
Program Product

SC33-0068-2

Customer Information
Control System/Virtual
Storage (CICS/VS)
Version 1 Release 5

System/Application Design
Guide

Program Numbers 5740-XX1 (CICS/OS/VS)
5746-XX3 (CICS/DOS/VS)

--- ----- ------- - ---- - ---- ---- - ---== = = ==~=

Third Edition (!ay 1980)

This edition applies to Version 1 Release 5" (Version 1.5) of the IB!
program product customer Information Control System/Virtual storage
(CICS/VS), program numbers 5746-113 (for DOS/VS) and 5740-111 (for

OS/VS). Until the OS/VS version is released, the information applicable
to that version is for planning purposes only.

This edition is based on the CICS/yS Version 1.4.' ~aiticn, and changes
from that edition are indicated by vertical lines to the left of the
changes. Note, however, that the 1.4.1 edition remains current and
applicable for users of Version 1.4.1 of CICS/VS.

Information in this publication is subject to change. Changes will be
published in new editions or technical newsletters. Before using this
publication, consult the latest IB! System/370 and 4300 Processors
Bibliography, GC20-0001, to learn which editions and technical
newsletters are current and applicable.

It is possible that this material may contain references to, or
information about, IBM products (machines and programs), programming, or
services that are not announced in your country. Such references or
information must not be construed to mean tha~IB! intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the addresses given below; requests for
copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication; if the form has been removed, comments may be addressed
either to:

International Business Machines Corporation,
Department 812HP,
1133 Westchester Avenue
White Plains, New York 10604.

or to:

IBM United Kingdom Laboratories Limited,
Programming Publications, Mail Point 095,
Hursley Park,
Winchester, Hampshire S021 2JN, England.

IBM may use or distribute any of the information you supply in any way
it believes appropriate without incurring any obligation whatever. You
may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1977, 1978,
1979, 1980

ii

---...

Preface

This publication provides the system analyst and system administrator
with guidelines which assist in the design of online applications to run
under the control of CICS/DOSjVS or CICS/OS/VS. It assumes that the
reader is familiar with the introductory information contained in the
CICS/VS General Information manual.

The publication is directed mainly towards the inexperienced CICS/VS
user, and assumes no prior CICS/VS knowledge apart from that presented
in the CICS/VS General Information manual.

The generation of CICSjV5 and the preparation of the system tables
that describe the environment to be supported by crcs/vs are described
in the appropriate CCICS/DOS/VS or CICS/OS/VS) CICS/VS Syste~
Programmer's Guide and the CICS/VS Slltem Program~~§--.!!§.fer§J!~-11~!!J~al.
The relationships betwaen these publications, an overview of their
contents, and suggestions regarding their use are given in Chapter 1 of
this publication.

In this publication, the term VTAM refers to ACFjVTAM, to ACF/VTAME
(CICS/DOS/VS only), and to the Record Interface of ACF/TCAM (Crcs/os/VS
only). The term TCA~ refers both to TCAM and to the DCB Interface of
ACF/TCAM. The term BTAM refers to BTAM (CICS/OS/VS only) and to BTAM-ES
CCrCS/DOS/VS only). For further details of system requirements, refer
to the publication CICSIVS General Information.

RELATED PUBLICATIONS

OS/VS TCAM Concepts and Applications, GC30-2049

OS/VS TCAM System Programmer's Guide, TCAM Level 10, GC30-2051

OS/yS TCAM Application Programmer's Guide, TCAM Level 10, GC30-3036

as/vs TCAM Macro Reference Guide, TCAM Level 10, GC30-2052

Virtual Telecommunications Access ~ethod (VTAAl:

Introduction to VTAM, GC27-6987

Virtual storage Access Method (VSAM):

VSE/VSAa Gen~ral Information, GC24-5743

OS/VS VSAM Planning Guide, GC26-3799

customer Information Control System/Virtual storage ~ICS/VS), Version 1
Rele~~.2:

General Information, GC33-0066

Application PrQgrammerls Reference Manual (Command Level), SC33-0077

Application Programmer's Reference Manual (Macro Level), SC33-0079

Preface iii

Application Programmer's Reference Manual (RPG Ill, SC33-0085

System Programmer's Reference Manu~l, SC33-0069

Operator's Guide, SC33-0080

System Programmer's Guide (DOS/VS), SC33-0070

System Programmer's Guide (OS/VS), SC33-0071

Ent'ry Level Systelll User's Guide (DOS/VS), SC33-0086

Mast~r Terminal O~rator 's Reference summary, SX33-6011

Problem Determination Guide, SC33-0089

Program Debu~inq Reference Summary, S133-6010

Message2-~d Codes, SC33-0081

Diagnosis Reference, LC33-0105

Data Areas (OSl, LY33-6035

Data Areas (DOS/VS), LY33-6033

IBM 3270 Guide, SC33-0096

IBM 3600/3630 Guide, SC33-0072

IB~ 3650/3680 Guide~ SC33-0073

IBM 3767/37IQL6670 Guide, SC33-0074

IBM 3790/3730 Guide, SC33-0075

~ata~uaqeLLJ!!1L!1. DO§LVS:

System/!2E!ication Design Guide, SH12-5413

General Information, GH20-1246

Application Programming Reference Manual, SH12-5411

Utilities and Guide for the System Proqramlller, S812-5412

High Level Programming Interface User's Guide, SH24-5009

Information Management System/Virtnal Storage (IMS/VS):

system/Application Design Guide, SH20-9025

General Information, GH20-1260

System Programming Reference Manual, SH20-9027

Application Programming Reference Manual, SH20-9026

utilities Reference Manual, SH20-9029

D~play Management~stem/VS (DMSIVS):

General Information, GH20-1863

iv CICS/VS System/Application D&sign Guide

ll~NetwQ;:~.-!rch.it,gcty~:

Types of Logical unit to Logical Unit Sessions, GC20-1869

Functional Description of Logical Unit Types, GC2~1868

VIDEO/370:

General Information, SC27-6960

Data Security Design Handbook, GBOF-7502

eIes ProductivitI-Aid~:

Installed User Programs

CIes Online Test/pebug II
Program Descripti~erations Manual, S820-1877

Field Developed Programs

CIes Dynamic Map Program Description
Operations Manual, SB21-1075

eICS/yS Performance Analyzer II
Program Description Operations Manual, SB21-1697

CICS/3270 Simulator Program Description
Operations Manual, SB21-1036

CIes Plot
Program Description Operations Manual, SB21-150B

eIes Network ActivitY-2i~ulatQ£
Program Description Operations Manual, SB21-150S

eIes Source Program Maintenance On1ine II
Program Description Operations Manual, SB21-1700

Preface v

PART 1. INTRODUCTION

CHAPTER 1.1. INTRODUCTION TO CICS/VS
CICS/VS • • • • • • •
CICS/VS Pregenerated Systems • • • •

CICSjDOS/VS Entry Level System • •
CICS/VS starter System (DOS/VS)
CICS/VS Starter System ~S/VS1)

Installation and Use • • • •
CICS/VS System PUblications

CHAPTER 1.2. SYSTEM DESIGN
The Need for Good System Design

Turnaround or Response Time
User Acceptance
Resource utilization •

Design strategy
Application Design • • • • • •
Data Communication Design
Program Design •• • • • •
Data Management Design •
Data Base Design • • • •

PART 2. DATA BASE DESIGN

CHAPTER 2.1. INTRODUCTION ••••••••
Application Requirements of Data Bases • • • • •

Data Base Definition
Structures • • • • • • • • • •
Data Redundancy • • • •
Collection of Interrelated Information •

Data Base Implementation for Applications ••••
Data Base Requirements Summary ••
Multiple Occurrence Implementation

Data Base Selection Criteria •
Data Base Performance ••• •
Batch Program Access • • •
Shared DL/I Data Base (OS)
Batch Data Base Creation • • •
Installation Data Base Support Direction

CHAPTER 2.2. DL/I.
DL/I Products

DL/I Entry DOS/VS
DL/I DOS/VS
Il'!S/VS DL/I
DL/I Access from CICS/VS

Introduction to DL/I • • • •
Application Programming Interface
Advantages of DL/I • • • • • • • •

CHAPTER 2.3. CICS/VS FILE CONTROL FACILITIES
Introduction to CICS/VS FIle Control
Direct Access •••••••

Random Record Retrieval •••••
Random Record Update • • • • • • •
Exclusive Control During Update
Random Record Addition •
Random Record Deletion (VSAM Only)

vi CICS/VS System/Application Design Guide

Contents

• • 3
3

• • 3
• 3
• Q.

4
• • • q

4

• • 7
• • 8
• .·8

9
• 9
• 9

10
11
12
13
13

19
19
19
19
20
20
20
20
21
23
23
2Q.
25
25
26

27
27
27
28
28
28
29
33
33

35
35
35
36
37
37
38
39

Locate Mode Processing (VSAM Read-only)
Blocked DAH Reco:r-ds • • • • • • •
VSE I5AM Va:r-iable-length Reco:r-ds •
Dynamic OPEN/CLOSE of Data Sets
Mass Record Insertion (VSAM Only)
VSAM Sha:r-ed Resou:r-ces

Sequential Access (Browsing)
Browse Initiation
Browse Retrieval • • • • •
Browse Termination ••••••
Multiple Browsing • • • • • • ••
Skip Sequential Browsing (VSAM Only)
Browsing Backwards (V5AM Only)

Record Identification • • • •
Rccord Key • • • • • • •
Record Location • • • •

Indi:r-ect Access • • • • •
Indirect Access Application Examples •

.

Indirect Access Implementation • • • • • • • • •
Indirect Access Initiation • • • • • • • • • •
Specification of Indirect Access Logical Relationships
Updating Indirectly Accessed Records • • • • • • • • •
Duplicates Data Set ••••• • •••••••••••
Duplicates Data Set Implementation • • • •••••••
Additions to Indirect Access Data Sets • • • • •
Indirect Access Chain Integrity • • • • • • • •

Segm en ted Records • • • • • • • • • •
Segment Design • • • • • • • • • • • • • • • • • •
Presence or Absence of Segments • • • • • • • •
Root Segment • ~ • • • • • • •
Segment Indicator Flags
Segment Definitions in FCT • • • • • • • •
Segment Retrieval •••• • • • • • • • •
Segment Updating ~ey-sequenced VSAM) ••••••••
Segment Updating (DAM, ISAM, and Entry-sequenced V5AM)
Segment Deletion • • • • • • • • • • • • • • • • • • •
Fixed- and Variable-length Segmented Records • • • • •
Creation and Maintenance of Segmented Records •• ••
Advantages o£ Segmented Records ••• • • • • • • • • •

CICS/VS File Control Design Considerations • • • • • • • • • •
Access To Online Data Base by Offline Programs •
Segmented Records ••••••• • • • • • • • • •
Multiple Occurrence of Segments • • • •
Real Storage Availability ••••

Recovery Considerations • • • • • • • • •
Automatic Logging • • • • • • • •
Automatic Journaling • • • • •

PART 3. DATA COMMUNICATION DESIGN

CHAPTER 3.1. INTRODUCTION.
Devices and Access methods

CHAPTER 3.2. BMS, TERMINAL CONTROL AND BATCH APPLICATIONS •
CICS/VS Terminal Control and BMS • • • • •

Processor Console as a CICS/VS Terminal
Basic Mapping Suppo:r-t • • • • •

BMS Maps • • • • • • • • • • •
Te:r-minal Device Independence •

Input Messages • • • •
Output Messages

Terminal Paging •• ••
Terminal Paging status

Message Routing • • • •
Message Delivery • • • •

Contents

39
39
39'
qO
40
qO
III
41
41
42
42
43
43
43
44
q5
47
47
49
49
51
52
52
53
54
55
56
57
58
58
59
59
63
64
64
66
66
67
67
68
68
69
69
69
69
70
70

73
73

75
75
76
76
77
78
80
80
81
83
83
84

vii

Message Switching Transaction (CMSG) •
Batch A pplic a l:ions • • • • • • • • • • •

Asynchronous Transaction Processing
General Batch Processing • • • • • ••
CICS/VS Batch Data Interchange ••••

rerminal Error Recovery ••••••••
Terminal Abnormal Condition Program (TACP)
Terminal Error Program • • • • • • • • • •
Node Abnormal Condition Program (DFHZNAC)
Node Error Program (DFHZHEP)
Message Logging •••••••••••••••

CHAPTER 3.3. CO~MUNICATION TECHNIQUES •
Conversational Applications

Task Initiation • • • •
Input Transaction Design •
Transaction Editing •••••
Error Correction •
output Formatting

Priority Processing
Task Priority

CHAPTER 3.4. SNA ACCESS ~ETHODS
Network Components • • • • • • • • • • • • • • •

Shared Resources • • • • • • •

85
86
86
87
88
89
89
91
91
92
93

95
• • • • • • • • 95

• • • • 95
• • •• 98

• • • • • 103
• • • 106

• 109
• 110

110

• 113
• 113

Synchronous Data Link Control (SDLC) • • • • • • • • •
Defining a VTAM Network

• 114
• •• 115

• 115
Connection Services

Connecting CICS to VTAM •••••
Logging the Logical Unit onto VTA~
3210 Se ssions
3600 Sessions ••••••••••
3650 Sessions • • • • • • • • • •
3161 Sessions and 3110 Interactive Sessions ••••
3110 Batch Sessions
3110 Programmable Sessions • •
3190 Sessions • • • • • • •

• 116
116

• 116
• 118
• 119
• 122

• • • • 124
• • • • 125

• • • • 127
• • • • • • • 121

LUTYPE4 Sessions • • • • • • • • • • • • • • • • • 129
Term~nal Control Communication Using VTAM

Terminal I/O Overlap • • • •
Full-duplex Transmission • •
Function Management Header •
System Programmer Macro Instructions •

• • • • • • • 130
• • • • • 130
• • • • • • • 130
• • • • 130

131
Basic aapping Support commnnication ~ith VTAM • • • • • •••

Input Mapping •• • • • •
131

• 131
Output Mapping • • • • • • • •
Logical Device Code Uses • • •
Map Residence in Controllers •
BMS Alarm Indicator • • ••
BMS I/O Overlap • • • • •

Terminal Device Independence with VTAM and BTAM
Terminal Paging Using VTA~ • • • • •
Message Routing and Message switching Using VTAM

PART 4. APPLICATION DESIGN

CHAPTER 4.1. PROGRAM DESIGN
Task Init ia tion •••• • •

Transaction Codes •• • •
Automatic Transaction Initiation •
Interval Control • • • • • • • •

Program Control • • • • • • • • • •
Transfer Control to Program (XCTL)
Link to Program (LINK) • • • •
Load Program (LOAD) •••••••

viii CICS/VS System/Application Design Guide

• 131
132

• 132
• • • 133

• • • • • • • • 133
• • • • • 133

• • • • • • • • 134
• • • • 134

131
• 131

131
• • • 137

• • • • • 138
• • • • 138
• • • • • • • 138

• • •• 139
• 139

Delete Program (RELEASE) • • • • • • • •
Return from Program (RETURN) • • • • • • •
Abnormally Terminate Program (ABEND) • •
Abnormal Termination Exit (HANDLE ABEND)

Task Control • • • • • • • • • •
Suspend ••••••• • • • •

• 139
• • • • • • • 139

• 140
• • 140

• 140
• 140
• 140 Terminal Read Timeout

Isolated Task Paging •
Enqueue/dequeue

• • • • • • • • • 141

Interval Control • • • • • • • • • • • •
Future Task Initiation •
Time Event wait
Time Event Cancel

Program Error Recovery •
Program Error Processing
Dynamic Transaction Backout
Transaction Restart
Program Error Program

Quasi-reentrant Programming ••••

CHAPTER 4.2. DATA MANAGEMENT DESIGN
Application Requirements ••••••

Work File Capability • •
CICS/VS Temporary Storage

Temporary Storage Usage
Data Identification

• • • • • • • • 141
• • • • • • • • • • • 141
• • • • • • • • • 141
• • • • • • • • • • • 142

• • • • • • • • • 143
• • • • • • • • • • • • 143
• • • • • • • • • 143
• • • • • 143
• • • • • • • • • 1113

• • • • • • 144
• 14L1

• 141
141

• • 141
• 148

149
• 150

Use of Dynamic Storage by Temporary Storage
Accessing Records in Temporary Storage •
Temporary Storage Recovery • •

• •••••• 151
• 152
• 153

CICS/VS Transient Data • •
Extrapartition Data sets ••
Intrapartition Data Sets •
Extrapartition Transient Data
Intrapartition Transient Data
Intrapartition Queue Usage ••
Reusable Intrapartition Queues
Indirect Destinations ••• •

Other Methods of Data Transfer Between Modules • •

CHAPTER L1.3. PROGRAM DEVELOPMENT AND TESTING
Modular Programming •• • • • • • •

Ba tch Environment ••••••
CICS/VS Online Environment • •
Virtual Storage Environment

H igb Level Langu ages • • • • • •
Online Testing • • • • • • • •

Execution (Command Level) Diagnostic Facility
Command-Level Interpreter ••••
Security • • • • • • • • • • • • • • • • • • •

Tracing and Testing •• • • •
Tracing and Dumping

• 154
• 154
• 155
• 156

157
• • • • • • • 159

• 166
• 161

• • • • 111

• • • • • • • 173
• 113
• 113
• 113
• 113

• • • • 174
• • • • 116
• • • • 116

• 111
• 118

• • • • • 118
• • • • 178

Simulated Sequential Terminals
Single-Thread Testing ••••
Multithread Testing • • • •
Multiregion Operation ••••

• • • • • • • • • • 119

CHAPTER 4.4. SECURITY DESIGN
Security Considerations ••••

Security Role in Online Applications •
Sources of Threat
Degree of Security • •
Security Techniques
Authentication • •
Recognition •••
Security Logging • • • • • • • • • • •

• 180
• 180
• 181

• 183
• 183
• 183

184
• • 184

• 185
• • 186

• • • • 186
• • • • • • • 187

Contents ix

Authentication Control Aud security Logging With CICS/iS • • 187
Terminal Operator Sign-on/Sign-off • • • • • • • • • • • •• 188
Control of Transaction Access by Terminal Operators • 191
Control of Transaction Access to Resources • • • • • • • 192
Transaction and Resource Access without Prior Sign-on 194
Control of Transaction Access by a Connected CICS/VS System ••• 194
Control of the Resource Access by IRC- or VTAM-Connected Systems • 196
The CICS/VS Concept of an External Security ~anager •••• • 196
Authentication using an External Security ~anager ••••• • 198
ESM Recognition of Connections • • • • • • • 198
Transaction Access Check Using.an Esa • • • • 199
DL/I Data Base Security Checking • • • • • ••• 200
Logg ing to CSCS • • • • • • • • • • • • • 200

Security Controls Over Application Programmer • • • • • • • • • 201
Program Review Procedures • • • • • • • • • • • 202

Audit Facilities • 202
Journaling by CICS/VS Management Modules • • • • • • 202
Journaling by DL/I • 203
Journaling by User Application • • • • • • • • • • 203
Correla tion with CSCS •••••• • • • • • • • 203

CHAPTER 5.1. PRINCIPLES OF CICS/VS RECOVERY AND RESTART
Recovery and Restart Overview ••• • • • • • • • •
Principles Underlying CICS/VS Recoverable Resources

• ••• 207
• •• 207

• 208
Defining Protected Resources • • • • • • • • • •
Logical units of Work and synchronization Points •

• • • • • • • 209
• 210

Enqueueing • • • • • • • • • • • • • • • • • • • 211
Logging and Deferred Work • • • • • • • • • 213
System Activity Keypoints
Protected Messages (VTAM Only)

CHAPTER 5.2. ERROR HANDLING ••
Recovery from Terminal I/O Errors
Program Check Handling • • •

System Recovery Program
Transaction Abend Handling • • • • •

User Exit Routines • • • • • • • •
Dynamic Transaction Backout
Abnormal Condition Program
Program Error Program ••••
Transaction Restart • • • •
PCT Disable and Enable •
Transac"tion Dumps • • • • • •

• 215
• 216

• 219
219

• 219
• • • 219

• 221
• 222

• • • 223
• 226

• •• 227
• 227
• 230

Operating System Region/Partition ABEND Handling
• 231

• • • 231

CHAPTER 5.3. CICS/VS SHUT-DOWN AND START-UP
CICS/VS Termination

Controlled Shutdown
Immediate Shutdown • • • •••
Uncontrolled Shutdown ••••

CICS/VS Initialization • • •••
Complete Cold Start
Complete Warm Start
Partial Warm Start
Emergency .Restart

CHAPTER 5.4. USER JOURH ALING
Journaling • • • • • • • •

Specification of Journaling
Use of Journa1s at System Initialization •
Journal Requests • • • • • •
Transaction Journals • • • •

Preparation of User Journals •

• • • 233
• • • • • • • • • • • 233

• • • • • • • 233
• • • • • • • . • 236

• • • • 236
• • • 237

• 237
• • • • • • • 237

• • • 237
• • • • 238

• 247
• 247
• 248
• 248
• 248
• 249

• • • 250

x CICS/VS system/Application Design Guide

User Journa1ing as a -Means to Extend CICS/VS Recovery
Extrapartition Data set Recovery

Input Data Sets • • • • • • • • • • • • •
Output Data Sets • • • • • • • • • • • • • • •

Transaction Recovery and Restart
Recovery of Mcssages Associated with VTAM Terminals ••••
Recovery of Mes~ages Associated with BTAM Terminals ••• •
Restart Transactions (BTAM and VTAM Terminals) • • • •
Terminal Operator Restart • • • • • • • • • • • • • • • • •

PART 6. PERFORMANCE DESIGN

CHAPTER 6.1. INTRODUCTION TO PERFORMANCE CONSIDERATIONS •
Introduction • • • • • • • • • •
Performance Aspects of Design •••••

Response Time • • • • •
Maximum Load • • • • • •

• 250
• • • 251
• • • 251

• 252
• 253
• 253
• 253
• 255
• 255

• 259
• 259
• 260
• 260
• 261

virtual and Real storage Utilization • • • • •
Pathlength and Processor Utilization •
Physical Database Utilization

• • • • 261

Network Utilization
Design criteria

Application Design ••
System Design ••••
Communications Design
Database Design
Program Design • • • •
Human Factors • • • •
Performance Monitoring •
Recovery, Security, and Debugging
Online Control and Modification of the System

Major CICS/VS Performance options
CICS/DOS/VS Entry Level System ••
High Performance Option (CICS/OS/VS Only)

Intercommunication • • • • • • •
Recovery and Integrity Features ••••••

PART 7. INTERCOMMUNICATION DESIGN

CHAPTER 7.1. INTRODUCTION • •

• • • 262
• • • 262

• • 262
• 263
• 264

• • 264
267

• • • • • • • 26B
269

• • 271
272

• • • 273
• 273
• 273
• 27~
• 274

276
• • • • 276

• 279

CHAPTER 7.2. FUNCTION REQUEST SHIPPING AND TRANSACTION ROUTING
Function Request Shipping • • • • • • • • •

281
• 281

Transaction Rotlting •••••••••• • • • •
Applications of Region-remote Intercommunication •

Introduction • • • • • • • • •
System Development • • • • • •
Program Development • • • • • • • • • • • • •
Time-sharing • • • • •
Reliable Data Base Access
Departmental Separation
Multiprocessor Performance

Applications of Domain-Remote Intercommunication •
connacting Regional Centers •••••••••
connecting Divisions within an Organization

Design Considerations
File Control • • •
DL/I • • • • • • •
Interval Control •
Temporary Storage
Transient Data • •
Transaction Routing
The Mirror Transaction •
The Relay Program
Performance Considerations

• 281
• 282
• 282

• • • • • • • 282-
• 283
• 283
• 283
• 284
• 28~
• 28~

• •• 28~
• 285
• 287
• 288
• 288
• 289

291
• 291

• • 291
• 293

• • 296
• • • • 298

Contents xi

Application Programming Considerations •
System Programming Considerations

Terminal Control Table • • •
File Control Table • • • •
Destination Control Table
Temporary Storage Table
Program Control Tabl~ ••••
DL/I • • • • • • • • • • • • •
General Considerations
CRTE Routing Program • • • • •
Statistics • • • • • • •
Recovery • • • • • • •

Function Request Shipp~ng - Examples

CHAPTER 7.3. DISTRIBUTED TRANSACTION PROCESSING
Introduction to Distrinutea Transaction Processing •
Applications of Distributed Transaction Processing • • • • •
Design Concepts • • • • • • • • • • • • • • • •

Distributed Transaction Processing Concepts ••••
Overview of Application Program~ng Interface
Protocols •• • • • • • • • • • • • •

Application Programming Considerations • •
Identifying the Remote System •••• •
Session Allocation and Data Transmission.
Synchronisation Points • • • • ••
Efficient Use of Session • • • • •

System Programming Considerations
Design Hints • • • • • • •

Types of Application ••
Master and Slave Design
SNA Indicators • • • • • •
Queue Transfer • •
~ultiple LU Type 6 Sessions
Error Handling • • • • • • • •
CICS/VS to Non-CICS/VS Syste~s

Distributed Transaction Examples

CHAPTER 7.4. SESSIONS BETWEEN DOMAINS •
Tha Session •••••• • • • •
Operating Considerations •••

CH~PTER 7.S. RECOVERY AND RESTART.
Introduction to Intersystem Communication Recovery
Designing for Recovery • • • • •

Failures in Connected Systems ••••
Data Bas~ Synchronization • • • •
Connected System Recovery - An Example •
Intersystem Communication and Emergency Restart
Recovery and Multiple Connectio ns •• • • • •

Error Handling Programs for Intercommunication •
Data Base Interlock ••••• • • • • • • • • •
Problem Determinat~on ••••••• • • • • • •
Recovery and Restart with Non-ClCS/VS Syst~ms

INDEX

xii CICS/VS system/Application Design Guide

.

· · ·
· · ·
· · · · · ·
· · ·

· · · · · · · · · · · ·
· · ·

·
·
· ·
·

· · · ·
·

300
301
301

• • • 303
30.3

• 303
• 303
• 304
• 304
• 306
• 306

• • • 307
• 308

• 319
• 319
• 320

322
322

• 322
• 323
• 324

• • • 324
• •• 325

326
• 326
• 327

327
• 327
• 328

• • • 328
• • • 329
• • • 330

330
331

• • • 332

· 339

· · · 341

· 342

343
343

· 343

· 343

· 344
346
347
347

· 348

· · · 349
349

· · · 350

351

1.1-1.
1.2-1.
1.2-2.
1.2-3.
1.2-4.
1.2-5.
2.1-1.
2.2-1.
2.2-2.
2.l-3.
2.3-1.
2.3-2.
2.3-3.
2.3-4.
2.3-5.
2.3-6.
2.3-1.
2.3-8.
2.3-9.
2.3-10.
2.3-11.
2.3-12.
2.3-13.
2.3-14.
2.3-15.
2.3-16.
2.3-17.

2.3-18.
3.2-1.
3.2-2.
3.2-3.
3.2-4.
3.2-5.
3.2-6.
3.3-1.
3.3-2.
3.3-3.
3.3-4.
3.3-5.
3.3-6.
3.3-7.
4.1-1.
4.1-2.
4.2-1.
4.2-2.
4.2-3.
4.2-11 •
4.2-5.
4.2-6.
II .2-7.
4.4-1.
4.4-2.
5.2-1.
5.3-1.
5.3-2.
5.3-3.
6.1-1.
1. 1-1.
7.2-1.

Figures

CICS/VS System Information Organization • • • • • • • • 5
Top-down Systems Design. • • • • • • • • • • • • • • 11
Order Entry and Invoicing Function Diagram • • • • • 12
Order Entry and Invoicing Flowchart • • • • • • • • • 14
Order Entry and Invoicing Program Design 15
Order Entry Application Data Base Design 16
Savings and Loan Data Base Chaining • • • • 22
Traditional Data Set Approach • • • • • 30
DL/I Data Base Approach • • • • • • • • • 31
DL/I Data Base Access • • • • • • • • • • 32
DAM Data set Record Location • • •• 46
Product Data Set Indirect Access • • • • 48
Policy Data Set Indirect Access • • • • • 48
Indirect Access to Insurance Agent Data Set • • • • 49
Indirect Access Chain in a Parts Data Base ••••• 50
Indirect Access Operation • • • • • • • • • • • • •• 50
Specification of Indirect Access Logical Relationships 51
Duplicates Data Set for Indirect Access • • • • • • • • 53
Addition of Records to Indirect Accessed Data Base 55
Typical Customer Record Format • • • • • • • • 56
Typical Savings Account Record Format • 57
Segmented Customer Record Format 58
Segm snt Indicator Flags • • • • • 60
Segment Definition in FCT • • • • 61
Segment Set Definition in FeT • • • • • • • • • 62
Segment Retrieval • • • • • • • • 63
Segment Updating, with Length Increase in DAM, ISAM, and

Entry-Sequenced VSAM Data Sets • • • • • • • • 65
Segmented Record Disk Utilization • • • • • • • 66
CICS/VS Basic Mapping Support (BMS) • • • • • • 78
CICSjVS Terminal Device Independence • • • • • • • • 79
CICS/VS Terminal Paging • • • • • • • • • • • • 81
CICSjVS Message Routing • • • • • • • • • • • • 85
ATP Terminal Operator Commands •••• • • •• 81
CICS/VS Terminal Error Recovery • • • • • • • • • 90
Task Initiation • • • • • • • • • • • • 96
Fixed-, Variable-, and Keyword-Format Input Messages 99
Fill-in-the-Blanks Input Message Format • • 101
Mutliple Choice Input Message Format •••• • • • • 102
Transaction Editing Techniques •••• • • • • • 103
Error Field Correction • • • • • • • • • • • • • • • 108
Task Priority • • • • • • • • • • • • • • • • • • 111
CICS/VS Program Control Facilities • • • • 138
Quasi-Reentrant Programming and Multitasking •••• • 145
Extra Partition Data Set Accessing ••••••• 156
Intrapartition Disk organization •••••••••• • 158
Terminal Output Via Intrapartition Data Set • • • • 161
Notification to Terminal Operator of Automatic Output 164
Notification of Paged Output • • • • • • 165
Indirect Destinations. • • • • • • • • • • • • • •• • 167
Terminal Backup and Reconfiguration • • • • • • • • • • • • 169
Operator sign-on using Built-in CICS/VS security Support • 189
CICS/VS Control of Transaction Access • • • • 192
Program-Level ABEND Exit Processing • • • • • • 230
CICS/VS Controlled Shutdown • • • • • • • • 235
CICS/VS Warm Start Procedure • • • • • • • • • • • • • 238
CICS/VS Emergency Restart Procedure • • • • • 240
Typical Response Characteristic • • • 261
Availab ili ty of Intercommunication Functions •••• • 280
Possible Application Configurations (2 Parts) • • • • • 286

Figures xiii

7.2-2.
7.2-3.
7.3-1.

7.4-1.

Multiple and Chained Transactions • • • • • • •
R~lay and Mirror Transactions • • • • • • •••
D.' :elopment of a Network using Function Request

Shipping and DTP • • • • • • • • • • • • •
A Possible Configuration Connecting Three CICS/VS

xiv CICS/VS System/Application Design Guide

295
• 297

• • • 321
Systems • 340

Summary of Amendments for Version 1 Release 5

The new facilities and enhancements availanle with CICS/VS version 1
Release 5 are:

• New intercommunication facilities, offering:

Multiregion operation (MRO) -- a new mechanism that allows
communication between multiple connected CICS/VS regions within
the same processing system without the use of SNA networking
facilities.

Distributed transaction processing (DTP) -- direct transaction
to-transaction communication across systems. (This facility is
not available on MRO.)

Intersystem Communication between CICS/VS and IMS/VS.

Improved throughput by support of SNA parallel sessions.

• Enhanced master terminal facilities for interactive control of
CICS/VS

• Command-level interface enhancements:

an interactive command interpreter.

a new command-level inOterface with DL/I DOS/V S.

Execution Diagnostic Facility enhancements to support DL/I
commands (CICS/DOS/VS only) •

• Security enhancements, including support for an external security
manager (for example, the Resource Access Control Facility (RACF)
program product).

• Improved monitoring facilities

• Further dev ice support, including:o

additional 3270 support.

use of 'the OS/VS console as a CICS/VS terminal.

networking of TWX and WTTY terminals through the Network
Terminal Option (NTO) program product.

• Usability and serviceability aids, including a new user exit
mechanism and facilities in CICSjDOS/VS similar to those provided
by the FERS service aid.

Summary of Amendments xv

This manual has been reorqanized since the previous release of
CICS/VS. It is now divided Into seven parts:

Part 1, Introduction
Part 2, Data Base Design
Part 3, Data Communication Design
Part 4, Application Design
Part 5, Recovery and Restart Design
Part 6, Performance Design
Part 7, Intercommunication Design

xvi CICS/VS System/Application Design Guide

Summary of Amendments for Version.l Release 4.1

This Technical Newsletter contains changes to the latest edition (SC33-
0068-1 plus TNL SN33-6216) that reflect new features of eICS/VS
introduced in version 1, Release 4, Modification 1. These features are:

o Support for logical units type 4 (LUTIPE4)

o Message performance option of intersystem communication

o Fixed block architecture (FB!) storage devices

All changes are indicated by revision bars in the left margin.

Summary of Amendments xvii

Summary of Amendments for Version 1 Release 4

This publication replaces, for CICS/VS Version 1.4, the previous edition
SC33-0068-0. A new chapter, Chapter 13, "Intersystem Communication",
has been added describing the facilities available for the
interconnection of CICS/VS systems.

Changes are also included to cover the following new facilities
introduced in CICS/VS Version 1.4:

• Data Base Support

Shared Data Base (CICS/OS/VS)

Transaction Restart

• Extension to support of 3270 Devices

• Enhancements to the Command Level Interface

Assembler

RPG 11 (CICS/DOS/VS)

• CICS/DOS/VS Entry Level System (ELS)

• Execution (Command Level) Diagnostic Facility (EDF)

These additions and' all other changes to the text originally
contained in SC33-0068-0 are indicated by revision bars in the left
margin.

xviii CleS/VS System/Application Design Guide

Part 1. Introduction

1

Chapter 1.1. Introduction to CICS/VS

CICS/VS

The IBM Customer Information Control System/Virtual storage (CICS/YS) is
a general purpose data base/data communication system. The term data
base/data communication (DB/DC) is descriptive of the type of processing
carried out by on11ne systems, as opposed to batch-processing systems.
Generally onl~ne systems involve the transmission of information from a
terminal to a computer, the use of that information to access data
maintained by the computer ~eferred to as a data base), and the
transmission of processed information back to the terminal. Hence the
term data_~~e/datg~QillmY~i£~tiQ~-21§1~.

As a DB/DC systam, CICS/VS provides support for online systems in
much the same way as the operating system and access methods provide
support for batch processing systems. However, CICS/VS is not a
replacement for an operating system. It runs under the control of
virtual storage Extended (¥SE) or the Operating System/Virtual Storage
(OS/VS1 or OS/VS2) and uses standard access methods.

A DBjDC system can be seen as consisting of two major components,
application and environment.

While the application component varies from user to user, the
environment component serves all users by controlling those el~ments of
the DB/DC system involved in communicating with terminals, accessing
data base information, and controlling the passing of that information
to the application component for processing.

The development of the environment component of a DBjDC system often
requires more effort than the development of the application component.
To relieve the user of the need to develop the environment component of
his DB/DC system, and to enable him to concentrate on the application
component, CICS/VS is designed as a modular system. This modular
structure allows the user to select and tailor a CICS/VS system at
system generation or initialization to meet particular application
processing needs. While some of the available CICS/VS functions and
their associated services are essential to the system, many are optional
and may be included in the system if and when required.

CICS/VS Pregenerated Systems

CICS/DOS/VS ENTRY LEVEL SYSTEM

The CICS/DOS/VS Entry Level System is a subset of CICS/VS. It provides
fewer functions than those provided by CICS/VS. By providing fewer
functions it is more suitable for small systems or first time users.
The functions provided by the Entry Level System are described in the
~~£~L!S ELS~~·s_Guid~. The Entry Level System is supplied as a
completely pre-generated system and thus no sysgen process is required.

Chapter 1.1. Introduction to CICS/VS 3

CICS/VS STARTER SYSTEM (DOS/VS)

This system consists of a private core-image library and private
relocatable library. The private core-image library contains
pregenerated versions of all CICSjDOS/VS programs together with sample
taDles, maps, and applications. The private relocatable library
contains those items that were needed to generate the private core-image
library contents.

CICS/VS STARTER SYSTEM (OS/VS1)

A load library is supplied containing pregenerated versions of every
CICS/OS/VS program, together with sample tables, maps, and applications.

INSTALLATION AND USE

The user can install the appropriate system and expand as the
application needs dictate. Full details of installation ·and expansion
are given in the CI~S ELS User's Guide, or the CICS/VS System
Programmer's Guide (DOS/VS and OS/VS versions) and £I£2LY~te~
Programmer's Reference Manual.

CICSNS System Publications

The publications available with CICS/VS provide an extensive library
containing information on the various aspects of CICS/VS. The CICS/VS
System/Application Design Guide is one of a group of four publications
concerned with CICS/VS design and programming. The other three
publications in this group are:

CICS/VS Entry Level system User's Guide (DOS/VS)
CICS/VS System Programmer's Guide (DOS/VS or OS/VS)
CICS/VS System Programmer's Reference Manual

This group of publications provides information necessary for the
design, installation, generation, execution, and efficient online
performance of CICS/VS. Figure 1.1-1 gives an overview of the
information in these publications. The notes following apply to the
references given in the diagram.

4 CICS/VS System/Application Design Guide

Cost and efficiency
considerations in
system design

CD System design

o System installation
System generation
System table preparation
System execution
Online performance

System program and
table macro
definitions

SYSTEM/APPLICATION
DESIGN GUIDE

10

SYSTEM/APPLICATION
DESIGN GUIDE

!

SYSTEM PROGRAMMER'S
GUIDE

SYSTEM PROGRAMMER'S
RERERENCE MANUAL

+

CICS/VS ELS
USER'S GUIDE

t

CICS/vS ELS
USER'S GUIDE

CICS/VS ELS
USER'S GUIDE

Figure 1.1-1. CICS/VS System Information Organization

Chapter 1.1. Introduction to CICS/VS 5

Notes:

1. This publication provides information to enable a system design
team to decide which CICS/VS functions and facilities would be best
suited for a particular installation/application.

2. The CIeS/DOS/VS Entry Level System is available to users who do not
reguire the full range of CICS/DOS~VS functions. The limited set
of functions available under the Entry Level System is described in
the CICS/iS Entry Level System User's Guide, which contains
information on the use of the CICS/DOS/VS Entry Level System.

3. Information relating to all aspects of system design (application
programs, basic mapping support, data management and data base, is
provided, as applicable, in this publication and the CICS/yS Entry
Level System User's Guide.

4. Once the design of a particular CICS/VS system has been decidsd,
the CICS/VS System Programmer's Guide, (or CICS/VS Entry Level
2Ystem User's Guide if the CICS/DOS/VS Entry Level System is to be
used), leads the system programmer through the various steps
necessary. to achieve and maintain efficient operation of an online
system.

5. In order to generate the reguired CICS/VS programs and control
tables, the system programmer must refer to either the CICSIYS
~2igm_~~gg~mmer's Re~g~gg£e M~ual (or the CICS/yS Entry Level
System User's Guide) for detailed information about the macros that
must be used.

6 CICS/VS System/Application Design Guide

Chapter 1.2. System Desigll

The installation of an online system involves a numbe~ of activities.
These include, but are not limited to:

• Feasibility study

• Netwo~k planning

• Equipment management

o Development of installation

• Education

• Development of standards

• Application design

o Documentation

Imp lementation

• CICSjVS generation

o Offline and online p~ogram writing and testing

o P~eparation of computer and network operations

o System integration

o Documentation

Operation, maintenance, and evaluation of:

o CICSjVS

• Application p~ograms

o Housekeeping routines

• Complete network

Continuous evaluation of all aspects of the installation could lead to
modifications of the cu~~ent system and expansion of the applications
handled by the system.

The pu~pose of this publication is to discuss one main activity,
namely, System Design-2f_Qnling_!pplication§, because of the effect of
system design on the ove~all success o~ failu~e of the application. The
publication p~esents the conside~ations involved in online system design
in the same sequence as they might be encountered in an actual design
situation. The factors to consider du~ing each step of the design
p~ocess a~e identified in terms of the application requirements. Some

Chapter 1.2. System Design 1

design factors and application requirements are satisfied by CICS/VS
provided support. These facilities are explicitly defined and
identified.

Many applications will not require additional user-developed support
beyond that provided by CICS/VS. However, online applications may
exhibit unique requirements. This publication presen~s these additional
suppor~ requirements, outlines suggested design solutions, and discusses
some of the poten~ial problem areas that should be considered by the
user.

To use CICS/VS facilities efficiently and satisfy design
requirements, it is important that the system designer be aware of the
manner in which CICS/VS implements these facilities. This information
is presented at the conceptual level, assuming there is no prior
knowledge beyond that covered in CICSIVS General Information. More
detail can also be obtained, if necessary, by referring to other CICS/VS
documentation.

The Need for Good System Design

The design of any system, whether it be a batch processing system or an
online system, is a complex and involved procedure. A "cookbook"
approach to system design cannot be followed because of the variety of
ways the same application may be implemented in different organi~ations.
However, guidelines can be recommended, which direct the designer to
consider those functions or requirements that exist in the design of
most online systems.

TURNAROUND OR RESPONSE TIME

The effect of poor system design in a batch processing environllent
increases the total processing time of applications, with consequent
delays in turnaround time before results of that processing are
available. With an infrequently run batch application, the effect of
poor system design on the installation may not be great. However, with
frequently run batch processing applications, poor system design and
long run times may impact the ability of the installation to provide
adequate turnaround for that and other applications. This will probably
necessitate a change in the system design of the offending application.

In an online environment, the effect of poor system design is often
immediately apparent, generally through the online system providing
unacceptable response times for the particular applications concerned.
The definition of an "acceptable response time" is generally very
application-dependent. For example, in an online order entry
application, where the terminal operator takes an order from a customer
directly over the telephone, any response time that keeps that customer
waiting can be regarded as unacceptable.

8 CICS/VS System/Application Design Guide

USER ACCEPTANCE

A factor that can affect the acceptability of an online application is
the way in which it meets the needs of the users of that application.
It is pointless for the user to design a system that provides fast
response time if the information provided cannot be used. In this
regard, measured by the usability of the system, an unusable system is
therefore as inefficient as a "poor performance II system.

RESOURCE UTILIZATION

A final factor to consider is the utilization of resources such as the
processor power, processor storage, and input/output devices. An online
system that unnecessarily uses so much processor capability, or storage,
or so many input/output devices that it impacts the ability of the
installation to carry out other processing in other partitions or
regions, may result in the complete installation becoming a "poor
performance" system.

Thus, poor system design can have a significant impact on:

o Customer service ~ecause of poor response time)

• Application usability

o Installation processing capability

Design Strategy

Generally, online systems cannot be designed in isolation. To ensure
that the foregoing objectives are met, ~t is important that a design
group comprise people with knowledge of:

o Application reguirements

• CICS/VS facilities

• Installation requirements

Usually, the optimum size for the design group is three or four.
Feuer than this number increases the probability that bad design
decisions can slip through, while many more than four may affect the
productivity of the design group as a whole.

The system design phase is an.iterative process. Based on the
decisions taken at one stage of the design, it may be necessary to
change decisions that were made earlier in another area of the design.
This change may in turn affect other decisions. Thus, the design group
must be flexible in its approach and be prepared during the design phase
to change its decisions if necessary. However, once the system design
has been completed, it should be frozen at that point, and not changed
unless serious errors or omissions are found, which will affect the
ability of the system to run effectively.

During implementation of the design, there is always the temptation
to incorporate improvements from an application point of view. While
each improvement may not represent a great deal of extra implementation
effort, all of these improvements may affect the project completion

Chapter 1.2. System Design 9

date. Also, the effect of these improvements on the overall system
performance must be evaluated. The danger is that this evaluation may
not be carried out for those changes introduced after the system design
phase has been completed.

These changes or enhancements must De controlled. The best way of
achieving this control may be to incorporat~ all of these enhancements
in a later version of the online application or system. These
enhancements become a project in their own right, and must therefore go
through the system design phase before implementation. In this way
their effect on system performance can be readily evaluated.

A top-down approach to system design is possible, and such an
approach should direct the design group to consider all of those areas
of the online system which may reguire decisions to be taken. This top
down design approach is illustrated in Figure 1.2-1. This figure also
illustrates some of the topics presented in this publication, and the
description of each topic following tne figure provides an overview of
this publication.

APPLICATION DESIGN

The starting point for online system design is the application design.
The initial application design steps require that the objectives to be
achieved by an online application be defined and the requirements of the
users of that application be identified. A broad system flow of the
application is then developed as part of the initial design. This
system flow and application design are an extremely important part of
the overall design process, because they define the interface between
the terminal user and the computer. Unless the online application meets
the requirements of its users, it is destined to fail.

The online application should be designed initially to identify the
broad input, processing, and output requirements of the application.
The need for conversational and/or batch data transmission between the
terminals and the processor can be identified. The terminal output
requirements of the application can be determined, after which the broad
processing logic and data set accessing necessary to produce that output
can be designed. At this stage, the input data required for that
processing and output can also be defined.

10 CICS/VS system/Application Design Guide

I

I
Data
Communication
Design

I
I

Program
Design

Data
Management
Design

I
Temporary
Storage

I

Transient
Data

Application
Design

Recovery
And Restart
Design

I
DL/I
ENTRY

Figure 1.2-1. Top-down Systems Design

DL/I
Products

DL/I
DOSIVS

I
Data Base
Design

I
I

File
Control

I
DL/I
IMSIVS

The result of this application design phase is a broad system
flowchart showing, in application terms only, the flow of information to
and from terminals, the broad processing to be carried out by the
processor, and the file accessing necessary to allow that processing.
Figures 1.2-2 and 1.2-3 illustrate two types of flowcharts, both
representing the system flow of an Order Entry and Invoicing application
in the Distribution industry.

DATA COMMUNICATION DESIGN

with the broad application design mapped out, design of transactions to
be initiated from terminals and the responses to be sent back to the
terminals can be developed. Also, during this phase the editing and
validation of input messages can be defined in more detail.

Consideration should be given to the design of security procedures
and the handling of high priority transactions. The effect of
unrecoverable terminal and line errors should be considered, together
with approaches which may be used to provide a communications backup
capability (if required) to enable the online applications to continue
to function, if possible, in the event of a communications equipment
malfunction.

Data communication design is discussed in greater detail in Part 3 of
this publication.

Chapter 1.2. System Design 11

PROGRAM DESIG tf

After determining system flow and broad processing to be carried out by
the processor, this processing should now be broken down into particular
functions. For example, the initial function on receiving a transaction
identification code from a terminal would be that of editing or
validation.

Fig ure 1. 2-2 •

APPLICATION PROCESSING

1. Access Customer Record.

2. Display Name and Address.

3. Generate Order·ln·Progress
Data Set.

4. Access Product Record.

5. Update Order·ln·Progress
Record.

6. Display Order Quantity
Accepted.

7. Record Back Order Quantity.
I f Necessary.

8. Update Product Inventory
With Accepted Quantity.

9. Access Order·ln·Progress
Data Set.

10. Place In Warehouse Location
Sequence.

11. Transmit Packing Slip.

12. Extend Invoice.

13. Transmit Invoice.

14. Access Product Record.

15. Update Product Inventory
With Received Quantity.

Order Entry and Invoicing Function Diagram

This validation may require access to various data sets. Following
validation, it may be necessary to retrieve information from other data
sets for processing, followed by possible updating of those data sets.
Finally, it would be necessary to prepare a response to be sent to the
terminal.

The processing for each type of transaction in the application should
be broken down into logical sections in this manner. These logical
sections may subsequently become separate CICS/VS application program
modules, or can be incorporated into one module. Figure 1.2-4
illustrates the various modules in the program design for the Order
Entry and Invoicing application shown in Figures 1.2-2 and 1.2-3.

12 CICS/VS System/Application Design Guide

Note that the separate programs and broad processing required,
developed in Figure 1.2-4 from the flouchart in Figure 1.2-3, are
described as part of the function diagram in Figure 1.2-2. In effect,
the first three boxes in Figure 1.2-2 define the three separate programs
in Figure 1.2-4.

A point to consider vhen defining program modules is the frequency of
use of different modules. For example, exception routines or error
routines that are infrequently used should be separated from the more
frequently used ~ain processing modules. In this way program design and
subseguent implementation will be able to take best advantage of the
dynamic storage capabilities of CICS/VS and the virtual storage
capabilities of VSE, OS/VS1, or OS/VS2.

Application programs can be coded in assembler, COBOL, RPG II
(CICS/DOS/VS only), or PL/I. The user can select the most appropriate

language for each program. Programs written in one language can pass
control to programs written in another language.

Application progra& design is discussed in greater detail in Part 4
of this manual.

DATA MANAGE!ENT DESIGN

Application requirements for the temporary storage of information and
the queuing of information should be defined. CICS/VS Temporary Storage
management provides a "scratchpad" capability and allows information to
be stored temporarily in main storage or, alternatively, on secondary
storage.

The queuing, or sequential data set requirements, of the application
can be defined. The need to pass information through seguential files
to and from the CICS/VS partit10n and other batch partitions or regions
using the CICS/VS Transient Data management facility can also be
determined, together with broad recovery procedures.

It is also necessary to determine whether the application programs
are to pass small sequential queues of information between each other in
the CICS/VS partition, using CICS/VS Transient Data facilities.

Data management design is discussed in greater detail· in Part ij of
this manual~

DATA BASB DESIGN

Particular application data base characteristics and requirements are
considered when selecting the best data base support. This can be based
on CICS/VS File Control facilities or on one of the DL/I products.

Chapter 1.2. System Design 13

SYSTEM FLOW

Place In Whse
Location
Seq & Entend
Invoice

DESCRIPTION

Order Entry

Enter customer number and customer reference number.

Validate customer number and extract credit limit.

I f an error is found, display error message back at terminal.

Display customer name, address, ship·to·address and credit limit.

Enter product number and quantity for each line item.

Validate product number against product data set. Determine
current stock availability, and update product data set.

If insufficient stock, indicate quantity on-hand. Then allow operator
to either order available quantity, cancel item, or cancel order.

If not end of order, read next line item from order terminal.

Sequence products in order to warehouse loacation sequence. Extend
invoice. Write order to orders data set.

Transmit packing slip ans invoice to terminal in warehouse.

Figure 1.2-3. Order Entry and Invoicing Flowchart

14 CICS/VS System/Application Design Guide

Figure 1.2-4.

SYSTEM FLOW

Place In Whse
Location
Seq & Extend
Invoice

Order
Start
Program

Order
Detail
Program

Order
Finish
Program

PROGRAM

ORDER START PROGRAM

Accept customer details and edit to
commence order.

ORDER DETAIL PROGRAM

Accept product order, edit, and update
product data set.

ORDER FINISH PROGRAM

Complete order, put orders" in
warehouse locution sequence, extend
invoice, log order to orders data set
for audit, and transmit packing slip
and invoice to warehouse printer.

"Note: Standard batch sort is not used; products
are placed in location slots in storage
table, to carry out sequencing.

Order Entry and Invoicing Program Design

Chapter 1.2. System Design 15

Factors to be considered in this decision include the need to access
the data base from both online application programs and batch processing
programs, and the number of ways in which information is to be
retrieved, such as by the use of different record keys (for example,
part number or part name in an inventory control application). Further
factors in this decision are the number of times certain information
occurs in each record, and the amount of information that may be absent
in some records, yet present in others.

After selecting the appropriate data base support, the structure of
the data base is designed, and how that data can be retrieved from
application programs is defined. Figure 1.2-5 shows the design of a
DL/I logical structure for the Order Entry application discussed above.

The effect of various errors and system failures on the integrity of
the data base is considered, and a data base recovery and backup
approach (if required) is defined.

Data base design is discussed in greater detail in Part 2 of this
publication.

I
I

~
ITEM

-

I

INFORMATION WAREHOUSE -

CONTAINS CONTAINS

- PRICE PER UNIT (SALES) - WAREHOUSE NO.
- DATE OF LAST CHANGE - NO. OF ITEMS IN STOCK
- UNIT OF ITEM - STOCK LOCATION
- TURNOVER LAST YEAR - REORDER POINT
- TURNOVER Y.T.D.

CONTAINS - ITEM NUM
- ITEM NAM

I
I

-.
SUPPLIER

~

CONTAINS

- SUPPLIER NO.

BER
E

- PRICE PER UNIT (PURCHASE)
- UNIT OF ITEM
- DELIVERY TIME
- QUALITY INDEX
- DELIVERY INDEX
- PURCHASE Y.T.D.
- SUPPLIER INFORMATION

Figure 1.2-5. Order Entry Application Data Base Design

16 CICS/VS System/Application Design Guide

Part 2. Data Base Design

17

Chapter 2.1 Introduction

Application Requirements of Data Bases

DATA BASE DEFINITION

The term "data base n may have a different meaning to different online
applications or installations. A general definition of a data base,
which covers most considerations, is:

"A structured nonredundant collection of interrelated
information accessible to many users at the same time."

STRUCTURES

The term "structured" in the definition refers to the organization of
information in a manner by which it can be easily retrieved. The
following two structuring approaches can be used:

• Physical structure

• Logical structure

To require an application program to be aware of the physical
structure of the data base implies that any change to the organization
of information on that data base might also necessitate modification of
the application programs which access the data base.

A logically structured data base is one in which an application
program can refer to information in that data base by name, without
necessarily being aware of the physical organization or location of data
on the data base. The physical structure or organization may be
separately described by a data description table, while the application
program can describe its logical accessing and usage of the data using a
program description table. These tables provide an interface between
the application program and the physical structure of the data base.

The advantage of logical structures is that a change in the data base
generally only requires a change in the relevant tables, often without
necessitating any change in the application programs. This is termed
data independence, and results in reduced maintenance of programs
following modification of a data base.

Data bases which are reterenced by physical structure usually have
limited (or no) data independence, and programs may require considerable
modification following a data base change. However, programs that refer
to data bases logically, exhibit a much higher degree of data
independence. Any data base changes are reflected in the data base
tables and program tables rather than in the program itself.

Chapter 2.1. Introduction 19

DATA REDUNDANCY

The term nnonredundant n in the above definition refers to the ability of
a data base to record certain information (for example, a customer's
name and address) once only, but make that information available to
other programs that use it.

Xraditionally, batch applications and programs are developed with
their own data sets, often disregarding information that is recorded on
separate data sets for separate applications. The result in the
traditional batch environment is the existence of redundant
information--that is, tne same information is often recorded in many
data sets. A change to that information must be propagated through all
data sets to ensure that the information remains in step across all
applications. One advantage in recording information only once, and yet
making that one record of information available to all applications, is
that once that information is changed, the change is reflected across
all applications that use the information. A further advantage
resulting from nonredundant storage of information is storage economy,
either on disk or tape.

COLLECTION OF INTERRELATED INFORMATION

The term "collection of interrelated information" in the definition
refers to the consolidation of information relating to applications at
one common point. The advantages offered by such consolidation include:

• More readily available information

• More timely information

• Elimination of redundant information

• Saving in disk or tape storage requirements

• Easier maintenance of information

• Development of information relationships

m~~ ,~_. _~ __ ~~~~~ ,~~.~~ ~~+~~~ ~~ ~ ~~~n'~~~~ft. ~Att~n+~no n~ n~+~
~u~ ~Q~~ a~YQ"~Q~~ ~~~~~~ ~~~~~~ ~v ~ ~~~U~~~~~"~ ~~.~~~~~~ ~. ~~~~

bases: the determination of the logical re~ationship of all information
refarring to a particular entity. The identification of such logical
relationships of information enables that information to be utilized for
better management of an organization's activities. This information may
have been available previously, but may not have been utilized
effectively before implementing the data base.

Data Base Implementation for Applications

DATA BASE REQUIREMENTS SUMMARY

The most common requirements of data base support are:

• Ability to support the multiple occurrence of information, with the
number of occurrences varying from zero to many

20 CICS/VS System/Application Design Guide

o util ize d.u;k storage most efficiently, uithout reguiring storage
space to be allocated for information ~hich is not present for a
particular record

o Handle variable-length information such as names, addresses, or
textual information for better disk storage efficiency

o Add, change, or delete records in a data base

o Add, change, or delete multiple occurrences of information for a
record

o Nonredundant storage of information

o Data independence

o Access to the data bases by batch and online programs

MULTIPLE OCCURRENCE IMPLEMENTATION

Before examining the various data base support techniques available to
determine hov these can satisfy the above requirements, it is
particularly important to examine the way in which multiple occurrences
of information for a particular data base record can be implemented.
The two techniques are:

• Physically related occurrences

o Logically related occurrences

Physically related occurrences generally are implemented by utilizing
separate data sets. The main "root .. information is stored in one data
set. This may be specific customer data in a customer information
system, account information in a savings bank and loan system, or
product information in an order entry system.

The multiple occurrences of related information are then stored in a
separate data set or data sets, and are related back to the main root
information in the root data set by means of pointers. Furthermore, the
separate occurrences of information relating to a root can be chained by
means of pointers.

For example, in the banking industry, all the accounts relating to a
bank's customers may be recorded in savings and loan account data sets,
with each account record containing pointers vhich refer back to the
customer's root information, such as name and address. Each account
record for that customer may also contain a pointer to the next account
for that same customer in a chain of accounts. A further data set, a
transaction data set, contains deposits and vithdrawals for accounts.
Each transaction refers back to its related account record by means of a
pointer, and to the next transaction against the same account in a chain
of transactions, using another pointer. This is illustrated in Figure
2. 1-1 •

Chapter 2.1. Introduction 21

Savings Loan
Transactions Transactions
Data Set Data Set

F1gure 2.1-1. Savings and Loan Data Base Chaining

The separation of the root information in one data set, with the
variable transaction information in other data sets chained logically to
the root data set and also to other transactions for that same root,
enables standard access methods to be utilized in providing data base
support. The root information may be organized as a standard DAM
(Direct Access Method), ISAM (Indexed Sequential Access Method), or VSAM
(Virtual storage Access Method) aata set. Generally, the transaction
data set would be organiz&d as a DAM data set, or an entry-sequenced
VSAM data set: to enable direct retrie~al of transaction records.
Retrieval of all the transactions relating to a particular root requires
retrieval of the root information itself, followed by retrieval of each
transaction in the chain--with a possible separate physical access for
each transaction.

This physically related chaining technique may be supported by the
CICS/VS file control indirect access feature, which is discussed in more
detail later in this chapter.

The logically related technique for the multiple occurrence of
information generally incorporates the multiple transactions in the same
data set (or data base) with the root information. Most of the
transactions relating to the root information are potentially accessible
in fewer physical disk accesses than for physically related information.
The data base support endeavors to place multiple transactions as close
physically to their logically related root information as possible. For
example, root information such as customer details is recorded
immediately followed by multiple occurrences of information, each
detailing a separate account for that customer and transaction activity
against each particular account.

22 CICS/VS system/Application Design Guide

The data basa support to implem6nt a logically related technique must
enable new information related to the root information to be added to
other information for that root, existing information to be changed, or
information to be deleted. This may require the utilization of
internally controlled pointers and chains whicn are known only to the
data base support and which are transparant to the application program.
The application program may logically regard the mUltiple occurrences of
information as if that information were physically adjacent to the root
information.

Alternatively, the data base support may attempt to physically insert
added information with the root and existing information, thus shifting
along other information in the data base.

The data base support avaLlaDle for such logically related
information is:

• C1CS/VS file control segmented record feature

• DL/1 products

These are discussed in outline in the next section, and in more detail
in the next two chapters.

Data Base Selection Criteria

Several factors should be considered when choosing between CICS/VS
file control and DL/1. The most important of these factors are outlined
in the following sections. ;rhey should be horne in mind when reading
the two subsequent chapters.

DATA BASE PERFORMANCE

Prime consideration in online applicatLon design should b~ given to the
access time for retrieval of information from a data base. Depending
upon the performance requirements of the application, this may dictate
the selection of data base support. For example, if a data set may need
to be accessed through other data sets, it may lend itself to the use of
the C1CS/VS file control indirect accessing feature. Howev~r, if
several data sets have to be indirectly accessed to obtain the required
information, these additional file accesses could have an adverse effect
on online performance.

The particular access method selected with CIC5/VS file control for
the application may affect the performance. For example, the direct
access method (OAK) generally provides excellent online performance.
However, DAM support requires that records be identified by either their
physical location on disk or their relative location in' a data set. The
application, on the other hand, ma1 require that a record be accessed by
a key. In this case, the indexed sequential access method (15AM) may be
suitable, but its use will involve at least two file accesses to
retrieve each record. Furthermore, if many additions are made to an
ISAM data set, the access tim~ for a specific record may increase.

Chapter 2.1. Introduction 23

To overcome some of the aDove limitations, the virtual storage access
method (VSAM) may be best suited. This enables records to be retrieved
directly, based on relative location in the data set, or by key. It
also enables rapid retrieval of information for applications with a high
percentage of additions to the data set.

Another factor which should De considered is the serial scheduling of
concurrently executing tasks, several of which may wish to update the
same record in a data set at the same time (see "Exclusive Control
During Update" in this chapter). CICS/VS will permit only one task to
update a record at a time, and other tasks wishing to update that same
record must wait for completion of the first update. (However, other
records in the data set may be concurrently updated, if required.) This
serialization of updates may affect performance, if application factors
may cause concurrent updating of individual data set records to be
attempted.

DL/I Accessing

DL/I provides a number of access methods which may be used for
satisfactory performance depending upon the requirements of the
application. These access methods are the: Hierarchical sequential
Access Method (HSAM), Hierarchical Indexed sequential Access Method
(HISAM), Hierarchical Direct Access Method (HDAM), and Hierarchical
Indexed Direct Access Method (HIDAM). Refer to the system/Application
Design Guide for the relevant DL/I product for further information about
DL/I access method selection.

The CICS/VS-DL/I interface handles the data base activity from
CICS/VS application programs on a multithread basis. Several CICS/VS
application programs (tasks) may concurrently access the same, or
different, data bases up to a maximum of 255 concurrent tasks for DL/I
DOS/VS, 32 for DL/I ENTRY, or 15 for IMS/VS DL/I. CICS/VS allows
concurrent access to DL/I data bases. To prevent double updating of a
segment there are two scheduling methods available, Intent Scheduling
ana Program Isolation, the choice of which has a crucial effect on
performance.

The CICS/DOS/VS-DL/I ENTRY interface permits multithread access to
DL/I data bases, up to 32 tasks for DL/I ENTRY. In order to prevent
double updating of a segment, DL/I ENTRY uses CICS/VS facilities to
enqueue (bet~een the GET HOLD and the REPLACE calls) on the logical
record that contains the segment to be replaced.

BATCH PROGRAM ACCESS

If the online application data sets require further processing in a
batch environment, this consideration should also be taken into account
in selection of the data base support.

Factors which should be considered are that CICS/VS file control
supports variable-length records within a fixed-length block for VSE
ISAM data sets, standard OS/VS variable-length BISAM data sets, and
blockea records for DAM data sets. VSE ISAM does not support these
variable-length records for ISAM in a batch partition. They can be
accessed in a batch environment by defining them to VSE ISA" as fixed
length unblocked records. However, the batch processing program must
itself deblock the variable-length records from the fixed-length block
returned to it by VSE ISAM.

24 CIes/VS System/Application Design Guide

Neither VSE DAM, OS/VS1, or OS/VS2 BDAM supports blocked records. If
blocked DAM data sets are to be accessed in a batch environment
sequentially, they may be defined as VSE SAH data sets or OS/VS BSAM or
QSAM data sets. In this instance, the sequential access method will
handle deblocking of records.

However, if the batch processing programs need to access these
blocked records directly instead of sequentially, the responsibility
rests with the batch program to define the data set as an unblocked DAM
data set and provide its own deblocking of records within that physical
block.

The use online of the CICS/VS file control indirect access and
segmented record features requires that special coding to support these
features in batch programs be developed by the installation.

The DL/I products support the same access methods and record formats
both online and offline. ~o additional coding is required to enable
batch DL/I programs to access online data bases.

SHARED DL/l DATA BASE (OS)

CICS/OS/VS has a shared DL/I Data Base feature that enables a batch
region to simultaneously use the same DL/I data base as a CICS/VS
transaction. The feature provides full data integrity by protecting
against simultaneous update and by ensuring that if one of the regions
fails then the data base is not left corrupted by the failing region.

If the batch program updates tha data base then the CICS/VS system
should make use of the program isolation scheduling facility. long
running batch updates should be split into small logical units of work
by use of the CHKP call.

The batch program will appear to CICS/VS as another DL/I transaction
so the systems programmer should be aware of overloading the CICS/VS
system.

The CICS/DOS/VS user has a similar shared Data Base Facility provided
by DL/I DOS/VS.

BATCH DATA BASE CREATION

CICS/VS file control provides no facility for creation of the online
data bases, apart from that provided by standard SAM, VSAM, DAM, and
ISAM support. The insertion of indirect access pointers in data sets,
and the preparation and organization of segmented records, is the
responsibility of the user. Generally, special data base creation
programs must be written by the user.

Similarly, no facilities are provided for maintenance of the online
file control data bases in a batch environment. To provide this, the
user1s data base creation program should also be designed to allow a
maintenance capability.

DL/I allows creation and maintenance of data bases through the use of
various utilit~es. Furthermore, because the program is independent of
the physical data base organization and only refers to its logical
organization, considerable flexibility is offered the installation in
data base reorganization and maintenance.

Chapter 2.1. Introduction 25

INSTALLATION DATA BASE SUPPORT DIRECTION

In evaluating each of the selection criteria described above, the system
designer must keep in mind the future direction for his installation in
the use of particular data base support.

CICS/VS file control may be utilized if desired, because CICS/VS has
been identified by IBM as one of its standard data base/data
communications progIam products. However, the CICSjVS installation may
wish to take full advantage of the extensive data base support provided
by DL/I, by using the appropriate CICS/VS-DL/I Interface feature.

26 CICS/YS System/Application Design Guide

Chapter 2.2. DL/I

DL/I Products

This chapte~ is intended as an int~oduction to some of the significant
features of DL/I, as used in the CICS/VS environment. It should not be
conside~ed as a substitute fo~ the DljI p~oduct documentation. No
attempt is made to desc~ib~ the operation of the various DL/I products
in depth, nor to describe in detail the design of DL/I data bases. DL/1
is discussed only in sufficient detail to halp the CICS/VS system
designer to evaluate the various DLjI products and the CICS/VS File
Control facilities as data nase support for online applications to run
under control of CICS/VS. Refer to the appropriate DL/I General
In£~matiQg manual, ~ystem/Application Design Guide, and other OL/1
manuals listed in the preface of this publication for further
information about these DL/I products and the design of DL/I data bases.
Additional information on DL/I, as used by CICS/VS, is given in the
C1CS/VS Application Programmer's Reference Manuals.

crcs/Vs enaoles data bases created and maintained by the following
DL/1 products to be accessed by CICS/VS application programs:

• DL/1/DOS/VS ENTRY (CrCS/DOS/VS only)

• DL/I/DOS/VS tC1CS/DOS/VS only)

• lMS/VS DL/I (ClCS/OS/VS only)

DL/I ENTRY DOS/VS

DL/I ENTRY DOS/VS provides a sUDset of the data base facilities offered
by DL/I DOS/VS. It utilizes VSE SAM and VSAM on which DL/I access
methods HSAM, HISAM, and HDAM are organized. Data bases may be created,
maintained, and operated upon by batch processing programs. In
addition, CICSjVS application programs may retrieve, update, add or
delete information in OL/I ENTRY HISAM and HDAM data bases online. OLjI
ENTRY does not support logging of DL/I activity, and does not provide
data base recovery utilities that are available with Dl/I DOS/VS and
IMS/VS. However, since in an online environment DL/I ENTRY uses CICS/VS
File Control services to map the DL/I access methods HISAM and HDAM onto
VSE SAM and VSAM, the normal CICS/VS recovery functions can be used
where appropriate.

Chapter 2.2. DL/I 21

DL/I DOS/VS

DL/I DOS/VS provides a subset of the data base facilities offered by
IMSjVS (though not necessarily a compatible subset) and utilizes VSE SAM
and VSAM as its standard access methods, on which are organized the DL/I
access methods, HSAM, HISAM, HIDAM, ana HDAM. These access methods are
described later in this chapter. Data bases may be created, maintained,
and operated upon by batch processing programs. In addition, CICS/VS
application programs may retrieve, update, add, and delete information
in DL/I DOS/VS data bases online. Data base recovery utilities are
supplied for data base backout in the event ~f an uncontrolled shutdown
and for data recovery following an unrecoverable I/O error.

IMS/VS DL/I

1MS/VS DL/1 operates under control of OS/VSl or OS/VS2. It utilizes
VSAM as its standard access method ~nd also BISAH and a BDAM access
method called OSAM). DL/I access methods HSAM, HISAM, HIDAM, and HDAM
are organized on VSAM or ISAM/OSA~ (see later in this chapter). Data
bases may be created, maintained, and operated upon by batch processing
programs. In addition, CICS/VS application programs may retrieve,
update, add, and delete information in IMS/VS DL/I data bases online.
Data base recovery utilities are supplied for data base backout in the
event of an uncontrolled shutdown and for data recovery following an
unrecoverable I/O error.

Unless specifically stated otherwise, the following discussion of
DL/I support applies to each of the DL/I products previously described.

Full details of the individual DL/I products can be found in the
appropriate lBa manuals, as listed in the Preface.

DL/I ACCESS FROM CICS/VS

Access to DL/I data bases online from CICS/VS application programs is
achieved using the multitasking facilities of CICS/VS. Any CICS/VS
application programs may concurrently access the same database, up to
the maximum number of active DL/1 tasks specified for the CICS/VS
partition, or the maximum number of concurrent DL/I tasks specified
during initialization of the ,relevant DL/I product with eICS/VS.

DL/I ENTRY permits concurrent data base access up to a maximum of 32
tasks, DL/I DOS/VS up to 255 tasks, and IMS/VS DL/I up to 15 tasks.

DL/I utilities are used to describe the pbysical organization of data
bases and the way in wh1ch programs will logically access the data bases
defined. In addition, a number of DL/I utilities are provided to allow
recovery of data bases in the event of I/O errors or system failures.

28 CICS/VS System/Application Design Guide

Introduction to DL/I

DL/I is a general-purpose data base control system that executes in a
virtual storage environment under VSE, OSjVS1, or OS/VS2. It has been
designed to simplify the user's task of creating and maintaining large
common data bases to be accessed by various applications. Its design is
open-ended, which allows future DL/I functions to be added without
affecting existing functions. DL/I also allows growth to online
applications through an interface with CICSjVS, and, on OS/VS only,
through the data communications feature of IMS/VS.

DL/I has been developed by IBM to serve two application areas:

o Batch processing

• Online processing

In batch processing, single data base transactions requested by
applications ara accumulated and processed periodically against the data
base. Because of the elapsed time, data in the data base is not always
current. The use of batch processing should depend on how current the
user1s information must be, viewed in relation to the cost of other
methods of processing data.

For online processing, IMS/VS DL/I may be used in conjunction with
either the I8S/VS DC feature, or with CICS/OS/VS. With DL/I ENTRY and
DL/I DOS/VS, data communications support is provided only through
CIeS/DOS/VS. The use of online processing, as opposed to batch
processing, enanles a response to be generated for each transaction as
it is requested. This reduces the elapsed time inherent in batch
processing systems and allows the user to maintain current data for his
applications.

Traditionally, data used by application programs is organized in data
sets. Each data set is physically structured to present data in the
physical sequence and format required by the particular application
program, and each program contains a description of the data set
organization and record format·as an integral part of the program (see
Figure 2.2-1). When the same data is shared by many applications
(common data), the data is duplicated on different data sets so that it
can be presented to each application program in the physical sequence
and format required. This duplication uses additional storage space and
results in increased maintanance time and cost, since the same data has
to be maintained simultaneously in many locations. Futhermore, when the
data set organization or record format must be changed, each program
which accesses that data set must be modified to reflect the changes.
This traditional data set approach is illustrated in Figure 2.2-1.

Chapter 2.2. DL/I 29

PROGRAM A

DATA
DESCR.

PROGRAM B

I
DATA
DESCR.

PROGRAM C

~----------------> DATA SET B

DATA DATASETC
DESCR.

Figure 2.2-1. Traditional Data Set Approach

DL/I enables programs to be freed from their dependence on data set
organization and record format. The description of the physical
organization of a data base is removed from programs and contained in a
separate data description table. Each program utilizes this data
description. DL/I extracts the requested information from the data base
to present to the program. This is illustrated in Figure 2.2-2.
Because programs using DL/I arE: no longer dependent upon the physical
organization of data, when the data base organization must be changed,
generally only the data description table need be changed. Programs
which access the data base using the data description in most cases need
not be aware that the data base has changed, and generally need no
modification.

30 CICS/VS System/Application Design Guide

PROGRAM A

PROGRAM B

I

PROGRAM C

J

>
DATA

DESCRIPTION 1-------->
DATA

BASE

(ABC)

Figure 2.2-2. DL/I Data Base Approach

All application data is stor&d in one or more data bases in a
hierarchical fashion; that is, the most significant data resides on
hierarchically higner levels, while less significant but related data'
(dependent data) appears on hierarchically lower levels, as illustrated
in Figure 2.2-3. This hierarchical approach enables programs to view
data in a data base apart from its physica1 organization. Through the
use of a concept called "sensitivity," each application program views
only that data in the data base which it uses. (Sensitivity is
discussed further, in "Logical Data StructurBs," later in this chapter.)

DL/I accesses data in the data base and presents only the information
requested by the program. The data presented to the program by DL/I is
called a "segment." A program requests a segment from DL/I by issuing a
DL/I call.

In practice, a system designer reviews the data requirements of all
applications ~s illustrated at the start of this chapter), then defines
the data base or bases. To create a data base, the user defines to DL/I
a common data structure and format that serve his applications and loads
his application data into that data base.

The definition of the data base is provided by a data base
description (DBD), and a DBD is required for each data base (see Figure
2.2-3). This is generated prior to the loading of data into the data
base, by assembling a set of DBD macro instructions which define the
data base.

Chapter 2.2. DL/I 31

DUI

I' ~ /

I
-

Program Program Data
- Communication Base
- Block Description - Data

DUI Call > iPCB) f-

I
> (DBD) > Base

--
-
-

Program View Data Base View

- --,/'" -........... ---
/ Custom"er '" /

No.!Name

I
I I

Address
Account
Details

rigure 2.2-3. DL/I Data Base Access

The second definition required is the program specification block
(PSB). The PSB defines the data base processing requirements of an
application program. It identifies those sensitive data elements
(segments) in the data base that are available to the application
program which uses the PSB, and the way in which the program views the
data base. Although a transaction may only reference one PSB at a time,
CICS/VS permits a transaction to dynamically change from one PSB to
another through the PSB schedule and te4wination mechanisms.

The PSB is generated by assembling a set of PSB macro instructions
which define the above factors.

Through DL/I's use of the DBD and PSB, application programmers can
write their programs without much regard to the physical structure of
data. Instead, they refer only to segments of data as needed by the
program, without consideration for the physical location of that data in
the data base.

32 CICS/VS System/Application Design Guide

APPLICATION PROGRAMMING INTERFACE

An application program can retrieve, replace, delete or insert data in a
DL/1 data base by means of either a high level programming interface
(HLPI) or a CALL interface. The HLPI uses EXEC DL1 program statements
in a way similar to the use of EXEC CICS statements for interfacing with
C1CS/VS. Further information is given in the DL/1-High Lgyg!
Programming Interface User's Guide.

The HLP1 is available to PL/I and COBOL users under VSE. The CALL
interface is available to PL/I, COBOL and assembler users under VSE and
OS/VS.

A special interface (RQDLI) is available for RPG users.

ADVANTAGES OF DL/I

DL/I provides application independence from access methods, from
physical storage organization, and from the characteristics of the
devices on which the data of the application is stored. This
independence is provided by a common symbolic program linkage and by
data base descriptions external to the application program. A reduction
in application program maintenance is generally realized.

DL/I provides for the reduction, and possible elimination of,
redundant data or sharing of common data. The majority of the data
utilized by any company has many interrelationships that can cause
significant redundant storage of data if conventional organization and
access methods are used. For example, manufacturing and engineering
departments work with subset data which is also useful to quality
control.

The storage organization and access methods employed by DL/1
facilitate data integration with a minimum of data redundancy. However,
if an analysis of a company's data shows that all of the data cannot be
placed in a single common data base, DLjI allows the user the additional
capability of physically structuring the data across more than one data
base. Before DL/I, application programmers frequently did not have the
time or ability to integrate other data with their own data to eliminate
redundancies without the necessity of a major rewrite of the application
programs involved.

Chapter 2.2. DL/I 33

\

Chapter 2.3. CICS/VS File Control Facilities

Introduction to CICSNS File Control

The CICS/VS file control program provides data base support for
application programs executing under its control. It uses the standard
access methods available under VSE and as/VS1 or as/VS2 -- namely the
Indexed Sequential Access Kethod (VSE ISAM or as/vs BISAM), Direct
Access Method (VSE DAM or as/vs BDAM), and Virtual storage Access Method
(VSAM). For the remainder of this chapter, "DAM" will be used to refer
both to VSE OAK and as/vs BDAM, and "ISAM" will refer to both VSE ISAM
and as/vs BISAM.

The facilities provided by the standard access methods are extended
in some cases by CICS/VS file control to provide additional support.
For example, file control supports the following data sets:

• Fixed-length and variable-length records

• Blocked and unblocked data sets

o ISAM, DAM, and VSAM

H~: Fixed block architecture (FBA) devices are supported by CICS/VS
file control using VSAM only.

Extensions provided by CICS/DaS/VS file control enable the support of
variable-length VSE ISAM data sets, which are not part of standard
support provided by VSE ISAM. Similarly, file control provides support
for blocked fixed-length or variable-length DAM data sets, which are not
included in the standard support provided by VSE DAM or as/vs BDAM. The
support of blocked direct access data sets is particularly useful if
those data sets are processed sequentially by CICS/VS programs, as
discussed helo\:f in "Sequential Access (Brow sing) • II CICS/VS file control
allows both direct access and sequ~ntial acces~ to ISAM, DAM, and VSAH
data sets.

A VSAM function provides the ability to reuse a VSA8 data set without
redefinition. CICS/VS support allows reusable files to be defined, via
the SERVREQ= operand of the DFHFCT TYPE=DATASET macro (refer to the
CICS/VS system Programmer's Reference Banual). These reusable files are
available to application and system programmers as temporary files
and/or for test purposes. The user should be aware, however, that there
is no recovery support for reusable data sets; if the system is taken
down for any reason then the file is closed and the data is lost.

Direct Access

Direct access, sometimes referred to as random access, is supported by
file control for ISAM, DAR, and VSAM data sets. The following services
are provided by CICS/VS file control for DAM, ISAM, and VSAM:

• Random record retrieval

• Random record update

Chapter 2.3. CICS/VS File Control Facilities 35

• Random record addition

• Random record deletion (VSAM only)

• Logically open/close data sets

• Exclusive control of records during update operations

• Variable-length ISAM records (both VSE and OS/VS)

• Blocked DAM records

• LOCATE mode, read-only retrieval (VSAM only)

• Mass record insertion (VSAH only)

• Segmented records

• Indirect access

These services anab1e CICS/VS file control to provide data management
support that surpasses OS/VS or VSE data management support in many
areas.

Direct access to data sets is made on the basis of record
identification of the particular logical record to be retrieved. The
record identification may De either a record key in the case of ISAM or
key-sequenced VSAH data sets, or a record location within the data set
for DAM or entry-seguenced VSAM data sets. The use of record keys or
locations for direct access is discussed in more detail under "Record
Ident ification. 1I

Based upon presentation of the appropriate record identification by
the application program, CICS/VS file control will access the data set
requested by the program to carry out the services listed above, and
described in detail in the following sections.

RANDOM RECORD RETRIEVAL

File control will directly access the record identified by the
application program using either key or record location (depending upon
the type of data set) from the specified data set. The application
program issues a file control READ command, identifying by name the data
set to be accessed, the data area within the program into which the
record is to be read, the location in the program which contains the
record identification. The data set name is used by CICS/VS to locate
the relevant entry for that data set in the file control table (FCT).
This entry contains specifications for that data set, such as:

• Access method used

• Record length

• Block length

• Key length (if applicable)

• Key location (if applicable)

This information is not contained within the application program. In
the event of a change to the data set, the relevant changes may be made

36 CICS/VS System/Application Design Guide

to the FC~, without affecting the application program. This provides a
limited degree of data independence.

When the application program issues a READ command, the input
operation begins. The application program uaits until the requested
operation is completed. Any I/O errors on completion, which cannot be
recovered by the access method or by file control, are then returned to
the application program for action.

Although an application program does not continue processing while a
requested I/O operation is being carried out, CICS/VS utilizes the
available processing time during the I/O for other concurrently
executing tasks. Consequently, all tasks are given an equal opportunity
to process, based upon their respective task priorities, while I/O is in
progress. The net result is improved overall performance of all
concurrently executing tasks in the system, even though the full
prOCessing overlap potential of the single task issuing the I/O
operation request is not utilized •.

RANDOM RECORD UPDATE

A record can be directly accessed using a file control READ command, as
described above, for potential subsequent update. An indication that
this record may subsequently be updated is made by the application
program at the time that the READ command is issued, by specifying the
UPDATE operand.

In this case, the record is retrieved as described above for the READ
command. After the application program has updated the record, it
issues a REWRITE command, supplying to CICS/VS the name of the data area
holding the record. The logical record then replaces the original
record on disk.

If the application program does not wish to update the record vhich
was retrieved, it does not issue a HRITE command. The application
program should issue an UNLOCK command.

EXCLUSIVE CONTROL DURING UPDATE

If the exclusive control feature was specified when the file control
routines were generated then file control viII protect record integrity
during updating.

o Exclusive Control and ISA~ Files

CICS/VS maintains exclusive control over an !SAM logical record
that is read for update. If another task attempts to access the
record before exclusive control is released then a lockout viII
occur.

• Exclusive Control and DAM Files

If a DAM logical or physical record is to be updated, CICS/VS will
maintain exclusive control over the physical record. If another
task attempts to access that physical record or if the same task
attempts to access another logical record within that physical
record before exclusive control is released then a lockout viII
occur.

Chapter 2.3. CICS/VS File Control Facilities 37

e Exclusive Control and VSAM Files

V5AM maintains exclusive control over a control interval that
contains a record that is to be updated. If the same task or
another task tries to read or add a new record within that control
interval before exclusive control is released then a lockout will
occur.

RANDOM RECORD ADDITION

Records may be added to a data set through the use" of a WRITE command.
The record identification supplied by the program is used to determine
where the new record will be added.

If the record identification provided is a record key
new records to 15AM or key-sequenced VSAM data sets, the
placed in sequence in the data set based upon that key.
sets, the new record is inserted as close as possible to
record location as described below •.

for addition of
record is
For DAM data
the specified

For fixed-length unblocked DAM records, such data sets must be
initially generated with a number of dummy records interspersed
throughout the data set. A dummy record is one containing hexadecimal
FF in the first byte of the record. The record to be added is inserted
in the first available dummy record location following the specifiEd
record location. If no dummy records are available in the same cylinder
(for VSE), the application program is notified; it may then reissue the
WRITE request for the new record to another part of the data set until a
dummy record is found. When the new record replaces the dummy record,
file control returns the record location where the new record is stored
to the application program in the record identification field.

1~ Record addition is not possible for VSAM files that have been
specified as ICIP. Such files should revert to normal VSAM if
record addition is required.

2. CIC5/VS cannot be used to extend (add a record with a key higher
than any existing record) an 15AM dataset.

For variable-length record DAn Ud~~ sets, CICS/iS file control
attempts to add the new record at the end of the specified track, for
CIC5/DOS/VS, providing there is sufficient space on that track to
contain it. For CICS/OS/VS, a specified number of tracks may be
searched to locate a track on which to add the record. If there is not
sufficient space, the application program is notified, and may reissue
the WRITE reguest for the new record, indicating another track to be
used. When the new record has been successfully written at the end of
the specified track, its record location is returned to the application
program in the record identification field.~mm~m~~

For entry-sequenced VSAM data sets, new records are always added to
the end of the data set regardless of whether they are fixed or
variable-Iangth. The relative byte address of the added record in the
data set is r~turned to the application program~

38 CICS/VS System/Application Design Guide

RANDOM RECORD DELETION (VSAM ONLY)

The file control DELETE command is used to specify the deletion of
records in a VSAM key-sequenced data set. The specified record is
physically deleted. The space occupied by that record is reclaimed and
added to the available free space in the particular control interval
which contained that deleted record.

LOCATE MODE PROCESSING (VSAK READ-ONLY)

The normal mode of processing for file control operations is move mode.
With mode processing of blocked data sets, the logical record .is moved
froa the block into a FMA, and the address of that PiA is presented to
the application program.

Por VSAM data sets, locate mode processing may be specified for read
only operations. With locate mode processing, the address of the
logical record in the control interval is stored in a virtual storage
work area (VSiA). The additional processing required to move the
logical record from the control interval is therefore avoided. However,
locate mode is invalid if a read for update is specified and/or
segmented records are being retrieved.

BLOCKED DAM RECORDS

CICS/VS file control provides for the deblocking of logical records in a
blocked direct access (DAM) data set. This service is provided for Doth
fixed-length and variable-length records. When creating or adding to
blocked DAM data sets, the application program must work with entire
blocks.

The advantage in supporting blocked DAM records is to enable both
direct and sequential access of the data set. The block size should be
such that the physical record retrieved for direct access is maintained
as small as possible, while still providing sufficient blocking to
enable satisfactory performance for sequential retrieval.

CICS/VS will support the update of variable length records within
fixed or variable length blocks provided that the length of the records
is not changed.

VSE ISA! VARIABLE-LENGTH RECORDS

CICS/DOS/VS supports the retrieval and static update (that is, no length
variation) of variable-length records within a fixed-length block under
ISAM organization. These pseudovariable blocks must contain the block
length in the first four bytes in the standard form LLob. Since all
blocks are fixed-length, this value is the same for all blocks. Each
logical record within the block must also reflect the length of the
record in the first four bytes (LLbb). A logical record may not be
continued into the next block. The first byte of any unused portion of
a block must contain a hexadecimal PP.

The addition and deletion of records for a VSE ISAM variable-length
record data set must be handled by the user in an offline batch

Chapter 2.3. CICSjVS Pile Control Paci1ities 39

environment. When creating the data set, it must be defined as fixed
unblocked, and the key for each block must be the same as the last
logical record in that block. The block size must be an even number of
bytes. All records must reside in the prime data area; no overflow
records are allowed.

However, the use of key-sequenced VSAM data sets instead of ISA~
allows the support of both fixed-length and variable-length records,
with the added advantage that the record length can be either increased
or reduced as a result of a record update, addition, or deletion.

DYNAMIC OPEN/CLOSE OF DATA SETS

When the CICS/VS system is initialized, data sets may be specified in
the file control table (FCT) as either open or closed. Closed data sets
may be dynamically opened for accessing at a later time, by means of a
master terminal command. The design techiques described below utilize
dynamically opened or closed data sets.

Data sets may be dynamically closed at certain times of the day, to
prevent access to information from terminals, and may be dynamically
opened when access is to be permitted. In this way, support for certain
online applications may be provided only when desired. If an
application program attempts to access a data set which has been closed,
an error indication is returned to the program.

MASS RECORD INSERTION (VSAM ONLY)

If many records are to be added to a VSAM data set and those records
have keys that are in ascending sequence then significant performance
gains can be achieved by using mass record insertion. This is specified
with the MASSINSERT option of the WRITE command.

VSAM SHARED RESOURCES

VSAM shared resources enable a pool of I/O related blocks, channel
programs, and buffers to be shared among several VSAM data sets. This
permits efficient utilization of storage in an environment in which many
VSAM data sets are open and it is difficult to predict the amount of
activity against a given data set, or in a situation where each
transaction may access several VSAM data sets.

The user indicates in the FCT which VSAM data sets are to share
resources. CICS/VS calculates the maximum amount of resources required
by using the number of strings specified in the FCT for each of the VSAM
data sets that are to share resources and the control interval sizes for
these data sets from the VSAM catalog. CICS/VS then requests VSAM to
build a resource pool large enough for a certain percentage of maximum
amount of resources required. The user can override this percentage and
resource calculation if desired. For example, the user may wish to
override the CICS/iS calculation to reflect specific data set activity
known only to the user.

Storage utilization efficiency obtained by sharing VSAM resources
must be evaluated against the effect on performance. If insufficient
resources are available to satisfy a specific I/O request against a

40 CIes/VS System/Application Design Guide

shared resourc~ data set, the requesting task is placed in a CICS/VS
vait until the necessary r&sources becoce available. CICS/VS provides
statistics (number of strings, buffer sizes, and number of buffers of
each size) to identify the resources allocated. statistics are also
provided to aid in the optimization of these resources to ensure that
sufficient buffers and VSAH strings are available to avoid excessive
task wait time.

If the activity against specific data sets is higher than can be
managed using shared resources, those data sets should be defined in the
FCT as not sharing resources.

Sequential Access (Browsing)

The operations discussed above refer.to direct access. CICS/VS file
control enables DA~, ISAM, and VSAH data sets to be sequentially as well
as directly accessed. This sequential access is sometimes referred to
as a IIbrowse" operation. Data sets to be browsed may be either fixed
length or variable-length, blocked or unblocked data sets.

1 browse operation using CICS/VS file control is analogous to the
sequential retrieval of records from ISA~ data sets, sometimes called
SETL retrieval, in a batch environment. However, a batch program can
only sequentially retrieve records from one logical section of a data
set at a time. On the other hand, CICS/VS enables many browse
operations to be concurrently executed on the same data set, either from
the one task or several tasks. This is referred to as multiple
browsing, and is discussed further below.

BROWSE IN lTUTION

To specify a browse operation, the application programmer identifies the
data set to be orowsed, and provides the record identification of the
logical starting point in the data set for the browse operation. This
logical starting point can be either a specified record location, or
key, or a generic key. For example, if it is desirable to browse an
orders data set, containing orders for products placed by different
branches, a generic key may indicate that browsing is to start with the
first order recorded from a specified nranch. The initiation of a
browse operation is achieved by the application program issuing STARTBR
command.

BROWSE RETRIEVAL

Each record is sequentially retrieved for the browse operation when the
application program issues a READNEXT command. Each READNEXT presents
the next seqUEntial logical record to the application program for
processing. In the case of an IS1M data set or a key-sequenced VSAM
data set, the records are presented in ascending key sequence (except
for a browse operation using relative byte address (RBA) for a key
sequenced data set, when records may be presented in physical sequence).
For a DAM data set, or an entry-sequenced VSAM data set, the records
will be presented in the sequence in which they are physically stored on
the data set.

Chapter 2.3. CICS/VS File Control Facilities 41

BROWSE TERMINA~ION

The browse operation continues with each subsequent READNEXT, until the
end of the data set is reached or it is desired to terminate the browse
operation. This termination is achieved by issuing an ENDBR command.

MULTIPLE BROWSING

A task can issue one or more STAR~BR commands to initiate one or more
browse operations. Each one must have a unique halfword binary value
specified in the REQID operand. This value is then specified in the
REQID operand of corresponding READNEXT commands.

There is no logical limit to the number of browse operations that may
be executed concurrently for the same data set, either from the same
task or many tasks. The only limitation is the availability of data
areas and buffers. This is a factor of the block length, record length,
degree of multitasking, and amount of dynamic storage allocated in the
CICS/VS partition, and number of VSAM strings specified for a VSAM data
set.

The multiple browse technique introduces a number of very useful
system design solutions. For example, an orders data set may contain
orders that are in sequence according to product number as placed from
several branches within a company. If it is desired to retrieve all
product orders from a specific branch, this can be achieved by issuing a
browse operation, starting the browse at the first product number
ordered from that branch. Subsequent READNEXT commands will retrieve
the next product ordered from the branch, until the end of all products
ordered from that branch is reached. At this time the browse operation
may be terminated by an ENDBR command.

However, if the product orders received from several branches are
reported using a terminal, this may imply that the orders data set
should be sorted into the sequence of branch number within product
number.

Generally, online sorting is impractical. Records should be
retrieved in the sequence of branch within product, while still
maintaining the orders data set in the sequence of product ~ithin
branch. This can be achieved by issuing multiple browse operations,
having each browse initiated from the first product order record from
each branch. Each browse operation in effect logically breaks up. the
orders data set into a number of separate order data sets, one for each
branch.

A READNEXT command can be issued for each branch browse operation to
retrieve the orders placed for the first product number in the small
logical data set for each branch. The second READNEXT issued for each
browse operation then retrieves the next product order record for each
branch.

This can continue, retrieving all the information from each branch
relating to a specified product until the application program has
constructed an entire terminal page. At this time, the browse
operations for the products and branches contained on that terminal page
may be terminated by issuing an ENDBR command for each browse.

As previously stated, the technique of multiple browsing enables the
sequential retrieval of information in a sequence different from that in

ij2 CICS/VS System/Application Design Guide

which a data set is organized. This multiple browsing design technique
may open up po~erful data inquiry possibilities for online data sets.

SKIP SEQUENTIAL BROWSING (VSAM ONLY)

Skip sequential refers to the ability to sequentially browse through a
logical section of a data set, and then skip to another logical section
of a data set to continue the same browse operation. In effect, it
provides a direct access capability in the middle of a sequential
retrieval operation. The record identification of the next logical
section of the data set may be moved into the record identification
field set up in the program, and another READNEXT command can be issued.
This will position the browse to the new section of the data set, thus
effecting a skip sequential operation. This technique cannot be used
for DAM or ISAM data sets.

BROWSING BACKWARDS (VSAM ONLY)

The CICS/VS support of this VSAM function allows the user to browse
backwards through a VSAM file.

Once a browse operation against a VSAM data set has been initiated,
the next seguential record toward the beginning of the data set can be
requested by issuing a READPREV command.

The definition of the previous record depends on the type of bro\1se
operation. For browses by key, the previous record is the one which has
a key which is next in descending order. If, however, the records have
identical (non-unique) keys, they are returned in the order in which
they were added to the data set.

Record Identification

As discussed above, data sets supported by CICS/VS file control can be
accessed either directly or sequentially. Records are accessed based
upon the record identification supplied by the application program. The
record identification utilized depends upon the particular data set
being accessed. There are two types of record identifications:

• Record key

• Record location

Chapter 2.3. CICS/VS File Control Facilities 43

RECORD KEY

Record identification baseo upon a key is used to access ISAM data sets
and key-seguenced VSAM data sets. The key may be either a full key for
retrieval of a particular logical record, or a partial '(generic) key, to
indicate a logical point in a data set from which a browse operation is
to commence. This generic key contains sufficient information in the
high-order bytes of the key to uniquely identify the logical section of
the data set. The remaining low-order bytes of the key may be either
binary zeros or blanks. For key-sequenced VSAM, a truncated generic key
may be utilized, with the first byte of the key specifying (in binary)
the number of significant bytes in the generic key which follows.

For instance, the orders data set discussed above for browsing can
utilize a key containing a branch number in the high-order bytes of the
Key, and specific product numbers in the low-order bytes of the key.
For example, orders for product number 1016 from branch number 12 may be
contained in a record which utilizes the key of 121016. The generic key
to enable the first product record to be accessed for branch number 12
would then be the generic key 120000 for ISAM, or 212 for VSAM. The "2"
indicates (in binary) that a generic xey of length two bytes follows,
for branch number 12 in this example.

When a full record key is used to access an ISAM data set, it must
locate a record on that data set with the identical key; otherwise, an
error indication is returned to the application program.

However, when a full record key is used to access a key-sequenced
VSAM data set, any search for relevant VSAM records must be specified
as:

• Full Key Equal - indicates that the kay provided by the application
program is a full key, and failure to locate a record with this
exact key will result in an error indication being returned to the
application program.

• Full Key Greater or Equal - specifies that the record key is a full
key, and that the first data record with a key equal to or greater
than the supplied record Key is to be'retrieved. This is
equivalent to using a generic key in ISAM.

o Generic Key Equal - indicates that the record key is a generic key
with a specified generic length~ A record ~hose key is equal to
the supplied generic key for the number of bytes indicated is then
retrieved. If one cannot be found, a "no re~rd found" condition
is returned to the program.

o Generic Key Greater or Equal - indicates that a generic key is
provided, and the first data record with a key equal to or greater
than this generic key for the number of bytes indicated is to be
retrieved.

An additional advantage in the utilization of record keys is in the
addition of records. When new records are added to the data set, they
are inserted in sequence in the data set based upon their record key
value.

~el~tive Record Numb~~VSAM 0Q!Il: This VSAM support allows users to
define a type of VSAM data set, called a Relative Record Data set
(RRDS), which can be accessed by a relative record number. In the case
of a RRDS, the key to a record is its relative record number, and access
is by this number only.

44 CICS/VS system/Application Design Guide

Alternate Indexes (VSAM Only): This VSAM support allows users to
construct and maintain alt~rnate indexes to a data set thus percitting
access to it via multiple keys. The major difference ~ith an
alternative index is that there can be several records in the data set
which have the same alt8rnative key. The CICS/VS support enables the
user to access his data set via an alternative path and to handle
duplicate keys. The user should be aware that if the data set is going
to be updated then any other indexes may no longer be valid. Egually,
if he has defined his alternative indexes as part of an update group,
the several indexes will automatically be updated by VSAM. These
factors will affect performance.

There is a database integrity exposure in VSE when updating a path
(or paths) and the base dataset at the same time. The VSE Share options
cannot be used to provide such integrity for files accessed in the same
partition.

Also if transactions update a path and the base dataset at the same
time CICS/VS logging will no longer guarantee data base integrity.
Logging will only function co~rectly if all updates are made via a
single path or via the base dataset.

It is strongly recommended that transactions get read-only access via
paths and perform all updates on the base dataset. Failure to do this
may result in loss of integrity of the database. Also, it should be
noted that, under VSE, records retrieved by read-only access via a path
may be invalid if concurrent update activity is taking place, because
the path buffers are not refreshed when an update is performed on the
base data set.

Spanned Records (VSAM Only): CICS/VS does not support VSAH spanned
records.

Reusable Dataset (VSAM Only): This VSAH feature causes the contents of
the dataset to be deleted when the dataset is opened. When the reusable
dataset has been closed, the data in it can be accessed uith another
File Control Table entry which is not specified as reusable.

R~CORD LOCATION

To facilitate retrieval from DAM or VSAM data sets, records are
identified by their locations in the data set. VSAM record
identification is based on relative byte address (RBA) within the data
set. In the case of DAM, the physical block (record) identification can
be on the basis of:

• Actual disk address (MBBCCHHR)

• Relative track and record within the data set

• Relative block number (for CICS/OS/VS only)

If a physical key is recorded for the physical record, it may be
appended to each of the record identifications detailed above. Figure
2.3-1 shows some representative record identification field formats.

DAM data sets with or without physical keys can be accessed. If a
physical key is recorded on disk preceding the data record, the record
identification can indicate the relative track within the data set, and
the key which is physically recorded with the data record to be
retrieved.

Chapter 2.3. CICS/VS File Control Facilities 45

Both blocked and unbloc~ed DAft data sets are supported by CICS/VS
file control. In the case of blocked DAft data sets, additional
information may be provided to identify the logical record within the
physical block. This logical record identification immediately follows
the physical b~ock identification (as detailed above) in the record
identification field provided by the application program. Logical
records may be selected from a physical block based upon:

• Record number within block

8 Record key within block (as illustrated in Figure 2.3-2)

where the location of the record key within each logical record is
defined in the file control table.

CICS/VS file control uses this logical record number or key to
deblock the relevant logical record from the physical block and present
it to the application program.

For VSAM data sets, the record location utilized is a relative byte
address (RBA). VSAM data sets use this relative byte address to
identify the location within the entire data set of information (such as
a logical record) to be retrieved.

PHYSICAL RECORD
(BLOCK) LOCATION

Relative Block No.

Relative Block No.

TTR

TTR

TTR

TTTTTTRR

TTTTTTRR

TTTTTTRR

MBBCCHHR

MBBCCHHR

Block
Reference

PHYSICAL KEY
(IF PRESENT)

-

Key

-
-

Key

-

-
Key

-
-

Physical Key
(if present)

DEBLOCKING
ARGUMENT
(IF BLOCKED)

Record No.

Record Key

Record No.

Record Key

Record Key

Record No.

Record Key

Record Key

Record No.

Record Key

Deblocking
Argument

Figure 2.3-1. DAM Data Set Record Location

COMMENTS

CICS/OS/VS Only

Relative Track and
Record (binary)

Relative Track and
Record (zoned decimal)

Actual Disk Address

Format of Record
Identification Field
in Program

Initially, this appears to restrict the size of the data set.
However, the relative address is maintained in a fullword, enabling a

ij6 CICS/VS System/Application Design Guide

data set to be maintained, contain1ng 2 raised to the power of 32 bytes.
This is equivalent to a data SGt of approxicately 43 billion bytes,
extending over more than forty-three 3330 disk drives.

Records which are written to an entry-sequenced VSAM data set are
never moved until the data set is reorganized. Any additions to the
data set are made at the end of the data set, and the relative byte
address by which that added record may be subsequently retrieved is
returned to the application program.

Using the relative byte address for record identification of a VSAM
data set provides the folloving advantages:

• Operates equally well with fixed-length or variable-length records

• Provides rapid file access, with full rotational position sensing
support even when variable-length records are utilized

The record identification provided by an application program to
access a VSAM data set by RBA is a four-byte relative byte address.
This may be calculated using techniques similar to that used to
calculate a relative record number or relative block number for DAM data
sets, or the relative byte address may be stored as a pointer in
logically related records.

Indirect Access.

CICS/VS file control enables data oases to be constructed. This is
achieved by the use of the indirect access feature of file control,
enabling various data sets to be constructed to identify logically
related records in other data sets. The indirect access feature
utilizes pointers from a record in the data set to logically related
records in other data sets. The pointers can contain the actual disk
address of a logically related record, the relative location of that
record in its data set, or the key of that record. This enables
identification and retrieval of information logically related to the
record being processed.

Indirect access is supported, at the CICS/VS c~mmand level interface,
for VSAM data sets only. Support for other access methods is provided
at the macro level; it is not described in this manual, but further
information is given in the Application programmer's Reference Manual
,Macro Le ve 1) •

INDIRECT ACCESS APPLICATION EXAMPLES

Figure 2.3-2 illustrates a product record in a product data set and the
supplier of that product through a supplier number. This supplier
number is used as a pointer to access a separate supplier data set to
obtain further information about the supplier of the product in
question. The supplier number in the product record becomes a pointer
to the supplier data set and can be indirectly accessed from the product
data set.

Chapter 2.3. CICS/VS File Control Facilities 47

Product
No.

13425

Supplier
No.

8018

Supplier
No.

8018

Figure 2.3-2. Product Data Set Indirect Access

Another example of indirect acces·s is in an insurance policy
information system. In this case, a policy record in a policy data set
contains information ,relating to the policyholder (for example, customer
number or name). If the customer data set is organized in customer name
sequence, the name may be used as a key to retrieve the customer record
relating to that particular policy. In this way, the customer name in
the policy record is used as a pointer for indirect access to further
customer details in the customer data set (see Figure 2.3-3).

Policy
No.

Policy Record

Policyholder

8133462 Smith, John A.

Policyholder

Smith, John A.

Figure 2.3-3. Policy Data Set Indirect Access

An indirectly accessed data set may also contain pointers to other
logically related records in other data sets. The customer record,
indirectly accessed from the policy record, may in turn have a field
which identifies that customer's insurance agent. The identification of
this agent (agent number) may be used to access the related agent record
in·an agent data set (see Figure 2.3-4).

~8 CICS/VS System/Application Design Guide

Policy
No.

8133462

Policy Record

Policyholder

Smith, John A.

Policyholder

Smith, John A.

Agent
No.

68

Agent Record

Figure 2.3-4. Indirect ACCESS to Insurance Agent Data set

Indirect Access Implementation.

The CICS/VS file control indirect access feature enables fields in a
record to be utilized as pointers to logically related records in other
data sets. There is no limit to the number of indirect accesses to
other data sets which may be made through the use of these pointers.
Depending upon the type of data set, the pointer will be either a record
location or a record key.

The data set which contains a pointer field to a logically related
record in another data set is referred to as the index data set. The
logically related data set is referred to as the object data set. An
index data set may utilize several fields in a record to point to
logically related records in several object data sets. These indirectly
accessed object data sets may in turn utilize a field in their records
to point to logically related records in other data sets. These
original Object data sets become index data sets for the next level of
indirectly accessed data set.

INDIRECT ACCESS INITIATION

Indirect access enables a chain to be constructed through logically
related records in many different data sets. Figure 2.3-5 illustrates a
parts data set, which may be organized in part name sequence. This data
set is accessed by means of a part name. The part name record is
utilized as an index to a part number record in the parts data set.
This part number record may in turn contain a supplier number utilized
as a pointer to the supplier data set. In turn, the supplier record may
contain a relative block address ~BA) pointing to an associated
accounts payable record for that supplier.

Chapter 2.3. CICS/VS File Control Facilities 49

Figure 2.3-5. Indirect Access Chain in a Parts Data Base

To initiate an indirect access retrieval, the application program
issues a READ com.and indicating the name of the data set from which a
logically related record is to be retrieved. In the example illustrated
in Figure 2.3-5, the application program may provide a part name key and
specify that a record is to be retrieved from the supplier data set, to
obtain further information about the supplier of that part name. This
is shown in Figure 2.3-6.

Application Program

EXEC CICS READ
DATASET('SUPPLI ER')
RIDFLD(RECDKEY)

Process Supplier
Record

Supplier
No.

82

Figure 2.3-6. Indirect Access Operation

Parts
DataSet ~

'~-------1 SPLR 1821 .
Supplier
Data Set

I I

Supplier
Record

CICS/VS file control automatically retrieves the part name record for
the part name key provided by the program, extracts the part number, and
uses it as a key to retrieve the part number record from the parts data
set. Also, the supplier number is extracted from that parts record and
is used as a key by file control to retrieve the related supplier record
from the supplier data set. This supplier record is the record

50 CICS/VS System/Application Design Guide

requested by the application program and is returned to it for
processing.

In one READ request, CICS/VS file control follows the necessary
indirect access chain, accessing as many data sets as required, to
retrieve the record requested and present it to the application program.
However, the application program is not aware of the number of data sets
indirectly accessed. It appears to the program as if the supplier data
set in the above example is in fact organized in part name sequence,
rather than in supplier number sequence.

By following an indirect access chain in this way, file control must
be aware of the logical relationship between data sets. This is
achieved at system generation when the file control table (FCT) is
generated.

SPECIFICATION OF INDIRECT ACCESS LOGICAL RELATIONSHIPS

As characteristics of each data set are specified in the FCT entry for
that data set during FCT generation, an indirect access relationship
between that data set and another data set may be specified.
Information required to define an indirect access relationship is:

• Location of the field in the record to be used as a pointer to the
indirectly accessed data set

• Length of that field or pointer

• Name of t~e object data set

FILE CONTROL TABLE (FCT)

DATASET=PARTNAME DATA SET SPECIFICATIONS

OBJECT D/S=PARTNO KEY LOC=40 KEY LNG=5

DATASET=PARTNO DATA SET SPECIFICATIONS

OBJECT D/S=SUPPLI ER KEY LOC=32 KEY LGN=3

DATASET=SUPPLIER DATA SET SPECIFICATIONS

OBJECT D/S=ACCTPAY KEY LOC=25, KEY LNG=3

DATASET=ACCTPAY DATA SET SPECIFICATIONS

Figure 2.3-7. specification of Indirect Access Logical Relationships

Chapter 2.3. CICS/VS File Control Facilities 51

All fields in the record which are to be utilized as pointers to
indirectly accessed data sets are identified, together with the data
sets to which t~ey refer, as shown in Figure 2.3-7. This information
defines the data set in question as an index data set and identifies the
indirectly accessed data set as an object data set. These data sets,
when they are subsequently defined in the FCT, are also identified as
index data sets which refer to other object data sets. This is done by
defining the record fields which are to be used as pointers in those
data sets, and the nam~s of the object data sets to which they refer.

A chain of logically related data sets is defined in the FCT during
system generation. When an application program requests indirect access
retrieval, file control identifies a chain on which the object data is
located. It then retrieves each related record in the data sets on the
identified chain in the sequence specified by the FCT, until the related
record in the object data set is retrieved. It is then presented to the
application program for processing.

Indirect access retrieval enables data bases to be constructed
utilizing logically related information in a number of data sets. One
READ command causes all the required indirect accesses to be carried out
until the requested record is retrieved for presentation to the task.
This indirect accessing is carried out asynchronously, enabling other
concurrently executing tasks to continue processing.

UPDATING INDIRECTLY ACCESSED RECORDS

Indirect access retrieval may be carried out with the intention of
subsequently updating the object data set record, if required. This is
indicated by the application program specifying that this indirect
access retrieval is also part of an update operation. When the object
record is retrieved, exclusive control is placed on the VSAM control
interval. The application program issues either a REWRITE command to
write the updated record back, or an UNLOCK command to indicate that the
record is not to be updated, but that exclusive control is to be
released.

DUPLICATES DATA SET

In following a direct access chain through several data sets, the
pointer field in an index data set record can identify a number of
separate records in its relevant object data set. As shown in Figure
2.3-4, a policy record identifies the policyholder by name. The
customer data set in this case may be organized in customer name
sequence, with the name used as a key to access relevant records.
However, there may be several customers with the same name, such as
Jones. To develop a unique key for each policyholder with the name of
Jones, additional information covering first and second names, birth
date, or address must be added to the key. However, adding extra
information to the record key reduces the amount of disk storage
available, and wastes disk storage when additional identifying
information is not used.

To overcome this proble~, CICS/VS file control provides an additional
capability with the indirect access feature, to enable duplicate records
to be identified. This is achieved by utilizing the first byte of a
pointer field in an index data set record. This first byte contains a
unique code which cannot otherwise occur as part of the key. In the
case of customer Jones, the first byte of the customer name field in the

52 eICS/VS System/Application Design Guide

policy record can contain a unique code, for example, hexadecimal FF, as
shoMn in Figure 2.3-8. This is immediately followed by the customer
name (Jones in this cas~). The hexadecimal code FF identifies this as a
pointer to several records with the sam8 key. The key is utilized to
access a separate duplicates data set, rather than the normal object
data set. In this example, the key Jones is used to access a "duplicate
customer" data set that contains one record with the name key of Jones.
This duplicatE record may in turn contain information enabling further
identification of customers with the name Jones.

Duplicates Key Coded Keys

Figure 2.3-8. Duplicates Data Set for Indirect Access

DUPLICATES DATA SET IMPLEaENTATION

The definition of a duplicates data set associated with a particular
index data set is specified in the FCT as part of the index data set FeT
entry. This indirect access PCT entry identifies the location and
length of the pointer field in the index record and the name of the
object data set. In addition, the user-specified duplicates code in the
first byte of the pointer is defined, together with the name of the
duplicates data set.

Even though an indirect access chain is followed through several data
sets, the first byte of the pointer field to be used in a record is
examined by file control to determine whether it is a duplicates code
defined for that index data set. If it is, the duplicates data set is
accessed using that pointer, instead of the defined object data set for

Chapter 2.3. CICS/VS File Control Facilities 53

that index record. The indirect access chain is broken at that point,
and the duplicates record is returned to a user-supplied duplicates
routine in the application program for further processing, instead of
returning the requested object data set record. The function of the
user-supplied duplicates routine is to examine the information presented
in that duplicates record, and uniquely identify the pointer to be used
to retrieve the next record in the indirect access chain. This
identification can be made either by the application program itself, or
by a request for further information from the terminal operator if
necessary (see Figure 2.3-8).

The duplicates data set feature becomes a powerful capability,
enabling unique record identification problems to be resolved so that an
indirect access chain can be maintained through the various logically
related data sets.

ADDITIONS TO INDIRECT ACCESS DATA SETS

Records can be retrieved using the indirect access data set, either for
processing only (READ), or for subsequent update (READ with UPDATE).
The updated object record can be written back with a REWRITE command, or
ignored by issuing an UNLOCK command.

However, when adding new records to data sets which are indirectly
accessed, care must be exercised to ensure that the indirect access
chains are correctly maintained.

Records can be added to data sets which are part of an indirect
chain, using the procedures described in the topic "Direct Access."
When constructing new records, the indirect access pointer fields must
be correctly positioned, and must contain the correct information for
record identification to access the object data set referenced by that
particular index pointer.

The order in which new records are added to indirect data sets is
Significant, depending upon whether a record key or a record location
pointer is utilized. If all the indirect access pointers are record key
pointers (for example, to be used for accessing key-sequenced VSAK data
sets), the order in which additions should be made to the indirect data
sets is not particularly significant. However, if some or all of the
pointers are record location fields for use with VS!~ data sets, the
order becomes significant, because the actual locations of the added
records are not known until the addition is completed.

54 CICS/VS System/Application Design Guide

INPUT PROCESSING OUTPUT

ttJL>
lowest R.cord
To Add

1 U~er Program Adds Record To lowest le.el
~

~ Data Set In Indrre!:t Ac~ess Chain. FrrS!. lowe~t

le.el
lowest ~X Data Set
le.el
Data Set 2 CICSIVS Returns loc.t,,:m Of Add"d Record :> I Record r-~

To Progr.m. loutron _

3. Program Inserts Record location Of Added
Jl

ore
Higher Record ~ Record As POinter In Reco·d To Be Add"d locn
To Add To N"xt HighI" Data Set

~

~II Higher
4. Program Adds Record To Next Higher le.e l > le.el > Ddta Set In Indrr"ct Access Chain. le.el

Data Set Data Set

I Record New Rec
location -> >

r Reed I
Highest Record > 5. CICS/vS Returns Record location. loen
To Add

6. Program InserlS Th,; In Record To Be

~
Added To Highest l.e.el Data Set. ll~1 Highest ~ 7. Program Adds Record To Highest level level

level Data Set. Data Set
Data Set

~. -----

Figure 2.3-9. Addition of Records to Indirect Accessed Data Base

Additions to an entry-sequenced VSAM data set are made at the end of
the data set, as discussed under the topic "Direct Access." The record
location (RBA) of the added record is returned to the application
program. This RBA may be utilized as a pointer from an index record to
that new added record. Figure 2.3-9 shows how indirect access chains
for entry-sequenced VSAM data sets may be built up. Records are added
at the lowest indirect access level first, and the RBA pointers returned
to the application program are utilized as indirect access pointers in
the next higher indirect access level. This progresses upward through
successively higher indirect access levels until the highest indirect
access level record has been added to its associated data set.

INDIRECT ACCESS CHAIN INTEGRITY

Special consideration should be given to the possibility of system
failure during the addition of an indirect access chain. If a system
failure occurs before all the logically related records·are added to
their relevant data sets, an incomplete direct access chain will result.
Accordingly, techniques discussed in Part 5 should be utilized for
journaling any indirect access additions, to enable incomplete indirect
access chains to be backed out on restart if necessary.

Normally, new indirect access chain records should be added offline
to the data sets. However, adding these indirect access record chains
online using the preceding technique is required to reduce the

Chapter 2.3. CICS/VS File Control Facilities 55

vulnerability of those data sets to system failure, and it is advisable
to ensure that only one direct access chain be added at a time. This
may be achievea by all application programs that generate new indirect
access chains enqueuing on the same single user resource prior to
commencing an indirect access chain addition. On successful completion
of the entire indirect access chain addition, the application program
can dequeue itself from the single user resource. By utilizing CICS/VS
ENQ and DEQ commands, only one task at a time will be able to carry out
an indirect access chain addition. While this may have an effect on
online performance, depending upon the freguency of adding new chains,
it will result in a definite improvement in the integrity and safety of
the various data sets in the event of a system failure.

Segmented Records

The CICS/VS file control segmented record feature enables data sets to
be constructed for efficient use on disk and dynamic storage space,
including those data sets containing a considerable amount of variable
length information and which have various fields that are either present
or absent in specific records.

The segmented record feature considers a record to be comprised of a
number of segments - each segment containing one or more related fields.
For example, in a customer data set (see Figure 2.3-10), the customer
name may be defined as one segment and each address line as another
segment. A number of customer account history fields containing the
balance outstanding (current, one Month, two months, three months, and
over three months) may comprise another single segment.

Postal Address)
Customer Credit Customer
Number Limit Name Line 1 Line 2 Line 3 Line 4 Line 1 (

6 bytes 6 bytes 20 bytes 20 bytes 20 bytes 20 bytes 20 bytes 20 bytes

1 Ship-To-Address Account History - Arrears

Customer

(Line 2 Line 3 Line 4 History Current One Two Three Over Three
Balance Month Months Months Months

20 bytes 20 bytes 20 bytes 60 bytes 6 bytes 6 bytes, 6 bytes 6 bytes 6 bytes

o Record Format: Fixed-Length

• Record Length: 282 Bytes

Figure 2.3-10. Typical Customer Record Format

Another example of segmented records is shown in Figure 2.3-11, which
illustrates a savings account data set used in the banking industry.
The account master information may be defined as one segment. Each
deposit or vithdrawal transaction made previously against the account
may also be defined as a segment.

56 CICS/VS System/Application Design Guide

Account Master
Information

Previous Transactions) Against This Account

Account Account Current Other Passbook Passbook No Book
Passb ((

Number Type Balance Account Withdrawal Deposit Deposit With
Details

No Book Passbook Unused
Withdrawal Withdrawal Deposit

Figure 2.3-11. Typical Savings Account R~cord Format /

SEGMENT DESIGN

Generally, fields are grouped within one segment if they have some
similar relationship, such as similar information which will be operated
upon together by various programs, or fields which are either all
present or all absent for a particular record, or single fields which
may contain variable-length information such as name or address lines.

A segment may contain any number of fields up to a total segment
length of 255 nytes. Segments may be further defined as either fixed
length segments, or variable-length segments vhose lGngth is indicated
by a one-byte binary field at the start of the segment.

consider the storage of a customer name and address in the record
format shown in Figure 2.3-10. How many bytes should be allocated for
the name field? Should each name field be allocated 20 bytes or 30
bytes or 15 bytes? Depending upon the characteristics of various
customer names, a 30-byte name field could contain every possible name,
whereas a 20-byte name field may contain 95% of customer names, and a
15-byte name field only 80% of names. Using the 30-byte name field will
avoid the necessity of abbreviating or reducing the lengths of names, as
would be necessary using 20-byte or 15-byte fields. However, the great
majority of names may be less than 15 bytes. In this case, 15 bytes or
more of disk space in each customer record is wasted if a 30-byte name
field is allocated.

How many bytes should be allocated to each address line? Allocation
of 30 bytes for each address line may enable every possible address line
to be stored in full, while 20-byte or 15-byte address lines may require
some form of abbreviation. Again, the use of 30-byte address line
fields may result in wasting approximately 15 bytes or more per address
line, because the majority of address lines may fit within 15 bytes.

Another consideration is the nu~ber of address lines to allocate for
a customer record. Many customer addresses have two or three address
lines, while some may require six or more address lines. Should six
address lines be allocated for each customer record? Should instead
three address lines be allocated, reducing longer addresses to three
lines, but wasting an address line field in the case of a two-line
address?

The segmented record feature enables record format definition
problems such as these to be easily resolved. The customer name and
each customer address line may be defined as separate segments.
Furthermore, they may be defined as variable-length segments such that
for one additional length byte at the start of each segment, the exact
length of that segment can be indicated. Thus, a five-character

Chapter 2.3. CICS/VS File Control Facilities 57

customer name wou1d occupy five bytes p1us one byte for the length
indication - a total of six bytes. However, a 25-byte customer name
would occupy a total of 25 plus one or 26 bytes, while a 14-character
name would occupy a total of 15 bytes. On1y the amount of storage
required for each individual name need be allocated, for more efficient
disk storage utilization.

Figure 2.3-12 shows that each address line segment may be defined as
variable-length, with the actual length of each address line occupying
only that many bytes, together with an additional byte per address line
as a length indication. Names and addresses need not be abbreviated,
but may occupy as little or as much disk storage as required.

Variable
Format
Length
4 Bytes

4 bytes ----,
Varible
Length

Customer
Number

Root Segment

15 bytes
"

Credit Segment
Limit Presence

Customer
Name
Segment

12 bytes

Postal Address Segments

Line 1

13 bytes

Line 2

9 bytes
,~~~

* Customer * Postal * Postal *
L Name L Address L Address L

Line 3

7 bytes

Postal
Address

..

Account History
Segment

30 bytes

Account History
Arrears (Months)

....

Control Indicators Line 1 Line 2 Line 3 Cur. 1 2 3 Over
LUSt)

* L = l-Byte Length Field For
Variable· Length Segments

**LLM = 4-Byte Variable-Length
Record Control

• Record Format: Variable-Length

• Length Of This
Customer Record: 90 Bytes

• Original Record Length
If Not Segmented: 282 Bytes

Figure 2.3-12. Segmented Customer Record Format

PRESENCE OR ABSENCE OF SEGMENTS

Bal. 3

A further advantage of variable-length segments is that segments may be
defined as being either present or absent on an individual record basis.
In Figure 2.3-11, eight address line segments are defined for each
customer .record •. However, if only three address lines are required,
only three address line segments need be present for that record (see
Figure 2.3-12). T.he remaining five possible address -line segments are
not present, and do ~ot occupy any disk space.

ROOT SEGMENT

Fields which are always present in every record, such as a customer
number, credit rating, and other required information for each record,
are generally gro~ped together into one segment. This is called the
root segment and precedes all other segments in the record. This
segment is always present in a segmented record.

58 CICS/VS System/Application Design Guide

SEGMENT INDICATOR FLAGS

The presence or absence of other segments in the record is indicated by
segment indicator flags. These indicator flags are contained within the
root segment, and may comprise either bit indicators or halfword
indicators.

Bit indicators use a separate bit to indicate the presence or absence
of each specific segment. If the segment associated with a bit is
present, that bit is turned on. However if the segment associated with
the bit is absent, that bit is turned off.

Halfword indicators utilize two bytes to indicate the presence or
absence of each segment. The two bytes are used as a zero/nonzero
switch. If the two bytes are nonzero, the associated segment is
present; if the two bytes are binary zero, the associated segment is
absent.

COBOL programs must use half word indicators.

Figure 2.3-18 illustrates the use of segment indicator flags, and
relates to the customer record shown in Figure 2.3-12.

SEGMENT DEFINITIONS IN FCT

While it is the responsibility of the system programmer to specify
segments in the FCT, it is important that the system designer have a
general understanding of how segments are defined, to better understand
the operation of the CICS/VS segmented record feature. This will enable
him to take advantage of facilities offered by this feature when
initially designing the various data bases which will be utilized by the
application.

Either bit indicators or halfword indicators may be used with a
particular segmented record data set, but not both. The selected type
of indicators is specified in the file control table (PCT) entry for
that segmented record data set. As many bytes as required to contain
all of the necessary segment indicator flags ~p to a maximum of 99
segment flags) must be defined within the root segment. The starting
location, and length in bytes, of the segment indicator flags field in
the root segment is also defined in the FeT entry for a segmented record
data set. See Figure 2.3-13.

Each separate segment is then defined in the FCT entry (see Figure
2.3-14). Every segment is allocated a segment name up to 8 characters
long, and is specified as a fixed-length segment or a variable-length
segment of a definec maximum length. In addition, any required boundary
alignment (byte, halfword, fullword, or doubleword) necessary when the
segment is read into storage is identified. As each segment is
presented to the application program for processing, the segment is
aligned on the specified boundary_ However, the extra bytes required to
ensure specific boundary alignment are not recorded on disk; they are
inserted when the record has been read from disk and before the segment
is passed to the application program. .

An application program may utilize several segments in a record for
processing. These segments may be grouped together and called a segment
set. By identifying a segment set by name, all the segments comprising
that segment set are also identified.

Chapter 2.3. CICS/VS File control Facilities 59

consider a customer data set in the utilities industry, as shown in
Figure 2.3-15. An application program which requires access only to the
customer name and address may reguest a segment set comprised only of
the customer name segment and each of the postal address line segments.
This may be uniquely identified as a segment set which is given a
specific name, such as NAMEADDR.

Root Segment Customer
Name

Postal Address Segments
Variable
Format
Length
4 Bytes Segment Line 1 Line 2 Line 3

7 bytes

Account History
Segment

30 bytes 4 bytes ... ____ 1.5 ... b"'Ay.te.s ____ 12 bytes 13 bytes 9 bytes
----;- ,~~~ --'''--

Varil?le
Length
Control
LLlSlS

Customer
Number

Credit
Limit

Segment
Presence
Indicators

* Customer
L Name L

Segment Indicator Flags

Postal
Address L
Line 1

Postal
Address
Line 2

Account History
Postal Arrears (Months)

L Address I--...,.---..-..,...._----t
Line 3 Cur. 2 3 Over

Bal. 3

• Record Format: Variable-Length

• Length Of This Customer
Record: 90 Bytes

• Original Record Length If
Not Segmented: 282 Bytes

* L = 1-Byte Length Field For
Variable-Length Segments

** LLlSlS = 4-Byte Variable-Length
Record Control

Flag I I
Number 1 ,1 I 1 I 1 I 0 I 0 10 , 0 0 I 0 I 1 I I I I I , 'I ,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

• Segment Indicator Flags Indicate The Presence Or Absence Of Segments.

• 1 Bit or 2 Bytes May Be Used To I ndicate The Presence Or Absence Of Each Segment. Here, Bit Indicators
Are Used.

• Flag 1 Refers To The First Segment After The Root, That Is, Customer Name. Flag 2 Refers To Postal Address
Line 1, Flag 3 Is Postal Address Line 2, And So On, Up To Flag 11, Which Is Account History.

o A Bit ON Indicates The Relevant Segment Is Present; A Bit OFF Indicates The Segment Is Absent.

• The Example Here Shows That Customer Name, A 3-Line Postal Address, And Account History Are Present In
This Particular Customer Record.

• Bits 12 Through 26, In This Example, Are Not Used. They Have Been Allocated To Enable Another 13 Segments To Be
Added To This Record Later, For Other Applications, Without Necessitating Any Modification To Existing Application
Programs.

Figure 2.3-13. Seqment Indicator Flags

60 CICS/VS system/Application Design Guide

6 bytes 6 bytes
-----"'-;

Customer Credit Customer
Number Limit Name

Data Set .. Customer

DATASET=CUSTOMER

SEGMENT=ROOT

SEGMENT=NAME

SEGMENT=ADDR1

SEGMENT=ADDR2

SEGMENT=ADDR3

SEGMENT=ADDR4

SEGMENT=SHIP1

SEGMENT=SHIP2

SEGMENT=SHIP3

SEGMENT=SHIP4

SEGMENT=HISTORY

SEGMENT=AR REARS

Figure 2.3-14.

20 bytes 60 bytes 6 bytes , ,...-----..., ...
Postal Address Ship-To-Address Account History - Arrears

U" 1 1 u" 'I u" 31 u" 'I u" 1 u" ,I u" 31 u,,'

Customer
History """,,, 1 0" 1 Tw, 1 Th'" 1 0", Balance Month Months Months Three

Months

File Control Table (FCT)

DATA SET SPECS

LENGTH=15 BITINDICS I START=12 I LNG=3

VARIABLE 20 BYTES (MAX) BYTE ALIGN

" 20 " "

" 20 " "

" 20 " "

" 20 " "

" 20 " "

" 20 " "

" 20 " "

VARIABLE 20 " BYTE ALIGN

FIXED 60 BYTES WORD ALIGN

FIXED 60 BYTES WORD ALIGN

Segment Definition in FCT

• Record Format: Fixed-Length

• Record Length: 2B2 Bytes

Segment Definitions
For Dataset = Customer
(See Record Format Above)

Chapter 2.3. CICS/VS File control Facilities 61

6 b t yes 6 b tes y ,
~...-"--..,.

Customer Credit Customer

Number Limit Name

Dataset = Customer

DATASET=CUSTOMER

SEGMENT=ROOT

SEGMENT=NAME

SEGMENT=ADDR1

SEGMENT=ADDR2

SEGMENT=ADDR3

SEGMENT=ADDR4

SEGMENT=SHIP1

SEGMENT=SHIP2

SEGMENT=SHIP3

SEGMENT=SHIP4

SEGMENT=HISTORY

SEGMENT=ARREARS

SEGSET=NAMEADDR

SEGSET=ACCOUNT

Figure 2.3-15.

. 20 bytes 60 bytes 6 bytes
,

,~r ...
Postal Address Ship-To-Address Account History Arrears

Uoe 1 1 u"' ,I Uoe 'I Li", ,I Lioe 1 L;oe ,I UO, ,I Uo,'

Customer

Co'''o, 1 0o, 1 T ~ 1 ,"", 1 0", History
Balance Month Months Months ~:~~hS

File Control Table (FCT)

DA T A SET SPECS

LENGTH=15 BITINDICS I START=12 I LNG=3

VARIABLE 20 BYTES (MAX) BYTE ALIGN
,.

20
,. ,.

" 20
,. ,.

" 20 " "
,.

20 "
,.

" 20 " ,.
,.

20
,.

"
,.

20
,. ,.

VARIABLE 20 " BYTE ALIGN

FIXED 60 BYTES WORD ALIGN

FIXED 60 BYTES WORD ALIGN

(ROOT) NAME ADDR1 ADDR2 ADDR3 ADDR4

(ROOT) NAME ARREARS

segment Set Definition in FCT

• Record Format: Fixed-Length

• Record Length: 282 Bytes

Segment Definitions
For Dataset = Customer

}

Segment Set
Definitions

Another application program may require access only to the customer
name and account history segments in Figure 2.3-15. These segments may
be defined in a separate segment set which may be given a unique name
such as ACCOUNT. The application program in this way indicates that it
is sensitive only to segments in the specified segment set.

62 CICS/VS system/Application Design Guide

SEGMENT RETRIEVAL

When the application program wishes to retrieve a specified segment set
from a segmented record, it provides information for the identification
of that record, such as a record key or record location field,
identifies the data set to be accessed by name, and then identifies the
segment set by name to be presented to the application program (see
Figure 2.3-16).

INPUT PROCESSING OUTPUT

PROGRAM

EXEC CICS READ

INTO (RCDAREA)

/ DATASET ('CUSTOMER')
LJO.

1. Program issues READ for

/
RIDFLD (KEYFIELD) Segmented Record.
SEGSET ('ACCOUNT') \

"
FILE CONTROL TABLE

CI CS/VS Locates Entry DATASET=CUSTOMER "> 2.
in FCT for Data Set.

J
SEGSET=ACCOUNT

"""

I Buffer I
/ {j (

Data Set
((Customer) "l 3. CI CS/VS Retrieves Record

from Data Set into

1 Buffer

CI CS/VS Locates Segments 4. nn in Specified Segment Set
in Buffer.

Buffer
Data Area

I Root I Name I I Arrs (RCDAREA)

I Root I Name J Arrs J

'--- 5. CI CS/VS Moves Specified iLfLif
Segments to Data Area.

Figure 2.3-16. Segment Retrieval

Pile control uses the record identification field to access the
required record from the specified data set. The segment set name is
then used to identify the particular segments making up that set. Each
of the segment names in the segment set is defined in. the FCT entry as
being fixed-length or variable-length, of a specified maximum length,
and requiring specified boundary alignment. Segments are assumed to be
in the same sequence in the record as the sequence in which they are
defined in the FCT.

The segments in the segment set are extracted from the record by file
control. These segments are presented to the application program
together with the root segment, as if only those segments were present
in the record on disk (see Figure 2.3-18). Other segments which are not

Chapter 2.3. CICS/VS File Control Pacilities 63

part of the segment set are ignored, and are not presented to the
application program.

The presence or absence of segments in the record passed to the
program is indicated by the status of the segment indicator flags (see
Figure 2.3-13). These segment indicator flags are located within the
root segment, and each flag is tested by the application program to
determine whether it is on or off, and hence whether its associated
segment is present or absent. The first segment indicator flag (which
may be a bit flag, for example) indicates the presence or absence of the
first segment in the record following the root segment. The second
indicator flag specifies presence or absence of the second segment in
the record following the root segment, and so on. These indicator flags
specify the presence or absence of all segments within the record, not
only those segments in the segment set passed to the program.··

The use of DSECTs or structures in application programs can simplify
the testing and manipulation of segment indicator flags. If the
appropriate DSECT or structure defining all indicators is copied into
the application program when it is compiled, the use of installation
controlled labels for each indicatoL may be achieved. The application
programs may then be less sensitive to changes in segments, a segment
change being made to the DSECT or structure and the progra.s then
recompiled.

SEGMENT UPDATING ~EY-SEQUENCED VSAM)

Application programs may replace segments, delete segments, or add new
segments. However, the extent to which new segments may be added
depends upon the particular access method used for the data set. If
DAM, ISAM, or entry-sequenced VSAM data sets are used for the segmented
record data set, the total segmented record length may not be increased,
but may be reduced if required. (An exception is with as/vs varianle
length ISAM records, where the segmented record length may be increased
if necessary.) With key-sequenced VSAM data sets, the segmented record
length may be increased, either through the addition of new segments to
the record or by a change in tha length of existing segments. The
increased record length is regarded by file control as a replacement of
the previous segmented record and is handled in much the same way as the
addition of a new record to the data set. That is, records which follow
the lengthened record in the same control interval are shifted to the
right to enable the increased-length record to be inserted.

If it is necessary to increase the length of DAM, ISAM, or entry
sequenced VSAK segmented records, a different technique, segment
updating, must be utilized.

SEGMENT UPDATING .(DAM, ISAM, AND E~TRY-SEQUENCED VSAM)

when it is determined that a segmented record in a DAM, ISAM, or entry
sequenced VSAM data set will be increased in length because of the
addition of a new segment, or the increase in length of an existing
segment, the original segmented record retrieved must be updated by the
application program to indicate that that record is now obsolete. This
may be specified by the program placing a logical delete flag in the
root segment as shown in Figure 2.3-17.

64 CICS/VS System/Application Design Guide

Obsolete Segmented Record

Segmented Record

Updated Segmented Record

(Length Increased)

Figure 2.3-17. Segment Updating, with Length Increase in DA!, I5AM, and
Entry-Sequenced VSAM Data Sets

The increased-l€ngth record may be written by the user program to a
separate user-defined "overflow" data set. The location of that
increased-length record in the overflow data set may be inserted as a
record pointer field in the root segment of the original record (see
Figure 2.3-17) • The logical delete flag in the root segment may ba
utilized as the record pointer field. If this record pointer field is
zero, it indicates that the segmented record is current. However, if
the record pointer field is nonzero, it indicates that the segmented
record has been logically deleted and replaced by another record in the
overflow data set. The record pointer may be utilized by the user
program as a record key, or record location pointer ~epeDding upon the
particular data set it points to). It directs the application program
to the new current segment in the overflow data set.

With this technique, an increase in length of a segmented record may
be logically supported using DAM, ISAM, or entry-sequenced VSAM data
sets. The increased-length record is first written by the user program
to the overflow data set. The record location field returned by CICS/VS
as a result of that addition, or the record key for ISAM, is then
inserted into the record pointer field in the root segment of the record
in the segmented data set (See Figure 2.3-17).

On subsequent retrieval, the application program first tests the
record pointer field in the root segment. If the pointer field is
nonzero, the application program uses that pointer as a record
identification to the more current segmented record in the overflow data
set, and retrieves that current segmented record for processing. The
overflow data set must be specified during PCT generation as having the
same segments, and segment sets, as the original segmented data set.

If a segment is to be updated with no change in length, that update
is effected and the segments are presented by the program to CICS/VS to
be written back to the data set by means of a REWRITE command. If the
length of a variable-length segment is to be reduced, the length byte is
modified to reflect the new length of the updated segment •. This segment
is then 'written back to the data set by issuing a REWRITE command. File

Chapter 2.3. CICS/VS File Control Facilities 65

control blocks up each segment in the segmented record, removes any
boundary alignment bytes, and uses the length byte in variable-length
segments to allocate a sufficient 'number of bytes to contain contents of
that segment.

To allow for a potential increase in length after a READ with UPDATE
command of variable-length segments, or the addition of a new segment
which was missing in the segmented record, CICS/VS file control will
present the application program with a segmented record containing space
set aside for each segment, whether present or absent, based upon either
the fixed length of that segment, or the maximum variable length of that
segment.

SEGMENT DELETION

A segment may be deleted if the application program turns off the
relevant segment indicator in the root segment. File control then
physically deletes that segment when it writes the segmented.'record back
to disk.

FIXED- AND VARIABLE-LENGTH SEGMENTED RECORDS

CICS/VS segmented records may be either fixed-length or variable-length.
For fixed-length records, the actual segmented record may be less than
the allocated fixed-length record size. Slack bytes are therefore used
at the end of the segmented record to make up the specified fixed-length
record. Segmented records which are variable in length because of
variable-length segments, or the absence of particular segments, may be
specified as variable-length records (see Figure 2.3-18). In this case,
variable-length records enable more efficient disk storage utilization.

Fixed-Length Record

Segmented Fixed-Length Record

Variable- Length Record

Segmented Record

Segmented Variable-Length Record

Figure 2.3-18. Segmented Record Disk Utilization

66 CICS/VS System/Application Design Guide

CREATION AND MAINTENANCE OF SEGMENTED RECORDS

CICS/VS file control provides no facilities for the creation or
maintenance of segmented records. These records must be created
offline, with the various segments (either fixed- or variable-length)
blocked by user programs. The offline user program must set the
relevant indicator flags, to specify the presence or absence of each
segment in that segmented record. Once segmented records have been
created offline, they may be retrieved online using the CICS/VS
segmented record feature. In the event of addition of new segments or
deletion of existing segments online, the online application program is
responsible for determining that the appropriate bit or byte indicator
flag is on or off, and turning on the appropriate indicator for a
segment which has been added online, or turning off the indicator for a
segment which is to be deleted online. CICS/VS will examine these
indicator flags when the record is to be written back to disk, and take
the appropriate action to either delete the segment or increase the
segmented record length if necessary to allow for an added segment.

with the availability of the built-in bit manipulation function,
Assembler, PL/I, and American National Standard (ANS) COBOL application
programs may test bit indicator flags and set bit indicator flags on or
off. Consequently, the use of halfvord indicator flags for ANS COBOL
programs is not necessary, and all indicator flags may be maintained as
bit flags.

ADVANTAGES OF SEGMENTED RECORDS

The principal advantages in the use of the segmented record feature are
described below.

Through the use of variable-length records, variable-length segments,
and omitting unused segments, only that amount of disk storage required
for storage of the information relevant to each. record need be
alloca te.d.

On an application program READ command, the entire segmented record is
read into the a buffer area. The segments making up the segment sets
requested by the program are extracted by CICS/VS from the record in the
buffer, and are moved into the data area specified in the READ command.
At this time, if the application program did not indicate that the
record will subsequently be updated and written back, CICS/VS file
control releases the buffer storage, and transfers only the requested
set of segments to the dat.a area. Consequently, the amount of main
storage used in processing those segments is only as large as the
segments themselves. No additional dynamic storage is utilized for
segments which are not being processed.

Chapter 2.3. CICS/VS File Control Facilities 67

Because an application program identifies only that set of segments
which are significant to it, the modification of segments in the data
set which are not relevant to the program concerned requires no
modifications to that program. Limited data independence is thus
achieved with a consequent reduction in the amount of program
modification folloving a change to the record format or data set
organization.

A further consideration of data independence is that additional
segment indicator flags may be allocated in the root segment to allow
for the addition of future segments. If bit indicators are used, each
additional byte of bit flags will enable up to eight segments to be
added to the end of the segmented record. When these segments are
eventually added to the records, some reorganization of the data set
will of course be necessary. However, application programs which
utilize segment sets which do not contain the new added segments are not
affected.

gICS/VS FilE! Control Design Considerations

As can be seen from the above discussion of the indirect access feature
and segmented record feature of CICS/VS file control, data bases may be
constructed. A number of tactors should be taken into account in
deciding the appropriate data base support technique, either indirect
access, or segmented records, or both.

ACCESS TO ONLINE DATA BASE BY OFFLINE PROGRAMS

If data sets utilized online in a data base must also be processed
offline, the indirect access feature may be found to be more suitable
than segmented records. Use of this feature requires each offline
application program to provide its own support for the extraction of
segment sets from segmented records, and the insertion of segment sets
back into segmented records for updating. Alternatively, the code
supporting the segmented record feature in the CICS/VS file control
program may be extracted by the user and modified for use by batch
programs.

If the batch processing requirements of the installation dictate that
standard access method support be used for batch programs accessing
online data sets, the indirect access feature rather than the segmented
record feature should be used. This enables logically related
information to be maintained across a series of different data sets.
However, this additional file accessing will have an effect on the
performance of the online applications, and consequently on response
time. This is a further consideration in the design of ~ CICS/VS file
control data base.

Provided that suitable support can be developed to enable batch
application programs to access segmented records in online data sets,
the segmented record feature is superior to the indirect access feature
when one considers the reduced file accessing necessary and the
efficient utilization of disk storage. with one file access, a
segmented record with all its related segments may be retrieved. with
indirect access, these related segments may have been defined in
separate indirectly accessed data sets, each requiring a separate file

68 CICS/VS system/Application Design Guide

access. Furthermore, only the object or target data set is returned to
the user.

SEGMENTED RECORDS

A consideration with segmented records is the extent to which additions
to segments may be made. If segment additions result in an increase in
the segmented record length, tnen the segmented record data set should
ideally be defined as a key-sequenced VSAH data set, or a variable
length OS/VS ISAM data set. Alternatively, DAM, ISAM, or entry
sequenced VSAM data sets may be utilized using the dum3Y segment and
overflow data set techniques described above. However, this will result
in less efficient disk storage utilization, more user programming, and
more file accesses.

A further consideration is the extent to which information may be
added to data set records at a future time. If there is a strong
possibility of this occurring, it may be advisable to use the segmented
record feature, allocating additional segment indicator flags in the
root segment to allow for a specified number of additional future
segments. At that time, additional segments may be added, without
requiring modification of programs which utilize segment sets not
associated uith the newly added segments.

MULTIPLE OCCURRENCE OF SEGMENTS

The use of the segmented record feature enables a large number of
multiple segments to be stored for a particular logical record within a
block, to a maximum of 99 segments in each logical record. The number
of multiple occurrences of segments may be further limited by user data
set creation and maintenance factors.

REAL STORAGE AVAILABILITY

While the segmented record feature does not provide the capability of
the DLjI products, and introduces some difficulties regarding batch
program access to segmented records, this segmented record feature may
be considered for installations with real storage of ·less than 144K
bytes, which are unable to use the DL/I products because of insufficient
real storage.

Recovery Considerations

Recovery of information in the event of system or program failure must
be considered in data base design. This subject is discussed in more
detail in Part 5, but is introduced here to identify those factors which
are relevant to the recovery of CICS/VS file control data sets. The
optional journaling feature of CICS/VS permits a record to be
automatically logged by file control to the system log and/or to be
journaled to a user journal data set. The CICSjDOS/VS Entry Level
System does not support automatic logging or automatic journaling.

Chapter 2.3. CICS/VS File Control Facilities 69

AUTOMATIC LOGGING

Automatic logging is required if data set backout is to be supported by
CICS/VS on emergency restart following an uncontrolled shutdown of the
system or on dynamic transaction backout following an individual
transaction failure. Automatic logging is specified in the file control
table entry of each data set for which back out is to be supported by
specifying LOG=YES. '(See CICS/VS System Proqramaer IS Reference Manual.)
On any update, deletion, or addition of a new record, the "before" image
is automatically recorded on the CICSjVS system log if automatic logging
is specified. The system log is journal number 1.

AUTOMATIC JOURNALING

Automatic journaling allows the user to specify data set activity to be
recorded on any CICS/VS journal. For example, automatic logging records
the "before" image of a record to be updated and. goes to the system log.
Automatic journaling may specify that the "after" image is to be
recorded also. Additional journaling activity is identified in the FCT
entry for each data set through use of the JREQ parameter, and may be
directed to a user journal data set or the system log through use of the
FCT JID parameter. This may be desired if a chronological record of all
data set activity is to be maintained. It permits implementation of a
user-written recovery program to recover a data set from a previous
backup copy if an unrecoverable I/O error is detected.

The information recorded on automatic logging, and on automatic
journaling, contains the identification of the task which carried out
the update, deletion, or addition, the transaction code and terminal
identification involved with that task, the time of day, other
information required by the CICS/VS journal control program, and an
exact image of the record which was updated or deleted, or the record
identification of an added record. These records are written to the
CICS/VS system log and/or relevant journal data set in chronological
sequence.

70 CICS/VS System/Application Design Guide

Part 3. Data Communication Design

71

Chapter 3.1. Introduction

The Data Communications design has a significant effect on the success
or failure of the overall project. It is in this area that the
interface between the user and the computer is defined. This definition
should be oriented toward satisfying the requirements of the user and
the application, while still presenting information to the computer in a
suitable form for processing.

Before discussing various Data Communications design approaches, it
is important that the reader undsrstand thb following CICS/VS support
which will aid him in his design:

• Terminal control

• Basic mapping support (BMS)

o Terminal device independence

o Terminal paging

o ~essage routing

These features are discussed in Chapter 3.2, then, in Chapter 3.3,
various communication techniques are described. Chapter 3.4 gives an
ove~view of the relationship between CICS/VS and the system network
architecture (5N!) access method, VTAM.

Devices and Access methods

CICS/VS allows communication between the host processor system and a
wide range of terminals and subsystems. These include display units
typewriter-like terminals, specialist subsystems for particular
industries and other processors. Many may be treated as either pre-SNA
(system network architecture) terminals or SNA logical units.

The line discipline for the connection may be BSC (bisynchronous
communication), start-stop or SDLC ~ynchronous data link control).

The access method used to manage the connection can be BTAM (oasic
telecommunications access method) , ACFjTCA3 (advanced communication
function for the telecommunications access method) or ACF/VTAM (advanced
communication function for the virtual telecommunications access
method). (Note that, in this manual, the term VTAM is used to cover
ACF/VTAM or any equivalent SNA access method, including certain releases
of ACF/TCA!.) BGAM (basic graphics access method) is supported fo~
certain graphics terminals.

For a complete list of supported combinations of terminal (or
subsystem), line discipline and access method, see the CICSIVS General
Information Manual.

Chapter 3.1. Introduction 73

Chapter 3.2. BMS, Terminal Control and Batch Applications

CICS/VS Terminal Control and BMS

CICS/VS application programs can communicate directly with terminals,
using:

• Basic mapping support (BMS) commands

o Terminal control commands

BMS enables application programs to request terminal input or output,
using the following commands:

• For input RECEIVE aAP or RECEIVE MAP PROM

• For output SEND TEXT or SEND MAP

• For terminal paging SEND TEXT ACCUM, SEND MAP ACCUM, and SEND PAGE

o For message routing ROUTE

Terminal control enables programs to request additional functions:

o Write data to a terminal (SEND or SEllD WAI'r)

o Read data from a terminal (RECEIVE)

o Synchronize terminal I/O with processing (ijAIT TERMINAL)

o Transmit to the buffer of a banking terminal (SEND CBUFF)

o Test for the presence of a banking passbook ~END PASSBK)

o Reset a line (ISSUE RESET)

o Disconnect a switched line (ISSUE DISCONNECT)

o Erase and write data to a visual display (SEND ERASE)

• Specify the last output message to a VTAM- or TCAM SNA-supported
terminal (SEND LAST)

In addition, the system programmer may use the following DFHTC ~acro
instructions to:

• Change the status of a terminal (CTYPE=STATUS)

• Locate a terminal entry in the TCT (CTYPE=LOCATE)

• Check the results of a previous STATUS or LOCATE request
(CTYPE=CHECK)

These macro instructions are described in more detail in the CICS/VS
System Proqrammer1s Reference Manual.

Chapter 3.2. BMS, Terminal Control and Batch Applications 75

The particular communication commands used in programming are not
significant to the following discussion of data communication design.
However, if BMS is not used, the following facilities cannot be provided
by CICSjVS:

o Terminal format independence

• Terminal device independence

o Terminal paging

• Message routing

3210 BMS can be specified during system generation to provide
compatibility with previous versions of CICS/VS. Terminal device
independence, terminal paging, and message routing need not be
specified. However, if they are specified, they require that temporary
storage (and also VSAM) be used.

Bas and terminal control commands can be used in th~ same application
program, if required. Refer to the ~~!~li~tiQ~-frogrammer's
Reference Manual (Command Level) for further information.

PROCESSOR CONSOLE AS A CICS/VS TERMINAL

CICS/VS allows the processor console to be used as a CICS/VS terminal.
Users with only remote terminals may enter master terminal operator,
system administration, and CICS/VS application transactions at the
processor, thereby isolating these activities from any network
considerations. CICS/VS vill support multiple consoles as terminals in
OS/VS systems with Multiconsole Support. See the £ICSLY~~erator's
Guide, for additional information about this feature.

Basic Mapping Support

The basic mapping support function (BMS) enables the application program
to have access to input data, and prepare output data for transmission
to terminals, without regard to the physical location of the data in the
terminal message. Additional information regarding basic mapping
support can be found in th6 appropriate £IC~VS-!~cation PrQg~~~~~'s
Reference Manual.

BMS uses 'maps' to describe the input format of data received from
terminals, and (if necessary) to describe the format of output data to
be transmitted to terminals. These maps are defined by the user
(generally the system programmer) and are separately assembled and
cataloged into the CICSjVS program library for retrieval when needed by
application programs.

The application program accesses data from input messages, and
prepares data for output responses, by field rather than by location of
that information in the terminal message. Consequently, the application
becomes less dependent on the actual message format. This format
independence is one of the most significant advantages of BMS. Changes
to message foraats to meet various application requirements can De
readily applied, by modifying only the BMS maps describing those
affected formats, reassembling them, and cataloging the changed maps to
the 'CleS/VS program library. All programs using these maps reflect the
changed formats without modification of the programs. However,

16 CICS/VS system/Application Design Guide

recompilation of the programs might be necessary. In this manner, the
installation Mill be more responsive to application needs. The use of
Bas by application programs is illustrated in Figure 3.2-1.

BMS MAPS

An input ~ap can specify data in an input ~essage which is relevant to a
particular program and ignore other data in the input. Several programs
can then operate on the same input message format, using a unique map
for each program. ~n addition, constant (or descriptive) information,
if desired, can be defined in an output map and be automatically
incorporated by BMS in an output message.

Basic mapping support provides the following services:

o Terminal device independence

• Terminal paging

• Message routing

Chapter 3.2. BMS, Terminal Control and Batch Applications 17

INPUT

I
BMS >
Input
Map

/.Input
Input Message =[1 ~ Message A B I C

Application

~
Program

Output Map
Structure Or
DSECT

~nL I

~ Formatted Message

E I F I G H

~
BMS
Output
Map

CICSIVS AND APPLICATION
PROGRAM PROCESSING

Terminal Input I
1. Application program issues

CICSIVS BMS in macro instruc·
tion, specifying relevant input
MAP, to initiate terminal input.
Alternatively, BMS MAP macro
instruction is issued by appli·
cation program, specifying
relevant input MAP to be used
for task initiation message.

2. BMS issues terminal control
get macro to read message, if
application program issued BMS
in macro instruction.

3. BMS extracts defined fields
from input message.

4. BMS positions fields in standard
format message.

s. Program access fields using
input MAP structure or DSECT.

Terminal Output I
6. Application program prepares

output in standard format,
using output MAP structure
or DSECT.

7. Program issues BMS output
macro, specifying output MAP
and also fields to be included
in output message from MAP.

B. BMS extracts fields and sets
up output message, including
fields contained in MAP, if
specified by program.

9. BMS issues terminal control
put macro to write message.

Figure 3.2-1. CICSjVS Basic Mapping Support (BMS)

Terminal Device Independence

OUTPUT

Formatted Message

> A I B I C

(
Application
Program

Input Map

I Structure Or
DSECT

I Output Message I
> I 0 I E I F I G I H I

~

>
Output
Message

Because Basic Mapping Support removes the need for the application
programmer to code most terminal device-dependent support in his
programs, programs can be written without regard to the input or output
device used for transmission of messages to those terminals supported by
BMS. BMS accepts input messages and transmits output messages to and
from many of the devices supported by CIeS/VS; for a complete list see
the CICS/VS~ication Programmer's Reference Manual l£Qmmand-2r ag£~Q
bevel). The prinCiples on which BMS operates are illustrated in Figure
3.2-2. .

78 CICS/VS System/Application Design Guide

INPUT

cJ r--~ r">

Keyboard/Printer

~ ~ r---

Communication Systems

0 --
r--r-

Displays

0 Card
Reader QJ '--L.....

-r-

Seqtl Unit Record

cj) 0 Disk _L.....

o Tape -~

Seqtl Unit Record

CICS/VS AND APPLICATION
PROGRAM PROCESSING

Input

1. §'M~removes device·
dependent code from
input message.

2. Data only is pre-
sen ted to program.

Output

3. Application pro-
gram prepares out-
put message as if to
be output on line
printer.

4. Program inserts op-
ional new line
characters (X'15') in
output, if d;;ired.

5. Program issues BMS
output request.

6. BMS sets up new ter-
minalline for each
new line character
specified.

7. BMS breaks lines
greater than ter-
minal line length
specified, into sep-
arate lines.

8. Device-dependent
code (carriage
return, idles) in-
serted by BMS.

~>

~>

~>

..,>

w> 9. Output message
then transmitted
to terminal

Extended Description

OUTPUT

cJ
Keyboard/Printer

g
Communication systems

0
Displays

Cd] 0 Line
Printer

Seqtl Unit Record

d) 0 Disk
o Tape

Seqtl Unit Record

Device-dependent code may be removed by programmable controllers, such as the 3600, before transmission to CICS/VS.
For the 3600 and 3650, input mapping requests are ignored.

Figure 3.2-2. CICS/VS Terminal Device Ind~pendence

Furthermore, the following sequential devices can be used to simulate
online. terminals, and transmit simulated terminal messages to and from
the system:

o Card reader/line printer

• Tape drives

o Disk drives

Chapter 3.2. BMS, Terminal Control and Batch Applications 19

INPUT MESSAGES

CICS/VS accepts input messages from any of the supported devices and,
using the input map specified by the application program, converts the
input message into a fixed format message, as specified by that map.
Device-dependent characteristics in the input message are removed, and
the appropriate fields are selected from the message and inserted in
fixed locations in the mapped message.

In the case of the 3600, device-dependent characteristics in the
input message are removed by the 3601 Controller and the input message
is formatted for CICS/VS application program processing before
transmission to CICS/VS. Consequently, BMS input mapping requests
associated with 3600 input messages are ignored, and the data received
from the 3600 is passed to the CICS/VS application program without
change. See "Basic Mapping support Using VTAM" for additional
information.

OUTPUT MESSAGES

Output messages for transmission to terminals can be prepared without
the control characters required for field positioning, or line
separation. Output messages can be presented to CICS/VS as a data
stream.

For 3270 display devices, CICS/VS will insert field specifications
into the output data stream and position the data in the device'S buffer
in such a way as to give the screen layout defined in the output map.
In other words CICS/VS ensures that the fields defined in the map have
the specified attributes and positions.

For printer output devices, CICS/VS device-independent support
divides the data stream into lines no longer than those defined for the
particular terminal. If new-line characters appear occasionally in the
data stream to further define line lengths, they are honored. CICS/VS
inserts the appropriate leading characters, carriage returns, and idle
characters, and truncates trailing blanks from each line.

Terminal device independence permits an application program to be
independent of the terminal type (or types) in the installation, and can
provide for support of mixed terminal types by the same program. This
al10ws the use of backup terminals of a different type, or changeover of
hard-copy terminals to display terminals when transaction volumes
warrant the change, with little or no additional programming effort. It
also reduces the amount of program maintenance necessary when changes
are made in the terminal devices used by online programs, and permits
increased growth flexibility in the installation.

Terminal device independence is the only BMS support available with
the CICS/DOS/VS Entry Level System. Moreover CICS/DOS/VSEntry Level
System only supports BMS requests to 3270 Information Display Systems
and thus in this instance device independence means that the application
programmer does not have to consider 3270 control characters etc.

80 CICS/VS System/Application DeSign Guide

Terminal Paging

Terminal paging is an additional feature that extends the capabilities
of terminal device independence. The application programmer can prepare
more output than can be conveniently or physically displayed at the
receiving terminal. That output can be presented by CICS/VS as a series
of pages. CICS/VS identifies and saves each page of information
prepared by the application program.

INPUT

Application ">
Program

!

c:w
I Page 3

I Page 2

Page 1

• Page Forward
LlJf>

• Page Back
Paging ~> • Skip Pages Command

Forward

• Skip Pages
. Backward

• Page Next

• Page Previous L.......-L- -'>
• Page Current

T,m,,'''' (
Storage

• Terminate And
Purge Pages

• Copy Page

• Query Page I D

CICSIVS AND APPLICATION
PROGRAM PROCESSING

1. Application program
presents output pages
in normal application
sequence.

2. CICSIVS write pages to
temporary storage.

Request Paging Status

3. Terminal operator
enters page commands
requesting pages in
desired sequence.

4. CICSIVS retrieves each
page requested, and
transmits it to the
terminal.

Automatic Paging Status

5. CICSIVS retrieves each
page in same sequence
prepared by program
and transmits it
automatically to
the terminal when
able to receive it.

Figure 3.2-3. CICS/VS Terminal Paging

OUTPUT

I
Temporary

(> Storage

\

'-- L...--

~
jr- I Page 1

Page 3

~>

L~ Page

I~
Display

The terminal operator can then retrieve this output as a number of pages
in any order; that is, in the order they were prepared, or by skipping
forward or backward in the output page sequence.

CICS/VS provides a series. of paging commands which can be used by the
terminal operator to select pages for display in whichever sequence he
desires (see Figure 3.2-3). In addition, for 3270 users, CICS/VS
provides a facility known as single keystroke retrieval (SKR). Single
keystroke retrieval enables the 3270 terminal operator to use program
attention (PA) or program' function (PF) keys to enter terminal paging
commands. This significantly reduces the number of keystrokes that the
operator needs to make during a page retrieval session. The way that
SKR works is that the system programmer catalogs (in the system
initialization table) selected page retrieval commands for
representation by PA or PF keys. This does not mean that all the keys
involved are dedicated to page retrieval; only when the initial page
retrieval command of a page retrieval session is entered do the PA or PF

Chapter 3.2. BMS, Terminal Control and Batch Applications 81

keys take on th~ir page retrieval function. The PA and PF keys are then
interpreted as paging commands according to the configuration in the
SIT. Undefined keys (if pressed) are interpreted as invalid page
retrieval commands.

As an additional option, a PA or PF key can be used to represent the
command that initiates a page-retieval session. The Key is defined for
task initiation in the TASKREQ operand of the DFHPCT TYPE=E8TRY macro
for DFHTPR (the terminal paging program), as well as having a page
retrieval command allocated to it in the SIT.

When the page retrieval session ends, the PA or PF keys revert to any
other functions that have been defined for them. The only exception is
that if it is required to use a PA or PF key for the initial terminal
pagin'g command of a session, this key must be dedicated to the purpose.

It is possible to close the page-retrieval session and initiate a new
transaction in one operation by entering the appropriate transaction
code. However, a PA or PF key cannot be used for transaction initiation
in this case, as it will be interpreted as a page-re~rieval command.

The mechanisms by which the system programmer defines the use of PA
or PF keys is described in slightly more detail under the heading "3270
Attention ID Transaction Initiation," in Chapter 3.3. For full details,
refer to the CICS/VS System Programmer's Reference ~anual.

Terminal paging also provides the ability to combine several small
sections of data into one page which is then sent to the terminal. This
is referred to as "page building" and enables the application programmer
to prepare his output independent of the physical output capability of
the terminal.

Terminal paging further relieves the application programmer of the
need to concern himself with the presentation of information in a form
suitable for display at the appropriate terminal, or with presentation
of that information to the terminal in the sequence requested by the
terminal operator. The application programmer can now prepare a series
of pages of information, on the assumption that the terminal operator
may wish to examine all of that information, ind then present those
pages directly to CICS/VS. No further programming is necessary to
handle the selection of pages for display at the terminal. Page
selection is made hy the terminal operator, using the CICS/VS paging
commands.

This will simplify program development of conversational applications
and consequently increase programmer productivity and decrease the
amount of future program ~aintenance necessary.

It is important that the system designer recognize that terminal
pages are saved by CICS/VS in temporary storage. Temporary storage may
be supported in main storage alone, or on auxiliary storage using VSA~;
both will increase the demands for real storage during execution. Using
VSAM on a processor with limited real storage available for virtual
storage paging may increase paging and therefore influence online
performance. Term~nal paging is not supported by the CICS/DOS/VS Entry
Level System.

82 CICS/VS System/Application Design Guide

TERMINAL PAGING STATUS

Terminal paging is particularly oriented toward display terminals.
However, it can also be used for hard-copy terminals. A terminal can be
defined as having a "request paging" status or an "automatic paging"
status.

Display terminals must use a request paging status, while hard-copy
terminals can use either request paging or automatic paging status.
Request paging status enables pages to be displayed at the terminal on
request by the terminal operator, who can specify the sequence of pages
to be displayed based upon his requirements.

Automatic paging status, such as normally used for a hard-copy
terminal, causes CICS/VS to automatically output the next page of
information on completion of a previous page. In this way, all
information is presented to the hard-copy terminal in a continuous
output stream. If required, an automatic paging terminal may be changed
to request paging status by either the terminal operator or the
application program, enabling only those pages to be printed which are
of significance to the terminal operator. Similarly, the terminal
operator or the application program can change request paging status to
automatic paging for all terminals except display terminals.

other terminal status specifications can also be used to indicate
whether a terminal automatically receives messages sent from the
processor or from other terminals. This is discussed under "Terminal
Status" in Chapter 4.2. Additional information on terminal paging can
be found in the CICS/VS Application Programmer's Reference Manual.

Message Routing

Message routing directs messages to one or more terminals in the system,
either by use of the message switching transaction, CHSG, supplied by
CICS/VS, or by the ROUTE command. In this context, the. term "message
switching" refers to the use of CMSG. The term "IIlessage routing" refers
to the use of the ROUTE command. (The CMSG transaction itself uses the
services of the ROUTE command.)

The CMSG transaction is entered by a terminal operator together with
a message to be directed to another terminal, or to several terminals
identified by t"he terminal operator. (This is discussed further in
"Message switching Transaction (CMSG)" later in this chapter.)

The ROUTE command permits an application program to send messages to
one or more terminals not in direct control of the transaction. Message
routing uses BaS, and saves messages in temporary storage to be
automatically sent to the specified destination terminals if the status
of those terminals allows for reception of the messages (refer to
"Terminal status" in Chapter 4.2). If a terminal is not immediately
eligible to receive the message, CICS/VS preserves it in temporary
storage until such time as a change in terminal status allows it to be
sent, or a user-specified period of time elapses, whichever occurs first
(see Figure 3.2-4). The message to De delivered is separated into a

message for each terminal type that will receive it. Each separate
terminal-type message is saved in temporary storage, together with a
destination terminal list for that particular terminal type.

In addition, an application program can prepare pages of information
to be transmitted to terminals, using BKS and the terminal paging

Chapter 3.2. BMS, Terminal Control and Batch Applications 83

facilities as describea above. These pages can be routed to one or more
terminals or operators, through the use of the BMS ROUTE command.

MESSAGE DELIVERY

The application programmer specifies the identification of the terminal
(or terminals) to receive the message, and, optionally, can also specify

a time when the message is to be delivered. If the message cannot be
delivered either immediately or at the specified future time, CICS/VS
retains the message for a user-specified period of time. If it still
cannot be delivered, CICS/VS notifies the originating terminal or an
alternative terminal specified when the original message was entered.

CICS/VS allows messages to be directed, not only to specific
terminals, but also to specific operators or operator classes. In this
way, sensitive security information will only be delivered to those
operators authorized to receive it. It is retained in temporary storage
until the specif~ed operators sign on to the specified terminals, and
only then will relevant messages be delivered.

If a message is to be sent to a specified operator without
identifying a terminal, that operator must already be signed on when the
message is first presented to CICS/VS to establish the terminal
identification to be used. If a message is sent to a specific operator
and terminal, and that operator can never use that terminal (because of
geographic location, for example), the message will be accepted by .
CICS/VS but may never be delivered. This is noted by CICS/VS upon
expiration of the specified time within which the message must be
delivered.

Terminals in the IBM 3600 Finance Communication System using VTAM are
identified hy a logical device code (LDC). Messages from CICS/VS are
received by the appropriate 3601 application program which represents
the specified terminal ID and controls the devices attached to the 3601.
The message from CICS/VS identifies the LDC (specified by the
application programmer) that is to receive the message; it is the
responsib~lity of the 3601 application program to ensure that the
message is delivered to the device indicated by the LDC. Logical device
codes (which are also used by the 3770 and 3790 for device and data set
selection) are described in detail in "Basic Mapping Support with VTA!"
in Chapter 3 =4 =

84 CICS/VS System/Application Design Guide

INPUT

Initiat. Message Routing Operation

&
iSk f_

Tape
Display

Card ,,,,,,,,,o;!.P
Originator (Terminal Or
Program) Specifi .. :

• Destination Terminalls)
• Destination Operatods)
• Delivery Time
• Notification Terminal
• Message To Be Sent

CICSIVS PROCESSING

1. CI CSIVS accepts message
switching transaction
from terminal, or ROUTE
command from application
program.

2. Message is written to
temporary storage.

3. If message IS to be de·
livered later, Interval
control task Initiation
is specified for required
tlmels).

r---;:::====;---",-...L--J., 4. When delivery time IS

(

> reached, message IS

.----r------,.......... read from temporary

Temporary (storage and sent to
Storage specified terminalls)

1 or operatorls). If able
to receive message.

Disk

Display /

Tape L-...rKe_y_bo_a_rd_/P_ri_nt_er

Line Printer

Destination Terminalls)

(
.----..-__ ... ,r> 5. If terminalls) or oper·

ator(s) IS unable to reo
ceive message alter de·
fined delivery delay
period, originating lor
notification) terminal
is notified.

>

OUTPUT

Temporary (
Storage

< ",,::: ~(
8;:

eYboard/Printer .

Line Printer I
Tape ~

Destination
Terminal(s)
Or Operatorls)

r--....------.../:> DISplay Tape ~
i'k .L~_

I Line
Printer Keyboard/Printer

Or Operator Is) Unable Originating lOr Notification)
To Receive L-__ T_e_rm_in_a_1 _____ ---'

Figure 3.2-4. CICS/VS Message Routing

MESSAGE SWITCHING TRANSACTION (CMSG)

CICS/VS provides the message switching transaction C!SG for transmission
of information between terminals. Figure 3.2-4 shows the use of this
transaction.

The availability of the message routing feature in CICS/VS provides a
valuable capability for communication of information, not only between
terminals to satisfy application requirements, but also for better
control of the online applications by the master terminal operator or
supervisory terminal operators. These operators may broadcast messages
to all terminals under their control informing them of certain
significant information.

CICS/VS message routing utilizes temporary storage, which will use
VSAa if auxiliary storage residence of messages is desired. 8essage
routing and message switching are not supported by the CICSjDOS/VS Entry
Level System.

Additional information about basic mapping support can be found in
the £IC§LVS A22!ication Programmer's Reference Manual (Command or ftacro

Chapter 3.2. Bas, Terminal Control and Batch Applications 85

Level). 3600 logical device codes are described in more detail in the
CICS/VS IBM 3600/3630 Guide.

Batch Applications

Batch applications are generally associated with high-speed data
transmission terminals such as the 2770, 2780, 3600, 3650, 3735, 3740,
3770P, 3790, and 6670, or computers used as terminals, such as the
System/3 Mode~s 6 and 10, the System/7, or the System/370.

In this environment, the emphasis is often on the transmission of
data from the terminal (or remote computer) to the central computer.
Because of the nature of these devices, they are not designed for
conversational interaction with a terminal operator, as is the case for
conversational terminals. Generally, a batch of transactions is
transmitted to the central computer, which processes that batch and then
transmits any error messages back to the remote terminal or computer.

This online application environment is similar to the normal batch
processing environment. In Doth cases, a batch of transactions is read
and processed, and error messages are produced in an error list for
offline correction.

This application approach is useful in an online environment where
considerable amounts of information are to De transmitted across long
distances. A high-speed batch terminal is able to transmit larger
volumes of information than a conversational terminal, thus utilizing
expensive long-distance transmission lines more economically. In this
instance, the emphasis is on transmitting the data to the central
computer as quickly and efficiently as possible, editing that data, and
then transmitting any error messages back to the remote location quickly
and economically.

ASYNCHRONOUS TRANSACTION PROCESSING

CICS/VS provides a function, called asynchronous transaction processing
(ATP), which is designed for easy implementation of batch applications

from pre-SNA batch terminals. ATP allows transactions. and the data
associated with those transactions, to be transmitted in batches. Each
batch is given a unique identification by the terminal operator.
CICS/VS accepts each transaction from a batch terminal and delays its
initiation until all specified input batches have been transmitted.

ATP requires that transient data intrapartition file support be
generated as part of the user's CICS/VS system. This enables ATP to
save batches of data for future processing and editing.

When all input batches have been transmitted, the transactions within
the batch are then processed by application programs based upon their
respective transaction codes. Any error messages are directed by the
editing program to transient data for later transmission back to the
terminal.

When the batches have completed processing, the terminal operator may
then request that the output, if any, be sent to the terminal that
originated the batch, or to a different terminal. Depending upon the
amount of processing to be carried out on transmitted batches, the batch
terminal may be disconnected from the transmission line by the user
until output is available to be transmitted back to it.

86 CICS/~S System/Application Design Guide

The ATP facility is designed specifically for handling input from
pre-SHh batch terminals such as the 2770; 2780; and 3780. ATP can also
be used with some interactive terminals, such as the 2741.

Also, application programs which intend to execute under control of
ATP must not use BMS terminal paging. Figure 3.2-5 illustrates the use
of the CRDR and CWTR ATP commands, which are used respectively for input
and output of batched data.

Batched data submitted through an SNA batch logi~1-~nit (BLU),
as the IBM 3770 Data Communication System operating in batch mode,
not need the ATP facility of Cles/vS.

such
does

The CICS/VS Entry Level System does not support ATP nor is ATP
supported for VTAM terminals.

INPUT

(CRDR

I
CRDR NAME=BATCH 1.DELlM=SSSS.

a PASSWD=PAY0061.EXIT=A 1

~ $$$$ HOLO

r $$$$

(data

(TRNA

{ TRNC

I' data

r TRNB

t' $$$$

"- data

(TRNA

(Transient
Data (CWTR

I
CWTR NAME=(BATCH 1.BATCH2).

[!1
SOURCE=TRM1.PASSWD=PAYOO61.
COPIES=2.EXIT=A2. SAVE OR
RELEASE OR DELETE OR STATUS

Operator specifies batch name in CRDR com·
mand. and optional delimiter characters for
batch. password to prevent unauthorized
access to output. and user exit routine for
ex tra processing.

rl1

>

~

~~
>

CICSIVS AND APPLICATION
PROGRAM PROCESSING

1. Operator enters CRDR
command specifying A TP
input.

2. ATP allocates batch
queue in transient data.

3. Transactions are trans·
mitted to CPU and
written to batch queue
by ATP.

4. At end of all input
batches. they are
scheduled for pro·
cessing by appli·
cation programs_

5. Application programs
direct output to tran·
sient data.

6. Operator enters CWTR
command. requesting
ATP output.

7. Output is sent to reo
questing terminal by
CICSIVS ATP program.

Extended Description

t:1 Two consecutive delimiters
~ 'indicate batch end. Batch

can be held or saved if not
finished.

Fig ure 3. 2-5 • ATP Terminal Operator Commands

GENERAL BATCH PROCESSING

OJ

OUTPUT

Transient

r-r/ Data

m
Processing

> Program

> Transient
Data

~ From
Processing

>

CWTR command identifies batch
name(s). password source termi·
nal(s) and number of copies. User
exit can be specified. Batch can
be saved. released or deleted. or
status may be requested.

Some guidelines are presented below to assist in the design of batch
applications when the design team does not wish to use ATP.

Chapter 3.2. BMS, Terminal Control and Batch Applications 87

Execution of a batch application is, by its nature, of long-term
duration. Accordingly, any storage required in executing batch
application programs will be in use for a relatively long time, compared
to conversational applications. Depending upon the amount of dynamic
storage available for both batch and conversational applications, this
requirement for long-term storage may affect the performance of
conversational applications. To minimize the amount of storage used by
batch programs, the following approach may be considered.

Ideally, an application program should be written to accept batch
input transactions from the terminal, and queue these transactions on
transient data. At the completion of each batch, the last transaction
may automatically initiate a user program to validate and process the
queued batch. In the meantime, the remote terminal is freed to allow
further data input. On completion of batch processing, any error
messages which were queued on transient data to send back to the remote
batch terminal may be either automatically transmitted back as soon as
that terminal is idle, or transmitted on request by the remote terminal.

This approach is similar to that adopted by ATP as described
previously. It offers the principal advantage of very efficient
utilization of data transmission lines, and the overlapping of
processing one batch with the transmission of the next batch to be
processed. On the other hand, ATP enables all input batches to be
transmitted to the processor, and then allows the user to disconnect the
batch terminal from the transmission line until all of those batches are
processed. At that time, the user or the processor may re-establish
connection between the terminal and the processor for output
transmission.

This ATP approach is particularly economical when the processing time
for all batches is longer than the input transmission time.

An alternative approach that can be used involves the batch
application program reading a transaction, immediately following which
the input transaction received is edited and error messages are queued
on transient data for later transmission. However, this approach
suffers from the disadvantage of less efficient data transmission. Data
is transmitted from the remote terminal, followed by a pause for
processing. Then the next transaction is transmitted and processed,
with the line again being idle while the second transaction is being
processed. No overlap of processing with data transmission is possible.
If the pause between transmissions is long, a timeout may occur, and the
terminal may lose control of the line:

Either the first method described above, or the use of ATP, is
recomm&nded for most efficient and economic line utilization.

CICS/VS BATCH DATA INTERCHANGE

The CICS/VS Batch Data Interchange functions are designed to support
operation of the batch controller function of the 3190 Version 6 and
3110 Programmable and of LUTYPEij logical units, such as the 6670
Information Distribution System.

Support is provided for the following 3790 data· sets:

• Transmit Data Set

• Print Data Set

• Message Data Set

88 CICS/VS System/Application Design Guide

• User Data sets

o Dump Data Set

A system designed to utilize the first three items is said to use the
"store and Forward" method of data interchange. When user data sets are
included then this is termed "store and Forward with Distributed Data".
CICSjVS support for these methods uses the Data Interchange Program,
which is supported only for assembler language programs. Additionally,
certain functions are available through the BMS interface.

CICS/VS provides support for the following types of media on an
LUTYPE4 :

• word processing

• card

o console

• print

All are supported for input and output (except for print, which is
output only). Application programs communicate with these media by
means of the batch data interchange and BMS interfaces.

CICSjVS support is provided in accordance with SUA specifications, in
particular the definitions and protocols for data management function
management headers. The Data Interchange Program is conceived as a
function manager in the host logical unit (primary), communicating with
an equivalent function manager in the outboard controller logical unit
(secondary). These function managers interchange user data as data

streams.

For full details of CICS/VS support of the 3790 refer to the CICSIVS
3790 Guide, and of the 3770 Programmable and the 6610, refer to the
CICS/VS 3761, 3770, and 6610 Guide.

Terminal Error Recovery

CICS/VS uses BTAM, GAM, TCAM, or VTAM for the control of terminals.
These telecommunications access methods detect transmission errors
between the central computer and a remote terminal, and automatically
invoke error recovery procedures, if specified. These error recovery
procedures generally involve the retransmission of data a defined number
of times, or until that data is transmitted error-free. In the event
that the error is not corrected after the specified number of retries,
CICS/VS passes information connected with the error to the terminal
abnormal condition program ~TAM- and TCAM-supported terminals) or to
the node abnormal condition program (VTAM-supported terminals) for
additional processing.

TERMINAL ABNORMAL CONDITION PROGRAa (TACP)

The TACP is used by BTAM- and TCAM-supported terminals. After
determining that the error is unrecoverable, the TACP sets default
actions based on keeping the network live. These may involve:

• Setting the terminal out-of-service

Chapter 3.2. BMS, Terminal Control and Batch Applications 89

• Setting the line out-of-service

• Abnormally terminating the transaction

• Disconnecting a switched line

Before these default actions are taken, CICS/VS passes control to a
user-supplied terminal error program (TEP) for application-dependent
action if necessary (see Figure 3.2-6). On return from the terminal
error program, TACP performs the indicated action as previously set by
TACP or as altered by the TEP.

CICS/VS providas a sample TEP, which can be used to generate a
specific TEP to meet the user's terminal error recovery requirements. A
generated example of a TEP is supplied as part of the CICS/DOS/VS Entry
Level System. (See the CICSLV~-!LS_[~g£~2-Gu!g~ for additional
information.) This TEP can be used without change or as an example when
developing a unique user-written TEP.

Generation of a sample TEP is described in £IC2L!S System
Programmer's Reference Manual.

INPUT

AppliCilion Progrlm

SEND

Command

Output Message

Figure 3.2-6.

CICSNS AND USER TERMINAL
ERROR PROGRAM PROCESSING

1. Program issues SEND command
10 originating terminal, specif\ling
output message.

2. CICS/vS sends output message to ter·
minal.

3. On transmission error, STAM attempts
error recovery.

4. If not successful. CICS/vS terminal
control attempts recovery.

5. If still not successful. default ac·
tions are set by terminal abnormpl
condition program IT ACPI.

6. Control passed to user-written ter·
minal error program (TEP).

7. TEP may:
- Attempt further recovery
- Allocate alternate terminal or

device to receive output
- Accept default actions and return

to TACP. or

to TACP.

8. CICS/vS TACP terminates task and
carries out other defaults, unless
changed by TEP.

Extended Description

m TACP sets default actions to: - Abnormally terminate task
- Mark terminal out·ot·service
- Mark line out·ot·service
- Disconnect switched line

unless altered by user·written·terminal error program (TEP).

CICS/VS Terminal Error Recovery

90 CICS/VS System/Application Design Guide

OUTPUT

TERMINAL ERROR PROGRAM

The terminal error program may be supplied by the user to attempt
further error recovery, if necessary. Alternatively, a sample TEP can
be generated or the generated TEP supplied with the CICS/DOS/VS Entry
Level System may be utilized. (See £IC~VS~§~~PrQqra~~§
Reference Manual.) For example, a user-written TEP can specify
additional retries to be carried out by CICS/VS before the error is
considered completely unrecoverable.

Alternatively, the user-written TEP can request that the output
message be gueued on disk using CICS/VS transient data, to be
automatically transmitted to the error terminal when the problem has
been rectified.

The user-written terminal error program might specify that the error
terminal and line are not to be marked out-of-service, a switched line
is not to be disconnected, or the task is not to be abnormally
terminated. On return from the TEP, the task may be reactivated as if
the error had not occurred.

This may be a satisfactory solution, if transmission of the output
message is not critical to the application, but continued processing of
the task is. For example, it may be necessary to allow the task to
continue processing to enable various data sets to be completely
processed and updated. Alternatively, the task may be allowed to
abnormally terminate, and code at a label specified by the user in a
HANDLE CONDITION statement may be utilized to complete urgent processing
for the task.

Generally however, all processing associated with a transaction and
task, and updating of relevant data sets, should be completed before the
programmer makes any attempt to transmit an output message to the
terminal. This can be ensured on VTAM-supported terminals by specifying
that transmission be delayed until a WAIT TER~INAL command is issued,
the program passes through a user synchronization point, or terminates.
This is also the standard method used for TCAM- or BTAM-supported
terminals. Receipt of an output message at the terminal should be
regarded as an indication that all of the processing for the particular
input transaction has been completed successfully.

NODE ABNORMAL CONDITION PROGRAH (DFHZNAC)

The Node Abnormal Condition Program (NACP) is used for VTAM-supported
terminals to process abnormal situations associated with logical units.
Information concerning the processing state of a logical unit is
contained in the relevant TCT terminal entry, and in the VTAM request
parameter_ list (RPL). There is no accompanying line entry as there is
for TCAM- and BTAM-supported terminals.

The NACP is scheduled any time a VTAM request made by CICS/VS
completes in error or cannot be honored. The receipt of a negative
response sent by a logical unit also causes the NACP to be scheduled.
This permits analysis of the sense information and issuance of any
appropriate messages.

Whenever the NACP is scheduled, its analysis routines determine the
actions that are mandatory to the recovery procedure. Prior to
performing these actions, the NACP links to a node error program (NEP),
which may be either a user-written program or the sample node error
program provided by CICS/VS. The linkage between the NACP and the REP

Chapter 3.2. BMS, Terminal Control and Batch Applications 91

is through a module DFHZNE~ that the user creates with the DFHZNEPI
macro. Because VTAM and the the NACP take care of the transmission
retries required to overcome temporary line errors, error conditions
processed in the NACP should normally be regarded as permanent
conditions. Thus it will not generally be necessary to override the
NACP defaults in a user-written NEP. However, the NEP may be used to do
application-dependent "clean-up".

~tODE ERROR PROGRAM (DFHZNEP)

A sample node error program (NEP) is supplied with CICS/VS. In
practice, more than one NEP is likely to be needed, in order that error
recovery can be handled on a terminal/transaction-oriented basis. The
purpose of the sample NEP is fourfold:

1. To provide a framework within which it is relatively easy for the
user to add his own error programs. The same framework provides an
environment in which user-coded error programs can run.

2. To provide fundamental error recovery for a 3270-VTAM network,
consistent with that which is provided for a 3270-BTAM or -TCAM
network by the sample terminal error program supplied by CICS/VS.

3. To provide error recovery for a 3767 or 3770 interactive logical
unit, using a contention session when the receiver of a message is
in transmission mode and the message has to be retransmitted.

4. To act as the default NEP in a multiple-NEP system.

The user is responsible for coding whatever additional node error
programs are necessary for his VTAM-supported terminals.

Recovery actions for SNA devices may be dependent on the NEP
'understanding' the transaction currently attached to the terminal; it
is thus necessary to associate an NEP with a particular transaction or
transaction class. If a new transaction or transaction class is added
to the system, existing NEPs should not be reprogrammed. Rather, the
user should provide a new NEP to support the new transaction class.

To aid the user, certain optional actions are generated in the NACP.
(For example, retry of a message.) If the user wishes any of these
actions to be performed, he can set the relevant optional action codes
in the TCT during REP processing.

The user can issue VTAM responses or commands in the NEP (but not to
a 3270). It is imperative, however, that the programaer has a full
understanding of the way CICS/VS and the terminal interact, before
embarking upon this type of error programming. The user can also issue
SNA responses or commands from remote programmable controllers. For
example, if a printer on a programmable controller runs out of paper,
the user may code the controller to send a negative response to the
processor, specifying a relevant user sense code. This will cause NACP
(and NEP) to be SCheduled in the processor. The NEP can then quiesce
the logical unit using that printer, until the paper supply is
replenished. For TCAM SNA support, these functions should be handled in
the Message Handler.

92 CICS/VS System/Application Design Guide

ttESSAGE LOGGING

Input and output messages may be automatically logged by CICS/VS for
message recovery and resynchronization. In the event of loss of contact
with VTAM supported terminals, logging and recovery protect message
integrity. Transactions requiring message integrity are specified in
the PCT. The programmable controllers should also log (as a minimum
requirement) the VTA! sequence numbers of protected tasks.

Por performance reasons transactions that do not change the system
environment (such as inquiries that do not update data sets) sbould not
specify message integrity.

In the event of system failure, CICS/VS emergency restart identifies
in-flight tasks and backs out in-flight task activity. The input
message for an in-flight-protected task can be used during emergency
restart to establish message resynchronization with the controller.
This is also true for a committed output message for which a positive
indication of receipt was not received by the processor before system
failure.

Chapter 3.2. BMS, Terminal Control and Batch Applications 93

Chapter 3.3. Communication Techniques

Conversational Applications

The effectiveness of an online application depends to a large degree on
man-machine communications. The computer is a tool used to achieve the
objectives of the online application. To ensure success of online
applications, the computer must provide the user with information to
enable him to carry out his function effectively.

Data communication design represents the interface bet~cen the
application and the machine. This is particularly true for
conversational application design.

At all times during conversational message aesign, the system
designer must keep in mind that the main objective of an online
application is to assist the terminal operator. Thus, message formats
should be designed to make the terminal operator1s job easier. For
example, input message formats generally should not be designed as
fixed-format messages as for a card, but should enable the terminal
operator to enter information in a variable-length format. CICS/VS can
convert the variable-length input message into a fixed-length format for
processing of the application program, as discussed belov.

Also, if the task response time for a terminal operator is limited,
the operator should be informed of the interval in which he is expected
to respond.

TASK IN ITIATION

CICS/VS determines whether an
satisfies an outstanding read
currently executing program.
the terminal which originated
to process it.

input message received from a terminal
request placed for that terminal by a
If no application is currently active for
the input transaction, a task is initiated

Task initiation refers to the identification of a particular input
transaction, the program to be used, and the creation of a task to
process the transaction. Transaction identification can be achieved in
several ways, as shown in Figure 3.3-1.

Chapter 3.3. Communication Techniques 95

INPUT

Tape

• Transaction Code
(1·4 Bytes)

• Temporary
Transaction Code

• Permanent
Transaction Code

3270
Display

• Program Attention
(PA) Key

• Program Function
(PF) Key

• Selector Light Pen

• Cursor Select Key
• Operator Identification Badge

Program
Control
Table
(PCT)

CICSIVS PROCESSING

~ .>m,. U~""m,"m' rTlL "'"'Kh." , ...
,f specified in TCT
during SYSGEN

or

2. Use temporary
transaction code
,f specified in TCT
by prior program.

or

3. Use PA, PF,
light pen,cursor
select key or
operator
identification
badge

or

4. Use first 1 through
4 bytes of input
message as
transaction code

5. Scan PCT for
transaction code
as identified in
Sleps 1 through 4
above.

6. If found, deter·
mine relevant
program.

7. Allocate TCA,
load program if
not in storage,
and transfer
control.

OUTPUT

~

I

Extended Otscription

Task

Control ~
Area
(TCA)

Terminal I
Entry

Terminal
Input Area I

Figure 3.3-1. Task Initiation I
Only one of steps 1 through 4 is used to identify the
transaction code.

Transaction Code

Appli.
Cltion
Program

The first one to four bytes of a terminal message, delimited by a
defined character, are used as a transaction code. Valid transaction
code delimiter characters are the field name start character or field
separator character (Doth of which can be defined in the system
initialization table), and any code with a hex value less than or equal
to X1 40'. The transaction code is used to search the program control
table (PCT) to identify that transaction code. On locating the
appropriate entry in the PCT with the same transaction code, the name of
the program to be first used to process the transaction is obtained.
CICS/VS then creates a task control area (TCA) to control the processing
of the transaction by the program. The PCT can also identify the size
of a transaction work area (TWA) to be appended to the TCA and used as a
program work area during processing.

The program name identified in the PCT entry is located by CICS/VS
using an address pointer in the PCT pointing to the relevant program
entry in the processing program table (PPT). The PPT entry for that
program indicates the language in which it was written (Assembler,
COBOL, or PL/I), the size of the program in bytes, whether it is
presently in CICS/VS address space and if so, the number of other tasks
concurrently using it, and the location of the program on the CICS/VS
program library on disk. If the program is not already in CICS/VS
address space, it is loaded from the program library and control is.
passed to it to process the transaction.

96 CICS/VS System/Application Design Guide

I

3270 Attent10n ID Transaction Initiation

In the case of the 3270 Information Display System, each of the Program
Attention (PA) or Program Function (PF) keys the selector light pen, the
cursor select key, or an operator identification badge can be defined in
the PCT to initiate specified programs. By pressing the relevant PA or
PF key, by selecting a detectable field with the selector light pen or
the cursor select key, or by using an operator identification badge or
magnetic stripe reader, the appropriate program is initiated. This is
equivalent to entering a transaction code.

The types of transaction which can be initiated in this way are as
follows:

1. Printing the contents of a 3270 Display buffer to a 3270 Printer.
This is achieved by specifying PRINT=PAx in the DFHSIT macro, or at
system startup.

2. Executing a program defined in the PCT with
TASKREQ=PAxIPFYILPAIOPIDlaSRE.

3. As a special case of type 2, a page-retrieval session can be
initiated by executing the page-retrieval program (DFHPTR) defined
in the PCT. The PA or PF key must be defined in the SIT for page
retrieval by single keystroke retrieval.

The single keystroke retrieval (SKR) facility (described under
"Terminal Paging," in Chapter 3.2) simplifies the 3270 terminal
operator's work during page retrieval sessions by enabling him to use PA
or PF keys to enter page retrieval commands. The mechanisms used by the
system programmer to set up SKB differ slightly from the standard
procedure for PA or PF keys. Once the initial page retrieval command of
a page retrieval session has been entered by the operator, CICS/VS
program logic arranges for subsequent transactions to De passed directly
to the terminal paging mod~le ~FHTPR), bypassing the usual decoding of
the transaction. During the remaind&r of the page retrieval session, if
the operator presses a PA or PF key, the system initialization table
(rather than the PCT) is searched for the interpretation of the PA or PF
key. It is thus in the system initialization table (SIT) that the
system programmer catalogs the page retrieval commands that are to be
represented by PA or PF keys. PA or PF keys so defined in the SIT are
not dedicated to page retrieval. When the 3270 terminal operator ends
the page retrieval session by issuing a purge command, the PA or PF keys
revert to whatever_function has been defined for them in the PCT. Only
if it is required to use a PA or PF key to enter the initial page
retrieval command in a session is it necessary to catalog that
interpretation of the key in the PCT, and thus dedicate the key to that
function. For full details, refer to the CICS/VS S!§tem Programmer1s
Reference Manual.

The use of the selector light pen and the cursor select key for
transaction initiation is discussed in more detail in IIMultipl.e Choice
Forma tit later in this chapter.

Temporary Transaction Code

On completing the processing of an input transaction, an application
program optionally may identify the transaction code to be used with the
next input sent from that terminal. The next input need not be preceded
by any transaction code, or PA or PP key, or be selected by the light
pen, cursor select key, or an operator id&ntification badge.

Chapter 3.3. Communication Techniques 97

This program-identified transaction code is referred to as a
temporary transaction code, and is specified in the RETURN command prior
to termination of a task associated with that terminal. This temporary
transaction code is used, with the next input from the terminal, to
identify a program to be used to process that input. After use, the
temporary transaction code is removed, and must be reestablished by a
subsequent RETURN command, if it is to be used with further input from
the terminal. Therefore, an application program can transmit a response
to a terminal requesting further information from the operator. The
next transaction code to be used is set by the program so that, when the
requested information is supplied by the operator, the program to
process that information will automatically be initiated.

Permanent Transaction Code

A permanent transaction code can be defined for any CICS/VS terminal, at
the time the CICS/VS terminal control table (TCT) is generated. This is
particularly useful for those terminals which, by the nature of their
device characteristics, are unable to start an input transaction with a
valid tLansaction identification. In this case, every input massage is
initially passed to the same application program, which is related to
the permanently defined transaction code for that terminal. This
application program examines the input to determine the processing
required, and identifies subsequent application programs which operata
on that transaction. The permanent transaction code is used with any
input message from a terminal which does not satisfy a pending read
request issued by a program. It also overrides any PA, PF, selector
light pen, cursor select key, operator identification badge, or
transaction code used in that message. A temporary transaction code
cannot be used with a terminal utilizing a permanent transaction code.
Certain VTAK sessions established for the 3650 or 3790 require that a
permanent transaction code be specified in the relevant TCT entries for
the sessions. (See the CICSlVS Guide for the terminal type in
question.)

INPUT TRANSACTION DESIGN

The following design techniques for input messages may be used for
terminals attached directly to CICS/VS or for terminals attached to
programmable controllers such as the 3601, 3651, and 3791.

Fixed-format Bessages

The fixed-format technique relates to the design of input messages such
that each field of information occupies a fixed location in the input
message (see Figure 3.3-2). While this is the normal technique for
design of transactions entered from cards, it is not generally suitable
for conversational applications. While a fixed message format makes it
easy for the application program to extract information from the message
for processing, this technique makes it more difficult for the terminal
operator to enter that information, and is subject to operator error.

98 CICS/VS system/Application Design Guide

Variable-format Messages

The variable-format technique is similar to the fixed-format technigue
previously described, except that required fields need not always be
located in the same positions in the input message (see Figure 3.3-2).
Fields are identified by their relative positions within the message as
for fixed-format messages, nut each fi2ld is separated from others by a
delimiter character or characters. Possible delimiter characters are
the blank, slash (/), equal (=), comma (,), or dash (-). Usin 9
delimiters, the terminal operator can enter information in the required
sequence, without concern for the actual physical location of fields
within the message.

The application program must scan the input message for the
delimiters and extract the data contained oetween them.

1 1362161'll JON ES16161616 16 16 16 1616 1616 16 16 I JA I 314·AZ I
FORMAT ENTERED AT TERMINAL

(1'l1S BLANK)

I ~~_~_~_T.~\ ____ CU_S_T_OM_E_R_N_A_M_E __ ~_IN_I_TS~I_~U_E!_~_~~o.1 FORMAT PRESENTED TO PROGRAM

FIXED·FORMAT MESSAGE

/1362,JONES,JA,314.AZ I

CUSTOMER NAME

VARIABLE·FORMAT MESSAGE

/ NO=1362,IN=JA,NM=JONES,RF=314·AZ I

CUSTOMER NAME

KEYWORD·FORMAT MESSAGE

FORMAT ENTERED AT TERMINAL

COMMA IS FIELD SEPARATOR
CHARACTER (MAY ALSO USE
16,./ .)

AFTER EDITING BY APPLICATION PROGRAM

FORMAT ENTERED AT TERMINAL

EQUAL SIGN IS FIELD NAME
CHARACTER
COMMA IS FIELD SEPARATOR
CHARACTER

AFTER EDITING BY APPLICATION PROGRAM

Figure 3.3-2. Fixed-, Variable-, and Keyword-Format Input Messages

Chapter 3.3. Communication Techniques 99

This technique can be used with CICS/VS application programs designed
to process input from the 3600 Finance Communication System. BMS does
not map input data from a 3601 controller, but passes it to the
application program without change. (See "Basic Mapping Support with
VTAM" in Chapter 3.4.) Therefore, the 3601 Controller can format the
input message prior to transmission to CICS/VS for processing by the
CICS/VS applicat~on program. This formatting involves insertion (by the
3601 AP) of delimiter characters in a variable format message entered
from terminals attached to the 3601.

Keyword-format Messages

This format is similar to the variable-format message described above,
except that each field is preceded by a field name start character and a
unique key_ord. The keywords and fields can be variable format.
Because each field is identified by its appropriate keyword, the
sequence of fields in the input message may vary.

The terminal operator ~nters information in variable format, in the
sequence which is best suited to his requirements. The application
program must locate each field based on its keyword.

Both variable-format and keyword-format information can be included
in an input message. The CICS/VS input formatting macro instruction can
process both input techniques as part of the same message.

Figure 3.3-2 illustrates typical fixed-, variable-, and keyword
format input messages.

Keyword-format messages offer maximum flexibility to the terminal
operator, not only in the positioning of information in the message, but
also in the sequencing of information in the message. A disadvantage
for the terminal operator, however, is that additional information must
be accurately keyed in, namely, the keyword for each input field. This
additional keying takes time and is vulnerable to error, although it
provides positive identification of each field. Because this keyword
format permits a number of input fields to be present or absent,
depending upon the characteristics of the application, it could in some
instances result in less keying than for variable-format messages.

The keyword format techniqUe can also be used for input from a 3601
Controller, as described earlier in "Variable Format Messages." The
additional keying overheads of the keyword format technique are a
consideration with input from 3601 controllers. The terminal operator
can enter input to the 3601 in any convenient format. The 3601 AP can
then insert the necessary keywords and delimiter characters before
transmission to CICS/VS.

Fill-in-the-hlanks Messag~ Format

This message format accommodates the inexperienced terminal operator.
It involves the display ot descriptive information identifying each
field to be entered, as illustrated in Figure 3.3-3, and applies .ainly
to display terminals.

The most useful approach is to display an image of the information
normally provided on the input documents used by the application. For
example, an image of a product order form may be displayed for an order
entry application. The terminal operator, using the description

100 CICS/VS System/Application Design Guide

preceding each field, enters the required information. In the case of
the 3270, only @odified fields, such as that information entered from
the keyborad, will be transmitted to the computer. The descriptive
information is not transmitted, unless specified by the application
program for identification purposes. Each input field transmitted from
a 3270 is identified by its buffer address. This buffer address is

WORK ORDER REQUEST FORM - FILL IN BLANKS

WORK ORDER NUMBER: 1 23466 I MONTH: [2J DAY: ~ YEAR: I2U HOUR: G MIN: ~

DEPT.NO.:~ DEPT. NAME: 1 MAINTENANCE I PROJECT NO.: 13090 I ACCT. NO.: 0
ZONE: W AREA: 0 PRIORITY: ~ TYPE: ~ EQUIPMENT NO.: L-I _2_13_3_----1

EQUIPMENT NAME: I BOILER FEED PUMP - UNIT NO.2

STATUS:~ REQUESTER: 1..-1 _J_. J_ON_E_S _____ --' EXTENSION: ~

WORK ORDER TITLE: 1 BOilER FEED PUMP MAINTENCE

WORK REQUEST: I BOILER FEED PUMP NO.2 LEAKING EXCESSIVELY

HARD COpy REQD.: Q

Figure 3.3-3. Fill-in-the-Blanks Input Message Format

used by basic mapping support (BaS), in conjunction with the input map
defined for the transaction, to identify each input field and map the
input message into a fixed-format message. Figure 3.3-3 illustrates a
typical fill-in-the-blanks input message format.

An example of the use of this technique is found in the Display
Management System (Program numbers 5736-XC2 for VSE, and 5736-XC2 for
OS/VS). Refer to "Related Publications" in the Preface for relevant DRS
publications.

Multiple-choice Message Format

This format uses the optional light pen or the optional cursor select
key on the 3270 Information Display System and involves the display of a
number·of detectable fields. These fields present· a series of multiple
choices, one or several of which can be selected by the terminal
operator by placing the light pen or the cursor to the detectable fields
to be selected.

The output response from a previous application program may define
certain fields displayed on the 3270 screen as detectable. Such fields

Chapter 3.3. Communication Techniques 101

arc identified by a question mark, an ampersand (&) symbol, or a blank
character at the start of the field. A detectable field identified by a
question mark is referred to as a "selection field". A detectable field
identified by an ampersand or a blank is referred to as an "immediate"
or "attention" field.

The appropriate choices are made by the operator, by touching the
light pen to, or by placing the cursor under, the relevant field.
Selection of a selection field causes the question mark to change to a
greater-than character, to indicate that the field has been selected.
Selection of an immediate field results in the transmission of a message
to the processor. This message contains the buffer addresses of fields
selected by the pen or cursor. If the immediate field is identified by
an ampersand, the data in each modified field is also transmitted.

The attention ID (AID) character transmitted from the terminal on
selection of an immediate field is used to locate the PCT entry for
immediate det~ctable fields, and to transfer control to a common user
written program. This program examines the buffer addresses
representing selected fields, and interprets these selections through
the last BMS map used with that terminal. When designing detectable
screen formats, each screen format to be supported by this common
program should be identified.

Another technique for multiple choice input is for the application
program to list (or display) several choices, identifying each choice by
number. The terminal operator may then select an appropriate response
by keying in its identifying number.

R.JONES NOV 2,73 HOSPITAL VISIT CARE·NORMAl FOOD·SAME

. DRUGS - ASPIRIN

STRENGTH 7 FULL 7 1/2 7 BABY

DOSE ? 20 MG ? 50 MG ? 100 MG

DAILY SCHED ? 1 TIME ? 2 TIMES 73 TIMES

? 4 TIMES ? 6 TIMES ? 8 TIMES

., 12 TIMES ? 24 TIMES

? AS REQUIRED

? DRUG A ? DRUG B ? DRUG C 7 DRUG D

? PROCESS ? FOOD ? HISTORY

Figure 3.3-4. aultiple Choice Input Message Format

102 CICS/VS System/Application Design Guide

Selection of multiple choice fields can be used by unskilled terminal
operators in user departments, to cnter information for online
applications. Figure 3.3-4 illustrates a typical multiple choice input
message format using pen-detectable fields.

Any of these transaction formats may be used for terminals which
communicate with CICS/VS either directly or througn programmable
controllers.

TRANSACTION ED1TING

After defining the methods to be used for transaction initiation and
designing the input message formats, the editing and validation to be
performed on the message by the processor or programmable controller
must be defined. .

with the combination of Bas and editing, the application program is
presented with an input message in a defined fixed format. The editing
to be done by the application program is application-aependent; Figure
3.3-5 suggests some of the techniques available.

1362, JONES, JA, 314·AZ, 843.21
6148, SMITH, HW, 031492,6332.50
3882, BROWN, AA, 1131,28.00
5199, WILSON, JJ, 00316, 93998.60

TOTALS 101202.31

TRANSACTION EDITING TECHNIQUES

• FIELD VERIFY/EDIT • LIMIT RANGE
· ALL ALPHABETIC (A-Z) • TABLE SEARCH
· ALL NUMERIC (0-9) • BINARY
· ALL PACKED DECIMAL • SEQUENTIAL

• CHECK DIGIT • REASONABLENESS CHECK
• MODULUS 10 • DATA SET CHECK
• MODULUS 11 • SIGHT VERIFICATION

• HASH OR CONTROL TOTALS • KEY VERIFICATION
• ZERO PROOF TOTALS

Figure 3.3-5. Transaction Editing Techniques

Many of these techniques may be implemented by the user in
programmable controllers to provide for detection and correction of

. invalid data before transmission to the processor. Editing of data at
the time of initial entry at the source permits: earlier detection of

Chapter 3.3. Communication Techniques 103

errors, lhore efficient (lata transmission, and reduced processing. With
the offline capability of BTAM supported programmable terminals such as
the 3135, 3140, 3110P TeAM-supported programmable terminals and
controllers such as the 3600, 3110P and 3190, and VTAM-supported
programmable controllers such as the 3600, 3650, and 3190, data entry
application availability is enhanced. Data may be edited and collected
offline on disk storage for later transmission to CICS/VS. Only
validated data need be transmitted to the processor. This data may be
transmitted at line speed, resulting in significant time and cost
savings.

A field may be checked to verify that it contains the correct type of
data. It may, for instance, be required to be:

• Entirely alphabetic (blanks, or A to Z)

o Entirely EBCDIC numeric (0 to 9)

o Entirely packed decimal (COMPUTATIONAL-3 in ANS COBOL or FIXED
DECIMAL in PL/I)

If alphabetic characters have been entered into a data field that
must be all numeric, for instance, ~n error message may be sent to the
terminal operator notifying him that nonnumeric data was entered in the
particular field.

Numeric fields may be Checked tor validity, by means of a check digit
appended to the end of the field. Modulus 10 or Modulus 11 check digit
editing is used to verify the correctness of a field or to identify
errors. This te~~nique can be used for an identification field such as
a part number. When the number is first assigned, a user program
computes the relevant check digit and appends it to the identification
number. The check digit is then considered an integral part of the
number, and can be used to check the accuracy of the entered number
whenever that number is referenced. -

Hash or Control Totals

Control totals of specified fields can be developed in a number of
transactions. Control totals can also be developed for a batch of
transactions and compared by the program against similar control or hash
totals developed manually prior to entry of the hatch into the system.
If the program-developed and manually developed totals do not agree, the
particular error or errors can be located by comparing the information
entered in that field with the original source information for each
transaction in the batch.

104 CICS/VS System/Application Design Guide

zero Proof Totals

Generally, zero' proof totals operate on a number of data fields within
one transaction. These fields are added and subtracted together
according to the requirements of the application. A nonzero result
indicates an error in one or several of the fields.

Limit Ran~

This technique checks that the value in a data field lies between
certain application-dependent limits. A field lying outside those
limits is identified as an error.

Table Search

This editing technique uses the data field contents to locate a similar
entry in an application-dependent table. If the exact field contents
cannot be located in the table, an error is indicated. A substitute
value can be presented to the application program, if required.

Reasonableness Check

The program applies various logical tests to the contents of a data
field, to determine the reasonableness of that information as related to
the particular application. If the contents of the field have not met
the application cr1teria, it is identified as having an error. For
example, the program may examine a product number entered as part of an
order entry input message, in relation to the quantity of that product
ordered. The application may require that certain products only be
ordered in particular quantities. An ordered quantity outside that
defined for the product would then be regarded as an error.

Data Set Check

This editing technique is similar in concept to the table search
technique previously described, but is far more extensive and
comprehensive. Information in the input transaction is used by the
application program to access a data set related to that transaction.
Information in that data set record is then used to validate other
information in the transaction. For example, an application might
require a customer's number and name to be entered. The customer number
is used by the application program to access the relevant customer
record, and the name in the record is compared with the name in the
input transaction to determine that the correct customer number was
entered with the customer name.

Depending upon the disk capacity and capability of the programmable
controller, application data sets or subset information may be stored on
disk in a remote controller. The 3601 controller permits up to 288,000
bytes of data to be stored on disk. T.he 3651 and 3191 controllers
support as many as 9.3 million and 21.5 million bytes of disk storage
respectively. This permits some data set validation of input to be

Chapter 3.3. CommUnication Techniques 105

carried out in the remote controller before transmission to the
processor.

Sight Verification

Sight verification can be used by the terminal operator in conjunction
with data set checkina as described above. In this instance,
information from the input transaction is used to retrieve a relevant
d~a set record. Information in that record is then transmitted back to
the terminal for sight verification by the terminal operator. For
example, in an order entry application, the customer number entered at
the start of an order can be used to access the relevant customer
record. The customer name and address are then displayed at the
terminal for confirmation against the actual name and address of the
person placing the order.

A less effective editing technique is the sight verification of keyed
information against the source information, prior to transmitting the
keyed transaction into the computer. This technique is subject to error
and is completely dependent upon the accuracy and conscientiousness of
the terminal operator.

Kgy Verification

certain data fields cannot be edited by any of the techniques described
above. An example of such data fields can be sales amounts relating to
products, or dollar amounts to be entered. While control or hash totals
can be developed across a series of transactions to identify an error,
the application could require more complete checking than control totals
alone. Key verification refers to the double keying of specified fields
at different times. The first entry of the field is saved by the
computer and compared against the second entry of that field at a later
time. If both entries disagree, one or both of the fields are in error
and correction is necessary.

Many of the editing techniques previously described can be
implemented not only in CICS/VS, but also in programmable controllers
such as the 3735, 3140, 3600, 3650, or 3790. Th~ 3740 and 3790 are
specifically designed for data entry and editing applications for many
different industries.

These editing techniques may be integrated directly into CICS/VS
application programs, or may Oe carried out in a prior data entry step.
This step may be accomplished offline for later batch transmission to
CICS/VS. Alternatively, it may be carried out online to CICS/VS with
terminals such as the 3270, by using Video/310 (Program number 5136-RC3
under VSH, or 5134-RC5 under OS/VS). Refer to' "Related Publications" in
the Preface for relevant Video/310 publications.

ERROR CORRECTION

This section identifies some techniques which may be utilized by the
system design team for error correction. Identification (through
editing) of a transaction error to be corrected by the terminal operator
can either be made:

106 CICS/VS System/Application Design Guide

1. on the first occurrence of an erDOr in the message, or

2. after the entire message has Deen edited and all ~rrors have been
detected.

In conversational applications, the terminal operator should
generally be notified by the application program of any errors
immediately after the input transaction has been edited. The error
message should be concise and meaningful, and should identify the
particular field or fields in error, the nature of the error, and the
action required by the terminal operator. The operator should be given
the opportunity to obtain more information describing the particular
type of error detected if he needs it.

Error Message Contents

The following types of error messages may De used, depending upon the
requirements of the application:

o Error number

o Error number and text

o Abbreviated text, with a user-written HELP facility

An error number enables the error to be uniquely identified.
Additional information describing the cause of the error may be provided
in Terminal Operating Procedures documentation for the application. The
user-written HELP facility enables the terminal operator to obtain more
detailed information (that would otherwise be included in an operating
procedures manual), by a special inquiry requesting the computer to
provide the necessary detail. This technique has the advantage of
keeping the most current operating procedures available to all terminal
operators. It reduces the user's cost of developing, distributing, and
maintaining written information on operating procedures for terminal
operators. However, it has the disadvantage that it is utilizing
available computer resources to provide information which can
alternatively be documented in an operating procedures manual.

CICS/VS-generated system error messages to be transmitted to the 3600
terminals using VTAM consist of only the CICSjVS error messages and
numbers document~d in the £IC~!~ Me§sag~U~£Qde~~~nual. The 3601
AP must recognize the error numbers and insert the necessary text before
transmission to the terminal operator. Additional information can be
found in the CIC.§Ly~_3600~uig.§..

Error Messa~cumentation

The information which should be provided in documentation detailing an
error includes:

o Error number and error message

• Cause of the error

• Operator correction

This documentation of error messages should be made available online
or.~nc~rporated into the user's terminal operating procedures

Chapter 3.3. Communication Techniques 107

documentation. Other required documentation should include CICS/VS
terminal operating procedures and CICS/VS-supplied terminal transactions
and error messages. See the CICStyS Messages and Codes Manual and the
£!£~VS~€rmiQal-2£g~~!Q£~2~~~~~ for additional information on error
messages.

To use terminal operator time most effectively, the application should
be so designed that the operator is required to enter only the field or
fields in error. The operator should not be required to reenter the
entire input transaction.

For example, in the case of the entry of new-business insurance
policies that can approach 1000 characters in an input transaction, it
wouLd be unwise to reouire the entire 1000 characters be reentered if
one field was in error.

However, in an order entry application, the information entered for
each line item ordered is generally only product number and quantity.
Detection of an invalid product number could require the reentry not
only of the correct product number, but also of the quantity. Figure
3.3-6 illustrates an error field correction procedure which may be
utilized by application programs.

INPUT APPLICATION PROGRAM PROCESSING OUTPUT

Enter 1. Receive input message from
Input > terminal.
Message

2. Edit input message and send error Display
message back to terminal. > Error

Message

3. Write original input message to
T,m",'", (temporary storage. >

I I
Storage

/' \
Enter I I Correct >
Field 4. Receive corrected field from

terminal.

(5. Retrieve original input message
Temporary >
Storage

from temporary storage.

6. Combine corrected field with
original input message.

7. Re·edit input message, and process > I Edited Input Message I
if no error.

Figure 3.3-6. Krror Field Correction

108 CICS/VS System/Application Design Guide

Use of Temporary storage

If the terminal operator is required to input only the field in error,
the application program must save the valid sections of the input
transaction. Temporary storage enables application programs to save
data either in dynamic storage or on disk, identifying the data uniquely
for later retrieval by the same program or another program. As the
terminal operator may take some time to enter the necessary correction,

"the valid part of the input transaction should normally be stored in
temporary storage on disk, rather than in dynamic storage. Dynamic
storage may then be utilized more efficiently for other purposes.

When transmitting an error message to a terminal, the application
program may set a temporary transaction code (see "TasK Initiation"
earlier in this chapter). Using this, when the corrected field is
~etransmitted from the terminal, a unique correction program may be
initiated, based on the temporary transaction" code, requiring no further
action by the terminal operator other than correction of the field.

The user's correction program retrieves from temporary storage the
transaction that was originally entered by the terminal operator. The
corrected field is then inserted in place of the error field, and the
entire transaction is reedited to determine whether the correction is
valid, and that no other errors have been introduced.. In the event of
other errors being detected, further error messages are sent to the
terminal operator.

The error correction process may be iterative until the input
transaction has been completely validated. In the event that the
terminal operator is unable to correct the transaction, he should be
allowed to enter a unique code (such as "CANCEL") instead of the
corrected field, indicating that this error transaction is to be
ignored. The transaction will then need to be completely reentered at a
later time.

OUTPUT FORMATTING

The actual format of output responses is application-dependent.
However, a number of guidelines may prove useful here.

The output response is the main interface between the online
application, under the control of the computer, and the terminal user.
Accordingly, it should be easily read and understood by a typical user
of that online application.

The amount of information that must be presented in response to an
input request depends upon the requirements of that request. For
example, an inquiry requesting display of a customer's current account
balance is a request for specific information. However, a request for
display of a customer's account details generally requires all
information relating to that account.

Chapter 3.3. Communication Techniques 109

Term~nal Paging

Depending upon the particular terminal device being used, the amount of
information to be displayed may exceed the physical capacity of that
device. For example, a 3277 Model 1 displays 480 characters in 12 lines
of 40 characters per line. The display of 15 lines of information
requires that information be broken into two pages.

The use of terminal paging in CICS/VS enables considerable
flexibility to be achieved in output formatting, regardless of the
physical capacity of the terminal which will receive the output. This
feature is available only for B!S-supported terminals. Refer to
"Terminal Paging using VTAM" in Chapter 3.4 for further detail.

Priority Processing

Each terminal operator is allocated a priority code as veIl as security
codes. This operator priority is used in conjunction with terminal and
transaction prior~ties to establish the overall task processing
priority.

TASK PRIORITY

CICS/VS uses priority codes ranging from 0 to 255, where 0 is low
priority and 255 is high priority.

Each operator, terminal, and transaction code can be allocated a
priority code ranging from 0 to 255. The operator priority is contained
in the sign-on table (SNT) and is copied across to the terminal control
table (TCT) when the operator signs on. The terminal priority is also
containad in the TCT, while the transaction priority is contain.ed in the
program control table (PCT) entry for that transaction code (see Figure
3 .. 3-7).

When an operator enters a specific transaction code, his total
priority is evaluated as the sum of terminal, opePltor, and transaction
priorities. In the event that the sum of the three priorities exceeds
255, the task priority is set to 255. -

This calculation of task priority provides the design team with
considerable flexibility to ensure that the best performance and
response time are provided in the areas where they are most needed.

110 CICS/VS System/Application Design Guide

INPUT

Enter
Input
Transaction

Trans Code

Trans Priority

Program Control
Table

Termn Ident

Termn Priority

Oper Priority

Terminal Control
Table

Figure 3.3-7.

CICSIVS PROCESSING

L$ 1. Opdator enters input transaction
code and data.

~
2. CICS/vS locates PCT entry. After

~ff>
security check, transaction priority
is extracted from PCT by CICS/vS.

~

T%
3. CICS/vS extracts terminal priority

from TCT entry for terminal.

~
'--- 4. CICSIVS extracts operator priority
,--- from TCT entry for terminal.

5. CICS/VS sums transaction, terminal

'---- and operator priorities to develop
task priority.

6. If task priority exceeds 255, CICSIVS
rounds down to 255.

7. Task commences execution at task
priorrty.

Priorities range from 0 (low priorityi
to 255 (high priority!.

Task Priority

Extended Description

rn Priority Examples

Transaction: 0
Terminal: a
Operator: -.!2
Task

OUTPUT

> I Trans I
Code

Input Messaye I
II

> Trans. Priority o 200

+

> Term. Priorityo·O

+
;> I Oper. Priority=255

m
;> I Task Priority=455

Round Down

;> Task Priority=255

Application

> Program

0 100 100 100
100 a a 100

.~ ~ lQQ. 1QQ.

100 100 200 255

The task priority is useful in those cases uhere, because of the
transaction volume, there may be several tasks concurrently executing.
In this event, CICSjVS passes control to the highest priority task which
is able to continue executing, and that task retains control of the
processor until it requests various CICS/VS services. If the high
priority task is not able to continue processing until a particular
event (such as an I/O operation) has occurred, CICS/VS passes control to
the next highest task which is able to execute. A high priority task is
given preference in the use of the processor and other facilities even
if entered later than a lo,.,er priority task.

In the event that two tasks uith the same high priority value (for
example, 255) are both ready to process, CICS/VS gives control to that
task which reached the system first.

CICS/VS is an event-driven system, and as such 'does not seize control
from a currently dispatched (executing) task. Therefore, even a low
priority task Kill continue to execute once it has been dispatched,
until it voluntarily relinquishes control by issuing a CICS/VS command.
If no CICS/VS services are required by such a task, it should
periodically issue a SUSPEND command.

Chapter 3.3. Communication Techniques 111

Chapter 3.4. SNA Access Methods

This chapter describes some aspects of the relationship between CICS/VS
and the SNA (system network architecture) access method ACF/VTAM. The
information it contains also applies to other access methods that
support SNA and provides a VTAM-like interface to user programs. These
include certain releases of ACFjTCAM, and earlier versions of TCAM for
which a message control program has been written to provide a VTAM-like
interface.

In this chapter, as in the rest of this manual, the term "VTAM" is
used to mean ACF/VTAM any access method that supports SNA and provides a
VTAM-like interface.

For further information on VTAM, refer to Introduction to VTAM and
Y!~~£Qll£eEt2~~Rlannig~.

For further information on TCAM, refer to OS/VS TCAM Concepts and
ApElications, GC30-2049.

Network Components

A network controlled by VTAM (or an equivalent access method) consists
of the following components:

o communications controllers

o communication lines

o terminal systems (that mayor may not be programmable)

These components are controlled by the following programs:

o Processor program (VTAM application program or TCAM 8CP and
applicat10ns). In this context, CICS/VS is an application program.

o Net\fork Control Program (NCP)-This program resides in the
communication controller.

o Function program or application program (AP)-- This program is
present only in programmaole terminal systems and resides in the
programmable control unit.

Chapter 3.4. SNA Access Methods 113

VTAM uses the IBM 3704/3705 Communications Controllers to enable part of
the telecommunications processing to be moved out of the central
computer and into the network. The 3704/3705 controls the flov of
information betw6en VTAM and terminals through use of a network control
program (NCP). The 3704/3705 and its NCP support a variety of remote
terminals. An NCP can be generated to handle lines in either network
control mode (for TCAM- or VTA~-supported terminals), in emulation mode
(for TCAM- or BTAM-supported terminals), or in both modes. An NCP
generated with both functions is called an NCP with partitioned
emUlation programming (PEP) extension. This permits VTAM-, TCAM-, and
BTAM-supported terminals to communicate with application programs (such
as CICS/VS) through one 3704/3705.

Functions provided by the 3704/3705 include:

o line control

o dynamic buffering

o deleting and inserting line control characters

o translating character codes

o handling recoverable errors

• detecting permanent line errors

o gathering line statistics

o activating and deactivating lines and closing down the network

By performing these functions, the 3704/3705 and NCP conserve central
computing resources. See Introduction to the IBM 3704 and 3705
Communications Controller for additional information.

SHARED RESOURCES

VTAM permits its network resources to be shared among the various VTAB
application programs being executed in separate partitions/regions in
the processor. One VTAH application program may be CICS/VS, which uses
VTAB to establish communication between CICS/VS application programs and
terminals, and another program could De TSO operating in a different
partition/region.

VTAM controls the use of paths through the 3704/3705, communication
lines, and programmable controllers so that several applications may
communicate with different terminals on a single line. Also, the
terminals on the same line may communicate vith any of the application
programs using VTAM. Thus, one terminal on the line may be
communicating with CICS/VS, uhile another terminal on the same line is
communicating with TSO. Hovever, once a terminal begins to communicate
with a VTAM application program, that terminal cannot communicate with
another VTAM application program until the first program breaks its
logical connection and releases the terminal. ihile connected to
CICSjVS, the terminal may, of course, enter transactions to initiate
different CICS/VS application programs.

114 CICS/VS System/Application Design Guide

SYNCHRONOUS DATA LINK CONTROL (SDLe)

Further efficiency in data transmission and data integrity is realized
through the use of synchronous data link control (SOLC) data
transmission. SDLC allows data to be transmitted in full-duplex mode
(transmitted simultaneously in both directions along a communications
line). VTAM supports both SOLC and full-duplex transmissio~.

A significant feature offered by SOLC is data integrity. Both VTAM
and the control unit can check for error-free transmission of data and
can request retransmission if an error is detected. Each transmission
between VTAM and a programmable control unit is assigned a sequence
number. Messages lost, because of component or communication failures,
are easily detected and the lost data recovered.

See IBM Synchronous Data Link Control: General Information for
additional information concerning SDLC.

Defining a VTAM Network

Because CICS/VS uses VTAM to communicate uith advanced-comounication
SUbsystems, special considerations must be made uhen defining the
network to VTAH. These considerations include:

o Use a VTAH APPL statement to define CICS/VS as a VTAM application
program. CICS/VS must be authorized to acquire and pass VTAM
connections with logical units.

Buffer specifications in the APPL statement for CICS/VS depend upon
the characteristics of the CICS/VS transactions.

The name specified to VTAM for CICS/VS in the APPL statement must
also be specified to CICS/VS. This name is specified to CICS/VS
either during CICS/VS table generation (through the DFBTCT
TYPE=INITIAL macro instruction, APPLIO operand) or during CICS/VS
initialization (through OFHSIT APPLIO operand) •

o Use the VTAH LU statements to define logical units. If necessary,
use the APPLID operand to identify CICS/VS or another VTAB
application program to uhich automatic logons are to be passed for
each logical unit.

Use the LOGTAB option to identify the VTAM interface tables to be
used when identifying logons for CICS/VS.

o Define interpret tables, if necessary, describing valid logons for
CICS/VS.

For additional information concerning VTAH definition, refer to VTAM
£Qll£gEi2-and_Pla~~~~.

Chapter 3.4. SNA Access Methods 115

Connection Services

Establishing sessions between CICS/VS and the logical units that control
the terminals can be divided into two parts: connecting CICS/VS to VTAM
and logging the logical units onto VTAM. The two parts must be carried
out in that order and they are here described separately.

CONNECTING CICS TO VTAa

To VTAM, CICS/VS is an application program. The connection between the
two is made during CICS/VS initialization by CICS/VS issuing a VTAM OPEN
macro to open the CICS/VS access method control block (ACS).

The system programmer must specify, during VTAM definition, a name by
which CICS/VS is to be known to VTAM, using the VTAM APPL statement.
This name must then be made known to CICS/VS, for use in the OPEN macro,
by means of the APPLID operand of either the DFHTCT TYPE=INITIAL macro
or the DFHSIT TYPE=CSECT macro.

LOGGING THE LOGICAL UNIT ONTO VTAM

Defining the Session

To logon a logical unit to VTAM, CICS/VS must issue a VTAM OPNDST macro.
The macro must specify a node initialization block (NIB) which indicates
how VTA! is to handle subsequent communication between it and the
logical unit.

CICS/VS associates a NIB with each logical unit's TCTTE. To cause
CICS/VS to generate the NIB, the system programmer must specify
ACCMETH=VTAM on the DFHTCT TIPE=INITIAL and TIPE=TERMINAL macros.
CICS/VS then generates the control block by issuing a VTAM NIB macro
instruction. The NIB is used by VTAM only during execution of the
OPNDST macro, so the storage it occupies can be reused afterwards. For
this reason, the NIB is built in storage separate from the TCTTE. The
parameters it contains are established during VTAM definition; they
cannot be altered by the CICS/VS user.

The connection between CICS/VS and the logical unit is known as a
session. When CICS/VS issues the OPNDST macro, it supplies a set of
BIND parameters. These tailor the session to the requirements of
CICS/VS and are sent to the logical unit by VTAM as part of a BIND
command. CICS/VS has a set of BIND parameters for each type of logical
unit. Establishment of the session is completed when the logical unit
sends a positive response to the BIND command.

The logical unit is known by one name tnroughout the network. It is
defined during VTAM definition by the LU macro. It must also be defined
to the NCP during the control program definition. The system programmer
uses this name to identify the logical unit to CICS/VS by specifying it
in the NETNAME operand of the DFHTCT TYPE=TERMINAL macro. CICS/VS then
associates the TCTTE with the logical unit by using this name for the
VTA! NIB macro used to build the corresponding NIB.

116 CICS/VSSystem/Application Design Guide

LOgging On

Although the VTAM OPNDST macro that makes the connection between the
logical unit and VTAM must be issued by CICS/VS, logon can be initiated
by either the host processor or the logical unit (except that 3790
sessions cannot be initiated by the processor) •

Processor sessions can be initiated by:

o CICSjVS, automatically, at CICS/VS initialization.

c CICS/VS, automatically, follouing automatic task initiation (ATI).

o a reguest by the VTAM network operator.

o a request by the CICS/VS master terminal operator.

Logical unit sessions are initiated by:

o the terminal device, when the terminal operator logs on.

o th~ terminal controller, on reguest of the the terminal operator.

o the terminal controller, automatically, at controller
initialization.

o an application program running in the terminal controller.

In general, a CICS/VS logon exit is scheduled by VTAM whenever it
receives a logon request, whether it comes from the processor or the
logical unit. CICS/VS then issues the VTAM OPNDST macro within the exit
routine.

When CICS/VS is to logon a logical unit automatically at CICS/VS
initialization, as will probabLY be the case for an output-only logical
unit, for instance, it must cause VTAM to simulate a logon request from
a the logical unit. CICS/VS does this by issuing a VTAM SIMLOGON macro.
The system programmer causes CICSjVS to issue this macro during
initilization by specifying CONNECT=AUTO on the DFHTCT TYPE=TERMINAL for
the logical unit.

If a logical unit is required by one VTAa application is already
connected to another, it can be released by the one and connected to the
other without the need for the full logon processing to be carried out
by VTAM. To receive notification of a request by another application
for a logical unit, an application must provide a RELREQ exit routine.
CICS/VS provides such a routine. It will be entered when another VTAM
application program issues a VTAM SIMLOGON macro for a logical unit
currently in session with CICS/VS. When it has no more work for the
logical unit, CICS/VS will release it to the other application, provided
the system programmer has specified so in the RELREQ option of the
logical unit's DFHTCT TYPE=TERMINAL macro. Conversely, when CICS/VS
issues a SIMLOGON macro, it do&s so with the RELREQ and Q options. If
the logical unit is already connected to another VTAM application
program, and that program has a RELREQ exit routine, then this routine
will be entered, and the application may release the logical unit.

CICS/VS Session Types

The various session types that CICS/VS supports are outlined. For a
full description, refer to the appropriate CICS(VS Guide.

Chapter 3.4. SNA Access Methods 117

The virtual Telecommunications Access Kethod (VTA!) is used by
CICS/VS to support a number of terminal systems, some of which are
programmable. Programmable terminal systems enable programming tasks
(such as transaction editing, validation, and formatting) relevant to a
remote location to be carried out in programmable control units at the
remote location. The programmable control units can operate either
online to a processor, or offline in a standalone mode. Operating
offline, many of the control units can permit terminal operation to
continue independent of availability of the main processor or associated
comaunication links. Terminal transactions can be recorded on disk
storage (which is part of the programmable control unit) for later
transmission when processor communication is available. Disk storage
also enables selected application data sets to be stored in the
programmable control unit for direct reference by application programs
executed in the control unit on behalf of terminals.

This concept of "distributed function" enhances performance and
permits cost efficiencies to be realized in the areas of data
transmission, system availability and configuration, and application
flexibility.

3210 SESSIONS

Functions previously supported by CICS/VS through BTA! are supported for
VTA8-3210 sessions, with the exceptions that 2260 compatibility and
ASCII translation are not provided. In particular, the following
services are provided:

o Operator sign-on/sign-off

• Basic mapping support

• Terminal paging

• Message routing and message switching

• Automatic task initiation

• Master terminal operator functions

o Supervisory terminal operator functions

o Printing the contents of a display screen

• Protection from unsolicited data

• Upper-case translation

VTAM-3210 support differs from TCA~- or BTAM-3270 support in the
following particulars:

o Hard copy is sent to pre-assigned printers, although for the 3214
and 3216 devices hard copy may be printed locally using an
installation defined print authorization matrix. This matrix may
be defined via application programming and is used for printer
allocation.

• ASCII is not supporteu by CICS/VS. However, ASCII-EBCDIC
translation can be carried out for a BSC 3210 by translation tables
in the network control program

118 CICS/VS System/Application Design Guide

o Line status is not available from the master terminal but the
terminal connection status uill be displayed instead

• For SDLC connected terminals, the ISSUE COpy command is not
supported

• System generation for the tvo different access methods is not, in
general, compatible

VTAM-3210 support differs from TCAM or VTAH support of some other
terminal devices or systems as follows:

o 3210 is not programmable

• 3270 logical units do not employ a function management header (FHH)

o Logical device codes (LDCs) are not applicable to 3270

o The message recovery facility is available but not message
resynchronization

o The transaction code to initiate a task may be a program function
key, program attention key identifier, magnetic stripe reader or
light pen

o Error messages, rather than negative responses, will be sent to the
terminal. However, for SDLC connected 3274 and 3276 devices,
negative responses as well as error messages are sent.

For further information see the CICS/VS 3210 Guide.

3600 SESSIONS

A 3600 VTAM session is established between CICS/VS and a 3600
application program block (APB) in the 3601 controller. The APB is
regarded by CICS/VS as a logical unit, referred to by its terminal
identification in the TCT. The APB, in turn, controls the operation of
one or more terminals attached to the 3601.

The 3614 terminal may be attached directly to a 3704/3105, as vell as
to a 3601, and is then regarded as a separate logical unit.

Each application program CAP) may control several terminals.
Individual terminals are transparent to CICS/VS and it is the
responsibility of the AP to interpret specific requests from the
terminals, communicate them to CICS/VS, interpret the output from
CICS/VS, and direct it to the appropriate terminal.

CICS/VS communicates directly with an APB as a separate logical unit,
and is unaware of the operation of other APBs in the 3601. The other
APBs may be communicating with CICS/VS as other logical units, or with
other TCAM application programs.

Chapter 3.4. SNA Access Methods 119

3600 sess~ons pe~mit the following CIeS/VS services to be supported.

o Operator sign-on

• Basic mapping suppo~t

• Terminal paging

• Message routing and message switching

• Automatic task initiation

• Master terminal operator (CSMT) functions

• Supervisory te~minal operator (CSST) functions

• Message recove~y and resynchronization

Pipeline Session

One pipeline session may be established in a 3601 to support multiple
3606 or 3608 terminals. The purpose of this session is to support
minimum delay transactions from 3606 or 3608 terminals, such as cheque
verification, credit card authorization and debit (cash) card
transactions.

CICS/VS permits a number of TCT entries to be specified as belonging
to the pipeline session. These are used as a pool of entries to permit
mu1tiple tasks to be initiated for different 3606s or 3608s using the
pipeline session. A separate pool of TCT entries can be specified for
each 3601, or all TCT entries can be combined in a single pool to
service all 3601 pipeline sessions.

The TCT pools represent a number of user-specified tasks to be run.
CICS/VS passes an input transaction from a pipeline session to one of
the available TCT entries in the pool for that session. This permits
the processing of a number of transactions to be multitasked for optimum
response.

To identify the 3606 or 3608 initiating pipeline transaction, the
3601 transmits a terminal identification to CICS/VS at the beginning of
the input transaction. This is not used by CICS/VS, but is passed to
the CI~S/VS application program. The program may use the identification
to maintain audit trails or statistics.

When communicating with a pipeline logical unit, the following
considerations apply:

• No automatic task initiation is supported.

o No CICS/VS logging will be performed, that is, no recovery/restart
facility provided.

• Each input to the host over the pipeline session is a separate
task. The CIeS/VS task may request one or no writes back to the
session node. Thus one message in and one message out are the
maximum during a task life.

120 CICS/VS system/Application Design Guide

• If data is received and no terminal entry is available, ths data
will be discarded and a negative response returnen to the 3601.
System Sense will be provided indicating insufficient resources.
It is the responsibility of the pipeline APB in the 3601 to handle
the retry.

• The 3606/3608 terminal identification must be sent in the data
stream to the host with every input from the 3601 through the
pipeline session. This identification must be inserted in the
message by the APB in the 3601. CICS/VS does not use this terminal
identification but passes it to the CICS/VS application untouched.
The user may use the identification to maintain audit trails or
statistics.

The CICSjVS host application on a pipeline session is responsible
for properly formatting output messages. This includes the
3606/3608 terminal identification required by the 3601 to perform
routing functions. It is the responsibility of the user to ensure
that the APB and the host application program follow the same
conventions with regard to the data stream.

• All SNA sessions will be initiated via the 3601 session control.

o A conversational transaction may not use this facility, that is,
the output sent by the CICS/VS application program may not ask for
additional input to this task. This is enforced by CICS/VS in that
a RECEIVE command issued by a task will cause the task to be
terminated.

o CICS/VS does not enforce the use of any particular data stream in a
3606/3608 pipeline session.

o The entire transaction must be contained in a single request unit
(RU). Output chaining or multiple messages output from the CICS/VS
application task are not supported. This is enforced by CICS/VS in
that any SEND command after an initial output will be rejected and
the task will be terminated. If the output data stream exceeds the
Dufter capability associated with the 3601 pipeline buffer,
chaining will not occur and an error will be passed to the Node
Abnormal Condition Program (NACP).

o Unique operator identification is not included and all transactions
are processed as if generated by a single source in a full-duplex
environment. Output from the attached task is sent to the node
defined by the SNA origin address field/destination address field
(OAF/DAF), and any further routing information must De placed in

the message by the user application, for use by the 3601 FP.

• The 3606/3608 terminal cannot be used as a master terminal.

o Function Management Headers are not supported by the pipeline
session.

The above restrictions for a pipeline session exist necause the
pipeline session is designed to provide a high throughput for a specific
transaction type. The user need only define one session per 3601 to
VTAM, only a user-defined number of tasks to CICS/VS for the pipeline,
and only one pipeline session.

Refer to Introducing the IBM 3600 Finance Communication System, GA22-
2164, for further information on 3600 units and features, and to the IBM
3600/3630 Guide for information on the support of the 3600 by CICS/VS.

Chapter 3.4. SNA Access Methods 121

3650 SESSIONS

The 3651 store controller is a programmable control unit to which
terminals may be attached for use in a retail store environment.

(Refer to IBM 3650 Retail Store System Introduction, GA22.3-475, for
further information on 3650 units and features.)

The 3651 controller contains function programs (FPs) which control
the operation of the various terminals attached to it. CICS/VS
communicates with the FP and is not aware of individual terminals. It
is the responsibility of the FP to interpret specific requests from the
terminals, select a relevant session type for communication to CICS;VS,
interprat the output from CICS;VS, and direct it to the appropriate
terminal. The different session types which may be selected are:

• 3275 host conversational session

o 3653 host conversational session

o Pipeline session

o Application program session

3275 Host Conversational session

This session permits a 3275 to enter transactions to be transmitted to
CICS/VS and to initiate CICS/VS application programs similar to
transaction entry from BTAM-supported terminals. A number of 3275 host
conversational sessions can be defined in the 3651 ness than or equal
to the number of 3275s).

The 3275 terminal operator requests the 3651 controller to connect
him to an available 3275 host conversational session. It is then the
responsibilty of the 3651 to establish the logical connection (session)
betveen the 3275 and CICS/VS. The session is allocated an available
terminal entry in the TCT, and is known to CICS/VS by the relevant TCT
terminal identification.

3275 host cOllversational sessions permit the following C!cs/vs
services to be supported.

o Operator sign-on

o Basic mapping support

o Terminal paging

o Message routing and message switching

• Automatic task initiation

• Master terminal operator functions

o Supervisory terminal operator functions

The following service is not supported:

o Message recovery and resynchronization

122 CICS/VS System/Application Design Guide

3275 host conversational sessions are the only 3650 sessions uhich
permit BMS maps to be stored on disk in the 3651 instead of in the
processor. CICS/VS transmits the unformatted output data, plus the map
name, to the 3651, vhich ~nserts device-dependent characters and, using
the specification in the map, formats the output for display on the
3275.

3653 Host Conversational Session

This session permits a 3653 Point of Sale Terminal to enter transactions
to be transmitted to CICS/VS, and to initiate CICS/VS application
programs in a manner similar to that used for 3275 host conversational
sessions. A number of 3653 host conversational sessions can be defined
in the 3651 (less than or equal to the number of 3653s).

The 3653 terminal operator reguests the 3651 store controller to
connect him to an available 3653 host conversational session. This
connection, and allocation of an available terminal entry in the TCT, is
performed by the 3651 in a manner similar to that used for 3275 host
conversational sessions. The session is then identified to CICS/VS by
the relevant TCT terminal identification.

3653 host conversational sessions permit the follouing CICS/VS
service to be supported:

o Basic mapping support

The following services are not supported:

o Operator sign-on

o Automatic task initiation

o Terminal paging

o Message routing and message suitching

o Master terminal operator (CSHT) functions

o Supervisory terminal operator (CSST) functions

o Message recovery and resynchronization

Pipeline Session

One pipeline session may be established in a 3651 to support multiple
3653 terminals. The purpose of this session is to support minimum delay
transactions from 3653 terminals, such as a credit status check and
update prior to initiating a particular customer transaction, or
adjustment of a customer's credit status on cancelation of a credit
transaction.

A 3650 pipeline session is implemented in the same uay as a 3600
pipeline session. For more information, see the description of the 3600
pipeline session earlier in this chapter, substituting references to the
3606 and 3608 terminals by 3653, and references to the 3601 controller
by 3651.

Chapter 3.4. SNA Access Methods 123

Application Program Session

This session (also referred to as an Iuterpreter session) results in
communication between CICS/VS application programs and specific
application programs in the 3651. The application program session is
primarily intended for the noninteractive data transfer of application
oriented information such as:

• Transaction log from 3651 disk to the processor

• Inventory receipts file from 3651 to processor

• Batch store messages and reports from the processor to 3651

• Ticket data to be used in the preparation of magnetic stripe
tickets on the 3657 Ticket Unit

In most cases, where CICS/VS is involved with application programs in
the 3651, the logical terminal in the 3651 is disk. In some
applications, disk serves as an intermediate or staging area between the
CICS/VS application program and the ultimate destination. This usage is
not detected by CICS/VS.

Application program sessions may be initiated either by CICS/VS or by
the 3651 controller. When initiated by CICS/VS, the CICS/VS application
program issues ISSUE LOAD command to identify the pa~ticular 3651
application program with which it wishes to communicate. This 3651
program may then exchange data with the CICS/VS program or may perform
some function independent of CICS/VS as specified by the user.

Another. possibility is to initiate the session from the 3651
controller. This type of session occurs as the result of a user-written
program requesting to establish a session with the host.

Application program sess~ons permit the following CICS/VS service to
be supported:

• Basic mapping support

The following services are not supported:

• Operator sign-on

• Terminal paging

• Message routing and switching

• Master terminal operator (CSMT) functions

o Supervisory terminal operator (CSST) functions

• Message recovery and resynchronization

Multiple input and output messages may be transmitted between CICS/VS
and 3651 application programs.

3767 SESSIONS AND 3770 INTERACTIVE SESSIONS

The 3767 is a comp~ct, desk-top terminal that provides access to a
remote System/370 processor via Systems Network Architecture (SNA).

124 CICS/VS System/Application Design Guide

The 3770 is a family of communication t8rminals that ofters keyboard
and printer combinations, ~ith a selection of I/O equipment and
communications features that provides a variety of multi-purpose
terminal configurations in an SNA environment. There are two types of
interface through which the 3710 can communicate with the host system:
interactive and batch. Within the 3110 system, the interactive session
described here is applicable only to the kcyboard-printer station. The
batch session 15 described separately in a subsequent section.

Communication with the host is carried out via a 3104/3105
communications controller with SDLC line discipline. with both the 3761
and the 3710~ the interactive logical unit consists of a keyboard
printer only.

Interactive sessions with a 3767 or 3110 work similarly to start-stop
sessions with a 2740 terminal in that either the terminal or the CICS/VS
system can bid for control of the line.

CICS/VS functions supported for 3161 and 3110 interactive sessions
are:

• Operator sign-on/sign-off

• Basic mapping support

• Terminal paging

• Message routing and message switching

• Automatic task initiation

• Master terminal operator functions

• Supervisory terminal operator functions

VTAM support for 3161 and 3110 interactive sessions differs from VTAM
support of some other terminals as follows:

• 3161 is not programmable

• 3761 and 3770 interactive logical units do not employ a function
management header (FHH)

• Logical device codes (LDCs) are not applicable to 3167 or 3170
interactive logical units

• The message recovery/resynchronization facility is not available

• Error messages may, in certain circumstances, be sent to the print
unit.

For further information about CICS/VS and these terminal SUbsystems,
see the £ICS/!L3761L 3110~1!Q_§.610 Guide ..

3110 BATCd SESSIONS

The batch logical unit session is used for the interchange of batch data
between an SNA unit such as one of the 3110 family and a CICS/VS
application program.

The attachment of the 3170 will usually be on leased communications
lines with other SNA products. VTAM provides a transparent interface

Chapter 3.4. SNA Access Methods 125

for the physica~ connection process. The 3770 in batch mode is a multi
media I/O control unit. Some 3770 1)0 devices are available with
different speeds (for example, 40, 80, or 120 cps printers). CICS/VS is
not sensitive to I/O device speed in the VTAM/SUA environment. The use
of the inter-record separator (IRS) in the standard character string
(SCS), and of BMS, means that the CICS/VS application program is
independent of the length of card read by the card reader.

A batch logical unit is normally concerned with sending or receiving
large blocks of information. A characteristic of batch is that the data
was prepared prior to initiation of transmission. conventional batch
input devices are card readers and diskettes. In both cases, the
information was prepared in advance. If this information was prepared
in a fashion unacceptable to the application, it cannot be immediately
corrected, with the result that processing generally cannot continue.

To control problems of this type, users frequently perform an
extensive edit of data prior to invoking the program that processes the
data. Among the edit techniques that are employed are field content
(alpha vs numeric), module check, range limits and hash totals. CICS/VS
support of BLUs will offer the user the ability to control his batch
operations to a level appropriate to his requirements.

The batch logical unit allows contention for control in much the same
vay as does the interactive logical unit. The difference is that once
established, communication is normally on a strictly alternating basis:
the receiving unit cannot transmit until the transmitting unit
relinquishes control. As an exception, the batCh protocol does allow
pseudo-interactive communication with a keyboard-printer, in that an
error message can be directed to the printer while batch input is taking
place.

CICS/VS functions supported for 3770 batch sessions are:

• Operator sign-on/sign-off

o Basic mapping support

• Terminal paging

• Message routing and message switching

• Automatic task initiation

• Master terminal operator functions, but a batch logical unit would
not normally be used as the CICS/VS master terminal

• Supervisory terminal operator functions

• Function management headers ~MHs) and logical device codes (LDCs)

VTAM support for 3770 batch sessions differs from VTAM support of
some other terminals as follows:

• The message recovery/resynchronization facility is not available

• Error messages, as well as negative responses, vill be sent to the
terminal

For further information see the £!CSLlS 3767, 3770 and 6670 Guide.

126 CICS/VS Syste~/Application Design Guide

3770 PROGRAMMABLE SESSIONS

The 3770 p~ogrammable session provides facilities similar to those of
the 3790 full function program session. For further information see the
IBM 3767, 3770, and 6670 Guide.

3790 SESS IONS

The 3790 Communication System incorporates a Programmable Controller
(3791) that allows attachment of terminals and line printers. It is
used in a general-pu~pose data collection environment by many types of
industries.

3790 programs control the operator stations and communicate with host
programs such as CICS/VS. This communication operates through SNA
sessions between CICSjVS and logical units in the 3791.

A 3790 terminal operator can select an appropriate 3790 program to
accept data entered at the terminal, edit it, and store it on disk for
later transmiss10n to the processor. General-purpose data entry editing
carried out by the 3790 program ensures that:

o Alphabetic f1elds contain only alphabetic characters, and numeric
fields contain only numeric characters

o Fixed-length fields contain the required number of characters

o Variable-length fields do not violate the minimum or maximum length
specified

o Required fields are not omitted

o Self-check digits are valid

o Numeric fields fall within a specified value range

o Field values are valid based upon application criteria such as a
field's relationship to other fields, or to data held in tables or
stored on 3791 disk data sets

• Field values are valid based upon the existence of required 3791
disk data set records, or the status of a particular data set
record. Por example, the 3790 program can ensure that an inventory
upda te that reduces "quanti ty on hand" does not produce a negative
quantity.

A 3790 terminal operator cannot communicate with CICS/VS to invoke
CICS/VS system functions without the presence of a 3790 program or 3277
compatibility support to support the operator-CICS/VS conversation.
Therefore a sample 3790 program is provided. The functions available in
this program allov the use of the following facilities:

o Maste~ terminal operator functions

o Operator sign on/sign off

o Supervisory terminal operator functions

o CSPE transaction.

Chapter 3.4. SNA Access Methods 127

The 3790 can operate completely offline, accepting and editing data
from terminals, and storing it on disk for later batch transmission to
the processor. It can also operate online to the processor,
establishing sessions oetween CICS/VS and 3790 programs, which edit
terminal input, pass input to CICS/VS for further processing, and accept
output from CICS/V5 to direct to the terminal. The 3790 is su~ted for
remote offices where the functions of data entry, data inquiry,
calculation, and document preparation are reguired.

Refer to An Introduction to the IBM 3790 Communication System,
GA22.3-167, for further information on 3790 units and features.

CICS/VS application programs communicate with 3790 programs, and do
not support or directly interact with terminals controlled by the 3790
programs. CICS/VS is not aware of any other programs which may be
conc~rently executing in the 3790. These programs may each separately
establish sessions with CICS/VS, or with other VTAK application
programs.

CICS/VS also supports the 3270 Compatibility Mode controller function
in Version 6 of the 3790. This support allows existing CICS/VS
applications written to use a 3270, to work in the same manner with a
3270 attached via a 3790 controller, and supported in the 3791 by the
3270 Compatibility Mode program running as a VTAM-supported logical
unit.

The 3270 Compatibility Mode controller function supports the 3270
displays as its primary device (3270 printers are only supported as
secondary devices, used for the production of hard copy of the contents
of the screen). CICS/VS supports the 3790 controller function which
supports the use of 3270 printers as bulk output devices. Here the 3270
printers are the primary device. 3270 printers attached to a 3791 may
be used with either a 3270 data stream or a minimum subset SCS data
stream. Both modes of use are supported by CICS/VS.

3790 Program Session

This session permits a 3790 program to accept transactions from the
term~nals it controls and transmit those transactions to CICS/VS. Each
session is allocated the specific terminal identification of its TCT
entry. Any number of CICS/VS transactions can be transmitted during a
session, and each transaction can involve several input and output
messages.

3790 Version 6 program sessions (full-function sessions) permit the
use of the following CICS/VS services:

o operator sign-on

o Terminal paging

o Message routing and message switching

• Automatic task initiation

o Master terminal operator functions

• Supervisory terminal operator functions

• Message recovery and resynchronization

• Basic Mapping Support

128 CICS/VS System/Application Design ·Guide

The following restrictions apply to 3790 Version 1 program sessions
(inq uiry se ssions) •

• Basic mapping support is not provided

• The 3790 program must initiate the session. The 3790 cannot accept
unsolicited output from CICS/VS.

• The 3790 program must start the exchange of data with a CICS/VS
transaction by issuing a PUT, and must issue a GET to receive the
last output from the CICS/VS transaction.

• The maximum input message is 240 bytes. However, several input
messages can be transmitted by the program and be concatenated by
the CICS/VS application program (through user programming) for
input greater than 240 characters.

• The program is responsible for the unchaining of chained output.

Refer to the CICSLYS IBM 3790_Guide for further information on the
use of the 3790 by CICS/VS.

LUTYPE4 SESSIONS

Logical units type 4 (LUTYPE4) have been defined by SNA to allow the
transmission of word processing data streams. The IBM 6670 Information
Distribution Syst~m is an LUTYPE4. CICS/VS supports sessions between
CICS/VS as a primary logical unit and the IBM 6670 as a secondary
logical unit. The CICS/VS support is described in CICS/VS IBM 3767,
3770, and 6670 Guide.

CICS/VS application programs can read from and write to data
processing media (console, card, and print) controlled by an LUTYPE4, as
well as word processing media. All these media are capable of both
input and outp~t, except for print. In a typical case, the application
would read from magnetic cards and write to a printer.

CICS/VS support for LUTYPE4 is an extension of, and is compatible
with, support for batch logical units, using basic mapping support and
the batch data interchange interfaces. In a typical application the
data transmitted consists of the contents of documents, this data being
stored, under the control of CICS/VS, on a central data base at the host
cpu. Documents could be both stored and transmitted to the LUTYPE4 in
unformatted or partially formatted form, to be formatted and then
printed by the logical unit.

Documents would be prepared on magnetic cards, probably using a
magnetic card typewriter. The operator of the LUTYPE4 would feed the
cards into the unit, which would then transmit the data to the CICS/VS
application programs that are to store it.

Basic Mapping support (BMS) functions are provided for the output of
word processing data streams, out not for input. BMS supports data
processing media for both input and output.

Chapter 3.4. SNA Access Methods 129

Terminal Control Communication Using VTAM

Each of the basic terminal control operations, RECEIVE, SEND, SEND WAIT,
HAlT, and CONVERSE, is available for communication with TCAM- or VTAM
supported terminals.

TERMINAL I/O OVERLAP

VTAM permits terminal I/O operations to proceed concurrently with
application program processing. This enables terminal I/O to be
overlapped with CICS/VS application program processing. The CICS/VS
application programmer can specify whether a terminal control request is
to be initiated immediately to communicate with a VTAM-supported
terminal while application program processing continues. The programmer
can check for completion of the request at a later time by issuing a
WAIT TERMINAL command.

Alt6rnatively, the programmer may specify that a terminal control
request is not to be initiated immediately, but is to be delayed until
the program issues a WAIT TERMINAL command, passes through a user
defined synchronization point, or terminates. Delayed initiation of
VTAM terminal control requests provides compatibility with the manner in
which BTAH-supported terminals are controlled. Further, it can ensure
that no output is transmitted to a logical unit until the task which
generated that output is no longer vulnerable to backout in the event of
a system failpre.

FULL-DUPLEX TRANSMISSION

VTAM supports full-duplex transmission of data between the processor and
logical units. Thus, input and output may be proceeding concurrently on
the same line, to different controllers multi-dropped on that line.
CICS/VS enables the application program to request terminal input when
needed, and to direct terminal output to the relevant terminal or
logical unit when processed . (half-duplex processing).

"'.L.'-_ .. __ '- ,....-,..,..1 ,.. ___ ,.! __! _________________ .: __ "L..._,,.r: ~ ... _, _____ ~_

11.1. LllVUY 11 \,.1.\,0>/ YO> a.PP.1..1.\,a. L.1.Vll p.Lvy.La.ilI~ p.L V\'I::~~ .1.11 a. .lla..1. .L-UUP.1.I::,A, UlVUI::,

for optimum line efficiency data can still be transmitted by VTAM in
full-duplex mode. Logical units may transmit input to CICS/VS
application programs on an anticipatory basis. VTAM queues this input
until the relevant CICS/VS application program issues a RECEIVE command.
The input message has already reached the processor, and is then
presented to the application program to satisfy the request~

FUNCTION MANAGEMENT HEADER

The following discussion on the function management header WMH) is
applicable only to the programmable terminal systems 3600, 3650, and
3790, and to the 3770, the 3770 Programmable and the 6670.

Output messages transmitted by terminal control to particular
termi~als uithin these systems may require certain information vithin
the message to identify the disposition of the output by the logical
unit. This information is called a function management header and
comprises the first part of the output message.

130 CICS/VS System/Application Design Guide

Similarly, input messages from terminals may include an FHR. In this
case, the FHH supplies information about its origin for the application
program.

See the appropiate terminal guides and the CICS/VS Application
g£~g£~r's Refg£gn~~~al for further details.

SYSTEM PROGRAMMER MACRO INSTRUCTIONS

Additional terminal control macro instructions are available for use by
the CICS/VS system programmer. These enable the status of a terminal to
be changed in the TCT, or a specific terminal entry to be located in the
TCT, using the terminal control STATUS and LOCATE macro instructions
respectively. The result of these operations can be checked using the
terminal control CHECK macro instruction.

The STATUS, LOCATE, and CHECK terminal control macro ,instructions are
intended primarily to be used by the system programmer in the network
error program DFHZNEP. The DFHZNEP program enables the system
programmer to attempt recovery of error exception conditions encountered
with transmission to VTAM-supported terminals.

See the appropriate terminal guides and the CICS/VS System
Programmer's Reference Hanual, for further details on these system
programmer macro instructions.

Basic Mapping Support Communication with VTAM

The benefits of format (mapping) and terminal device independence
offered by BMS to BTAM-supported terminals are also available to VTAH
supported terminals.

I NPUT MAPPING

BMS performs input mapping for 3270, 3650, 3767, 3770, and 3790 Version
6 systems and for data streams from 6670 data processing media (console,
card, and print); it does not perform input mapping for 3600 or 3190
Version 1 systems. In 3600, and 3790 systems, and in 6670 word
processing data streams, the application program associated with the
logical unit is responsible for removing device-dependent characters
from the terminal input message. It is also responsible for formatting
input data prior to its transmission to CICS/VS. Received data is
passed to the application program without change following a RECEIVE HAP
command.

OUTPUT l!APPING

BMS performs output mapping for VTAM-supported terminals (except for
3790 Version 1). Device-dependent characters are inserted into output
messages by Bas based upon the characteristics of the device intended to
receive the output.

Chapter 3.4. SNA Access Methods 131

Where appropriate, BMS constructs and inserts the function management
header (FMH) into the output message prior to issuing terminal control
output reguests on behalf of the CICS/VS application program. The FMH
has the same format as described in "Terminal Control Communication with
VTAM." The message description byte is set up by BMS to define a
formatted output message. The CICS/VS application program identifies
the output device to BMS for VTAM-supported terminals by means of the
logical device code ~DC). The LDC is used by BMS to identify the page
size and device type. BMS inserts information from the LDC in the FMH
prior to requesting terminal control output. The CICS/VS application
program is relieved of the responsibility of constructing the FHH. This
permits programs to be written independent of particular terminal
characteristics.

LOGICAL DEVICE CODE USES

The following discussion on the logical device code (LDC) is applicable
only to terminal systems that use a function management header.

The LDC may be used to identify the output device to BBS and the
logical unit. BMS uses the map specified by the application program to
format the output data. It inserts the device-dependent characters into
the output stream to ensure that the data is displayed as specified by
the map. The tDC is also inserted into the output stream for
transmission to the logical unit. On receipt of the data, the logical
unit determines ~rom the LDC) which device is to receive the output.

In addition to identifying specific devices and their associated page
size, the LDC can also communicate other information to the controller
application program. For example, the LDC may identify a specific
preprinted form number to receive the output on a specific printer, or
on any printer available to that logical unit. The LDC may also be
interpreted by the logical unit as a request to turn on (or off)
particular terminal indicator lights, transmit data accumulated on disK
during offline operation to the processor, or change processing modes
(for example, change to after-hours processing operation) •

The LDe is used by the CICS/VS application program to communicate
logical disposition of output to the logical unit, and can represent any
logical meaning useful to the installation's purpose.

CICS/VS permits the use of as many as 255 different logical device
codes. Each may have a different meaning, dependent upon the particular
controller application program interpretation.

MAP RESIDENCE IN CONTROLLERS

Some VTAM-supported controllers, such as the 3651, permit formats to
reside outside the processor on disk in the controller for 3275 host
conversational sessions. A BMS output request from a CICS/VS
application program results in transmission of the output data (without
mapping) and the format name in the FHH, to the remote controller. The
controller retrieves the specified format from the 3651 disk, and writes
it to the screen on the relevant 3275 attached to the 3651. Thus,
processor processing is reduced, and additional flexibility is available
to the installation to tailor a general purpose map to specific 3650
systems in individual retail stores.

132 CICS/VS System/Application Design Guide

BMS ALARM INDICATOR

The CICS/VS application program, using BHS, can request that an alarm
indicator be turned on at the terminal upon receipt of the output
message. This alarm indication is transmitted by BSS to the logical
unit oy means of the function management heaQer (FHH). The logical unit
responds to this request by turning on an appropriate indicator light on
th6 terminal that is to receive the output.

BMS I/O OVERLAP

The CICS/VS application program can request that a BMS operation, and
the associated terminal I/O, be initiated imaediately. Alternatively,
the program can request that the BMS operation be delayed until a WAIT
TER~INAL command is executed, the program passes through a user-defined
synchronization point, or the program terminates. This immediate, or
delayed, request is specified as part of the SEND or RECEIVE command in
the manner described in "Terminal Control Communication using VTAM." It
has the same porpose as for terminal control: to provide compatibility
with BTAM operation and to improve output message integrity.

Terminal Device Independence with VTAM and BTAM

The use of BMS permits CICS/VS application programs to be written
independent of the particular terminal to be used. For VTAM-supported
term~nals, default options provide compatibility with BTAM-supported
terminal operation. For example, the default option (unless specified
otherwise) is to dalay the initiation of tarminal I/O until the
application program issues a WAIT TERMINAL command, passes through a
user-defined synchronization point, or terminates. .

If an LDC is not specified in a BMS request to VTAK-supported
terminals which require the LDC parameter to be used, a default value is
used. This can be specified when the TCT is generated as a unique value
for a specific TCT antry, for a group of entries, or for all entries in
the TCT. If, however, an LDC is specified in a BMS request to BTAM
supported terminals, it is ignored.

BMS requests which specify 3270 attribute characteristics can be used
with devices that do not have these characteristics. In this case, the
3270 attribute information is ignored.

For these reasons CICS/VS application programs can be written to
communicate with a variety of BTAM-, VTAM-supported terminals. Unique
device characteristics may be specified in a map generated specifically
for a terminal to achieve a general format function required by the
CICS/VS application program. The CICS/VS application program identifies
a map name in its BMS request; BMS appends to that map name a character
which identifies the particular terminal type which is communicating
with tha program. BMS then retrieves the unique device-dependent map
for that terminal type ana uses it to format the terminal data.

Consequently, existing BTAM-support6d terminals may be used to test
CICS/VS application programs intended primarily for operation with VTAM
supported terminals before the installation of the VTAM or TCAM
terminals. Alternatively, sequential terminals, such as card
reader/line printer, disk, or tape, may be used for testing. However,
testing must model the operation of remote controller programs. For

Chapter 3.4. SNA Access Methods 133

example, input must be presented to CICSjVS in exactly the same format
as would be presented by the remote controller. Output must be accepted
from CICSjVS as presented to the remote controller. In the case of
input mapping for testing for the 3600, the mapped input from BTAM
supported or sequential terminals must be the same as presented by the
3601. This is necessary because mapping with actual 3600 input is
ignored, and the input ~ata is presented to the application program
without change.

Testing is limited to those operations which can be performed by the
relevant testing terminal, or which can be preplanned in the test input.
BTAM-supported and sequential terminals are unable to exercise the same
data handling and processing capability possible with remote
controllers.

TERMINAL PAGING USING VTAM

Some sessions established with remote controllers support terminal
paging. (See "CICS/VS Session Types. II) The CICSjVS application program
can build pages to be associated with specific logical device codes used
by a logical unit. BMS separately controls the page construction for
each LDC, and then makes available all pages built for each LDC used by
the logical unit.

The terminal operator at the remote controller can request that pages
associated with a particular LDC for that logical unit be displayed.
(See Figure 3.2-3 for terminal paging commands.) The appropriate LDC
pages desired can be requested by appending the LDC to the terminal
paging command; all LDC pages can then be displayed on request.
However, any LDC pages which have not been viewed will be lost when the
terminal operator requests purging of pages associated with the logical
unit.

MESSAGE ROUTING AND MESSAGE SWITCHING USING VTAB

Some sessions established with remote controllers support both message
routing and message switching. (See "CICSjVS Session Types. ll) Pages;
built by CICS/VS application programs or hi terminal operators, can he
associated with particular logical device codes for transmission to one,
or a group, of logical units. The only restriction is that each LDC
associated with a message-routing or SWitching request must represent
the same device type.

Pages delivered to the specified logical units can be viewed by the
terminal operator using the appropriate LDC appended to the terminal
paging commands.

134 CICS/VS System/Application Design Guide

Part 4. Application Design

135

Chapter 4.1. Program Design

Task Initiation

Thare are several methods utilized by CICS/VS to initiate tasks.

• Transaction codes

• Automatic task initiation

• Interval control

• Task control

They are outlined here.

TRANSACTION CODES

CICS/VS examines a transaction code received as part of a terminal
message, to identify the particular transaction involved. This
transaction code must occupy the first one to four characters of the
transaction invocation message. An input message is considered a
transaction invocation when it occurs and no task is active on the
terminal. This transaction code is validated by CICS/VS against a
program control tanle (PCT). If ·the specific transaction code exists in
that table, the transaction is assumed to be a valid one, and the
transaction is passed to that program identified in the relevant PCT
entry for processing (see Part 3 for more detail).

The 3270 enables transactions to be initiated by the use of a Program
Att~ntion WA) key, Program Function WF) key, selector light pen,
cursor select key, or operator identification badge.

HQte: Us~rs are advised not to use transaction codes beginning with
'CI. All CICS/VS internal transactions begin with C, ann it is possible
that these will be added to in the future. If a user has a transaction
name which is identical to the name of a newly introduced internal
transaction, he will have to change his transaction name and associated
documenta tion.

AUTOMATIC TRANSACTION INITIATION

Automatic transaction initiation involves the queuing of transactions on
disk using CICS/VS transient data management. A number of transactions
may be queued based upon a specific trigger level. When the number of
transactions queued reaches this trigger level, CICS/VS auto~atically
utilizes a specified transaction code for that queue to initiate a task
and allow those queued transactions to be processed by a specific
program. (See Chapter 4 .. 2.)

Chapter 4.1. Program Design 137

INTERVAL CONTROL

CICS/VS enables a task to be initiated using a specified transaction
code at some future time, based upon time of day or on elapsed time.
Data may be passed to that future task for use in processing when it has
been initiated. (See "Interval Control" later in this chapter.)

Program Control

A program may pass control to other programs in a variety of ways.
These are illustrated in Figure 4.1-1 and nescribed briefly below. See
the CICSt'S Application Programmer's tieference Manual, for additional
information.

TRANSFER CONTROL TO PROGRAM (XCTL)

The XCTL comaand enables one application program (referred to as the
calling program) to pass control to another application program
(referred to as the called program). Control is not returned to the
calling program on completion of execution of the called program.

CICSIVS
Nucleus

Link A

Program
A

XCTL B

Program
B

Link C

Return

Program
C

Link D

Return

Figure 4.1-1. CICS/VS Program Control Facilities

138 CICS/VS System/Application Design Guide

Program
D

Load E Program
E

Process

Delete E

Return

LINK TO PROGRAM (LINK)

The LINK command specifies the name of an application program to be
executed. The calling program passes control to the called program. On
completion of execution, control is returned to the calling program, to
the statement following the LINK.

LOAD PROGRAM (LOAD)

This command enables a program, identified by name, to be loaded into
storage. However, control is not passed to that program for execution,
but is returned to the statement following the LOAD command. The LOAD
command can be used to load application programs, which may subsequently
be linked to or transferred to. Alternatively, this command may be used
to load tables of information.

DELETE PROGRAM (RELEASE)

Normally, on completion of execution of a task, all storage utilized by
that task is automatically freed and made available for use in
processing other transactions. Active programs being used by task~ vill
continue to reside in storage. If, hovever, the storage occupied by an
inactive program is required for some other executing task, that storage
uill be freed. When a program is loaded, its storage can be
automatically freed if it is currently inactive, allowing another task
to U$e that storage.

Alternatively, the LOAD command can specify that the storage is not
to be freed, but that the program is to remain resident in storage even
though inactive, for performance reasons.

The RELEASE comoand is used to delete such a resident program at a
point which will enable its storage to be utilized for other functions.

RETURN FROM PROGRAM (RETURN)

Tha Program Control RETURN command enables a program to return control
to a higher level program, that program can be either another
application program or CICS/VS if the RETURN is issued by the
application program at the highest level. The RETURN indicates that the
relevant program has now completed processing. At task completion,
CICS/VS frees all of the storage associated with the task, such as
terminal I/O areas, file I/O areas, and file work areas, and eventually
also frees the storage occupied by the task control area. Optionally, a
transact'ion code may be specified in the RETURN command. 'rhe
transaction code is used with the next input message from the same
terminal that originated this completed task.

Chapter 4.1. Program Design 139

ABNORMALLY TERMINATE PROGRAM (ABEND)

This command enables a program to immediately terminate execution of a
task, with an optional dump if required. In conjunction with the
optional operator sign-on facility, the ABEND command can be used to
develop operator error statistics.

ABNORMAL TER~INATION EXIT (HANDLE ABEND)

This command enables a task to activate, deactivate, or reestablish a
program-provided exit routine to be executed in event of abnormal
termination of the task. This exit routine can be utilized either on
CICS/VS abnormal task termination, or by termination through the use of
the ABEND command by the task.

An abnormal termination exit routine is used to complete urgent
processing by a task for recovery purposes, or it may attempt recovery
of the particular error condition itself. Refer to "Program Error
Recovery" in the following section for more detail.

Task Control

Task allows CICS/VS application programs to attach new tasks for
execution, if required. This may be done either by the automatic task
initiation feature of transient data intrapartition queues, or by time
ordered initiation ~ee "Interval Control," below).

SUsPEND

The SUSPEND command enables a task to wait on completion of a single
event or one event in a list of events. However, the SUSPEND may first
result in task switching to another CICS/VS task whic~ is able to
process. Only if no CICS/VS task is able to process is control
voluntarily passed to another VSE or OS/VS partition/region.

TERMINAL READ TIMEOUT

This feature allows the user to specify a timeout limit for a
conversational transaction when the transaction is waiting for a
terminal input message. This keeps a single transaction from occupying
system resources for long periods of time while waiting for a reply from
the terminal.

140 CICS/VS system/Application Design Guide

ISOLATED TASK PAGING

This option allows the user to participate (with the operating systems
page manager) in selecting pages to be made available for page out. tlh~n
the TeA storage of a private or long running task is acquired by task
control, a number of additional pages may be acquired as specified by
the ANTICPG operand in the task's PCT entry. Task control makes these
pages available for page out when the task waits for a response from a
terminal, and causes them to be asynchronously paged in uhen the task is
to be given control after the response has been received. This allows
pages occupied by data areas belonging to conversational tasks to De
paged out faster than the normal paging process.

ENQUEUE/DEQUEUE

Task control provides ENQ and DEQ commands for other CICS/VS modules and
application programs to enqueue and dequeue on various resources.

An enqueue and dequeue facility is often necessary in a multitasking
environment, to ensure that only one task is able to utilize a
particular resource at a time. In the case of the potential concurrent
updating of records in a file control data set, file control utilizes
the task control ENQ and DEQ facilities to ensure that the first task
that retrieves a particular record for update is given the exclusive use
of that physical record. A second or subsequent task Hhicb also uishes
to update that same physical record while the first taslc is still in the
process of updating it, is prevented from carrying out its update. When
the first task has completed its update, and is dequeued from exclusive
control of that record, the next task is given exclusive control of the
record through the use of ENQ. It carries out its update until it has
completed, and then is dequeued from that record.

Interval Control

iUTURE TASK INITIATION

Tasks can be initiated at a future time, based on either an elapsed
period of time or a specific time of day. These future tasks can be
initiated either with no data transfer through the use of the START
command, or with data transfer through the use of the START command with
the PROM option. A unique time request identification can be allocated
to the START command, to later identify that request if it is necessary
to cancel the request before the task is initiated.

The use of START FROM allows a task to be initiated at a future time,
based on elapsed time or time of day, and specify data to be transferred
to that task. This time request is given a unique identification, and
data which is to be transferred to the future task is written by
interval control to a special queue. There is one such queue for each
future task/terminal combination.

When the future task is initiated, its data may be retrieved from the
queue by the application program issuing a RETRIBVE command. Subsequent
RETRIEVE commands will retrieve each record which was initially put onto
the queue for this task/terminal combination, until all expired records
have been retrieved. At this point, the ENDDATA condition is raised,

Chapter 4.1. Program Design 141

unless the WAIT operand was specified on the RETRIEVE command. HAlT
will cause the tasK to be suspended until a further START command in
some other transaction supplies further data for this task and terminal.
If CICS/VS shuts down or receives a request to start another transaction
for the same terminal before more data is supplied, the suspension will
cease and ENDDATA will D6 raised.

The task will be terminated if te suspension lasts longer than the
valu6 specified in the DTIMOUT operand of the DFBPCT TYPE=ENTRY macro.
It is recommended that a limit is specified in case an error occurs that
prevents more data baing supplied.

This facility is useful when designing online applications, to ensure
that particular application events which must occur at a specific time
of day, or after a specific elapsed time following some other
application action, can be initiated automatically. However, procedures
must be developed during online system design to cancel these future
application events, if necessary for the application. Generally,
canceling of future eV6nts would be placed under control of the master
terminal operator, through user-written programs which are given the
same security code as that allocated to the master terminal operator.

The START command is provided with a nUDDer of facilities intended
for use primarily in communications between transactions running in
different systems. Information is given in Chapter 7.2, "Function
Reguest Shipping and Transaction Routing". ~ost of the facilities are
applicable when the transactions run in one system, though they would
not generally be very useful.

TIME EVENT WAIT

Application programs may need to wait on completion of a specific period
of·time or until a specific time of day occurs. This can be achieved by
the use of the SUSPEND command, specifying the request identification of
the original command which specified the particular time request.

The use of SUSPEND will utilize CICS/VS resources (such as dynamic
storage for residence of the particular program and associated areas),
until the SUSPEND is satisfied. Accordingly, the SOSPEND command should
not be used unless the time duration is only a matter of seconds. If it
is necessary for a lonqer duration wait to be in effect. this should be
achieVed by-initiating-a future task at some short interval of time
before the time event to be waited on expires. This future task may
issue the SUSPEND command to wait for completion of the specified time
event, and so ensure that CICS/VS dynamic storage is tied up for the
shortest possible time. To minimiz·e the effect of utilizing these
resources, that future task should occupy as little storage as possible.

Application programs may also request the time of day through the use
of an- ASKTIME command.

142 CICS/VS system/Application Design Guide

TIME EVENT CANCEL

As indicated previously, it may De necessary for future time events to
be canceled. This is best achieved by user-written application programs
which issue the CANCEL command, specifying the time event request
identification for that event to be canceled. Ideally, these canceled
transactions should be placed under control of the master terminal
operator, by allocating a security code to the transaction code so that
it can be utilized only by the master terminal operator.

Program Error Recovery

CICS/VS features facilities for detection of program error situations,
and protection of the online system from the eff~ct of these errors. If
a program-check error is detected in an application program, CICS/VS
uill attempt to abnormally terminate that task vhile still permitting
other tasks to continue processing.

For fuller details of recovery and restart facilities, refer to Part
5.

PROGRAM ERROR PROCESSING

CICS/VS enables an application program to indicate, through the use of
the HANDLE ABEND command, that control is to be passed to a specified
routine in the program in the event of a program error, or to another
program. This routine (or program) may attempt recovery from the error,
record certain critical information necessary to the application before
the error program is aonormally terminated, or ignore the error and
continue program processing.

DYNAMIC TRANSACTION BACKOUT

If user-recovery is not successful and the abend is to continue, the
Dynamic Transaction Backout (DTB) Program will be invoked, if specified
for that transaction, before going to the Program Error Program.

TRANSACTION RESTART

Transaction restart is a facility which will restart an abended
transaction without requiring the attention of an operator. This
facility requires the dynamic transaction backout feature.

Chapter 4.1. Program Design 143

PROGRAM ERROR PROGRAM

In the event that a program error requires abnormal termination of a
task, the terminal operator who invoked the transaction to be abnormally
terminated will be notified of this fact by CICS/VS, if appropriate.
CICS/VS passes control to a program error program (PEP), after all
HANDLE ABEND processing has been completed for the task and the decision
has been made to permit the abnormal termination to continue. This PEP
is a user-written routine, given control through a LINK from the CICS/VS
abnormal condition program (ACP), which enables the user to perform
installation-level abnormal termination action.

Quasi-reentrant Programming

For efficient utilization of storage, CICSjVS ensures (unless requested
otherwise) that only one copy of a program will reside in the dynamic
storage area. All tasks requiring the use of that program are able to
execute that program concurrently.

In order to achieve a high degree of multitasking, CICS/VS supports
quasi-reentrancy. This allows several tasks to utilize the same section
of code over the same period of time. However, it differs from fully
reentrant programming in that control is only passed from one task to
another when the active task issues a CICS/VS command. Control will not
pass from one task to another on an I/O interrupt, for example, as is
the case in a VSE or OSjVS multitasking environment. CICS/VS provides a
quasi-reentrant capability for Assembler, ANS COBOL, and PL/I but not
RPG II.

Information unique to the processing of a transaction (such as the
terminal inpat area, file I/O areas, or work areas) is separated from
the body of the application program. Instead of these areas residing
within the program, they are allocated from dynamic storage. The
execution of each separate transaction in a multitasking environment is
controlled by a task control area (TCA) that contains address pointers
and other vital information for that particular transaction ~ask).
Because the information unique to a task is separated from the main body
of a program, the program can be used concurrently by several tasks.

t.1hon +'h~ ,..nmm::lln~_'otFo' ;n+'o.,..4="",...o .;~ ,,~o~ .:Inn"";,.. .,.+-,...,..".,...,... .; ~ .:1 4=.;",,""'.:1
~--- --- ------- -_._- --------- -~ ~---, -~----- -~~--~~ ~- --~~-~~

in the high-level programming language, but at execution time,
allocation takes place in storage areas controlled by CICS;VS, and
chained off the TCA, rather than in areas allocated by the language
processor. This is achieved by special code in the language processor
in the case of PL/I and COBOL; it is achieved by allocating a new copy
of the program for each task in the case of RPG and it is achieved by
user programming in the case of assembler.

The access methods are incorporated within the CICS/VS nucleus, and
exception or error routines are included in other CICS/VS application
programs. Figure 4.1-2 shows the concept of quasi-reentrant
programming.

144 CICS/VS System/~pplication Design Guide

INPUT

CICS/vS
Nucleus

Acces,
Methods

Dynamic Storage Area

Appli·
cation

A

Code

-

Appli·
cation

Code

Task 1
Contlol
Area

Terminal
Taule

I
Terminal
Input

'r----,
Task 2
Control
Area

Terminal

Table

I
Terminal

Input

Task 3
Contlol
Area

Term;nal
Table

/
Terminal
Input

Figure 4. 1-2.

APPLICATION TASK PROCESSING

1. Locate Terminal Input
Area.

2. Allocate Work Area.

3. Allocate File Input Area.

4. Get File Record.

~~..':.~~. Then:

5. Free Terminal Input Area.

6. Process File Input Record.

7. Free File Input Area.

1. Locate Terminal Input
Arc.J.

2. Allocate File Input Area.

3. Get File Record.

4. Allocate File Input Area.

5. Get Frie Record.

6. Allocate TermInal Output
Area.

7. Set Up Terminal Response.

S. Send Response.

OUTPUT

CICS/vS Nucleus

Access Methods

Dynamic Storage Area

Quasi-Re8ntrant Programming and Multitasking

Chapter 4.1. Program· Design

Appli·
cation

A

Code

Appli·
cation

Code

145

Chapter 4.2. Data Management Design

CICS/VS, together with DL/I, provides extensive data base capability to
online applications. In add1tion to this data base capability (which is
discussed in Part 2), CICS/VS offers additional facilities for internal
data management. This chapter first identifies various application
requirements which demand the services offered by CICS/VS temporary
storage management and transient data management. It then describes
those services which can be used as design tools by the system designer
to satisfy his own application requirements.

Application Requirements

It is first necessary to define the various data management functions
(as distinct from data base capability) which online applications
require of a DB/DC system. These functions are briefly described below.

WORK FILE CAPABILITY

Most online applications require the ability to store information for
later retrieval and use. This function is sometimes referred to as a
IIscratchpad li or work file capability, and is analogous to a person using
sheets of paper to jot down the intermediate results of calculations for
later' use in processing.

The following are two main work file requirements used for most
online applications:

o Scratchpad capability

• Queuing capability

Scratchpad Capabili~

This capability refers to the temporary storage of information for later
retrieval. In a batch environment, this capability is often provided
through the use of work data sets. In CICS/VS, this capability is
provided by the CICS/VS temporary storage control program. The
application program identifies data which is to be temporarily stored by
name, and subsequently retrieved by name without any consideration of
its physical location. Online application uses of temporary storage
include the following.

• Intermediate Results: The storage of intermediate results
developed during the processing of a transaction, for use later in
the processing of that transaction.

• Error Correction: The storage of input transactions which were
found to be in error, for subsequent use vhen the corrected error
fields are received from the terminal.

Chapter 4.2. Data Management Design 141

• Data Tragsfg£: A temporary storage of data so it can be used to
transfer data between programs. This data transfer may occur
immediately or at some future time.

o Terminal Pagigg: An application program may develop several pages
of information to be displayed at a terminal. This information
should be temporarily stored until the terminal operator requests
that it b~ displayed for his attention.

Queuing Capabiliil

In addition to the temporary storage of data, online applications
generally require a facility which will enable data to be queued for
SUbsequent processing. The difference between this and temporary
storage is that temporary storage stores and retrieves individual
sections of data, while a queuing capability enables several different
sections of the same type of data to be qUeued, and then all sections
retrieved together, sequentially, in the order that they were queued.
In CICSjVS,this queuing capability is provided by the CICS/VS transient
data control program. Examples in which online applications may utilize
a queuing capability follow:

• Batch Transaction Processin~: Transactions of a particular type
may be received from many terminals. If the application requires
that all of these transactions be processed together, they mai be
stored in a unique queue for that transaction type, in the order
that they reach the processor. This queue of transactions may then
be processed in the CICS/VS partition as a small sequential group
of transactions.

• Batched Message Transmission: The online application may require
that messages be batched and transmitted to specific terminals.

• Batch Partition Data Transfer: The online application may require
that information be transferred to batch partitions for further
processing, and the results of that processing be provided to the
online application for input at a later time.

CICSNS/VS Temnorarv Storaae,

The temporary storage management facility of CICS/VS provides a
scratchpad capability for online application programs. It enables data
to be stored either in dynamic storage or on auxiliary storage. Data to
be stored can be identified symbolically, and retrieved symbolically,
without application programs being concerned with the actual physical
location of that data. Data can be retrieved on request by an
application program in either a sequential or a direct access manner.
Temporary storage allows records to be up to 32,000 bytes in length, but
supports variable-length records only.

148 CICSjVS System/Application Design Guide

TEMPORARY STORAGE USAGE

The previous discussion of application requirements identified the
general use of a scratchpad facility by application programs. CICS/VS
temporary storage management is used to meet these application
requirements as follows.

Data Transfer Facility

The ability to temporarily save data for later use, and retrieve it
symbolically by name at a future time, enables easier implementation of
complex processing. This complex processing may be broken into several
logical steps, each step carried out by a separate module. Information
may be passed between these modules using temporary storage.

Depending upon the amount of information to be passed, and the time
period before that information will be used, this data may be stored
either in dynamic storage or, alternatively, in auxiliary storage.

Scratchpad Facility

Temporary storage may be used to saVe information for later use. An
example would be the saving of error transactions for later combination
with corrected fields received from a terminal, as described in "Error
Correction". Using this capability, correct information in the original
error transaction does not have to be reentered by the terminal
operator. Consequently, error correction is easier, and the potential
for further operator errors is reduced.

Terminal Pagi.!!fl.

Terminal paging in CICS/VS is also supported ,through the use of
temporary storage. Pages of information developed by application
programs are presented by them to CICS/VS. These pages are stored in
temporary storage for transmission to the terminal operator on request.
Refer to "Terminal Paging" in Chapter 3.2 for more detail~

The ability to transmit messages from one terminal to another terminal,
using the CICS/VS message switching transaction CMSG, or the ROUTE
command, is supported through the use of temporary storage. These
messages are automatically transmitted to the relevant terminal when
that terminal is able ~o receive them, or the specified operator has
signed on to CICS/VS. Refer to "Message Routing" in Chapter 3.2 for
more detail.

Chapter 4.2. Data Management Design 149

The CICS/VS interval control program uses temporary storage to pass data
from one task to another task which is to be initiated at a future time.
An application program may indicate the task to be 1nitiated at a
specified time (based on elapsed time or, alternatively, time of day)
and may transfer data to that future task. The FROM option of the START
command results in the data to be transferred being written to temporary
storage on disk for subsequent retrieval by the RETRIEVE command. Refer
to "Interval Control" in Chapter 4.1 for more detail.

Execution Diagnostic Facility

The CICS/VS Execution Diagnostic facility uses temporary storage to
communicate betwaen different invocations of the debugging taSK and to
maintain a trace of the execution of the user task. Refer to "Execution
Diagnostic Facility" in Chapter ".3 for more detail.

Tha CICS/VS Routing Transaction (CRTE) us~s temporary storage to retain
information about a routing session during its pseudo-conversation with
the opera tor terminal. Refer to "CR'rE Routing Transaction" in Chapter
7.2 for more detail.

DATA IDENTIFICATION

Each record may be presented to temporary storage with a unique eight
character data identification. Alternatively, several records may be
presented with the same data identification. In Doth cases, the
identification is supplied in the QUEUE operand of the WRITEQ TS
command, the former case being regarded as a queue with only one
element. A queue of records associated with a particular logical
4="n,.. ;I"'\.1'\ I~c- ;n,1;,.~~ ;l ~ oI-}...""" _" .. ,.~ ~ ___ \. ___ _ ~ ____ ., ___ ..!l __ .21
____ ~ ___ \~_ ~"~~~~~~y u~ ~u~ ~~c~c UQWCJ ~QU uc UCYC~VPCU, auu

subsequently retrieved in thE same sequence or a different one.

The queue name is used by CICS/VS to develop a data element which
contains that name, the sequence or entry number of the record in a
queue of records with the same data identification, and the location of
the record either in dynamic storage or on disk. These data elements
are maintained in CICS/VS dynamic storage. As records are written to
temporary storage, data elements are dynamically built by CICS/VS and
saved in dynamic storage. The number of temporary storage records which
may be retained is limited only oy the availability of dynamic storage
and/or the amount of disk space allocated to the temporary storage data
set.

Because many tasks may concurrently use the same program, the use of
a constant in the program for identification of individual records is
not advisable. The queue name may be dynamically generated by the
program based upon information such as:

150 CICS/VS System/Application Design Guide

• A combination of transaction identification (four characters) and
operator identification (three characters) will enable that
operator to store one record at a time for each transaction
iden tifica tiona

o A combination of operator identification and time of day, or
transaction'identification ana time of day, ~ill enable the record
to be uniquely identified. However, it requires the application
program to det~rm~ne the time of day and then respond to th8
terminal operator with the allocated data identification. He may
then use it to uniquely identify the record in a later transaction.

The techniques for unique data identification described above assume
an application environment where information is to be stored by the
user's program, and directly retrieved at some future time under control
of the terminal operator.

If temporary storage is used to pass data from one application
program to another, the allocated data identification may be passed to a
subsequent application program (executed under control of the same task)
through the transaction work area (TWA) appended to the task control
area (TCA) for that task. The program (executing under the same TCA)
which is to retrieve the data from temporary storage can obtain the
allocated data identification from the TWA. This data identification is
then used to identify the record to be retrieved.

If a record within a temporary storage gueue is to be directly
retrieved, it must be uniquely ref8renced by the queue name and its
relevant entry (or sequence) nUIDoer. When a record is uritten to a
temporary storage queue, it is placed at the end of the queue of records
with that sam8 data identification. Temporary storage management will
allocate the next sequential entry number and return this entry number
to the program. The record is now uniquely identified by the queue name
and the entry number.

This queue name and entry number may be transmitted to a terminal
operator for subsequent reentry, if the retrieval is to be initiated by
the terminal operator. If the retrieval is to be initiated
automatically by subsequent application programs executed by the same
task, the queue name and entry number should be saved in the TWA. The
program which is to retrieve that unique record may then extract this
information from the TWA for use.

USE OF DYNAMIC STORAGE BY TEMPORARY STORAGE

Dynamic storage is a valuable resource, and the overall performance of
the online system is directly related to the amount of available dynamic
storage and its relationship to real storage available for use as a
virtual storage page pool.

Generally, dynamic storage residence of records should be used only
when the life of those records is to be of very short duration. Its
main purpose is in passing data between program modules which are
exacuted under control of the same task. Once the data has been passed
between modules through dynamic storage, that data should be deleted and
the storage occapied by it freed. Dynamic storage may be used for
record queues as well as unique entries; however, write requests to
dynamic and auxiliary storage with the same data identification cannot
be used. CICS/VS will force all subsequent write requests with the same
data identification to use the same storage facility specified by the
first request.

Chapter 4.2. Data aanagement Design 151

The length of records to be stored in dynamic storage may be up to
the VSAM control interval size specified during CICS/VS system
initialization, less 84 bytes for CICS/VS control information.

CICS/VS permits temporary storage records to reside in dynamic
storage whether or not the CICS/VS system is generated indicating no
auxiliary storage residence support is required. The specification of
no auxiliary storage support removes the requirement for VSAM by
temporary storage. Instead, virtual storage is utilized; temporary
storage information is only paged into real storage when referenced.

Any temporary storage information residing in dynamic storage is lost
if a controlled or uncontrolled shutdown occurs. Auxiliary temporary
storage data IDs may be specified as recoverable to provide recovery of
records in the event of either a particular task failure or a total
system failure. See the CICS/VS System programmer's Reference Manual
and Part 5 for additional information.

Asa general rule, if a record must be stored for more than one
second, it should be directed to auxiliary or secondary storage rather
than to dynamic or main storage. Dynamic storage is then available as
much as possible for use in initiating concurrently executed tasks.
Certainly, the writing of records to disk, and the subsequent retrieval
from disk, will involve file accesses and so increase the processing
time of those particular tasks. However, the overall effect on the
entire online system is one of potentially better performance than would
result if considerable'dynamic storage were utilized for temporary
storage residence.

ACCESSING RECORDS IN TEMPORARY STORAGE

Temporary storage supports variable-length records only. A queue or
message set of records may be developed by issuing a WRITEQ TS command
for each record, using the same queue name. As each record is written,
temporary storage allocates the next sequential entry number and returns
it to the application program.

using the queue name and the entry number, the records in the queua
can be retrieved by application programs either sequentially, in the
chronological order in which they were written, or directly accessed by
referencing a specific entry number.

A queue of records can be retrieved sequentially by specifying the
queue name allocated for that queue and issuing a READQ TS command.
Temporary storage management retrieves the first record in the queue and
presents it to the application program. Each subsequent READQ TS
retrieves the next record in sequence until the last record has been
retrieved, when an end-of-queue indication will be returned to the
program.

Alternatively, if it is required to commence sequential retrieval,
not from the beginning of the queue but from a logical point within the
queue, both the queue name and the entry number are specified by the
program.READQ TS commands are then issued to retrieve each record
sequentially from the logical starting point in the queue.

The program may directly retrieve records by issuing a READQ TS
command with the specific entry number of the record in a queue to be
directly retrieved.

A record can subsequently be updated by issuing a aRITEQ TS command
specifying the relevant entry number.

152 CICS/VS System/Application Design Guide

The facilities offered by temporary storage for direct and sequential
retrieval of infor~ation make it a pouerful Hork file capability for
online applications. Information may be retrieved as often as required
until it is no longer needed. At that time, the records may be deleted.

Queues of records may be purged by a DELETEQ TS command. The
deletion or purging of these records results in the logical deletion of
those records in the temporary storage data set, uith the disk space
occupied by those records being reclaimed when the space is subsequently
used for another record. The data elements describing the deleted or
purged records are freed, and the dynamic storage occupied by those
records is reclaimed for other uses.

A program using the command-level interface will retrieve elements
from a queue generated by the DFHTS TYPE=PUTQ macro instruction.
However, it will not retrieve data elements written by a DFHTS TYPE=PUT
macro instruction.

TEMPORARY STORAGE RECOVERY

After a controlled or uncontrolled termination of CICS/VS, temporary
storage records on disk may remain available for use, if desired.
Temporary storage in dynamic storage is lost.

On restart of CICSjVS, either a cold start, warm start, or emergency
restart may be specified. If a cold start of temporary storage is
specified, any information recorded on disk is lost.

If a warm start is specified on system restart, the information in
the temporary storage data set is retained. The temporary storage
key point recorded at system termination (see Part 5) is used to
reconstruct the data elements in CICS/VS dynamic storage, to enable
subsequent retrieval of information by application programs once the
system has been restarted. Note that the system termination keypoint
will only be valid for a warm start if it was taken as a result of a
normal ~on-immediate) closedown.

If an emergency restart is specified, the information in the
temporary storage data set is retained. The contents of that data set,
and any temporary storage update activity automatically logged to the
CICS/VS system log prior to uncontrolled shutdown, are used to
reconstruct temporary storage tables in dynamic storage. These tables
identify the status of temporary storage at uncontrolled shutdown. The
data identification of temporary storage records and queues, the number
of entries in queues, the location of ~ch entry in auxiliary storage,
and the status of available space in- the temporary storage data set are
reconstructed during emergency restart.

The processing of in-flight tasks is also backed out during emergency
restart. A task is considered in-flight if it did not pass through a
user synchronization point (with no subsequent logging activity) or
terminate before uncontrolled shutdown.

A further aspect of temporary storage recovery, applicable to
auxiliary but not main storage data IDs, is dynamic transaction backout.
If a transaction should terminate abnormally after modifying a
recoverable auxiliary temporary storage ID, then the modifications will
be removed as part of the abnormal termination handling.

Thus, a consideration in the use of dynamic storage or auxiliary
storage as a temporary storage medium is the requirement for
recoverability. Information stored in main storage will be lost;

Chapter 4.2. Data Management Design 153

information storea in auxiliary storage may be recovered, following
either a warm restart, an emergency restart, or an individual
transaction failure.

CICSNS Transient Data

The queuing facility provided oy CICS/VS for online applications is
supported by the transient data ~anagement routine of CICS/VS. There
are two types of transient data queues. These are:

1. Extrapartition

Extrapartition queues are sequential data sets used for transfer of
information between CICS/VS and batch partitions.

2. Intrapartition

The intrapartition data set supports queues used within the CICS/VS
partition itself, to transfer information between CICS/VS tasks.

EXTRAPARTITION DATA SETS

Extrapartition data sets in CICS/VS are used for the following main
purposes:

Batch Data Transfer: Information which is to be passed from CICS/VS to
batch part~tions is directed to extrapartition data sets or queues.
These data sets are normal sequential data sets using QSAM for OS/VS or
SAM for VSE.

Similarly, information to be passed from a batch partition to CICS/VS
is read by the relevant CICS/VS task from an extrapartition input data
set.

Seg~giial D~~ic~: Extrapartition data sets may be used by CICS/VS to
communicate with various sequential devices, such as line printers.
Because the standard seqllential access method under OS/VS or VSE is used
to support extrapartition data sets, those devices supported by the
standard sequential access method can be utilized by CICS/VS. These
include card reader, line printer, disk, and tape. Particularly because
of OS/VS device independence, most sequential devices which are
supported by QSAM may be utilized as either input or output data sets by
CICS/VS, when the user specifies them as extrapartition data sets.

154 CICS/VS System/Application Design Guide

I

\ " ..

INTRAPART I'rION DATA SETS

Int~apartition queues a~e used to pass di~ect access o~ganized data
(chained sequentially) between CICS/VS tasks. A numbe~ of application
o~ienteQ uses fo~ 1ntrapartition files a~e:

Batch Queues: Data ~eceived f~om many te~minals for the same
application may be consolidated in one queue fo~ processing as a batch.
Each concurrently executing task may di~ect the data to the ~elevant
batch queue, whe~e it is chained sequentially. Subsequently, this batch
o~ queue of data may be p~ocessed as an input file of info~mation by a
CICSjVS task.

Automatic Tasks: Data sto~ed as a queue as desc~ibed above may be
automatically p~ocessed by a CICS/VS task when a specified amount of
info~mation has been queued. Based upon a t~igge~ level (o~ count) fo~
that queue, a specified task may be automatically initiated to p~ocess
that quantity of data. The t~igge~ level may va~y from 0 (which implies
no automatic task initiation) th~ough 1 (which initiates a task each
time info~mation is w~itten to the queue) to a t~igge~ level of g~eater
than 1.

!~£ming1-0UiEY!: Output may be automatically di~ected to a terminal
from several tasks. This automatic output may not be able to be sent to
the te~minal fo~ some time, because it is engaged in othe~ activity such
as ente~ing an input transaction o~ receiving output from p~evious
t~ansactions •

In addition, the tc~minal may be one to which output is only sent
when ~eguested. An example of such a te~minal would be a video
terminal. Automatic output di~ected to a video te~minal may not be
displayed at a convenient time, o~ may not allow sufficient· time for
assimilation of the info~mation displayed. Ha~d-copy terminals,
howeve~, may be able to receive automatic output at any time they a~e
not active, unless they are used with preprinted stationery. In this
case, automatic output fo~ a terminal must be queued on disk until the
te~minal is able to ~eceive it, or until the te~minal operator has
explicitly ~equested it.

Output to De di~ected automatically to a te~minal is queued on an
int~apa~ition queue. A trigg8~ level may be associated with this queue
such that when a specified number of output messages have been queued a
task is automatically initiated to t~ansmit those messages to the
terminal, if the terminal is able to receive those messages at that
time.

Audit: Int~apa~tition (or extrapa~tition) queues may be used to
accumulate info~mation for audit pu~poses. Int~apa~tition queues may be
specified as being nonreusable. Data w~itten to these queues is
accumulated th~oughout the operational pe~iod of CICS/VS, and will only"
be deleted (and the diSK space used will only be f~eed) by an explicit
DELETEQ TD command issued oy an application p~ogram.

Alte~natively, queues may De specified as reusable, in which case
info~mation on these queues is pu~ged automatically by CICS/VS when the
data has been ~ead by application p~og~ams.

Chapter 4.2. Data Management Design 155

EXTRAPARTITlaN TRANSIENT DATA

As discussed above, extrapartition data sets provide a sequential data
set capability to CICS/VS. Standard access methods such as QSAM for
as/vs or SAM for VSE are utilized. The specification of the particular
sequential data set is made at system generation time. Further
information describing that data set may be provided at CICS/VS system
initiation time from as/vs DD, or VSE DLBL and EXTENT, job control
statements. Extrapartition data sets can be either fixed-length or
variable-length, blocked or unblocked data sets.

Record Accessing

Each extrapartition data set is identified by a four-character queue
name (or destination identification). This name is specified by a
CICS/VS task when it requests input (GET) or output (PUT) on a
particular data set (see Figure 4.2-1) •

This queue name is used to locate the relevant entry in a destination
control table (DCT) describing that particular extrapartition data set.
CICS/VS transient data management then issues the appropriate VSE or
as/vs GET or PUT macro instructions for the particular sequential access
method. (See the CICS/VS Application programmer's Reference Manual.)

INPUT CICSIVS PROCESSING OUTPUT

Program

1. Application program issues
transient data REAoQ TO
command specifying queue

REAoQTo name.
QUEUE('ABCo')
INTO(oAREA)

Destination
2. CICSIVS locates entry in des·

Control Tabl. :> tination control table (OCT)
for queue ABCo.

ABCo

3. Queue is extra partition

Extrapartition
data set. CICSIVS allocates

FflL> J,
input area for task.

DCB/oTF Name I Input Area I

~
4. CICS/vS gets record via seqll rr access method and moves to

input area for task.

5. CICS/VS returns extrapartition
REAoQ TO

record in input area to user
QUEUE('ABCo')

'--
program by moving it to

INTO(oAREA) ,r-
oCB/oTF DAR EA.

Program

Figure 4.2-1. Extrapartition Data Set Accessing

For output to a sequential data set, the output record is constructed
by the application program, after which the program issues a WRITEQ TD
command indicating the relevant queue name of the output data set. The
output record is then written by transient data to the specified
sequential data set.

156 CICS/VS system/Application Design Guide

When an applicat~on program has to initiate input from a sequential
data set, it issues a READQ TD command specifying the relevant queue
name. Transient data determines the data set involved, and moves the
next sequential input record into the specified data area. The
accessing of extrapartition data sets is illustrated in Figure 4.2-1.

Extrapartition data sets may be either fixed-length or variable
length, blocked or unblocked.

~~~of Extrapartition Data sets 

CICS/VS does not attempt to recover extrapartition data sets after a 
controlled shutdown or in the event of abnormal termination or system 
failure. See Part 5 for further information. 

INTRAPARTITION TRANSIENT DATA 

As discussed previously, the intrapartition data set provides a useful 
queuing facility for passing information between eICS/iS tasks. Its 
main use is to provide support for accumulation of data to be either 
processed ~s a batch or automatically transmitted to a terminal. 

Record Accessing 

Data is written to or read from intrapartition queues by CICS/VS 
application programs in exactly the same way as for extrapartition data 
sets. However, only variable-length records are supported, and if the 
data sets are on fixed block architecture (FBA) devices, only VSAM may 
be used to access them. An application program sets up the output 
record, and issues a URITEQ TD command specifying the relevant four
character intrapartition queue name. 

Similarly, for input, uhen READQ TD comDand is issued by an 
application program, the record is read and passed to the requesting 
task. 

From a general programming point of view, there is no effective 
difference between reading and writing extrapartition data sets or 
intrapartition queues. The indication by the program as to whether an 
extrapartition data set or an intrapartition queue is to be used is the 
specification of the relevant queue name. 

One main difference between extrapartition and intrapartition queues, 
however, is that intrapartition queues may be specified as being 
reusable, if required. Thus they can be used as work files if needed, 
queuing data to be processed, and then, after processing that data, 
deleting it so that the disk space it occupied can be utilized for other 
purposes. This is discussed in more detail in "Reusable Intrapartition 
QueuE:sn later in this cha pter. 

Chapter 4.2. Data Management Design 157 



Intrapartition Disk Organization 

CICS/VS uses a direct access data set to support intrapartition queues. 
The disk space allocated for the intrapartition data set is regarded as 
a pool of tracks, or, for VSAM implementations, control intervals, flhich 
may be allocated to intrapartition gueues (destinations) as required 
(see Figure 4.2-2). 

/ 

INPUT 

Program 

WAIlEQ TD 
QUEUE('JKLM') 
FAOM(DAAEA) 

Destination 
Control Table 

JKLM "" I--------i 

Intrapartlt10n 

"------' 

-------"- Pool .... 
"- Of .... 

~ 

Intraparitition 
DataSet 

., Output Area I 

-'--
-,---

> 

CICSIVS PROCESSING 

1. Application program issues 
transient data WAITEQ TD 
command specifying queue JKLM. 

2. CICSIVS locates entry in des· 
tmation control table (DCTI 
for queue JKLM. 

3. Queue is intrapartition. 
If it is first record for 
this queue. CICS/vS allocates 
trace from peol of tracks and 
writes queue to track. 

4. CICS/vS writes output area to 
track as first data record. 

5. CI CSIVS places disk address of this 
record in OCT as get pointer. if 
it is first record for this queue. 

6. CICSIVS places dISk address of next 
available record location In OCT. as 
put pointer to write next record 
to this queue • 

7. CICSIVS updates put pointer as 
each record is written. At end of 
track. CICSIVS .lIocates new 
track chained to first. for use 
when subsequent records are put. 

> 

OUTPUT 

QUEUE 

I JKLM I Record I I CJ 

)\~ 
r--
I'-----'" r---

OCT 

"-1-__ J_K_LM __ "'i 
" Get POinter 

Pllt Pointer 

IQi~: For VSAM implementations, the term "track" in this figure 
refers to a control interval. 

Figure 4.2-2. Intrapartition Disk Organization 

Transient data maintains a series of tracks or control intervals 
allocated to each active destination, based on the dynamic requirements 
for intrapartition disk space. However, records are logically read from 
a destination in the sequence in which they were written; it thus 
appears to the CICS/VS task as if it were operating on a normal 
sequential data set. The data set is actually a direct access file. 

158 CICS/VS System/Application Design Guide 



INTRAPARTITION QUEUE USAGE 

As disc~ssed above, intrapartition queues are generally used to 
accumulate and process data as a batch of records. The various 
application uses to which intrapartition queues can be applied are noa 
discussed in more detail. 

Batch Retrieval 

Records may be accumulated as a Datcn on an intrapartition queue or 
destination. Retrieval and processing of these records arB achieved by 
a task issuing READQ TD commands specifying that queue. The initiation 
of these tasks may be achieved in one of three ways: 

Transaction Initiation: A transaction entered by a terminal can 
initiate a task which issues READQ TD commands for a particular 
intrapartition destination. Data retrieved in this way can then be 
processed as required. 

Interval Control Initiation: A task can be initiated at a future time 
based upon elapsed time or time of day. This task can issue READQ TD or 
RETRIEVE commands to read records queued on an intrapartition 
destination and process them. (See IIInterval Control" for information 
about the RETRIEVE command.) 

Automatic Task Initiation: A task may be automatically initiated by 
transient data when a specified number of records have been writtbn to 
an intrapartition queue. The trigger level specified in the DCT entry 
for that queue is compared with the count of records which still remain 
to be read. When the queue count equals the trigger level, a specified 
task (as identified by a transaction code in the DCT entry) is 
initiated. This task may issue READQ TD commands to read and process 
the data on that queue. This is discussed further in the section, 
"Terminal Output. n 

Intrapartition Recovery 

CIes/vs supports the recovery of intrapartition transient data queues on 
a uarm start following a controlled shutdown, and on an emergency 
restart follouing an uncontrolled shutdovn. The DCT status of each 
intrapartition destination is ree~tablished to reflect tne READQ 
pointer, WBITEQ pointer, gueue count and trigger level status as it was 
prior to the shutdown. Intrapartition queues are recovered, and 
automatic task initiation can then proceed after CICS/VS restart as if 
shutdovD had not occurred. 

On emergency restart follouing an uncontrolled shutdown, any 
intrapartition queue can be recovered to reflect all activity against 
those queue up to the point of uncontrolled shutdown. This is called 
"physical recovery.1t Alternatively, any intrapartition queues can be 
recovered to reflect the activity of completed tasks prior to 
uncontrolled shutdown; all in-flight task activity at uncontrolled 
shutdoun is backed out during an emergency restart. This is called 
"logical recovery." The user spec~fies in the DCT, at system generation 
time, uhether an intrapartition queue requires pbysical recovery or 

Chapter 4.2. Data Management Design 159 



logical recovery. Logically recoverable TD queues can also be recovered 
to their start-of-task status following the abnormal termination of a 
single transaction that accessed those destinations. (See Part 5 for 
further information.) 

Terminal Output 

Data may be directed to a tereinal from many tasks. That terminal may 
presently be active either entering input or receiving output from one 
task. When other tasks wish to transmit output messages to that same 
terminal, it is necessary for these messages to be queued on disk until 
the terminal is ready to receive them. 

This message queueing is achieved by requiring the other tasks to 
write the terminal output messages to a transient data queue. This 
queue is intrapartition, and furthermore is identified as being 
associated with a terminal. The queue name used ~st be identical to 
the terminal identification in the terminal control table (TCT) entry 
for the associated terminal. Tasks may issue WRITEQ TD commands 
specifying as a queue name the terminal identification. These output 
messages ~ill then be queued in the intra partition data set (see Figure 
4.2-3). 

To initiate transmission of these output messages to the relevant 
terminal, a trigger level of 1 is generally specified for that terminal 
destination. As soon as one output message has been written to that 
terminal queue, a task (identified by a transaction code in that DCT 
entry for the relevant destination) is eligible to be automatically 
initiated. The program used by that transaction code will 
conventionally be a common program, developed by the installation, to 
transmit data from various queues to their relevant terminals. 

However, to be able to transmit messages from the intrapartition 
queue to the terminal, that terminal must be idle and able to receive 
automatic output--that is, the output sent to the terminal is not in 
response to a transaction entered earlier by the terminal. 

Accordingly, unless the associated terminal is idle and able to 
receive output, a task is not automatically initiated based upon the 
trigger level of a terminal queue. If these conditions exist, the task 
is initiated. The terminal is allocated to that task as if the terminal 
itself had entered the transaction code which initiated the automatic 
task. The automatic' task may now issue commands to retrieve output 
messages from the particular terminal intrapartition queue. These 
messages may be transmitted directly to the terminal using CICS/VS 
terminal control or basic mapping support commands. 

160 eICS/VS system/Application Design Guide 



INPUT CIC5/VS PROCESSING OUTPUT 

Program 
1. Application program issues 

> WRIT EO TO, specifying same 
WRITEQTD Queue as terminal 10 of terminal 
OUEUE(TRMI ) to receive message (TERMID=TRMI' 

for example). 

OCT 

~ ~ 
TI1Ml 

2. CICS/VS locates entry in OCT for 

@r 
queue TRMI. 

=5> Terminal 

Trans Code 3. Oueue is for terminal. CICSIVS 
puts output message to intraparlition 

data set. 
Trtgger Level 

Queue Count 
4. CICS/vS usrs transaction code In 

~l1:> 
Task 

OCT ENTRY:TRM1. If trigger level 

I 
Control 

equals No. of messages queued on Area 
disk. (That IS, queue count). 

TCT [ 
TRMI TCT 

TRMI 5. If terminal able to receive message 

~> Term. Able To Rec. (as shown In termtnal control 
table). a user task is initiated by 
queue TRM1. 

Program 

--1-

~un> 6. Initiated user task is given con- ~ READO TO 

~ 
1<" OUEUE(TRM1) trol of TERMINAL:TRMI. User task 

gets output message from disk 
queue TRM1. 

~ Intrapartition 
7. User task transmits output mes-

Data Set 
sage 10 TERMINAL:TRM1. 

Figure 4.2-3. Terminal Output Via Intrapartition Data Set 

Terminal Status 

To indicate whether a terminal may receive automatic output or not, a 
processing status is defined for each CICS/VS terminal. The processing 
status codes are: 

• TRANSACTION status 

• TRANSCEIVE status 

• RECEIVE status 

• INPU T status 

• PAGE status 

o AUTOPAGE status 

TRANSACTION processing status indicates that a terminal is unable to 
receiva automatic output. It can receive output only as a result of an 
input transaction entered from that same terminal. Output queued from 
othe~ tasks for a TRANSACTION status terminal can be transmitted to it 

chapter 4.2. Data Management Design 161 



only when the terminal op~rator enters a transaction code which will 
read the data from the relevant intrapartition queue, and send it to 
that terminal. The terminal operator has control over when he will 
receive th~ queued output. Generally, and particularly for video 
tarminals, one intrapartition message would be transmitted each time the 
relevant transaction code is entered. The terminal operator can then 
assimilate the information presented to him before the next output 
message is requested. 

TRANSCEIVE status indicates that a terminal may enter input 
transactions, but can also receive automatic output from other tasks. 
This is generally used for hard-copy terminals, where several lines of 
output may be automatically transmitted when the terminal is idle. 

RECEIVE status indicates that a terminal is unable to enter any input 
data, but is only able to receive automatic output from other tasks. 
This is generally used for printers. 

INPUT status indicates that a terminal can enter data but cannot 
receive data. 

PAGE status indicates that a terminal can only retrieve pages on 
request, one at a time. 

AUTOPAGE status indicates that a terminal will receive all pages 
queued for it. 

Two additional term1nal status codes are used to indicate the 
activity status of each .ClCS/VS terminal. These are: 

• IN-SERVICE status 

• OUT-OF-SERVICE status 

IN-SERVICE status indicates that the terminal is presently active and 
able to process as defined above. 

OUT-OF-SERVICE status indicates that the terminal is presently 
inactive, either because it has been marked out-of-service by the master 
terminal operator for example, or Decause of an unrecoverable I/O error 
which ~ccurred on that terminal. In this case, it is unable to enter 
any messages or receive any output, automatic or otherwise. 

Terminal status is recorded in the TCT. It i~ set up by the system 
programmer and may be varied by the master terminal operator. The CEMT 
master terminal transaction does not use the statuses RECEIVE, 
TRANSACTION and TRANSCElVE. Instead, the master terminal operator 
specifies whether or not ordinary terminal transaction initiation 
(TTl/NOTTI) and automatic transaction initiation (ATl/NOATI) are 

allowed. For further information about the TCT and operation of the 
master terminal, respectively, see the System Programmer's Reference 
Manual and the Q~rator's Guide. 

Thus, for a task to be automatically initiated based upon a terminal 
intrapartition destination trigger level, the relevant terminal must 
have the following status: 

• IN-SERVICE status 

• TRANSCElVE status, or RECEIVE status 

162 CICS/VS System/Application Design Guide 



o If the t~rminal is OUT-OF-SERVICE, messages are accumulated on the 
intrapartition destination queue until the ter~inal is plac~d IH
SERVICE. If the status is TRANSACTION, messages are also 
accumulated on the intrapartition queue until either the status is 
changed to RECEIVE or TRANSCEIVE, or the terminal operator enters 
the transaction code to initiate a task which will read the 
messages from transient data and send them to the terminal. 

A VTAM-supported terminal (such as the 3600) which supports automatic 
task initiation, may be IN-SERVICE and in TRANSCEIVE or RECEIVE status 
as indicated in its relevant TCT entry but may not currently be 
connected to CICS/VS. It may De operating offline or be communicating 
with other VTAM application programs. If a task ~ to be automatically 
initiated for that terminal, CICS/VS will request VTAM to establish 
connection with the relevant logical unit. This may require VTAM to 
request that another VTAM application program communicating with the 
logical unit release it for connection to CICS/VS, or may require VTAM 
to establish a new logical connection ~ession) to the logical unit 
currently in offline mode. Session establishment for TCAM logical units 
is a function of the ~CP. CICS/VS is not involved in the setup or 
takedown of the logical unit session. 

In the case of a TRANSACTION status terminal, some indication should be 
given to the terminal operator that messages are queued. This can be 
done either by the terminal operator periodically requesting that any 
messages queued be sent to him, or through the techniques shown in 
Figures 4.2-4 and 4.2-5. 

Figure 4.2-4 shows one terminal operator notification technique. The 
application program that retrieves the data from Transient Data may 
indicate in a standard area of a display screen the number of messages 
to be sent. This is then presented to the program for incorporation 
into the output message that is sent to the terminal. Part of the 
response sent back to that terminal then indicates the number of 
messages presently queued to be transmitted to the operator upon his 
request. 

Chapter 4.2. Data Management Design 163 



INPUT 

Applrca'ron ~ I 
Program f I ~~:~~g'" 

(
~ '---Oc-T--J 

I Terminal l 
Common User Rou'ine 11 

f-~Ex~am~rne~O_CT~rQ~~ Entry Queue 
Control For 
Termtnal 

Insert Queue 
Control In Messageq 

Application 

Program 

ICon,'d) 

APPLICATION"PROGRAM PROCESSING 

1. Application program links 
to COnlmon user routine 

after preparing output 
meS'i.3ge, and before sendtng 
It to terminal 

2. Common user routine ex 
amine .. Queue CDunt In OCT 
entry for this terminal 

It messages are Queued to send 
to terminal, user routme 
Inserts number of messages 
queued In standard area 
of output message 

4 User 'outlne returns COil
trol to application pro 

gram 

5 Application program send!. 
output message. With count 
of mes~age~ queued, to 
terminal 

OUTPUT 

Output Message 
At Terminal 

Figure 4.2-4. Notification to Terminal Operator of Automatic Output 

A second technique is shown in Figure 4.2-5, and utilizes the 
terminal paging facility of eICS/VS to control automatic output to the 
terminal. The terminals must be specified as TRANSCEIVE or RECEIVE 
status, such that automatic output may be sent to them. Tasks preparing 
output to be transmitted to a specific terminal prepare that output as a 
series of pages to be displayed to the terminal. These pages, however, 
are directed to temporary storage through the use of the BMS terminal 
paging commands, instead of to the intrapartition destination for that 
terminal. 

The terminal operator may then request at his convenience pages of 
information to be displayed in whichever sequence he requires. 

164 CICS/VS System/Application Design Guide 



Application 
Program 

Put Pages 

Prepare 
Output 
Me~sage 

DFHBMS 
Type= 

Route 

Temporary ! 
Storage 

INPUT 

~
page4 

I Page 3 

I Poge 2 

Page 1 

l
output M'g. I 
"MSGS READY· 

PAGEID=XXXX 
TITLE=XXXXXXX" 

Message 
Routing 

I
"MSGS READY I 
·-PAGEID=XXXX 
- TITLE=XXXXXXX" 
Route=TRMl 

Paging 
Commands 

Terminal~TRMl 

APPLICATION PROGRAM PROCESSING 

1. ApplicatlOl1 program prepares 
L...--I __ .......... , pages to be sent to terminal 

Ifor example, Termid·TRMll. 

2. Program issues BMS paging 
macro instructions to 
write pages to temporary 
storage. 

L...--I--v-...., 3. Program prepares output 
message to notify operator 
of titles of pages stored 
for him. 

'--'_----J .......... , 4. Program uses BMS message 
route macro instruction 
to send message to 
terminal·TRM1. 

5. Message is sent by CICSIVS 
as soon as terminal is able. 
to receive it. 

6. Terminal operator later 
'--"_----J .......... , enters paging command. 

requesting pages In 

sequence desired. 

OUTPUT 

Temporary ( 
Storage 

Termin.I=TRMl 

( 

'MSGS READY· 
PAGEID=XXXX 
TITLE=XXXXXXX' 

c:PJ. 
Pagel 

J Page 4 

Page 2 

Figure 4.2-5. Notification of Paged Output 

The task that generated the pages for display may also issue the 
ROUTE command to send a message to the terminal notifying it of the fact 
that pages have been stored, and identifying the pages so that they can 
be displayed, when convenient, by the operator entering CICSjVS termina1 
paging commands. Thus the amount of information the terminal operator 
has to read as the result of automatic output is limited to one line, 
and he can use the CICS/VS paging commands to request subsequent output 
whan he desires it. Terminal output formats should be designed to 
reserve ~t least one line on display terminals for automatic system-to
operator messages of this nature. 

This 'second technique is based on terminal paging, which utilizes 
temporary storage and VSAM. 

If a task is to be automatically initiated to send output to a VTAM
supported terminal such as the 3600, CICS/VS establishes a logical 
connection, if the relevant logical unit is not currently connected to 
CICS/VS. The 3600 AP controlling that logical unit is then notified of 
the requirement by CICS/VS to automatically initiate a task on behalf of 
that logical unit. This is aChieved by CICS/VS requesting VTAM to send 
a "bid" command. On receipt of the bid, the AP can· notify the terminal 
operator (perhaps by displaying a message or by turning on an indicator 
light on the 3604) that automatic' output is to be sent to him. If he 
indicates that he can receive that output, the AP can respond positively 
to the bid. CICS/VS then automatically initiates the task to send data 
to the AP, and hence the terminal operator. It, however, the terminal 
operator does not wish to accept automatic output at that time, the AP 
can respond negatively to the bid. CICS/VS will not reissue the bid at 
a later time. When the terminal operator is able to accept the 

Chapter 4.2. Data Management Design 165 



automatic output, he notifies the AP. The AP then transmits a "ready to 
receive" command to VTAM, and hence CICS/VS. CICS/VS then automatically 
initiates the task as discussed above. Refer to the appropriate CICS/VS 
sUb-system guides for further information. For TCAM, these functions of 
"bid" and "ready to receive" are handled in the Message Handler. For 
further information refer to the OS/VS TCAM System Programmer's Guide. 

If none of the above techniques is to be utilized, the terminal 
operator can periodically enter a user transaction which reads any 
messages queued for that terminal destination in transient data, and 
transmits those messages to the terminal. This does not require the use 
of the technigues previously described, but has the disadvantage that it 
is completely dependent upon the terminal operator. 

Low or Hi~h PrioriiY Processing 

CICS/VS intrapartition queues may be utilized for low (or high) priority 
processing. A program can receive transactions from a terminal, 
validate them, and notify the terminal of any error messages. Valid 
transactions are directed to an intrapartition destination, and queued 
for that destination until a specified trigger level is reached. 

A terminal is not associated with this destination. When the trigger 
level is reached, a task is automatically initiated based upon the 
transaction code specified for that destination. As no terminal or 
opera tor is associated with this task, t he task priority used in 
processing these transactions is the transaction priority as specified 
for that transaction code in the program control table (PCT). The 
initiated task may read the transactions queued to that intrapartition 
destination, process them, and update any required data sets depending 
upon the application requirements. Processing of data may then proceed 
independently of subseguent terminal input. 

This technique is utilized by the asynchronous transaction processing 
(ATP) facility in CICS/VS (see Part 3). A batch of transactions may be 
entered from a Datch terminal using the ATP transaction, CRDR. This 
batch is given a batch name by the terminal operator, and each 
transaction is queued on a transient data intrapartition queue until all 
batch input is completed. At this time, a task (or tasks) is initiated, 
based upon the transactions in the batches, to process those batches. 
In the meantime, the terminal operator is free to enter any other 
transactions, including other ATP hatches. 

During processing of the ATP batches, terminal output is directed by 
application programs to intrapartition destinations. This terminal 
output may be retrieved and transmitted to the terminal, when requested 
by the terminal operator. This is achieved by entering the ATP 
transaction code CWTR. 

REUSABLE INTRAPART ITI0N QU EOES 

Intrapartition queues can be specified as nonreusable or reusable. 
Nonreusable queues accumulate data over the entire CICS/VS operational 
period, including any warm starts following termination of CICS/VS (see 
Part 5). Data on nonreusable queues is not destroyed until transient 
data is cold started, or until explicitly purged by user programs. 

If reusable queues are employed, when an application program issuing 
a READQ TD command causes data to be read from a new track, the track 

166 CICS/VS system/Application Design GU1de 



just read is automatically returned by transient data to the pool of 
tracks available for use in satisfying other RRITEQ TD requests. This 
also causes transient data to reformat the returned track for later use, 
and may in some cases result in performance degradation during this 
reformatting. Note that no reformatting is required for returned VSAM 
control intervals, and that no performance d£gradation is incurred. 

The intrapartition data set can therefore be utilized most 
efficiently for those destinations for whicn data does not need to be 
retained; however, other destinations containing data uhich must be 
retained for audit or recovery purposes, are not disturbed. 

INDIRECT DESTINATIONS 

CICS/VS transi~nt data uses extrapartition, intrapartition, remote, and 
indirect destinations. 

An indirect destination has its oun destination identification, but 
in turn identifies another destination. Output eventually to be 
directed to specific devices may be written to a IIlogical li 

intrapartition destination. This logical destination identificati6n is 
an indirect destination, which in turn specifies the destination for the 
physical device to be used to receive that output (see Figure 4.2-6) • 

OCT Entry ~:=l:( IN::~Q~n:~YE) 
I 

PRTR (QUEUE) 
-- (TYPE) I------~ Access Method 

I--~I-ND-IR~E-CT-D-E-ST~ 1/r--PR-T-1(-QU-E-UE-)--~ ~r-------~ 
OCT Entry 

WQUREITUEEQ(ITNOVC) PRTR IJ (TYPE) I DCB/DTF 
INDIRECT DES,. 

PROGRAM B 

WRIT[QTD 
QUEUE(PACK) 

OCT Entry 

PACK (QUEUE) 

(TYPE) 

INDIRECT DEST' 

TRM' 

EXTRAPARTITION 

J 

I =~!~:ER I 
~ 

DCB/DTF NAME 

OCT Entry 

TRM1 (QUEUE) 

(TYPE) 

TERMINAL 

Fig ure 4.2-6. I ndirect Destinations 

If the output is to be subsequently directed to some other device, 
the application programs do not have to be changed. The output is 
directed to the 4elevant logical destination. However, the entry for 
that indirect logical destination is changed in the nCT to refer to the 
new device, ~hich may be either intrapartition, such as a terminal, or 
extrapartition, such as a tape, disk, or printer. 

Chapter 4.2. Data Management Design 161 



Thus the amount of maintenance resulting from a change in the 
terminal network configuration, for example, is reduced to only a change 
and reassembly of the DCT. 

Different types of output to be directed to the same terminal should 
be written to different logical indirect destinations~ These different 
destinations may refer indirectly to the same terminal destination. If, 
at some later time it is decided to separate logical output across 
terminals, instead of having it appear on the same terminal, this can be 
achieved merely by changing the relevant indirect logical destinations 
to point to the new terminals to receive that output. No change need be 
made to the application programs. 

As well as reducing the amount of program maintenance resulting from 
a change in the terminal network configuration or a change in 
application requirements directing output to different terminals, 
indirect destinations have other useful purposes. These are summarized 
below. 

Device Independence 

By directing output to logical indirect destinations instead of to 
specific terminal destinations, the programs now become independent of 
the particular device selected to receive that output. An indirect 
destination may point to any intrapartition or extrapartition 
destination. For example, the output which may normally be directed to 
a terminal printer may be directed to an extrapartition destination line 
printer. This can be achieved by writing the output to an indirect 
transient data destination, and then reassembling the DCT to point to 
the line printer extrapartition destination identification. 

Terminal BaCKUp 

The use of indirect destinations and device independence raises the 
question of terminal backup. Through the use of indirect destinations, 
programs are no longer dependent upon the availability of specific 
terminals. In the event of a terminal going down, an alternative 
terminal or device (tape, disr., or printer} :ay be assigned to receive 
the output logically directed to the failing terminal. 

On terminal failure, it is not practical to reassemble the 
destination control table to change the indirect destination to the 
backup device, without terminating CICS/VS. In this case, the system 
design team should evaluate the requirement for a backup capability to 
enable critical i'nforaation to be received. 

If it is necessary that information be directed to an alternative 
device, then the destination control table may be changed dynamically by 
user-written programs. The user may write an application program 
(initiated by a specific transaction code) to search the destination 
control table for the specified indirect destination. The destination 
identification pointing indirectly to the failed device can then be 
modified to point indirectly to the destination of an alternative 
device. Data already queued for the original destination cannot be sent 
to the failed terminal, but must then be copied by the user program to 
the destination queue of the allocated device. Subsequent data written 
to the indirect destination will then automatically be directed to that 
device (see Figure 4.2-7). 

168 CICS/VS System/Application Design Guide 



!ote: In the bvent of abnormal termination because of a power failure 
or machine check, and subsequent reinitiation of CICS/VS, such user 
modifications to the DCT may be lost. The DCT will be initialized by 
CICS/VS as if the user modification had not occurred, since it is not 
aware that the DCT was changed by the user. This can be overcome by the 
user program journaling each DCT modification and reestablishing each 
modification itself after reinitiation. 

INPUT APPLICATION PROGRAM PROCESSING OUTPUT 

Program 1. Application program issues 

) ( Terminal I 
SEND 

I 
SEND command to transmit :> 

Command message to terminal. 

2. Terminal indicates transmission 
Transmis- error occurred, and message 
sion Error "> failed to be sent correctly. 
Indication 

3. CICS/vS attempts recovery. If not 
successful, control is passed to User-Written 

user-written terminal error Terminal 

program (TEP). 
> Error 

4. User-written T EP scans user-
Program (TEP) 

provided alternative device 

I ~ device table to identify an 

~> alternative terminal or device 
" (tape, disk, printed to receive 

message. 

User-Supplied 5. User TEP writes failed message 

Alternative -'-- to transient data queue for 

/ Device 
-r-- alternate device XXXX, to 

Table ~> send message when terminal -'---
~ r-r-

available. 

6. User TEP then copies messages 
queued to destination of failed 

~ terminal across to destination 
of alternative device. DCT Trans-

TEP IT ',n' 7. DCT for error terminal is madi- ll-> Data WRITEQTD '-- fied by user TEP to point to -,.., 

QUEUE(XXXX) alternative device for sub-
'----'" sequent reference. 

Figure 4.2-7. Terminal Backup and Reconfigurat'ion 

The transaction code allocated to the DCT modification program may be 
given a~ecurity code so that only certain authorized terminal 
operators, such as the master terminal operator, may use it. 

Dynamic Terminal Reconfiquration 

The user-written DCT Modification program for terminal backup described 
above may ~lso be utilized for dynamic terminal reconfiguration. If at 
different times of the day it is required to change the destination of 
logical output to different physical devices, this can be achieved by 
using the DCT modification transaction code and program. 

This raises the possibility of dynamically reconfiguring the terminal 
network, or other devices, to receive output. For example, at one time 
of the day output may be directed to a particular terminal printer, 
while at other times it may be directed to a display screen, and again, 
to a line printer. 

Chapter 4.2. Data Management Design 169 



As described abov8, any dynamic DCT modification made by user-written 
programs should be Journaled by the user, and utilized after CICS/VS 
reinitialization to reestablish the modified DCT. 

fhe availanility of CICS/VS terminal device indapendence, which 
enables application programs to present output messages in a standard 
form regardless of the term1nal type which will r~ceive those messages, 
lends itself to such dynamic reconfiguration capability. Dynamic 
terminal reconfiguration is discussed further in Part 5. 

Because CICS/VS allows any terminal (or simulated terminal such as 
card reader, disk, or tape) to enter any transaction, the user-developed 
support of dynamic reconfiguration also enables the master terminal 
operator to exercise control over where output is to be directed based 
upon online application requirements. Used in this way, transient data 
and indirect destinations become powerful online application tools. 

Some TCAM- or VTAM-supported terminals (such as the 3600) and the 
3600 terminals using BTAM permit dynamic terminal reconfiguration to be 
performed by the controller for the devices controlled by an AP. 
Through use of logical device addresses, the AP identifies devices to be 
used for I/O. The controller relates their logical device addresses to 
physical device addresses using a table associated with that AP. The 
controller also permits this table to be changed dynamically so that a 
specific logical device address may refer to a different physical 
device. The 3600 system operator may request this reassignment to be 
carried out by a user-developed AP. For example, a 3600 system operator 
may reassign an alternative printer for use by an AP with an inoperative 
printer. 

This device reassignment is transparent to CICS/VS. CICS/VS using 
VTAM communicates output disposition to an AP through use of logical 
device codes (LDCs). The AP then relates the logical device code to a 
logical device address and issues the relevant output request. CICS/VS 
using BTAM com&unicates with the AP which relates the data to a logical 
device address and issues the appropriate I/O request. In both cases 
the controller then relates the logical device address to a physical 
device as previously described. 

The AP can interpret the LDC based upon application requirements and 
identify a logical device address to the controller. The controller can 
then identify the physical device currently assigned to that logical 
device address for that AP. 

Use of alternative devices and device reassignment support in the 
3601 provides additional system flexibility and availability for 3600 
users. 

170 CICS/VS System/Application Design Guide 



Other Methods of Data Transfer Between Modules 

Data may be transferred between application modules by using aither the 
COMMAREA option of the Command Lev~l Interface, the Transaction Work 
Ar&a (TWA), as well as Temporary storage. 

COMMAREA option 

The COMMAREA option of certain com~ands (LINK, XCTL and RETURN) may be 
used to pass data from one application module to another, provided that 
both modules have bean written using the Command Level Interface. The 
length of the communication area is defined within the application 
module, whereas with the TWA the length is defined in the Program 
Control Table (peT). If a change is required to the length of a 
communication area defined by the COMMAREA option, then the application 
modules need to be changed and re-linked, whereas with the TUA the 
systems programmer must regenerate the PCT. 

The TWA can be used only if the information will be subsequently used by 
the same application progra&, or by another application program vhich 
executes und~r control of the same TCA. That is, control must be passed 
to the subsequent program by either XCTL or by LINK commands. If the 
information is to De passed to some future task initiated by time, or by 
a subsequent transaction entered by a terminal operator, then the TWA 
cannot be used. This is because the TeA and associated TWA are 
destroyed when the task vhich generated the information terminates 
execution. Consequently, the TWA may be used for data transfer of a 
short-term nature, while temporary storage is generally used for data 
transfer of long-term nature. 

A consideratio~ in the use of a ~WA or temporary storage is the amount 
of data to be stored. The size of the TWA associated vith a transaction 
code is stored in the program control table (PCT). This TWA size is 
used to allocate a TWA appended to the TCA. Thus, if a TWA of 200 bytes 
is indicated in the PCT, the TCA is allocated 200 bytes more than if no 
TWA size is specified. 

Chapter 4.2. Data Management Design 171 



TWA For Short-term Data Transfer 

A further factor is the duration of execution of the task, and the 
amount of time between when data may be stored in the TWA and when it 
will be subsequently retrieved from the TWA. As a general rule, if data 
may remain in the TWA for longer than one second it should be stored in 
temporary storage instead. This would· be particularly advisable if a 
TWA much larger than 200 to 300 bytes was to be used. Furthermore, 
because of the relatively low activity of use of this data (because of 
the long execution time), it should be stored on disk rather than in 
dynamic storage address space. 

Variable TWA Siz~uirements 

Another factor is the possible requirement of the program for different 
size TWAs based upon the processing reguired. For example, 90% of 
transactions which use the same transaction code and application program 
may require a TWA of 50 bytes. However, the remaining 10% of these 
transactions may require a TWA of 500 bytes, say. If a TWA were used 
for all transactions by this program, a sOO-byte TWA would have to De 
specified in the relevant PCT entry. This would mean that for 90% of 
transactions using that program, 450 bytes of storage would be wasted. 

A more efficient solution in this case would be to allocate a 50-byte 
TWA, and utilize this TWA for the 90% of transactions which need 5'0 
bytes. In the case of the remaining 10% of transactions, temporary 
storage on disk should be utilized. Thus, storage is used most 
efficiently, with the additional time to store information on disk and 
retrieve it from disk only affecting 10% of the transactions in this 
example. 

172 CICS/VS System/Application Design Guide 



Chapter 4.3. Program Development and Testing 

Modular Programming 

BATCH ENVIRONMENT 

Modular programming techniques in a batch environment may involve the 
consolidation of similar program functions in one program module. For 
example, the main execution code used may be incorporated in one oodule, 
while exception routines may be in another module and error routines in 
other modules. In this way, modular programming enables sections of the 
program to be written by programmers at different times. Apart from the 
advantage of distributing the program workload across several people, 
another advantage of modular programming is that it generally makes the 
application program logically easier to follow for someone who is 
unfamiliar with it. 

CICSjVS ONLINE ENVIRONMENT 

CICS/VS is oriented around the concept of modular programming. 
Transactions received from terminals are analogous to transaction cards 
read from a card reader. A transaction code defines the format and 
processing required for an online transaction, in the same manner as a 
card code defines the format and processing of a card. 

This transaction code identifies the CICS/VS application program that 
will process the transaction. The use of such modular programming 
techniques is an integral part of CICS/VS and enables large programs to 
be broken 1nto smaller logical modules. However, program size and 
CICS/VS address space availability should ba balanced with the 
additional overheads invol~ed in passing control between many small 
modules. 

When a transaction code is received from a terminal, only that 
program code relevant to the processing of that transaction need be 
loaded into storage, if it is not already present. As modules tend to 
be smaller than complete programs, more application program modules may 
reside in a given address space than may full programs. This enables 
one copy of each of many different modules to be currently resident in 
the CICS/VS dynamic storage area. A high degree of multitasking may 
therefore be achieved within a limited storage size. 

VIRTUAL STORAGE ENVIRONMENT 

Using the modular programming techniques discussed above, a CICS/VS 
application program module should include code which is relevant to the 
processing of the specific transaction. 

From the system design point of view, the design team should specify 
th~ various application programs which are to be written to implement 

Chapter 4.3. Program Development and Testing 173 



the particular application. They should also identify those application 
functions ~nd hence program coding) which will be frequently useu by 
transactions, and those which will be infrequently used. In this way, 
the design team is able to broadly specify the modular program structure 
of the application, and define the necessary application programs. 

The various application programs executing concurrently in the 
CICS/VS partition, and the demands made by them for CICS/VS serv~ces and 
resources, contribute to the total. ttworking set" of CICS/VS. The 
CICS/VS working set is influencsd by the sizes of the various 
concurrently executing application programs, the online transaction load 
and its use of various application programs, and the degree of 
multitasking permitted by the CICS/VS master terminal operator. 

High Level Languages 

CICS/VS accepts application programs writt6n in Assembler, COBOL, or 
PL/I (compiled by the PL/I Optimizing Compiler) for VSH, OS/VS1, or 
OS/VS2. CICS/VS also accepts programs written in RPG II for VSE only. 

When an application program is coded in either COBOL, Assembler, RPG 
II, or PL/I it is necessary for there to be an interface between the 
application program and CICS/VS, and corresponding compile-time 
mechanisms for invoking this interface. CICS/VS provides two methods of 
achieving this interface, one using commands and arguments (command
level interface) and one using assembler macros and CICS/VS control 
blocks (referred to as the macro-level interface). RPG II is supported 
only through the command level interface. 

Using the macro-level interface,., the application programmer may use 
assembler macros (DFHxx) in programs coded in either COBOL or PL/I, full 
details of which are given in the CICS/yS Application Proqra~er~ 
Reference Manual macro Levell. At compile-time the program is prepared 
by a CICS/VS preprocessor. The preprocessor is generated at CICS/VS 
system generation oy USe of the DFHSG PROGRAM=HLL macro (for full 
details refer to the CIC~~ystem Programmerts Reference Manual) • 

The use of the macro-level preprocessor for a particular program is 
specified at program compile-time. Full details of the cataloged 
procedures to preprocess, compile, and link-edit COBOL, ASSEMBLER, or 
PT./T ;:'Innli~;:'I+inn nrnnr;:'lmc::: ;:'Ire=. n;'I7e=.n ;n +hc.:. rTrc;/Vc; C:vc:::+e=.m Prnnr~n.mpr'c::: _._, - -rc-------- r--:1---- ---- ~- .. --- --- ---- ~~4--- - -7 ---

guiQ.~ • 

This macro-level interface presents several disadvantages to the 
application programmer; for example, the need to have a detailed 
knowledge of CICS/VS architecture, and the need to be concerned with the 
addressability of crcs/vs control blocks, their formats and contents. 
The command-level interface overcomes theSe pronlems by providing a set 
of EXEC crcs commands that give the application programuar access to the 
CICS/VS functions. 'rhey are coded in COBOL, ASSEl1BLER& PL/I, or RPG II 
application program and are translated by means of a command language 
translator into standard CALL statements in the programming language 
being used. 

A command level interface is also provided to DL/I, though the EXEC 
DLI command. It is supported by CICSjDOS/VS for COBOL and PL/I only. 
Under crcs/os/VS, and for assembler, the alternative CALL interface must 
be used. For RPG II, the RQDLI command is used to provide the 
interface. 

Throughout this manual, the application programmer is assumed to be 
using the command level interface. 

174 CICS/VS System/Application Design Guide 



For details of the format and use of the EXEC commands can be found 
in the CICS/VS Apnlication Progra~mer's Reference Manual ~om~and 

l.evel) • 

The function of the command language translator is to accept as input 
a source program, written in either COBOL, ASSEMBLER, PL/I, or RPG II in 
which command requests (for Doth CICSjVS and DLI) have been coded. The 
command language translator produces as output an equivalent source 
program in which the EXEC CICS and EXEC DLI commands (and RQDLI 
reguests, for RPG II) have been translated into subroutine call 
statements in the language in vhich the application program is written. 

At execution time, the call statements invoke an EXEC interface 
program, passing appropriate arguments. The function of the EXEC 
interface program, called from a COBOL, ASSEMBLER, PL/I, or RPG II 
program, is to analyze the arguments and determine the requested 
function. Using the arguments passed oy the application program, the 
EXEC interface program assigns values into appropriate CICS/VS control 
blocks and transfers control to the appropriate CICS/VS or DL/I control 
program. On return from CICS/VS, the interface program examines the 
return code to determine if an exceptional condition has arisen. If no 
exceptional condition is detected, control is returned to the 
application program normally. If an exceptional condition had been 
detected, then, if the application program is prepared to handle the 
condition, control is returned to the program at th~ specified program 
label. If the application program is not prepared to handle the 
exceptional condLtion, a standard system action for that condition is 
performed. Usually the system action is to terminate the transaction, 
notifying the terminal operator that the transaction had abended. 

In some cases a single EXEC CICS command requires more than one 
CICS/VS request to be issued. Typically, a move mode output operation 
vill require tnree CICS/VS requests to be issued. In such a case, the 
EXEC interface program issues a request to obtain storage, copies the 
data into the storage, issues a request to perform the output operation, 
and issues a request to free the storage. 

There are four separate command language translators, one for COBOL, 
one for Assembler, one for RPG II and one for FL/I, and each one is 
produced in tvo versions, one for VSE and one for OS/VS, except for RPG 
II ,·,hich is not supported under OS/V S. 

The command language translator is executed in a separate job step; 
details of the cataloged procedures required are given in the CICSLVS 
~ystem Programmer's Guide. 

If the command-level interface is to be used, then at system 
genaration the system programmer must: 

1. Generate a command language translator for the language, (COBOL, 
ASSEMBLER, PL/I, or RPG II) required. This is done via the DFHSG 
PROGRAM=EXP macro. 

2. Generate an EXEC interface program which supports the functions 
accessed via the command-level interface. 

Alternatively, the pregenerated versions of these modules may be 
used. 

Full details of the appropriate macro instructions are given in the 
CIeStVS Syst8m Programmer's Reference Manual. 

Chapter 4.3. Program Development and Testing 115 



Online Testing 

The testing of individual CICS/VS commands and CICS/VS application 
programs, and the subsequent integration and system test of the entire 
online applications, must be considered by the design team. 

CICS/VS provides two facilities for online testing. 

• The Execution Diagnostic Facility (EDF) to test command level 
application programs. 

• The command interpreter to test individual CICS/VS com.ands. 

Both these facilities are run from a 3270 display terminal with a 
screen width of 80 columns and a screen depth of 2q lines or more. 

A short description of each of these facilities follows. Further 
information may be found in the !R2!ication Programmer's Reference 
Manual ~ommand Level). 

EXECUTION (COMMAND LEVEL) DIAGNOSTIC FACILITY 

The execution diagnostic facility ~DF) enables an application 
programmer to test a command-level application program online without 
making any modifications to the source program or the program 
preparation procedure. EDF intercepts execution of the application 
program at certain points and displays relevant information about the 
program at these points. It is an aid to debugging not only EXEC CICS 
commands, but EXEC DLI commands as well. 

EDF debug mode is switched on and off by a transaction or PF (program 
function) key named in the PCT by the system programmer; also, the PPT 
needs to specify the programs and maps that are used by EDF. EDF uses 
temporary storage and simple BMS (as provided by ELS); the system 
programmer must make sure that these facilities are available. 

The transaction that is being tested may run from any type of 
terminal. The execution diagnostic facility may run from the same 
terminal as the transaction under test provided that the following 
conditions are mat: 

• The terminal is connected through VTAM or BTA!. (Connection via 
TCA! is excluded because there is no read buffer support.) 

• If auxiliary temporary storage is being used, then the system 
programmer must ensure that the control interval specified for the 
temporary storage data set is large enough to accommodate the data 
stream obtained by a read buffer command from all user displays 
created by the programs to be tested (or 1.SK bytes, whichever is 
the greater). 

If EDF is used in two-terminal mode (that is, the direct terminal for 
the transaction under test is different from the EOF display terminal) 
then the following conditions must be met: 

• Automatic transaction initiation must be supported (AUTOTRN=YES 
must be specified on the DFBSG PROGRAM=TCP macro). 

• If auxiliary temporary storage is being used, then the system 
programaer must ensure that the control interval specified for the 
temporary storage data set is at least 1.SK bytes. 

116 CICS/VS System/Application Design Guide 



o The EDF display terminal must be in TRANSCEIVE status. 

Functions ot EDF 

During execution of a transaction in EDF mode, EDF intercepts the 
execution of the application program: 

o At transaction initialization. 

o At the start and end of the execution of every EXEC command. 

• At program termination. 

• At normal and abnormal task termination. 

• When an ABEND occurs 

At these points of interception, EDF displays the current command or 
status. The user may also display other information, such as: 

• The command being executed. 

0 The values of EIB fields. 

• The contents of working storage. 

0 The last five commands executed. 

0 The contents of address locations within the CICSjVS partition. 

Interaction with the application is also allowed at these 
interception points, and the user may: 

o Modify argument values in com.ands before execution. 

o Modify responses after command execution. 

o Modify fields in the EIB. 

• Make command displays conditional on specific events. 

COMH AND-LEVEL INTER PR ETER 

The command-level interpreter enables CICS/iS commands to be entered, 
syntax-checked, and executed interactively at a 3210 screen. The 
interpreter performs a dual role in the operation of a CICSjVS system. 

o For the application programmer, it provides a reference to the 
syntax of the whole of the CICS/VS command-level application 
programming interface (excluding Dt/I). Most of the commands can 
be carried through to execution, and the results of execution can 
be displayed. 

• For the system programmer, it provides a means of interaction with 
the system. For example, a corrupted data-base record can be 
"repaired", a temporary storage queue can be created or deleted, 
and so on. It thus provides a useful extension to the facilities 
provided by the master terminal transaction CEST. 

Chapter ~.3. Program Development and Testing 111 



The command-level interpreter is a CICS/VS application program and 
runs as a CICS/VS transaction. It is started by the transaction 
identification of "eECI", or "CRCS", followed optionally by the command. 

The general format is: 

CECIICECS [command] 

where "command" can be any CICS/VS comiland except EXEC DLI. 

The use of CECI will give the full facilities of the interpreter 
right through to execution of the command. 

The use of CECS forces a question mark before the command. This 
always gives the command syntax check display and prevents command 
execution. In a system where security is important, CECS can be make 
more widely available than CECI. 

A full description of the command-level interpreter is given in the 
!Eplication PrQgrammer's Reference Manual (Command Level). 

SECURITY 

Both EDF and the command-level interpreter may be controlled at resour::e 
or transaction level. 

Resource level security, specified by an option in the PCT, means 
that the user's security key must match the security key of the resource 
to be used. For more information on resource level security see Chapter 
4.4. 

At transaction level, the user's security key must match the security 
key in the PCT for the transaction to be executed. 

Resource level security is the default. 

Tracing and Testing 

TRACING AND DUMPING 

CICS/VS permits the execution of application programs to De traced. 
Information relating to the use of each CICS/VS management routine by 
the application program is recorded by CICS/VS in a wraparound trace 
table in the CICS/VS nucleus. In addition, application programs may 
utilize trace control comm~nds to insert their own trace entries in the 
table. Every time the end of the table is reached, the trace entries 
re-commence at the start of the table. Trace activity may be turned on 
or off during CICS/VS execution by the. master terminal operator (see the 
CICS/VS Operator's Guide.) 

CICS/VS uses a feature called the Auxiliary Trace Facility which 
permits trace entries to be time stamped and written to tape or disk; a 
program supplied by CICS/VS, the Trace Utility Program (TUP), lists this 
tape offline in a formatted form for debugging purposes. Programs may 
also be developed by the user to analyze the time-stamped trace entries 
for performance evaluation. This analysis may consolidate all of the 
trace entries relating to one task in a combined task report, or may 

178 CICS/VS System/Application Design Guide 



det~rmine the alapsed processing times of all tasks initiated from a 
specific terminal or by a specific transaction code. These elapsed 
processing times may be statistically analyzed to determin~ the average, 
standard deviation, and 95 percentile values. Similarly, a statistical 
distribution of the peak number of tasks in the system dynamic storage 
usage over a defined period of time can be developad by user analysis 
programs. 

Analysis of the trace tape is invaluable for debugging purposes and 
for evaluation of the performance of existing CICS/VS programs. 
Potential performance bottlenecks can be identified and conditions 
rectified. 

In addition to utilizing trace entries, application programs may 
issue dump control commands to dump selected parts of application 
programs, all the storage associated with a task, or the entire CICS/VS 
nucleus to disk. These dumps on disk can be printed at the end of 
testing, or concurrently with testing if the dump data set is switched 
to the alternative dump data set. Refer to Part 5 for more information 
relating to the use of the dump data set in this environment. During 
testing an online test/debug program may be used, see "Related 
.Publications" in the Preface for details. 

SIMULATED SEQUEN~IAL TERMINALS 

CICS/VS enables terminal transactions to be entered from a 
"simulated" sequential terminal such as a card reader, magnetic tape, or 
disk. The terminal output may be directed to a line printer, tape, or 
disk. Through the USe of simulated sequential terminals, large volumes 
of test data may be prepared for uhat is effectively batch-type testing. 
No online terminals need be used or even be present on the system. 
Instead, a card reader and line printer, and/or magnetic tape, and/or 
magnetic disk may be used for input of simulated terminal transactions, 
and receipt of the output responses from the application programs. 

A simulated terminal transaction may be delimited by a user-defined 
end-of-data code in a card, or by a code in a tape or disk record. 
Several card, tape, or disk records may be read by CICS/VS until this 
end-of-data code is recognized or the input area is full. Large 
terminal input messages may be simulated by CICS/VS for testing in a 
batch-type environment. 

The use of CICS/VS terminal device-independence enables simulated 
terminal messages from card reader, tape, or disk 'terminals' to be 
presented to application programs as if they had been read from online 
BMS-supported terminals. 

The output responses from the application program are directed to the 
simulated sequential output terminal, which may be a line printer, 
another tape, or another disk data set. Again, these output messages 
are prepared by the application program as if they are to be transmitted 
to a particular BMS-supported terminal, and ~re then converted by 
CICS/VS device-independent routines for output to the appropriate 
simulated terminal. CICSjDOS/VS Entry Level System does not support BMS 
requests for simulated terminals. 

Because testing is carried out in a batch-type environment using 
sequential terminals, all test data provided must anticipate the 
requirements of the application program for inpu~. This is necessary, 
because there is no conversational capability available in testing with 
sequential terminals. Consequently, conversational error correction 

Chapter 4.3. Program Development and Testing 179 



carried out by the application program must be simulated by successive 
sequential terminal transactions. 

A 3270 simula to·r program may be used to test 3270 device-dependent 
characteristics using sequential terminals. See "Related Publications" 
in the Preface for details. 

SINGLE-THREAD TESTING 

The first stage of testing involves the separate execution of each 
application program. Only one task is active at a time, and each 
program can be tested without considering its interaction with other 
concurrently executing programs. This is achieved by using only one 
simulated sequential terminal. As each transaction is read from that 
single terminal, the appropriate program is initiated and the 
transaction is processed as a separate task. When that transaction 
completes execution, the task terminates, and the next terminal 
transaction is read and initiated. The test plan should include 
abending restart able transactions in likely places to test recovery 
procedure s. 

Single-thread testing allows the logic of application programs to be 
debugged without complications caused by the concurrent execution of 
other programs. 

The next stage after all application programs have completed single
thread testing is multithread testing. 

MULTITHREAD TES~ING 

Multithread testing is equivalent to single-thread testing, except that 
several sequential terminals are utilized for entry of simulated 
terminal transactions. Each sequential terminal will result in the 
initiation of one task at a time to process each transaction read from 
that terminal. Not until a transaction has been completely processed 
will the next transaction be read from that terminal and another task 
initiated. However, at the same time, tasks may be initiated to process 
transactions from the other sequential terminals. These programs from 
each sequential terminal execute in a limited multitasking environment, 
the number of concurrently executing tasks being equal to the number of 
simulated sequential terminals. 

A series of simulated sequential terminals may be set up, either 
using several card readers and printers, or, more commonly, using many 
tape and disk simulated terminals. 

An approach which may be utilized in this multithread testing 
environment is to take the test stream which was used for single-thread 
testing, and copy that test stream to each separate sequential terminal 
on disk or tape, at the same time randomizing the sequence of 
transactions in the separate copied test streams. A number of 
sequential terminals may then be made active to allow multitasking 
execution to be tested. The output from each terminal should be 
identical to the output for each transaction as a result of single
thread te sting. 

A network activity simulator program may be used to assist in 
multithread testing with sequential terminals. Refer to "Related 
Publications" in the Preface for relevant publications. 

180 CICS/VS System/Application Design Guide 



MULTIREGION OPERATION 

Multiregion operation facilities (HRO) allow tvo or more CICS/VS systems 
to run in one processor system, and share data and terminals between 
them. One CICS/VS system may be used for testing new programs, while 
production work continues in parallel in one or more other systems. 

I 

The test system can be started and stopped independently of any 
production system, and production programs can be isolated from 
unreliable test programs. Even if the test CICS/VS system ends 
abnormally, the production systems carries on. Yet the test programs 
can, if required, be given access to production data resources (files, 
data bases transient data and temporary storage) and can be run from 
terminals connected to the production system. Regular terminal 
operators can test programs from their regular terminals using real 
data. 

MRO is described more fully in Part 7 of this manual. 

Chapter 4.3. Program Development and Testing 181 





Chapter 4.4. Security Design 

This chapter explains how to use the facilities of CICSjVS to provide 
online application security. Since many online application security 
concerns go beyond the confines of CICS/VS - the online subsystem -
security will De discussed first without reference to CICS/VS or CICS/VS 
facilities. The computer installation will be viewed simply as a unit 
containing some of the company's operational data which needs protection 
from accidental, if not deliberate, mis-use. 

The first section contains this general discussion and covers topics 
such as: degree of security required; techniques for security, and 
counteracting threats from different sources. Subsequent sections are 
devoted to discussion of CICS/VS facilities related to security or 
useful in attaining an application's security objectives. 

Application designers who read the first section and are then 
concerned that the security reguirements of the application being 
designed may exceed the ability of the installation to meet them, should 
look elsewhere than this manual for information. The IBM Data Security 
~esign HandbOOK, a series of six publications on different aspects of 
security, should meet most requirements. 

Security Considerations 

SECURITY ROLE IN ONLINE APPLICATIONS 

The main aim of an on-line application is to make timely, complete and 
accurate information available to the people who need it. Online 
applications frequently replace manual procedures or batch applications 
and, whereas this replacement generally improves the timeliness and 
completeness of the information available, some factors cause a risk 
that the information will be both less accurate and available to people 
other than those who need it. Briefly, some of these factors are: 

1. Unauthorised people may be able to use the application's facilities 
without detection because insufficient controls are imposed on use 
of the facilities, or because terminals or the system itself are in 
an insufficiently secure area. 

2. The checks and balances in a manual or batch application, which 
mean that collusion is required between two or more employees in 
order to defraud the company, may be lost in the interests of 
timeliness. Fraud or expensive mistakes may occur simply because 
people do things they are supposed to be able to do, for invalid 
reasons. 

3. Compared to a manual procedure, an online application brings a new 
category of employee, programmers, into contact with the data. 
Programmers may, by modifying programs and waiting for them to be 
run by someone else, be able to defraud the company. 

4. Disruption of the online service by other programs in the system, 
or s1mply the ability for someone outside the company to 'pull the 
mains plug outl may provide scope for fraud. 

Chapter 4.4. Security Design 183 



5. Other programs running at the same time in the system may be able 
to access, destroy or modify online data because the operating 
system has insufficient integrity. 

6. Exposed TP connections may be wiretapped. 

Thus it is the objective of the security features of an application 
to: 

• be relatively transparent to legitimate users of the system 

• be as difficult to break as is thought necessary given the value of 
the online data 

• counteract all the relevant exposures. 

SOURCES OF THREAT 

Threats to the data of an online system can be from five sources: 

1. From people directly involved in the operation of the computer 
system, the operating system and sUbsystems running on it. They 
set up the security of the system and can therefore more easily 
break it. 

2. From people who access the data managed by the online sUbsystem by 
operating a terminal connected to the subsystem. This is discussed 
at length in this chapter. 

3. From people who write applications for the online subsystem. This 
is also discussed in this chapter. 

4. From interconnected systems, since the purpose of the 
interconnection is to exchange data. This is discussed in this 
chapter. 

5. From others. Examples are wire tapping, for which cryptography is 
an appropriate security technique, and exploitation of system 
integrity exposures from other jobs in the system. This is not 
discussed further here. 

DEGREE OF SECURITY 

One of the first questions to be answered is how difficult illegitimate 
activity should be made. Since degree of difficulty will normally be 
greater the more money is spent on security facilities, this is a 
question of striking a nalance between expenditure and potential loss. 
Too great an expenditure on security is a waste of money, too little 
leaves an unacceptable risk of loss due to fraud or unintentional 
mistakes. 

Data value may be calculated several ways: 

1. How valuable is it to a competitor to know. This relates to how 
difficult it should be for unauthorised people to see the data. 

2. How important to the company is it that it is accurate. This 
relates to controls and checks on updatesn 

184 CICS/VS system/Application Design Guide 



3. How important is it that the data is available. This relates to 
controls preventing disruption of the service. 

In many cases, detailed study of these questions is unnecessary. The 
online data is not highly valuable to competitors, and errors or 
temporary unavailability of the data causes minor disruption only. Even 
in these cases, however, security controls that are cheap to use and 
maintain should be used because impacts due to accidents and mistakes 
are less likely. 

SECURITY TECHNIQUES 

Having decided what degree of security is desired for an application, 
the method of achieving this must be considered. There are three 
techniques available tor implementing security: control, audi"t, and 
surveillance. Generally a combination of the first two will be used in 
any online application. 

Control 

Control is concerned with the (automatic) prevention of invalid actions. 
For example, all but the Data Processing Department people should be 
prevented from entering the computer room ny fitting a lock to the door, 
and non-payroll department people should be prevented from running the 
salary update transaction. In the case where systems are inter
connected, control may also be concerned with prevention of invalid 
requests by one system to another. 

Control mechanisms generally produce a log of "violations", that is, 
attempts to perform functions which are rejected due to the action of 
the control mechanism. 

Audit 

An example of an invalid action which cannot automatically be controlled 
is use of the salary update transaction by a payroll department employee 
to double his own salary. This type of fraud is detected post facto by 
an auditor using audit tools. 

In manual procedures, the need for collusion between two or mor, 
employees (preferably with different jobs and skill levels, and Sl 

unlikely to mix socially) to perpetrate a fraud was an excellent 
safeguard against fraud and human error. Therefore, in designing an 
online application to raplaca manual procedures, when it is decided that 
procedures involving several different people are to be eliminated, the 
increased ~sk due to fraud or error should be estimated and covered if 
necessary by provision of auditing facilities aimed at detecting the 
problems. 

It must be emphasised that audit features are primarily an 
application1s responsibility to provide; the operating system or DB/DC 
subsystem can only provide basic building blocks from which an auditable 
application can be built. Auditability should be considered early in 
application design. 

Chapter 4.4. Security Design 185 



Surveillance is active monitoring and in relation to online computer 
applications, consists of the ability to display selectively the actions 
of system facilities, particularly the security and audit mechanisms, in 
real time. surveillance is a specialized requirement and will not be 
described further here. 

AUTHENTICATION 

Both security control/prevention and audit rely for their full effect on 
the ability of the computer system to know who (or in the case of inter
connected systems, which system) is asking it to do things. The control 
mechanism bases what it allows to happen on this knowledge, and the 
auditor, having detected a fraud or mistake, uses the knowledge to 
identify the perpetrator. 

This function is known as user authentication, and in an online 
system is usually achieved by each user "signing on", that is, saying 
who he is and proving it by: 

1. Showing he knows something (password) and/or 

2. Showing he has something (operator identification card). 

Because neither of these techniques constitutes incontrovertible 
proof of identity (possibility of passwords being discovered by other 
than their rightful users, or of operator identification cards being 
stolen) it is useful for any authentication mechanism to provide a log 
of its operation which can and should on a regular basis be analysed for 
irregularities such as attempts at password guessing. 

In some cases, a unique sign-on for each user is unnecessary. For 
example if all the terminals in a large office are installed on 
individual's desks and all the occupants of the office know who should 
be sitting where, each user can effectively be identified by his 
terminal identif~cation. Of course, user sign-on gives added protection 
even in this situation, and in general, with. the key proviso that 
security mechanisms are not too cumbersome either administratively or 
for end users, the more checks and cross-checks the better. Banks lock 
their entrance doors at night even though tbe1r money is kept in a heavy 
steel and concrete vault. 

Conversaly, good user authentication mechanisms may be important 
because of factors such as connections to remote or isolated terminals. 

RECOGNITION 

It should be noted that inter-connected systems access each other's 
data, and consequently each is often considered to be a "user" by the 
other. However, as users they are not normally required to 'prove' 
their identity via a sign-on process. This is for the same reason that 
terminals themselves do not require it: if verification is necessary, 
as with a dialed-in terminal or system, it is done as part of the 
protocol for establishing the connection. Non-dial systems are uniquely 
identifiable by the physical port through which they communicate. 

186 CIeS/VS system/Application Design Guide" 



The process of associating a user identification vith an inter
conliected system for security purposes is called recognition. 

SECURITY LOGGING 

Both control and authentication mechanisms log their activities so that 
deliberate attempts at violation of security can be detected by analysis 
of the log. The term audit or security audit (as distinct from 
financial audit) is sometimes used to, describe this activity. 

Authentication Control And Security Logging with CICS/VS 

CICS/VS provides a number of security related options to address 
diff€rent authentication and control requirements. These are summarized 
below, and a fuller discussion is given later on in this section. 

CICSjVS has a built-in security mechanism based on use of the CICS/VS 
Sign-on Table (SNT), which can be used to control: 

1. Terminal operator sign-on/sign-off using a four to eight character 
password for authentication of Sign-on requests. 

2. Transaction access by terminal operators. 

3. Transaction access to CICS/VS resources, such as files and queues 
(for command level applications only). 

4. Secure transaction and resource access without prior sign-on, as 
for printers. 

5. Access by one CICS/VS system to transactions defined in another 
CICS/V S system. 

6. Access by one CICS/VS system, via an IRC or VTAM connection to 
resources defined in another CICS/VS system. 

In addition to built-in security mechanisms, CICS/VS has the ability 
to use an External Security Manager (ESM), such as the MVS RACF program 
product. 

CICS/VS will: 

7. Allow the ESM to authenticate the sign-on using a password, and 
optionally an Operator Identification Card. 

8. Allow the ESH to "recognize" connected systems by the TCT user 
identification option. 

9. Use the built-in security mechanism of 1, 2, 4 and 5 above or the 
ESM, based on Sign-on Table and Transaction Table options. 

10. Use the ESM to control the scheduling of DL/I PSBs from batch jobs 
using the shared dataoase facility of CICS/VS or from IRC- or VTAM
connected CICS/VS systems. 

Chapter 4.4. Security Design 187 



CICS/VS has d~fined a Transient Data Destination (CSCS) which is used 
as the target for security related logging. Logging is done for: 

11. Authentication 
sign-off. 

sign-on failed (with reason) or succeeded, and 

These options are now discussed in more detail. 

TERMINAL OPERATOR SIGN-ON/SIGN-oFF 

Each terminal operator is identified to CICS/VS in an operator Sign-on 
Tanle (SNT). The following information is contained in'the table: 

• Operator name 

• Operator identification 

• Operator password 

• Operator security codes 

• Resource level security codes 

• Operator class 

• Operator priority 

Each terminal operator is required to sign on to CICS/VS at a 
terminal by entering ths sign-on transaction code CSSN, together with 
his allocated password and his name, up to 20 characters in length (see 
Figure 4.q-l). At certain types of terminal, entering the transaction 
code only causes CICS/VS to prompt for additional information. The 
password can then be entered in a non-display or over-struck or print
inhiDited field. The operator sign-on procedure is discussed in more 
detail in the eICS/VS Operator's Guide. 

The CSSN transaction code initiates the CICS/VS Sign-on Program 
(SNP). This program loads the Sign-on Table (SNT) and locates the 
operator name and password in the table. If these two do not agree 
exactly, the sign-on is rejected. Successful sign-ons and unsuccessful 
attempts are indicated by messages to the terminal, and optionally to 
the transient data destinations CSCs. The latter constitutes a security 
log; as well as the message numbers, valid and invalid operator 
identifications and incorrect passwords are recorded. 

Once sign-on is achieved, the sign-on program extracts the operator 
identification (for example, his initials), security codes, operator 
class and operator priority from the sign-on table. This information is 
transferred to the Terminal Control Table (TCT) entry for the physical 
terminal to which he has signed on. This information remains in the TCT 
entry until the operator signs off with a CSSF transaction. 

The three-character operator identification code is used for 
SUbsequent operator identification, and the operator priority is used in 
conjunction with terminal and transaction priorities to establish the 
over~l task priority. This is discussed in more detail in "Priority 
Processing" in Chapter 3.3. 

The operator class specification is used primarily in conjunction 
with the CICS/VS message routing facility. Messages may be directed to 
specific terminals, specific operators (by operator identification), or 

188 CICS/VS System/Application Design Guide 



all operators in a spec~fic operator class. An operator may have more 
than one operator class. 

Messages directed to specific operators, or to specific operator 
classes, are not transmitted until the particular operator or operators 
sign on the CICS/VS. Refer to lI!tessage Routing" in Chapter 3.2 for more 
detail. ' 

The operator security codes and the resource security codes and 
discussed later in this section. 

Sign-on in an !tRO Environment 

INPUT CICS/VS PROCESSING 

1. Operator enterllign on tranl
action with hi. name and pass
word 

2. CICSIVS loaels signon table, 
and Kana for name. 

3. If no name in table. error 
message sent to terminal 
and CSCS. • 

4. If password does not check, 
error meuage IBnt to ter· 
minel and esCs. 

5. Operator I D. security codes, 
and priority transferred to 
terminal control table entry 
for terminal used 

6. "Signon complete" 
response 18nt back to 
terminal and menage 
sent to CSCs. 

OUTPUT 

Oper. Priority 

Oper. Sec. Code 

Res. Sec. Code 

Operator Class 

"Signon 
Complete" 
Message 
on CSCS 

Figure 4.4-1. Operator Sign-on using Built-in CICS/VS Security Support 

When the Multiregion Operation feature of CICS/VS is used, each 
region of the system runs its own copy of CICS/VS and can have its own 
sign-on table. Thus operators may be defined to some CICSjVS systems, 
and not to others, and may have different passwords on different 
systems. I For BTAM connected terminals the system to which the terminal 
is connected is defined by the installation, but for VTAM connected 
terminals, it is possible for the terminal operator to log on to 
different CICS/VS system at different times. Having logged on, the 
operator must sign on also, in order to use secure transactions. 

In order to temporarily use the facilities of one system when 
connected to another, the transaction routing sample program of CICS/VS 
(the CRTE transaction - see Chapter 1.2) can be used. This is. like 
logging on to the new system, and sign on is similarly required. 
However when the routing is cancelled the connection and sign-on to the 
original system is still in effect. 

Chapter 4.4. Security Design 189 



special Sign-on Formats 

CICS/VS supports three special-purpose types of sign-on: 

• numeric sign-on, transaction code 7771 - intended for numeric only 
terminals such as the 7770 Audio Response Unit. Password and name 
must be numeric. No keyuords or delimiters are needed. The 
password must be exactly 4 characters long. 

• 3741 sign-on - the 3741 operator id card is handled in a special 
way. The data on the card is treated as an operator name, and no 
password check is made. 

e 3270 operator id card - the (non-SNA) 3270 operator id card can be 
used. to trigger a sign-on by defining the oidcard AID (Attention 
Identifier) in the transaction table as a transaction which invokes 
the CICS/VS signon program. The card must contain a complete 
numeric sign-on including the numeric sign-on transaction code 
(7777), password and operator name. 

Note that the CICS/VS sign-on transaction may not provide an 
appropriate security mechanism for installations using the TCAM access 
method, since CICS/VS does not (necessarily) have a TCT entry for each 
physical terminal. This may be because the TCAM gueue name does not 
correspond to a specific terminal, or because the TCT pool feature of 
CICS/VS TCAM support is used. 

-
Sign-Off 

After completing a session with CICS/VS, the operator must sign off 
using the CICSjVS sign-off command (CSSF) in order to prevent later use 
(or abuse) of the sign-on the identification and authority at the 
terminal by someone else. The CSSF command performs the following 
actions: 

• Sets the OPID field of the TCT entry to blanks. 

• Clears all operator class codes. 

• Clears all resource security codes. 

• Sets to zero the operator priority field. 

• Clears all operator security codes except code 1. 

e If the LOGOFF or GOODNIGHT option of the command is specified, a 
dialed-in terminal is disconnected, and a VTAM terminal is logged 
off from CICS/VS (providing the TCT is not defined so as to prevent 
logoff for this terminal) • 

• If the GOODNIGHT option of the command is specified, the terminal 
status is set to RECEIVE (so that it cannot enter transactions, but 
can be sent messages). 

The CSSF command has a numeric equivalent, 8888, and the CSSF command 
with the GOODNIGHT option has a numeric equivalent, 88888888. 

In some circ~mstances it may be necessary to force a sign-off for a 
particular terminal. This can be achieved by issuing an ATI (Automatic 
Transaction Initiation) request for the CSSF transaction. The GOODNIGHT 
or LOGOFF options cannot be specified by this technigue. 

190 CICS/VS system/Application Design Guide 



The CSSF transdction is forced to ~un when a routing (using CRTE 
transaction) f~om one CICS/VS system to another is· terminated. This is 
so that appropriate logging of sign off is performed. 

CONTROL OF TRANShCTION ACCESS BY TER~INAL OPERATORS 

The operator security codes defined in the Sign-on Tabla are used to 
cont~ol transaction access. They consist of a series of numbers ranging 
from 1 to 24. The function of security codes 2 to 24 is defined by the 
user, but security code 1 is automatically given to all users defined in 
the SNT, ~nd is present in the TCT entry uhen no user is signed on at 
the terminal. security code 1 is used, among other things, to allou the 
sign-on transaction (CSSN) to pass the security check. 

Security codes in the TCT are used in conjunction with a security 
code defined for each appl~cation transaction code. A transaction code 
with a defined security code of 10, say, can be used only by those 
operators who also have a security code of 10. An operator may have 
more than one security code. Operator security codes 5, 6, 10, and 12, 
for example, uould enable those operators to use only those transaction 
codes which have Deen defined as security 1, 5, 6, 10, or 12. The 
suggested way in uhich this facility is used is as follows. 

Transactions to be controlled must be grouped into up to 23 
categories. The categories can be thougnt of as having names, for 
example, INVOICE, PAYROLL, STOCK, SYSTEM-CONTROL and the categories arc 
giVen numbers in the 2-24 range, for example, 2 through 5 for the above 
categories. Terminal operators have a trole' within the organization 
which requires them to have use of certain categories of transaction. 
Thus a certain operator may need to use the INVOICE and STOCK 
transactions and vould thus be given security codes 2 and 4. Another 
operator may only need access to the INVOICE transactions and this can 
be supported by giving him security code 2. Transactions uhich are 
given a secur1ty code of 1 can be used by any operator and can even be 
used when the terminal is not signed on. Certain CICS/VS transactions 
have this security code (for example CSSN and CSSF) but user written 
transactions other than perhaps a system status display transaction 
should not normally be given a security code of 1. 

It should De noted that this allocation and use of security codes 
must be coordinated with the other related uses described in this 
section. 

If an operator attempts to enter an una~thorized transaction code, 
CICS/VS will reject the transaction and send an error message indicating 
a security violation to the terminal operator. The violation is also 
logged on Transient Data Destination CSMT. The operator identification, 
terminal identification, and transaction code used are detailed in the 
notification message to transient data, as shown in Figure 4.4-2. (See 
the CIC§LVS ~~22~~es and Code~ Manual for additional information). The 
master terminal operator may then take appropriate action. 

Chapter 4.4. Security Design 191 



CONTROL OF TRANSACTION ACCESS TO RESOURCES 

An option in the Transaction Table (PCT) entries indicate whether or not 
each transaction's access to resources should be controlled. If control 
is requested then the resource security codes of the operator (defined 
in the SNT but moved to the Tcr at sign-on time) as illustrated in 
Figure 4.4-1 are compared with the resource security code (defined in 
resource tables such as the FCT) of the resources the transaction 
attempts to access. If any check fails, the transaction is abended. 
The check is only made if the resource is accessed using the command 
level interface. 

As with the operator security codes dascribed above, the terminal 
operator can have.multiple resource security level codes in the range 1 
to 24. Resources can have just one code. The r·esource code must be one 
of those belonging to the terminal operator for the check to succeed. 
Note that there is no special use of code 1 for resource security, and 
no default security code. Hence, if either the operator or the resource 
being accessed has no resource security level specified, but the 
transaction requests checking, the access will be refused. 

Files, Journals, Transient Data Destinations, Temporary Storage gueue 
prefixes, programs and transactions can all have resource security 
specified in their associated tables. (Resource security on 
transactions controls whether they can be started using the START 
command) • 

INPUT 

Enter 
Input 
Transaction 

Trans Code 

Secty Code 

Program Control 
Table IPCT) 

Ope' Sec Code 

Terminal Control 
TablelTCT) 

CICSNS PROCESSING 

1. Operator enters 
transaction code and data. 

2. CICSIVS locates transaction 
code in program control 
table (pcn entry. 

3. CICSIVS compares security 
code in PCT entry with oper· 
ator security codes in termi
nal control table entry for 
terminal that operator 
signed-on. 

4. If operator does not have 
transaction security code, 
CICSIVS sends violation meso 
sage to terminal. 

5. CICS/vS logs violation 
on CSCS or CSMT. 

6. If security codes agree. CICSIYS 
passes transaction to applica· 
tion program for processing. 

1< 

OUTPUT 

:> I Trans I 
Code 

Input Message 

II 

Secunty 

> Violation 

Message 

- -

l5J At Term XXXX 
:> Bv Oper XXX 

With Trans XXXX 

Master Torminll 

> 
Application 
Program 

Figure 4.4-2. CICS/VS Control of Transaction Access 

I 

Note that a transaction reguiring resource security checks must have 
a terminal associated with it otherwise there will be no information 
against which to perform the security check. If such a transaction is 
started without a terminal, it is ABBNDed when it first tries to access 

192 CICS/VS System/Application Design Guide 



a resource. The ABEND is not logged to the security log since the 
problem is regarded as a set-up error rather than as a security 
violation. 

Care should be taken in use of the resource security facility. 
Transactions in production status should not normally be defined to 
require it since the meaning of production status is that the 
transaction is believed to be correct and therefore a check against what 
it does is not necessary. 

On the other hand, a maJor use of resource security is related to 
application development and test. Transactions that are still under 
test should utilize resource security in order to detect accidental 
access to incorrect resources. The recommended way to achieve this is 
to determine those resources that the transaction (or group of 
transactions) under test can access'and allocate them one or more 
resource security codes. Terminal operators allowed to run the 
transaction for testing purposes can then be given these resource 
security codes. The CICS/VS Command Level Programming interface must be 
used in the new applications, so installation procedures and standards 
should be in place to ensure this is adhered to. For further discussion 
see "Security Control over the Application Programmer". 

A case where it is appropriate to use resource security for 
production applications is to control general purpose programs such as 
file browsing programs which take the file name to be accessed as a 
parameter. If resource security is specified for the transaction, 
operators who are allowed to use the browse transaction can only do so 
on files they are permitted to access by the comb ination of resource 
security codes in their SNT entries and the resource security codes {n 
E'CT entries. 

Resource security checks are also performed against remote resources. 
The definition of the remote resource carries a resource security code 
and a match must be found with the operator resource security codes 
before access of that resource (via MRO or ISC function shipping) is 
allowed. If a remote resource is accessed using the SYSIDNT option on 
the command then there is no resource definition available against which 
the check can be performed and in such cases the access is always 
rejected. 

Use of Resource Security in CICS/VS Supplied Transactions 

Three CICS/VS transactions normally use resource level security. These 
are CSMI - the mirror transaction used for function shipping; CECI - the 
Command Interpreter transaction used for program development; and CEDF -
the Execution Diagnostic Facility of CICS. 

The facilities of the Command Interpreter are described in detail in 
the !~cation Programmer's Reference Manual (Command Level). However, 
in essence, it allows CICS/VS commands to be issued directly at a 
terminal. Clearly this is a powerful facility and open to abuse if 
access, not just to the transaction itself, but by the transaction to 
CICS/VS resources, is uncontrolled. Because the command interpreter 
normally uses resource security, a terminal operator allowed to use it 
can only successfully executa commands which operate on resources he is 
allowed by the resource security check to access. 

The Execution Diagnostic Facility is described in detail in the 
Application Prog~~!.§. Refe~§1!£L!i~!l~! (Com!!~!!L~~:!~!l. and the ~ntll 
Level System User's Guide. It allows the terminal operator to trap and 
modify the commands of an application program being debugged. Since the 

Chapter 4.4. Security Design 193 



modifications allowed include modification of resource name, the 
resource level security mechanism can be used to prevent access'to 
incorrect resources. Note that the transaction being debugged need not 
specify resource security, provided CEDF specifies it, since CEDF can 
force resource security for the transaction. Security during 
application development is further discussed in the section "Security 
Controls over the Application Programm~r". 

TRANSACTION AND RESOURCE ACCESS WITHOUT PRIOR SIGN-ON 

Certain terminals, for example, printers and fixed format terminals, 
such as the 3614, cannot support the sign-on transaction. Therefore the 
sign-on process cannot be used to get security codes into the TCT entry 
for the terminal. To overcome this limitation, CICS/VS allows 
specification of security codes (both operator security codes and 
resource security codes) to ne permanently associated with the TCT 
entry. This allows the control mechanisms described in the previous tvo 
SEctions to operate just as though a valid sign-on had been received. 
Note that operator and resource security code specifications in the TCT 
entry can be made for any terminal, thus a terminal in a highly secure 
area, such as the computer room can be used for secure transactions such 
as CSMT without requiring sign-on. The sign-on and sign-off 
transactions will not override any permanently defined security codes 
specified in the TCT; CSSN will not run on a terminal that has any 
preset security values. 

Note that there are several uses of resource security codes described 
in this section and their allocation and use for each must be 
coordinated. For example eight codes may be allocated for specialized 
security requirements in production transactions, eight for temporary 
allocation to applications under development or test, and eight for 
control of the resources accessible by other CICS/VS systems cdnnected 
via IRC or VTAM. 

CONTROL OF TRANSACTION ACCESS BY A CONNECTED CICS/VS SYSTBM 

When multiple CICS/VS systems are connected together, the transactions 
of one system can be protected from access by terminal operators 
connected to other systems. This control is based primarily on the 
id~ntity of the other CICS/VS system, and only in specific instances 
also on the name of the actual terminal operator. 

Control based on the other system's identity is achieved in the same 
way as for terminals which cannot sign on, that is, by coding the 
security codes on the TCT entry representing the connection to the other 
system. The security code of the transaction requested by another 
system is compared with the security codes in the TCT entry in exactly 
the same way as described previously for terminal operators, that is, 
the request is rejected if the transaction security code is not one of 
those occurring in the TCT entry. 

194 CICS/VS System/Application Design Guide 



Secur~When Transaction Routing is Used 

When a transaction on a local system is requested by a remote system by 
means of the transaction routing mechanism, a surrogate TCT entry is 
built in the local system to represent the terminal. The security codes 
entered into this surrogate are those preset (if any) in the local TCT 
definition of the terminal. These codes are marked as permanently 
defined security codes (even if null) and so cannot be changed by sign
on or sign-off. 

The security check at transaction initiation is executed using the 
security code in the TCT entry representing the connection to the remote 
system. If a match is found then the remote system has the right to 
execute this transaction and the transaction is initiated. Otherwise 
the reguest is rejected. Note that it is the responsibility of the 
remote system to ensure that only those terminal operators with the 
correct security classification ara allowed to access the transaction 
that is to be executed. In other words the definition of the 
transaction in the remote system must have a security code, so that the 
security check performed when the initiation is requested verifies the 
terminal operator's authorization to invoke this transaction. 

I 

If the transaction has been defined on the local system as requiring 
resource security checks then all such cheCKS are performed against the 
resource security code in the surrogat~ TCT entry. This would normally 
be null and so the resource access would be rejected. This is necessary 
because the system executing the transaction does not know the resource 
security classification of the terminal operator nor can it rely on the 
terminal-owning system making appropriate checks ~s it does for 
transaction initiation) because that system does not have the required 
information to perform such checks. 

Security When CRTE is Used 

Control based on the identity of the terminal operator is used 
additionally when the terminal operator uses the routing transaction 
CRTE to route all requests to this system. Having established the 
routing, the minimum security code, code 1, is established in a 
dynamically-nuilt surrogate TCT entry in the system being accessed, and 
in order to use any secure transactions the terminal operator must sign 
on to the system. The transaction access must pass both link and 
operator sign-on security checks before the access is allowed. 

Similarly if the transaction is designated as requiring resource 
security checks then both link and terminal operator resource security 
checks must indicate that access is autorized before access to the 
resource is allowed. This ensures that the terminal operator signing-on 
to the surrogate TCT entry cannot increase the effective security 
classification of the intersystem connection. 

Chapter 4.4. Security Design 195 



CO~~ROL OF THE RESOURCE ACC~SS BY IRC- OR VTAM-CONNECTED 
SYSTEMS 

CICS/VS performs a r6sourCE security check when a regu~st is function
shipped from an IRC- or VTAM-connected system. This operates in the 
same way as already described for transaction access to resources, that 
is, the resource security code defined for the resourC6 being accessed 
must be one of the codes present in the TCT entry for the connection. 
However an important advantage of the check against a CICS/VS system 
compared to that against a transaction is that even a knowledgable 
application programmer over whom no administrative controls are exerted, 
cannot bypass the security check (apart from considerations of system 
integrity) prov~ded he cannot modify the system containing the resource. 
Similarly, when the resource security mechanism is used to protect an 
ISC link, the other system cannot bypass the security restrictions, and 
this allows the link to be set up even when some data on the system is 
highly sensitive and must not be allowed to travel across it. 

Since a remote system which might access resources on the local 
system does not sign on in the sense described earlier for terminal 
operators, the resource security codes which apply to, and must 
constrain, the conn~cted system are not derived from the Sign-on Table 
(SNT) but are coded in the TCT entries representing the connections. 
The way in which the security check works is identical to that described 
previously, that is, the resource security code of the resource must be 
one of the resource security codes coded in the TCT entry for the system 
attempting to access the resource. Note that the mirror transaction 
CSMI is used to access the resource, hence this must indicate in its 
Transaction Table (PCT) entry that resource security is required in 
order for the check to be made. 

Control of DL/I data, that is, data managed by DL1/DOSjVS or 
IMS/VS/DB cannot be achieved using the CICS/VS built-in security 
mechanism. This is because the CICS/VS resource security check relies 
on a field in the resource d~finition control block, which in the case 
of DL/I data is not a CICS/VS control block. Hence control of a CICS/VS 
transactionts access to PSBs requires use of the External Security 
Manager facility of CICS/VS. 

THE CICS/VS CONCEPT OF AN EXTERNAL SECURITY MANAGER 

For some installations which use a variety of software products it is 
inconvenient to have separate security mechanisms for each product. 
Hence CICS/VS will allow an External Security Manager (such as RACF on 
MVS systems), which may be managing the security of other system 
facilities such as batch and interactive sarvices, to selectively take 
over control of CICS/VS security. Additionally some installations have 
specialized security requirements; the Security Program (DFHXSP) 
receives control for all security related events in CIeS/VS and can be 
tailored by the user. 

CICSjVS provides several versions of the security program. 

1. a dummy version that provides no security checks (access is always 
authorized) 

2. a version that provides CICS/VS security checks only 

196 CICS/VS System/Application Design Guide 



3. a version that provides CICS/VS or RACF checks which can be used on 
MVS systems, provided the appropriate level of RACF (Release 1.3 or 
later) is installed. (This version is supplied only with 
CICS/OS/V 5) • 

The ESM can provide the following functions to CICS/VS: 

1. A function to initialize the interface to the ESM. CICS/VS has a 
defined set of actions if the ESM indicates it is unavailable, 
which permit the installation to provide restricted service if 
desired. 

2. A function which authenticates userids and constructs and returns 
to CICS/VS the address of an External Security Profile. 

3. A function which recognizes "other-system" userids and constructs 
and returns to CICS/VS the address of an External Security Profile. 

4. A function which cancels such profiles. 

5. A function which returns the user identification to be associated 
with the CICS/VS system. 

The interface to RACF supports all these functions. For further 
information see RACF General Information, GC27-0722. 

User Supplied External security 

The CICS/VS external security manager consists of two parts, one of 
which performs standard CICS/VS security checks and the other is code 
included from the copy module DFHXSC. DFHXSC is provided as a dummy for 
use on VSE and as/VS1 systems and as an interface to RACF on MVS. 

If a user wishes to supply his own security manager either the uhole 
module, DFHXSP, may be replaced or the copy module DFBXSC. 

DFHXSP is entered during initialization, and at sign-on and sign-off 
of a user if external security has been asked for. It is entered for 
transaction authorization, PSB verification and resource security 
checking. The code represented by the copy module DFHXSC is entered 
only when external security checking has been requested. 

By supplying a replacement for the module the user could replace the 
CICS/VS password facility. For example, the user could keep a table of 
valid passwords in a file along with other information such as the time 
the password bas been in force, and request a new password after a 
certain length of time. The time of day when a transaction can be run 
can be controlled. At sign-on time a block related to the user's 
ability to access resources could be built, and its address stored in 
the address given in the parameter block. This address will then be 
available at resource check time and at sign-off, when it may be 
released. The interface that CICS/VS provides to a user-supplied 
external security manager is described in detail in the System 
Proqram~er's Reference Manual. 

Chapter 4.4. Security Design 197 



AUTHENTICATION USING AN EXTERNAL SECURITY aANAGER 

In order to perform authentication of CICS/VS terminal operators by an 
External Security Manager (ESM) but to nevertheless continue to use the 
other features of the CICS/VS sign-on table such as operator id, 
op~rator and resource security codes, and operator priority, the 
Hxternal Security operand of the Sign-on Table must be specified for 
each user, or alternatively, the operand must be placed on the INITIAL 
statement of the Sign-on Table and then explicitly negated for those 
operators for whom it is not required. 

Alternatively, if the other Sign-on Table features are not required, 
the operator need have no Sigh-on Table entry, and a special table entry 
can be specified, indicating that operators whose names do not appear in 
the sign-on table are to be authenticated using the EStl. This entry may 
also supply default values for the other Sign-on Table features. 

If ESM authentication is used, additional information may be 
requested· such as new password (because the old password has expired), 
or the insertion of the operator id card, the CICS/VS sign-on program 
will automatically prompt the terminal operator if necessary. 

The CICS/VS sign-on/sign-off logging to transient data destination 
CSCS is still performed with ESM authentication in addition to any 
logging to central facilit~es that the ESM may do. 

If the External Security Manager is unavailable, CICS/VS ignores the 
External Security Reguired flag in 5ign-on Table entries and attempts to 
authent~cate sign-on requests using the built-in CICS/VS facility. This 
viII only succeed if the operator signing on has a password defined in 
the Sign-on Tanle entry as well as the External security Required flag. 
Operators uithout a Sign-on Table password cannot sign on uhen the ESM 
is unavailable. 

ESM RECOGNITION OF CONNECTIONS 

When it is desired to support a security check using an ESH but the CSSN 
trdnsaction cannot be used for a particular connection, it is possible 
to cause th~ ESM to "recognize" the connection as soon as it is 
established~ The rules for this are: 

o ISC (Inter Systems Communication) connection to another system. 
Recognit~on is attempted if the TCT entry for the system specifies 
a user identification (as specified in the XSNAME operand of the 
DFHTCT TYPE=SYSTEM macro) to be associated with the connection. 

co l1RO (t1ultiregion Operation) connectj.on to another CICS/VS system. 
The TCT entry for the system does not require the user 
identification operand. Recognition is always attempted based on a 
user identification value obtained by the interregion communication 
mechanism from the External Security Manager for the connecting 
system. If a User Identification is specified on the TCT entry it 
is compared with t~e derived value and the connection will only be 
made if the two are identical. 

o Shared database connection to a batch database region. As for HRO. 

Transient Data Destination CSCS receives sign-on/sign-off messages 
for ESM recognition of connections. 

198 CICS/VS system/Application Design Guide 



If the External security Manager indicated it was unavailable at 
CICS/VS initialization all recognition requests are treated as null 
opera tions. 

TRANSaCTION ACCESS CHECK USI3G AN ESM 

In order for the transaction access check to be made via the External 
security aanager (ESH) three conditions must be satisfied: 

G The Program Control Table ~CT) entry for the transaction must 
specify that external security is required. 

o The external security manager must be active. CICS/VS supports a 
mode of operation lihere external security is requested on CICS/VS 
tables etc, but the Esn is not available. Transactions which 
request External security on their PCT entry can De used in this 
mode provided they also have an operator security code specified. 
This will only be used in this circumstance. 

o There must be an External Security Profile associated with the 
term inal at \-Ihich the; transaction is requested. This may have been 
derived either via a normal user authentication process using the 
CSSN command, or via ESM recognition of the connection when it is 
established. 

If either of the first tvo of these conditions is not met, a normal 
CICS/VS check using operator security codes is performed. 

If the Itrecognized ll connection's user identification is the same as 
the local system's user id~ntification, then the assumption is made that 
the reguestor of a resource is the same as the ovner of the resource and 
further security checks are unnecessary. Hence if the ESM ~aintains 
tables relating requestors to resources (as RACF does) there is no need 
to keep a table of all resources up-to-date just so that the obviously 
valid accesses can be alloued. 

One reason the above set of conditions for an ESM transaction access 
check is impos~d is so that migration to use of an ESM is possible ill a 
gradual way. At a given point in the migration, it is possible to have 
a mixture of terminal operators authenticated using tne ESM or the 
CICS/VS SNT, and a mixture of transactions, some requesting an external 
security check and some a CICS/VS security check basad on operator 
security codes. A possible migration might be to arrang~ for each using 
department's terminal operators first to be authenticated via the ESM, 
then to define their t~ansactions to the ESM, and finally to change the 
department's transactions definitions in the PCT to request external 
security. Provided none of the old CICS/VS checking information is 
deleted until migration is complete, it is possible to fall back on to 
the CICS/VS check (for all departments however) simply by disabling the 
External Security Manager.. Uo re-assembly of CICS/VS tables is 
reguired. 

If the External security access check fails CICS/VS uill log the 
viola~ion to the master terminal transient data destination in the sama 
vay as if the check had been made using the CrCS/iS built in security 
mechanism. 

Chapter 4.4. Security Design 199 



DL/I DATA BASE SECURITY CHECKING 

When access to DL/I data on a CICS/VS system is to be controlled for 
security reasons, the External Security Manager facility of CICS/VS is 
used. Access is controlled only when DL/I requests are function-shipped 
from outside the CICS/VS system, and not when requests are made by 
CICS/VS transactions on the same system as the DL/I data. 

There are three situations: 

• Shared Database access by a batch DL/I program running in a 
different partition/address space of the operating system. 

• aultiregion Operation access by a transaction in another CICS/VS 
system accessing DL/I data on this system. 

o Intersystems communication access by a transaction in another 
processor system accessing DL/I data on this system. 

In each case the access is checked against the previously 
"recognized" identification of the requesting program/system. 

If access is refused the information is logged to CSCS. 

As with the transaction check made using the External Security 
facility of CICS;VS, the check is bypassed when the requesting user 
identification equals this system1s user identification. 

LOGGING TO CSCS 

CSCS is the Transient Data destination name that CICS/VS uses for 
recording security-related events. The installation may choose to do 
one of the following in defining CSCS: 

1. omit it from the DCT. In this case most of the messages are not 
sent, however for compatibility with releases of CICS/VS which did 
not use CSCS, some messages are sent to CSMT. This is applicable 
for installations for which security is not of concern. 

2. Put into the DCT as INDIRECT to CSMT. This will result in all 
security messages going to CSMT. In particular messages which went 
to CSMT prior to the introduction of CSCS will still be there, and 
will not be duplicated. This is applicable if security is not 
handled by a separate function in the installation, but someone 
regularly browses through CSKT looking for problems such as 
frequent transaction anends or security violations. 

3. Direct it to disk or tape. This vill result in security related 
messages going to a special dataset. Some messages which vent to 
CSMT prior to the introduction of CSCS will no longer be found 
there but will appear on CSCS. This is applicable to installations 
which are concerned over security and make special provision for 
analysis of information related to security. 

200 CICS/VS system/Application Design Guide 



Security Controls Over Application Programmer 

The application programming team for an online application have the 
responsibility to create programs to a specification. Their job on a 
program is finished (apart from changes to the specification) once the 
program is considered by the installation to be trusted for production 
use. 

What .. trust" means here is that the program is believed by the 
installation to do what the specification says it should do. However, a 
program can v10late the specification without necessarily violating even 
the most stringent security checks that could De made on the program's 
access to resources. Por instance, the specification for the salary 
update transaction may say that the program should read the employee 
record, verify the current salary, add the increment to it, and re-write 
the employee record. If, for the programmer's own record, the verify is 
omitted, and the increment is added twice, no ~ecurity check would 
detect this, but the program would not be to its specification. Bence 
if the programmer himself is not fully trusted, his programs must not 
merely have security checks performed against them, they must be 
reviewed before they are used in production. 

To make this effective, the application programmer must be unable to 
install or modify programs that ar& in production. security protection 
that is not within the scope of CICS/VS to provide must therefore be 
used on the ooject libraries of the production CICS/VS system, and (so 
that source corresponding to the object libraries is not corrupted) also 
on the source libraries. . 

Given the above, the role of security checking against application 
programmers must be restricted to prevention of accidental or deliberate 
damage to production data Dases by programs under test. 

CICS/VS provides three tools for this: 

1. EDP. The Execution Diagnostic Facility of CICS/VS allows a 
terminal operator who is permitted to run the CEDP transaction to 
trace, test paths of, and to some extent modify an application 
program online. If this facility is used on the same CICS/VS 
system as normal production work, resource level security checking 
can be imposed on the application so that only test data can be 
accessed. Although BDP allows modification of storage areas, only 
user storage belonging to the task can be modified. Hence provided 
the program being debugged does not damage the system or access 
incorrect resources using the macro level API, it should be 
impossible for the programmer using EOP to do any damage. 

2. MRO. If complex programs are being written and tested under 
CICSjVS, usc of EOP alone may not provide some installations with a 
sufficient guarantee of the safety of the production data. In this 
case the multiregion operation featur~ of CICS/VS may be used. 
Provided the program being tested operates in its own CICSjVS 
region, it can be prevented from damaging any production data by 
applying a security check against the region. This method has the 
advantage that the .program can refer to production database names 
but be routed to test data. EOF can be used to debug the program. 

3. Command Interpreter. In the course of developing an application 
program, the command interpreter can be used to tryout the 
statements that the program will use. The interpreter transaction 
will access only resources the operator is allowed to access, thus 
it will be restricted to the same resources that EDP and the 
application being developed can access. 

Chapter 4.4. security Design 201 



PROGRAM REVIEW PROCEDURES 

When the programmer has developed and tested the program to his 
satisfaction, installations which regard security as important will 
probably want a review of the source code of the program, and a test of 
the program under installation controlled conditions before the program 
is used in production mode. Even when security is not regarded as 
important, such procedures will help to improve the quality of the code. 
The following points should be considered for CICS/VS application 
programs: 

• The program should use oniy command level API facilities of 
CICS;VS, or the programmer should clearly justify why it does not 
do so. 

• The program should use literal resource names so that it is clear 
which resources it is accessing. 

• The program should be tested with resource security active. 

Adaitionally, structured programming or equivalent methodology and 
use of high level languages can simplify and improve the effectiveness 
of review procedures. 

Audit Facilities 

The audit process is aimed at detecting irregularities post-facto. 
Therefore audit facilities are aimed at recording information for the 
audit process, and the auaitability of an application depends on 
judicious use of such facilities. 

CICS/VS provides journaling facility specifically for the recording 
of information to De processed later. Journal control creates a 
separate file on tapa or diSt (which can be copied to tape offline) from 
journal write requests issued by user programs and/or CICS/VS management 
modules (for instance, File Control), and/or DL/I database management 
modules. Logical records from multiple executing transactions are 
intermixed on the journal and even within physical journal records. To 
facilitate, subsequent processing the information is in hex format and 
contains time stamp information and end user origin information. 
Multiple journals are supported. Journals are identified by a number 
(01-99), and journal 01 is refered to as the system log. 

JOURNALING BY CIeS/VS MANAGEMENT MODULES 

All journaling by CICS/VS management modules is optional. 

Most of the journal record types written by CICS/VS modules are 
related to recovery and thus are turned on by recovery related options. 
They are always directed to the system log and contain information 
geared to emergency restart. File Control and Terminal Control, 
however, support automatic journaling; outputting of automatic 
journaling records is controlled by a separate resource-related option 
and the records can be directed to any journal. These options could be 
usad for example to record all changes to a file or all transaction 
input requests. 

202 CICS/VS system/Application Design Guide 



JOURNALlNG BY DL/I 

If DL/I is in use, journaling is required. DL/I records all changas to 
DL/I data. The records are written unconditionally to the system log. 

JOURNALING BY USER APPLICATION 

This can be used to record stages in an application's processing, for 
instance critical or security sensitive sub-functions. 

CORRELATION nITH CSCS 

Journal records identify the terminal which started the task making the 
request. Auditability is impaired if non-terminal related tasks perform 
critical functions. Application journaling should be used to make up 
the deficiency. 

fhe CSCS log records discussed earlier can be used together with 
journal records to determine vhich user was logged on vhen the log 
record was produced by using the time stamps which occur in both. 

Chapter 4.4. Security Design 203 





Part 5. Recovery and Restart Design 

205 





Chapter 5.1. Principles of eIeS/Recovery and Restart 

Recovery and Restart Overview 

Tvo of the most significant aspects in the d~sign of applications to 
execute under control of CICS/VS are the recovery from errors and the 
sUbsequent restart. Depending upon the complexity of the online 
application and the CICS/VS facilities that are used, the design of 
recovery and restart procedures may represent little effort on the part 
of the design team or may be a major element of the overall system 
design. 

For example, for an inquiry application that only retrieves 
information from databases and does not update that information or add 
new information, recovery and restart generally involves reestablishment 
of the CICS/VS system to its status at the time of failure. 

However, for an online application that retrieves information from 
data bases, and updates, deletes, or adds records to the data bases, the 
information, which must be recorded by the system during normal 
operation, may be extensive. This information is used following a 
system failure, to recover the status of the various data sets and data 
bases to a defined pOint, such that all necessary updates, deletions, 
and additions up to that point have been completed. Recovery of such an 
online update ana addition application can involve considerable system 
design effort. 

Regardless of the type of application, the system design team should 
consider the effect on the online application of each of the types of 
error or failures described in this chapter. The team should determine 
whether any action is necessary to design procedures, which ensure that 
information necessary for recovery is recorded during execution. 

Many online applications process ade~uately with no recovery and 
restart proce dures. Houever, the value of a well-designed online 
application containing recovery and restart procedures is truly realized 
when an error arises. Regardless of how well a system is designed, 
failures will occur because of program errors, transaction interlocks, 
data transmission errors, I/O access errors, or system component 
failures (such as the processor). An online system that allows for 
errors and has recovery and restart procedures to handle them is Detter 
able to continue operation when errors occur. 

A measure of the performance of an online system is its ability not 
only to provide satisfactory response time, but also to provide online 
access to applications from terminals over extended periods. 

While errors must ineVitably occur, they should not be permitted to 
disrupt the availability of online applications for long periods. Good 
recovery and restart design procedures can minimize the amount of time a 
system is down following a failure. They can also minimize the effect 
of a system going down at an unscheduled point, by ensuring that the 
integrity. of any data sets or data bases is maintained. 

The recovery and restart capabilities of CICS/VS are designed to meet 
any type of soft~are or hardware failure. At the same time they are 
designed so that the individual installation may choose to take 

Chapter 5.1. Principles of CICSjVS Recovery and Restart 207 



advantage only of those CICS/VS capabilities that are relevant to the 
particular RAS requirements of that installation. In addition they are 
designed so that they can readily be extended to provide unique RAS 
capabilities for a particular installation. 

Because of the flexibility and extendability, it is necessary to 
provide a detailed description of what CICS/VS provides in various 
error, recovery, and restart situations, and how this may be used or 
extended by the individual installations. 

The following recovery/restart conditions are discussed: 

• CICS/VS Error Return Code processing (for example, file errors) 

• Terminal I/O errors 

• Program check handling 

• Transaction abend handling 

• Operating-system abend handling 

• CICS/VS termination 

• Normal CICS/VS cold start 

• Warm start 

• Emergency restart 

Before treating each of these conditions in turn, it is necessary to 
provide a general overview of some of the principles that underlie 
CICS/VS RAS capabilities. This overview is provided in the next section 
of this chapter. Subsequent sections then treat each of the above 
conditions. 

Principles Underlying CICS/VS Recoverable Resources 

Before it is possible to describe the functions provided by CICS/VS to 
handle error, recovery, and restart conditions, it is necessary to 
describe certain principles underlying CICS/VS recoverable or protected 
resources. By "recoverable or protected" is meant those resources, 
particularly data sets, whose integrity is guaranteed by CICS/VS in the 
case of failures. 

This section describes the following underlying principles: 

• Defining Protected Resources 

• Synchronization Points 

• Enqueueing 

• Logging 

• Activity Keypointing 

• Message Integrity 

208 CICS/VS System/Application Design Guide 



DEFINING PROTECTED RESOGRCES 

This section describes what is meant by "protected or recoverable 
resources ll , which CICS/VS resources can be protected, and hov this 
protection is defined. The words "protected" and "recoverable" are used 
interchangeably. 

If a given transaction reads and updates CICS/VS resourcas, such as 
an intrapartition transient data destination, a CICS/VS file, a DL/I 
data base, and so on, it will usually be the case that this group of 
actions should either be carried out in its entirety or not at all. 
However, for some reason, such as a transaction abend or a total system 
failure, it may not be possible to complete these actions once started. 
This situation may have serious implications. 

Consider the following example. 

An order-entry system is designed so that when an order for a 
particular product is entered from a terminal, an inventory file is 
queried and decremented; orders for more stock and to dispatch the goods 
are prepared -where necessary. If the transaction should fail nefore the 
order to dispatch the goods is prepared, the warehouse could be ordering 
more goods than it is dispatching, with potentially serious results. 

To guard against this sort of problem, CICS/VS allo~s resources to be 
defined as protected or recoverable. The implication of this is that if 
a transaction that modifies such a resource cannot complete, for 
whatever reason, all modifications made by that transaction to such 
resources will be backed out. In the above example, the inventory file 
may have been defined as a protected CICS/VS file, whilst the reorder 
and dispatch orders may have been represented by records on recoverable 
intrapartition transient data queues. Note that it is the resources 
themselves, not the transactions, which are regarded as protected. 

The following types of CICS/VS resource can be defined as protected: 

o CICS/VS files: each file may be defined as protected or not. 

o Intrapartition Transient Data Destinations: each destination may 
be defined as recoverable or not. 

o Auxiliary Storage Temporary Storage: each DATAID may be defined as 
recoverable or not. 

o DL/1 data nases: all DL/I data bases are recoverable. 

Note that, with the exception of DL/I data bases, recoveranility for 
all CICS/VS resources is optional. Because recovery involves some 
execution-time performance overhead, recovery should only be specified 
on those resources for which it is really required. Recovery is 
specified at system-definition time in the appropriate entry in the 
system tables ~ the File Control Table, Destination Control Table, and 
Temporary Storage Table respectively for file, Intrapartition Transient 
Data, and Auxiliary Storage Temporary Storage (for full details refer to 
the £ICS/VS System Programmer's Reference Manual). 

Chapter 5.1. Principles of CICS/VS Recovery and Restart 209 



LOGICAL UNITS OF WORK AND SYNCHRONIZATION POINTS 

In the order-8ntry example described above, we saw how in the event of a 
transaction or system failure, all the changes made by the transaction 
to protected resources would be backed out as though the transaction had 
not run. As We shall see in the section on enqueueing, there are 
certain implications arising from the use of protected resources that 
should be borne in mind when writing a long-running transaction that 
modifies protected resourC8S. To overcome these problems, CICS/VS 
provides the concept of Logical Units of Work (LUW's) and 
Synchronization Points, by which means long-running transactions may be 
divided into a sequence of shorter units for recovery purposes. An LUH 
is a unit of work, which will oe regarded as a logically related 
sequence of actions as far as the CICS/VS recovery mechanisms are 
concerned. That is, changes made in a completed LUW will not be backed 
out should the transaction or system subsequently fail, whereas all 
changes in an uncompleted LUW will be backed out. A Synchronization 
Point is that pOint in the flow of the transaction that marks the end of 
an LUW and the beginning of the next one. 

For a short-running transaction, the whole transaction will be a 
single LOW and the only synchronization points will be the implicit ones 
at the start and end of the transaction. For a long-running 
transaction, the user may explicitly specify intermediate 
synchronization pOints, and ther:efore define the intermediate LUW's, at 
whatever ~oints in the logic of the transaction permitted by the 
recovery requirement of that particular installation. 

A synchronization point may be defined by any of the following forms: 

• A SYNCPOINT command. 

• A DL/I call with tne TERM or T function code. Such a DL/I call is 
logically equivalent to a SYNCPOINT command, although it is, of 
course, only permitted if the task is currently scheduled to use a 
particular DL/I PSB. A DL/I call is not equivalent to a SYNCPOINT 
command if thE PSB that is neing terminated is a read-only PSB that 
resides on the local system in a shared data base environment. 

• The end of every transaction is implicitly a synchronization point. 

In deciding whether or not to specify intermediate synchronization 
points, and if so, where to position them, the system designer and 
application programmer must both be aware of the following implications: 

• Any changes made to protected resources during an LUW will be 
backed out s~ould the transaction or system fail during the LUW, so 
that the resources are left in the state that they were in at the 
start of the LUW. 

• It is good practice to ensure that all other aspects of the 
transaction, such as uSer storage and non-protected resources, are 
also in a self-consistent state at synchronization points. This 
will facilitate extendability of the application program design in 
such ways as making non-protected resources protected, splitting 
the transaction into separate smaller transactions, or restarting 
the transaction from the last synchronization point. 

• User-specified synchronization points generate an implicit DL/I 
TERM call, and vice-versa. This is necessary to ensure that the 
CICS/VS and DL/I resource changes are synchronized together. Thus 
it may be necessary, if required, to reschedule DL/I after a user
specified synchronization point. 

210 CICS/VS System/Application Design Guide 



A discussion of the implications of synchronization points with 
respect to enqueued resources and deferred work is given in the 
following section of this chapter. 

ENQUEUEING 

Consider the following example of two tasks which update the same record 
in a data set. Task A gains exclusive control of the record, updates 
it, and releases exclusive control. Then task B gains exclusive 
control, updates the record, and completes normally. However, tasK A (a 
longer-running task than task B) could not complete normally because of 
system termination. Consequently, the effect of the partially completed 
task A must be backed out on restart. When task Als update is backed 
out, the update of task B will also be backed out, erroneOUSly. 

To avoid this, CICS/VS prov1des a protection facility to enqueue a 
task on specific elements of protected resources which are being 
updated, deleted, or added. The enqueue applies until the end of a 
logical unit of work, and protects records from subsequent modification 
by other tasks, until it is determined that the logical unit of work is 
completed. 

Thus in the above example, when task A issues a file control GET for 
update, CICS/VS enqueues explicitly on that record. It then reads the 
record from the data set. When the task issues the subsequent PUT, to 
update the record, CICS/VS does not dequeue its use of that record until 
task A indicates completion of a logical unit of work. CICS/VS then 
dequeues the task from the data set record. 

In the meantime, if task B wishes to update the same record, when 
CICS/VS enqueues on that record, the task is placed on the suspended 
task chain by CICS/VS until task A completes and dequeues from the 
record. Task B then gains control of the record and carries out its 
update. If the system terminates before the completion of task A, the 
task A update can be backed out w1thout affecting other processing of 
the record because task A had txclusive control of the record of 
termination. 

Enqueueing on the record for the duration of the LUW, therefore, 
protects the record from possible loss of an update made by a completed 
task, because of backout of the update of a partially completed task. 

The same procedures also apply to additions and deletions. 

Similar protection is carried out by CICS/VS for transient data 
intrapartition destinations. Only one task at a time is permitted to 
access a protected intrapartition destination for input and one is 
permitted to access it for output. The destination is regarded by 
CICS/VS as two separate resources - one input resource, and one output 
resource. 

Similarly enqueueing and dequeueing control is performed for 
modifications to Auxiliary Temporary Storage. 

By serializing updates as descrined above, the integrity of the data 
set following backout on emergency restart or transaction abend is 
protected. However, this may have some effect on performance if several 
tasks are operating on the same resource at some time during their 
combined total period of execution. This effect on performance must be 
evaluated in terms of improved integrity. 

Chapter 5.1. Principles of CICS/VS Recovery and Restart 211 



The user should also recognize the possibility of a lockout occurring 
if several tasks attempt to update two or more records concurrently in a 
protected data set, and the records ar~ not accessed in the same 
sequence by each task. This is illustrated in the following example. 

Consider an order-entry application, which, in the same CICS/VS 
transaction, accepts orders for several products. This transaction 
updates the stock availability for each product in a product data set 
that is aefined as protected. If one terminal enters a transaction for 
orders against product numbers 638, 815, and 1068, the application 
program will update those product records. CICS/VS file control will 
enqueue against each record until the task passes through a user
synchronization point, or terminates. If another terminal also enters a 
transaction at the same time for orders against product numbers 501, 
1068, and 815, an enqueue interlock viII occur on product numbers 815 
and 1068, and neither task will terminate. It will appear to the 
operators of these terminals that the system has gone down, while in 
fact it is still processing other terminal transactions successfully. 

To solve this enqueue deadlock problem, the CICS/VS time-out and 
dynamic transaction back facil~ties may be used, or the application may 
be programmed or used so as to avoid it arising. 

The CICS/VS facilities are used by specifying DTIMOUT=time-value and 
DTB=YES in the DFHPCT TYPE=ENTRY macro for the transactions. In a 
deadlock, CICS/VS will abend one transaction after the specified time, 
and oack out any changes it has made. The abend frees the lock, which 
allows the other transaction to complete. The abended transaction may 
then be restarted. 

The restart will be carried out automatically by CICS/VS if 
RESTART=YES is specified on the transaction's DFHPCT TIPE=ENTRY macro 
and an appropriate DFHRTY program is written. The terminal operator 
will be unaware of the restart. Alternatively, the terminal operator 
can be allowed to restart the abended transaction. 

The programming and use techniques for avoiding deadlock are: 

1. The terminal operator should always enter product numbers in the 
same sequence ~uch as ascending sequence). 

2. The application program first sorts the input transaction contents 
so that product numners ar~ ascending, before processing begins. 

3. The application program issues a user SYNCPOINT command after 
processing each product order in the transaction. 

The first solution requires special terminal operator action which 
may not be practical within the constraints of the application. (For 
example, orders may be taKen by telephone in random product number 
sequence.) 

The second solution requires additional application programming, ,but 
imposes no external constraints on the terminal operator or application. 

The third solution requires less additional programming than the 
second solution. However, by issuing a user sync point, it' implies that 
previously processed product orders in the transaction are not to be 
backed out if a system or transaction failure occurs before the 
processing of the entire transaction is completed. This may not be 
valid for the application, and raises the question as to which products 
in the transaction were processed (orders accepted) and which vere 
backed out by CICS/VS. If the entire transaction must be backed out, 
either a user sync point should not be issued, or only one product order 
should be entered in each CICS/VS transaction. 

212 CICS/VS System/Application Design Guide 



Of the three solutions, the second solut~on (sorting product numbers 
into ascending sequence by programming) is most widely accepted. 

The possibility of an enqueue deadlock occurring exists for any 
application which processes several application-oriented logical units 
of work (product orders), within one CICS/VS logical unit of work. 

DL/I Scheduli~ 

When DLjI data bases are being uS8d rather than CICS/VS files, there are 
two scheduling methods available. One of them, Intent Scheduling, 
cannot give rise to transaction deadlock. When a schedule call is 
issued to DL/I, the processing intent of the PSS is checked against 
those PSSls currently scheduled; if any possible conflict exists, the 
second transact~on is not scheduled. This mach~nism ensures that, not 
only are d~adlocks impossible, but that backout of failing transactions 
can always be performed. A transaction that cannot oa scheduled because 
of PSB intent conflic~ must wait until the conflicting transaction 
terminates its connection to DL/I (either by terminating, issuing a DL/I 
TERM call, or specifying a CICS/VS synchronization point). 

The other scheduling method, Program Isolation, can give rise to 
transaction deadlock. The mechanism of this is explained in 
"Simultaneous Update Protection" in Chapter 2.3. When a transaction 
deadlock occurs, one of the tasks is abnormally terminated so that the 
other may continue. Any changes made to protected resources by the task 
that abends may be backed out by the Dynamic Transaction Backout 
facility. The terminatad task may optionally be restarted, without 
terminal operator intervention, by the Transaction Restart facility. 
Further details on Transaction Restart can be found later in this 
chapter. 

In the event of a program isolation deadlock, one transaction must De 
abnormally terminated. Two types of transaction will be involved, 
mirror transactions acting on nehalf of the shared data base region, and 
other types of transactions. The method of choosing the transaction is 
as follows: 

• If the transactions ar~ of the same type it is arbitrary which 
transaction is abnormally terminated. 

• If a mirror transaction and another type of transaction are 
deadlocked, the non-mirror transaction must be abnormally 
terminated. 

LOGGING AND DEFERRED WORK 

So far, we have seen how certain of the resources defined in the CICS/VS 
system can be defined to be protected, which entails the backout of 
uncompleted changes after a system or transaction failure, and how the 
enqueueing mechanism is necessary to ensure that the backout of one 
transaction1s changes can be accomplished independently of another. 
This section descr~bes two concepts, logging and deferred work, that are 
necessary to ensure that the back out mechanism has sufficient 
information about the status of the resources, at the last 
synchronization point of this transaction, to allow th& nackout to be 
performed. 

Chapter 5.1. Principles of CICS/VS Recovery and Restart 213 



Logging 

If protected resources are to De backed out to their status at the last 
synchronization point, information must be kept to enable this to be 
performed. This keeping of information is known as logging. CICS/VS 
has two forms of log, the System Log and the Dynamic Log. 

The System Log is used during emergency restart to perform backout of 
all tasks that had not completed processing (that is, were "in-flight") 
at the time of a total system failure. 

The Dynamic Log is used during dynamic transaction backout to perform 
backout of an individual abending transaction, whilst the rest of 
CICS/VS continues normal operation. 

The System Log is a standard eICS/VS journal, with a journal 
identification of 1. As such, it may be on tape or on disk. In writing 
information to the System Log, CICS/VS uses stdndard Journal Control 
facilities. In order to ensure that, whatever form of system failure 
might occur, it will still be possiDle to perform emergency restart 
backout, CICS/VS ensures that log informat10n has actually been written 
to the external medium before it actually performs any destructive 
change to a protected resource. 

Information written to the Sy stem Log includes "before images" of 
changed or deleted file records, the status of intrapartition transient 
data and temporary storage destinations at synchronization points, and 
replaced temporary storage records. By means of the deferred work 
mechanism described below, CICS/VS minimizes the amount of information 
that must be written to the System Log. In addition, start- and end-of
task records are written to the log to enable the emergency restart 
mechanism to determine which tasks were "in-flight" when the system 
failure occurred. 

The Dynamic Log is a main storage log organized on the basis of a 
storage area for each task that modifies protected resources. The size 
of this storage area can be specified, with a default of 500 bytes being 
assumed. However, if the area is filled during the execution of a task 
or if the area is not large enough for the records produced during a 
single LUW, or even for a single large log record, an overflow mechanism 
exists, whereby records are written to a temporary storage destination, 
which may be in main or auxiliary storage. Note that much less dynamic 
logging is required than system logging, because the Dynamic Transaction 
Backout mechanism can rely on the contents of main storage tables, 
whereas the emergency restart mechanism cannot, and no information need 
be logged about the start or end of transaction. Th6 contents of the 
Dynamic Log for a particular transaction, except some records needed for 
transaction restart, are cleared at the end of each LUW. 

Note: When running DL/I (IMS/VS DB or DL/I DOS/VS) under eICS/iS, all 
DL/I logging is directed to the CICS/VS System and Dynamic logs. The 
normal DL/I logs (as used in batch DL/I processing) are not used. 

214 CICS/VS System/Application Design Guide 



Certain types of CICS/VS activity are liable to become involved with a 
large amount of logging. Examples include the purging of transient data 
queues or temporary storage destinations. To avoid the logging of a 
large number of records as they are removed from, say, a transient data 
gueue, deferred work is a principle employed whereby the records are not 
actually removed from the queue and logged but are only flagged as 
having been removed. Only when the Logical Unit of Work has completed 
successfully will the records actually be removed from the queue. 

SYSTEM ACTIVITY KEYPOINTS 

The purpose of system activity keypoints is to indicate to CICS/VS, 
during an emergency restart, the user tasks active at the time of the 
keypoint, the status of transient data intrapartition destinations, 
temporary storage data identifications, and terminal control table 
status for VTAH-supported terminals. This information is available on 
the System Log anyway. The activity keypoint is simply a means of 
reducing the amount of the System Log that must be scanned during 
emergency restart time. without such a mechanism, the System Log ~ould 
have to be scanned completely to ensure that all lIin-flight" tasks had 
been found. 

A system activity keypoint is vritten periodically by CICS/VS during 
normal operation, to record on the system log data set the processing 
activity status of CICS/VS and user tasks at the time of the keypoint. 
The frequency of recording system activity keypoints is a function of 
the number of output operations to the system log. This frequency may 
be specified by the user either at CICS/VS system generation or at 
system initialization, and may also be changed dynamically during online 
operation through the use of the master terminal operator transaction 
(CSMT or CEMT). The frequency of the activity keypoint, and the amount 
of journaling performed by active tasks, determines the amount of data 
on the system log to be processed when CICS/VS is restarted. The amount 
of this data will influence the duration of the CICS/VS emergency 
restart. 

The information recorded by the system activity keypoint comprises 
the following CICS/VS tables and control blocks: 

TCAs 

DC'r 

TSUT 

TCT 

status of tasks that have at least logged one record or have 
completed a LUW by issuing a sync point 

status of transient data intrapartition destinations 

status of temporary storage unit table entries 

identification of terminals waiting for response to committed 
output messages (see later) 

The activity keypoint function is initiated by the transaction CSKP, 
which is attached periodically by the journal control program (JCP). 
This transaction transmits system data to the system log and then issues 
a conditional link to a user activity. key point program, DFHUAKP. The 
purpose of this facility is to allow the user to insert application
dependent information in the system activity keypoint. In order to 

Chapter 5.1. Principles of CICS/VS Recovery and Restart 215 



operate properly, the program must be resident and should use only 
storage contro~ and journal control functions. Journa~ operations 
should be asynchronous without start I/O. Synchronization is provided 
by an end-of-keypoint synchronous record, written by the activity 
keypoint program at the end of keypoint processing. The user should 
ensure that the keypoint transaction has higher priority over other 
tasks that are eligible to log data. 

During an emergency restart, the recovery utility program (ROP) 
copies to the restart data set only that data which has been output by 
in-flight tasks (tasks that were .still active at system termination 
time). In order to force BUP to copy user activity keypoint data to the 
restart data set, the user must provide a journal record identifier with 
the high-order bit ON in the record 10 field of the user keypoint data 
record. Refer to the CICStVS System Programmer's Reference Manual for 
more detail. The user key point should be used to keypoint only limited 
amounts of data, for example, selected user data or tables. 

Note: An activity keypoint must not be confused with a warm keypoint. 

An activity keypoint is taken periodically throughout CICS/VS 
execu tion after a user-specified number of log records ha ve be.en written 
on the System Log. It records the status of various pieces of system 
information necessary for protected resource backout so that the scan of 
the System Log, shou~d an emergency restart be necessary, can be 
shortened. An activity keypoint is. written on the System Log. 

The warm keypoint is taken at system termination to record the status 
of the quiesced CICS/VS system so that it can be reinstated at a 
subsequent warm restart. It is written on the Restart Data Set. For 
more details, refer to the description of warm restart later in this 
chapter .) 

PROTECTED MESSAGES . (VTAM ONLY) 

Some VTAM-supported terminals, such as the 3600, enable message recovery 
and resynchronization to be attempted during emergency restart of 
CICS/VS. The user can specify in the Program Control Table that various 
transaction codes are to be "protected." The term "protected" applies 
to the task with respect to terminal messages. All other protection is 
on a resource rather than a transaction basis~ 

If message-protected transaction codes are used with V'lAM-supported 
terminals, the first input message during a logical unit of work 
associated with a task is logged to the system log. If uncontrolled 
shutdown occurs, the input message for each in-flight LUW is identified 
during emergency restart and transferred to temporary storage. It can 
be retrieved from temporary storage by user programs based on the 
identification of the terminal that entered the message. The in-flight 
activity associated with each task is backed out during emergency 
restart. The user may then initiate reprocessing of that input message. 

The last output message transmitted by message-protected tasks 
without a WAIT are regarded as "committed output" messages. The output 
message is logged and the message is transmitted by VTAa, together with 
a request for a positive response from the VTAM terminal on receipt of 
the message. When the positive response is received by.VTAM, it 

216 CICSjVS system/Application Design Guide 



notifies CICS/VS, which logs the receipt of the positiv8 response to the 
system log. 

If an uncontrolled shutdown occurs before the positive response is 
logged by CICS/VS, it can be detected by the CICS/VS recovery utility 
program during emergency restart. The output message is transferred to 
temporary storage, from which it can be retrieved by user programs based 
on the identification of th8 terminal designated to receive the output. 
The task that generated the output message may have terminated normally 
prior to uncontrolled shutdown, hut the terminal may not have received 
that committed output message. On emergency restart, CICS/VS 
retransmits this output message uith a request for positive response, to 
ensure its receipt by the terminal. 

CICS/VS uses the VTAM sequence numbers, which are allocated to each 
input and output message associated with a logical unit, to establish 
message resynchronization with programmable controllers during emergency 
restart. These are obtained from the system log by the CICS/VS recovery 
utility program. 

Inquiry transactions which do not modify data sets should not be 
specified in the Program Control Table as protected. Logging of input 
or output messages will not occur. such transactions can be reprocessed 
on emergency restart, if necessary. 

An uncontrolled shutdown or transaction ahend may occur during the 
processing of an LUW belonging to a protected taSK. Such an in-flight 
LUW will be nacked out on emergency restart or during abend processing 
by CICS/VS. If a committed output message is transmitted to a terminal 
when first requested by the application program, it may reach the 
terminal even if an uncontrolled shutdown or transaction anend occurs 
before the protected task terminates normally. The contents of the 
output message may indicate to the terminal that processing of the task 
completed normally, because it was sent before the task really 
completed. How-ever, if the task was in-flight, it lIil1 be backed out on 
emergency restart. The task must then be reprocessed following 
emergency restart or abend processing. The terminal operator is not 
aware that the task was in-flight and was backed out, and would not 
normally reenter it on emergency restart. The result is the loss of 
that task's processing. 

To avoid this possibility, CICS/VS defers transmission of the last 
output message until completion of the task's current logical unit of 
work. Thus, the output will be only transmitted if the LUi completes 
normally. In the event of uncontrolled shutdown or transaction anend 
before completion of the LUli, the in-flight LUil is backed out on 
emergency restart or during abend processing, and the remote 
programmaole controller (or the terminal operator) can retrieve the 
original input message from temporary storage and resubmit that input 
message for reprocessing. If the LUW completad and OUtput was 
initiated, but uncontrolled shutdown or transaction abend occurred 
before a positive response was received from the terminal, the completed 
LUW is not backed out on emergency restart or during ahend processing. 
The committed output message is retransmitted by CICS/VS on emergency 
restart as previously described. 

The result of this deferred output is improved message integrity. 
The trade-ofx is a delay before transmission of the output with a 
possible increaSE in response time at the terminal. If response time is 

Chapter 5.1. Principles of CICS/VS Recovery and Restart 217 



not to be increased, the user should either request a user sync point, 
or terminate the task as soon as possible after requesting output. 

Terminal control and BMS both psrmit the user to request immediate 
initiation of terminal I/O'for VTAM-supported terminals. This avoids 
the deferred output delay, but the possibility is increased that the 
terminal operator may receive output indicating completion of tasks 
which are subsequently backed out. 

An alternative approach is to break the output into two or &ore 
sections. The program can. request output of the first section, 
specifying either immediate output or the default of delayed output. 
When output of the next section is requested, the first section is 
transmitted if it indicated delayed output. This continues until either 
a sync point is reached, or the task terminates when the last section of 
output is considered a committed output message and is handled as 
previously described. The partial sections of output may satisfy the 
requirement for rapid response time, with each section indicating that 
further output is following. Only receipt of the last section of output 
is an indication to the terminal operator of completed task execution. 
The disadvantage of this approach, however, may be increased CICS/VS and 
VTAM overheads. 

The use of BMS terminal paging introduces another consideration. If 
the terminal that initiated a protected task is in transaction and 
request page status, terminal pages are written to temporary storage for 
subsequent display, but are not directed to the terminal. The 
application program should send a committed output message to the 
terminal, indicating completion of the task and availability of the 
terminal pages, through the term~nal paging commands (see the CICStVS 
Operator's Guide.) If the terminal is in TRANSCEIVE status, the first 
page will be transmitted to it automatically when the protected task 
completes. 

218 CICS/VS System/Application Design Guide 



Chapter 5.2. Error Handling 

CICS/VS detects any of many possible errors during its processing of 
particular CICS/VS requests by application programs. Full descriptions 
of all possible errors arising from specific requests are given in both 
macro- and command-level versions of the CIC~Application 
Programmer's Reference Manual. It is good practice to ensure that all 
requests for CICS/iS services from application programs include tests 
and appropriate action for any possible errors. 

Recovery from Terminal I/O Errors 

Through the teleprocessing access methods, CICS/VS detects any of many 
possible errors arising from faults in lines and terminals. The CICS/VS 
Terminal Abnormal Condition Program and Node Abnormal Condition Program 
are invoked to perform standard error-recovery action for BTAM and VTAM 
terminals respectively. These programs in turn invoke user-written 
Terminal and Node Error Programs (DFBTEP and DFBZNEP) respectively to 
allow user-defined error recovery actions to be performed. 

The uriting of Terminal Error and Node Error Programs, the functions 
that may be performed in them, and their use are described in Part"3. 
Techniques for dynamic terminal reconfiguration (by user programming) 
follouing an unrecoverable terminal I/O error are also described. 
Techniques are discussed for use with BTAM-supported terminals and VTAM
supported programmable controllers. 

session failures and terminal I/O errors can cause transactions to 
abend. The dynamic transaction backout and transaction restart 
facilities, which are discussed later in this chapter, may be used to 
recover from such abnormal terminations. 

Program Check Handling 

crCS/iS supplies a system recovery program (SRP), which provides logic 
for recovery from program-check interrupts. In addition, the system 
recovery program handles partition/region ABEND recovery implemented 
within the system recovery table or within user routines. This latter 
function of the system recovery program is described under the heading 
"Operating System Region/Partition Abend Handling" later in this 
chapter. 

SYSTEM RECOVERY PROGRAM 

The system recovery progam is invoked during initialization to issue the 
OS/iS SPIE or iSE STIlT PC macro to establish the address of a routine 
in SRP as the routine to be invoked by the operating system in the event 
of a program check occurring in any part of CICS/iS or the application 
programs running under its control. 

If a program check occurs at any time during the execution of 
CICS/VS, SRP receives control from the operating system at the point 
specified in the OS/VS SPIE or DOS/VS STIlT PC macro. The handling of 

Chapter 5.2. Error Handling 219 



the program check depends on which particular part of CICS/VS or user 
application programs caused the interrupt to be raised. The following 
situations are identified by the system recovery program: 

• Program check during the execution of the storage Control Program: 
SRP activates storage control recovery. 

• Program check in application program or whilst performing a CICS/VS 
service for a particular application program: SRP abnormally 
terminates the task. 

• Program check in CICS/VS system module whilst performing a CICS/VS 
function not related to a particular application program: SRP 
abnormally terminates the partition/region. 

Program Check In storage Control 

If the program check occurred whilst the storage control program was 
executing, SRP passes control to the storage control recovery program 
(SCR). (Generally, such a program check occurs if a storage accounting 
area (SAA) or storage chain pointers have been destroyed by prior 
incorrect execution of an application program.) The storage control 
recovery program attempts to recover the destroyed information using 
either a duplicate SAA appended to each allocated storage area, or by 
using forward and backward chain pointers connecting free area queue 
elements (FAQE). If recovery is unsuccessful, the region or partition 
is abended. If recovery is successful, the storage violation is noted 
in the CICS/VS statistics and task execution continues. 

In addition, if the user has so specified, the Formatted Dump Program 
will be invoked, before any repairs are attempted by the storage control 
recovery program, to'dump all or part of the partition, depending on the 
options specified for the formatted dump program. The user's choice of 
dumps to be taken is specified by the SVD operand of the DFHSIT macro 
(refer to the eICS/VS System Programmer's Reference Manual). If it is 
subsequently found that no satisfactory correction is possible or the 
violation cannot be identified, the region or partition will be abended 
but there will be no second dump. To use this dump facility, the system 
programmer must generate the DFHSCP macro with the RECOVER=YES operand, 
and set the FDP option to SNAP or FORMAT, as vell as specifying the SVD 
operand. 

f~Qg£am Check Under a User Application Program Task 

If the program check occurred in a CICS/VS application program or in a 
CICS/VS module whilst performing a service for a specific task (that is, 
running as part of the application program's task), the task is 
abnormally terminated with a program control ABEND macro instruction. 
This activates program-level ABEND exit routines associated with the 
task, as described under "Transaction Abend Handling", below. 

220 CICS/VS system/Application Design Guide 



Program Check Onder a CICS/VS~tem T~~ 

It the program check occurrea while a CICS/VS system task is executing, 
the system r&covery program issues a VSE DOMP or OS/VS user ABEND macro 
instruction to annormally terminate the entire CICS/VS partition/region. 
This causes the partition/region abend handling mechanism to be invoked 
(see "Operating System Region/Partition Abend Handling" later in this 
chapter). CICS/VS system tasks are: 

• Task Control (whilst performing task dispatching) 

• Terminal Control 

• Journal output tasks (one per user journal) 

All other CICS/VS services are performed whilst running under the 
application program's task. 

This section describes the levels of recovery function provided by 
CICS/VS to handle transaction abends. Corresponding actions when the 
whole CICS/VS system abends are described under the heading "Operating 
System Region/Partition Abend Handling" later in this chapter. 

The functions described here are presented in the order in which they 
are invoked at transaction-abend time, namely: 

o User Exit Routines 

o Dynamic Transaction Backout 

• Abnormal Condition Program 

• Program Error Program 

• Transaction Restart 

• PCT/PPT Disable and Enable 

• Transaction Dumps 

Chapter 5.2. Error Handling 221 



USER EXIT ROUTINES 

Program control ABEND requests, issued either by eICS/VS application 
programs or by CICS/VS system modules (as, for example, in the case of a 
program check as described above), are intercepted by the program 
control program. Control may be passed to program-level ABEND exit 
routines (see Figure 5.2-1) specified by each separate program level 
reached as the result of a program control LINK reguest. These ABEND 
exit routines may: 

• Attempt recovery and retry of the condition that caused the ABEND 
to be requested 

o Record application-dependent information for later recovery and 
allow the ABEND to continue 

• Choose to ignore the ABEND and specify that normal execution is to 
continue 

Control is then passed to the naxt higher program level whose 
relevant ABEND exit routine is given control if the ABEND is allowed to 
continue. If the ABBND is ignored at the lower ABEND exit, control is 
returned to the statement following the LINK reguest that originally 
activated the lower level program. 

Program Level Anend Exit Routine 

Program-level ABEND exits are supported by CICS/VS, so that user-written 
routines can remove the effects of incorrectly executing tasks. The 
exit is activated and deactivated by a CICS/VS HANDLE ABEND command 
coded in an application program (see "HANDLE ABEND Program Processing" 
below). The exit routine may exist either as a separate program, or as 
a routine within the program issuing the command. 

Once a program control ABEND occurs in a task and an abend exit 
routine has been entered, any of the following three ways can be used to 
terminate the exit routine processing: 

1. Issue a RETURN command to continue processing this task as if the 
ABEND had not occurred. In this case, control is passed to the 
program on the next higher logical level (at the statement 
following the LINK request) or, if the program in control at the 
time of the ABEND was at the highest level, the task is normally 
terminated by CICS/VS. (See A in Figure 5.2-1.) 

2. Issue an ABEND command to continue with ABEND processing. This may 
indicate execution of a specified exit routine for a program on a 
higher logical level, or at the highest level may cause a LINK to 
the CICS/VS abnormal condition program to complete the abnormal 
termination. ~ee B in Figure 5~2-1.) 

3. Branch to a point in the program that was in control at the time of 
the ABEND, and attempt to retry the operation. (See C in Figure 
5.2-1.) 

The CICS/VS Messages and Codes manual contains a list of transaction 
ABEND codes for the abnormal terminations initiated by CICS/VS. 

222 CICS/VS System/Application Design Guide 



HANDLE ABEUD ProqramI!linq Processi!,!3.: In order to activate the exit for 
a particular task, the application program may issue the HANDLE ABEND 
command at each program level reached by a LINK request. This 
identifies either the name of a separate program or of a routine within 
the abnormally terminated program, to uhich control is to be passed if 
an ABEND occurs while that program level is in control. If the program 
level, after further processing, uishes to cancel the exit, it issues a 
HANDLE ABEND ~ommand without specifying a program or routine name. 

The HANDLE ABEND command can be issued by any assembler language, 
American National Standard ~US) COBOL, or PL/I progra~. The ability to 
pass control to a specified label or program on a program ABEND allows 
it to be implemented in a manner similar to that provided by PL/I ON
conditions. 

In program-level ABEND ,exit routines defined for a task, the user may 
\fish to record application-dependent information relating to that task 
prior to its abnormal termination. He may also attempt any local 
recovery that may De desired. 

DYNAMIC TRANSACTIOn BACKOUT 

If no user abend routine ~as specified, or if the routine determined 
that the ABEND is to continue, CICS/VS will invoke Dynamic Transaction 
Backout (DTB) as part of the abnormal task termination process. 

DTB is the backing-out of the effects of a transaction that has 
abnormally terminated. The resources that have been specified as 
protected are restored to the state they would have been in had the 
transaction terminated at its last user-defined synchronization point, 
or had not run at all. The resouces are thus restored to a uell-defined 
self-consistent state. If the task was initiated by interval control, 
dynamic transaction backout uill call interval control programs to re
initiate the task. 

DTB is similar in effect to the backout of "in-flight" tasks carried 
out during emergency restart follouing a CICS/VS failure. The most 
important difference is that DTB operates on a single abnormally 
terminating transaction and is carried out online, while the rest of the 
CICS/VS system continues to run normally. DTB thus provides immediate 
recove~y of data base integrity following a transaction failure. 

DTB will baCKout the changes made to the follouing CICSjVS resources 
by the transaction that abnormally terminates: 

o CICSjVS files 

o DL/I data bases 

o Transient data (intrapartition only) 

o Auxiliary temporary storage 

o Terminal messages (VTAM only) 

o TCT user area 

o Command level communications area (COMHAREA) 

Chapter 5.2. Error Handling 223 



o TIOA 

Note: For restartable transactions (those with RESTART=YES 
specified in DFHPCT TYPE=ENTRY), the last three areas can be 
restored to the status they had at the beginning of the task. 

The CICS/VS features used by DTB, many of which are also used for 
emergency restart, include automatic logging, deferring work to the end 
of the logical unit of work, the saving of pertinent information, and 
enqueueing on recoverable resources. These features are described under 
the heading "Principles Underlying CICS/VS Recoverable Resources" 
earlier in this chapter. 

To restore the resources to the state they were in at the beginning 
of the logical unit of work, a description of their state at that time 
must De preserved. For the tables that are maintained by CICS/VS (the 
destination control table and the temporary storage unit table), the 
information is held in the tables themselves. For transient data and 
auxiliary storage temporary storage, records that have been deleted or 
the "before" images of records that ha va been changed a.re saved on the 
transient data or temporary storage data sets themselves. For DL/I or 
CICS/VS files, the "before" images of deleted or changed records are 
recorded on a dynamic log. The first input messages from protected VTAK 
terminals are also held on this log. 

The dynamic log, which resides in a main storage buffer, is allocated 
(one per transaction) when, and only when, required. The size of the 

storage to be allocated to the dynamic log is specified in the DBUFSZ 
operand of th& DFHSIT macro, and has a default value of 500 bytes. If 
the main storage Duffer is too small to hold all the records (or even a 
single large record), temporary storage will automatically be used 
instead. 

Resource Recover~ 

As stated, the changes made to certain CICS/VS resources by the 
terminating transaction will be backed out by DTB to either the last 
user-defined sync point or the start of the transaction. The following 
descriptions outline what is involved in the 'recovery of these 
resources. 

CICS/VS Files and DbL1 Data Bases: If these resources are defined as 
recoverable in the File Control Table (as for emergency restart), any 
changes to them will be recorded on the dynamic log. During DTB, the 
changes since the last sync point are recovered from the log and are 
reversed. A user exit is provided for error situations (see following 
heading "User Exits in the Dynamic Transaction Backout Program"). 
Dynamic Transaction Backout must not be invoked for VSA~ files that are 
in load mode. A dummy record must be added to empty and close files 
before adding any new records. Note that all DL/I data bases are 
recoverable. 

Transient Data: Intrapartition queues that have been specified as 
logically recoveraDle will be restored by DTB to their status at the 
last sync point. This means that any records that have been fetched 
will be restored to the front of the queue, and the space occupied by 
records added since the sync point will be freed. The information in 
the Destination Control Table will be correspondingly nackdated. 

The initiation of any transactions because the queue has reached its 
trigger level since the last sync point will be suppressed. 

224 CICS/VS System/Application Design Guide 



Physical recovery, as can be specified for emergency restart, is not 
meaningful for DTB and is ignored. 

These recovery procedures apply only to intrapartition queues; 
recovery of extrapartition queues is not supported. 

Iemporary~toraq~: Auxiliary storage destinations, which are defineu in 
the Temporary storage Table as recoverable (as for emergency restart) , 
arc restored to their status at the last sync point. This means that 
released or purged records are recovered, replaced records are back
dated to their former contents, and added records are deleted. The 
Temporary storage Unit Table and the byte map reflecting the control 
interval status are also restored. 

Term{nal Messaqas (VTAM Only): If the transaction is specified as 
message-protected in the Program Control Table and is used with a VTAM
supported terminal, on abnormal termination of the transaction a Logical 
unit Status (LUS) command and sense bytes, indicating whether DTB 
completed successfully or not, are sent to those terminals that support 
LUS commands. An ABEND message with the DTB status is sent to those 
terminals that do not support LUS. 

The transmission of any deferred output, which would normally occur 
at transaction termination, is suppressed by DTB. This is because 
committed output messages must not be sent if backout has occurred. 

The first input message since the last sync point is recovered from 
the dynamic log and presented to a user exit. 

Note that the retransmission of "in-doubt" committed output messages 
as carried out during emergency restart is not required in DTB. This is 
because the system is continuously active, so the positive response 
cannot have been lost. 

The Dynamic Transaction Backout Program has four user exits, Wh1Ch the 
system programmer may code. Full details for coding these user exits 
can be found in the CIC5/VS System Programaer's Reference Manual; a 
brief description of each one follows. 

1. XDBINIT - this exit is given control on entry to DFHDBP. 

2. XDBIN - this exit is given control when each dynamic log record 
other than DL/I is obtained. 

3. XDBFERR - this exit is given control when some error condition has 
been returned from the File Control Program during the backout 
processing or if an error has been detected by DFHDBP itself. 

4. XDBDERR - when thd DL/I backout routine detects an error, its error 
message is routed to the operator's console and this exit is then 
given control. 

Dynamic Transaction Backout Generation 

In order to generate DTB in his CICS/VS system, the system programmer 
must specify ••• 

Chapter 5.2. Error Handling 225 



1. •• that DTB is to be part of the system generated by DFHSG. This 
is done via the DFHSG PROGRAM=DBP macro instruction, and the DTB 
operand of the DFHSG PROGRAM=JCP macro. 

2. •• whether DTB is to be included in this execution of the CICS/VS 
system, and if so, which module is to be used. This is done via 
the DBP and DBUFSZ operands of the DFBSIT macro. 

3. •• that an entry for the dynamic transaction backout (DFHDBP) will 
be required in the Program Processing Table if DTB is to be used. 
This is done via the DFHPPT TYPE=ENTRY macro. 

4. •• whether or not a transaction may be a candidate for backout. 
This is done via the DTB operand of the DFHPCT TYFE=ENTRY macro. 

Full details of all the macro instructions mentioned can be found in 
the ~ICS/VS System Programmer's Reference Manual. 

A successful execution of DFHDBP depends on how the system is 
generated and how it is initialized. The File Control Program (DFHFCP) 
should be generated to support all needed functions (for example, VSAM 
DELETE if VSAM additions are to be backed out). The File Control Table 
should also be generated to allow "reverse" operations on data sets. 

The Temporary storage queues used by DTB should not be specified as 
recoverable in the Temporary storage Table. 

DTB Performance Considerations 

Because DTB requires resources to perform successfully, it is 
recomlAended that, where possible, transactions are not specified as both 
stall purgeable and as candidates for DTB. If a transaction that is a 
DTB candidate is stall purgeable, back out will be attempted, but may not 
complete successfully because of a lack of resources. 

Statistics are available through the normal mechanisms indicating: 

o The number of times a dynamic log buffer is used. 

o The number of times the buffer or a large dynamic log record was 
spilled to temporary storage. 

These statistics can be used by the system programmer to assist in 
selecting the optimum buffer size. 

ABNORMAL CONDITION PROGRAa 

The purpose of the Abnormal Condition Program (ACP) is to perform 
"tidying-up" actions. The principal action is to determine whether it . 
is possible to send a message to the terminal connected to the backed
out transaction and, if so, to send the abend messages that may be 
necessary. In add1tion, ACP is responsible for linking to the user's 
Program Error Program (PEP). 

226 CICS/VS System/Application Design Guide 



PROGRAM ERROR PROGRAM 

A program error program (PEP) capability is provided by CICS/VS, to 
offer an opportunity for a user-written program error program to carry 
out installation-level action following a ~ransaction abend. Such 
action may involve the recording of application-dependent information, 
for utilization by user-programs when CICS/VS is reinitialized. 

The PEP is given control during the processing of abnormal task 
termination through a LINK from the CICS/VS abnormal condition program 
(ACP) after all program-level ABEND exit routines have been executed by 
the task that abnormally terminates and after Dynamic Transaction 
Backout has been performed, if required. Included in the data passed to 
the PEP are the PCT and PPT entry addresses for the transaction code 
that initiated the program, and the ABEND code. The PEP can decide that 
CICS/VS is to mark the PCT and/or PPT entry as disabled (inaccessible) 
when control is returned to the ACP. The user may perform any 
additional functions he desires. The ACP will write a message 
indicating abnormal task termination to the master terminal destination, 
and indicate if the PCT and/or PPT entries have been put out of service 
(disabled). Any further information to be passed to the master terminal 
operator may be wr~tten by the user-developed PEP. 

The PEP is given control on any program control ABEND requested by a 
user or system mod~le, with the exception of a forced ABEND, in an 
effort to alleviate a stall situation. In this case, if the LINK to PEP 
would be suspended because of a shortage of storage, the LINK does not 
take place and no action is taken against the PCT entry. A message is 
sent to the master terminal destination stating that the PEP was not 
executed, so that the master terminal operator can disable the PCT 
and/or PPT entries, if desired. 

TRANSACTION RESTART 

Transaction Restart is a facility that can restart a transaction that 
has abnormally terminated and ~hen the logic of the application program 
permits) will do so without intervention by or effect on the terminal 
operator. Transaction Restart requires the Dynamic Transaction Backout 
to be available, and can be selected or suppressed dynamically by means 
of a user exit program. Transaction Restart is particularly useful in 
handling interlocks caused by Program Isolation, details of which can be 
found in Chapter 2.3 under "Simultaneous Update Protection". 

To use Transaction Restart, the system programmer must: 

• Generate Dynamic Transaction Backout support, details of which can 
be found under IIDynamic Transaction Backout Generationll earlier in 
this chaptF!r. 

• Specify RESTART=YES and DTB=YES in the DFHPCT TYPE=ENTRY macro for 
the transactions that are to be restarted. 

o Check the logic of those transactions for any additional resources 
that need to be made recoverable. Note that if a START FROM 
command is used to create a restartable task, the initial data 
should be protected by, for example, a DFHTST 
TYPE=RBCOVERY,DATAID=DF macro. 

Chapter 5.2. Error Handling 227 



o See if any restartable application programs could give false 
results after a restart. Transactions that execute as a single 
logical unit of work or which execute a loop (on each pass reading 
one record from a recoverable destination, updating other 
recoverable resources, and closing with a sync point) are safe. On 
the other hand, a transaction in which the first and subsequent 
logical units of work change different resources, or in which the 
contents of the input data area were used in several logical units 
of work, would need modification to avoid erroneously repeating 
work done in logical units of work that precede the abend. The 
transaction could be modified to refer to a "restart" flag or to 
save a suitanle indicator of its progress in non-recoverable 
temporary storage. 

• Write a Retry Program (DFHRTY) and include an entry for it in the 
PPT, unless the requirements of the installation are met by 
restarting only those tasks that satisfy a default rule. The 
installation's Retry Program may be based on the CICS/VS-supplied 
version and can examine (in addition to the resources that are 
backed out) the TCA (both the user part and the system part), the 
TWA, and the task's application storage in order to identify the 
transaction, the cause of the failure, and the state of progress. 
The program can then indicate whether the transaction is to be 
restarted, and can perform any other operations (such as notifying 
the terminal operator and creating a progress-indicator for the 
restarted application program) that are necessary in the particular 
circumstances. The criteria for restarting a task should be made 
tight enough to prevent a loop through a recurri~g abend. 

The CICS/VS ,2.ystem Programmer's Reference Manual contains further 
information on the Transaction Restart facility. 

A transaction can only be restarted after abend processing (including 
the execution of HANDLE ABEND code) has been done and after dynamic 
transaction backout has completed without error. Whether restart can 
take place depands on certain criteria: 

• If the abend was due to program isolation and occurred in the first 
logical unit of work, and if no terminal activity had occurred 
beyond reading the initial terminal input, the "default rule" is to 
allow a restart to take place. 

• The retry program (DFHRTY) will be invoked if it exists, and may 
override the "default rule" to cause restart in other 
circumstances. 

The initial program is invoked as at its initiation, with the 
following information available to it: 

• The task's TCA. 

• The associated terminal, if any. 

• All recoverable resources (files, data bases, temporary storage 
(including interval control data) and transient data) in their 
state at the previous sync point or at initiation. Non-recoverable 
items will be unc~anged by the process. ' 

• The initial task input/output area, if any, all other task 
input/output areas having been freed. 

• An indicator (the "restart flag"), which is able to be read by the 
ASSIGN RESTART command, that this activation results from a 
restart. 

228 CICS/VS System/Application Design Guide 



• The TCTaA and COMMAREA with their contents as at the start of the 
task. 

• The transaction work area after it has been clearad, all other 
transaction storage being freed. 

Further points on Transaction Restart are: 

• statistics on the total numner of restarts against each transaction 
are kept. 

• When an abend is followed by a restart, system messages are not 
issued and the program error program (DFHPEP) is not invoked. When 
a 'restartable transaction abends and is for any reason not 
restarted, a message will be issued giving the reason and DFHPEP 
will be invoked in the usual way. 

'. Emergency restart, which occurs after the CICS/VS partition has 
failed does not restart any tasks. 

• Making a transaction restartable involves slightly more overh~ads 
than dynamic transaction backout because more items are logged. 

• In some cases, the benefits of Transaction Restart can be obtained 
instead by using the SYNCPOINT ROLLBACK command. Using the latter 
method, all the executable code is kept in the application 
programs, not in the system programmer's area. 

Chapter 5.2. Error Handling 229 



PROG1 

HANDLE ABEND 
PROGRAM (ABEND1') 

LINK PROGRAM' 
('PROG2') 

ABEND ABCODE (ERR1') 

ABEND1 

® 

ABEND RETURN 

® 

PROG2 

HANDLE ABEND 
PROGRAM ('ABEND2') 

o 
ABEND 

® 

RETURN 

Figure 5.2-1. Program-Level ABEND Exit Processing 

PCT DISABLE AND ENABLE 

SYSTEM RECOVERY 
PROGRAM 

ABEND 
ABCODE 
('ASRA') 

PROGRAM CONTROL 
PROGRAM 

crcs/vs provides support for the disabling of transaction codes 
following their abnormal termination, and their subsequent enabling when 
the particular problem has been rectified. 

If an application program abnormally terminates werhaps because of a 
program check or an ABEllD command), the user, in an ABEND routine or in 
the PEP, can flag the appropriate transaction code entry in the PCT as 
disabled. Any further attempt by terminals or programs to use that 
transaction code w1ll be rejected by eICS/VS until the transaction code 
is enabled again. Consequently, the effect of program checks can be 
minimized, so that every use of the offending transaction code does not 
result in a program check. Only the first program check is processed, 
and, if the PEP indicates that the PCT entry is to be disabled, 

230 CICS/VS System/Application Design Guide 



subsequent users of that transaction code uill not be accepted by 
CICS/VS. 

Following correction of the error, the relevant PCT entry for the 
transaction code can be enabled by the master terminal operator, to 
allow terminals to use it. The master terminal operator can also 
disable transaction codes when transactions are not to be accepted for 
application-dependent reasons, and enable them again at a later time. 
Further information on the master terminal operator functions can be 
found in the fICStVS Operator's Guide. 

TRANSACTION DUMPS 

Dump Data Set 

If a program check or program control ABEND occurs, a program dump of 
all the storage associated with the task in error is automatically 
produced by CICSjVS. This includes any application programs that have 
been linked to, or any terminal I/O areas, file I/O areas, file work 
areas, and other uorking storage used by that task. 

These program dumps are directed to one of two dump data sets. 
Relevant CICS/VS areas such as the CSA (common system area) and TCA 
~ask control area), together with the associated terminal control table 
entry for that task, are also dumped. 

Tuo dump data sets are used by CICSjVS, but only one is in active use 
at a time. Any program dump, resulting from abnormal termination or use 
of the CICS/VS dump control commands issued by application programs i is 
directed to the active dump data set. The master terminal operator can 
indicate that the second dump data set is to be made the active dump 
data set, and the first dump dataset is to be left inactive. This 
switching of dump data sets is accomplished to enable dumps previously 
vritten to a dump data set to be printed from that data set while 
CICS/VS execution is in progress. The printing of dumps is achieved 
through the CICS/VS dump utility program g which ~ay be executed in a 
batch partition concurrently with CICS/VS. (For further information on 
dump data sets, see the appropriate CIeStVs Syste~PrQg~~mBg£~~Guide 
for VSE or OS/VS.) 

Operating System Region/Partition ABEND Handling 

During System Initialization, the System Recovery Program (SRP) 
establishes a recovery function for CICS/DOS/VS (STIlT AB) or CICS/OS/VS 
~TAE/ESTAE). This recovery function enables a program to recover and 
continue from a system abnormal termination condition. The CICS/VS 
support for the function will trap abends and check against a user
supplied list of error codes. If the appropriate error code is listed, 
a routine will be invoked to recover. If recovery is possible, the 
transaction, rather than the CICS/VS system, will be abended. 

To make use of this selective transaction abend feature, the user 
must generate a CICS/VS System Recovery Table (SRT). The SRT enables 
users to list ABEND codes for which recovery is to be or is not to be 
attempted. Users can supply their own recovery code or use the recovery 
routine supplied by CICS/VS. 

Chapter 5.2. Error Handling 231 



Upon detecting a partition/region ABEND situation, the SRP gains 
control and scans theSRT to de~ermin~ whether the ABEND code pass~d to 
it is in the table. If an entry for the ABEND 'cOde specified is found 
in the table, theass.ociated te?overy routine is invoked. 

It the ABEND processing routine is resident in'the SRT, control is 
gi ven to that routine. After processing is complete, control can be 
returned to the SRP specifying whether the partition/region is to be 
abnormally terminated, or whether it can coritinueprocessing. Since an 
abnormal termination can De recovered from, CICS/VS allows the user to 
avoid terminating the entire partition or region. 

If a non-resident ABEND processing routine isa program, control is 
given to that program through a program control LINK. Upon return to 
the SRP, the same options may be specified as in resident processing. 

If no ABEND code is present in the SRT (or 'if recovery is 
unsuccessful), the task and the CICS/VS partition/region are abnoraally 
terminated. During such task termination, any program-level ABEND exits 
for the task are processed. Following this, the userls instaliation
level program error program is given control, and a controlled shutdown 
is attempted. 

Because a partition/region ahend may occur at any time, a number of 
tasks may be in-flight at the time of the anend. Although the SRP 
attempts a controlled shutdown by recording information for a subsequent 
warm start, the user may wish to do an emergency restart to back out the 
processing carried out by the in-flight tasks. 

A similar situation may occur if the master terminal operator 
attempts a controlled shutdown and specifies immediate termination of 
CICS/VS. Tasks which were in-flight at immediate termination may need 
to be backed out by an emergency restart. 

232 CICS/VS System/Application Design Guide 



Chapter 5.3. CICS/VS Shut-Down and Start-Up 

CICS/VS Termination 

The shutdown ot CICS/VS may be either a controlled shutdown, an 
immediate shutdown, or an uncontrolled snutdown (such as following a 
machine check or power failure). 

CONTROLLED SHUTDOWN 

A controlled shutdown, resulting from CSMT SHU,NO t~rminal operator 
request, preserves certain vital information about the ercs/vs 
environment during normal or abnormal termination of CICS/VS. This 
information, recorded on the rastart data set, may be subsequently used 
to warm start CICS/VS and reinitialize it to its status at termination. 
The user may, optionally, elect to warm start only certain parts of 
CICS/VS, and allow a cold start (complete reinitialization) of other 
parts of CICS/VS. 

Two crcs/vs tables are used to facilitate the functions of controlled 
shutdown and varm start: 

o Transaction list table (XLT) 

o Program list table (PLT) 

Transaction List Tabl~LT) 

On CICS/VS controlled shutdown, a transaction list table (XLT) may be 
loaded. This table identifies a list of transaction codes accepted by 
CICS/VS during termination. All other transaction codes will be 
rejected by CICS/VS. 

Program List Table (PLT) 

The program list table (PLT) is a list of programs to be executed either 
during controlled shutdown or during system initialization. It is 
generated by the user, who generally specifies two tables. One PLT 
identifies user-written programs that are to be executed during either 
the first or second stage of CICS/VS controlled shutdown ~ee below). 
These user programs may record application-dependent information, which 
will permit user recovery of that information on subsequent system 
initialization. 

Another PLT can be used to identify user-written programs that are to 
be executed during the post-initialization phase of CICS/VS system 
initialization. These user-programs may locate the application
dependent information written by programs identified in the PLT during 
CICS/VS controlled shutdown, and use that information to reestabliSh the 

Chapter 5.3. CICS Shut-down and start-up 233 



online applications as required oy the user. Several other uses of the 
PlT are described later in this chapter. 

A normal controlled shutdown causes the status of various areas to De 
written to the restart data set to permit a warm start to take place. 
It uses the program list table (PLT), as described above, and carries 
out termination in two stages: the "first quiesce stage" and the 
"second quiesce stage." During the first quiesce stage, terminals are 
still active, but they are only permitted to enter transactions defined 
in the transaction list table (XLT). Programs defined in the first 
section of the PLT are also executed. During the second quiesce stage, 
terminals are deactivated and programs defined in the second section of 
the PLT are executed. The following paragraphs further describe the 
purpose of these two stages of termination. 

• FIRST QUIESCE STAGE OF TERMINATION 

During the first quiasce stage of termination, a group of user
written programs may be sequentially executed. These programs 
perform special operations that are unique to the installation. 
All CICSjVS facilities are available to the programs during this 
stage. The programs to be linked to are defined in the program 
list table that is loaded auring system termination. 

In addition, only those transactions defined in the transaction 
list table are accepted from terminals. Existing taSKS, tasks to 
De automatically initiated, or ATP batches in process are allowed 
to continue unhampered to their normal conclusion (see Figure 5.3-
1) • 

• SECOND QUIESCE STAGE OF TERMINATION 

At a user-defined point, termination activity waits until all 
system activity stops. (This defined point is the delimiter 
between the two parts of the shutdown PLT.) Termination then 
continues in the second guiesce stage without accepting any further 
terminal transactions. 

When all program list table programs defined to execute in the 
second guiesce stage have been executed, the warm keypoint is taken 
and CICSjVS terminates further execution (see Figure 5.3-1). 

234 CICS/VS System/Application Design Guide 



INPUT PROCESSING OUTPUT 

> 1. If controlled shutdown requested, 

C"OHOII'J lr--- termination is started. 
Shutdown 
Request 

D 0 
2. Only transactions in transaction 

UPP""'''"o ( XLT 
list table (XL T) are accepted during > Dependent 
termination. ~nformatioll 

3. Programs specified by user in program 
list table (PL T) are executed. Applica· 

jj 
tion·dependent information can be 

I ',> recorded by user program for use 

I in subsequent system restart. 

FCT TCT 
Warm keypoint program extracts 

DCT PCT 4. 

PPT CSA key information from system tables 

( TST ICP 
f- and chains. 

,ATP '-- '--__ L,. Restart 
5. Warm key point program writes key ./ File 

information to restart file for 
subsequent warm start. 

Figure 5.3-1. CICS/VS Controlled Shutdown 

A system warm keypoint is written by the CICSjVS-provided keypoint 
program as part of controlled shutdown, when all system activity has 
bean quiesced. It is used during a warm start of CICSjVS to restore the 
operating environment follolling a controlled shutdown. The follouing 
information is recordeu as part of a uarm keypoint: 

o FCT 

File status (disabled, enabled, closed~ read-only) 

o TCT 

Terminal and line status and negative poll delay (for nonswitched 
terminals) 

o nCT 

Intrapartition destination status 

o TST 

Temporary storage control blocks and data set bit map 

o ATP 

Asynchronous transaction processing control blocks 

o ICP 

Interval control outstanding requests 

Chapter 5.3. CICS Shut-dovn and Start-up 235 



• PPT/PCT 

Disabled entries 

• CSA 

Information in the common system area; for example, storagd cushion 
size, ICV, ICVS, ICVR, and MAXTASK 

!Qte: A warm keypoint must not be confused with an activity keypoint. 

The warm keypoint is taken at system termination to ,record the status 
of the quiesced CICS/VS system so that it can be reinstated at a 
subsequent warm restart. It is written on the Restart Data Set. 

An activity key point is taken periodically throughout CXCS/VS 
execution after a user-specified number of log records have Deen written 
on the System Log. It records the status of pieces of system 
information necessary for protected resource backout so that the scan of 
the System Log, should an emergency restart be necessary, can be 
shortened. An activity keypoint is written o~ the System Log. 

IMMED IA'1~E SHUTDOW N 

An immediate shutdown of CICSjVS, due to a CS~T SHU,YES terminal 
operator request, results in the following: 

• CICS/VS is not quiesced. 

• PLT programs are not invoked. 

• A warm keypoint is taken but since no guiesce has been performed 
this may be invalid if the system has protected resources. An 
emergency restart should De carried out if there are any protected 
resources in the system. 

UNCONTROLLED SHUTDOWN 

An uncontrolled shutdown of CICS/VS can result from four basically 
different causes: 

• Power failure 

o Machine check 

• Operating system WAIT/ABEND 

• Partitionjregion ABEND 

In each case, termination 6( system operation is either immediate, or 
so soon after appearance of the,~ause that insufficient time, processor 
resources, or system facilties are available to permit CICS/VS to 
complete a controlled shutdown. 

system or user tasks may still be active at the time of termination, 
because CICS/VS is unable to quiesce system activity. Consequently, a 
subsequent warm start of CICS/VS is impossible. Instead, an emergency 
restart must be carried out. ' 

236 CICS/VS System/Application Design Guide 



CICS/VS Initialization 

CICS/VS can be initialized either: 

• With a complete cold start 

• with a complete warm start 

• With a partial warm start 

• With an emergency restart 

CO~PLETE COLD SrART 

A complete cold start results in complete reinitialization of CICSjVS 
and system data sets to the1r status as sPecified at system generation, 
without regard for any previous system activity. The system 
initialization tanle (SIT) is used to specify the particular versions of 
the different CICS/VS system programs and tables that are to be used for 
CICSjVS initialization. 

COMPLETE WARM START 

A complete warm start rein1tializes CICS/VS to the status that existed 
at the previous controlled shutdown -- all system activity having been 
quiesced normally prior to shutdown. All CICS/VS system programs and 
tables are first cold-started using the SIT as described previously. If 
the SIT indicates that a complete aarm start is to be performed, all 
CICS/VS system tanles are then reestablished to their status as at 
controlled shutdown, using the warm keypoint information written to the 
restart data set at that time. 

PARTIAL WARM START 

A partial warm start is similar to a complete warm start, except that 
only selected CICS/VS system tables are warm-started, as specifieu in 
the SIT. Information is obtained from the warm keypoint written at 
controlled shutdown, only for those tables specified to be warm start~d. 
The remaining tables are cold-started. An example requiring a partial 
warm start is an application which requires a warm start of the DCT so 
that data queued to intrapartition destinations prior to a controlled 
shutuown may be retrieved on restart. The peT and TCT may also need to 
be warm-started to reestablish file and terminal status as at controlled 
shutdown. The application may, however, require a cold start of 
temporary storage. Figure 5.3-2 illustrates a CICSjVS warm start. 

Chapter 5.3. CICS Shut-down and Start-up 237 



INPUT PROCESSING OUTPUT 

I 

I sr 

CICSIVS 1. CICS/VS system initialization program l ( p",,,m { 

Uj 

ISIP) and system initialization table ;; SIP 
Llb'Jry :--,.-- ISIT) are loaded from DOSIVS or 

~----
OSIVS library. 

Versions of CICSIVS nucleus programs '" II 
2. '. and tables specified by SIT are loaded. L 

~ 

CICSIVS 
Management 
Routines 

1 

Restart 3. SIP reads data set ami reestablishes CICSIVS 
Data Set > system tables and chains to be warm System 

started as specified in SIT. .> Tables 
And 
Chains 

Program 
List Table· 

-~ 
4. User programs in post-initialization 

IPLT) 

ITJ 
phase program list table IPL T) are 
loaded and executed. These user 
programs may utilize application-
dependent information recordzd 
during system termination. n:=l Application· 

Dependent ,- 5. Terminal polling commences for JI Network 

Information normal CICS/VS operation. 

Figure 5.3-2. CICS/VS Harm start Procedure 

After all items have b€en initialized and control is about to be 
given to CICS/VS, the group of user-written programs specified in the 
program list table is sequentially executed. This is referred to as the 
Itpost-initialization" phase. These programs perform application
dependent functions, for the recovery of application-dependent 
information recorded by the user on termination, prior to complete 
restart of CICS/VS. All CICS/VS facilities are available except for 
direct terminal communication. Following post-initialization execution 
of programs in. the program list table, the terminal control program is 
activated to cnaole terminal transactions to be received and p~ocessed. 

EMERGENCY RESTART 

An emergency restart restores certain CICS/VS facilities to a predefined 
point tha t existed prior to an uncontrolled shutdo\tn. Information 
describing all changes, modifications, and updates made to system tables 
and to user data sets during previous CICS/VS execution was recorded on 
the system log data set. Another data set, the restart data set, is 
cr~atcd during emergency restart. (Emergency restart is not supported 
by the CICS/DOS/VS Entry Level System.) 

The system log contains all changes made to recoverable file control 
data sets, recoverable transient data intrapartition destinations, 
temporary storage protected destinations, and DL/I data bases. It also 
contains input and output messages for message-protected taslcs executed 
by VTAM terminals. 

238 CICS/VS system/Application Design Guide 



CICS/VS emergancy restart includes backout of DL/I data bases. It is 
not necessary to run the batch DL/I backout facility. 

The restart data set is created during emergency restart, and 
contains system log activity and user journal records for those tasks 
whose processing activity had not reached a logical completion point 
when the uncontrolled shutdown occurred. (Such tasks are referred to as 
in-flight tasks in the following discussion of emergency restart.) This 
information can be utilized by the CIeS/VS transaction backout program, 
for example, to remove the effect of data set modification by in-flight 
tasks. 

On an emergency restart, the CICS/VS system initialization program 
(SIP) carries out a numDer of steps to restore CICS/VS operation to a 
predefined point prior to uncontrolled shutdown. 

These steps are carried out by CICS/VS-provided routines. The user 
may wish to extend the functions carried out in emergency restart by the 
addition of user-written programs. To permit such user-written programs 
to be used, CICS/VS identifies in-flight tasks which may require user 
backout, and copies from the system log, in backward sequence, all 
system-logged records, and user journal records, for those in-flight 
tasks to the restart data set. To use this extension capability 
effectively, it is important that the system designer has an 
appreciation of the steps carried out be CICS/VS during emergency 
restart. 

The remaining topics in this section prov1ue an overview of the 
CICS/VS emergency restart procedure. This procedure is illustrated in 
Figure 5.3-3. 

Chapter 5.3. CICS S~ut-down and Start-up 239 



INPUT 

Programs 
( Identified 
By PLT) 

Figure 5.3-3. 

PROCESSING 

. Emergency Restart 

1. CICS/vS repositions system log to point 
reached at uncontrolled shutdown. 

2. CICS/VS cold starts OCT but does not 
reformat intrapartition data set. 

3. CICS/VS cold starts TSUT but does not 
reformat temporary storage data set. 

4. CICS/VS initiates CICS/VS recovery 
utility program (RUP). 

5. CICS/VS RUP reads system log backwards 
to locate logical unit of work (LUW) 
sync points. 

6. If first record located for a task is 
sync point record, LUW was completed 
before system termination. 

7. If log or user journal record is located 
before sync point, task was inflight. 
Record is transferred by RUP to 
restart data set. 

8. System activity keypoint identifies 
tasks in system at time of keypoint, 
and indicates need to continue back· 
ward scan. 

9. OCT, TSUT, and TCT status in system 
activity keypoint used to reestablish 
OCT and TSUT' 

10. Scan continues until sync point or start 
of task located for each inflight LUW. 

11. Transient data recovery program reestab· 
lishes physical PUT activity in OCT from 
intrapartition data set status. 

12. Temporary storage recovery program 
, reestablishes TSUT pointers and 

information from temporary storage data 
data set physical contents. 

13. Logged modifications to user data sets, 
transferred by RUP to the restart data 
set, are used by the CICS/VS transaction 
backout program to backout inflight 
LUW activity against user data sets. 

14. Logged input messages and committed 
output messages transferred to temporary 
storage message cache identified by 
terminal 10. 

15. User programs identified in PL Tare 
then executed (such as user extraparti
tion data set recovery). 

16. Terminal activity commences when all 
PL T programs complete execution. 

OCT 

TSUT 

CICS/VS Emergency Restart Procedure 

240 CICS/VS System/Application Design Guide 



1. Reposition system Log Data set 

The system initialization table (SIT) is used by the system 
in1tialization program to identify whether the system log is on tape or 
on disk. If it is on disk, the system log viII be repositioned to the 
point reached at uncontrolled shutdown when it is opened for backward 
processing (see the uCICS/VS Post-Initialization Processing" step later 
in this section) • 

If the system log is on tape, a separate system subtask is initiated 
to reposition the tape to the point reached at uncontrolled shutdown. 
This subtask uses a CICS/VS-provided tape end-of-file utility program. 
The program reads the tape system log forward and locates the last 
journal record written prior to uncontrolled shutdown by comparing time 
stamps in each journal record. The tape end-of-file utility program is 
executed as a system subtask to allow this tape positioning to be 
overlapped with the emergency restart processing descr1bed in the 
following steps. Once the tape is repositioned, it will subsequently be 
read backward to determine system activity at the time of shutdown (see 
the "CICS/VS Post-Initialization Processing" step later in this 
section). 

2. Transient Data Initialization 

The system initialization program performs a normal cold start 
function for the destination control table (OCT) at this stage, but does 
not reformat the intrapartition data set. The status of extrapartition 
data sets is lost following an uncontrolled shutdown. The status of 
intrapartition destinations will subsequently be recovered for those 
destinations identified in the DCT as being recoverable. This recovery 
is carried out by the CICS/VS-provided transient data recovery program 
(TDRP) lihich is discussed in the "CICS/VS Recovery Utility Program" step 
later in this section. 

3. Temporary Storage Initialization 

The system initialization program performs a normal cold start 
function for temporary storage but does not reformat the temporary 
storage data.set. Temporary storage data in dynamic storage is lost 
following an uncontrolled shutdown. 

4. CICS/VS Post-Initialization Processing 

The remainder of emergency restart processing is accomplished by the 
CICS/VS-provided recovery utility program. This is executed as a normal 
CICS/VS application program, undsr control of the terminal control 
program·s TCA. (This TCA is used, because normal CICS/VS operation and 
terminal activity have not been initiated at this time.) Upon 
completion of the system initialization steps outlined above, and after 
the system log has been repositioned (if tape) to the point reached on 
uncontrolled shutdown, control is then passed to the recovery utility 
program. 

5. CICS/VS Recovery utility Program CRUP} 

The recovery utility program CRUP) reads the system log (either on 
tape or disk) backward, to determine system activity prior to the 
uncontrolled shutdown. As the log is read backward, task 
synchronization records (sync points) are located. (See "Logical units 
of Work and Synchronization Points," earlier in this chapter.) These 
define the normal completion of a logical unit of work for a task. If 
any user data set modifications (logged either automatically by CICS/VS, 
or by the user) or any user journal records ar8 located for a task 
before a sync point (or its in~tial log record) is read, this ind1cates 
that the task had not completed a logical unit of work at CICS/VS 

Chapter 5.3. CICS Shut-down and Start-up 241 



uncontrolled shutdoun (that is, \las lIin-flight"). The data set 
modifications carried out by an in-flight task may need to be backed out 
to the previous sync point for that task, or to the start of the task. 

CICS/VS carries out this nackout later using the transaction backout 
program. The recovery utility program identifies in-flight tasks. It 
collects data set or user journal records for in-flight tasks vhich vere 
written after the start of the task or after a sync point, and copies 
them to the restart data set. As the system log is read backward, the 
restart data set is written foruard. The restart data set therefore 
uill reflect in-flight task activity prior to the uncontrolled shutdown. 
The restart data set can subsequently De read by user-uritten backout 
pt"ograms, uhich are executed as post-initialization prograos specified 
in the program list table (PLT). The user-uritten backout programs can 
be automatically initiated by CICS/VS folloning emergency restart, and 
before terminal activity starts. 

The first record located for a task on the bacKward scan of the 
system log may be a sync point, indicating normal completion of a 
logical unit of uork. Transaction backout is then not necessary, and 
journaled or logged records for tnat task are not copiad to the restart 
data set. (!!ote: Records output by completed tasks are collected to 
the restart data set only if the user specifies a special journal-type 
code uith the high-order bit ON.) 

A log record located for a task on the backuard scan of the system 
log may have been automatically logged by the CICS/VS transient data 
program for intrapartition destinations identified in the DCT as 
recoverable. These records are used by the recovery utility programs to 
reestablish the DCT status for the relevant destination. 

The backward scan continues until the f0110uing two conditions occur: 
(1) a system activity keypoint is reached, and (2) all journal and log 
records output by in-flight LUWs have Deen retrieved. The system 
activity keypoint contains information defining the status of 
intrapartition and temporary storage destinations, TCAs for in-flight 
tasks in the CICS/VS system at the time of the keypoint, and TCT entries 
for VTAM terminals with committed output oessages outstanding. The 
status of intrapartition destinations is used to update the DCT, to back 
out intrapartition activity carried out by in-flight tasks, and to 
reflect the activity carried out by completed tasks. 

The TCAs in the system activity keypoint indicate in-flight tasks at 
the time of the keypoint. A long-running task may have been present 
uhen the activity keypoint uas taken, but may not have logged any 
processing activity, or uritten a sync point betusen the system activity 
keypoint and the point uhen uncontrolled shutdoun occurred. Such a task 
had not completed a logical unit of nork at the time of uncontrolled 
shutdown. The backward scan must therefore be continued until a sync 
point, or first record logged, for that long-running task is 
encountered_ If the first record loc~ted for th~ t~8k is ~ synr. point.: 
the task completed a logical unit of uork and no backout is necessary. 
If a data set modification log record, or a user journal record is 
encountered before a sync point, those records are copied to the restart 
data set. 

The TCT identification in the system activity keypoint of terminals 
which have committed output messages outstanding identifies a need to 
continue the backuard scan until these logged ou tput messages are 
located. These committed output messages are transferred to the 
temporary storage message cache for each relevant terminal. The TCT 
information in the system activity keypoint is used to prime the TCT 
with the VTAM sequence numbers from the last completed LUU from each 
VTAM terminal for subsequent message resynchronization by CICS/VS uith 
the programmable controller. 

242 CICS/VS System/Application Design Guide 



Activity keypo~nts identify the necessity of continuing the backuard 
scan until all ill-flight tasks have been accounted for. Hithout 
activity keypoints, it uould not be possible to identify all in-flight 
tasks "ithout scanning the entire system log bac}cuard to its start. 

The recovery utility prograc (RUP) identifies in-flight task 
activity, and transfers automatically logged file control activity, and 
user journaled activity from the system log to the restart data set. It 
reestablishes the DCT status of recoverable intrapartition destinations 
using inforoation from the latest system activity keypoint, sync point, 
or end-of-task records of completed LUHs \lhich had activity against 
recoverable destinations. 

The transient data recovery program (TORP) then scans physically 
recoverable destination queues on the intrapartition data set to locate 
their latest PUT activity prior to uncontrolled shutdoun. This is used 
to establish the PUT pointer in the OCT for each physically recoverable 
destination. 

The temporary storage recovery program (TSRP) uses status inforoation 
collected by RUP from the latest activity keypoint, sync point, or end 
of task records of completed LUUs uhich had exclusive control activity 
against temporary storage destinations (OATAIOs). This status 
information reflects the logical status of each destination at 
uncontroll&d shutdoun. 

Follon ing the above RUP, TORP, and TSRP functions, a nell system log 
for tape, a current extent for disk, and user journal data sets are then 
opened by the system initialization prograo for output. 

6. CICS/VS Transaction Backout Program (TBP) 

RUP processing identifies in-flight LUlls and collects their 
automatically logged file control activity and user-journaled (to the 
log) activity on the restart data set. RUP also identifies user data 
sets and DL/I data baSeS uhich had in-flight activity transferred to the 
restart data set. Originating input messages and unresponded output 
messages for in-flight message-protected tasles are also uritten to the 
restart data set. 

The CICS/VS transaction backout program ~BP) is executed after 
completion of Rap processing, and after a new systeo log ~ape), current 
extent (disle), and user journal data sets have been opened for output. 
The purpose of TBP is to .oack out all in-flight activity against user 
data sets based on information read from the restart data set. 

For messages, TBP places originating input cessages and committed 
output Ilessages in a temporary storage message "cache", and primes 
TCTTEs uith the VTAM sequence numbers to be used for reestablishing 
message traffic. Other resources that can be backed out are CICS/VS 
files, OL/I data sets and Temporary storage. 

TBP provides a number of exits to permit the user to participate in 
data set backout. A TBP initialization exit enables the user to ignore 
backout against specific data sets. For example, uncontrolled shutdoun 
may have occurred because of an unrecoverable I/O error against a data 
set. This data set cust be recovered by user programs froo a backup 
copy prior to emergency restart. Consequently, these data sets should 
not have back out activity during emergency restart. 

An input exit is also provided. This is given control each time a 
record has been read from the restart data set and the user may choose 
to ignore specific records. 

Chapter 5.3. CICS Shut-doun and start-up 243 



An error exit is also given control ~f an error condition is returned 
by file control when TBP attempts to back out data set activity. The 
user may specify alternative activity to be undertaken. ~ne instance 
when this exit is given control is when TBP cannot back out an add due 
to the file organization.) If so, the user may back out adds against 
VSAM entry-sequenced data sets or ISAM or DAM data sets by flagging the 
added record as "logically deleted. n TBP then writes this logically 
deleted record to the relevant data set on return from the input exit. 
User application programs must subsequently check this flag to identify 
logically deleted records in the data set. 

7. Message Resynchronization For VTAM Terminals 

During TBP processing, input messages for in-flight LUWs or committed 
output messages are transferred to a temporary storage message cache 
identified by the relevant terminal associated with the message. 
Committed output messages, for which positive response had not been 
received from the terminal, are optionally retransmitted during 
emergency restart. Input messages for in-flight LUWs can be retrieved 
from temporary storage by user-written programs for repro.cessing. 

CICS/VS must establish resynchronization with those VTAM terminals 
that support it, on emergency restart. This is done using the VTA! 
sequence numbers placed by TBP in the TCT. These were established by 
RUP from information in the latest system activity keypoint, sync point, 
or end-of-task record for the last, completed, LUW against each VTAM 
terminal. CICS/VS issues VTAM STSN ~et and test sequence number) 
commands to each VTAM logical unit, notifying each programmable 
controller of the sequence numbers known by CICS/VS. The programmable 
controller can compare these sequence numbers with those logged on its 
own disk to determine whether any messages were lost because of the 
uncontrolled shutdown. These may either be input messages for protected 
tasks, which should be retransmitted to CICS/VS by the programmable 
controller, or may ·be committed output messages. 

Further information on VTAM set and test sequence number commands can 
be found in the appropriate CICS/VS subsystem guides. 

Both CICS/VS and the programmable controllers participate in message 
resynchronization to ensure that no prot acted messages are lost because 
of the uncontrolled shutdown. For a discussion of message 
resynchronization with TeAM refer to the OS/VS TCAM System Programaer1s 
Guide, the OS/VS TCAM Application Programmer1s Guide, and the OSIYS TCAR 
Concepts· and A~lications. 

8. User Post-Initialization Pr~ram§ 

Following execution of the recovery utility program and the opening 
of new journals, user-written programs identified in the program list 
table (PLT) are executed. These programs may carry out application
dependen.t. :L6COV'6:LY functio:ils, such as reposii:.ioning ex.i:.rC1pa:ri:.ii:.ioll dai:.a 
sets but their execution may be preceded by transactions initiated by 
interval control or transient data control. 

9. Terminal Control Activation 

At this point, emergency restart and user backout are complete. The 
system initialization program ~IP) then initiates a system activity 
keypoint. Following this, terminal activity is initiated, and normal 
CICS/VS operation commences. 

10. Controlled Shutdown Following Emergency Restart 

If a controlled shutdown is then requested by the master terminal 
operator ~mmediataly following emergency restart, the warm keypoint 

244 CICS/VS System/Application Design Guide 



necessary for a controlieu shutdown is taken, and CICSjVS terminates 
operation. The system may then be initialized at a later time by a 
normal warm start. 

System Failure During Emergency Restart 

System failure during emergency restart represents one of the most 
difficult types of failures to diagnose and correct. The user must be 
fully aware of the functions performed during emergency restart, the 
segu~nce in which these functions are performed, and the effect that 
abnormal termination during this operation has on data sets and tables. 

Prior to initiating emergency restart, an analysis of the failure 
which caused the system to abnormally terminate should be performed. It 
is possible that the condition which caused the system to abend will 
also cause emerg~ncy restart to fail. One example of this could be a 
physically damaged data set which caused an uncontrolled shutdown, 
causing the identical failure during emergency restart if the CICS/VS 
transaction backout program attempts to back out modifications made to 
that data set. 

If a file control data set has become physically damaged, a user
provided data set recovery program(s) must recover the data set prior to 
the user backout program attempting to back out modifications to this 
data set. Data set recovery involves restoring the contents of that 
data set from some previous copy, and then applying all modifications 
made to it since the copy was taken. CICS/VS automatic journaling can 
be used to keep track of data set modifications performed during online 
execution. 

If the transient data intrapartition data set or temporary storage 
data set is physically damaged, it will not be possible for CICSJVS to 
emergency restart these facilities. CICS/VS recovery of these 
facilities is dependent upon the physical contents of the relevant data 
set as it existed prior to system failure. Therefore, if the data 
content of the data set has to be restored because of physical damage, 
CICSJVS may not be aole to successfully reconstruct the DCT or TSUT to 
reflect the status of the restored data set. 

User journaling may be utilized, if required, to produce an audit log 
of all system data set activity. This audit log can be created on a 
user journal data set, and utilized by user programs for subsequent 
reconstruction of all system data sets (such as intrapartition or 
temporary storage) which may have been physically damaged. 

CICSjVS emergency restart is not complete until the CICS/VS 
transaction backout program has successfully completed, and an activity 
keypoint has been taken. ~ptionally, a controlled Shutdown could be 
taken at the completion of user back out, if system execution is to be 
terminated.) If any failure is encountered prior to this time during 
emergency restart, this procedure must be followed: 

Chapter 5.3. CICS Shut-down and Start-up 2ij5 



• Determine the cause of the failure 

The cause of the failure of emergency restart must be determined 
and corrected. If the transient data intrapartition data set is 
damaged, that intrapartition data set and the DCT must be cold 
started oy CICS/VS. Its contants may subsequently be restored by 
the user, if required, by post-initialization (PLT) program 
processing. (This is also true for the temporary storage data 
set.) If a data set is damaged it must be physically recovered by 
user data set recovery programs. 

• Restart Emergenc~start 

The emergency restart procedure is executed again using the 
original system log as input. The original system log is the tape 
or disk volume which was being used for output when the original 
system failure occurred. As this data set is not used for output 
during emerg&ncy restart, its contents are available to reinitiate 
the emergency restart procedure, and recover CICS/VS to its status 
prior to abnormal termination. 

At the completion of emergency restart, the recovered status of 
CICS/VS has been recorded on the new system log if system execution is 
to proceed, or on the system restart data set as a warm keypoint if the 
system is to be terminated. This status represents the predefined point 
to Which the system is recovered; system table, system data set, and 
user data set status are all logically synchronized. If restart becomes 
necessary from this point on, the new system log must be used for 
restart. 

If the system was terminated upon completion of emergency restart, 
without an intervening system failure, the system restart data set 
contains the fully recover~d CICS/VS status in the form of a warm 
keypoint. A CICS/VS warm start may be performed using this data to 
initiate CICS/VS execution with the recovered system status. 

246 CICS/VS System/Application Design Guide 

/ 



Chapter 5.4. User Journaling 

Journaling provides a generalized facility for reporting and revieuing 
modifications to data bases and other important data sets. 

The journal control program is table-driven from information defined 
by the user in the journal control table (JeT). Application programs 
may issue journal control commands to request specific journaling 
acti vi ty. (See CICS/VS Application Programmer' s Reference Man ual 
JCommand Level).) 

Iournaling 

Data may be journaled synchronously or asynchronously, thus providing 
for application processing overlap with journaling operations. In the 
synchronous mode, the requesting task is put in a WAIT state until the 
journal write has completed successfully, to guarantee that a journal 
copy of data exists on auxiliary storage before user processing 
continues. This mode of operation is similar to the way in which most 
CICSjVS management modules function: the user task receives control 
only when the requested operation has been performed. 

The asynchronous mode allows the requesting task to retain control. 
The journal write is not synchronized unless and until the task requests 
synchronization either directly by use of the WAIT JOURNAL command, or 
indirectly by issuing a synchronous journal request. There is no 
guarantee that the journal copy of the data is written to auxiliary 
storage until the user task performs synchronization. 

Journal records consist of a system prefix, an optional user prefix, 
and user data. Information placed in the system prefix includes: 

o Task identification (that is, transaction code) 

o Task sequence number allocated by CICS/VS to uniquely identify this 
task 

o Terminal identification associated with the task 

• Time of day 

• Journal data set identification 

In addition to that detailed above, the following information is 
provided by the automatic journaling option of file control. 

o Data set identification (internally generated by CICSjVS) 

• Record identification supplied by the application program 

The user prefix is generally application dependent and is defined by 
the user. For automatic logging, the user data may comprise the record 
read from the data set for updating, the record to be deleted, or the 
record to be added to the data set. It may instead be data supplied by 
the user task, such as terminal messages. 

Chapter 5.4. User Journaling 247 



SPECIFICATION OF JOURNALING 

As indicated previously, automatic logging may be specified by the user 
in the file control table for each required protected data set. 
Automatically logged information is used by the TBP to back out data set 
modification activity initiated by in-flight tasks. The user may also 
specify additional journaling activity in the FCT. This is called 
automatic joarnaling, and it enables the user to request that activity 
(beyond that logged by file control for backout purposes) also be 
journaled by file control. This .activity may include journaling of 
records after an update is completed; for example, for user programs to 
recover a data set following an unrecoverable I/O error based on a 
previous backup copy of the data set. Automatic journaling activity can 
be directed to the system log, or to a user journal data set. (Refer to 
the CICS/VS System Programmer's Reference Manual for further information 
on specification of automatic logging and automatic journaling.) 

Journal requests may be made directly by user tasks, through the use 
of journal control commands. User journal records issued in this way 
may comprise data for audit purposes, for example, or may contain data 
to assist in subsequent application-dependent recovery, such as terminal 
messages. 

USE OF JOURNALS. AT SYSTEM INITIALIZATION 

On a warm start of CICS/VS, no data set backout is necessary. All 
transaction activity was completed and the system was quiesced when the 
previous controlled shutdown took place. 

On an emergency restart, the CICS/VS-provided recovery utility 
program (RUP) identifies all in-flight tasks at uncontrolled shutdown. 
It transfers all automatically journaled data set modification journal 
records ~nd other user journal records), written to the system log by 
the in-flight tasks to the restart data set. The CICS/VS transaction 
backout program nacks out protected data set activity initiated by in
flight tasks. The post-initialization phase is then entered. 

During this phase of system initialization, user programs identified 
in the program list table for use during post~initialization are 
executed. These user programs may issue journal control commands to 
access user journal data sets, or may read data set journal records from 
the restart data set. 

JOURNAL REQUESTS 

The following types of journal requests can be requested during normal 
execution of CICS/VS by application programs. 

JOURNAL 
Create a logical record for the relevant journal data set. 

WAIT JOURNAL 
Synchronize request. 

JOURNAL WAIT 
Creates record and synchronizes request. 

248 CICS/VS System/Application Design Guide 



NOTE 
Note current logical record positioning of journal data set. 

HANDLE CONDITION 
Handle any exceptional conditions. 

POINT 
Position Journal to a specified logical journal record. 

GETF 
Get (forward) next logical journal record. 

GETB 
Get (Dackward) next logical journal record. 

For further discussion of the JOURNAL, WAIT, and HANDLE CONDITION 
journal requests, refer to the CICS/yS Application Programmer's 
£gf~£~nce~~~al-1Command Level). For further discussion of the NOTE, 
POINT, GETF and GETB journal requests, refer to the CICS/VS System 
~£Q~~~~2_Refg£~g_~~nual. 

TRANSACTION JOURNALS 

The journaling facility of CICS/VS can be utilized by user programs to 
journal any application-depend=nt information, which can subsequently De 
retrieved by user-written post-initialization programs. This journaled 
information may include terminal transactions. A transaction journal 
produced in this way provides a record of every terminal transaction 
received by the system, and may also include every output message sent 
to terminals. A terminal input message may be written by the user to a 
unique user journal data set and/or the system log, immediately after a 
task is given control to start processing the input message. The 
journaling of the input message should be the first activity carried out 
by the initial program which operates on that transaction. 

The transaction journal may be used for audit and for transaction 
recovery purposes. Transaction journals developed in this way may avoid 
the need for TeAM terminal operators to retransmit transactions on 
system restart, if those transactions had been entered completely before 
system termination. 

The first input message received from vrAM terminals for each logical 
unit of work carried out by message-protected tasks (as specified in the 
PCT) is automatically logged by the VTAM terminal control program. 
Similarly, committed output messages are logged. CICS/VS uses these 
logged messages to establish message recovery and resynchronization with 
VTAM programmable controllers on emergency restart. Input messages 
belonging to in-flight LUWs or committed output messages for which a 
positive response had not been received, are transferred during 
emergency restart to temporary storage. In-flignt input messages in 
temporary storage can be utilized to resubmit transactions for 
reprocessing, after their activity has been backed out. The final 
decision as to whether transactions must be resubmitted on restart 
depends upon the application requirements~ 

Chapt~r 5.4. User Journaling 249 



Preparation of User Journals 

Disk extents that receive journal data set output must be allocated and 
preformatted prior to their use in CICS/VS execution. A journal format 
utility program is supplied by CICS/VS to complete this formatting. 
(See the appropriate CICS/VS System Programmerts Guide.) Once 
formatted, extents can be (and are) reused for successive CICS/VS 
eXE=cutions. The system operator is notified uhen an extent is full, to 
enable the scheduling (concurrently nith CICS/VS) of a user-uritten 
oatch program to copy the journaL extent to an archive data set on disk 
or tape before allowing the extent to be reused, if required by the 
user. A PAUSE option is provided for the user to prevent reuse of the 
extent by CICS/VS until the archive copy is completed. More than one 
journal extent maj be specified by the user to permit CICS/VS to make an 
extent suitch when one extent is full, and to continue CICS/VS operation 
while the full extent is being copied to the archive data set. 

Tape journals may utilize either one or tllO tape drives. If one tape 
drive is used, CICS/VS directs the system operator uhea another tape 
must be mounted, and provides its oun tape label management. If two 
tape drives are used, it automatically sl1itches to the other tape drive 
and directs the operator to dismount the previously used tape. 

The CICS/VS-provided tape ena-of-file utility program may be used 
offline to reposition and close correctly a journal tape after an 
uncontrolled shutdonn. For the tape system log, this function is 
performed by CICS/VS during an emergency restart. In order to enable 
the repositioning program to operate properly, the tapes must be 
formatted (with the CICS/VS-provided tape format utility program) the 
first time they are used for journaling. 

User Journaling as a Means to Extend CICS/VS Recovery 

There are five main features by nhich the user may extend CICS/VS 
recovery procedures: 

o Journaling 

This is a means uhereby the user may log changes made to data bases 
and other important resources as uell as any other information he 
may nish to prEserve. 

o Program List Table (PLT) 

The program list table is a user generated table of program names. 
There are normally tHO tables, one contains a list of programs to 
be executed in the event of a controlled shutdown and the other a 
li~t of programs to be executed during system initialization. 

o Recovery Utility Program (RUP) 

The recovery utility program processes the system log and backs out 
any changes that may have been made to protected resources. 

o User Exits 

Program level ABEND exit points are provided by CICS/VS so that 
user exit programs may handle individual errors in unique ways. 

250 CICS/VS System/Application Design Guide 



o Restart Exit Program (RTY) 

Program to control uhich transactions are to be restarted after an 
abnormal termination and subsequent dynamic transaction backout. 

E~cirapartition Data Set Recovery 

CICS/VS does not provide for recovery of extrapartition data sets. If 
this is significant to the online application, the system design team 
must develop procedures to enanle that information to be recovered for 
continued execution on restart, follouing either a controlled or 
uncontrolled shutdoun of CICS/VS. 

There are tuo areas uhich must be considered in recovery of 
extrapartition data sets: 

o Input data sets 

o Output data sets 

INPUT DATA SETS 

The main information required on restart is the number of records 
processed up to the time of system teroination. This oay be recorded 
during processing using the journaling capability of CICSjVS, as 
described in the follouing paragraphs. 

Each application program uhicn reads records froD extrapartition 
input destinations should first enqueue exclusive access to those 
destinations. This uill prevent interleaved access to those saoe 
destinations by ot her concurrently executing tasles, and so enable the 
userDs extrapartition recovery technique to operate correctly. 

READQ TD commands are then issued by the application program, to read 
and process extrapartition input records. The application programs 
accumulate the total of input records read and processed during 
execution for each destination. The total nuober of READQ operations is 
journaled by the program to a user journal data set, together uith the 
relevant destination identifications. This journaling is only carried 
out at completion of a logical unit of \lorlc, uhich may be at end of task 
or at a user sync point, such as on a conversational teroinal operation. 

Pollon ing output of the user journal record, the application program 
dequeues itself from the input destinations, to permit other application 
prograos to access those extrapartition input destinations. 

If uncontrolled shutdoun occurs prior to this user journaling, no 
records u ill appear on the user journal data set for that logical unit 
of uork, and the effect of that in-flight tas]e is therefore 
automatically nacked out on eoergency restart. Houever, if the user 
journal record is uritten before uncontrolled shutdoun, this completed 
input data set processing uill be recognized on emergency restart. 

On a controlled shutdoun, CICS/VS uill uait until the application 
program completes execution normally. This \lill enable the input data 
set activ ity to be recorde d by the user for suosequent uarm start. 

On emergency restart follouing uncontrolled shutdoun or on a uarm 
start follouing a controlled shutdoun, the £ollouing procedure may be 

Chapter 5.4. User Journaling 251 



utilized. This will reposition the extrapartition input data sats, to 
reflect the input and processing of their records during previous 
CICS/VS operation. 

An uncontrolled shutdown does not permit a tape journal data set to 
be closed normally. This may be achieved through the use of the CICS/VS 
tape end-of-file utility program prior to execution of the user recovery 
program. 

A user-written extra partition input recovery program may be 
identified in the PLT for execution during the post-initialization 
phase. This program reads the user journal data set forward. Each 
journaled record indicates the number of READQ operations performed on 
the relevant extrapartition input data set during previous execution of 
application programs. The same number of READ TD com.ands is issued 
again by the recovery program, to the same input destination as 
referenced previously. 

On reaching the end of the user journal data set, the intra partition 
input data sets are positioned at the same point they had reached prior 
to initiation of tasks which were in-flight at uncontrolled shutdown. 
The result is the logical recovery of these input data sets with in
flight task activity backed out. 

OUTPUT DA TA SE'rS 

The user recovery of output data sets is somewhat different from the 
recovery of input data sets. 

For a tape output data set, a new output tape should be used on 
restart. The previous output tape can be utilized if necessary to 
recover information recorded prior to termination. 

To avoid the loss of data in tape output buffers on termination, it 
m~y be desirable to write unblocked records. Alternatively, data may be 
written to an intrapartition disk dest'ination (which is recovered by 
CICS/VS on a varm start or emergency restart) and periodically copied to 
the extrapartition tape destination by an automatically initiated task. 
In the event of termination, the data is still available on restart to 
be recopied. 

If a controlled shutdown of CICS/VS occurred, the previous output 
tape is closed correctly, and a tapemark is written. However, on an 
uncontrolled shutdown such as on a power failure or machine check, a 
tapemark wil~ not be written to indicate the end of the tape. This may 
be achieved by execution of the CICS/VS tape end-of-file utility program 
prior to use of that tape for subsequent recovery. 

Per a line p~iuter ou~put uata set, if it is satisfactory to continue 
output from the point reached prior to system termination, no special 
action need be taken. However, if it is desired to continue output from 
a defined point, such as at the beginning of a page, it may be necessary 
to use a journal data set. As each page is completed during normal 
CICS/VS operation, that fact may be noted by writing a record to a 
journal data set. On -restart, the page which was being processed at the 
time of failure can be identified from the journal data set, and that 
page reprocessed to reproduce that same output again, from the beginning 
of the page. Alternatively, an intermediate intrapartition destination 
may be used (as previously described) for tape output buffers. 

252 CICS/VS system/Application Design Guide 



Transaction Recovery and Restart 

The following sections discuss message recovery and transaction restart 
considerations for VTAM and BTAM terminals. 

RECOVERY OF MESSAGES ASSOCIATED WITH VTAM TERMINALS 

CICS/VS automatically logs input messages for transactions specifed in 
the PCT as Itmessage-protected," and logs committed output messages and 
responses indicating their subsequent positive receipt by the terminal. 
Automatic logging only applies to message-protected transactions 
associated with VTAM terminals which can support message recovery. It 
is a user responsibility to carry out this journaling for transactions 
associated with BTAM terminals. Inquiry transactions (which do not 
update data sets) should not be specified as "protectedll in the peT. 

The CICS/VS recovery utility program (RUP) ~dentifies in-flight tasks 
during emergency restart and transfers logged input messages or 
committed output messages (for which receipt acknowledgement is 
outstanding) to temporary storage. A temporary storage message "cache" 
is defined for each terminal which had an in-flight task at uncontrolled 
shutdown. This message cache has a unique temporary storage queue name 
of DFHMXXXX (where XXXX=four-character terminal identification). This 
cache contains either the input message for the in-flight LUW, or, if 
the LUW completed normally but definite receipt of a committed output 
message was not acknowledged by the terminal, the committed output 
message. 

A committed output message can optionally be automatically 
retransmitted by CICS/VS on emergency restart to establish message 
resynchronization. ~hus, committed output message integrity is 
preserved. 

An input message for an in-flight LUW is not automatically 
reprocessed oy CICS/VS on emergency restart. CICS/VS will back out all 
in-flight activity for that LOW. The decision to reprocess the input 
message is a user responsibility based on factors such as application 
requirements and security of information. A technique for user
activated transaction restart is discussed later in this chapter. 

RECOV ERY OF MESSAGES ASSOCIATED WITH B'rAM 'rERMINALS 

To provide for implementation of a user-written transaction restart 
program, each user task must journal its terminal input message as soon 
as it commences execution. This can be achieved either by each task 
LINKing to an .installation-level, user-written transaction journal 
program, or by specifying this transaction Journal program in the PCT 
for each transaction code for which input messages are to be journaled. 
In this latter case, after journaling the input message the user-written 
transaction journaling program examines the transaction code in the 
input message, and transfers control to the relevant application 
program. 

Alternatively, journaling of terminal input messages may be carried 
out by user-written code in a terminal control program user exit. 

Chapter 5.4. User Journaling 253 



The information which would be included by the user in the 
transaction journal record is detailed below. Some of this information 
is automatically provided in the system prefix hy Journal control. 

• Terminal identification 

• Operator identification 

• Transaction code used to attach the task (extracted from the TCA) 

o Time of day when the journal record was written 

• Task priority from the task control area (TCA) 

• Other information required to further identify that transaction 

The above information is insarteu in the system and user prefixes of 
the journal record, and the original input transaction from the terminal 
input area may be placed by the user's transaction journal program in 
the data section of the journal record. 

The user-written transaction journal program may journal terminal 
input messages to a user journal data set and/or the system log. Input 
messages written to the user journal data set can be used for audit 
purposes, if required. Input messages written to the system log viII be 
transferred to the restart data set by the CICS/VS recovery utility 
program, for in-flight tasks when an uncontrolled shutdown occurred. 
This is carried out during emergency restart. 

Following RUP processing, the in-flight activity of that task against 
data bases, intrapartition, and temporary storage destinations is backed 
out by CICSjVS. User-written programs identified in the program list 
table WLT) are then executed. 

A user-written PLT program should read terminal input messages from 
the restart data set, where they are transferred by RUP. This program 
should construct a temporary storage record, using the same temporary 
storage message cache format as that established by CICS/VS for VTAM 
terminals. This contains the terminal identification, transaction code, 
and task sequence number. This information can be extracted from the 
system prefix which was constructed for the record on the restart data 
set when it was originally written by journal control to the system log. 
The program should flag the message as a task-originating input record 
and then write the input message (now in the VTAM temporary storage 
message cache format) to temporary storage using a DATAID of DFHMXXXX, 
where XXXX=four-character terminal identification. 

The input message is then available to the user for reprocessing 
based on application r~quirements and security information. By using 
the same format as that used for the VTAM temporary storage message 
cache, reprocessino of input messages from both BTAM and VTAM terminals 
can be handled consistentiy. 

As BTAa terminals are unable to indicate definite receipt of specific 
output messages as can VTAM terminals, the VTAM concept of committed 
output messages is not applicable to BTAM terminals. Consequently, 
output message journaling by the user cannot ensure output message 
integrity. User application programs should delay issuing BTAM terminal 
control writes until the completion of the logical unit of work. It is 
a user responsibility to identify to terminal operators on emergency 
restart the transactions which were in-flight at uncontrolled shutdown 
and subsequently backed out. This is necessary to ensure that the 
backed o~t transactions (wriose application and security requirements 
permit) are reprocessed. The following is a technique for user
activated transaction restart following emergency restart. 

254 CICS/VS System/Application Design Guide 



RESTART TRANSACTIONS (BTAM AND VTAM TERMIN~LS) 

At the completion of emergency restart, input messages for in-flight 
tasks uhich have been backed out are available in the temporary storage 
message cache for each relevant terminal. An inquiry program should be 
written by the user so that terminal operators cai deter~ine uhether 
their las t transaction lias fully processed prior to uncontrolled 
shutdown, or whether it was backed out on emergency restart. This 
program should issue a READQ TS command, using as the queue name 
DPRMXXXX, where XXXX=four character identification of the enquiring 
terminal. If that terminal had no in-flight task, an QIDERR error 
indication will be returned to the program. (See the appropriate 
CICS/yS Application Pro~ammer's Referance Manual.) If the task was in
flight (or had a VTAH-committed output message), a temporary storage 
record will be returned to the program. The program should check the 
temporary storage message cache record flag for presence of an input 
message, and then present that input message and associated information 
to the terminal operator. The terminal operator can then decide whether 
the transaction is to be reprocessed. A reprocessing request by the 
terminal operator should only be accepted if the terminal operator has 
the necessary aathority (based on security codes, or operator class in 
the TCT) to make that decision for the particular transaction. 
Processing then proceeds as if the transaction has just been entered 
from the terminalD 

If the input message is associated with a VTAM programmaole 
controller, the inquiry program may be automatically initiated by the 
controller after message resynchronization and recovery have been 
completed. The in-flight input message (transmitted back to the 
controller by the inquiry program) may be presented automatically to the 
relevant terminal operator for a reprocessing decision. Alternatively, 
if application and security considerations permit, the controller itself 
may automatically maKe the reprocessing decision and notify the enquiry 
program accordingly. 

TERHINAL OPERATOR RESTART 

The previously described technique enables the terminal operator to 
determine, on emergency restart, the status of transactions submitted 
prior to uncontrolled shutdown. By initiating that transaction inquiry 
program, the terainal operator is notified whether his last transaction 
vas completely processed, or ~as in-flight. If it vas in-flight (and 
therefore backed out), he is presented uith the original input message 
to decide uhether reprocessing is necessary. If a committed output 
message had not been received by his VTAM terminal prior to uncont~olled 
shutdown, it is retransmitted on emergency restart. 

Thus, the terminal operator is presented uith sufficient information 
on emergency restart to allotl him to identify the point reached in 
previous comnunication with CICS/VS, and reestablish application 
processing activity. 

Chapter 5.4. User Journaling 255 





Part 6. Performance Design 

257 





Chapter 5.1. Introduction ~o Perfoflnance Considerations 

Introduction 

The title of this Part could equally have been "Cost and Efficiency 
Design" in that E.§.£fQ£!!!!'!!£§:' is equivalent to cos:!:~nd_.§ffici.§U!£Y, and is 
probably the key to determining whether an online system is viable. 

In general teros, an online computing system is composed of a number 
of resources, each essential to the system. Not the least of these is 
the human resource necessary to operate the terminals and indirectly the 
external resources controlled by them. 

A major design objective of the design process should be to optimize 
the use of the total system resources, thus minimizing the cost of tach 
unit of uork. 

To achieve this, a Q~lan£~Q system is required, uhich maKes maximum 
use of the most expensive resources. It is expected that the first 
stage of design uill be to set response, load, and cost objectives for 
the computing system. These are often based on a previous feasibility 
study and they should take into consideration the functions and cost of 
the associated external resources (people, and the functions they carry 
out). For example, in an online system controlling the movements of a 
fleet of aircraft or ships, the computer may uell be the least expensive 
resource, uhereas in an online mail order system the cost and efficiency 
of the system may uell have a significant impact on profit margins. 

Even after a system has been successfully designed and implemented, 
it is essential that the performance is carefully monitored and tuned to 
ensure that efficiency is maintained as the inevitable changes in the 
function and load on the system occur. 

Performance information in CICS/VS punlications is concentrated in 
three areas. This chapter discusses the performance aspects that should 
be considered uhen designing the system and uriting the applications. 
tlhen the system has been designed, the system programmer viII have the 
responsibility of generating and maintaining the system ~ithin the 
constraints of the design. There are a significant number of generation 
parameters ~hich ~ill affect performance. These parameters are 
discussed in the appropriate (VSE or OS/VS) £ICS/VS System Prog£~rls 
Guide. 

Both the designer and the system programmer uill need to estimate the 
approx~mate performance (response and resource utilization) of the 
system. Data, uhich uill allo\J approximate calculations of the host 
processor performance to be made, is presented in the ~!£SLV~_Syst§ID 
Programmerls Reference Manual. Calculation of the total system 
performance is affected by such items as the communications controllers" 
TP links, ana terminal ievices. Hhile quantitative discussion of the 
performance of SUCh items is outside the scope of CICS/VS publications, 
some qualitative discussion is given. 

The main topics discussed in the remainder of this chapter are about 
hou the main (host processor) performance charac~eristics of CICS/VS, 
namely, response, maximum load, processor utilization, and storage 
utilization, can be affected by system design and application design. 

Chapter 6.1. Introd~ction to Performance Considerations 259 



Performance Aspects of Design 

The main performance characteristics that should be conside~ed when 
designing the system are: 

• Response Time 

• Maximum- Load 

• Virtual and Real Storage Utilization 

• Pathlength and Processor Utilization 

• Physical Database Utilization 

• Network utilization 

RESPONSE TIL!E 

The response time of the system is th~ sum of the response times of all 
the individual components of the system. These will usually include 
disks, channels, processor, communications controllers, and TP links. 
At low load (when only one transaction is processed at a time) the 
component response times are independent of each other and can be summed 
to give the total response time. It is usually possible to calculate 
the response of each coruponent and summing them will give the minimum 
response. Normally it is inefficient to run a system this way because 
most resources will be heavily under-utilized. 

As the load increases the response times will rise slowly, necause of 
queueing, until one component becomes overloaded. Generaliy this 
increase will become a major part of the overall response and will 
constitute a bottleneck. The characteristic shape of the Response 
versus Load (or resource utilization) graph is shown in Figure 6.1-1. 

Removal of the bottleneck (by either redesign of the application or 
allocating more of the Dottleneck resource) will allow higher 
utilization of the other resources, thereby either reducing the cost of 
each transaction (by increasing the load) or reducing the response, thus 
allowing the productivity of the operator to rise. A basic objective is 
to achieve the desired load consistent with maintaining the required 
response, thus minimizing the cost of each unit of work. 

If a system response is degraded, the problem is to locate the 
bottleneck or bottlenecks. If the bottleneck is in one of the more 
expensive or fixed resources (for example, the processor), the load must 
be reduced or the application redesigned. For most systems the change 
in the c~itical ~esou~ce to go f~om acceptable to unacceptable ~esponse 
is quite small. This is illustrated in the graph shown in Figure 6.1-1. 
This factor allows "tuning" to be an acceptable technique in achieving 
or maintaining the response of a system. Tuning is a technique whereby 
small changes in resource utilization can be achieved by making changes 
to software (mainly CICS/VS) parameters. Because of the sensitivity of 
the response/load curve, relatively large changes in response can be 
achieved around the maximum load point. However, in normal 
circumstances, tuning is ~i an answer for inadequate resources and poor 
design and will ~! allow a significant increase in the maximum load. 

260 CICS/VS System/Application Design Guide 



Response 

Minimum 
Response ~ 1-----------1--------

Low load or low 
utilization 

Working area 

Resource Utilization or Load 

Figure 6.1-1. Typical Response Characteristic 

MAXIMUM LOAD 

Overload or 
bottleneck 
situation 

The maximum load the systelll will sustain is dependent on the limiting 
resource. It is usual for the limiting resource to be the most 
expensive resource to obtain the best value for money. Often this 
resource is the processor. 

A knouledge of the maximum achievable load consistent with the 
required response is important. Attempts to load the system still 
further uill usually result in longer response times and even lover 
effective throughput, because the system brings into action complicated 
regulatory mechanisms that use up resources. 

It is essential that the Master Terminal Operator controlling the 
system is aware of the expected loading limits, so that he can regulate 
the load before unacceptable response occurs. The design team/system 
programmer should provide the Master Terminal Operator with these load 
limits. 

VIRTUAL AND REAL STORAGE UTILIZATION 

In an online TP system such as CICS/VS, some fundamental parts of the 
system code will be executed many thousands of times at co~paratively 
regular intervals. Although peaks and troughs in the load vill occur 
and occasionally exceptional conditions will arise, there is, for any 
one installation, a fairly well-defined set of program code, control 
blocks, and data areas that are always in use. To achieve the best 
response, enough real storage should be available to accomodate this 
reference or working set of programs and data areas. 

Prior to the availability of virtual storage, the normal technique 
was to have the main program and data area resident in main storage and 
to dynamically load the less frequently used programs as required. This 

Chapter 6.1. Introduction to Performance Considerations 261 



feature is still availanle in CICS/VS. The aim of the designer should 
be to ensure that the reference or working set is small enough to reside 
in real storage and allov the system to page-in the other parts of the 
application as and when necessary. 

PATHLENGTH AND PROCESSOR UTILIZATION 

In most systems processor power is the most expensive resource. For 
overall system cost efficiency it is generally true that the processor 
utilization should be high, consistent with a low instruction path length 
per transaction. Under normal circumstances, the time taken to queue 
for use of the processor and execute the instructions that make up a 
transaction represents a small proportion of the total response time. 
This means that processor utilization can reach relatively high levels 
(80% or over) without causing significant response degradation. 

A factor that can be significant in achieving a high processor 
utilization is the ability to overlap processor processing with I/O 
activity. This can normally be achieved by multitasking (as provided by 
CICS/VS). 

A measure of the cost of a transaction is its average instruction 
pathlength or the time taken to execute these instructions. Examples 
and the data necessary to calculate processor utilization are given in 
the CIC2LVS SY~18m Programmer's Reference Manual. 

PHYSICAL DATABASE UTILIZATION 

The I/O hardware associated vith the database is another significant 
resource in the computer system. To achieve lou cost per transaction 
consistent vith good response, it is necessary to perform the required 
logical operations with· the minimum number of physical database accesses 
and have either a sufficiently high transaction rate or be able to 
reduce the amount of I/O equipment to achieve high utilization of the 
database. 

The main components can be considered to be the channel and the 
device. Although this discussion is headed "Data Base Utilization", it 
applies to all I/O hardware, covering devices holding all files and the 
page dataset for paging I/O. 

NETWORK UTILIZATION 

The network is another significant resource in the computer system. In 
some large systems dedicated to teleprocessing it may be the most 
expensive resource. The main components of the network are the 
communication controllers, communications lines and associated modems, 
terminal control units, and the terminals or logical units. 

The main considerations in determining the efficiency and utilization 
of the network are the transaction rate and the amount of data 
transmitted per transaction. 

In absolute terms, the network is usually responsible for the biggest 
component of the response time. In an efficient interactive system, the 
network component of the response time usually lies somewhere between a 

262 eICS/VS System/Application Design Guide 



quarter of a s~cond and ten seconds, whereas the host processor 
component of the response time will probably be betuean on& tuenti~th 
and one half ot a second. 

This may m~an that a low-cost high-utilization network design may 
have to be modified to allocate more resources in order to achieve the 
required response, thus obtaining a better total system efficiency. 

Design Criteria 

Response and utilization information is essential to ensure that 
effective decisions are made when designing an online teleprocessing 
system. Many decisions made solely on functional grounds can havo 
significant consequences in terms of the completed system being able to 
meet its basic objectives. 

Each major functional decision should be considered in terms of 
quantitative estimates of the performance and cost of the different 
alternatives. 

Data is presented in the CICS/VS System Prog£ammer's Reference Manual 
to anable the designer to estimate the performance of the host 
processor. This is obviously concentrated on CICS/VS, although data 
pertaining to the different software facilities used by CICS/VS is 
discussed. This data is intended to De used to: 

o Check the overall feasibility of the desired application load in 
relation to the hardware 

o Allov the designer to evaluate trade offs between various functions 

This section d~scusses the performance aspects of the following 
topics: 

o Application design 

o System design 

o Communications design 

o Database design 

o Program design 

o Human factors 

o Performance monitoring 

o Recovery, security, and debugging 

o Online control and modification of the system 

Chapter 6.1. Introduction to Performance Considerations 263 



APPLICATION DESIGN 

The "application" consists of all those functions required and used to 
satisfy the needs of the users of the computing system. These functions 
will be partly satisf1ed by the application programs and partly by calls 
to CICS/VS which, in turn, will use other programs and systems 
facilities. 

The requirement for a particular type of function may imply a 
particular CICS/VS function, which may, in turn, imply a need for 
another system resource. For example, a requirement for a scratch-pad 
type of facility could he satisfied by CICS/VS Temporary storage 
Facility. This in turn may imply the need for VSAM and adequate real 
and virtual storage to support it. In a large system this would not be 
of consequence, while in a small system this choice could have 
significant impact on the overall performance if VSAM was not required 
for other purposes. 

In addition to this type of functional judgement, it is essential to 
have firm estimates of the expected load on the system and any variation 
of the load at different periods, together with estimates for the 
inevitanle expansion of the system. This expansion, whether in new 
applications or increased load, will inevitably have an impact on system 
response. It is recommended that the application is designed with these 
objectives in mind. For example, in many installations there will be 
well-defined peaks and troughs in activity. It may be beneficial to 
design automatic procedures to initiate what are essentially off-line 
programs as low-priority CICS/VS tasks during slack periods to make use 
of the spare capacity. The technique of top-dovn design and programming 
can be used to performance estimat10n and simulation. As each level of 
design is reached, estimates of the performance of each "box" 
(preferably upper and lower limits) should be made. These can be used 
to predict performance, detect bottlenecks, and provide objectives for 
the program coder. "Boxes" that are used very frequently can be given 
special attention to achieve optimum performance. 

When the top-down approach is used to write the application, parts of 
the program not available can be crudely simulated by instruction loops, 
so that a better idea of likely performance can be obtained. 

Application programs should be kept as simple as possible. 
Sophisticated features invariably have an impact on performance and 
sophistication should be avoided unless it can be cost-justified. 

In summary, it is essential to know what the application design 
implies in terms of performance, not only in the host processor, but in 
all aspects of the total system. 

SYSTEM DESIGN 

This area covers the design of the total system, including CICS/VS 
generation, choice of operating system and access method parameters, 
hardware, and network configuration. This is usually done under the 
constraints of the application design, available hardware (or funds), 
and programming expertise. 

Choice between different features should depend on both functional 
capability and performance. For example, a choice between TP access 
methods VTAM and BTAM should not only take into consideration the 
functional aspects (such as the terminal types supported) but also the 
relative performances. In crude terms, CICS/VS BTAM requires much less 

264 CICS/VS System/Application Design Guide 



real storage than CICS/VS VTAM, but CICS/VS VTAM requires less processor 
power, especially for larger networks. Hence constraints on the type of 
processor and available real storage could hdve a significant impact on 
the choice of TP access method, or vice versa. 

The main alternative software choices to be made are as follows. 

Operating Svste&s VSE, OS/iSl, OS/VS2 

In general terms, VSE is the simplest and fastest operating system and 
OS/VS2 ~VS) is the slowest and most sophisticated system. Where the 
proposed CICS/VS system is only one of a number of systems running 
concurrently on the same processor, it may mean that the more 
sophisticated operating system will give better overall system 
performance. Alternatively, if the installation is running a dedicated 
CICS/VS system with a comparatively simple application, VSE will 
probably be the cheapest and most efficient choice, irrespective of 
processor size. However, no hard and fast rule should be adopted. Each 
case should be evaluated on its own merits. 

TP Access Methods - BTAM, VTAM, TCAM (CICSLOS~Qll1Yl 

These access methods have significantly different performance 
charact~ristics which impact the choice of host processor. The ability 
of VTAM to support intelligent terminals and sub-systems (such as the 
IBM 3790 Communication System) also has significant performance 
consequences necause some of the work normally done in the processor can 
be off-loaded. In some cases, a significant percentage of transactions 
can be completely handled by the intelligent terminal (and its 
controller) without the need for a transmission to the host processor. 

Unless there are very special reasons, it is advisable to only use a 
single access method. 

Database Access Methods 

The main alternatives in this area are: 

o Hardware-oriented access methods (DAM, ISAM) 

o Virtual storage access method (VSAM) 

o Complex database access method (DL/I) 

The choice between DAM, ISAM, and VSAM from the performance point of 
view is basically that DAM and ISA~ are slower than VSAa nut require 
less real storage. If the datanase is on a fixed block architecture 
(FBA) device, neither DAM nor ISAM can be used. DL/I requires an 
additional amount of real storage and overhead in processor po~er. If 
the database is very complex and is to be interrogated by many different 
types of keys, or if complex relationships are necessary, the need for 
extra storage and power can be offset by better performance by the 
terminal operator and program coder, and quicker access to the actual 
physical data. However, it is very important to cost-justify the 
decision. 

Chapter 6.1. Introduction to Performance Considerations 265 



The PL/I Optimizing Compiler has a facility whereby those resident 
library modules likely to be used in more than one program 
simultaneously can be stored together in the link-pack area, whence they 
can be invoked from any region. This facility, knoun as the PL/I Shared 
Library, is available to PL/I programs running as CICS/OS/VS 
applications, provided that they were compiled by the PL/I opticizing 
Compiler. The PL/I Shared Library is another facility that helps the 
user to conserve storage. 

CICS/DOS/VS Shared Library (PbL!l 

The CICS/DOS/VS Shared Library facility an abIes some of the PL/I 
Resident Library modules to be used by more than one PL/I program 
running under CICS/DOS/VS. This avoids duplication of code. For 
further details see DOS PLII OQ~imiz~ComE!lef-Inst~!!~tio~. 

The main alternatives should b~ thoroughly examined and cost-justified. 
It is especially important to examine which system resources are implied 
by the use of any particular CICS/VS option. Some major CICS/VS 
options, which have an impact on system performance, are discussed in 
the latter part of this chapter. These include the High Performance 
Option (MVS only) and the CICSjDOS/VS Entry Level System. 

When these major design decisions have been made, the system 
programmer should investigate the individual options for each major 
component. A discussion of the performance implications of the major 
options is given in the appropriate CICS/VS System Programoer's Guide. 

CICS/VS Modules in Shared Area of Operating System 

Certain_CICS/VS management modules may occupy the link-pack area (LPA) 
on OS/VS systems or the shared virtual area (SVA) on VSE systems. 
Eligible modules are l1sted in the CICS/VS System Programmer's Guide for 
the appropriat8 operating system. 

Modules using these areas may be shared betueen two or more CICS/VS 
~y~tcmz in the ~a=c processor syste~. This red~ces real storage 
requirements and the amount of paging. Tuo or [Jore such CICS/VS systems 
may intercommunicate, but they uill benefit from sharing modules uhether 
they communicate with each other or not. 

System integrity is improved for single and multiple CICS/VS systems, 
because the shared areas have protection keys of O. The CICS/VS 
management modules therefore cannot be overwritten by other programs, 
such as CICS/VS applications. 

266 CICS/VS System/Application Design Guide 



COMMUNICATIONS DESIGN 

Data communications design has a significant effect on the success or 
failure of th~ project, because it is the interface between the user and 
the host proc~ssor, and because it has significant impact on the 
response and throughput of the system. 

Network Desian 

It is not intended to enter detailed discussions on design of 
communications networks. It is sufficient to recommend that each 
connection betw6cfi the host processor and the terminal user should have 
adequate capacity to cope with peak demands. As far as other 
constraints allow, the network should be balanced to match expected 
traffic to the capacity of eaCh part of the link. This includes 
ensuring that the processor can deal with the peak traffic rate that the 
network can present to it. Hence an overall smooth flow will occur as 
messages move through the network. Normally it is reasonaole to expect 
small queues to occur at various points because in practice, it ~s 
impossible for all links to cope with all the variations in load. 
Queues allow minor fluctuations in load to be smoothed out. A system 
with no queues can De achieved, of course, when the system is more 
powerful thau is necessary, but this results in a higher cost per 
transaction than is necessary. 

Message Desiga 

Another important consideration is the amount of information passed 
between the terminal and the host processor. In many cases, there can 
De a distinct trade-off between the cost per transaction and the ease 
with ~hich the terminal operator can enter or use the data. 

For example~ always using a formatted screen where both the actual 
data and the format are always transmitted can have a significant effect 
on performance and cost. ~his causes an impact both in the host 
processor software and the capacity of the network. Of course, other 
considerations are necessary. For exa~ple, it would be unreasonable to 
expect the genaral public to use an unformatted screen or to use 
abbreviated symbols to communicate with the computer. 

Chapter 6.1. Introduction to Performance considerations 267 



Think Time 

Many teleprocessing systems are designed with the underlying concept 
that, for a large proportion of elapsed time, the operator is either 
entering data or thinking. During the remainder of the time the system 
is processing the message. Th~s means that although the system may only 
be capable of processing a small number of transactions simultaneously, 
it can support a large numner of terminals. For example, suppose the 
system is capable of supporting five transactions simultaneously with an 
average response time of under two seconds. If the operator only enters 
one transaction every 60 seconds, the system would be capable of 
supporting up to 150 active terminals. If, however, the operator thinks 
and enters the data in four seconds, the system is only capable of 
supporting 15 active terminals. This kind of consideration is essential 
when designing the network (ana determining the host processor 
requirements). 

CICSjVS has several powerful and sophisticated features, which allow 
the user to initiate transactions with a very short think time and just 
one or two keystrokes. An example of this is the use of BMS Terminal 
Paging. This can be used so that the application will prepare more 
output than can be displayed at the screen at anyone time. This output 
is split up into varLOUS pages by CICSjVS and is stored on disk by the 
Temporary Storage Program. By the use of paging commands, the operator 
can select each page of the output for display. This means that a 
single operator, by indiscriminate use of this function, can put a 
sign~ficant load on the system, because each display of a page may be 
equivalent to a normal transaction (terminal input, disk retrieval, 
terminal output) • 

DATABASE DESIGN 

In a DB/DC system such as CICS;VS, the database can be considered to be 
part of the system and, as such, the general principles applicable to 
the system can be applied. Included in the database for the purposes of 
this discussion are the page dataset (for page I/O) and any other 
datasets (for example, CICSjVS statistics and temporary storage) • 

Primary considerations in database design are as follows: 

o Datasets should be arranged so that traffic to the d~fferent 
physical devices is equalized as far as possible, especially under 
peak load conditions. 

o The design of the database should be such that the minimum amount 
of data is transferred between the database and the terminal 
operator. A wO~e cOwpleA database design may allow easier 
-extraction of the pertinent information, thus allowing economies to 
be made in the amount of data transmitted through the network. 
This must of course be balanced against the extra handling 
necessary by the database access method and possibly a requirement 
for more real storage. 

• The host resource requirements (storage, processor power) should 
match the access method requirements. 

• For systems with madium or high transaction rates, the impact of 
extensive updating or adding of records, which normally requires 
exclusive use of a portion of the dataset, should be considered in 
some detail. 

268 CIeS/VS System/Application Design Guide 



PRuGRAM DESIGN 

The main factors to be considered in CICSjVS program design are: 

• Choice of programming language 

• Module size and program structure and the method of transferring 
control from one program to another 

o Splitting into working set and non-working set 

o Resident or non-resident programs 

• Conversational and non-conversational programs 

The choice of programming language (COBOL, PL/I, RPG II (for CICS/DOS/VS 
only), or assembler) will primarily depend on the relative amount of 
programming activity and production work, together uith the skills 
available. The higher programmer productivity of the high-level 
languages may more than compensate the increased resource utilization 
required. Another factor is the use of either the CICS/VS Macro Level 
Interface or the CICS/VS Command Level Interface. The commana level 
gives higher programmer productivity than the macro level at the expense 
of some extra resource,utilization. 

In order of decreasing overhead and decreasing productivity the 
selection is: 

1. Command Level Interface with COBOL, PL/I, or RPG II (for 
CICSjDOS/VS only) 

2. Command Level Interface with assembler 

3. Macro Level Interface with COBOL, or PL/I 

4. Macro Level Interface with assembler. 

The overheads take the form of increased instruction execution and a 
larger real storage requirement. 

An idea of the relative costs of the various alternatives is given in 
the CICS/VS System Programmer's Reference Manual. 

Note that RPG II programs (CICS/DOS/VS only) are not reentrant; 
therefore to allow more than one transaction to concurrently make use of 
a program, a separate copy of the program for each transaction will be 
loaded into storage. 

Chapter 6.1. Introduction to Performance Considerations 269 



Using the normal criteria for defining module sizes and program 
structure will generally lead to comparatively small modules, each 
satisfying a particular function. This can sometimes lead to poor 
performance. Modules should be written to minimize the use of real 
storage; that is, they should occupy the minimum storage for the 
smallest amount of time. Because the operating system deals vith 
storage in pages (20ij8 bytes for VSE and OS;VS1, 4096 for OS/VS2), any 
module smaller than the size of a page vill still effectively utilize 
the whole page while it is executing. Typical maximum sizes are 12K for 
COBOL and PL/I programs, and 4K for Assembler programs. 

CICSjVS can be used to pass control from one program module to 
another. While the overhead to do this is comparatively small (see the 
£ICS/VS System Pro~rammer's Reference Manual for details), large numbers 
of calls via the eICS/iS Program Control interface during a single 
transaction can add a significant overhead. If this is the case, it is 
recommended that either programs are amalgamated to form larger modules. 
Typically a maximum of 3 or 4 calls should be aimed at. 

The overhead is both in instruction pathlength and real storage 
requirements. 

The concept of working set or reference set is very important, 
especially in systems with limited real storage. Programs (and data 
areas) should be split into code that is used frequently and code that 
is only used infrequently ~or example, for error conditions). It is 
recommended that code be arranged so that the infrequently-used code can 
be in a different page from the frequently-used code. This can be done 
by splitt~ng the code into different modules, or for very large modules 
the code can be separated into high-use and lou-use sections. ahen 
considering the code packaging, all constants, control blocks, and data 
areas must be included. 

Resident a.nd Non-resident Application Module§ 

CICS/VS allows programs to be loaded into virtual storage vhen the 
system is initialized. They stay in virtual storage until the CICS/VS 
sy stern closes doun. They will be paged into main storage as reg uired 
and the length of t~me they stay in main storage will depend on factors 
such as their frequency of use. Alternatively, CICS/VS uill dynamically 
load application programs into the CICS/iS dynamic storage area on 
request. Although this process is basically the same as that carried 
out at initialization time, there is an important difference. It is an 
expensive piece of processing, and hence it can have an impact on online 
performance. It is far better to absorb this overhead during 
initialization ~hen there are no demands for quiCk response. It should 
also be remembered that loading a program does not necessarily prevent 
page faults occurring when the particular program is referenced. 

270 CICS/VS System/Application Design Guide 



Conversational and Non-conversational Transactions 

CICSjVS transactions can be written in t\fO distinct modes: 

• Conversational 

o Non-conversational 

In the conversational mode, the transaction is initiated as a result 
of the first piece of input from the terminal. After that, a number of 
inputs and outputs to and from the terminal will occur before th~ 
transaction is terminated. For certain application types (for exaillple, 
text processing) this is the obvious way to construct the application. 
It has the disadvantage that storage resources can be held by the 
transaction for the whole time the transaction is operational. It is 
quite possible tnat for most of the time the operator is thinking or 
entering data. 

Non-conversational tasks do not have this overhead because the 
transaction consists of a single input and one or more outputs to the 
terminal. 

Applications that require a "conversational" approach can be coded 
using a sequence of non-conversational transactions. When a wait for 
the operator occurs, the transaction is terminated and the resources 
released. The next input from the terminal will then cause another 
transaction to be initiated and the next part of the same application 
can be executed as required. While this approach requires more 
application programming, Decause application data must be pr~served and 
th8 application logic is probably more complex, it can make a 
significant difference to performance if there is insufficient real 
storage to match the working set. The storage overhead of 
conversational tasks can De alleviated by using tne Anticipatory Paging 
feature of CICS/VS (see the appropriate CICS/VS System Proqramaer's 
Guide), thus saving the cost of continually reattaching and terminating 
the same transaction. 

HUMAN FACTORS 

There are at 18ast two significant areas where human factors aspects of 
system design and performance aspects meet. These are concerned with 
the interaction of the terminal operator and the computing system. 

Firstly, it should be remembered that facilities that are easy to use 
will tend to get used more often, sometimes for purposes for which they 
were not designed. There is often a tendency for the easily-used 
facilities to require more resources, and the designer may find that a 
projected transact10n mix used to estimate system performance may become 
biased towards the easily-used and more expensive transactions. For 
example, in a text processing application it may be necessary to correct 
a number or misspelled word which occurs several times. This could 
either be implemented such that the operator will display each line 
containing the word and correct it separately, or by searching the whole 
document and automatically correcting and displaying the relevant lines. 
Obviously the latter is easier to use but could require substantial use 
of the system's resources. This could be wasteful if there are only a 
few occurrences of the word to De corrected. 

Secondly, it is oft8n desirable to keep the terminal user occupied. 
For example, in an order-entry application it may be beneficial from a 
resource-utilization point of view to require the operator to enter 

Chapter 6.1. Introduction to Performance Considerations 271 



sev~ral orders together (up to the limitation of the screen size) and 
then process them in a batch. If the amount of processing per batch is 
significant, the rasponse time may be quite large. This could mean that 
the operator may get bored and, having his or her concentration 
disturbed, may be more prone to errors. It may be better to design the 
application so that less work is entered at a time and a quicker 
response is obtained. 

PERFORMANCE MONITORING 

Although an online system may De operating efficiently when it is 
installed, the characteristics of the system usage may change and the 
system will not run so efficiently. This inefficiency can usually be 
corrected by adjusting various controls. 

The usual symptoms of inefficient usage are decreased throughput and 
increased response time. If these occur it leaves a feeling that the 
system is inefficient and poorly designed. Monitoring the performance 
of the system will enable the person responsible to see the trend and 
hopefully identify the problem before it shows up as poor response and 
throughput. 

Most performance monitoring is done by sampling information in 
certain control blocks at regular intervals, and by counting the 
occurrence of certain critical events. CICSjVS provides certain 
monitoring features, and there are also features in the various access 
methods and operating systems that enaDle this monitoring to be carried 
out. An outline of the facilities and techniques is given in the 
appropriate CICS/yS Syste~ Programmer's Guide. 

It is essential that the system designer lays down monitoring 
procedures to accumulate the desired information and procedures to make 
changes according to the data obtained • 

. Because the monitoring is usually done by sampling, it will itself 
have an impact on the system performance. There is a definite trade-off 
between the cost of over-enthusiastic monitoring and the amount of 
control needed. It is recommended that the user establishes the impact 
on system performance of using various levels of monitoring. A suitable 
level may well be a general monitoring of the most critical parameters, 
together with a detailed investigation of each new feature or 
application. It is recommended that performance testing of new 
applications be made part of the normal functional testing, which each 
new program will receive. 

CICS/VS Monitoring Facility 

This CICSjVS facility will provide monitoring information at various 
levels of detail. 

The accounting class provides the m~1mum information to enable 
accounting routines to associate particular transactions with particular 
users or terminals. 

The performance class provides data to enable the performance of the 
systems to be observed. Information like response time, CPU time, and 
data base calls can be collected. Charging algorithms that depend on 
resources actually used would use this class of data collection. 

272 CICS/VS System/Application Design Guide 



The exception class provides data on certain exception conditions 
that the task has encountered. 

The data is collected at various event monitoring points in the 
CICS/VS syst8m. These may be system or user defined. The user-defined 
monitoring points, the monitoring classes, and the data sets to be used 
for collecting the monitoring data are recorded in the Monitoring 
Control Table (MCT) , which is generated by the DFHMCT macro. 

Full details of the monitoring facility are given in the System 
Programmer's Reference Manual. 

The CICS/VS monitoring facility is a data collection tool. CICS/VS 
provides no data reduction or analysis programs although the sample 
program DPHXMOLS will print the monitoring data. 

RECOVERY, SECURITY, AND DEBUGGING 

Recovery and 
The level of 
application. 
the resources 
throughput of 
justified and 

security are very desirable features for any online system. 
recovery and security required depends very much on the 

However, because such features can be very expensive in 
they require, their impact on response time and on the 
the system, ~t is essential that they should be cost
several alternative techniques considered. 

If a program error occurs during normal online running, it can 
sometimes be very difficult to recreate the problem in an artificial or 
controlled environment. The problem can sometimes be alleviated by 
using such tools as CICS/VS Trace and Dump Facilities to automatically 
monitor the path of each transaction. This kind of facility can add a 
significant processor and storage requirement overhead and should be 
used \lith care. 

ONLINE CONTROL AND MODIFICATION OP THE SYSTEM 

The load on an online system will normally vary, often considerably, 
with the time of day. During peak periods it may be necessary, for 
example, to l1mit certain kinds of transactions or change certain system 
parameters. It is also possible to automatically initiate lov-priority 
or "batch-like" transactions during slack periods to use spare capacity. 
These controls can be carried out dynamically by the system or master 
terminal operator ny using the appropriate CICS/VS transactions. 

It should be part of the system design to lay down procedures 
defining controls to be instituted to ensure adequate response times at 
peak periods and utilization of spare resources during slack ,periods. 

Major CICS/VS Performance Options 

There are two major performance orien~ed CICS/VS options: 

• CICS/DOS/VS Entry Level System 

• High Performance Option for OS/VS2 (MVS) 

Chapte r 6.1. Introduction to Performance Considerations 273 



other significant features which can have an impact on performance 
are: 

o Intercommunication 

• Recovery and Integrity features. 

CICSjDOS/VS ENTRY LEVEL SYSTEM 

This pregenerated CICS/VS product gives a system which is optimized for 
the situation when only one task is processed at a time. This system 
will give optimal performance for small installations with networks of 
up to about 30 terminals. 

The Entry Level System provides significant economies in real storage 
and processor requirements by eliminating the sophisticated control 
mechanisms of CICS/DOS/VS. 

However, if the smaller system grows and the load increases, it may 
be found that upgrading to CICS/DOS/VS will give better performance. 

HIGH PERFORMANCE OPTION CCICS/OS/VS ONLY) 

In a CICS/VS installation there is generally a requirement for the same 
terminal net~ork and data to handle both simple (low-function) and 
complex (full-function) transactions. For many applications a high 
transaction-rate is required for the simple transaction types, while the 
complex transaction types are able to tolerate slower rates. Although 
it provides an improvement for all users, the CICS/OS/VS High 
Performance Option (HPO) is designed specifically to support the low
function, high transaction-rate requirement for MVS users. 

In the case of simple transactions, HPO provides improved performance 
over the base CICS/OS/VS system by reducing the transaction path length 
(instructions). For transactions involving 1 input message, 1 output 
message, and 3 physical DASD accesses, the reduction is likely to be in 
the order of 50%. This has the effect of increasing the transaction 
rate that CICS/OS/VS can support, or reducing the processor utilization, 
or both. It makes use of the MVS Service Request Block (SRB) facility 
and so provides better utilization of a multiprocessor. 

The main characteristics of BPO are: 

• Primed storage: improved storage management. 

• vTA5 autho~izea path: improved path through VTAa. 

• VSAM fast path: improved file accesses. 

• Improved logging and journaling. 

These characteristics are described in detail under the following 
headings. 

The BPO function is available to MVS users via the SRBSVC=number 
operand (aVS only) of the DFHSG TYPE=INIT macro (for full details refer 
to the CICS/VS System PrQ..g~!!!tl.!.s Referg.!!.£§._Ma!!.!!al).. This 
specification provides the VTAM authorized facility and the potential to 
use the VSAM fast path facility. 

214 CICS/VS System/Application Design Guide 



Normally, CICS/OS/VS minimiz-as the amount of storagE: in active uSe by 
acguiring and releasing it dynamically. Storage held by a task is 
returned to the common storage pool when that task terminates. 

The primed storage facility of HPO (obtained via the PRMSIZE= operand 
of the PCT macro) allows the user to specify that, at task termination, 
the storage De retained for later use by another task of the same 
transaction type. Although the amount of storage in use at anyone time 
is increased, performance is improved by the use of this suballocation 
scheme for acguiring and releasing storage. 

Note: Under OSjVS1, the primed storage facility may be used even if no 
other. BPO facilities are specified. 

VTAM Authorized Path 

Under OS/VS2 an alternative path is available in VTAM to authorized 
programs. BPO uses this shorter path by scheduling Service Request 
Blocks (SRBs) to perform VTAM operations where possible. 

File Access 

Under OS/VS2 VSAM provides a fast path which gives improved performance 
for the accessing of control intervals. This is known as "improved 
control interval processing" (ICIP). This support provides the BPO user 
with fast patn access to h1S data base for both ESDS and KSDS files. 
Those files which are to be accessed using VSAM ICIP are indicated via 
the MODE= operand of the DFBFCT TYPE=DATASET macro (for full details 
refer to the CICS/VS System Programmer's Reference Manual). The 
following restrictions apply to ICIP files: 

o The control interval size must equal the physical block size. 

• New records may not be added to a file while it is being accessed 
using ICIP. 

• Browsing or segmenting is not supported. 

• Sharing of resources ~specially buffers) is not supported. 

• Indirect Access and Alternate Indexes are not supported. 

• Relative Record files are not supported. 

Support for both ESDS and KSDS files is provided by using ICIP 
interface. To achieve a consistent interface with ESDS the deDlocking 
is performed by CICS/OS/VS. For KSDS files the user specifies the level 
of indexes that are to be kept in core. When using the KSDS interface 
via ICIP both the index and data file must be dafined for the file, 
otherwise ICIP will not be used. 

The same file may De accessed using either ICIP (simple transactions) 
or normal VSA~ (complex transactions), but not at the same time. The 
DPaOC TYPE=OPEN, MODE= macro specification allows the required mode to 
be selected. Full details of the DFHOC TYPE=macros can be found in the 
CI~§L!S SY§!~~~~g£~~g£~s Rgfe~~g_Ma~~l. 

Chapter 6.1. Introduction to Performance Considerations 215 



statistics 

HPO will maintain statistics on primed storage utilization. These 
include the average amount ~ytes) by which the task type exceeded its 
initial primed allocation. 

To ma~ntain the high performance characteristics required oy BPO, the 
logging and journaling functions in CICS/OS/VS allow the delaying of 
journal I/O until either the buffer is full or after 1 second. 
Consequently the number of I/O operations executed for a given amount of 
file content is reduced. 

Intercommunication 

This feature of CICS/VS allows processing to be carried o,ut, or data to 
be accessed, on systems different from the one on which the transaction 
was entered or to which the terminal is connected. In overall system 
efficiency terms this will represent an improvement because previously 
it would have either been necessary to maintain more than one copy of a 
database or limit the application programs that the individual systems 
could run. 

This facility is not designed to be used to offload work from an 
overloaded system to an under-used system; the resources consumed by 
doing so are I~Kely to be at least as great as the resources required to 
do the function being offloaded. 

CICS/VS provides two sets of facilities that allow applications to 
access resources on remote systems: distributed transaction processing 
(DTP) and function request shipping. Both are described in Part 7. DTP 
is likely to prove the more efficient in terms of the use of computing 
resources (particularly the use of the intersystem link), but is likely 
to be the more costly in terms of programming effort. 

Recovery and Integrity Features 

CICS/VS provides a significant number of recovery and integrity 
features. The overhead associated with them can be divided into two 
parts. Firstly there is the overhead associated with the actual 
recovery process. Usually this is of little concern because it will 
only occur at very infrequent intervals. 

The other part is the recording of data with every occurrence of a 
recoverable operation such as an update to a data set. This has an 
imaediate impact on the total throughput and the transaction response. 

Whether either CICS/VS facilities or user's application code is used 
to provide recovery features, care is essential in minimizing usage if 
costs need to be limited. Indiscriminate use has been known to degrade 
throughput by up to 50%, 'while careful selection and implementation of 
an effective system can easily limit degradation to less than 10~ of the 
throughput. 

276 CICS/VS system/Application Design Guide 



Part 7. Intercommunication Design 

277 





Chapter 7.1. Introduction. 

A CICS/VS system may require resources owned by other CICS/VS systems, 
or may need to distribute processing to them. The systems may be 
region-remote, that is in the same processor system, or they may be 
domain-remote, that is in different processor systems ~r, strictly, in 
different SNA domains). For instance, an application running in a 
branch office processor may need to access data owned by a head office 
processor. Or, if one CICS/VS system is run for production work while a 
second is run, in the same processor system, to test new applications, 
it may be desirable to execute an application in the test system from a 
terminal connected to the production system. Such requirements are met 
by the CICS/VS intercommunication facilities. 

There are three types of facility: 

CICS/VS function request shipping 
An application requests use of a resource owned by another 
CICS/VS system. The resource can be: 

a file or DL/I dataoase 

a transient data or temporary storage queue 

another transaction 

The application program is designed and coded as if the 
resource were owned by the system in which the transaction is 
to run. Tables are set up by the system programmer indicating 
to CICS/VS where the resource is located, and CICS/VS ships a 
request for its use to the appropriate system at execution 
time. Function request shipping is available through the 
command level interface only of CICS/VS, the command level 
interface of DLI ~ICS/DOS/VS only), and the CALL level 
interface of DL/I. 

CICS/VS transaction routing 
A terminal owned oy one CICS/VS system runs a transaction in 
~nother CICS/VS system. The transaction that is invoked may 
execute programs that use either the command or the macro level 
interface. 

Distributed transaction processing (DTP) 
A CICS/VS transaction running in one system communicates 
synchronously with a transaction running in another system. 
Both programs are designed and coded explicitly to communicate 
with each other, and thereby utilize the intersystem link uith 
maximum efficiency. DTP is available through the command level 
interface only of CICS/VS. 

The mechanisms by which communication takes place are: 

an S5A access method, such as VTAM. This .is used for domain
remote connections. 

the multiregion operation (HRO) facility of CICS/VS. This is 
used for region-remote connections. MRO uses an interregion 
SiC to pass information between regions. 

Chapter 7.1. Introduction 279 



DTP is available via VTAM but not via MRO; transaction routing is 
available via MRO but not via VTAM; CICS/VS function request shipping is 
available via VTAM and MRO. The situation is summarized in Figure 7.1-
1. 

r ~------------------------------------------~---------------------------, 

connection 

Facility 

Function request shipping 

Transaction roating 

Distributed transaction processing 

Domain
remote 

(via VTAM) 

Yes 

No 

Yes 

Region
remote 

(via MRO) 

Yes 

Yes 

No 

Figure 7.1-1. Availability of Intercommunication Functions 

Where a facility is available via VTAM and MHO, the performance is 
likely to be better via MRO. 

VTAM application-to-application facilities can be used to implement 
CICS/VS function request shipping or DTP between CICS/VS systems running 
in the same processor system. 

The DTP facilities can be used to communicate, via an SNA access 
method such as VTA!!, between CICS/VS and other systems implementing 
suitable subsets of SNA logical unit type 6 (LU6) protocols. IMS/VS is 
one such system. 

Note about termino~: One of the pair of CICS/VS systems using 
intercommunication is known as the local system, the other as the remote 
system. The local system is the one from whose point of view the 
discussion takes place. The remote system is the other one: the one 
that owns the a data resource for which a function request is shipped, 
for instance. In the case of function request shipping, the r~mote 
c:vc:i-om t""::.n ho ron;,...n_rom,... ... o I;n ... ho ~"'mo ~,...m::o;n\ ,.....- ...1,..' .... "";n_ .......... m,... ........ I;n .,. -.1.---- --- -- --4--"· -_ ..... ""'-- ,-- " ... - ..... \04 .......... '--',,- ............. , "' ........ "" ... -.....~ ..... "' .... .....,"""" \ ....... '""'" 

different domain). In the case of transaction routing, the remote 
system is always region-remote. In the case of DTP, the remote system 
is always doma1n-remote (except if VTAM application-to-application 
facilities are used). Communication between two domain-remote CICS/VS 
systems is known as intersystem communication (ISC). 

280 CICS/VS system/Application Design Guide 



Chapter 7.2. Function Request Shipping 
and Transaction Routing 

Function Request Shipping 

Use of the function request shipping facility allows a CICSjVS 
application program to: 

• Access files and DL/I data bases managed by other CICS/VS systems 
by shipping requests for file control or DL/I functions. 

• Transfer data to or from transient data and temporary storage 
queues in other CICS/VS systems, or other non-CICSjVS systems that 
implement the SNA LU type 6 protocols, such as IMS/VS, by shipping 
requests for transient data and temporary storage functions. 

• Initiate transactions in other CICS/VS systems, or other non
CICS/VS systems that implement SNA LU Type 6 protocols, such as 
IMS/VS, by shipping requests for interval control functions. 

Applications may be written without regard for the location of the 
requested resource, for example, a file. Entries in the CICS/VS 
resource definition tables (for example, the file control table), allow 
the system program~er to specify that the named resource is not on the 
local (or requesting) system but in a remote (or owning) system. 

When a command level request is made for a resource owned by another 
system, CICS/VS turns the request into a suitable transmission format 
and ships it to the remote system identified in the relevant table. On 
receiving the request, the remote CICS/VS system passes it to a special 
transaction, known as the mirror transaction, which is responsible for 
executing the shipped request and sending the reply to the originating 
system. The mirror transaction recreates the original request and 
issues it on the remote system. 

CICS/VS recovery and restart facilities allow resources in remote 
systems to be updated ~nd ensure that when the requesting application 
program reaches a synchronization point, the mirror transactions 
updating protected resources also successfully reach the synchronization 
point, and that changes to protected resources in remote and local 
systems are consistent. 

Transaction Routing 

The transaction routing facility allows terminals connected to one 
CICS/VS region to run transactions in another CICS/VS region within the 
same processor system. CICS/VS handles all routing of requests and 
replies. Transactions can be designed and coded without regard to the 
fact that the terminal is connected to another CICS/VS region. 

Details of transactions on other CICSjVS systems are specified DY the 
system programmer in the Program Control Table. Details of terminals on 
other CICS/VS systems are specified by him in the Terminal Control 
Table. When a terminal operator enters a transaction code for a 
transaction that must be executed on another system, a transaction 

Chapter 7.2. Function Request Shipping & Transaction Routing 281 



referred to as the relay transaction is attached on the local system. 
The transaction executes a CICS/VS-provided program, the relay program, 
that establishes a connection with the remote system. 

The relay transaction sends the request to the remote system to 
attach the user transaction. When the user transaction issues a request 
to its principal terminal, tnat request is intercepted by the CICS/VS 
terminal control program and shipped back to the relay transaction. The 
relay transaction then issues the request to the terminal. Similarly 
terminal status and data are routed to the user transaction via the 
relay transaction. 

To allow recovery after an error, the relay transaction takes a 
synchronization point (if necessary) whenever the user transaction does 
so. 

Applications of Region-remote Intercommunication 

INTRODUCTION 

MRO enables two regions running CICS/VS in the same processor system to 
communicate with each other. Function requests can be shipped between 
them, and terminals connected to one can run transactions in the other. 
Some possible applications of these facilities are describ~d in 
subsequent sections. 

Conversion from Single Region System 

Using MRO, existing single-region CICS/VS systems can generally be 
converted to multiregion CICS/VS systems without reprogramming, provided 
the command-level application programming interface has been used. The 
restrictions that may necessitate reprogramming are documented in the 
CICS/VS System Programmer's Reference Manual. CICS/VS function request 
shipping will allow an existing application to continue accessing 
existing data resources after either the application or the resource has 
been transferred to another CICS/VS region, provided the applicaton uses 
the CICS/VS command level interface. CICS/VS transaction routing will 
allow an existing application to be ,run from an existing terminal after 
either the application or the terminal has been transferred to another 
CICS/VS region, in this case whether the application uses the command 
level or macro level interface. 

SYSTEM DEVELOPMENT 

If a system is to be upgraded by the installation of VTAft, 
communications controllers, network control programs and TP lines, 
function shipping application that are to use these facilities may be 
tested in parallel with the installation. This is likely to allow the 
applications to be put into production sooner than would be possible if 
testing were not started until VTAM became available. 

282 CICS/VS System/Application Design Guide 



PROGRAM DEVELOPMENT 

The testing of ncwly-uritten programs can be isolated from production 
work by running a separate CICS/VS region for testing. This enables the 
reliabilty and availabilty of the production system to be maintained 
during the development of new applications, because the production 
system remains up even if the test system terminates abnormally. 

By using function reguest shipping, the test transactions can access 
resources of the production system, such as files or transient data 
gueues. By using transaction routing, terminals normally connected to 
the production system can be used to run test transactions. 

The test system can be brought up and taken down as required, without 
interrupting production work. During the cutover into production of the 
new programs, terminal operators can run transactions in the test system 
from their regular production terminals, and the new programs can access 
the full resources of the production system. 

TIME-SHARING 

If one CICS/VS system is used for compute-bound work, such as APL or 
ICCF, as well as regular DB/DC work, the response time for the DB/DC 
user may be unduly long. It can be improved by running the compute
bound applications in one region and the DBjDC applications in another. 
Transaction routing allows any terminal to access either CICS/VS system 
without the operator being aware that there are two different systems. 

RELIABLE DATA BASE ACCESS 

An installation may have two sets of programs, one of which needs to be 
kept running even if a program in the other set causes the system to 
abnormally terminate. For instance, it may be desirable to continue 
running batch programs even if an online program terminates the CICS/VS 
system. Or an ~nstallation may divide its programs into reliable and 
unreliabl~ ones, and wish to be able to run the reliable ones even after 
an unreliable one has brought CICS/VS down. 

With MRO, two CICS/VS regions can be defined, one of which owns the 
online or unreliable applications, the other the batch or reliable 
applications and the data base. The more applications that run in the 
region that does not own the data base, the more reliable the data-base
owning system viII be. On the other hand, the cross region traffic will 
be greater, so performance is degraded. The system programmer can trade 
off performance against reliability. 

Chapter 7.2. Function Request Shipping & Transaction Routing 283 



DEPARTMENTAL SEPARATION 

MRO allows various departments of an organization to have their own 
CICS/VS systems. Each can bring up and take down its own system as it 
requires. At the same time, each can have access to other departments' 
data, with access heing controlled by the system programmer. A 
department can run a transaction on another department's system, again 
subject to the control of the system programmer. Terminals need not be 
allocated to departments, since, with transaction routing, any t&rminal 
could run a transaction on any system. 

MULTIPROCESSOR PERFORMANCE 

A single CICS/VS system will g~nerally be unable to ta~e advantage of a 
multiprocessor system. with MRO, using sev8ral CICS/VS systems, the 
user can take full advantage of a multiprocessor, and allow any terminal 
to access the transactions and data resources of any of the systems. 
Transaction routing presents the terminal operator with a single system 
image; the operator need not be aware that there is more than one 
CICS/VS system. 

The system programmer can assign transactions and data resources to 
any of the connected systems so as to balance the load and achieve 
optimum perf?rmance. 

Applications of Domain-remote Intercommunication 

VTAM enables domain-remote CICS/VS systems to be connected together so 
that function requests can be shipped from one to the other. Some 
possible application of these facilities are described here. 

Figure 7.2-1 illustrates some combinations of systems that may De set 
up using the GICS/VS function request shipping facilities and VTAM. 

CONNECTING REGIONAL CENTERS 

Many users have computer operations set up in each of the major 
geographical areas in which they operate. Each system has a data base 
organized towards the activities of that area, and its own network of 
terminals able to inquire or update the regional data base. When 
rOtT'10C:::+-C:: -Frnm nn~ ,..o,.,;"",n T-O".,,;,....'" ~~""'o;"'), -/=""''''''1'ft .... """' ... "' ......... .,... .-• ..: .... \.,... ..... "':",,"-"'---"---__ ~ _____________ W~ ___ ~_~~.~_ ~~~~ ~~vw ~~v~ag~, "~~uv~~ ~U~C~~I~~C~ 

communication, manual procedures have to be used to handle such 
requests. The intersystem communication facilities allow theSe "out-of
town" requests to be/automatically handled oy providing file access to 
the data base of the appropriate region. 

The application program can be written so that it is independent of 
the actual location of the data, and can run in any of the regional 
centers. An example of this type of application is the validation of 
credit against customer accounts. 

For example, if two systems each have a dataset called ACCT, 
containing data for their area, a single application program for 
execution in both systems can be written to handle inquiries against its 
local ACCT file and the re~ote ACCT file. To do this, each system has 

284 CICS/VS System/Application Design Guide 

/' 



an .l!CT entry for the file named "ACCTR.', specifying that this file is 
located on the other system, aud is known there by the name "ACCTtI. 
Each system also has a normal FCT entry for the file "ACCTU. 

With the following logic, the application program may first search 
its own file for the required record, and if not found, it can then 
search the "ACCTII file on the connected system. 

LCLFILE 

RMTFILE 

UNKNOWN 

/*PREPARE FOR RECORD NOT FOUND ON LOCAL SYSTEM*/ 
EXEC CICS HANDLE CONDITION NOTFND (RMTFILE) 
EXEC CICS READ DATASET ('ACCT') 
GO TO PROCESS 

/*PREPARE FOR RECORD NOT FOUND ON REMOTE SYSTEM*/ 
EXEC CICS HANDLE CONDITION NOTFND (UNKNOWN) 
EXEC eICS READ DATASET ('ACCTRI) 

I*RECORD NOT FOUND ON LOCAL OR REMOTE SYSTEH*/ 

CONNECTING DIVISIONS WITHIN AN ORGANIZATION 

Some users are organized divisionally, with separate systems, terminals, 
and data bases for each division: for example, Engineering, Production 
and Warehouse divisions. Connecting these divisions to each other and 
to the headquarters location improves access to programs and data, and 
thus may improve the coordination of the enterprise. 

The applications and data may be hierarchically organized, with 
summary and central data at the headquarters site and detail data at 
plant sites. Alternatively, the applications and data may be 
distributed across the divisional locations, with planning and financial 
data and applications at the headquarters site, manufacturing data and 
applications at the plant site, and inventory data and applications at 
the distrioution site. In eitner case applications at any site can 
access data from any other site, as necessary, or request applications 
to be run at a remote site (containing the appropriate data) with the 
replies routed back to the requesting site when ready. 

Chapter 7.2. Function Request Shipping & Transaction Routing 285 



North 

Central 

South 

Connecting regional centres 

Headquarters 

Warehouse Plant 

Connecting divisions: distributed applications and data 

• DB partitioned by area 

• Same applications run in each 

centre 

• All terminal user can access 
application or data in all 
systems 

CD Terminal operator and 
application unaware of 
location of data 

• Out-of-town requests routed 
to the appropriate system 

• DB partitioned by function 

• Applications partitioned by 
function 

o All terminal users and 
applications can access data 
in all systems . 

. CD Requests for non-local 
data routed to the appropriate 
system 

Figure 7.2-1. (Part 1 of 2) Possible Application configurations 

286 CICS/VS System/Application Design Guide 



Hierarchical division of DB 

• Summaries and central data at HO, detail data at plant location 

• Order processing at HO: orders and shedules transmitted to plants of production status 

• Plants send summaries ·of production status to HO (for example, overnight) 

• Access to data from HO or Plant possible if required. 

Connecting divisions: hierarchical distribution of data and applications 

Low priority 

or backup 
applications 

and data 

Connecting divisions: hierarchical distribution of data and application 

• Improved response through distributed processing 

Figure 7.2-1. (Part 2 of 2) 

Design Considerations 

High priority 
applications 

and data 

Possible Application configurations 

User application programs may run in a CICS/VS intercommunication 
environment and make use of the intercommunication facilities without 
being aware of the location of the file or other resource being 
accessed. The location of the resource is defined by the system 
programmer in the appropriate CICS/VS table: DCT for transient data; 
FCT for file control; PSB directory 1ist (PDIR for OS/VS and DLZACT for 
VSE) for DL/I; TST for temporary storage; and peT for interval control. 
(Details of these tables are in the CICSIVS System Proqram&er1s 
R~ference Manual.) The entry may also specify the name of the resource 
as it is known on the remote system, if that is different from the name 
by which it is known locally. When the resource is requested by its 
local name, CICS/VS SUbstitutes the remote name before sending the 
request. This facility is useful when a particular resource exists with 
the same name on more than one system but contains data peculiar to the 
system on which ~t is located. 

Chapter 7.2. Function Request Shipping & Transaction Bouting 287 



An operand, namely SYSID, is also available to allow the application 
program to sel~ct explicitly the system on which a particular command is 
to be executed. This optional parameter allows requests to be routed to 
a remote system without defining that remote resource in the local 
CICS/VS system. If this optional parameter is coded the resource 
definition tables on the local system are not used. 

The local system can also De specified in the SYSID operand, so the 
decision whether to access a local resource or a remote one can be taken 
at execution time. 

FILE CONTROL 

Intercom~unication allows access to BDAM, ISAM or VSAM files located on 
a remote system. Segmented records, and OPEN or CLOSE are not 
supported. Both inquiry and update requests are allowed, and the files 
may be defined as protected in the system on which they reside. Updates 
to remote protected files will not be committed until the application 
program issues a sync point request or terminates successfully. Linked 
updates of local and remote files may be performed within the same 
logical unit of work, even if the remote files are located on more than 
one connected CICS/VS system. 

Caution is needed when designing systems where remote file requests 
using physical record identifier values are efuployed, such as BDAM, VSA8 
RBA, or files ~ith keys not embedded in the record, because of the need 
to ensure that all application programs in remote systems have access to 
the correct values following addition of records or reorganization of 
these types of files. 

DL/I 

Intercommunication allows access to DL/I DOS/VS or IMS/VS DB data 
associated with- a remote CICS/VS system. A CICS/DOS/VS transaction may 
access data from an IMS/VS DB data base associated with a CICS/OS/VS 
system running in another processor system. Remote access to DL/I 
DOS/VS ENTRY is not supported. 

As with File Control, updates to remote DL/I data bases are not 
committed until the application reaches a sync point. It is not 
possible to schedule more than one PSB per logical unit of work, even 
vhen both PSBs are defined to be on remote systems. Bence linked DL/1 
updates on different systems cannot be made in a single logical unit of 
work. 

The PSB directory list (PDIR or DLZACT) is used to define a PSB as 
being on a remote system. The remote system owns the data base and the 
associated PCB definitions. When DL/I access requests are made to 
another processor system by a CICS/OS/VS system but no local requests 
are made, it is not necessary to install IMS/VS DB on the requesting 
system. For CICS/DOS/VS it is necessary to install DL/I DOS/VS, even if 
there is no DL/I database associated with the requesting system. This 
is because the decision to handle the request in a local or remote 
system is contained within DL/I DOS/VS. 

288 CICS/VS System/Application Design Guide 



IN'fERVAL CON'rROL 

Interval Control can be used to schedule transactions in remote 
connected systsms. The connecte~ system may be anyone that implements 
a suitable sunset of S~A LU Type 6 protocols. As well as CICS/VS, 
IMS/VS supports a suitable protocol. 

Entries for transactions locateu on other systems are made in the 
Program Control Table (peT). The CICS/VS START command allows a 
transaction name, and optionally a terminal name, to be specified on tne 
request. Thus a transaction can be initiated in a remote system with or 
without specifying an associated terminal. Additional operands on the 
START command are available to: 

• Name a Temporary Storage or Transient Data queue containing 
information previously set up for processing by the nominated 
transaction 

• Name another transaction, to be optionally invoked by the remote 
transaction before completion 

G Name a terminal to be associated with that transaction when it 
executes. 

o Indicate that an SNA function management header is included in the 
data. This allows a data description to be passed with the data. 

Use of these operands is optional. They may be used when initiating 
local as well as remote transactions. There is also an operand that 
improves the performance of intersystem START r&quests at the expense of 
detecting certain types of error; it is described later under ··NOCHECK 
Operand of STA RT Command". 

The names of the queue and the reply transaction specified in the 
additional operands must be defined in the system on which they are to 
be used. 

with these operands it is possible for a terminal connected to the 
local system to initiate a transaction that in turn initiates a 
transaction in the remote system to run concurrently with other work 
initiated ny the terminal in the local system. The application program 
at the local system issues a START request for the required remote 
transaction. The request specifies the identity of the invoking 
tarmindl, and the name of a reply transaction in the ~equesting system 
that is to be us~d to deliver the reply to the terminal. The requesting 
program then terminates, so releasing the terminal to enter other 
transactions. 

In the remote system, multiple copies of the single transaction may 
execute concurrently as a result of requests from sevaral other systems. 
On completion of its processing, the transaction sends the reply to the 
appropriate system via a START command naming the reply transaction and 
orig1nating terminal. Each requesting system must specify a system 
unique name for its reply transaction, and the remote system must have 
all theSe names in its PCT. 

If the data to be passed between the transactions exceeds that 
allowed by the START command, the data can ne added to remote Transient 
Data or Temporary Storage queues by naming the queue in the START 
command queue name operand. 

The PROTECT operand indicates that the remote transaction must not be 
scheduled until the local one has successfully completed a 
synchronization point. It can take the synchronization point ny either 

Chapter 7.2. Function Request Shipping & Transaction Routing 289 



issuing a SYNCEOINT command or termination. If the synchronization 
point fails, the START request is backed out. If PROTECT were not 
specified, the results of a failed synchronization point vould be 
undefined. This facility allows data intergrity across tha link to be 
maintained. If the remote system is IMS/VS, no message must cross the 
link between the START command and the synchronization point. 

A transaction initiateu by a START command can access the operands DY 
issuing the RETRIEVE command. A full discussion of the START and 
RETRIEVE commands may be found in the appropriate command level CICS/VS 
!2plication Programmer's Reference Manual. 

If a transaction initiated by a START request is to be recoverable on 
failure of the remote system, the request identifier specified on the 
START command must be defined as recoverable in the Temporary Storage 
Table (TST) on the remote system. 

Only the START and CANCEL commands are supported for function request 
shipping. The START command may specify a time of day at which the 
named transaction is to be scheduled. If the remote system is domain
remote and in a different time zone the requesting application program 
must take this into consideration, or use the interval form of time 
specification. 

When the local application is ready to ship a request, the intersystem 
facilities may be unavailable, either because the remote system is not 
active or because a connection cannot be established. An attempt to 
proceed with the request at that time would result in the SYSIDERR 
condition being raised. A solution is to store the request locally, and 
forward it when the link is back in service. The storing and forwarding 
may be carried out by user-written transactions or by the CICS/VS local 
queueing facility. 

CICS/VS will provide local queueing for START commands intended to 
initiate transactions on domain-remote systems. The commands must 
include the NOCHECK operand, and local queueing must be specified by 
means of either a user exit invoked from the CICS/VS routine DFHISP or 
the LOCALQ operand of the DFHPCT TYPE=REMOTE macro for the remote 
transaction. The user exit can specify local queueing for all requests 
from the local system, and the LOCALQ operand can specify local queueing 
for all requests from the local system for the particular remote 
transaction defined in the DFHPCT TYPE=REMOTE macro. Details are given 
in the ~stem_PrQgrammer's Reference Manual 

If a required link is out of service when a program executes a START 
command with the NOCHECK operand, then if local gu~ucing h~~ been 
specified, the request will be added to the queue. CICS/VS will 
automatically begin forwarding the queue when the link returns to 
service. 

Applications may be designed to communicate with remote systems on a 
store-and-forward basis. For instance, requests may be accumulated 
during the day and forwarded at night. A user-written transaction may 
be used to forward requests from a user-created queue. Alternatively, 
if the requests can be made in the form of START commands, and if the 
error checking suppressed by the NOCHECK operand is not required, then 
the CICS/VS local queueing facilities may be used instead. 

The CICS/VS NOINTLOG terminal status may be used on the sessions 
across the link to control when requests are forwarded. For instance, 

290 CICS/VS System/Application Design Guide 



~f the NOIdTLOG status is specified on tne TRMSTAT operand of the DPHTCT 
TYPE=SYSTEM macro defining the link, then CICS/VS viII not attempt to 
open sessions across the link in response to function shipping requests. 
START requests will then be queued. Hhen they are to be forwarded, the 
master terminal operator can acquire sessions or set the status to 
INTLOG, at which time CICS/VS will begin opening sessions and shipping 
the requests. 

TEMPORARY STORAGE 

Intercommunication enables application programs to send data to, or 
retrieve data from, Temporary Storage queues located on remote systems. 
A Temporary Storage queue is specified. as baing remote by means of an 
entry in the local TST. If the queue is to be protected, its queue name 
(or remote name) must also be defined as recoverable in the TST of the 
remote system. The queue on the remotb system may be defined as either 
an auxiliary or main storage queue. 

TRANSIENT DATA 

An application program can access intrapartition or extrapartition 
transient data queues on remote systems. The Destination Control Table 
(DCT) in the requesting system defines the named queue as being on the 

remote system. Tbe nCT entry for the queue in the remote system 
specifies whether the queue is protected, and whether it has a trigger 
level an~ associated terminal. Extrapartition queues may be defined (in 
the owning system) as having fixed, variable, or undefined length 
records. 

Many of the uses currently made of transient data and temporary 
storage queues in a stand-alone CICS/VS system can be extended to an 
interconnected processor system environment. For example, a queue of 
records can be created in a system for processing overnight. Queues 
also provide another means of handling requests from other systems while 
freeing the terminal for other requests. The reply can be returned to 
the terminal as soon as it is ready, and delivered to the op.erator when 
there is a lull in entering transactions. 

If a transient data destination has an associated transaction, the 
named transaction must be defined to execute in the system owning the 
queue; it may not be defined as remote. If there is a terminal 
associated with the transaction, it may be connected to another CICS/VS 
system within the same processor system and used via the transaction 
routing facility of CICS/VS. 

The remote naming capability enables a program to send data to the 
CICS/VS service destinations, such as CSMT, in both local and remote 
systems. 

TRANSACTION ROUTING 

A terminal operator signed on to a terminal connected to one CICS/VS 
system can a enter a transaction code for a transaction owned by a 
connected CICS/VS system, and have CICS/VS route the request to the 
owning system. The transaction will then run exactly as if the terminal 
were attached to the transaction-owning system. 

Chapter 7.2. Function Request Shipping & Transaction Routing 291 



CICS/VS will route information between the terminal and the 
transaction by means of a relay transaction running in the system to 
which the terminal is connected. 

To communicate with the terminal, the application program may use the 
terminal control, B~S or batch data interchange facilities of CICSjVS. 
Mapping and data interchange functions are performed in the system 
running the user's transaction. B!S paging operations will be performed 
on the terminal-owning system. BMS routing may be used subject to 
restrictions described in the System Programmer's Reference Kanual. 

Both conversations and pseudo-conversational transactions are 
supported. The various transactions that make up a pseudo
conversational transaction may run on different systems. 

CICS/VS supports automatic transaction initiation betwaen connected 
systems: the initiator transaction, the initiated transaction and the 
associated terminal (if any) may all be in different systems. 

Applications written for single-region CICS/VS systems may make use 
of transaction routing without, in most cases, any reprogramming. 
System errors associated with cross-regional traffic will cause th~ 
application to abend. 

A user's transaction can be in session with only one relay 
transaction at a time (since a transaction can converse with only one 
principal terminal). But it can be in session with several mirror 
transactions as well as a relay transaction ( it may have several 
function shipping requests outstanding). A mirror transaction may be in 
the same CICS/VS system as the relay or a different one; in the former 
case, the user's transaction will De using two simultaneous sessions 
between the two systems. A relay transaction session, which results 
from a transaction routing request, must be within a processor system, 
but a mirror transaction session, which results from a function shipping 
requests, may be within a processor system or across processor systems. 

Transaction routing requests may be routed through more than one 
connected CICS/VS system, if the transaction requested by the terminal 
is not available on the first system to which the request is routed. 
This 'daisy chaining' of requests is not recommended, however, bacause 
of difficulties in recovering from errors (see Chapter 1.5). 

292 CICS/VS system/Application Design Guide 

/' 



Automatic Transaction Inititation 

There are two uays in which transactions may be initiated automatically: 

by the transient data program, when the number of items on a 
queue reaches the trigger level; 

by the interval control program, when the time specified on the 
initiating request has expired. 

In either case, the transaction may require CICS/VS to connect a 
particular terminal to it. The terminal may be connected to another 
CICS/VS system within the same processor system. If the two CICS/VS 
systems are connected to each other by MRO, CICS/VS will start a remote 
scheduler transaction in the other system, and route the connection 
request to it. This transaction issues an automatic transaction 
in~tiation request for the relay transaction to run on the required 
terminal. If the terminal is not available (it may be connected to 
another transaction), CIeS/VS will wait until it is free before starting 
the relay transaction. When the relay transaction has been started and 
connected to the terminal, CICS/VS starts the user's transaction and 
routes information between it and the terminal via the relay 
transaction, in the same way as when the transaction is initiated from a 
terminal. 

The mapping operations of BMS are performed in the system on which the 
user's transaction is running. The mapped information is routed between 
the terminal and this transaction via the relay transaction, as for 
terminal control operations. 

For BMS page building and routing requests, the pages are built and 
stored in the user transaction's system. When the logical message is 
complete the pages are shipped to the terminal owning region (or 
possibly regions if they were generated by a routing request) and 
deleted from the user transaction system. Page\retrieval requests are 
processed by a BMS program running in the system to which the terminal 
is connected. 

THE MIRROR TRANSACTION 

The mirror transaction is supplied by CICS/VS to reissue function 
shipping requests transmitted to it by other systems. It executes as a 
normaICICS/VS transaction and uses the CICS/VS terminal control program 
facilities to communicate with the requesting system. Its transaction 
identifier is CSMI. In the requesting system, the command level EXEC 
interface program (for all except DL/I requests) determines that the 
requested resource is on another system, formats the request for 
transmission, and calls on the intercommunication component to send the 
request to the appropriate connected system. 

The intercommunication component uses CICS/VS terminal control 
program facilities to send the request to the mirror transaction. The 
first request to a particular remote system on behalf of a transaction 
will cause the communication component in the local system to precede 
tha formatted request with the mirror transaction identifier, in order 
to attach this transaction in the remote system. Thereafter it keeps 

Chapter 7.2. Function Request Shipping & Transaction Routing 293 



track of whether or not the mirror transaction terminates, and reinvokes 
it as required. 

The mirror transaction decodes the formatted request and executes the 
corresponding command. At completion of the command the mirror 
transaction constructs a formatted reply and returns this to the 
requesting system. On that system the reply is decoded and used to 
complete the original command level request made by the application 
program. 

If the mirror transaction is not required to update any protected 
resources, and no previous request updated a protected resource in its 
system, the mirror transaction will terminate after sending its reply. 
However, if the request causes the mirror transaction to change or 
update a protected resource, or the request is for any DL/I PSB, it will 
not terminate until the requesting application program issues a 
synchronization point request or terminates successfully. When the 
application program issues a synchronization point r&quest, or 
terminates successfully, the intercommuniction component sends a message 
to the mirror transaction which causes it also to issue a 
synchronization point request and terminate. The successful 
synchronization point by the mirror transaction is indicated in a 
response sent back to the requesting system, which then completes its 
synchronization point processing, so committing changes to any protected 
resources. If DL/I requests have been from another system, CICS/VS 
issues a DL/I TERM call as a part of the processing resulting from a 
synchronization point request made by the application program and 
executed by the mirror transaction. 

The application program is not constrained in the order in which it 
accesses protected or unprotected resources, nor is it affected by the 
location of protected resources (they could all be in remote systems, 
for example). When the application program accesses resources in more 
than one remote system, the intercommunication component invokes a 
mirror transaction in each system to execute requests on behalf of the 
application program. Each mirror transaction follovs the above ru~es 
for termination, and when the application program reaches a 

. synchronization point, the intercommunication component exchanges 
synchronization point messages with those mirror transactions that have 
not yet terminated {if any). This is referred to as the multiple-mirror 
situation, and is illustrated schematically in Figure 1.2-2. 

The mirror transaction uses the CICS/VS command level interface to 
execute CICS/VS requests and the DL/I CALL interface to execute DL/I 
requests. The request is thus processed as for any other transaction 
and the requested resource is located in the appropriate resource table. 
If its entry defines the resource as being remote, the mirror 
transaction's request is formatted for transmission and sent to yet 
another mirror transaction in the specified system. This situation is 
referred to as "chained-mirror." It is strongly recommended that the 
system designer avoids defining a connected system in which chained 
mirror requests will occur, except when tha requests involved do not 
access protected resources, or are iriquiry-only requests. Refer to 
Chapter 7.5, "Recovery and Restart" for further discussion of the 
effects of using chained mirror transactions. 

294 CICS/VS System/Application Design Guide 



CICSA 

EXEC 
interface 

CICSA 

FCT 

PCT 

PCT 

Intercomm 

Fl.gure '1.2-2. 

TCT 

CICSB 

PPT 

CICSB 

File control 
accesses 
FILEX VTAM 

or 
MAO 

Terminall-_____ -i 
control 

EXEC 
interface 

SESB 

Mirror 

Mirror 

MAO 

VTAM Terminal 
or 

control 
interface 

Interval control 
starts TANY 

CICSA has connections to CICSB and CICSC. 
The application program in CICSA makes requests to access file 
FI LEX, owned by CICSB, and to initiate transaction TANY, 
owned by CICSC, using a request id that CICSB defined as 
protected in the TST of system CICSC. CICSA is in conversation 
with multiple mirror transactions in CICSB and CICSC. 

~ult1pi~ d~d Chain=a rran5actions 

Chapter 7.2. Function Request Shipping & Transaction Routing 295 



THE RBLAY PROGRAM 

When a terminal operator enters a transaction code, CICS/VS checks the 
program control table and decides whether that transaction is owned DY 
the system to which the terminal is connected or some othe~ system. In 
the latter case, a transaction is started in the terminal-owning system 
and connected to the terminal. This transaction is frequently called 
the relay transaction, though in fact its name and attributes ar~ those 
of the user's transaction in the remote system, as described by the 
system programmer in the DFHPCT TYPB=BB!OTB macro for the terminal
owning system. The program that runs as this transaction is, however, 
the CICS/VS-supplied relay program. For the sake of simplicity, 
therefore, the transaction is often called the relay transaction rather 
than the relay program. 

If an automatically initiated transaction requires a terminal that is 
connected to another system, a relay transaction is started in that 
other system. If and when the terminal is free, the relay transaction 
is connected to it. 

In both cases (operator and automatic initiation), after the relay_ 
has been connected to the terminal, it sends a request to the other 
system to attach the user transaction. From then on, any request or 
output issued by the user transaction to its principal terminal is 
intercepted by the CICS/VS terminal control program and shipped to the 
relay transaction. The relay transaction then issues the request or 
output to the terminal. In a similar way, terminal status and input are 
shipped via the relay transaction to the user's transaction. 

The relay transaction remains in existence for the life of the user's 
transaction and has exclusive use of the session to the remote system 
during this period. When the user's transaction terminates, au 
indication is sent to the relay transaction, which then terminates and 
frees the terminal. 

When the user's application takes a synchronization point, then if it 
was defined as a protected task requiring committed output messages, an 
indication is sent to the relay transaction, which then takes its ovn 
sychronization point. Each of the tHO CICS/VS systems maintains its own 
log. Committed output messages are logged on the terminal owning 
system. 

A user transaction initiated by a relay transaction may in turn 
initiate one or more mirror transactions. This is illustrated in Figure 
1.2-3. 

296 CICS/VS System/Application Design Guide 



CICSA 

Intercommunication, 

Relay 

CICSA 

PCT 

CICSB 

FCT 

CICSC 

Figure 7.2-3. 

TCT 

TCT 

TCT 

CICSB 

SESA 

TRMA 

control 

A terminal connected to CICSA is used to initiate a transaction 
TRNA, owned by CICSB, via' a relay transaction. TRNA 
accesses a file, FI LEZ, owned by CICSC, via a mirror 
transaction. 

Relay and Mirror Transactions 

Chapter 7.2. Function Request Shipping & Transaction Routing 297 



PERFORMANCE CONSIDERATIONS 

The additional flexibility in operation that is afforded by the CICS/VS 
function shipping and transaction routing facilities must be offset 
against additional storage and processor usage that may be experienced 
when making remote requests. Details of the instruction overhead in the 
local processor of making any remote request are to be found in the 
CICSIVS System Programmer's Reference Manual. 

Where existing transactions are made to access their files remotely 
or existing terminals made to access their transactions remotely, 
terminal operators may experience an increase in response time due 
directly to the additional elapsed time taken to transmit the request, 
attach the mirror or relay transaction, and transmit the reply. The 
actual delay will depend upon the volume of data to be accessed and the 
speed of the communication facility. In addition, the delay may be 
aggravated in particular instances; for example: 

• Waiting for allocation of a session when the intersystem or 
interregion traffic exceeds the capacity of the available sessions; 

• Waiting tor sufficient resources in the remote system to schedule 
the m1rror or user transaction (for example, when the ~emote system 
has scheduled its maximum allowed number of tasks). 

• In the case of domain-remote requests, waiting while VTAM 
establishes the session between the systems on the first request 
that requires a particular system, when the session was not 
previously established; 

The system designer must ensure that sufficient resources are 
available in a system to handle mirror and relay transactions required 
by intercommunication requests. These transaction must be given due 
consideration when defining system initialization table values for the 
"maximum number of tasks" ~XT) and "maximum number of active tasks" 
(AMXT) operands of the DFHSIT macro, described in the CICS/VS System 
Programmer's Reference Manual) • 

For CICS/OS/VS users, the instruction pathlength for the mirror 
transaction may be reduced by specifying a primed storage allocation by 
means of the PRMSIZE operand of the DFHPCT TYPE=ENTRY statement for the 
mirror. The task control area (TCA), journal control area (JeA), EXEC 
interface block (EIB), and any VSA! work area (VSiA), viII be allocated 
from this area during execution of the mirror transaction. The exact 
allocation required may be found from the primed storage statistics 
collected for the mirror transaction. The allocation depends on the 
services requested by the mirror on behalf of remote transactions. 

For domain-remote connections additional instruction pathlength 
reductions may be gained by MVS users through by use of the VTAM 
Authorized Path with the CICS/VS High Performance Option. 

298 CICS/VS system/Application Design Guide 



i 

" 

In many enquiry-only applications, and in many update applications where 
recoverable data is entirely contained uithin one system, sophisticated 
error-checking and recovery procedures are not justified. Where the 
transactions make enquiries only, the terminal operator can retry an 
operation if no reply is received within a certain time. In such a 
situation, the number of messages to and from the remote system can be 
substantially reduced by means of the NOCHECK operand of the START 
command. Hhere the connection between the two systems is via VTAH, this 
can result in considerably improved performance. The price paid for 
better performance is the inability of CICS/VS to detect certain types 
of error in the START command. 

A typical use for the START NOCHECK command is to make enquiries of a 
data base that spans two or more CICS/VS systems. The transaction 
attached as a result of the terminal operator's enquiry has to analyse 
the information supplied by the operator, and decide where to route the 
request. It then issues an appropriate START command with the NOCHECK 
option, which causes a single message to be sent to the appropriate 
remote system to start, asynchronously, a transaction that makes the 
enquiry. The command should specify the operator's terminal identifier. 
The transaction attached to the operator's terminal now terminates, 
leaving the terminal available for either receiving the answer or 
in~t~ating another request. If the operator is to issue further 

'requests, the application program must make all answers self
identifying, since the operator may receive them in random order. 

The remote system performs the requested enquiry on its local data 
base, then issues a START command for the originating system. This 
command uould pass back the requested data, together with the operator's 
terminal identifier. Again, only one message passes between the tvo 
systems. The transaction that is then started in the originating systeo 
must format the data and display it at the operator's terminal. 

An example of intercomaunication using the NOCHECK option is given at 
the end of this chapter (Example 6). 

If a system or session fails, the terminal operator must re-enter his 
enquiry, and be prepared to receive duplicate replies. To aid him, 
either a correlation field should be shipped uith each request, or all 
replies should be self-describing. 

It is not possible to carry out simultaneous linked updates to data 
split between two systems, since the transaction that is the subject of 
the START command is executed asynchronously with the one issuing the 
command. 

The NOCfiECK operand is always required when shipping of the START 
command is queued pending the establishment of links with the remote 
system (see "Local Queuing" earlier in this chapter), or if the request 
is being shipped to IMS/VS. 

Chapter 7.2. Function Request Shipping & Transaction Routing 299 



Application Programming Considerations 

CICS/VS application programs can use the function request shipping 
facilities only through the CICS/VS Command Level Interface or through 
DL/I CALLS. Transaction routing is possible for transactions that use 
the macro or command level interface. Application may be coded so that 
they are unaware of the location of th~ resources or terminals being 
accessed. This common application program interface minimizes the 
difficulties of developing applications in connected systems by placing 
the burden of system definition and resource location on the system 
programmer. The command level interface is available for programs 
written in PL/I, COBOL, RPG II, or assembler language. Since the 
program is una·ware of location or means of connection, data resources, 
terminals and programs may be moved between systems without impact to 
the application programmer. 

Optional extensions of function request shipping (the SYSID operand) 
allow the application program to select a specific system on which to 
~xecute a request. In this case the resource definition tables on the 
local system are not referenced in order to make the request. If in 
this case the request refers to transient data destinations or files 
defined as having fixed length record format, the application program 
must supply the record length as part of the request; this information 
is required by the local CICS/VS system in order to transmit the record 
correctly in the case of a iRITEQ or WRITE request. The capability to 
specify a specific system is not available with DL/I. 

The START and RETRIEVE command parameters for "reply transaction 
identifier," IIreply terminal identifier, II and "processing queue name" 
are particularly useful in writing application programs to be initiated 
in remote systems as a means of distributing function among connected 
CICS/VS systems. 

A nGW error condition may be experienced by application programs that 
ship function r~quests to remote systems. It indicates that the 
resource is defined as remote, but the local system is unable to ship 
the request because the remote system cannot be contacted ~or example, 
it is temporarily out of service) or the remote system is not defined to 
CICS/VS. An application program that does not contain code to 
explicitly handle this condition will be abended if it occurs. Details 
of the return code are in the appropriate command level CICSL!~ 
Application Programmer's Reference ~anual. 

An application request against a remote resource may cause an abend 
in the mirror transaction (for example, the requested Transient Data 
destination has been disabled by the remote CICS/VS master terminal 
operator). Similarly, an error may occur which abends the relay 
transaction handling transaction routing in a system remote from the 
application program. In these situations, the application program will 
also be abended, but with an abend code of ATNI (for domain-remote 
systems) or AZI6 (for region-remote systems). The actual error 
condition will be logged by CICS/VS in an error message sent to the CSMT 
destination. Any HANDLE ABEND command issued by the application will 
not be able to identify the original cause of the condition and take 
explicit corrective action (which may have been possible if the resource 
was local). (An exception is the mirror transaction in a region-remote 
system abending with a DL/I program isolation deadlock; in this case, 
tbe application will abend with the normal deadlock ahend code.) 

The START command is supplied with an operand, NOCHECK, that can 
reduce the traffic between systems connected via VTAM. It indicates to 
CICS/VS that the result of checking the validity of the request in the 
remote system will not be returned to the request system; an error in 
the START command could therefore cause the remote transaction to abend 

300 CICS/VS system/Application Design Guide 



withou t the program that issued the command being notified. 'fhe 
facility is described earlier under "NOCBECK Operand of START Command". 

The NOCBECK operand is required if the remote system is IMS/VS, or if 
the START request is to be queued pending the establishment of links 
with the remote system (see "Local Queueing Option" earlier in this 
chapter) • 

System Programming Considerations 

The follow~ng is a summary of the points to be considered when 
generating a CICS/VS system that is to use function request shipping or 
transaction routing. (In the latter case, the system programmer is 
concerned with the terminal control and program control tables only). 
Details of generation macros and system requirements are in the CICS/VS 
Syst~ PrQgrammer's Reference Banual or £IC§LVS ~l§~gm Progr~mme£~ 
liuide respectively. 

There are certain restrictions that apply when designing a system 
using transaction routing and function request shipping; these 
restr~ctions are listed in the System Programmer's Reference Manual. 

TERMINAL CONTROL TABLE 

For each system to which CICS/VS is to ship function requests or to 
distribute transaction processing or to route transactions, there is a 
system entry in the TCT ~he TCTSE). Associated with this is a terminal 
control table terminal entry (TCTTE) for each session uith the other 
system. The TCTSE is generated by the DFBTCT TIPE=SYSTEH macro (or 
TIPE=ISLINK, which is exactly equivalant), and the TCTTE by either of 
these or by the DFBTCT ~YPE=TERBINAL statement. 

The local system also has a TCTSE. This allous local resources to be 
accessed using the SISID operand of application programner commands. 
The program can therefore use the same command to access both local and 
remote resources. 

The ACCMBTH operand specifies whether the communication is to be via 
the interregion communication facility (ACCHETH=IRC) or via VTAM 
(ACCaETH=VTAM). The former is used vhen the other CICS/VS system is in 
the same processor system, the latter when it is in another processor 
system, or when it is in the same processor system and the VTAM 
application-to-application facility is to be used. 

The SYSIDNT operand identifies the system entry, and is the name used 
in the other tables, such as the FCT and PCT, when defining resources as 
being on this particular rsmote system. 

For communication via VTAM, the TRMIDNT operand provides an identity 
for an associated TCTTE, which allows a specific session to be 
referenced in CICS/VS master terminal commands that do not refer to the 
remote system as a whole. For communication via IRC, the names of 
TCTTEs are generated from the parameters supplied on the SEND and 
RECEIVE.operands (described below). 

The name of the logical unit representing the other system must be 
specified in the NBTNAME operand, unless it is equal to the SYSIDNT 
value. This name is the same as that in the APPLID operand of DFHTCT 

Chapter 7.2. Function Request Shipping & Transaction Routing 301 



TIPE=INITIAL or DFHSIT TYPE=CSECT statements for the remote CICS/VS 
system. 

Where there are multiple parallel VTAM sessions with a particular 
remote system, the system programmer may code one DFHTCT TYPE=TERMINAL 
statement for each session. Alternatively, where the attributes of the 
VTA! sessions are to be all the same,. he may use the SEND or RECEIVE 
operands of the DFHTCT TYPE=SYSTEM statement. With IRC sessions, he 
must use SEND or RECEIVE. These specify the maximum numbers of sessions 
that a system may initiate and have initiated with it by other systems. 
They cause multiple TCTTEs to be generated without the system programmer 
having to code multiple DFHTCT TYPB=TER!INAL statements. They allow 
tvo-character prefixes for the TRMIDNT names of the generated TCTTEs to 
be specified together with a range of numbers, each number being used in 
character form as the other two characters of the TRMIDNT name. The 
number of sessions specified in a SEND operand and in the corresponding 
RECEIVE operand on the remote system must be the same. 

A number of other operands, normally associated with the DFBTCT 
TYPE=TERMINAL statement, may also be specified with the DFBTCT 
TYPE=SYSTEM statement to define specific CICS/VS processing options to 
be applied to the session with the remote system. These include 
operating priority (OPERPRI) and security (OPERSEC). These values 
should be chosen bearing in mind that mirror and routed transactions may 
operate on this session to handle requests from the remote system, and 
so must have thaappropriate authority to access resources in this 
system. The processing priority of the mirror transaction or a routed 
transaction is established by means of the TRMPRTY operand. 

Two operands apply solely to START ~mmands shipped to a remote 
system, both concerned with the intersystem data stream. RECF! 
indicates whether the data format follows the SNA VLVB specification, 
and DATASTR indicates whether the contents of the data stream are· in SNA 
Character Set (SCS), 3270 data stream, Structured Field, Logical Mapping 
or user-defined form. 

Transaction Routing 

To permit transaction routing, the system programmer must provide a 
DFHTCT TYPE=REMOTE macro for each terminal on a remote system that may 
be connected to transactions on the local system. The SYSIDNT operand 
specifies the name of the remote system. It is the name given in the 
SYSIDNT operand of the DFHTCT TYPE=SYSTEM macro. The TRMIDNT operand 
specifies a four-character name by which the terminal is to be known to 
the local system. The.RMTNAaE operand specifies the name by which the 
terminal is known to the system to which it is connected, if it is 
different from the TR!IDNT name. Other operands must be coded to 
describe the nhvsical characteristics of the terminal and the vay in 
vhich it is t~ be accessed. 

Alternatively instead of coding a TYPE=REaOTE macro for each 
terminal, it is possible to group the definitions of the terminals used 
in the local system under a macro specifying TYPE=REGION, 
SYSIDHT=system-identification, thereby defining the terminals as 
belonging to the named. system. Attributes of the terminals that are not 
required or are meaningless for a remotely owned terminal are ignored. 
A single set of terminal definitions may therefore be copied into the 
DFBTCT aacros for the remote system and for the local one. This 
facility greatly simplifies the terminal definition requirements for an 
BRO system. 

302 CICS/VS System/Application Design Guide 



FILE CONTROL TABLE 

Entries are added to the PCT to define remote files in the DFBPCT 
TYPE=REMOTE macro, which names the owning system, and optionally 
provides the name Dy which the file is known on that remote system. The 
remote system is specified by the same name as in the SYSIDNT operand of 
DFHTCT TYPE=SYSTEM. For files that have fixed-length record format, the 
LRECL operand must also be specified on this entry. 

DESTINATION CONTROL TABLE 

Entries to the DCT for remote Transient Data queues are made in the 
DFHDCT TYPE=REHOTE macro. As for fixed-length files, the record length 
for fixed-length record format queues must also be specified in the 
LENGTH operand. Such items as trigger level and associated transaction 
can be specified only in the queue definition macros of the remote 
system. It is not permitted to define a local transient data queue with 
an associated transaction defined to be in a remote system. 

TEMPORARY STORAGE TABLE 

A DPHTST TYPE=REMOTE macro is used to define a set of temporary storage 
queues in remote systems in a similar manner to that in which DFHFCT 
defines a file. The queues are defined in the ouning (remote) system by 
means of the DPHTST TYPE=RECOVERY macro if they are recoverable. No 
definition is required in the remote CICS/VS system if the queues are 
not recoverable. 

PROGRAM CONTROL TABLE 

Remote transactions are defined by means of the SYSIDNT operand of the 
DFHPCT TYPE=REMOTE macro. If the data to be passed to a transaction is 
to be protected, the request identifiers specified on the requests must 
appear as protected entries in the TST of the system ouning the 
transaction. 

When transaction routing is to be used, the PCT of the system to 
which the terminal is connected must include an entry for each remote 
transaction that may be invoked via the relay transaction. The 
transactions are specified in the DFHPCT TYPE=REMOTE macro. This macro 
specifies the name of the remote transaction and the name of the system 
on which it is to be executed. In addition, it describes the attributes 
of the relay transaction that is to control communication between the 
terminal and the user transaction; these attributes are usually the same 
as those specified for the user transaction in the remote system. 

Chapter 7.2. Function Request Shipping & Transaction Routing 303 



DL/I 

A program specification block (PSB) in CICS/OS/VS is defined as being 
remote by means of the SYSIDNT operand of th~ DFHDLPSB TYPE=ENTRY macro, 
which names the owning system. For DL/I under VSE, additional 
specifications on the DLZACT statement are required. The MXSSASZ 
operand of the DFHDLPSB TYPE=ENTRY statement is also required for remote 
PSB definition to inform CICS/VS of the maximum segment search argument 
that could be used with this PSB. 

In CICS/DOS/VS, the DOS/VS DLI DLZACT macro defines local and remote 
PSBs. 

When defining a system that may access domain-remote D1/1 tesources, 
care must be taken in the choice of the maximum request or reply message 
length value for the TIOAL operand of the DFHTCT TYPE=SYSTEM statement. 
This value must encompass the greatest of the maximum length request or 
reply that may be expected to be used with any of the remote PSBs on 
that system. This will be the greater of either an output request, or 
the reply to a schedule request. The reply to the schedule request 
consists of a header constructed by CICS/VS and a list of view 
descriptors corresponding to the PCBs associated with the requested PSB. 
The output request consists of a request header, an I/O area, and a list 
of segment search arguments. Its maximum length is the sum of thG 
maximum possible length I/O area required by the PSB and the maximum 
number of SSAs of maximum SSA length. The maximum possible I/O area 
size for a particular PSB is passed to a requesting system by the owning 
system as a field vithin the reply to the schedule request. 

If DL/I requests are" to be made to a CICS/DOS/VS system running in 
another processor system, DL/l DOS/VS must be installed with that 
system, even if there are no local D1/1 data bases. This is not the 
case for CICS/OS/VS. 

GENERAL CONSIDERATIONS 

If CICSjVS intercommunication facilities are to be used, the following 
macros have to be specified: 

DFHSG PROGRAM=ISC 
DFHPCT TYPE=GROUP,FN=ISC 
DFHPPT TYPE=GROOP,FN=ISC 
DFHSIT ISC=YES 
DFHSG PROGRAM=EIP and related code 

The DFHSG PROGRAM=TCP macro must include ACCMETH=VTAM, 
VTAMDEV=LOTYPE6 for a domain-remote connection or AccaETH=lRC for a 
region-remote connection. The CICS/VS System Programmer's Reference 
~~~! describes the PPT and PCT entries that must be specified for 
intercommunication. The system initialization table, DFHSIT, has an ISC
operand to control loading of the intercommunication group. The APPLID
parameter of DFHSIT must be specified if that operand was not included
in the DFHTCT TIPE=INITIAL statement. The APPLID of the remote system
must match the value in NETNAME or SYSIDNT in the DFHTCT TYPE=SYSTEM
statement referring to that system. The two systems may support
different levels of CICS/VS function, provided they both contain at
least those functions that are to be used.

A transaction, program or map may exist on more than one system.

304 CICS/VS System/Application Design Guide

For users of OS/VS2 (MVS), the CICS/VS High Performance Option (BPO)
may be specified with CICS/VS intercommunication facilities. When this
option is used, specification of VTAa Authorized Path for connections
between remote systems will reduce the pathlength for shipping requests
from one system to another.

The CICS/yS System Programmer's Reference 8anual contains information
on how to generate the Bigh Performance Option. CICS/VS files using
VSAM fastpath facilities of BFO may be accessed by transactions in
remote connected CICS/VS systems, but those transactions cannot open or
close these files, so they cannot switch batween fast path and normal
mode access to the file. The CICS/VS High Performance Option is
outlined in Part 1 of this manual.

The DFHPCT TIPE=ENTRY statements for any existing or new transactions
that may request access to remote data resources should be examined,
particularly to ensure that the DTB operand adequately specifies the
backout options to be used in the event of a session failure during
transaction sync point processing. The DTI~OUT (deadlock timeout)
operand in DFHPCT TYPE=ENTRY provides a timeout value to guard against
waiting too long for a remote request to be satisfied. The deadlock
timeout is activated either when the transaction is waiting for the
reply to a request on the mirror, or when it is waiting for allocation
of the session in order to send a request. In the former case the
deadlock timeout value will be exceeded when the mirror is enqueuing
upon resources in a manner that deadlocks it with another transaction
(which could be a mirror) that is also enqueuing on those resources in a
different order. The value will also be exceeded if the definition of
resources in remote systems has caused the mirror tran.saction to chain
ultimately back to one in the requesting system. Note that such PCT
operands as RTI~OUT and OPTGRP apply to the session between the
transaction and the terminal, and not to any associated
intercommunication sessions.

The DFHPCT TYPE=ENTRY statement for the mirror transaction may also
have a DTIMOUT value to guard against excessive waiting due to deadlocks
experienced by the mirror when it makes remote requests as in the case
of chained mirror transactions. The RTI!OUT value for the mirror is not
specified because it is usual for the mirror to wait for further
requests from the application program whan protected resources have been
accessed. By monitoring CICS/VS statistics for the mirror transaction,
a value may be assigned to PR!SIZE to meet the primed storage
requiraments of the transaction (CICS/OS/VS only). The stall purge
operand, SPURGE, should take a value that best suits the operating
characteristics of the system. The TPURGE and DTB operands of DFBPCT
must always be specified as YES. The PROTECT option of OPTGRP is not
requirad for the mirror transaction since all necessary logging is
invoked througb the synchnization point for CICS/VS intercommunication.
INBFMH=ALL must be specifiea. Other PCT options for the mirror
transaction may be used under the same criteria that govern selection of
options for other transactions within an installation.

Certain CICS/VS management modules may be installed in the link-pack
area (on OS/VS) or shared virtual area ~n VSE). These can be shared by
all the CICS/VS regions within a processor system. Using the LPA or SVA
has the advantages of reducing paging and improving reliability (since
the modules then cannot be overwritten). For information on
installation see the CICS/yS System Programmer's Guide for your system.

Chapter 7.2. Function Request Shipping & Transaction Routing 305

CRTE ROUTING TRANSACTION

Before a transaction on a remote system can be invoked via the
transaction routing facility, the system programaer must, in the
ordinary way, update the program control table. He must use a DFBPCT
TYPE=REMOTE macro to specify the remote transaction name and the name by
which it is to be known locally. CICSjVS provides a transaction, CRTE,
that allows a terminal operator to invoke a transaction on a remote
system without the need for any tabls updates on the local system
~hough the terminal from which CRTE is invoked must have been defined

on the remote system.) It may be used from any 3270 display device and,
under CICS/DOS/VS only, the console.

To use CRTE, the terminal operator enters:

CRTE SYSID=xxxx

where xxxx is the name of the remote system, as specified in the SYSIDNT
operand of the DFHTCT TYPE=SYSTEM macro. The transaction then indicates
a routing session has been established, and the user enters input of the
form:

yyyyzzzzzz •••

where YYYl is the name by which the required remote transaction is known
on the remote system, and zzzzzz ••• is the initial input to that
transaction. Subsequently, the remote transaction may be used as if it
had been defined locally and invoked in the ordinary way. All further
input is directed to the remote system until the operator terminates the
routing session by entering CANCEL.

The CRTE facility is particularly useful for invoking a master
terminal transaction (CSMT or CEMT) on a particular remote system. It
avoids the necessity of defining the remote csaT or CEMT in the local
PCT with a different name. CRTE is essential if EDF is to be used to
debug a transaction that runs on a remote system, and is useful for
testing transactions without using EDF and for occassional invocations
of remote transactions that do not varrant updating the PCT.

STATISTICS

CICS/VS maintains two sets of statistics to help evaluate the operation
of intercommunication facilities. The first set relate to usage of the
available sessions and indicate the level of contention experienced for
a session. The second set provides the number of remote requests made
for each type of remote resource, and the number of transaction routing
requests. Refer to the CICS/VS Operator's Guide for methods of
statistics collection and the CICS/VS System Programmer's Guide for
details of statistics output.

306 CICS/VS System/Application Design Guide

RECOVERY

When sessions netwaen connected systems fail, or one of the connected
systems fails, operator messages may be issued to indicate that the
failure occurred during a critical point in the synchronization point
process between the application program and its associated remote
transaction. Upon restart of the system or the failing session, further
messages will be issued to indicate whether or not a resource integrity
exposure exists as a result of the failure. If the message specifies
that there is an exposure, arrangements must be made to execute the
appropriate reconcilliation procedure, as specified by the system
designer. For further information, see Chapter 7.5.

Chapter 7.2. Function Request -Shipping & Transaction Routing 307

Function Request Shipping - Examples

This section gives some examples to illustrate the life time of the
mirror transaction and the information flowing between the application
and its mirror (CSMI). The examples contrast the action of the mirror
transaction when accessing protected and non-protected resources on
behalf of the application program. Example 5 illustrates a complete
series of transactions and the points at which a session bstween two
CICS/VS systems is made available for other requests. Example 6 shows
the same thing, using the message performance option. Further details
can be found in the CICStyS Diagnosis Reference Manual.

1. simple Enquiry

System A

Application Transaction

EXEC CICS READ
DATASET C1 RFILE I)

Free link
Reply passed back
to application which
continues processing

Transmitted Information

Attach CSMI,
IREAD' request

System B

----------------------------> Attach mirror
Perform READ request

'READ' Reply,Last
<----------------------------- Free link

Terminate mirror

308 CICS/VS System/application Design Guide

Syst.em A

Application Transaction

EXEC CICS READ UPDATE
DATASET('RFILE') •••

Reply passed to applic
ation

EXEC CICS REWRITE
DATAS ET (' RFILE ')

Reply passed to applic
ation

Transmitted Info~mation System B

Attach CSMI,
'READ UPDATE' request
----------------------------> Attach mi~ror

Pe~fo~m READ UPDATE
'READ UPDATE' reply

<-----------------------------

'REWRITE' request
--------------------------~>

'REWRITE' reply
<--------------------------

Mirror waits for next
~equest

~irro~ performs REWRITE

Mirror waits for next
request or syncpoint

Chapter 7.2. Function Request Shipping & Transaction Routing 309

3. Remote Update (Protected)

System A

Application Transaction

EXEC CICS READ UPDATE
DA'rAS ET (' RYILE ')

Transmitted Information

Attach CSMI,
'READ UPDATE' request

System B

----------------------------> Attach mirror

Reply passed to applic
ation

EXEC CICS REWRITE
DATASET ('RFILE')

Reply passed to applic
ation

EXEC CICS SYNCPOINT

Syncpoint completed
Application continues

'READ UPDATE' reply
<-----------------------------

'REWRITE' request
----------------------------->

'REWRITE' reply
<-----------------------------

'SYNC POINT' request, last
----------------------------->

+ve response
<.-----------------------------

310 CICS/VS System/Application Design Guide

Perform READ UPDATE

Mirror waits

Mirror performs
REWRITE

airror waits, still
holding the enqueue on
the updated record

Mirror takes sync point
- releases the enqueue,
frees the link,
and terminates.

4. Remote Update (protected) uith ABEND

System A

Application Transaction

EXEC CICS READ UPDATE
DATASET ('RFILE ')

Reply passed to applic
ation

EXEC CICS REiRITE
DATASET (' RFILE')

Reply passed to applic
ation

EXEC CICS SYNCPOINT

Application is abended
and backsQut •
Message routed to CSMT

Transmitted Information

Attach CSMI,
'READ UPDATE' request
-------------_> Attach mirror

'READ UPDATE' reply Perform READ UPDATE

<-------------------------

Mirror waits
'REWRITE' request
----------------,> Mirror performs

REWRITE
'REWRITE' reply

<---------------------
'SYNC POINT' request,last
-------------------->

-ve response

<---------------------
Abend message

<,-----------------------

Mirror waits

Mirror attempts
sync point but abends
- logging error for
example. Mirror
backs out & terminates

Link freed

Chapter 7.2. Function Request Shipping & Transaction Routing 311

5. Remote Transaction Initiation

I
System A I Transmitted Information

I
Transaction TRX I
initiated by terminal T11

I
I
I

EXEC CICS START I
TRANSID (' TRY')
RTRANS ID (I TRZ')
RTERMID ('Tl ') Attach CSMI
FROM (area) 'SCHEDULE' request for trans
LENGTH (length) >

Free link. Pass
return code to applic
ation program. Continue
processing.

Terminate, and free
terminal Tl.
Tl could now initiate
another transaction
(though TRZ could not
start until Tl became
free again).

!ttach mirror
action

Perform START request
with TRANSID value of
'TRZ' and TERMID value
of IT 1 '

Free link
Terminate Mirror

'SCHEDULE' Reply,last
<-----------------------------

Session available for
remote requests from
other transactions in
system A or B.

Attach CSMI
'SCHEDULE' request for trans
<-----------------------------

'SCHEDULE' Reply, Last
----------------------------->

Session available.

312 CICS/VS System/Application Design Guide

Attach mirror transaction
Perform START request
for transaction TRY

Free session
Terminate mirror

Transaction TRY
is dispatched and
commences processing

EXEC CICS RETRIEVE
INTO (area)

LENGTH (length)
RTRANSID (TR)
RTERMID(T)

(TR has value 'TRZ')
(T has value 'Tl')

Processing based on
data acquired.
Results
put into TS queue
named RQUE

EXEC CICS START
TRANSID (TR)
TERMID (T)
QUEUE {' RQUE')

(TR has value 'TR Z')
(T has value IT1')
"-- - ,..: - ,- - - --1: J...~~ .&...&..111\. I pa.::::.::::.

return code to program

TRY terminates

5. Remote Transaction Initiation (continued)

System A

Transaction TRZ
is dispatched on
terminal Tl and
commences processing.

EXEC CICS RETRIEVE
INTO (area)
LENGTH (length)
QUEUE (' RQUE I)

Obtain results:
EXEC CICS READQ TS

QUEUE ('RQUE I)
INTO (area)
LENGTH (length)

Pres~nt result to the
terminal operator.

Retrieve selected items
from the queue as
ind.icated by the
operator

Operator indicates that
no more data is required

EXEC CICS DELETEQ TS
QUEUE (' RQUE I)

EXEC CICS RETURN

Transaction termination
completes, so releasing
T 1.

Transmitted Information

Attach CSMI
IREADQ' Request
---------------------------->

IREADQI Reply
<-----------------------------

'READQI Requests for ITE!=n
-------------------------->

'READQI Replies
<-----------------------------

IDELETEQ' request
--------------------------~>

'DELETEQ' reply
<----------------------------'SYNC POINT' Request,last
--------------------.--------->

positive response
<-----------------------------

Link available.

System B

Attach mirror transaction
Perform READQ
Temporary storage
queue is protected,
so mirror awaits
next request

Handle requests as
sent by system A.

Perform DELETEQ.
CIeS/VS defers request
until synch point

!irror takes sync
point so deleting
RQUE content, and
freeing link.
!irror terminates.

Chapter 7.2. Function Request Shipping & Transaction Routing 313

I
System A I

I
Transaction TRX I
initiated by terminal T11

I
I
I

EXEC CICS START I
TRANSID (' TRY')
RTRANSID ('TRZ')
RTEIH!ID (IT1')
FROM (area)
LENGTH (length)
NOCHECK

Free link. Pass
return code to applic
ation program. Continue
processing.

Terminate, and free
terminal T1.
Tl could now initiate
another transaction
~hough TRZ could not
start until T1 became
free again) •

.ttach mirror trans
at.'i.on

Transmitted Information

Attach CSMI
'SCHEDULE' request for
trans, last (no reply)
---------------------------->,

Link available for
remote requests from
other transactions in
system A or B.

Attach CSMI
'SCHEDULE' request for
trans, last (no reply)
<----------------------------

314 CICS/VS system/Application Design Guide

Attach mirror transaction
Perform START request
for transaction TRY
Free link
Terminate mirror

Transaction TRY
is dispatched and
commences processing

EXEC CICS RETRIEVE
INTO (area)

LENGT H (length)
RTRANSID (TR)
RTERMID (T)

(TR has value 'TRZ')
(T has value 'T 1')

Processing based on
data acquired.
Results
put into TS queue
named RQUE

EXEC CICS START
TRAHSID (TR)
TERMID (T)
QUEUE (I RQUE ')
HOCHECK

(TR has value 'TRZ ')
(T has value 'T 1')

return code to program

6. Remote Transaction Initiation Using NOCHECK Option (continued)

System A

Perform ST&RT requ€st
with TRANSID value of
'TRZ' and TERMID value
of IT 11
Free session

Terminate Mirror

Transaction TRZ
is dispatched on
terminal T1 and
commences processing.

Transmitted Information System B

TRY terminates

Link available.

Chapter 7.2. Function Request Shipping & Transaction Routing 315

TRANSACTION ROUTING - EXAMPLES

1. Non-Conversational Transaction

This section gives some examples to illustrate the way in which
remote transactions are attached and the information flowing between the
relay transaction and the user transaction.

I
System A I Transmitted Information

I
Transaction TRX initiated
by terminal T1 is a
remote transaction
Invoke relay program

Attach TRX
Input message

System B

--------------------------> Attach TRX

Relay program writes
output message to
terminal
Transaction terminates

Output message, end of
conversation

<-----------------------------

316 CICS/VS system/Application Design Guide

Invokes user
application program
Reads input message
Writes output message
(without wait)
Output message is not
sent immediately
but is deferred until
a terminal control
~AIT, task termination
or syncpoint

Application returns
control to CICS/VS

Task terminates

2. Conversational Transaction

System A

Transaction TRX
initiated by terminal T1
is a remote transaction.
Invoke relay program

Transmitted Information

Attach TRX
Input messagE::

System B

----------------------------> Attach TRX

Relay program writes
output message to
terminal and reads input
message

Relay program writes
output message to
terminal.
Transaction terminates

output message, ~rite, Wait,
Read
<

Input message

----------------------------->

output message, end of
conversation

<-----------------------------

Invoke s user
application program
Reads input message
Application issues
Write, Wait, Read request

Application writes
output message
(wi thout \fait)
Application returns
control to CICS/VS

Task terminates

Chapter 7.2. Function Request Shipping & Transaction Routing 311

Chapter 7.3. Distributed Transaction Processing

Introduction to Distributed Transaction Processing.

The distributed transaction processing facility (DTP) allows the user to
distribute the processing required by any particular application between
two or more processor systems. Some of the user1s own code, which might
otherwise have to be executed on the local system, may he eXecuted
remotely. The distribution of processing is achieved by allowing a
transaction to initiate and communicate synchronously with transactions
running in remote systems.

DTP is provided by the comoand level interface of the C030L, PL/I and
assembler languages.

Compared with function request shipping (see Chapter 7.2), DTP allows
the design of much more flexible and efficient applications. For
instance, if it is necessary for an application to browse through a
remote file, then if file control function requests were used, at least
one request followed by the return of one record would have to flow
between the two systems for each record inspected. Using DTP, the local
transaction would ship sufficient data to allow the required record to
be identified, then a user-written transaction in the remote system
would carry out the browsing, and send back only that record.

Without DTP, processing can be distributed between systems by
shipping a START function request to the remote system to initiate a
user-written transaction. But in that case the remote CICS/VS interval
control program schedules the transaction asynchronously. DTP allows
synchronous communication between the local and remote systems, which
means that the two transactions can hold a conversation and each can
carry out processing that depends on the results of a previous stage of
processing performed by the other.

The DTP fac11ities are provided through the command level interface
of the CICS/VS Terminal Control program. No special DTP facilities are
provided at the macro level. CICS/VS uses SNA logical unit type 6 (LU6)
protocols for communication between processor systems. This means that
the remote system could be anyone that conforms to a compatible subset
of the LU6 specifications. One such system, apart from CICS/VS itself,
is IMS/VS.

Intercommunication for DTP requires an SNA access method such as
VTAM. This means that the remote system is generally in another
processor system, not in another region of the same processor system.
The exception would be a processor system using the VTAM application-to
application facility.

More than one session may exist in parallel between the two CICS/VS
systems. In this case, both function request shipping and DTP may be
used simultaneously to communicate between the systems. Any transaction
may simultaneously use several sessions for function request shipping
and several more for DTP.

DTP allows resources, such as databases, on two or more systems to be
accessed synchronously; changes made to local and remote resources can
be co-ordinated. Synchronisation points taken in one system will force
corresponding synchronization points in the other. Similarly, abends in

Chapter 7.3. Distributed Transaction Processing 319

one system ~re communicated to the other, and CICS/VS will back out any
uncommitted changes to protected resources on both systems following a
transaction aDend in either one.

Applications of Distributed Transaction Processing

DTP is used in situations similar to those described for CICSjVS domain
remote function request shipping in Chapter 7.2. It is used in
preference to function request shipping ahen the application needs
greater flexibility or better performance through a more sophisticated
control of the requests and data that flow between the two systems.

A typical transaction that would be a candidate for distribution is
one whose processing can be divided into two logically distinct parts:
terminal handling and processing remote data. The terminal handling
code would execute in the local system, and the data processing code in
the remote system that owned the data resource (see Figure 7.3-1).

320 CICS/VS System/Application Design Guide

Local Data

Local TranS6ction

Terminal
handling

Data
prllc:eClOg

Remote Data + CICS/VS Function Request Shipping

Remote Data + DTP

Local Transaction

Terminal
handling

Local Transaction

Terminal
handling

Data
processing

Local Data

Remote Transaction

Mirror
transaction

Remote Transaction

Data
processing

Remote Data

Remote Data

Figure 1.3-1. Development of a Network using Function Request Shipping
and D'rp.

Chapter 1.3. Distributed Transaction Processing 321

Transactions can acquire and free sessions according to their needs.
They can initate transactions in remote systems and pass sufficient data
to allow all processing involving remote resources to be completed
remotely; only the results need be transmitted back to the local system.
Alternatively, very flexible processing can be implemented, with, for
instance, the t~rminal operator effectiv~ly conversing with the remote
system.

Design Concepts

DISTRIBUTED TRANSACTION PROCESSING CONCEPTS

To distribute processing, a transaction must acquire a session
connecting two systems and start a transaction in the remote system.
The first transaction is known as the front-end transaction, and the
second as the back-end transaction. The former must always exist as an
active task before the latter.

After the connection has been established, the two transactions may
be treated as peers: there is nothing that one may do that the other may
not. In practice, however, the back-end transaction is usually treated
as subordinate to the front-end transaction; it is usually best thought
of as a subroutine. Attempts at true peer relationships are likely to
lead to complex design problems.

In general, a CICS/VS task is initiated from a terminal, or a logical
unit acting as an "intellegent" terminal. This terminal is known as the
principal facility of the task. It is the one whose name is found in
the EXEC Interface BlOCk field EIBTRMID, and is always connected to the
task at its initiation (including at automatic task initiation).

DTP allows the connection of another facility during execution of the
task; this is known as the alte~Qate f~ili1!. The alternate facility
must be a session with another CICS/VS system or logical unit that
conforms to a suitable subset of the SNA specifications for an LU Type
6. It is uSEd in CICS/VS-to-CICS/VS intercommunication to send messages
to and receive them from remote transactions. A task may have only one
principal facility, but several alternate facilities.

Before the back-end transaction can be initiated, the front-end
transaction must acquire a session with the remote system by means of
the ALLOCATE command. Either the name of the system with which
communication is to take place, or the name of a particular session with
that system, is specified.

OVERVIEW OF APPLICATION PROGRAMMING INTERFACE

The front-end transaction is always connected to the back-end
transaction when the latter is initiated. The session with the front
end CICS/VS system is therefore the principal facility of the back end
transaction. The back end transaction communicates with the front end
transaction using the basic terminal control facilities.

Once the the back-end transaction has been initiated, it is
indistinguisable from the front-end transaction: both can use all the
DTP facilities. For instance, the back-end transaction can initiate
synchronization points in both systems, free the session, or itself
start a session w~th a remote system (either the one running the front-

322 CICS/VS system/Application Design Guide

end transaction or a third one) and initiate a transaction in it. In
the last case, the back-end transaction becomes a front end transaction
as well, and the the remote system with which it started a session
becomes its alt6rnate facility.

There is one way in which a pair of transactions may be initiated to
make the intersystem session into the principle facility of both. The
front-end transaction is star,ted by automatic transaction initiation,
and a connection with the intersystem session is made at initiation.
This makes the connection with the remote CICS/VS system into its
principal facility. The automatically initiated transaction uses the
session to initiate a transaction in the remote system, making the
session the principal facility of the remote transaction as well as the
local one.

since a remotely-initiated transaction may itself initiate a remote
transaction, hierarchical trees of transaction may be set up. However,
no connection can be made with an already active task: the setting up
of a session must always be fOllowed by the initiation of a task. It is
not possible, therefore, to create a closed loop (a IIdaisy-chain") by
making a connection back to an active transaction.

After the session has been allocated, th~ front-end transaction can
transmit messages to the remote system by means of the SEND or CONVERSE
commands. The front-end transaction initiates the back-end transaction
by sending the latter's name either as the first bytes of the data in
the first message across the session or as part of an SNA-defined field,
called the function management header (P"H), that is transmitted with
the first message. The name-prefix is the simpler method, and will
suffice in most circumstances. The FMH is commonly used only for
communication with logical units other than CICS/VS, such as I~S/VS.

Applications receive messages from each other by executing RECEIVE or
CONVERSE commands. CICS/VS transfers the contents of the output data
area specified in a sending transaction's SEND or CONVERSE command into
the input data area specified in the receiving transaction's RECEIVE or
CONVERSE command.

To communicate with an alternate facility, SEND, CONVERSE, and
RECEIVE commands must always specify the name of the session that is
providing the connection. If no session is specified, the principal
facility is assumed.

Use of a session is ended in one of three ways: by one or other
transaction terminating, by the execution of a FREE command, or by the
execution of a SEND command with the LAST option.

PROTOCOLS

The transactions at either end of a session each own a TCTTE for the
session, since communication is via the Terminal Control program. The
TCTTE defines the logical unit (always an LU6) at the other end of the
session. The session follows the SNA half-duplex flip-flop protocol.
This means that at no time can both transactions attempt to send
messages together. One transaction must be in send state while the
other is in receive state. The state is recorded in the TCTTE. The
front end transaction is always in send state when it acquires the
session, and the back-end transaction is always in receive state when it
is initiated.

A change of state can be initiated only by the transaction currently
in send state. It can do so by executing a CONVERSE or SEND INVITE

Chapter 7.3. Distributed Transaction Processing 323

command, which allow a message to be sent to the remote system prior to
changing states, or, less efficiently, by executing a RECEIVE command.
In all cases, CICS/VS reverses the states of both transactions.

A transaction in receive state can request the one in send state to
reverse the states by executing an ISSUE SIGNAL command. This causes
CICS/VS to transmit an SNA signal command to the other transaction.
CICS/VS indicates receipt of the command by raising the SIGNAL condition
in the SEND state transaction. A transaction may change to receive
state following receipt of the signal command, though it is not an error
not to do so. '

Either transaction may initiate a synchronization point when it is in
send state, by executing a SYNCPOINT command. The other transaction may
not then send any data until it too has issued a SYHCPOINT command. As
an alternative, it may terminate, since termination causes a
synchronization point to be taken; when it terminates, the transaction
must then either be in send state, or have freed the session with a FREE
command. A transaction that uses more than one DTP session must be in
send state with all of them when it issues the SYNCPOINT command.

Application Programming Considerations

IDENTIFYING THE REMOTE SYSTE~

There are application program commands for allocating and freeing
sessions with other LU6 systems, and for sending data to and receiving
data from them via these sessions. The other system is identified
either by the session name, or, alternatively on ALLOCATE commands only,
by the system name. The identification is supplied by the
SESSION~ession-name) or, on the ALLOCATE command, the SYSID (system
name) operand. On commands other than ALLOCATE, the SESSION operand may
be omitted, in which case, the command is assumed to refer to the
principal facility. The system name is supplied by the system
progra~mer in the SYSIDNT command of the DFHTCT TYPE=SYSTEM statement.
The session names are defined by him explicitly in the TRMIDNT operand
of the DFHTCT TYPE=TERMINAL statement, or are generated by CICS/VS from
information supplied in the SEND and RECEIVE.operands of the DFHTCT
TYPE=SYSTEM statement.

There can be only one session between any pair of transactions at any
one time. However, a front-end transaction can invoke several back-end
transactions (or a particular back-end transaction several times as
several different tasks) and communicate with them in parallel.

A trans~ction may 1188 CICS/VS frr!lct ion. regrrest shipping as ~ell DTP_
The remote DTP transaction may execute on the same CIVS/VS system as the
function request or on a different one. In both cases, CICS/VS handles
the session selection for CICS/VS function request shipping, and the DTP
functions need be coded no differently from when DTP is used alone.

324 CICS/VS System/Application Design Guide

SESSION ALLOCATIOd AND DATA TRANSMISSION

An application acquires a session by executing an ALLOCATE command. The
name of either the required system or a particular session is specified.
If the system name is specifieu, the name of the session can be found in
the field EIBRSRCE of the EXec Interface Block ~IB) after execution of
the command has completed.

The PROFILE operand can be used on the ALLOCATE commana to specify a
set of terminal control processing options. These are generated by the
system programmer in the Program Control Table. They determine such
factors as whether an FMH received from the other system is to be
included in the application program's input aata area, and whether
automatic journaling is to be used.

Generally, a function management header is not required for
communication Detween CICS/VS systems: th~ name of the transaction to
be attached is specified as the first bytes of user data in the first
message to be sent.

For communication with non-CICS/VS systems, an attach function
management header may be required when the session is allocated. The
AT~ACHID operand, specifying the name of an attach header control block,
causes an attach FMH to be transmitted with the data. The F~H must have
been created previously using a BUILD ATTACH command.

If no session is available when an allocation request is made, the
SYSBUSY condition is raised. The default action is to queue the request
and suspend the task until a session becomes available. The application
program can take other action only if a HANDLE CONDITION SYSBUSY
statement has been executed previously.

A program transmits data oy executing a SEND or CONVERSE statement
specifying the name of the session to be used and the data area
containing the data.

A program can receive data only ~hen it is in receive state. It does
so by executing a RECEIVE or CONVERSE command. All back-end
transactions are in receive state when they are invoked. All front-end
transactions are initially in send state. The states can be reversed
only by a transaction that is in send state. It does this by executing
a CONVERSE or SEND INVITE command, or, less efficiently, a RECEIVE
command. The CONVERSE or SEND INVITE command causes a message to be
sent before the states are reversed.

Both RECEIVE and CONVERSE allow the naming of a data area into which
received data is to be placed by CICS/VS. The data area may contain an
FMH prefixing the data. If so, the INBFMH condition uill be raised and
the field EIBFHH ~ill be set in the Exec Information Block. It is
recommended that, in programs that may receive FMHs, an IGNORE INBFMH
statement is executed at the start of the program and EIBFMH is tested
after each RECEIVE or CONVERSE.

A transaction in receive state can notify the one in SEND state that
it needs the states rev8rsed by executing an ISSUE SIGNAL command. This
causes the SIGNAL condition to be raised in the send-state transaction
when the next SEND or CONVERSE command is executed. The transaction may
ignore the condition: CICS/VS takes no action if a HANDLE CONDITION
SIGNAL command has not been executed previously. But the application
programmer may include code to change states if he wishes.

A session is explicitly freed by the FREE command specifying the
session name. Either the tront-end or the back-end transaction can
issue the command. The command can be issued only when the transaction

Chapter 7.3. Distributed Transaction Processing 325

is in SEND state or the free indicator (EIBFREB) in the Exec Interface
Block is on. A session is implicitly freed when one of the transactions
ends.

SYNCHRONISATION POINTS

Either transaction can initiate a synchronization point by issuing a
SYNCPOINT command. This causes the one-byte field EIBSYrlC in the Exec
Information Block in the temote transaction to be set to X'FF'. That
transaction must issue its own SYNCPOINT command before sending any more
data. A1t~rnatively, it can terminate, since terminat~on causes a
synchronization point to be taken. A transaction must be in send state
with all its sessions to issue a synchronization point.

EFFICIENT USE OF SESSION

To optimize the. use of sessions, CICS/VS implements deferred output
processing for SEND commands. This means that, in general, a message is
not sent to the remote system until the command following the SEND that
generated it is executed. This frequently allows SNA indicators, such
as change direction and synchronization point indicators, to be sent
with this data, when they would otherwise require a message each.

Output is not deferred if the SEND command has the WAIT operand; the
message is transmitted immediately. Indicators generated by subsequent
commands would require further messages. This reduces the scope for
optimization by CICS/VS. The WAIT operand should not therefore be used
without good reason.

In addition to CICS/VS optimization, the application programming
interface offers scope for the user to optimize the flow of messages.
The INVITE operand allows the number of messages to be reduced in some
circumstances, Dy sending a change direction (CD) indicator with the
output data.

For instance, the following three commands result in only one message
being sent to the remote system.

EXEC CICS SEND FROa(data-area) INVITE
EXEC CICS SYNCPOINT
EXEC CICS RECEIVE INTO (data-area)

CICS/VS deferred I/O processing means that the output message is not
sent until the SYNCPOINT com~and is executed, an~ the INVITE ope~and
means that the change direction indicator is sent with this message.
The one message therefore contains the change direction indicator, the
synchronization point indicator and the output data. The RECEIVE
command generates no messages to the remote system; it simply causes any
data received from it to be transferred to the named data area. .

The following is an example of how I/O and processing by the local
application program may be overlapped using the WAIT operand.

326 CICS/VS system/Application Design Guide

EXEC CICS SE~D FROa(data-area) INVITE WAIT

Non-CICS/VS programming statements

EXEC CICS RECEIVE INTO (data-area)

Because of the UAIT operand, execution of the non-CICS/VS program~ing
statements will not begin until execution of the SEND is complete.
However, transmission of the input data from the remote system can
overlap the proce5sing of these statements. Without the HAlT operand,
execution of the SEND would not start until processing reached tne
RECEIVE statement, so no overlapping would be possible.

System Programming Considerations

A Terminal Control Tanle entry must be generated for each session that
is to be used by DTP. The same considerations apply as to TCT
generation for CICS/VS function -request shipping (see "System
Programming Considerations II in Chapter 7.2).

A special type of entry in the Program Control Table may be generated
for DTP sessions, to specify terminal control processing options. A
DFHPCT TYPE=PROFILE macro is used. The options control FMH handling,
journaling, message handling and other factors affecting the session.
Each set of opt~ons may be given a name by which it may be specified in
the PROFILE operand of the ALLOCATE command.

Design Hints

TYPES OF APPLICATION

Batch Applications: These use only one session, namely the LU Type 6
session between the tuo systems. The front-end transaction is started
by automatic transaction initiation (as a result of either a transient
data queue trigger level being reached or a START command). This
transaction then sends a message to the remote system to start the back
end transaction. Each transaction becomes the principal facility of the
other - no term~nal is involved.

This technique provides a convenient way of transmitting queues or
files of information across ths link. In a typical situation, a local
terminal runs a local transaction which stores data on a queue. When
the trigger level is reached, another local transaction, the front end
transaction for the intersystem link, is initiated. This initiates in
turn the back-end transaction in the remote system to receive the data,
and transmits the queue to it.

Programming is simplif~ed in batch designs, because the terminal
control session is handled separately from the data transmission.
Futhermore, delays in response to the terminal operator because of
session allocation and use are eliminated.

If it is desired to send queues between two systems in both
directions at the same time, the recommended method is to use tvo sets
of transactions on two parallel sessions. This is the most efficient
method and it provides the simplest application design.

Chapter 7.3. Distributed Transaction Processing 321

Examples 6 and 7 at the end of this chapter show queue transfer
operations that might be part of batch applications.

Interactive Applications: These use both a terminal session and at least
one LU Type 6 session connected to a transaction simultaneously. They
are more complex than batch applications, but may bp required if enquiry
and update on remote systems is to be performed. They also facilitate
operator assistance and prompting.

Examples 1 to 5 at the end of this chapter show interactive
transactions.

MASTER AND SLAVE DESIGN

The two transactions involved in an LU Type 6 intercommunication should,
if possible, be designed as a master, or main routine, and a slave, or
subroutine. In general, the front end transaction will be the master.

The logic should be contained as far as possible in the master. This
transaction should pass requests to the slave only as necessary. The
slave should return its response to the master, and then wait for
another request. Attempts to distribute the logic between the two
transactions, thus making them into peers, are likely to lead to complex
design problems. If the roles of the two systems need to be reversed,
it is generally preferable for an independent second pair of
transactions to be invoked, rather than for the master and slave roles
of a single pair of transactions to be reversed.

Protocols are conveyed at the application programming interface by
means of fields in the the Exec Interface Block (EIB). These contain
information about the status of the transaction, such as whether it is
in send or receive state, whether it is required to take a
synchronization point, and whether it is permitted to free the session.
Full details are given in the Application Programmer's Reference Manual,
including a recommended order for testing the fields. A transaction
must pe~orm the actions indicated in the EIB fields, otherwise it will
be abended. As far as possible, the master transaction should dictate
the contents of the slave transaction's EIB fields, rather than vice
versa.

Fields in tbe Exec Information block will be updated after execution
of a co~mand that transmits or receives messages, so it is advisable for
an application program to copy the BIB fields after each such command.

SNA INDICATORS

An understanding of the SNA protocols and corresponding data flow
control indicators used by CICS/VS, particularly BB (begin bracket), EB
(end bracket), and CD (change direction), will aid the design of
efficient and error free applications.

A conversation between two transactions is delineated by BB and EB
indicators: a conversation is, in other words, an SNA bracket. It is
started by the first SEND command following allocation of the session.
This generates the BB indicator. It is ended by one of the following,
all of which generate EB indicators.

32d CICS/VS system/Application Design Guide

a SEND command with the LAST operand
a SEND command followed by a FREE command
a SEND command followed Dy termination of the task

The CD indicator changes the issuing transaction from send state to
receive state, and the other transaction from receiv9 state to send
state. It is generated by one of the following.

a SEND command with the INVITE operand
a CONVERSE command
a SEND command followed by a RECEIVE command

It should be noted that all the indicators are al~ays issued by the
transaction that is in send state. The front-end transaction is always
in send state when it is initiated and this transaction issues the BB
indicator; the front-end transaction must issue the first CD indicator
and thereafter only the transaction in send state may issue it; and the
EB indicator can be issued onlY,~fter a SEND command.

D~~

The examples at the end of this chapter show how these and other SNA
indicators are used by CICS/VS~

QUEUE TRANSFER

The following special considerations apply to transactions intended to
transfer queues of data between systems.

o The sending transaction should be designed as the master and the
receiving transaction as the slave.

o For simplicity of design, a separate pair of transactions should be
used for each queue to be transferred.

o The master transaction should not send large numbers of records
without first obtaining confirmation from the" slave transaction
that it is attached and is processing the records successfully.

o For large queues, take synchronizations points at regular
intervals, unless performance is a crucial consideration.

o For large queues, use the pacing facilities of VTAM to avoid
flooding the network. Alternatively, use frequent synchronization
points, which have a similar effect to pacing.

• It w111 probably be advisable for the receiving transaction to
store the incoming data on either a transient data or a temporary
storage queue, rather than to update permanent storage as the
records are received. The design will be simpler, because the
updating will be a separate operation and because error recovery
will be easier.

• Consider how transmission should be r6started if an error occurs
when the queue has been partly transmitted. There is a basic
choice to De made between continuing from the point at which the
error occurred and retransmitting the whole queue.

Examples 6 and 7 at the end of this chapter show queue transfer
between systems.

Chapter 7.3. Distributed Transaction Processing 329

MULTIPLE LU TYPE 6 SESSIONS

A transaction may initiate several transactions in other systems. The
design of applications using such transactions is likely to be very
complex unless it is highly structured. The least complicated design
will probably be a master/slave tree, in which each transaction acts as
the master of all transactions for which it is the originating node, and
the first transaction to be initiated is the master of the whole tree.

The master/slave concept is particularly important in relation to
synchronization points in a tree of transactions. Unless these are
originated by the transaction that is the master of the whole tree, they
are unlikely to be successful. They are originated at the top of the
tree, then propagated down the whole tree.

Any transaction issuing a synchronization request must be in. send
state with respect to all its LU Type 6 sessions, except those for which
either a synchronization point has been requested (EIBSYNC set) or which
have been freed by the transaction at the other end of the session
(EIBFREE set). If an attempt is made to take a synchronization point
when these conditions do not hold, the transaction making the attempt
will be abended, vhich will lead to all transactions in the tree being
abended.

ERROR HANDLING

If a transaction abends, its partner at the other end of the session
will be notified if the abending transaction:

• is in send mode; or

• received a definite response request ~or instance, by the use of a
SEND command with the DEFRESP operand in the other transaction); or

o received a request for a synchronization point; or

• received a request to free the conversation.

A transaction may not, therefore, be notified of an abend by its
partner. This is why the sending trans~ction in a queue transfer
application should check periodically that the records it sends are
being received and processed.

A transaction in receive mode can notify the sending transaction of
an abnormal situation by executing an ISSUE SIGNAL command. The SIGNAL
condition will be raised in the sending transaction at the next
AYAr.ntion_ ",ft~r rAr.Aint if t:hA C::;rTn",l rAnnA~t:_ of ",n ontnnt r.omm",ntl on

i~~-;e;~i~n:- i~i~-~~;~sa~~i~;-s~~~i~-n~~~;ii~'t~;n-~t~~ ~~ndi~~-~;~a--
and issue one of the commands that generate an SNA CD (change direction)
indicator (see "SNA Indicators .. earlier in this chapter). This protocol
is the responsibility of the user; the receiver of the signal request is
not forced by CICS/VS to stop sending.

ISSUE SIGNAL and the SIGNAL condition can lead to complex
programming, so they should be used only when definitely required.

330 CICS/VS System/Application Design Guide

CICS/VS TO NON-CICS/VS SYSTEMS

CICS/VS can communicate with transactions running in other types of
system, provided they implement a suitable subset of the SNA LU Type 6
protocols. This includes IMS/VS. It is necessary, however, for the
designer of such applications to understand in detail the SNA data flow
control commands and protocols generated by the other system.

In some cases the CICS/VS transactions converses with the remote
system, rather than with user vritten transactions running in that
system. CICS/VS transactions converse with the DC component of IMS/VS,
for example, so the protocols and data formats of that component must be
understood and compiled with.

Other systems may allow direct communication with their transactions.
It is then necessary to kno~ the protocols generated by user-written
code in the transactions. In particular, it is necessary to knOH how BB
(begin bracket), EB (end nracket) and CD (change direction) indicators
are generated and responded to.

In any case, the following problems will need attention during the
design of the application.

o How the required transaction is to be attached in the remote
system. It may be necessary to send an attach header, in which
case the remote transaction could have a name up to 8 characters
long.

o The structure of the messages passing between the local and remote
transactions, and how any mapping component of the remote system is
to be used.

o The possible replies to each type of request, together with the SNA
indicators that may need to be present on the request and replies.

o Ensuring that the SNA indicators are followed precisely by the
transactions at both ends of a session.

• Which transaction or transactions may end a conversation.

• Whether synchronization points are to be used, and if so, whether
they are to be on single or multiple sessions. The remote system
may support only single session synchronization points.

Chapter 7.3. Distributed Transaction Processing 331

Distributed Transaction Processing Examples

This section gives some examples of transactions using distributed
transaction processing to communicate between systems. The SMA flows
between the systems for particular application program commands are
shown. The simplest examples are given first, and successive examples
introduce more function. The first five examples illustrate the types
of flow that might arise from interactive applications and the last two
those from batch applications.

1. Simple Single Enquiry

Master

Master having ALLOCATEd
session sets up all the
data necessary for the
enquiry and supplies
transaction name on
front of data.
EXEC CICS CONVERSE

Transmittted Information Slave

BB, CD, tranidlldata
--------------------------~> Transaction

Having received the
answer ths transaction
then frees its session
with-the slave for use
by other transactions

EB, data
<-----------------------------

332 CICS/VS system/Application Design Guide

attached by Cles/vs
and issues EXEC

'CICS BECEIVE to
obtain tranidlldata

Transaction works
on data maybe
accessing DBs to
obtain the infor
mation needed
as reply, then
issues
EXEC CICS SEND
PROM (data) LAST

Transaction
terminates

~~imple Muitiple~i£Y

EXEC CICS ALLOCATE

EXEC CICS CONVERSE

EXEC CICS CONVERSE

EXEC CICS CONVERSE

EXEC CICS FREE

BB, CD, tranidl Idata:
Question 1

----------------------->

CD, reply to question 1

<.----------------------------
CD, Question 2
---------------------------->
CD, reply to question 2

<----------------------------

CD, Question 3 with user
info to say last question

---------------------------->
EB, reply to question 3

<----------------------------

EXEC CICS
RECEl VE

EXEC eICS
COnVERSE

EXEC CICS
CONVERSE

EXEC eIes
SEND LAST

Chapter 7.3. Distributed Transaction Processing 333

EXEC CICS ALLOCATE

EXEC CICS CONVERSE

Commit updates by
EXEC CICS SYNCPOINT

EXEC CICS FREE

Transmittted Information

B3, CD, tranidlldata
-----------------------------}

CD, reply
<-----------------------------

EB, RQD2, null data
----------------------------->

+R

<.---------------------------

334 CICS/VS System/Application Design Guide

Slave

Attach transaction
EXEC CICS
RECEIVE

perform update

EXEC CICS
CONVERSE

Since no data
received
transaction
can terminate;
task
detach ensures that
syncpoint protocol
is complete

4. Simple Update with user synchpoint

r!aster Transmittted Information Slave

EXEC CICS ALLOCATE
BB, CD, tranidlldata

EXEC CICS CONVERSE :> EXEC CICS
RECEIVE

CD, reply
< EXEC CICS

CONVERSE
RQD2

EXEC CICS SYNCPOINT > After testing
EIBSYNC issues
EXEC CICS
SYNCPOINT

+R
<

Next request

CD, data
EXBC CICS CONVERSE :> EXEC CICS

RECEIVE

CD, reply
< EXEC CICS

CONVERSE

CD, data
EXEC CICS CONVERSE

CD, reply
< EXEC CICS

CONVERSE

RQD2
EXEC CICS SYNCPOINT >

+R
<

and so on and so on

Chapter 7.3. Distributed Transaction Processing 335

5. Optimized Single Update Request

EXEC CICS ALLOCATE
EXEC CICS SEND LAST

EXEC CICS SYNCPOINT
BB, EB, tranidlldata,RQD2
--------------------------~>

+R

<---------------------------

336 CICS/VS system/Application Design Guide

EXEC CIeS RECEIVE

Does the update,
tests EIBSYNC,
EIBFREE, and
terminates transaction
(no reply can be sent)

6. Optimized~eue Transfer Without Synch£oint

EXEC CICS SEND (data1)

EXEC CICS SEND (data2)

EXEC CICS SEND (data3)

EXEC CICS SEND (data4)

EXEC CICS FREE
(adds EB to
outstanding send)

Transmittted Information

BB, tranidlldata

data2

data3

EB, data4

Slave

> EXEC CICS RECEIVE

> EXEC CICS RECEIVE

> EXEC CICS RECEIVE

> EXEC CICS RECEIVE

Chapter 7.3. Distributed Transaction Processing 337

7. Optimized Queue Transfer With-§ynchpoint and/or Termination

EXEC CICS SEND (data1)

EXEC CICS SEND (data2)

EXEC CIeS SEND (data3)

EXEC CICS SEND (data4)

EXEC CICS SYNCPOINT

EXEC CICS SEND (dataS)

EXEC CICS SEND (data6)

Terminate, system
syncpoint

Transmittted Information

BB, data 1
>

data2
>

data3
>

RQD2, data4
>

+R

<---------------------

data4
>

EB, RQD2,dataS
;>

+R

<----------------------------

338 CICS/VS System/Application Design Guide

EXEC CIeS
RECEIVE

EIBRECV
on so •••

EXEC CICS
RECEIVE

EXEC CICS
RECEIVE

EXEC eICS
RECEIVE,
EIBSYNC & EIBRECV
on but EIBPREE off

EXEC CICS
SINCPOINT

EXEC CIeS
RECEIVE

EXEC CICS
RECEIVE,
EIBSINC on,
EIBPREE on, so
terminate

System syncpoint

", ..

Chapter 7.4. Sessions Between Domains.

This Chapter discusses the means of communication between two domain
remote CICS/iS systems, that is between two CICS/VS systems in different
processor systems or between two CICS/VS systems in the same processor
system that use the VTAM application-to-application facility.

CICSjVS intercommunication uses Systems Network Architecture (SNA)
communications protocols. CICS/VS establishes one or more logical
communications paths (or sessions) vith each of the other CICS/VS
systems with Which it may be required to exchange messages. The
sessions and protocols are managed entirely by CICS/VS and are
transparent to CICSjVS application programs.

CICSjVS supports intersystem communication sessions only through
ACFjVTAM (or an equivalent SNA access method). As Figure 1.4-1 shows,
the physical links between the processors may be through communications
facilities using SDLC line protocols, or through the multiple channel
attachment capabilities of the IBM 3105 communication controller. In
addition, two or more CICSjVS systems in the same processor may
communicate through the ACF/VTAM application-to-application facilities
(not illustrated) or through the interregion communication facility of

MRO (discussed in Chapter 7.2). In the network shown in Figure 1.4-1,
any of the three transactions may communicate with either or both of the
others, and any of them may be minor transactions. Although CICS/VS DTP
and domain-remote function request shipping are supported only through
ACFjVTAM (or equivalent), the application program making the request may
be invoked from any CICS/VS-supported terminal attached by means of
BTAM, VTAM or TCAM.

CICSjVS intersystem communication facilities can run with either
CICS/OS/VS or CICS/DOS/VS, using the command level interface. For
communication between a number of processors, the ACFjVTAM Program
Product with the aultisystem Networking Facility feature is required,
together with the ACF/NCPjVS program product and the System Support
Programs for ACF/NCP/VS.

Applications using intersystem communication can be tested by using
two CICS/VS systems in the same processor communicating via VTAM. For
this configuration the ACF/VTAM Program Product only is required.
CIes/vs intersystem communication is independent of both the location of
its remote partner and the means of physical communication employed by
ACF/VTAH.

Chapter 1.4. Sessions Between Domains 339

S/370 OOSIVS

c: VTAM
0 CICS/ ACF/ .~

DOS/ VTAM TCAM
c: VS
~

OSIVS2

TCAM
Processor A

c:

CICS/
0
.~

OS/ :ll
c:

VS ~
S/370 OSIVS1

ACF/
VTAM

C
c:
0 ·u
:ll

VTAM c:

~ BTAM Terminals

Terminals

·1
Processor 8

Figure 7.q-1. A Possible C:)nfiguration Connecting Three CICS/VS Systems

340 CICS/VS System/Application Design Guide

The Session

CICS/VS uses ACF/VThM to establish logical connections with other r8mote
systems. ACF/V'rAM uses SNA protocols to establish the physical
connections between connected systems necessary to complete the logical
connection. ~his logical connection is called a §gssiQQ and is
independ8nt of the physical routes selected by ACF/VTAM and ACF/NCP/VS.
Thare can be mult~ple sess~ons over a single physical route. Hithin tha
session, the CICS/VS terminal control program uses specific SNA
protocols to exchange requests and replies between the two systems.

CICS/VS requests ACF/VTAM to establish a session with another
specific system either at CICS/VS initialization, or uhen requested by
means of a CICS/VS master terminal or VTAM system operator command, or
at the time that a command level request is issued requiring
communication uith a remote system for which a session is not available.
Refer to Part 3 of this manual and to the CICS/VS System Programmer's
Referenca Manual for further details on establishing CICS/VS sessions
via VTAM. Por intersystem communication, sach CICS/VS system is defined
as a logical unit to VTAM and the network. The session is established
between the tvo CICS/VS system logical units. If an application program
makes a request that requires a remote resource or transaction, but the
remote system is out of service, the request is terminated with a code
that indicates that the system is unavailable. If the remote system is
in service, but no session exists, CICS/VS nill request VTAH to
establish a session (provided INTLOG has been specified for the session
by the system programmer or terminal operator). If no session can be
established, the request nill be terminated. No requests will be queued
auaiting later establishment of a session ~xcept uhen the local
queueing facility is operational, as descr~bed under "Local Queueing" in
Chapter 7.2) •

nhen the intersystem communication component sends a request to a
transaction in another system, the session selected is allocated to the
requesting transaction program and the corresponding remote transaction
until one or other transaction terminates. While the session is
allocated to a pair of transactions in this uay, the session cannot be
used by any other transactions. It does not become available again
until both transactions have freed it, either explicilty or by
terllina ting.

Uhen there are one or more sessions uith the required system but none
is available, the intersystem communication component uill delay any
request to allocate a session until one Oecomes available, thus putting
the requesting application program into a CICS/VS wait condition. If
contention is high, the wait may become apparent to the associated
terminal operator.

A large queue may degrade the performance of the system overall by
causing heavy paging of main storage. In this respect, remember that
inquiry applications, or transactions that deal only uith unprotected
resources (for exaIDple, initiation of transactions vith unprotected
request identifiers) require allocation of a session for a shorter
period of time than those that manipulate protected resources. The use
of the CMXT operand of the DFHSIT macro (uhich limits the size of
queues) or the DTIMOUT operand of the DFHPCT macro (which limits this
time a transaction waits for resources) should be considered as means of
limiting contention for sessions.

When sessions are established, the protocols used specify uhich of
tuo systems shall uin contention uhen both systems concurrently attempt
to allocate the session on behalf of an application program. The
designer should determine tlhich system has the higher probability of, or
higher priority for, allocation of the session betueen two systems, and

Chapter 7.4. Sessions Betueen Domains 341

reflect th~s in the SEND, RECEIVE or SESTYPE operand of the DFBTCT
TYPE=SYSTEa macro, which is described in the CICS/yS System Programmer's
Reference Manual.

CICS/VS could be controlling several sessions on behalf of an
application program using CICS/VS intersystem communication extensions:
one with each remote transaction with which the application interacts;
and one (or its non-SNA equivalent) with the terminal associated with
the local transaction. The transaction-to-transaction sessions may be
with several different remote systems. Furthermore, they may include
several parallel sessions with a single remote system. Just as when a
session with a terminal fails, so, when a session with a connected
system fails, the transactions at both ends of the session are abended.

Operating Considerations

Only the CICS/VS master terminal operator is involved with CICS/VS
intersystem communication, because the normal terminal operator is
unaware of the location of programs and data, which all appear to be in
the system to which the terminal is connected.

The master terminal operator may be involved in starting and stopping
sessions between CICS/VS systems, and making inquiries about the status
of the session. The only commands related to intersystem communication
are: ACQ (acquire); INQ (inquire); REL (release); and INSERV/OUTSERV
(change service status). These commands are listed in the CICS/VS
Operator's Guide. For consistency with existing commands the individual
sessions between remote CICS/VS systems are treated as VTAM-supported
terminals and are referenced by means of the name in the TRMIDNT operand
of the DFHTCT TIPE=SYSTEM macro defining a particular connected system.
For convenience the inquire and change service status commands may also
address the system by means of the SYSIDNT operand of the DFHTCT
TYPE=SYSTEM macro.

Before two domain-remote CICS/VS systems can be connected
successfully they must both be active and must both be connected to
VTAa. This operation is descrLbed in the CICS/VS Operator's Guide. In
addition, the entry for the common session must be specified as "in
service" in both systems before ~ssuing the acquire command from either
system. Session initiation will include, where necessary,
resynchronization of units of work. This will ensure that any system
inconsistencies resulting from previous use of the session are
diagnosed. No additional restart procedures beyond those discussed in
Part 5 are required when CICS/VS intersystem communication is involved.

342 CICS/VS system/Application Design Guide

Chapter 7.5. Recovery and Restart

Introduction to Intercommunication Recovery

Recovery is concerned with ensuring that, following a failure, the
recoverable resources being modified by the interconnected system, both
locally and remotely, are restored to a self-consistent and well-defined
state. Part 5 of this manual describes how this is done in a single
system by nacking out the changes made by a logical unit of Hork in
progress at the time of the failure. The backout is performed either
during emergency restart following system failure, or by Dynamic
Transaction Backout for individual transaction failures.

Provided the intercommunication sessions remain intact, and in most
instances when they do not, the concepts of recovery, logical units of
work, and sync points are applicable to connected CICS/VS systems
unchanged: should a transaction or one of its connected transactions
fail to complete, all changes made to recoverable resources on all of
the CICS/VS systems will be backed out to the state they were in at the
last sync point, (or beginning of the transaction in the case of the
first or only logical unit of work). This applies whether the facility
being used is function request shipping, transaction routing or DTP,
whether the the connection is via MRO or VTAH and whether the
transactions involved are user-written, mirror or relay transactions.

Note that each system maintains its own system and dynamic logs and
that changes to recoverable resources are recorded on the logs in the
system owning th~ resource, as opposed to th~ system that initiated the
change.

Designing for Recovery

FAILURES IN CONNECTED SYSTEMS

The failures that may occur in connected systems are:

1. Session failures, either between the CICS/VS systems or between
CICS/VS and the terminal associated with a transaction. These
failures cause transaction abends of the transaction or
transactions connected to the session and resource recovery is
performed as for non-connected transaction abends.

2. Total CICS/VS system failures. The failing system is recovered
using emergency restart as for a non-connected system though there
are extra features, described following, added for intersystem
communication. Any remote system connected at the time of the
system failure, sees the failure as a session failure and treats it
as such. Thus, a remote system failure causes a local transaction
abend.

Chapter 7.5. Recovery and Restart 343

3. Transaction abenas. These are £ecovered using dynamic transaction
backout as for non-connected systems. The mirror and relay
transactions are not special in this respect and to make full use
of CICS/VS recovery, dynamic transaction backout should be
specified for both. The transaction restart facility may also be
used. This may not be specified for the mirror or relay
transaction, but, if specified for the associated user-uritten
transaction, the mirror or relay transaction will be restarted.

DATA BASE SYNCHRONIZATION

To achieve proper synchronization of resource changes folloving any of
the above failures, it is necessary for CICS/VS to know in one system
whether or not the other system has completed the current logical unit
of work. When the intersystem session itself fails, it is not alvays
possible to find this out. Of course, applications that do not change
resources in the remote system present no problem - it makes no
difference whether they complete or not. In other cases, CICS/VS limits
the period over which it is "in-doubt" as to the disposition of the LUB
in the other system to a small period during the course of
synchronization point processing ~nitiated by the SYNCPOINT or RETURN
commands). During this period, the system local to the application is
awaiting ackno~ledgement that the remote systems are also ready to
commit the changes.

Should the intersystem session fail before reaching the in-doubt
period, both sides will back out. After this period, both sides will
complete (commit) their changes. However, should an intersystem session
fail during this short but critical period, the systems will take
unilateral decisions on whether to back out or complete. (This allows
them to release the enqueues held on the recoverable resources and
continue processing independently.) These unilateral decisions may
result in data base changes being out of synchronization. However, in
the great majority of cases, it is possible to design applications such
that the impact of the lack of synchronization is not too severe:

Suppose we have two linked updates, A and B, to perform. If it is
imperative that update B occurs only if update A occurs, it is usually
not so serious if update A occurs but update B is delayed. This is
because one out-of-synchronization state usually corresponds to an item
being overcommitted (for example, double booking), whereas the other
on1y means the item is (temporarily) undercommitted or treated as
unavailable (for example, the delayed cancelation of a reservation) •
CICS/VS intersystem communication is flexible enough to take advantage
of these characteristics.

To achieve the best design, the rules obeyed by the system and the
i=Q~+nroc:: ::II'tT~;'::.h'o m"~+- h,... ,..''"' l~:a~ ~~~.:a. ________ _ • _____ ~~ ~~~~ ~~ ~~~~~~~ YU~C~~~vv~.

1. If ever an intersystem session failure results in the possibility
of data base changes being out-of-synchronization, message DFH2101
is issued to the CSMT transient data destination in the
applicationts local system at the time of the failure. The message
contains the following parameters, which can be used to cross
reference to the corresponding message at session recovery (see
below): time stamp; transaction identifier and task number;
operator identifier and operator's terminal identifier; remote
system identifier and terminal control table entry identifier for
the remote system.

344 CIeS/VS System/Application Design Guide

2. If the local transaction issues a synchronization point request,
but the remote transaction fails to complete, the local transaction
will be abended, and backed out if dynamic transaction backout is
specified. This is ensured by backing out the remote transaction
only when it is Known that the local transaction will see the
failure and itself abend. When a session failure occurs during the
in-doubt period, the remote transaction will commit its changes.
This avoids the possibility of the local transaction completing
before the session failure is detected at its side, so leaving the
possibility of a data base synchronization error being undiagnosed
by the local system.

3. If in doubt as to whether the system completed or backed out, the
local CICS/VS system's action following a synchronization point
issued by one of its transactions depends on the dynamic
transaction oackout specification in the Program Control Table
entry for the transaction, as follows:

a. DTB=NO ~r the operand omitted). The local transaction is
abended.

b.

c.

d.

DTB=YES The local transaction is abended and its changes backed
out (because the remote transaction might also back out).

DTB=(YBS,NO). If the failure occurs before the intersystem
sync point exchanges begin, the local transaction is aDended
and backed out as normal, knowing that the remote transaction
will also be abended. When in doubt because of a session
failure during the sync point exchange, the local transaction
is aoended but Dynamic Transaction Backout is not invoked, even
though the remote transaction might back out. This option is
available for the cases where the DTB=YES option may not be
appropriate for the application; for example, where it may
result in lost data, as opposed to duplicate data. Note that
if dynamic transaction backout is not attempted, transaction
restart will not be invoked.

DTB=(YES,WAIT). This specification applies to communication
via VT_AM but not to communication via MRO. If the failure
occurs before sync point exchanges begin, the local transaction
is abendeoi and bac,ked out as normal. If the failure occurs
during the sync point exchanges, the local transaction is
abended but Dynamic Transaction backout 1S not invoked, as for
DTB=(YES,NO). The difference is that enqueues resulting from
WRITEQ TS commands or START commands with the PROTBCT option
issued by the local transaction to write to local temporary
storage queues, or start other local transactions, are not
released. In other words, these actions will be neither
committed nor backed out on session failure.

During session recovery, the local CICS/VS system will commit
the enqueues and STARTs or back them out, in accordance with
the action taken by the remote system prior to the session
failure. If the session recovery is unsuccessful, the START
commands will be cancelled but the temporary storage queue
changes will be committed. DTB=(YES,WAIT) is effective only if
there is a single session between the local and remote
transactions. It offers a method of ensuring complete recovery
from a session failure. Provided the only way that the local
transaction modifies recoverable resources is by START PROTECT
and WRITEQ TS commands, CICS/VS can be relied upon to
resynchronize the two systems during session recovery. It has
the disadvantages that the temporary storage gueue re~ains
locked from the time of session failure and cannot be used
until recovery is completed.

Chapter 1.5. Recovery and Restart 3~5

4. On session recovery, message sequence numbers will be exchanged and
compared to see whether the unilateral actions taken by the systems
matched. The appropriate message (DFH2102 or DFH2103,
respectively) is written to csar again in the system that issued
the synchronization point request. The message includes the same
parameters as in the corresponding message (DFH2101) issued at the
session failure (see 1. above). In the DTB=(YES,WAIT) case,
message DFH2106 or DFH2107 will be issued at session recovery to
indicate whether both systems finally committed or backed out. If
a mismatch occurred, the appropriate reconciliation action can be
taken by user. (See discussion below.)

The detail of exchanges between systems at sync point time, and
their relationship to the in-doubt period will be found in the
CICS/VS Diagnosis Reference Manual.

CONNECTED SYSTEM RECOVERY - AN EXAMPLE

As an illustration of how the above may be used, consider the following
simple example: A transaction is given a part number; it checks the
entry in a local file to see whether the part is in stock; decrements
the quantity ~n stock; and updat&s the stock file and sends a record to
a remote Transient Data queue to initiate the dispatch of the part. It
is assumed that function request shipping is used, which means that a
mirror transaction runs in the remote systsm, but the same principles
would apply if DTP were being used and the remote transaction were user
written.

Ideally, the update to the local file should take place only if the
addition is made to the remote Transient Data queue, and vice versa.
The first step towards achieving this is to specify both the file and
the TD queue as recoverable resources and to specify DTB=YES on the PCT
entries for the local transaction and the mirror transaction in the
remote system. Synchronization of the changes to the resources is thus
ensured for all cases except an intersystem session failure at the in
doubt period during the execution of the RETURN at the end of the
transaction. The actions in this case are determined by the rules given
above.

Firstly, message DFH2101, warning that the resources might be out of
synchronization, might be sent to CSMT. If not, the resources are
synchronized - either both sides backed out as indicated by the normal
Dynamic Transaction Backout messages or both completed.

If message DFH2101 was issued, the mirror may, or may not, have
backed out. Since DTB=YES was specified in the example, the local
transaction will be nacked out. Thus, there is a danger that the entry
dispatching the pa~t was added to the remote TD queue but the stOCK file
was not updated - the part might then ne dispatched a second time
elsewhere. If, however, DTB=(YES,NO) were specified for the
transaction, the application would complete if the session failed during
the critical period (even though the mirror might back out). The out
of-synchronization state, if it occurs, now corresponds to the stock
record having been decremented but the dispatch request not yet having
been sent. This is probably an acceptable situation, especially since
the delayed dispatch can readily be reinitiated on session recovery.
The DTB=(YES,NO) option should therefore be used in this case.

When the session is eventually recovered, CICS/VS will check whether
the resources are in fact out of synchronization. If they are not,
message DFH2102 is issued and all is well. Otherwise, DFB2103 is issued
and a transaction to reconcile the mismatch should be run. In this

346 CICS/VS system/Application Design Guide

case, the reconciliation process is simply to retransmit the dispatch
record to the remote transient data queue. This could be implemented by
the same application with special logic to inhibit local changes.

Note that in general the reconciliation process will be a rerun of
the original transaction vith local changes inhibited for the
DTB=(YES,NO) cases, and remote changes inhibited for the D'rB=YES cases.

An alternative approach to the problem would be to split the
transaction ~nto two logical units of work by taking a user sync point
between the file update and the TD WRITE. This would ensure that the
out-of-synchronization state was the safe way round. The main
disadvantage would be increased exposure to the problem. If the second
logical unit of work could not be run for any reason, including an
intersystem session being unavailable at the Transient Data request time
as well as during sync point processing, the out-of-synchronization
state would arise.

Another disadvantage of the two logical units of work solution is the
lack of automatic diagnostics, should the out-of-synchronization state
occur.

INTERSYSTEM COMMUNICATION AND EMERGENCY RESTART

As stated above, a total system failure looks to other connected systems
like a session failure. The failed system is restored by Emergency
Restart (as for a non-connected system), and the local resources are
recovered in the usual way. Emergency Restart then effectively restores
the intersystem components to the state they vould have been in had the
original failure been intersystem session failure alone.

Message sequence numbers are recovered from each system log as well
as sufficient information to take action as specified in the rules above
for intersystem session failures. Thus, if the system was running an
application in the in-doubt state at the time of the failure, then on
emergency restart this state will be restored. Actions will then be
taken as for a failed session. The changes to recoverable resources
will be committed, backed out, or held waiting as though the session had
failed, and message DFB2101 will be issued warning that resource
changes might be out-of-synchronization. When the Session is restored,
DFH2102, DFH2103, DFH2106, or DFH2101 is issued in the usual way.

Thus, Emergency Restart is made transparent to intercom&unicating
systems design •

. RECOVERY AND MULTIPLE CONNECTIONS

For the straightforward case of one transaction connected directly to a
number of others, there are no special considerations: for those
intersystem sessions which remain intact through the critical periods,
all transactions will abend if one of them does. For those sessions
which do not, the rules described above for a single connection will
apply.

Chapter 1.5. Recovery and Restart 341

Recovery and Chained Transactions

For chained transactions, where a request is routed through a second
transaction to a third one in a third CICS/VS system, the same rules
apply, except that if the session between the second and third
transactions fails at the critical time then the second system is
considered to be the application local system (that is, the system which
initiated the synchronization point). Thus the diagnostic messages
DFH2101, DFH2102 and DFH2103 would not appear in the first system. Por
this reason, remote updates to recoverable resources (as opposed to
enquiries) via chained transactions are not recommended.

Error Handling Programs for Intercommunication

CICS/VS intercommunication uses CICS/VS terminal control facilities to
exchange messages with connected systems. When an unrecoverable
situation is detected in either CICS/VS system the exchange of messages
will be terminated by means of a negative response. The negative
response will be sent to the CSll.T destination by the receiving system.
It is followed by a detailed error recovery message. The sense code in
the error message will lead to abnormal termination of both the
transactions, so that CICS/VS dynamic transaction backout processing can
be invoked to guard against inconsistent resource updates.

In case of domain-remote intercommunication, the negative response
received by CICS/VS is handled by the Node Abnormal Condition program
(DFHZNAC) and passed to the user-supplied Node Error Program (DFHZHEP)
if present. The default actions set by CICS/VS ensure that CICS/VS
reads in the following error message. The sense code in this message is
made available to DFHZNAC and DFHZNEP in the same way as system sense
codes carried by the LUSTATUS commands or negative responses. CICS/VS
default actions based on this system sense code are set by DFHZNAC,
before maKing the code available to DFHZNEP. Thus, error conditions
occurring on intersystem communication sessions are handled exactly like
errors on other S8A sessions through VTAM. Details of VTA~ error
handling functions will be found in the CICSIVS System Programmer's
gefer~-A~ual, which also contains the detailed action codes for
system sense codes.

It is· not necessary to write a Node Error Program to handle
intersystem communication sessions, since the default actions set by
DFHZNAC have been selected to enforce correct recovery based on the
error condition detected. When the system sense code indicates that the
original request to VTAM may be retried, CICS/VS will do so
transparently to the application program attempting to send a message.

Apart from abrror~al ter~ination of a transaction, tho other error
conditions may only occur when the intercommunication component is
attempting an invocation of a transaction. The error action codes
specify abnormal task termination for those errors in this category
which are not recoverable; for example, when the PCT entry for the
remote transaction has been disabled by the Master Terminal Operator of
the remote system.

348 CICS/VS system/Application Design Guide

Data Base Interlock

As a part of data base and application design in a single CICS/VS
system, one must De careful not to design programs in such a way that
t\IO programs running concurrently can request the same records in such a
way as to interlock on each others requests. (See "File Control -
multiple file operations" in the appropriate command level CICS/VS
Application~~mmer'2 Refe~~ll£~_~~l).

This problem continues to exist in interconnected systems where
application programs in two different systems can cause transactions in
a third system ~o interlock in a similar manner. Such an interlocK will
be detected by means of a timeout value specified for the PCT, ~hich
uill expire when a program has ~aited the specified period without a
reply from the deadlocked transaction. CICS/VS will abend the task that
has been ~ait~ng the longest, so breaking the interlock and allowing the
contending task (or tasks) to continue.

Use of transaction chaining may lead to such a situation. Chaining
also opens the possibility for a designer employing function request
shipping or transaction routing (though not DTP) to define a specific
resource (including a transaction or terminal) as being in a remote
CICSjVS system, ana further define that resource in the remote system to
be in yet another system. If the definition in the third system
inadvertently specifies the resource to be in the first, any request for
that resource ~ill be routed to all three systems and will then deadlock
until the specified timeout value expires, abending all the
transactions. For these reasons great care should be taken during
system definition to guard against unintended use or misuse of chained
transactions.

Eroblem Determination

Application programs that make use of CICSjVS intercommunication
facilities are liable to be subject to error conditions not experienced
in single CICS/VS systems. The ne~ conditions result from the
intercommunication component not being able to estaolish a session \lith
the requested system (for example, it is not defined to CICS/VS, or is
not available).

In addition, some types of request may cause a transaction abend
because invalid data is being pas~ed to the CICS/VS function manager
(for instance the file control program). Where the resource is remote,
the function manager is also remote. Thus the transaction abend is
suffered by the remote transaction. This in turn causes the local
transaction to De abended with a transaction abend code of ATNI (for
communication via VTA~) or AZI6 ~or communication via aRO) rather than
the particular code used in abending the remote transaction. However,
the remote system sends the local CICS/VS system an error message
identifying the reason for the remote failure. This message is sent to
the local CSMT destination. Thus, if an application program uses SETXIT
and user task abend exits to continue processing when abends occur uhile
accessing resources, it will be unable to do so in. the same vay Hhen
those resources are remote.

Application programs not using the command level or DL/I CALL
interfaces may inadvertently attempt to access, via function request
shipping, resources defined as remote. In this case, the request vill
fail with a condition indicating that the resource is not defined to
CICSjVS.

Chapter 7.5. Recovery and Restart 349

Trace and dump facilities will exist in both local and remote CICS/VS
systems. When the remote transaction is abended, its CICS/VS
transaction dump is availaole at the remote site to assist in locating
the reason for an abend condition.

Applications to be used in conjunction with remote systems should be
well tested to minimize the probability of failing when accessing remote
resources. It should be remembered that a "remote test system" can
actually reside in the same processor as the local system and so be
tested in a single location where the transaction dumps from both
systems, and the corresponding trace data, are readily available. The
two transactions may be connected via MRO (for function request shipping
and transaction routing) or the VTAM application-to-application facility
(for function request shipping or DTP).

Detailed sequences and request formats for CICS/VS intercommunication
may be found in the CICSLVS Diagnosis Reference Manual and CICStVS
Problem Determination Guide.

Recovery and Restart with Non-CICSNS Systems

The cross-link exchanges used by CICS/VS to establish the state of
the other system during recovery are defined by SNA. They are therefore
independent of ·the nature of the remote system. CICS/VS follows the
same recovery procedures.whether the other system is CICS/VS or not.

350 CICS/VS System/Application Design Guide

Index

Each page number in this index refers to the start of the paragraph containing the
indexed item.

abend
application program 300
exit routine 222
handling 221
in distributed transaction
processing 330

intercommunication transaction 344
mirror transaction 300

example 311
requests 222

ABEND command 140
abnormal condition program (ACP) 226
abnormally terminate program ~BEND) 1QO
accessing records in temporary storage 152
ACCMETH operand for intercommunication 301
ACF/TCAM (see TCAM)
ACF/VTAM (see VTAM)
activity keypoints

information recorded 215
reauce system log scan 215
system warm keypoint 236

AID transaction initiation 97
ALLOCATE command 324
alternate facility, definition 322
application

batch 86
conversational 95
design 264
requirements 147

application design 10
APPLID operand for intercommunication 304
asynchronous transaction processing 86
ATI (see automatic transaction initiation.)
ATNI abend code 300
ATTACBID operand of ALLOCATE 32S
authorized path

VTAM 275
automatic journaling 70
automatic logging 70
automatic transaction initiation 137

batch-type distriouted transactions 327
distributed transaction processing 323
remote 293

AZI6 abend code 300

back-end transaction, definition 322
basic mapping support

alarm indicator 133
communication with VTAM and TCAM 131
comparison with CICS/VS terminal
control 75

I/O overlap 133
input mapping 131
introduction 76
map residence in controllers 132
maps 77
output mapping, VTAH or TCAM 131
terminal paging 218
transaction routing 293

batch
applications 86

batch (continued)
batch data interchange 88
general processing 87
sessions, 3770 125

batch program file access 24
batch retrieval 159
batch-type distributed
transactions 327,329

BB (begin bracket) SNA indicator 328
BMS (see basic mapping support)
browse·

initiation 41
multiple 42
retrieval 41
skip sequential 43
termination 42

BTAM
note about terminology V
terminal device independence 133

BUILD ATTACH command 325

CALL level (see macro level)
CANCEL
cancel time event 1Q3
CD (change direction) SNA
indicator 326,328

CEMT, remote use 306
chained mirror transactions 294
chained transaction

recovery
chained transactions

deadlock 349
CICS/DOS/VS

entry level system (ELS) 3
PLjI shared library 266

CICS/VS data base design 19
application requirements 19

implementation 20
data base definitions 19
data base selection criteria 23
DLjI products 27
file control 35
structure 20

ctCS/vs file control 24,35
access methods 23
access to online data base by offline
programs 68

batch program file update 24
batch programs cannot create files 25
comparison with DLjI 23
design considerations 68
direct access 35
indirect access Q7
record identification 43
remote files 288

defining 303
examples of intersystem flows 308
restriction with fixed-length
records 300

segmented records 56
sequential access (Browsing) 41

Index 351

CICS/VS initialization
complete cold start 237
complete warm start 231
emergancy restart 238
partial warm start 231
restart data set 238

CICS/VS monitoring facility 212
CICS/VS sign-on program 188
CICS/VS terminal control

comparison with basic mapping
support 15

CICS/VS testing and integration
tracing and debugging 178

CICS/VS, introduction to 3
CMF (see CICS/VS monitoring facility)
CMSG message switching transaction 85
codes

transaction 137
command (EXEC) level

introduction 114
command interpreter

description 117
security 193,201

COMMAREA opt10n 171
committed output messages 216
communications

controllers, VTAM or TCAM network 114
communications design

CICS/VS data communication
facilities 73

message design 267
network design 267
think time 268

complete cold start 237
connection services 116
connection, intersystem (see session)
console as CICS/VS terminal 16
control

task 140
controlled shutdown

activity keypoints 236
first and second stage 233
post-initialization phase 233
program list table (PLT) 233
system warm keypoints 235
transaction list table (XLT) 233

conversational applications 95
task initiation 95

conversational transactions 211
CONVERSE command in distributed
transaction processing

main discussion 325
overview 323

cost and efficiency
design criteria 263
major CICS/VS performance options 213
performance aspects of design 260
recovery and integrity features 216

cost and efficiency considerations
intercommunication 216

CRTE routing transaction 306
CSCS security log 200
CSMI (see mirror transaction) 293
CSMT security log 200
CSMT, remote use 306
CSSF sign-off transaction 190
CSSN sign-on transaction 188

data
extrapartition transient 156
identification 150
intrapartition transient 151
transfer betwe~n modules 111
transfer facility 149
transient 154
TWA for transfer 111

data base
access methods 265
de sign 13,268
intersystem synchronization 344

example 346
in troduction 29
remote 288

data base definition 19
collection of interrelated
information 20

data redundancy 20
st ruct ures 19

data base description (see DBD)
data base design 19

(see also CICS/VS data base design)
data interchange

batch 88
data set recovery

file control 245
temporary storage 245
transient data 245
user journaling 245

data sets
extrapartition 154
input 251
intrapartition 155
output 252

DATASTR operand of DFHTCT 302
DBD 31
DC (see data communication)

data communication design 13
deadlock 212

avoiding 212
time-out facilities 212

deadlock ,timeout in
intercommunication 305,349

debugging
tracing 118
using EDF 116

deferred intersystem output 326
deferred output integrity 211
deferred work, logging
delete program (RELEASE) 139
design

C!CS,/VS data cc~!!!u!lica.ticn::: 73
CICS/VS data management 141
CICS/VS program 131
communications 261
criteria 263
data base 13
data management 13
database 268
input transaction 98
message 261
network 261
program 269
strategy 9
system 264

design criteria 263
application design 264

352 CICS/VS System/Application Design Guide

design criteria (continued)
communications design 267
database design 268
human factors 271
online control and modification of

system 273
performance monitoring 272
program design 269
recovery, security, and debugging 273
system design 264

destinations
indirect 161

device
independence 168

device independence
terminal 18

DFBISP routine 290
DFHTCT (see terminal control table)
DFHXSC copy module 197
DFBXSP security module 197
diagnostic facility, execution (see EDF)
direct access 35

blocked DAM records 39
DOS/VS ISAM variable-length records 39
dynamic OPEN/CLOSE of data sets 40
exclusive control during update 31
locate mode processing 39
mass record ins'ertion 40
random record addition 38
random record deletion 39
random record retrieval 36
random record update 37

disable transaction codes and programs 230
disk organization

intrapartition 158
distributed systems (see

intercommunication)
distributed transaction processing 319

application programming 322,32ij
examples of intersystem flows 332
master and slav~ design preferable 328
system programming 327

distributed transaction processing (see
also intercomaunication)

introduction 279
DL/I

access methods 2ij
advantages 33
application programming interfaces 33
cannot specify remote system in

program 300
comparison with CICS/VS file control 24
DTB for data bases 224
external security manager 200
intent scheduli~g 213.
introduction 29
program isolation deadlock 213
program isolation scheduling 213
remote data bases 288

defining 304
scheduling 213
transaction deadlock 213

DL/I products 27
access from CICS/VS 28
DL/I DOS/VS 28
DL/I entry DOS/VS 27
IMS/VS DL/I 28

documentation
error message 107

domain-remote
note about terminology 280

domain-remote systems
definition 279
uses 284

domain, sessions between 339
DTIftOUT operand of DFBPCT macro in
intercomaunication 305

DTP (see distributed transaction
processing) 319

dumps 220
dump data set 231
formatted 220
intercommunication 350
storage violation 220
transaction 231

duplicates data set 52
dynamic

buffer 224
log 22ij
terminal reconfiguration 169
transaction backout 143,223

dynamic OPEN/CLOSE of data sets 40
dynamic storage

used by temporary storage 151
dynamic transaction backout 143

DBUFSZ operand 224
DTB for terminal messages 225
dynamic buffer 22q
dynamic log 224
files and DL/I data bases 224
generation 225
intercommunication 305

example 346
intersystem failure 344
performance considerations 226
resource recovery 224
statistics 226
temporary storage 225
transient data 224
user exits 225
VTAft terminal messages 225

EB (end bracket) SNA indicator 328
EDF (execution diagnostic facility)

description 11fr
remote use 306
security 193,201
security rules 178

ELS (see entry level system)
emergency restart 238

committed output messages 242
controlled shutdown 244
data set recovery 245
in-flight tasks 242
intercommunication 347
message cache 242
message resynchronization 244
post-initialization phase 241,244
recovery utility program 241
restart data set 238
restart emergency restart 246
system failure 245
system log 241
temporary storage 241

Index 353

emergency restart (continued)
terminal activity 244
transaction backout 242
transaction backout program 2q3
transient data 2ql

enable transaction codes and programs 231
onqueue intelock
enqueue interlock 212

intercommunication 349
enqueue/dequeue 141
enqueueing

DL/I scheduling 213
interlock 212

entry level system 3
error

causing mirror transaction to abend 300
example 311

correction, conversational
applications 106

correction, use of temporary
storage 109

field correction 108
in distributed transaction

processing 330
intercommunication 343
message contents 107
message documentation 107
new, with function request shipping 300

error handling programs for
intercommunication 348

error recovery
program 143

BSM ~ee external security manager)
exclusive control during update 37
EXEC level (see command (EXEC) level)
execution diagnostic facility (see EDF)
exit routines, user-written 222
external security manager 196
extrapartition

data sets 154
transien~ data 156

extrapartition data set recovery 157,251
input data sets 251
output data sets 252

FBA (see fixed block architecture)
field verify/edit 104
file access 275
file access (see also CICS/VS file control)
file control (see CICS/VS file control)
fill-in-the-blanks message format 100
first and ~cccnd guiesce stages 233
fixed block architecture (FBA) 35,265

intrapartition transient data 157
fixed-format messages 98
FHH (see function management header)
freeing intersystem sessions 323,325
front-end transaction, definition 322
full-duplex transmission 130
function management header 130

distributed transaction processing 3~5
function request shipping

(see also intercommunication) 279
application programming
considerations 300

compared with distributed transaction
processing 319

function request shipping (continued)
concurrent with distributed transaction

processing 324
domain-remote uses 284
examples of intersystem flows 308
identifying remote system 300
introduction 279,281
region-remote uses 282
resource level security 193
security 196
support at command level only 300
system program.ing 301

future task initiation 141

GROuP-type macros for
intercommunication 304

hash or control totals 104
high performance option (BPO) 274

for intercommunication 304
VTA! authorized path 275

HLPI (see command (EXEC) level)

I/O overlap
B!!S 133
te rminal 130

immediate shutdown 236
I!S/VS

intercommunication 319,331
recovery and restart 350

ROCBECK required on STAR~ command 299
IKS/VS DL/I 28
in-flight tasks 215
IRBF!!B condition 325
indirect access 47

additions to indirect access data
sets 54

application examples 47
chain integrity 55
duplicates data set 52
implementation 49
initiation 49
specification logical relationships 51
updating indirectly accessed records 52

indirect destinations
device independence 168
dynamic terminal reconfiguration 169
term inal back up 168

initiation
automatic transaction 137
future task 141
task 95,137
task, by AID 97

input
data sets 251
mapping 131
messages 80
transaction design 98

installation of CICS/VS 4
integrity features 276
intent scheduling ~13
interactive-type distributed
transactions 328

intercommunication
application program.ing 300,324

354 CICS/VS System/Application Design Guide

intercommunication (continued)
introduction 279
performance 276
required system programming macros 304
security 194,198

resource l~vel 193
sign-on by terminal operator 189
system programming 301

interlock (see d~adlock)
interregion SVC 279
intersystem communication (see
intercommunicatio~

intersystem failure
interval control 138,141,150

future task initiation 141
local queuing of remote reguests 290
NOCHECK required with IMS/VS 299
remote requests 289
remote START NOCHECK requests 299
time event cancel 143
time event wait 142

INTLOG terminal status 290
intrapartition

data sets 155
disk organization 158
queue usage 159
recovery 159
transient data 157

intrapartition queue usage
batch retrieval 159
intrapartition recovery 159
low or high priority processing 166
notification of queued output

messages 163
reusable queues 166
terminal output 160
terminal status 161

intrapartition transient data 157
disk organization 158
.record accessing 157

introduction to online system design
design strategy 9
system design in implementation phase 7

INVITE operand of SEND or
CONVERSE 323,326,329

IRC (interreg ion communication)
(see also multiregion operation) 279
specifying access method 301

ISC (see intercommunication)
isolated task paging 141

journal requests 248
journaling

and logging 276
automatic 70
journal requests 248
security journals 202
system initialization 248
transaction journals 249
user 247

key verification 106
keypoints

system activity 215
warm 235

keyword-format messages 100

LAST operand of SEND 329
LINK com~and 139
link pack area (LPA) 305
link to program (LINK) 139
LOAD command 139
load program (LOAD) 139
local queueing 290
local system, definition 280
LOCALQ operand of DFHPCT TIPE=REMOTB 290
log, security 200
logging

and journaling 276
automatic 70
deferred work 213
message 93

logging and deferred
logical device code
logical unit of work

intercommunication
example 346

logical units 341
(see also LO)

logoff (see sign-off)
logon (see sign-on)

work
132

210
343

214

low or high priority processing 166
LPA (see link pack area)
LRBCL operand of DFHFCT macro 303
LU Type 4 sessions 129
LO Type 6 in intercommunication 319,323

non-CICS/VS systems 331
LOW (see logical unit of work) 210

macro level interface, introduction 174
mapping (see basic mapping support)
mass record insertion 40
master and slave distriouted
transactions 328,329

examples of intersystem flows 332
master terminal, VTAM considerations 342
message

cache 242
delivery 84
design 267
fill-in-the-blanks format 100
fixed-format 98
input 80
keyword-format 100
logging 93
mu1tiple-choice format 101
notification of queued output 163
output 80
recovery and resynchronization 216
routing 83,149

using VTAM or TCAM 134
switching transaction (CMSG) 85
variable-format 99

message sequence numbers 347
mirror transaction

abend 300
example 311

deadlock timeout 305
definition 281
examples of intersystem flows 308
security 193,196
system programming considerations 305

module size and program structure 270

Index 355

monitoring facility (see CICS/VS
monitoring facility)

MRO (see multiregion operation)
multiple-choice message format 101
multiprocessor system and multiregion
opera tioD 28~

multiregion operation
(see also intercommunication)

automatic transaction initiation 293
for testing 181
introduction 279
security 198,201

resource level 193
sign-on by terminal operator 189
uses 282

multithread testing 180

NETNAME operand of DPHTCT macro 301,304
network

design 267
intersystem 279
utilization 262
VTAM or TCA~ 113

NOCHECK operand of START command 299
example of intersystem flows 314
required for communication with

II1S/VS 299
node abnorm~l condition program

(DFHZN AC) 91
intercommunication 348

node error program (DFHZNEP) 92
intercommunication 348

NOINTLOG terminal status 290
non-conversational transactions 271
non-resident application modules 270

online aFplications 7,8
online control and modification of
system 273

operating (see master terminal) 342
operating system region/partition ABEND

handling 231
operation

security code for transaction
access 191

operator
resource level security code 192

output
data sets 252
formatting 109
integrity 217
messages 80
terminal 160

output mapping 131
overlap

BMS I/O 133
terminal I/O 130

pacing (see VTAM)
paging

isolated task 141
remote 293
terminal 81,110,149

status 83
parallel sessions 319

partial war.m start 237
pathlength and processor utilization 262
PCT/PPT disable and enable 230
performance

example of efficient intersystem
flows 336,337,338

improvement with NOCHECK operand of
START 299

intercommunication 298
intersystem sessions 326
monitoring 272
primed storage for

intercommunication 298
performance aspects of design 260

maximum load 261
network utilization 262
pathlength and processor
utilization 262

physical database utilization 262
response time 260
virtual and real storage
utilization 261

performance options 273
CICSjDOS/VS entry level system 274

permanent transaction code 98
physical database utilization 262
PL/I shared library 266
post initialization phase processing 233
pregenerated CICS/VS systems 3
preparation of user journals 250
primed storage 275

for intercommunication 298
principal facility, definition 322
priority of task 110
problem determination in

intercommunication 349
processing

asynchronous transaction 86
batch 87
low or high priority 166
priority 110
program error 143

processor utilization
average instruction pathlength 262

PROPILE operand of ALLOCATE command 325
PROFILE type of DPHPCT macro 327
program

abnormally terminate 140
control 138
delete 139
design 12,269
error processing 143
error program 144,227
error recovery 143
link to 139
load 139
node abnormal condition (DFHZNAC) 91
node error (DFHZNEP) 92
return from 139
system recovery 219
terminal error 91
transfer control to 138

program check
handling 219
in storage control 220
under CICS/VS system task 221
under user application program task 220

356 CICS/VS System/Application Design Guide

program check handling
system recovery program (SRP) 219

program control abend requests 222
program control table (PCT), remote 303
program design

assembler programs 269
choi.ce of programDing language 269
CICS/VS 137
COBOL programs 269
command level interface 269
conversational and non-conversational
transactions 271

macro level interface 269
module size and program structure 270
PL/I programs 269
reference set 270
resident and non-resident application

modules 270
RPG programs 269
110rking set 270

program isolation
deadlock 213
scheduling 213

program level abend exit routine
SETXIT requests 222

program list table (PLT) 233
program specification block (see PSB)
program structure, module size 270
programming

quasi-reentrant 1'Pl
programming language, choice of 269
PROTECT operand of START comnand 289
protected messages (VTAM only)

deferred output integrity 217
message recovery and
resynchronization 216

protected resources
auxiliary storage temporary storage 209
CICS;VS files 209
effect on VTAM session 3q1
examples of intersystem flows 310
intrapartition transient data
destinations 209

mirror transaction 294
remote temporary storage 291
remote transient data 291

defining 303
PSB 32

remote 304

quasi-reentrant programming 14q
queued output messages

notification of 163
queues

intersystem transfer 327,329
intrapartition 159
remote temporary storage 291

defining 303
remote transient data 291

restriction with fixed length
records 300

reusable intrapartition 166
queuing

remote transient data
defining 303

queuing capability 148
queuing of remote START requests 290

quiesce stages, first and second 233

RACF ~esource access control
facility) 196

RAS features 207
real storage utilization 261
RECEIVE command in distributed transaction
processing

main discussion 325
overview 323

RECEIVE operand of DFHTCT macro 302
RECFM operand of DFHTCT 302
reconfiguration

dynamic terminal 169
record

accessing 156,157
record identification 43

record key 44
record location 45

recoverable resources
definition 209
enqueueing 211
logging and deferred work 213
logical units of work 210
protected messages (VTAH only) 216
record protection 211
specifying protected resources 209
synchronization points 210
system activity key points 215
underlying principles 208

recovery
automatic journaling 70
automatic logging 70
extrapartition data set 251
integrity features 276
intercommunication 307,343

example 346
intrapartition 159
messages, BTAtt terminals 253
messages, VTAH terminals 253
of extrapartition data sets 157
program error 143
resources 224
security and debugging 273
temporary storage 153
terminal error 89
terminal I/O errors 219

recovery and restart
CICS/VS initialization 237
CICS/VS termination 233
operating system region/partition ABEND

handling 231
overview 207
principles underlying recoverable
resources 208

program check handling 219
RAS features 207
recovery from terminal I/O errors 219
reliability, availability,
serviceability (RAS) 207

transaction abend handling 221
user journaling 247

RECOVERY type of DPHTST macro 303
reduce system log scan 215
reference set 210
REGION type of DFHTCT macro 302

Index 357

region-remote systems
definition 279
note about terminology 280
uses 282

region/partition ABEND handling 231
relay transaction 296

. defining 303
relay transaction, definftion 281
RELEASE command 139
reliability,. availability, serviceability

(RAS) 207
remote system

(see also domain-remote, region-remote,
intercommunication)

batch-type. distributed transactions 327
busy (SYSBUSY condition) 325
CRTE routing transaction 306
defining .to CICS/VS 287
definition. 280
definitions 279
distributed transaction processing 319

allocating session. 324
identifying system 324

error in function shipping requests 300
example 311

examples of intersystem flows 308,332
function request shipping 281
interactive-type distributed
transactions 328

non-CICS/VS 331
recovery and restart 350

recovery 343
transaction initiation

example of flows 312
VTAM session 339

REMOTE type of DFHFCT macro 303
REMOTE type of DFHPCT macro 303
REMOTE type of DFBTST macro 303
requests

program control aDend 222
resident and non-resident application

modules 270
resource

remote 281,319
defining 287

resource control access
resource level security
resource, recovery 224
resources

defining protected
shared 114

response time 8,260
restart

recovery 201
transaction 143,227

facility (see RACF)
192

209

restart (see also emergency restart)
restart data set 238
resynchronization, message recovery 216
retrieval

batch 159
RETURN command 139
ret urn from program (RETURN) 139
reusanle intrapartition queues 166
RNTNAME operand of DFHTCT macro 302
root segment 58
routing

message 83,149
remote, by Bas 293

routing transaction (CRTE) 306
security 195

scheduling, DL/I 213
scratchpad 147,149
SDLC 115
security

. log 200
security codes 191

for printers 194
permanently defined in TCT 194
when sign-on not possible 194

security design
introduction to CICS/VS facilities 187
introduction to security
considerations 183

security log 188
segmented records 56

advantages 67
creation and maintenance 67
file control 69
fixed- and variable-length records 66
presence or absence of segments 58
root segment 58
segment definitions in FCT 59
segment deletion 66
segment design 57
segment indicator flags 59
segment retrieval 63
segment updating (DAM, IS!M, and entry
sequenced VSA!) 64

segment updating (key-sequenced
VSA!) 64

selective transaction abend 231
SEND command in distributed transaction

processing
deferred output 326
main discussion 325
overview 323

SEND operand of DFBTCT macro 302
sequence numbers, VTAM 217
sequential access (browsing) 41

backwards bro¥sing43
browse initiation 41
browse retrieval 41
browse termination 42
multiple browsing 42
skip sequential browsing 43

session
busy (SYSBUSY condition) 325
defining 301
distributed transaction processing 322
efficient use 326
intersystem

allocating 324
intersystem protocols 323
main discussion of VTAH
intercomaunication 339

parallel 330
with non-CICS/VS system 331

SESSION operand of SEND, CORVERSE and
RECEIVE 324

session types 117
SETXIT command 140
SETXIT requests 222
shared data base

security 198

358 CICSjVS System/Application Design Guide

~nared DLjI data base 25
shared resources, VTAM or TCAM network 114
shared virtual area (SVA) 305
shutdown

controlled 233
immediate 236
uncontrolled 236

sign-off 190
sign-on 188

external security manager 19B
multiregion operation 189
numeric 190
operator identification card 190
security exposure with TCAM 190

sign-on program (see CICS/VS sign-on
program)

signal command, SNA 323,325,330
single-thread testing 180
size requirements 112

TWA 112
SNA

format of intersystem START data
streams 302

indica tors 328
intercommunication 319,323
message sequence numbers 341

SliP (see CICS/VS sign-on program)
SliT (see sign-on)
START command

local queuing for remota systems 290
NOCHECK operand on remote
requests 290,299

required for communication with
IUS/VS' 299

PROTECT operand 289
remote requests

compared with distributed
transaction processing 319

example of intersystem flows 312
use with remote system 289

starter system
CICS/DOS/VS 4
CICS/OS/VS 4

statistics 216
intercommunication 306

status
terminal 161
terminal paging 83

store-and-forward intercommunication 290
SUSPEND 140
SVA (see shared virtual area)
SVC, interregion (see interregion SVC)
synchronization point

distributed transaction processing 324
intercommunication 343

example 346
synchronization point requests 210
synchronization points

distributed transaction processing 326
example of intersystem flows 335
examples of intersystem flows 310,338
intersystem failure 301
mirror transaction 294
recommended for intersystem queue
transfer 329

remote START requests 289
synchronous data link control (SDLC) 115
SYSBUSY condition 325

SYSID operand 300
SYSIDNT operand of DFHTCT

macro 301,302,304
system

activity keypoints 215
CICSjDOS/VS entry level 3
CICS/DOS/VS starter 4
CICS/OS/VS starter 4
design 264
log 214
online control and modification 213
programmer, macro instructions 131
warm keypoints 235

system design
access methods 264
CICS/VS options 266
design phase 9
implementation 1,9
online applications 7,8
operating systems 264
resource utilization 9
turnaround or response time 8
user acceptance 9

system failure during emergency
restart 245

system failure in intercomQunication 343
system generation for

intercommunication 304
system initialization

for intercommunication' 304
use of journals 248

system logs in intercommunication 343
system recovery program (SRP)

program check in storage control 220
program check under CICS/VS system
task 221

program check under user applic~tion
program task 220

SYSTEM type of DFHTCT macro 301,304
system, remote (see re~ote system)

table search 105
task

control 140
future, initiation 141
initiation 137
initiation, conversational
applications 95

isolated, paging 141
priority 110

task control
enqueue/dequeue 141
isolated task paging 141
suspend 140
terminal read timeout 140

TCAM 134
message routing and message

swi tching 134
note about terminology and VTAM
interface V

sign-on security exposure 190
terminal paging 134

TCT (see terminal control table)
TCTSE (see terminal control table)
TCTTE (see terminal control table)
temporary storage

accessing records in 152

Index 359

temporary storage (continued)
DTB 225
recovery 153
remote queues 291

defining queues 303
usage 149
use of dynamic storage 151
use of, in error correction 109

temporary storage management 148
temporary transaction code 97
terminal

abnormal condition program (TACP) 89
backup 168
device independence 78

input messages 80
output messages 80
VTAM, TCAM, and BTAM 133

error program 91
error recovery 89
I/O overlap, using VTAM or TCAM 130
paging 81,110,149
paging status 83
paging using VTAM or TCAM 134
read timeout 140
reconfiguration 169
remote definition 302
status 161

terminal control (see CICS/VS terminal
control)

terminal control table~CT)
for distributed transaction

processing 327
for intercommunication 301

terminal error recovery 89
terminal I/O errors, recovery

dynamic transaction backout 219
node error program 219
terminal error program 219
transaction restart 219

terminal operator (see operator)
terminal paging, BMS 218
termination

CICS/VS 233
controlled shutdown 233
immediate shutdown 236
uncontrolled shutdown 236

testing
intersystem 339
multithread 180
resource level security 193
security 201
single-thread 180
with command interpreter 177
with BDP 176
with multiregion operation 181,282

testing and integration 173
think time 268
timeout

intercommunication deadlock 305,349
terminal read 140

TIDAL for remote DL/I requests 304
top-down system design

application design 10
data base design 13
data communication design 11
data managemant design 13
e~ror recovery and backup procedures 11
program design 12

top-doun system design (continued)
temporary storage management 13
transient data management 13

trace and dump facilities 273
intercommunication 350

tracing and debugging 178
multithread testing 180
single-thread testing 180

transaction
abend handling 221
access via external security

manager 199
asynchronous processing 86
codes 96,137
dumps 231
dynamic backout 143
editing 103
initiation, attention 10 97
journals 249
message switching (CHSG) 85
permanent transaction code 98
remote 303

distributed transaction
processing 319

example of intersystem flows 312
restart 143,227
security code 191
selective abends 231
temporary transaction code 97

transaction abend handling
abnormal condition program ~CP) 226
dynamic transaction backout 223
PCT/PPT disable and enable 230
program error program (PEP) 227
transaction dumps 231
transaction restart 227
user exit routines 222

transaction deadlOCK 213
transaction initiation

automatic 137
distributed transaction processing 323

transaction list table (XLT) 233
transaction recovery and restart

messages, BTAM terminals 253
messages, with VTAM terminals 253
terminal operator restart 255
user journaling 253

transaction routing
(see also intercommunication)
automatic transaction initiation 293
basic mapping support 293
defining remote transactions 303
design considerations 291
examples of intersystem flows 316
introduction 281
Security 189,195
system programaing 301,302
uses 282

transactions
conversational 271
non-conversational 271

transfer control to program (XCTL) 138
transfer of data between modules 171
transient data

UTn 224
extrapartition
intrapartition
remote queues

156
157

291

360 CICS/VS System/Applicat~on Design Guide

transient data (continued)
remote queues ~ontinued)

defining 303
restriction with fixed length
records 300

transient data usage
extrapartition data sets 154
intrapartition data sets 155

transmission
full-duplex 130

TRMIDNT operand of DFHTCT macro 301,302
turnaround or response time 8
TWA

for data transfer 171
for short-term data transfer 172
size 171

uncontrolled shutdown 236
user exit routines

program control abend requests 222
program level abend exit routine 222

user exits in dynamic backout program
(DFHDBP) 225

user journaling
CICS/VS recovery 250
extrapartition data set recovery 251
journal control macros 247
journal control program 247
journal control table 247
preparation of user journals 250
transaction recovery and restart 253

variable-format messages 99
virtual and real storage utilization 261
VLVB SNA data streams 302
VSAM fast path in intercommunication 305
VTAM

authorized path 275
for intercommunication 304

connection services 116
note about terminology V
pacing for inter~ystem queue
transfer 329

requirements for CICS/VS 115
sequence numbers 217
sessions between systems 339
terminal control communication 130
terminal device independence 133

VTAM or TCAM network 113

warm keypoints 216,235
warm start

complete 237
partial 237

work file capability 147
working set 270

XCTL command 138

3270 sessions 118

3600 sessions 119

3650 sessions 122

3767 interactive sessions 124

3770 batch sessions 125

3770 interactive sessions 124

3770 program&able sessions 127

3790 sessions 127

Index 361

SC33-0068-2

------ ==® - ---------... - ---------_.-
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

(')

(')
en -< en
en
-<
~
Cl)

3 -»
"0
~

~f
r-+
0'
:l

CJ
Cl)
en
cO'
:l

G')
c::
c:
Cl)

"'0 ..,
5'
r-+
Cl)

c..
5'
C
en »
en
(')
w
w
6 o
0)
co
~

CIl
c

:.J
OJ

::
o
c
Cl
c
o
~ ...
:::l
U

Customer Information Control System/Virtual Storage (CICS/VS)
System/Application Design Guide

SC33-0068-2

READER'S
COMMENT
FORM

This manual is part of a library that serves as a'reference source for systems analysts, programmers, and operators
of IBM systems. This form may be used to communicate your views about this publication. They will be sent
to the author's department for whatever review and action, if any, is deemed appropriate. Comments may be
written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBAf publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

Number of your latest Technical Newsletter for this publication .. .

If you want an acknowledgement, give your name and address below.

Name

Job Title Company

Address.

Zip

Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A. (Elsewhere, your IBM
representative or IBM branch office will be happy to forward your comments.)

SC33-0068-2

Reader's Comment Form

,

I

Fold and tape Please do not staple Fold and tape ... ,

BUSINESS REPLY MAIL
FIRST CLASS PERMIT 40 ARMONK, NEW YORK

Postage will be paid by addressee:

International Business Machines Corporation
Department 812HP
1133 Westchester Avenue
White Plains, New York 10604

Fold and tape

------ .::® - --- .~-.-- --... ------ - - -~-------
-~-y-

International Business Machines Corporation
Data Processing Division

1133 Westchester Avenue, White Plains, N.Y. 10604

I BM World Trade Americas/Far East Corporation

Please do not staple

Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

I BM World Trade Europe/Middle East/Africa Corporation

360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

I No postage "
necessary
if mailed

in the
United States

Fold and tape

n
n en -< en
en
-<
!!l-
et)

3 -»
"0
~

~r
.-+ o·
:J

o
m
cO'
:J
G)
c:
0.:
et)

"1J ..,
:5'
.-+
et)
Cl.

5'
c
en »
en n
w
w
6
o
~
~

