
Program Product

SC33-0067-0

Customer Information
Control System/Virtual
Storage (CICS/VS)
Version 1, Release 3

Introd uction to Program
Logic Manual

Program Numbers 5740-XXl (CICS/OS/VS)
5746-XX3 (CICS/DOS/VS)

First Edithm (February 1977)

This ~dHlon applies to Version 1, Release 3 (Version 1.3) of the program pr04uct
Customer Information Control System/Virtual Storage (CIC;S/VS), program numbers S746~XX3
(for DOS/VS) INa"; fe. pI_Rias J!tl:fl'e~~8 iAty, ~740-XXl (for OS/VS).

lnformatlQn in this publication is subject to significant change. Ally such changes will be
p"blished in new editions or te~hnical newsletters. Before using this publication, consult the
latest l&f Sy~tem/37Q Bibliography, GC20~OOOI, and ~e technical newsletters that amend
'tl\~ bibliography, to learn which ec:iitions anti technical newsletters are applicable and current.

Requests for copies of IBM pubUcations should be ma4e to the IBM branch office that
$eJ'Ve~ you.

A f~>rm tor readen' comments haS been provided a1 the \;lack of this publication. If the form
has been removed, address cpmments to IBM United Kingdom L~boratories Ltd.,
Publications Dep~tment. Hursley Park, Winchester, H~pshire, S021 2JN, England-.
Comments bec()me the property of IBM.

@ Copyright International Business Machines Corporation 1977

Preface

This publication is an introduction to the internal logic of CICS/VS.
The book is intended for programming support representatives and
system support programmers who maintain CICS/VS.

This publication is organized into two parts as follows:

• Part 1 provides an introduction to and an overview of CICS/VS

• Part 2 provides a survey of CICS/VS by component and function.

This publication assumes the reader has an understanding of CICS/VS as
explained in the publication CICS/VS General Information, GC33-0066.

The following publications also contain information needed when
installing and using CICS/VS:

• CICS/VS Application Programmer's Reference Manual (Command Level) ,
SC33-0077 -- for information on coding CICS/VS application programs
in ANS COBOL and PL/I.

• CICS/VS Application Programmer's Reference Manual (Macro Level) ,
SC33-0079 -- for information on coding CICS/VS application programs
in assembler language.

• CICS/VS Messages and Codes, SC33-0081 -- for messages issued by
CICS/VS

• CICS/VS System Programmer's Guide (DOS/VS), SC33-0070 -- for detailed
information on generating and starting CICS/VS under DOS/VS.

• CICS/VS System Programmer's Guide (OS/VS), SC33-0071 -- for detailed
information on generating and starting CICS/VS under as/Vs.

• CICS/VS OperatorWs Guide, SC33-0080 -- for a description of the
functions performed by the master-terminal operator

• CICS/VS System Programmer's Reference Manual, SC33-0069 -- for
information on installing a CICS/VS system

• CICS/VS System/Application Design Guide, SC33-0068 -- for information
on designing application programs to execute under control of CICS/VS

For a complete description of the internal logic of CICS/VS consult one
of:

• CICS/VS Program Logic Manual (OS/VS), LY33-6029-0

• CICS/VS Program Logic Manual (DOS/VS), LY33-6028-0

Preface iii

Contents

PART 1. SURVEY OF CICS/VS • •

CHAPTER 1. INTRODUCTION..
System Characteristics • • •

Batch and DB/DC Systems.
CIcs/vs as a DB/DC System.

Informal Introduction to CICS/VS • • • •
CICS/VS Control Modules.
CICS/VS Tables • • • • • •
CICS/VS Control Areas. • •
CICS/VS User Application Programs,. •
Example of a Typical Application • • • • ,.

Terminal Management.
Task Management. • • • •
Program Management • • •
User Application Program
Basic Mapping Support - Input ••
File Management. • • • •
Transient Data Management. •
Trace Management • • • • • •
Dump Management. • • • • • • • •
Temporary Storage Management .
Storage Management •• • • • •
Basic Mapping Support - Output •
Ending the Transaction • . • • •

Plan of the Manual • • • • • •

CHAPTER 2. CICS/VS STRUCTURE ••
System Management. • •

Task Management. • •
storage Management •
Program Management
Time Management. • •
Terminal Management. • • • • •
File Management. • •
Transient Data Management.
Temporary storage Management •
Journal Management • • •
Sync Point Management. •

System Services ••
Sign-on/Sign-off • •
Master Terminal •••
Supervisor Terminal.
Operator Terminal •••
System Statistics. •
Asynchronous Transaction Processing.
Dynamic Open/Close •
Time-of-Day Control. •
Terminal Test. • •
Message Switching. •

System Monitoring.
Trace Management • • • • •
Dump Management.

System Reliability •
system Recovery Management
Dynamic Transaction Backout ••
Abnormal Condition • • • • • •
Program Error •••••••••
Terminal/Node Abnormal Condition •

iv CICS/VS Introduction to Program Logic

1

3
3
3
5
6
1
8

10
10
11
12
13
15
15
16
11
18
19
20
21
22
23
24
24

21
28
28
28
28
29
29
29
29
29
29
30
30
30
30
30
30
31
31
31
31
31
31
32
32
32
32
32
32
32
33
33

Terminal/Node Error. " ~ 33
Emergency Restart. '" I. " I. 33
Keypoint Program " " 33

System Support . • 33
System Generation. " 33
Environment Definition . .. • I • 34
System Initialization. 34
System Termination • . I. 34
High Level Language Preprocessor '" 34
Command Language Translator. !OIl 34
Dump Utility • 34
Trace Utility. 34
System Journal Formatting Utilities- 35
Formatted Dump · 35

Application Services • 35
Basic Mapping Support. " I. 35
Data Interchange program .. 35
2260 Compatibility • 35
EXEC Interface Program • ~ 36
Built-in Functions • 36

Table Search - 36
Phonetic Conversions . " " .. ,'" 36
Field Verify .. 36
Field Edit . 36
Bit Checking · 36
Input Formatting • " 37
Weighted Retrieval . 37

CHAPTER 3. SYSTEM PREPARATION . 39
CICS/VS System Generation. 39

The Program Parameter of DFHSG . " 40
Simplified System preparation. 42

Environment Definition and Sy~tem Tables . 42
Control Tables · I. " 43

Program Control Table (PCT). 43
Processing Program Table (P:PT) 44
Terminal Control Table (TCT) • '. 44
System Recovery Table (SRT) .. • , .. 45
System Initialization Table (SIT) ..

'" " 45
File Control Table (FCT) • 45
Destination Control Table (OCT) '" " " " 46
Journal Control Table (JeT) ,. 46
Temporary Storage Table (TS'l') • ..

"
46

Service Tables · 47
Sign-On Table (SNT). 47
Terminal List Tables (TLT) " '" ,'" 47
Program List Tables (PLT). .. 48
Transaction List Tables (TLT). '" 'II' 48
Application Load Table (ALT) 48
Nucleus Load ~able (NLT) 1'1' ''II 48

other Requirements . '" 49
Access Metl10ds · . 'II 49

CHAPTER 4. CICS/VS REAL TIME EXECQTION INVIRON~ENT. 51
The Application Interface. ,,, 52
Intermodule Communication. " 53
Control Blocks . 'It 54

Common System Area (CSA) 54
Dispatch Control Area (DCA) • 54
Task Control Area (TCA) • .. • ,. 55
Automatic Initiate Descriptor (AID). · '. " 55
Interval Control Element (IC~) 56
Journal Control Area (JCA) 56
File Work Area (FWA) .. 56
File Input/Output Area (FIOA)" 51

cQntents v

File Browse Work Area (FBWA). • • • • • • •
Deferred Work Element (DWE) ••••••••••
Temporary Storage Input/Output Area (TSIOA).
Terminal Input/Output Area (TIOA).
storage Accounting Area (SAA).

CICS/VS Execution. • • • •
Transactions and Tasks •
CICS/VS Recovery • • • •
Long Running Tasks, Sync Points, and Logical Units of Work ••

Multiprogramming Multitasking Multithreading
Multiprogramming •
Multitasking •
Multithreading •

storage. • ,. • • • •
Operating System storage •
CICS/VS Address Space. •
subpool Allocation of Dynamic Storage. •

Data Sets. .. • .. • • • .. • ..
System Data Sets • • .. • • • • • •

CICS/VS Program Library.
Restart Data Set • • • •
Dump Data Set ••••••
Intrapartition Data Set.
Temporary Storage Data Set •
System Log Data Set. • • • •
Automatic Statistics Data Set ••

. . . ;. .

Auxiliary Trace Data Set • • • •
User Data Sets • • • • • • • •

Data Base Data sets. • • • • •
Transient Data Extrapartition Data Sets.
Terminal Control Sequential Data Sets. .. •
Data Language/I Data sets •••••••
Journal Data Sets. • • • • • • • • • • • • • • • • • • •

CHAPTER 5. CICS/VS ADVANCED COMMUNICATION SYSTEMS • •
Sessions • - • • • • • • • • • • • • • • •

Initiating Communication •
Terminating Communication.

Orderly Termination. •
Immediate Termination. •

Sign-Off • • • • • • • •
Data Transmission. • . . • • •

Reading Data from a Logical Unit •.••.
Synchronizing Logical-Unit Input Operation •
Unsolicited Input. • • • • • • . • • • • •• ••••
Inbound Fut/ction ~1anagement Header (FMH) •
Chain Ass~ly • .. • .. • • • .. • • . • .. • • •

Writing D~a to a Logical Unit . • • • • • • • • • •
Conversa ional,Write • • - .. • • • .. • ~ • •
overlap ing L~ical-Unit Output OpErations • •
Synchron"zed Lqgical-Unit Output Operations. • •••
Chaining f output Data. • • • • •
Function M~ement Header (FMH) • • • •
Bracket Protocol • • • • .. • • • • • • • • • . •

Data Chaining. • .. • • • • .. • • •••••
Logical Unit I/O Error Handling. • ••••

User Exit Routines for CICS/VS DFHZCP. • • .. • • • • ..

PART 2. THE COMPONENTS OF CICS/VS •

CHAPTER 6. SYSTEM MANAGEMENT ••
Task Management.. • • •• • • • •

DFHKC Macro Support. .. • • .. •
Initiate a Task (ATTACH) •
Terminate a Task (DETACH) ••

vi CICS/VS Introduction to Program Logic

57
57
57
57
57
58
58
59
61
62
62
62
62
63
63
63
64
66
66
66
67
67
67
67
67
68
68
68
68
68
68
68
69

71
73
73
74
74
74
75
75
15
16
16
16
11
71
71
71
77
18
78
78
79
79
80

81

83
83
83
83
84

Enqueue upon a Resource (ENQ) ••
Dequeue upon a Resource (DEQ) ••
Dequeue All Resources (DEQALL)
Change Priority of a Task (CHAP)
Synchronize a Task (WAIT) ...
suspend a Task (SUSPE~D) • • • •
Resume a Task (RESUME) • • • • •
Schedule a Resource(SCHEDULE)
Declare Resource Availability (AVAIL) '.
HPO Services • • • • •

Task Dispatcher. •
Storage Management •

Storage Initialization
Storage Accounting • •
Dynamic Storage Verification and Reclamation
Conditional storage Acquisition. •
System Overload Detection. •
Storage Statistics • • •
storage Control Services • •

The Storage Management r1odule. • .• • .. •
Program Management • • ... •

Program Management Services ...
High Level Language (HLL) Macro Interface.

. . . .

Program Purge. • • • •
Asynchronous Program Fetch.
Link .. ~ • • .. • ..
Transfer Control •
Load .• ,. • • • • •
Delete • • • • • •
Return • • • • • •
Abend ••
BLDL ,. • • • • •

The Program Management Module (DFHPCP) '. • • • • ..
Time Management. • • • • • • •••••

CICS/VS Exit Time Interval Control • .•
System Stall Detection and Correction.
Runaway Task Detection and Correction.

.. • II'

Time of Day. • • • •
Time Dependent Transaction Synchronization ..
Automatic Time-ordered Transaction Initiation ... , •.•

The Time Management Module (DFHICP)..
Termina 1 Management.. • .. • • • • • • .• •

Testing Facility • • • • • • • • • .. • ..
Terminal Management services ,.

Service Request Facilities •
System Control Services. • •
Transmission Facilities - VTAM
Transmission Facilities - BTAM
Transmission Facilities BTAM/VTAM..
Transmission Facilities TCAM ..
BTAM Device Dependent Services • .. •

Terminal Error Recovery. • • .. • • • ..
The Terminal Management Modules (DFHTCP,OFHZCP) ••

Common Interface • • • • _ • • • ._
Access Method Dependent Interface.
Hi gh Perf ormance Option. • • .. • .. • • • • • • .• • • • •

File Management. • • • • .. • •
Segmented Records. • • .. .• .. • • • • • •
Deblocking Services for DAM Data sets,. • • • • • •
Index Data sets Indirect Accessing • .. • • • .. •
DOS/VS ISAM Variable Length Records.
Exclusive Control. •
sequential Retrieval • • _ • ••• • .. • ..
Automatic Journaling • .. • • • • • • • • ..
The File Management ~odules (DFHFCP, DFHFCD)

.. ..

· .

• II!

.. "I

· ..

84
84
84
84
84
84
84
85
85
85
85
86
86
86
81
87
87
87
87
88
89
90
90
90
90
90
90
91
91
91
91
91
91
91
91
91
92
92
92
92
92
93
94
94
95
95
95
95
96
96
96
91
98
98
99

100
100
101
102
102

• 102
103
103
104
104

Contents vii

Transient Data Management. • • • • • • • • • • • • •
Intrapartition Destinations. • • • • • • .• • • • •

Recovery of Intrapartition Transient Data Queues •
Extrapartition Destinations.
Indirect Destinations. • • •
Automatic Transaction Initiation
Transient Data services. • • • • • • • • • •
The Transient Data Management Module (DFHTDP).

Temporary Storage Management .oo • • • • .
Temporary storage Management services. • I. • •

• 105
• • 105
• • 105

105
• • 106

106

The Temporary Storage Management Module (DFHTSP) • • • • •
Journal Management • • • • • • • • • • •

• • 106
107
108
108
109
109
110 Journal Management Services •••••••

The Journal ManagementModule (DFHJCP).
Sync Point Management. • • • • • • •

CHAPTEP 7. SYSTEM SERVICES.
Sign-on/Sign-off • •
Master Terminal. •
Supervisor Terminal ••
Operator Terminal •••
System statistics. • •
Asynchronous Transaction Processing. •
Dynamic Open/Close • •
Time-of-day Control. •
Terminal Test ••••
Message Switching.

CHAPTER 8. SYSTEM MONITORING ••
Trace Management • • • • • •

Auxiliary Trace Management • •
Dump Management. • • • • • • • •

CHAPTER 9. SYSTEM RELIABILITY •
System Recovery Management • • •

Emergency Recovery Restart • •
Dynamic Transaction Backout.
Recovery Utility Program • • • • • •
Abnormal Condition • • • • • • • • • •
Program Error Program. • •• • • • • • .• • •
Terminal Abnormal Condition Program (BTAM, GA~).
Terminal Error Program (BTAM,GAM) ••••
Node Abnormal Condition Program (VTAM) •
Node Error Program (VTAM). • •••
Keypoint Program • •• • • • •

Warm Keypointing • • • •
Activity Keypointing • •

CHAPTER 10. SYSTEM SUPPORT •
System Generation. • • • • •
Environment Definition •••
System Initialization. • • •

Restart at system Initialization.
Restart Data Set • • • • • • • • • • •

System Termination • • • • • • •
High Level Language Preprocessor •
Command Language Translator.
System Log/Journal Utilities • •

Format Tape •••
Tape End of File • • • • •
Dump Utility . . • . • • •

Transaction Backout Program.
Formatted Dump • • • • • • •

CHAPTER 11. APPLICNI'ION SERVICES

viii CICS/VS Introduction to Program Logic

• • 110
112

• • 115
• • 115

116
117
117

• • 117
119
121
121
121

• • 122

• 125
125

• • 125
126

129
• • • 129

.. 129
• • 130

130
131
132
132
133

• • 133
133

• • 133
134
134

• 135
• • • 135
• • • 135

• • 135
136
136

• • 138
139
139

• • 140
140
140

• 141
• • 141

142

• • 145

Basic Mapping Support.
Message Routing.
Terminal Paging.
Device Independence.
EMS Modules.

Pre-VS Mapping Module.
Data Stream Build.
Non-3270 Input Mapping Program •
Mapping Control Program.
3270 Mapping
Page and Text Build.
Route List Resolution Program.
Terminal Page Processor.
Terminal page Cleanup Program.
Page Retrieval Program
Terminal Page scbeduling Program •

Data Interchange Program •
2260 Compatibility •
EXEC Interface Program
Built-in Functions .

Table Search
Phonetic Conversion.
Field Verify
Field Edit
Bit Manipulation •
Input Formatting
Weighted Retrieval

INDEX.

145
146
146
147
147
147
148
148
148
150
150
151
151
152
152
153
154
154
155
155
156
156
156
156
156
157
157

159

Contents ix

Figures

1"'1. Batch Processing- · · .. · .. · · .. · · · .. 3
1 2. On-line Processing. · · · · .. · .. · 4
1-3 .• Batch Application Program · · .. · · · · .. · 5
1-4. CICS/VS Inquiry Application Program .. 6
1"'5 .• CICs/'rS in storage. 9
1 6 .. Terminal Management · .. , . 13
1-7. Task Management · · · · · .. 14
1-8. Program Management. · · .. · · .. · · • · · · · .. 15
lJ...9 .. User Application program. · · · · · · .. · · · · · 16
1-10. Basic Mapping Support - Input '. · · 17
1-11. File Management · .. · 18
1-12. Transient Data Management · · · · · · 19
1-13. Trace Management. · · .. · · .. 20
1-14. Dump Management · .. · · · · .. · · 21
1-15. 1'empOrary Storage Management. · · .. · 22
1-16. Storage Manage.tnent · · .. · .. · .. · 23
1-17. Basic Mapping support - Output. · · 24
1-1e .• Ending the Transaction. .. · · · · · · .. · · 25
2"'1. CICS/VS Organization - Components and Functions 27
4 1. CICs/VS and the Operating System. .. · · · .. 51
4-2. CICS/VS in Context. · 52
4 3. Transaction and Task. · .. · .. · 59
4-4. CICS/VS Dynamics .• .. · · · · 60
4-5. Storage · · ,. .. · · · · 65
5"'1. CICS/VS in Context. e• · · · .. 12

x CleS/VS Introduction to Program Logic

Surv,ey of CICS/VS

This part provides an overview of CICS/VS. It introduces the functions
of CICS/VS, the tables which control the operation of the system, and
the more important control blocks and tables. There is a general
discussion of the execution of CICS/VS.

The part contains five chapters:

Chapter 1. Introduction

Chapter 2. CICS/VS Structure

Chapter 3. System Preparation

Chapter 4. CICS/VS Execution Environment

Chapter 5. CICS/VS Advanced Communication Systems

Part 1. Survey of CICS/VS 1

Chapter 1. Introduction

The IBM Customer Information Control Systero/virtual Storage (Crcs/VS) is
a data base/data communications (DB/DC) systerr.. In order to understand
CICS/VS it is necessary to be aware of the wayan online DB/DC system,
as opposed to a conventional batch system, processes data.

SYSTEM CHARACTERISTICS

BATCH AND DB/DC SYSTEMS

In a batch processing environment (see Figure 1-1.), application
programs are usually scheduled individually to manipulate a batch of
data records in sequence. The data files are organized to suit the
requirements of a particular application; each application is scheduled
independently and the data base support provided by the batch-processing
system is unique to each application. The structure of the data is
developed for the efficiency of the particular batch program and is not
likely to be suitable for a whole range of applications.

One
Appl ication

Figure 1-1~ Batch Processing

Card Reader
Input

Printer
Output

• It is important that a batch job should take as little time as
possible so that the installation can process more jobs, but the results
of each job are not required within seconds of its entry into the
system. In a batch environment, the response time (that is to say, the
time between submitting a job and getting the output back) is usually of
the order of hours. Again, the entry of batch jobs can usually be
planned. The various jobs need not arrive in a completely random and
uncoordinated way, and it is possible to organise the installation to
take advantage of this and run each job at the most suitable time.

The real-time DB/DC environment (see Figure 1-2.) differs from the
batch processing environment primarily in the number and types of
concurrent activities that are likely to occur within tbe system at a
given time. Thus, a DB/DC system accepts many requests arriving at

Chapter 1. Introduction 3

random, and provides a data base organization so that the same data can
be used by many applications.

Figure 1-2. On-line Processing

Some of the characteristics of such a system are:

• A DB/DC system is terminal oriented. Application programs executing
under the control of a DB/DC system receive input entered from
terminals connected to the computer, and send output to the same or
different terminals.

• A DB/DC system is capable of servicing two or more application
programs concurrently.

• A DB/DC system allows different application programs to access the
same data base.

-In a real-time system, the aim is not just to keep the computer bUsy.
Since the terminal operators are directly involved in working with the
computer, it is important that tne response time to a request shall be
of the order of seconds, or less. The computer will be subject to
fluctuating pressure as tae terminal operators submit work. The DB/DC
system must therefore have a more complex multiprocessing and priority
system in order to allocate work between terminal operators when there
is contention between them.

The DB/DC system will run continuously, usually for a day or longer.
It may be a single job, a set of jobs running concurrently, or its
continuity may depend on information in the data-base. Since it is
meaningless to rerun the whole DB/DC system, there must be a restart
capability at the level of the unit of processing initiated by a single
terminal request. This means that the DB/DC system must be able to keep
a record of any changes made.

4 CICS/VS Introduction to Program Logic

(
BATCH PARTITION (

/ I--

APPLICATION INPUT -PROGRAM :; TRANS.

WORK AREA

TRANSACTION I
INPUT AREA

FILE I/O AREA " C
~ \C :::

REPORTS ... PRINT OUTPUT AREA DA~A
FILES

~

~-"'"
DOS/vS

......,

Figure 1-3. Batch Application Program

CICS/VS AS A DB/DC SYSTEM

eICS/VS, then, is a general purpose DB/DC system. It provides support
for online systems in much the same way as the operating system and
access methods provide support for batch processing systems.

excs/vs runs as a single job. Tbere may also be other continuously
running jobs present, which will usually be part of the operating
system. However, CICS/VS is neither a replacement for, nor part of, an
operating system. It executes under the control of the Disk Operating
System/Virtual Storage (DOS/VS) or the Operating System/virtual storage
(OS/VSl or OS/VS2), ahd uses standard access methods. At the same time
as CICS/VS is running other programs can be executed, under the
operating system, in other partitions or regions.

eICS/Vs acts as an interface between the user's application programs
and the operating syst~. For applicatiOn prograros, CICS/VS provides
macro instructions and commands to request services, such as reading and
writing files. CICS/vS conveys these requests from the applicatioh
program to the operating system. In this way, the application
programmer is relieved of planning and implementin<j suoh input/output
requests, of cOntrolling terminals and files or data bases, and of
handling abnormal conditions.

eICS/VS may also be regarded as an extension of the operating system.
It is executed as one job either in a dedicated mode, with no other
partitions operating (except those needed by the operating system to
support CICS/VS), or in a multiprogramming mode, with. one or ttlore batCh
partitions. Within its partition, CleS/VS controls the simultanequs
processing of input from many terminals by many application prOgrams;
eles/Vs therefore bas its own task dispatcher, which is logically
separate from the control of multitasking in the operating system.

Chapter 1. Introduction 5

TERMINAL #5
CICS INQUI RY APPLICATION PROGRAM

\ CICS DYNAMIC STORAGE
CODE: INOY \ /
ACCT: 25864 1

1 TERMINAL

01 I/O AREA ,
TRANS.
WORK AREA

TERMINAL #5

ACCT: 25864 CD 0
AMT: $1,568.13 TERMINAL FILE

I/O AREA 110 AREA
DATA

ETC. FILE

Figure 1-4. CICS/VS Inquiry Application Program

Before a typical application is discussed, some differences between
batch and CICS/VS application programs should be reiterated,.

• In a batch program, all the I/O and work areas required are defined
within the program, or are acquired directly from the operating
system. In CICS/VS these areas are outside the application program.
I/O and work areas are allocated by CICS/VS when needed, from a
dynamic storage area within the CICS/VS partition.. (Figures 1-3. and
1-4. highlight this difference.) This allows CICS/VS to conserve main
storage, and to process many transactions concurrently.

• A batch program issues I/O instructions directly to the operating
system, while a CICS/VS application program issues CICS/VS I/O macro
instructions or commands, which are implemented by suitable operating
system macro instructions.

INFORMAL INTRODUCTION TO CICS/VS

When CICS/VS is running, it receives a series of inputs from terminals.
The unit of processing typically associated with one line or record is a
transaction. A transaction will often result in a single reply being
sent back to the user·s terminal. A transaction may, less usually,
involve several input/output operations. When the input that starts a
transaction is received from a terminal, a task is created by CICS/VS to
control the processing of that transaction until its completion. A task
can therefore be defined as the internal CICS/VS representation of a
transaction, and is normally associated with the terminal that initiated
the transaction. The result of the transaction could be, for example,

6 CICS/VS Introduction to Program Logic

an update to a file, or particular information being displayed at the
terminal.

CICS/VS handles more than one transaction at a time by overlapping
I/O operations and processing. Since CICS/VS resides in a partition
with high priority, CICS/VS usually retains control in a
multiprogramming environment as long as there are CICS/VS transactions
to be serviced. It relinquishes control to the operating system when no
further CICS/VS processing needs to be done.

In order to help provide the facilities required of a DB/DC system,
CICS/VS is designed as a modular system, made up of packages. The
CICS/VS user determines which of these packages he wants, according to
the requirements of his particular applications. A CICS/VS system
consists of: control modules, system tables, control areas, and user
application programs.

The control modules are the programs that implement the CICS/VS
macros and commands, and contain the calls to the operating system. The
system tables contain a definition of the environment in which CICS/VS
1S running. The control areas contain the changeable information needed
by CICS/VS as it runs. Finally, application programs are written by the
user to perform the particular processing of terminal input and of the
data base.

The following sections give a general overview of the structure of
CICS/VS. The subject is dealt with in more detail in Chapters 2, 3, and
4 of this manual.

CICS/VS CONTROL MODULES

A CICS/VS system contains a number of control modules, some of which are
listed below. In descriptions of CICS/VS r its various sections are
named in slightly different ways. The standard classification of
CICS/VS divides it into components, which are then divided into
functions. Many of the control modules are functions within the System
Management component. In that context they are generally called, as
they are here, Task Management, Storage Managerrent etc.; but in other
contexts they may be called Task Control or the Storage Control Program
etc.

The first five functions in the list are always present; the
remainder are optional and are chosen by the user during CICS/VS system
generation.

Task Management -- the dispatcher of the CICS/VS system. Controls the
operation of all the tasks active at anyone time.

storage Management handles all storage in the CICS/VS partition.

Program Management controls loading and releasing, and invocation of
CICS/VS application programs.

Terminal Management -- controls all terminal activity.

Time Management -- controls all time services; for example, the
suspension of a task for a certain period of time, or the initiation of
a task at a particular time.

File Management -- controls the I/O operations needed to support the
data base.

Chapter 1. Introduction 7

Transient Data Management -- provides a queueing facility for data sent
to and from user-defined destinations.

Temporary Storage Management -- provides a symbolic scratchpad facility
so that an application program can store data, temporarily, in virtual
storage or on a direct access device.

Dump Management -- provides a dump of any CICS/VS task (and, on option,
of CICS/VS tables).

Journal Management -- provides facilities for creation, management, and
retrieval, during real-time CICS/VS execution, of special purpose
sequential data sets called journals.

Trace Management -- provides a means of tracing the processing path of
an application program.

Basic Mapping support -- facilitates information display on a wide
variety of terminals and provides device independence, terminal paging,
and message routing capabilities.

In addition to the principal service functions CICS/VS provides many
other online and offline modules, for example:

On line -- system initialization and termination, error recovery,
master terminal support, etc.

Off line -- Utilities, formatting programs, sysrem generation, etc.

CICS/VS uses rather than duplicates operating system services. For
example, Terminal Management uses telecommunication access methods
(BTAM, VTAM, and TCAM) for terminal I/O. File Management uses standard
file access methods, such as Indexed sequential Access Method (ISAM).

CICS/VS TABLES

Associated with some of the management programs are tables, which are
generated during CICS/VS Environment Definition, and allow the user to
describe or define a particular DB/DC environment to CICS/VS. By using
tables in this way CICS/VS can be adapted to work in a different
environment merely by supplying different tables.

A full list of the CICS/VS tables, together with a summary of their
contents, appears in Chapter 3. Some of the more important tables are:

Terminal Control Table -- used by Terminal Management. It contains
descriptions of terminals and features, and operating information.

Program Control Table -- used by Task Management. It defines which
transaction codes may be entered by terminal operators, and for each
code, the related application program which starts the processing of the
transaction.

8 CICS/VS Introduction to Prograw Logic

CICSIVS PARTITION

CICSIVS MANAGEMENT

TERMINAL TASK PROGRAM FILE

MANAGEMENT MANAGEMENT MANAGEMENT MANAGEMENT

BASIC
STORAGE DUMP MAPPING ETC.
MANAGEMENT MANAGEMENT SUPPORT

CICSIVS TABLES

TERMINAL PROGRAM PROCESSING FILE DESTINATION!

CONTROL CONTROL PROGRAM" CONTROL CONTROL

TABLE TABLE TABLE TABLE TABLE

CICSIVS SE RVICE PROGRAMS

SYSTEM INITIALIZATION SYSTEM TERMINATION

USER APPLICATION PROGRAMS

INQUIRY UPDATE ETC. ETC. ETC.

CICS/VS DYNAMIC STORAGE

I TERMINAL

1 I/O AREAS

I I
FILE

I I
I/O AREAS

TRANSACTION
WORK AREAS

BATCH PARTITION
BATCH JOB

OPERATING SYSTEM

Figure 1-5. CICS/VS in storage

Processing Program Table -- used by Program Management. It contains
information on each application program.

Chapter 1. Introduction 9

File Control Table -- contains the characteristics of the files accessed
by File Management.

Destination Control Table -- used by Transient Data Management. It
describes each of the Transient Data destinations used in the system.

Journal Control Table -- contains information on each of the journal
files used in the system.

The File Control Table and Destination Control Table are optional.

CICS/VS CONTROL AREAS

In addition to the CICS/VS system tables, wbich are used to define the
environment to CICS/vS, there are a number of control areas used to hold
dynamic data during the execution of CICS/VS. A summary of these areas
is given in Chapter 4; the most important are:

• The Common System Area (CSA) is tbe major CICS/VS control block. It
contains pointers to the CICS/VS management modules, control
information, and pointers to CICS/VS system tables.

• A Task Control Area (TCA) is created for each task that currently
exists. It contains the pointers to the storage associated with the
task, pointers to task related fields in other CICS/VS control
blocks, current application requests, and save areas.

• A Dispatch Control Area (DCA) is created as a logical extension to
each TCA. The DCA is placed in a chain and is used to control task
dispatching. It contains information such as the priority and
current status of the associated task.

• Transaction Work Areas (~WAs) may, optionally, be present as phySical
extensions of TCAs.

• Terminal Input Output Areas (TIOAs) are used as buffers for data
transmitted to and from terminals.

CICS/VS USER APPLICATION PROGRAMS

The other components of an installation using CICS/VS are the
application programs written by the user to provide the on-line
processing required by the installation under the control of CICS/VS.

Programs to be run under CICS/VS may be coded in Assembler language,
American National Standard (ANS) COBOL, or PL/I. In an assembler
language program, the interface to CICS/VS is through macro-assembler
instructions, which are expanded by the macro pass of the assembler in
exactly the same way as operating system macros. In a COBOL or PL/I
program, the interface is a set of commands which are processed by the
Command language translator. (There is also a preprocessor whicp
enables low level macro instructions to be used in COBCL and PL/I.) Some
of the basic characteristics of CICS/VS application programs are
summarized below.

• CICS/VS macro instructions or commands (rather than programming
language statements such as READ, GET, PUT, and WRITE) are included
to specify the system and I/O functions required in application

10 CICS/VS Introduction to Program Logic

programs. Although the application programmer is not precluded from
direct communication with the operating system, CICS/VS will work
with greater efficency if it is allowed to perform all supervisory
and data management services for the applications.

• Application programs must be coded so that they are serially reusable
between CICS/VS macro instructions or commands. A serially reuseable
portion of an application program is executed by only one transaction
at a time, and must initialize or restore any instructions or data
that it alters within itself during execution.

Programs written with this property needed by CICS/VS are called
quasi-reentrant, since the programs need not meet System/310
specifications for true reentrance. Quasi-reentrance allows a single
copy of a user-written application program to be used to process
several transactions concurrently, th~reby reducing the number of
copies of a program that must be in main storage. A genuinely
reentrant program will always be quasi-reentrant.

• Input/output areas, temporary storage areas, and work areas are not
included in an application program. Where these areas are needed
they are defined outside application programs, by means of the
CICS/VS system tables.

• Files are not defined within application programs.

Figure 1-5. illustrates the general layout of storage when CICS/VS is
running.

In order to illustrate how the CICS/VS functions, tables, and areas,
and the application programs are related, the following description,
under the heading "Example of a Typical Application", follows the
processing of a simple transaction step by step.

EXAMPLE OF A TYPICAL APPLICATION

This example considers an inquiry application coded using the macro
level interface. Let us suppose a CICS/VS inquiry has been initiated by
a terminal operator to answer a customer question. To start an inquiry,
the operator keys in a transaction code such as "INQY", which identifies
the type of inquiry and the application program which processes it. An
account number is also entered and used as a key to identify a
particular record. The inquiry application program reads the record,
moves the necessary fields to an output area, and displays the
information at the terminal.

The following notes, referring to Figure 1-4., provide a simplified
view of this transaction; the numbers refer to the diagram, not to the
order of events:

1. Terminal Management reads input from a terminal into a Terminal
Input/Output Area, within dynamic storage. CICS/VS automatically
passes control to the application program identified by the
transaction code.

2. The application program refers to an account number in the ~erminal
I/O Area, and, using it as a key, issues a File Management macro
instruction requesting that the record be read.

3. storage Management allocates a File I/O Area, and File Management
issues the read, using the operating system.

Chapter 1. Introduction 11

4. The application program issues a storage Management macro instruction
to acquire a larger Terminal I/O Area in which to build the message
to be displayed.

5. The application program moves the required fields into the new
Terminal I/O Area.

6. A Transaction Work A.rea is made available for working storage, if
needed.

7. The application program requests, through a Basic Mapping Support
macro instruction, that Terminal Management should write the
information to the terminal, concluding the transaction. CICS/VS
releases all storage acquired for this transaction for use by others.

So the functions are divided between the application program and CICs/VS
as follows:

Application program functions:

• requests that a file be read

• requests that an output Terminal I/O Area be acquired

• building the data to be sent to the terminal

• requests that the message be written to the terminal

CICS/VS functions:

• All I/O, including reading the transaction identifier

• Responses to requests for the storage areas needed to process the
transaction

The following descriptions show the CICS/VS functions as they would
be used in this typical inquiry application written in assembler
language.. Each function is first described in general terms and tlten
shown in a diagram. This diagram, which is built up as the transaction
is processed, shows at which stage of processing the function is
required. Following the diagram, a more technical description of the
function is given.

Terminal Management

Assume that the terminal operator has entered the transaction code and
an account number. Terminal Management reads this input message into a
Terminal Input/Output Area (TIOA) in dynamic storage; see Figure 1-6.
Note that Terminal Management performs this read operation, not the
application program.

Terminal Management controls all terminal operations through
teleprocessing access methods. In this case the access method used is
BTAM. Chapters 5 and 6 contain discussions of Terminal Management using
VTAM. With BTAM, Terminal Management's primary functions are polling
and addressing. Polling is checking all remote terminals periodically
to determine whether any have input to transmit, and inviting them to
send input to be processed by the application program. Addressing is
having the computer check to see if a terminal is ready to receive
output. Together with Basic Mapping Support, Terminal Management

12 CICS/VS Introduction to Program Logic

provides an application program witB the ability to corrrounicate with a
terminal. Terminal Management also handles I/O errors, and keeps track
of which task is associated with which terminal.

Figure 1-6. Terminal Management

Terminal Management uses the Terminal Control Table (TCT) to help in
controlling terminal operations. The TCT specifies the communication
line characteristics, the types of terminals, special teatures, terminal
priorities, the polling sequence (the order in which the terminals
should be polled) and operational data, such as indications that
terminals are temporarily out of service and excluded from polling.

CICS/VS provides several error routines. When unrecoverable I/O
errors occur, Terminal Management uses a Terminal or Node Abnormal
Condition Program to analyze the condition. Statistics are maintained,
and an error message is generated. A user-written Terminal or Node
Error program should be incorporated to tailor the generalized Terminal
or Node Abnormal Condition actions to the installation's specific needs.

~ Management

Terminal Management passes control to Task Management, which creates a
task for the inquiry transaction (see Figure 1-7.). A terminal can have
only one transaction associated with it at a given time, and the
terminal is locked until the program writes a response to the terminal.

Chapter 1. Introduction 13

TERMINAL

Figure 1-7. Task Management

Task Management keeps track of the status of the many tasks being
processed concurrently. Transactions are not usually processed through
to completion in a single, uninterrupted operation. A transaction may
be processed until a file I/O macro instruction is executed, for
instance, whereupon another task receives control. Therefore, there may
be many incomplete tasks which Task Management must supervise
simultaneously.

CICS/VS has a priority scheme to allocate control of the CPU to the
various tasks that execute concurrently. The process of selecting tasks
and giving them control is called task dispatching. A user may assign
numerical values to transaction codes, the most important having the
highest value. Terminal operators and terminals may also be given
numerical priorities. Task Management adds these three figures together
and, when there is more than one task ready to be dispatched, selects
the one with the highest total priority.

Task Management validates transactions by checking the Program
Control Table, (PCT>, which lists all valid transaction codes and their
associated programs, so that control may be transferred to the correct
program,. If an operator entered an invalid transaction code, 'Iask
Management would not find it in the PCT and an error message would
automatically be sent to the terminal.

To control each task, Task Management acquires a Task Control Area
(TCA) through storage Management (described later in this chapter). If
desired, this area may be extended to include a Transaction Work Area
(TWA), which may be used by an application program during the life of a
transaction. The TCA and TWA are released when the task terminates.

14 CICS/VS Introduction to Program Logic

Program Management

Task Management passes control to Program Management, which keeps track
of the locations of the application programs (see Figure 1-8.).

o

Figure 1-8. Program Management

Program Management controls application programs that are stored in
the real-time relocatable library. Programs are loaded into virtual
storage when tRey are needed. unless marked in tRe Processing Program
Table (PPT) as normally resident.

The PPT is used by Program Management to determine a program's
location in virtual storage during CICS/VS operation,. Programs are
relocatable, and may be in different main storage locations from
execution to execution. The PPT contains the ~rogram size, source
language, and other program information.

Under certain conditions, such as unrecoverable I/O errors, the
application program may wish to end the task. However, if a program
check occurs, this type of abnormal end is treated differently. If a
program terminates abnormally in a batch system, the operating system
may purge the job in that partition and schedule another. Clearly
CICS/VS should not be purged just because of one application program's
exception condition. Therefore, CICS/VS intercepts program checks and
only terminates the tasks in which they occur.

User Application Program

Program Management passes control to the application program, in this
example, the program that handles the transaction code INQY (see Figure
1-9.).

Chapter 1. Introduction 15

o
000000
000000
000000

INQUIRY

PROGRAM

Figure 1-9. User Application Program

In summary, before passing control to the application program,
CICS/VS has read the input (INQY and account number) into a Terminal I/O
Area, validated the transaction code, and initiated a task. ~he
application program may now process this input and issue macro
instructions to request the services needed to handle the transaction.

Basic Mapping Support - Input

Basic Mapping Support (BMS) is a CICS/VS feature that allows the user to
define layouts of terminal pages or screens. It is described in more
detail in Chapter 11 of this manual. In the context of this transaction
description, the next step is as follows:

A BMS macro instruction is issued by the application program to
format and move the account number from the Terminal I/O Area to a map
area. Control passes to the BMS program to perform this service and
returns to the application program (see Figure 1-10.).

16 CICS/VS Introduction to Program Logic

o
000000
000000
000000

BASIC
MAPPING

INQUIRY
APPLICATION
PROGRAM

Figure 1-10. Basic Mapping Support - Input

BMS provides two main services to the application programrrer, device
independence and format independence. Device independence allows an
application programmer to communicate with a terminal without having to
understand its hardware control characters. Format independence
simplifies the positioning of data on the terminal and allows
rearrangement of data fields without application program mOdifications.

BMS uses map tables as requested by the application program to
control the forroatting (or mapping) of terminal 1/0 data. A map table
is defined for each page or screen layout used in the application
program,. The map tabl e contains such information as the length and
position on the terminal of each data field, visual display field
attribute characters, and constant data for headings and keywords.

File Management

The application program issues a File f'~anagement macro instruction to
retrieve a record from a file or data base. File Management reads the
record into a file area (acquired automatically by Storage Management),
and returns control to the program (see Figure 1-11.).

Chapter 1. Introduction 17

o
000000
000000
000000

Figure 1-11. File Management

INQUIRY
APPLICATION
PROGRAM

DATA
FILE

File Management supports read, update, add, delete, and browse
functions, if they are supported by the access method being used, and
provides a file protection function called exclusive control. ~his
function is invoked by File Management if several tasks request the same
record for updating. Exclusive control places all tasks, with the
exception of the first, into a wait queue, so that only one task at a
time updates that record and returns it to the file before another task
may access the record.

The File Control Table (FCT) contains, for each file, user-supplied
file characteristics including the access rrethcd, record format and
length, and block size. The FCT also specifies what operations can be
performed on each file. A file may be online and yet effectively
protected against modifications by specifying that it is read only, when
CICS/VS will prevent any program from updating such a file. New files
may be added, old files deleted, and characteristics such as blocking
factors modified, without necessarily having to change tbe application
programs,.

Transient Data Management

When a file is changed by updating a record or adding a new one, it may
be necessary to hold data associated with the change.. For example, a
copy of the original record may be kept. Such data should be recorded
by using Transient Data Management. Inquiries do not change records and
would only need to be a source of information if some sort of overall

18 CICS/VS Introduction to Program Logic

data, such as statistics, were being collected. Control returns to the
application program after the invocation of Transient Data Management.

o
000000
000000
00000

INQUIRY
APPLICATION
PROGRAM

Figure 1-12. Transient Data Management

DATA

FILE

Transient Data Management is a queuing facility which stores records
in the order received on a sequential file or tape file. These may be
records for later batch processing, audit records, statistics, or error
messages. Sequential input files may also be read by issuing ~ransient
Data macro instructions.

The Destination Control Table (DCT) contains information used by
Transient Data Management to direct dat.a to the correct file.. The nCT
includes the file name, and record and file descriptions.

Trace Management

Trace Management is a CICS/VS debugging aid which may be used to trace
the processing path of an application program. It is invoked through
CICS/VS trace macro instructions, and after execution returns control to
the application program (see Figure 1-13,.).

Chapter 1. Introduction 19

o
000000
000000
000000

Figure 1-13.. Trace Management

INQUIRY
APPLICATION
PROGRAM

LOG

When debugging, it may occasionally be difficult to determine which
portions of an application program are being executed. By inserting
CICS/VS trace macro instructions at appropriate points in a program, the
path may be determined. Whenever one of these macro instructions is
encountered, CICS/VS makes an entry in the Trace Table. CICS/VS also
records in the Trace Table which CICS/VS components have been used by
the application program.

The Trace Table resides in virtual storage, and a copy is provided
whenever an application program requests a storage dump or the CICS/VS
partition is terminated abnormally.

Dump Management

If an unusual condition occurs during processing, the application
program may issue a CICS/vS dump macro instruction to write all
transaction-related storage areas to a dump file. After the dump has
been taken, control returns to the application program (see Figure 1-
14.).

20 CICS/VS Introduction to Program Logic

o
000000
000000
000000

Figure 1-14,. Dump Management

INQUIRY

PROGRAM

DATA
FILE

LOG
FILE

DUMP
FILE

Dump Management macro instructions may be inserted at strategic
points in a program to facilitate debugging. DumF Management dumps
storage areas to a sequential fi·le (DASD or tape) for subsequent
printing. The dump macro instructions should be removed from the
application program when it has been debugged.

CICS/VS Dump macro instructions may also be used to provide printed
records of certain conditions, such as unrecoverable I/O errors. Used
in this way, the macro instruction is regarded not as a debugging aid,
but as a permanent part of the program.

The Dump Utility Program supplied with CICS/VS is a batch program
that formats and prints the dump file.

Temporary storage Management

The application program may need to store information for later
retrieval by another task. Temporary storage Management allows the
program to store such data in virtual storage, or on auxiliary storage
on a direct access device, before the next instruction is executed (see
Figure 1-15.).

Chapter 1. Introduction 21

o
000000
000000
000000

INQUIRY
APPLICATION
PROGRAM

Figure 1-15. Temporary Storage Management

LOG
FILE

DUMP
FILE

An application program may issue macro instructions requesting that
information be stored for subsequent retrieval, assigning a name to each
record. If the same name is used to store several records, such records
are queued amd may be retrieved later in the same sequence in which they
were stored, or randomly by entry number. All temporary storage
records, whether single or queued, are retained by CICS/VS until purged
by an application program.

storage Management

The application program must now extract the necessary fields from the
record in the file area and set up a map area to be written to the
terminal. An output area in which to build the map data is requested by
issuing a storage Management macro instruction. Control returns to the
program when the area is secured (see Figure 1-16.).

storage Management controls virtual storage within the CICS/VS
partition or region. Through macro instructions, it allocates storage
to other CICS/VS control programs or to application programs. Obtaining
a Task Control Area for Task Management for example, is an illustration
of allocating storage for other CICS/VS functions.

22 CICS/VS Introduction to Program Logic

0 DATA
FILE

000000
000000
000000 LOG

FILE

PROGRAM

DUMP

Figure 1-16,. storage Management

To service as many terminals as possible, CICS/VS conserves main
storage through dynamic storage management. Instead of preallocating
static I/O areas to the tasks, Storage Management assigns those areas
from dynamic storage when they are needed .•

Because of dynamic storage, allocation locations may differ between
transactions. since CICS/VS programs need to access fields within these
areas, storage Management provides addressability by passing the area
locations to the application programs. storage Management also queues
requests for storage, if space is temporarily unavailable. A task is
placed in a wait state by Task Management until space becomes available.
All storage areas acquired for a task are chained together off one of
the CICS/VS control blocks for the task, allowing storage Management to
release the storage on task termination. The application program may
also return storage to CICS/VS when it is no longer needed. This
permits the storage to be used by other transactions in the CICS/VS
partition.

Basic Mapping Support - Output

A BMS macro instruction formats the record fields for transmission to
the terminal. EMS moves the data from the map area to a Terminal I/O
Area, and it is then written to the terminal by Terminal Management.
The terminal operator may view the record for as long as desired, and
then enter a new transaction code and initiate a new task (see Figure 1-
17.).

Cha~ter 1. Introduction 23

0 BASIC
TERMINAL DATA

FILE

000000
000000
000000

FILE

INQUIRY
APPLICATION
PROGRAM

Figure 1-17. Basic Mapping support - Output

Ending the Transaction

The transaction is terminated by issuing a macro instruction to Program
Management. This uses storage Management to release all the storage
allocated to the transaction, and so makes it available for use by other
transactions. Upon completion, control returns to Task Management which
deletes this transaction from its transaction list. Task Management
then invokes Terminal Management to poll the terminal for a new
transaction code (see Figure 1-18.).

PLAN OF THE MANUAL

The remainder of this book is intended to provide a description of the
operation of CICS/VS in rather more detail. The first part deals with
general topics, while the second part covers CICS/VS function by
function.

24 CICS/VS Introduction to Program Logic

o
000000
000000
000000

TERMINAL

INQUIRY

PROGRAM

Figure 1-18. Ending the Transaction

Chapter 2 lists the components and functions, stating the purpose of
each function. Chapter 3 describes system preparation, giving details
of the various system tables. Chapters 4 and 5 cover the execution time
operation of CICS/VS. Chapter 4 deals with systems with a single CPU,
and Chapter 5 deals with CICS/VS in a network with one or more
controllers.

If you are trying to get an overall picture of CICS/VS, you should
continue to read the book sequentially. If you are interested in a
specific area, you should now have enough background knowledge to
continue with the chapter in which you are interested.

Chapter 1. Introduction 25

Chapter 2. CICS/VS Structure

I CICS/vS Organization

System

Management
Component

- Task Management
- Storage Management
- Program Management
- Time Management
- Terminal Management
- File Management
- Transient Data Management
- Temporary Storage Management

- Journal Management
- Sync Point Management

System
Reliability
Component

.... System Recovery Management
"'- Emergency Restart

~ Abnormal Condition Program
,.... Program Error Program

f- Terminal Abnormal Condition Program
~ Terminal Error Program

~ Node Abnormal Condition Program
f- Node Error Program

- Dynamic Transaction Backout

System
Service
Component

"'- Sign-On/Sign-Off
- Master Terminal
- Supervisory Terminal

- Operator Terminal

- System Statistics

- Batched Transaction Processing

- Dynamic Open/Close

- Ti me of Day Control

- Terminal Test

- Message SWitching

I
System
Monitoring

Component

I Trace Managem.
Dump Manageme

nt
nt

System
Support
Component

f- System Generatio
~ Environment Defi

n
nition
on f- System Initializati

f- System Terminati on
f- High-Level Langua ge Preprocessor

al Utilities f- System Log/ Journ
I- Dump Utility
f- Formatted Dump

Command Langua ge Translator

Application

Service
Component

I- Basic Mapping Su pport
y - 2260 Compatibilit

- Built-in Functions
- Data Interchange Program

ogram - EXEC Interface Pr

Figure 2-1. CICS/VS Organization - components & Functions

Chapter 2. CICS/vS Structure 27

The previous chapter introduced the basic require~ents of a data
base/data communications system, and described, through a general
overview of the modular structure of CICS/VS and an exawple of a typical
application, how CICS/VS meets these requirements. This chapter
describes the organization of CICS/VS in more detail, concentrating on
the purpose of each CICS/VS function.

The classification followed in this chapter (which appears throughout
the CICS/VS manuals) is also used in the chapters of Part 2 of this
manual, where the internal logic of CICS/VS is summarised.

CICS/VS is logically structured into six major components, each of
which contains a set of functions, as shown in Figure 2-1.
These functions, in turn, provide services to the CICS/VS user. Most
services are requested directly by the application programs through
CICS/VS macro instructions, but some, which help to create a useful
DB/DC environment, are performed automatically by CICS/VS.

The great majority of CICS/VS functions are either part of the
CICS/VS nucleus, tbat is to say they are an integral part of the system
and are (virtually) loaded at system initialization ti~e, or they are.
sytem application programs which are loaded when needed in the same way
as the users programs are loaded.

SYSTEM MANAGEMENT

System Management contains most of the functions that are central to the
running of CICS/VS. All the functions are resident in the nucleus. The
first four of the following functions are supervisory; the remainder are
concerned with data management.

TASK MANAGEMENT

Task management controls the allocation of CPU time between contending
CICS/VS tasks. It is the analogue of the central dispatcher in an
operating system, providing an interface to the multitasking facilities
of the host operating system. It also provides some services to the
application programs: attaching tasks, synchronizing tasks, and queueing
for resources.

STORAGE MANAGEMENT

Storage Management controls the virtual storage allocated to CICS/VS and
to the user-written application programs. Services provided by storage
management include the acquisition, initialization and disposition of
storage.

PROGRAM MANAGEMENT

Program Management controls programs within CICS/VS. The services
provided include multiprogramming, the loading, linking, and deletion of
programs, and the transfer of control between them.

28 CICS/VS Introduction to Progra~ Logic

TIME MANAGEMENT

Together with Task Management, Time Management (sometimes called
Interval Control) provides various optional task functions (system stall
detection, runaway task control, task synchronization, etc.) based on
specified intervals of time, or the time of day.

TERMINAL MANAGEMENT

Terminal management provides the communications between terminals and
user-written application programs. The Basic Telecommunications Access
Method (BTAM), Virtual Telecommunication Access Method/Network Control
Program (VTAM/NCP), and Telecommunication Access Method (TCAM) are used
for most terminal data management and line control services. Terminal
Management supports automatic task initiation to process transactions
which use a terminal but are not directly initiated by the terminal
operator. It also provides a simulation of terminals by sequential
devices in order to help test new applications.

FILE MANAGEMENT

File management provides a data base facility using keyed access through
the Virtual storage Access Method (VSAM), Indexed sequential Access
Method (ISAM), and the Direct Access Method for OS/VS (BDAM) or DOS/VS
(DAM). File Management supports updates" additions, deletions, random
retrieval, and sequential retrieval (browsing) of logical data on the
data base. CICS/OS/VS provides multithread access to the Data
Language/I (DL/I) facilities of the IBM Information Management System
(IMS/VS). CICS/DOS/VS provides multithread access to Data Language/I
DOS/VS. These CICS/VS DL/I interfaces allow CICS/VS application
programs to access DL/I data bases.

TRANSIENT DATA MANAGEMENT

Transient data management provides an optional queuing facility for
managing data being transmitted between user-defined destinations(I/C
devices or CICS/VS tasks). This function facilitates data collection.

TEMPORARY STORAGE MANAGEMENT

Temporary storage Management provides an optional general purpose
scratchpad facility. It is intended for video display paging,
broadcasting, data collection, and retention of control information.

JOURNAL MANAGEMENT

Journal management provides facilities for creation, management, and
retrieval of special purpose data sets, called journals, during real
time CICS execution. Journals are intended for recording, in

Chapter 2. CICS/VS structure 29

chronological order, any data the user may need later in order to
reconstruct data or events. For example, journals could be created to
act as audit trails; to record data-base updates, additions and
deletions for backup; or to track transaction activitity in the system.

SYNC POINT MANAGEMENT

Sync Point Management allows the user to specify a point in the
application program which is the end of a logical unit of work. Any
processing performed before such a sync pOint will not be reversible if
there is an error after the sync point.

A sync point is also taken automatically at the end of each task.

SYSTEM SERVICES

The System Services component contains a number of ancillary application
programs that provide systero service functions. Although several of
these are designed to be optional, the functions and services are
extremely valuable to the running of a DB/DC system in an installation.

SIGN-ON/SIGN-OFF

This function provides terminal operator identification to give more
security.

MASTER TERMINAL

The Master Terminal program provides dynamic user control of the system.
A master terminal operator can change the status and values of
parameters used by CICS/VS and thereby alter the operation of the
system. He may temporarily disable entries in several CICS/VS tables
and terminate any CICS/VS task currently in the system.

SUPERVISOR TERMINAL

The supervisor terminal function performs a terminal-oriented subset of
the services available to the master terminal. These services are
limited to the terminals under a given supervisor's control.

OPERATOR TERMINAL

This function allows a terminal operator to control the service and
processing status of the terminal.

30 CICS/VS Introduction to Program Logic

SYSTEM STATISTICS

This function provides the capability for CICS/VS to log system
statistics.

ASYNCHRONOUS TRANSACTION PROCESSING

Asynchronous Transaction Processing allows the user to read hatched
input from an appropriate device, storing it in a queue. The data can
then be taken from the queue, processed and the results written to
another appropriate device. Asynchronous transaction processing is
performed concurrently ~ith other terminal activity. Although designed
specifically for batched terminals (like the 2780, 3780, and 2770). this
feature can be used with certain interactive terminals (for instance the
2741).

DYNAMIC OPEN/CLOSE

The Dynamic Open/Close function allows the user to open and close data
sets during the real-time execution of CICS/VS.

TIME OF DAY CONTROL

Time of nay Control helps CICS/VS to run continuously for more than 24
hours. CICS/VS adjusts the expiration times that it maintains in
response to changes in the time of day maintained by the operating
system, and then resets its own date and time of day to that of the
operating system.

TERMINAL TEST

Terminal test is primarily designed for Field Engineers to help them
instal new terminals during the real-time execution of CICS/VS. Upon
request all printable characters can be sent, or a message can be
'echoed'.

MESSAGE SWITCHING

This function provides the user with a general purpose message sWitching
capability while CICS/VS is running. The facility, which can route
messages to one or more destinations, is initiated by the transaction
code 'CMSG', or a user-chosen replacement, read from the terminal.

Chapter 2. CICS/VS Structure 31

SYSTEM MONITORING

The System Monitoring component consists of two functions that run on
line and provide diagnostics to the user. Both functions are resident
in the CICS/VS nucleus.

TRACE MANAGEMENT

Trace Management provides a program debugging facility that records the
execution of CICS/VS macro instructions by CICS/VS management and
service programs, and by user-written application programs.

DUMP MANAGEMENT

Dump Management provides help in analysing programs and transactions
that are being developed or modified,. Specified areas of dynamic
storage are dumped onto a sequential data set, either tape or disk, for
subsequent offline formatting and printing, using the CICS/VS dump
utility program. See also the Formatted Dump program.

SYSTEM RELIABILITY

The functions in the System Reliability component handle error
conditions and help the user to recover or restart atter an error
occurs.

SYSTEM RECOVERY MANAGEMENT

System Recovery Management enables CICS/VS to intercept program
interrupts and atnormal terminations by the host operating system, in
order to prevent the termination of the whole CICS/VS system. If Dump
Management is used, a formatted dump is provided. It possible, only the
individual task causing the error condition is terminated. System
Recovery is resident in the nucleus.

DYNAMIC TRANSACTION BACROUT

Dynamic Transaction Backout allows the effects of an abnormally
terminating transaction to be reversed imediately, while the rest of
CICS/VS continues normally.

ABNORMAL CONDITION

This program resolves any abnormal conditions other than those
associated with a terminal, or those handled directly by the operating
system.

32 CICS/VS Introduction to Program Logic

PROGRAM ERROR

Each CICS/VS installation may supply a routine to provide a user action
in response to a programming error. CICS/VS provides the option of
disabling the transaction code associated with the program in error,
thus preventing the recurrence of the error until it can be corrected.

TERMINAL/NODE ABNORMAL CONDITION

These functions intercept any terminal/node abnormal conditions that are
not handled by the operating system.

TERMINAL/NODE ERROR

The user may supply routines to provide corrective action in response to
terminal or node I/O errors. A sample error program is supplied on the
CICS/VS distribution tape or disk.

EMERGENCY RESTART

The Emergency Restart function allows the user the option of restarting
CICS/VS following an abnormal termination (machine check, power failure,
or abnormal termination by the operating system), and reinitializing
CICS/VS selectively in order to meet his requirements.

KEYPOINT PROGRAM

The Keypoint Program collects information from tables and control areas,
and writes the information onto the Restart data set, or the System log,
for use by System Intialization and Emergency Restart.

SYSTEM SUPPORT

The System support component consists of several functions that are
required to support the real-time CICS/VS system. Most of the support
functions are performed off-line.

SYSTEM GENERATION

System Generation enables the user to define and structure CICS/VS to
meet the particular requirements of the installation. System generation
is controlled through CICS/VS system generation macro instructions.

Chapter 2. CICS/VS structure 33

ENVIRONMENT DEFINITION

Environment Definition enables the user to create control tables and
service tables that define the environment in which the generated
CICS/VS system is to operate.

SYSTEM INITIALISATION

System Initialization is used to start the CICS/VS job. The £acility is
resident only long enough to bring CICS/VS into storage and start up its
execution,.

SYSTEM TERMINATION

The System Termination program allows the user to end the current
operation of CICS/VS. The function will gather summary statistics and
information necessary for a warm start, and then return control to the
operating system.

HIGH-LEVEL LANGUAGE PREPROCESSOR

The off-line HLL preprocessor per£orms part of the process of preparing
a COBOL or PL/I program with embedded CICS/VS macro instructions

COMMAND LANGUAGE TRANSLATOR

The off-line Command language translator prepares a source program, in
ANS COBOL or PL/I, with its embedded EXEC CICS commands, for input to
tbe appropriate compiler. It translates the commands to statements in
the high level language. There is an interface routine between the
commands and CICS/VS which is part of the.Application Services
component.

DUMP UTILITY

The off-line Dump Utility program formats and prints the output from
CICS/VS DUmp Management. It operates in batch mode and allo~s each
storage area, program, and table entry to be identified, formatted, and
printed separately, with actual and relative addresses.

TRACE UTILITY

The offline Trace Utility program formats and prints the output from
Trace Management

34 CICS/VS Introduction to Program Logic

SYSTEM JOURNAL FORMATTING UTILITIES

The System Journal Formatting utilities preformat magnetic tapes or disk
extents to be used as system logs or journals. They allow the user to
place an end-of-file mark on magnetic tapes used as journals, before
using them after an abnormal system termination.

FORMATTED DUMP PROGRAM

The Formatted Dump Program may be run when an error occurs. It produces
a dump of the CICS/VS partition or region with the various CICS/VS
control tables and areas identified.

APPLICATION SERVICES

CICS/VS provides several functions designed to perform services closely
associated with user applications. These services rely on CICS/VS
System Management functions to achieve their objectives and can be
considered as logical extensions to the user-written application
programs.

BASIC MArPING SUPPORT

Basic Mapping Support provides message routing, terminal paging, and
device independence services. Message routing allows application
programs to send output messages to one or more terminals not in direct
control of the transaction. Terminal paging allows the user to prepare
a multi-page output message without regard to the physical size of the
output terminal; the output can then be retrieved by page number in any
order. Device independence allows the user to prepare output without
regard to the control characters required for a terminal; CICS/VS
automatically inserts the control characters and eliminates trailing
blanks from each line. Most of the EMS programs are resident in the
CICS/VS nucleus

DATA INTERCHANGE PROGRAM

The Data Interchange program supports the batch controller functions of
the IBM 3790 communication system - stage 4, and also for the IBM 3770
programmable communication system. Support is provided for the
transmit, print, message, user, and dump data sets of the IBM 3790.

2260 COMPATIBILITY

This function allows the user (with BTAM) to run currently operational
2260-based transactions from an IBM 3270 Information Display System.
Compatibility mode is specified by the user (for a transaction or for a
terminal); operation in this mode can be intermixed with IBM 3270 native
mode. Two levels of compatibility are provided: a full screen operation

Chapter 2. CICS/VS Structure 35

or a format mode. The latter is more efficient; however. not all 2260
operations are supportable within the format mode. The level of support
can be selected by transaction. In most cases, the user is not required
to make any changes to application programs.

EXEC INTERFACE PROGRAM

The EXEC Interface program analyses the arguments of the an ANS COBOL or
PL/I CALL statement, generated by the Command language translator, to
determine the requested function and to assign values into the
appropriate CICS/VS control blocks. It also relieves the application
programmer of storage management and error checking.

BUILT-IN FUNCTIONS

CICS/VS provides the application programmer with some commonly used
functions, invoked through the CICS/VS macro-level interface. The
built-in function program is resident in the nucleus.

• Table Search

This provides a convenient means of searching a table for a specific
entry, and having some value within that entry returned; if the
desired entry i!? not in the table. the user can elect to have a
default value returned.

• Phonetic Conversion

This provides a method of converting a name into a key based on the
sound of the name; the function allows the user to organise and
access data sets based on names that might be misspelled,
mispronounced. or misunderstood.

• Field Verify

This function enables the user to verify the contents of a data field
as entirely numeric. alphabetic, or packed decimal data.

• Field Edit

This provides a means of removing alphabetic or special characters
from numeric fields and converting the result to EBCDIC or to packed
decimal format.

• Bit Checking

This function allows a COBOL application program to set or test the
value of a single bit in storage.

36 CICS/VS Introduction to Program LogiC

• Input Formatting

This provides a means of converting free-form input from the terminal
operator into a predefined fixed format that can be rranipulated more
easily; the free-form input may be positional or keyword oriented.

• weighted Retrieval

This allows the user to search a group of records on a VSAM key
sequence data set, selecting only those records that satisfy
specified criteria.

Chapter 2. CICS/VS structure 31

System Preparation

Before CICS/VS can run, the system must be built up to match the
requirements of the user and the machine environment. The two main
steps in CICS/VS system preparation are System Generation and
Environment Definition, which are broadly described below, and described
in detail in the CICS/VS system Programmer's Guides and CICS/VS System
Programmer's Reference Manual. System Generation establishes the
features of CICS/VS that will be present and Environment Definition
involves the creation of tables describing the installation. As well as
these main steps, the CICS/VS user must have a suitable version of
DOS/VS or OS/VS, and must have defined the various data sets that
CICS/VS will require (see -Data Sets' in Chapter 4 of this manual).

Because CICS/VS is both modular and table oriented, maintenance is
simplified. If a change is made in the user's environment which, in
turn, requires a change to a CICS/VS managerrent program or table, only
the affected program or table needs to be generated again. ~his is also
true of any corrections that ~ust be applied to the system. To make a
modification to a particular program, it is only necessary to update the
source program, reassemble it, and link-edit the resulting otject
program,.

CICS/VS SYSTEM GENERATION

The CICS/VS user can define a version of CICS/VS that meets his
particular needs. The process allows him to select just those functions
required by his applications and it is flexible enough to allow a
partial regeneration of an existing system. ~he user can add or delete
functions as his applications change.

CICS/VS System Generation comprises two stages. Stage 1 assembles
the CICS/VS generation macro instructions and produces the job control
and source statements for Stage 2, which is the assembly, link-editing
and cataloging of the CICS/VS modules.

The various functions listed in Chapter 2 are provided during CICS/VS
system generation. The following functions are required:

• Task Management • Operator Terminal

• Storage Management • System Statistics

• Program Management • Time of day Control

• Time Management • Trace Management

• Terminal management • Abnormal Condition

• Master terminal • Terminal Abnormal Condition

• System Termination

Chapter 3. System Preparation 39

The following functions are optional:

• File management • Dynamic Open/close

• Transient data management • Terminal Test

• Temporary storage management • Message SWitching

• Journal management • Dump Management

• system recovery management • Basic Mapping Support

• sign on/sign off • 2260 Compatibilty

• Batch transaction processing • Built-in Functions

• EXEC Interface program • Supervisor terminal

• Recovery/restart support programs

The utility programs needed to support the CICS/VS operation can also
be selected during system generation. These include the dumf and trace
utility programs, the high-level language preprocessors, and tbe journal
format program.

The CICS/VS system generation assembly nacro-instruction has the
operation code DFHSG. The major keyword parameters of the macro are
TYPE and PROGRAM. The sequence of macros is:

DFHSG TYPE=INITIAL ••••
DFHSG PROGRAM= , •••
DFHSG PROGRAM= ••• , •••

DFHSG TYPE=FINAL

The DFHSG TYPE=INITIAL macro is used to specify overall features of
the CICS/VS system and to control the system generation assembly itself.
The DFHSG PROGRAM=xxx macros select and modify the various CICS/VS
functions. A DFHSG TYPE=FINAL macro should be the last macro in the
System Generation input.

To build directories for the CICS/VS-DL/I interfaces there are two
more System Generation assembly macros: DFHDLPSB and DFHDLDBD.

THE PROGRAM PARAMETER OF DFHSG

The programs that make up CICS/VS are selected by DFHSG macro
instructions in which the PROGRAM keyword parameter is set to a code
indicating the chosen module or modules. These codes and groups are:

PROGRAM=CSO - Control system Operational Group

• system Initialization
• System Termination
• Abnormal Condition
• Terminal Abnormal Condition
• Dummy Terminal Error Program
• Time Adjustment program
• system Statistics
• Formatted Dump Program
• Dummy Program Error Program
• Message switching

40 CICS/VS Introduction to Program Logic

PROGRAM=CSS - Control system Service Group

• Sign On/Sign Off
• Terminal Test

PROGRAM=CSD - Control System Dummy Group

This consists of a set of dummy programs corresponding to optional
management programs. If the management program is not present in
the system, then its corresponding dummy program will be included.

PROGRAM=CSU - System Utilities

PROGRAM=KCP - Task Management

PROGRAM=SCP - Storage Management

PROGRAM=PCP - Program Management

PROGRAM=SRP - System Recovery

PROGRAM=ICP - Time Management

PROGRAM=DCP - Dump Management

PROGRAM=TBP - Transaction Backout Program

PROGRAM=TCP - Terminal Management

PROGRAM=RSP - Resend Program

• Node Abnormal Condition Program
• Node Error Program

PROGRAM=FCP - File Management

PROGRAM=TDP - Transient Data Management

PROGRAM=TRP - Trace Management

PROGRAM=TSP - Temporary storage Management

PROGRAM=JCP - Journalling Management

PROGRAM=CSA - Common System Area

Although the CSA is not a program it is generated in the same way as
a program.

PROGRAM=MTP - Master Terminal

PROGRAM=OCP - Dynamic Open/Close

PROGRAM=GAP - Graphic Attention Program

PROGRAM=EXP - Command language translator

PROGRAM=EIP - EXEC interface program

PROGRAM=ATP - Asynchronous Transaction Processing

PROGRAM=KPP - Keypoint Program

PROGRAM=BMS - Basic Mapping support

Chapter 3. System Preparation 41

PROGRAM=BFP - Built-in Functions

PROGRAM=DIP - Data Interchange Program

SIMPLIFIED SYSTEM PREPARATION

Some assistance is available in order to lessen the work of producing a
full CICS/VS system with the standard System Generation. For
CICS/DOS/VS the Subset option is provided which enables the user to
generate a subset of CICS/DOS/VS more eaSily. System Generation is
simplified because the full range of options is not present. The subset
option is described in the CICS/VS Subset User's Guide.

Pregenerated CICS/VS systems are also provided on the distribution
tapes. They are built out of pregenerated CICS/VS modules and tables,
which are prepared by standard System Generation runs. Preqenerated
modules are supplied in the form, or forms, in which they are most
frequently used. The pregenerated systems include:

• OOS Subset

• DOS Full Function

• OS FUll Function

ENVIRONMENT DEFINITION AND SYSTEM TABLES

CICS/VS is table oriented. This gives the user flexibility in
describing terminal, data base, and queuing environments. It also
allows him to describe several versions of existing environments,
simplifying later conversion to more extensive systems. Because of this
table orientation, the user need change only the definition of that part
of the environment which has changed.

All tables are specified and constructed using the CICS/VS table
generation macro instructions in a macro-assembly. Tables are used to
describe system initialization and terminal, data set, and queuing
environments, together with user programs, transactions, operators, and
so on.

The tables are divided into control and service tables. ~he control
tables fall into two groups, mandatory and optional. The mandatory
control tables are:

System Initialization Table
Terminal Control Table
Program Control Table
Processing Program Table

The optional control tables

Temporary Storage Table
File Control Table
Destination Control Table
Journal Control Table
System Recovery Table

are:

SIT
TCT
PCT
PPT

TST
FCT
OCT
JCT
SRT

42 CICS/VS Introduction to Program Logic

The service tables are:

Nucleus Load Table
Application Load Table
Sign-on Table
Terminal List Table
Transaction List Table
Program List Table

NLT
~T
SNT
TLT
XLT
PLT

To allow a CICS/VS system that has been generated in a ~articular way
to be used with several environments, alternative system tables are
allowed. Each of the system tables, except the Sign-on Table, has, in
the CICS/VS system, an eight character name of the form DFHxxxyy. DFH
is constant, "xxx" is the table mnemonic given above, and n yy• is a
suffix that the user assigns in order to name one version of a table, so
that the version may be loaded, on request, during System
Initialization. The Sign-on Table is always called DFHSNT.

CONTROL TABLES

The control tables allow the user to identify each element of the real
time environment, the attributes of each element, and the treatment he
wishes given to each. Several of the tables are considered essential,
while others are optional and, like the CICS/VS management programs, are
dynamically selected by the user system initialization.

Program Control Table (P~)

The Program Control Table is used to define transactions. An entry must
be included to identify each transaction code that is to be invoked by
any source within the systere. Additional attributes applicable to each
transaction are also included in the table entry. The following are
examples of information within each table entry.

• Transaction priority and security identification

• Transaction work area (TWA) length, used to determine the size of the
TWA to be acquired for this transaction

• Initial processing program identification

• Transaction statistics

• Transaction purge status (purgeable or nonpurgeable)

• Transaction read time-out requirement

• Usability status (enabled/disacled)

• Transaction characteristics (inquiry, data collection,
conversational,message protection options, test, etc.)

• Associated node error program (NEP)

Chapter 3. System Preparation 43

Processing Program Table (PPT)

The Processing Program Table is used to define application programs.
There must be one entry in the table for each a~plication program,
signifying that it is valid for execution within CICS/VS and that the
program is located in the CICS/VS real-time program library. Tne PPT
also holds attributes of the application program, such as:

• Program source language (Assembler language, ANS COBOL, or PL/I)

• Program residency status (resident or nonresident)

• Usability status (enab1ed/disabled)

• Force pageout requirement

Terminal Control Table (TCT)

The Terminal control Table is used to define the user's terminals. It
is composed of Terminal Control Table Terminal Entries (TCTTEs). In
general, there must be an entry in the table to describe each one of the
following:

• Communication line groups

• Communication lines

• Terminals

• TeAM process queues

For the VTAM-supported part of the network, however, the TCT contains
only terminal parameters.

Parameters applicable to each communication line group include the
following:

• Device address (for sequential devices)

• Error recovery/recording options

• Special device-dependent features (optional)

• Binary synchronous device options

Parameters applicable to each communication line include the following:

• Access method

• Terminal types associated with the line

• Length of input message area

• Device-dependent options and features

Parameters applicable to each terminal include:

• Identifying symbol

44 CICS/VS Introduction to Program Logic

• Terminal priority

• Terminal type

• Terminal address

• Initial terminal status

System Recovery Table (SRT)

The System Recovery Table contains information needed by the system
recovery program to handle abnormal conditions resulting from errors
signalled by the host operating system. The basic SRT provided by
CICS/VS can be altered by the user as needed.

System Initialization Table (SIT)

Tbe SIT supplies System Initialization with the information needed to
set up the user's environment. During initialization, the user is given
the opportunity to change some parameters.

The information contained in the SIT may be grouped into three .
categories:

• Information used to initialize and control system functions (for
example, storage cushion size and system partition/region exit time
interval).

• Module suffixes used to load user-specified versions of the CICS/VS
control modules and tables (for example, DFHFCPxx and DFHFCTxx).

• Special information used to control the initialization process.

The user can generate several SITs and then select the appropriate one
during System Initialization by specifying a table suffix.

File Control Table (~)

The File Control Table is an optional table used to describe the
structure of the user·s data base. There must be one entry in the table
for each data set the user wishes to access during the execution of
CICS/VS. In addition to providing a symbolic identification for each
data set, the user can specify the following attributes:

• Data set organization (ISAM, VSAM (ICIP or normal), BDAM or DAM, or
DL/I)

• Accessing options

• Data set characteristic~ (for example, block size)

• Indirect accessing or indexing control infor~ation

• Record segment definitions

• Usability status (enabled/disabled)

Chapter 3. System preparation 45

• Automatic journaling and logging

• VSAM shared resource characteristics

• VSAM ICIP information (MVS only)

Destination Control Table (OCT)

The Destination Control Table is used to describe to CICS/VS the
characteristics of data to be processed by Transient Data Management.
There must be an entry in the table for each extrapartition or
intrapartition symbolic destination.

If system statistics and error conditions are to be logged ty
CICS/VS, the appropriate destinations must have entries in the DCT. If
the OCT is omitted, system statistics and error conditions are not
logged,.

Extrapartition data is either generated externally to the CICS/VS
environment and p~ocessed within CICS/VS, or generated within CICS/VS
and processed externally (for example, batch mode).

Intrapartition data is generated and processed within the CICS/VS
environment.

In addition to providing a symbolic identification for each
destination. OCT entries include the following information:

• Destination characteristics (for example, block size)

• Automatic transaction initiation information

• Indirect destination specifications

• Usability status (enabled/disabled)

• Recovery attributes

Journal Control Table (JCT)

The Journal Control Table is used to describe the user's journal data
sets to CICS/VS. There must be one entry in the table for each data set
the user accesses during execution of CICS/VSi and in each entry there
must be a symbo1ic identification for each data set and the length of
the buffer area to be used.

Temporary Storage Table (TST)

The Temporary storage Table is used to describe data sets for which
temporary storage recovery is to be provided. The TST is a list of
generic mnemonics used to identify data sets for which CICS/VS is to
provide recovery in the event of abnormal termination of CICS/VS (and
subsequent. emergency restart) or abnormal termination of a transaction
(and subsequent transaction backout)

46 CICS/VS Introduction to Program Logic

SERVICE TABLES

The service tables, which are optional, provide the user with increased
control over the operation of CICS/VS. The service tables reside in a
program library and are loaded into dynamic storage when they are
needed.

Sign-On Table (~NT)

The Sign-on Table contains authorization information and is accessed by
the CICS/VS Sign-on program when a terminal operator initiates the sign
on procedure.

During sign-on, the name of the terminal operator is entered at the
terminal and is used to locate the appropriate operator entry in the
table. This operator entry contains data used to verify the operator
name and to establish a priority and a security key for the transactions
that the operator subsequently enters.

The priority value assigned to the operator is used to develop the
task priority for processing a transaction. The operator's security key
is used in a security check of all transactions subsequently entered.
The security key in the appropriate Terminal Control Table (~CT) entry
for the operator is matched with the transacti on security contained in
the transaction's Program Control Table (PCT) entry.

If the operator security key matches the security value in the PCT
entry, the transaction is accepted and the appropriate application
program is initiated. Otherwise, a security violation haS occurred and
the transaction is terminated. A security key of 1 is the default
option in the creation of the SNT and the PCT, and is present in the TCT
until altered by a sign-on procedure. The security key defa~lt option
allows transactions with a transaction security key of 1 to be entered
into the system by the operator without the sign-on procedure.

The SNT is also used to specify an operator class that'augments the
message routing facility.

Terminal List Tables (XL~)

The Terminal List Tables enable the user to put the terminals into
logical groupings. A logical grouping of terminals could be, for
instance, all the terminals that are under the control of one
supervisor. Each supervisor can have a TL'I, and all terminals that
serve a similar function can represent a logical grouping under a
supervisor. The user can create a grouping of terminal identifications
to facilitate the broadcasting of general ~essages to terminals.

The system service programs of CICS/VS use 'ILTs to change the status
of a terminal. A unique TLT must be created for each supervisor who is
to have the ability to alter the status of the terminals under his
control. Any operation to change the status of an entire group of
terminals requires a TLT containing the identification of each terminal
in that group. A unique identification is assigned to each table by the
user.

Chapter 3. System Preparation 47

Program List Tables (PLT)

The Program List Tables contain program identifications that perform
various specified functions within CICS/VS. Each program identified
must also appear in the Processing Program Table (PPT), making the PLT a
subset of the PPT. The PLTs provide the following:

• List of programs to be executed during the post-initialization phase
of system initialization.

• List of programs to be executed during the first quiesce stage of
system termination.

• List of programs to be executed during the second quiesce stage of
system termination.

By providing suffixes for PL~s, the user can have many versions of these
tables.

Transaction List Tables (XLT)

The Transaction List Tables contain identifications of CICS/VS
transactions. Each transaction in a XLT must also be defined in the
Program Control Table (PCT). Thus, a XLT represents a subset of the
PCT.

The primary purpose of the XLT is to identify transactions that
remain-eligible for execution during the 'first quiesce' stage of system
termination. By providing suffixes for XLTs, the user can nave many
versions of these tables.

Application Load Table (ALT)

The Application Load Table allows the user to control the order in which
application programs are loaded during system initialization. This
facility helps the user to make efficient us'e of virtual storage.

The ALT is optional; if it is not used, application programs will be
loaded in an order based on parameters in the Processing Program Table
(PPT) ,. If the ALT is used, the programs specified therein will be
loaded first.

Nucleus Load Table (MLT)

The Nucleus Load Table is used by CICS/VS to control the order in which
the modules of the CICS/VS nucleus are loaded. The table allows the
user to change the order established by the CICS/VS system
initialization program. This facility helps the user to make tne most
efficient use of virtual storage.

The NLT is optional; if it is not used, the nucleus modules will be
loaded in the order established by a default NLT which is part of System
Initialization.

48 CICS/VS Introduction to Program Logic

OTHER REQUIREMENTS

The configuration required to use CICS/VS as a data base/data
communication interface is largely determined by the scope of the
environment to be supported and the nature of the user's applications.

The configuration must include SUfficient I/O devices to support the
requirements for system output, system residence, and system data sets.
Appropriate line adapters and telecommunication control units are
needed. Sufficient direct access storage must be provided to satisfy
user information storage requirements.

ACCESS METHODS

CICS/DOS/vS requires a telecommunication access method (BTAM, VTAM, or
EXTM), the Direct Access Method (DAM), and the Sequential Access Method
(SAM). CICS/OS/VS requires a telecommunication access method (BTAM,
VTAM, or TCAM), the Basic Direct Access Method (BDAM), and the Queued
Sequential Access Method (QSAM). If Temporary Storage Management is
.used" the Virtual storage Access Method (VSAM) is also required.
Depending on the user's data base configuration, either VSAM or the
Indexed Sequential Access Method (ISAM) may be required.

Data sets created through any of these access methods can be operated
on by application progran1s under the control of CICS/VS and by offline
batch-processing programs.

Chapter 3. System Preparation 49

Ch'apter 4. CICS/VS Real Time Execution
Environment

Tke purpose of this chapter is to describe the way CICS/VS supports an
a~plication program. Figure 4-1. shows how the functions mentioned in
Chapter 1 form an intermediate stage between the application program and
the operating system; and the diagram could be extended by adding all
those other CICS/VS functions which are invoked through the a~plication
interface. The diaqram could also be simplified to Figure 4-2 and it
is this simplification that rorms the basis of this chapter.

Operating System

~ ~
Main Task Task Storage ~ --.....

Mgmt. I- Management Management Storage

, l
Time H Journals

I
Timer Time Journal SAM \ Facility I-- Management Management ~ OSAM

+ ~
....... -""

-G DOS
Loader Program Dump

I--
SAM

Programs ~ BPAM - Management Management OSAM

"- -""

~ + ~
....
--

~~
SAM VSAM

Data BTAM - Terminal File f--
ISAM
~ Base VTAM Management Management DAM

(Files)
....... -

(t-- l l -Extra- /"
partition r--... -""

Temporary Temporary
Data SAM r-- Transient Storage

Data Storage I-- VSAM ~ (scratch
"...

~V
DAM ~ Management Management ...e.ad)

--- OSAM --
Intra- BDAM
partition

~ Data
..... --- Command

Interface

1

I Application Programs I
Figure 4-1. CICS/VS and The Operating System

Chapter 4. CICS/VS Execution Environment 51

THE APPLICATION INTERFACE

The application program is written in Assembler language, ANS COBOL or
PL/I. There are two forms of the application interface:

• The macro-level interface.

This is directly available to the assembler language programmer,
since the interface is translated by the macro processor of the
assembler. There is also a preprocessor that makes the macro level
interface available to the COBOL or PL/I programmer.

• The Command-level interface

This is available to the COBOL and PL/I programmer. A preprocessor
translates the CICS/VS commands to the host language.

r-----------, r-------, r---------, r------,
I I I I I 1 1 I
I Applicationl ICICS/VSI 1 Operating 1 I Data I
1 Program 1-----1 1-----1 System 1-----1 Sets 1
I 1 1 1 1 1 I I L-_________ ~ ~ ______ J L _________ J L ______ J

Figure 4-2. CICS/VS in context

r---------,
1 1
I Terminals 1
I 1 L--_______ J

The macro level application interface may be divided into control
blocks and function calls. Control blocks are mapped using dummy
control sections (DSECTs) with the various fie1ds of the control blocks
defined. These DSECTs are brought into the a~~lication program by the
Assembler COpy command.

Function calls are generated by the expansions of the CICS/VS macros.
A typical CICS/VS macro is DFHJC, which invokes the services of Journal
Management. Suppose the application programroer codes:

DFHJC TYPE=WRITE,
STARTIO=NO,
JFILEID=14,
JTYPEID=3333,
JCDADDR=JREC,
JCDLGTH=LREC,
PFXADDR=JPFX,
PFXLGTH=LPFX,
NORESP=OK3A

The expansion produced by the macro could be:

52 CICS/VS Introduction to Prograro Logic

DS OH ••••• J 0 URN A L CON T R 0 L CAL L
MVC JCATR2(2),=AL2(102S) "! SET TYPE REQUEST IN JCA @
MVI JCAFID,14 SET JOURNAL FILE ID IN JCA @
MVC JCAJRTID,=H'·13107' JOURNAL-RECORD TYPE-ID TO JCA @
LA 14,JREC GET ADDRESS OF USER-DATA @
ST 14,JCAADATA AND STORE IN JCA @
MVC JCALDATA, =AL2 (LREC) .USER-DATA LENGTH TO JCA @
LA 14,JPFX GET ADDRESS OF USER-PREFIX @
ST 14,JCAAPRFX AND STORE IN JCA @
MVC JCALPRFX, =AL2 (LPFX) .USER-PREFIX LENGTH TO JCA @
L 14,CSAOPFLA FROM OPTIONAL FEATURES LIST @
USING CSAOPFL,14 GET THE ••• @
L 14,CSAJCNA2 ••• SECONDARY JCP ENTRY ADDRESS, @
DROP 14 AND THEN ••• @
BALR 14,14 LINK TO PROCESS JOURNAL REQUEST @
CLI JCAJCRC,JCARCNR Q.IS RETURN-CODE GOOD(NORESP)? @
BE OK3A YES - BRANCH @

*, * COND KEYWORD ABSENT- DEFAULT (NO> ASSUMED *

This is a typical expansion. Fields in a control block, in this case
the JCA, are set up according to the parameters of the macro, and a call
is made to an address held in a field in the CSA. After the call there
is a test of the value of a return code that has been set up in the JCA.

The expansions of CICS/VS macros assume that adequate addressibility
is provided, so that all the references to control blocks assembl~
without error. The only imuediate analysiS of the requests, apart from
the different data set up by different macro calls, is the selection of
a CICS/VS entry point, there being usually one entry point corresponding
to each macro. The entry point addresses are held in the CSA.

Further analysis of the macro invocation takes places within the
CICS/VS routine. For instance, in the example just given Journal
Management starts, after soee housekeeping, by detecting a WRITE request
and branching to the appropriate routine within the Journal Management
module.

It should be noticed that in some cases the information that needs to
be passed to CICS/VS cannot be given entirely by the macros; some of it
must be passed through fields in control blocks, which are examined by
the CICS/VS routine called. It is then necessary for the application
programmer to supplement the macro by setting one or more fields before
the macro is issued.

When the source language is COBOL or PL/I, and the Command language
translator is being used, CICS/VS commands are expanded into calls from
the code generated by the COBOL or PL/I compiler to an interface
program. This sets up control blocks according to the command
parameters, and hands control to CICS/VS. The command-level interface
is complete, so that the application programmer does not need to set
fields in control blocks in addition to issuing the conroands.

INTERMODULE COMMUNICATION

CICS/VS modules communicate with one another, where possible, by using
the CICS/VS application program interface. This is appropriate for
calls to those modules, such as Task Management, which provide services
to application programs, and many CICS/VS macros have extensions so that
they can be used to call for services which are internal to CICS/VS.

Chapter 4. CICS/VS Execution Environment 53

Where a call or transfer of control cannot be fitted directly to a
macro, Program Management may be invoked (using DFHPC) in the same way
as it is used to effect transfers between application prograrr-s.

There are no parameter lists in calls and transfers between CICS/VS
modules. Parameters are implicit, being fields within the CICS/VS
tables and work areas.

CONTROL BLOCKS

COMMON SYSTEM AREA (CSA)

The Common System Area (CSA) is the major CICS/VS control block. It is
an area in main storage which exists within the system from
initialization time until the CICS/VS is closed down. The CSA contains:

• Register save area

• Pointers to the CICS/VS management modules, control information

• System constants

• Time-management storage

• Work area for statistics

• Task abnormal termination interface

• Pointers to CICS/VS system tables

• Optional user work area

The user work area is available to any task while it has control of the
system (that is, for operations performed between requests to CICS/VS).

The CSA is normally addressed by register 13. However, if at the time
of a dump a COBOL or PL/I program is being executed then register 13
will point at that program's save area. In this case the CSA can be
located by chaining upwards through the save areas.

DISPATCH CONTROL AREA (DCA)

A Dispatch Control Area is created for each task by CICS/VS. It is
placed on a DCA chain and used to control task dispatching. It holds a
record of the dispatching priority and current status of the task. Two
chains of DCAs are maintained, an active chain and a suspended chain. A
task is suspended and its DCA placed on the suspended chain when it is
expected not to require processing for a long time (for example, when it
is waiting for terminal input). A task is active if it is waiting for
CPU processing or disk I/O. These chains are addressed through the CSA.
Storage for the DCA is acquired by Task Management (using Storage
Management) upon task initiation, and released when the task is
terminated. The DCA is logically part of the TCA but it is kept
separately in order to avoid page faults,.

54 CICS/VS Introduction to Program Logic

TASK CONTROL AREA (TCA)

A Task Control Area (TCA) is created for each task that currently exists
within CICS/VS. Its contents are organized into three logical sections:

• CICS/VS system control section

• Application program communication section

• Transaction Work Area (TWA), wAich is optional.

The CICS/VS system control section contains the addresses and data
necessary for CICS/VS to control a task. Access to data in this area is
limited to CICS/VS management programs, CICS/VS service programs, and
user-written service programs. Thus the first 128 bytes of the TCA
precede the portion of the TCA that a user-written application program
sees.

The application program communication section is used for
communication between the task and CICS/VS management progran.s and
service programs. Access to this section is provided to both CICS/VS
and user-written application programs. It addressed through register
12, and is 256 bytes long.

The TWASIZE operand of the DFHPCT macro instruction (used to define
the transaction in the Program Control Table) determines whether a TWA
is appended to the TCA. The size of the TWA (if there is one) is
specified in this operand. The TWA is acquired at task initiation as
part of the TCA and has the same base register as the TCA. The ~WA
provides the user-written program with unique storage for the duration
of the task. This area can be used to pass data or address constants
from one program to another within one task. It is used if parameters
are passed to a program at a higher logical level. The TWA is reserved
for the exclusive use of the application program.

A TCA is created whenever a task is attached. The pointer to the TCA
always addresses the application program communication section of the
TCA.

Information about Terminal Management macro requests issued by, or on
behalf of, the task is copied from the TCA to the Terminal Control Table
terminal entry (TCTTE) for the terminal being used with the task. The
Facility Control Area Address in the TeA points to this TCTTE. Terminal
Management provides services as a separate task initiated by ~ask
Management. A separate TCA is set up for this task, so that it can
request services of CICS/VS modules, just as other tasks do. Neither
the Terminal Management task nor the Task Management task is simply
branched-to by tasks seeking services.Terminal I/O areas are chained off
the TCTTE, whereas all other task storage is chained otf the TCA. In
this way all non-terminal storage can be returned to Storage Management
as soon as the task ends.

AUTOMATIC INITIATE DESCRIPTOR (AID)

Automatic task initiation is possible under CICS/VS. An automatically
initiated task may be associated with.a terminal. CICS/VS employs a
queuing technique in order to initiate a task when its terminal
destination becomes available. An Automatic Initiate Descriptor (AID)
is created for each request for automatic task initiation and added to
the chain of AIDs. This chain is sequenced by symbolic transaction

Chapter 4. CICS/VS Execution Environment 55

identification within symbolic terminal identification. The CSA
contains the address of the first entry of the ~ID chain.

When an AID is added to the chain. Task Management advises ~erminal
Management that an automatically initiated task is pending on a
particular terminal. This is done by setting an indicator in the
associated Terminal Control Table Terminal Entry. Terminal Management
advises Task Management when the particular terminal facility is
available by issuing the CICS/VS system macro DFHKC TYPE=AVAIL. Task
Management initiates the DFHKC TYPE=ATTACH request for the new task.

INTERVAL CONTROL ELEMENT (ICE)

An Interval Control Element (ICE) is created for each time-dependent
request received by Time Management. These ICEs are logically chained
to the CSA in expiration time-of-day sequence.

Expiration of a time-ordered request is detected by the expired
request logic of Time Management, running as a CICS/VS system task
whenever the Task Dispatcher gains control. ~he type of service
represented by the expired ICE is initiated, provided that all resources
required for the service are available, and the ICE is removed from the
chain. If the resources are not available, the ICE remains on the chain
and another attempt to initiate the requested service is made when the
Task Dispatcher gains control.

Time Management passes expired Interval Control Elements (ICEs) that
represent, either time-ordered task initiation requests, or time ordered
data records. Task Management treats these as AIDs. If a time-ordered
data record Ras been retained for the new task, the AID remains on the
chain until the time-initiated task issues a request (DFHIC ~YPE=GET)
for the data record, or terminates. The AID is removed from the chain
at the time the task is initiated, if no time-ordered data record was
associated with the original request.

JOURNAL CONTROL AREA (JCA)

The JCA comprises three major areas: the register save area used by
Journal Management, the JCA communication area, and the JCA system
prefix build area. This control block is the communication vehicle for
Journal Management requests

FILE WORK AREA (FWA)

The FWA is the area in which file records are normally passed ~etween
CICS/VS and the application program. It is acquired dynamically from
main storage by File Management when reading or updating an existing
blocked or segmented record, when adding a new record to a file, or when
retrieving records using the browse feature,.

56 CICS/VS Introduction to Program Logic

FILE INPUT/OUTPUT AREA (FIOA)

The FIOA is acquired dynamically from main storage by File Management
whenever a request is made for I/O to an ISAM or DAM data set. ~he data
area is used as the true I/O area, to and from which records are written
and read. For all ISAM and VSAM operations,except read without
update, records are moved between the FIOA and the FWA.

FILE BROWSE WORR AREA (FBWA)

The FBWA is used during a browse operation against an ISAM or a DAM data
set to maintain position in the data set. The FBWA is acquired
dynamically when a DFHFC TYPE=SETL macro is issued against such a data
set. It is released when the browse operation is terminated via a DFHFC
TYPE=ESETL.

DEFERRED WORK ELEMENT (DWE)

A Deferred Work Element (OWE) is created and placed on a OWE chain to
save information about an uncompleted event that must be completed
before task termination. For example, a DFHFC ~YPE=GET,TYPOPER=UPDA~E
macro instruction causes a DWE to be created. The DWE remains on the
DWE chain until the update operation is performed, until a sync point is
taken, or until task termination if the task terminates without
requesting the update operation.

TEMPORARY STORAGE INPUT/OUTPUT AREA (TSIOA)

The TSIOA is chained off the TCA. It can be acquired by the user, or by
Temporary storage Management in response to a GET or GETQ request when
no TSDADDR is specified. TSIOAs acquired by, or on behalf of, a user
task are normally released by the task.

TERMINAL INPUT/OUTPUT AREA (TIOA)

Terminal Input/Output Areas (TIOAs) are set up by storage Management and
chained to the Terminal Control Table Terminal Entry (TCTTE) as needed
for terminal input/output operations. The TC~TE contains the address of
the first terminal-type storage area obtained tor a task (the beginning
of the chain) and also the address of the active TIOA.

STORAGE ACCOUNTING AREA (SAA)

A storage area handled by Storage Management has a header, and,
possibly, a trailer, which is a copy of the header. The whole area is
referred to as a storage Accounting Area (SAA).

Chapter 4. CICS/VS Execution Environment 57

CICS/VS EXECUTION

When a CICS/VS system is in operation many concurrent activities are
normally taking place:

• Teleprocessing Network. Of the active terminals, some are
transmitting messages to CICS/VS. others are awaiting output
messages, and still others are receiving messages~ Data is being
passed between CICS/VS and peripheral devices in response to I/O
requests.

• Peripheral Devices. Some of the active peripheral devices are
copying data from the CICS/vS region, others are recording data in
the CICS/VS region.

• Central Processing Unit. Many tasks, at various stages of
processing, are concurrently resident. Unless CICS/VS has executed
an operating system WAIT, either a CICS/VS service module or a
CICS/VS task is executing and other tasks are queueing to be
dispatched, or waiting for input or output to complete.

Thus, a multitasking teleprocessing system is highly dynamic. The
concurrent activities described above compete with each other for system
resources: CPU time and main storage; channel, control unit, and
storage device services; and communication lines.

TRANSACTIONS AND TASKS

It is desirable to distinguish between transaction and task, as
illustrated in Figure 4-3.

Figure 4-3. shows a transaction made up of four major parts:

1. The Input Message. This contains the transaction ID and the data
required by the transaction.

2. The Task. This performs the CPU and file processing required by the
transaction.

3. The output Message. This is composed and scheduled for transmission
by the task, but is transmitted by Terminal Management.

4. The Definite Response (VTAM only). When this is required, the
transaction is incomplete until a definite response is received from
the terminal by CICS/VS.

A transaction is the unit of processing initiated by a single request,
which may require the initiation of one or more tasks. A task is a
concept internal to CICS/VS and is the processing between a CICS/VS
attach and a CICS/VS detach.

58 CICS/VS Introduction to Program Logic

r-------,
I I
I Input I
I Message I
I I
L-------J

/

Task
I
I

r----------l
I I
I Internal I
(Processingl
I I
L----------.J

r-------l
I I
lout~ut I
IMessage I
I I
L--------',

r--------l
I I
I Terminal I
I Response I
I I
L--------.J

,----------------------------~------------------------,/ I
Transaction

Figure 4-3. Transaction and ~ask

This distinction between transaction and task is also important in an
understanding of the mechanics of enqueuing, dequeuing, logging, and
deferred processing.

CICS/VS RECOVERY

certain general principles govern the way CICS/VS protects resources and
transactions:

• The enqueue on a protected resource (a record, a Transient Data
destination, or a Temporary Storage data element or queue) precedes
execution of the first macro instruction that makes or leads to a
modification of the resource (for example, PUT, GET FOR UPDATE,
DELETE PUTQ).

• The dequeue does not occur until the end of the task or logical unit
of work

• Before a resource is modified, the information needed to back out the
modification is written to an external storage device. For example,
a GET FOR UPDATE gets and logs the 'before image' of a record to be
modified. When the record is subsequently about to be updated by a
PUT, the logged 'before' image may still be resident in a journal
control buffer. This buffer is written to the log before the PUT is
executed. A copy is also retained in a manin storage dynamic buffer
for use by Dynamic Transaction Backout.

• Certain irreversible operations (for example, TD PURGE, ~S RELEASE or
PURGE,or transmission of a protected message) are deferred until the
task is complete.

Chapter 4. CICS/VS Execution Environment 59

TERMINAL APPLICATION FILE TASK PROGRAM SYNC POINT

MANAGEMENT PROGRAM MANAGEMENT MANAGEMENT MANAGEMENT MANAGEMENT

RECEiVe INPUT
MESSAGE
REQUEST ATTACH +-- - - - - - --. ATTACH TASK
REQUEST LOGqlNG

REQUEST GET-
FOR - UPDATE
(RECORD A)

REQUEST ENQUEUE

ENQUEUE TASK
ON RECORD A

GET RECORD A
"'" REQUEST LOGGING

REQUEST PUT
OF UPDATED
RECORD A

REOUEST WAIT
FOR OUTPUT OF
RECORD A LOG
'BEFORE'IMAGE

TASK WAIT FOR

LOG I/a
COMPLETION

PUT UPDATED
RECORD TO
DATA SET r- DURATION

OF TASK
REQUEST WRITE ENQUEUE
OF OUTPUT ON RECORD
MESSAGE A

CREATE OWE
FOR DeFERReD
TRANSMISSION
OF OUTPUT

REQUEST RETURN
(TASK COMPLETE) ------ 1----

REQUEST TASK
DETACH

REQUEST
SYNC POINT

LOG START OF
SYNC POINT, LOG
OUTPUT MESSAGE
ACTIVATE DWE

-----1------- 1------------
RELEASE OUTPUT
MESSAGE FOR
TRANSMISSION
BY VTAM

------1------- 1-----------

1/ -----
DETACH LOG END OF TASK

TASK DEQUEUE RECORD

Figure 4-4. CICS/VS Dynamics

In CICS/VS, deferring an operation until completion of a task is done in
two steps:

1. A record is made of the function to be performed and the data needed
in a Deferred Work Element CDWE).

2. A DWE processor is activated to execute the operation after the task
has issued its final RETURN, or a DFHSP.

Each CICS/VS management program that can be invoked for deferrable
operations has a subroutine for performing deferred processing. The
subroutine operates on any DWEs created during the task. The address of

60 CICS/VS Introduction to Prograrr Logic

this subroutine is in the DWE. The DWEs are scanned and processed by
CICS/VS immediately before the task is detached.

Figure 4-4. illustrates these ideas by showing the flo~ ot control for a
relatively simple transaction with the following characteristics:

• Input and Output messages are protected. For example, they must be
logged, and the transmission of the output message must be deferred
until the task completes •

• The task updates one record (called 'Record A' in Figure 4-4.) in a
protected data set.

The time sequence in Figure 4-4. runs from the top of the diagram to the
bottom. Arrows indicate the flow of control from one module to another.
Lines with arrows at both ends indicate tlow to a module providing a
requested service, followed by a return to the module that requested the
service,.

The solid black line in the File Managerrent column illustrates the
duration of the enqueue on Record A.

The legend 'Task wait for log I/O completion' in the Application
Program column illustrates the additional wait time imposed on a task by
logging requirements. Since Journal Management, which does the logging
but is not shown in the diagram, is a CICS/VS subtask, impact of the
extra wait on performance is minimal. There may be no task wait time at
all, if the journalling activity has already forced the buffer to be
written out.

There are important task related activities tAat occur after a task
has issued its final RETURN. The task is not detached until Sync Point
Management has activated all deferred processing, logged task
completion, and dequeued all resources held by the task.

LONG-RUNNING TASKS, SYNC POINTS, AND LOGICAL UNITS OF WCRK

The sync point illustrated in Figure 4-4. is taken as a result of the
execution of a sync point macro instruction by Task Management at task
detach time.

An application program can also take a sync pOint by executing a
DFHSP TYPE=USER macro instruction.

Issuing a user sync point forces the logging, deferred processing and
dequeuing activity that is normally not done until after a task
completes (refer to Figure 4.4). User sync pOints can be used to divide
a CICS/VS task into a series of sequential, self contained sections. In
CICS/VS each section is called a logical unit of work (LUW).

To minimize resource conflict and delays due to deferred processing,
the application program will divide long-running tasks into LUWs, by
issuing user sync point macro instructions as frequently as the logic of
the application allows.

Sync points also reduce the amount of work that has to be backed out
during emergency restart, and the amount of work that has to be redone
after the system is restarted.

For backout purposes, taking a user sync point has the same effect as
attaching a task. None of the work done by the task before the sync
point was taken is backed out during CICS/VS emergency restart. This

Chapter 4. CICS/VS Execution Environment 61

should be remembered when using the sync point macro instruction to
delimit an LUW.

MULTIPROGAMMING MULTITASRING MULTITHREADING

Within the CICS/VS region. a task executes until it has to wait for the
completion of some external event (usually I/O). CICS/VS notes that the
task is waiting for something external to happen and schedules another
task. Similarly. when all tasks in the CICS/VS region are awaiting I/O
completions (or external events for other CICS/VS tasks). CICS/VS issues
an operating system WAIT. permitting the activation of another partition
that can execute while CICS/VS is idle.

MULTIPROGRAMMING

The CICS/VS system as a whole may snare the computer and operating
system with batch programs (or even with other DB/DC systems) in other
partitions. If CICS/VS is executed in such a multiprogramming
environment. it is usually in the highest priori.ty partition (except for
operating system components). Batch partitions receive control from the
operating system only when CICS/VS nas no dispatchable transactions.
Thus. as long as there is a transaction ready for processing. CICS/VS
maintains system control. Control is released to allow the operating
system to continue a job in another partition only when there are no
more transactions ready. CICS/VS regains control as soon as any
previously waiting CICS/VS transaction is ready to continue. or. if all
active transactions are in a wait state. as soen as a new transaction
code is entered at a terminal.

MULTITASKING

To achieve its objective of providing fast response to terminal users.
CICS/VS executes in a multitasking mode of operation within one
partition of main storage. Such multitasking within one partition is
analogous to multiprogramming within the total operating system
environment. Generally. tasks are initiated as a result of transactions
entered at terminals. Whenever one task (transaction) is forced to ~ait
for completion of an I/O operation, availability of a resource. or some
other cause of delay. processing of another task within the system is
initiated or continued.

In the example in Chapter 1. with only one terminal active. when the
File Management GET and Transient Data PUT operations were completed.
control was described as returning to the single task. With multiple
tasks running. operations involving WAITs result in temporary suspension
of the task. The highest priority task that is ready for processing is
dispatched. When the inquiry's file read or write operations are
completed, control returns to it. according to its priority. ~hrough

this task switching, CICS/VS can overlap the precessing of one task with
the I/O operations of others.

MULTITHREADING

In CICS/VS, more than one transaction may require the same program.
Rather than have many copies of a ~rogram in storage, one co~y is used

62 CICS/VS Introduction to Program Logic

by many tasks. An application program, especially one with several I/O
operations, may have many tasks associated with it, some having gone
through the first section of the program up to the first I/O
instruction, some through the second section, and so on. Each task
awaits its turn to continue through the next part of its program.

To control multithreading, Task Management uses a Task Control Area
(TCA) for each task. This allows Task Management to determine where
eacR task is within a program, or where it should return to resume
processing, when it receives control.

STORAGE

OPERATING SYSTEM STORAGE

A system such as DOS/VS or OS/VS provides a user (in this case,
CICS/DOS/VS or CICS/OS/VS) with more address space than the real storage
capacity of the computer on which it is run. This increase is
accomplished by means of a paging technique, supported by toth the
system hardware and the operating system software.

Hardware real storage is formatted into standard-sized units, called
~ frames. Virtual address space on direct access storage (called the
page data set) is divided into units of the same size, called ~
slots.' When an address space is referenced, the virtual address is
translated to a real address by the Dynamic Address Translation (OAT)
unit in the hardware. The desired address space must occupy a page
frame in real storage. If it does not, a page-fault interrupt occurs,
and control is passed to the operating system's page management logic.
The page manager selects a real storage page frame that can be used for
the referenced virtual address space (page). When nearly all page
frames have been filled, a page replacement operation is required. The
operating system replaces first those pages that have not been referred
to for the longest period of time. If a page to be replaced has been
modified, that page must be written out onto the page data set before
the new page can be read in. The real storage page frame freed in this
way is then used as the referenced page.

CICS/VS ADDRESS SPACE

The CICS/VS main storage address space is structured as follows:

• Virtual storage area specified by tRe DOS/VS or CS/VS operator
starting up CICS/VS

• CICS/VS nucleus, comprised of CICS/VS modules" CICS/VS system
tables, and program storage for resident (fixed and non-fixed)
application programs

• CICS/VS dynamic storage used for CICS/VS control areas,
input/output areas, work areas, and program storage for
nonresident loaded application programs

The storage organization for CICS/DOS/VS is shown in Figure 4-5.

Chapter 4. CICS/VS Execution Environment 63

SUBPOOL ALLOCATION OF DYNAMIC STORAGE

Storage Management controls CICS/VS dynamic storage space. It allocates
storage, dependent on the type of request, from different subpools.
Each subpool obtains and returns storage in page multiples from the
dynamic storage area, which is described in the CICS/VS Page Allocation
Map (FAM). The address of the PAM is kept in the CSA.

The subpools are:

• Mixed

• Isolated

• Program

• Control

• Teleprocessing

• RPL

During system preparation, the CICS/VS user can identify certain
application transactions as short-term and others as long-term. These
specifications affect the way in which CICS/VS allocates storage for the
transactions. storage is allocated when it is needed by concurrently

64 CICS/VS Introduction to Frogram Logic

PARTITION SAVE AREA AND LABEL AREA
Low

CICSIVS
NUCLEUS

TS/TD ALLOCATION MAPS

PAM

DYNAMIC
STORAGE

AREA

RESIDENT
APPLICATION

PROGRAMS

INITIALIZATION COpy OF CSA AND SIT

SIP OVERRIDES

PROGRAM LOADER SUBTASK

BLDL SUBROUTINE

DFHWTO SUBROUTINE

GETVIS AREA

High

Figure 4-5. storage Organization under CICS/DOS/VS
~.

executing short-term transactions from a particular set of page
frames (the mixed subpool). Thus, this subpool contains a mixture of
storage for all the short-term transactions executing at a particular
point in time, and is heavily used. As this short-term storage is
freed, and eventually, as all of the storage in a page frame is freed,
that storage is returned from the mixed subpool to a coromon available
page pool for reallocation to the mixed subpool, or other subpools when
needed.

On the other hand, CICS/VS storage Management allocates all storage
requests for each long-term transaction in a separate page frame. These
pages are in the isolated subpool and undergo short periods of high

Chapter 4. CICS/VS Execution Environment 65

activity followed by long periods of inactivity (such as waiting for a,
terminal operator to enter data for a transaction).

All dynamically loaded application programs are allocated contiguous
full page frames in the program subpool. Any program less than one full
page (2K or 4K. depending on the operating system) in size is allocated
one whole page. Any program requiring one and a half pages is allocated
two pages. and so on.

The control subpool is used for storage needed by CICS/VS to manage
its own resources, such as the space needed to record information about
transactions to be initiated at some future time. and space for tasks
which are waiting on the availability of a particular resource. A
teleprocessing subpool is used for line and terminal input/output areas.

Transactions can be designated as primed. in which case some Storage
Management requests are satisfied from a block of storage obtained at
task initiation. This storage is held at the end of the transaction for
re-use by a new transcation of the same type. This scheme speeds up
storage requests.

SYSTEM DATA SETS

The access methods for use with CICS/VS systerr data sets and the record
format of these data sets are predefined within CICS/VS. Any required
formatting of the data sets is performed by CICS/VS during System
Initialization or by the maintenance functions. The system data sets
are:

• CICS/VS Program Library
• Restart data set
• Dump data set
• Intrapartition data set
• Temporary Storage data set
• System Log data set
• Automatic statistics data set
• Auxiliary Trace data set

System data sets other than the Dump data set and System Log must be
located on direct access storage. The Dump data set and System Log may
be on either direct access storage or magnetic tape. Whether all of the
data sets are required. and the amount of space needed for each. depends
on the CICs/VS options selected at CICS/VS system generation and the
extent to which they are used.

CICS/VS Program Library

The CICS/VS Progrant Library contains all user-written programs and
CICS/VS programs to be loaded and executed as part of the online system.
This group includes the control system itself and certain user-defined
system control tables essential to CICS/VS operation,. The licrary
contains program text and. where applicable. a relocation dictionary"for
a program. The contents of this library are loaded asynchronously into
CICS/VS dynamic storage for online execution.

66 CICS/VS Introduction to Program Logic

Restart Data Set

The Restart data set is a BDAM file used by the CICS/VS Keypoint program
(DFHKPP) to save certain system environment information at system
termination so that CICS/VS can be warm started later if desired. This
optional facility can be invoked to warm start the following CICS/VS
control information:

• Program Control Table (PCT)
• Processing Program Table (PPT)
• Terminal entries (nonswitched)
• File Control Table (FCT)
• Common System Area (CSA)
• CSA Optional Features List
• Destination Control Table (DCT)
• Transient Data intrapartition space allocation bit map
• IDs and RBAs for Temporary Storage auxiliary destinations

and queues
• Temporary Storage space allocation bit map
• Interval Control Elements (ICEs) and Automatic Initiate

Descriptors (AIDs)
• Batch Control Areas (BCAs) and Write Request Elements (WREs)

Dump Data Set

The Dump data set is used by Dump Management to record dumps of
transactions (tasks) within the system. An optional data set, it is
sequential in organization and can be formatted and printed £y the
CICS/VS Dump Utility program. If the user desires, he can define two
dump data sets (DFHDMPA and DFHDMPB), alternating between them during
online execution of CICS/VS.

Intrapartition Data Set

The Intrapartition data set is an optional data set that can be used for
the queuing of user data and CICS/VS data by Transient Data Management.
The data is stored chronologically into this data set, by symbolic
destination. Such data can be retrieved or routed to other
destinations., and space within the data set can be reused.

Temporary Storage Data Set

The Temporary Storage data set is an optional data set, required only
when the general-purpose scratch pad or queuing facilities of ~emporary
storage Management are utilized, if the time-ordered automatic task
initiation feature of CICS/VS is generated, or if the paging or routing
facility of Basic Mapping Support or Message Switching is used. The
data set is a VSAM entry-sequenced data set with variable-length records
within fixed-length control intervals. User data is stored into this
data set under a dynamically provided symbolic identification for
subsequent retrieval and release.

system Log Data Set

The System Log data set is used for logging activity on protected
resources. During an emergency restart, the Recovery Utility prograrr
reads the system Log backwards to retrieve the information needed to
restore system activity tables and to retrieve transaction backout data.
To restore the system activity tables, at least one activity keypoint
must be present on the System Log. Transaction backout data is that
data logged by tasks that did not complete processing before termination

Chapter 4. CICS/VS Execution Environment 67

time. All activity of the task, or all activity of the current logical
unit of work (LUW) within the task, will be backed out.

Automatic Statistics ~ set

The automatic statistics data set is used by the automatic statistics
summarization control program (DFHSTSP) to record systelr statistics,.
The data set is sequential in organization and located on either tape or
disk (DFHSTN or DFHSTM, respectively). The data set is created using
extrapartition transient data services and is read by the Automatic
Statistics Utility program (DFHSTUP) to create the statistics report.

Auxiliary Trace Data Set The auxiliary trace data set is used by Trace
Management to record all trace entries that occur when the auxiliary
trace function is active. The data set is optional and is sequential in
organization. The Trace Utility program (DFHTUP) can be used to print
records from this data set.

USER DATA SETS

User data sets comprise those data sets that form the CICS/VS user data
base and Transient Data extrapartition data sets, containing data coming
into or going out of the data base/data corrrounication environment. They
may also include Terminal Management sequential data sets, Data
Language/I data sets, and journal data sets.

Data ~ Data Sets

User data base data sets must be placed on direct access storage and can
be accessed under control of DAM (on DOS), or BDAM, ISAM, or VSAM (on
aS). Under any of these access methods, the user has a great deal of
flexibility in defining the structure of the data sets. Indexing may be
used to achieve indirect addressing of data or to define segmented
records to promote efficient handling of data, or to provide for
potential saving of disk storage space.

Transient Data Extrapartition ~ Sets

Extrapartition data is usually routed to or from high-speed input/output
devices and typically consists of blocked, variable-length records. The
extrapartition disposition facility is intended for use with data
collection and data entry applications, and for output of data to be
subjected to subsequent (usually offline) processing.

Terminal Manaqement Sequential Data sets These data sets are created by
entries for other than a telecommunication device in the Terminal
Control Table. The data sets must be unblocked and are normally
sequential data sets on disk or tape but may be on a card reader or
printer.

~ Language/I Data Sets

On as/vs Data Language/I data sets are accessed by means of the Data
Language/I (DL/I) facility of the IBM Information Management
System/Virtual Storage (IMS/vS). Such access requires the installation
of the IMS/VS Data Base System (S740-XX2).

68 CICS/VS Introduction to program Logic

On DOS/VS the DL/I access method (S746-XX1) is used.

Journal Data sets

If CICS/VS Journal Management is used, entries in tRe CICS/VS Journal
Control Table (JCT) identify user journal data sets. These data sets
may be on either tape or disk. Each data set must be given a journal
file identification.

Chapter 4. CICS/VS Execution Environment 69

Chapter 5. CICS/VS Advanced Communication
Systems

This chapter provides an overview of the operation ot CICS/VS when it is
being used to communicate with a subsystem.

Communication subsystems that can be used through CICS/VS include:

• The IBM 3600 Finance Communication System

• The IBM 3650 Retail Store System

• The IBM 3190 Communication system

• The IBM 3210 Information Display System

• The IBM 3161 Communication Terminal

• The IBM 3110 Data COmmunication System

A CICS/VS advanced communication system is a teleprocessing systerr
that includes both CICS/VS and one of the above mentioned sucsystems. A
CICS/VS advanced communication system requires the following components:

• CICS/VS and its application programs in the host CPU

• A telecommunications access method (VTAM, TCAM, or EXTM)

• An operating system (DOS/VS, OS/VS1, or OS/VS2)

• Unless the subsystem is locally connected, one or more IBM 3104
and/or 3105 Communications Controllers and Network Control
Programs/Virtual Storage (NCP/VS)

• One or more advanced communication subsystems, including at least one
terminal for the control operator, and possibly a sUbsystem
application program

When requesting communication with terminals in an advanced
communication subsystem, CICS/VS application programs use the same macro
instructions that are used to communicate with any other terminal. The
difference is that requests involving an advanced communication
subsystem are sent through a communications ccntroller and the CICS/VS
application program communicates with logical units (which include
application programs, control programs, or terminals).

CICS/VS application programs can use versions of the DFHTC macro
instruction to transfer data to and from the logical units. As with
BTAM-supported terminals, data is transferred between the CICS/VS
application programs and CICS/VS, by means of a Terminal I/O Area
(TIOA).

A logical unit need not correspond pAysically with a terminal, but
may consist of several different devices,. Logical units are identified
to CICS/VS by DFHTCT macro instructions in the same way as start-stop
and binary synchronous communication (ESC) terrr~nals are identified.

Some subsystems are programmable, and the logical units may
correspond to subsystem application programs. These subsystem
application programs communicate with CICS/VS application programs, and
in this case the characteristics of the logical unit in the sutsystem,

Chapter 5. CICS/VS Advanced Communication Systems 11

as it appears to CICS/VS, will depend on the way the corresponding
subsystem application program is written.

r-----------,
I I
1 Application 1
1 Program 1
1 I L_ _________ J

r-------, r---------, r------,
1 1 I I I 1
leIeS/vsl IOperatingl 1 Data I
1 1-----1 System 1-----1 Sets I
1 1 1 I 1 I L _______ J L _________ J L ______ ~

r----------, r---------, r-------,
I 3704/5 1 1 1 I 1
I Controller 1 1 Subsystem I I Logical I
I and 1----1 1----1 Units 1
I NCP I 1 I 1 I L _________ ~ L _________ ~ L _______ ~

Figure 5-1. CICS/VS in context

~he basic operation of a CICS/VS advanced corrrounication system involves:

• Establishing connect.ions between CICS/VS and logical units

• Sending data between CICS/VS application programs and these logical
units

• Terminating connections between CICS/VS and logical units

In the typical case, where VTAM is used, the CICS/VS advanced
Oommunication system is started in the following steps:

1. The operating system of the host CPU is loaded into the system.

2. VTAM is started. Depending on options specified, starting VTAM can
include activating any or all of the following: NCP/VS, advanced
communication subsystems, and CICS/VS,. These components can also be
activated individually by the VTAM network operator.

3. The SOLe cluster controller is initialized for the advanced
eomrounication subsystem. This initialization causes the designated
operating environment to be loaded into the SDLC cluster controller.

4. CICS/VS is started. Note that CICS/VS must be started (like other
problem programs) in addition to being activated by VTAM. Once
started and activated CICS/VS can then connect CICS/VS application
~rograms and logical units and can then enable these nodes to
communicate with each other.

12 CICS/VS Introduction to Program Logic

Figure 5-1. shows the interconnections between the components of an
advanced communication system.

SESSIONS

Before communication can take place between a CICS/VS and a logical
unit, a session must be established connecting the logical unit with the
CICS/VS application program.

A logon is the only method by which a session between a logical unit
and CICS/VS can be initiated. Logon may be initiated by the logical
unit, by the network operator, by the CICS/VS master-terminal operator,
automatically by the access method, or by CICS/VS itself. CICS/VS uses
a simulated logon macro instruction to initiate a logon on behalf of
logical units such as those that:

• Contain output-only terminals

• Are defined by the user as secure terminals to which access is
controlled by CICS/VS

Logical units for which CICS/VS is to initiate logons are identified
to CICS/VS through the Terminal Control Table (TCT). CICS/VS also uses
the SIMLOGON macro instruction to obtain logical units that are
requested by the master-terminal operator or that are involved in an
automatic task initiation (ATI) but are not currently connected.

Once a logical unit is connected to CICS/VS, it remains connected
until:

• It is reallocated by the access method.

• The logical unit itself requests disconnection.

• CICS/VS, the access method, the NCP/VS, the logical unit, or the
entire system is deactivated.

• The CICS/VS application program requests disconnection.

CICS/VS uses the access method close destination macro instruction to
disconnect logical units.

INITIATING COMMUNICATION

When the subsystem receives a command to open the session, it allocates
a session to the logical unit and transmits a connection request to
CICS/VS. (In the subsystem, a session is treated as a resource; the
maximum number of sessions available to a logical unit is specified when
the Subsystem is generated). When the logical unit sends data, the
subsystem control program transmits the designated message to the host.

When CICS/VS receives the connection request and the first message
from a logical unit it initiates a transaction. The transaction
initiated depends upon the transaction identification. If the TRANSID
operand is specified in the DFHTCT TYPE=TERMINAL macro instruction for
the logical unit, that identification is used; otherwise, the
identification of the transaction must be inserted in the first four
characters of the message transmitted by the logical unit.

Chapter 5. CICS/VS Advanced Communication Systems 13

The initial request to put data must also include a begin bracket
designation,. Bracket protocol is used for each transaction between the
CICS/VS application program and the logical unit; this protocol delimits
the CICS/VS transaction.

Once in session with CICS/VS, the logical unit can initiate any
number of CICS/VS transactions. These subsequent transactions are also
initiated whenever the logical unit sends data with a begin bracket
desi gna tion,.

TERMINATING COMMUNICATION

A session is terminated by removing the logical connection between a
logical unit in the subsystem and CICS/VS. There are two types of
session termination: orderly and immediate.

Orderly Termination

An orderly termination occurs when the logical unit is allowed to
complete any transactions currently in progress before the session is
terminated.

If the session is in a bracket state, CICS/VS must issue an end
bracket. The logical unit then issues a session-end request and then,
if the session end has not completed, the logical unit should issue a
get-status wait.

When CICS/VS receives the session end request, it issues a CLSDST
macro instruction for the logical unit causing the access method to send
the clear indicator followed by the unbind-session indicator.

CICS/VS initiates orderly termination by issuing the SHutdown
indicator. The subsystem recognizes the shutdown indicator and returns
a signal to CICS/VS. CICS/VS then issues a CLSDST macro instruction for
the logical unit causing the access method to send the clear indicator
followed by the unbind-session indicator.

Immediate Termination

Immediate session termination is unconditional and ignores outstanding
transactions or the processing state of the logical unit. CICS/VS flags
immediate session terminations as abnormal.

A request for immediate termination may be initiated by:

• The logical unit closing the session

• CICS/VS automatically issuing a CLSDST for the logical unit

While processing transactions, the logical unit may encounter a
condition, such as a prograro check, ~hich precludes further transaction
processing. In such cases, the subsystem controller should issue the a
terminate indicator to CICS/VS.

CICS/VS terminates a session immediately by issuing a CLSDST for the
logical unit. No warning is given to the logical unit, which cannot
stop the termination of the session. The SUbsystem does not transmit
data to CICS/VS on behalf of the logical unit after receiving the clear
unbind sequence .•

74 CICS/VS Introduction to Program Logic

SIGN-OFF

Terminal operator sign-off using the CSSF message does not cause session
termination with CICS/VS. The operator identification and security key
is removed from CICS/VS, but the logical unit remains in session capable
of sending or receiving data.

sign-off using CSSF GOODNIGHT causes session termination. CICS/VS
places the logical unit in receive-only mode and initiates an orderly
session termination.

DATA TRANSMISSION

While a transaction is in progress, the CICS/VS application program uses
CICS/VS macro instructions to request CICS/VS services (including data
transfer services for the logical unit). CICS/VS, in turn, uses access
method record-mode macro instructions to request the data transfer
operations. The access method adds routing information to the data
stream and uses the facilities of the operating system and NCP/vS to
transmit the requests to the appropriate logical unit. Finally, the
advanced communication application program for the deSignated logical
unit uses subsystem instructions to request the services of the advanced
communication subsystem.

Terminal services provides a basic method of sending and rece1v1ng
data during communication with subsystem terminals. Operands and
parameters are added to the DFHTC Terminal Management macro instruction
to pro.vide a means of using the facilities of VTAM and the subsystem.

Once a session is established, the format and content of the data are
the responsibility of the CICS/VS application program and the logical
unit. All data exchanged is in a user-defined format.

READING DATA FROM A LOGICAL UNIT

The DFHTC TYPE=READ or CONVERSE macro instruction is the only method
available for reading data from a logical unit.

The IOTYPE operand of the DFHTC TYPE=READ macro instruction assists the
application program in overlapping and synchronizing processing with I/O
operations.

When a task is attached by CICS/VS, the input data is presented to
the CICS/VS application program. The data, whether it be from a start
stop or a BSC terminal or from a logical unit, is presented to the
CICS/VS application program in a terminal I/O area (TIOA) addressed
through the TCTTE.

When a CICS/VS application program issues a DFHTC TYPE=READ macro
instruction to obtain input from a logical unit, the resultant data is
placed in a TIOA. Save requests for reads from logical units are also
honored by CICS/VS. A read request from a CICS/VS application program
is not completed (that is, no assumptions should be made concerning
input data in the TIOA) until the application program issues a wait.

The IOTYPE option of the DFHTC TYPE=READ macro instruction permits
the CICS/VS application program to separate read and ~ait requests and

Chapter 5. CICs/VS Advanced Communication systems 75

to specify whether the actual input operation should be initiated before
or after a wait is requested.

If IOTYPE=IMMED is specified, CICS/VS initiates tRe read operation
immediately, regardless of whether a wait accompanied the read request.
Once the read is initiated (that is, the input request is sent to VTAM),
control is returned to the CICS/VS application program if a wait is not
specified. The application program is thus able to continue processing
while other components in the system are processing the read. When the
CICS/VS application program needs the data from the read, it issues a
terminal-control wait to ensure that the data has arrived in the TIOA.

If IOTYPE=DELAY is specified, CICS/VS does not initiate a read until
a wait request is issued or the transaction releases control.

The default for a read request is IOTYPE=DELAY; this default
processing is compatible with the read processing for start-stop and BSC
terminals. The wait can accompany the read request, or it can follo~
the request at a later point. In either case, the read operation does
not begin until tne wait is issued or the transaction releases control,
and the CICS/VS application program must wait while the operation
completes.

Synchronizing Logical-Unit Input Operation

A wait request must be issued by the CICS/VS application program before
the input data can be processed by the application. A wait request
ensures that the data is in the TIOA. For an IOTYPE=IMMED, the data
could have arrived prior to the wait request. For an IOTYPE=DELAY, the
wait causes the input operation to be initiated; the data is available
only after the wait is satisfied.

Unsolicited Input

If a task is in progress and unexpected data (that is, data from a
terminal for which a read request is not issued) arrives from a start
stop or BSC terminal, CICS/VS may ignore the data, Which will then be
lost. In contrast, if unexpected data arrives from a logical unit, it
is queued and is used to satisfy any future inFut requests for the
logical unit.

Inbound Function Management Header (~MH)

The CICS/VS application program can request notification when a function
management header (FMH) is included in the data received during a read
from a logical unit. The FMH is a variable length field that can be
sent from the logical unit via the TIOAi when present, the FMH is at the
front of the TIOA.

The FMH may be any length up to 256 bytes, its first byte contains
its length; its second byte contains a type code. The system programmer
specifies in the PCT whether or not inbound FMHs will be passed to the
application program. He can specify that no inbound FMHs will be
passed, that only the FMH at the end of the data set will be passed,
that all inbound FMHs will be passed, or that FMHs are to be processed
by the data interchange program. If he specifies that all inbound FMHs
will be passed to the application program, he should code the INBFMH
operand of the DFHTC TYPE=READ or WAIT macro instruction. This operand
will instruct CICS/VS to give control to a user-written routine whenever
an inbound FMH is received.

16 CICS/VS Introduction to Program Logic

When input data is received as a chain of request/response units
(RUs), only the first (or only) RU of the chain is preceded by an FMH.

Chain Assembly

The system programmer can specify, in the TCTTE, whether or not chain
assembly is to occur. If chain assembly is to occur, then instead of
each read request being satisfied by one RU, until the chain is
complete, the whole chain is assembled and sent to the CICS/VS
application program in a single TIOA, satisfying just one read request.
This ensures that the integrity of the whole chain is known before it is
presented to the application program. If the EOC operand is specified,
the end-of-chain routine will receive control for every read request
(except at the end of the data set).

WRITING DATA TO A LOGICAL UN!'I

Although the CICS/VS application program may be communicating with a
logical unit instead of with a terminal, it still uses the DFHTC
TYPE=WRITE macro instruction to transmit output data to its destination.
When issuing a write request, TCTTEDA must point to the TIOA containing
the output data, and TIOATDL must specify the length of the data
including the three or more bytes for the function management header
(FMH).

Conversational Write

The macro instruction DFH~C ~YPE=CONVERSE expands into WRITE, WAIT
followed by a READ, WAIT for a logical unit. Data to satisfy the write
request must have been set up in the TIOA; the data resulting from the
read is placed in a TIOA by CICS/vS.

Control is returned to the CICS/VS application program following the
completion of the read-wait sequence,. The address of the input data is
found in TCTTEDA; the length of the input data is specified by TIOATDL.

Overlapping Logical-Unit Output Operations

Write operations can overlap other processing performed by a CICS/VS
application program, just as read operations can. Thus, if IO~YPE=IMMED
is specified for a write request, the request is initiated by CICS/VS,
and control is returned to the CICS/VS application program. The
application program can continue processing while the write operation is
being processed by other components in the system. A wait request can
be issued by the application program when it nedds to verify that the
write has completed.

If IOTYPE=DELAY is specified, the write is not initiated until a wait
is requested, a sync point is requested via a DFHSP macro instruction,
the task releases control, or the task terminates. As with the read
request, IOTYPE=DELAY is the default in order to remain compatible with
writes for start-stop and SSC terminals.

Synchronizing Logical-Unit Output Operations

Write requests can be synchronized with other processing done by CICS/VS
application programs, just as read requests can be. Thus, a wait

Chapter 5. CICS/VS Advanced Communication Systems 77

request must be issued to ensure that a write with IOTYPE=IMMED bas
completed or to complete a write request with IOTYPE=DELAY.

If IOTYPE=IMMED is specified, the output operation begins
immediately, and parameters such as SAVE must not be added tc tAe write
request by another DFHTC request. The wait completes after the access
method has accepted the output request.

Chaining of Output Data

As with input data, output data is transmitted as request/response units
(RUs). If the length of the data supplied in the TIOA by the
application program by means of a DFHTC TYPE=WRITE macro exceeds the RU
size, CICS/VS automatically breaks up the data into RUs and transmits
these RUs as a chain. During transmission from CICS/VS to the logical
unit, the RUs are marked FOC (first-), MOC (middle-), or EOC (end-of
chain) to denote their position in the chain. An RU that is the only
one in a chain is marked OC (only-in-chain).

The system programmer can specify, by using the CCON~R option of the
OPTGRP operand of the DFHPCT macro instruction, that the application
program can control the chaining of outbound data. If CCONTR is
specified, tRe application program can inhibit the end-of-chain marker
on the last (or only) RU resulting from the write request. ~he data
supplied in the TIOA for the next write request will then be treated as
a continuation of the chain. To accomplish this chain-building
function, the write request must include the CCOMPL=NC operand
(specifying that the chain is not yet complete).

Function Management Header (fMH)

When a message is transmitted to a logical unit, it may start with an
FMH. The FMH can be built either by CICS/VS or by the CICS/VS
application program. If built by CICS/VS, the CICS/VS application
program must be sure to reserve the first three bytes of the message for
the FMH.

If CICS/VS is to build the FMH, a write request specifies or defaults to
FMH=NO. If the application program builds its own FMH, FMH=YES must be
specified in the write request.

Bracket Protocol

Bracket protocol may be used when CICS/VS comrr.unicates with a subsystem
logical unit. For the most part the use of brackets is transparent to
the CICS/VS application program.

Only on the last write operation to a logical unit does the bracket
protocol become apparent to the CICS/VS application program. On the
last output request to a logical unit. the CICS/VS application program
may specify LAST in the DFHTC TYPE=WRITE macro instruction. The LAST
specification causes CICS/VS to transmit an end-bracket indicator with
the final output message to the logical unit. This indicator notifies
the subsystem logical unit that the current transaction is ending.

If the LAST operand is not specified, CICS/VS waits until the task
detaches before sending the end-bracket indicator.

78 CICS/VS Introduction to Program Logic

DATA CHAINING

During system generation, CICS/VS is informed of the maximum permitted
data length for a single outbound transmission to the logical unit. If
a CICS/VS application program sends a message longer than the maximum
permitted length, CICS/vS automatically divides the message and sends it
as a chain of transmissions.

CICS/VS sends a cancel indicator whenever toe logical unit returns an
exception response to any link of a data chain; except the final link.
Even though an exception response is sent for a link of a chain, CICS/VS
may have already sent the rest of the chain; therefore, the subsystem
must to purge the rest of the chain. When a cancel indicator is
received, the subsystem should ignore the data chain currently being
received and leave the in-chain processing state.

LOGICAL UNIT I/O ERROR HANDLING

The node abnormal condition program (DFHZNAC) is a system program
responsible for processing all abnormal situations associated with a
logical unit. This is analagous to the situation under BTAM support in
which terminal abnormal condition program (TACP) is scheduled to resolve
terminal errors. For VTAM-supported logical units, however, all
information concerning the processing state of the terminal is contained
in the TCTTE and RPL. No accompanying line entry exists for a logical
unit as is the case for a BTAM-supported terminal. Consequently, when a
terminal error must be handled for a logical unit, the TCTTE itself is
placed onto the system error queue.

The detection of abnormal conditions associated with logical unit
operations causes CICS/VS to schedule DFHZNAC. DFHZNAC is scheduled for
a TCTTE any time that an operation requested by CICS/VS from VTAM
completes in error, or is rejected and cannot be performed. The receipt
of an exception response sent by a logical unit also causes DFHZNAC to
be scheduled to permit analysis of the sense information and issuance of
any appropriate messages.

When DFHZNAC is scheduled, it analyzes the situation and determines
the appropriate action to take. Before the action is taken, NEP is
scheduled to determine whether the user agrees with the proposed
solution,. To assist NEP, DFHZNAC sets flags, indicating the proposed
action. These action flags are in DFHZNAC's transaction work area
(TWA). In most cases, NEP can modify DFHZNAC's proposed actions. The
only time that DFHZNAC overrides NEP's modification of the TWA is w,hen a
terminal is to be disconnected from CICS/VSi that is, when DFHZNAC
determines that the abnormal situation requires that CICS/VS issues the
VTAM CLSDST macro instruction for a logical unit. In such a case, the
eventual action will depend on the system sense code received. When
control is returned to DFHZNAC from NEP, DFHZNAC performs the actions
specified in TWAOPTL (except when disconnecting terminals, as noted
above), issuing messages and setting error codes, as necessary.

The system programmer needs to code a node error program (NEP) only
if he wishes to perform additional error processing beyond that
performed by DFHZNAC. DFHZNAC gives control to NEP by issuing a DFHPC
TYPE=LINK macro instruction. DFHZNAC also passes the address of the
TCTTE concerned, so that the system programroer can specify further
recovery actions based on the processing state of the logical unit.
When NEP has performed its functions, it returns control to DFHZNAC by
issuing a DFHPC TYPE=RETURN macro instruction.

Chapter 5. CICS/VS Advanced Communication Systems 79

Upon entry to NEP, the following fields are available to the system
programmer:

• The error code generated by-DFHZNAC.

• The action flags set by DFHZNAC.

• The address of the TCTTE.

• The terminal name.

• The sense codes received by DFHZNAC:

symbolic labels for error codes and action flags are provided in the
NEP coding released with CICS/VS. Linkage to NEP is provided by
CICS/VS.

If DFHZNAC is scheduled because of the receipt of an exception
response or a VTAM LU status indicator, the sense information in the
TCTTE is available to DFHZNAC and NEP to determine any necessary
actions,. If DFHZNAC is scheduled because of loss of the connection
between CICS/VS and a logical unit, DFHZNAC abnormally terminates any
transaction in progress at the time of the failure. NEP analysis and
processing is permitted, but message retry should not be attempted.

The DFHZNAC error message is sent to the master-terminal log prior to
linking to NEP. User-written messages may also be sent to the log using
the transient data facility. To write the installation's own messages,
the system programmer must code the DFHTD TYPE=PUT macro instruction
directly into NEP.

USER EXIT-ROUTINES FOR CICS/VS DFHZCP

CICS/VS advanced communication support provides the system programmer
with the option of coding a user exit-routine which is to be given
control at defined points during the processing of a request by DFHZCP.

control is given to the specified exit-routine at each of the
following three points every time a request re£erring to a V~AM
supported TCTTE is serviced:

• Before a task attach.

• Before issuing the logical message in the DFHZCP send subroutine; no
chaining requirements have yet been determined.

• After the entire ~ogical message is received by CICS/VS.

80 CICS/VS Introduction to Program Logic

Part 2. The Components of CICS/VS

This part deals with the components and functions that make up CICS/VS.
There are six chapters, corresponding to the six components:

Chapter 6. System Management

Chapter 7. System Services

Chapter 8. System Monitoring

Chapter 9. System Reliability

Chapter 10. System Support

Chapter 11. Application Services

Part 2. The Components of CICS/VS 81

Chapter 6. System Mana'gement

TASK MANAGEMENT

The ability to process more than one transaction concurrently is
provided by Task Management. Tasks are scheduled and processed by
priority, control being given to the dispatchable task with the highest
priority. Task priority is the sum of the priorities assigned to the
transaction code, the terminal, and the terminal operator. ~he number
of active tasks is limited by the amount of available address space and
the number of tasks specified as a maximum for the task class by the
user.

Task Management (DFHI<CP) can be divided into support for the DFHKC
macro and the Task Dispatcher.

DFHKC MACRO SUPPORT

Issuing a DFHKC macro instruction causes a code to be set in the
requesting task's Task Control Area (TCA), and a call to be made to Task
Management.

Except during task termination, the requesting task's TCA is used by
Task Management to communicate with storage Management. Control is not
always returned directly to the requesting program, but may pass to the
Task Dispatcher which selects the task to be given control.

Initiate ~ Task (ATTACH)

Task Management validates transactions by checking the Program Control
Table (PCT), which lists all the valid transaction codes and their
associated programs, so that control may be transferred to the correct
program..

If a match is found in the PCT then operator security, message
protection, and task class maximum are verified and storage obtained for
the new TCA and a Dispatch Control Area (DCA). The dispatch priority is
set in the DCA. Control returns to the caller for conditional requests,
and to the Task Dispatcher for unconditional requests. If the
transaction is not valid then the abnormal condition program is
attached.

On starting up a task, Task Management acquires a TCA through Storage
Management (described later in this chapter). If necessary, the TCA may
also include a Transaction Work Area (TWA), which may be used by an
application program during the life of a transaction. If a task uses
anticipatory paging then the initial area obtained contains the TCA, TWA
(if any), and space for data areas. The size of these areas is obtained
from the PCT,. The TCA and TWA are released when the task terminates.

For CICS/OS/VS, if the task is marked in the PCT as a primed task, a
Primed Allocation (PRA) is obtained. This area will contain tbe TCA,
and will also be used for rapid storage allocation for some areas used
by the task.

Chapter 6. System Management 83

Terminate ~ Task (DETACH)

The task is disconnected from the associated terminal, and any deferred
work is processed. Any interval control elements for the task are
cancelled, terminal management is notified, storage for the task is
freed, and the routine exits to the task dispatcher. The call to
storage Management to free the TCA will also result in storage still
chained to the TCA being freed.

Enqueue upon ~ Resource (ENQ)

If the resource is unknown, the ENQ routine creates a Queue Element Area
(QEA) and returns to the caller. If the resource is known and already
held by the caller, the ENQ routine simply increments the use count. If
the resource is known and not held by the caller, then the caller's DCA
in placed in a wait chain and the calling task is suspended.

Dequeue upon ~ Resource (DEQ)

The resources held by the calling task are checked against the resource
being dequeued. If the resource is found, its use count is decremented.
If the count reaches zero, the QEA is moved from this task chain and
either given to a waiting task (which is started up) or, if there is no
such task, freed.

Dequeue all Resources CDEQALL)

The resources held by the calling task are all released, and their QEAs
freed or transferred to tasks requiring the resources.

Change Priority of ~ Task (CHAP)

The DCA for the task is removed from the active dispatching chain and
immediately replaced on the chain so that it bas the required priority.
Control passes to the Task Dispatcher.

synchronize ~ Task (WAIT)

There are several forms of WAIT. WAIT dispatchable just allows a higher
priority task to be dispatched. A WAIT with DCI=CICS rreans that the
posting is done within CICS/VS and so the ECE is never added to the
operating system wait list when CICS/VS issues a system WAIT. A
Terminal Management WAIT falls through into a Task Management WAIT which
causes the task to be moved to the SUSPEND chain. WAITs for one or more
ECBs leave the TCAs on the active chain.

Suspend ~ Task (SUSPEND)

The task DCA is moved from the active task chain to the suspended task
chain, if necessary in timeout sequence. Tasks are suspended because
they are likely to be waiting for a relatively long time, that is when
waiting for a resource or for terminal I/O, but not for disk I/O.
CICS/VS system tasks may not be suspended.

Resume a Task (RESUME)

The task DCA is moved from the suspended task chain to the active task
chain, positioned by priority. RESUME is issued by Terminal Management

84 CICS/VS Introduction to Program Logic

when terminal I/O completes, and by other modules WAen resources become
available.

Schedule ~ Resource (SCHEDULE)

SCHEDULE is used by Time Management, Transient Data Management, BMS and
Asynchronous Task Processing to tell Task Management that a task should
be started. Task Management cannot actually start the task until the
required terminal is available. It therefore records all the necessary
information in an Automatic Initiate Descriptor until the terminal is
free, that is, when Terminal Management has issued an AVAIL macros.

Declare Resource Availability (AVAIL)

This macro is issued by ~erminal Management to indicate that a terminal
is now free. The Automatic Initiate Descriptor chain is searched for a
match with the Terminal Control Table Terminal Entry (TCTTE). A task is
attached and control returns to the caller.

HPO Services

Services have been added to Task Management for OS/VS2 versions of
CICS/VS for the High Performance Option. These are:

• Switch to SRB mode

• Switch to TCB Mode

• Attach HTA

• Detach HTA

TASK DISPATCHER

The Task Dispatcher maintains an active task chain and a suspended tas~
Chain. The Dispatcher scans the active task chain to find a
dispatchable task. The suspended task chain is scanned only during
stall processing. The elements on the chains are Dispatch Control Areas
(DCAs), each DCA containing pointers to the DCAs of next higher and
lower priority, and to the TCA of the associated task. The CSA conta~ns
the addresses of the highest and lowest priority DCAs on each of the
chains. The dispatchability of a task is deterroined by examining the
setting of the dispatch control indicator in the DCA. If it indicates
that the task is waiting on the completion of some event, the control
block associated with the event is tested for completion posting. The
suspended task chain is a FIFO chain, without regard for task priority.
Before looking at the active task chain, the Dispatcher examines the
first timeout task on the suspended task chain. If the timeout interval
has expired then the task is purged.

If the Dispatcher determines that a task is dispatchable, its TeA i$
activated, the task's register contents are restored, and control paSses
to the program which was in control of the TCA when the wait state was
entered. If the Dispatcher finds no CICS/VS task that is
dispatchable,it releases control of the CPU to the operating
system, requesting that control be returned to CICS/VS upon completion of
the next event. Before doing so, an operating system interval timer
macro is issued so that CICS/VS can always get control back.

Chapter 6. System Management 85

The Dispatcher uses its own TCA to communicate between modules. It
branches into Time Management where time-ordered events are initiated as
request times expire. The time remaining until expiration of the next
time-ordered event is returned to the Dispatcher, and is used when
operating system timer services are requested.

The Dispatcher enforces task class maxima. It also detects and
corrects some error conditions. It will purge transactions in order to
overcome the system stall condition, and will terminate tasks which are
identified as exceeding their runaway task or timeout limits.

The System Stall condition occurs when main storage resources
available to CICS/VS become over1oaded to the point where active
transactions cannot continue processing and new transactions cannot be
initiated. Corrective action involves the purging of low-priority
purgeable transactions so designated by the user.

The Runaway Task condition occurs when an aFplication program may
have developed an endless loop within the program logic. Corrective
action involves the abnormal termination of the task.

The Read Time-Out condition occurs when a transaction waits for a
terminal input message beyond the time specified. Corrective action
includes the abnormal termination of the task.

At each invocation the Task Dispatcher refresbes the current time-of
day values in the CSA, and checks if the time requires the Terminal
Management task to be dispatched.

In OS/VS2 CICS/VS systems, if the Terminal Management task is not
dispatched, Task Management will check the Service Request Block (SRB)
chain and dispatch the first SRB found, without examining the DCA
chains. Also the maximum task-in-class count is replaced by an active
task-in-class count.

STORAGE MANAGEMENT

All dynamic storage for CICS/VS and for the user-written application
programs is controlled by Storage Management (DFHSCP). Requests to
acquire or release dynamic storage are comrrunicated to storage
Management by CICS/VS macro instructions. CICS/VS management functions
use dynamic storage for input/output areas, program load areas, and
user-defined transaction work areas. User-written application prograrrs
use dynamic storage for intermediate work areas and for transaction
processing.

An optional user exit is provided upon initial entry to storage
Management.

Storage Initialization

Each byte of dynamic storage may be initialized to a bit configuration
specified as an option in the requesting macro instruction. For
example, a dynamic storage area can be initialized to binary zeros or to
EBCDIC blanks.

Storage Accounting

All storage areas used by a transaction are chained. This allows
CICS/VS to release all dynamic storage associated with a transaction
either upon request by the user or when the transaction is terminated.

86 CICS/VS Introduction to Program Logic

Dynamic storage Verification and Reclamation

CICS/VS verifies all requests for dynamic storage. This helps in
isolating and terminating transactions that inadvertently destroy
storage chains. If storage chains are destroyed, CICS/VS attempts to
reconstruct them so that dynamic storage re~ains usable by CICS/VS
applications.

Conditional storage Acquisition

The user can issue either a conditional or unconditional request to
acquire dynamic storage for a transaction. When there is insufficient
dynamic storage to satisfy a conditional request, control is returned to
the user with an indication that there was insufficient dynamic storage;
an unconditional request results in the transaction being suspended
until sufficient storage is available, and also prevents any new tasks
being initiated until storage is available. In this way, storage
Management moderates the effects of high dynamic storage demands and
keeps CICS/VS running.

System Overload Detection

To relieve an overload, CICS/VS uses a technique that involves a storage
cushion. The cushion is a quantity of dyna~ic storage held in reserve
by CICS/VS. When a request for dynamic storage cannot be satisfied, the
cushion is released for use by current tasks and initiation of new tasks
is inhibited. When the demands for dynamic storage have diminished, the
cushion is reacquired by CICS/VS and new transactions can be initiated.

Storage Statistics

Statistics maintained by Storage Management include the number of
requests for storage acquisition, the number of times processing must be
delayed for storage acquisition, and the number of requests for storage
disposition.

Storage Control Services

The following services are provided automatically by Storage Management
without communication from the application program.

Storage Request Enqueuing and Dequeuing:

Enqueues and dequeues requests for dynamic storage that cannot be
satisfied immediately.

System Notification:

Inhibits the initiation of new work. This is an internal function; no
external notification is given.

Storage Accounting:

Automatically chains storage acquired by a transaction so that a single
macro from Task Management is sufficient to free any remaining storage
upon termination of the transaction.

Chapter 6. System Management 87

The following services are performed by storage Management in
response to specific requests from either an afplication program or
another CICS/VS function.

Storage Acquisition:

Allocates dynamic storage fo~ a transaction.

Storage Disposition:

Releases dynamic storage for a transaction.

Storage Initialization:

Initializes allocated dynamic storage to the bit configuration specified
by the user in the macro instruction.

THE STORAGE MANAGEMENT MODULE

Storage Management (DFHSCP) communicates with other CICS/VS functions
and user-written application programs to satisfy their storage
requirements. It makes extensive use of CICS/VS control blocks and
interfaces with other CICS/VS functions for special processing when
exception conditions arise.

All CICS/VS and user-written programs communicate their requests for
Storage Management services through the TCA. The address of the storage
acquired is returned to the requesting prograrr. in the TCA.

storage Management determines the type of request by referring to the
TCA and returns the address of acquired storage in the 'ICA. Storage
associated with a task is chained off the TCA.

When working with terminal storage, the address of the TCTTE is found
in the TCA. storage Management maintains a chain of terminal storage
through a field in the TCTTE. A count of storage violations associated
with a terminal is also kept in the TCTTE.

Storage Management manipulates the short on storage (SOS) indicator
in the CSA. The CSA is used to find the Page Allocation Map (PAM) and
the suspended Dispatch Control Area (DCA) chain. Statistics related to
storage control are kept in the CSA.

Whenever there are tasks suspended for lack ot storage, some storage
is released, storage Management searches the chain of DCAs and attempts
to fulfil a suspended request for allocation.

When CICS/VS is running out of storage, storage Management searches
the Processing Program Table (PPT) for programs residing in dynamic
storage that are not currently in use and are not permanently resident.
Storage for such programs is freed, and the PPT is changed to reflect
the fact that the program is no longer in storage.

A count of the number of storage violations associated with a
transaction identification is kept in the Program Control Table (PCT).

The Page Allocation Map contains dynamic values relating to the
allocating and freeing of storage. It also contains a map ot all pages

88 CICS/VS Introduction to Program Logic

in the dynamic storage area that indicates the current disposition of
each page.

If an unconditional request for storage cannot be satisfied, storage
Management issues a DFHRC TYPE=SOSPEND nacro instruction, which is a
Task Management macro instruction used only by CICS/VS management
modules. The requesting task is suspended until the storage request can
be satisfied, at which time a DFHKC TYPE=RESUME macro instruction (also
used only by CICS/VS management modules) is issued to request 'I'ask
Management to start the task.

If an invalid request is issued, or an address specified in a request
is invalid, Storage Management returns control to the calling program,
setting the INVREQ response code.

If Storage Management has a program check while attempting to service
a DFHSC TYPE=GETMAIN or DFHSC TYPE=FREEMAIN request, the System Recovery
program intercepts and passes control to the Storage Control Recovery
routine,.

If Storage Management detects a storage violation while servicing a
DFHSC TYPE=GETMAIN or DFHSC TYPE=FREEMAIN request, control is passed to
the 'Storage Control Recovery routine. The Storage Control Recovery
routine tries to recover from the storage problem and, if successful,
returns to Storage Management so that the request that revealed the
problem can be retried, otherwise CICS/VS is terminated.

For a primed task in CICS/OS/VS, storage Management will allocate
some areas from the Primed Allocation (PRA) obtained with the ~CA.
storage Management does not free areas in the PRA until task
termination.

PROGRAM MANAGEMENT

Program Management controls and supervises CICS/VS application programs.
Program Management macro instructions are used to load programs, link or
transfer control to programs, delete a loaded program, abnormally
terminate a task, and return control from a program. The normal
termination of tasks and the termination of transaction processing are
additional services initiated by this prograrr. Single copies of
application programs in dynamic storage are controlled to allow
concurrent use by multiple tasks.

When a requested application program is already in dynamic storage,
Program Management transfers control directly to that program. Each
program's location on a direct access volume and in main storage, if
applicable, is kept in the Processing Program Table (PPT). The status
of each program is maintained in the PPT.

Programs are stored in a CICS/VS library in relocatable format and
are accessed through the CICS/VS asynchronous program fetch data
facilities. This loading facility allows CICS/VS execution to continue
during program load time. For CICS/DOS/VS, the real-time relocatable
program library is a standard core-image library prepared by the DOS/VS
linkage editor. For CICS/OS/VS, the real-time relocatable program
library is a standard partitioned data set. Programs are prepared for
this library by the as/vs linkage editor. For CICS/OS/VS, users can
concatenate other private libraries to this library.

As control for a task is passed from one processing program to
another and returned, Program Management saves and restores the general
purpose registers. When control is returned to Program Management at

Chapter 6. System Management 89

the completion of task processing, it issues a request to detach the
task which, in turn, releases all dynamic storage associated with the
task.

Application programs remain resident in dynarric storage when not
being used, unless there is an indication that system storage resources
have become overloaded. In this case, programs not currently in use are
deleted from dynamic storage.

An optional user exit is provided troIT Program Management after
program fetch.

PROGRAM MANAGEMENT SERVICES

The following functions are automatically performed by Program
Management without comrnu~ication with the application prograrr.

High Level Language (M~~) Macro Interface:

Intercepts HLL macro-level (not command-level) requests for CICS/VS
services to save information, passes control to the appropriate CICS/VS
management £unction,and subsequently returns to the HLL program.

Program Purge

Causes unused application programs to be purged trom dynamic storage
when CICS/VS is in the overload state. (Once used, an application
program remains resident in dynamic storage, even when not in use.)

Asynchronous Program Fetch

Provides for the fetching of application programs from the direct access
storage device into dynamic storage while allowing other transaction
activity to proceed during the I/O operation.

The following services are performed by Program Management in
response to a specific request from either a user application program or
another CICS/VS f~nction.

Retains requesting program and its general registers for subsequent
return and passes control to the program specified in the macro
instruction. The linked-to program is considered to be at the next
lower logical level.

Transfer Control

Transfers control from one application program to another without return
being possible. Tne target program is considered to be at the same
logical level as the calling program.

90 CICS/VS Introduction to Program Logic

Loads the designated program into dynamic storage and returns its entry
address to the requesting program.

Delete

Releases the designated program, which was previously loaded.

Return

Returns control to the program, possibly CICS/VS. considered to be at
the next higher logical level. If the task is at the highest level.
this leads to normal transaction termination.

Abend

Terminates a transaction and its related task and passes control to the
abnormal condition program.

Supports the CSMT NEWCOPY function by obtaining the information about
the new program.

THE PROGRAM MANAGEMENT MODULE (DFHPCP)

Program Management (DFHPCP) may communicate with any CICS/VS function or
any user-written application program. In addition, CICS/VS-supported
high-level language programs interface with CICS/VS through Program
Management. ANS COBOL and PL/I modules, using the macro-level
interface, establish fields in the TCA and communicate with Program
Management when invoking other CICS/VS functions.

Any CICS/VS or user-written module may issue a Program Management
DFHPC TYPE=ABEND macro instruction to request that a task be abnormally
terminated.

TIME MANAGEMENT

The following services are performed by CICS/VS, based on intervals of
time specified by the user during system initialization. They require
no communication with user-written application programs,.

CICS/VS Exit Time Interval Control

The CICS/VS exit time interval is tbe maximum interval of time for which
CICS/VS wishes to release control to the operating system in the event
there are no transactions ready to resume processing.

system Stall Detection and Correction

Provides automatic detection of the system stall condition when the
CICS/VS dynamic storage resource becomes overloaded to the point where
no active transactions can continue and no new transactions can be

Chapter 6. System Management 91

initiated. Corrective action involves the purging of low-priority
transactions designated as purgeable by the user. The status of each
transaction is defined and controlled by the user.

Runaway Task Detection and Correction

Automatic detection of the situation where an application program may
have developed a loop within the program logic. Corrective action
involves the abnormal termination of the transaction.

The following services are performed by Time Management in response
to a specific request from either an applicaticn program or ancther
CICS/VS function.

Provides the ability to retrieve the current time of day in either
binary or packed decimal format.

Time-Dependent Transaction Synchronization

Provides the user with three optional services:

• WAIT, permits a transaction to temporarily suspend itself for a given
period of time. When the time has elapsed, the transaction resumes
execution.

• POST, provides the means for a transaction to be notified when the
specified interval of time has elapsed or the specified time of day
occurs. The transaction proceeds to execute while the time interval
is elapsing.

• CANCEL, allows a transaction to terminate its own or another
transaction's request for a WAIT or POST service.

Automatic Time-Ordered ~ransaction Initiation

Provides for the automatic initiation of a transaction at a specified
time of day (or after a specified interval of time has elapsed) and for
the control of data that is to be accessed by the transaction. The user
can also cancel a pending request for automatic time-ordered transaction
initiation.

Optional user exits are provided as follows:

• Before determining what type of request for time services was issued.

• Upon expiration of a previously requested time-dependent event.

~HE TIME MANAGEMENT MODULE (DFHICP)

~ime Management can be divided into two functional areas. The first of
these services Interval Control (DFHIC> macro instructions and is
executed under control of the requesting task's TCA. The second detects

92 CICS/VS Introduction to Program Logic

the expiration of time-dependent events, and is performed by the Task
Dispatcher.

Issuing a DFHIC macro instruction causes a request code to be set in
a field in the requesting task's TCA. Processing enters the Time
Management macro instruction service logic. The register contents are
saved in the TCA and the requested service is performed or initiated.
While performing the service, Time Management interfaces with other
CICS/VS management functions (storage Management, Task Management, and
Temporary Storage Management). Time Management builds Interval Control
Elements (ICEs) for time-dependent requests made using DFHIC macro
instructions. The ICEs are chained off the CSA in expiration-time
sequence.. Control is returned to the requesting CICS/VS modul e or user
written program when the requested service has been queued or perforrred.

The Task Dispatcher activates Task Management's TCA for intermodule
communication and branches to the expiration analysis logic of Time
Management program. This logic checks the ICE chain entries, in
expiration time sequence, determining whether or not each has expired.
Each expired ICE is removed from the chain, and processing related to
the service requested through the DFHIC macro instruction is performed
or initiated. During expiration analysis, Time Managereent interfaces
with Storage Management and uses Task Management services as well.
Since the normal processing flow in the Task Management program is from
the requested service logic, the expiration analysis logic is reentered
by again activating Task Management's TCA.

One of the functions of the Task Dispatcher is to refresh the current
time-of-day values retained in the CSA. During this process, the clock
will be reset if midnight is detected.

During expiration analysis, a CICS/VS system task can be started
which will adjust the expiration times of day to reflect the occurrence
of midnight and to reset the CICS/VS current time-of-day and date values
to coincide with the operating system. The CICS/VS-provided ~ime
Adjustment prog~am performs these functions by adjusting the expiration
times in the ICEs (as well as other CICS/VS-maintained expiration
times), and then changing the time-of-day values in the CSA to equal the
operating system clock.

TERMINAL MANAGEMENT

Terminal Management provides communication between terminals and user
written application programs. The user can specify that concurrent
terminal support can be provided by any combination of the following
access methods:

• Basic telecommunication access method (BTAM)

• Virtual telecommunication access method (VTAM), with the network
control program (NCP)

• Graphics access method (GAM) (CICS/OS/VS only)

• Telecommunications access method (TCAM) (CICS/OS/VS only)

Terminal Management uses data that describes the corrmunication lines
and terminals. This data is kept in the Terminal Control Table (TCT),
which is generated by the user as part of the environment definition.
The table entries contain terminal request indicators, status,
statistics, identification, and addresses of I/O and related areas. The

Chapter 6. System Management 93

primary function of Terminal Management is to take an I/O request and
convert it to a format acceptable to the access method.

A terminal connected to BTAM is polled to request initial input. The
user specifies the terminal device characteristics and desired polling
interval so that CICS/VS is generated to satisfy his requirereents. (A
polling interval is the period of time between one attempt to read data
from a terminal or group of terminals and the next attempt to read data
from the same terminal or terminals.)

For BTAM devices. when a read is completed the input data is
converted to the extended binary coded decimal interchange code
(EBCDIC). When there is need for a task to process a message. a CICS/VS
Task Management ATTACH macro instruction is issued by Terminal
Management. When data is to be transmitted to a terminal. processing
programs execute a CICS/VS Terminal Management WRITE macro instruction.
The translation of output data from EBCDIC to the appropriate terminal
code is performed if required.

VTAM network functions allow terminals to be connected to any control
subsystem that is online. This enables a terJr~nal operator to switch
from one CICS/VS system to another or to another subsystem. such as
IMS/VS.

The functions of Terminal Management are categorized as either
transmission facility control functions (those functions that are
normally related to the control of the communication lines) or terminal
device-dependent control functions (those terminal functions that are
dependent upon device type and access method).

When TCAM controls communication lines under CICS/VS/OS. those lines
are no longer dedicated to the CICS/VS region. Thus the a single
terminal can access programs in separate regions supported by ~CAM.
TCAM facilities available within the region supported by TCAM include
message switching, broadcasting, disk queuing, checkpoint/restart of the
communication network, and TCAM terminal suppcrt.

TESTING FACILITY

To allow the user to test programs, the sequential access method (SAM)
is used to control sequential devices such as card readers and printers,
magnetic tape, and direct access storage devices. These sequential
devices can be used to supply input/output to CICS/VS before actual
terminals are available or during testing of new applications.

TERMINAL MANAGEMENT SERVICES

The following services are performed by, or in conjunction with,
Terminal Management.

• Service request facilities

• System control services

• Transmission facilities

• BTAM device-dependent services

94 CICS/VS Introduction to Program Logic

Service Request Facilities

Write Request:

Sets up and issues or queues access method macros; performs
journaling and journal synchronization.

Read Request:

Sets up and issues access method macro instruction; performs
journaling if required.

Wait Request:

Issues CICS/VS WAIT.

Dispatch Analysis:

Determines the type of access method and terminal used, and executes
the appropriate area of Terminal Management.

System Control Services

Automatic Task Initiation:

Services requests for automatic task (transaction) initiation caused
by events internal to the processing of CICS/VS.

Task Initiation:

Requests the initiation of a task to process a transaction from a
terminal. When an initial input message is accepted, a task is
created to do the processing.

Terminal Storage:

Performs allocation and deallocation of terminal storage if requested
by application program.

Transmission Facilities - VTAM

connection Services:

Accepts logon requests, requests connection of terminals for
automatic task initiation, and returns terminals to VTAM, as
specified by the user.

Transmission Facilities - BTA~

Translation:

Translates data received from transmission code to EBCDIC and data to
be sent from EBCDIC to the appropriate transmission code.

Chapter 6. System Management 95

Line Advance:

Scans the terminal control table to make line control information
available for analysis.

Line Analysis:

Analyzes the terminal control table line control information to
determine which terminal facilities require further action. For
example, ~n indication that a communication line is free may indicate
that a polling operation should begin.

Event Termination:

Provides a reset poll for certain terminal devices to service write
requests.

Transmission Facilities - BTAM/VT~

Access Method Selection:

Passes control to tbe appropriate access method routine based on the
access method specified in the terminal control table.

wait:

Synchronizes the terminal control task with all other tasks in the
system. When all terminal read and write operations are tegun that
it ispossible to initiate, Terminal Management processing is complete
and control is returned to Task Management to allow dispatching of
other tasks.

Transmission Facilities - TCAM

Message Control Program Facilities:

Invites and selects terminals to transmit or receive data, manages
dynamic buffers, handles messages and directs the flow of data
through the system on a priority basis, maintains queues in main
storage and on direct access devices for terminals and application
programs, and handles error checking, operator control, and
checkpoint/restart.

BTAM Device-Dependent Services

Input Event Treatment:

Processes a completed input event, including error checking. storage
management, translation, and task initiation.

Output Event Treatment:

Processes a completed output event, including error checking and
storage management.

96 CICS/VS Introduction to program Logic

Activity Control:

Examines the control information for each terminal, checking for
requested WRITE, READ, WAIT, and other Terminal Management macro
instruction requests.

Input Event Preparation:

Prepares the line for an input event, including storage Management.

Output Event Preparation:

Prepares the line for an output event., including translation.

Event Initiation:

Prepares the terminal data event control block and the linkage of
terminal device-dependent control to the appropriate access method.

TERMINAL ERROR RECOVE~Y

The resolution of permanent transmission errors involves both CICS/VS
and additional user coding. CICS/VS cannot arbitrarily take all action
with regard to these errors. User application logic will sometimes be
necessary to resolve the problem. For the portion of the
telecommunications network connected to BTAM, ~CAM, or GAM, these
services are provided by the terminal abnormal condition program (TACP)
and by the user-written, or sample, terminal error program (TEP). For
the VTAM part of the network, terminal error handling is carried out by
the node abnormal condition program (NACP), the sample node error
program (NEP), provided by CICS/VS, or a user-written node error
program.

The following sequence of events takes place when a permanent error
occurs for a terminal:

1. The terminal is placed in an out of service status.

2. The terminal/node abnormal condition program is attached to the
system to run as a separate CICS/VS task.

3. The terminal/node abnormal condition program writes the error data to
a destination in transient data control if the user has defined one.
This destination is defined by the user and may be intrapartition or
extrapartition.

4. The terminal/node abnormal condition program then links to the
appropriate terminal/node error program to allow
terminal/transaction-oriented analysis of the error. In the
terminal/node error program, the user may decide to have the terminal
placed in service, have the line placed in or out of service, or have
the transaction in process on the terminal abnormally terminated.

5. The terminal/node abnormal condition program is detached from the
system.

Chapter 6. System Management 91

THE TERMINAL MANAGEMENT MODULES (DFHTCP, DFHZCP)

Terminal Management consists of two CICS/VS modules, DFHZCP and DFHTCP.
DFHZCP provides both the common (VTAM and non-VTAM) interface as well as
the VTAM-only support. DFHTCP provides the non-VTAM support. Terminal
Management communicates with application programs, CICS/VS System
Management functions (Task Management, storage Management) CICS/VS
Application Services (Basic Mapping Support and Data Interchange
Program), System Reliability functions (abnormal condition handling),
and with operating system access methods (BTAM, GAM, SAM, VTAM, or
TCAM). Requests for Terminal Management functions made by application
programs, BMS, or Task Management, are processed through the common
interface of DFHZCP. Generally, Terminal Management requests for other
CICS/VS or operating system functions are issued by either DFHZCP (V~AM
support) or DFHTCP, depending upon the terminal being serviced.

DFHTCP and DFHZCP are two separate modules. They are always
assembled separately and loaded separately. DFHZCP is always generated
because it contains some internal routines which are necessary for the
successful operation of DFHTCP. VTAM support within DFHZCP is generated
by specifying ACCMETH=VTAM in the DFHSG PROGRAM=TCP macro instruction.
The ACCMETH and VTAMDEV operands must be coded to support a CICS/VS
advanced communication system.

Common Interface

When a Terminal Management (DFHTC) macro instruction is issued by an
application program, by the Data Interchange Program, or by Basic
Mapping Support (EMS), request bits are set in the user's TCA and
control is passed to the common interface (VTAM,non-VTAM) routines of
DFHZCP.

If the DFHTC macro instruction includes a WAIT request, control is
passed to Task Management to place the requesting program (task) in a
suspended state. If a WAIT request is not included, control is returned
to the requesting task.

A field in the task's TCA contains the Facility Control Area
Associated Address, a pointer to the terminal with which the task is
associated.

Task Management dispatches Terminal Management through the common
interface for one of the following reasons:

• The system partition/region exit time interval (specified in the ICV
operand of the DFHSIT macro instruction by which the System
Initialization Table is generated) has elapsed.

• The Terminal Management event initiated by the DFHTC macro
instruction has been posted complete (non-VTAM ECB posted or exit
scheduled in the case of VTAM).

• Neither of the previous events, above, has occurred, but one second
has elapsed since the last time Terminal Management was dispatched
with a pending request to be serviced,.

Terminal Management, through its common interface, requests Task
Management to perform a CICS/VS WAIT when Terminal Management has no
further work that it can do.

98 CICS/VS Introduction to Program Logic

Access Method Dependent Interface

Terminal Management communicates with storage Management using a DFHSC
TYPE= GETMAIN or FREEMAIN macro instructions to obtain and release
storage as follows:

Non-VTAM

DFHTCP issues DFHSC macro instructions to obtain and release
terminal and line storage.

DFHZCP issues DFHSC macro instructions to obtain and release
terminal, line (line class is used for the Receive-Any I/O
areas), and RPL storage.

Terminal Management communicates with Task Management using a DFHKC
macro instruction. The macro instruction is issued by DFHZCP or DFH~CPr
depending upon the terminal being serviced. Terminal Management may
request Task Management to perform one of the following:

• Attach a task upon receipt of a transaction identification from a
terminal.

• Respond to a DFHKC ~YPE=WAIT request.

• Respond to a DFHKC TYPE=RESUME request.

• Respond to a DFHKC TYPE=AVAIL request (a Task Management macro
instruction documented only for system progran:ming) when a tiroe
initiated task is indicated for a terminal and that facility is
available.

Terminal Management communicates with operating system access methods
in either of the following ways, depending upon the terminal being
serviced:

Non-VTAM (DFHTCP)

DFHTCP builds access method requests in the DECB, which is part
of tke TCTLE. The DECB portion of the TCTLE is passed to the
access method by Terminal Management to request a service of that
access method. The access method notifies Terminal Management of
the completion of the service through the DECB. Terminal
Management analyzes the contents of the DECB upon completion to
determine the type of completion and to check for error
information.

VTAM (DFHZCP)

DFHZCP builds VTAM request information in the RPL. which is tben
passed to VTAM for servicing. VTAM notifies Terminal Management
of completion by placing completion information in the RPL.
DFHZCP analyzes the contents of the RPL upon completion to
determine the type of completion and the presence of error
information. Communication with VTAM also occurs by V~AM
scheduling exits. VTAM passes parameter lists and does not
always use the RPL.

Chapter 6. system Management 99

Terminal Management communicates with tbe CICS/VS abnormal condition
fUnctions in either of the following ways, depending upon the terminal
being serviced:

Non-VTAM

DFHTCP attaches the Terminal Abnormal Condition program (TACP)
and passes a Terminal Abnormal Condition line entry (~CLE) when
an error occurs. The TACLE is a copy of the DECB portion of the
TCTLE and contains all information necessary for proper
evaluation of the error, plus special action indicators that can
be manipulated to alter the error correction procedure. After
the DECB has been analyzed, it is passed to the user's error
recovery program (DFHTEP).

DFHZCP attaches the Node Abnormal Condition Program (NACP) when
an error occurs, again passing information and special action
indicators. DFHZNAC does some preliminary error processing and
then passes control to the user's Node Error Program (DFHNEP).
Upon the completion of the user's error processing, control is
returned to DFHZNAC.

Terminal Management executes either under the user's TCA or its own
TCA as follows:

User's TCA

• During the application program interface

• During the interface with Basic Mapping Support

• While performing non-chained VTAM terminal requests

Terminal Control's TCA

• When Task Management dispatches Terminal Management

• When Terminal Management issues a request to Task Management

• When Terminal Management issues a request to Storage
Management

• While performing non-VTAM terminal I/O or chained V~M
terminal I/O

High Performance Option

For CICS/VS on OS/VS2 VTAM will be used with CICS/VS as an authorized
program so that the VTAM path length is reduced. This is achieved by
dispatching SRBs to actually issue the reads and writes to the
terminals. All the SRB code is executed in the module DFHZHFRX.

FILE MANAGEMENT

Access to the user data base is provided by File Management, which
consists of the module DFHFCP (and, in as, the module DFHFCD), the File
Control Table (FCT), and access method dependent logic for each access

100 CICS/VS Introduction to Program Logic

method described to the system. File Management reads from and writes
to user-defined data sets, gathers statistics, and acquires dynamic
storage for data base operations. File Management uses control
information defined by the user in the FCT. This tacle describes the
physical characteristics of all the data base data sets and any logical
relationships that may exist between them.

The following access methods are used by File Management, at the option
of the user:

• VSAM virtual storage access method

• ISAM indexed sequential access method

• BDAM or DAM direct access method for OS/VS or DOS/VS.

File Management provides the following services and features:

• Random record retrieval

• Random record update

• Random record addition

• Random record deletion (VSAM only)

• Sequential record retrieval

• Segmented records

• Indirect accessing

• BDAM (or DAM) deblocking

• Logical open/close of data sets

• Exclusive control of records during update operations

• DOS/VS ISAM variable-length records

• LOCATE mode, read-only retrieval (VSAM only)

• Mass record insertion (VSAM only)

• Automatic journaling

SEGMENTED RECORDS

A segmented record is one in which the components of the record have
been identified and grouped according to frequency of use, function, and
logical relationship. The identifiable groups are called segments.
Some segments, such as those that contain identification or major record
control fields, appear in all records. Other segments may appear only
in certain records. With the segmented record capability, it is
possible to retrieve an individual record or selected segments of an
individual record. The primary reason for segrrenting records is to
conserve dynamic storage and, in the case of variable-length records, to
conserve direct access storage.

The user defines the record segments to CICS/VS in the FC~. In
addition, the first segment of each record to be retrieved in segments

Chapter 6. Syste~ Management 101

must contain control information to indicate the presence or absence of
each segment. A segment should contain logically related data so tbat
only selected segments are required to satisfy the processing
requirements of a transaction. A transaction that uses only selected
record segments requires less dynamic storage for its processing than it
would if all record segments were read into the storage area.

The user, in selecting those segments necessary for processing
transaction groups, identifies them to CICS/VS as a part of the data set
definitions in the FCT. Such a group of segments is a segment set. A
segment set can include a single segment or all segments of a record.
When a request identifying a segment set is made to file control,
CICS/VS always returns the header control segment plus the segments in
that set.

segmented records can be used with either DAM or ISAM data set
organizations but are especially suited for VSAM data sets.

DEBLOCKING SERVICES FOR DAM DATA SETS

CICS/VS provides deblocking of logical records on a direct access (BDAM
or DAM) data set. This service is provided for both fixed- and
variable-length records. The data set must have been created according
to standard System/370 record formatting conventions.

INDEX DATA SETS INDIRECT ACCESSING

CICS/VS (optionally) allows the use of cross-index data sets to access
another data set, which may be the main data set or another level of
index data set. If a record retrieved from a cross-index data set
indicates multiple entries in the main data set, information is returned
to the user-written application programs to be used in selecting the
appropriate main data set entry. When the cross-index does not indicate
multiple entries in the main data set, File Management reads the
requested record from the main data set.

Organization of the cross-index data set may be either VSAM, ISAM, or
BDAM (DAM). The index record contains, in addition to the information
used to find it, the search argument for the record on the data set that
the index data set references. The index record can contain any other
information desired by the user. The location of the search argument,
its length, and the data set identification for the referenced data set
are supplied to CICS/VS as part of the data set definition in the FCT.

DOS/VS ISAM VARIABLE-LENGTH RECORDS

CICS/DOS/VS supports the retrieval and static update of variable-length
records within fixed-length blocks under an ISAM organization. ~hese
pseudo-variable blocks must conform to System/370 variable-length record
format conventions. That is, the first four bytes must contain the
block length in the form LLbb. Since all blocks are fixed length, this
value is the same for all blocks. Each logical record within the block
must reflect the length of the record in the first four bytes (LLbb). A
logical record cannot be continued onto the next block. The first byte
of any unused portion of a block must contain a hexadecimal FF.

102 CICS/VS Introduction to Program Logic

The addition and deletion of records on a DOS/VS ISAM variable-length
record data set must be handled by the user in offline batch processing,.
When creating the data set, it must be defined as fixed unblocked, and
the key for each block must be the same as the last logical record in
that block. The block size must be an even number of bytes. All
records must reside in the prime data area; no overflow records are
allowed.

EXCLUSIVE CONTROL

CICS/VS optionally provides protection to the user against the
concurrent updating of a data base record by two or more transactions.
This protection is called exclusive control. The user specifies the
exclusive control option in the creation of the FCT.

Several transactions can concurrently update records on the same data
set as long as the records being concurrently u};:dated are not in the
same sphere of exclusive control. The sphere of exclusive control for
BDAM data sets is the physical block. For VSAM data sets, the sphere of
exclusive control is the VSAM control interval. For variable-length
ISAM (OS) records, the sphere of control is the data set; for fixed
length ISAM (OS) records, the sphere of control is the record key. If a
transaction requests a record for update that is within the sphere of
control of another record being updated, the second transaction is
queued until the first update is complete.

SEQUENTIAL RETRIEVAL

Another optional feature of CICS/VS File Management is the sequential
retrieval of records from the data base. This feature is known as
browsing. To initiate a browse operation, the user provides either a
specific or generic (partial) record reference (key) where sequential
retrieval is to begin. Each subsequent GET request by the user
initiates retrieval of the next sequential record. The user also can
retrieve specified segment sets while in browse mode.. The a};:plication,
while in browse mode, can issue random get for update requests without
interrupting the browse operation. The same application can
concurrently browse several different data sets and browse the same data
set with multiple tasks.

With VSAM data sets, the application can skip forward during the
browse operation to bypass unwanted data,.

File Management is used by the CICS/VS open/close system service
program to support the dynamic opening and closing of the user1s data
base data sets.

Optional user exits are provided:

• Prior to determining what type of request for file services was
issued.

• Prior to providing a requested output service.

• After the File Control Table is searched in response to a request for
an input service.

• Upon completion of an input event but before deblocking requested
input records.

Chapter 6. System Management 103

AUTOMATIC JOURNALING

CICS/VS provides optional automatic logging and journaling facilities
for records that are updated, deleted from, or added to a file control
data set,. Automatic journaling is specified in the F'ile Control Table,
by the user, for each data set affected. For a specified data set, a
record read for update, a new record added, or an existing record
deleted is automatically written to the specified journal.

Following abnorma1 system termination, data bases defined as
recoverable by the user can be restored to their status before being
modified by inflight tasks.

In addition to automatic journaling, File Management may perform
automatic logging of certain file operations on recoverable files. This
logging is written on the CICS/VS system log and on the dynamic log.
The information can subsequently be used to restore the recoverable data
set as though the current transaction had never run, in the event of
either a system or transaction failure.

THE FILE MANAGEMENT MODULES (DFHFCP,DFHFCD)

File Management (DFHFCP and DFHFCD) communicates directly with other
CICS/VS functions, the standard access methods, and user-written
application programs.

When file services are requested by another CICS/VS module, File
Management locates the necessary File Control Table (FCT) entries
according to the OPEN/CLOSE/LOCATE Parameter List. It may perform a
logical open or close on those entries.

When file services are requested by an application program (through
executiop of a File Management (DFHFC) macro instruction), fields within
the common communication area of the TCA are filled with appropriate
entries to communicate with File Management. ~he File Management
interface is determined accordingly; that is, File Management may:

• Request storage Management to acquire any required storage areas

• Communicate with the standard access methods to request that any
required I/O operations be performed (for ICIP files File Management
switches to SRB mode before doing this)

• Request Task Management to place the application program (requesting
task) in a wait state until I/O operations are completed

• Request Journal Management to perform any automatic journaling
required

• Return the address of the appropriate control block to the requesting
task in the field TCAFCAA of the task's TCA

The module DFHFCD (in CICS/OS/VS) cOhtains the BDAM and ISAM code.

104 CICS/VS Introduction to Program Logic

TRANSIENT DATA MANAGEMENT

Transient Data Management provides a generalized queuing facility
enabling data to be queued (stored) for subsequent internal or offline
processing. Selected units of information, can be routed to or from
predefined symbolic destinations. The destinations are classified as
either intrapartition or extrapartition.

INTRAPARTITION DESTINATIONS

Intrapartition destinations are queues of data, held in a direct access
(DAM or BDAM) data set, for eventual input to one or more CICS/VS
transactions. Intrapartition destinations are accessible only by
CICS/VS transactions within the CICS/VS address space. Data directed to
or from these internal destinations is called intrapartition data. It
can only consist of variable-length records.

The space used by an intrapartition queue is reusable; an option
permits the user to indicate, by symbolic name, whether the application
p~ogram can use the transient data PURGE macro instruction to control
the release and reuse of space. If Transient Data Management is not
used, the space taken up by a queue continues to grow, irrespective of
whether the data has been read, until the user purges the whole queue.

Examples of the data queued for intrapartition processing are:

• Transactions that require processes to be performed serially, not
concurrently. An example of this type of process is one in which
pending order numbers are to be assigned.

• Data to be used in a data set (file) update that could pass
through the queue to allow the data to be applied in sequence.

• Batched input data to be processed asyncAronously.

Recovery of Intrapartition Transient Data Queues

Following abnormal system termination, intrapartition destinations
defined as recoverable by the user can be restored. Recovery is
accomplished by reconstructing the destination control table from log
record$ written automatically by CICS/VS during normal execution. Two
types of recovery are possible, physical and logical. If a transient
data queue is defined as physically recoverable, its destination control
table entry is restored to reflect tAe status of the queue at the sync
point to which the recovery program is backing out. If the queue is
defined as logically recoverable, restoration is made as above; however,
any changes to the queue made by transactions that were in-flight at the
time abnormal termination occurred are backed out.

EXTRAPARTITION DESTINATIONS

Extrapartition destinations are sequential data sets on tape or direct
access devices. Data directed to or from these external destinations is
called extrapartition data and can consist of sequential records that
are fixed or variable length, blocked or unblocked.

Chapter 6. System Management 105

Data can be placed on an extrapartition data set by CICS/VS for
subsequent input to CICS/vS or for offline processing. Sequentially
organized data created by other than CICS/VS programs can be entered
into CICS/VS as an extrapartition data set. Examples of data that might
be placed on extrapartition data sets are:

• System statistics

• Transaction error messages

• Customer data, such as cash payments that can be applied offline

INDIRECT DESTINATIONS

Intrapartition and extrapartition destinations can be referenced through
indirect destinations. This facility provides flexibility in program
maintenance; entries in the CICS/VS destination control table can be
changed at environment definition time, giving a destination a new
symbolic name, without recompiling existing programs.

AUTOMATIC TRANSACTION INITIATION

When data is sent to an intrapartition destination and the number of
entries (PUTs from one or more programs) in the queue reaches a
predefined level (trigger level), the user can optionally specify that a
transaction be automatically initiated to process the data in that
queue.

The automatic transaction initiation facility allows a user
transaction to be initiated either immediately, or, if a terffiinal is
required. when that terminal has no task associated with it. The
terminal processing status must be such that messages can be sent to it
automatically. The destination and the transaction identifications are
specified in the Destination Control Table. Through the trigger level
and automatic transaction initiation facility, an application program
has the ability to switch messages to terminals. Once a task has been
initiated, a macro instruction in the application program is. executed to
retrieve the queued data. All data in the queue is retrieved
sequentially for the application program.

Optional user exits are provided:

• After locating the appropriate entry in the Destination Control Table
but before writing data in response to an output request.

• After acquiring data in response to an input request.

• Before determining what type of request for transient data services
was issued.

TRANSIENT DATA SERVICES

The following services are performed by Transient Data Management in
response to CICS/VS macro instructions issued in application programs.

106 CICS/VS Introduction to Program Logic

Intrapartition Data Disposition:

Controls and queues data for serially reusable or reenterable facilities
(programs, terminals> related to this partition/region.

Intrapartition Data Acquisition:

Retrieves data that bas been placed in a.queue for subsequent internal
processing.

Extrapartition Data Acquisition:

Enters a sequentially organized data set into the system.

Extrapartition Data Disposition:

Writes fixed- or variable-length data in a blocked or unblocked format
on sequ~ntial devices, usually for subsequent offline processing-

Automatic Transaction Initiation:

Initiates a transaction to process previously queued transient data when
a predefined trigger level is reached.

Dynamic Open/Close:

Logically opens or clo~es specified extrapartition data sets
(destinations) during the real-time execution of CICS/VS.

THE TRANSIENT DATA MANAGEMENT MODULE (DFHTDP)

Transient Data Management (DFHTDP) communicates directly with three
other functions of the CICS/VS System Management component. ~hese are
Task Management, storage Management, and Program Management. The
application program communicates with DFHTDP through use of DFHTD macro
instructions.

An application program request for Transient Data services causes a
request code to be set in the TCA,signifying GET, PUT, PURGE, FEOV,
LOCATE, or CHECK. The destination identification is also placed in the
TCAI and control is passed to Transient Data Management

Transient Data Management obtains intrapartition disk map information
from the main storage area preceding the Destination Control ~able
(DCT).

The field TDDCTDID is used to search the DC~ for the destination
requested,. The DCT is checked for OPEN/CLOSE when the reference is to
an extrapartition destination.

Task Management is used to wait for access to the DCT and to attach
an automatically initiated task not associated with a terminal. If a
task is associated with a terminal, the TCTTE is flagged for automatic
transaction initiation by Terminal Management.

Transient Data Management communicates with Storage Management to
obtain storage for intrapartition I/O areas.

Chapter 6. System Management 107

Transient Data Management passes control and the address of the I/O
area to the read/write routines of the access methods to perform data
set I/O,.

If an invalid request for Transient Data services is received w
control is passed to Program Management to terminate the task issuing
the request.

If restart/recovery is supported within the system, a Deferred WOrk
Element <DWE) is created for each logically recoverable destination ~hen
it is accessed. At the end of a logical unit of work (LUW)w defined by
either an application program DFHSP TYPE=USER request or by Task
Management at task termination, CICS/VS Sync Point Management gives
control to the DWE processor of Transient Data Management. This DWE
processor performs the logical update of the DCT entry and/or the track
bit map.

TEMPORARY STORAGE MANAGEMENT

Temporary Storage Management provides the services necessary for an
application program to store data temporarily in dynamic storage or on a
direct access device. Data is stored and retrieved symbolically, thus
facilitating the sharing of data among transactions. Also, if a
transaction must be suspended, certain data may have to be saved until
transaction processing is resumed.

Temporary Storage Management provides temporary direct access storage
that can be used to accumulate data during a transaction that has
multiple inputs from the terminal. Temporary Storage Management either
puts the data on direct access storage using the virtual storage access
method (VSAM), or, if requested, saves the data in dynamic storage.

If the release of data is requested, Temporary Storage Management
frees the dynamic storage or direct access storage space that was used
for the data,.

Temporary Storage Management provides tRe basic services for the CICS/VS
terminal paging function.

TEMPORARY STORAGE MANAGEMENT SERVICES

The following services are performed by Temporary Storage Management in
response to CICS/VS macro instructions.

Temporary Storage Put:

Allocates dynamic storage or direct access storage space and saves
specified data in this space, using a symbolic identifier provided by
the user ..

Temporary Storage Get:

Locates data saved in a temporary storage area, puts it into a user
specified dynamic storage location, and, optionally, releases the space
the data occupied.

108 CICS/VS Introduction to Program Logic

Temporary Storage Release:

Locates data saved in a temporary storage area, removes any control
information, and releases the space occupied by the data.

Optional user exits are provided:

• Before writing data in response to an output request.

• Before returning control to an application program after servicing an
input request.

• Before determining what type of request for temporary storage
services was issued.

THE TEMPORARY STORAGE MANAGEMENT MODULE (DFHTSP)

Temporary storage Management (DFHTSP) communicates directly with two
other functions of the CICS/VS System Management component. These are
storage Management and Task Management. This interface uses the
application program's TCA.

An application program requests Temporary Storage services using a
DFHTS macro instruction.

Temporary Storage Management communicates with Storage Management to
request Temporary Storage unit table extensions, Temporary Storage group
identifications (TSGIDs), and main storage for DFHTS TYPE=PU~ or
TYPE=PUTQ requests to main storage and DFHTS TYPE=GET or TYPE=GETQ
requests with no address supplied.

Temporary Storage Management communicates with Task Management to
perform a CICS/VS WAIT pending completion of I/O (and suspending and
resuming tasks).

Temporary storage Management interfaces indirectly with VSAM through
the Temporary storage Bit Map. A Request Parameter List (RPL) points to
fields in this control block which are passed to VSAM. VSAM
communicates with Temporary storage Management (through Task Management)
when the I/O is complete.

Temporary storage Management analyzes the contents of the RPL to
determine the type of completion and any error information.

JOURNAL MANAGEMENT

Journal Management provides facilities for creating and managing special
purpose sequential data sets (journals) during the execution of CICS/VS.
Journals are intended for recording, in chronological order, any data
the user may need to reconstruct events or data sets. For example,
journals can be used to record data base updates and additions, system
transaction activity, and audit trails. CICS/VS uses the Journal
Management facilities in support of the various recovery/restart options
provided to its users.

Journal Management consists of the main DFHJCP program, transient
subsidiary programs, the Journal Control Table (JCT), CICS/VS macro
instructions to request output qr retrieval of journal data, a CICS/VS

Chapter 6. System Management 109

task for each journal to ensure efficient performance; and one operating
system subtask to prevent journal open and close processing, with their
possible volume mounting delays, from suspending CICS/VS execution.

JOURNAL MANAGEMENT SERVICES

The following functions are performed automatically by Journal
Management without communication from the application prograrr.

Journal Record Identification:

Adds prefix data to each journal record to identify its source. In
addition to the user data and a user-supplied unique identifier, the
prefix data includes a terminal identifier, a transaction code, and the
time of day~

Output Scheduling:

Permits journal data to be written at the maximum rate, subject to host
system and storage device limitations. When output requests arrive
while the journal is processing another output operation, the waiting
requests are consolidated for output in one operation. This operation
is initiated as soon as the operation in progress ends.

Volume Management:

Allocates a unique identifier, or label, to each journal volume to
assist in the operational control and disposition of IDulti-volume
journal data sets. The label of every off-loading journal tape is
reported to the central computer operator.

The following services are performed by Journal 'Managerrent in response
to a specific request from a user application program.

Output Efficiency Option:

Enables the user to minimize the number of journal data set output
operations and thus use host system resources more economically. The
user specifies the output of a journal record as being immediate or
deferred. An immediate-output request causes any outstanding deferred
output records to be included in the one output operation.

Input Capability:

Enables user-written programs to read journal data sets during real-time
execution of CICS/VS so that the user can review or reconstruct changes
made in the system.

THE JOURNAL MANAGEMENT MODULE (DFHJCP)

Journal Management (DFHJCP) communicates directly with two other CICS/VS
management modules: Task Management and Program Management. In

110 CICS/VS Introduction to Program Logic

addition, it communicates with the operating system and standard acceSs
methods and within its component parts.

Not all portions of Journal Management need be resident in main
storage. Some seldom used Journal Management services are performed by
separate (transient) modules that are loaded into main storage when
required.

CICS/VS provides optional Automatic Journaling facilities for
terminal messages and for records that are updated, deleted from, or
added to a File Management data set. Automatic Journaling is specified
in the File Control Table, by the user. for each data set affected. For
a specified data set, a record read for update, a new record added, or
an existing record deleted is automatically written to the s~ecified
journal.

Journal Management (DFHJC) macro instructions are communicated to
Journal Management through the Journal Control Area (JCA). This area
must be acquired for a task by issuing a DFHJC macro instruction before
any other DFHJC macro instructions are issued by the task. The TCAJCAAD
field of the TCA then points to the JCA for the duration of the task.

The normal DFHJC macro instruction expansion sets indicators and
addresses in the JCA, before branching to Journal Management.

Program Management instructions are requested by Journal Management
when a request for a seldom-used macro service (for example, OPEN,
CLOSE. or input) performed by a nonresident (transient) module is
received. A DFHPC TYPE=LINK macro instruction is used to request that
Program Management load the program. All output and wait requests are
serviced by resident code.

Journal Management Open and Close transients use the Journal
Management Open/Close Parameter List to coromunicate requests to an
operating system subtask, which then issues the actual open or Close.
The main CICS/VS task remains dispatchable even while a journal open or
close is outstanding. Communication is through DOS/VS POST plus CICS/VS
Task Management DFHKC TYPE=WAIT. The Journal Management Open/Close
Parameter List is located at the start of the Journal Management program
and is mapped using COpy DFHJCOCL.

Output requests cause journal records to be built in the appropriate
journal's buffer. Journal Management accesses the buffer through
pointers in the journal's Journal Control Table Table-Entry (JCTTE).
The JCTTE is the repository for all pointers associated with the
journal, thus enabling DFHJCP to remain truly reentrant.

The journal buffer is acquired at system initialization and is owned
as transaction storage by a separate, never-ending, CICS/VS journal
task. Journal tasks, like CICS/VS Terminal Managerrent, run at high
priority and enable I/O to be scheduled rapidly and efficiently for
common high-usage resources, in this case journal data sets. ~here is
one CICS/VS journal task for each journal data set.

While building a journal record. Journal Management accesses the
system area of the caller'S TCA for task number and to locate the
terminal identification and transaction identification, for inclusion in
the system prefix of the journal record. Journal records are mapped
using the DSECT DFHJCR.

If I/O initiation is necessary, Journal Management uses the painters
in the JCTTE to access and set up the journal's DTF (DOS) or DCB (OS).
In DOS the DTF is mapped using the DSECT DFHJCICA. Journal Management
then links to the DASD or Tape IOCS module to initiate I/O. If
necessary, Journal Management issues a DFHKC TYPE=RESUME macro

Chapter 6. System Management 111

instruction (a Task Management macro instruction documented only for
system programming> for the journal task" which in turn issues a DFHKC
TYPE=WAIT on the I/O event.

If the user task wishes to wait, Journal Management issues a DFHKC
TYPE=WAIT macro instruction on a special logical ECB (LECB). ~he
journal task will POST that LECB when the I/O completes successfully.

The JCT contains a pool of LECBs, from which LECBs are allocated and
deallocated by Journal Management as required. The LECB pool is
controlled through pointers at the beginning of the JCT, which is mapped
using COpy DFHJCTDS.

When there is no outstanding output I/O event for· a journal, Journal
Management issues a DFHKC TYPE=SUSPEND macro instruction to suspend the
journal task.

SYNC POINT MANAGEMENT

Sync Point Management works in conjunction with other CICS/VS
components, such as Transient Data Management, Temporary Storage
Management, and File Management, to provide the user with the ability to
establish points in application program from which it is convenient to
restart. Such a point must be one where all changes to the data base
have been committed.

Sync Point Management is provided by the module DFHSPP. DFHSPP is
invoked by Task Management whenever a task is detached. It can also be
called by an application program. Generally,DFHSPP need be invoked by
an application program only fora long-running tasks, when it is used to
divide the task into shorter units, referred to as logical units of work
(LOWs), which better fit recovery requirements.

Deferred Work Elements (DWEs) are created by CICS/VS management
modules, are chained off the task's TCA, and represent deferred
processing to be done upon completion of a logical unit of work. The
module that creates a DWE can insert an entry address of a DWE processor
in that OWE. Control is passed to this DWE processor at the end of the
task or LUW by the Sync Point program.

Three types of DWEs exist:

• work is to be done
• data is to be logged
• some work is to be done and data is to be logged

A DWE processor pointed to by a work-only DWE can create another DWE,
indicating that logging is required.

The Sync Point program examines the DWE chain in the following way:

• Scan the chain and pass control to a DWE processor if work is to be
done only.

• Scan the chain and log data as required.

• Scan the chain and pass control to the DWE processor required for a
DWE requiring both work and logging (the logging was completed on the
previous scan).

A DWE indicating both work and logging to be done implies that the
data that is being written to the System Log represents the intention of

112 CICS/VS Introduction to Program Logic

the DWE processor. It the system terminates abnormally before the DwE
processor has finished its work, the System Log tells CICS/VS modules
involved about committed work to be done during emergency restart.

The DWE chain is scanned, and control is passed to DWE processors.

Data is logged, and an end-ot-task record is written to the System
Log, using Journal Management. All resources enqueued upon through the
Task Management DFHKC TYPE=ENQ facility are dequeued,. Upon return from
a DWE processor, the DWE is freed.

Chapter 6. System Management 113

Chapter 7. System Services

A number of ancillary application programs are included in CICS/VS to
provide system service functions. Although most of these functions are
optional, some of the services that they provide are vital to the
successful implementation of a DB/DC system. The system service
functions are:

• Sign-on/sign-off

• Master terminal

• Supervisor terminal

• Operator terminal

• System statistics

• Asynchronous transaction processing

• Dynamic open/close

• Time-of-day control

• Terminal test

• Message switching

SIGN-ON/SIGN-OFF

The sign-on/sign-off function is optional. It can be used in various
ways if it is selected as an option. For example, only master terminal
operators may be required to sign on and sign off. The function can be
used to enhance system security by restricting access to some functions.

In sign-on, Program Management is called to load the Sign-on Table
(SNT) and then the sign-on security check is made on the name and

password parameters supplied by the terminal operator; both must be
present, correctly entered r and in agreement with an existing entry in
the SNT. If the verification is positive, the Automatic Initiate
indicator and operator information are set in the TCTTE, and, if the
terminal can receive a reply, the completion message is written.

The sign-off request causes the information set in the ~C~~E by sign
on to be cleared. In signing off, the operator can optionally request
that the terminal be logically disconnected from CICS/VS. For terminals
supported by BTAM, sign-off locates the line for the terminal. It sets
the terminal status to unattended, and clears the operator ID. It
issues the sign-off status message and, if 'GOODNIGHT' was entered, the
No Poll indicator is set. The line condition is changed, the operator
class cleared, and then the sign-off program writes the completion
message to those terminals capable of receiving it.

Chapter 7. System services 115

MASTER TERMINAL

The overall CICS/VS operation is controlled from the master terminal.
The master terminal operator can vary system pararreters dynamically, and
change the status of each line, terminal. and data set. Individuals
within the customer organization can be defined in the Sign-cn Table as
having the authority to perform master terminal functions. A designated
operator can sign on at any terminal, causing that terminal to have the
capabilities of a master terminal.

Master terminal functions include:

• Altering transaction and/or terminal priority

• Disabling and enabling various table entries (PPT, PCT, FC~, DCT)

• Placing terminals in service or out of service

• Dynamically listing active tasks

• Purging active tasks

• Dynamically opening/closing selected data sets

• Requesting a CICS/VS formatted dump

• switching to an alternative dump data set

The Master Terminal program (DFHMTP) consists of seven rr.odules:
DFHMTPA, DFHMTPB, DFHMTPC, DFHMTPD, DFHMTPE, DFHMTPF, and DFHMTPG.

The Master Terminal program is invoked by an operator entering CSMT,
CSST, or CSOT at a terminal, which may be designated as a master or
supervisory terminal, or may be a normal unspecialized terminal. The
transaction identification may be followed by a series of keywords
describing the services to be performed. If the keyword CANCEL is
entered anywhere in the original message or subsequent entries, the
Master Terminal program is terminated immediately. If, while trying to
perform a requested service, the Master Terminal program discovers that
insufficient information nas been entered, additional information is
solicited from the requesting terminal.

All transactions with transaction identifications of CSMT, CSST, or
CSOT are placed in a TIOA accessible to DFHMTPA. This input is scanned
to determine whether sufficient keywords are present to specify the
requested service fully. Otherwise, additional information is requested
from the input terminal. A keyword indicator is set in the requesting
task's TWA for each keyword entered. Control is trausferred to the
DFHMTP module that will provide the requested service. If time or
runaway task services are requested, DFHMTPA responds to the request.

DFHMTPB responds to all requests for file, cushion, maximum task,
negative poll delay, and trace services. File Management is used to
locate file entries in the File Control Table (FCT).

DFHMTPC responds to all requests for terminal related services.

DFHMTPD responds to all requests for opening, closing, and switching
of Dump data sets. The Dynamic Open/Close program (DFHCCP) is used to
perform the actual opens andr closes.

116 CICS/VS Introduction to Program Logic

DFHMTPE responds to all requests for Transient Data, stall, trigger
level, and NEWCOPY services. Transient Data Management is used to
locate destinations in the Destination Control Table (DCT).

DFHMTPF responds to all requests for line, control unit, terminate
task, and task list services. Task Management is used to schedule a
task for termination.

DFHMTPG responds to all requests for transaction and program
services,.

DFHSTP responds to requests for system shutdown.

SUPERVISOR TERMINAL

Individuals within the organization can be defined in the Sign-on Tatle
as having authorization to perform supervisory functions. A designated
individual can sign on at any terminal, causing that terminal to be
designated as a supervisory terminal. Using the command CSST,
supervisors can change the service status or the processing status of of
any terminals under their supervision. A terminal can be placed either
in service or out of service. Its processing status can be such that it
can initiate transactions and receive messages on request, receive
messages automatically, receive messages only, or send messages to
CICS/VS only.

Supervisor requests are checked for validity and processed by the
Master Terminal program.

OPERATOR TERMINAL

Terminal operators who are neither supervisors nor the master terminal
operator are only able to control the service status and the processing
status of their own terminals, using the command CSOT.

Operator Terminal requests are checked for validity and processed by
the Master Terminal program.

SYSTEM STATISTICS

System statistics are maintained by CICS/VS managerrent programs during
the execution of CICS/VS. These statistics can be displayed during the
day, in part or in their entirety, on the request of any terminal
operators whose security codes allows them access to such information.
The statistics are printed automatically when the system is terminated
normally. statistics totals can be reset when they are read out, if
requested by the master terminal operator.

system statistics are transmitted to the user-specified destination
as variable-length, unblocked records (maximum block size equal to 136)
when the system is terminated normally, or when requested by a terminal
operator. The default destination is the system log destination (CSSL).

In addition to requested system statistics there are automatic system
statistics. Requested statistics are obtained at the time of the
request,. In contrast, once automatic statistics mode is initiated,

Chapter 7. System Services 117

statistics are obtained automatically at periodic intervals. Requested
statistics cannot be obtained while CICS/VS is in automatic statistics
mode.

system statistics are maintained by the various CICS/VS management
programs during execution of CICS/DOS/VS. These statistics can be
written out on the request of any terminal operators whose security code
allows them to have such information.

System statistics are transmitted to a default destination or to a
user-specified destination (sequential output device) as variable
length, unblocked records (maximum block size is 120). The default
destination is the control system system log destination (CSSL).

The statistical information maintained by CICS/VS includes:

• Number of tasks in system for any time period
• Number of tasks initiated
• Number of storage acquisitions
• Number of times storage cushion is released
• Number of times storage request is queued
• Number of times storage queue is established
• Maximum number of requests in storage queue
• Number of times a program is used
• Number of READ requests per data set
• Number of WRITE update requests per data set
• Number of WRITE add requests per data set
• Number of deletes from VSAM data set
• Number of WRITEs (per data set) to extrapartition data set
• Number of WRITEs (per data set) to intrapartition data set
• Number of input message per terminal
• Number of output messages per terminal
• Number of transmission errors per terminal
• Number of transactions
• Number of transaction errors
• Number of polls issued per line
• Maximum number of Temporary storage control intervals used (for

auxiliary storage)
• Maximum number of PUTS to Temporary Storage main storage and

auxiliary storage
• Maximum number of Temporary storage unit tables used
• Maximum number of Temporary Storage group identifications

used
• Temporary storage main storage requirements
• Number of records written per journal identification

Through the use of CICS/VS Journal Management, the user can create
and log transaction data to sequential data sets, called journal data
sets. The user describes each journal data set when defining his
system. During CICS/VS execution, an application program issues CICS/VS
macro instructions that cause Journal Management to store transaction
data in that data set when the transaction is completed.

If DL/I data bases are used, the DL/I logging function produces a
data set which is an audit trail of changes made to DL/I data tases. A
scheduling or termination record is logged to this data set when a
transaction that alters a DL/I data base is scheduled or terminated.
DL/I provides utilities that can be used to produce reports from the
statistics that it collects.

118 CICS/VS Introduction to Program Logic

ASYNCHRONOUS TRANSACTION PROCESSING

The optional Asynchronous Transaction Processing facility (ATP) allows
transactions and the data associated with those transactions to be
hatched for asynchronous processing. This means that the transactions
within a batch are not processed until the entire batch is completely
entered into CICS/VS. Then, while the batched transactions are being
processed, the terminal operator may proceed to enter other
transactions. When the batched transactions have completed processing,
the terminal operator may request that the output, if any, be sent to
the terminal that originated the batch, or to some other terminal. ATP
is supplied by CICS/VS to provide a batch data collection ca~atility
from pre-SNA, remote batch terminals. Asynchronous transaction
processing is not available for terminals connected through VTAM, nor,
in general, is it necessary for such terminals.

When all input batches nave been transmitted, the transactions within
the batch are then processed by application programs based upon their
respective transaction codes. Any error messages are directed by the
editing program to transient data for later transmission back to the
terminal.

When the batches have completed processing, the terminal operator may
then request that the output, if any, be sent to the terminal that
originated the batch, or to a different terminal. Depending upon the
amount of processing to be carried out on transmitted batches, the batch
terminal may be disconnected from the transmission line by the user
until output is available to be transmitted back to it.

The ATP facility is designed specifically for handling input frOID
pre-SNA batch terminals such as the 2770, 2780, and 3780. ATP can also
be used with some interactive terminals, such as the 2741. ATP is not
available with the following devices:

The Asynchronous Transaction Control program (DFHATP) controls the
initiation and data handling of all asynchronous tasks submitted as part
of a batch. The batch consists of one or more CICS/VS transactions,
along with any associated data, entered into CICS/VS through the
Asynchronous Transaction Input Processing programs (DFHRD1 and DFHRD2),
which are invoked by the transaction code CRDR.

When an entire batch has been submitted, a Batch Control Area is
created and put on a chain addressed through the CSA, then the
transactions are executed, asynchronously with other possible terminal
activity. by the originating terminal. When all transactions have been
processed, the output of the batch can be transmitted back to a
terminal, depending on how the batch was entered, by the Asynchronous
Transaction Output Processing programs (DFHWTl and DFHWT2). If not
transmitted automatically, the output remains queued until it is
requested by the originating terminal or an alternate terminal. A batch
may also be deleted by the Asynchronous Queue Purge program (DFHAQP).

ATP is executed as a unique CICS/VS task, with its own TCA, and may
be resident and active only when one or more batches exist within
CICS/VS. ATP is composed of the ATP input processor (DFHRDR), the ATP
output processor (DFHWT1, DFHWT2), and the ATP control program (DFHATP).

ATP communicates directly with CICS/VS System Management functions,
and communicates indirectly with the user-exit program through the
Terminal Input/Output Area (TIOA) and the Transient Data intrapartition
queue. Internal communication within ATP is also indirect, using the
same control blocks.

Chapter 7. System Services 119

ATP queues the input data onto a Transient Data intrapartition queue.
Transient Data Management services are requested by DFBTD TYPE=PUT
requests,. storage Management is called to obtain and release the TDOA.
When an entire batch has been read, the Asynchronous Transaction Control
program (DFHATP) is either attached (by a Task Management DFHKC
TYPE=ATTACH macro instruction) or marked "ready to run." If a batch is
to be deleted, the Asynchronous Queue Purge program (DFHAQP) is attached
to perform the purging of data from the Transient Data intrapartition
queue.

ATP interprets CWTR requests for output and returns any messages to
the requesting terminal.

The BCA chain is searched to locate any batches requested by the CWTR
command. A Write Request Element (WRE) is built for each terminal that
is to receive output, and Storage Management services requested by a
DFHSC TYPE=GETMAIN, to obtain a storage area for the WRE,. Before the
output operation, a Terminal Input/Output Area (TIOA) is acquired by a
storage Management.

ATP interacts with any user-exit routines (for more about these
routines, see the CICS/VS System Programmer's Reference Manual). It
th~n retrieves the data from a Transient Data intrapartition queue,
using Transient Data Management.

At the end of a CWTR operation initiated by a WRE, the WRE is removed
from the WRE chain and its storage released by using a Storage
Management DFHSC TYPE=FREEMAIN. After all WREs have been removed from a
BCA, and if SAVE was not specified, the BCA is removed from the BCA
chain and its storage released in a similar way. ATP interfaces with
the Asynchronous Queue Purge program (DFHAQP), Which is attached by a
Task Management DFHKC TYPE=ATTACH macro instruction.

If RELEASE was specified in the CWTR corrroand, the Asynchronous
Transaction Control program (DFHATP) is attached, if it is not already
present. The storage is released, and the task is terminated.

ATP is attached by either a CRDR transaction (RDR) or Terminal
Management in response to a terminal command (CATP or an application
program read or write request).

Any DFHTC TYPE=READ or TYPE=WRITE request issued by an application
program causes ATP to extract data from the Transient Data
intrapartition input queue, or to place data onto the Transient Data
intrapartition output queue, respectively. All rules that apply to the
handling of Terminal Input/Output Areas (TIOAs) when a task is directly
connected to a terminal also apply to tasks being run asynChronously.
For this purpose, each task initiated by ATP is given the address of the
dummy TCTTE, which is available in the BCA.

Whenever a BCA is to be deleted, the Asynchronous Queue Purge program
(DFHAQP) performs the purging of data from the Transient Data queues
used to process batches.

The initial application program for each valid transaction code is
attached by DFHATP using Task Management. Messages describing any
errors detected during application program processing of the batch are
queued by CICS/VS. These error messages are transmitted back to the
remote terminal on request, to permit batch error correction and
resubmission of corrections if required.

120 CICS/VS Introduction to Program Logic

DYNAMIC OPEN/CLOSE

Dynamic Open/Close allows the user to open and close data sets as often
as necessary while CICS/VS is running. This makes it possible for the
user to defer the opening of data sets at system initialization r and
open and close them later as they are needed.

The Dynamic Open/Close program (DFHOCP) enables the user to open and
close Dump data sets, Transient Data extrapartition data sets r and File
Management data base data sets. Dynamic Open/Close may be invoked by
using the CICS/VS Master Terminal program, or by using DFHOC macro
instructions in an Assembler-language application program.

The DFHOC macro expansion issues a Program Management DFHPC TYPE=LINK
macro instruction to transfer control to the Dynamic Open/Close program.

Dynamic Open/Close communicates with:

• storage Management, in response to all requests for services

• Dump Management in response to requests for open, close, or switch of
Dump data sets

• File Management to open or close data base data sets

• Transient Data Management and Program Management to open or close
extrapartition data sets

Dynamic Open/Close returns to the requesting prograrr by a Program
Management DFHPC TYPE=RETURN macro instruction.

TIME OF DAY CONTROL

The optional Time of Day Control program (DFHTAJP) makes it possible for
the user to operate CICS/VS continuously, for more than twenty four
hours. When the time of day maintained by the operating system is
changed by the operating system (for example, when the clock is reset to
zero at midnight), CICS/VS recognizes the situation where a negative
change in the time of day has occurred and adjusts the expiration times
maintained by CICS/vS, and then resets its time of day to that
maintained by the operating system.

The clock reset service of Time Management is called to find the
current clock value and adjustment value. The adjustment time is
calculated (24 hours being used if a difference of 23 hours 30 minutes
or more is de~ected between the current and prior times). Time
Management is called again to set the new clock values and to update the
date and time slots in the CSA.

TERMINAL TEST

The terminal test program (DFHFEP) is a CICS/VS system service function
primarily deSigned for an IBM field engineer to use when installing new
terminals. When CICS/VS is running r this program, invoked by the
transaction code CSFE, transmits all printable characters to the
requesting terminal. In addition, the program can be used to echo a
message; that is, it repeats exactly what is keyed at the terminal.

Chapter 7. System Services 121

The routine prepares for device dependent conditions. It then issues
a storage Management FREEMAIN, followed by a GETMAIN for storage for the
ENTER message, which it writes using Terminal Management WRITE, READ,
and WAIT macros. Finally, if' print" was requested the char acter set is
printed; if "end' l.oIas requested then the completion message is issued;
otherwise the input is echoed.

MESSAGE SWITCHING

CICS/VS provides the user with a general purpose message switching
capability. Messages can be routed to one or ~ore terminals by
specifying the transaction code CMSG, the message text, and optional
parameters that identify the receiving terffiinals.

The Message Switching program (DFHMSP) runs as a task under CICS/VS.
A terminal operator requests activation of this task by entry of the
transaction identification CMSG (or another installation-defined four
character transaction identification), followed by appropriate
parameters. Once initiated, Message Switching interfaces with CICS/VS
Basic Mapping support (BMS) and CICS/VS management functions. Although
Message Switching appears conversational to the terminal operator, the
message switching task is terminated after each terminal response.
Through the entry in the PCT which holds the the address of the program
DFHMSP, the CICS/VS user can define.the transaction identification
(which must be four characters long) for message switching.
Conversation is forced, if continuation is possible, by effectively
terminating the transaction with a DFHPC TYPE=RETURN,TRANSID=XXXX, where
XXXX is the transaction identification taken from the task's PCT entry.

If the first four characters of the TIOA do not match the transaction
identification in the task's PCT entry, then this task must have started
as part of a conversation, because a previous task set up the next
transaction identification. A 'c' immediately following the transaction
identification also forces continuation. In such a case, information
has been stored in, and has to be retrieved, from Temporary Storage
(using a record key of one-byte X'FC', four-byte terminal
identification, and three-byte C"MSG') to allow the task to resume where
it left off.

The operands in the input TIOA are processed and their values and
status are stored in the 'TWA. If a ROUTE operand specifies one or more
Terminal List Tables (TLTs) for a standard routing list, a DFHPC
TYPE=LOAD macro instruction is issued to request the Program Management
to load the requested TLT(s).

Message Switching requests storage areas for:

• Building route lists (one or more segments, each of which has room
for the number of destinations specified by MSRTELNG, an EQU within
the program)

• Constructing a record to be placed in Temporary Storage

• Providing the message text to EMS it message parts from previous
inputs exceed the current TIOA size, a message is completed in the
current TIOA but has parts from previous inputs, or a heading has
been requested but the message in the current TIOA is too close to
TIOADBA to allow the header to be inserted.

Message Switching requests BMS routing functions by using the DFHBMS
TYPE=ROUTE macro instruction. The message text is sent using DFHBMS
TYPE=TEXTBLD, and completion of the message is indicated by DFHBMS

122 CICS/VS Introduction to Program Logic

TYPE=PAGEOUT. BMS returns the status of destinations and any error
indications in response to the DFHBMS TYPE=CBECR macro instruction.

Message switching interfaces with BMS using DFHBMS TYPE=(EDIT,OUT)
and with Terminal Management using DFHTC TYPE=WRITE (for 3210 only), in
providing responses to terminals. These may indicate normal completion,
Signal that input is to continue, or provide notification of input
error.

Like any other task, Message switching has a Task Control Area (TCA>
in which values may be placed before issuing CICS/VS macro instructions
and from which any returned values can be retrieved after an operation.
Al~ values for the DFHBMS TYPE=ROUTE macro instruction are placed in the
TeA because they are created at execution time. The TWA is used for
storing status information (partly saved in Temporary Storage across
conversations> and space for work area. The DFHMSP module is reentrant.

Chapter 1. System Services 123

Chapter 8. System Monitoring

The System Monitoring component consists of two functions that provide
diagnostic traces and dumps.

TRACE MANAGEMENT

The optional trace function provides a trace table containing entries
that reflect the execution of various CICS/VS macro instructions by
application programs and CICS/VS management programs. The trace
facility is especially useful in program testing and debugging. The
trace function, if generated, can be turned on or off by the Master
Terminal operator.

The Trace Management module (DFHTRP) contains routines which enable
the user to turn tracing on and off, and tc record a specified item in
the trace table. The address of the trace table is held in the CSA.
The trace table starts with fields giving the address of a header area,
which in turn holds the address of the most recently recorded entry.
The format of the Trace Table is given in the CICS/VS Level Application
Programmers Reference Manual (Macro Level).

The command interface program also provides a trace of EXEC commands.
This is described in the CICS/VS Application programmer's Reference
Manual (Command Level).

AUXILIARY TRACE MANAGEMENT

This optional function writes auxiliary trace records to a sequential
data set. The format of the records is: time-of-day, followed by the
standard trace entry. Information has been added to supplement that
provided by standard CICS/VS Trace Management, so that a complete trace
of a CICS/VS execution can be obtained. These entries are triggered by
the following events:

• Task dispatched

• Task created (indicates that a TCA has been built and a task number
assigned)

• Task terminated (indicates release of a TCA)

The information in the auxiliary trace table may be used for problem
determination and performance tuning. The auxiliary trace function, if
generated, may be turned on or off through the CICS/VS master terminal
facility.

If the trace hqs been switched on by a DFHTR macro instruction, then
standard entries will be recorded in the trace table whenever CICS/VS
macro instructions of the following types are issued by an application
program or a CICS/VS system program:

DFHKC (Task Management)
DFHSC (storage Management)

DFHTD (Transient Data ~anagement)
DFHTS (Temporary Storage Management)

Chapter 8. System Monitoring 125

DFHPC (Program Management) DFHJC (Journal Management)
DFHIC (Interval Management) DFHBMS (Basic Mapping Support)
DFHDC (Dump Management) DFHBIF (Built-In Functions)
DFHFC (File Management) DFHDI (Data Interchange)
DFHSP (Sync Point Management)

trace entries are also produced when the following programs are entered:

CICS/VS-DL/I Interface
Dynamic Backout Program

EXEC Interface Routine

Tbese standard entries in the trace table are generated by special
DFHTRACE macro instructions in the relevant CICS/VS management modules.
Entries may also be generated by the execution of the DFHTR TYPE=ENTRY
macro instruction. The trace is turned on and off by setting a flag,
which is done by the application program itself (in the inserted macro
expansion) in the case of an Assembler-language program, or cy Program
Management in the case of an ANS COBOL or PL/I program. Auxiliary Trace
Management writes the trace entries, including time-stamp values, to the
Auxiliary Trace data set.

DUMP MANAGEMENT

The Dump Management module (DFHDCP) provides a diagnostic facility to
help in analysis of programs that are undergoing development or
modification. This facility locates and makes available images of
specified information to a sequential data set for subsequent printing
by the CICS/VS dump utility program. Requests for storage dumps are
communicated to the Dump Management through CICS/VS DFHDC macro
instructions.

The Task Control Area (TCA), and Common System Area (CSA) are always
dumped. In addition the following areas may be dumped: Program check
registers and PSW, trace table, segment storage, transaction storage,
facility control area, terminal storage, program and register save
areas, and system control tables.

Dump Management records dumps of transactions on sequential data sets
that are located either on magnetic tape or on direct access storage.
CICS/VS provides the capability to open or close the active dump data
set during CICS/VS execution.

Optionally, tbe user can define two dump data sets (DFHDMPA and
DFHDMPB), alternating between them during the execution of CICS/VS. If
DFHDMPA is opened by System Initialization and if a request is issued,
through the CSMT command, to use the alternate dump data set, DFHDMPA is
closed and DFHDMPB is opened. Another request to use the alternate dump
data set causes DFHDMPB to be closed and DFHDMPA to be opened.

When a storage dump is in progress, Dump Management delays the
processing of subsequent dump requests until the current dump is
completed. Dump Management writes specified areas of storage to tape or
disk (to be printed later by the Dump Utility program). DFHDCP may be
called by either an application program or a CICS/VS management program.
The DFHDC macro instruction sets the type of request switch, number of
bytes to be dumped, storage address, and dump identifier in the
requesting program's TCA.

Dump Management communicates with Time Management, Trace Management,
and Program Management to set runaway task control, request and release

126 CICS/VS Introduction to Program Logic

a lock of the dump facility, request a trace, and reset and test runaway
task control.

output is written to a sequential data set on tape or disk. Records
have undefined length and are written as a continuous string of data. A
single record may be a CICS/VS system control table, one TCA, or an
entire program. Each record has an identification field preceding it to
identify the record for the Dump Utility program which prints the dump.

Chapter 8. System Monitoring 121

Chapter 9. System Reliability

The system reliability component consists of functions that help the
user to deal with error conditions. These functions are performed
online.

SYSTEM RECOVERY MANAGEMENT

The System Recovery program (DFHSRP) combines program interrupt handling
with operating system abnormal termination handling to prevent
uncontrolled termination of CICS/VS. system Initialization establishes
the necessary operating system linkage by issuing STXIT macro
instructions (under DOS/VS) or the SPIE and S'IAE/ESTAE macro
instructions (under OS/VS).

The System Recovery program is given control by the operating system
when a program check or abnormal termination recognized. The System
Recovery program determines what action is to be taken, on the basis of
information in the System Recovery Table (SR'I), and the type of error.
If a CICS/VS task is to be abnormally terminated, control is given to
Program Management.

If a program check occurs, the transaction that has control of
CICS/VS is abnormally terminated with a CICS/VS dump (if Dump Management
is included); other transactions are allowed to continue processing. If
an operating system abnormal termination occurs in the CICS/VS partition
or region, CICS/vS scans the SRT. The SRT lists the abnormal
termination codes for which user-written or CICS/VS-supplied routines
are to be executed. If the code is found, control is given to the
designated routine.

Completion of the recovery routine is followed by termination of the
task that was in control when the abnormal condition arose. A CICS/VS
dump is taken if Formatted Dump is present. The user can choose to
terminate CICS/VS. If the code is not found in the SRT, keypoint data
can be written and CICS/VS will-be terminated.

EMERGENCY RECOVERY/RESTART

CICS/VS provides an emergency recovery/restart facility when system
execution is interrupted before controlled shutdown can be performed.
This recovery/restart facility provides the following major functions:

• Recovery of intrapartition transient data queues

• Recovery of temporary storage

• Recovery of interval control data

• Recovery of data base data sets and DL/I data bases

• Recovery and Resynchronization

Chapter 9. Systen. Reliability 129

DYNAMIC TRANSACTION BACROUT

The Dynamic Transaction BaCKout program (DFHDBP) is invoked by Program
Management. The program starts by processing Deferred Work Elements
(DWEs), scanning the chain of DWEs from the TCA, as follows:

• Temporary storage Management and Transient Data Management DWEs are
modified to indicate backout so that the relevant management modules
perform the backout function.

• BMS messages corresponding to DWEs are purged by calling a BMS
routine.

• File Management DWEs are processed to release any FIOAs and VSWAs for
VSAM.

• DL/I DWEs are processed to unlock code in Sync Point Management.

The program, having worked through the DWEs, then chains back through
the dynamic log. According to the type of record in the log it takes
the following actions:

• Chain records - the program gets the previous record in the log.

• Overflow record - the program gets a buffer (using Temporary Storage
Management) and reads the record into it.

• First Input Message Record - the program passes the record to a user
exit.

• File backout record - GET UPDATE and PUT NEW File Management
operations are logged. For GET UPDATE a copy of the the record
before the operation is logged; for PUT NEw the identification of the
added record is logged. The Dynamic Transaction Backout program
restores the copy for GET UPDATE. For PUT NEW the record is deleted
if possible; if the access method is such that deletion is impossible
then a user exit is called, and if the record does not exist then no
backout is needed.

• DL/I Backout records The program sets up the DL/I environment and
calls the DL/I backout routine. Any DL/I error message is sent to
CSMT and also causes a call to a user exit.

The Dynamic Transaction Backout program finishes by transferring
control to the Abnormal Condition program.

RECOVERY UTILITY PROGRAM

The Recovery Utility program (DFHRUP) is invoked by System
Initialization in the event of an emergency restart. The object is ,to
restore the system to a point at which the data bases were self
consistent. Before calling the Recovery Utility program, system
Initialization restarts the DeT, PPT, PCT, TCT, FCT. and CSA. (This is
a warm start or a cold start, according to user options.) System
Initialization also provides a cold start for Transient Data and
Temporary storage and builds their bit maps to indicate that all tracks
or control intervals are empty.

130 CICS/VS Introduction to Program Logic

During an emergency restart, the System Log is automatically
repositioned after the last record written during the previous
execution. The Recovery Utility program calls Journal Management to
read this data set backwards in order to process system recovery data
and to collect user recovery backout data. The backward scan is
completed and more user records cannot be collected when the following
conditions are met:

• At least one complete activity keypoint, has been retrieved.

• The start of each Logical Unit of Work (LUW) which was in-flight at
system termination has been reached.

• All in-doubt committed output messages have been recovered

During the backward scan, the Recovery Utility program uses the
Keypoint program to output to the Restart data set the following data:

• Records output to the System Log by tasks (LUWs) that did not
complete processing (in-flight tasks) before the system abnormally
terminated. These records follow the standard Journal Control Record
Layout, and they are as follows:

• Records automatically logged by File Management for data sets
with the specification LOG=YES in the FCT.

• Records automatically journaled to the System Log by File
Management, according to the user-specified option in the FeT.

• User-journaled records to the System Log that were output by in
flight tasks. User-journaled records with the high-order bit set
ON in the JTYPEID which are encountered during the backward scan,
are copied over to the Restart data set regardless of the status
of the task (in-flight or complete). User-written activity
keypoint records should have an identification as stated above in
order to be accessible from the Restart data set.

• Initial input and final output messages per LUw are logged by
Terminal Management for terminals with the Protect option group.
specified in the Program Control Table (PC~).

• All input/output messages are recorded by Journal Management, as
specified in the MSGJRNL=operand in the PCT.

ABNORMAL CONDITION

The Abnormal Condition program (DFHACP) is used by Program Management to
analyze abnormal conditions when they occur and to take appropriate
action. For example, the terminal operator is notified that a task has
been terminated and appropriate messages are logged to the transient
data master terminal destination (CSMT). Statistics are gathered £or
the number of transaction errors.

Task abnormal conditions are detected by CICS/VS management prograrrs
and are often due to an application program destroying system control
information. When this happens, the task is terminated, the terminal
operator is informed of the error, and the error is logged at
destination CSMT (computer system master terminal).

Operator errors may occur, such as invalid transaction
identifications, security key violations, or failure of an operator to
sign on the system before attempting to communicate with CICS/VS. When

Chapter 9. System Reliability 131

this happens, the terminal operator is notified, and the error is logged
at destination CS~T.

The Abnormal Condition program is invoked by Task Management whenever
an invalid transaction code is detected, or there is a security
violation or a failure to sign on.

The Abnormal Condition program is invoked by Program Management
whenever a task is abnormally terminated. The Sign-On Table (SNT) is
loaded to obtain the operator identification (if present) for error
messages. The Abnormal Condition program returns to Program ~anagement
after the error message has been issued. When a task is abnormally
terminated because of a stall purge condition, the stall purge count is
increased by one and the transaction identification (from the Program
Control Table) is included in the error message.

The Abnormal Condition program calls storage Management to obtain and
release Terminal Input/Output Areas (TIOAs) and Transient Data Output
Areas (TDOAs) for writing error messages.

If a user-written Program Error program (DFHPEP) is provided, the
Abnormal Condition program links to it (using a conditional DFHPC
TYPE=LINK instruction). All user-written PEPs communicate their
requests through the TCA. The CSA contains the addresses of programs,
and the Terminal Control Table terminal entry and line entry (~CTTE and
TCTLE) hold the status of the terminal and the line.

Error messages are written to Transient Data destination CSMT.

The Abnormal Condition program communicates with Dump Management to
initiate a complete dump, identified by the code' AACA.

PROGRAM ERROR PROGRAM

The user who wishes to provide corrective action in response to a
programming error can do so by coding a Program Error Program (DFHPEP).
If provided, this program is linked to by the Abnormal Condition Program
(DFHTACP) whenever a task terminates abnormally. The only exception to
this procedure is when CICS/VS deliberately terminates a task to
alleviate a stall situation.

The user can perform any kind of corrective action within PEP.
CICS/VS provides the option of disabling the transaction code associated
with the program in error, thus preventing the recurrence of the error
until it can be corrected.

TERMINAL ABNORMAL CONDITION PROGRAM (BTAM, GAM)

The Terminal Abnormal Condition Program (DFHTACP) is used by Terminal
Management to analyze any abnormal conditions. Appropriate action is
taken with regard to terminal statistics, line statistics, terminal
status, and line status; the task (transaction) can be terminated.
Messages are logged to the transient data master terminal destination or
terminal log destination. A link is provided to the user-written
terminal error program to allow the user to attempt recovery from
transmission errors and to allow the task to continue processing.

132 CICS/VS Introduction to Program Logic

TERMINAL ERROR PROGRAM (BTAM, GAM)

Users who wish to provide their own corrective action whenever a
terminal I/O error occurs can do so by coding a Terminal Error Program
(DFHTEP). If provided, this program is linked to by the Terminal
Abnormal Condition Program whenever an unrecoverable I/O error occurs on
a terminal. CICS/VS also provides a sample DFH·IEP.

The user can perform any kind of corrective action within DFHTEP;
CICS/VS provides options that either place the terminal out of service
or retry the I/O operation.

NODE ABNORMAL CONDITION PROGRAM (VTAM)

The Node Abnormal Condition Program (DFHZNAC) is used by Terminal
Management to analyze the abnormal condition. The program then takes
appropriate action with regard to terminal status and statistics. The
task (transaction) can be terminated. Messages are logged to the
transient data master terminal destination or terminal log destination.
The program provides a link to the appropriate Node Error Program.

NODE ERROR PROGRAM (VTAM)

The user will need to provide a Node Error Program (DFHNEP) for VTAM
supported terminals. CICS/VS provides a sample node error program which
assists the user in three ways:

• by providing a general environment within which it is easy for users
to add their own error processors.

• by providing the fundamental error recovery actions for a VTAM 3270
network. These actions are consistent with those provided in the
sample terminal error program for BTAM 3270.

• by serving as the default NEP where the user selects a NEP at System
Initialization.

KEYPOINT PROGRAM

The Keypoint program (DFHKPP) is activated for one of two purposes:

• Warm Keypointing:

Collecting and recording data from system tables and control blocks,
and writing that information to the Restart data set for use by
System Initialization in a subsequent warm start of CICS/VS

• Activity Keypointing:

Collecting and recording data frorr system tables and control blocks,
and writing that information to the System Log for use by the
Recovery Utility program in a subsequent emergency restart of CICS/VS

Chapter 9. systen Reliability 133

WARM KEYPOINTING

The Keypoint program is linked to by system Termination when CICS/VS is
closed down in response to a user request for termination.

The system Recovery program may generate a link to the Reypoint
program when an unrecoverable error condition precludes further
execution of CICS/VS.

Information collected by the Keypoint program is written onto the
Restart data set (DFHRSD), which is a direct access data set with user
specified block size preformatted by system Initialization.

The collected information consists of:

• PPT, PCT, and FCT - the entire tables

• TCT - the non-switched TCTTEs

• OCT - the intrapartition entries and the bit map

• TSUT - the auxiliary destination identifications, queue counters,
RBAs, and the bit map

• Interval Control Elements (ICEs) and Automatic Initiate Descriptors
(AIDs) - the entire control blocks

• Batch Control Areas (BCAs) - the entire control blocks and their
associated Write Control Elements (WREs)

• CSA - certain fields, such as time intervals and maximum task values

When all the data has been recorded, a time-stamped control record is
written to DFHRSD. This record contains DASD addresses of the data and
is used by system Initialization at warm-start time. Control is then
returned to the caller, which is either system Termination or System
Recovery.

ACTIVITY KEYPOINTING

The Activity Keypoint program (DFHAKP) is invoked by transaction CSKP
when activity keypointing is required. It invokes the Keypoint program
to perform the keypointing. When control is returned to Activity
Keypointing, an exit can be taken to a user-written routine (DFHUAKP)
for further processing.

The need for activity keypointing is signalled when an activity
keypoint frequency count is reached during Journal Management logging of
activity on the System Log (Journal ID 1).

Journal Management attaches the task associated with transaction
identification CSKP. CSKP invokes the Activity Keypoint program which
passes control to the Keypoint program, which gathers the keypoint
information in buffers and calls Journal Management to record this
information on the System Log. The Keypoint program returns to Activity
Keypointing, which writes a time stamp to the master terminal (CSMT).

134 CICS/VS Introduction to Program Logic

Chapter 10. System Support

The system support component consists of several functions that are
required in order to run CICS/VS. Most of the support functions are
performed offline.

SYSTEM GENERATION

System generation allows the CICS/VS user to define and structure
CICS/VS to meet his teleprocessing needs. This process allows him to
select only those functions required by his ap~lications.

System generation is a two-stage operation. The input to Stage I
consists of user-prepared CICS/VS system generation (DFH3G) macro
instructions, which are assembled to produce a job stream that is used
as input to stage II. The Stage II input job stream is comprised of
jobs that assemble (or collect pre-assembled versions of) CICS/VS
management and service programs, and link-edit all modules to the
CICS/VS Program Library.

ENVIRONMENT DEFINITION

The operating environment required for real-time processing is defined
and controlled by user-generated control tables and service tables.
Because CICS/VS allows the user to maintain a number of versions of
tables (and programs) through the use of suffix characters, the repl
time environment is highly flexible and easily managed. Environment
definition is described in more detail in Chapter 3 of this manual.

CICS/VS is dependent on the user-created system tables, which
describe the user's data base/data communication environment and the
treatment to be given to elements of that environment. Information
regarding the user's terminals, data sets (permanent and temporary),
programs, and transactions is contained in these tables.

Each table is created separately and may be re-created at any time
prior to system initialization. The tables are created independently of
system generation, but some of the tables are required for the systen to
be operational. More than one system table of each type, other than the
Sign-on Table, can be maintained and be available for'use. ~his allows
the user to maintain special tables for testing in addition to tables
for normal, routine operation. Each system table is prepared by
assembling the appropriate macro instruction with its associated
operands (see the CICS/VS system Programmer's Reference Manual for
details of these macro instructions). The output of each macro
instruction assembly contains the linkage-editor control cards required
to link-edit the table into CICS/VS.

SYSTEM INITIALIZATION

The system Initialization program (DFHSIP) is used to start CICS/VS.
The process of starting CICS/VS includes the following major steps:

Chapter 10. System Support 135

1. Establish initialization parameters; provide the user with the
ability to configure a CICS/VS nucleus through use of the system
initialization table and to specify various system control paraneters
that affect system performance.

2. Load selected CICS/VS management programs and tables to form the
CICS/VS nucleus.

3. Open CICS/VS system data sets and user data sets.

4. Establish the dynamic storage boundaries for the CICS/VS storage
control program.

5. Optionally. reinitialize the CICS/VS system from information obtained
during the prior execution (warm start).

6. Optionally. transfer control to one or more programs defined in a
Program List Table.

7. Load tne resident application programs.

8. Transfer control to an entry point in the CICS/VS nucleus. which in
turn branches to Terminal Management to begin polling.

9. Optionally. restore recoverable resources following an abnormal
termination (emergency restart).

The main storage occupied by the systew. initialization program becomes
part of the dynamic storage area.

RESTART AT SYSTEM INITIALIZATION

system initialization provides three classes of restart:

COLD

WARM

EMER

Complete reinitialization of CICS/VS and system data sets.
ignoring any previous system activity.

This optional restart process reinitializes CICS/VS to the status
that existed at the previous system termination. This type of
restart assumes that the previous termination was normal. that
the system was quiesced before termination. and that a warm
keypoint was taken during that termination of CICS/VS.

The emergency optional restart process restores the system. using
information recorded during the previous execution of the system.
to some point before the interruption.

Selection of startup options can be made in the system Initialization
Table specification (COLD or WARM) or in the override parameters (COLD.
WARM. or EMER).

RESTART DATA SET

The Restart Data set is a DAM file. used by the Keypoint program
(DFHKPP) to save certain system information at system termination time

136 CICS/VS Introduction to Program Logic

so that a warm start can be initiated later. System Initialization can
warm start the following CICS/VS control information:

Program 'Control Table (PCT)
Processing Program Table (PPT)
Terminal Entries (nonswitched)
File Control-Table (FCT)
Selected areas from the Common system Area (CSA)
Destination Control Table (DC~) Intrapartition Entries
Transient Data Intrapartition space allocation bit map
Identifications and Relative Byate Addresses for Temporary storage
auxiliary destinations/queues

Temporary Storage space allocation bit map
Interval Control Elements (ICE) and Automatic Initiate
Descriptors (AID)

Batch Control Areas (BCA) and Write Request Elements (WRE) for ATP

Under DOS/VS System Initialization receives control from DOS/VS Job
control. Parameters may be passed to System Initialization through
SYSIPT. (These parameters are documented in the CICS/VS System
Programmer's Reference Manual.)

The Restart data set is read by system Initialization to give a warm
start to CICS/VS, if warm start of the system is requested.

When emergency restart is invoked, using the START=EMER keyword,
System Initialization:

• Repositions the system log.

• Cold-starts the APT, PCT, TCT, FCT, CSA, Transient Data map, and
Temporary Storage map.

• Links to the Recovery Utility program, which reads the system log
and builds recovery data and tables that are written to the
Restart Data Set.

• Links to the Transaction Backout program, which reads the
recovery data and backs out the effects of transactions that were
in process immediately before termination.

system Initialization builds the CICS/VS nucleus, initializes data
sets, opens system and user data sets, constructs and initializes
tables, and builds the CICS/VS dynamic storage pool.

The CICS/VS Program Library is accessed by DOS/VS LOADs, or by using
BSAM on as, to build the CICS/VS nucleus, load tables, load resident
application programs, and initialize the Processing Prograro ~able (PPT).

Communication with CICS/VS nucleus modules is required during post
initialization processing, both by System Initialization and by
application programs running at this time. System Initialization always
interfaces with Storage Management, Task Management, Time Management,
and Program Management and may interface with Temporary Storage
Management, Transient Data Management, File Management, and System
Recovery. All communication with CICS/vS nucleus modules is perforrr-ed
under Terminal Management·s Task Control Area (TCA), which is borrowed
temporarily as a communication vehicle.

System Initialization passes control to Terminal Management (entry
point DFHTCP). In DOS systems, System Initialization remains in the
first 12K of the virtual storage partition. This area contains the
common routines used by CICS/VS management modules:

Chapter 10. System support 137

• BLDL routine

• Program Loader subtask

• Write-to-Operator subroutine

SYSTEM TERMINATION

The Master Terminal program transfers control to the system Termination
(DFHSTP) using a Program Management DFHPC TYPE=XCTL macro instruction
when a CSMT SHUTDOWN request has been entered by the CICS/VS master
terminal operator.

The System Termination program provides for the orderly shutdown of
CICS/VS operation. Terminals are allowed to quiesce, the console
operator is notified that termination is in process, data sets are
closed, and system statistics are extracted. In addition, the system
termination program records vital information about CICS/VS so that the
system initialization program can warm-start the system-

The system Termination program operates in stages, as follows:

Stage 1:

During the first quiesce stage of system termination, control is
transferred to the first of a series of programs defined in a Progran
List Table. Each program in the first portion of the table is given
control in the sequence of its occurrence in the table. During this
stage, all system activity is quiesced except those transactions
specified in a transaction list table. Such transactions rerr.ain
eligible for execution and have access to all CICS/VS services,
including terminal control. Transactions not in the specified table are
not initiated.

Stage 2:

When execution of the programs specified in the first portion of the
PLT is completed, the second quiesce stage begins. During this stage,
all terminal activity is quiesced and control is transfered to the first
program in the second portion of the user defined program list table.
Each program is given control in the sequence of its occurrence in the
table and has access to all CICS/VS functions except terminal control.

Stage 3:

When the last program in the specified PLT has completed execution,
system termination closes all data sets if the system is DOS, records
system statistics, records warm-start information, and returns control
to the operating system.

The Transaction List Table (XLT) and PLT are loaded (by Program
Management) from the CICS/VS Program Library.

Terminal activity is quiesced by setting an indicator in the CSA.
This tells Terminal Management not to attach any transactions other than
those specified in the XLT. The termination task logically disconnects
itself from the physical terminal to allow other activity on that
terminal.

The termination task allows all other tasks (except for any journal
tasks) to complete before linking to the first program specified in the
first portion of the PL~_

138 CICS/VS Introduction to Program Logic

When all programs in the first portion of the PLT have executed,
terminal activity is quiesced completely by setting another indicator in
the CSA. The ICE, AID, and BCA chains are broken (addresses saved in
the TWA), and the programs specified in the second portion of the PLT
are executed.

CICS/VS-DL/I Interface and Journal Managenent are terminated;
Temporary Storage Management is requested to output its buffer;
statistics are taken by a link to the system Statistics program; on a
DOS system all files are closed; and a keypoint is taken by the Keypcint
program.

Control is returned to the operating system, with or without a dunp
(depending upon the parameters specified in the shutdown request causing
termination>.

If an immediate shutdown is requested, tables are not loaded,
terminals are not quiesced, and the programs specified in the PLT are
not executed.

HIGH-LEVEL LANGUAGE PREPROCESSOR

The high-level language preprocessor program (DFHPRPR) prepares a high
level language program for input to the Assembler. The assem~ler then
generates the high-level language statements for CICS/VS macro
instructions for input to the high-level language compiler.

The input and output data sets are opened and the source records
read. The first 16 columns of each record are scanned for -DFH- or
·CALL·. If this scan fails then the source record is written out with a
REPRO card preceding it. DL/I calls are changed to CICS/VS calls; CICS
macro instructions are left unchanged except for some conversions from
hexadecimal to decimal and some systematic changes of the prefix DFH.
An END statement is appended to the output.

COMMAND LANGUAGE TRANSLATOR

The Command language translator is a utility program (DFHEXP) which runs
off-line to translate CICS/VS application programs using the command
level interface. It converts the EXEC statements into CALL statements
in the language in which the EXEC CICS statements are embedded.

There are four versions:

• as COBOL

• as PL/I

• DOS COBOL

• DOS PL/I

The translator manages storage by creating a stack from a single area
allocated at the start of the program.

Since the input is free format the translator moves input into a
buffer area that can hold input spanning two or more input records. The
analysis of the source is table driven. The statements are first parsed
at the highest level; that is, constructions of the form:

Chapter 10. System Support 139

EXEC CICS function ••• termination

are recognized. Reywords and options are then recognized and tae
keywords and parameters converted to a string of bits. Duplicate
keywords are detected during this scan.

The replacement string for each EXEC CICS co~mand is built up in
another string. In the case of PL/I, the replacen.ent field will contain
a single CALL statement. In the case of COBOL, the string will contain
a series of MOVE statements followed by a CALL statement.

Errors in the source may be detected. spelling corrections are made
to the source, and then unrecognizable or duplicate keywords and options
are ignored. The preprocessor produces error diagnostics which appear
on the output listing.

SYSTEM LOG/JOURNAL UTILITIES

These utilities are used to preformat magnetic tapes or disk extents to
be used as system logs or journals. They also allow the user to place
an end-of-file mark on magnetic tapes to be used as journals, following
an abnormal system termination.

FORMAT TAPE

To prevent invalid recovery due to erroneous data on the System Log, all
tape volumes used for this purpose should be pre-formatted using the
format tape program (DFHFTAP). Formatting magnetic tapes facilitates
finding the end of file if the system terminates abnormally without
writing an end-of-file mark. This function can be performed by the
stand-alone program DFHFTAP, which provides the following services:

• Opens message data set

• Acquires 32K of storage for a record area

• Opens tape volume and writes binary zero records

If any of these services cannot be performed successfully, a message
is returned and the program is terminated. Otherwise, binary zeros are
written until the end-of-file condition is encountered or an I/O error
occurs. If an I/O error occurs, no recovery of the write error is
performed and no more formatting occurs. The volume is closed and
another volume is requested. If no other volume is to be formatted, the
program is terminated. If end of file occurs (normal end), the volune
is closed and another volume is requested. If no other voluree is to be
formatted, the program is terminated; otherwise, processing continues
with opening and writing of records until all volumes have been
formatted.

TAPE END OF FILE

The tape end-of-file program (DFHTEOF) is run as a standalone program or
attached by the System Initialization program (DFHSIP) during the
initialization phase of an emergency restart. It performs the following
functions:

140 CICS/VS Introduction to Program Logic

• Verification of tape volumes

• Verification of log records collected as part of CICS/VS run before
system failure

• writing end of file

The log volume is opened and verified. If an incorrect volume is
mounted, volume swapping takes place until either the correct volume is
mounted or swapping is discontinued without finding the correct volume.
In the latter case, the program is terminated.

As the file is processed, the label records of blocks on the file are
checked to verify thay they are in ascending sequence. Verification of
these label records is performed as follows:

• Creation date equal to or greater than that specified on the volume
label.

• Volume sequence number equal to or greater than that specified on the
volume label.

• Run start time equal to that specified on the volume label.

The end of valid log data is assumed under either of two conditions:

• Verification fails during validation of label records.

• Two consecutive I/O errors are encountered.

If either of these conditions occurs, the tape volume is cackspaced
over the appropriate number of records and an end-of-file record is
written.

DUMP UTILITY

The output from Dump Management, generated during the execution of
CICS/VS, is formatted and printed by the dump utility program CDFHDUP).
This program operates in batch mode while one of the dump data sets is
closed. Each area, program, and table entry is identified, formatted,
and printed separately, with both actual and relative addresses to
facilitate analysis. The user can select single or double spacing of
dumps when the dump utility program is executed.

TRANSACTION BACKOUT PROGRAM

The Transaction Backout program CDFHTBP) is invoked by System
Initialization in the event of an emergency restart. It reads backout
data from the restart data set, previously written there by the Recovery
Utility program.

The Transaction Backout program reads data from the restart data set.
~his data comprises the task, message, DL/I, and file backout tables,
and transaction backout data.

The Transaction Backout program saves messages for in-flight tasks
and unresponded-to output messages in a Temporary Storage user message
cache. Each message is stored under the identification DFHMxxxx, where
xxxx is the terminal identification, of the terminal to which it belongs

Chapter 10. System Support 141

and is available to the user. Output nessages for which no ~ositive
response was found are also placed in Temporary Storage whence Terminal
Management can fetch them for re-presentation.

Data is read using the Keypoint program; Storage Management is
invoked to acquire and free storage areas: user-written exits, it
present, are given control; and Transient Data Management is used to
write messages, which also go to the operator console.

FORMATTED DUMP

The Formatted Dump Program will be invoked by abnormal termination of
CICS/VS, by specification of DUMP at CICS shut-down time, or by the
issue of a CSMT SNAP command by the Master Terminal Operator.

The output of the Formatted Dump Program can be in one of three
forms, depending on the specification made either at CICS start-up using
one of the start parameters, or at system initialization by the FDP
parameter of the DFHSIT macro. The three forms of output thus specified
are:

1. A dump of the supervisor and CICS partition [DUMP],

2. A dump of the CICS partition only [PDUMP], or

3. A dump of the CICS partition [PDUMP] followed by a series of control
blocks, each dumped in as logical an order as possible. Fields to be
highlighted in each control block will follow the hexadecimal dump of
the appropriate control block.

The Formatted Dump Program (DFHFDP) consists of three modules:
DFHFDA, DFHFDB, and DFHFDC.

DFHFDA is the control module of the FDP, a~dVacts as an/~nterface
module to CICS/VS and the operating system. "It has only one entry point
which is used for taking a dump with or without formatting. It contains
all system-dependent code and output routines. It also contains the
code which is to be executed at CICS initialization tine. According to
the option selected at CICS start-up time, DFHFDA will issue DUMP, or
issue PDUMP and return, or issue PDUMP" call DFHFDB and return.

The main routines and subroutines of DFHFDA are:

• Initialization (at CICS/VS start-up)

• Main dump routine

• Sub-routines used by DFHFDB

• First level program check handler

• Second level program check handler

• Initial working storage area

• Communication area for DFHFDP (DFHFDPDS)

DFHFDB is the module which performs the bulk of the work in producing
the formatted dum~. It consists mainly of an interpreter which
"executes" the text contained in DFHFDC. It calls DFHFDA to perform all
operating system-dependent functions, and to perform the actual
formatting of the output. The functions of its main routines are:

142 CICS/VS Introduction to Program Logic

• Initialization - reinitializes the necessary areas of the
interpreter so that the program is serially reusable.

• Primes the interpreter by starting it with a ~ointer to the
Common System Area (CSA) and the text string for the CSA, which
must be the first string in DFHFDC.

• Queue scan routine - this is the ·scheduler" of the interpreter:
it decides which control block should be processed next.

• Work element preparation ~ having decided which control block is
to be processed next, generates the necessary ~ointers and
control information.

• IFETCH - fetches the operation code of the next descriptor and
branches to the appropriate descriptor processing routine.

• Descriptor processing routines

• Termination processing routines

• Error processing routines

Module DFHFDC contains the text which is interpreted by DFHFDB, and
consists of two CSECTs. The first of these contains fixed length
entries, one for each type of control block to be dumped, and acts as an
index to the second CSECT which contains the text strings, one for each
control block type. The text strings contain "instructions· which
describe to the interpreter where it will find pointers to other control
blocks, which fields should be formatted, etc. All lengths and offsets
used in DFHFDC are determined from the appropriate DSECT, so that any
change of position or length in a DSECT will be effected in the
Formatted Dump Program by reassembly of DFHFDC only. A change of type,
however, from character to hexadecimal for example, would require a
source change to DFHFDC.

Chapter 10. System Support 143

Chapter 11. Application Services

CICS/VS provides several functions designed to perform services closely
associated with user applications. These services rely on CICS/VS
system management functions to achieve their objectives and can be
considered as logical extensions to the user-written application
programs. The application services are:

• Basic mapping support

• Data Interchange Program

• 2260 compatibility

• Command Interface

• Built-in functions

BASIC MAPPING SUPPORT

The Basic Mapping Support (BMS> function allows the CICS/VS application
programmer to have access to input and output data streams without
including device-dependent code in the CICS/VS application program.

Maps are assembled offline using CICS/VS macro instructions. The
user defines and names fields and groups of fields that can be written
to and read from the devices supported by BMS. The assembled maps
contain all the device-dependent control characters necessary for the
proper manipulation of the data stream.

Associated with each map is a table of field names that is copied
into each application program that uses the map. Data is passed to and
from the application program under these field names. The application
program is written to manipulate the data under the various field names
so that alteration of a map format does not necessarily lead to changes
in program logic. New fields can be added to a map format without
making it necessary to reprogram existing applications.

Output data may be supplied from the application program by placing
the data in the table under the appropriate field name. As an
alternative, output maps can contain field default data that is sent
when data supplied by an application program is not present. This
facility permits the specification of titles, headers, etc., for output
maps.

Optionally, displaying all the default data can be suppressed by the
application program for any output map. Each time a map is used, the
application program can temporarily modify the attributes of any named
field in the output map. Output map fields with no field names can
contain default data, but the application program cannot replace the
default data or modify the attributes of unnamed fields.

For input, the user assembles a map defining the fields that can be
written to and received from a particular device. Any data received for
a particular field is moved across using the field name in the symbolic
storage definition for the map. Pen-detectable fields defined in an
input map are flagged as detected if present in a 3270 input streare. An
input map for a particular case can specify a subset of the fields

Chapter 11. Application Services 145

potentially receivable; any fields received and not represented in that
map are discarded. This permits the number of keyable and selectable
fields from a map to be changed without making it necessary to reprogram
applications that currently receive data from the map.

Maps are stored in the CICS/VS program load library or, in the case
of assembler language, can be coded in the application program. When a
map stored in the program load library is referenced by BMS, a copy is
automatically retrieved by CICS/VS without application program action.
Multiple users of a map contained in the program load library share a
single copy in main storage.

BMS permits any valid combination of field attributes to be specified
by the user when generating maps. Inclusion of BMS in CICS/VS is a
system generation option and its inclusion does not prevent the
application program from accessing a particular device in native mode
(without using BMS). Intermixing EMS and native mode support for a
terminal from the same application program may yield unpredictable
results,. When using mixed mode support, it is the user's responsibility
to ensure correct construction and interpretation of native mode data
streams.

BMS permits the application program to pass a native mode data stream
(that has already been read in, and provided the screen has been
formatted if a 3270 is being used) and to interpret this data stream
according to a given input map. This facility allows data entered with
the initial reading of a transaction to be successfully mapped using
BMS.

Basic Mapping Support provides the following services:

• Message routing

• Terminal paging

• Device independence

MESSAGE ROUTING

This service permits the application program to send an output message
to one or more terminals not in direct control of the transaction. The
message is automatically sent to a terminal if the terminal status
allows reception of the message. If a terminal is not immediately
eligible to receive the message, the message is preserved for that
terminal until a change in terminal status allows it to be sent. The
message routing function is used by the CICS/VS message-switching
transaction.

TERMINAL PAGING

This feature allows the user to prepare more output than can be
conveniently or physically displayed at the receiving terminal. The
output can then be retrieved by pages in any order; that is, in the
order they were prepared or by skipping forward or backward in the
output pages.

Terminal paging also provides the ability to combine several small
areas into one area, which is then sent to the terminal. This enables

146 CICS/VS Introduction to Program Logic

the user to prepare his output without regard for the record size
imposed by the output terminal.

CICS/VS provides the terminal operator with a generalized page
retrieval facility that can be used to retrieve and dispose of pages.

DEVICE INDEPENDENCE

This feature allows the user to prepare his output without regard for
the control characters required for message heading, line separation,
etc. Input to device independence consists of a data string with
optional new-line characters.

Device independence divides the data string into lines no longer than
those defined for the particular terminal. If new-line characters
appear occasionally in the data string to further define line lengths,
they are not ignored. CICS/VS inserts the appropriate leading
characters, carriage returns, and idle characters and eliminates
trailing blanks from each line.

CICS/VS allows the user to set horizontal and vertical tabs on those
devices which support the feature (for example, 3767 and 3710). For
such devices, CICS/vS supports data compression inbound and data
compression outbound, based on the tab characteristics in the data
stream under control of the appropriate maps.

BMS MODULES

Basic Mapping Support consists of a number of modules, each of wbich has
interfaces with other BMS modules, CICS/VS management components, and
application programs. The maps that are handled by CICS/VS BMS may be
new maps, created to use CICS/VS BMS mapping capabilities, or old maps,
created for pre-Vs BMS.

Pre-VS BMS Mapping Module

The pre-VS BMS Mapping Module (DFHBMSMM) is called in response to
requests for BMS services code in the form established for versions of
CICS released before CICS/VS.

A pre-CICS/VS DFHBMS TYPE=IN, MAP, or OUT macro request by an
application program communicating with a 3270 terminal passes
information, in the TCA, through Program Management to DFHBMSMM.

A CICS/VS DFHBMS TYPE=IN, MAP, or OUT macro instruction using pre
CICS/VS maps and DSECTs to communicate with a 3270 terminal passes
information, in the TCA, through the Mapping Control program to
DFHBMSMM. Maps are either passed by the application program or loaded
by DFHBMSMM.

The address of a Terminal Input/Output Area (TIOA) is supplied by the
application program for ~YPE=MAP or TYPE=OUT requests and by Terminal
Management for 'l'YPE=IN. Terminal Management is used to read the data
for a TYPE=IN request.

DFHBMSMM communicates with storage Management to obtain and release
work areas and buffers for mapping operations, and communicates with

Chapter 11. Application Services 147

Program Management to load and delete maps required for mapping
operations.

Data stream Build

The Data Stream Build program (DFHDSB) addresses the page nuffer, which
was composed by the Page Build program. The page buffer contains lines
of output data that are to be written to a terminal other than a 3210.
The following functions are performed by the Data Stream Build prograrr
on the data in the page buffer:

• Truncates trailing blanks within data lines.

• Substitutes strings of physical device control characters for logical
new-line characters that terminate each line of data.

• Provides a function management header (FMH) for some VTAM-supported
devices.

• Allows horizontal and/or vertical tab processing.

DFHDSB is entered from the Page Build program to process the page
buffer. For TYPE=NOEDIT, page buffer compression is skipped and control
is given to the Terminal Page Processor. If not TYPE=EDIT, the
appropriate device control characters for the target device are selected
for substitution. After compression of the page buffer data, DFHTPP is
called to provide disposition of the page.

Non-3270 Input Mapping Program

The Non-3210 Input Mapping program (DFHIIP) is called in response to
requests for BMS services involving terminals other than 3210 devices.

A DFHBMS TYPE=IN or TYPE=MAP request by an application program
communicating with other than a 3210 terminal passes information, in the
TCA, through the Mapping Control program to DFHIIP.

The map required for an operation is either passed by the application
program or loaded by DFHMCP.

The address of a Terminal Input/Output Area (TIOA) is supplied by the
application program for TYPE=MAP and by Terminal Management for TYPE=IN.

Normally Terminal Management is used to read the data for a TYPE=IN
request. DFHIIP calls Storage Management to obtain and release buffers
for mapping operations. For the Batch logical unit, if INBFMH=DIP is
specified in the PCT entry for the transcation code, the Data
Interchange program is used to read the data.

Mapping Control Program

The Mapping Control program (DFHMCP) is the interface between
application programs and the modules which perform mapping, message
switching, page and text building, device-dependent output preparation,
and message disposition to terminals. temporary storage areas, or the
application program.

This program is entered when an application program issues a DFHBMS
request for Basic Mapping support services. It may also be called by
Task Management to process a Deferred Work Elerrent (DWE) if an
application program terminates and there are partial pages in storage or

148 CICS/VS Introduction to Program Logic

the Message Control Record (MCR) created during execution of the task
has not been placed in temporary storage.

The expansion of ttte DFHBMS macro instruction and the application
program insert data into fields in the TCA. The following information
is returned to the requestor in fields of the TCA: error codes, page
overflow information, and a list of completed pages (if TYPE=RETURN ~as
specified in the request).

A Terminal Management DFHTC TYPE=SAVE macro instruction is issued if
TYPE=SAVE was specified in the DFHBMS macro instruction.

The Mapping Control program communicates with Temporary storage
Management to output the MCR for routed or stored messages (TYPE=ROUTE
and/or TYPE=STORE was specified). A DFHTS TYPE=PURGE macro instruction
is issued to request that a message be purged from temporary storage if
a DFHBMS TYPE=PURGE request is issued.

The Mapping Control program communicates with Storage Management to:

• Acquire and free storage in which the MCR is built (TYPE=PAGEOUT
after TYPE=STORE and/or TYPE=ROUTE)

• Acquire and free storage in wkich to copy the message title
(TYPE=ROUTE,TITLE=symbolic address or YES)

• Acquire storage to build Automatic Initiate Descriptors (AIDs) for
non-routed message or routed messages to be delivered immediately
(TYPE=PAGEOUT)

• Acquire a BMS work area (OSPWA) at the time of the initial EMS
request

• Acquire and free an area used for user request data if a TYPE=PAGEOUT
must be simulated before processing the user's request

• Free the returned page list (TYPE=PURGE)

• Free map copies if TYPE=PAGEOUT and pages were being built in
response to TYPE=PAGEBLD requests

• Free Terminal Type Parameters (TTPs) (TYPE=PAGEOUT)

The Mapping Control program communicates with Program Management to:

• Load and delete map sets

• Link to the Page Retrieval program to process one or more pages of a
message if TYPE=PAGEOUT and CTRL=RETAIN or CTRL=RELEASE

• Abnormally terminate a task if uncorrectable errors occur

• Link to the BMS Mapping Module (DFHBMSMM) if a pre CICS/VS map is
loaded

The Mapping Control program communicates with Time Management to:

• Initiate transaction CSPQ

• Obtain the current time of day, which is then used to tirne-starop AIDs
for routed messages

Chapter 11. Application Services 149

• Initiate transaction CSPS for messages to be delivered at some future
time

The Mapping Control program communicates with Task Management to
schedule transaction CSPG for every terminal that is to receive a
routed message to be delivered immediately. Transient Data Management
is used to send error and informational messages to the master terminal.

Route List Resolution is used to collect terminals from a user
supplied route list or from the entire TCT by terminal type, and build a
Terminal Type Parameter (TTP), which controls message building, for each
terminal type. It is also used to build a one-element TTP for the
originating terminal.

3270 Mapping

The 3270 Mapping program (DFHM32) is called in response to requests for
BMS services involving terminals of the 3270 Information Display System,
3650 -3275 Host conversational system, and 3790 - 3270 Emulator.

A DFHBMS TYPE=PAGEBLD, TEXTBLD, OUT, STORE, or RETURN macro request
by an application program communicating with one of these terminals
passes information, in the TCA, through the Mapping Control program and
the Page and Text Build program to the 3270 Mapping program.

A DFHBMS TYPE=IN or TYPE=MAP macro request by an application program
communicating with a 3270 terminal passes information, in the TeA,
through the Mapping Control program to The 3270 Mapping program.

Maps are either passed by the application program or loaded by the
Mapping Control program.

The address of a Terminal Input/Output Area (TIOA) is supplied by
Terminal Management for 'IYPE=IN requests and by the application program
for all other requests. Terminal Management is also used to read the
data for a TYPE=IN request.

The 3270 Mapping program communicates with Storage Management to
obtain and release buffers for mapping operaticns. All output requests
are sent to a designated destination by the Terminal Page Processor.

Page and Text Build

The Page and Text Build program (DFHPBP) processes all BMS output
requests (DFHBMS TYPE=OUT. STORE, RETURN, or PAGEOUT). It performs the
following functions:

• positions tae data in the page, either by actually placing it in a
buffer or by copying it and adjusting the map for a 3210
(TYPE=PAGEBLD)

• places the data into the page buffer or, for the 3270, copies it and
generates a map (TYPE=TEXTBLD)

• inserts device dependencies for other than 3270 Information Display
System devices

The Page and Text Build program is entered from the Mapping Control
program to process all BMS output requests. It is called once tor each
Terminal Type Parameter (TTP) on the TTP chain. The Page and Text Build
program returns control to the Mapping Control program when request

150 CICS/VS Introduction to Program Logic

processing is complete, or when the page must be written out before a
TYPE=PAGEBLD request can be processed and an OFLOW=syrnbolic address
operand was specified.

For a TYPE=PAGEBLD request for a 3270, the map is copied and chained
to the TTP,. For a TYPE=TEXTBLD request for a 3270, a dummy map is
created and chained to the TTP. When a page is complete, control is
given to 3270 Mapping (The 3270 Mapping program), which combines the nap
copies chained to the TTP and maps the data.

The Page and Text Build program communicates with storage Management
to:

• Acquire and free buffers in which pages are built

• Acquire storage for a copy of the user's data and map for
TYPE=TEXTBLD or TYPE=PAGEBLD

For 3270s the user"s data is copied only if routing is being used or
if SAVE was specified. If the data is copied then one GETMAIN is
used for both map and data.

The Page and Text Build program requests Program Management to
abnormally terminate a transaction (DFHPC TYPE=ABEND) if certain
uncorrectable errors occur.

A TYPE=TEXTBLD request for a 3270 causes a map set consisting of one
dummy map to be passed to 3270 Mapping (The 3270 ~apping program). The
map has one field with attributes FREEKB and FRESET. If the page is
being constructed for a 3270, control is given to The 3270 Mapping
program to map the data and then to DFHTPP to output the page.
Otherwise, device dependencies are inserted in the page and control is
given to the Terminal Page Processor to output the page.

Route List Resolution Program

The Route List Resolution program (DFHRLR) builds Terminal Type
Parameters (TTPs), which are the main blocks for building and outputting
data in BMS.

The Route List Resolution program is called by the Mapping Control
program to determine the grouping of terminal destinations. If data is
to be routed, DFHRLR groups the terminals in the user's route list by
terminal type and builds a routing TTP for each type. The address of
the first routing TTP in the chain of TTPs is placed in OSPTTP. If data
is not to be routed, a direct TTP is built for the originating terminal
and its address is placed in OSPDTTP.

The Route List Resolution program communicates with Storage
Management to acquire storage for the TTP. Program Management services
are requested by issuing a DFHPC TYPE=ABEND macro instruction if certain
uncorrectable errors occur.

Terminal Page Processor

The Terminal Page Processor (DFHTPP) puts completed pages to a
destination specified in the BMS output request (TYPE=CUT sends to the
originating terminal; ~YPE=STORE directs to Temporary Storage; and
TYPE=RETURN directs to a list of completed pages that are returned tc
the application program).

Chapter 11. Application Services 151

Tbe Terminal Page Processor is entered from 3270 Mapping for 3270s,
from FASTER 2260 Compatibility for FASTER 2260 compatibility output, and
from Data Stream Build for other devices,.

TbeTerminal Page Processor communicates with Storage Management to
obtain:

• Tbe return list (to store tbe address of completed pages to be
returned to the programmer)

• Deferred Work Elements (OWEs), which ensure that message control
information is written to disk even if the programmer neglects to
issue a DFHBMS TYPE=PAGEOUT request

• Storage for a list that correlates pages on temporary storage with
the logical device codes for which they are destined.

Temporary Storage Management is used to store pages and the Message
Control Record (MCR) for messages stored on Temporary storage. The
Terminal Type Parameter (TTP) controls the formatting of a message for a
particular ter;minal type, for examp1e, 2741.

Terminal Page Cleanup Program

The Terminal Page Cleanup program (DFHTPQ) checks the chain of Automatic
Initiate Descriptors (AIDs) to detect and delete AIDs that have been on
the chain for longer than the purge-delay time specified at system
generation (DFHSG PROGRAM=BMS,PRGDLAY=hhmm).

The Terminal Page Cleanup program is initiated the first time by the
Mapping Control program using Time Management. Thereafter, it
reinitiates itself.

The program also calls Storage Management to free AIDs which have
been purged and to acquire storage for notification messages. Transient
Data Management is used to send notification messages. Time Management
is used to obtain the current time and to reinitiate this task. The
Terminal Page Cleanup program communicates with Temporary storage
Management to retrieve and replace Message Control Records (MCRs) and to
purge messages.

Page Retrieval Program

The Page Retrieval pr~graro (DFHTPR) processes messages built by BMS and
placed in Temporary Storage.

The Page Retrieval program is entered from Program ~anagement to do
one of the following:

• Display the first page of a routed message

• Display subsequent pages of a message at a terminal for whicb
TYPE=PAGEOUT,CTRL=AUTOPAGE was specified

• Process paging commands from a terminal

• Process transaction CSPG when it is entered at the terminal

• Purge a message displayed at the terminal if the terminal is in
display status and other than a paging command is entered at the
terminal

152 CICS/VS Introduction to Program LogiC

The Page Retrieval program is entered from the BMS Mapping Control
program to display the first page of a message originated at the
terminal,. If CTRL=RETAIN was specified in the BMS request, the Page
Retrieval program reads from the terminal and processes paging commands
until other than a paging command is entered.

The Page Retrieval program communicates with storage Management to:

• Acquire and free Message Control Blocks (MCBs)

• Free terminal page storage and Message Control Record (MCR) storage

• Acquire storage for informational and error messages to be sent to
the destination terminal and the master terminal

• Free an Automatic Initiate Descriptor (AID) taken off the AID chain

• Acquire and free storage for a route list constructed in response to
a COpy command entered at a terminal

• Acquire a TIOA into which to place a device-independent page when
performing the COpy function

Temporary Storage Management is used to retrieve and replace MCRs and
to retrieve and purge pages. Basic Mapping Su~port is used to display
error and informational messages at a requesting terminal and to send a
page to the destination terminal in the COpy function. Task Management
is used to retain exclusive control of a MCR while it is being updated.

The Page Retrieval program communicates with Time Management during
error processing when a Temporary storage identification error is
returned while attempting to retrieve a MCR. Up to four retries (each
consisting of a one-second wait followed by another attempt to read the
MCR) are performed. (The error may be due to the fact that an MCR has
been temporarily released because anotBer task is updating it. If so,
the situation may correct itself, in which case a retry is successful.)

Terminal Management is used to read in the next portion of terminal
input after a page or informational message is sent to the terminal when
TYPE=PAGEOUT,CTRL=RETAIN was specified. Transient Data Management is
used to send error or informational messages to the master terminal.

The Terminal Output macro instruction (DFHTOM) is issued to provide
an open subroutine that puts a 'completed page out to the terminal.

Terminal Page Scheduling Program

The Terminal Page Scheduling program (DFHTPS) processes messages that
have been scheduled for delayed delivery,. An Automatic Initiate
Descriptor (AID) is built and scheduled for every terminal specified in
the Message Control Record (MCR) that Time Management provides.

The Terminal Page Scheduling program is called by Program Management
at the time when a delayed message is to be sent. The program also
calls Time Management to obtain the Message Control Record (MCR) that
has the IDs of all terminals that are to receive the message. The
Terminal Page Scheduling program communicates with Temporary storage
Management to replace the MCR, since Time Management released the MCR
while retrieving it.

Time Management has created an Interval Control Element (ICE) for the
time-dependent request that is now to be serviced. The Terminal Page

Chapter 11. Application Services 153

scheduling program refers to many fields of the MCR (supplied using Time
Management) when building the AIDs required for the message.

The Terminal Page Scheduling program communicates with Storage
Management to acquire storage for the AIDs that it constructs. After
the AIDs have been constructed, The Terminal Page Scheduling program
communicates with Task Management to schedule the AIDs for processing.

~ INTERCHANGE PROGRAM

The Data Interchange program (DFHDIP) is invoked by the DFHDI CICS/VS
macro, and is also invoked by BMS when dealing with a batch LU. For a
RECEIVE operation the program will get a message from the Batch Logical
Unit and, after removing any FMHs, pass the message and destination name
to the application program. For all other requests (ADD, ERASE, REPLACE
etc.) appropriate FMHs are built and transmitted to the Batch Logical
Unit together with the user's message, if one is specified.

Errors (other than set-up errors) are signalled to the user by return
codes. set-up errors cause a CICS/VS abnormal termination.

2260 COMPATIBILITY

Under BTAM, the user can run his currently operational 2260-~ased
transactions from a 3210 Information Display System. This facility is
known as 2260 compatibility.

During CICS/VS system generation, the user must request that 2260
compatibility be included, thereby generating the necessary code to
provide conversion of 2260 data streams from user-written application
programs to the appropriate 3270 data stream format. When the 3270
operates with a compatibility transaction, incoming data from the 3270
is converted and presented to the user-written application program in
2260 format. In most cases, no changes are required to the user-written
program.

Because 2260 compatibility is specified by transaction as well as by
terminal, non-2260-based transactions have full access to all facilities
of the 3270.

The FASTER 2260 compatibility routines provide 2260 compatibility on
a 3210 for users of the FASTER Language Facility (FLF). However, 2260
compatibility is not available for 3270 support through VTAM.

DFHFIP is invoked by ~errninal Management after each successful Read
operation on a 3270 terminal that was defined as being FASTER 2260
compatible. All input that is not in 3270 native mode (no SEA as a
first character) is rearranged to provide to the application program
only the data between the start-of-message indicator (SMI), if present,
and the cursor. If a new-line character (NL) is encountered, the
remainder of the 2260 logical line is dropped.

DFHF2P is invoked by the BMS program for each page of output that is
not in 3270 native mode and is destined for a 3270 that was defined as
being FASTER 2260 compatible. The program arranges the output page to
appear as it would on a 2260 by inserting user-defined SMI and NL
characters in the data stream.

154 CICS/VS Introduction to program Logic

EXEC INTERFACE PROGRAM

When Program Management loads an application program that has been
translated by the command language translator, the EXEC interface
program is invoked. This initializes the command-level interface
environment which involves setting up up the EXEC interface structure
(which is used for housekeeping). and the EXEC interface block(which is
used by the application program). The EXEC interface program then
invokes the application program.

When the application program reaches the expansion of an EXEC CICS
command the EXEC interface program will be called. passing parameters
according to the keywords and options on the EXEC CICS command. The
EXEC interface program branches to separate routines according to the
operation used. These routines contain calls to the CICS/VS modules.

When the response from CICS/VS is other than the normal expected
response an exceptional-condition handler gains control. This routine
provides the linkage to the locations set up in the EXEC CICS CHECK
command.

Finally the Interface program returns to the application program.

BUILT-~~ FUNCTIONS

Several commonly used functions are available to the application
programmer through the use of CICS/VS macro instructions. These are
functions that generally were coded as separate subroutines by the·
programmer. Tnese capabilities. referred to as built-in functions, are
as follows:

• Table search

• Phonetic conversion

• Field verify/edit

• Bit manipulation

• Input formatting

• Weighted retrieval

The Built-In Functions program (DFHBFP) may be generated with either
(or both) of two options: (1) the basic set, which includes Table
Search, Phonetic Conversion. Field Edit, Field Verify, Bit Manipulation,
and Input Formatting; and (2) Weighted Retrieval. If generated, any of
these functions can be called by any application program.

When the Built-in Function are used in an a~plication program, the
symbolic storage definition for the communication area of the Built-In
Functions program must by copied into the comrr.on control communication
area of the application program communication section of the program's
TCA. This copying is achieved by issuing a DF'HBFTCA macro instruction,
which must immediately follow the statement that copies the 1CA and the
user's definition of a TWA. if any, in the application program.

Chapter 11. Application Services 155

Built-in Functions are requested by DFHBIF macro instructions, which
establish fields in the requesting program's TCA for communication with
the Built-in Function program.

TABLE SEARCH

The table search built-in function provides the application program with
the means of conveniently searching a table for a specific entry and
having some value within that entry returned. The user can elect to
have a default value returned if the desired entry is not in the table.

PHONETIC CONVERSION

The phonetic conversion built-in function provides the CICS/VS user with
the capability of converting a name into a partial key, which can then
be used to access a data base name file. The key produced is based upon
the sound of the name. This means that names that sound similar but are
spelled differently, generally produce like keys. For example, the
names SMITH, SMYTH, and SMYTHE produce a phonetic key of S530.
Likewise, the names ANDERSON, ANDRESEN, and ANDRESENN produce a phonetic
key of A536. A CICS/VS subroutine to convert keys in a similar manner
is provided for use by offline programs. Together, these facilities
allow the CICS/VS user to organize files of names so that they can be
accessed by names that may be misspelled, mispronounced, or
misunderstood.

FIELD VERIFY/EDIT

The field verify function enables CICS/VS application programmers to
verify the contents of a data field as either alphabetic or numeric and
brancn to the appropriate routine. Any field can be checked for the
following:

1. Entirely alphabetic: blanks or A-Z

2. Entirely EBCDIC digits: 0-9

3. Entirely packed decimal (COMPUTATIONAL-3 in ANS COBOL or FIXED
DECIMAL in PL/I).

The field edit function allows the application program to pass a
field containing EBCDIC numbers intermixed with other values and receive
a result with all non-numeric characters removed. The result can be in
EBCDIC format.

BIT MANIPULATION

The bit manipulation function allows the high-level language program to
set or test the value of one or more bits in a byte and to branch,
according to the result.

156 CICS/VS Introduction to Program Logic

INPUT FORMATTING

This built-in function allows the application program to convert free
format input from the terminal operator into a predefined fixed format
that is more easily manipulated. The free-format input can be
positional or keyword oriented. If positional, the data must be keyed
in a specific sequence; for example, last name, first name, middle
initial.

If the terminal input is keyword oriented, the application prograrr
must define a set of symbolic keywords that identify the data to be
entered. In addition, the user installation must define a keyword
prefix character and a field-separator character.

The symbolic keywords are defined within the application program,
providing a high degree of dynamic flexibility when requesting input
from the terminal. The keyword-prefix character and the field-separator
character are defined for the entire system.

WEIGHTED RETRIEVAL

The weighted retrieval function allows the user to search a specified
group of records on a VSAM data set (defined in the File Control Table),
selecting only those records that are closest to the selection criteria
be provides. Selection is made on the basis of a qualification weight
developed for each record in the group of records being searched.
Records are presented to the user in order of decreasing weight.
Selection criteria can be fixed for a given transaction type, can depend
upon variables entered from the terminal as a part of the transaction,
or can include both fixed and variable factors.

The weighted retrieval function is supported only for VSAM data sets
defined in the File Control Table. The Weighted Retrieval built-in
function communicates with storage Management and File Management.

Chapter 11. Application Services 151

abnormal condition 32,131
access methods 49
active task chain 85
activity keypointing 134
address space 63
advanced communication systems 71-80
application interface 52
application load table (ALT) 48
application programs 10,15
application services component

35-37,145-157
assembler language 10,52
asynchronous transaction processing

31,119-120
automatic initiate descriptor (AID) 55
automatic journaling 104
automatic statistics data set 68
automatic time-ordered task initiation

92
automatic transaction initiation 106
auxiliary trace data set 68
auxiliary trace management 125

basic mapping support (B~S)
16,23,35,145-154

batch and DB/DC systems 3
bit checking builtin function 36,156
BMS, see basic mapping support
bracket protocol 78
BTAM device dependent services 96
builtin functions

bit checking 36,156
field edit 36,156
field verify 36,156
input formatting 37,157
phonetic conversion 36,156
table search 36,156
weighted retrieval 37,157

chain assembly 77
chaining of output data 78
change priority of a task 84
COBOL 10,52,139
command language translator 34,139
command-level interface 10,52,155
common interface 98
common system area (CSA) 10,54,86
communication sUbsystew 71
conditional storage acquisition 87
control areas 10,54-57
control modules 7
control tables 8,43-46
conversational write 77
CSA, see common systerr. area

data base data sets 68
data chaining 79
data interchange program 35,154
data sets 66-69

data stream build 148
data transmission 75

Index

DCA, see dispatch control area
deblocking services for dam data sets

102
declare resource availability 85
deferred work element (DWE) 57,60,112
dequeue all resources 84
dequeue upon a resource 84
destination control table (OCT) 19,42,46
device independence 147
OFHKC macro support 83-85
DFHSG macro 40
dispatch control area (DCA) 10,54
DL/I data sets 68
OOS/VS ISAM variable length records 102
dump data set 67
dump management 20,32,126
dump utility 141
dump, formatted 35,142
dynamic open/close 31,121
dynamic storage verification 87
dynamic transaction backout 32,130

emergency restart 33,129
ending a transaction 24
enqueue upon a resource 84
environment definition 34,42-48,135
exclusive control 18,103
EXEC interface program 36,155
extrapartition destinations 105

field edit builtin function 36,156
field verify builtin function 36,156
file browse work area (FBWA) 57
file control table (FCT) 18,42,45,157
file input/output area (FIOA) 11
file management 17,29,100,104
file work area (FWA) 56
format tape utility 140
formatted dump 35,142
function management header (FMH) 76,78

high level language preprocessor 34,139
high performance option 85,100

ICE, see interval control element
immediate termination 74
index data sets indirect accessing 102
indirect destinations 106
initiate a task 83
initiating communication 73
input formatting builtin function 37,157
interface, command 36,52,155
interface, macro level 52,90
intermodule communication 53
interval control element (ICE) 56,153
intrapartition data set 67
intrapartition destinations 105

Index 159

journal control area (JCA) 53,56,111
journal control table (JCT) 42,46,111
journal data sets 69
journal management 29,109
journal management module (DFHJCP) 110

keypoint program 33,67
keypointing, activity 134
keypointing, warm 134

logical unit (LU) 71
logical unit I/O error handling 79
logical units of work 61,131
long running tasks 61

macro-level interface 52,90
mapping control program 148
master terminal 28,116
message routing 146
message switching 31,122
modu~es

DFHACP (abnormal condition program)
131

DFHATP (asynchronous transaction) 119
DFHBFP (builtin function program) 155
DFHBMSMM (pre-VS BMS mapping) 147
DFHDBP (dynamic transaction backout)

130
DFHDCP (dump management) 126
DFHDIP (data interchange program) 154
DFHDSB (data stream build) 148
DFHDUP (dump utility program) 141
DFHEIP (EXEC interface program) 139
DFHEXP (command language translator)

139
DFHFCD (file management) 104
DFHFCP (file management) 104
DFHFDP (formatted dump program) 141
DFHFEP (terminal test) 121
DFHFTAP (format tape) 140
DFHICP (time management) 92
DFHIIP (non-3270 input mapping) 148
DFHJCP (journal management) 110
DFHKCP (task management) 83
DFHKPP (keypoint program) 133
DFHMCP (mapping control program) 148
DFHMSP (message switching program)

122
DFHMTPA,B etc. (master terminal

program) 116
DFHM32 (3270 mapping program) 150
DFHOCP (open-close) 121
DFHPBP (page and text build) 150
DFHPCP (program management) 89
DFHPEP (program error program) 132
DFHPRPR (hll preprocessor) 139
DFHRDR (asynchronous transaction) 119
DFHRLR (route list resolution) 151
DFHRUP (recovery utility program) 130
DFHSCP (storage management) 86
DFHSFP (sign off program) 115
DFHSIP (system initialization) 135
DFHSNP (sign on program) 115
DFHSPP (sync point management) 112
DFHSRP (system recovery program) 129
DFHSTP (system termination program)

138

160 CICS/VS Introduction to Program Logic

modules (continued)
DFHTACP (terminal abnormal condition)

132
DFHTAJP (time of day control) 121
DFHTBP (transaction backout program)

141
DFHTCP (terminal management) 98
DFHTDP (transient data management)

107
DFHTEOF (tape end of file) 140
DFHTEP (terminal error program) 133
DFHTPQ (terminal page cleanup) 152
DFHTPR (page retrieval program) 152
DFHTPS (terminal page scheduling) 153
DFHTRP (trace management) 125
DFHTSP (temporary storage management)

109
DFHWT1 (asynchronous transaction) 119
DFHWT2 (asynchronous transaction) 119
DFHZCP <terminal management) 98
DFHZNAC (node abnormal condition) 133
DFHZNEP (node error program) 133

multiprogramming 62
multitasking 62
multithreading 62

node abnormal condition program
33,97,133

node error program 33,97,133
non-3270 input mapping program 148
nucleus 28
nucleus load table (NLT) 43,48

operating system storage 63
operator terminal 30,117
orderly termination 74
overlapping logical-unit output 77

page and text build 150
page retrieval progrmn 152
phonetic conversion builtin function

36,156
PL/I 10,52,139
pre-VS mapping 147
prepx'ocessor, high level 34,139
processing program table (PPT) 15,44-89
program control table (PCT) 14,42,43,83
program error program 33,132
program list table (PLT) 43,48,139
program management 15,28,89-91

quasi-reentrance 11
queue element area 84

read time-out condition 86
reading data from a logical unit 75
recovery 59
recovery of intrapartition queues 105
recovery utility program 130
restart at system initialization 136
restart data set 33,67,136
resume a task 84
route list resolution program 151
runaway task detection 92

schedule a resource 85
segmented records 101
sequential retrieval 103

service request facilities 95
service tables 47
sessions 73
sign-off 30,115
sign-on 30,115
sign-on table (SNT) 43,47
simplified system preparation 42
storage 63
storage accounting 86
storage accounting area (SAA) 57
storage initialization 86
storage management 22,28,86-89
storage statistics 87
storage, operating system 63
subpools 64
subsystem, communication 71
supervisor terminal 30,117
suspend a task 84
suspended task chain 85
sync point management 30,112
sync points 61
synchronize a task (wait) 84
syncnronizing logical-unit input 76
synchronizing logical-unit output 77
system control services 95
system data sets 66
system generation 33,39-42,135
system initialization 34
system initialization table (SIT) 42,45
system jonT!1al formatting utilities

35,140
system log data set 67

I system log/journal utilities 140
system management component 28-30,83-113
system monitoring component 32,125-126
system overload detection 87
system preparation 39-48,135
system recovery management 32,129
system recovery table (SRT) 42,45
system reliability component

32-33,129-134
system services component 30-31,115-123
system stall detection 91
system statistics 31,117
system support component 33,135-143
system termination 34,138

table search builtin function 36,156
tape end of file utility 140
task 6,58
task chains 85
task control area (TCA)

10,55,83,85,86,155
task dispatcher 85
task management 13,28,83-86
tasks, long running 61
TCA, see task control area
temporary storage input/output area

(TSIOA) 57

temporary storage management
21,29,108,109

temporary storage table (TST) 46
terminal abnormal condition program

33,97,132
terminal control table (TCT) 13,42,44

terminal entry (TCTTE) 57,88
terminal error program 33,97,133
terminal error recovery 97
terminal input/output area (TIOA) 57
terminal list tables (TLT) 43,48
terminal management 12,29,93-100
terminal management modules 98
terminal management sequential data sets

68
terminal page cleanup program 152
terminal page processor 151
terminal page scheduling program 153
terminal paging 146
terminal test 31,121
terminate a task (DETACH) 84
terminating communication 74
testing facility 94
time dependent task synchronization 92
time management 29,91
time management module (DFHICP) 92
time of day 92
time-of-day control 31,121
trace management 19,32,125
trace utility 34
transaction 6,58
transaction backout program 141
transaction list tables (XL'l) 43,48,138
transaction work area (TWA) 10,55,83
transient data extrapartition data sets

68
transient data management 18,29,105
transient data management module

(DFHTDP) 107
translator, command level 34,139
transmission facilities

BTAM 95
BTAM/VTAM 96
TCAM 96
VTAM 95

units of work, logical 61
unsolicited input 76
user data sets 68
user exit routines for DFHZCP 80

warm keypointing 134
weighted retrieval builtin function

37,157
writing data to a logical unit 77

2260 compatibility 35,154

3270 mapping 150

Index 161

(')
c
~

l>
r
o
Z
Cl
o o
~
~
m
o
r
Z
m

Customer Information Control System/Virtual Storage (CICS/VS)
Introdu~tion to Program Logic

SC33-0067-0

Your comments about this publication will help us to· improve it.
Please give specific page and paragraph references whenever possible.
All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM
systems and programs or to request copies of publications.
Rather, direct such questions or requests to your local IBM
representative.

Number of your latest Technical Newsletter for this
publication

Reply requested:

Yes 0
No 0

Name

Job Title:

Company:

Address:

READER'S
COMMENT
FORM

................................... Zip

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere, any IBM representative
will be happy to forward your comments.) Thank you for your cooperation.

SC33-0067 -0

Your comments, please ...

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

Fold Fold , .. ,

Fold

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

I nternational Business Machines Corporation
Department 813 HP
1133 Westchester Avenue
White Plains, New York 10604

Intemational Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(Intemational)

First Class
Permit 40
Armonk
New York

Fold

Q
(')
en -< en
::J o
a.
c
~
(,-
::J
..... o
." ..,
o
to ..,
Q)

3
r
o
to o·
." ..,
5·
CD a.
5·
c
en »
en
(')
w
w
6
~
6

SC33-0067 -0

Int.matlonal Bu.ln ••• Machin •• Corporation
Data Proc ... lng DM.lon
1133 W ... ch r Av.nu., Whit. Plain., N.w York 10804
(U.S.A. only)

IBM World Trade Corporation
821 United Nation. Plaza, N.w York, New York 10017
(International)

n
n
(J) -<
(J)

::J
r-+ ..,
o a.
c
~
0"
::J
r-+ o
'"tJ
(3

CO
iil
3
r o
co
0"
'"tJ ..,
3"
~
3"
c
en
~
(J)

n w w
6 o
en

" 6

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	replyA
	replyB
	xBack

