
map input data (RECEIVE MAP) 153
options 257
passing a session 228
pipeline logical unit 247
print (ISSUE PRINT) 156
read attention 241
reading data from terminal or LU 222
relinquish communication line 223
standard CICS terminal support 234
sync point processing 228
synchronize terminal 110 223
System/3 239
System/370 239
System/7 240
TCAM-supported logical units 229
TCAM-supported terminals 229
teletypewriter programming 230
terminate a session 228
unsolicited input 227
VTAM logon data 229
write break 242
writing data to terminal or LU 223
2260 Display Station 241
2265 Display Station 241
2741 Communication Terminal 241
2770 Data Communication System 242
2780 Data Transmission Terminal 242
2980 General Banking Terminal System 243
3270 field concept 140
3270 Information Display System logical unit 245
3270 SCS Printer Logical Unit 245
3270 (BTAM or TCAM supported) 244
3270-Display LU (LUTYPE2) 246
3600 Pipeline Logical Unit 247
3600 (3601) Logical Unit 248
3600 (3614) Logical Unit 248
3650 Host Conversational (3270) LU 249
3650 Host Conversational (3653) LU 250
3650 Interpreter Logical Unit 250
3650 Pipeline Logical Unit 247
3650/3680 Host Command Processor LU 249
3660 251

terminal control (continued)
3735 251
3740 252
3767 Interactive Logical Unit 252
3770 Batch Logical Unit 253
3770 Interactive Logical Unit 252
3790 Full Function Logical Unit 254
3790 Inquiry Logical Unit 254
3790 SCS printer logical unit 255
3790 (3270-Display) Logical Unit 255
3790 (3270-Printer) Logical Unit 256
4700 Finance Communication System 256
7770 Audio Response Unit 256

terminal operator paging
example of paging message 181
initiating the paging transaction 174
message recovery 174
operator paging commands 176
PAGING logical messages 175

TERMINAL option
basic mapping support 217
dump control 325

terminal sharing
CL interpreter 72
EDF 60

terminal-oriented task identification 223
terminating

map set definition 146
processing of data set 267
session 228
task abnormally (ABEND) 314

testing using sequential devices 311
text data format 135
THEN clause (COBOL) 5
time field of EIB 51
time of day, requesting (ASKTIME) 275
TIME option

basic mapping support 217
interval control 282

time-initiated transaction (3735) 251
timer event control area 276
TIMESEP option 282
TIOAPFX operand 203
TIOA, mixed mode programs 18
title area of screen 142
TITLE option 186, 217
title, message 186
TOFLENGTH option 222
TOLENGTH option 261
TOP command (CEBR) 73
TRACE command 320
trace control 317

auxiliary trace facility 319
controlling trace facility 320
exceptional conditions 321

trace control (continued)
options 321
trace entry format 319
trace entry point 317
trace facility control 317
trace flags 317
trace table format 318
user trace entry point 320

trace entry format 319
trace entry point 317
trace facility control 317
trace table format 318
TRACEID option 321
TRAILER operand 177,203
TRAILER option 181,217
transaction identifier (CEO F) 57
transaction partition 163
transfer program control 290
TRANSID option

basic mapping support 217
interval control 282
program control 296

TRANSIOERR condition 284
transient data control

automatic task initiation (ATI) 301
delete intrapartition queue 303
exceptional conditions 303
extra partition destination 301
indirect destination 301
intrapartition destination 301
options 303
read data from TO queue 302
write data to TO queue 302

translated code
ASM 10
COBOL 13
PUI 13

translation tables for 2980 347
translator data set

input 9
listing 9
output 9

translator options 13
translator options for 37
TRANSP operand 204
trigger field 171
TRIGGER option 233
TSIOERR condition 219
turquoise parameter of COLOR operand 196
TWA option 51
TWALENG option 56
TYPE operand 204

Index 491

U
UIB (user interface block) 117
UNATrEND option 56
UN EXPI N condition

basic mapping support 219
batch data interchange 270

unit of compilation, VS COBOL II 36
start of 38
submitting to translator 38

UNLOCK command 95
un partitioned state 165
unprotected field (3270 attribute character) 140
unsolicited input 227
unsupported function 44
update a record

batch data interchange 266
file control 94

update backout (DUI) 103
update lock 87
UPDATE option 98
upgrade set 78
user interface block (UIB) 117
USER option 321
user trace entry point 317, 320
USERID option

ASSIGN command 56

V
validation 141
VALIDATION option 56
validity of reference 17
VALlDN operand 171,204
values of arguments 5
variable (CL interpreter) 70
VBREF option 16
vertical forms control 157
vertical picture element 165
viewport 164
VIEWPOS operand 205
VIEWSZE operand 205
virtual storage environment 17
VOLU M E option 269
VOLUMELENG option 269
vpel (vertical picture element) 165
VS COBOL II 24-40

addressing CICS data areas 25
ANSI85 standards 36-40

batch compilation 37
blank lines 36
comma and semicolon as delimiters 40
global variables 40
lowercase characters 36
nested programs 38
programming restrictions 40
reference modification 40

492 CICS/MVS 2.1.2 Application Programmer's Reference

VS COBOL II (continued)
ANSI85 standards (continued)

REPLACE statement 36
sequence numbers 36
symbolic characters defined in program 40

BMS data structures 29
CALL statement 28,32-36
calling subprograms 32-36
compiler options not used under CICS 29
debugging 28
DUI CALL interface 30
LENGTH special register in CICS commands 26
mixing with OS/VS COBOL 32
restrictions in a CICS environment 29
RETURN-CODE special register 27
returning control 28
run unit 32

VSAM
data sets 87

VSAM share option 78
VTAB operand 204
VT AM logon data, access to 229

W
WAIT CONVI D command 239
WAIT EVENT command 277
WAIT JOURNAL command 329
WAIT option

basic mapping support 217
interval control 283
journal control 329
of SEND command 223
terminal control 223, 262

WAIT SIGNAL command 228
WAIT TERM I NAL command 223
waiting

batch data interchange 268
for event to occur 277
terminal control operation 223

WHERE clause in EXEC DLI command
assembler language program 104
Boolean expressions 104
literal string 104

window 164
working set 17
WPMEDIA option 269
WRBRK condition

basic mapping support 219
terminal control 263

write break 242
WRITE command 93
WRITEQ TO command 302
WRITEQ TS command 306
writing

batch data interchange record 266

writing (continued)

X

data to temporary storage queue 306
data to terminal or logical unit 223
data to transient data queue 302
file control record 93

XCTL command 290
XINIT operand 198
XOPTS keyword 14
XREF option 16
XRF and the APPLID option 53
XRF environment 53

y
YEAR option 283
yellow parameter of COLOR operand 196
VYDDD option 283
VYDDMM option 283
VYMMDD option 283

Z
zero length field 142
zero parameter 199

Numerics
16-megabyte line 299
2260 Display Station 241
2265 Display Station 241
2721 Portable Audio Terminal 256
2741 Communication Terminal 241
2770 Data Communication System 242
2780 Data Transmission Terminal 242
2980 General Banking Terminal System 243

DFH2980 structure 243
output control 243
output to common buffer 243
passbook control 243
translation tables 347

31-bit mode transaction 293
3270 Information Display System

attribute character 140
field concepts 140
input operations 139
logical unit 245
screen sizes 142
(BTAM or TCAM supported) 244

3600 Finance Communication System 246
pipeline logical unit 247
3601 Logical Unit 248
3614 Logical Unit 248

3630 Plant Communication System 249
3650 Store System

Host Conversational (3270) LU 249
host conversational (3653) LU 250
interpreter logical unit 250
pipeline logical unit 251

3650/3680 Store System
full function logical unit 251
host command processor LU 249

3660 Supermarket Scanning System 251
3680 Programmable Store System

host command processor LU 249
3735 Programmable Buffered Terminal 251
3740 Data Entry System 252
3767 Communication Terminal

interactive logical unit 252
3770 Communication System

batch logical unit 253
full function logical unit 253
interactive logical unit 253

3780 Communications Terminal 253
3790 Communication System

full function logical unit 254
inquiry logical unit 254
SCS printer logical unit 255
3270-Display Logical Unit 255
3270-Printer Logical Unit 256

4700 Finance Communication System 256
7770 Audio Response Unit 256
8775 Display Terminal

field validation attribute character 140
partition support 162
trigger validation attribute 171

Special Characters
& (CL interpreter) 70
&DFHEIMX (macro global bit) 13
*ASM statement (assembler language) 13
"'PROCESS statement (PLII) 13
? (CL interpreter) 67

Index 493

Reader's Comments

CICS/MVS
Application Programmer's Reference
Version 2 Release 1 Modification 2

Publication No. SC33·0512-01

Use this form to tell us what you think about this manual. If you have found errors in it, or you want to express your
opinion about it (such as organization, subject matter, appearance) or make suggestions for improvement, this is the form
to use. To help us produce books that meet your needs, we have included a questionnaire at the front of the book.
Whichever form you use, your comments will be sent to the author's department for review and appropriate action.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it
believes appropriate without incurring any obligation to you.

Thank you for your time and effort. No postage stamp is necessary if mailed in USA. (Elsewhere, an IBM office or
representative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on
the back of the title page.) Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Phone No.

Reader's Comments
SC33-0512-01

Fold and Tape

Fold and Tape

Please do not staple

BUSINESS REPL V MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 6R1 H
180 KOST ROAD
MECHANICSBURG PA 17055-0786

111111111.11111 •• 1.1 •• 1.1.1111.111.11111 •• 1111111111

Please do not staple

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

Fold and Tape

Cut 01
Along

cut or
Along I

--------- - ---- ---- - ---- - - --------_"_-'@

Application Programmer's Reference
SC33-0512-01

Version 2.1.2

CICSMVS

Program Number
5665-403

Printed in U.S.A.

5C33-0512-01

