
•
•

•

• • •• ••
••

Customer
Information
Control
System

Vers.ion 1 Release 6
Application
Programming Primer

Volume I

Main
I nstructiona I ~
Text

---- ------ - ---- ---- - ---- - - ------ -- ... --- ·-

• •

•

• •
•

•

Customer
Information
Control
System

Version 1 Release 6
Application
Programming Primer

Volume I

Program Numbers

5740-XX1 (CICS/OS/VS)
5746-XX3 (CICS/DOS/VS)

Main
I nstructiona I
Text

--------- -- --- - -- - ---- - -------- ---- ·-

First Edition (October 1984)

This edition of the CICS Primer applies to Version 1 Release 6 (Version 1.6) of the IBM program product
Customer Information Control System/Virtual Storage, program number 5746-XX3 (CICS/DOS/VS), and
program number 5740-XXl (CICS/OS/VS).

Changes are made periodically to the information herein; before using this publication in connection with
the operation of IBM systems, consult the latest IBM System/370 and 4300 Processors Bibliography,
GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM program product in
this publication is not intended to state or imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

In this publication are illustrations in which names are used. These names are used solely for illustrative
purposes and not for the identification of any person or company.

Publications are not stocked at the addresses given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed,
comments may be addressed either to:

International Business Machines Corporation,
Department 6RlH,
180 Kost Road,
Mechanicsburg, PA 17055.

or to:

IBM United Kingdom Laboratories Limited,
Information Development, Mail Point 095,
Hursley Park,
Winchester, Hampshire, England, 8021 2JN.

IBM; ~yuse or distribute whatever information you supply in any way it believes appropriate without
incurring {lny obligation to you.

(c) Copyrigl!t International Business Machines Corporation 1984

This book contains sample programs. Permission is hereby granted to copy and store the sample programs
into a dat~rocessing machine and to use the stored copies for study and instruction only. No permission is
granted to use the sample programs for any other purpose.

Preface

With a little effort from you, this Primer can teach you how to write CICS application
programs, using the command-level CICS interface and the COBOL programming
language. We assume you're an application programmer, bringing to CICS your
existing knowledge of COBOL gained in a batch programming environment.
However, experience of other (non-CICS) online systems, and of other high-level
programming languages (such as PL/I), will be helpful.

It will also be helpful (but not vital) if you can read the CICS/VS General Information
manual for the current release of CICS.

This Primer has two simple aims. We want to tell you just enough for you to be able
to design, code, test, and run your first CICS application program. And we want to
point you to the various books in the CICS library that will fill in the gaps because,
in a book this size, we won't be able to tell you all about CICS.

We'll be talking about, and basing our examples on, a CICS system that offers only a
subset of the full CICS facilities. This will make things easier for you because it
means we won't have to keep referring you to other books in the CICS library while
you're learning. These other books are listed in "Bibliography" on page 317.

The CICS system we've chosen is as complete and self-sufficient as we can make it. It
will give you a sound framework for your first application programs, and offer a
logical starting point for more advanced work.

How to Use This Book

Read through it at your own pace until you reach Part 4. At that point, you meet the
COBOL source code for our example application. We've printed it separately for
easier reference. Our intention is to make the code available in machine-readable
form for you to translate and compile for your own system.

Study the code. Run the application. Think how you would improve it (this might
not be as difficult as you imagine!). Make your changes and try them out.
Remember: "I read, and I remember; I do, and I understand."

Preface iii

The Structure of this Book

There are five main instructional parts, and some reference material in appendixes at
the back of the book.

"Part 1. Setting the Scene" introduces CICS, and tries to answer the question
"What's different about CICS?" (compared to, say, a batch system).

"Part 2. Application Design" deals with application design from various angles: the
user interface, the design of the data, the splitting of the processing steps into
sensible transactions, the exercise of control and communication between
transactions, and so on.

"Part 3. Application Programming" tells you how to write the COBOL programs
that will implement the CICS example file inquiry and update application. These
programs form a realistic (non-trivial) working system.

"Part 4. The COBOL Code of our Example Application" is printed separately. It
contains the source code in full, along with detailed step-by-step notes of how the
code works.

"Part 5. Testing and Diagnosis" covers running, testing, and debugging
application programs. It shows you a complete debugging session using the powerful
facilities of the Execution Diagnostic Facility, EDF. (The bug is one we deliberately
added, in case you're wondering ...)

It also shows you how to work through a transaction dump of the same problem,
arriving at the same conclusion.

Appendix A, "Getting the Application Into Your CICS System" tells you how to
install and bring up a CICS system sufficient for your first application.

Appendix B, "Additional CICS Facilities and Your Reference Manual (the
APRM)" tells you about the various features of CICS that we've not been able to
cover in a book this size. It also introduces you to the CICS book you'll need when
you start writing your own programs: the CICS/ VS Application Programmer's
Reference Manual (Command Level), SC33-0077.

Finally, there's a glossary and an index.

Just before Part 1, you'll find a questionnaire in which we invite you to tell us what
you think about this book. We always welcome feedback on our books (praise or
criticism) and would be grateful for your comments.

iv CICS Application Programming Primer

A Note on Installing your CICS System

Before you can test your application, you need a CICS system on which to run it.
We've put all the necessary information about installing a CICS/DOS/VS system into
Appendix A, "Getting the Application Into Your CICS System" on page 269.

We suggest you refer to this appendix or, if you have access to a friendly system
programmer, get his or her help right now. By following the step-by-step instructions
you should end up with a working CICS system on which you can install and run
your first application program.

Product Nam es

Throughout the book we've used the simple, commonly used, abbreviations for the
names of IBM program products. If you want to know exactly what these
abbreviations mean, refer to the glossary at the back of the book.

Computer Systems

CICS runs on a wide range of IBM computer systems. Most of the information in this
book applies to all these systems. However, where we need to make an assumption
about the computer system that you are using, we assume a relatively small,
single-processor system, controlled by the VSE operating system, and including all the
facilities available with SIPO and VSE/SP.

Terminals

Terminals are the interface between a CICS system and its users. You can use many
different types of terminal, depending on the functions that you need to perform.
However, the general-purpose terminals of the IBM 3270 Information Display System
are very widely used. For this reason, we'll be assuming 3270 terminals are used for
the example application in this book.

Preface V

Contents

Part 1. Setting the Scene . 1

Chapter 1-1. Introduction to CICS•.. 3
What is CICS? . 3

Why You May Need an Online System 4
Why Have CICS? . 5
What Does CICS Do? 5

CICS Application Programs . 6
Couldn't I Do All This Myself? . 6
Can CICS Serve Very Large Systems and Very Small Systems Properly? 7

How Does a CICS-Based Application Differ from a Batch Application? 7
Basic Differences . 7
Starting a Transaction . 10
Inside CICS . 10

How Does CICS Help You Set Up an Online System? . 13
How Do You Use CICS? 13

Part 2. Application Design 15

Chapter 2-1. The CICS Example Application - A Department Store 17
Defining the Problem . 18

The Account File Records : 18
Requirements Imposed by the Environment 18
Refining and Developing the Specifications . 19
Estimating the Number of Transactions 20

Summary 20
Designing the Transactions: Preliminaries . 21
What Next? 22

Chapter 2-2. 3270 Terminals . 23
3270 Field Structure . 23
3270 Output Data Stream . 25
3270 Attribute Bytes . 27
3270 Input Data Stream . 28
Unformatted 3270 Data . 30
Saved by BMS . 31

Chapter 2-3. Designing the User Interface . 33
A First Approach 33

The Display Transaction . 33

Contents vii

The Print Transaction . 35
The Add Transaction . 35
The Modify Transaction . 36
The "Delete Transaction . 38

A User-Friendly Approach ... 39
Using a Menu Screen ... 39
Printing the Log ... 41
Name Inquiry 41

Some Interface Design Principles . 43

Chapter 2-4. Coming to Grips with the Data 47
The Account File .. 47

Access by Name . 48
Recovery Requirements ... 51

Chapter 2-5. Designing the Transactions: More Detail 53
Request Analysis . 54
Add Processing . 56
Modify Processing ... 58
Delete Processing . 60
Display Processing . 62
Print Processing . 64
Name Inquiry Processing . 66
Printing the Log ... 68
Summary ... 70

Chapter 2-6. Programming for a CICS Environment 71
Resources ·. 71

"Traditional" Resources . 72
Resources Specific to Working Online . 7 4

Chapter 2-7. A Basic Decision: Conversational or Pseudoconversational . . 77
Conversational Transactions . 78
Pseudoconversational Transactions . 78
Maintaining File Integrity . 79

Double Updating... 80
... and How To A void It . 81

Chapter 2-8. Arranging the Processing into Transactions and Programs . . 83
Defining the Transactions . 83

Displaying the Menu ... 83
Analyzing the User's Response . 83
Adding a New Record . 84
Handling Updates and Other Requests 84

Defining the Programs . 84
Displaying the Menu - ACCTOO 84
Analyzing the User's Response - ACCTOl 85

viii CICS Application Programming Primer

Handling Updates (Including Additions) - ACCT02 . 86
Summary ... 87

Chapter 2-9. Three Remaining Considerations . 89
Communication Between Transactions 89
Handling Errors and Exceptional Conditions . 90

A "Catchall" Error Program - ACCT04 . 92
Transactions and Terminals . 92

A Printer Program - ACCT03 92

Chapter 2-10. Defining the Programs - A Final Look 95
Program ACCTOO: Menu Display 95
Program ACCTOl: Initial Request Processing . 95
Program ACCT02: Update Processing 97
Program ACCT03: Requests for Printing 99
Program ACCT04: Error Processing . 100

Part 3. Application Programming 103

Chapter 3-1. Writing CICS Programs in COBOL . 105
How To Invoke CICS Services . 106
Restrictions in CICS COBOL . 107

Chapter 3-2. Defining Screens With Basic Mapping Support (BMS) 109
What BMS Does . 109
The BMS Macros . 111

The DFHMDF Macro: Generate BMS Field Definition 111
The DFHMDI Macro: Generate BMS Map Definition 114
The DFHMSD Macro: Generate BMS Map Set Definition 116
Rules on Macro Formats . 118

Map Definitions for the Example . 119
Defining the Account Detail Map . 119
Defining the Error Map . 123
Defining the Message Map . 124
The Map Set . 125

Summary . 126
Optional Exercise . 126

Chapter 3-3. Using BMS: More Detail . 127
Symbolic Description Maps (DSECT Structures) ·. 127

Copying the Map DSECT into a Program . 127
The Generated Subfields . 128

Sending a Map to a Terminal . 133
The SEND MAP Command . 133
Using SEND MAP in the Example Program . 135

Positioning the Cursor . 138
Sending Control Information Without Data . 140

Contents ix

Receiving Input from a Terminal . 140
Finding Out What Key the Operator Pressed . 142

The HANDLE AID Command . 142
The EXEC Interface Block (EIB) . 143

Errors on BMS Commands . 146
MAPFAIL Errors . 147
INVMPSZ Errors . 148

Other Features of BMS . 148

Chapter 3-4. Handling Files . 151
Read Commands . 151

Reading a File Record . 151
Browsing a File . 155
Using the Browse Commands in the Example Application 157

Write Commands . 158
Rewriting a File Record . 159
Adding (Writing) a File Record . 160
Deleting a File Record . 160
Using the Write Commands in the Example Application 160

Errors on File Commands . 161
Other File Services . 164

Chapter 3-5. Saving Data and Communicating Between Transactions . . . 165
The Need for Scratchpad and Queuing Facilities . 165
Temporary Storage . 166

Adding to, and Creating, a Temporary Storage Queue 166
Replacing Items in a Temporary Storage Queue . 167
Reading Temporary Storage Queues . 168
Deleting Temporary Storage Queues . 169
Naming Temporary Storage Queues . 169
Using Temporary Storage in the Example Application 170
Errors on Temporary Storage Commands . 172

Transient Data . 173

Chapter 3-6. Program Control . 175
Tables for Program Control . 175
Commands for Passing Program Control . 176

The LINK Command . 176
The XCTL Command ... 177
The RETURN Command . 178
The COBOL CALL Statement . 179
Subroutines Revisited . 179

Examples of Passing Control and Data Between Programs and Transactions 180
Communicating Between Transactions in the Example Application 182

Errors on the Program Control Commands . 183
Abending a Transaction . 183
Other Program Control Commands . 185

X CICS Application Programming Primer

Chapter 3-7. Starting Another Task, and Other Time Services 187
Starting Another Task . 187
Retrieving Data Passed in the ST ART Command . 189
Using the ST ART and RETRIEVE Commands in the Example Application 189
Errors on the ST ART and RETRIEVE Commands . 190
Other Time Services . 191

Chapter 3-8. Errors and Exceptional Conditions . 193
The HANDLE CONDITION Command . 194

Changing the HANDLE CONDITION "Destinations" 197
Errors Within the Example Application . 198
Summary of Exception Handling Rules . 199
Other Facilities for Exceptional Conditions . 200
An Alternative Philosophy . 201

Part 4. The COBOL Code of our Example Application 203

Part 5. Testing and Diagnosis . 205

Chapter 5-1. Testing . 207
Preparing to Test . 207

Preparing the Application and System Table Entries . 207
Preparing the System for Debugging . 208

Types of Problem . 209
A bends 210
Loops 210
Waits 210
Incorrect Output . 211

Tools for Debugging . 211
Execution Diagnostic Facility (EDF) . 212
Temporary Storage Browse Facility (CEBR) . 242
Transaction Dumps . 244

Chapter 5-2. Finding the Problem . 255
Preliminary Checklist . 255
Documentation . 255
Reference Materials . 256
More Testing Considerations . 257

Regression Testing . 257
Single-thread Testing . 258
Multi-thread Testing . 258

A bends 258
Loops 262
Waits . 264
Incorrect Output . 265
CICS System Problems . 266

Contents xi

Appendixes 267

Appendix A. Getting the Application Into Your CICS System 269
Introduction . 269
What Has to be Done? . 269
How is it Done? . 270

ACIXREC and ACCTREC . 270
Compiling and Link-Editing the Initialize Program . 271
Compiling and Link-Editing the Index File Program . 272
Creating and Initializing the Index and Account Files 274
Updating the File Control Table . 275
Updating the Program Control Table . 275
Updating the Processing Program Table . 276
ACCTSET . 276
Installing The Application Programs . 286

Appendix B. Additional CICS Facilities and Your Reference Manual (the
APRM) . 307

Other CICS Facilities . 307
The Application Programmer's Reference Manual . 310

Glossary . 311

Bibliography . 317

Index . 319

xii CICS Application Programming Primer

Figures

1. The CICS Online Environment 3
2. A DB/DC System . 4

3. The Flow of Control During a Transaction . 11
4. Account File Record Format 19
5. The CICS Sign-On Screen . 24
6. A 3270 Output Data Stream . 25
7. The Sign-On Screen in Use . 28
8. A 3270 Input Data Stream .. 29
9. A Typical Display Screen Format 34

10. The Original Customer Account Application Form . 37
11. A Corresponding Skeleton Screen . 38
12. A Typical Menu Screen . 40
13. An Expanded Menu Screen . 42
14. Account File Record Format . 4 7
15. The Name Index Record Format . 50
16. Request Analysis . 55
17. Add Processing . 57
18. Modify Processing . 59
19. Delete Processing . 61
20. Display Processing , 63
21. Print Processing . .. 65
22. Name Inquiry Processing ~ 67
23. Printing the Log . 69
24. The Conversational Sequence of the Modify Transaction 77
25. The Pseudoconversational Structure . 78
26. The Three Transactions and Three Programs . 87
27. The Six Transactions and Five Programs 93
28. The Transaction Error Screen . 101
29. A Detailed Look at the Menu Screen . 110
30. The DFHMDF Macros for the Menu Map . 113
31. The DFHMDI Macro for the Menu Map . 116
32. The Account Detail Map . 119
33. The Account Detail Map Definition . 120
34. The Error Screen Map . 123
35. The Error Screen Map Definition . 124
36. The Message Map Definition . 124
37. All Four Maps . 125
38. Copying the Menu Map into Your Program . 128
39. The Menu Screen at Work . 129
40. Attribute Values for the IBM 3270 Data Stream . 131
41. Attribute Values Used in this Primer . 131
42. Building the Detail Display Map . 137

Figures xiii

43. The Standard Attention Identifier Values . 146
44. Code to Handle MAPF AIL . 14 7
45. The COBOL Record Definition for the Account File 154
46. The COBOL Record Definition for the Index File Records 155
47. The Name Summary Search Code . 159
48. Transferring Control Between Programs (Normal Returns) 177
49. Outline Logic of a Standard "Edit and Update" Module. 180
50. Passing Information to the Error Program . 181
51. Receiving Information in the Error Program . 181
52. Transferring Control Between Programs (After an Abend) 184
53. Program ACCTOl's Error Condition Handling . 195
54. The Exception Conditions for the Primer's Subset of CICS Commands 201
55. Invoking the Account File Transaction . 220
56. The Account File Menu . 220
57. Let's Delete Account Number 11111 . 221
58. Now Confirm the Deletion... 221
59. . .. By typing "Y" . 222
60. Hold it! We've Got a Problem - and We've Been Backed Out 222
61. Deleting the Scratchpad Record . 223
62. Going, Going, ... 224
63. Gone! . 224
64. Now Activate EDF . 225
65. OK .. 225
66. Now Re-enter the Account File Transaction . 226
67. And Into EDF . 226
68. OK So Far . 227
69. Again "yes" to Continue With the Next Transaction 228
70. Back to the Menu . 228
71. Now We Can Enter Record 11111 . 229
72. Ready to Begin the Request Analysis . 229
73. Response: QIDERR .. 230
74. OK, Carry On . 231
75. "yes" to Carry On Into AC02 . 231
76. OK - the Big Moment is (Nearly) Here! 232
77. Here We Go .. 232
78. Ready? . 233
79. The INVREQ (Invalid Request) Condition . 233
80. The Error Report . 234
81. Here's Our Abend, EACC . 235
82. Just Prior to the ABEND Command . 236
83. Sent the Error Map . 236
84. About to Send the Error Map . 237
85. Starting the Error-Handling Program, ACCT04 . 237
86. Linking to the Error Program, ACCT04 . 238
87. The HANDLE CONDITION ERROR Command 238
88. Do the HANDLE CONDITION ERROR Command . 239
89. Here's Our Failing Instruction Again . 239

xiv CICS Application Programming Primer

90. Back With Our Abend, EACC, Again . 240
91. The Abnormal Task Termination . 241
92. This is the CICS Message . 241
93. The Temporary Storage Browse (CEBR) Display . 242
94. The Foot of the Trace Table . 245
95. The Absolute Address of the Failing Instruction . 24 7
96. The Read-For-Update and the XCTL to ACCT02 . 250
97. Confirming the Application Module is ACCT02 . 251
98. How to Find the Size of the Program Stub . 252
99. How to Find the Failing COBOL Verb . 252
100. The Compiler Listing of the Incorrect Command . 253
101. AEix and AEiy Abend Conditions . 263

Figures XV

Questionnaire Application Programming Primer

(CICS/VS Version 1 Release 6)

To help us produce books that meet your needs, please fill in this questionnaire. It would help us if
you provide your name and address in case we need to clarify any of the points you raise. Please
understand that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

1. Please rate the book on the
The book is: accurate

readable
well laid out

well organized
easy to understand

adequately illustrated
has enough examples

And the book as a whole?
excellent

points shown
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3

1 2 3

2. Which topics does the book handle well?

4. How could the book be improved?

5. How often do you use this book?

below
4 5
4 5
4 5
4 5
4 5
4 5
4 5

4 5

inaccurate
unreadable
badly laid out
badly organized
incomprehensible
inadequately illustrated
has too few examples

3. And which does it handle badly ?

Less than once a month? D Monthly? O Weekly? C Daily? O

6. How long have you been using CICS? years/months

7. Have you any other comments to make?

Thank you for your time and effort. No postage stamp necessary if mailed in the USA. (Elsewhere,
an IBM office or representative will be happy to forward your comments or you may mail directly to
either address in the Edition Notice on the back of the title page.)

Questionnaire

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Dept. 6R1 H,
FE Publishing Services and Distribution,
180 Kost Road,
Mechanicsburg, PA 17055, USA

Fold end tape Please Do Not Staple

---- -:-::===@ - - ---- -- ------ --_ _.._. -

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape

Part 1. Setting the Scene

This Part of the Primer:

• Describes the ideas behind CICS

• Explains some of the CICS terminology

• Describes a typical online application program

Part 1. Setting the Scene 1

what is CICS?

Chapter 1-1. Introduction to CICS

What is CICS?

CICS (Customer Information Control System) is a general-purpose data
communication system that can support a network of many hundreds of terminals.
You may find it helpful to think of CICS as an operating system within your own
operating system (although this definition might offend purists). In these terms, CICS
is a specialized operating system whose job is to provide an environment for the
execution of your online application programs, including interfaces to files and data
base products. See Figure 1.

Operating System

CICS

Cw
fa r:::::::=:J 0 0 \

Figure 1. The CICS Online Environment

The total system is known as a data-base/data-communication system, but this is
such a mouthful that we usually shorten it to DB/DC system.

Your host operating system, of course, is still the final interface with the computer;
CICS is "merely" another interface, this time with the operating system itself.

Operating systems are designed to make the best use of the computer's various
resources. CICS helps out by separating a particular kind of application program
(namely, online applications) from others in the system, and handling these programs
itself.

Chapter 1-1. Introduction to CICS 3

reasons for an online system

Why You May Need an Online System

If you're the sort of person we've imagined as a typical reader, until now you've
written programs that (typically) read a file, process individual data records, update a
carried-forward version of the file, and produce some type of printed output. These
files usually go offline when your program has finished with them, and the file data
thus becomes inaccessible for inquiry purposes. Furthermore, the records in the files
are only as up-to-date as the most recent program run, and don't reflect any
intervening activity.

Nowadays, this often isn't good enough. Your users want immediate responses to
their information processing needs. The overnight turnaround associated with
traditional systems is no longer adequate: accurate, up-to-date information is needed
within seconds. To achieve this you need an online information processing system,
using terminals that can give direct access to data held in either data sets or data
bases. In other words, you need a DB/DC system.

Developing a DB/DC system can be a major undertaking, particularly if you choose to
write all your own control programs for handling terminals and files, and provide
your own job-scheduling mechanisms. However, CICS can make it very much easier
by supplying all the basic components needed to handle your data communications.
This allows you to concentrate on developing application programs to meet your
organization's business needs. You don't need to concern yourself with the details of
data transmission, buffer handling, or the properties of individual terminal devices.

Terminals

Central System

~------Yv

Figure 2. A DB/DC System

4 CICS Application Programming Primer

Data
Base

why have CICS?

Why Have CICS?

The online end users within a network can make all sorts of demands on many
different sets of data. The things they want to do individually are usually short.
Often they are interrelated and share the same programs and data. Furthermore, the
response times they get should be as short as possible. For all these reasons, the
users' transactions are done more efficiently within a single operating system job,
rather than as separate jobs.

If all the transactions are to be handled within the same job, a controller is needed to
look after them, in much the same way that an operating system is needed within a
computer to control the jobs. CICS carries out this controlling function within a
DB/DC job.

CICS provides the communications control and service functions necessary for users
to create their own, customized DB/DC system. This cuts down the total amount of
programming needed. You can customize CICS to the needs of practically any online
application, and it can support networks consisting of a wide variety of terminals and
subsystems.

For most of the time, the users will be unaware of CICS and, indeed, unaware of the
existence of other applications. They will spend their time using the online
application programs that you've designed for their particular transactions.

Because CICS is a general-purpose product, the view your users get of it will depend
far more on the configuration of your system and the application programs you
provide, than on any features of CICS.

What Does CICS Do?

CICS controls online DB/DC application programs. But what does this mean? In
fact, it means that CICS is a program that does a lot of work on your behalf. CICS
handles interactions between terminal users and your application programs. An
interaction may consist of one or more requel:lts from, and responses to, a terminal
user in the course of a single job by that user.

CICS provides:

• The functions required by application programs for communication with remote
and local terminals and subsystems

• Control of concurrently running programs serving many online users

• Facilities for accessing data bases and files, in conjunction with the various IBM
data base products and data access methods that are available

Chapter 1-1. Introduction to CICS 5

CICS application programs

• The ability to communicate with other CICS systems and data base systems, both
in the same computer and in connected computer systems.

We've left things as open as possible to allow our customers to produce the system
they need. It's up to your systems and applications designers (which could mean you,
of course) to choose what they want from the various CICS facilities, and to build
whatever kind of user interface that best suits the end users. So, although you still
have to provide the application programs that the end users actually run, CICS makes
it much easier. Your programs gain access to the CICS facilities they need by
straightforward, high-level, commands.

CICS Application Programs

Online application programs have certain features and needs in common. Typically,
they:

• Serve many online users, apparently simultaneously

• Require common access to the same data sets and data bases

• Try to give each end user a timely response to each interaction

• Involve telecommunications access to remote terminals.

The host operating system is in overall charge of the computer and manages resources
in whatever way you set up. But the very versatility of a general-purpose operating
system means that it often cannot give online programs the sort of priority treatment
they need. Instead, CICS may be given "privileged" treatment on behalf of all the
online programs that run under it.

To make the best use of the time and system resources that the operating system gives
to CICS, CICS takes on itself some of the aspects of an operating system. For
example, CICS allows more than one of its programs (tasks) to be in an active state at
the same time. But CICS doesn't duplicate all of the services provided by the
operating system. Whenever appropriate, CICS goes straight to the operating system
to provide what its tasks ask for.

Couldn't I Do All This Myselr?

Yes, of course, but why reinvent the wheel?

CICS is a large, mature piece of software that has evolved in parallel with the growth
of online terminal networks and the movement toward distributed processing. It
supports a wide range of hardware and software (for details, have a look at the GIGS
General Information manual). Many thousands of data-processing installations
around the world have made CICS the basis of their data communication systems.

6 CICS Application Programming Primer

large and small systems?

Can CICS Serve Very Large Systems and Very Small Systems
Properly?

Yes. CICS is designed in a modular fashion, and we supply it as a set of programs
that you can combine rather like building blocks. If you don't need certain CICS
functions, you simply leave out those parts of CICS when installing your system. Or
perhaps, more typically, you might install everything, but only use what you need.

To start with, though, you'll be putting together your first application on the subset
CICS system that we've chosen for this Primer.

How Does a CICS-Based Application Differ from
a Batch Application?

As we hinted in the preface, we expect you to have a batch programming background.
That being so, you don't need us to tell you what batch programming is all about.
However, we do want to tell you how a CICS-based application differs from a batch
application.

Basic Differences

Not everything is different, of course. But here are some basic differences for you to
think about:

• In a batch program, you often define all the required input/output and work areas
within the program. In CICS, these areas are outside the program. They are
allocated by CICS, as needed, from a dynamic storage area within the CICS
partition or region. This lets CICS economize on main storage, and use the same
copy of a program to do work for several users at once.

• A batch program reads its own input data, whereas CICS reads the data on behalf
of the CICS application programs. A particular CICS application program need
not even be loaded into the computer before its first input message arrives.

• A batch program issues its input/output instructions directly to the operating
system. CICS application programs always issue such instructions to CICS, and
CICS handles the interface to the operating system.

• Recovering when things go wrong is more interesting (as we'll see).

Chapter 1-1. Introduction to CICS 7

error recovery

Recovering When Things Go Wrong

The final major difference between a batch system and an online system comes up
when things go wrong.

Obviously, all data processing systems need to be able to survive faults and errors
such as the loss of power supply, processor failures, program errors, data set failures,
and (in online systems) communication errors. Procedures are required to recover
from such faults or to restart the system if a fault has stopped it.

Recovery and restart design is inevitably more complex for an online system than for
a batch system:

• For batch processing, input data is prepared before processing begins. The data
is then supplied to the batch process in one orderly sequence, which is controlled
and predictable.

• For online processing, input data isn't prepared beforehand, but is entered as
needed while the application is running. Furthermore, the input data can come
from many different users working concurrently. In other words, input data does
not arrive in a predictable sequence.

If a failure occurs:

• With a batch program, you can repeat the processing, or continue it from the
point of failure. This is because the processing sequence is predictable (it is
based entirely on the predefined input data), and because the input data is still
available.

• With an online application, you cannot simply rerun the application or continue
from the point of failure because the state of the process is unknown. And even if
it were known, you couldn't expect the terminal users to reenter a day's work.

So, online application programs need a system that provides special mechanisms for
recovery and restart. In broad terms, these mechanisms ensure that each resource
associated with an interrupted online application is returned to a known state so that
processing can be restarted safely. As you work through this book, you'll see how
CICS can help you get over your recovery and restart problems.

Perhaps the most striking difference is how a small, simple application program can
be loaded into the computer and promptly be used, by hundreds of people throughout
a terminal network. Not only that, but the same application program could be in use
by all these people at the same time. And yet these online application programs
aren't necessarily more difficult to write and get working than the programs you've
been used to up to now.

8 CICS Application Programming Primer

tasks and transactions

Two Vital Terms

Next, we want to introduce two important words in the CICS vocabulary:
"transaction" and "task." You'll constantly see these so it's good to know what they
mean right from the start.

A transaction is a piece of processing initiated by a single request, usually from an
end user at a terminal. A single transaction will consist of one or more application
programs that, when run, will carry out the processing needed.

In other words, "transaction" means in CICS what it does in everyday English: a
single event or item of business between two parties. In batch processing,
transactions of one type are grouped together and processed in a batch (all the
updates to the personnel file in one job, a list of all the overdue accounts in another,
and so on). In an online system, in contrast, transactions aren't sorted by type, but
instead are done individually as they arrive (an update to a personnel record here, a
customer order entered there, a billing inquiry next, and so on).

Having given you this straightforward definition, we'll immediately complicate things
a bit by admitting that the word "transaction" is used to mean both a single event (as
we just described) and a class of similar events. Thus we speak of adding Mary Smith
to the Payroll File with a (single) "add" transaction, but we also speak of the "add"
transaction meaning all additions to that particular file.

Things are further complicated by the fact that one sometimes describes what the user
sees as a single transaction (the addition to a file, perhaps) as several transactions to
CICS. We get to this nicety in "Chapter 2-7. A Basic Decision: Conversational or
Pseudoconversational" on page 77. Until we get there, you should use the definition
of transaction we've given above; you'll be able to tell from context whether we mean
a transaction type or a single bit of processing.

Now, what about a task?

Users tell CICS what type of transaction they want to do next by using a transaction
identifier. By convention, this is the first "word" in the input for a new transaction,
and is from one to four characters long, although this source of the identifier is
sometimes overridden by programming.

CICS looks up the transaction identifier in one of its internal tables, the Program
Control Table, where it finds out which program to invoke first to do the work
requested. It creates a task to do the work, and transfers control to the indicated
program. So a task is a single execution of some type of transaction, and means the
same thing as "transaction" when that word is used. in its single event sense.

A task can read from and write to the terminal that started it, read and write files,
start other tasks, and do many other things. All these services are controlled by and
requested through CICS commands in your application programs. CICS manages
many tasks concurrently. Only one task can actually be executing at any one

Chapter 1-1. Introduction to CICS 9

using CICS

instant. However, when the task requests a service which involves a wait, such as
file input/output, crcs uses the wait time of the first task to execute a second; so, to
the users, it looks as if many tasks are being executed at the same time.

Starting a Transaction

Normally, end users wishing to begin an online session will first identify themselves
to CICS by signing-on. Signing-on to CICS gives users the authority to invoke certain
transactions. Once signed-on, they invoke the particular application (transaction)
they intend to use. They can do so by typing the transaction identification code at
the start of their initial request. But, if your designers decide otherwise, it's just as
easy to set up a particular program function (PF) key to invoke a transaction with a
single ke.ystroke or, indeed, for a given terminal always to invoke a particular
transaction.

Application programs are stored in a library on a direct access storage device (DASD)
attached to the processor. They can be loaded when the system is started, or simply
loaded as required. If a program is in storage and isn't being used, crcs can release
the space for other purposes. When the program is next needed, CICS loads a fresh
copy of it from the library.

Inside CICS

In the time it takes to process one transaction, the system may receive messages from
several terminals. For each message, CICS loads the application program (if it isn't
already loaded), and starts a task to execute it. Thus multiple CICS tasks can be
running concurrently.

CICS maintains a separate thread of control for each task. When, for example, one
task is waiting to read a disk file, or to get a response from a terminal, crcs is able to
give control to another task. Tasks are managed by the CICS task control program;
the management of multiple tasks is called multitasking.

CICS manages both multitasking and requests from the tasks themselves for services
(of the operating system or of CICS itself). This allows CICS processing to continue
while a task is waiting for the operating system to complete a request on its behalf.
Each transaction that is being managed by CICS is given control of the processor
when that transaction has the highest priority of those that are ready to run.

While it runs, your application program requests various CICS facilities to handle
message transmissions between it and the terminal, and to handle any necessary file
accesses. When the application is complete, CICS returns the terminal to a standby
state. Figure 3 should help you understand what goes on.

10 CICS Application Programming Primer

ACCT

Terminal
Control

Operating System

System
Services

Storage
Manage­
ment

Program
Library

Account
File

EJ

inside CICS

The flow of control during a transaction (code ACCT) is shown by the sequence of numbers 1 to 8 on the panels.
Don't take this transaction too seriously; we're only using it to show some of the stages that can be involved. The
meanings of these eight stages are as follows:

1. Terminal control accepts characters ACCT, typed at the terminal, and puts them in working storage.

2. System services interpret the transaction code ACCT as a call for an application program called ACCTOO.
If the terminal operator has authority to invoke this program it is either found already in storage or loaded
from

3. The program library into working storage, where

(menu screen)

BMS

Operating System

Program
ACCTOO

8

File
Control

Program
Library

Account
File

4. A task is created. Program ACCTOO is given control on its behalf. This particular program invokes

5. Basic mapping support (BMS) and terminal control to send a menu to the terminal, allowing the user to
specify precisely what information is needed.

Figure 3 (Part 1 of 2). The Flow of Control During a Transaction

Chapter 1-1. Introduction to CICS 11

setting up an online system

User's
Next Input

Operating System

File

Program
Library

8
,___ ___________ Control Account

File

BMS

Program
ACCT01 EJ

6. BMS and terminal control also handle the user's next input, returning it to ACCTOl (the program designated
by ACCTOO to handle the next response from the terminal) which then invokes

7. File control to read the appropriate file for the information the terminal user has requested. Finally,
ACCTOl invokes

8. BMS and terminal control to format the retrieved data and present it on the terminal.

Figure 3 (Part 2 of 2). The Flow of Control During a Transaction

The transaction continues to run until it reaches a place in the program at which it's
waiting for some activity (such as a disk access) to end. At this point, CICS allocates
the processor to the next task that can run. Only when there's no work to do on
behalf of any CICS task does CICS pass control back to the operating system to allow
batch work to run. This allows CICS to maintain the priority of online working over
batch work in other address spaces or partitions.

In this way, CICS controls the overall flow of your online system.

Besides doing all the transaction processing, CICS also supports the bookkeeping side
of the system, by accumulating performance statistics and monitoring the resources
used. This gives you the information that enables user departments in an
organization to he charged accordingly. It also allows you to find out which parts of
CICS are being heavily or lightly used. This will help your systems people change the
CICS set-up when you wish to tune your system to improve its performance.

12 CICS Application Programming Primer

setting up an online system

How Does CICS Help You Set Up an Online
System?

After your system has been designed, the programming effort to turn the specification
into a working reality is normally divided between two groups: the people who install
and maintain the system, and those who write the application programs it will use.
(We don't want to rule out the possibility of all this work being done by one heroic
person.) CICS offers a variety of helpful features for both groups. Concentrating on
the application programming side, CICS aids include:

• A choice of programming language. You can write your application programs
in COBOL, PL/I, RPGII (VSE only), or assembler language.

• A command-level programming interface with CICS. You need know little
about how CICS works. You request data or communication with terminals by
issuing CICS commands that resemble those of the programming language you are
using. A command language translator preprocesses the application source
code, translating CICS commands into the appropriate language statements. It
also provides useful diagnostics.

• An execution diagnostic facility (EDF), for testing command-level application
programs interactively.

How Do You Use CICS?

Now that you have some idea of what CICS is and how it fits into your computer
system, we can explain how you use it.

We're going to do so by showing you the stages in designing and implementing a
reasonably typical and useful application: a file inquiry and update system. This
example starts in the next chapter.

To get the best out of your CICS system (or, for that matter, any system) you should
design the system around its applications. However, for our purposes, we'll assume
that you've been through this process for other applications, and simply wish to
extend your present system by adding this online file inquiry and update application.

In reality, if your proposed new application programs were very different from your
existing ones, your systems programmers might have to tailor your CICS system to
provide the necessary functions, typically by picking different sets of system
parameters for different occasions. This could mean initializing the system again, to
include IBM-supplied programs to help you do what you want. If your needs are very
unusual, they might have to customize some parts of your CICS system, adding code
of their own, before initializing the system.

Chapter 1-1. Introduction to CICS 13

The programs that we develop and describe in this book are all supported by a simple
CICS system, so you can forget about initialization or customization for the time
being.

14 CICS Application Programming Primer

Part 2. Application Design

This Part of the Primer:

• Explains how to design your first CICS application programs

• Defines the problem

• Describes 3270 Information System data streams

• Deals with designing the data

• Talks about establishing the user interface

• Examines special features of the CICS environment

• Defines the example application programs involved, and their interactions

THE CICS EXAMPLE APPLICATION - A DEPARTMENT STORE

The Current Situation

A department store with credit customers maintains a master file of its
customers' accounts. The record for each customer contains the customer's
name, address, telephone number, charge limit, current balance, account
activity, payment history, and so on. At present, a set of batch processing
programs updates this file (and some related ones) twice a week with the
necessary charge and payment information. The records are also printed
periodically, to help in answering questions both from customers and from
within the Accounting and Customer Service Departments. However, this listing
is too large to be printed often, and so it is usually out-of-date.

Part 2. Application Design 15

our CICS example application

Online Access to Information

The store would like to be able to access a customer's record online, to have
absolutely current information. In addition, the Accounting Department wants
to be able to update these customer records online, for convenience and
currency. A facility to add new records, delete records and change addresses and
other information not related to billing is therefore required, as well as the
inquiry function.

Each customer has a unique account number, which is the key to the existing
master file. The users in the Accounting Department will presumably access
records by this number, because it is always available when they are processing
work or researching questions.

Access by Name

However, the Customer Service Department wants to be able to access the file by
customer name. When customers make an inquiry, they don't usually know
their account numbers, but they normally do manage to remember their names!
If they want to charge items but don't have their charge cards with them, a clerk
will call Customer Service, verify the existence and payment status of the
account, and get the account number for the charge slip.

Logging and Printing Changes

Finally, the people in the Accounting Department have asked us to make quite
sure that all changes to the file are logged, with a hard-copy report. They seem
to be rather nervous about subjecting their master file to online updating, but
assure us that they will feel more confident having a printed record of all
changes made. They are also concerned about the security aspects of this first
venture into online file updating, and want to be able to trace changes to
specific records. Later, they will probably agree to direct this log to tape,
printing it only when necessary, but for the moment they need it in hard-copy
form.

16 CICS Application Programming Primer

starting the design

Chapter 2-1. The CICS Example Application - A
Department Store

This chapter explains, by means of an example, how to set about designing a CICS
application. The text you've just been reading (in the boxes opposite) describes what
the application will do.

The outline specification for our example is a simple one. It shows design issues and
programming requirements that arise in nearly every application. The CICS services
required by this application are a subset of the full range available; however, this
subset consists of those functions that most straightforward applications need to use.
Let's relate the department store's needs to some general points about CICS
application programs. A CICS application usually consists of three main parts:

• The data to be processed

• The transactions to be performed on that data

• The interface with the user.

You can see these parts in the specifications just described for the example. The
customer information in the account file is the data to be processed; the online
operations (display a record, add a record, and so on) are the transactions to be
performed on that data; and the terminals, formatted screens, and operating
procedures are the interface with the user. Let's see how each of these parts could be
designed.

It is important to note before starting, and it will certainly be clear in what follows,
that each of these three parts bears on the others. You cannot design one without
reference to the other two.

Moreover, design is an iterative process. Decisions about the user interface affect
transaction definition, which in turn causes a slight change in specifications, and the
whole cycle begins again. These adjustments are normal and should be expected in
any design process.

However, you must freeze the design at some point or you may never complete the
job.

Chapter 2-1. CICS Example Application 17

what's the problem?

Defining the Problem

The first step in the design process is to specify broadly what the application will do.
In our case, the need for the application came from two user departments, and the
first functions they requested are:

• Display of customer account record, given an account number

• Addition of new account records

• Modification of existing account records (by account number)

• Deletion of account records (by account number)

• Hard-copy listing of changes to the account file

• Ability to access records by name.

The Account File Records

The detailed design of our programs is going to be influenced by the established form
of the existing customer data, of course. And the account file is very much at the
center of this application. Its records are shown in Figure 4.

The fields marked as Type "A" are the ones that are to be maintained by the online
program. Those marked "B" are updated by the batch billing and payment cycle and
need only to be displayed in the online system.

Requirements Imposed by the Environment

Besides the users' requirements, we're going to assume that certain others are
imposed by the environment in which this application will run. These are:

• The terminals available are IBM 3270 system displays and printers. The screens
display 24 lines, each of 80 characters (the IBM 3278 Display Station model 2, for
example), with corresponding printers.

• Some of the people who will use the application will do so infrequently.
Consequently, the application should be as self-documenting as possible, and users
should not need to memorize very much to use it comfortably. On the other hand,
help to casual users should not result in slow or annoying interactions for
frequent users. Some hard-copy documentation on how to use the system will be
provided, but we hope users will only rarely need to look at it. The goal is to
keep everything nice and simple for all users.

18 CICS Application Programming Primer

our assumptions

FIELD LENGTH OCCURS TOTAL TYPE

Account Number (Key) 5 1 5 A
Surname 18 1 18 A
First Name 12 1 12 A
Middle initial 1 1 1 A
Title (Jr, Sr, and so on) 4 1 4 A
Telephone number 10 1 10 A
Address line 24 3 72 A
Other charge name 32 4 128 A
Cards issued 1 1 1 A
Date issued 6 1 6 A
Reason issued 1 1 1 A
Card code 1 1 1 A
Approver (initials) 3 1 3 A
Special codes 1 3 3 A
Account status 2 1 2 B
Charge limit 8 1 8 B
Payment history: (36) 3 108 B

-Balance 8
-Bill date 6
-Bill amount 8
-Date paid 6
-Amount paid 8

Figure 4. Account File Record Format

• The integrity of the account file must be maintained. This means that it must be
protected from inconsistent or lost data, whether resulting from a failure in the
application or CICS or the operating system. It also must be protected from total
loss, such as a disk head crash or other catastrophe.

• The existing account file is a VSAM key-sequenced data set containing about
10 000 records of 383 characters each, including the 5-digit account number key.

Refining and Developing the Specifications

The next step in defining the problem is to verify the first program specifications with
whoever made the original requests. You should be especially alert for information or
functions that no-one requested but that nevertheless may actually be required when
real work is attempted. Otherwise the users will make the same discoveries right
after you complete your programming effort, and you'll be faced with making changes
when it may prove difficult, rather than now when it is easy.

It is always useful to talk to the actual users of an application, to find out how they
do their work and how they view the functions you intend to provide. Supervisors
can provide other insights. It is very important to repeat this verification step as the
design process moves along from a broad outline toward more and more detailed
specifications.

Chapter 2-1. CICS Example Application 19

what's the workload?

Estimating the Number of Transactions

Now is also the time to find out how often the system will be expected to cope with
the transactions of each type, what sort of response times will be expected, what times
of the day the application will have to be available, and so on. This will allow you to
design programs that are efficient for the bulk of the work, and it will help you in
determining system and operational requirements.

For the example application, let's assume that our inquiries produced the following
information:

• There will be about 10 additions, 50 modifications, 5 deletions, and 200 inquiries
(by account number) per day in the Accounting Department.

• The people in Accounting are unable to estimate the number of inquiries that
they would make by name, but they sound intrigued with the possibility, and
therefore may be expected to make some use of this facility.

• Accounting would find it very useful to be able to get a printed copy of a
customer account record, besides being able to display it on the screen. (This is a
new requirement, not in the original specification. We should consider providing
it.)

• Customer Service makes nearly 1000 inquiries per day against account records,
ninety percent of them by name. For most of these, the only items used from the
complete account record are the name and address (to verify that it is the right
record), and the credit status and limit.

Note: In assessing estimates of transaction frequency, we need to account for a fact
of life. That is, if we make it much easier to do something, such as an inquiry, users
will almost certainly do it more often than they used to do. Indeed, the eventual
transaction rates experienced with online systems are almost always higher than can
be predicted from the current workload - often a reliable indication of their success.

Summary

We've now identified some of the first steps when starting to design an application.
You should:

• Broadly set down the application functions based on user needs

• Identify the individual data elements involved in the processing.

• Consider any external environmental factors and restrictions

20 CICS Application Programming Primer

design preliminaries

• Verify your initial specifications with the users

• Estimate the expected load on the system from the various new functions that
your application will provide.

When you've done this, you can then go on to design the transactions and processing
programs that you 'll need. So, let's continue now with some application design
considerations.

Designing the Transactions: Preliminaries

Earlier in this chapter, we described the functions needed in our example. Let's now
see how we might define transactions to perform these functions. One obvious
approach is to make each function a separate transaction. The transaction to display
an account record, then, would work something like this:

• Find out from the terminal user which record is to be displayed.

• Read that record from the file.

• Display the information from that record at the terminal.

That seems straightforward. How about the add transaction?

• Get the data for the new record as keyed in by the user at the terminal.

• Write this data to the file.

Even simpler. However, there are a few things we've not taken into account.

First of all, we're not dealing with the familiar batch devices of card reader and line
printer here. The 3270-system terminals are radically different in their characteristics
from such batch devices. They are different, too, from line- or record-oriented devices
such as Teletypes1 and IBM 2741s.

Second, there are human beings operating the terminals, and their happiness and
efficiency must be a major design goal in any application.

Third, we have to deal with the implications of processing in an online environment,
where our goals and constraints may be quite different from those that govern a batch
program.

"Teletype" is a trademark of the Teletype Corporation.

Chapter 2-1. CICS Example Application 21

what next?

Finally, we've not provided for any exceptional conditions. For example, what if the
record to be displayed isn't in the file? Or if the one to be added is in the file? You
probably know that in a batch program about 80 percent of the effort and the code is
devoted to handling errors, even though this code is executed rarely. In online
programs, all these same problems have to be thought about and resolved, and there
are also some new potential problems.

What Next?

Before we continue trying to design our transactions, let's learn a little more about
the 3270 systems that our users will be using to communicate with the transactions.
After all, one of the first things to be considered is the user interface: how will the
terminal operators communicate with this application, and how will it give them the
information they need?

We can then go on to find out more about a much wider range of issues: what makes
users happy ("human factors"), the design of data, programming for a CICS
environment, and so on.

But first, 3270s. If you are already familiar with 3270 terminals and the 3270 data
stream, you can skip ahead to "Chapter 2-3. Designing the User Interface" on
page 33.

22 CICS Application Programming Primer

IBM 3270 terminals

Chapter 2-2. 3270 Terminals

Remember, you're free to skip this chapter if you know about IBM 3270 terminals
already.

The 3270 Information Display System is a family of display and printer terminals.
Different 3270 device types and models differ in screen sizes, printer speeds, features
(like color and special symbol sets) and manner of attachment to the processor, but
they all use essentially the same data format.

You need to know a little about this format to make the best use of 3270-system
devices, and to understand the Basic Mapping Support (BMS) services that CICS
provides for communicating with these devices. That's the purpose of this chapter.

Let's talk about the IBM 3278 Display Station Model 2, which has a display screen
and a keyboard. This device is used for both input and output, and in both cases the
screen (or rather a buffer that represents it) is the crucial medium of exchange
between the terminal and the processor. The purpose of the keyboard is to modify the
screen, in preparation for input, and to signal when that input is ready to be sent to
the processor.

When your application program writes to a 3278, the processor sends a stream of data
in the special format used by 3270 devices. Most of the data in the stream is the text
that is to be displayed on the screen; the rest of it is control information that defines
where the text should go on the screen, whether it can be overtyped from the
keyboard later, and so on.

The printers that correspond to the 3278 can use this same data stream, so a stream
built for a display device can be used equally well for a printer.

3270 Field Structure

The screen of the 3278 Model 2 can display up to 1920 characters, in 24 rows and 80
columns. That is, the face of the screen is logically divided into an array of positions,
24 deep and 80 wide, each capable of displaying one character, with enough space
around it to separate it from the next character.

Each of these 1920 character positions is individually addressable. This means that
your COBOL application program can send data to any position on the screen,
without having to space it out with space characters to get it into the right location.
Your program does not, however, give an address for each character you want
displayed. Instead, within your program, you divide your display output into fields.

Chapter 2-2. 3270 Terminals 23

3270 field structure

A field on the 3278 screen is a consecutive set of character positions, all having the
same display characteristics (high intensity, normal intensity, protected, not
protected, and so on). Normally, you use a 3270 field in exactly the same way as a
field in a file record or an output report: to contain one item of data.

To show you how this works, Figure 5 shows the screen that the CICS system uses for
the standard sign-on transaction:

CICS/VS SIGNON - ENTER PERSONAL DETAILS

NAME:

PASSWORD:

NEW PASSWORD:

Figure 5. The CICS Sign-On Screen

There are ten fields on this screen although, as shown, only four of the fields are
displaying character data. The first one is at row 1, column 1 (position 1,1), and it
contains the data "CI CS/VS SIGN ON - ENTER PERSONAL DETAILS". The field is
specified as having the display characteristics of protected (meaning that the
terminal operator cannot type over that area of the screen) and bright (high
intensity, in this case just for emphasis). The second field is at position (4,5) and
contains the data "NAME:". This is also protected and displayed at high intensity.
(The underscore after "NAME:" is the cursor and marks the position into which the
next character entered from the keyboard will go.) Both of these fields have been
used for output only, to convey something to the user. For the second field, it was to
show what should be typed into the third field, which is located immediately after the
second field at position (4,11).

This third field is different because we intend the user to key something into it which
will become input the next time the terminal transmits. So it isn't protected. It is set
for normal intensity, and, even though you cannot see this by looking at the screen, it
is 20 positions long. This is the permitted length of the name field in the CICS
Sign-On Table, with which the contents of this field will lat~r be compared.

At the end of this field is another field, known as a stopper field. (You can't see this
one, either.) Its only function is to stop the user from keying more than 20 characters
into the name field. The reason for this is that the beginning, but not the end, of
each field is flagged in the buffer which represents the screen. The end of a field is
one position before the beginning of the next field. There is no data in this "stopper"
field; the important thing is that it is protected. Whenever you try to key into a
protected field on the screen, you are prevented from doing so, and the keyboard
locks. Users who try to key more than 20 characters into the name field, therefore,
run into this protected field, and are made aware of the error by the locking of the
keyboard.

24 CICS Application Programming Primer

output data stream

The next three fields are two lines down, at positions (6,5), (6,15) and (6,24). They are
rather like the three fields on the earlier line. The first of them contains the data
"PASSWORD:" and is protected. The second is the field into which the user is
supposed to enter the password. It is unprotected, and has another attribute that may
at first seem curious. It is dark or nondisplay. This means that the data in the field
does not show on the screen (whether the user puts it there or the program does),
even though it is very much there. Nondisplay is used for this field because
passwords are supposed to be secret, and this way no one passing by while the user is
signing-on will see the password. The third field is again a stopper field to stop the
user from keying in more than eight characters of password information.

The remaining three fields are two lines down again, at positions (8,5), (8,19), and
(8,28) and they are also parallel in function to the three on the previous line: label,
input field, and stopper field.

3270 Output Data Stream

Now let's consider how this information is formatted for transmission from the
processor to the 3278. Figure 6 shows the data stream.

Control information affecting the whole transmission, such
as whether to unlock the keyboard or not, where to place
the cursor, and so on.

First
field:

ENCODED SCREEN ADDRESS showing where
the next field goes on the screen (row 1,
column 1)

CONTROL INFORMATION to show that a
field is about to begin

CONTROL INFORMATION to describe display
attributes of field: high intensity, protected

DATA to be displayed: "CICS/VS SIGNON -
ENTER PERSONAL DETAILS"

Figure 6 (Part 1 of 2). A 3270 Output Data Stream

Chapter 2-2. 3270 Terminals 25

output data stream

Second
field:

Third
Field:

Fourth
Field:

Fifth
Field:

ENCODED SCREEN ADDRESS showing where
the next field goes on the screen (row 4,
column 5)

CONTROL INFORMATION to show that a
field is about to begin

CONTROL INFORMATION to describe display
attributes of field: high intensity, protected

DATA to be displayed "NAME:"

CONTROL INFORMATION to show that a
field is about to begin

CONTROL INFORMATION to describe display
attributes of field: normal intensity,
unprotected

ENCODED SCREEN ADDRESS showing where
the next field goes on the screen (row 4,
column 32)

CONTROL INFORMATION to show that a
field is about to begin

CONTROL INFORMATION to describe display
attributes of field: protected (stopper)

ENCODED SCREEN ADDRESS showing where
the next field goes on the screen (row 6,
column 5)

CONTROL INFORMATION to show that a
field is about to begin

CONTROL INFORMATION to describe display
attributes of field: high intensity, protected

DATA to be displayed: "PASSWORD:"

... And so on for the remaining fields.

Figure 6 (Part 2 of 2). A 3270 Output Data Stream

There are several things to note about this data stream:

• For the first and second fields, a screen address appears in the data stream,
whereas for the next field it does not. This is because no new address needs to be
provided when one field immediately follows another. Addresses for these fields
could be included, but they would increase the length of the transmission. It is
important to keep transmissions as short as possible when dealing with terminals
that may be connected by telephone lines.

26 CICS Application Programming Primer

attribute bytes

• Similarly, data is included for the first two fields but not for the next two. Again,
if there is no data, it isn't necessary to include anything in the data stream. This
also reduces the length of the transmission.

• We've shown the various fields for the screen being transmitted in the order they
appear on the screen. This is customary and natural, but it isn't required by the
device, which will accept fields in any order.

• The most striking feature of the data stream is its variable length and format,
which depend on the presence or absence of data, adjacency or nonadjacency of
fields, and so on. This would be very cumbersome to produce in a COBOL
program, to say the least. Moreover, every time you moved something about on
the screen, you would have to change the program that produced the data stream.

Don't panic! "Saved by BMS" on page 31 shows us the light at the end of this
particular tunnel.

3270 Attribute Bytes

One more point about this output data stream. If you followed the screen positions
used in the example carefully, you may have noticed that each field seems to be one
position too long. If the 20-position name field begins at (4,11), why doesn't the
stopper field start at (4,31) instead of (4,32)? This is because the display attributes to
which we've referred (protected, bright, and so on) actually occupy one screen
position for each field. That is, if we start a 20-character field at position (4,11), the
attribute byte (as it is called) for the field is located at (4,11) and the actual data
goes from (4,12) through (4,31). The attribute byte looks like a space on the screen,
and is itself protected (whether or not the field to which it applies is protected), so
that the user cannot key into it and change the field identity.

As noted earlier, the attribute byte controls how data is shown on the screen. The
choices are:

• High intensity
• Normal intensity
• Dark (nondisplay).

The attribute byte also governs what can be done to the field from the keyboard.
Here the choices are:

• Unprotected: The user may key anything into the field.

• Numeric: The user may key only digits, decimal points, and minus signs into the
field.

• Protected: The user may not key into the field.

Chapter 2-2. 3270 Terminals 27

input data stream

• Autoskip: The user may not key into the field and, furthermore, the cursor will
automatically skip over the field if the previous field is filled.

Autoskip is usually used for stopper fields if the information in the previous field is of
fixed length and always fills the field. That way, the user can key continuously, and
doesn't have to use the cursor advance key after filling a field to get to the next one.

After variable-length data, however, like the name field in the sign-on screen, it is
customary to make the stopper a protected field, instead. If you specify autoskip, and
the user keys too much, the excess goes into the next unprotected field, and the user
may not be aware of this. Where there are fields for both fixed-length and
variable-length data, some programmers like to use only protected stoppers, so that
the user consistently has to use the cursor advance key to get to the next field,
whether or not the current field is full. Others prefer to use both kinds on the same
screen.

The attribute byte also carries one more piece of information. This is the modified
data tag. It has to do with input, however, and so we'll explain it later. (If you can't
wait, you'll find more details on page 29 and in "The BMS Macros" on page 111.)

Note: Not all combinations of attributes are permitted, but all the useful ones are.
We should also point out now that displays with additional features, like color and
special symbols, have more complex attribute combinations to express the additional
possibilities. However, the logic for formatting the data stream with these extended
attributes is essentially the same.

3270 Input Data Stream

Now that we've described what output to a 3278 looks like, what does the input look
like? There are several different possible formats, and the one used depends both on
the type of read command used and on certain other circumstances. Figure 7 shows
our sign-on screen after John Jones has been busy at it.

CICS/VS SIGNON - ENTER PERSONAL DETAILS

NAME: JOHN JONES

PASSWORD: OPNSESME

NEW PASSWORD:

Figure 7. The Sign-On Screen in Use

We're showing you the password here but, remember, you wouldn't normally see it
because it's held in a nondisplay field.

28 CICS Application Programming Primer

input data stream

What is of interest to us is what CICS gets when it reads a screen like this one.
Figure 8 on page 29 shows us what comes back after the user presses the ENTER
key.

Control information affecting the whole transmission, such
as which key caused the input to be sent (ENTER, PFx),
where the cursor is, and so on

First
field:

Second
field:

ENCODED SCREEN ADDRESS showing where
the field was on the screen (here Row 4,
Column 11).

CONTENTS of the field: "JOHN JONES" (10
characters, not the full 20 allowed).

ENCODED SCREEN ADDRESS showing where
the field was on the screen (here Row 6,
Column 15).

CONTENTS of the field: "OPNSESME"

Figure 8. A 3270 Input Data Stream

Points to note about this transmission are:

• Practically nothing came back. All the fields used for titles and labels have been
omitted from the transmission, and even the "new password" field, which the user
did not fill in, is missing. This is because only changed fields are transmitted
back on the kind of read used here by CICS. The reason the hardware works this
way is, again, to minimize the length of the transmission.

How does the 3278 know what to send? When a user keys into a field, a bit in the
attribute byte is turned on. This is the modified data tag, or "MDT." You can also
turn this bit on when you write to the screen, so that the field is returned whether
or not the user keys into it. This provides a handy method for storing information
on the screen between transactions, but we'll explain that later, in
"Communication Between Transactions" on page 89.

• The second thing to note is that only the significant portion of a changed field is
sent; the unused portion on the right-hand side of the field is not. This is because
the 3270 does not send empty positions on the screen. Empty positions are called
nulls, and have a character encoding of hexadecimal (hex) 00 ("LOW-VALUE" in
COBOL). If you ask for the screen to be erased (as you'll often want to) before
your data stream is written to it, the screen is set to nulls. Nulls aren't the same
as spaces, even though they look the same on the screen. Spaces have a
hexadecimal representation of 40 and are transmitted; thus the space between
"JOHN" and "JONES" comes in, but the unused part of the field after "JONES"
does not. This is, once again, to minimize the length of the data transmission.

Chapter 2-2. 3270 Terminals 29

"short-read" keys

The result of all these length-reduction measures is another data stream of extremely
variable format. This time the position of the data coming back depends not only on
the content of what was sent but also on what the operator did, presenting a
considerable challenge to decode.

We mentioned earlier that there were_sever-al-different formats used for transmission
to the processor, depending on the type of read used and other circumstances.

One of the other circumstances is the type of key the operator used to send the input.
A number of keys cause the 3278 to send input to the processor at the earliest
opportunity (these keys include CLEAR and ENTER, the program access (PA) keys,
and the program function (PF) keys). Of these, the CLEAR key and the PA keys send
only the identity of the key itself, without sending any of the data on the screen. If
the operator uses one of these so-called "short-read" keys, the data stream shown in
Figure 8 ends right after the initial control information. This causes a special
situation which you'll have to deal with in any program which tries to read a
formatted screen.

Unformatted 3270 Data

As well as transmitting a short data stream to the processor, the CLEAR key also
erases the screen. The entire screen is set to null values, and there are no fields.
You may prefer to think of the screen as just one big field, but it is a field without
attributes. The user can key into this field and send it to the processor. In fact, if
you think about it, almost every new transaction is going to start this way. The user
presses CLEAR to erase the leftovers from the previous operation, and then keys in
something to identify the next request and transmits it with the ENTER key. What
does this look like coming in to the processor?

Data that comes in from a screen that was not formatted into fields by a previous
write is called, very logically, unformatted data. The data stream looks like the one
in Figure 8 on page 29 except that no address is provided (the data is assumed to
start at the first position on the screen), and there is only one field. The field consists
of every character that isn't a null - that is, every character that the user keyed -
regardless of where it is on the screen, and in the order it appears on the screen).

Unformatted data is handled in CICS with a slightly different set of commands from
formatted data. Unformatted data is actually simpler than formatted data (and you
can write it as well as receive it), but it isn't nearly as useful. So we'll only cover
formatted data in this Primer, and point you to where you can find out how to use
unformatted screens if you should want to.

30 CICS Application Programming Primer

BMS to the rescue

Saved by BMS

We said earlier that you do not have to deal directly with this data format in your
CICS program. The feature of CICS that spares you this complexity is called Basic
Mapping Support (BMS). BMS does several things for you:

• It allows you to deal with data in a fixed format, providing a data structure for
you to copy into your program in which the input fields (the name, password, and
new password in the example we showed) are always in the same place and of the
same (maximum) length.

• It allows you to deal with data by name. In this instance we might have called
the three fields where we expected input NAME, PSWD, and NEWPSWD. (We
would do this when we first defined the screen.) Then we could refer to these
variables by name in our program, without any concern for where they are on the
screen.

• It allows you to define all the constant data for the screen (titles, field labels, and
so on) separately from your program, so that you don't have to clutter your code
with a great many statements like

MOVE 'CICS/VS SIGNON - ENTER PERSONAL DETAILS' TO

• It saves you from having to know about the details of the 3270 data stream.

With these facilities, you can change the arrangement of the screen, the words in the
titles, and so on without any changes to your program - a very important advantage.

"What BMS Does" on page 109 tells you more about BMS and explains how to use it.

Now, let's go on and look at what we'll have to consider when designing the user
interface.

Chapter 2-2. 3270 Terminals 31

the user interface

Chapter 2-3. Designing the User Interface

We know broadly what we want our application to do:

• Display customer account records, given their account numbers
• Add new account records
• Modify existing account records
• Delete account records
• Print a list of the changes made to the account file
• Print a single copy of a customer account record
• Access records by name.

We also now know something about how the 3270 data stream works and how CICS
starts transactions. So we can start thinking about how our application might look
to the user.

A First Approach

One approach is to review the transactions which the user wants to do, and think
about what the user should see while performing each one.

The Display Transaction

If we take the simplest one as a starting point, displaying a record in the file, then we
need to decide:

1. How the user enters a request.

2. How we show the user the requested record.

3. What to do if the user makes a mistake.

The user need enter only a very little information to request the display of a record:
just the transaction type (display, in this case) and something to identify the record to
be displayed. The output, on the other hand, is quite extensive, consisting of all the
fields in the account record.

We can therefore imagine that a user wanting to display a record might switch on the
terminal, sign-on to the system, clear the screen, and enter something like:

Chapter 2-3. Designing the User Interface 33

displaying

DISP12345

"DISP" here is the transaction identifier that CICS needs to decide which transaction
the user wants to perform, and "12345" is the number of the account to be displayed.

If the requested record can be found in the Account File, the application program
should respond with a screen showing the data in the record.

To make the screen as easy as possible to understand, we should label each field to
show what it means. Figure 9 shows a possible screen format.

ACCOUNT FILE: RECORD DISPLAY

ACCOUNT NO: 12345 SURNAME: MOUNCE
FIRST: DAVID MI: C TITLE:

TELEPHONE: 7512483960 ADDRESS: 79 WISTFUL VISTA
PLEASANTVILLE, NY 10549

OTHERS WHO MAY CHARGE:
CHRISTA MOUNCE (WIFE) PETER MOUNCE (SON)

NO. CARDS ISSUED: 2
CARD CODE: C

ACCOUNT STATUS: OK

HISTORY: BALANCE
0.00
0.00

321.97

DATE ISSUED:
APPROVED BY:

CHARGE LIMIT:

BILLED
04/25/84
05/25/84
06/25/84

04/01/84
CES

2000.00

AMOUNT
101. 37
42.50

321. 97

PRESS "CLEAR" OR "ENTER" WHEN FINISHED

Figure 9. A Typical Display Screen Format

REASON:
SPECIAL

PAID
05/04/84
06/08/84

L
CODES: A J

AMOUNT
101. 37
42.50

If the request wasn't correct, we have to write back some sort of message explaining
exactly what's wrong. Very little can go wrong here with the display transaction
(unlike the add transaction, where all sorts of things can happen!). The user can
make a format error in specifying the record, or name a non-existent record and thus
try to display something that isn't there.

Note that it is CICS that has to deal with errors in the transaction type. If the user
gets the "DISP" part wrong, CICS won't know what transaction to start up, and will
so inform the user. So, if the user enters something other than "DISP", but
something that happens to match a valid transaction identifier, CICS will happily
start up the "wrong" transaction. Beware! (The "cure" the user generally tries in
such a situation is usually to press the CLEAR key and try again.)

Other, "higher level" error possibilities include:

34 CICS Application Programming Primer

printing and adding

• The user may not be authorized for access

• The account file may not be online

• There may be a physical error while accessing a record from the file.

However, in the absence of these "high level" problems, as we said, very little can go
wrong here.

The Print Transaction

We can make the print transaction very similar to the display transaction. The only
functional difference will be that the output will go to a printer instead of the screen.
And if we intend to use more than one printer, we'll probably want to let the user tell
us which one, which means another item of input (and, we must admit, more
opportunity for error).

The Add Transaction

When it comes to adding a new record to the file - an add transaction - we must still
think about the same three things as for the display transaction. Unlike the display
situation, however, the input required is very extensive. We could let users enter the
request and the particulars for an add at the same time, but this would make things
rather difficult for them, besides being a poor use of the 3270. With that many fields
to enter, we definitely want users to enter the input into formatted screens, with
labels to show where and how to enter the data.

So users will have to make two entries to do an add. The first one will display the
formatted screen, and the second will contain the input for the addition. The output
screen for the first stage of the add will be the skeleton into which the user is to enter
the data. No output is actually required from the second stage of the add, but good
human factors suggest that we consider telling the user that the transaction was
successful.

Also, unlike the display transaction, there are plenty of opportunities for errors on an
add. The record to be added might already exist on the fi le, or some of the fields
entered might be missing or incorrect or inconsistent with each other. We don't want
to make our users start all over again if they get one or two items wrong, so we'll
have to think of a way for them to fix any bad fields without rekeying the good ones.

Maybe an add transaction could go like this. The user would enter something like
"ADD 12345" and the transaction would do one of two things. Either it would
respond with an error message that the record to be added already existed (far better
to tell the user now, instead of after all the data for the record has been keyed in). Or
it would display a skeleton screen for the user to fill in.

Chapter 2-3. Designing the User Interface 35

data entry screen design

Now users entering records are probably reading from a form of some sort while they
do the data entry. It's very helpful to them if you make the screen look as much like
their original data form as possible. If, for example, the original customer account
application form was as shown in Figure 10 on page 37, then Figure 11 on page 38
shows the sort of skeleton screen that we'd want. (The underscores simply show
where the input fields are; they wouldn't appear on the screen.)

Notice there are some bits and pieces on the form that we haven't transferred to the
data entry screen. For example, the addresses of the other account users, the
meanings of the four "Reason" codes, the format of the date, and the customer's
signature.

While it's generally true that a well-designed form will translate painlessly into a
data entry screen, never miss the chance to re-think aspects of the data entry task
from the terminal operator's point of view. Also remember that if the operator's
receiving information during a telephone conversation, the original form may be
largely irrelevant to that particular situation.

After the user had filled in this screen, the transaction would check the input fields
for reasonable and consistent values. If one or more of them were unacceptable, it
could redisplay the user's input with the fields in error highlighted, and with a
message added that the highlighted fields were either wrong or inconsistent with each
other. The user could then fix the errors, and this input-edit-redisplay cycle could be
repeated until the input was right. Then the transaction would send a message to the
terminal saying that the record had been added to the file.

Strictly speaking, the transaction needn't confirm that the addition was successful.
However, many users don't entirely trust computers, and a wary user might develop
the habit of doing a display transaction after each add, just to make sure the add
worked. This would waste a lot of user and computer time, and can easily be avoided
by having a confirmation message.

The Modify Transaction

A modification could be almost like an add, except that instead of a skeleton screen
being displayed, the information in the record would be displayed instead. The user
would show the changes by typing over the old information on the screen.

36 CICS Application Programming Primer

[flanwn@n~~
W®w~n~w~

original application form

CHARGE ACCOUNT - CUSTOMER APPLICATION FORM

Customer's name : DAVID MOUNCE

HomeAddress : 79 WISTf:9Ul V\STA

Plt::ASANTVILLE NEW YOR\c: I 054-q

Telephone Number : 15 I 2.Ll-8 39b0

Date : 03 I 2 7 I e 4- SignaturecJ)tLu:A) c . /\A.~~
Other Account Users

Name : CMR\STA MOUNCE {w;.f«) Name: 1>ETEt2. MOUNCE cs~)

Address : ~ O-..bcJ'V~ Address: A-6 ~ ~ cTV<

OFFICE USE ONLY I

Account Number : __ 12.::::_.=3_~-=--S ___ _

No. of cards issued : _ _ 2 _____ _

Reason : __ L _ _______ _ Date : (MM/ DD I y Y) _ 0_11-__._/_o-=---1 _i._/__;;B::.._~--
(N - new L-lost S - stolen A - revised)

Special codes : __ A_J _______ _ Approved by: __ C_t_~------

Figure 10. The Original Customer Account Application Form

Chapter 2-3. Designing the User Interface 37

deleting

ACCOUNT FILE: NEW RECORD

ACCOUNT NO:

TELEPHONE:

OTHERS WHO MAY CHARGE:

NO. CARDS ISSUED:
CARD CODE:

SURNAME:
FIRST:
ADDRESS:

DATE ISSUED: ~/~/~
APPROVED BY:

(message area)

Figure 11. A Corresponding Skeleton Screen

The Delete Transaction

MI: TITLE:

REASON:
SPECIAL CODES:

The deletion could be a very simple matter. We could let the user enter
"DELE12345", and then simply delete account number 12345, and send back a message
that we had done so. It turns out that this isn't a good idea, however. Users could
easily make a mistake in keying the account number, and would be very distressed
when they realized that they had removed the wrong record and had to get it put back
again. Worse than that, they might not notice at all!

Generally, when you're about to perform something as potentially irrevocable as a
deletion in an online system, it's a good idea to confirm that the user really wants to
go ahead with it.

Therefore, we probably want a deletion to be handled like a special case of a
modification. Users will enter the account number to be deleted; we'll show them the
record they are about to delete; and instead of keying in changes as they would for a
modification, they will enter something to confirm that the record on the screen is
really the one they want to delete. Only then will we delete it and say that we've
done so.

Of course, we must give the user some way to say "no, I didn't mean it," that is, to
cancel the transaction, and escape the deletion. Come to think of it, we'll have to do
that in all these update transactions. If a user starts to add a record and then can't
complete the entry for some reason (perhaps some required information is missing),
then the user must be able to cancel the request without corrupting the files with a
half-completed addition, modification, or whatever.

38 CICS Application Programming Primer

menu screens

A User-Friendly Approach

Using a Menu Screen

Before going on to the other transactions, let's look at an alternative approach to this
growing list of transaction identifiers. It's called the menu technique, and it's
become increasingly popular as a user interface.

It works like this. For any application, users need to remember just one transaction
identifier. When they want to do any transaction in that application (in our case,
add, display, print, and so on) they enter just the one transaction identifier. In
response, the screen displays a menu of things that the users can do in this
application. The menu has formatted fields for the data it ems that are required on
input. It also shows instructions in case users don't remember exactly what to do.

The chief advantage of this technique is that the user has to remember almost
nothing, a big help to the "infrequent" users that we need to address in our example
application.

There are some other benefits as well: you can diagnose errors in the request input in
the same convenient way that we described for the "add" screen, so that the user gets
a good explanation of the problem and has to do a minimum of rekeying to correct the
errors. Also, when you complete a transaction such as an add, you can combine your
confirmation message with this menu screen. This way the user knows that the
previous entry was successful, and is all ready to enter the next request.

The menu for this application might look like the one here (Figure 12). Again, the
input fields are underscored in the figure to show their position, but the underscores
wouldn't appear on the actual screen:

ACCOUNT FILE: MENU

TO SEARCH BY NAME, ENTER:

SURNAME: FIRST NAME:

ONLY SURNAME
REQUIRED. EITHER
MAY BE PARTIAL.

FOR INDIVIDUAL RECORDS, ENTER:

REQUEST TYPE: ACCOUNT:

REQUEST TYPES: D DISPLAY
P = PRINT

THEN PRESS "ENTER"

Figure 12. A Typical Menu Screen

PRINTER:

A ADD X = DELETE
M MODIFY

-OR- PRESS "CLEAR" TO EXIT

PRINTER REQUIRED
ONLY FOR PRINT
REQUESTS.

Chapter 2-3. Designing the User Interface 39

menu screens

Almost the only disadvantage to this menu technique is that a user has to go through
one extra screen for the first transaction of a session, and one extra step (clearing the
screen in this case) to escape. The only time this is a serious matter is when users
need to mix transactions from different applications constantly. This isn't the case in
our example, and we do have infrequent users to think about, so we'll use the menu
approach.

So here's how, say, a modify transaction will work:

1. The user keys in the four-character transaction identifier to get started.

2. The menu screen is displayed in response.

3. The user enters "M" for the request type, keys in an account number, and presses
ENTER.

If there's a problem, the user will see the same screen with the fields in error
highlighted and a message at the bottom saying what's wrong.

Otherwise, the response will be a display of the record to be modified, ready for the
user to change. The user will change the fields to be modified, and then press ENTER
to send the screen back. If there are errors in the changes, the transaction will send
back the input with the errors highlighted and a message if necessary. If (when) the
user gets it right, the transaction will update the file, and send back the menu screen,
with a message at the bottom saying that the modification just requested was
completed successfully. The user will then enter the next request, or clear the screen
to quit our application.

40 CICS Application Programming Primer

the log and name inquiries

Printing the Log

We've not yet dealt with the printing of the log of changes to the account file. The
log will be printed only occasionally, perhaps once a day, and this will be done by a
supervisor in the Accounting Department. We probably don't want to include it in
our menu, because it will only confuse the other users, who may not even know what
a log is. So we'll have a separate transaction identifier for this one function.

The main output, of course, will be the printed log. We should also send a
confirmation to the input terminal, however, in case the printer isn't in the immediate
area or is busy with another task at the time of the request.

Name Inquiry

Finally, we must think a little more about the name inquiry transaction.

In view of the structure of the rest of the application, it would be very convenient if
we could just fetch a single record from the file on the basis of a name instead of an
account number. Unfortunately, this won't usually be possible, because names are a
notorious problem. They cannot be depended on to be unique, they vary enormously
in format and length, and spelling is a great challenge. That, in fact, is exactly why
we assign an account number to each customer and use it as the file key, instead of
using the one identifier that is most natural (and that the customer is least likely to
forget).

It isn't usually possible to guarantee a unique response to a request that specifies a
name, because we can't depend on that name being unique (and the user may even
have misspelled it). What we want to do, then, is to give the users who need this
facility some way to get to the right account number by entering a name. Suppose
that our response to such a request is a list of customer names, in alphabetical order,
starting with the first one that matches the requested name, up to the capacity of the
screen.

In fact, since the user may be uncertain of the spelling, we'll treat the name entered
as a generic or partial name, and show all the names that start in the way specified.
So, if the user enters "Adams," the response will begin with the Adamses and
continue with the Adamsons. But if the name were one that had several common
spellings, such as "Reid" (also often "Reade"), then the user could enter just "Re" and
get both forms. We can treat the first name similarly. The user could enter the first
name (or initial) if known, to limit the number of responses, but we won't make this
mandatory.

Chapter 2-3. Designing the User Interface 41

the full menu

In our example, remember, we learned from our user survey that the Customer
Service people are going to be the heaviest users. Most of their transactions will be
inquiries by name. Moreover, most of these inquiries involve just three items besides
the name: address, account status, and charge limit. So, when a user inquires by
name, it makes sense to display these items along with the name and account number.
That way these users will usually see all the data they want on the first response,
without having to ask for the detailed display of one particular record.

Sometimes, of course, they will want to see the whole record, and the Accounting
Department will want this facility as well. So we must provide some easy way to get
from the summary display to the other transactions that the users might want to do,
once they have the account number. Suppose we use the remaining lines on the menu
screen to display the results of a name search when one is requested. After a search,
the users can then enter the request directly, without changing screens, on the menu
to which they are accustomed. Figure 13 shows how the expanded menu screen might
look:

ACCOUNT FILE: MENU

TO SEARCH BY NAME , ENTER :

SURNAME: FIRST NAME:

FOR INDIVIDUAL RECORDS, ENTER:

REQUEST TYPE: ACCOUNT:

REQUEST TYPES: D DISPLAY
P = PRINT

PRINTER:

A ADD X = DELETE
M MODIFY

THEN PRESS "ENTER" -OR- PRESS "CLEAR" TO EXIT

ACCT SURNAME FIRST MI TTL ADDRESS

Figure 13. An Expanded Menu Screen

42 CICS Application Programming Primer

ONLY SURNAME
REQUIRED . EITHER
MAY BE PARTIAL.

PRINTER REQUIRED
ONLY FOR PRINT
REQUESTS.

ST LIMIT

our interface guidelines

Some Interface Design Principles

In reaching our current idea of how our user interface will look, we've based most of
our decisions on what is easiest for the user. Indeed, that should be the cardinal rule.
Human time has become so much more valuable than computer time that it is worth a
lot of effort and coding to make the user as productive as possible.

It isn't always obvious how to do this to best advantage, and what is best for one user
may not be best for another. This applies especially to occasional users of an
application. In fact, the style of conversation between users and computers has
changed significantly as people have learned more about the "human factors" aspect
of online systems.

The advent of sophisticated terminals, like those in the 3270 system, has also had an
enormous effect in this area, as it became practical to deal with users in ways not
possible with earlier devices. The whole idea of using a menu, for example, came
much later than the original release of CICS, and depends explicitly on the
characteristics of the 3270 for success.

Though there are no hard-and-fast rules, and though there can be many good designs
for the user interface, there are five guidelines that we can safely propose:

1. Make screens easy to understand

• Keep to the rules used in forms design: Try to give the screen layout an
uncluttered appearance and, to the extent possible, a columnar structure, so
that the reader's eye moves easily from one item to the next and doesn't have
to jump long distances.

• Put a title on the screen, so that users know where they are in the current
transaction.

• Be consistent from screen to screen. If you put the title on the top center of
one screen, put it there on all the screens. If you put the messages at the
bottom of one screen, put them there on all the screens.

• If the user will be reading from a form for input to a screen, make the screen
look as much as possible like the form. Put the fields in the same order, and
use the same placement as far as possible.

• Likewise, if a screen is used to display information that the user is
accustomed to seeing printed on a form, make the screen resemble the form
as nearly as possible.

Chapter 2-3. Designing the User Interface 43

our interface guidelines

2. Cut down what the user must remember

• If there are more than a few fields to be filled in, use a formatted screen with
labels and instructions.

• Where possible, put instructions on the screen to show what the user can do
next.

• Use consistent procedures, both within and across application programs. For
example, if the CLEAR key is used to cancel in one transaction, use it that
way in all transactions.

3. Protect users from themselves

If a user is about to do something that's hard to undo, such as a file deletion, get
the user to confirm that it's the right deletion.

4. Save the user's time and patience

• Minimize the number of characters that have to be keyed.

• Make the user change screens as little as possible.

• Make it as easy as possible to correct errors. There are many ways to do
this. In our application, for example, we stick to the following:

We redisplay the user's input in the same screen as the one in which it
was entered.

We diagnose all the errors at once (to the extent possible).

We highlight fields that have errors.

If the user misses any required fields, we fill them with asterisks and
highlight them.

We place the cursor under the start of the first field in error.

We display an explanatory message if the error may not be obvious.

• Place the cursor where the user will probably want to key first.

• Minimize the number of times that the users have to skip over fields.

44 CICS Application Programming Primer

our interface guidelines

5. Reassure users

• Give a positive confirmation that a requested action has been done
successfully.

• When you know a particular response time is likely to be longer than usual
(because of the operation being performed) consider sending an intermediate
display.

Chapter 2-3. Designing the User Interface 45

the data

Chapter 2-4. Coming to Grips with the Data

Having decided what you want to do, you can now determine what data will be
required to do it and how to organize that data.

The Account File

In this application, we know that we need access to all the fields that make up
records in the existing account file, because this is the data that we intend to
maintain and display. We need direct access to these records by account number for
several of the required operations (display, add, and so on). Happily, this file exists in
a form directly usable by CICS (a VSAM key-sequenced data set (KSDS), with the
exact key that we need). This isn't pure luck or coincidence. The account number is
the natural key for this file, and a VSAM key-sequenced data set is a good choice for
a mixture of sequential and direct processing, such as probably occurs now in the
batch programs that use this file. Figure 14 shows the record format for this file.

FIELD

Account Number (Key)
Surname
First Name
Middle initial
Title (Jr, Sr, and so on)
Telephone number
Address line
Other charge name
Cards issued
Date issued
Reason issued
Card code
Approver (initials)
Special codes
Account status
Charge limit
Payment history:

-Balance
-Bill date
-Bill amount
-Date paid
-Amount paid

LENGTH

5
18
12

1
4

10
24
32

1
6
1
1
3
1
2
8

(36)
8
6
8
6
8

OCCURS

1
1
1
1
1
1
3
4
1
1
1
1
1
3
1
1
3

TOTAL

5
18
12

1
4

10
72

128
1
6
1
1
3
3
2
8

108

Chapter 2-4. The Data 4 7

access by customer name

Access by Name

As well as accessing the account file records by account number, we need to access
them by a second key - the customer name. There are many ways of achieving an
alternative path into a file. For example, VSAM provides a facility called an
alternate index, which can be used in CICS.

In addition, CICS/DOS/VS supports two data base systems: the relational Structured
Query Language/Data System (SQL/DS) and the hierarchical Data Language/I (DL/1).
Similarly, CICS/OS/VS supports the DATABASE 2 relational product, and IMS/DB
DL/1. These systems provide powerful cross-indexing facilities, and they have many
other features that reduce the coding required in user applications. They support
complex data structures, provide increased function, and simplify the maintenance of
file integrity. If you have data that you need to access by more than just a few
different key fields, or if you have data that does not arrange itself into neat units
like the account records in this application, you should evaluate seriously the use of a
data base system.

However, all these data base products are beyond the scope of this Primer. For our
application we'll use a simple technique, frequently used and quite appropriate to an
application of this size. We'll build a small separate file, in name sequence order, to
use as an index into the account file.

This is probably going to offer us better performance for sequential browsing of
customer names than, say, an alternate VSAM index.

Choosing the File Organization

For the initial read, we'll need direct access to the index file when we process an
inquiry by name. After that, we'll read sequentially until we have enough names to
fill one screen. So VSAM key-sequenced organization2 is appropriate to this file as
well as to the account file. ("Other File Services" on page 164 lists the other file
access methods supported in CICS. VSAM KSDS is widely applicable, however, and
is the only one covered in this book.)

Name Index Records

What do we need in our name index records? We need the surname, clearly, and the
first name. We need the account number, for access to the main file and to ensure a
unique key. This is all we really need. However, since we're maintaining our own
index file, we've the option of putting more than pointers into it. Let's see what else
we can usefully put into the name index file.

2 File organization, of course, isn't generally chosen by an application programmer, but by
the application designer.

48 CICS Application Programming Primer

name index records

In our application, we could produce the display shown in Figure 13 on page 42 in
two different ways:

• Read the name from the name index record and, for each name, use the account
number in the index to access the account file. This can get us the address, the
account status, and the charge limit.

• Repeat the address, the account status, and the charge limit fields within the
name index file . We'd then only need to access the name index file (and not the
account file) to get these items.

In the second case, the index records would be a little larger as a result, and we'd
have two copies of some fields (a potential source of trouble in large file-based
systems). On the other hand, we could avoid one read for every name in the response
to a name inquiry.

This latter point turns out to be important. In VSAM, one read brings a whole
control interval (CI) of data into virtual storage. CICS passes to your program only
the particular logical record that your program asked for, but on your next program
read, CICS can return your record directly, without another VSAM read, if the record
is in the same control interval. When you are reading in key sequence, the
probability of the record being in the same control interval is very high. In our
example, we'll be going through the name index records in name order, and the
records are small, so we can expect there to be only one physical read for several
logical reads.

However, if we needed to access the account file once for each of these reads, there
would probably be a physical read to that file for every logical read to the index file,
as we wouldn't be reading the account file in sequential (customer number) order.

In deciding which method to choose, we must weigh the cost of the many additional
reads against file space and against the possible complications of keeping the two files
synchronized. Changes that will have to be made to the batch billing and payment
system need to be evaluated as well. If searching by name were an infrequent
request, or if any of these other factors had a large cost associated, we might choose
the first method. However, for our example we'll assume that this isn't so and, since
inquiry by name will be by far the most frequent transaction, we'll include these fields
in the index.

Figure 15 on page 50 shows a reasonable layout for the name index record:

Chapter 2-4. The Data 49

the control interval size

FIELD LENGTH (in bytes)

Surname
Account Number
First name
Middle Initial
Title
Street Address
Account Status
Charge Limit

n
5
7
1
4

24
2
8

These two fields form
the key.

Figure 15. The Name Index Record Format

The first two fields together form the key. It will be unique because account numbers
are unique, and it will allow us to search by surname, using a partial key of variable
length. Notice that we chose field lengths for the surname and first name that were
shorter than the corresponding fields in the account file. We also included only one
line of the address. This keeps our index records reasonably small and lets us display
a name index record on a single line of the screen. We can afford to do this because
our purpose is to help the user in recognizing the right name, not to account for all
the possibilities that can occur in names and addresses.

Choosing a Control Interval (CI) Size

One of the issues in designing VSAM files is choosing control interval sizes for the
data and the index. The choice depends partly on the fit of records into the CI, but it
also depends on whether the data will be accessed directly or sequentially. In our
example, the account file will always be accessed directly. That is, there is little or
no chance of reading account records in account number order. So a large data
control interval will hurt rather than help us. It will mean larger buffers (more
demand for virtual storage), and more data will be transferred than can be used (the
larger the interval, the more records transferred in one read). Therefore a small data
CI is appropriate for this file.

In contrast, the name index file will be read sequentially more often than directly.
The first read in a name inquiry will of course be random, but after that we'll tend to
read several records in sequence. Therefore it will be helpful to get many logical
records in a single physical read, and so we'll choose a large data CI size for the name
index.

All these physical reads are done by CICS using VSAM. Your program is concerned
only with logical reads, which are completely unaffected by CI size. So you don't
have to think about these factors. However, a good application designer will try to
take all such factors into consideration.

50 CICS Application Programming Primer

protecting the file

While learning, you can certainly put off the choice of the "best" CI size until your
program is working. After all, you can change the CI sizes of your files without
changing your application code or your CICS tables, and you may wish to do this
later if trying to tune your system for faster response.

Recovery Requirements

One of the first requirements for the example application was to maintain the
integrity of the account file. We'll see in "Chapter 2-7. A Basic Decision:
Conversational or Pseudoconversational" on page 77 how CICS prevents the loss of
integrity associated with partially completed transactions, and we'll use this feature
to keep the two files (the name index file and the account file) properly synchronized.
However, we must also protect the account file from disasters such as a head crash.

In a batch environment, you can keep an extra copy of an important file, or keep
enough information to recreate it (by keeping back versions, for instance, with the
inputs to the update runs). In an online environment, this isn't so easily done. You
cannot copy the file after every update. Nor can you afford to lose all the updates
since the last time you copied the file. These updates were entered at terminals by
many different users, who may not remember what stage they had reached when you
last secured the file, who may not have ready access to the input documents any
longer, and who will certainly be very cross if they have to rekey a large number of
transactions.

CICS solves this problem by using a variation on the batch technique. If you have a
file that must be protected, you ask CICS to journal the updates. CICS then keeps a
copy of every change made to the file on a tape or disk. It logs these changes on the
system log, which is journal number one. If you lose a file , you go back to the most
recent copy of it and recreate it from that. Then you run a program that applies the
changes recorded on all the journals created since that copy was made.

In our example application, the account file is clearly a file that must be protected in
this way. In contrast, the index file does not require these precautions. We do have
to protect its integrity from partially completed transactions, just as we do the
account file. However, we can always recreate the index file from the account file
with a very simple batch program (see "Compiling and Link-Editing the Index File
Program" on page 272) so it isn't necessary to journal the changes to it, nor even to
make periodic security copies.

Chapter 2-4. The Data 51

refining the design

Chapter 2-5. Designing the Transactions: More
Detail

We've now looked at several principles that we need to bear in mind when working on
application programs for online transactions. Next, let's have a closer look at what
we have to do to accomplish the ·functions that make up our example. Some people
just write out, in English, the transaction flow. Others prefer flowcharts. You'll find
both in this chapter.

Now that we've decided to give the user a "menu" screen, we'll start by displaying
this menu and analyzing the request entered on it. After that we'll describe the
requirements according to the type of request (add, display, and so on).

Chapter 2-5. Transaction Design 53

analyzing the request

Request Analysis

1. Display the menu screen, (as shown in Figure 12 on page 39).

2. Wait for the user to enter a request.

3. Analyze the request, which may be:

a. To leave the application entirely.

b. To add, modify, delete, display, or print a record.

c. To search on a name.

d. None of the above.

4. Process according to the type of request.

• In case a above, simply return control to CICS.

• In cases b and c, process as described on later pages.

• If the request cannot be deciphered (cased), send an error message to the
user. Then go back to step 2 to wait for the user to correct the input. (When
it arrives, repeat the processing from step 3 above.)

54 CICS Application Programming Primer

0---------
Get the Input
from the User

analyzing the request

..... ----@

Figure 16. Request Analysis

Analyze
the User's
Request

Yes

Yes

Yes

Return Control
to CICS

Proceed, to
Add, Modify,
Delete, Display,
or Print . . .

Proceed,
to Name
Search

Chapter 2-5. Transaction Design 55

adding a customer

Add Processing

1. Check the customer account number that was entered along with the request. It
must be present, and:

a. Numeric
b. In the proper range (we'll assume the Accounting Department restricts

numbers to the range from 10 000 to 79 999)
c. Not already used (that is, not already in the file).

If any of these conditions isn't met, send a message to the user saying what is
wrong. Then go back to step 2 of "Request Analysis" to wait for the corrected
input. When it arrives, processing will resume at step 3 of that process, so that the
user has a full range of choices at this point. That is, the user can correct the add
request, change to a different type of request, or quit the application entirely.

2. If the account number is acceptable, send a skeleton sere.en (see Figure 11 on
page 38) back to the terminal so that the user can fill in the fields for the new
record.

3. Wait for the user to enter the data (or to signal a desire to quit by using the
CLEAR key).

4. See whether the user wants to continue this operation. (He or she might have
had trouble entering this particular record or had a change of mind.) If the user
doesn't want to go on, display the menu screen again with a message like
"previous request cancelled" and go to step 2 of "Request Analysis" to wait for the
next request to come in.

5. Otherwise, check the fields read from the filled-in data entry screen for
reasonableness and consistency. If there are errors, send a message back to the
terminal saying what the errors are, and go back to step 3 to wait for the next
input.

6. If no errors are detected in the input, update the files:

a. Write an image of the new record to the chang~ log.
b. Build a new account record using the information from the input screen, and

add this record to the file.
c. Build the corresponding name index record and add this to the name index

file.

7. Redisplay the menu screen, with a message to say what has just been done, and
resume at step 2 of "Request Analysis."

56 CICS Application Programming Primer

adding a customer

Yes

Figure 17. Add Processing

Chapter 2-5. Transaction Design 57

changing a record

Modify Processing

1. Check the account number that is entered along with the request. It must be
present, and:

a. Numeric
b. In the proper range (10 000 to 79 999)
c. Already on file.

Just as in the add processing, if any of these conditions isn't met, send a message
to the user saying what is wrong, and then go to step 2 of "Request Analysis" to
await corrected (new) input.

2. Build a display of the current contents of the record from the information on file,
and send it to the user's screen.

3. Wait for the user to enter the changes (or to indicate, with the CLEAR key, a
desire to abandon the transaction).

4. If the user doesn't want to continue, send a fresh menu screen with a message
acknowledging the cancellation and then go to step 2 of "Request Analysis" to
wait for the next request.

5. Build a new version of the record by applying the changes entered on the screen
to the old version of the record.

6. Check all items in the new record for reasonableness and consistency with each
other. If there are errors, send the input screen back to the terminal with all the
errors noted. Also, if there are no differences between the new record and the old
one, send a message noting this (the user may have made an error and should be
notified). Treat this situation just like an error in a data item. Return to step 3
to await corrected input.

7. If there are no errors in the input, update the files:

a. Write a record of the changes (that is, images of the old and new records, plus
an indication of the changed areas) to the change log.

b. Replace the old record in the file with the new version.
c. If the changes affected the corresponding index record, replace that record,

too, with a revised version.

8. Redisplay the menu screen, with a message to say what has just been done, and
resume at step 2 of "Request Analysis."

58 CICS Application Programming Primer

Figure 18. Modify Processing

Build the
new version
of the Record

changing a record

No

Send the User
an Error
Message

Yes

Chapter 2-5. Transaction Design 59

deleting a record

Delete Processing

1. Check the-account number entered with the request; the requirements and the
error processing are the same as for "Modify Processing" on page 58.

2. Build a display of the contents of the record from the information in the account
file and send this to the terminal.

3. Wait for the user to confirm or cancel the delete request.

4. See if the user has decided to cancel the delete request. If so, proceed as in step 4
of "Add Processing" on page 56.

5. If the user has not cancelled, see whether he or she has confirmed the delete
request. If not, send a message asking the user either to confirm or cancel, and go
back to step 3.

6. If the delete request is confirmed, update the files:

a. Write an image of the deleted record to the change log.

b. Delete the record from the account file.

c. Delete the corresponding name index record from that file.

7. Redisplay the menu screen, with a message to say what has just been done, and go
back to step 2 of "Request Analysis" on page 54 to wait for the next request.

60 CICS Application Programming Primer

deleting a record

Yes

Figure 19. Delete Processing

Chapter 2-5. Transaction Design 61

displaying a record

Display Processing

1. Check the account number entered with the request; the requirements and the
error processing are the same as for "Modify Processing" on page 58.

2. Build a display of the contents of the record from the information in the account
file, and send it to the screen.

3. Wait for the next input from the terminal (indicating that the user has finished
looking at the display), and then go back to step 1 of "Request Analysis" on
page 54.

62 CICS Application Programming Primer

Figure 20. Display Processing

Build, and Show
Current Record
to the User

displaying a record

No

Chapter 2-5. Transaction Design 63

printing a record

Print Processing

1. Check the account number entered with the request; the requirements are the
same as for a "modify" request. Also check the name of the printer entered with
the request. It must be present and must correspond to the name of a real printer
known to CICS. If either input item is in error, send an appropriate message to
the terminal and return to step 2 of "Request Analysis" on page 54 to await
corrected input.

2. Build a display image of the contents of the record from the information in the
account file, (printers understand the same data streams that displays do).

3. Send this image to the indicated printer.

4. Send a message to the terminal, saying that the print request has been processed;
then go back to step 2 of "Request Analysis" on page 54 to await the next request.

64 CICS Application Programming Primer

printing a record

No

Figure 21. Print Processing

Chapter 2-5. Transaction Design 65

finding a customer name

Name Inquiry Processing

1. Check the name search input:

• The surname must be present and alphabetic
• The first name must be alphabetic, if present.

If either condition isn't met, send an error message to the terminal and go back to
step 2 of "Request Analysis" on page 54 to wait for corrected input or another
request.

2. If the names are correct, find the first index file record that has a surname that
matches the (full or partial) surname specified in the input, or which is just
higher in the alphabet than the input surname.

3. Build the search output part of the display, one line at a time.

a. Read the next record in the index file.

b. See if this record meets the input criteria for the given name. If it does, build
an output line from it.

Repeat this step (building one line at a time, remember) until the surname read
from the file is higher in the alphabet than any that would match the input
surname, or the end of the file is reached, or all the output lines have been used.

4. Send the completed output to the screen.

5. Wait for the user's next request.

6. If the next input shows that the user wants to continue the search, go back to step
2, using as a starting point the last record read in producing the previous display.

7. If the user doesn't want to continue, go to step 3 of "Request Analysis" on page 54
to find out what he or she wants to do instead.

66 CICS Application Programming Primer

Find the first
Index entry
that matches
or exceeds
Surname

finding a customer name

Do
Search
Routine ->

Yes

Figure 22. Name Inquiry Processing

Exit from
Search Routine

Build Output
Line if
Appropriate

Chapter 2-5. Transaction Design 67

printing the change log

Printing the Log

1. Read the first (next) record from the log.

2. Write the information read to the log printer.

3. Repeat steps 1 and 2 until there are no more records on the log.

4. Delete the log records once they have been printed.

You'll find more information about this log in "Program ACCT03: Requests for
Printing" on page 99. (We mention this now because the concept of the log and its
printing has given some readers minor problems when reviewing earlier drafts of this
Primer.)

68 CICS Application Programming Primer

Yes

Figure 23. Printing the Log

Delete the
Log Records
that have
just been
printed

printing the change log

Chapter 2-5. Transaction Design 69

summary

Summary

We've now seen the requirements for the various functions our users can perform at
(or, in the case of printing, from) their terminals.

The next thing we need to do is to consider how to break up these functions into
CICS transactions, and what factors affect program design in a CICS environment.

70 CICS Application Programming Primer

saving resources

Chapter 2-6. Programming for a CICS
Environment

The overall design goals in an online environment are the same as those in a batch
environment: to provide as much service (do as much useful work) as possible while
using as little resource as possible.

Deciding what services to provide is, as we noted in "Defining the Problem" on
page 18, the first step in the design. It takes a little experience and experimentation
in online programming to know what additional services you can provide at
reasonable cost, beyond simply replacing batch services with equivalent online
services.

In our example, for instance, we decided initially to replace the function of the old
printed account listing with the ability to display individual records on the screen.
Originally, we had no plans to allow users to print individual records, even though it
seemed an obvious feature to provide, once a user pointed out how useful it would be.
This kind of interaction with potential users is invaluable in arriving at a design that
is good from the user's point of view. It should be repeated often in the design cycle,
as your insight into the application and the programming requirements develops.

Resources

After deciding what to do, what resources do we have to conserve while providing this
function? Some of them are the traditional ones that are common to both batch
programming and online programming:

• Processor storage
• Processor time
• Auxiliary storage space and transmission capacity to it.

Others are new, and require some new considerations in design. They are:

• User time and good humor
• One-user-at-a-time resources, such as terminals, file records, scratch-pad areas,

and so on
• Line transmission capacity.

Let's take these individually and develop some guidelines for designing and
programming CICS applications from them. Remember, there's bound to be conflict

Chapter 2-6. The CICS Environment 71

processor storage

from time to time when trying to save one resource at the "cost" of another. The
appropriate compromises will vary from one program to the next.

"Traditional" Resources

Processor Storage

The first resource to consider is processor storage. Your applications use up storage
in two ways. First, there are the CICS control blocks associated with any transaction
being processed, and second, there is the program or programs being executed to
accomplish the transaction. The programs, in turn, take up space both for executable
code and for working-storage areas. In an online system, the storage needs for these
purposes constantly come and go. They exist only for at most the duration of a
transaction, and so in assessing storage needs, we have to consider not only how
much, but for how long. The trade-off between space and time is complex, but at a
minimum we can say:

Processor Storage Guidelines (1)

Keep programs short.

Keep Working-Storage short.

Keep programs short in duration of use.

How transactions use storage over time is taken up again in "Chapter 2-7. A Basic
Decision: Conversational or Pseudoconversational" on page 77.

We should also note that CI CS/VS is a virtual storage system, and the good coding
practices observed in batch programming for a virtual storage environment apply
equally well to CICS. These include:

Processor Storage Guidelines (2)

Keep GOTOs to a minimum.

Place subroutines near the code that PERFORMs them.

A void long searches for data.

72 CICS Application Programming Primer

PERFORMs in CICS

Some Remarks About PERFORM: Having mentioned subroutines, let's stay with
them for a few moments. COBOL programmers learning CICS often ask about the
pros and cons of using PERFORMs in CICS.

First of all, using PERFORM to execute a COBOL subroutine is very much more
efficient than the CICS overheads associated with a CICS command to link to, or
transfer control to, another program. However, repeating the subroutine in each of
your COBOL transactions is going to cost you more storage. That is, if you're using
PERFORM for repeated code, you're trading space against (possible) paging.

Like earlier COBOL compilers, the new VS COBOL II compiler (OS/VS only) allows a
COBOL program to use CALLs to external routines, but now the called routines can
issue CICS commands. This avoids the CICS overheads, but it does mean link-editing
the routines with every calling program.

We've some more to say in the next part of the Primer (in "The COBOL CALL
Statement" on page 179).

Secondly, the matter also arises in COBOL loop situations. You see, COBOL doesn't
let you put the PERFORM which controls the loop physically adjacent to the actual
code of the loop, unless you cheat and use a GOTO rather unnaturally. PERFORMs
are ok for loops, but always keep the code you PERFORM as near as you can to the
controlling PERFORM statement, to minimize the risk of the two things being in
separate pages of storage.

Finally, the question of a PERFORM also crops up with regard to code that isn't a
true "subroutine" in the old-fashioned sense, and code which the programmer never
really considered breaking off as a separate (sub)routine.

This kind of PERFORM comes from some of the structured programming rules, where
you PERFORM blocks of code (often physically distant in the program, with
attendant paging implications) for reasons of neatness, readability, maintainability,
and so on. The response time impact of flipping through a lot of pages is of course
much more critical in a real-time environment than in batch, because you have to
compete with all those other terminal users instead of just a few other jobs.

Our "PERFORM" Guidelines

Use PERFORMs to help structure your code (but watch out for increased
paging).

Keep PERFORMed code as close as possible to the PERFORM statement.

Use PERFORM for long code, or code used in a great many places.

Chapter 2-6. The CICS Environment 73

processor time and disk storage

Processor Time

In general, we need to conserve processor time in CICS in the same way as in a batch
program. The major factor is exactly the same: calls for operating system services
take much longer, relatively speaking, than straight application code. This is true
whether you are coding in CICS, where a call takes the form of a CICS command, or
in batch COBOL, where a call is implicit in your input-output statements (OPEN,
READ, WRITE and so on). So, avoiding unnecessary commands in a CICS design will
reduce processor time much more than fine tuning your COBOL code, just as avoiding
a single input/output operation in a regular program will make up for many MOVEs
and GOTOs.

It is never desirable to do long calculations (matrix inversion and such) in an online
program. This is because any online program is sharing the processor with many
other programs (or occurrences of the same program) servicing users who each think
they have the full attention of the "computer." Fortunately, such long calculations
are rarely needed in online programs.

Processor Time Guidelines

A void unnecessary CICS commands.

Avoid excessively long calculations.

Auxiliary Storage

Disk space and transfer capacity are minimized in an online system in the same way
as in a batch system. What differs is the following. In a batch system, the system
programmer arranges data sets on disk according to what jobs might run
concurrently. In an online system, however, the system programmer arranges data
sets according to what transactions might execute concurrently. The same techniques
are used for tuning: statistics on device and channel utilization in combination with
knowledge of the applications.

Resources Specific to Working Online

This brings us to the new considerations.

User Time and Good Humor

We've already discussed (in "Some Interface Design Principles" on page 43) how user
time and aggravation can be minimized. You'll find our guidelines there.

7 4 CICS Application Programming Primer

"online" resources

One-User-at-a-Time Resources

The next candidates for conservation are a whole class of resources that can be used
by only one user (one transaction) at a time. A file record is a perfect example of this
type of resource. As we've noted several times, we do not want two transactions
updating the same record at the same time. CICS provides the enqueue mechanisms
to prevent conflicts between transactions over such resources. What you have to
remember in designing a transaction is that when one user has access to such a
resource, everyone else who wants it will have to wait. Therefore:

Exclusive-Use Resource Guideline

Minimize the duration of transactions that require exclusive use of resources.

We'll say some more about these resources in later chapters.

Line Transmission Capacity

The last new element on our list is line transmission capacity. In an online system
with terminals located a long way from the processor, the signals between them are
generally (although not invariably) carried over the public voice telephone network.
Compared to most of the elements of a computing system, telephone lines are very
slow indeed. Transmission time, especially over a congested line, may be a major
component of the total response time. Therefore:

Line Transmission Guideline

Avoid sending unnecessary data to and from screens.

For the most part, CICS does this for you automatically, using the 3270 hardware
features explained in "Chapter 2-2. 3270 Terminals" on page 23. Sometimes, however,
you can help as well. For example, if you were writing a data entry application
program in which the operator repeatedly filled in the same screen, you would not
need to rewrite the constant information on the screen (the titles and field labels)
after the first display. It would be well worth your while to add a little extra program
logic, to distinguish between the screen for the first entry and that for subsequent
entries, and thereby reduce line traffic by not resending data that is already on the
screen.

Chapter 2-6. The CICS Environment 75

conversational. .. ?

Chapter 2-7. A Basic Decision: Conversational
or Pseudoconversational

Now that we've established guidelines for design, let's return to the problem of
defining the transactions that make up the example application. In "Chapter 2-5.
Designing the Transactions: More Detail" on page 53, we described the processing
required for the various transaction types that the user sees: add, modify, display, and
so on. If we were to define our CICS transactions along these functional lines, we
can foresee several problems:

• There is much repetitive code, which suggests that we should at least use common
programs for some of the transactions, if not combine some transactions.

• Every transaction involves a wait for the user to enter data, and the update
transactions contain two such waits. This means that these transactions will be
running for a relatively long time, which is a violation of the guideline to keep
program duration short.

• The modify and delete transactions will be holding on to a one-user-at-a-time
resource during one of the waits, contradicting the guideline to minimize the
duration of transactions that use such resources.

Let's put aside the first problem for a moment, and look at the other two, which bring
up an important issue in CICS design.

Take, for example, the modify transaction. If we were to program it as outlined
earlier, the sequence of major events would be as shown in Figure 24:

1. Display menu screen.
2. Wait for response.
3. Receive menu screen (which is presumed to contain a correct

modify request) .
4. Read the subject record from the account file.
5. Display the record in formatted form.
6. Wait for the user to enter changes.
7. Receive the changes.
8. Write changes to the printed log.
9. Update the account and index files accordingly.
10. Redisplay the menu screen.

Figure 24. The Conversational Sequence of the Modify Transaction

Chapter 2-7. Pseudoconversational or not? 77

.... or pseudoconversational?

Conversational Transactions

In CICS, this is called a conversational transaction, because the program(s) being
executed enter into a conversation with the user. A nonconversational
transaction, by contrast, processes one input (which was read by CICS and which
was what started the task), responds, and ends (disappears). It never pauses to read a
second input from the terminal, so there is no real conversation.

There are important differences between the two types: for example, duration.
Because the time required for a response from a terminal user is much longer than
the time required for the computer to process the input, conversational transactions
last that much longer than nonconversational transactions. This means, in turn, that
conversational transactions use storage and other resources much more heavily than
nonconversational ones, because they hold on to their resources for so long.
Whenever one of these resources is critical, you have a compelling reason for using
nonconversational transactions if possible.

Pseudoconversational Transactions

This motivation brought about a technique in CICS called pseudoconversational
processing, in which a series of nonconversational transactions gives the appearance
(to the user) of a single conversational transaction. In the case we were just looking
at, the pseudoconversational structure is shown in Figure 25:

TRANSACTION

First

Second

Third

OPERATIONS

1. Display menu screen.

3. Receive menu screen.
4. Read the subject record from the account file.
5. Display the record in formatted form.

7. Receive the changes.
8. Write changes to the printed log.
9. Update the account and index files accordingly.
10. Redisplay the menu screen.

Figure 25. The Pseudoconversational Structure

Notice that steps 2 and 6 of the conversational version have disappeared. No
transaction exists during these waits for input; CICS takes care of reading the input
when the user gets around to sending it.

A word about "transactions". If we seem to be using the word in two different ways,
well ... yes we are. We defined the word earlier in the way that the user sees a
transaction: a single item of business, such as an add, a display operation, and so on.

78 CICS Application Programming Primer

file integrity

This is a correct use of the word. However, what the user sees as a transaction isn' t
necessarily what CICS sees.

To CICS, a transaction is a task that begins (usually on request from a terminal),
exists for long enough to do the required work, and then disappears. It may last
milliseconds or it may last hours. As we've just explained, you can use either one or
several CICS transactions to do what the user regards as a single transaction. We're
still deciding what we should define to CICS as transactions to accomplish the user
transactions in our example problem. At the moment, the pseudoconversational
approach seems promising; it will use shorter programs, which are desirable in CICS,
and although there may be more of them, the programming does not look any more
complicated.

There is a second important issue in this choice of techniques, however. It brings up
a characteristic of the conversational transaction that can be both a significant
advantage and a serious disadvantage. This characteristic is the length of the
transaction, and it affects both file integrity and the ownership of resources that
other transactions may need.

Maintaining File Integrity

We said earlier (in "Recovery Requirements" on page 51) that CICS has facilities for
maintaining the integrity of files and other resources that are important enough to
protect. CICS does two things:

1. It makes sure that transactions are either executed completely or not at all. For
example, if a transaction has to update two related files and, after updating the
first, finds it cannot do the second, then CICS undoes (backs out) the first
update. We'll make use of this feature in our example application. If the
application changes the account file and then discovers that someone has closed
the index file by the time it goes to make the corresponding change there, CICS
automatically removes the update to the account file .

2. It makes sure that protected resources (records in protected files, protected
scratchpad areas, and so on) are updated by only one transaction at a time, and
that any transaction updating such a resource finishes completely before a second
transaction gets access to that resource.

Let's reexamine the conversational v. pseudoconversational issue in view of this new
information. We've been insisting that we do not want two users to update the same
record at once. If we use a single conversational transaction for our modify, CICS
will prevent this from happening (that's good). When we issue the read (for update)
in this sequence, CICS will prevent any other task from writing this record. If a
second task comes along and requests the same record, for update, CICS will suspend
that task until the first one is finished.

Chapter 2-7. Pseudoconversational or not? 79

the double updating problem

However, the program being executed in this second transaction won't be notified
that it is going to get suspended, and so the user won't know why the request is
taking longer than usual (that's bad).

To be honest, it's a little more complicated than that ...

Both CICS and VSAM get involved in protecting the file from concurrent updates.
VSAM's mechanism is .based on the control interval, and has this effect: while one
transaction is updating a record, no other transaction can update any record in the
same control interval. Furthermore, other transactions may not even be able to read a
record in the same CI as the one being updated.a Moreover, the wait experienced by
the second transaction may be substantial; it will last as long as it takes the first user
to enter the modifications on the screen. If he or she should leave the terminal before
finishing, or go through a lot of error cycles getting the input correct, the wait may
be very long indeed.

Double Updating ...

If we choose the pseudoconversational technique, this waiting problem disappears, but
so does the protection. In this case, the second transaction in the
pseudoconversational sequence could issue the same "read" as in the conversational
form. But as soon as this transaction ends, CICS releases the record, long before the
update process is complete. A second user can come along and request the same
record. Then you have two users making changes on the basis of the same "old" copy
of the record. Changes made by the first user will go into the file, but then changes
from the second user will go into the file right over the first user's, and the first set of
changes will be lost (that's very bad).

Now clearly, in our application, we can separate off the first part of our user
transaction (the first transaction in the pseudoconversational sequence) because we're
not yet dealing with any protected resources. Nothing is done in this step that a later
failure would have to undo. But what about the rest of it? We seem to be between
two unfortunate alternatives. If we use a conversational approach, there will be
greater use of storage and, worse, occasional unexplained waits. If we use a
pseudoconversational approach, we may compromise file integrity.

There is no easy way to get around the unexplained waits of the conversational
approach, but there are ways to get around the integrity problem, with a little extra
coding.

Whether a second transaction can read a record in the same control interval depends on
whether the file is using local shared resource (LSR) or nonshared resource (NSR). For
NSR only, a second task can perform a simple read (but not a read-for-update) on a
record in the same control interval.

80 CICS Application Programming Primer

our scratchpad solution

For example, suppose that as soon as a user asked to update an account number, we
made a note in a scratchpad area. (CICS provides scratchpad facilities for keeping
track of things between transactions.) We can leave the number there until the
update is entirely completed and then erase it. In our example, this means that we
write a scratchpad record in the second transaction, and erase it in the third. Before
we start any update request, we can check to see if the number is in use. If it is, we
can tell the user this and ask him or her to resubmit the request later. Furthermore,
we can let the user display the record even if it is in use.

This isn't quite all, however. Because CICS ensures that transactions are either done
completely or not at all, we have to make sure that all our protected resources get
updated in what CICS regards as a single transaction to ensure file integrity. In the
conversational case, this takes care of itself, as there is only one transaction. In the
pseudoconversational case, the files are all updated in the third transaction (good),
but the scratchpad is updated in two different transactions (not so good). If the
second transaction is completed successfully, but something happens to the third, the
scratchpad record is written but not erased. Our files would be okay, which is the
main thing, but we'd be unable to update the record involved until we could somehow
reset the scratchpad .

... and How To Avoid It

We'll get around this by designing a slightly more sophisticated scratch pad
mechanism. We can, for instance, put a limit on the time for which a transaction can
"own" an account number. Then an accident in the third transaction or thoughtless
behavior by a user (going to lunch in the middle of a modification) will not cause an
account record to become unusable for more than a short period of time. All this
involves extra coding and complications, however. Is it worth it?

In this example, it really isn't obvious whether conversational or
pseudoconversational is the better choice (after the menu phase, in which being
pseudoconversational is definitely better). The choice really comes down to how
many of these transactions we might expect at once. If there were a great many, the
storage burden of a conversational transaction alone might cause us to choose
pseudoconversational. If there were only a modest number, then we would have to
consider how often a user would experience the unexplained wait if we chose
conversational. If nearly all the activity consisted of displaying and printing, with
only an occasional update, then the conversational approach might still be the correct
choice.

We'll assume here, however, that there are enough transactions with enough updates
to justify choosing the pseudoconversational approach, and we'll program our own
mechanism for avoiding concurrent updates.

Double updating is one of those problems that a program designer can tackle in a
variety of ways. We've chosen a scratchpad (partly because it's a reasonable method,
and partly because it's going to allow us to show you how to use a CICS facility

Chapter 2-7. Pseudoconversational or not? 81

our scratchpad solution

called temporary storage). A drawback of our scratchpad, however, is that all future
(and, as yet, unknown) transactions that update the account file will have to refer to
this scratchpad. We'll mention an alternative solution in "The Need for Scratchpad
and Queuing Facilities" on page 165.

82 CICS Application Programming Primer

defining the transactions

Chapter 2-8. Arranging the Processing into
Transactions and Programs

We've now reached the point where we can start to arrange the processing described
earlier into transactions and programs. Remember, a CICS transaction uses one or
several programs to do its work. When a transaction is invoked, CICS looks in one of
its tables, the Program Control Table (the PCT), to determine which program should
be executed first to accomplish that transaction. However, that program may invoke
any number of other programs. Several transactions may use the same program or
programs, in the same order or in a different order.

Let's first look at the transactions we'll need, and then we can assess what programs
we'll require. Because we're going to use the pseudoconversational approach, we
need transactions that take an input from the screen, process it, and write back either
the final result or an intermediate result in preparation for the next transaction.

Defining the Transactions

Displaying the Menu

The first thing we need is a very simple transaction that will accept a request to get
started: that is, one that will put the menu up on the screen.

Analyzing the User's Response

Once the menu is on the screen, we need a transaction to analyze and respond to the
input request that comes in after the user has completed fields on the menu screen.
Going back to "Chapter 2-5. Designing the Transactions: More Detail" on page 53,
we see that this transaction must do the following steps:

Steps 3 - 4 of "Request Analysis" on page 54

Steps 1 - 2 of "Add Processing" on page 56

Steps 1 - 2 of "Modify Processing" on page 58

Steps 1 - 2 of "Delete Processing" on page 60

Steps 1 - 2 of "Display Processing" on page 62

Chapter 2-8. Arranging the Processing 83

ACCTOO

Steps 1 - 4 of "Name Inquiry Processing" on page 66

All steps of "Print Processing" on page 64.

Remember that we don't have to do all this processing with a single program. We'll
decide on the programs we need later, after we've laid out the transactions.

Adding a New Record

The next transaction that we need is one to do steps 4 through 7 of "Add Processing"
on page 56. We'll use this transaction if the request in the previous transaction was
to add an account record.

Handling Updates and Other Requests

Similarly, we'll need four other transactions to do, respectively, the steps shown
below:

Steps 4 - 8 of "Modify Processing" on page 58

Steps 4 - 7 of "Delete Processing" on page 60

Steps 6 - 7 of "Name Inquiry Processing" on page 66

All steps of "Printing the Log" on page 68.

We might use a separate transaction for each of these requirements, or we might
combine some of them. We won't make that decision for the time being.

Defining the Programs

Let's look at the programs that we're going to need in support of these transactions,
because that will help us to decide how many different transaction types we need.

Displaying the Menu - ACCTOO

Let's go back to the first transaction, the one that puts up the menu screen, and give
it a name so that we can refer to it easily. We'll need a four-character transaction
identifier to define it to CICS anyway, so let's call it, say, ACCT. This is what the
terminal user will key in to see the menu screen for this application. Now ACCT
needs a program that will display the menu screen. This program is so simple that
perhaps it should be combined with some other program, but for clarity we'll keep it
separate. Let's call this program ACCTOO.

84 CICS Application Programming Primer

ACCTOl

Analyzing the User's Response - ACCTOl

The next transaction is the one that processes the menu input. Let's also give it a
name, say, ACOl. It's a good idea to use some sort of naming convention for both
your transactions and programs. You should be able to tell which application they
belong to just by their names. There's a temptation when writing your first
application to use names like MENU, ADD, and UPDT. These turn out to be
unfortunate choices when you get around to doing your second application, however,
and so names that identify the application are generally better.

ACCT is the only transaction identifier the general user will have to remember, so
we'll start the others with AC for ease of recognition, and just number them from
there. Similarly, the programs will start with ACCT and be numbered.

But back to transactions. Let's look at the processing that ACOl has to do, so that we
can visualize the programs required. Looking back at the list of requirements, one
approach would be to write a separate program for each item on the list. The first
program (the one that did the initial request analysis) would transfer control to one of
the others, depending on the type of request. However, if we look at the content of
Steps 1 and 2 of "Add Processing," "Display Processing," "Modify Processing,"
"Delete Processing", and "Print Processing," we find that they are very similar. They
start with the same data and access the same file record, so we probably want to
combine these into a single program. So we can cut down our original list for this
transaction to:

Steps 3 - 4 of "Request Analysis" on page 54

Steps 1 - 2 for add, modify, delete, display, print

Steps 1 - 4 for "Name Inquiry Processing" on page 66

Steps 3 - 4 for "Print Processing" on page 64.

None of these is a very long piece of code, so it will probably be most convenient to
put them in the same program. For the moment we'll call this program ACCTOl.
However, it may turn out later that it's better to break out one or more of these
segments of code into additional programs. Program and transaction structures often
become clearer when you start to code, and you may find that you can come up with a
better structure than your original one once you start. Don't worry if everything
isn't obvious at first; it takes practice.

Chapter 2-8. Arranging the Processing 85

ACCT02

Handling Updates (Including Additions) - ACCT02

For the transactions that follow transaction ACOl and finish the processing for adds,
modifies, and so on, we again might consider a separate program for each type of
function. Once more, however, it's obvious that the processing for adds, modifies and
deletes is very similar. Most of the steps, in fact, are identical. So, let's combine
these into a single program, and call it ACCT02. Then we can use a single
transaction for all three processes. We could use different transactions, all using the
same program, but it would be pointless in this case. Let's assign the identifier AC02
to the transaction that gets executed when the user has filled in an update screen
(add, modify or delete).

We still need a transaction that will do the remaining steps of "Name Inquiry
Processing" on page 66. But this code will be almost identical to an initial name
search request, so we can probably include it in program ACCTOl.

86 CICS Application Programming Primer

summary

Summary

To summarize, thus far we've defined three transactions, and three programs in
support of them, as shown in Figure 26:

IDENTIFIER TRANSACTION PROGRAMS USED

ACCT

ACOl

AC02

Displays menu.

Analyzes requests;
Processes name search,
display and print requests;*
Does first part of update
requests

Completes update requests

* Almost, as we'll see later

ACCTOO

ACCTOl

ACCT02

Figure 26. The Three Transactions and Three Programs

The only thing left is the printing of the log. Or is it? In fact, in addition to printing,
we haven't yet thought much about the business of telling the user at the terminal
about any error conditions that may arise. So before we consider the log, we shall
digress to discuss three considerations that will bear on our definition of transactions
and programs.

These are:

• Communication between transactions

• Error handling

• The relationship between transactions and terminals.

These bear directly on how we'll handle the last two application functions.

Chapter 2-8. Arranging the Processing 87

passing data

Chapter 2-9. Three Remaining Considerations

Communication Between Transactions

You may have noticed when we were explaining pseudoconversational processing that
there seemed to be some gaps in control and communication.

When one transaction of a pseudoconversational sequence has been completed,
doesn't this task disappear when control goes back to CICS? And if so, how can we
make sure that the transaction we intend to follow this one is actually the one that
gets executed? And how will the next transaction know what this one was doing? In
the case where transaction AC02 is supposed to follow ACOl, for example, doesn't
AC02 need to know what kind of an update has been requested and which record was
being updated?

Yes, CICS does indeed effectively erase all the storage associated with a transaction
when it ends, and it often erases the program as well. However, before it passes out
of existence, the departing transaction is allowed to pass data forward to be used by
the next transaction initiated from the same terminal, whenever that transaction
arrives. It is also allowed to dictate what that next transaction is to be. You can see
that this is a very useful - indeed, vital - facility for pseudoconversational
programming. It's what allows us to ensure that transaction ACOl always follows
ACCT, that AC02 follows ACOl when we're updating, and so on. It's called, not
surprisingly, the "next transaction identifier" feature. We'll shorten this to "next
transid."

The main way one transaction passes data forward to the next is by using the
COMMAREA (for communication area). The same facility is available to pass data
between programs within a transaction. We'll see how to use it for both purposes in
Part 3.

There are other facilities for storing data between transactions as well. One of these
is a CICS facility known as Temporary Storage, which can be used as a sort of
application scratchpad. This facility will do nicely for keeping track of the account
numbers being updated. We'll see how to use it in Part 3.

A less obvious place to store data between transactions is the screen itself. You may
recall from our discussion of the 3270 data stream (see "Chapter 2-2. 3270 Terminals"
on page 23) that the modified data tag governs whether or not a field on the screen is
transmitted back to the processor. One way to ensure that an item of data gets from
one transaction to another, then, is simply to store it on the screen, with the modified
data tag on and the field protected, so that the user cannot change it. You can even

Chapter 2-9. What's Left? 89

errors and exceptional conditions

prevent users from seeing the data (if that might confuse them), by using the dark
attribute.

This method isn't appropriate to large amounts of data, of course, because we don't
want to send much extra data over a communications link.

Handling Errors and Exceptional Conditions

Before we get down to specifying our programs, we need to discuss the topic of errors.
Errors in online programs are indeed a topic in their own right and we'll take them
up individually as we discuss the CICS commands in Part 3. However, we need to
state some guidelines here before we start to specify our programs.

We can divide the errors that can occur in a CICS transaction into five categories:

1. Conditions that aren't normal from CICS's point of view but that are
expected in the program.

There's an example in transaction ACOl, when we test to be sure the record to be
added isn't already there and get the "not found" response.

Errors in this category should be handled by explicit logic in the program.

2. Conditions caused by user errors and input data errors.

We'd have an error of this kind in our example application if a user tried to add
an account number that already existed, or used the wrong key to send the data
on the screen.

Errors in this category should also be handled by explicit logic in your program.
Ideally, no errors of either of these types should be allowed to stop the program,
or do anything else to upset the user.

3. Conditions caused by omissions or errors in the application code.

These may result in the immediate failure of the transaction (ABEND) or simply
in a condition that we believed "could not happen" according to our program
logic. In our example application, a "duplicate record" response in AC02, on
adding a record to the account file, would represent this kind of error. We don't
expect it, because we've already tested in transaction ACOl to ensure that no
record with the same key is in the file.

For errors in this category, you'll want to terminate your transaction abnormally,
in case CICS doesn't do it for you first. The resulting dump should enable you to
find out why the condition occurred, and we'll give you more guidance on this in

90 CICS Application Programming Primer

errors and exceptional conditions

Part 5. One of the main goals of the debugging process should be to get rid of this
type of error.

4. Errors caused by mismatches between applications and CICS tables,
generation parameters, and JCL.

An example is when CICS responds "no such file exists" to your read or write
request. When you are first debugging an application, these problems are almost
invariably your fault. (This may sound harsh, but we're afraid it's true.) Perhaps
the entry got left out of the File Control Table, or you spelled a name differently
in the table from the program, or asked for the wrong set of services in selecting
CICS modules.

These conditions sometimes occur after the system has been put into use, as well.
In this stage they are usually the result of changes to a CICS table, or services
parameters, or JCL, usually related to some other application.

This category needs the same treatment as the third while you are debugging.
Once the program is in actual use, however, something more is needed when one
of these conditions arises. You must give users an intelligible message that they
or their supervisors can relay to the operations staff, to help in identifying and
correcting the problem. For example, if a machine room operator has closed a file
for some reason and forgotten to reopen it, you want a message that says that the
problem is caused by a closed file (and which closed file , of course). Moreover,
you should program for these eventualities right away, as this part of the program
will need debugging just as well as the rest.

5. Errors related to hardware or other system conditions beyond the control
of an application program.

The classic example of this is an "input/output error" while accessing a file .

As far as the application programs are concerned, this category needs the same
treatment as the fourth. Systems or operations personnel will still have to
analyze the problem and fix it. The only differences are that they probably didn't
cause it directly, and it may take much more effort to put right.

The need to produce an appropriate message when an error in one of these last two
categories occurs (or when one in category 3 slips through the debugging) will mean
an additional program in our example application.

Chapter 2-9. What's Left? 91

ACCT03 and ACCT04

A "Catchall" Error Program - ACCT04

Since there are CICS commands in every program, we'll need this message logic in
each. Rather than repeat the code in each, we'll put it in a separate program
(ACCT04). This will not only avoid repetition, but will remove a long section of
rarely-used code from the mainline programs. (The code itself isn't long, but the error
message tables are.)

Transactions and Terminals

There's one additional complication to think about in defining our transactions for
this application program. This is the relationship between transactions and terminals
in CICS. As we explained earlier, most CICS transactions (tasks) are invoked when
CICS receives unsolicited input from a terminal. On receiving such input, CICS
creates a task to process it. Which type of task is determined from the transaction
identifier at the start of the input or the next transid that was set by the previous
transaction at this terminal.

The task and the terminal that invoked it have a special relationship in CICS: the
task essentially "owns" the terminal for its duration; it can write to it and read from
it directly, and no other task can do so during this time. Conversely, the task owns
only this terminal and cannot read from or write to any other terminal directly
(another task might own that terminal at the time, and a sudden message from a
second task might disrupt the owning task hopelessly).

You may be asking at this point "how can transaction ACOl in the example do all the
steps of print processing?" as we proposed earlier, since step 3 of "Print Processing"
on page 64 (send this image to the indicated printer) seems to violate this restriction.
The answer is that it can't. The same task cannot own the display terminal from
which the input was received and a printer terminal.

A Printer Program - ACCT03

What we do to get around this restriction is to have transaction ACOl do the other
steps of the print processing and then create a second transaction (task), which does
own the necessary printer terminal, to do step 3. CICS provides a command called
START expressly for this purpose, as we'll see in Part 3. So we must add another
transaction to our list, namely the one that does step 3 of "Print Processing" on
page 64. Let's call it AC03. We'll also need a program to go with it, albeit a very
short one; this we'll call ACCT03.

Now clearly the same problem will arise with printing the log. The input that
invokes this transaction is clearly not going to come from the terminal required to
execute it (printers not being strong on input) and so again we'll need two

92 CICS Application Programming Primer

summary of our programs

ID

ACCT

ACOl

AC02

AC03

ACLG

ACOS

TRANSACTION

Displays menu

Analyzes requests; processes name
search and display requests fully;
does first part of update and
print requests

Completes update requests

Completes print requests

Invokes ACOS

Prints the log

* Note: ACCT04 is used only if an error occurs.

Figure 27. The Six Transactions and Five Programs

PROGRAMS USED

ACCTOO

ACCTOl/04*

ACCT02/04*

ACCT03/04*

ACCT03/04*

ACCT03/04*

transactions. One will accept the request from an input terminal and start a second,
which will have the necessary printer at its disposal.

Let's call this first transaction ACLG and the second AC05. (We're reverting to a
transaction identifier that's easier to remember, because the supervisor will have to
remember it.)

We'll also need a program for each of these transactions. We could define a separate
one for each, but the code required for these functions turns out to be so short, in
fact, that we'll include it in the little program we defined for transaction AC03, and
use a single program for three different functions.

Figure 27 shows the program structure we've now arrived at. The five programs in
support of these six transactions are examined one last time in "Chapter 2-10.
Defining the Programs - A Final Look" on page 95. You can either read this chapter
to consolidate your ideas about the programs, or move straight on to the next part of
the Primer: "Part 3. Application Programming" on page 103.

Chapter 2-9. What's Left? 93

/

ACCTOO and ACCTOI

Chapter 2-10. Defining the Programs - A Final
Look

We've now defined five programs in support of six transactions. In this chapter, we'll
describe briefly what each program does. This material repeats that in "Chapter 2-5.
Designing the Transactions: More Detail" on page 53, but it's arranged somewhat
differently. Feel free to move on to "Part 3. Application Programming" on page 103
if you already feel comfortable with the program structure that we've defined.

Program ACCTOO: Menu Display

This program is the first one executed when transaction ACCT is entered. It displays
the menu screen, which prompts the operator for request input, and then ends (it
returns control to CICS). In returning, it specifies that transaction ACOl is to be
executed when the next input is received from this terminal, which means that
program ACCTOl will be invoked to process the input from the menu. The processing
steps are:

1. Display the menu on the screen.

2. Go back to CICS, setting the next transid to ACOL

Program ACCTOl: Initial Request Processing

This program analyzes requests that are entered through the menu screen (all
requests except those for printing the log). It processes name search and record
display requests completely, does update requests up to the point where the user has
to enter more information, and does print requests except for the step that requires
access to a printer terminal. It's the first program invoked when transaction ACOl is
executed. The main steps in the program are:

1. Find out what the user wants to do. This involves looking at the input, both the
actual data and the attention identifier (the key used to send the data). The
possibilities are:

a. A request to leave the application (indicated by use of the CLEAR key). Here
control is returned to CICS, without any next transid.

Chapter 2-10. Defining the Programs 95

ACCTOI

b. A request to cancel the previous (partially completed) request and start again
with a menu screen. This means sending a new menu screen and then
returning control to CICS with the next transid set to ACOl (so that this same
program will process the input from that menu when it arrives).

c. A request to continue a name search that produced more matching records
than would fit on a single screen (indicated by the user pressing the P A2 key
to move on from the current (full) screen, and view more records on the next).
In this event, processing resumes at step 5, using search control information
that was saved in the COMMAREA when this transaction was last executed
for this terminal.

d. A corrected request or a completely new request.

2. For a new request, get the input and examine the contents. The first decision is
whether the user wants a name search or one of the other functions.

3. If the user entered a name, check it for reasonableness. If there's an error, write
the appropriate error information to the screen and return control to CICS. Once
again, set the next transid to ACOl, so that this same program will get invoked to
process the corrected input.

4. If the names are correct, build the control information we need to do the search,
namely:

• An index file key that is equal to or just before the input in alphabetical
sequence, so that we know where in the file to start reading,

• A limiting value for that key to tell us when we've read too far
(alphabetically) in the file, and

• A range of alphabetical values for the given name, so that we can exclude
records which do not meet that criterion, if any was specified.

5. Point to the first eligible record in the index file and begin reading sequentially.
For each record read, check to see if the given name is within the required range.
If it is, build an output line for the screen from the information in the record and
then go on reading. If not, skip the record and go on reading. Continue this
process until the surname in the file exceeds the one we're looking for, or the end
of the file is reached, or there is no more room on the screen.

6. When this happens, send the results back to the user. If we ran out of space on
the screen, add a message saying that there are more names and that they can be
seen by using the PA2 key. Then return control to CICS, again setting the next
transid to ACOl. If there are more matching names, save the search control
information in COMMAREA as well.

96 CICS Application Programming Primer

ACCT02

7. If the request was other than a name search (display, print, add, modify, delete, or
even an error), check the request type, account number and printer name (if
applicable) for correctness. Checking the account number involves reading the
account file. We check to make sure the record isn't there for an add request but
that it is there for all the other request types. If any of the checks fail, or if the
request itself is unrecognizable, write the appropriate error information back to
the screen and return to CICS, once again with the next transid set to ACOl.

8. If the request is an update (add, modify or delete), read the scratchpad to ensure
that no other terminal is currently updating the same account number. If one is,
treat the situation as an error in the account number and proceed as in the
previous step. Otherwise, write the necessary scratchpad record to reserve the
number for this terminal.

9. Build a screen image to send to the user (or the printer). For add requests, this
will simply be a skeleton screen, with only the account number filled in. For the
others, however, it will involve moving the information from the account file
record (read in step 7) into the detail screen. Also, the title, message area and
certain other items in the screen need to be customized to the particular type of
request.

10. For all requests except print requests, send this screen back to the input terminal.
Then return to CICS. The next transid for display requests will be ACCT, as the
next thing the user will want after looking at the record is a fresh menu screen.
For the update requests, the next transaction should be AC02.

11. For print requests, ask CICS to start another task (AC03) with the required
printer as its terminal. Pass the screen image built in step 9 as data to that task.
Then add a message to the menu currently on the screen saying that the printing
has been scheduled, and return to CICS. Set the next transid to ACOl, as the
menu is still on the screen and therefore the next input should be processed by
this same program.

Program ACCT02: Update Processing

ACCT02 is the first program invoked by transaction AC02. It completes update
transactions, using the information supplied by the user on the detail screen. The
main steps are as follows:

1. Make sure that the user wants to complete the update request. (It is important in
a situation like this .to allow users some means of escape, in case they change
their mind about a file update they started or in case they simply don't have the
right information to complete it. This application observes the convention that
using the CLEAR key at any time means that the user wants to cancel the current
operation.)

Chapter 2-10. Defining the Programs 97

ACCT02

If the user wants to quit, release control of the account number, send a fresh
menu screen with a message that the previous request has been canceled, and
return to CICS. Set the next transid to ACOl, since the next input to be processed
will come in on that menu screen.

2. Otherwise, get the input. If the request is to add a record, build a new record
from the information on the screen. If the request is a modification, read the old
record and build a new record by merging it with the changes entered on the
screen.

3. Check the input for correctness. For delete requests, the only requirement is that
the user confirm the deletion with a "Y" in the "verify" field. For add and modify
requests, all the fields entered must meet their respective edit requirements. If
there are any errors, send the appropriate error information to the screen. Then
return control to CICS with the next transid set to AC02, so that this same
program processes the corrected input.

4. Read the scratchpad to make sure that the input terminal still has control of the
account number it is trying to update. (In other words, check that the scratchpad
has neither been erased nor altered. Check back to " ... and How To Avoid It" on
page 81, if you need reminding about the scratchpad.)

If not, treat the situation in the same way as an input error (see step 3 above), but
with a different error message, of course.

5. Otherwise, write the update information to the log of changes. For additions, this
will be an image of the new record. For modifications, it will be both the old and
the new versions, and for deletions, it will be the record being deleted.

6. Do the actual updates. For adds, this means adding the new record to the account
file and the corresponding index record to the index file. For deletes, it means
removing a record from each file. For modifications, it means rewriting the
record in the account file. The corresponding index record may have to be
rewritten as well, depending on which fields in the account record changed. If the
surname changed, for example, the old index record must be deleted and a new
one added, because the key will have changed. (The first 12 characters of the
surname, together with the account number, form the key, remember.)

7. Release ownership of the account number by erasing it from the scratch pad.

8. Send a fresh menu screen to the input terminal, with a message saying that the
requested update has been completed. Then return control to CICS with the next
transid set to ACOL

98 CICS Application Programming Primer

ACCT03 and the log

Program ACCT03: Requests for Printing

ACCT03 does three independent jobs, all related to printed output (as opposed to
display output). When it is invoked by transaction AC03, it completes the request for
printed output of a record in the account file. Transaction ACOl processed the initial
stages of the print request, checking the input, reading the record to be printed, and
building the detail screen from the information in the file record. It then requested
that transaction AC03 be started with the required printer as its terminal. The
processing in A C03 is:

1. Retrieve the screen image prepared and saved for this purpose in transaction
ACOL

2. Send this screen to the terminal owned by this transaction (the printer named by
the user in the print request).

3. Return control to CICS. Don't set any next transid because there's no need to do
so for terminals that never send unsolicited input. Also, we don't know what
transaction should be executed next at this printer.

Transactions ACLG and AC05 together process a user request to print the log of
changes to the account file. The user invokes transaction ACLG directly, by entering
this identifier at a display terminal. When invoked by ACLG, the program simply
requests CICS to start transaction AC05, with the hardcopy printer as its terminal.
ACLG then sends a message to the user saying that the printing has been scheduled,
and returns control to CICS. No next transid is set, because we're not controlling the
flow of transactions at the input terminal, as we do when input requests are entered
through the menu screen.

We'll format our log as follows:

• For additions, we'll print the new record, using the same format that we use on
the screen (the "detail" map).

• For modifications, we'll print both the old version of the record and the new
one, again using the map format. In the message area of the old record we'll note
the areas that were changed (name, address, etc.), to make it easy for the
supervisor to check.

• For deletions, we'll print the old record.

• For all types:

1. We'll note the contents of the screen in the title line of the map: NEW
RECORD for additions, BEFORE CHANGE and AFTER CHANGE for the two
images printed on a modification, and DELETION on a delete.

Chapter 2-10. Defining the Programs 99

ACCT04

2. We'll show the time and date of the update and the name of the terminal at
which it was entered. We'll put this information in the message area (for
modifications, it will be in the "new" record image).

As a result of executing transaction ACLG, CICS starts AC05 as soon as the requested
printer is available. When invoked in this way, the program reads through the data
set containing the hard-copy log sequentially, transferring each entry to the printer.
After the last item is printed, it deletes the log. Then it returns control to CICS.
Again, no next transid is set, because there's no need to do so for terminals that never
send unsolicited input.

Program ACCT04: Error Processing

This program is a general-purpose error routine. It isn't invoked directly by any
transaction, but instead receives control from programs ACCTOl, ACCT02, and
ACCT03 when they meet a condition from which they cannot recover. (Program
ACCTOO is so simple that no such situation arises.)

The program sends a screen to the terminal user (see Figure 28) with a text
description of the problem and a request to report it. The text is based on the CICS
command that failed and the particular error that occurred on it. The name of the
transaction and the program (and if applicable, the file) involved are also shown. The
command, error type, and program name are passed to ACCT04 from the program
which transferred control to it; we get the other items from the CICS Exec Interface
Block (EIB). The EIB is a CICS control block associated with a task, containing
information accessible to the application program. We'll look at it in more detail in
"The EXEC Interface Block (EIB)" on page 143.

After writing the screen, the program terminates itself abnormally (it abends), so that
any updates to recoverable resources done in the half-completed transaction get
backed out.

You'll see ACCT04 in action in "A Session With EDF" on page 219.

100 CICS Application Programming Primer

the error screen

ACCOUNT FILE: ERROR REPORT

TRANSACTION HAS FAILED IN PROGRAM ~~~~- BECAUSE OF

PLEASE ASK YOUR SUPERVISOR TO CONVEY THIS INFORMATION TO THE
OPERATIONS STAFF.

THEN PRESS "CLEAR". THIS TERMINAL IS NO LONGER UNDER CONTROL OF
THE "ACCT" APPLICATION.

Figure 28. The Transaction Error Screen

Chapter 2-10. Defining the Programs 101

Part 3. Application Programming

This Part of the Primer:

• Describes CICS COBOL application programs

• Examines the features of Basic Mapping Support (BMS)

• Deals with reading and writing files

• Explains a scratchpad mechanism that uses temporary storage

• Covers communication and control between application and tasks

• Explains how to use CICS services such as ST ART and RETRIEVE

• Covers errors and error recovery

Part 3. Application Programming 103

CICS and COBOL

Chapter 3-1. Writing CICS Programs in COBOL

In this chapter we'll begin by explaining the basic differences between batch and
CICS programs. In later chapters, we'll describe, by function, the services that CICS
provides: first terminal services, then file services, and so on.

To show you how to use these services, we'll be coding parts of our example
application as we go. In "Part 4. The COBOL Code of our Example Application"
(which is printed separately), we list the programs in their entirety, with a
step-by-step description of what the code does.

Appendix A, "Getting the Application Into Your CICS System" on page 269, shows
you how to prepare these programs for execution under CICS.

What's Different About CICS Programs?

Well, not so much is different. Here, for instance, are the steps a typical batch
program goes through:

A Typical Batch Program

1. Initialize for the whole run (set all the counters to zero and open up the
files).

2. Initialize for the next input.

3. Read it.

4. Process it.

5. Write the related outputs.

6. Repeat Steps 2 - 5 until you run out of input.

7. Finish (add up the counters, print any summary results and close the files).

A typical CICS transaction is very similar, but it includes only steps 2 through 5.
That is, it's like the core of a batch program, where a single input is processed. CICS
takes care of opening and closing the files for you. The reports and summaries
associated with batch jobs can often be dispensed with in an online environment, or
they may be produced periodically by a different transaction or even by a batch job.

Chapter 3-1. CICS COBOL Programs 105

invoking CICS services

The other big differences are: ..

• You request "operating system" services, such as file input/output, by issuing a
CICS command instead of using the corresponding language facility (READ,
WRITE, and so on).

• You aren't allowed to use the language facilities for which CICS has provided
substitutes.

• You cannot use language features and compiler options that need operating
system services during execution. The SORT and TRACE facilities are examples.

How To Invoke CICS Services

When you come to the point where you require a system service, such as reading a
record from a file, you include a CICS command in your code. Commands look like
this:

EXEC CICS function option option ... END-EXEC

The "function" is the thing you want to do. Reading a file is READ, writing to a
terminal is SEND, and so on.

An "option" is some specification that's associated with the function. Options are
expressed as keywords, some of which need a value in parentheses after the keyword.
For example, the options for the READ command include DATASET, RIDFLD,
UPDATE, and others. DATASET tells CICS which file you want to read, and is
always followed by a value indicating or pointing to the file name.

RIDFLD (record identification field, that is, the key) tells CICS which record and
likewise needs a value. The UPDATE option, on the other hand, simply means that
you intend to change the record (thereby invoking the CICS protections we discussed
earlier) and doesn't take any value. So, to read, with intent to modify, a record from
a file known to CICS as ACCTFIL, using a key that we've stored in Working-Storage
at ACCTC, we'd issue a command that looks like this:

EXEC CICS READ DATASET('ACCTFIL') RIDFLD(ACCTC)
UPDATE END-EXEC

When you specify a value, you may either use a literal, as we did for DATASET
above, or you may point to a data area in your program where the value you want is
stored, as we did for RIDFLD above. In other words, we might have written:

106 CICS Application Programming Primer

CICS COBOL restrictions

MOVE 'ACCTFIL' TO DSNAME
EXEC CICS READ DATASET(DSNAME) RIDFLD(ACCTC)

UPDATE END-EXEC

instead of our earlier command. If you use a literal, follow the usual COBOL rules
and put it in quotes unless it's a number. In other types of commands, these values
may be paragraph names in your program, telling CICS where to go if a certain type
of exceptional condition arises. Don't use quotes around paragraph names.

You may be curious about what the COBOL compiler does with what is (to it) a
strange-looking English-like statement like the one above. The answer? The
compiler doesn't see that statement. Processing of a CICS program for execution
begins with a translation step. The translator converts your commands into true
COBOL, in the form of CALL statements. You then compile and link edit this in the
normal way. The generated CALL statements never contain periods, by the way,
unless you include one explicitly after the END-EXEC. This means you can use CICS
commands within IF statements (by leaving the period out of the command), or you
can end a sentence with the command (by including the period).

Restrictions in CICS COBOL

1. The biggest difference between batch and CICS COBOL programs is that you
don't define your files in a CICS program. Instead, they are defined in a CICS
table, the File Control Table, which we cover in "Chapter 3-4. Handling Files" on
page 151. So:

• You cannot use the entries in the Environment Division and the Data
Division that are normally associated with files. In particular, the entire File
Section is omitted from the Data Division. Put the record formats that
usually appear there in either the Working-Storage or Linkage Sections.

• You cannot use the COBOL READ, WRITE, OPEN, and CLOSE statements.

2. You cannot use compiler features that require the use of operating system
facilities. For example:

• Special features of the COBOL compilers, namely:

ACCEPT DISPLAY
SEGMENTATION

EXHIBIT INSPECT * REPORT WRITER
SORT TRACE UNSTRING *

* VS COBOL II permits these features under CICS/OS/VS

Chapter 3-1. CICS COBOL Programs 107

CICS COBOL restrictions

• Features that require an operating system GETMAIN (the most common of
which is CURRENT-DATE).

• Certain compiler options:

COUNT ENDJOB FLOW
SYMDUMP STATE SYST

DYNAM
TEST

STOP RUN

3. Your program must be what CICS calls "quasi-reentrant." Technically, this means
your program must not modify itself between calls for CICS services. For this
purpose, in command-level CICS, your WORKING-STORAGE section is not
considered part of the program (neither is anything in the LINKAGE section).
Consequently, you rarely have a chance to break the "quasi-reentrant" rule.

4. There are significant differences between VS COBOL II and other levels of the
COBOL language. For example, unless you are using VS COBOL II, the following
restriction is in force:

• When separate COBOL programs are link edited together, only the first may
invoke CICS services.

These are the major restrictions, and the only ones you are likely to encounter using
the commands described in this Primer. The CICS/ VS Application Programmer's
Reference Manual (Command Level) contains further information on this subject.
We'll often cite this manual in this part of the Primer. Since it has such a long name,
we'll refer to it by its common nickname: "the APRM."

Another useful book is the VS COBOL II for CICS/OS/VS Users , SC33-0203.

108 CICS Application Programming Primer

screens and BMS

Chapter 3-2. Defining Screens With Basic
Mapping Support (BMS)

Let's now plunge in and try to code our example application. If we start at the
beginning of the first program we specified (ACCTOO), the first thing we need is to
write a formatted screen to the input terminal. This requires the use of CICS
terminal input/output services. In particular, we'll need to use Basic Mapping
Support (BMS).

First, some background. CICS supports a wide variety of terminals, from
teletypewriters to subsystems such as intelligent cluster controllers, under a variety
of communications access methods. In this Primer, however, we cover only the most
common CICS terminals, those of the IBM 3270 system. Specifically the 3277 and 3278
display devices (with a screen size of 24 lines and 80 columns) and the associated
printer terminals: 3284, 3286, 3287 and 3289.

We don't use features that depend on a particular terminal access method, and we
only cover formatted output. Nor do we cover many of the formatted services; instead
we concentrate on the basic things you need to get an ordinary application going.
After we've explained these fundamentals, we'll tell you what else you can do when
you're feeling adventurous, and where to look for guidance on how to do it.

What BMS Does

As you read through _this chapter (and the next) you may start to feel a bit
overwhelmed by all the detail you'll be learning about BMS. So let's get a couple of
things-straight right from the word "go". BMS simplifies your programming job,
keeping your code largely independent of any changes in your network of terminals
and of any changes in the terminal types. And after you've written your first few
maps, you'll find they aren't so bad!

Before we start to look at the BMS commands, we need to explain in a little more
detail what BMS does for you. It's probably easiest to define what BMS does by
examining the menu screen we need. You can see what it looks like in Figure 29 on
page 110.

To help us in this discussion, we've added row and column numbers to the figure and
underlined the fie lds that would otherwise not show unless filled in with data. We've
also marked the position of the attribute byte for the "stopper" fields with a vertical
bar(\) and for other fields with a plus sign (+). These markers won't show up on the
screen we're building; lt will look just as it did in Figure 13 on page 42.

Chapter 3-2. Defining Screens 109

the menu screen

1 2 3 4 5 6 7 8
Col: 12345678901234567890123456789012345678901234567890123456789012345678901234567890
Row:

1
2

+ACCOUNT FILE: MENU

3 +TO SEARCH BY NAME, ENTER:
4
5 +SURNAME:+~~~~~-+ FIRST NAME:+ __ _

+ONLY SURNAME
+REQUIRED. EITHER
+MAY BE PARTIAL.

6
7 +FOR INDIVIDUAL RECORDS, ENTER:
8
9

10
11
12
13
14
15
16
:_7

+REQUEST TYPE:+_+ ACCOUNT:+ __ + PRINTER:+ __ +
+PRINTER REQUIRED

ONLY FOR PRINT
+REQUESTS.

18
19
20
21
22
23
24

+REQUEST TYPES: D DISPLAY
+P = PRINT

+THEN PRESS "ENTER"

A ADD X = DELETE
M MODIFY

+-OR- PRESS "CLEAR" TO EXIT

+ACCT
+

SURNAME FIRST MI TTL ADDRESS

+
+
+
+
+

Figure 29. A Detailed Look at the Menu Screen

ST LIMIT

You define this screen with BMS macros, which are a form of assembler language.
When you've defined the whole map, you put some job control language (JCL) around
it and assemble it. You assemble it twice, in fact. One of the assemblies produces the
physical map. This gets stored in one of the execution-time libraries, just like a
program, and CICS uses it when it executes a program using this particular screen.

The physical map contains the information BMS needs to:

• Build the screen, with all the titles and labels in their proper places and all the
proper attributes for the various fields

• Merge the variable data from your program in the proper places on the screen
when the screen is sent to the terminal.

• Extract the variable data for your program when the screen is read.

The information is in an encoded form comprehensible only to BMS, but fortunately
we never need to examine this ourselves.

110 CICS Application Programming Primer

the BMS macros - DFHMDF

The other assembly produces a COBOL structure which we call the symbolic
description map or DSECT (an assembly language term for this type of data
structure, standing for dummy control section). This structure defines all of the
variable fields (the ones you might read or write in your program), so that you can
refer to them by name. The data structure gets placed in a library along with similar
COPY structures like file record layouts, and you simply copy it into your program.

The BMS Macros

To show you how this works, let's go ahead and define the menu map. We'll explain
the three map-definition macros as we go. Don't be put off by the syntax; it's really
quite simple when you get used to it. We'll go from the inside out, starting with the
individual fields .

The DFHMDF Macro: Generate BMS Field Definition

For each field on the screen, you need one DFHMDF macro, which looks like this:

fldname DFHMDF POS=(line,column),LENGTH=nurnber,
INITIAL='text' ,OCCURS=nurnber,
ATTRB=(attrl,attr2,)

(You need a continuation character - any character except a space - in col. 72 of each line except the
last.)

The items in this macro have the following meanings:

fldname
This is the name of the field, as you'll use it in your program (or almost so, as
we'll explain). Name every field that you intend to read or write in your
program, but don't name any field that's constant ("ACCOUNT FILE: MENU .. . "
and other labels, or the stopper fields in this screen). The name must begin with
a letter, contain only letters and numbers, and be no more than seven characters
long.

DFHMDF
This is the macro id~ntifier, which must be present. It shows that you are
defining a field.

POS = (line,column)
This is the position on the screen where the field should appear. (In fact, it's the
position relative to the beginning of the map. For the purposes of this Primer,
however, screen and map position are the same.) Remember that a field starts
with ~ts attribute byte, so if you code POS = (1,1), the attribute byte for that field

Chapter 3-2. Defining Screens 111

the BMS macros - DFHMDF

is on line 1 in column 1, and the actual data starts in column 2. For the type of
maps in this Primer, you need this parameter for every field.

LENGTH=number
This is the length of the field, not counting the attribute byte. You'll have to
specify length for the type of maps in this Primer.

INITIAL = 'text'
This is the character data for an output field. It's how we specify labels and
titles for the screen and keep them independent of the program. For the first
field in the menu screen, for example, we'll code

INITIAL='ACCOUNT FILE: MENU'

ATTRB = (attrl,attr2, ...)
These are the attributes of the field, and there are four different characteristics
you can specify. The first is the display intensity of the field, and your choices
are:

NORM
Normal display intensity.

BRT
Bright (highlighted) intensity.

DRK
Dark (not displayed).

The second characteristic governs what the user can do at the keyboard. Here
your choices are:

AS KIP
The field cannot be keyed into, and the cursor will skip over it if the user
fills the preceding field.

PROT
The field cannot be keyed into, but the cursor will not skip over it if the
user fills the preceding field.

UNPROT
The field can be keyed into.

NUM
The field can be keyed into, but only numbers, decimal points and minus
signs are allowed, if you have the NUM LOCK feature.

The third characteristic governs the modified data tag that we discussed in "3270
Input Data Stream" on page 28:

112 CICS Application Programming Primer

the BMS macros - DFHMDF

FSET
Turns on the modified data tag. This causes the field to be sent on the
subsequent read whether or not the user keys into it. If you don't specify
this, the field is sent only if the user changes it .

The fourth characteristic that you can specify as part of the "attributes" has
nothing to do with the attribute byte on the screen. It gives you a way of
specifying that you want the cursor to be in this field. To do so, code:

IC
Places the cursor under the first position of the field. Since there is only
one cursor, you should specify "IC" for only one field. If you specify it for
more than one, the last one specified will be the one used.

You don't need the ATTRB parameter. If you omit it , the field will be ASKIP
and NORM, with no FSET and no IC specified. If you specify either the
protection or the intensity characteristics, however, it will be clearer if you
specify both, because the specification of one can change the default for the
other.

OCCURS= number
This parameter gives you a way to specify several fields at once, provided they
all have the same characteristics and are adjacent. If you specify a field of
length 10 at position (4,1) that is ASKIP and NORM with OCCURS= 3, you'll get
three fields of length 10, autoskip and normal intensity, at positions (4,1), (4,12),
and (4,23). This is an exception to the "one DFHMDF macro for every field"
rule we gave you earlier.

Now we can define the fields in our menu map. We'll "do" the fields in order.
Although this is no longer required in CICS, it's a good idea for clarity. Figure 30
shows the DFHMDF macros for the menu map.

Col
1

Col
9

Col
16

* MENU MAP.
ACCTMNU DFHMDI SIZE=(24,80) ,CTRL=(PRINT,FREEKB)

DFHMDF POS=(l,1) ,ATTRB=(ASKIP,NORM),LENGTH=18,
INITIAL='ACCOUNT FILE: MENU'

DFHMDF POS=(3,4) ,ATTRB=(ASKIP,NORM) ,LENGTH=25,
INITIAL='TO SEARCH BY NAME, ENTER:'

DFHMDF POS=(3,63) ,ATTRB=(ASKIP,NORM) ,LENGTH=12,
INITIAL='ONLY SURNAME'

Figure 30 (Part 1 of 2). The DFHMDF Macros for the Menu Map

Col -->
72

Chapter 3-2. Defining Screens 113

x

x

x

the BMS macros - DFHMDI

Col
1

Col
9

DFHMDF

DFHMDF

SNAMEM DFHMDF
DFHMDF

FNAMEM DFHMDF
DFHMDF
DFHMDF

REQM

ACCTM

PRTRM

DFHMDF

DFHMDF

DFHMDF

DFHMDF
DFHMDF

DFHMDF
DFHMDF

DFHMDF
DFHMDF

DFHMDF

DFHMDF

DFHMDF

DFHMDF

DFHMDF

SUMTTLM DFHMDF

SUMLNM DFHMDF
MSGM DFHMDF

Col
16

POS=(4,63) ,ATTRB=(ASKIP,NORM) ,LENGTH=16,
INITIAL='REQUIRED. EITHER'

Col -->
72

POS=(S,7) ,ATTRB=(ASKIP,BRT) ,LENGTH=8,
INITIAL='SURNAME: I

POS=(S,16),ATTRB=(UNPROT,NORM,IC) ,LENGTH=12
POS=(S,29) ,ATTRB=(PROT,BRT) ,LENGTH=13,
INITIAL=' FIRST NAME:'
POS={S,43) ,ATTRB={UNPROT,NORM),LENGTH=7
POS=(S,51) ,ATTRB=(PROT,NORM) ,LENGTH=l
POS=(S,63) ,ATTRB=(ASKIP,NORM) ,LENGTH=lS,
INITIAL='MAY BE PARTIAL.'
POS=(7,4) ,ATTRB=(ASKIP,NORM) ,LENGTH=30,
INITIAL='FOR INDIVIDUAL RECORDS, ENTER:'
POS=(8,63),ATTRB=(ASKIP,NORM) ,LENGTH=16,
INITIAL='PRINTER REQUIRED'
POS=(9,7) ,ATTRB=(ASKIP,BRT) ,LENGTH=13,
INITIAL='REQUEST TYPE:'
POS=(9,21) ,ATTRB=(UNPROT,NORM) ,LENGTH=l
POS={9,23),ATTRB=(ASKIP,BRT) ,LENGTH=lO,
INITIAL=' ACCOUNT: '
POS=(9,34) ,ATTRB=(NUM,NORM) ,LENGTH=S
POS=(9,40),ATTRB=(ASKIP,BRT) ,LENGTH=lO,
INITIAL=' PRINTER:'
POS=(9,51),ATTRB=(UNPROT,NORM) ,LENGTH=4
POS=(9,56),ATTRB=(ASKIP,NORM) ,LENGTH=21,
INITIAL=' ONLY FOR PRINT'
POS=(l0,63) ,ATTRB=(ASKIP,NORM) ,LENGTH=9,
INITIAL='REQUESTS. I

POS=(ll,7),ATTRB={ASKIP,NORM) ,LENGTH=53,
INITIAL='REQUEST TYPES: D = DISPLAY A ADD
DELETE'
POS=(l2,23) ,ATTRB=(ASKIP,NORM) ,LENGTH=25,
INITIAL='P = PRINT M = MODIFY'
POS=(l4,4),ATTRB=(ASKIP,NORM),LENGTH=18,
INITIAL='THEN PRESS "ENTER"'
POS=(14,35),ATTRB={ASKIP,NORM),LENGTH=28,
INITIAL='-OR- PRESS "CLEAR" TO EXIT'
POS=(16,1) ,ATTRB=(ASKIP,DRK) ,LENGTH=79,
INITIAL='ACCT SURNAME FIRST MI TTL

ST LIMIT'
POS=(l7,1) ,ATTRB=(ASKIP,NORM) ,LENGTH=79,0CCURS=6
POS=(24,1) ,ATTRB=(ASKIP,BRT) ,LENGTH=60

Figure 30 (Part 2 of 2). The DFHMDF Macros for the Menu Map

The DFHMDI Macro: Generate BMS Map Definition

x

x

x

x

x

x

x

x

x

x

x

x
x x

x

x

x

x
ADDRESSX

Now that we've sorted out the middle of the map (all the fields) we need to wrap some
control information around it. To start any map, you need a different kind of macro:

mapname DFHMDI SIZE=(line,column),
CTRL=(ctrll,ctrl2, ...)

114 CICS Application Programming Primer

the BMS macros - DFHMDI

The items in this macro are:

mapname
This is the map's name, which you'll use when you issue a CICS command to
read or write the map. It's required. Like a field name, it must start with a
letter, contain only letters and numbers, and be no more than seven characters
long.

DFHMDI
This is the macro identifier, also required. It shows that you're starting a new
map.

SIZE = (line,column)
This parameter gives the size of the map. You need it for the type of maps we're
using. BMS allows you to build a screen using several maps, and this parameter
becomes important when you are doing that. In this Primer, however, we'll keep
to the simpler situation where there's only one map per screen. In this case,
there's no point in using a size other than the screen capacity (that is,
SIZE = (24,80) for a 3276, 3277, 3278, or 3279 Model 2).

CTRL = (ctrll,ctrl2, .. .)
This parameter shows the screen and keyboard control information that you
want sent along with a map. You can specify any combination of the following:

PRINT
Specify this for any map that might be sent to a printer terminal.

Since it costs nothing to add this (and it can cause a lot of grief if you
accidentally omit it when you do need it), we always try to remember to
specify it.

FREE KB
This means "free the keyboard."

The keyboard locks automatically as soon as the user sends any input to
the processor, and it stays locked until some transaction unlocks it, or the
user presses the RESET key. So you'll almost always want to specify
FREEKB when you send a screen to the terminal, to save the user from
having to press RESET before making the next entry.

ALARM
This parameter sounds the audible alarm at the terminal (if the terminal
has this feature ; otherwise it does nothing). You might want to use this
when displaying an error map, for example. We chose not to.

The DFHMDI macro we need to start our menu map, which we'll call "ACCTMNU",
is shown in Figure 31:

Chapter 3-2. Defining Screens 115

the BMS macros - DFHMSD

ACCTMNU DFHMDI SIZE=(24,80) ,CTRL=(PRINT,FREEKB)

Figure 31. The DFHMDI Macro for the Menu Map

The DFHMSD Macro: Generate BMS Map Set Definition

You can put several maps together into a map set and assemble them all together. In
fact, all maps (even a single map) must form a map set. For efficiency reasons, it's a
good idea to put related maps that are generally used in the same transactions in the
same map set. All the maps in a map set get assembled together, and they're loaded
together at execution time as well.

When you've defined all the maps for a set, you put another macro in front of all the
others to define the map set. This is the DFHMSD macro:

setname DFHMSD TYPE=type,MODE=mode,LANG=COBOL,
STORAGE=AUTO,TIOAPFX=YES,
CTRL=(ctrll,ctrl2, ...)

The items in this macro have the following meanings:

setname
This is the name of the map set. You'll use it when you issue a CICS command
to read or write one of the maps in the set. It's required. Like a field name, it
must start with a letter, consist of only letters and numbers, and be no more
then seven characters long.

Because this name goes into the PPT, make sure your system programmer (or
whoever maintains the CICS tables) knows what the name is, and that neither of
you changes it without telling the other. It's the load module name (OS) or
phase (DOS).

DFHMSD
This is the macro identifier, also required. It shows that you're starting a map
set.

TYPE=type
TYPE governs whether the assembly produces the physical map or the symbolic
description (DSECT). As we pointed out in "What BMS Does" on page 109, you
do your assembly twice, once with TYPE= MAP specified and once with
TYPE = DSECT specified. The TYPE parameter is required.

Alternatively, for DOS, you can specify TYPE= &SYSP ARM and specify in the
SYSPARM option on assembly whether you want MAP or DSECT. The two jobs

116 CICS Application Programming Primer

the BMS macros - DFHMSD

differ only in their JCL - there's no change to the map source. See "Symbolic
Description Maps (DSECT Structures)" on page 127.

MODE=mode
This shows whether the maps are used only for input (MODE= IN), only for
output (MODE = OUT), or for both (MODE= INOUT).

LANG=COBOL
This decides the language of the DSECT structure, for copying into the
application program. For the examples in this Primer, the language will always
be COBOL. However, you can program in PL/I as well (in which case you would
code LANG = PLI), or in assembler (LANG= ASM), or on a DOS system in RPG
(LANG = RPG).

STORAGE= AUTO
For a COBOL program, this operand causes the DSECT structures for different
maps in a map set not to overlay each other. If you omit it, storage for each
successive map in a map set redefines that for the first map. If you don't use
these maps at the same time, you should omit STORAGE = AUTO to cut down
the size of your Working-Storage. However, when several maps are in the same
map set, they're most likely to be used at the same time, and then you should
specify STORAGE = AUTO. This is the case in the example application, where
we use the menu and other maps in the same transaction.

CTRL = (ctrll,ctrl2, ...)
This parameter has the same meaning as in the DFHMDI macro. Control
specifications in the DFHMSD macro apply to all the maps in the set; those on
the DFHMDI macro apply only to that particular map, so you can use the
DFHMDI options to override, temporarily, those of the DFHMSD macro.

TIOAPFX =YES
Always use this parameter in command-level programs, such as the ones we're
writing in this Primer. See the paragraph beginning The first 12 characters in
the DSECT ("FILLER") on page 129.

Since all the maps in the example application are used together in one transaction or
another, we'll put them all into a single map set, and call it "ACCTSET." The
DFHMSD macro we need, then, is:

ACCTSET DFHMSD TYPE=MAP,MODE=INOUT,LANG=COBOL,
STORAGE=AUTO,TIOAPFX=YES

The only thing now missing from our map definition is the control information to
show where the map set ends. This is very simple: It's another macro, DFHMSD
TYPE = FINAL, followed by the assembler END statement:

Chapter 3-2. Defining Screens 117

BMS macro format rules

DFHMSD TYPE=FINAL
END

Rules on Macro Formats

When you write assembler language (which is what you are doing when using these
macros) you have to observe some syntax rules. Here's a simple set of format rules
that works. This is by no means the only acceptable format.

• Start the map set, map, or field name (if any) in column 1.

• Put the macro name (DFHMDF, DFHMDI, or DFHMSD) in columns 9 through 14
(END goes in 9 through 11).

• Start your parameters in column 16. You can put them in any order you like.

• Separate the parameters by one comma (no spaces), but do not put a comma after
the last one.

• If you cannot get everything into 71 columns, stop after the comma that follows
the last parameter that fits on the line, and resume in column 16 of the next line.

• The INITIAL parameter is an exception to the rule just stated, because the text
portion may be very long. Be sure you can get the word "INITIAL", the equal
sign, the first quote mark, and at least one character of text in by column 71. If
you can't, start a new line in column 16, as you would with any other parameter.
Once you've started the INITIAL parameter, continue across as many lines as you
need, using all the columns from 16 to 71. After the last character of your text,
put a final quote mark.

• Where you have more than one line for a single macro (because of initial values
or any other parameters), put an "X" (or any character except a space) in column
72 of all lines except the last. This continuation character is very important. It's
easy to forget, but this upsets the assembler.

• Always surround initial values by single quote marks. If you need a single quote
within your text, use two successive single quotes, and the assembler will know
you want just one. Similarly with a single "&" character. For example:

INITIAL='MRS. O' 'LEARY' 'S COW && BULL'

• If you want to put a comment into your map, use a separate line. Put an asterisk
(*)in column 1, and use any part of columns 2 through 71 for your text. Do not
go beyond 71.

118 CICS Application Programming Primer

the account detail map

Map Definitions for the Example

Defining the Account Detail Map

Now that we've all the information we need for building maps, and now that we've
done the menu map, let's define the other maps and the map set we need for our
example application. Figure 32 shows the map for displaying the detail in an account
record. It's used for displaying and printing the record, and for additions,
modifications, and deletions. As you can see, the attribute bytes are marked, and
we've added line and column numbers as before.

1 2 3 4 5 6 7
cc:: 12345678901234567890123456789012345678901231567890123456789012345678901~3
Row:

)

"

+A~CO~NT FILE:+RECORD DISPLAY

+A ' 'OUNT NO:+ +SURNAME: + ________ _
+FIRST: ______ + MI:+_+ TITIE:+

+ rELEPHONE: + ____ _ +ADDRESS: + I
+ I
+ I

8 tOTHER.S WIC "1AY CHARGE:
___________ I + _I

------~I + ______________ ~!

~u. CARDS ISS~EJ·+ +
.-('AR:J CODE: 1- -

+-A ·r·c)UN r STA':'U.S: + +

+ I L'TORY: BALANCE

+

DATE ISSUED:+ + + +
t APPROVED BY:+ =-1 -

CHARGE LIMIT:+ ___ _

BILLED
_ /_/ _
_ /_/_
_ /_/_

(message area)

AMOUNT

Figure 32. The Account Detail Map

REASON:+_!
+SPECIAL CODES: t + +-

PAID
// _
// _
_ /_/ _

AMOUt-.':'

Figure 33 shows the map definition for this screen; after the code there are notes on
some of the macros.

Chapter 3-2. Defining Screens 119

the account detail map

Col
1

Col
9

Col
16

* DETAIL MAP.
ACCTDTL DFHMDI SIZE=(24,80),CTRL=(FREEKB,PRINT)

Col -->
72

DFHMDF POS=(l,l),ATTRB=(ASKIP,NORM) ,LENGTH=l3, X
INITIAL='ACCOUNT FILE: I

TITLED DFHMDF POS=(l,15) ,ATTRB=(ASKIP,NORM) ,LENGTH=l4, ** NOTE 1 ** X
INITIAL='RECORD DISPLAY' ** NOTE 2 **

DFHMDF POS=(3,l) ,ATTRB=(ASKIP,NORM) ,LENGTH=ll, X
INITIAL='ACCOUNT NO: I

ACCTD DFHMDF POS=(3,13) ,ATTRB=(ASKIP,NORM) ,LENGTH=S
DFHMDF POS=(3,25) ,ATTRB=(ASKIP,NORM) ,LENGTH=9 , X

INITIAL='SURNAME: I ** NOTE 3 **
SNAMED DFHMDF POS=(3,36) ,ATTRB=(UNPROT,NORM,IC), ** NOTE 4 ** X

LENGTH=18
DFHMDF POS=(3,55) ,ATTRB=(PROT,NORM) ,LENGTH=l ** NOTE 5 **
DFHMDF POS=(4,25) ,ATTRB=(ASKIP,NORM),LENGTH=lO, X

INITIAL='FIRST: I

FNAMED DFHMDF POS=(4,36) ,ATTRB=(UNPROT,NORM) ,LENGTH=12
DFHMDF POS=(4,49) ,ATTRB=(PROT,NORM) ,LENGTH=6, ** NOTE 6 ** X

INITIAL= I MI: I

MID DFHMDF POS=(4,56) ,ATTRB=(UNPROT,NORM) ,LENGTH=l
DFHMDF POS=(4,58),ATTRB=(ASKIP,NORM) ,LENGTH=7, X

INITIAL=' TITLE:'
TTLD DFHMDF POS=(4,66) ,ATTRB=(UNPROT,NORM) ,LENGTH=4

DFHMDF POS=(4,71) ,ATTRB=(PROT,NORM) ,LENGTH=l
DFHMDF POS=(S,1) ,ATTRB=(ASKIP,NORM) ,LENGTH=lO, X

INITIAL='TELEPHONE:'
TELD DFHMDF POS=(S,12) ,ATTRB=(NUM,NORM) ,LENGTH=lO

DFHMDF POS=(S,23) ,ATTRB=(ASKIP,NORM) ,LENGTH=12, X
INITIAL=' ADDRESS: '

ADDRlD DFHMDF POS=(S,36),ATTRB=(UNPROT,NORM) ,LENGTH=24
DFHMDF POS=(S,61) ,ATTRB=(PROT,NORM) ,LENGTH=l

ADDR2D DFHMDF POS=(6,36) ,ATTRB=(UNPROT,NORM) ,LENGTH=24
DFHMDF POS=(6,61) ,ATTRB=(PROT,NORM) ,LENGTH=l

ADDR3D DFHMDF POS=(7,36),ATTRB=(UNPROT,NORM) ,LENGTH=24
DFHMDF POS=(7,61) ,ATTRB=(PROT,NORM) ,LENGTH=l
DFHMDF POS=(8,l) ,ATTRB=(ASKIP,NORM) ,LENGTH=22, X

INITIAL='OTHERS WHO MAY CHARGE: 1

AUTHlD DFHMDF POS=(9,1) ,ATTRB=(UNPROT,NORM) ,LENGTH=32
DFHMDF POS=(9,34) ,ATTRB=(PROT,NORM) ,LENGTH=l

AUTH2D DFHMDF POS=(9,36) ,ATTRB=(UNPROT,NORM) ,LENGTH=32
DFHMDF POS=(9,69),ATTRB=(PROT,NORM),LENGTH=l

AUTH3D DFHMDF POS=(l0,1) ,ATTRB=(UNPROT,NORM) ,LENGTH=32
DFHMDF POS=(l0,34) ,ATTRB=(PROT,NORM),LENGTH=l

AUTH4D DFHMDF POS=(l0,36) ,ATTRB=(UNPROT,NORM) ,LENGTH=32
DFHMDF POS=(l0,69) ,ATTRB=(PROT,NORM) ,LENGTH=l
DFHMDF POS=(12,1) ,ATTRB=(ASKIP,NORM) ,LENGTH=l7, X

INITIAL='NO. CARDS ISSUED:'
CARDSD DFHMDF POS=(12,19) ,ATTRB=(NUM,NORM) ,LENGTH=l

DFHMDF POS=(12,21) ,ATTRB=(ASKIP,NORM) ,LENGTH=l6, X
INITIAL=' DATE ISSUED:'

IMOD DFHMDF POS=(l2,38) ,ATTRB=(UNPROT,NORM) ,LENGTH=2 ** NOTE 7 **
IDAYD DFHMDF POS=(12,41) ,ATTRB=(UNPROT,NORM) ,LENGTH=2

Figure 33 (Part 1 of 2). The Account Detail Map Definition

120 CICS Application Programming Primer

the account detail map

Col Col Col Col -->
1 9 16 72

IYRD DFHMDF POS=(l2,44),ATTRB=(UNPROT,NORM) ,LENGTH=2
DFHMDF POS=(l2,47) ,ATTRB=(ASKIP,NORM),LENGTH=l2,

INITIAL=' REASON: I

RSND DFHMDF POS=(l2,60),ATTRB=(UNPROT,NORM) ,LENGTH=l
DFHMDF POS=(l2,62) ,ATTRB=(ASKIP,NORM) ,LENGTH=l
DFHMDF POS=(l3,l) ,ATTRB=(ASKIP,NORM),LENGTH=lO,

INITIAL='CARD CODE: I

CCODED DFHMDF POS=(l3,12) ,ATTRB=(UNPROT,NORM) ,LENGTH=l
DFHMDF POS=(l3,14),ATTRB=(ASKIP,NORM) ,LENGTH=l
DFHMDF POS=(l3,25) ,ATTRB=(ASKIP,NORM),LENGTH=l2,

INITIAL='APPROVED BY: I

APP RD DFHMDF POS=(13,38),ATTRB=(UNPROT,NORM) ,LENGTH=3
DFHMDF POS=(13,42),ATTRB=(ASKIP,NORM) ,LENGTH=l
DFHMDF POS=(13,52),ATTRB=(ASKIP,NORM) ,LENGTH=14,

INITIAL='SPECIAL CODES: I

SCODElD DFHMDF POS=(13,67) ,ATTRB=(UNPROT,NORM) ,LENGTH=l
SCODE2D DFHMDF POS=(13,69) ,ATTRB=(UNPROT,NORM) ,LENGTH=l
SCODE3D DFHMDF POS=(13,71),ATTRB=(UNPROT,NORM),LENGTH=l

DFHMDF POS=(13,73),ATTRB=(ASKIP,NORM) ,LENGTH=l
STATTLD DFHMDF POS=(lS,1) ,ATTRB=(ASKIP,NORM),LENGTH=lS,

INITIAL='ACCOUNT STATUS: I

STA TD DFHMDF POS=(lS,17) ,ATTRB=(ASKIP,NORM),LENGTH=2
LIMTTLD DFHMDF POS=(lS,20) ,ATTRB=(ASKIP,NORM) ,LENGTH=l8,

INITIAL=' CHARGE LIMIT: I

LIMITD DFHMDF POS=(lS,39),ATTRB=(ASKIP,NORM) ,LENGTH=8
HISTTLD DFHMDF POS=(17,1) ,ATTRB=(ASKIP,NORM),LENGTH=71, ** NOTE 8 **

INITIAL='HISTORY: BALANCE BILLED AMOUNT
PAID AMOUNT' ** NOTE 9 **

HISTlD DFHMDF POS=(18,11) ,ATTRB=(ASKIP,NORM) ,LENGTH=61 ** NOTE 10 **
HIST2D DFHMDF POS=(19,11),ATTRB=(ASKIP,NORM) ,LENGTH=61
HIST3D DFHMDF POS=(20,11),ATTRB=(ASKIP,NORM) ,LENGTH=61
MSGD DFHMDF POS=(22,1) ,ATTRB=(ASKIP,BRT) ,LENGTH=60
VFYD DFHMDF POS=(22,62) ,ATTRB=(ASKIP,NORM),LENGTH=l ** NOTE 11 **

Figure 33 (Part 2 of 2). The Account Detail Map Definition

Notes on the Detail Map

The ** NOTE n ** comments are not part of the code.

1. We've put a suffix on each of the labels to tell us which map the field is from; in
this map the suffix is D, for detail. We did the same thing in the menu (M) - see
Figure 30 on page 113 - and will do so in subsequent maps. Thus the account
number is ACCTM in the menu map and ACCTD in the detail map. This is simply
for clarity and to avoid having to use COBOL qualifiers to distinguish between
fields with the same name. We could just as easily have used a prefix instead of a
suffix; neither is a BMS requirement.

2. In this field, we've specified the value for the most common situation: record
displays. This initial value is not a constant, as it is in the fields without labels,
but a default. The field will be set to a different value by the program for adds,
modifies, and other uses of the screen.

Chapter 3-2. Defining Screens 121

x

x

x

x

x

x

x
x

the account detail map

Notice that it has a label, so that the program has access to it.

3. Where you have a data field following a constant field, and there are three or
fewer space characters between the end of the constant and the attribute byte for
the -data field, it's a good idea to fill out the constant to meet the data field. This
allows BMS to omit the address for the data field (since it is adjacent to the
previous field).

You cut down the length of the transmitted datastream this way, although the
definition works perfectly well without this nicety, of course.

This field could have a length of 8 and an initial value of 'SURNAME:'; the
appearance of the map would be exactly the same.

4. This is the first field into which the user is to enter data, under ordinary
circumstances, and so we've specified that the cursor should be here. This is a
default specification; the program can and often will override it.

5. We've defined this stopper field as protected, rather than autoskip, because the
preceding field is of variable length.

As we said earlier, this choice warns users who try to key too many characters for
the field, because the keyboard locks as soon as they get to the protected field.

6. We've combined a stopper field with the label field following it here. Since any
field that begins right after the input field can act as a stopper, we've simply
lengthened the field following the input field (the label "MI" here) with leading
spaces, to combine our stopper and label in one field.

Generally, if there are fewer than four characters between the end of one field and
the start of another, and they are constant (unlabeled) fields with the same
attributes, it's better to combine them. The resulting data stream is shorter, and
there's less BMS code.

7. You don't need a stopper field for an input field if another input field follows
immediately.

8. These title fields are supposed to appear on all the displays except the skeleton
screen for adding new records. It's easiest to put them in the map, therefore, and
simply knock them out (not allow them to appear) for an add operation.

We'll do this by setting the attribute byte to "nondisplay" in that one case. To
enable the program to access the attribute bytes, we have to put labels on the
fields.

9. This field is an example of a long INITIAL value parameter, for which two lines
are required.

122 CICS Application Programming Primer

the error map

10. These are composite fields. If we wanted, we could define each of the "history"
lines on the bottom of the screen as seven different fields, one for each item of
data, and we'd do this if data was being entered on this line. However, since it's
only being displayed, we don't need the attribute and cursor control that separate
fields would provide.

It's easier to treat these seven items as a composite field, formatting the line
within the program. If you look back at Figure 30 on page 113, you'll notice that
we used the same technique for the name search output in the menu map.

11. This field is used only for deletions, so the default value for the attribute byte will
be autoskip. That way the user won't even be aware of the field when using the
map for other transactions. For deletions, the program will change the attribute
byte to be unprotected.

Defining the Error Map

Next is the error map, to produce the screen shown in Figure 28 on page 101.
Figure 34 shows the error screen map, with row and column numbers added.

1 2 3 4 5 6 7
Col: 1234567890123456789012345678901234567890123456789012345678901234567890123
Row:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

+ACCOUNT FILE: ERROR REPORT

+TRANSACTION + + HAS FAILED IN PROGRAM +~~~+ BECAUSE OF

+PLEASE ASK YOUR SUPERVISOR TO CONVEY THIS INFORMATION TO THE
+OPERATIONS STAFF.

+THEN PRESS "CLEAR". THIS TERMINAL IS NO LONGER UNDER CONTROL OF
+THE "ACCT" APPLICATION.

Figure 34. The Error Screen Map

When CICS abends our transaction, the ABEND message appears towards the foot of
this screen. It normally appears at the current cursor position, although your system
programmer can override this. (See Figure 60 on page 222 for an example.)

Figure 35 shows the macro definition we need to produce this error screen.

Chapter 3-2. Defining Screens 123

the message map

Col
1

Col
9

Col
16

* ERROR MAP.
ACCTERR DFHMDI SIZE=(24,80),CTRL=FREEKB

Col -->
72

DFHMDF POS=(4,1),ATTRB=(ASKIP,NORM) ,LENGTH=26, X
INITIAL='ACCOUNT FILE: ERROR REPORT'

DFHMDF POS=(6,1) ,ATTRB=(ASKIP,NORM),LENGTH=12, X
INITIAL='TRANSACTION I

TRANE DFHMDF POS=(6,14),ATTRB=(ASKIP,BRT) ,LENGTH=4
DFHMDF POS=(6,19) ,ATTRB=(ASKIP,NORM) ,LENGTH=23, X

INITIAL=' HAS FAILED IN PROGRAM '
PGME DFHMDF POS=(6,43) ,ATTRB=(ASKIP,BRT) ,LENGTH=8

DFHMDF POS=(6,52),ATTRB=(ASKIP,NORM) ,LENGTH=ll, X
INITIAL=' BECAUSE OF'

RSNE DFHMDF POS=(8,1),ATTRB=(ASKIP,BRT) ,LENGTH=60
FILEE DFHMDF POS=(l0,1) ,ATTRB=(ASKIP,BRT) ,LENGTH=22

DFHMDF POS=(12,1) ,ATTRB=(ASKIP,NORM) ,LENGTH=60, X
INITIAL='PLEASE ASK YOUR SUPERVISOR TO CONVEY THIS INFORX
MATION TO THE'

DFHMDF POS=(13,1),ATTRB=(ASKIP,NORM) ,LENGTH=17, X
INITIAL='OPERATIONS STAFF. I

DFHMDF POS=(lS,1),ATTRB=(ASKIP,NORM) ,LENGTH=64, X
INITIAL='THEN PRESS "CLEAR". THIS TERMINAL IS NO LONGERX

UNDER CONTROL OF'
DFHMDF POS=(16,1) ,ATTRB=(ASKIP,NORM) ,LENGTH=23, X

INITIAL='THE "ACCT" APPLICATION.'

Figure 35. The Error Screen Map Definition

Defining the Message Map

Finally, there's the message map, which has just a single field, in which to send a
message to the user.

We need this map in program ACCT03, to confirm (at the input terminal) that a
request to print the log of changes to the account file has been processed. In other
words, it's for the response to an ACLG (log print) transaction entered by the
supervisor. Figure 36 shows the definition:

Col
1

Col
9

Col
16

* MESSAGE MAP.
ACCTMSG DFHMDI SIZE=(24,80),CTRL=FREEKB
MSG DFHMDF POS=(l,1),ATTRB=(ASKIP,NORM) ,LENGTH=79

Figure 36. The Message Map Definition

124 CICS Application Programming Primer

Col -->
72

the message map

After we've executed

MOVE 'PRINTING OF LOG HAS BEEN SCHEDULED' TO MSGO.

we send this message back to the requesting terminal, confirming that the requested
work has been scheduled. Unlike all the other types of requests that make up this
application, a request to print the log isn't entered through the menu screen. So it
isn't appropriate to use the message area of the menu screen, which is why we need
our separate message map to send this message. As you can see, ACCTMSG is simply
a one-line map consisting of an area for a message.

The Map Set

If we put together the four maps that we've now defined (the menu map, detail map,
error map, and message map), Figure 37 shows the result.

ACCTSET DFHMSD TYPE=MAP,MODE=INOUT,LANG=COBOL,
STORAGE=AUTO,TIOAPFX=YES

* MENU MAP.
ACCTMNU DFHMDI SIZE=(24,80) ,CTRL=(PRINT,FREEKB)

DFHMDF ... (all macros for the menu map)
* * DETAIL MAP.
ACCTDTL DFHMDI SIZE=(24,80) ,CTRL=(FREEKB,PRINT)

DFHMDF ... (all macros for the detail map)
* * ERROR MAP.
ACCTERR DFHMDI SIZE=(24,80) ,CTRL=FREEKB

DFHMDF ... (all macros for the error map)
* * MESSAGE MAP.
ACCTMSG DFHMDI SIZE=(24,80) ,CTRL=FREEKB
MSG DFHMDF POS=(l,l),ATTRB=(ASKIP,NORM) ,LENGTH=79

DFHMSD TYPE=FINAL
END

Figure 37. All Four Maps

Chapter 3-2. Defining Screens 125

summary and exercise

Summary

Item

fldname

mapname

setname

POS

LENGTH

Comments

Use only on fields your program will access

1-7 characters, starting alpha, no special characters

As mapname. Co-ordinate setname with the PPT entry

Gives position of attribute byte, not first data character

Does not include attribute byte.

Optional Exercise

For those of you with a terminal, the CICS COBOL sample programs, and a running
CICS system.

You can use the CICS command interpreter CECI (not covered in this Primer) to see
what a map looks like on the screen:

I CECI SEND MAP ('XDFHCMA') MAPONLY

This will display the operator instructions menu that is supplied with CICS Version 1
Release 6 as part of its own sample transaction set. (You'll find the same map in the
COBOL sample programs appendix of the APRM.) Don't worry about trying to
decipher the map now, though - wait until you've read the next chapter.

Alternatively, you can get a rough idea of how the application behaves by skimming
through the EDF screens shown in "A Session With EDF" on page 219.

126 CICS Application Programming Primer

copying maps into your program

Chapter 3-3. Using BMS: More Detail

Symbolic Description Maps (DSECT Structures)

As we said earlier, assembling the macros with TYPE= MAP specified in the
DFHMSD macro produces the physical map that CICS uses at execution time. After
you've done this assembly, you do it all over again, this time specifying
TYPE= DSECT. This second assembly produces the symbolic description map, a
COBOL structure that you copy into your program. It's stored in the copybook
library specified in the JCL, and its name in that library is the map set name specified
in the DFHMSD macro.

This structure is a set of data definitions for all the display fields on the screen, plus
information about those fields. It allows your program to refer to these display data
fields by name and to manipulate the way in which they are displayed, without
worrying about their size or position on the screen.

Copying the Map DSECT into a Program

To copy the DSECT structures for the maps in a map set into a program, you write a
COPY statement like this:

COPY setname.

Here, setname is the name of the map set. This COPY statement usually appears in
Working-Storage, although later you may find reasons to put it in the Linkage
Section. We'll cover only the Working-Storage situation. To get the symbolic
descriptions for our maps in a program, we'll write:

COPY ACCTSET.

Figure 38 shows you the first few lines of what is copied into your program as a
result of this COPY statement. The part shown is generated by the first map in the
set, the menu map. It's followed by similar structures for the other maps. We've not
shown all of them here because they're very long and very similar in form. They're
all in "The Result of the SYSP ARM= DSECT Assembly" on page 280.

Chapter 3-3. More About BMS 127

the generated subfields

01 ACCTMNUI.
02 FILLER PIC X(12).
02 SN AME ML PIC S9(4) COMP.
02 SNAMEMF PIC X.
02 FILLER REDEFINES SNAMEMF.

03 SNAMEMA PIC X.
02 SNAMEMI PIC X(12).
02 FNAMEML PIC S9(4) COMP.
02 FNAMEMF PIC X.
02 FILLER REDEFINES FNAMEMF.

03 FNAMEMA PIC X.
02 FNAMEMI PIC X(7).
02 REQML PIC S9(4) COMP.
02 REQMF PIC X.
02 FILLER REDEFINES REQMF.

03 REQMA PIC x.
02 REQMI PIC x.
02 ACCTML PIC S9(4) COMP.
02 ACCTMF PIC X.
02 FILLER REDEFINES ACCTMF.

03 ACCTMA PIC X.
02 ACCTMI PIC X (5).
02 PRTRML PIC S9(4) COMP.
02 PRTRMF PIC X.
02 FILLER REDEFINES PRTRMF.

Figure 38. Copying the Menu Map into Your Program

Because we asked for a map to be used for both input and output (by coding
MODE=INOUT in the DFHMSD macro), the resulting structure has two parts. The
first part corresponds to the input screen, and is always labelled (at the 01 level) with
the map name, suffixed by the letter I (for "input"). The second part corresponds to
the output screen, and is labeled with the map name followed by the letter 0. The
output map always redefines the input map. If we'd specified MODE =IN, only the
input part would have been generated, and similarly, MODE= OUT would've
produced only the output part.

The Generated Subfields

We gave names to eight field definitions in the menu map: SNAMEM, FNAMEM,
REQM, ACCTM, PRTRM, SUMTTLM, SUMLNM and MSGM. (One of these,
SUMLNM, has an "OCCURS" clause causing it to define six different fields, but we'll
get to that shortly.) Notice that for each of these map fields, five data subfields are
generated. Each subfield has a name consisting of the field name in the map and a
one-letter suffix. (We're using "subfields" to distinguish them from the single "map"
field from which they originate.)

We can explain the contents of the subfields better by using a specific set of data.
Suppose someone has filled in the menu screen, as shown in Figure 39 on page 129:

128 CICS Application Programming Primer

the flag fields

ArCOUNT FILE: MENU

TO SEARCH BY NAME , ENTER :

SURNAME: SMITH FIRST NAME: J

ONLY SURNAME
REQUIRED. EITHER
MAY BE PARTIAL .

FOR INDIVIDUAL RECORDS , ENTER :
PRINTER REQUIRED

REQUEST TYPE : ACCOUNT : PRINTER : ONLY FOR PRINT
REQUESTS.

REQUEST TYPES: D DISPLAY A ADD X = DELETE
p PRINT M MODIFY

fHE!\i PRESS "ENTER" - OR- PRESS " CLEAR" TO EXIT

Figure 39. The Menu Screen at Work

Ultimately, BMS puts the user's data into our program's Working-Storage, along with
some control information. Look at Figure 38 as you study what follows.

The first 12 characters in the DSECT ("FILLER") are there because we said
TIOAPFX =YES when we defined the map set. They're reserved for CICS control
information, and are of no concern to the application program.

The first suffix is L, which stands for "length." SNAMEML is the number of
characters that the user keyed into the SNAMEM field (or, if the program put some
data there and turned on the modified data tag, the length of that data). In the
example shown above, SNAMEML will be 5 (the length of "SMITH"), FNAMEML
will be 1, and REQML, ACCTML and all the others will be zero.

The second suffix is F (meaning "flag"), and this subfield tells you whether or not the
user changed the corresponding field on the screen by erasing it (setting it to nulls
with the ERASE EOF key). Such a subfield of course always has a length (L subfield)
of zero; the flag allows you to tell whether it was written on the screen that way or
whether the user erased something that was there. A flag value of hex 80 indicates
that the field was changed by erasing; otherwise the flag value is hex 00 (nulls, or
"LOW-VALUE" in COBOL). In the filled-in menu screen, all the flag fields will
contain hex 00, because there was no field sent which could be erased.

Pressing ERASE EOF causes the flag to be set even if the field was empty to start with,
and whether or not you type in some data before changing your mind and erasing the
field.

The flag value becomes important in connection with modifications, as we'll see later.

Chapter 3-3. More About BMS 129

the flag fields

The other suffix is I, for "input." This is the actual content of the field on the screen,
provided that the modified data tag is on for the field. The tag will be on if the user
changed the field or if it was sent with the FSET attribute specified. If the tag isn't
on, the program doesn't read what's on the screen, and the I subfield will contain
nulls.

The I subfield is defined as a character string of the length you specify in the map.
Because the SNAMEM field in the menu map has a length of 12, the SNAMEMI
subfield is given a PICTURE value of "X(12)" in the symbolic map description. (BMS
provides a parameter called "PICIN" that you can use in the DFHMDF macro for a
field that changes the picture generated, however, if you wish to do so.)

If the user doesn't fill in the whole field, as in the case of the two name fields here,
BMS pads out the field to its maximum length. If a field has the NUM attribute, it's
filled on the left with leading (decimal) zeros; otherwise it's filled on the right with
spaces. In this screen, then, SNAMEMI would equal "SMITH ",and FNAMEMI
would be "J " - the unkeyed part of each field being filled with spaces.

The remaining two data fields for a map field concern output rather than input, even
though one of them appears in the "input" part of an INOUT map. This is the one
suffixed by A (for "attribute"). When you're sending a map, and you want a field to
have a different set of attributes than you specified in the map, you can override the
map specification by setting this field. For example, suppose the user had typed
SMITH instead of SMITH. We'd want to bounce the menu screen straight back to
the user with the surname field highlighted, to show our displeasure at finding the
numeric character "1" there. To do so, we'd simply need to move the character that
represented the attributes we wanted to SNAMEMA.

The character we need to do this is the one actually used in the 3270 output data
stream. These character representations are quite hard to remember, so CICS
provides you with a library member containing most of the useful combinations,
defined with meaningful names. To get access to it, you simply put the statement:

COPY DFHBMSCA

in your Working-Storage. This generates a list of definitions like the one shown in
Figure 40 on page 131:

130 CICS Application Programming Primer

standard character attributes

01 DFHBMSCA.
02 DFHBMPEM PICTURE x VALUE IS I I

02 DFHBMPNL PICTURE x VALUE IS I I

02 DFHBMASK PICTURE x VALUE IS I 0 I•
02 DFHBMUNP PICTURE x VALUE IS I I

02 DFHBMUNN PICTURE x VALUE IS I & I•

02 DFHBMPRO PICTURE x VALUE IS 1 _I

02 DFHBMBRY PICTURE x VALUE IS 'H'.
02 DFHBMDAR PICTURE x VALUE IS I (I•

02 DFHBMFSE PICTURE x VALUE IS 'A'.
02 DFHBMPRF PICTURE x VALUE IS '/'.

Figure 40. Attribute Values for the IBM 3270 Data Stream

The values which appear to be spaces are not; they are bit combinations that do not
represent a printed character, although they are all valid EBCDIC characters. The
definitions generated (that apply to this Primer) are shown in Figure 41.

VARIABLE

DFHBMUNP
DFHBMUNN
DFHBMPRO
DFHBMASK
DFHBMBRY
DFHPROTI
DFHBMASB
DFHBMDAR
DFHPROTN
DFHBMFSE
DFHUNNUM
DFHBMPRF
DFHBMASF
DFHUNIMD
DFHUNINT
DFHUNNOD
DFHUNNON

PROTECTION

Unprotected
Numeric
Protected
Autoskip
Unprotected
Protected
Autoskip
Unprotected
Protected
Unprotected
Numeric
Protected
Autoskip
Unprotected
Numeric
Unprotected
Numeric

INTENSITY

Normal
Normal
Normal
Normal
Bright
Bright
Bright
Non-display
Non-display
Normal
Normal
Normal
Normal
Bright
Bright
Non-display
Non-display

Figure 41. Attribute Values Used in this Primer

MODIFIED
DATA TAG

Off
Off
Off
Off
Off
Off
Off
Off
Off
On
On
On
On
On
On
On
On

Referring back to our example, to highlight the surname we:

MOVE DFHBMBRY TO SNAMEMA

before sending the map back to the terminal. We're using DFHBMBRY, rather than
one of the other "bright" variables because, unlike some other high-intensity values,
DFHBMBRY leaves the field unprotected, so the user will be able to rekey the name
properly. It also sets the modified data tag off (a choice we'll discuss later).

Chapter 3-3. More About BMS 131

the OCCURS= parameter

The last of the five data subfields for a map field is named with a suffix of 0 (for
"output"). It's the data that you want displayed in the map field when you send it.
Like the input subfield, the output subfield defaults to a character string of the length
specified in the map; you can specify some other PICTURE by using the PICOUT
parameter in the DFHMDF macro that defines the field. PICOUT and PICIN are both
described with the DFHMDF macro in the APRM.

Fields Defined With the OCCURS= Parameter

The only field on the screen that has generated a slightly different structure from
what we've just described is the SUMLNM field, and this is because we've said it
OCCURS six times.

Have another look at the DSECT. This time, you'll need to look at the full version,
starting on page 280 in Appendix A.

For the SUMLNM field there's another level to the COBOL structure, a group named
SUMLNMD, with an OCCURS value of 6. This group contains the SUMLNML,
SUMLNMF, and SUMLNMI fields, which represent the length, flag value, and input
for SUMLNM, just as you'd expect. The attribute field appears in the output section,
where an extra group level is also introduced. This one's called "DFHMSl" (an
arbitrarily generated name); it, too, OCCURS six times and contains the SUMLNMA
and SUMLNMO fields. So you refer to the attribute value of the fourth occurrence of
this field as "SUMLNMA(4)", the input for the second occurrence as "SUMLNMI(2)",
and so on.

Some Things to Keep in Mind About These DSECTs

• Because of the way the input and output parts of the map structure overlay each
other, the "-I" and the "-0" subfields for a given map field always redefine each
other. That is, SNAMEMI and SNAMEMO occupy the same storage, FNAMEMI
and FNAMEMO do also, and so on. This turns out to be convenient in coding.

• The attribute and flag subfields occupy the same space (REQMF overlays
REQMA, ACCTMF overlays ACCTMA, and so on). You don't have to worry
about removing these flags when you're sending output, however. Since the two
input flag values (hex 80 and hex 00) don't represent acceptable output attribute
byte values, BMS can distinguish on output between a leftover flag and a new
attribute.

• When you write a map, you don't have to put anything in the length field. BMS
knows how long the field is from the information in the physical map. The only
time you use the length field for an output field is to set the cursor position, a
matter we'll explain shortly.

132 CICS Application Programming Primer

the SEND MAP command

Sending a Map to a Terminal

Now that we've defined our maps, we can think about writing them to the terminal.

The term,inal to which we'll write, of course, is the one that sent the input and
thereby invoked the transaction. This is the only terminal to which a transaction can
write directly, as mentioned in "Transactions and Terminals" on page 92.

The SEND MAP Command

The SEND MAP command writes formatted output to a terminal. It looks like this:

EXEC CICS SEND MAP(mapname) MAPSET(setname)
option option ... END-EXEC

map name
is the name of the map you want to send. It's required. Put it in quotes if it's a
literal.

set name
is the name of the map set that contains the mapname. Put the name in quotes
if it's a literal. The map set name is needed unless it's the same as the map
name. Code it for documentation purposes, anyway.

option
There are a number of options that you can specify; they affect what's sent and
how it is sent. Except where noted, you can use any combination of them. The
possibilities are:

MAPONLY
means that no data from your program is to be merged into the map; only
the information in the map is transmitted. In our example application,
we'll use this option when we send the menu map the first time, because
we'll have no information to put into it.

DATAONLY
is the logical opposite of MAPONL Y. You use it to modify the variable
data in a display that's already been created. Only the data from your
program is sent to the screen. The constants in the map aren't sent; so you
can use this option only after you've sent the same map without using the
DATAONL Y option. We'll see an example when we send the results of a
name search to the terminal in program ACCTOl.

Chapter 3-3. More About BMS 133

the SEND MAP command

ERASE
causes the entire screen to be erased before what you're sending is shown.

ERASEAUP
(erase all unprotected fields) in contrast to ERASE, causes just the
unprotected fields on the screen (those with either the UNPROT or NUM
attribute) to be erased before your output is placed on the screen. It's most
often used in preparing to read new data from a map that's already on the
screen. Don't use it at the same time as ERASE; ERASE makes
ERASEA UP meaningless.

FRSET
(flag reset) turns off the modified data tag in the attribute bytes for all the
fields on the screen before what you're sending is placed there. (Once set
on, whether by the user or the program, a modified data tag stays on until
turned off explicitly, even over several transmissions of the screen. It can
be turned off by the program sending a new attribute byte, an FRSET
option, or an ERASE, or an ERASEA UP, or by the user pressing the
CLEAR key.) Like ERASEAUP, the FRSET option is most often used in
preparing to read new data from a map already on the screen. It can also
reduce the amount of data re-sent on an error cycle, as we'll explain in
coding our example.

CURSOR
can be used in two ways to position the cursor. If you specify a value after
CURSOR, it's the relative position on the screen where the cursor is to be
put. Express this position as a single number, such as CURSOR(81) for line
2, column 2 (counting starts at zero and goes across the lines, which on an
IBM 3270-system display Model 2 are 80 characters wide). Why column 2?
Because the attribute byte goes in column 1, and we want the cursor to
appear under the first character of data.

Some people prefer to put the attribute at the end of the previous line (for
example, POS = (1,80)) to let the data in the field start in screen column 1.

Alternatively, you can specify CURSOR without a value, and use the
length subfields in the output map to show which field is to get the cursor.
See "Positioning the Cursor" on page 138. In general we recommend you
to position the cursor in this second manner, rather than the first, so that
changes in the map layout don't lead to changes in the program. Both
kinds of CURSOR specification override the cursor placement specified in
the map.

134 CICS Application Programming Primer

the SEND MAP command

ALARM
means the same thing in the SEND command as it does in the DFHMSD
and DFHMDI macros for the map: it causes the audible alarm to be
sounded. The alarm will sound if you specify ALARM in either the map
definition or the SEND command.

FREEKB
likewise means the same thing as it does in the map definition: the
keyboard is unlocked if you specify FREEKB in either the map or the
SEND command.

PRINT
allows the output of a SEND command to be printed on a printer, just as it
does in the map definition. It is in force if specified in either the map or
the command.

FORMFEED
causes the printer to restore the paper to the top of the next page before
the output is printed. This specification has no effect on maps sent to a
display, to printers without the features which allow sensing the top of the
form, or to printers for which the "formfeed" feature is not specified in the
CICS Terminal Control Table.

Using SEND MAP in the Example Program

The first time we need to send a map to a terminal occurs in program ACCTOO, where
we display the menu screen. The command we need is:

EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET')
ERASE MAPONLY END-EXEC.

This is a very simple situation. Because we don't have any variable data to put in the
map, we can use the MAPONLY option, and we don't have to worry about preparing
variable data for merging with the physical map.

If we were sending some data to the screen with the map, we could not use
MAPONL Y, and CICS would expect the data to be used for filling in the map to be in
a structure whose name is the map name (as specified in the MAP option) suffixed
with the letter 0. So, when we issue the command:

EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET')
END-EXEC.

Chapter 3-3. More About BMS 135

the detail display map

CICS expects the data for the map to be in a structure within the program (of exactly
the sort generated by the DSECT assembly) named "ACCTMNUO." This structure is
usually in your Working-Storage Section, but it might be in a Linkage area instead.
(There's an option on the SEND MAP command that lets you specify a data structure
other than the one assumed by CICS. We won't cover it here, but you can read about
it in the APRM under "Sending Data to a Display.")

Let's look at the more common situation in which we're merging program data into
the map. In program ACCTOl, we're supposed to build a detail display map for one
record and send it to the screen. Since the contents of the screen vary somewhat with
the type of request, and we're using the same screen for all types, this will entail the
following:

1. Putting the appropriate title on the map (add, modify, or whatever it happens to
be).

2. Moving the data from the file record to the symbolic map (except for adds).

3. Adjusting the attribute bytes. The input fields must be protected in a display or
delete operation; the "verify" field must be unprotected for deletes, and the titles
at the bottom of the screen must be made nondisplay for adds.

4. Putting the appropriate user instructions (about what to do next) into the message
area.

5. Putting the cursor in the right place.

Figure 42 shows how the necessary code might look. Here are some explanatory
notes.

REQC (request code) was moved to a working-storage field earlier in the program. It
holds the user's "request code."

What is happening in this code is as follows:

• If the user request is to delete a record

(IF REQC = 'X'):

1. The map title is changed from its default to DELETION
2. The cursor is placed under the "verify" field

(MOVE -1 TO VFYDL)

by a technique we'll explain shortly
3. The attribute byte for that field is changed from its map default of autoskip to

unprotected
4. Instructions for what to do next are put in the message area.

136 CICS Application Programming Primer

the detail display map

Col Col
8 12

BUILD-MAP.
IF REQC = 'X' MOVE 'DELETION' TO TITLEDO,

MOVE -1 TO VFYDL, MOVE DFHBMUNP TO VFYDA,
MOVE 'ENTER "Y" TO CONFIRM OR "CLEAR" TO CANCEL'

TO MSGDO,
ELSE MOVE -1 TO SNAMEDL.
IF REQC = 'A' MOVE 'NEW RECORD' TO TITLEDO,

MOVE DFHPROTN TO STATTLDA, LIMTTLDA, HISTTLDA,
MOVE ACCTC TO ACCTDI,
MOVE 'FILL IN AND PRESS "ENTER," OR "CLEAR"

TO CANCEL' TO MSGDO,
GO TO SEND-DETAIL.

IF REQC = 'M' MOVE 'RECORD CHANGE' TO TITLEDO,
MOVE 'MAKE CHANGES AND "ENTER" OR "CLEAR"

TO CANCEL' TO MSGDO,
ELSE IF REQC = 'D',

MOVE 'PRESS "CLEAR" OR "ENTER" WHEN FINISHED'
TO MSGDO.

MOVE CORRESPONDING ACCTREC TO ACCTDTLO.
MOVE CORRESPONDING PAY-HIST (1) TO PAY-LINE.
MOVE PAY-LINE TO HISTlDO.
MOVE CORRESPONDING PAY-HIST (2) TO PAY-LINE.
MOVE PAY-LINE TO HIST2DO.
MOVE CORRESPONDING PAY-HIST (3) TO PAY-LINE.
MOVE PAY-LINE TO HIST3DO.

IF REQC = 'M' GO TO SEND-DETAIL,
ELSE IF REQC = 'P' GO TO PRINT-PROC.

MOVE DFHBMASK TO
SNAMEDA, FNAMEDA, MIDA, TTLDA, TELDA, ADDRlDA,
ADDR2DA, ADDR3DA, AUTHlDA, AUTH2DA, AUTH3DA,
AUTH4DA, CARDSDA, IMODA, IDAYDA, IYRDA, RSNDA,
CCODEDA, APPRDA, SCODElDA, SCODE2DA, SCODE3DA.

SEND-DETAIL.
EXEC CICS SEND MAP('ACCTDTL') MAPSET('ACCTSET')

ERASE FREEKB CURSOR END-EXEC.

Figure 42. Building the Detail Display Map

• The cursor is placed under the surname field for all other types of user requests

(ELSE MOVE -1 to SNAMEDL).

• If the request is for an addition:

1. The title is made NEW RECORD
2. The titles at the bottom of the screen are given a non-display attribute
3. The account field (from the request input) is placed in the output map
4. Instructions are put into the message area.

• If the request is a modification, the title and the message area are set
appropriately.

Chapter 3-3. More About BMS 137

the detail display map

• If the request is a display, instructions for what to do after the display are put in
the message area.

• For all types of requests except adds, the display is built from the record on file
(MOVE CORRESPONDING ACCTREC ... through... MOVE PAY-LINE TO
HIST3DO).

• If the request is to print a record, control goes to code at "PRINT-PROC" that will
do the special processing required to write to a terminal other than the input
terminal.

• If the request is to display or delete, the attribute bytes of all the data fields that
can be entered or changed on an addition or a modification are changed to
autoskip. This makes it clear to users that they cannot change these fields in the
current transaction.

• For all request types except printing, the map is sent to the input terminal.

We need to use a somewhat different type of SEND MAP command later in the same
program, when we have to redisplay the input (menu) map because of some error, or
to put a message on the screen. Since the map is already on the screen, it is
unnecessary (and wasteful of line capacity) to send what is already there again. So
we use the DAT AONL Y option, and we do not erase the screen:

EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET')
DATAONLY CURSOR FRSET FREEKB END-EXEC.

We also specify FRSET in this command. This prevents fields that were entered
during the previous terminal interaction, and not rekeyed, from being sent on the
next transmission. That is, only fields which the user changes (probably because of
an error) will be transmitted the next time the terminal sends. This reduces line
transmission, but it requires the transaction to save the input from the previous
execution for the next one. We'll give you some more information about how to use
FRSET in the notes that accompany the program source code in "Part 4. The COBOL
Code of our Example Application," which is printed separately.

Positioning the Cursor

We said earlier how important for productivity it was to put the cursor where the
user will want to start entering data on the screen. In the first SEND MAP example,
we relied on the cursor position specified in the map definition. This puts the cursor
under the first data position of the surname field, which is where we want it. In the
second and third examples, however, we don't necessarily want the cursor where the
map definition puts it. In the second example, where we're using the detail map, we

138 CICS Application Programming Primer

positioning the cursor

want to use the map default (the SNAMED field) for adds and modifies. For display
operations, it doesn't much matter, since there are no fields into which the user may
key. For deletes, however, the cursor should be under the verify (VFY) field. In the
third example, we want the cursor under the first field where the user entered
incorrect information.

As we explained earlier, there are two ways to override the position specified by the
IC specification in the map definition:

1. You can specify a screen position, relative to line 1, column 1 (that is, position 0)
in the CURSOR option on the SEND MAP command (the procedure we advised
against earlier).

2. You can show that you want the cursor placed under a particular field by setting
the associated length subfield to minus one (-1) and specifying CURSOR without a
value in your SEND MAP command. This causes BMS to place the cursor under
the first data position of the field with this length value. If several fields are
flagged by this special length subfield value, the cursor is placed under the first
one (as opposed to the last one with ATTRB=IC).

The second procedure is called symbolic cursor positioning, and is a very handy
method of positioning the cursor for, say, the correction of errors. As the program
checks the input, it sets the length subfield to -1 for every field found to be in error.
Then, when the map is redisplayed for corrections, BMS automatically places the
cursor under the first field that the user will have to correct.

In order to place the cursor under the verify field on a delete, therefore, all we have
to do is:

MOVE -1 TO VFYDL

and specify CURSOR in our SEND MAP command.

Chapter 3-3. More About BMS 139

the SEND CONTROL command

Sending Control Information Without Data

The SEND CONTROL Command

In addition to the SEND MAP command, there is another terminal output command
called SEND CONTROL. It allows you to send control information to the terminal
without sending any data. That is, you can open the keyboard, erase all the
unprotected fields, and so on, without sending a map. It looks like this:

EXEC CICS SEND CONTROL option option END-EXEC

The options you can use are the same as on a SEND MAP command: ERASE,
ERASEAUP, FRSET, ALARM, FREEKB, CURSOR, PRINT, and FORMFEED.

An example of this command occurs in program ACCTOl. The terminal user has just
cleared the screen (of the menu map) to indicate that he or she wants to exit from the
control of the online account application. The program is supposed to open the
keyboard before returning control to CICS.

Normally, you would do this when writing a message to the terminal. But since we're
not doing that at this point, we must unlock the keyboard by an explicit command,
instead. The command is:

EXEC CICS SEND CONTROL FREEKB END-EXEC

If we didn't know the user had just cleared the screen, we'd probably want to add the
ERASE option to the command above, so that the user would be all ready to start a
new transaction.

Receiving Input from a Terminal

The RECEIVE MAP Command

When you want to receive input from a terminal, you use the RECEIVE MAP
command, which looks like this:

EXEC CICS RECEIVE MAP(mapname) MAPSET(setname)
END-EXEC

140 CICS Application Programming Primer

the RECEIVE MAP command

The MAP and MAPSET parameters have exactly the same meaning as for the SEND
MAP command. MAP is required and so is MAPSET, unless it is the same as the map
name. Again, it does no harm to include it for documentation purposes.

We're showing you a form of the RECEIVE MAP command that does not specify
where the input data is to be placed. This causes CICS to bring the data into a
structure whose name is the map name suffixed with the letter I, which is assumed to
be in either your Working-Storage or Linkage Section.

For example, program ACCT02 requires that we receive the filled-in detail map. The
command to do this:

EXEC CICS RECEIVE MAP('ACCTDTL') MAPSET('ACCTSET')
END-EXEC

will bring the input data into a data area named ACCTDTLI, which is expected to
have exactly the format produced by the DSECT for map ACCTDTL.

As soon as the map is read in, we have access to all the data subfields associated with
the map fields. For example, we can test whether the user made any entry in the
request field of the menu map:

IF REQML > 0, MOVE ...

Or we could examine the input in that field:

IF REQMI = 'A' GO TO ...

Note: Although it generally will not affect your program logic, you should be aware
that the first time in a transaction that you use the RECEIVE MAP command, it has
a slightly different effect from subsequent times. Since it is input from the terminal
that causes a transaction to get started in the first place, CICS has always read the
first input by the time the transaction starts to execute. Therefore, on this first
RECEIVE MAP command, CICS simply arranges the input it already has into the
format dictated by your map, and puts the results in a place accessible to your
program.

On subsequent RECEIVE MAP commands in the same task , CICS actually waits for
and reads input from the terminal. These subsequent RECEIVE MAPs are what make
a task conversational. By contrast, a pseudoconversational task executes at most one
RECEIVE MAP command.

Chapter 3-3. More About BMS 141

the HANDLE AID command

Finding Out What Key the Operator Pressed

There is another technique you may wish to use for processing input from a terminal.
As we pointed out in "3270 Input Data Stream" on page 28, the 3270 input stream
contains an indication of what attention key caused the input to be transmitted
(ENTER, CLEAR, or one of the PA or PF keys).

There are two ways to cause your program to change the flow of control in your
program based on which of these attention keys was used. One way is to use the
HANDLE AID command; the other is to use the EIBAID field. AID stands for
attention identifier.)

The HANDLE AID Command

The HANDLE AID command looks like this:

EXEC CICS HANDLE AID ENTER(labell) CLEAR(label2)
PAl(label3) ... PFl(label4)
... ANYKEY(labelS) END-EXEC

Your program can issue this command at any time before it issues the RECEIVE
MAP command. It does not affect the flow of control in the program until the
program actually issues the command to get its input.

At that time, CICS does the work required by the RECEIVE MAP, which may be an
actual read operation, or just formatting according to the map specified. Before
returning control to your program, CICS checks to see if a HANDLE AID command
has been issued. If so, it looks at the key that caused the input to be sent (the
attention identifier (AID) in 3270 parlance). If you've named that key in your
HANDLE AID command, then control will go to the label specified for that key
instead of to the instruction after the RECEIVE MAP, as it normally would. And if
you name that key without a label, it will no longer be handled. You can name the
ENTER key, the CLEAR key, a program access key (PAI, PA2 or PA3), or any of the
program function keys (PFl through PF24). Nate that not all terminals have 24
program function keys; although you could specify a label for one of the missing keys,
control would never go there from such a terminal.

In addition to naming specific keys, you can indicate a label where control should go
if the key used was not one of those mentioned in the most recent HANDLE AID
command. For example:

EXEC CICS HANDLE AID ENTER(ENTERLBL) PF3(PF3LBL)
ANYKEY(OTHERLBL) END-EXEC

142 CICS Application Programming Primer

the EXEC interface block

would send control to ENTERLBL if the ENTER key were used, to PF3LBL if the
PF3 key were used, and to OTHERLBL if CLEAR or a PA key or one of the other PF
keys were used.

These branches remain in force for all subsequent RECEIVE MAP commands until
you change the branch for a key (by issuing another HANDLE AID with a different
label for that key) or disable the branch. You disable a branch by issuing a HANDLE
AID naming the key without a label. That is, if we issued the command:

EXEC CICS HANDLE AID PF3 END-EXEC

after the first HANDLE AID shown above, then control on the next RECEIVE MAP
command would go to "ENTERLBL" if the ENTER key were used. If any other key,
except PF3, were used, control would go to "OTHERLBL." And if PF3 were used,
control would "drop through" to the next instruction.

The EXEC Interface Block (EIB)

Before we explain the other way to find out what key was used to send the input, we
need to introduce one CICS control block. This is the EIB, which stands for EXEC
Interface Block, and it is the only one that you need to know anything about for the
type of applications described in this Primer.

You can write programs without using even this one, but it contains information that
can be very useful and is worth knowing about.

There is one EIB for each task, and it exists for the duration of the task. Every
program that executes as part of the task has access to the same EIB. You can
address the fields in it directly in your COBOL program, without any preliminaries.
You should only read these fields, however, not try to modify them. All of the EIB
fields are discussed in detail in the APRM, but the ones that apply to the commands
and options in this Primer are:

EIBAID
The attention identifier (AID), which tells you which keyboard key was used to
transmit the last input. This field is one byte long ("PIC X(l)"). It is encoded as
shown in "AID Byte Definitions" on page 145.

EIBCALEN
The length of the communication area (COMMAREA) that has been passed to
this program, either from a program that invoked it using a CICS command
(LINK or XCTL - see "Commands for Passing Program Control" on page 176), or
from a previous transaction in a pseudoconversational sequence. It is in
halfword binary form ("PIC 89(4) COMP"). See "Chapter 3-6. Program Control"

Chapter 3-3. More About BMS 143

the EXEC interface block

on page 175 and "Chapter 3-5. Saving Data and Communicating Between
Transactions" on page 165 for more information on COMMAREA.

EIBCPOSN
The position of the cursor at the time of the last input command, for 3270-like
devices only. This position is expressed as a single number relative to position
zero on the screen (row 1, column 1), in the same way that you specify the
CURSOR parameter on a SEND MAP command. It's also in halfword binary
form ("PIC S9(4) COMP").

After a RECEIVE MAP command, your program can find the inbound cursor
position by inspecting the value held in EIBCPOSN.

EIBDATE
The date on which the current task started, in Julian form, with two leading
zeros. The COBOL "PICTURE" for the field is "S9(7) COMP-3", and the format
is: "OOYYDDD+".

EIBDS
The name of the last data set used in a file command (for example, read a record,
write a record). This field is eight characters long ("PIC X(8)") and is the value
in the "DATASET" parameter of the most recent file command.

EIBFN
A code indicating the last command that was issued by the task, in "PIC X(2)"
form. The first byte of this two-byte field indicates the type of command. File
commands have a code of hex 06, BMS commands are 18, and so on. The second
byte tells which particular command: 0602 means READ, 0604 means WRITE,
and so on. A full list of the codes appears in the APRM, and the subset that
applies to the command and option combinations in this Primer also appears in
"Chapter 4-5. Program ACCT04: Error Processing" of the COBOL Source Code
book that accompanies this Primer. The codes involved appear in the table
HEX-LIST (line 23) and are accessed by the routine CODE-LOOKUP (line 128).

EIBRCODE
The response code resulting from executing the last command. This is a six-byte
field ("PIC X(6)"), but for the command types covered in this Primer, you need
concern yourself only with the first byte. The HEX-LIST table we mentioned
above also contains a list of all the codes that can result from our subset of
commands and options. The APRM contains a full list of the possibilities.

EIBRSRCE
The name of the resource used in the most recent command that used such a
resource. For file commands, this value is the DATASET parameter, so that
EIBRSRCE has the same value as EIBDS after such a command. For temporary
storage commands, it is the name of the queue (the QUEUE parameter), and for
BMS commands it is the name of the terminal (the four-character name of the

144 CICS Application Programming Primer

AID byte definitions

input terminal, or EIBTRMID in the context of this Primer). Eight characters
are provided:for this information ("PIC X(8)"), although some names, like those
of terminals, fill only the first four positions.

EIBTASKN
The task number, as a seven-digit packed decimal number ("PIC 89(7) COMP-3").
CICS assigns a sequential number to each task it executes, and this number is
used to identify entries for the task in the Trace Table (see "Transaction
Dumps" on page 244).

EIBTIME
The time at which the current task started, also in "PIC 89(7) COMP-3" form,
with one leading zero: "OHHMMSS + ".

EIBTRMID
The name of the terminal associated with the task (the input terminal, usually,
or sometimes a printer, as in our AC03 and AC05 transaction types). This name
is four characters long, and the COBOL "PICTURE" is "X(4)".

EIBTRNID
The transaction identifier of the current task, four characters long ("PIC X(4)").

AID Byte Definitions

Getting back to the attention identifier, we can also tell what key was used to send
the input by looking at the EIBAID field, as noted above.

When a transaction is started, EIBAID is set according to the key used to send the
input that caused the transaction to get started. It retains this value through the
first RECEIVE command, which only formats the input already read, until after a
subsequent RECEIVE, at which time it is set to the value used to send that input
from the terminal.

EIBAID is one byte long and holds the actual attention identifier value used in the
3270 input stream. As it is hard to remember these values and hard to understand
code containing them, it is a good idea to use symbolic rather than absolute values
when testing EIBAID. CICS provides you with a precoded set which you simply copy
into your program by writing:

COPY DFHAID

somewhere in your Working-Storage Section. Figure 43 on page 146 shows some of
the definitions this brings into your program:

Chapter 3-3. More About BMS 145

AID byte definitions

01 DFHAID.
02 DFHNULL PIC x VALUE IS I I

02 DFHENTER PIC x VALUE IS QUOTE.
02 DFHCLEAR PIC x VALUE IS I I

-02 DFHCLRP PIC x VALUE IS I I

02 DFHPEN PIC x VALUE IS '='
02 DFHOPID PIC x VALUE IS 'W'.
02 DFHMSRE PIC x VALUE IS 'X'.
02 DFHSTRF PIC x VALUE IS I I

02 DFHTRIG PIC x VALUE IS 111 I

02 DFHPAl PIC x VALUE IS I% I•

02 DFHPA2 PIC x VALUE IS I) I•

02 DFHPA3 PIC x VALUE IS I I
I

02 DFHPFl PIC x VALUE IS I l' •
02 DFHPF2 PIC x VALUE IS I 2 I•

02 DFHPF23 PIC x VALUE IS I I

02 DFHPF24 PIC x VALUE IS I< I•

Figure 43. The Standard Attention Identifier Values

DFHENTER is the ENTER key, DFHPAl is Program Access (PA) Key 1, DFHPFl is
Program Function Key 1, and so on. As in the case of the DFHBMSCA macro, any
values above that appear to be spaces are not; they correspond to bit patterns for
which there is no printable character.

In other words, the HANDLE AID command we described on page 142 is equivalent to
executing:

IF EIBAID = DFHENTER, GO TO ENTERLBL.
IF EIBAID = DFHPF3, GO TO PF3LBL,
ELSE GO TO OTHERLBL.

right after the RECEIVE MAP command. Furthermore, this code produces the same
results whether executed before or after that first RECEIVE MAP command (or,
indeed, at any time until a second RECEIVE MAP command is executed).

Errors on BMS Commands

As we cover each group of commands in this Primer, we'll discuss what can go wrong.
We'll classify errors according to the categories described in "Handling Errors and
Exceptional Conditions" on page 90, and suggest how you might want to handle them
in your coding. Later, in "The HANDLE CONDITION Command" on page 194, we'll
explain how to branch when an error occurs.

146 CICS Application Programming Primer

MAPFAIL

There are two types of errors that can occur in the subset of BMS commands and map
options that we've covered here. They are known as MAPF AIL and INVMPSZ.
(Others may occur if you use the additional features of BMS outlined in the next
section. They are all described in the APRM.)

MAPF AIL Errors

MAPF AIL occurs on a RECEIVE MAP command when there are no fields at all on
the screen for BMS to map for you. This will happen if you issue a RECEIVE MAP
after the user has used one of the "short-read" keys (CLEAR or a program access key)
that we discussed in "3270 Input Data Stream" on page 28. It can also occur even if
the user does not use a short-read key. If, for example, you send a screen to be filled
in (without any fields in which the map or the program turns on the modified-data
tag), and the user presses the ENTER key or one of the program function keys
without keying any data into the screen, you'll get MAPF AIL.

The reason for the failure is essentially the same in both cases. With the short read,
the terminal does not send any screen data; hence no fields. In the other case, there
are no fields to send, because no modified-data tags have beep turned on.

MAPFAIL is almost invariably a user error (or an expected program condition). It
may occur on almost any RECEIVE MAP, and therefore you should handle it
explicitly in the program. For instance, Figure 44 shows the code that the example
application contains to deal with a MAPF AIL that occurs when the menu map is
received:

NO-MAP.
IF (EIBAID = DFHPAl OR DFHPA2 OR

DFHPA3 OR DFHENTER)
MOVE 2 TO MSG-NO, MOVE -1 TO SNAMEML,
GO TO MENU-RESEND.

MOVE MSG-TEXT (14) TO MSGMO.
NEW-MENU.

EXEC CICS SEND MAP('ACCTMNU')
MAPSET ('ACCTSET') FREEKB END-EXEC.

MENU-RESEND.
IF MSG-NO NOT = 0,

MOVE MSG-TEXT (MSG-NO) TO MSGMO.
EXEC CICS SEND MAP ('ACCTMNU')

MAPSET('ACCTSET') CURSOR DATAONLY
FRSET FREEKB END-EXEC.

Figure 44. Code to Handle MAPFAIL

This code gets executed if the MAPF AIL condition is raised because of the HANDLE
CONDITION executed earlier. It first tests what key was used to send. (We know it
isn't the CLEAR key, having checked that point earlier, to find out if the user wanted

Chapter 3-3. More About BMS 147

invalid map size

to "escape" from the current procedure.) If it was one of the other short-read keys, or
if it was ENTER without any data, we know that the screen is still intact and we
simply write a message into the message area of the screen reminding the user to use
only ENTER or CLEAR, and to key some data in unless he or she is using the CLEAR
key to escape. If the failure has some other cause, the program writes the whole map
back to the screen, including a similar message, to ensure that the user is looking at
a good screen and knows what to do next.

A HANDLE AID command takes precedence over a HANDLE CONDITION command.
So here, for example, if an AID is received for which a HANDLE AID is active,
c.ontrol will pass to the label specified regardless of the occurrence of, say, a
MAPF AIL con di ti on.

INVMPSZ Errors

INVMPSZ usually results from a coding error. It occurs on either SEND MAP or
RECEIVE MAP if the size of the map specified is too wide for the screen. Therefore,
you usually do not need to write code to handle it. If it occurs during debugging, the
transaction will end abnormally with a code indicating this error. The cause is either
that the SIZE parameter on the DF.HMDI macro is wrong, or the terminal is defined
incorrectly, or the application is being used from a terminal it does not support. Note
that if the last-mentioned cause was a possibility, you might want to write code to
send the user a message explaining the problem.

Other Features of BMS

BMS is a very powerful component of CICS and offers many facilities beyond those
we've discussed so far. We'll list some of the more interesti:qg ones here. They are all
described in the APRM. These features of BMS let you do the following:

• Copy what is on a screen to a printer. You can use the ISSUE PRINT
command or the local c"opy facilities of CICS to do this.

• Send formatted data to printers in other formats. In this Primer, we discuss
only one method of formatting the data for a printer, which is to use a map just
like the display screen for the printer, in combination with the PRINT option.
However, there are other ways to control the format of printed output, by
inserting new-line characters where you want them, and so on.

• Build a single screen with a series of SEND MAP commands, using more
than one map in the process. This is done with the ACCUM option of SEND
MAP.

• Build output messages of more than one screen. You can send output
messages that consist of a series of screens, which can be stored away by BMS

148 CICS Application Programming Prime~

other BMS features

until the entire sequence is complete. Then BMS provides a method for the user
to display these screens !ind page backward and forward through them at will,
without any support from your program. Multiple-screen outputs use the
PAGING option of SEND MAP. The PAGING and ACCUM options can be used
together, incidentally.

• Partition a single screen into sections, and treat each of these areas as a
separate screen. This needs a terminal with the appropriate partition support,
of course. You can write to and read from one of these mini-screens (or
partitions, as the devices call them) without affecting any of the others.

• Send output to terminals other than the one associated with the
transaction. This is called routing. It provides a second way, different from the
technique we'll use, to deal with the requirement in the example application of
sending output to a printer.

• Switch messages. The routing facility provides a basis for a transaction that
can be used to send a message from one terminal to another. Not surprisingly,
this is called message switching. CICS provides the transaction, which has the
identifier CMSG. Any CICS system that includes full-fu:µction BMS can make
this transaction available.

• Write formatted data to terminals without using maps (the SEND TEXT
command).

• Support additional 3270 features, such as color, the extended attributes
(extended color, programmed symbols, extended highlighting, data validation),
light pen, cursor select key, and magnetic slot reader.

• Support special facilities provided by VTAM, such as outboard formatting and
logical device controls. These facilities are discussed in sections of the same
name in the APRM.

• Support a wide variety of terminals with different physical characteristics.
BMS even provides facilities for limiting the dependence of the program on the
device characteristics; these are described under "Map Set Suffixing."

Now that you know how to talk to a terminal, the next thing you need to know about
is how to get something worthwhile to talk about. This means accessing files, and is
the next category of CICS services that we'll cover.

Chapter 3-3. More About BMS 149

reading a file

Chapter 3-4. Handling Files

CICS allows you to access file data in a variety of ways. In an online system, most
file accesses are random, because the transactions to be processed aren't batched and
sorted into any kind of order. Therefore CICS supports the usual direct access
methods: VSAM, DAM and ISAM. It also allows you to access data using data base
managers.

Of these, we'll cover only VSAM key-sequenced data sets, accessed by key, in this
Primer. Most of the material applies to ISAM and DAM and other forms of VSAM,
however. CICS also supports sequential access in several forms; one of these,
browsing, we'll cover in the coming section. The others we'll touch on later.

Before describing how you read and write files, we should explain briefly about an
important CICS table, the File Control Table (FCT). This table contains one entry for
each file used in any application in the system. The most important information kept
for each file is the symbolic file name. This must match the VSE file name or the
OS/VS DDNAME that you use in the JCL defining the file. The JCL statement, in
turn, is what connects the name with a real file. When a CICS program makes a file
request, it always uses the symbolic file name. CICS looks up this name in the FCT,
and from the information there makes the appropriate request of the operating
system. This technique keeps CICS programs independent not only of specific data
sets (the JCL does that), but of the JCL as well. Usually the symbolic file names are
assigned by the CICS systems staff.

In the examples which follow we'll use the symbolic file name "ACCTFIL" for the
account file and "ACCTIX" for its index.

Read Commands

The read commands that you can use are READ and READNEXT.

Reading a File Record

The command to read a single record from a file is:

EXEC CICS READ DATASET(filename) INTO(recarea)
LENGTH(length) RIDFLD(keyarea) option
option ... END-EXEC

Chapter 3-4. Handling Files 151

reading a file

filename
is the name of the data set from which you wish to read. It is required in all
READ commands. This is the CICS symbolic file name which identifies the FCT
entry for the file. File names can be up to 7 characters long (8 for OS) and, like
any parameter value, should be enclosed in quotes if they are literals.

recarea
is the name of the data area into which the record is to be read, usually a
structure in Working-Storage. The INTO is required for the uses of the READ
command discussed in this Primer.

length
is the maximum number of characters that may be read into the data area
specified. The LENGTH parameter is required for the uses of the READ
command we're covering in this Primer, and it must be a halfword binary value
(that is, it must have a PICTURE of "S9(4) COMP"). After the READ command
is completed, CICS replaces the maximum value you specify with the true length
of the record. For this reason, you must specify LENGTH as the name of a data
area rather than a literal. For the same reason, you must re-initialize this data
area if you use it for LENGTH more than once in the program. An overlength
record will raise an error condition.

key area
is the name of the data area containing the key of the record you wish to read.
This parameter is also required.

option
can be any of the following options which apply to this command. Except where
noted, you can use them in any combination.

UPDATE
means that you intend to update the record in the current transaction.
Specifying UPDATE gives your transaction exclusive control of the
requested record (possibly the whole control interval in the case of VSAM)
and invokes the file protection mechanisms we discussed in "Chapter 2-7.
A Basic Decision: Conversational or Pseudoconversational" on page 77.
Consequently, you should use it only when you actually need it. That is,
when you are ready to modify and rewrite the record.

EQUAL
means that you want only the record whose key exactly matches that
specified by RIDFLD. This is a default option, which you get if you either
specify it or fail to specify GTEQ.

152 CICS Application Programming Primer

reading a file

GTEQ
means that you want the first record whose key is greater than or equal to
the key you specified. You cannot use this option at the same time as
EQUAL. It provides one means of doing a generic read (a read where
only the first part of the key is required to match) and we use it for this
purpose in our application.

So, how do we read an account file record? ,,Well, in program ACCTOl, we need to
read the account file to find out whether the requested record is there or not. The
command we neeu is:

EXEC CICS READ DATASET('ACCTFIL') RIDFLD(ACCTC)
INTO(ACCTREC) LENGTH(ACCT-LNG) END-EXEC

Here ACCTC is where we've stored the account number taken from the menu map,
and ACCT-LNG is a constant in Working-Storage defined as the expected length of a
record in the account file:

02 ACCT-LNG PIC S9(4) COMP VALUE +383.

We've asked that the record be placed in the data area named "ACCTREC," so
ACCTREC should be a data structure corresponding to the file record. We could
define this structure directly in the program, but we'll also need it in program
ACCT02. So we'll put the record definition into a library and copy it into this
program instead:

01 ACCTREC. COPY ACCTREC.

In any application, in fact, it is a good idea to keep your record layouts in a library
and copy them into the programs that need them. Even in the simplest of
applications, the same record is usually used by several programs, and this procedure
prevents programs from using different definitions of the same thing.

This argument applies equally well to any structure used in common by multiple
programs. Map DSECTs are a prime example, as are parameter lists and
communication areas, which we'll discuss later. Apart from its value in the initial
programming stage of an application, this technique greatly reduces the effort and
hazards associated with any change to a record or map format. You can make the
changes in just one place (your library) and then simply recompile all the affected
programs.

Figure 45 shows the COBOL record definition we need for the account file in the
example application.

Chapter 3-4. Handling Files 153

the account file record

* ACCTREC - ACCOUNT FILE RECORD
02 ACCTDO PIC X(S).
02 SN AME DO PIC X (18).
02 FNAMEDO PIC X(l2).
02 MIDO PIC X.
02 TTL DO PICX(4).
02 TEL DO PIC X(lO).
02 ADDRlDO PIC X (24).
02 ADDR2DO PIC X (24).
02 ADDR3DO PIC X(24).
02 AUTHlDO PIC X(32).
02 AUTH2DO PIC X(32).
02 AUTH3DO PIC X(32).
02 AUTH4DO PIC X(32).
02 CARDS DO PIC X.
02 IMO DO PICX(2).
02 IDAYDO PIC X(2).
02 IYRDO PIC X(2).
02 RSNDO PIC X.
02 CCODEDO PIC X.
02 APPRDO PIC X(3).
02 SCODElDO PIC X.
02 SCODE2DO PIC X.
02 SCODE3DO PIC X.
02 STATDO PICX(2).
02 LIMITDO PICX(8).
02 PAY-HIST OCCURS 3.

04 BAL PIC x (8).
04 BMO PIC 9 (2) .
04 BDAY PIC 9 (2) .
04 BYR PIC 9 (2) .
04 BAMT PIC x (8).
04 PMO PIC 9 (2).
04 PDAY PIC 9 (2) .
04 PYR PIC 9 (2).
04 PAMT PIC x (8).

Figure 45. The COBOL Record Definition for the Account File

We'll not dwell on the naming conventions of the data items that we're leaving to our
assumed batch processing system. Nor shall we have anything much to say about the
behavior of this batch system. In other words, don't worry about it!

We also need a record definition for the index file records. See Figure 46 on
page 155.

154 CICS Application Programming Primer

* ACIXREC - INDEX FILE
02 SNAMEDO
02 ACCTDO
02 FNAMEDO
02 MIDO
02 TTLDO
02 ADDRlDO
02 STATDO
02 LIMITDO

RECORD
PIC X (12).
PIC 9(5).
PIC X(7).
PIC X.
PICX(4).
PICX(24).
PIC X(2).
PICX(8).

browsing a file

Figure 46. The COBOL Record Definition for the Index File Records

You may notice that we've chosen many of the field names in the account record to
match the output subfields in the detail map. We did this because when we display a
record from the file on the screen, we have to move many fields from the recMiitl to the
symbolic description map. This choice of names allows us to use MOVE
CORRESPONDING instead of writing out the individual moves. It allows us to do
the same thing going from the screen to the file, bec.ause the input and output fields
on the screen overlay each other exactly, as we noted earlier.

Browsing a File

In program ACCTOl, when we search by name, we need to point to a particular record
in the file , based on a random key. Then we start reading the file sequentially from
that point on. The need for this combination of random and sequential file access,
called browsing, arises frequently in online applications. Consequently, CICS
provides a special set of browse commands: STARTER, READNEXT, and ENDER.

Starting the Browse Operation

The STARTER (start browse) command gets the process started. It tells CICS where
in the file you want to start reading. The format is:

EXEC CICS STARTER DATASET(filename)
RIDFLD(keyarea) option END-EXEC

The DATASET and RIDFLD parameters are the same as in a READ command. The
options allowed are GTEQ and EQUAL; you cannot use them both. They are defined
as for READ, except that this time GTEQ is assumed by default. UPDATE isn't
allowed; file browsing is strictly a read-only operation.

Chapter 3-4. Handling Files 155

the READNEXT command

Reading the Next Record

Starting a oiowse does not make the first eligible record available to your program; it
merely tells CICS where you want to start when you begin issuing the sequential read
commands.

To get the first record, and for each one in sequence after that, you use the
READNEXT command:

EXEC CICS READNEXT DATASET(filename)
INTO(recarea) LENGTH(length)
RIDFLD(fdbkarea) END-EXEC

The DATASET, INTO and LENGTH parameters are defined in the same way as they
are in the READ command. You only need the DATASET parameter because CICS
allows you to browse several files at once, and this tells which one you want to read
next. Note, however, that you cannot name a dataset in a READNEXT command
unless you've first issued a ST ARTER command for it.

The RIDFLD parameter is used in a somewhat different way. On the READ and
ST ARTER commands, RIDFLD carries information from the program to CICS; on
READNEXT, the flow is primarily in the other direction: RIDFLD points to a data
area into which CICS will "feed back" the key of the record it just read. Do make
sure that RIDFLD points to an area large enough to contain the full key; otherwise
the adjacent field(s) in storage will be overwritten. Don't change it, either, because
you'll interrupt the sequential flow of the browse operation.

(There is a way to do what is called "skip sequential" processing in VSAM by altering
the contents of this key area between READNEXT commands. Although we won't be
covering this here, we mention it only to explain why you should not inadvertently
change the contents of "fdbkarea" while browsing the file.)

Finishing the Browse Operation

When you've finished reading a file sequentially, you terminate the browse with the
ENDER command:

EXEC CICS ENDBR DATASET(filename) END-EXEC

Here DATASET functions as it did in the READNEXT command; it tells CICS which
browse is being terminated, and it must name a data set for which a ST ARTER has
been issued ear lier.

156 CICS Application Programming Primer

using the browse commands

Using the Browse Commands in the Example Application

Let's write the code we need to do the example. The first thing we have to do is
construct a key that will start the browse in the right place. The key of the index file
consists of the first 12 characters of the surname followed by an accoU:nt number. We
want to build a key that consists of the characters the user keyed in as the surname,
followed by something smaller than any file key that starts out the same way. Then
we can use the GTEQ option on our ST ARTBR command to get the first qualifying
record. If we define: '

04 BRKEY.

Then writing:

06 BRKEY-SNAME PIC X(12).
06 BRKEY-ACCT PIC X(S).

MOVE SNAMEC TO BRKEY-SNAME.
MOVE LOW-VALUES TO BRKEY-ACCT.

should do the trick. SNAMEC is where we saved the surname from the input menu
(SNAMEMI) earlier in the code. Because CICS pads what the user keys with spaces
to produce SNAMEMI, and spaces are lower in the collating sequence than any
letter, we can be sure that BRKEY will .be smaller than the key of any eligible record
in the file.

We also need to know where to stop the browse.

Certainly we'll stop when we overflow the display capacity of the screen, but we may
run out of eligible names befqre that. So we need to construct a surname value that
is the highest alphabetically that could meet our match criteria. If the surname in
the record exceeds this value, we will know that we've read all the (possibly) eligible
records. If this limiting value is named MAX-SNAME and has a picture of "X(12),"
then:

MOVE SNAMEC TO MAX-SNAME.
TRANSFORM MAX-SNAME FROM SPACES TO HIGH-VALUES.

should give the right cutoff.

Finally, as we read, we need to test whether the first name matches sufficiently to
display the record on the screen or not. If we define MIN-FNAME as the smallest
allowable value and MAX-FNAME as the largest, and if FNAMEC is where we held
the first name from the input screen, then we need the following code:

Chapter 3-4. Handling Files 157

using ihe browse commands

MOVE FNAMEC TO MIN-FNAME, MAX-FNAME.
TRANSFORM MIN-FNAME FROM SPACES TO LOW-VALUES.
TRANSFORM MAX-FNAME FROM SPACES TO HIGH-VALUES.

Thus, Figure 47 on page 159 shows the code we need to produce the name summary.
This code first starts a browse on the index file. Then it begins a loop in which it:

1. Reads the next sequential record in the file.

This may result in an ENDFILE condition, causing a transfer to paragraph
SRCH-DONE.

2. Tests whether the surname in the record is beyond the last in the file that might
qualify, and exits the loop to SRCH-DONE if so.

3. Otherwise, determines if the record is eligible on the basis of first name and, if
not, returns to the beginning of the loop to check the next record.

4. Determines, if the record is eligible, if it will still fit on the screen. (We need to
read one "hit" beyond the point of using up all the space on the screen so that we
can tell the user whether there are going to be more names or not.)

5. Adds a message to the output map if the current name won't fit, saying there are
more names and how to get them, and then exits the loop at SRCH-DONE.

6. Builds an output line for the map if the name will fit, and returns to the
beginning of the loop to check for more hits.

After the loop, at SRCH-DONE, when all eligible names have been read or the screen
is full, the program terminates the browse. At this point the name search output is
essentially ready to be sent back to the user.

There are two other browse commands. We'll not cover them here, but you can read
about them in the APRM. The READPREV command is almost like READNEXT,
except that it lets you proceed backward through a data set instead of forward. The
RESETER command allows you to reset your starting point in the middle of a browse.

Write Commands

There are three file output commands: REWRITE modifies a record that is already on
a file, WRITE adds a new record, DELETE deletes an existing record from a file.

158 CICS Application Programming Primer

rewriting a record

SRCH-RESUME.
EXEC CICS STARTER DATASET('ACCTIX') RIDFLD(BRKEY) GTEQ

END-EXEC.
SRCH-LOOP.

EXEC CICS READNEXT DATASET('ACCTIX') INTO(ACIXREC)
LENGTH(ACIX-LNG) RIDFLD(BRKEY) END-EXEC.

IF SNAMEDO IN ACIXREC > MAX-SNAME GO TO SRCH-DONE.
IF FNAMEDO IN ACIXREC < MIN-FNAME OR

FNAMEDO IN ACIXREC > MAX-FNAME, GO TO SRCH-LOOP.
ADD 1 TO LINE-CNT.
IF LINE-CNT > MAX-LINES,

MOVE MSG-TEXT (15) TO MSGMO,
MOVE DFHBMBRY TO MSGMA, GO TO SRCH-DONE.

MOVE CORRESPONDING ACIXREC TO SUM-LINE.
MOVE SUM-LINE TO SUMLNMO (LINE-CNT).
GO TO SRCH-LOOP.

SRCH-DONE.
EXEC CICS ENDBR DATASET('ACCTIX') END-EXEC.

Figure 4 7. The Name Summary Search Code

Rewriting a File Record

The REWRITE command updates the record you've just read. You can use it only
after you've performed a "read for update" by executing a READ command for the
same record with UPDATE specified. REWRITE looks like this:

EXEC CICS REWRITE DATASET(filename)
FROM(recarea) LENGTH(length) END-EXEC

filename
has the same meaning as in the READ command: it is the CICS name of the file
you are updating. You must specify it.

recarea
is the name of the data area that contains the updated version of the record to
be written to the file. This parameter is also required.

length
is the length of the (updated) version of the record. You must specify length, as
in a READ command, and it must be a halfword binary value.

Chapter 3-4. Handling Files 159

adding and deleting file records

Adding (Writing) a File Record

The WRITE command adds a new record to the file. The parameters for WRITE are
almost the same as for REWRITE, except that you have to identify the record with
the RIDFLD opti-0n. (You do not do this with the REWRITE command because the
record was identified by the previous READ operation on the same data set.) The
format of the WRITE command is:

EXEC CICS WRITE DATASET(filename) FROM(recarea)
LENGTH(length) RIDFLD(keyarea) END-EXEC

keyarea
is the data area containing the key of the record to be written. The RIDFLD
parameter is required on the WRITE command.

Deleting a File Record

The DELETE command deletes a record from the file, and looks like this:

EXEC CICS DELETE DATASET(filename)
RIDFLD(keyarea) END-EXEC

The parameters are defined in the same way as for the WRITE and REWRITE
commands. You can delete a record directly, without reading it for update first.
When you do this you must specify the key of the record to be deleted by using
RIDFLD. Alternatively, you can decide to delete a record after you've read it for
update. In this case, you must omit RIDFLD.

Using the Write Commands in the Example Application

Program ACCT02 uses all three of the file output commands. For add requests, the
program first constructs a new record in a structure named NEW-ACCTREC. It then
issues the command:

EXEC CICS WRITE DATASET('ACCTFIL')
FROM(NEW-ACCTREC) RIDFLD(ACCTC) LENGTH(ACCT-LNG)
END-EXEC

(The variables ACCTC and ACCT-LNG have the same definition as they did in the
example of the READ command in "Reading a File Record" on page 151.)

160 CICS Application Programming Primer

file command errors

For a modification, the program first reads the record in question, with UPDATE
specified:

IF REQC NOT = 'A',
EXEC CICS READ DATASET('ACCTFIL')

INTO(OLD-ACCTREC) RIDFLD(ACCTC) UPDATE
~ LENGTH(ACCT-LNG) END-EXEC

Then it builds a new version of the record, again at NEW-ACCTREC, by combining
the new data from the screen with the old record. Finally it replaces the old record
with the new one, in the command:

EXEC CICS REWRITE DATASET('ACCTFIL')
FROM (NEW-ACCTREC) LENGTH(ACCT-LNG) END-EXEC

For a deletion, the program uses the same READ command as in a modification.
Therefore the key (RIDFLD) isn't specified in the DELETE command, which is:

EXEC CICS DELETE DATASET('ACCTFIL') END-EXEC

Errors on File Commands

In contrast to the situation with BMS commands, a wide variety of things can go
wrong on the file commands. Here are the errors that can arise when you use the
subset of file commands that we've just described.

DSIDERR
means that the symbolic file name in a file command cannot be found in the File
Control Table. This is usually a coding error; look for a difference in spelling
between the command and the FCT entry. If it happens after the program is put
into actual use ("in production"), look for an accidental change to the entry for
that file in the FCT.

DUPREC
means that there is already a record in the file with the same key as the one
that you are trying to add with a WRITE command. This condition may result
from a user error or may be expected by the program. In either of these cases,
there should be specific code to handle the situation.

It can also fall into the "should-not-occur" category, the third type in the list
under "Handling Errors and Exceptional Conditions" on page 90, as it would in
our example application. In this case no special code is required beyond
identifying the problem to the user. The message to the user should tell him or

Chapter 3-4. Handling Files 161

file command errors

her what to say to the supervisor (or to the operations staff) and what he or she
is allowed to do next.

END FILE
means that you've attempted to read sequentially beyond the end of the file in a
browse (using the READNEXT command). This is a condition that you should
program for in any browse. In the example application, for instance, a search on
"Zuckerman" or a similar name might cause ENDFILE, and we'll code for it
explicitly by sending control to SRCH-DONE when it occurs.

ILLOGIC
is a catchall class for errors detected by VSAM that don't fall into one of the
other categories that CICS recognizes. By far the most common cause is trying
to read from or write into a brand-new (empty) VSAM key-sequenced data set
(KSDS). In order to use a KSDS in CICS, you must batch load at least one
record into it, because VSAM does not build the index component until the first
record arrives, and CICS cannot cope with a KSDS whose index isn't built. See
"Compiling and Link-Editing the Initialize Program" on page 271 for a suitable
job stream.

INVREQ
means that CICS regards your command as an invalid request for one of the
following reasons:

• You requested a type of operation (add, update, browse, and so on) that
wasn't included in the "service requests" (SERVREQ) parameter of the FCT
entry for the file in question.

• You tried to REWRITE a record without first reading it for update.

• You issued a DELETE command without specifying a key (RIDFLD), and
without first reading the target record for update.

• You issued a DELETE command specifying a key (RIDFLD) for a VSAM file
when a read for update command is outstanding.

• After one read for update, you issued another read for update for another
record in the same file without disposing of the first record (by a REWRITE,
UNLOCK, or DELETE command).

• You issued a READNEXT or an ENDBR command without first doing a
ST ARTBR on the same file.

Almost all of these INVREQ situations result from program logic errors and
should disappear during the course of debugging. The first one, however, can
also result from an inadvertent change to the "service requests" parameter in
the FCT entry for the file.

162 CICS Application Programming Primer

file command errors

IO ERR
means that the operating system is unable to read or write the file, presumably
because of physical damage. This can happen at any time, and there is usually
nothing to do in the program except to abend the transaction and inform the
user of the problem.

LENG ERR
could mean one of the following:

• You omitted the LENGTH parameter from a READ, READNEXT, WRITE or
REWRITE command, or

• The length you specified on a WRITE or REWRITE operation was greater
than the maximum record size for the file, or

• You specified a length shorter than the actual record length on a READ
operation to a file of variable length records,

• You indicated a wrong length on a READ, READNEXT, WRITE or
REWRITE command to a file containing fixed-length records.

LENGERR is usually caused by a coding error.

NOSPACE
means that there's no space in the file to fit the record you've just tried to put
there with a WRITE or REWRITE command. This doesn't mean that there's no
space at all in the data set; it simply means that the record with the particular
key you specified will not fit until the file is extended or reorganized. Like
IOERR, this condition may occur at any time, and should be handled
accordingly.

NOTFND
means that there is no record in the file with the key specified in the RIDFLD
parameter on a READ, READNEXT, STARTER, or DELETE command.4

NOTFND may result from a user error, may be expected by the program, or may
indicate an error in the program logic. In our example application, we provide
code to handle all three of these situations.

In program ACCTOl, when we check to see if the requested account record is on
file, we expect NOTFND if the request is to add a record. However, it shows a
user error (in the account number) if it happens on any other type of request.
For both these cases, we need to provide recovery code. On the other hand, by
the time we get to program ACCT02, we should have removed all the
possibilities for getting a "not found" response on a read. So its occurrence here

4 It is possible to raise NOTFND on a READNEXT command, but only in connection with
skip sequential processing - and that's beyond the scope of the Primer.

Chapter 3-4. Handling Files 163

other file services

would signal an error in our logic, to be handled like any other unexpected
error.

NOTO PEN
means that the file cited was closed at the time the command was executed.
NOTOPEN usually results from an operations problem, and you may want to
notify the operations staff of the problem, or send a message to the user to do so.

Other File Services

Before leaving the topic of file commands, we'll list some of the other facilities that
are available. All of these are described in the APRM.

• You can use relative-record VSAM files (RRDS) as well as key-sequenced files
(KSDS), and you can access a KSDS by relative byte address (RBA) instead of a
key.

• You can use VSAM files with alternate indexes.
• You can use BDAM and ISAM files.
• You can specify a partial (generic) key for a VSAM KSDS. The effect is similar,

but not identical, to what we did in the browse example, where we used a full-key
filled out with spaces and low-values in combination with the GTEQ option.

• You can release a record that you've read for update if you decide not to update
after all. The UNLOCK command is the means of doing this.

• You can access records without moving them into your program by using the SET
option on the READ command.

• You can delete a whole block of adjacent records in a VSAM file with a single
command (using the "generic delete" option).

• You can insert a whole block of records at once into a VSAM file ("mass insert"
option).

• You also can use VSAM entry-sequenced data sets (ESDS).

ESDS support is the second type of sequential file access provided in CICS (the first
was browsing). Two other forms of sequential support are also available, but they
aren't considered to be part of CICS's file services. One of these is the extrapartition
transient data facility, which allows you to read or write SAM files. In addition, the
intrapartition transient data and temporary storage facilities provide a means for
reading and writing data in queues, providing another form of sequential support.
See "Chapter 3-5. Saving Data and Communicating Between Transactions" on
page 165.

164 CICS Application Programming Primer

scratchpads and queues

Chapter 3-5. Saving Data and Communicating
Between Transactions

The Need for Scratchpad and Queuing Facilities

Most of the sequential file facilities we mentioned in the previous chapter are
provided because we need to save data from the execution of one transaction and pass
it to another that occurs later. We've already seen two instances of this requirement
in our example application.

The first resulted from our decision to use pseudoconversational transactions; we
need to save data from one interaction with the terminal to the next, even though no
task exists for that terminal for most of the intervening time. For this we need some
sort of scratchpad facility.

The second requirement came from our need to log the changes to the account file.
Here we require some sort of queuing facility: a way to add items to a list (one in
each update transaction) and read them later (in the log-print transaction).

There are several different scratchpad areas in CICS that you can use to transfer and
save data, within or between transactions. One of them is temporary storage,
which we'll cover in a moment. Others are listed below. The APRM describes how to
get access to these areas.

• A Communication Area or COMMAREA. This is an area used for passing data
both between programs within a transaction and between transactions at a given
terminal. We'll describe it in connection with the program control commands in
"Chapter 3-6. Program Control" on page 175. The COMMAREA is the
recommended scratchpad area.

It's the COMMAREA that offers an alternative solution to our double updating
problem. For example, it would be perfectly feasible for ACCTOl to pass the
contents of the account file record over to ACCT02 in the COMMAREA. ACCT02
could then re-retrieve the account record for update and compare it with the
version passed in COMMAREA. Any difference would show that some other task
had changed the account record.

Although this solution may be easier to code, it isn't as good from the user's point
of view. You see, with this scheme, we don't find out about any conflict over the
record until we're ready to update it. Unfortunately, that means we then have to
tell one user that his or her update cannot be made, but we can't tell them until
they've keyed in all the changed data.

Chapter 3-5. Between Transactions 165

creating a temporary storage queue

• The Common Work Area (known as the CW A). This is an extension of the
Common System Area (CSA), one of the basic system control blocks in CICS.
Any transaction can access the CWA, and since there's only one CWA for the
whole system, the format and use of this area must be agreed upon by all
transactions in all applications' that use it.

• The Transaction Work Area (TWA). This area is an extension of the basic
control block for a transaction, the Task Control Area (TCA), and therefore
exists only for the duration of a transaction. Consequently, you can use it to pass
data among programs executed in the same transaction (like COMMAREA), but
not between transactions (unlike COMMAREA). The TWA isn't commonly used
in command level programs.

Temporary Storage

CICS provides two queuing facilities: temporary storage and transient data. The
following paragraphs tell you how to use temporary storage, both for queuing and as
a scratchpad. Later, in "Transient Data" on page 173, we give a brief description of
transient data, outline the differences between the two facilities, and suggest when
you might use one or the other.

Temporary storage is just a sequential file; a VSAM data set on a disk, or an area of
main storage.

The CICS temporary storage facilities allow a task to create a queue of items, stored
under a name selected by the task. This queue, which you can think of as a
miniature sequential file, exists until some task deletes it. The task that deletes it
isn't usually the same task that created it, although of course it could be. The queue
can hold any number of items (from just one to 32767) and any number of different
tasks can add to it, read it, or change the contents of items in it.

When there is just one item in a queue, we think of this facility as a scratchpad; when
there is more than one, we think of it as a queuing facility. The items can be of
almost any length, and they can be of different lengths for the same queue. If you are
using the queue as a temporary sequential file, you can think of the items in it as
records.

Adding to, and Creating, a Temporary Storage Queue

The command to add one item to an existing temporary storage queue, or to create a
brand new queue with one item in it, looks like this:

166 CICS Application Programming Primer

replacing queue items

EXEC CICS WRITEQ TS QUEUE(qnarne) FROM(recarea)
LENGTH(length) option option ... END-EXEC

qname
is the name of the queue to which an item is to be added. If there is no queue
with the name you specify, CICS will create one, with the item you specified as
the first (and only) item in the queue. Queue names are up to eight characters
long. CICS imposes no restrictions on what names may be used, but there are
some things to be considered in choosing names, as we will point out later. You
should put this name in quotes if it is a literal.

recarea
is the name of the data area containing the item to be added.

length
is the length of that item (record). As in the file commands, length is given as a
halfword binary value ("PIC 89(4) COMP").

option
may be any of the following:

MAIN
causes the item to be written to an area of main storage rather than to
disk. Only use this option for queues of small size and very short lifetimes.

AUXILIARY
is the opposite of MAIN and causes the item to be written to a special
VSAM data set on disk. This is the default (you get it if you specify
AUXILIARY or if you fail to specify MAIN) and is what you should use in
most circumstances.

ITEM(itemno)
causes CICS to feed back the number of items held in the queue after
completion of the command. This number is placed in the "itemno" data
area, and you can check the contents after issuing the command. Like the
length, the item number is always a halfword binary value.

The MAIN or AUXILIARY option is effective only on the initial write that creates a
new queue because a single temporary storage queue cannot be split between main
storage and auxiliary storage. It is ignored on subsequent writes.

Replacing Items in a Temporary Storage Queue

Besides adding items to a queue, you can also replace any item in an existing queue
by specifying the REWRITE option. The command:

Chapter 3-5. Between Transactions 167

reading a que'\le

EXEC CICS WRITEQ TS QUEUE(qnarne) FROM(recarea)
LENGTH(length) ITEM(iternno) REWRITE END-EXEC

replaces the item whose number is stored in the "itemno" data area. Notice that the
function of the ITEM option is quite different from its function when you write a new
item. On a REWRITE, it is required, and passes information from your program to
CICS. When you are adding new items to a queue, it is optional, and is used to return
information from CICS to your program. The other parameters have the same
meanings as above.

Reading Temporary Storage Queues

To read an item from a temporary storage queue, you use:

EXEC CICS READQ TS QUEUE(qnarne) INTO(recarea)
LENGTH(length) option END-EXEC

qname
is the name of the queue you want to read. Put qname in quotes if it is a literal.

recarea
is the name of the data area into which you want to read the item.

length
is the name of a data area (defined as a binary halfword) with two functions:

1. Before issuing the command, you place in this area the maximum length of
record that the program will accept (that is, the length of "recarea"), so that
storage over lay will not occur if you read an unexpectedly long record. If
the record is longer than this length, CICS will truncate it to this size and
also turn on the LENGERR condition (about which more later).

2. CICS also returns the true length of the record (before any truncation) in
this area at the completion of the command.

option
may be either of two choices to indicate which record you want:

ITEM(itemno)
indicates that the number of the item to be read is stored at "itemno" (in
halfword binary form).

168 CICS Application Programming Primer

deleting and naming queues

NEXT
means that the next item on the queue is to be read. The first time a
READQ TS NEXT is issued for a queue by any transaction, the first item is
provided. The next time this command is issued, by any transaction, the
second item is provided, and so on. Moreover, the use of the ITEM option
by any transaction resets what CICS considers the "next" item to the one
following that specified in the ITEM option. Therefore, if more than one
transaction can be reading a single queue, you may want to use the ITEM
option to ensure that you read the intended item. NEXT is the default, if
you do not indicate either NEXT or ITEM.

You can read temporary storage queues, wholly or in part, any number of times. So,
reading the queue does not affect the contents of the queue.

Deleting Temporary Storage Queues

Once a temporary storage queue has been created, it stays in existence until explicitly
deleted by some transaction. The command to delete a queue is:

EXEC CICS DELETEQ TS QUEUE(qname) END-EXEC

where "qname" has the same meaning as on a READQ or WRITEQ command.

Notice that you cannot delete individual items from a temporary storage queue; you
have to delete the whole queue.

Naming Temporary Storage Queues

In writing any application that uses temporary storage, you should choose your queue
names with care. First of all, you should follow a convention for constructing names
to ensure that unrelated transactions don't inadvertently use the same queue name.
For this reason, many installations insist that all queue names begin with characters
that identify the application involved. Usually two to four characters are reserved for
this purpose, depending on the installation. In our example, for instance, we start all
our temporary storage queue names with the letters AC.

Queue names in CICS also provide a means of random access to scratchpad
information. In our example, we're interested in keeping information about account
numbers in a scratchpad area. If we include the account number in the queue name,
we can read the scratchpad information concerning that account number directly,
without any need to search the scratchpad.

Another example of using the queue name as an index occurs when you store data
between transactions for a particular terminal. In this case, the first of two
transactions stores the data to be passed in a queue whose name is formed from the

Chapter 3-5. Between Transactions 169

how we use temporary storage

terminal name plus some constant. The last four letters of the queue name are most
often used for the terminal identifier. Then the second transaction can find the data
for its terminal directly, by constructing the queue name from the name of its own
input terminal plus the same constant.

Using Temporary Storage in the Example Application

Let's see how we'll use temporary storage in the example application for our
scratchpad requirements. In program ACCTOl, we need to find out whether any other
task is currently updating the account record that our terminal has asked to update.

We want to observe the house rule that all temporary storage for this particular
application should start with the letters "AC", and at the same time take advantage of
the indexing aspect of temporary storage names; so we'll do as follows. We'll have
one temporary storage queue for each account number in use. The name of the queue
will be "ACO" followed by the account number, defined as follows in Working-Storage.
(The 0 merely fills out the queue name to the allowed eight characters).

02 USE-QID.
04 USE-QIDl
04 USE-QID2

PIC X(3) VALUE 'ACO'.
PIC X(S).

The queue will contain just one item, which will tell what terminal is updating the
record for that account number, and the date and time at which it started doing so.
The definition of this record, also in Working-Storage, will be:

02 USE-REC.
04 USE-TERM
04 USE-TIME
04 USE-DATE

PIC X(4).
PIC S9(7) COMP-3.
PIC S9(7) COMP-3.

We include the date and time along with the terminal name in the scratchpad entry,
so that we can find out whether the account number is currently in use, or whether
the scratchpad record is there because of an earlier update attempt that wasn't
completed properly. See "Chapter 2-7. A Basic Decision: Conversational or
Pseudoconversational" on page 77 for a discussion of this possibility.

The first test to check whether the record is in use, then, is:

MOVE ACCTC TO USE-QID2.
EXEC CICS READQ TS QUEUE(USE-QID) INTO(USE-REC)

ITEM(USE-ITEM) LENGTH(USE-LNG) END-EXEC.

170 CICS Application Programming Primer

how we use temporary storage

Here USE-ITEM and USE-LNG are defined in Working-Storage and have initial
values of 1 and 12, respectively.

The response we're hoping for on this command is that the read failed because no
such queue exists. This will raise the QIDERR exception condition. If we do not get
this response, we'll have to look at the scratchpad entry that we read to see whether
this is a recent entry or an old, expired one. To do this we'll simply compare the time
and date in the scratchpad entry with the time and date when the current transaction
started (information that is available in the EIB).

If we find out that the account number is not in use, then the next step is to claim it
for the terminal that entered the input. If there is no scratchpad record for this
number, then we need:

MOVE EIBTRMID TO USE-TERM,
MOVE EIBTIME TO USE-TIME.
MOVE EIBDATE TO USE-DATE.
EXEC CICS WRITEQ TS QUEUE(USE-QID)

FROM(USE-REC) LENGTH(l2) END-EXEC.

•

If, on the other hand, there was an old, expired record in temporary storage for this
number, then the code required is:

MOVE EIBTRMID TO USE-TERM,
MOVE EIBTIME TO USE-TIME.
MOVE EIBDATE TO USE-DATE.
EXEC CICS WRITEQ TS QUEUE(USE-QID)

FROM(USE-REC) LENGTH(l2) ITEM(USE-ITEM) REWRITE END-EXEC.

Here again USE-ITEM is defined to be a halfword binary value of 1, because we want
to rewrite the first (and presumably only) item in the queue.

This same scratchpad entry gets erased in program ACCT02 when we've finished
updating, with the command:

EXEC CICS DELETEQ TS QUEUE(USE-QID) END-EXEC.

where the data area USE-QID has been defined and set up in the same way as it was
in program ACCTOl.

Chapter 3-5. Between Transactions 171

temporary storage errors

Errors on Temporary Storage Commands

You can experience six different types of error on the temporary storage commands
that we've described:

INVREQ
means that the record length you specified is invalid (zero or negative). This is
almost always the result of a problem in the code.

IO ERR
means the same thing on a temporary storage command as it does on a file
command. It means that there is an unrecoverable input/output error, in this
case on the temporary storage file, a VSAM entry-sequenced data set (ESDS).

ITEM ERR
means that you specified an item number that does not exist. This can happen
on either a READQ TS command or a WRITEQ TS with REWRITE specified.
ITEMERR may be a condition the program expects, such as when a program
reads until it exhausts a queue, or it may result from an error in the program
logic.

LENGERR
occurs when you read an item that is longer than the maximum specified in the
LENGTH parameter. It usually means a problem in the program logic.

NOSPACE
means that there isn't enough space left in the temporary storage data set, or in
main storage (if MAIN is specified) for the record you just wrote. Unlike what
happens with most other error conditions, CICS does not terminate your task
when this occurs. If you provide code to handle the possibility, CICS sends
control there, as it does for any unusual condition. If you don't, CICS simply
suspends the task until some other task in the system releases enough temporary
storage space for your record to fit.

QIDERR
means that the queue that you've named in a READQ command, or in a
WRITEQ with REWRITE specified, does not exist. It might indicate a program
error, or it might be a condition expected by the program. When we read
temporary storage to find out whether a particular account number is in use, for
example, QIDERR is the expected response and indicates that the account
number in question is not in use.

172 CICS Application Programming Primer

transient data

Transient Data

There is another facility in CICS, called transient data, one form of which is very
similar to temporary storage. It comes in two flavors - intrapartition and
extrapartition - and it is intrapartition transient data that is so much like temporary
storage. Both temporary storage and transient data allow you to write and read
queues of data items, which are often essentially small sequential files. Like
temporary storage queues, intrapartition transient data queues are kept in a single
VSAM data set managed by CICS.

There are some important differences, however:

• You must define the name and certain other characteristics of every transient
data queue to CICS in the Destination Control Table (DCT). This means that
the names must be known before CICS is brought up, so you cannot just create a
transient data queue with an arbitrary name, as we did for temporary storage in
the example.

• · You cannot modify an item in a transient data queue; you can only add new items
to the end of the queue. The Write Transient Data command has nothing
corresponding to the ITEM option.

• Transient data queues must be read sequentially. That is, the Read Transient
Data command has nothing corresponding to the ITEM option.

Furthermore, a read operation on transient data is a destructive read. That is,
once a transaction has read an item on the queue, that item cannot be read again
by that transaction or by any other.

• Transient data comes with a very useful mechanism known as a trigger. You can
request, in the DCT, that CICS initiate a transaction whenever the number of
items in a transient data queue reaches a certain value. The DCT entry for the
queue tells what this critical number of items is (the "trigger level"), and the
name of the transaction to be initiated. You can also specify that a particular
terminal must be available to this transaction. (You do this simply by giving the
same name to both the terminal and the queue.) In this case, the transaction
doesn't start until both the trigger level is reached and the terminal in question is
available.

This can be very useful for printing, as you'll soon see.

• Transient data queues are always written to a file; there is no counterpart to the
MAIN option that is used in temporary storage commands.

• The recovery options for transient data are more varied.

Chapter 3-5. Between Transactions 173

transient data

Extrapartition transient data is the means by which CICS supports standard
sequential (SAM) files. The commands used for extrapartition queues are the same as
for intrapartition queues, and each queue requires a DCT entry. In this case,
however, a read or write operation is actually a read or write to a sequential fi le, and
each queue is a file. You can either read or write an extra partition queue, but not
both. The trigger mechanism and the recovery options mentioned above do not apply
to extrapartition queues.

In the example application, we could have used transient data instead of temporary
storage for our log of changes, and it would have been a natural choice. If we had
chosen an intrapartition queue, then we'd still need a transaction to print the log
(very similar to the one we defined using temporary storage). We might even have
specified in the DCT that we wanted that transaction started every time the number
of items logged (the length of the queue) reached 100, or some other limit.

Alternatively, we might have selected an extrapartition queue. In this case we'd be
creating a SAM file, which could be printed by a batch program. In fact, if you need
to use or create SAM files in a CICS application, you must use transient data.

On the other hand, transient data isn't appropriate for our scratchpad use of
temporary storage. Because all the queue names have to be defined beforehand, we
could not use the trick of including the account number in the name to get direct
access to the scratchpad item we want. Moreover, the fact that an item on the queue
can be read only once would have caused us trouble.

17 4 CICS Application Programming Primer

PPT and PCT

Chapter 3-6. Program Control

As we explained earlier, a transaction (task) may execute several programs in the
course of completing its work. Two important tables in CICS govern the flow of
control among programs used in a task: the PPT and the PCT.

Tables for Program Control

The Processing Program Table (PPT) contains one entry for every program used by
any application in the CICS system. Each entry holds, among other things, three
particularly important pieces of information:

1. The language in which the program is written, which CICS needs to know in
order to set up its linkages and control blocks properly

2. How many tasks are using the program at the moment

3. Where the program is (in main storage and/or on disk).

In addition to the executable programs, anything that CICS must load in order to
respond to a command needs an entry in this table. For example, a physical map.

The other table is the Program Control Table (PCT), which isn't so much a program
table as a transaction table. There's an entry in this table for every transaction type
in the system (using "transaction" in the CICS sense of the word). The important
information kept about each transaction is the transaction identifier and the name of
the first program to be executed on behalf of the transaction.

You can see how these two tables work in concert:

1. The user types in a transaction identifier at the terminal (or the previous
transaction determined it).

2. CICS looks up this identifier in the PCT.

3. The PCT entry tells CICS which program to invoke first.

4. CICS looks up this program in the PPT, finds out where it is, and loads it if it
isn't already in main storage.

5. CICS builds the control blocks necessary for this particular combination of
transaction and terminal, using information from both PCT and PPT. For

Chapter 3-6. Program Control 175

LINK, XCTL, and RETURN

programs in command-level COBOL, like ours, this includes making a private
copy of Working-Storage for this particular execution of the program.

6. CICS passes control to the program, which begins running using the control
blocks for this terminal. This program may pass control to any other program in
the PPT, if necessary, in the course of completing the transaction.

Commands for Passing Program Control

There are two CICS commands for passing control from one program to another. One
is the LINK command, which is similar to a CALL statement in COBOL. The other is
the XCTL (transfer control) command, which has no COBOL counterpart. When one
program links to another, the first program stays in main storage. When the second
(linked-to) program finishes and gives up control, the first program resumes at the
point after the LINK. The linked-to program is considered to be operating at one
logical level lower than the program that does the linking.

In contrast, when one program transfers control to another, the first program is
considered terminated, and the second program operates at the same level as the first.
When the second program finishes, control is returned not to the first program, but to
whatever program last issued a LINK command.

Some people like to think of CICS itself as the highest program level in this process,
with the first program in the transaction as the next level down, and so on. If you
look at it from this point of view, CICS links to the program named in the PCT when
it initiates the transaction. When the transaction is complete, this program (or
another one operating at the same level) returns control to the next higher level,
which happens to be CICS itself. Figure 48 may help.

The LINK Command

The LINK command looks like this:

EXEC CICS LINK PROGRAM(pgmname)
COMMAREA (commarea) LENGTH(length) END-EXEC

pgmname
is the name of the program to which you wish to link. If the name is a literal,
enclose it in quotes. Program names can be up to eight characters long.

176 CICS Application Programming Primer

Level~--------

0 CIC /VS
CICS <

(1) (7)

v·------
Level Program 1

1 LIN

(2)

Level ~~ram 2
2 ~L·-------+-~>

(3)

Level
3

(4)

LINK, XCTL, and RETURN

Program 3
L NK

... RETURN

(6)

<

(5)

v-------
Program 4

... RETURN

Figure 48. Transferring Control Between Programs (Normal Returns)

commarea
is an optional parameter. It is the name of the area containing the data to be
passed and/or the area to which results are to be returned. You use it only if
you want to pass information to or receive information from the program being
linked to.

length
is the length of "commarea." This parameter is required only if COMMAREA is
present. Otherwise don't use it. Like the length parameter in other commands,
it must be a halfword binary value.

The XCTL Command

The XCTL command to transfer control is identical to the LINK command except for
the command verb itself:

EXEC CICS XCTL PROGRAM(pgmname)
COMMAREA(cornrnarea) LENGTH(length) END-EXEC

Chapter 3-6. Program Control 177

LINK, XCTL, and RETURN

The RETURN Command

The command to return control to the next higher level within a transaction is
simply:

EXEC CICS RETURN END-EXEC

When the program at the highest level for the transaction (Level 1 in the diagram)
returns control to CICS, however, there are two additional options that you can
specify:

1. You can say what transaction is to be executed when the next input comes from
the same terminal. (This is how we get into pseudoconversational mode.)

2. You can specify data that's to be passed on to that next transaction.

In this case the RETURN command has a slightly different form:

EXEC CICS RETURN TRANSID(nextid)
COMMAREA(commarea) LENGTH(length) END-EXEC

nextid
is the identifier of the next transaction (next transid) to be executed from the
terminal associated with the current transaction. This next transaction is the
one that gets executed the next time the terminal sends input , regardless of any
transaction identifier in that input. (Here's a way of overriding any user's
input.) The identifier should be enclosed in quotes if it is a literal. TRANSID is
an optional parameter.

commarea
is the name of the data area containing the data to be passed to the next
transaction. COMMAREA is also optional.

length
is the length of "commarea." LENGTH is required if COMMAREA is present,
and must not be there if COMMAREA was not specified.

178 CICS Application Programming Primer

CALLs and subroutines

The COBOL CALL Statement

As well as passing control to other programs by means of LINK and XCTL commands,
a CICS COBOL program can invoke another program with a standard COBOL CALL
statement. Although there's somewhat less system overhead (in other words, a
shorter path length) with this method, there are several considerations that may
count against it. For example:

• Unless you're using VS COBOL II, the called program cannot issue CICS
commands

·• A CALLed program remains in its last-used state after it returns control, so a
second CALL finds the program in this state. LINK and XCTL commands, on the
other hand, always find the "new" program in its initial state.

• You must link-edit the calling and called programs together and present them to
CICS as a single unit, with one name and one entry in the PPT. This has two
consequences:

It may result in a module that is quite large.
It prevents two programs that call the same program from sharing a copy of
the called program.

• Only static calls are allowed, not dynamic ones. Static calls result in modules
being link-edited together, whereas dynamic calls would use operating system
services that aren't allowed in CICS.

Subroutines Revisited

Now, the answer to that problem we met earlier - whether and how to break off a
substantial routine. For single-task efficiency, generally in-line code is best,
PERFORM next, straight CALL third, XCTL next, and LINK last. However, any of
the first three choices may make for a very long load unit, and that can impact system
behavior and response to other users.

Always use XCTL if it will do, of course, rather than LINK. That's just a program
logic issue; you either need control back or you don't. In our example, as you'll see,
we've broken our own rule and used a LINK (rather than an XCTL) to the
error-handling program. However, we do have an excuse ready See "Errors Within
the Example Application" on page 198.

The probability of the code getting used is another issue. If you have a long complex
routine for calculating withholding tax for veterans in a payroll system, but you use
it only if salary or dependents change and you have hardly any veterans, then by all
means put it in a separate routine and LINK to it.

Chapter 3-6. Program Control 179

CALLs and subroutines

Finally, how about breaking code into two parts? For example, let's take a standard
"edit and update if ok" module, like ACCT02 in our application. Figure 49 shows the
outline logic.

Edit input

, . New input . .

No

Update files

Figure 49. Outline Logic of a Standard "Edit and Update" Module.

If the edit and update logic are short, then it makes sense for the whole thing to be
one module. If both are rather long, on the other hand, there's a natural break after
the edit has been declared okay; the first program does up to point "A" and then
there's an XCTL to a second program.

Examples of Passing Control and Data Between
Programs and Transactions

Now that we've explained how to pass data from one transaction to another, you may
be wondering how the receiving program accesses this data. To show this, let's code a
few program control commands for the example application.

In several of the programs, when we meet an error from which we cannot recover, we
transfer control to the general-purpose error program, ACCT04. We pass three items
of information to ACCT04:

1. The name of the program that passed control (and where the error was detected)

180 CICS Application Programming Primer

CALLs and subroutines

2. The function that failed

3. The return code from the command that failed.

Figure 50 shows how this information looks in program ACCTOl's Working-Storage:

02 COMMAREA-FOR-ACCT04.
04 ERR-PGRMID PIC X(8) VALUE 'ACCTOl'.
04 ERR-FN PIC X.
04 ERR-RCODE PIC X.

Figure 50. Passing Information to the Error Program

The code in ACCTOl to pass control to ACCT04 is:

EXEC CICS LINK PROGRAM('ACCT04')
COMMAREA(COMMAREA-FOR-ACCT04) LENGTH(lO) END-EXEC

Notes:

1. VS COBOL II avoids the need for the programmer to compute LENGTH.

2. We'll discuss the use of LINK rather than XCTL in "Errors Within the Example
Application" on page 198

The program receiving control, ACCT04 in this case, defines this same area in its
Linkage Section, as shown in Figure 51.

LINKAGE SECTION.
01 DFHCOMMAREA.

02 ERR-PGRMID
02 ERR-CODE.

04 ERR-FN
04 ERR-RCODE

PIC X(8).

PIC X.
PIC X.

Figure 51. Receiving Information in the Error Program

This area must be the first 01 level in the Linkage Section, and you must call it
DFHCOMMAREA as shown in the example. You can then use the contents directly,
as follows:

MOVE ERR-PGRMID TO PGMEO.

Chapter 3-6. Program Control 181

which transaction next?

Communicating Between Transactions in the Example
Application

Apart from the LINK to our error-handling program, ACCT04, which is something of
a special case, there's no instance of one program linking to another in the example
application, and so no instance of return to a higher level within the transaction
either.

However, there are several different types of return to CICS. The simplest occurs in
program ACCTOl, after the user has indicated a wish to exit from the application. No
next transid is set, and no data is passed forward to the next transaction. The return
command is just:

EXEC CICS RETURN END-EXEC

In program ACCTOO, in contrast, we need to indicate that the next transaction to be
executed from the same terminal is ACOl, so the RETURN command is written:

EXEC CICS RETURN TRANSID('ACOl') END-EXEC

Later, in program ACCTOl, after we complete the initial processing of an update
request, we need to show that the next transaction to be executed is AC02. Not only
that, but we need to pass data to it as well. The data is the request-type code and the
account number that came in on the original map. The communications area in
Working-Storage where we've stored this information looks like this:

04 IN-REQ.
06 REQC
06 ACCTC

And the code needed is:

PIC X VALUE SPACES.
PIC X(S) VALUE SPACES.

EXEC CICS RETURN TRANSID('AC02')
COMMAREA(IN-REQ) LENGTH(6) END-EXEC.

When program ACCT02 is invoked, it finds the data passed to it in the same way as a
program to which control is passed by means of an XCTL or LINK command. That is,
the area is defined in the first 01 level in the Linkage Section, which is named
DFHCOMMAREA and has the same format as it did in the passing program. (We
happened to use the same names in these programs for the items passed, but that, of
course, isn't required.) So program ACCT02 contains the following:

182 CICS Application Programming Primer

LINKAGE SECTION.
01 DFHCOMMAREA.

02 REQC
02 ACCTC

PIC X.
PIC X(S).

errors

These variables are directly available to the program (the translator generates the
code necessary to make this happen).

Incidentally, if you wanted to pass a communications area from, say, Program 1 to
Program 3, you can simply define the area in the Linkage Section of Program 2, even
though it's not used in that program, and pass it as COMMAREA on the LINK (or
XCTL) to Program 3.

Errors on the Program Control Commands

CICS recognizes only two exceptional conditions on Program Control commands:

INVREQ
means that one of two things happened. Either (1) you specified COMMAREA
or LENGTH on a RETURN command in a program that was not at the highest
level (that is, a RETURN that would not terminate the transaction by returning
control to CICS), or (2) you specified the TRANSID option on a RETURN from a
task that had no terminal associated with it. (There are such tasks; see
"Chapter 3-7. Starting Another Task, and Other Time Services" on page 187.)
In either form, INVREQ usually means a programming error.

PG MID ERR
means that the program to which control was passed, on a LINK or an XCTL
command, cannot be found in the PPT or isn't in the library, or has been
disabled. It corresponds to DSIDERR on a file command, and has similar causes.
If it occurs during the testing phase, look for a spelling mismatch; if it occurs
once the system has been put into actual use ("in production"), have your
systems people check the PPT for damage.

Abending a Transaction

In addition to the normal return sequences that we've described, there is another
command that you use in abnormal circumstances. This is the ABEND command. It
returns control to CICS directly. Figure 48 showed a normal return from program 4
to program 3, and from program 3 to program 1. If, in contrast, an ABEND command
had been issued in program 4, the picture would then be as shown in Figure 52:

Chapter 3-6. Program Control 183

abending a transaction

Leve 1 .-------------.,
0 CIC /VS

CICS

(1)

v--------,
Level Program 1

1 LIN
... RETURN

(2)

Level ~Pro~ram 2
2 I XCTL------+---)

(3)

Level
3

(4)

Program 3
L NK

... RETURN

(5)

v------~

Program 4
... ABEND1

----'

Figure 52. Transferring Control Between Programs (After an Abend)

Use the ABEND command when a situation arises that the program cannot handle.
This may be a condition beyond control of the program, such as an input/output error
on a file, or it may simply be a combination of circumstances that "should not occur"
if the program logic is correct. In either case, ABEND is the right command to
terminate the transaction. The format is:

EXEC CICS ABEND ABCODE(abcode) END-EXEC

abcode
is simply a four-character code identifying the particular ABEND command. It
does two jobs: it tells CICS that you want a dump of your transaction, and it
identifies the dump. Enclose it in quotes if it is a literal.

In addition to returning control to CICS, the ABEND command has another very
important property: it causes CICS to back out all of the changes made by this
transaction to recoverable resources (see "Maintaining File Integrity" on page 79 if
you've forgotten what "back out" means).

In our example application, we use this command at the end of program ACCT04,
where we send control when we've encountered a situation which prevents us from
continuing the requested transaction. The code is:

184 CICS Application Programming Primer

producing a dump

EXEC CICS ABEND ABCODE('EACC') END-EXEC

Suppose, for example, that program ACCT02 successfully adds a new record to the
account file, but meets a "no-space" condition when trying to add the corresponding
new record to the index file. The resulting ABEND command issued in program
ACCT04 will:

• Produce a dump of all the main storage areas related to the transaction

• Remove the new record from the account file, so that the two files are still
synchronized with each other, even after the failure

• Return control to CICS.

Other Program Control Commands

There are two other program control commands that we'll mention here, but not cover
in detail.

The LOAD command brings a "program" (any phase or load module in the PPT) into
main storage but doesn't give it control. This is useful for tables of the type that are
assembled and stored in a program library, but that don't contain executable code.

The RELEASE command tells CICS that you've finished using such a "program".

Chapter 3-6. Program Control 185

starting another task

Chapter 3-7. Starting Another Task, and Other
Time Services

CICS allows one transaction (task) to start another one, as we noted in our discussion
about printed output. The usual reason for doing this is the one that arose in our
example: the originating task needs access to some facility it does not own, usually a
terminal other than the input terminal. In our case, we needed a printer to print the
log of account file changes.

There are sometimes other reasons as well. You might want a task to be executed at
a particular time, or you might want it to run at a different priority from the original
task, for instance.

Starting Another Task

The command to start another task is:

EXEC CICS START TRANSID(transid) TERMID(terrnid)
FROM(recarea) LENGTH(length) option END-EXEC

trans id
is the identifier of the transaction that is to be started. This parameter is
required. If the identifier is a literal, enclose it in quotes.

term id
is the identifier of the terminal that must be made available to the task being
started. This parameter is optional, and should only be specified if the
transaction requires a terminal. Again, if it is a literal, it must be enclosed in
quotes.

You may have to get this name from your systems people. It's the name they put
in the Terminal Control Table (TCT).

recarea
is the name of the data area that contains data to be passed to the transaction
being started. This parameter is optional.

Chapter 3-7. Starting a Task 187

what time?

length
is the length of the data being passed (that is, the length of recarea), in halfword
binary form. The LENGTH parameter is required if FROM is present, but
should not be present otherwise.

option
can be either INTERVAL or TIME:

INTERV AL(hhmmss)
tells CICS to start the transaction in hh hours, mm minutes and ss seconds
from the current time. The hours may be from 0 to 99, but the minutes and
seconds should not exceed 59. To start a task in 40 hours and 10 minutes,
you would write "INTERV AL(401000)" in your START command.

TIME(hhmmss)
tells CICS to start the transaction at a specific time, namely "hh:mm:ss."
Write the start time in the same format as the interval, using 24-hour
military time.

Note: Whereas an INTERVAL always specifies a time in the future (the
current time plus the interval specified), the time given in a TIME
parameter may be in either the future or the past relative to the time at
which the command is executed. The rules that CICS uses are as follows:

· • If the current time is 060000 (6 a.m.) or later, and the TIME value is
less than 6 hours before the current time, CICS assumes that you mean
a time in the past, and so the transaction is started as soon as possible,
just as if you had specified INTERV AL(O).

• If the current time is less than 060000, and the expiration time is less
than the current time, then the TIME is also considered to be in the
past. Note, however, that the TIME given is never taken to be before
midnight of the current day.

• Otherwise, CICS assumes that the time is in the future.

• If you specify a time with an hours component greater than 23, you are
specifying a time on a day following the current one. That is: a TIME
of 250000 means 1 a.m. on the day following the current one, and 490000
means 1 a.m. on the day after that.

If you don't specify either INTERVAL or TIME, CICS assumes that you
would like INTERV AL(O), which means right away.

188 CICS Application Programming Primer

the RETRIEVE command

Retrieving Data Passed in the START Command

If data is passed in the ST ART command, the transaction that gets started uses the
RETRIEVE command to get access to this data. The RETRIEVE command looks like
this:

EXEC CICS RETRIEVE INTO(recarea) LENGTH(length)
END-EXEC

Notice the difference between this RETRIEVE command and the RECEIVE command
described in "The RECEIVE MAP Command" on page 140. Both commands may be
used to get the initial input to a transaction, but they aren't interchangeable:
RECEIVE must be used in transactions that are initiated by input from a terminal,
and RETRIEVE must be used in transactions that were STARTed by another
transaction.

re care a
is the name of the data area into which the data is to be placed. This parameter
is required.

length
is the maximum length of data that can be read into recarea (that is, the length
of recarea). LENGTH is also required, and must be a halfword binary value.

Using the START and RETRIEVE Commands in
the Example Application

In our example application, program ACCTOl uses the START command when a user
asks for a record to be printed:

EXEC CICS START TRANSID('AC03') FROM(ACCTDTLO)
LENGTH(DTL-LNG) TERMID(PRTRC) END-EXEC

This ST ART command tells CICS to start transaction AC03 as soon as possible after
the printer whose name is in data-area PRTRC is available to be its terminal.

Program ACCT03, running on behalf of this transaction, in turn issues the following
RETRIEVE command to retrieve the data passed from program ACCTOl:

Chapter 3-7. Starting a Task 189

errors on START and RETRIEVE

EXEC CICS RETRIEVE INTO(ACCTDTLI) LENGTH(TS-LNG)
END-EXEC

ACCTDTLO and ACCTDTLI refer to the symbolic map structure, located in
Working-Storage in both programs. The map, of course, contains the data read by
transaction ACOl. This data is to be printed by AC03. DTL-LNG is in the
Working-Storage of program ACCTOI and is defined to be

PIC S9(4) COMP VALUE +751

which happens to be the length of the symbolic map area. TS-LNG has the same
definition in the Working-Storage of program ACCT03.

Errors on the START and RETRIEVE
Commands

A number of different problems may arise in connection with the START and
RETRIEVE commands that we've described.

INVTSREQ
means that the CICS system support for temporary storage, which is required for
START commands that specify the FROM option, was not present when a
RETRIEVE command was issued. This error is an example of the
system/application mismatch (category 4) described in "Handling Errors and
Exceptional Conditions" on page 90.

IO ERR
on a RETRIEVE or ST ART command means exactly what it does on a temporary
storage command: an input/output error on the temporary storage data set
where the data to be passed is stored.

LENG ERR
occurs when the length of the data retrieved by a RETRIEVE command exceeds
the value specified in the LENGTH parameter for the command. LENGERR
usually means an error in the program logic.

NOTFND
on a RETRIEVE command means that the requested data could not be found in
temporary storage. If a task issuing a RETRIEVE command was not started by
a START command, or if it was started by a START command with no FROM
parameter (in other words, no data), this condition will occur. Again, it usually
means a programming error.

190 CICS Application Programming Primer

other time services

TERMIDERR
occurs when the terminal specified in the TERMID parameter in a ST ART
command cannot be found in the Terminal Control Table. TERMIDERR is like
DSIDERR for files and PGMIDERR on Program Control commands. During the
test phase it usually indicates a problem in the program logic; on a production
system it usually means that something has happened to the TCT.

TRAN SID ERR
means that the transaction identifier specified in a START command cannot be
found in the PCT. Like TERMIDERR, it usually means a programming error
during the development of an application, or table damage if it occurs on a
production system.

Other Time Services

CICS provides a number of other time services, as well as some extra bits and pieces
on the ST ART and RETRIEVE commands. Among other things, a transaction in
execution can:

• Synchronize its operations with those of other tasks. Three different commands
are provided for this purpose:

The DELAY command suspends the processing of the issuing task until some
specified time or for a specified interval.
The POST command requests that the issuing task be notified when a
particular interval of time has elapsed or when some event has occurred.
The WAIT command suspends the issuing task until some specified event
occurs.

• Cancel the request issued in a previous START command, or in a POST command,
through the use of the CANCEL command.

• Ask for the time and date to be updated in the EIB (through the use of the
ASKTIME command).

• Assign a name to the data to be passed from the originating task to the started
task, through the use of the REQID option on the ST ART and RETRIEVE
commands.

• Queue up multiple items of data for a single task to be started, through the use of
the QUEUE option on the START command.

We don't use any of these in our example application, but at least you now know they
exist.

Chapter 3-7. Starting a Task 191

handling exceptional conditions

Chapter 3-8. Errors and Exceptional Conditions

Throughout the previous sections, we've cited ways in which CICS commands may
produce results other than those you intended (what CICS cheerfully calls
"exceptional conditions").

Commands are checked for validity as far as possible by the CICS translator. If errors
are detected at translate time the translator issues a suitable diagnostic and gives a
return code greater than 4. Such commands are said to be "syntactically invalid."
Programs containing syntactically invalid commands should never be executed and
we'll not discuss them any further.

Commands which are syntactically valid may nevertheless fail to execute successfully
for a variety of reasons. (And how!)

If a CICS command executes successfully the command is said to have a normal
response. Unless you take special action, CICS will check that a command executes
normally. If it doesn't, CICS will take some appropriate action and not in general
return control to the application. The special action is called "system action" and is
usually to abend ("abnormally end") the transaction. As we pointed out in "Handling
Errors and Exceptional Conditions" on page 90, this is almost never what you want
in these situations.

For many applications the CICS system action will be inappropriate and you'll need
to write some special code to be invoked in the event of non-normal response. What
sort of code?

Well, you have three choices. You can:

• Explicitly look out for, and act on, a specific error or exceptional condition.

• Choose to ignore a particular condition, carrying on with the next instruction as
if everything was normal. This involves the IGNORE CONDITION command.

• Ignore all conditions on a particular CICS command, again carrying on with the
next instruction as if everything was normal. This involves the NOHANDLE
option on the command concerned.

We chose to use the first method in our example application. It uses the HANDLE
CONDITION command.

We'll see what these other two choices entail in "Other Facilities for Exceptional
Conditions" on page 200.

Chapter 3-8. When Things Go Wrong 193

the HANDLE CONDITION command

So, before finally looking in detail at the COBOL code for our example, let's examine
our last CICS command, the HANDLE CONDITION command. It allows you to
control the sequence of execution in your programs when an error or other unusual
condition occurs.

The HANDLE CONDITION Command

The HANDLE CONDITION command tells CICS where to go when an exceptional
condition occurs. It looks like this:

EXEC CICS HANDLE CONDITION condition(label)
condition(label) ...
condition condition ... END-EXEC

condition

label

is the CICS name of the unusual condition for which you wish to establish
special processing (or return to default processing, as explained below). It can
be any of the exceptions that we've described in this part: IOERR, LENGERR,
NOTFND, and so on, and you can name up to 16 conditions in one HANDLE
CONDITION command.

is the name of the paragraph in your program to which CICS is to pass control
when the condition occurs. The paragraph name following a condition is
optional; if you .specify it you are saying that you want to handle the condition
in question with code in the program. If you omit it, you are saying that you
want CICS to use its default procedure for the condition (or, more likely, that
you want to reestablish the CICS default action after you had specified other
handling for the condition earlier).

For the handling code to take effect, a HANDLE CONDITION command must be
issued before you execute any command on which one of the conditions you list might
arise. Nothing visible happens when you execute the HANDLE CONDITION
command, although CICS updates its control blocks, of course. The effects are seen
later, when a command is executed that produces one of the exceptional conditions
now covered by the HANDLE CONDITION.

For example, in program ACCTOl, we want to provide program logic to handle the
following six exceptional conditions:

194 CICS Application Programming Primer

ACCTOl's error handling

1. A no input (MAPFAIL) condition when we read the input map.

This generally results from a keying error, and we would certainly annoy the user
if we allowed CICS to abend the transaction for this comparatively minor slip.
Therefore, we want to send a message to let the user correct the input instead.

2. A record not found (NOTFND) condition when we read the index file for a
customer name entered by the user.

This situation isn't an error; it simply means that there are no customers with
that particular name, and we'll so inform the user.

3. A record not found (NOTFND) condition when we try to read the account file
record named in the input.

NOTFND in this instance may actually be correct (if the user is trying to add a
record) and is at worst an error in the account number , to be treated like any
other input error.

4. An end of file (END FILE) condition when we're browsing through the index file
looking for all the matching records on a name search.

This isn't an error either, just a sign that we've run out of candidate names.

5. A no such entry (QIDERR) response to reading the scratchpad.

This is the expected result when we read temporary storage to see if anyone else
is updating the record we want to update. It means no one is using "our" record.

6. A terminal id error (TERMIDERR) when we start the AC03 transaction to print
a record.

This condition means that the user entered a printer name that is unknown to
CICS. We'll treat it like any other type of input error.

Putting all these possibilities together, we arrive at program ACCTOl's first HANDLE
CONDITION command, shown in Figure 53.

EXEC CICS HANDLE CONDITION MAPFAIL(NO-MAP)
NOTFND(SRCH-ANY)
ENDFILE(SRCH-DONE)
QIDERR(RSRV-1)
TERMIDERR(TERMID-ERR)
ERROR(OTHER-ERRORS) END-EXEC.

Figure 53. Program ACCTOl 's Error Condition Handling

Chapter 3-8. When Things Go Wrong 195

stopping an error loop

NO-MAP is the name of the paragraph where we handle a MAPFAIL condition;
SRCH-DONE is the paragraph where we handle an end-of-file on the index file (we
never read the account file sequentially, and so will not experience this condition
there); and RSRV-1 and TERMID-ERR are the paragraphs that handle the fifth and
sixth situations cited above, respectively.

The ERROR condition in this command covers all exceptional conditions, except:

• Those cited by name in this command or another HANDLE CONDITION
command executed previously in the program, and

• Those for which the CICS default action is not abnormal termination of the
program.

We've specified ERROR here because there are many other exceptional conditions
that can arise on the commands that we'll issue in this program, besides those listed
above. (Figure 54 on page 201 shows which conditions apply to each command.)
These conditions are all serious enough to prevent successful completion of the
transaction, and we don't want to handle each one individually, but we do want our
program to regain control long enough to send the user a message saying what
happened and what to do next.

The code at OTHER-ERRORS, where control goes on one of these other exceptional
conditions, starts with yet another HANDLE CONDITION command:

EXEC CICS HANDLE CONDITION ERROR END-EXEC.

This command disables the previous specification for conditions covered by ERROR
(the paragraph OTHER-ERRORS, where we are right now). This is a precaution to
prevent a loop. If we failed to do this, a command used in this error routine might
produce another condition covered by the catchall ERROR. In this event, CICS
would send control back to OTHER-ERRORS, where the same bad command would be
issued. (That's a recipe for disaster.)

Any other condition which could conceivably occur in our error handling (in this
module) and which we have specifically handled must also now be "unhandled" at this
point. However, here we're only handling MAPFAIL, NOTFND, ENDFILE, QIDERR,
TERMIDERR, and ITEMERR. None of these can possibly occur during our error
processing - the LINK to ACCT04. So it's enough for us to stop handling just the
ERROR condition.

196 CICS Application Programming Primer

changing "destinations"

Changing the HANDLE CONDITION "Destinations"

In the original HANDLE CONDITION command shown above, SRCH-ANY is the
name of the paragraph to which we want to pass control if "not found" occurs reading
the index file. Now this is not where we want control to go if we get that condition
trying to read the account file. CICS does not allow us to specify different NOTFND
destinations for different files, and so we have to do one of two things:

• Issue a single HANDLE CONDITION command and test which file was involved
at the beginning of the paragraph named to handle NOTFND condition. The
EIBDS field in the EIB tells which data set was used most recently in a command
and can be used for such a test.

• Issue a HANDLE CONDITION command appropriate for a NOTFND on the first
command issued that may encounter it (in our case, the READ of the index file)
and then, before the next command on which we want to specify a different
paragraph name for that same condition, issue another HANDLE CONDITION
command.

We chose to do the latter. The HANDLE CONDITION shown earlier is executed at
the very beginning of the program, before any other commands that might produce an
exceptional result are issued. The paragraph names it specifies remain in force until
explicitly changed by another HANDLE CONDITION or until control leaves the
program. Then after the program determines that the index file will not be used, and
be{ ore it tries to read the account file, a second HANDLE CONDITION command is
issued:

EXEC CICS HANDLE CONDITION NOTFND(NO-ACCT-RECORD)
END-EXEC.

This command changes where control goes on NOTFND from SRCH-ANY (the
paragraph name requested in the previous HANDLE CONDITION) to
NO-ACCT-RECORD. It has no effect on the specifications for the other conditions in
the first HANDLE CONDITION command; they remain just as they were.

A comparable situation arises with conditions that apply to several different
commands. You need to use one of the two techniques listed above for these
conditions also, unless the processing is the same for all the affected commands. For
example, you can raise a "length error" condition on a number of different commands.
In program ACCT02, we handle this problem in the same way that we did the multiple
files in program AC CTOL We first issue the command:

EXEC CICS HANDLE CONDITION QIDERR(NO-OWN)
MAPFAIL(NO-MAP) ERROR(NO-GOOD) END-EXEC.

Chapter 3-8. When Things Go Wrong 197

errors within our example

This causes control to go to NO-GOOD if LENGERR is raised and covers the READ
command which follows shortly. Later in the program, we have:

EXEC CICS HANDLE CONDITION LENGERR(NO-OWN)
END-EXEC.

EXEC CICS READQ TS QUEUE(USE-QID) INTO(USE-REC)
LENGTH(USE-LNG) ITEM(l) END-EXEC.

EXEC CICS HANDLE CONDITION LENGERR(NO-GOOD)
END-EXEC.

This sequence changes the specification for a length error to paragraph NO-OWN just
for the READQ TS command, and then promptly restores it to what it was before.

The alternative is to name LENGERR explicitly and only in the first HANDLE
CONDITION. Then the code at the paragraph named would test which command was
used and go to either NO-OWN or NO-GOOD accordingly. In fact, we've used this
technique for unrecoverable errors in our application. We eventually send control to
program ACCT04 for all such conditions. There we test both for the command which
failed (EIBFN in the EIB) and the particular exception (EIBRCODE) to find out what
message to send. Then we abend the transaction.

Errors Within the Example Application

To summarize, we've designed our error handling as follows:

1. We specifically HANDLE exceptional conditions if they are normal and can be
dealt with in the application's logic.

For example, we expect a NOTFND condition when the user tries to add a new
customer account - we read the account record just to make sure that it's not
already in the file.

2. We use a HANDLE CONDITION ERROR (whatever) command as a catchall to
deal with unexpected exceptional conditions. We've put this command near the
start of ACCTOl, ACCT02, and ACCT03.

3. If and when something unexpected happens, CICS passes control to our error
routine (named in the HANDLE CONDITION ERROR). The first thing the error
routine must do is issue another HANDLE CONDITION ERROR, but without a
label, to prevent a possible error handling loop, as we said a couple of pages back.

Next, the error routine gives control to ACCT04, passing the first byte of EIBFN
and EIBRCODE. We use a LINK, rather than an XCTL, so that we'll get the
failing program and its Working-Storage in the transaction dump. (If we use

198 CICS Application Programming Primer

our exception handling rules

XCTL, CICS releases the storage associated with the program we're "XCTLing"
from.)

ACCT04 finds out what's wrong, builds and displays an appropriate error screen,
and finally issues an ABEND command with a code of EACC, telling CICS to
produce the transaction dump.

So the dump will contain a predictable sequence of actions between the occurrence
of the actual error and ACCT04's last act. We'll show you how to follow this
sequence of events in "Working Through a Transaction Abend Dump Listing" on
page 246 and "A Session With EDF" on page 219.

There is a way of using XCTL rather than LINK when transferring control to our
error-handling program. It's also a perfectly reasonable alternative: put an EXEC
DUMP command immediately before each appropriate XCTL command in programs
ACCTOl, ACCT02, and ACCT03.

Of course, you'd probably want to remove these DUMP commands before putting the
system into production.

Our solution manages with just one ABEND command (a side effect of which is the
transaction dump we want) but has to use a LINK instead of the more efficient XCTL.

Summary of Exception Handling Rules

Having shown these examples, let's summarize the basic rules CICS uses for
processing exceptional conditions:

• When a command results in an unusual condition, CICS:

1. Does what is indicated in the most recently executed HANDLE CONDITION
command that names that condition explicitly. This may be to send control to
a paragraph in the program or it may result in the CICS default processing for
that condition (if the condition was named without a paragraph).

2. If no HANDLE CONDITION has been executed naming the condition, and the
default processing is to abend the transaction, then CICS will do whatever
was most recently indicated for the ERROR condition.

3. If ERROR has never been specified, or if the default is not to abend the
transaction, CICS will do its default processing.

• The processing specified for a particular condition in a HANDLE CONDITION
command remains in force until another HANDLE CONDITION is executed
naming that same condition, or until a subsequent IGNORE CONDITION for that
condition. (We've chosen not to use IGNORE CONDITION in our example.)

Chapter 3-8. When Things Go Wrong 199

other facilities

• It is possible for several exceptions to occur on the same command. CICS checks
for them in a fixed order, and acts on the first one it finds. The others are not
reported to the program.

• HANDLE CONDITION commands apply only to the program in which they are
issued. When control passes to a second program, they are deactivated; those
specified in the successor program, if any, take force. If this second program is at
a lower level and returns control to the first one, the deactivated HANDLE
CONDITION commands are reactivated there.

• Figure 54 on page 201 lists which unusual conditions may occur for the
commands and options covered in this Primer. Note that other exceptions may
arise if you use options or facilities of CICS beyond the scope of this Primer.

Other Facilities for Exceptional Conditions

As mentioned at the start of the chapter, CICS provides other means to control the
processing sequence when exception conditions occur:

• There's a command to intercept control directly when CICS determines that a
transaction should be terminated abnormally (the HANDLE ABEND command).
This is rather a last-ditch method in most cases.

• The set of paragraph names specified to handle exceptional conditions in a
program can be suspended temporarily (the PUSH HANDLE command), replaced
by others (with HANDLE CONDITION commands) and then restored (with a POP
HANDLE command). This is useful for closed subroutines within a program,
especially if they contain error-processing code.

PUSH HANDLE and POP HANDLE apply to the paragraph names specified on
HANDLE AID and HANDLE ABEND conditions, as well as those specified with
HANDLE CONDITION.

These facilities are described in the APRM.

200 CICS Application Programming Primer

COMMAND

SEND MAP
SEND CONTROL
RECEIVE MAP
HANDLE AID

READ

REWRITE, WRITE

DELETE, STARTER

READNEXT

END BR

WRITEQ TS

READQ TS
DELETEQ TS

LINK, XCTL
RETURN
ABEND

START

RETRIEVE

CONDITIONS

INVMPSZ
(none)

INVMPSZ, MAPFAIL
(none)

alternative approaches

DSIDERR, ILLOGIC, INVREQ, IOERR,
LENGERR, NOTFND, NOTOPEN
DSIDERR, DUPREC, ILLOGIC, IOERR,
INVREQ, LENGERR, NOSPACE, NOTOPEN
DSIDERR, ILLOGIC, INVREQ, IOERR,
NOTFND, NOTOPEN
DSIDERR, ENDFILE, ILLOGIC, IOERR,
INVREQ, LENGERR, NOTOPEN
DSIDERR, ILLOGIC, INVREQ, NOTOPEN

INVREQ, IOERR, ITEMERR, QIDERR,
NOSPACE * .
IOERR, ITEMERR, LENGERR, QIDERR
QI DERR

PGMIDERR
INVREQ

(none)

INVREQ, IOERR, TERMIDERR,
TRANS I DERR
INVREQ, INVTSREQ, IOERR, LENGERR,
NOTFND

HANDLE CONDITION (none)

*Of all these conditions, NOSPACE on the WRITEQ TS command is the only one for which CICS
default processing is not to terminate the transaction. When this condition is encountered, the default
processing is for CICS to suspend the transaction until space becomes available. (The theory is that
since many transactions use temporary storage, others will eventually give up enough space for this
one to continue.)

Figure 54. The Exception Conditions for the Primer's Subset of CICS Commands

An Alternative Philosophy

CICS processing of exceptional conditions can also be circumvented altogether.

Code the NOHANDLE option on the command. The NOHANDLE option, which you
can place on any command, causes all exceptions encountered on that single
command to be ignored. Immediately after execution of the command, test the field
EIBRCODE for LOW-VALUES. LOW-VALUES means the response was normal;
anything else indicates something abnormal.

You'll find the possible values of EIBRCODE in Appendix A of the APRM.

Programmers who use this method claim that their code is relatively easy to follow
and modify since the flow following a non-normal response can be seen by looking at

Chapter 3-8. When Things Go Wrong 201

alternative approaches

the program only in the vicinity of the command. Labels don't need to be invented
and the program is structured.

For example:

EXEC CICS READ DATASET('ACCTFIL') RIDFLD(ACCTC) INTO(ACCTREC)
LENGTH(ACCT-LNG) NOHANDLE END-EXEC.

IF EIBRCODE NOT EQUAL LOW-VALUES
IF EIBRCODE = RC-DUPREC THEN PERFORM DUPREC

ELSE PERFORM DISASTER.

You'll need to set up a file containing values for the EIBRCODE values. Here, for
example, RC-DUPREC is value

X'820000000000'

That's six bytes, with hex 82 in the first, and zeros in the rest.

Of course, if you choose this approach, you must test EIBRCODE after every
command that contains the NOHANDLE option (except for commands like RETURN
for which CICS does not return to the application). And you must be careful not to
overlook possible values of EIBRCODE. In the short piece of code above, anything
other than a duplicate record is treated as a disaster.

Some programmers feel that the extensive use of HANDLE CONDITION can lead to
an unstructured program that can be difficult to modify. This is because the flow
following a CICS command that has a non-normal response depends upon previously
executed HANDLE and IGNORE commands.

To follow the flow from a command it is necessary to know all the possible conditions
that can occur for it, and then to scan the entire program for any HANDLE and
IGNORE statements naming these conditions. There may be several HANDLE
statements relevant, and it may be necessary to know the order in which they are
executed.

On the other hand, many programs are sufficiently short that finding the HANDLEs
and IGNOREs is no problem, and much less application code is needed.

202 CICS Application Programming Primer

Part 4. The COBOL Code of our Example
Application

This Part of the Primer:

is printed separately. It lists the COBOL source code of the example application,
namely:

• ACCTOO - menu display

• ACCTOl - initial request analysis

• ACCT02 - update processing

• ACCT03 - requests for printing

• ACCT04 - error processing

By all means, break off now for a look at the COBOL source code. After all, at
this point you could actually write a CICS application program if you wanted to.

Of course, you'll still need to know how to test and debug your programs. We
cover this in the final part.

Don't forget that you'll need to have a CICS system up and running before you
can try out your programs. See the note in the Preface.

Part 4. The COBOL Code of our Example Application 203

Part 54' Testing and Diagnosis

This Part of the Primer describes:

• Types of problem

• The CICS Execution Diagnostic Facility (EDF)

• The temporary storage browse transaction

• Transaction dumps

• CICS abend codes

Part 5. Testing and Diagnosis 205

preparing to test

Chapter 5-1. Testing

This chapter discusses the process of testing application code and finding the causes
of problems. When you bring up an application under CICS, problems can occur at
any of three levels. They may be confined to the application, and affect only that one
application. On the other hand, they may affect the whole of CICS. In the worst
case, they affect the entire operating system.

We'll discuss how to go about finding problems in application code, describe some of
the tools that CICS provides to help in this process, and show an example of a
common error using our example application. Even using the subset of CICS facilities
described in this Primer, however, we can't confine the discussion to a convenient
subset of mistakes - there's no such thing. Debugging is a complex subject and very
sensitive to the particular application, so that it isn't possible to discuss exhaustively
even the level of errors that might affect only one application.

Problems that affect the whole CICS system are generally even more difficult, as are
operating-system problems, so we'll be leaving these entirely to other sources of
information.

Preparing to Test

You have to do two main tasks before you can attempt to test and debug an
application:

• You need to prepare the application and the system table entries.

• You need to prepare the system for debugging.

Preparing the Application and System Table Entries

1. Translate, compile and link-edit each program. Make sure that there are no error
messages on any of these three steps for any program before you begin testing.

2. Use the DEBUG option on your Translator step, so that you can use Translator
statement numbers with Execution Diagnostic Facility (EDF) displays.

3. Use the COBOL compiler options CLIST, and SYM (DOS) or DMAP (OS) so that
you can relate storage locations in dumps and Execution Diagnostic Facility

Chapter 5-1. Testing 207

preparing to debug

(EDF) displays to the original COBOL source statements, and find your variables
in Working-Storage.

4. Put an entry in the PCT (or, if you're using resource definition online (RD0),5

use the DEFINE TRANSACTION command) for each transaction in the
application.

5. Put an entry in the PPT (or, with RDO, use the DEFINE PROGRAM command)
for each program used in the application.

6. Put an entry in the PPT (or, with RDO, use the DEFINE MAPSET command) for
each mapset in the application.

7. If you are using RDO, be sure to INSTALL the new definitions.

8. Put an entry in the FCT for each file used.

9. Build at least a test version of each of thP files required.

10. Put job control DLBL, EXTENT and ASSGN cards (or the equivalent OS DD
cards) in the startup job stream for each file used in the application.

11. Prepare some test data.

Preparing the System for Debugging

1. Make sure that EDF is included in your system. If you're using RDO, include
Group DFHEDF in the list you specify in the GRPLIST parameter of the SIT. If
not, specify

DFHPPT TYPE=GROUP,FN=EDF
DFHPCT TYPE=GROUP,FN=EDF

in the PPT and PCT respectively.

2. Turn the trace on and allow a generous trace table (at least 200 entries, better
500). Specify in the SIT:

Resource Definition Online (RDO) allows you to add processing program table (PPT) and
program control table (PCT) entries for a new application program to a running CICS
system.

208 CICS Application Programming Primer

TRP=(YES,ON) or TRP=(xx,ON)
and TRT=nnn where nnn>200

types of problem

3. Request that dumps be provided, for both the transaction and the system, for all
abnormal terminations. Specify in the SIT:

DCP=YES or DCP=xx
and FDP=(xx,FORMAT) or FDP=(xx,FULL)

4. Be prepared to print the dumps. Have a DFHDUP job stream or procedure ready,
and have the CICS dump data set(s) defined in your startup procedure.

5. Enable CICS to detect loops, by setting the ICVR parameter in the SIT to a
number greater than zero. Something between 5 and 10 seconds (ICVR = 5000 to
ICVR = 10000) is usually a workable value.

6. Turn off storage recovery (SIT parameter SVD = NO), so that CICS won't try to
recover after one of its storage areas is over-written. Then you will know as soon
as CICS does that you've made this pernicious error. For production, storage
recovery should be on. For testing, unless a great many people are testing at
once, it is better left off.

7. Generate shutdown statistics.

Types of Problem

Once you start to test, the first few problems you meet will probably be what we call
startup problems. Most of these will be in that category we described in "Handling
Errors and Exceptional Conditions" on page 90 as category 4 "system-application
mismatches." They will produce abends that can be investigated like any others.
However, there may also be system initialization problems, terminal problems, and so
on. While we won't try to address these directly here, "Reference Materials" on
page 256 lists sources of information for help in these areas.

When you reach the point where you can begin executing your code, you will find the
problems you meet can be grouped by symptom into four general types. This
classification is useful, because you need to take a slightly different approach to each
type. Also, it is the same problem-classification scheme used by IBM programming
support representatives (PSRs). So if you require assistance, it will help you in
identifying your problem to IBM. The four types are:

Chapter 5-1. Testing 209

types of problem

• Abends
• Loops
• Waits
• Incorrect output.

We'll discuss the identifying symptoms first, and later (in "Chapter 5-2. Finding the
Problem" on page 255) suggest approaches for solution.

A bends

Abends are readily identified by the presence of that same unwelcome word in a
message from CICS. When a transaction terminates abnormally, CICS sends this
message both to the terminal associated with the transaction and to the transient
data message destination CSMT. (At most CICS installations, this message
destination is directed to a printer used by the master terminal operator, to provide a
second immediate notification of the unhappy event.)

Loops

Loops come in two varieties. If you have a loop containing no CICS commands, CICS
generally detects this condition and terminates your transaction with an AICA abend.
It will fail to do so only if you have disabled this facility (by setting ICVR = 0 in the
SIT or by setting it to such a large value that the effect is the same).

If the loop contains a CICS command, however, CICS may not detect it. The problem
symptom is that the transaction never ends. It usually produces less than all of the
expected output and leaves the keyboard locked, too.

Waits

The symptoms of a transaction in the wait state are the same as those described for a
loop containing a CICS command: the transaction never ends and may not produce all
of its outputs. If your transaction behaves like this, you can tell whether you have a
loop or a wait by using the CEMT transaction. Display the task:

("tttt" is the name of the terminal from which the transaction was entered.) If the
task still exists and is active, wait a minute and repeat the inquiry. If the same task
is still there, the program is probably in a loop that contains a CICS command.

If the task is not active but suspended, repeat the display once or twice. If the task
remains suspended, it's probably waiting for some event that's never going to happen.
There is a third possibility when you display your task, of course. It may not be there

210 CICS Application Programming Primer

tools for debugging

at all! This disappearing transaction syndrome is really a form of "incorrect output"
(as described below), but it's usually tracked down using the techniques used for
loops.

When you have a transaction that seems to be stuck in a loop or a wait, cancel it
with the CEMT command:

This will produce an AMTx abend, and a dump that you can use to help determine
where the loop or wait is.

A word of caution about canceling tasks, however. Some perfectly normal tasks
spend a lot of time in a suspended state. A transaction that writes multiple messages
to a printer, for example, is suspended most of its lifetime, waiting for the printer to
print the last message it sent. And, with FORCEPURGE, CICS cannot assure system
integrity, so use it with care. It's ok while debugging, but avoid it in a production
system.

Incorrect Output

The last category of problem covers those situations in which the transaction appears
to run successfully but produces the wrong results. It includes simple wrong answers,
missing or extra records in files, screens filled with what appear to be random
characters, and no output at all, where a transaction just shuffles off quietly without
any indication that it ever existed.

Tools for Debugging

Before trying to describe approaches to solving these four classes of problems (which
we tackle in the next chapter), we need to describe three important tools that CICS
provides for debugging applications. These are:

• The Execution Diagnostic Facility (EDF)

• The temporary storage browse (CEBR) facility

• The transaction dump.

Chapter 5-1. Testing 211

execution diagnostic facility

Execution Diagnostic Facility (EDF)

You'll find a complete EDF session reproduced in "A Session With EDF" on page 219;
refer to it whenever you need to. (Please note that it shows the example application
misbehaving due to the presence of a deliberate bug ...)

EDF allows you to observe the execution of your transaction under the control of
another transaction, CEDF. When you execute your transaction in this debugging
mode, EDF intercepts your program(s) at the following points:

1. Transaction initiation (just before the first program gets control)

2. Just before the execution of each CICS command

3. Just after the execution of each CICS command (except ABEND, XCTL and
RETURN)

4. At the termination of each program

5. At normal task termination

6. When an abend occurs

7. At abnormal task termination.

At these points, EDF interrupts execution of the program and sends a display back to
the terminal. This display indicates which of these interception points has been
reached and shows information appropriate to the situation.

Other Information Displayed

At any one of these points, you can also display a variety of other information by
selecting one of the function-key options listed on the screen. The choices include:

1. The EIB. The values are displayed in symbolic form, as described in the APRM.

2. Working-Storage for the program being executed. The display shows the
information in both hexadecimal and character form.

3. The option of showing up to ten previous EDF displays, including all the
argument values, responses, and so on.

4. The contents of any temporary storage queue.

5. The contents (in hexadecimal) of any address location within the CICS partition.

212 CICS Application Programming Primer

useful EDF techniques

Useful Techniques with EDF

Once you have an idea about what is wrong with a program, you can test your theory
by intervening in its execution:

1. Before a command is executed, you can modify any argument value (but not the
command options) or you can suppress execution of the command altogether.

2. After a command is executed, you can modify the response code (and some of the
argument values). This allows you to test branches of the program that are hard
to reach using ordinary test data (what happens on an input/output error, for
instance). It also allows you to bypass the effects of an error to see if doing so
eliminates a problem.

3. At any time except just before execution of a command, you can turn off the
debug mode and let the transaction proceed without any further intervention from
EDF.

4. Alternatively, at any time you can suppress the displays associated with EDF
until some specific condition is reached. When it is, the displays resume again.
This is particularly useful when you are debugging a fairly long or repetitive
transaction, because you might have to go through a lot of displays before you get
to the point where the trouble is, making the process very slow. If you know that
the transaction runs properly up to a certain point, you can specify that point as
the condition for resuming displays, and suppress them up until then. Once the
stop condition is reached, you still have access to the previous ten displays, even
though they were not actually sent to the screen when originally created.

You can express this stop condition in several different ways:

• When a specific type of command is encountered, such as READQ TS
• When a specific exceptional condition arises, such as NOTFND
• When any exceptional condition at all (that CICS classifies as an error) arises
• When the command at a specific offset is encountered
• When the command at a specific translator line number is encountered (if the

DEBUG option of the Translator has been used)
• When any abend occurs
• When the task terminates.

5. At any point at all, you can change the contents of Working-Storage for your
program, and you can change most of the fields in the EIB as well.

Invoking EDF

You can run EDF using either one terminal or two.

Chapter 5-1. Testing 213

invoking EDF

For Two Terminals: You use the first terminal for the EDF displays and for sending
input to EDF; and you use the second terminal for sending input to, and receiving
output from, the transaction under test.

You start by entering, at the first terminal, the transaction:

where "tttt" is the name of the other terminal to be used in the EDF session. This
second terminal must be in transceive (ATI/TTI) status. This is the most common
status for display terminals, but you can check its status with CEMT:

and change it if it isn't already ATI/TTI:

Then enter the transaction to be tested on this second terminal.

If you want to use EDF to monitor a transaction that's already running, you can do
so from another terminal. If, for example, you believe a transaction at a certain
terminal to be looping, you can go to another terminal and enter a CEDF transaction
naming the first terminal. EDF picks up control at the next CICS command executed,
and you can then observe the sequence of commands that are causing the loop.

For One Terminal: When you use EDF with just one terminal, the EDF inputs and
outputs are interleaved with those from the transaction. This sounds complicated,
but works quite easily in practice. The only noticeable peculiarity is that when a
SEND command is followed by a RECEIVE command, the display sent by the SEND
command appears twice: once when the SEND is executed, and again when the
RECEIVE is executed. It isn't necessary to respond to the first display, but if you do,
EDF preserves anything that was entered from the first display to the second.

To start a one-terminal session with EDF, just enter the transaction identifier
"CEDF." Then enter the input that invokes the transaction you want to test.

Note: EDF makes a special provision for testing pseudoconversational transactions
from a single terminal. If the terminal came out of debug mode between the several
tasks that make up a pseudoconversational transaction, it would be very hard to do
any debugging after the first task. So, when a task terminates, EDF asks the operator

214 CICS Application Programming Primer

EDF displays

whether debug mode is to continue to the next task. If you are debugging a
pseudoconversational task, reply "yes".

EDF Displays

EDF displays consist of a header and the screen "body." The header shows:

• The identifier of the transaction being executed
• The name of the program being executed
• The internal task number assigned by CICS to the transaction.
• A display number.
• Under "STATUS," the reason for the interception by EDF.

The body of the screen contains information which varies with the type of
interception point, as follows:

1. At transaction initiation, it shows the EIB.

2. When a command is about to be executed, it shows the command in source
language form, including the keywords, options and argument values. The
command is identified by giving the name of the transaction, the name of the
program being executed, and the hexadecimal offset of the command in the
program. If the Translator DEBUG option has been used, the line number in the
translator source listing will also be displayed.

3. After the command has been executed, the same display as for item 2 appears,
along with the results (response code), in source language.

4. Whenever an abend occurs, and at termination time for a transaction
ending abnormally, the display includes:

• The EIB
• The abend code
• For an ASRA abend, the program status word (PSW) value at the time of the

interrupt
• The offset within the program of this PSW, provided it is within the program

being executed.

EDF Options

The last section of an EDF display contains a menu of things you can do at that
point. The choices are listed below. Not all choices are available at each
interception point; the menu shows which ones are available for the current display.
To select an option, press the indicated PF key. If your terminal doesn't have PF
keys, place the cursor under the option you want and press the ENTER key instead.

Chapter 5-1. Testing 215

EDF options

abend user task
Selecting this option causes the transaction being monitored to be abended, just
as if an ABEND command had been issued in the program. When you make this
choice, EDF asks you to enter an abend code (the ABCODE parameter of the
command) to request the abend again, and then to press ENTER again, as
confirmation that you really want to do this.

browse temporary storage
This option produces a display of the temporary storage queue CEBRxxxx, where
xxxx is the name of the terminal from which the monitored transaction is being
run. You can then use CEBR commands, discussed in "Temporary Storage
Browse Facility (CEBR)" on page 242, to display or modify other temporary
storage queues.

continue
If you've made changes to the screen, EDF redisplays the screen with the
changes incorporated. (See "Modifying Execution with EDF" on page 218.)
Otherwise it allows the transaction to continue running until the next interrupt
point.

current display
If you've modified a screen, this option causes EDF to redisplay the screen with
the changes incorporated. Otherwise, it causes EDF to display the screen it
showed at the last interrupt point, before you requested other displays.

EIB display
This option displays the EIB contents in symbolic form. If there is a
COMMAREA at this time, its contents are also displayed.

end EDF session
This choice terminates EDF control of the transaction. The transaction resumes
execution from that point, but no longer runs in debug mode.

previous display
Selecting this option causes the previous display (from the previous command,
unless you've requested that other displays be remembered) to be sent to the
screen. The number of the display from the current interrupt point is always 00.
As you call up previous displays, the display number is decreased by 1 to -01 for
the first previous display, -02 for the one before that, and so on down to the
oldest display, -10.

next display
This option is the reverse of previous display. When you've gone back to a
previous display, this option causes the next one forward to be shown. The
display number is increased by 1.

216 CICS Application Programming Primer

EDF options

registers at abend
This option is provided only when an ASRA abend occurs. It produces a display
of the PSW and the registers at the time of the abend.

scroll forward, scroll back
These options apply to an EIB or command display that will not all fit on one
screen. When this happens, a plus sign (+) appears before the first option or
field in the display, to show that there are more screens. Choosing scroll
forward brings up the next screen in the display. When the screen on view isn't
the first one of the display, there is a minus sign (-)before the first option or
field, and you can view previous screens in the display by selecting scroll back.

scroll forward full, scroll back full
These two options have the same function for displays of Working-Storage as the
scroll forward and scroll back options for EIB displays. Scroll forward full gives
a Working-Storage display one full screen forward, showing addresses higher in
storage than those on the previous screen. Scroll back full shows the addresses
lower in storage than those on the previous screen.

scroll forward half, scroll back half
Scroll forward half is similar to scroll forward full, except that the display of
working storage is advanced by only half a screen. This means that the
addresses on the bottom half of the previous screen still appear on the top half
of the new screen, followed by the next half-screen of higher addresses. Scroll
back half is the backward counterpart of scroll forward half.

suppress displays
This option causes EDF to suppress its displays until one of the stop conditions
(see next item) is met.

stop conditions
Selecting this option causes EDF to present a menu, in which you can specify
conditions under which you want a display. You use this feature when you are
about to suppress the displays, to indicate when they should be resumed again.
However, you can also use it to get displays at points in the code between the
normal EDF interception points. This is particularly helpful in locating loops
and finding the cause of incorrect output.

switch hex/char
If EDF is displaying information in character form, this option causes it to
switch to hexadecimal for subsequent displays, and back again. It applies only
to the basic interrupt display and does not affect Working-Storage displays, stop
condition displays, or remembered displays.

user display
This option causes EDF to display what would be on the screen if the
transaction were not running under EDF. To get back to EDF from the user
display, simply press the ENTER key.

Chapter 5-1. Testing 217

modifying execution with EDF

working storage
This option allows you to see the contents of the Working-Storage area in your
program, or of any other address in the CICS partition. The address of
Working-Storage is displayed at the top of the screen. You can browse through
the entire area using the scroll commands, or you can simply enter a new
address at the top of the screen. This address can be anywhere within the CICS
partition.

remember display
This option allows you to record displays that EDF does not ordinarily save.
EDF can save up to ten displays, and it keeps the last ten command displays
unless you use this option to save something else. Note, however, that if you
save a working storage display, only the screen on view is saved; otherwise all
the pages that make up the display are saved and can be recalled.

Modifying Execution with EDF

You can modify the execution of a transaction in four different ways:

• Changing the contents of Working-Storage and the EIB
• Changing the argument values before a command is executed
• Changing the response code afterward
• Suppressing commands altogether.

You make these changes by typing over the information shown on the screen with the
information you want used instead. You can change any area of the screen where the
cursor stops when you use the tab keys, except for the menu area at the bottom.

When you change the screen, you must observe the following conventions:

• If you want to suppress the execution of a command entirely, type NOP over the
first three characters of the command.

• You can change argument values in commands, but not keywords.

• When you change an argument in the command display (as opposed to
Working-Storage), you can change only the part shown on the display. If it is
such a long argument that only part of it appears on the screen, you should
change the area in Working-Storage to which the argument points.

• You can change the response code from a command to any response code that
applies to that command, including the all-purpose ERROR. In this way you can
test your program's error recovery routines.

• Conversely, if the response code from a command was some exceptional condition,
and you want to see what would happen if you'd had a normal response to the
command, type NORMAL over the response code.

218 CIC'S Application Programming Primer

our EDF session

• When you overtype a field representing a data area in your program, the change
is made directly in program storage and is permanent . However, if you change a
field that represents a constant (a program literal), program storage isn't changed,
because this might affect any other parts of the program that use the same
constant. The command is executed with the changed data, but when the
command is displayed after execution, the original argument values re-appear. If
you execute the same command more than once, you must enter this type of
change afresh each time.

• When arguments are displayed in character form, any character that cannot be
displayed on the screen is shown as a period(.). So you're not allowed to change
any character to a period in a character display. If you must do this, use the
switch hex/char option to change to a hexadecimal display and then use "4B" for
period.

• EDF only accepts uppercase characters. If your terminal has lowercase, and
uppercase translation is not specified for it in the TCT, be careful to use
uppercase at all times.

A Session With EDF

What follows is an "as it happened" reproduction of an EDF session after we'd found
that the example application had a nasty little bug in it.

It all began innocently enough, simply by trying to delete account record number
11111 from our account file

The first thing we did, of course, was type in the transaction id:

Chapter 5-1. Testing 219

our EDF session

acct

Figure 55. Invoking the Account File Transaction

ACCOUNT FILE: MENU

TO SEARCH BY NAME, ENTER:

SURNAME: FIRST NAME:

FOR INDIVIDUAL RECORDS, ENTER:

REQUEST TYPE: ACCOUNT:

REQUEST TYPES: D DISPLAY
P = PRINT

THEN PRESS "ENTER"

Figure 56. The Account File Menu

A
M

-OR-

PRINTER:

ADD X = DELETE
MODIFY

PRESS "CLEAR" TO EXIT

ON'LY SURNAME
REQUIRE~. EITHER
iv1AY BE PARTIN ..

PRINTER REQU:RED
ONLY FOR PRINT
~EQUESTS.

This gave us the menu, as shown above. Next, we had to say which record we wanted
to delete.

220 CICS Application Programming Primer

our EDF session

So we typed in x (for delete) and 11111 (the record number) and pressed the ENTER
key.

A TOUN':' f :::LE: MENU

'l .SEARCH BY NAME, ENTER:

~ :iRNAME: FIRST NAME:

FOR !NDIVIDUAL RECORDS, ENTER:

REQUEST TYPE: x ACCOUNT : 11111 PRINTER:

ONLY SURNAME
REQUIRED. EITHER
MAY BE PARTIAL.

PRINTER REQUIRED
ONLY FOR PRINT
REQUESTS.

REQUEST TYPES: D DISPLAY
P = PRINT

A
M

ADD X = DELETE
MODIFY

'THEN PRi:;SS "ENTER" -OR- PRESS "CLEAR" TO EXIT

Figure 57. Let's Delete Account Number 11111

ACCOUNT FILE: DELETION

ACCOUNT NC: :1111

TELEPHOt-.iE: 2345212341

07HERS WHO MAY CHARGE:
THE 1 BEARS

NO. CARDS ISSUED: 4
C'ARC CODE: 2

AC'COCNT STATUS: N

Hl:STORY: BALANCE
0.00
0.00
0.00

SURNAME:
FIRST:
ADDRESS:

LOCKS
GOLDIE
THE COTTAGE
WOODLANDS
HANTS

DATE ISSUED: 05 04 84
APPROVED BY: HRH

CREDIT LIMIT: 1000.00

BILLED
00/00/00
00/00/00
00/00/00

AMOUNT
0.00
0.00
0.00

I:l\iTER "Y" TO CONFIRM OR "CLEAR" TO CANCEL

Figure 58. Now Confirm the Deletion ...

MI: X TITLE: LADY

REASON: N
SPECIAL CODES:

PAID
00/00/00
00/00/00
00/00/00

AMOUNT
0.00
0.00
0.00

As you see, this fetched Goldie Locks' record, and asked us to confirm the deletion.

Chapter 5-1. Testing 221

our EDF session

T E • lE IT "

"i:,•·' IV'r · r
I K I . I

J • : T ''I, T

<.
'F { . It II

'T

)..\ .. t v

'> • • •• B) tvpine; .. y ..

:.i I

'I.. I .,L. fd\1\' A f, A

f 1 " J-<I L I I

L I

t 'T I < I I. T 'E

I ' ... E < E

f 'gure 60. Hold it! We've Got a Problem - and We've Been BackE'd Out

222 CICS Application Programming Primer

our EDF session

Well! That didn't work, so what do we do next? First, we'd better delete the
scratchpad entry for this record, so we can try again, this time with EDF on. (You
see, we've just reserved account number 11111 in ACCTOl before we displayed the
Account Detail screen. So, unless we now remove the reservation, we won't be able
to try the deletion again for ten minutes. We'll use CECI, a useful CICS transaction -
the command interpreter.)

First, we CLEAR the screen, then we can type:

Chapter 5-1. Testing 223

our EDF session

DELETEQ TS QUEUE(ACOlllll)
STATUS: ABOUT TO EXECUTE COMMAND

EXEC CICS DELETEQ TS
Queue ('ACOlllll')
< Sysid() >

NAME=

PF: 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 62. Going, Going, ...

We just press ENTER to delete the queue entry.

DELETEQ TS QUEUE(ACOlllll)
STATUS: COMMAND EXECUTION COMPLETE

EXEC CICS DELETEQ TS
Queue('ACOlllll')
< Sysid() >

NAME =

RESPONSE: NORMAL EIBRCODE = X' OOOO~OOOOOOO '
PF: 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 US ER 7 SBH 8 SF H 9 MSG 10 SB 11 SF

Figure 63. Gone!

First we hit PF3 to end the CECI transaction, and CLEAR to get a clear screen.

224 CICS Application Programming Primer

our EDF session

Now we can use EDF to try and find out what's going wrong. To invoke the facility
we simply type CEDF:

-:edf

Figure 64. Now Activate EDF

THIS TERMINAL: EDF MODE ON

Figure 65. OK

Now we can CLEAR the screen and re-enter the ACCT transaction:

Chapter 5-1. Testing 225

our EDF session

acct

Figure 66. Now Re-enter the Account File Transaction

TRANSACTION: ACCT PROGRAM: ACCTOO
STATUS: PROGRAM INITIATION

TASK NUMBER: 0000142 DISPLAY: 00

EIBTIME +0133404
EIBDATE +0084244
EIBTRNID 'ACCT'
EIBTASKN +0000142
EIBTRMID 'L77A'

EIBCPOSN +00004
EIBCALEN +00000
EIBAID XI 7D'
EIBFN X'OOOO'
EIBRCODE X'OOOOOOOOOOOO'
EIBDS

+ EIBREQID
RESPONSE:

ENTER: CONTINUE
PFl : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFlO: PREVIOUS DISPLAY

Figure 67. And Into EDF

PF2
PFS
PF8
PFll

SWITCH HEX/CHAR
WORKING STORAGE
SCROLL FORWARD
UNDEFINED

226 CICS Application Programming Primer

PF3
PF6
PF9
PF12

AT X'004BDBEA'
AT X'004BDBEB'
AT X'004BDBED'

REPLY:

END EDF SESSION
USER DISPLAY
STOP CONDITIONS
UNDEFINED

our EDF session

Here's our first EDF screen. From now on, we'll use the PF4 key to suppress
displays. EDF goes on building (and remembering) its displays - we simply don't want
to be overwhelmed by seeing them all. (At any point, you can use the PFlO key to
step back through a maximum of ten previous displays. We'll see how later on.)

Any abnormal response, or any program output, or the end of the task, will all end
the display suppression and show us the appropriate screen. Press the PF4 key, then,
and away we go!

And the next screen we see is this one:

TRANSACTION: ACCT PROGRAM: TASK NUMBER: 0000142 DISPLAY: 00
STATUS: TASK TERMINATION

RESPONSE:
TO CONTINUE EDF SESSION
ENTER: CONTINUE
PFl : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFlO: PREVIOUS DISPLAY

Figure 68. OK So Far

REPLY YES

PF2 SWITCH HEX/CHAR
PFS WORKING STORAGE
PF8 : SCROLL FORWARD
PFll: UNDEFINED

PF3
PF6
PF9
PF12

REPLY: NO

END EDF SESSION
USER DISPLAY
STOP CONDITIONS
UNDEFINED

We overtype the "REPLY: NO" with our "yes" and (as usual) press ENTER.

This ensures that EDF will continue monitoring the next transaction (ACOl) in our
pseudoconversational sequence.

Chapter 5-1. Testing 227

our EDF session

TRANSACTION: ACCT PROGRAM: TASK NUMBER: 0000142 DISPLAY: 00
STATUS: TASK TERMINATION

RESPONSE:
TO CONTINUE EDF SESSION
ENTER: CONTINUE
PFl : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFlO: PREVIOUS DISPLAY

REPLY YES

PF2 SWITCH HEX/CHAR
PF5 WORKING STORAGE
PFS : SCROLL FORWARD
PFll: UNDEFINED

PF3
PF6
PF9
PF12

Figure 69. Again "yes" to Continue With the Next Transaction

ACCOUNT FILE: MENU

TO SEARCH BY NAME, ENTER:

SURNAME: FIRST NAME:

FOR INDIVIDUAL RECORDS, ENTER:

REQUEST TYPE: ACCOUNT: PRINTER:

REPLY: yes

END EDF SESSION
USER DISPLAY
STOP CONDITIONS
UNDEFINED

ONLY SURNAME
REQUIRED. EITHER
MAY BE PARTIAL.

PRINTER REQUIRED
ONLY FOR PRINT
REQUESTS.

REQUEST TYPES: D DISPLAY
P = PRINT

A
M

ADD X = DELETE
MODIFY

THEN PRESS "ENTER" -OR- PRESS "CLEAR" TO EXIT

Figure 70. Back to the Menu

Suppression of EDF displays ends for the time being with our user screen, the menu.

228 CICS Application Programming Primer

Now we type in that troublesome record, 11111.

ACCOUNT FILE: MENU

TO SEARCH BY NAME, ENTER:

SURNAME: FIRST NAME:

FOR INDIVIDUAL RECORDS, ENTER:

REQUEST TYPE: x ACCOUNT: 11111 PRINTER:

our EDF session

ONLY SURNAME
REQUIRED. EITHER
MAY BE PARTIAL.

PRINTER REQUIRED
ONLY FOR PRINT
REQUESTS.

REQUEST TYPES: D DISPLAY
P = PRINT

A
M

ADD X = DELETE
MODIFY

THEN PRESS "ENTER" -OR- PRESS "CLEAR" TO EXIT

Figure 71. No~ We Can Enter Record 11111

We press ENTER, cross our fingers, and see what happens .. .

TRANSACTION: ACOl PROGRAM: ACCTOl
STATUS: PROGRAM INITIATION

TASK NUMBER: 0000149 DISPLAY: 00

EIBTIME
EIBDATE
EIBTRNID
EIBTASKN
EIBTRMID

EIBCPOSN
EIBCALEN
EIBAID
EIBFN
EIBRCODE
EIBDS

+ EIBREQID

RESPONSE:

ENTER: CONTINUE
PFl : UNDEFINED

+0133428
+0084244
I ACOl'
+0000149
'L77A'

+00691
+00000
X'7D'
X'OOOO'
X'OOOOOOOOOOOO'
........
........

PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK

PF2 : SWITCH HEX/CHAR
PFS : WORKING STORAGE
PF8 : SCROLL FORWARD
PFll: UNDEFINED PFlO: PREVIOUS DISPLAY

PF3
PF6
PF9
PF12

AT X'004BDBEA'
AT X'004BDBEB'
AT X'004BDBED'

REPLY:

END EDF SESSION
USER DISPLAY
STOP CONDITIONS
UNDEFINED

Figure 72. Ready to Begin the Request Analysis. Here's the next EDF display.

Chapter 5-1. Testing 229

our EDF session

Again, we'll use PF4 to suppress displays until something unusual happens.

TRANSACTION: ACOl PROGRAM: ACCTOl
STATUS: COMMAND EXECUTION COMPLETE
EXEC CICS READQ TS

QUEUE ('ACOlllll')
INTO (I •••••••• I)
LENGTH (+00012)
ITEM (+00001)

OFFSET:X'00203E'
RESPONSE: QIDERR

ENTER: CONTINUE

LINE:00263

TASK NUMBER: 0000149 DISPLAY: 00

EIBFN=X'OA04'
EIBRCODE=X'020000000000'

REPLY:

PFl : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFlO: PREVIOUS DISPLAY

PF2 : SWITCH HEX/CHAR
PFS : WORKING STORAGE
PF8 : SCROLL FORWARD
PFll: UNDEFINED

PF3 : END EDF SESSION
PF6 : USER DISPLAY
PF9 : STOP CONDITIONS
PF12: ABEND USER TASK

Figure 73. Response: QIDERR. This tells us no-one else owns our record.

And here we are with a QIDERR condition. However, it's what we expect when
reading the scratchpad entry, so we can proceed. Using PF4 again to suppress
displays, let's carry on

230 CICS Application Programming Primer

our EDF session

TRANSACTION: ACOl PROGRAM: TASK NUMBER: 0000149 DI SPLAY: 00
STATUS: TASK TERMINATION

RESPONSE:
TO CONTINUE EDF SESSION
ENTER: CONTINUE
PFl : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFlO: PREVIOUS DISPLAY

Figure 74. OK, Carry On

REPLY YES

PF2 SWITCH HEX/CHAR
PFS WORKING STORAGE
PF8 SCROLL FORWARD
PF 11 UNDEFINED

PF3
PF6
PF9
PF12

REPLY: NO

END EDF SESSION
USER DISPLAY
STOP CONDITIONS
UNDEFINED

TRANSACTION: ACOl PROGRAM: TASK NUMBER: 0000149 DISPLAY: 00
STATUS: TASK TERMINATION

RESPONSE:
TO CONTINUE EDF SESSION
ENTER: CONTINUE
PFl : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFlO: PREVIOUS DISPLAY

REPLY YES

PF2 SWITCH HEX/CHAR
PFS WORKING STORAGE
PF8 : SCROLL FORWARD
PFll: UNDEFINED

Figure 75. "yes" to Carry On Into AC02

PF3
PF6
PF9
PF12

REPLY: yes

END EDF SESSION
USER DISPLAY
STOP CONDITIONS
UNDEFINED

Chapter 5-1. Testing 231

our EDF session

ACCOUNT FILE: DELETION

ACCOUNT NO: 11111

TELEPHONE: 2345212341

OTHERS WHO MAY CHARGE:
THE 3 BEARS

NO. CARDS ISSUED: 4
CARD CODE: 2

ACCOUNT STATUS: N

HISTORY: BALANCE
0.00
0.00
0.00

SURNAME:
FIRST:
ADDRESS:

LOCKS
GOLDIE
THE COTTAGE
WOODLANDS
HANTS

DATE ISSUED: 05 04 84
APPROVED BY: HRH

CREDIT LIMIT: 1000.00

BILLED
00/00/00
00/00/00
00/00/00

AMOUNT
0.00
0.00
0.00

ENTER "Y" TO CONFIRM OR "CLEAR" TO CANCEL

Figure 76. OK - the Big Moment is (Nearly) Here!

MI: X TITLE: LADY

REASON: N
SPECIAL CODES:

PAID
00/00/00
00/00/00
00/00/00

AMOUNT
0.00
0.00
0.00

Let's type "y" and see what happens. Now we should at least find out a bit more
about the problem

ACCOUNT FILE: DELETION

ACCOUNT NO: 11111

TELEPHONE: 2345212341

OTHERS WHO MAY CHARGE:
THE 3 BEARS

NO. CARDS ISSUED: 4
CARD CODE: 2

ACCOUNT STATUS: N

HISTORY: BALANCE
0.00
0.00
0.00

SURNAME:
FIRST:
ADDRESS:

LOCKS
GOLDIE
THE COTTAGE
WOODLANDS
HAN TS

DATE ISSUED: 05 04 84
APPROVED BY: HRH

CREDIT LIMIT: 1000.00

BILLED
00/00/00
00/00/00
00/00/00

AMOUNT
0.00
0.00
0.00

ENTER "Y" TO CONFIRM OR "CLEAR" TO CANCEL

Figure 77. Here We Go

232 CICS Application Programming Primer

MI: X TITLE: LADY

REASON: N
SPECIAL CODES:

PAID AMOUNT
00/00/00 0.00
00/00/00 0.00
00/00/00 o.oo

y

our EDF session

TRANSACTION: AC02 PROGRAM: ACCT02
STATUS: PROGRAM INITIATION

TASK NUMBER: 0000168 DISPLAY: 00

EIBTIME
EIBDATE
EIBTRNID
EIBTASKN
EIBTRMID

EIBCPOSN
EIBCALEN
EIBAID
EIBFN
EIBRCODE
EIBDS

+ EIBREQID

RESPONSE:

ENTER: CONTINUE
PFl : UNDEFINED

+0133511
+0084244
'AC02'
+0000168
'L77A'

+01743
+00006
X'7D'
X'OOOO'
X'OOOOOOOOOOOO'
........
........

PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK

PF2 : SWITCH HEX/CHAR
PFS : WORKING STORAGE
PF8 : SCROLL FORWARD
PFll: UNDEFINED PFlO: PREVIOUS DISPLAY

Figure 78. Ready?

Again we use PF4 to suppress displays, as usual.

PF3
PF6
PF9
PF12

AT X'004BDBEA'
AT X'004BDBEB'
AT X'004BDBED'

REPLY:

END EDF SESSION
USER DISPLAY
STOP CONDITIONS
UNDEFINED

TRANSACTION: AC02 PROGRAM: ACCT02
STATUS: COMMAND EXECUTION COMPLETE
EXEC CICS DELETE

TASK NUMBER: 0000168 DISPLAY: 00

DATASET ('ACCTFIL ')
RIDFLD ('11111')

OFFSET:X'002822'
RESPONSE: INVREQ

LINE:00334 EIBFN=X'0608'
EIBRCODE=X'080000000000'

REPLY:
ENTER: CONTINUE
PFl : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFlO: PREVIOUS DISPLAY

PF2 : SWITCH HEX/CHAR
PFS : WORKING STORAGE
PF8 : SCROLL FORWARD
PFll: UNDEFINED

Figure 79. The INVREQ (Invalid Request) Condition

PF3
PF6
PF9
PF12

END EDF SESSION
USER DISPLAY
STOP CONDITIONS
ABEND USER TASK

Chapter 5-1. Testing 233

our EDF session

And here's an INVREQ (invalid request) condition. This is not what we expect. If
the RIDFLD field looked odd (it doesn't here) we might want to use PF5 to start
looking at Working-Storage, or PF6 to examine the user display. However, using PF4
again, let's carry on

The following screen flashes up briefly and disappears again:

ACCOUNT FILE: ERROR REPORT

TRANSACTION AC02 HAS FAILED IN PROGRAM ACCT02

A PROGRAM OR FCT TABLE ERROR (INVALID FILE REQUEST).

THE FILE IS: ACCTFIL .

BECAUSE OF

PLEASE ASK YOUR SUPERVISOR TO CONVEY THIS INFORMATION TO THE
OPERATIONS STAFF.

THEN PRESS "CLEAR". THIS TERMINAL IS NO LONGER UNDER CONTROL OF
THE "ACCT" APPLICATION.

Figure 80. The Error Report

234 CICS Application Programming Primer

our EDF session

TRANSACTION: AC02 PROGRAM: ACCT04
STATUS: AN ABEND HAS OCCURRED

TASK NUMBER: 0000168 DISPLAY: 00

EIBTIME
EIBDATE
EIBTRNID
EIBTASKN
EIBTRMID

EIBCPOSN
EIBCALEN
EIBAID
EIBFN
EIBRCODE
EIBDS

+ EIBREQID

ABEND : EACC

ENTER: CONTINUE
PFl : UNDEFINED

+0133511
+0084244
'AC02'
+0000168
'L77A'

+01743
+00010
X'7D'
X'OEOC' ABEND
X'OOOOOOOOOOOO' NORMAL
'ACCTFIL I

........

PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK

PF2 : SWITCH HEX/CHAR
PFS : WORKING STORAGE
PF8 : SCROLL FORWARD
PFll: UNDEFINED PFlO: PREVIOUS DISPLAY

Figure 81. Here's Our Abend, EACC

PF3
PF6
PF9
PF12

AT X'004BDBEA'
AT X'004BDBEB'
AT X'004BDBED'

REPLY:

END EDF SESSION
USER DISPLAY
STOP CONDITIONS
UNDEFINED

And the next EDF display we stop at is this ABEND status warning.

Now we'll use the PFlO key to step back through the remembered displays (that we've
been suppressing) in the hope that the cause of the problem will become clearer.
Watch the "DISPLAY: " number in the top right hand corner of each screen.

Chapter 5-1. Testing 235

our EDF session

TRANSACTION: AC02 PROGRAM:. ACCT04
STATUS: ABOUT TO EXECUTE COMMAND
EXEC CICS ABEND

TASK NUMBER: 0000168 DISPLAY: -01

ABCODE (I EACC I)

OFFSET:X'00148A'
RESPONSE:

LINE:00137 EIBFN=X'OEOC'

ENTER: CURRENT DISPLAY
PFl : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFlO: PREVIOUS DISPLAY

PF2 : UNDEFINED
PFS : WORKING STORAGE
PF8 : SCROLL FORWARD
PFll: NEXT DISPLAY

Figure 82. Just Prior to the ABEND Command

PF3
PF6
PF9
PF12

REPLY:

UNDEFINED
USER DISPLAY
STOP CONDITIONS
UNDEFINED

TRANSACTION: AC02 PROGRAM: ACCT04
STATUS: COMMAND EXECUTION COMPLETE
EXEC CICS SEND MAP

TASK NUMBER: 0000168 DISPLAY: -02

MAP (I ACCTERR ')
FROM(' AC02 ... ACCT02 ... A PROGRAM OR FCT TABLE ERROR (I' ...)
MAPSET ('ACCTSET')
TERMINAL
WAIT
FREEKB
ERASE

OFFSET:X'001456'
RESPONSE: NORMAL

LINE:00135

ENTER: CURRENT DISPLAY
PFl : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFlO: PREVIOUS DISPLAY

PF2
PFS
PF8
PFll

Figure 83. Sent the Error Map

EIBFN=X'l804'
EIBRCODE=X'OOOOOOOOOOOO'

REPLY:

UNDEFINED
WORKING STORAGE
SCROLL FORWARD
NEXT DISPLAY

PF3
PF6
PF9
PF12

UNDEFINED
USER DISPLAY
STOP CONDITIONS
UNDEFINED

236 CICS Application Programming Primer

our EDF session

TRANSACTION: AC02 PROGRAM: ACCT04
STATUS: ABOUT TO EXECUTE COMMAND
EXEC CICS SEND MAP

TASK NUMBER: 0000168 DISPLAY: -03

MAP (I ACCTERR I)

FROM(' AC02 ... ACCT02 ... A PROGRAM OR FCT TABLE ERROR (I' ...)
MAPSET ('ACCTSET')
TERMINAL
WAIT
FREEKB
ERASE

OFFSET:X'001456'
RESPONSE:

LINE:00135 EIBFN=X'l804'

ENTER: CURRENT DISPLAY
PFl : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFlO: PREVIOUS DISPLAY

PF2 : UNDEFINED
PFS : WORKING STORAGE
PF8 : SCROLL FORWARD
PFll: NEXT DISPLAY

Figure 84. About to Send the Error Map

PF3
PF6
PF9
PF12

REPLY:

UNDEFINED
USER DISPLAY
STOP CONDITIONS
UNDEFINED

TRANSACTION: AC02 PROGRAM: ACCT04
STATUS: PROGRAM INITIATION

TASK NUMBER: 0000168 DISPLAY: -04

+

EIBTIME
EIBDATE
EIBTRNID
EIBTASKN
EIBTRMID

EIBCPOSN
EIBCALEN
EIBAID
EIBFN
EIBRCODE
EIBDS
EIBREQID

RESPONSE:

+0133511
+0084244
'AC02'
+0000168
'L77A'

+01743
+00010
X' 7D'
X'OE02' LINK
X'OOOOOOOOOOOO' NORMAL
'ACCTFIL I

ENTER: CURRENT DISPLAY
PFl : UNDEFINED PF2 : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFlO: PREVIOUS DISPLAY

PFS : WORKING STORAGE
PF8 : SCROLL FORWARD
PFll: NEXT DISPLAY

PF3
PF6
PF9
PF12

AT X'004BDBEA'
AT X'004BDBEB'
AT X'004BDBED'

REPLY:

UNDEFINED
USER DISPLAY
STOP CONDITIONS
UNDEFINED

Figure 85. Starting the Error-Handling Program, ACCT04

Chapter 5-1. Testing 237

our EDF session

TRANSACTION: AC02 PROGRAM: ACCT02
STATUS: ABOUT TO EXECUTE COMMAND
EXEC CICS LINK

TASK NUMBER: 0000168 DISPLAY: -05

PROGRAM ('ACCT04 ')
COMMAREA (I ACCT02 .. I)
LENGTH (+00010)

OFFSET:X'002B4A'
RESPONSE:

LINE:00374 EIBFN=X'OE02'

ENTER: CURRENT DISPLAY
PFl : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFlO: PREVIOUS DISPLAY

PF2 : UNDEFINED
PFS : WORKING STORAGE
PF8 : SCROLL FORWARD
PFll: NEXT DISPLAY

Figure 86. Linking to the Error Program, ACCT04

PF3
PF6
PF9
PF12

REPLY:

UNDEFINED
USER DISPLAY
STOP CONDITIONS
UNDEFINED

TRANSACTION: AC02 PROGRAM: ACCT02
STATUS: COMMAND EXECUTION COMPLETE
EXEC CICS HANDLE CONDITION

TASK NUMBER: 0000168 DISPLAY: -06

ERROR

OFFSET:X'002AF6'
RESPONSE: NORMAL

LINE:00373 EIBFN=X'0204'
EIBRCODE=X'OOOOOOOOOOOO'

REPLY:
ENTER: CURRENT DISPLAY
PFl : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFlO: PREVIOUS DISPLAY

PF2 : UNDEFINED
PFS : WORKING STORAGE
PF8 : SCROLL FORWARD
PFll: NEXT DISPLAY

Figure 87. The HANDLE CONDITION ERROR Command

238 CICS Application Programming Primer

PF3
PF6
PF9
PF12

UNDEFINED
USER DISPLAY
STOP CONDITIONS
UNDEFINED

our EDF session

TRANSACTION: AC02 PROGRAM: ACCT02
STATUS: ABOUT TO EXECUTE COMMAND
EXEC CICS HANDLE CONDITION

TASK NUMBER: 0000168 DISPLAY: -07

ERROR

OFFSET:X'002AF6'
RESPONSE:

LINE:00373 EIBFN=X'0204'

ENTER: CURRENT DISPLAY
PFl : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFlO: PREVIOUS DISPLAY

PF2 : UNDEFINED
PFS : WORKING STORAGE
PF8 : SCROLL FORWARD
PFll: NEXT DISPLAY

PF3
PF6
PF9
PF12

Figure 88. Do the HANDLE CONDITION ERROR Command

REPLY:

UNDEFINED
USER DISPLAY
STOP CONDITIONS
UNDEFINED

TRANSACTION: AC02 PROGRAM: ACCT02
STATUS: COMMAND EXECUTION COMPLETE
EXEC CICS DELETE

TASK NUMBER: 0000168 DISPLAY: -08

DATASET ('ACCTFIL ')
RIDFLD ('11111')

OFFSET:X'002822'
RESPONSE: INVREQ

LINE:00334 EIBFN=X'0608'
EIBRCODE=X'OSOOOOOOOOOO'

REPLY:
ENTER: CURRENT DISPLAY
PFl : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFlO: PREVIOUS DISPLAY

PF2 : UNDEFINED
PFS : WORKING STORAGE
PFS : SCROLL FORWARD
PFll: NEXT DISPLAY

Figure 89. Here's Our Failing Instruction Again

The delete command is returning with INVREQ.

PF3
PF6
PF9
PF12

UNDEFINED
USER DISPLAY
STOP CONDITIONS
UNDEFINED

Chapter 5-1. Testing 239

our EDF session

As we said in Part 4, when discussing Lines 333 to 336 of ACCT02, the problem is that
we're trying to delete a record that's been read for update. Our mistake is to quote a
value for the RIDFLD at this point.

We shall now press ENTER

TRANSACTION: AC02 PROGRAM: ACCT04
STATUS: AN ABEND HAS OCCURRED

TASK NUMBER: 0000168 DISPLAY: 00

+

EIBTIME
EIBDATE
EIBTRNID
EIBTASKN
EIBTRMID

EIBCPOSN
EIBCALEN
EIBAID
EIBFN
EIBRCODE
EIBDS
EIBREQID

ABEND : EACC

ENTER: CONTINUE
PFl : UNDEFINED

+0133511
+0084244
'AC02'
+0000168
'L77A'

+01743
+00010
X'7D'
X'OEOC' ABEND
X'OOOOOOOOOOOO' NORMAL
'ACCTFIL '

PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK

PF2 : SWITCH HEX/CHAR
PFS : WORKING STORAGE
PF8 : SCROLL FORWARD
PFll: UNDEFINED PFlO: PREVIOUS DISPLAY

Figure 90. Back With Our Abend, EACC, Again

And ENTER again ...

240 CICS Application Programming Primer

PF3
PF6
PF9
PF12

AT X'004BDBEA'
AT X'004BDBEB'
AT X'004BDBED'

REPLY:

END EDF SESSION
USER DISPLAY
STOP CONDITIONS
UNDEFINED

our EDF session

TRANSACTION: AC02 PROGRAM: TASK NUMBER: 0000168 DISPLAY: 00
STATUS: ABNORMAL TASK TERMINATION

EIBTIME +0133511
EIBDATE +0084244
EIBTRNID 'AC02'
EIBTASKN +0000168
EIBTRMID 'L77A'

EIBCPOSN +01743
EIBCALEN +00010
EIBAID X'7D'
EIBFN X'OEOC' ABEND
EIBRCODE X'OOOOOOOOOOOO'
EIBDS 'ACC'I'FIL I

+ EIBREQID
ABEND : EACC

TO CONTINUE EDF SESSION
ENTER: CONTINUE

REPLY YES

NORMAL

PFl : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFlO: PREVIOUS DISPLAY

PF2 SWITCH HEX/CHAR
PFS WORKING STORAGE
PF8 SCROLL FORWARD
PFll: UNDEFINED

Figure 91. The Abnormal Task Termination

Pressing ENTER one final time brings us to this:

ACCOUNT FILE: ERROR REPORT

TRANSACTION AC02 HAS FAILED IN PROGRAM ACCT02

A PROGRAM OR FCT TABLE ERROR (INVALID FILE REQUEST).

THE FILE IS: ACCTFIL .

PF3
PF6
PF9
PF12

AT X'004BDBEA'
AT X'004BDBEB'
AT X'004BDBED'

REPLY: NO

END EDF SESSION
USER DISPLAY
STOP CONDITIONS
UNDEFINED

BECAUSE OF

PLEASE ASK YOUR SUPERVISOR TO CONVEY THIS INFORMATION TO THE
OPERATIONS STAFF.

THEN PRESS "CLEAR". THIS TERMINAL IS NO LONGER UNDER CONTROL OF
THE "ACCT" APPLICATION.

DFH2206I TRANSACTION AC02 ABEND EACC . BACKOUT SUCCESSFUL 13:37:06

Figure 92. This is the CICS Message. Message DFH2206 (suffix "I" for "Information: No
action is required") tells us that all recoverable resources associated with the
failed transaction have been successfully backed out following the abend.

Chapter 5-1. Testing 241

browsing temporary storage

If we'd chosen not to suppress displays, you would have faced about another 45
screens to reach this point.

Of course, although you know the EXEC CICS DELETE command is failing, you have
to go off and read the APRM carefully to pinpoint the exact reason. Studying the
transaction dump leads us to the same conclusion by a different route.

The beauty of EDF as a testing tool is the way you can home in on a problem, and the
way you can force your code to behave as though a problem had arisen. We hope you
find EDF a useful weapon in your bug-killing armory!

Temporary Storage Browse Facility (CEBR)

We'll describe another diagnostic tool here. This is the CEBR transaction that allows
you to look at temporary storage queues. If you need to do this while debugging,
enter the transaction identifier CEBR to produce the display shown in Figure 93.

TRANSACTION CEBR TS Queue CEBRxxxx
ENTER COMMAND ===>

Record 1 of 0 Col 1 of 0

************************** TOP OF QUEUE ********************************
************************** BOTTOM OF QUEUE *****************************

TEMPORARY STORAGE QUEUE CEBRxxxx CONTAINS NO DATA
PFl : HELP PF2 : SWITCH HEX/CHAR
PF4 : VIEW TOP PFS : VIEW BOTTOM
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF
PFlO: SCROLL BACK FULL PFll: SCROLL FORWARD FULL

Figure 93. The Temporary Storage Browse (CEBR) Display

PF3
PF6
PF9
PF12

TERMINATE BROWSE
REPEAT LAST FIND
UNDEFINED
UNDEFINED

This shows the browse display for the temporary storage queue named "CEBRtttt"
("tttt" is the terminal identifier of the terminal from which you made the entry).
Unless you happen to be interested in this particular queue (and this is unlikely), the
first thing you do is to enter "QUEUE xxxxxxxx" in the command area, where
"xxxxxxxx" is the name of the queue you do want to see. The command area is the
space right after "ENTER COMMAND" at the top of the screen.

242 CICS Application Programming Primer

browsing temporary storage

If a queue by this name exists, you'll see a display of it. The items in the queue are
displayed one per line, in the area between the command line and the PF key menu.
Only as much of each item as will fit on one line of the screen is shown.

Initially the display starts with the first character in the item. However, if you need
to see characters beyond those displayed, you can shift the starting character by
entering "COLUMN(n)" in the command area. This causes the display of each item to
begin with the nth character in the item; "n" can be up to four digits.

You can tell which character the display starts at, and how long the longest item in
the queue is, from the "Col X of Y" information at the top of the screen. "X" is the
position of the record displayed in the first column of the screen, and "Y" is the
length of the longest item. The "Line N of M" message just before that tells you that
the "Nth" item in the queue is in the first one on the screen, and there are "M" items
in the queue.

You can look through the items in the queue by using the ·scroll keys shown in the
figure (PF7, PFS, PFlO, and PFll), or you can specify that the display should start
with a particular item in the queue. The scroll keys work just as they do for EDF.
To display a particular item, enter "LINE (n)" in the command line. CEBR responds
by starting the display one item before the number you specify; this number, too, can
be up to four digits long.

You can redisplay the beginning of the queue either by entering "TOP" in the
command area or by pressing PF4. Similarly, you can display the last screen's worth
of items by entering "BOTTOM" or pressing PF5.

You can also search the items in the queue for the occurrence of a particular
character string. _ If you were looking for the characters "MOUNCE", for example,
you would put:

FIND /MOUNCE

in the command area. CEBR would scroll the display forward until it displayed the
first item that contained "MOUNCE".

The slash(/) in the command above is a delimiter. It can be any non-space character
that isn't in the search string. That is,

FIND XOS/07/84 and FIND SOS/07/84

are equivalent.

Chapter 5-1. Testing 243

FIND /05/07/84

FIND /JOHN JONES/

Once you've entered a find command, you can repeat it (that is, find the next
occurrence of the string) by pressing PF6.

You can use PF2 to switch the display from character to hexadecimal format, and
back again, just like the corresponding switch hex/char command in EDF.

Indeed, you can use the CEBR transaction while under control of EDF, by using the
PF key assigned for BROWSE TEMPORARY STORAGE. Your EDF transaction is
suspended; CEBR starts and continues until you end it with the PF3 key. If you are
in EDF, PF3 returns you to the point at which you requested CEBR. If you were not
in EDF but came in by entering CEBR, PF3 terminates the transaction in the normal
way, and frees the terminal for the next transaction.

The CEBR transaction also allows you to delete a temporary storage queue, by
entering PURGE in the command area. And finally, there is a HELP facility,
explaining how to use CEBR, which you can access by pressing PFL

Transaction Dumps

The final major debugging tool that CICS provides is the transaction dump.

You can obtain a transaction dump in two ways:

• Your application program can ask for one with an EXEC CICS DUMP request

• You can add the ABCODE option to an EXEC CICS ABEND command to specify
the (4-character) name of a dump of main storage associated with the terminated
task.

The format of a CICS transaction dump includes a 4-character abend code (this will be
the 4-character name you specified for a dump produced under application program
control) or a CICS-provided abend code for a program interrupt that has been trapped
by CICS. The ABCODE appears in the heading of the dump, as does the task
identifier (the TRANSID). This TRANSID is the one that you'll have coded.

244 CICS Application Programming Primer

~
~ s:
l"'S
('[) CUSTOMER INFORMATION CONTROL SYSTEM STORAGE DUMP CODE=EACC TASK=AC02 DATE=OB / 31 / 84 TIME=l 0 :13:07 PAGE 2 3
~ TIME OF DAY ID REG 14 REQD TASK FIELD A FIELD B CHARS RESOURCE TRACE TYPE INTERVAL
~ 10 : 13 : 03 . 276288 F7 404A60E2 4103 00022 ClC3C3E3 D3J56C"740 ACCTLOG TSP PUTQ 00.000064

10:13:03 . 276288 Fl 404A7CD8 F804 00022 00000020 014630DO SCP GETMAIN CONDITIONAL INITIMG 00 . 000000
10:13 : 03 . 276320 CB 5049A060 0004 00022 00487840 98000020 SCP ACQUIRED TSTABLE STORAGE 00.000032

""3 10 : 13 : 03 . 276384 F7 404A7368 0045 00022 00487840 98000020 TSP RETN NORMAL 00 . 000064
t:r 10 : 13 : 03.276416 Fl 5046E lBC 4004 00022 004BFC20 014630DO SCP FREEMAIN 00 . 000032
('[) 10 : 13 : 03.276448 C9 5049A096 0004 00022 004BFC20 8E000308 SCP RELEASED TEMPSTRG STORAGE 00 . 000032

~
10: 13: 03. 276448 El 50543D40 OOF4 00022 00000000 OOOOOA02 EIP WRITEQ-TS RESPONSE 00 . 000000
10: 13: 03 . 276480 El 5054405E 0004 00022 004BE31C 00000608 .. T EIP DELETE ENTRY 00 . 000032 0 10: 13: 03. 276544 El 004BF810 03F4 00022 08000000 0000060B EIP DELETE RESPONSE 00.000064 0

~ 10: 13 : 03 . 276576 El 50544332 0004 00022 004BE31C 00000204 .. T EIP - HANDLE~CONDITION ENTRY 00.000032

0 10: 13 : 03. 276608 El 50544332 OOF4 00022 00000000 00000204 £IP-HANDLE-CONDITION RESPONSE 00.000032
10: 13 : 03. 27660B El 505443B6 0004 00022 004BE31C OOOOOE02 .. T ffPLINI<ENTRY ___ - -- - 00.000000 1-1)
10 : 13:03.276640 F2 6049FA58 8204 00022 00000000 00000000 ACCT04 PCP LOCATE 00 . 000032

~

t:r 10 : 13:03.276672 EA 4049E536 0003 00022 01000300 004BD9C4 RD ACCT04 TMP PPT LOCATE 00 . 000032
('[) 10 : 13 : 03 . 276736 EA 404988E8 0005 00022 01000300 004A2COO TMP RETN NORMAL 00 . 000064

""3
10 : 13:03 . 276768 F2 4049FA94 2044 00022 00000000 00000000 ACCT04 PCP BLDL 00.000032
10 : 13 : 03 . 299232 Fl 6046ElBC CC04 00022 OOOOOOFO 014630DO . .. 0 SCP GETMA I N INITIMG *00 . 022464

l"'S 10 : 13 : 03 . 299296 CB 5049A060 0004 00022 004BFC20 BCOOOOFB 8 SCP ACQUIRED USER STORAGE 00.000064 SI)
~ 10 : 13 : 03. 299328 F2 5046E44B Bl0 4 00022 00000000 00000000 ACCT04 PCP LINK- CONDITIONAL 00.000032
('[) 10 : 13 : 03.299520 EA 4049E536 0003 00022 01000300 004BD9C4 RD ACCT04 TMP PPT LOCATE 00.000192

""3
10 : 13 : 03. 299584 EA 4049BBEB 0005 00022 01000300 004A2COO TMP RETN NORMAL 00 . 000064
10 : 13 : 03. 299616 Fl 4049El6E 8904 00022 00480050 014630DO ... & SCP GETMAIN 00.000032

SI) 10 : 13 : 03 . 299616 CB 5049A060 0004 00022 004BFD20 89480058 SCP ACQUIRED RSA STORAGE 00 . 000000 C" 10 : 13:03 . 299648 Fl 4049DE42 8804 00022 004B030B 014630DO SCP GETMAIN 00 . 000032 ;" 10 : 13 : 03 . 317120 CB 5049A060 0004 00022 0053F800 B8002000 .. 8 SCP ACQUIRED PGM STORAGE *00 . 017472
10 : 13 : 03 . 3386BB FO 4049DEE4 4004 00022 BBOOOOOO 004A2C26 KCP WAIT DCI=CICS *00 . 021568
10 : 13:03 . 384736 F l 6049EFFC 8C04 00022 00531214 014630DO SCP GETMAIN *00.046048
10: 13 : 03 . 3946BB CB 5049A060 0004 00022 004BFD80 8C531228 SCP ACQUIRED USER STORAGE 00 . 009952
10 : 13 : 03 . 394944 El 50540C92 0004 00022 004BFDCC 00001804 EI P SEND- MAP ENTRY 00 . 000256
10 : 13 : 03.39500B FA 504AD1CC 0003 00022 OOOOODEA 04000020 BMS----sEN'D-OUT CTRL"'"MAP MAPSET SAVE WAIT 00.000064
10 : 13 : 03 . 395040 FA 404ADA6B 0003 00022 OOOOODEA 04000020 BMS SEND- OUT CTRL MAP MAPSET SAVE WAIT 00.000032
10:13:03 . 395072 F2 504AC1BB B404 00022 00000000 00000000 ACCTSETM PCP LOAD - CONDITIONAL 00 . 000032
10 : 13 : 03 . 395104 EA 4049E536 0003 00022 01000300 004BD9C4 RD ACCTSETM TMP PPT LOCATE 00 . 000032
10:13:03 . 421152 EA 40498BEB 0405 00022 01000304 00000000 TMP RETN NOT FOUND *00 . 02604B
10:13:03.421216 Fl 404ACB7A B504 00022 004B01BF 014630DO SCP GETMAIN 00 . 000064
10:13:03 . 421280 CB 5049A060 0004 00022 004BD000 854B01A8 SCP ACQUIRED TERMINAL STORAGE 00 . 000064
10:13:03 . 421408 FC 504ACDD4 0103 00022 OOB50000 004630DO ZCP ZARQ APPL REQ ERASE WRITE WAIT 00.00012B
10:13:03 . 421472 FC 7047C700 1804 00022 OOOAOOOl 004630DO ZCP ZSDS SEND 00.000064
10:13 : 03.423776 FO 7047402C 4004 00022 13000000 014630DO KCP WAIT DCI=TERMINAL 00.002304
10:13:03.423936 EE 704779B8 2214 TCP OOOA0126 014630DO VIO SEND OIC DATA RQEl 00.00016 0
10 : 13:03.423936 EE 704779BB 0024 TCP 0180F5C2 11404013 .. SB. VIO DATA 00.00000 0

0 10 : 13:03.423968 FC 70477C04 1204 TCP 00200001 194630DO ZCP ZFRE FREEMAIN 00.000032
P"' 10 : 13: 03 . 42396B Fl 60477D66 4404 TCP 004BD000 004630DO SCP FREEMAIN 00.000000 ~
Sl:> 10 : 13 : 03.424000 C9 5049A096 0004 TCP 004BDOOO 854B01AB SCP RELEASED TERMINAL STORAGE 00 . 000032 "'1

"C 10 : 13 : 03.42412B FO 60477ACA 0804 TCP 00480940 01000022 .. R KCP RESUME 00 . 000128 ~
~ 10:13 : 03.424160 FO 40473960 4004 TCP 44000000 00464200 KCP WAIT DCI=TCP 00 . 000032

= ('[) .., 10:13:03 . 424192 FC 40473F3A 0105 00022 00000000 00000000 ZCP RETN ZARQ APPL REQ 00.000032 r.n
Ol 10:13 : 03 . 424224 FA 404ACDFE 0005 00022 00000000 00000000 BMS RETN 00 . 000032

~ I 10:13:03.424224 FA 404ADA86 0005 00022 00000000 00000000 EMS RETN 00.000000 10:13 : 03 . 424256 El 50540C92 OOF4 00022 00000000 00001804 EIP SEND- MAP RESPONSE 00.000032 ~
10 : 13:03.42428B El 50540CC6 0004 00022 004BFDCC OOOOOEOC EIP ABEND ENTRY - 00 . 000032 "' 1-'.3 10 : 13 : 03 . 424320 F2 7046E44B 6004 05"522 C5ClC3C3 00000000 EACC PCP ABEND 00.000032 ~·

('[) 10:13:03 . 424352 Fl 4049D75A CC04 00022 OOOOOOAO 014630DO SCP GETMAIN INITIMG 00 . 000032 0
00

= ~ 10:13:03.424416 CB 5049A060 0004 00022 004BD000 BCOOOOAB SCP ACQUIRED USER STORAGE 00.000064 s· 10 : 13 : 03.45308B F4 5049DBC8 FE04 00022 00000000 C5ClC3C3 EACC DCP TRANSACTION *00.028672
Q.. aq 10 : 13:03 . 602944 FO 405BOA76 4004 00022 BOOOOOOO 00562BEO KCP WAIT DCI =SINGLE *00.149856

=
~I L I I~

transaction dumps

The transaction dump is formatted into areas such as program storage, transaction
storage, and the trace table. There are other areas, but since you'll be concerned
mainly with your COBOL program's Working-Storage, they won't be very meaningful
to you at this stage.

Working Through a Transaction Abend Dump Listing

Let's look at the dump more closely.

When our error-handling program (ACCT04) gains control it issues an EXEC CICS
ABEND command (Line 137). This writes a transaction dump to one of the two dump
data sets (A or B). The transaction dump includes hexadecimal and character prints
of the program and storage areas associated with the failed task, and the trace table.

You can print out the dump data sets with an IBM-supplied CICS utility called
DFHDUP. Your CICS Installation and Operations Guide tells you exactly how to do
this.

Let's look more closely at the dump printout. Figure 94 on page 245 shows the foot
of the trace table.

We're interested in the bottom of the table because that's where the newest (most
recent) entries are. We'll scan slowly back up the table looking for the characters
"EIP" (Exec Interface Program) over on the right hand side under the heading "Trace
Type".

For our EACC abend, the bottom EIP entry in the trace table should say EIP ABEND
ENTRY. When you've found this entry, look over to the left of the same line, and
make a note of the 5-digit number under the heading "Task". This is the CICS task
number; in our case here, it's 00022. We're only going to be interested in trace table
entries for this task number. EIP ABEND ENTRY tells us that program ACCT04 has
issued its EACC abend command.

Now work your way back up the table (back in time) looking for other EIP type
entries for this task number. The next one we find is EIP SEND-MAP RESPONSE.
This tells us that ACCT04 has displayed an error screen.

Next, we see EIP SEND-MAP ENTRY. Each command, except the ABEND, appears
twice in the trace table. Once (the ENTRY) when the application program passes
control to CICS, and once (the RESPONSE) when CICS returns control to the
application.

Continuing back up the table, we see EIP LINK ENTRY. This is where the failing
program - the one in which the exceptional condition has occurred - is linking to the
error-handling program, ACCT04. Notice the absence of a corresponding RESPONSE;
this would occur when the LINKed program (ACCT04) issued a RETURN command
(which it never does, of course).

246 CICS Application Programming Primer

0
~
Pl
'O ..,.
(1)
'1

01
~

~
(1)
00 ..,.
s·

llQ

~
~
-.:J

~
aq"
c:
l"'S
~

cc
?1

~

=-~
> C"
rn
0 -c:
"" ~
> Q..
Q..
l"'S
~
rn
rn
0
~ ..,.
=-~
~
s:o
I"'• -I"'•
= (IQ

~

= rn
"" l"'S
c:
(') ..,.
I"'•
0

=

CUSTOMER INFORMATION CONTROL SYSTEM STORAGE DUMP
PROGRAM STORAGE ADDRESS
00 0027AO D23C58FO C004 05EF D2106E90 C3C"9"92if5
000027CO 6DF6D200 6DF76DF6 41106E90 5010D23C
000027EO 41 106006 5010D248 96 80D248 4110D23C
00002 800 C206D210 6E90C3DA 92406EA1 D20A6EA2
00002820 5010D2 3C 41106DFO 5010D240 41106E88
00002840 411 0E001 5010D24C 9680D24C 4110D23C
00002860 D20A6EA2 6EA1D205 6DFOC37F 92406DF6
00 002880 6DF0 50 10 D2404110 6E885010 D2444110
000028AO D24C4110 D23C58FO C00405EF D2106E90
000028CO 5010D23C 411060 18 5010D240 9680D240
000028EO 0285 58 30 C2180E02 4140606D 48206000
00002900 D238D23B 68F9EOOO D2166E90 C40D9240
00002920 6E80C278 4 1106E90 5010D23C 41106E78
00002940 5010D248 41 106E80 50 10D24C 9680D24C
00002960 92406EA 1 D20A6EA2 6EA1D203 6DC8C43C
0000 2980 9680D240 4110D23C 58FOC004 05EF4140
0000 29AO 5040D238 58EOD238 D23B6BE7 E0004830
000 029CO 4930C206 58FOC1DC 078F4830 60024930
000029EO 6E90C440 92406EA7 D2046EA8 6EA7D206
000 02A00 41106E90 5010D23C 41 106E78 5010D240
00002A20 41106E80 5010D24C 41106E88 5010D250
00002A40 41106D98 5010D25C 9680D25C 4110D23C
00002A60 D?.0A6EA2 6EA1D203 6DC8C468 D2016D98
00002A80 D24058EO D2284110 E0005010 D2444110
00002AAO C00405EF 5820C1E4 58EOD224 D500E01A
00002ACO 5810C058 07Fl5820 C1E858EO D22895E7

CODE=EACC TASK=AC02 DATE=08 / 31/ 84 TIME=10:13:07 PAGE 52
00541808 TO 005448Q7 . LENGTH 0030DO

6EA1D20A 6EA26EA1 D2056DFO C37F9240 *K . . O K .. . Cik . . K .. s .. K .. OC . k *
41106DFO 5010D240 41106600 5010D244 *.6K .. 7.6 K O .. K K.*
58FOC004 05EF5810 C05007Fl D2016000 * .. - . .. K. o.K . .. K .. O lK .-. *
6EA1D206 6DFOC290 92406DF7 41106E90 *B . K . . . C. k .. K . . s . . K .. OB . k . 7 *
5010D244 41106E88 5010D248 58EOD228 * . . K 0 . . K . . . h .. K h .. K . .. K. *
58FOC004 05EFD210 6E90C3EB 92406EA1 * K. o . K ... K .. 0 K .. . C.k . . *
D2006DF7 6DF641io 6E905010 D23C4110 *K .. s .. K .. OC . k .6K . . 7 . 6 K .. . *
6E885010 D2484110 602E5010 D24C9680 *.O . . K . .. h . . K h .. K ... - . .. K. o .*
C3FC9240 6EA1D20A 6EA26EA1 41106E90 *K .. . K .. 0 K ... C.k .. K .. s *
4110D23C 58FOC004 05EF4100 66804110 * .. K ... - . .. K o.K . . K .. O *
4C20C208 1A425B40 C20C5040 D23858EO * B - ... - ... B . .. $ B .. K . .. *
6EA7D204 6EA86EA7 D2066E78 C424D206 *K.K .. 9 .. K ... D. k .xK .. y.xK . .. D.K .*
5010D240 41106680 5010D244 41106E88 * . . B K K K h*
4110D23C 58FOC004 05EFD210 6E90C42B * .. K K. o . K . . . K . . 0 K ... D.*
41106E90 5010D23C 41106DC8 5010D240 *k . . K .. s . . K .. HD K H . . K *
615D4820 60024C20 C2081A42 5B40C20C *o . K .. K .. 0 /) .. - . . . B ... $ B. *
60024930 C20458FO C1DC078F 48306002 * . K ... K.K . , X - .. . B . . OA -.*
C21058FO ClE0077F D201695D ClF8D216 * . . B .. OA - . .. B . . OA . .. K . .)ASK . *
6E78C271 D2066E80 C278D201 6D98C1F8 * . . Dk .xK .. y . xK . . . B. K .. . B . K .. qAB*
41106938 5010D244 41106E88 5010D248 * K K K h . . K.*
41106E88 5010D254 41106E88 5010D258 * K h .. K h .. K h . . K.*
58FOC004 05EFD210 6E90C457 92406EA1 * . . . q .. K*o.K* .. K .. O K ... D.k .. *
C2124110 6E905010 D23C4110 6DC85010 *K .. s .. K . . HD.K .. qB K H .. *
6D985010 D2489680 02484110 D23C58FO *K .. K K q .. K. o .K ... K . . O*
6D020772 5810C054 07FlD201 60 02C204 * AU .. K.N lK.-.B.*
E0000772 D2016002 ClFAD201 6C23C1F8 * 1 .. AY .. K.nX K. -.A.K ... AB*

00543FA8
00543FC8
00543FE8
00544008
00544028
00544048
00544068
00544088
005440A8
005440C8
005440E8
00544108
00544128
00544148
00544168
00544188
005441A8
005441C8
005441E8
00544208
00544228
00544248
00544268
00544288
00544 2A8
005442 C8

~
""S

= = rn

= r.>
~
0

= ~
= e
~

t..42

transaction dumps

Next, we have EIP HANDLE-CONDITION RESPONSE and EIP
HANDLE-CONDITION ENTRY. The routine in the failing program, given control by
CICS at the ERROR condition, is cancelling the HANDLE CONDITION ERROR to
avoid a possible loop.

Well, this marks the start of what we called the "predictable sequence of actions" that
takes place between the actual error (whatever that is) and the consequent abend.
(See "Errors Within the Example Application" on page 198.)

So, what command failed? What went wrong and raised an ERROR condition? Keep
on working back through the trace table and here we are:

EIP DELETE RESPONSE and EIP DELETE ENTRY

The exceptional condition that led to the abend happened on the DELETE command.
So this will be the first trace table entry that we really want to take a close look at.

If you've got a copy handy, now's the time to look at your CICS Program Debugging
Reference Summary (SX33-6010). What we want (from the Contents page) is the
"EXEC Interface Trace Table Entries (Figure 3)."

Looking at the column headed "Field B" on the dump listing, you'll see that both the
DELETE ENTRY and the DELETE RESPONSE contain the command code. In this
case it's 0608. The Summary translates this for us into a File Control DELETE. (By
the way, these command (EIBFN) codes are also listed in Appendix A of the APRM.)

Now look at "Field A" on the RESPONSE. This gives us the command's response
code (EIBRCODE). We're interested in the value in the first two hexadecimal digits -
08. Both the APRM and the Summary tell us that a value of 08 in the RESPONSE
means condition INVREQ (invalid request), as long as the first byte of EIBFN is 06
(which it is).

So where do we stand now? We know that the failure is due to an EXEC CICS
DELETE command coming back with an INVREQ condition. And we certainly didn't
expect this to happen. Now we need to ask:

1. What does INVREQ mean in this context?
2. Where in our program is this failing DELETE command?

To answer the first question, let's see what the APRM can tell us about invalid
requests. If you find the write-up of the DELETE command in the File Control
section of the APRM, you'll see that INVREQ is one of eight possible results of an
unsuccessful DELETE command. There are three rules mentioned here:

1. The record to be deleted must be identified by means of the RIDFLD option.

248 CICS Application Programming Primer

transaction dumps

2. A record that has been retrieved for update ... can be deleted In this case, the
RIDFLD option must not be specified.

3. A generic key must not be used for data sets for which LOG = YES has been
specified.

A few pages further on in the APRM, in the section "File Control Exceptional
Conditions", you'll find a number of different situations that can lead to an INVREQ
condition. To help pinpoint our error we need to know exactly which of our DELETE
commands is failing, so we can then look at the source code listing and see what
operands we specified on it.

Once again, the trace table can help us. The "Register 14" value on the EIP DELETE
ENTRY holds the address, or the point within our application program, to which
CICS would return control when the DELETE command execution was complete. In
other words, Register 14 points to the next COBOL instruction due to be executed
after the DELETE that's failing.

Our Register 14 value is 54405E. This is an absolute address (an actual location in
virtual storage). We must adjust it to become a displacement through a program for
it to be useful. If you look beyond (below) the trace table you'll see some blocks of
storage. See Figure 95. Some are quite short, others take up several pages of the
listing. Over on the right hand side of these blocks of storage are the absolute
storage addresses. So we need to look for something close in value to our Register 14
value of 54405E, in the "Program Storage."

It turns out to be near the bottom of the listing in a block of code - Program Storage -
that extends from 541808 to 5448D7. The instruction (within this block) at 54405E is
D2106E90. This is the Next Sequential Instruction. (Just before this are the digits
05EF - the end of a CALL statement, as we'd expect.)

Over on the left hand side of the Ii.sting are the offset values. The offset equivalent to
54405E is 2856. Another route to this same answer is by subtracting the start address
for this block of code from our Register 14 address:

54405E - 541808 = 2856

This offset (2856) is in the phase (DOS) or load module (OS).

Finally, we need the source compilation listing to see, from the link-edit information,
how far from the start of the phase is the application module itself. See Figure 98 on
page 252.

The "stub" module that is loaded first, at address 32078, turns out to be hexadecimal
30 bytes long (320A8 minus 32078), so we have to subtract this from our 2856 offset.
This gives us 2826 as our final offset value.

Chapter 5-1. Testing 249

~I
~ ~
~· '"1

(Jq ~ s=
"1 = ~ 00

(') c.c ~ ~

(') ~ ~
r:n CUSTOMER INFORMATION CONTROL SYSTEM STORAGE DUMP CODE =EACC TASK AC02 DATE=OB/31/B4 TIME=l 0 : 13 : 07 PAGE 20 ~

TIME OF DAY ID REG 14 REQD TASK FIELD A FIELD B CHARS RESOURCE TRACE TYPE INTERVAL
> ~ 10:13:02 . 333024 EA 4046BC5C 0003 TCP OCOOOlOO 0049DlF4 J4 AC02 TMP PCT TRANSFER 00.000032 0
'C t:r' 10:13 : 02.333056 EA 4049B8EB 0025 TCP OCOOOlOO 00000000 TMP RETN NORMAL 00. 000032 = 'C ~ 10:13 : 02.3330BB FC 4047573B 1125 TCP OCOOOlOO 00000000 ZCP RETN ZATT ATTACH 00 . 000032
c=; · ~ 10 : 13 : 02.333120 FO 40473960 4004 TCP 44000000 00464200 KCP WAIT DCI=TCP 00.000032 =...
p,,

~ 10 : 13 : 02 . 333216 FD OOOOOOlC 0104 TCP 003821B9 00382189 00001 TIMES 00.000096

= ~ = 10:13 : 02.333440 FC 054757F8 0503 00022 00200001 004630DO ZCP ZSUP START UP TASK 00.000224 9 c;· Q.. 10 : 13 : 02.333504 ES 404758AA OC03 00022 00000000 00000000 AC02. * .. XSP SECURITY 00.000064
~ I 10:13 : 02 . 333632 E7 00475FAE 0004 00022 00000000 00000000 ERM ENTRY 00 . 000128

~
""d ~ 10 : 13:02.333664 E7 00475FAE 0004 00022 00000000 OOOOOOFF ERM RESPONSE 00.000032

00
""'l Q 10:13 : 02 . 333664 F2 50475FEO B804 00022 00000000 00000000 ACCT02 PCP XCTL-CONDITIONAL 00 . 000000
0 "1 10 : 13 : 02. 333696 EA 4049E536 0003 00022 01000300 004BD9C4 RD ACCT02 TMP PPT LOCATE 00 . 000032 I crq c:= 10:13 : 02.333760 EA 4049B8EB 0005 00022 01000300 004A2B58 TMP RETN NORMAL 00 . 000064
""'l 10 : 13 : 02. 495936 Fl 4049DE42 BB04 00022 0000061B 014630DO SCP GETMAIN *00 . 162176 p,, ~
8 Q.. 10:13 : 02 . 599072 CB 5049A060 0004 00022 00541BOO BB003800 SCP ACQUIRED PGM STORAGE *00.103136

= 10:13 : 02 . 92412B FO 4049DEE4 4004 00022 BBOOOOOO 004A2B7E = KCP WAIT DCI=CICS *00.325056
8 M- 10:13 : 02.9B0032 Fl 6049EFFC BC04 00022 0054115C 014630DO * SCP GETMAIN *00.055904 s· ~ 10:13 : 02.9B0192 CB 5049A060 0004 00022 004BE2DO 8C54116B .. s SCP ACQUIRED USER STORAGE 00.000160

crq 1:1)

""d = ""'l Q..
~ - M-8 t:r' CUSTOMER INFORMATION CONTROL SYSTEM STORAGE DUMP CODE=EACC TASK=AC02 DATE=08 / 31/ B4 TIME=l0:13:07 PAGE 22
~ ~ TIME OF DAY ID REG 14 REQD TASK FIELD A FIELD B CHARS RESOURCE TRACE TYPE INTERVAL
""'l 10 13:03.032320 El 5054303C OOF4 00022 00000000 00001802 EIP RECEIVE - MAP RESPONSE 00.00012B

~ 10 13 : 03 . 032352 El 5054309A 0004 00022 004BE31C 00000602 .. T EIP READ ENTRY 00.000032 c 10 13 : 03 . 071136 FS 404A35BE Fl03 00022 00000000 00000000 ACCTFIL FCP CTYPE LOCATE *00.03B7B4
~ 10 13 : 03. OB3360 EA 404A58AC 0003 00022 01000500 004BD9C4 RD ACCTFIL TMP FCT LOCATE 00.012224
t'-4 10 13:03 . 0B3392 EA 4049B8EB 0005 00022 01000500 004A3358 TMP RETN NORMAL 00 . 000032
M- 10 13: 03. OB3424 F5 404A4A36 0045 00022 01000500 004A335B FCP RETN NORMAL 00.000032
Q 10 13: 03. OB3456 Fl 6046ElBC CC04 00022 00000090 014630DO SCP GETMAIN INITIMG 00 . 000032

> 10 13:03.0B3520 CB 5049A060 0004 00022 004BFB60 8C000098 .. B- SCP ACQUIRED USER STORAGE 00.000064
10 13:03.0B3552 Fl 6046ElBC BC04 00022 004BOOOA 014630DO SCP GETMAIN 00.000032

c 10 13 : 03.0B3552 CB 5049A060 0004 00022 004BF900 BC4B001B . . 9 SCP ACQUIRED USER STORAGE 00 . 000000
c 10 13:03 . 0B35B4 FS 504A38DE B403 00022 00000000 00000000 ACCTFIL FCP GET-UPDATE 00 . 000032
~ 10 13:03.0B3616 Fl 504A59B6 9D04 00022 00480050 014630DO •• • & • • •• SCP GETMAIN 00 . 000032

= 10 13:03 . 0B364B CB 5049A060 0004 00022 004BF920 9D4B0058 .. 9 SCP ACQUIRED DWE STORAGE 00 . 000032
NI 10 13:03.0B36BO Fl 404A56C6 CF04 00022 00000094 014630DO SCP GETMAIN INITIMG 00.000032

10 13:03 . 0B3712 CB 5049A060 0004 00022 004BF9BO BFOOOOA8 .. 9 SCP ACQUIRED FILE STORAGE 00 . 000032
10 13 : 03.0B3712 Fl 404A56C6 CF04 00022 OOOOOlBB 014630DO SCP GETMAIN INITIMG 00.000000
10 13 : 03 . 0B3744 CB 5049A060 0004 00022 004BFA30 8F00019B SCP ACQUIRED FILE STORAGE 00 . 000032
10 13:03 . 27484B FO 504A4E4A 4004 00022 20000000 004A2B7E = KCP WAIT DCI=DISP *00 . 191104
10 13 : 03 . 27500B FD 40473960 4004 TCP 44000000 00464200 KCP WAIT DCI=TCP 00 . 000160
10 13 : 03.275072 FS 404A4A36 0045 00022 004BFA30 8F000198 FCP RETN NORMAL 00.000064
10 13 : 03 . 275104 El 5054309A OOF4 00022 00000000 00000602 EIP READ RESPONSE 00 . 000032
10 13:03 . 275168 El 50543868 0004 00022 004BE31C 00000204 .. T EIP HANDLE-CONDITION ENTRY 00.000064
10 13 : 03 . 275200 Fl 6046ElBC CC04 00022 00000040 014630DO SCP GETMAIN INITIMG 00.000032
10 13 : 03.275264 CB 5049A060 0004 00022 004BFBDO 8C000048 SCP ACQUIRED USER STORAGE 00 . 000064
10 13 : 03.275296 El 50543868 OOF4 00022 00000000 00000204 EIP HANDLE-CONDITION RESPONSE 00.000032
10 13 : 03 . 275296 El 505438EA 0004 00022 004BE31C OOOOOA04 .. T EIP READQ-TS ENTRY 00.000000
10 13 : 03 . 275360 F7 704A60E2 8903 00022 ClC3FOFl FlFlFlFl ACOlllll TSP GETQ 00.000064

01
::r"
i:o
't:i
.-t-
(1)
"'1
01

~
""'3
(1)
(/)
.-t-s·

l)'Q

~
~
1-1

~
(JQ

= lo1
~

cc
~

n
0

= t::i
lo1

8
= (JQ
('t-

::r
~

~
"CS -;·
~
('t-....
0

= =::
0
~

= -~
;·
> n n
t-3
c::>
NI

CUS TOMER I NFORMATI ON CONTROL
REGI STER STORAGE AREA
00000000 894 8 0058 00 48FC20
00000020 5046E44 8 A04 9F838
00000040 0048D8 00 00000002
PROGRAM STORAGE
00000000 C4C6C8E8 C3FlF6FO
00000020 F0845 8FO F00858FF
00000040 0048F4EC 005 41 908
00000060 005 4 2EF2 004A2B 58
00000080 00544568 00 4 668A8
OOOOOOAO 005 418 38 0054 1838
OOOOOOCO 9500EOOO 4770FOA2
OOOOOOEO F08A9 110 D0 48 0719
00000100 005 4 2EF2 005 44 3D2
00000120 Fl61F8F4 F l F048FO
00000140 5C5C5C5C 5C5C5C5C
00000160 00000000 00000000
00000180 FOFOFOFO FOFOF040
OOOOGlAO E5C9D6E4 E240D9C5
OOOOOlCO E3C5C440 40404040
OOOOOlEO C5C440Cl C4C4C9E3
00000200 40404040 40404040
00000220 D6C4C9C6 C9C3ClE3
00000240 40404040 40404040
00000260 C9D6D540 C3D6D4D7
00000280 40404040 40404040

SYSTEM STORAGE DUMP CODE=EACC TASK=AC02 DATE=08/ 31/ 84 TIME=l0:13 : 07 PAGE 43
ADDRESS 0048FD20 TO 0048FD7F LENGTH 000060

00000000 FF4A2858 00000000 0048FlCC 0048E2DO 00404040 *i l . . . S ..
8049FAF2 0048F558 0048FlAC 004 8Fl0C 0048E358 OOOOOOOA * .. U 2 . . 5 ... 1 ... l ... T$ *
0046DED8 0049FA30 004A2C00 0048F440 89480058 0048FC20 * . . Q Q 4 i *

58F000 14
OOC858FF
00 4BE 2EO
004 8F440
005 41 83 8
005 42A50
96 10D0 48
07FF0700
C3D6C2C6
F048F2 F2
ClC3 FOOO
00000000
404040FO
D8 E4C5E2
40404040
C9D6D540
40404040
C9D6D540
40404040
D3C5E3C5
40404040

ADDRESS 00541808 TO 005448D7 LENGTH 0030DO
58FOFOB~FOOC58FFOOOC 07FF58FO 001458FO *DFHYC160.0 . . . 00 .. 00 0 . . . O*
018 407FF 05F00700 900EFOOA 47FOF082 00565A78 *0 . . 00 H . .. d .. . 0 0 .. OOb *
00541880 0049EC98 0048D800 00541838 0046D6 1C * .. 4 S q .. Q O.*
0048D940 0048F4FC 5046D862 00541938 5054 4446 * .. . 2 4 .. R . . 4 . . . Q *
4 0 544 42E 0054 1938 005 4 2A07 00542A08 005 4 43EC * y .. •. *
005427E8 0049EFB6 58COFOC6 58EOCOOO 58DOFOCA * Y OF O. *
92FFEOOO 47FOFOAC 98CEF03A 90ECDOOC 185D989F *n Oso ... k 00 . q . 0)q . *
005443EC 00541838 00541838 00542A50 004BF1CC *O. j l .*
F3FOFOFO ClC3C3E3 FOF24040 00542AOC FOF861F3 * ... 2 ... KC08F3000ACCT02 08/3 *
00000000 00010000 017F003F 02EF0080 5C5C5C5C *1/ 8410.00 . 22 *** **
00000000 00000000 00000000 00000000 OOOCOOOO *** *** ***ACO *
OOOOOOCl C3C3E3FO F2404000 00404040 40F04BFO * ACCT02 0 . 0 *
48FOFOFO FOFOFOFO F0404040 40F048FO FOD7D9C5 *0000000 0.00000000 O.OOPRE*
E340C3Cl D5C3C5D3 C5C440Cl E240D9C5 D8E4C5E2 *VIOUS REQUEST CANCELED AS REQUES *
40404040 40404040 40404040 40D9C5D8 E4C5E2E3 *TED REQUEST*
C3D6D4D7 D3C5E3C5 C4404040 40404040 40404040 *ED ADDITION COMPLETED *
40404040 40404040 40D9C5D8 E4C5E2E3 C5C440D4 * REQUESTED M*
C3D6D4D7 D3C5E3C5 C4404040 40404040 40404040 *ODIFICATION COMPLETED *
40404040 40D9C5D8 E4C5E2E3 C5C440C4 C5D3C5E3 * REQUESTED DELET*
C4404040 40404040 40404040 40404040 40404040 *ION COMPLETED *
40C5C9E3 C8C5D940 C5D5E3C5 D9407FE8 7F40E3D6 * EITHER ENTER .Y. TO*

0048FD20
0048FD40
0048FD60

00541808
00541828
005 41 848
005 4 1868
0054 1888
005418A8
005418C8
005 4 18E8
00541908
00541928
00541948
00541968
00541988
005419A8
005419C8
005419E8
00541A08
00541A28
00541A48
00541A68
00541A88

~
"'S
~

= rJJ
~
~
~ """'. 0

= ~
= !3

"CS
rJJ

transaction dumps

PHASE XFR-AD LOCO RE HICO RE DSK-AD LABEL LOADED REL-FR OFFSET
ACCT02 0320A8 032078 035147 009 10 OE

032078 032078 000000
DFHECI 032078 032078 000000

+DFHEil 032080
*DLZEIOl 032080

(The Stub size *DLZEI02 032080
LOADED address *DLZEI03 032080

minus *DLZEI04 032080
Phase LOCORE address *DFHCBLI 032092

320A8 - 32078 ACCT02 0320A8 0320A8 000030
= 30 bytes) ILBDATBO 034CD8 034CD8 002C60

ILBDMNSO 034DD8 034DD8 002D60
ILBDPRMO 034DE8 034DD8 002D70
ILBDTC20 034F50 034F50 002ED8
ILBDWTBO 035048 035048 002FDO

Figure 98. How to Find the Size of the Program Stub

But just a minute! Which application module are we looking at?

The transaction dump title tells us that the transid is AC02, and this transid passes
control to ACCT02. To confirm this, we can look back in the dump listing at location
541808, the start of the pr9gram storage area. See Figure 97 on page 251. Sure
enough, in the character translation section, and just a few lines down, you can see
the program id, ACCT02. (And, to triple check, try working back through the trace
table. There's a PCP XCTL-CONDITIONAL entry showing control passing to
ACCT02. See Figure 96 on page 250.)

So, we'll find the failing DELETE command immediately before displacement 2826 in
module ACCT02. Back to the source compilation listing (see Figure 99).

971 VERB 1 002722 972 VERB 1 002732 973 VERB 1 002742
977 VERB 1 002778 978 VERB 1 002788 979 VERB 1 002798
981 VERB 1 0027C6 985 VERB 1 0027CC 987 VERB 1 0027D2
988 VERB 1 0027E2 989 VERB 1 0027EC 993 VERB 1 002826
994 VERB 1 002836 995 VERB 1 002846 1001 VERB 1 00287C
1002 VERB 1 00288C 1006 VERB 1 0028AA 1007 VERB 1 0028B8
1010 VERB 1 0028D8 1011 VERB 1 0028E8 1012 VERB 1 0028EE
1013 VERB 1 0028F4 1016 VERB 1 00292A 1017 VERB 1 00293A
1018 VERB 1 002940 1022 VERB 1 00295E 1023 VERB 1 00297E
1023 VERB 2 0029A8 1026 VERB 1 0029AE 1027 VERB 1 0029BE
1028 VERB 1 0029C4 1029 VERB 1 0029CA 1030 VERB 1 0029DO

Figure 99. How to Find the Failing COBOL Verb

252 CICS Application Programming Primer

transaction dumps

If we find location 2826 in the Condensed Listing (the CLIST), then the previous
instruction is the one we want. Offset 2826 converts to COBOL statement (Verb
number) 993. The previous instruction is 989, and it says (see Figure 100)

CALL 'DFHEil' USING DFHEIVO DFH

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

*EXEC CICS REWRITE DATASET('ACCTIX') FROM(NEW-ACIXREC)
* LENGTH(ACIX-LNG) END-EXEC.

*
*

MOVE I 00327 I TO DFHEIVO
MOVE 'ACCTIX' TO DFHEIVl

CALL 'DFHEil' USING DFHEIVO DFHEIVl NEW-ACIXREC
ACIX-LNG.

GO TO RELEASE-ACCT.

UPDATE THE FILES FOR DELETE REQUESTS.
UPDT-DELETE.

MOVE 4 TO MENU-MSGNO.
*EXEC CICS DELETE DATASET('ACCTFIL') RIDFLD(ACCTC) END-EXEC.

MOVE I 00334 I TO DFHEIVO
MOVE 'ACCTFIL' TO DFHEIVl

CALL 'DFHEil' USING DFHEIVO DFHEIVl DFHDUMMY DFHDUMMY
ACCTC.

*EXEC CICS DELETE DATASET('ACCTIX') RIDFLD(OLD-IXKEY)
* END-EXEC.

*

MOVE I 00335 I TO DFHEIVO
MOVE 'ACCTIX' TO DFHEIVl

CALL 'DFHEil' USING DFHEIVO DFHEIVl DFHDUMMY DFHDUMMY
OLD-IXKEY.

* RELEASE OWNERSHIP OF ACCOUNT NUMBER.
RELEASE-ACCT.

Figure 100. The Compiler Listing of the Incorrect Command

This is generated by the CICS translator from what is now a commented-out
instruction at Line 986:

EXEC CICS DELETE DATASET('ACCTFIL') RIDFLD(ACCTC) END-EXEC.

Reviewing the APRM's description ofINVREQ situations, and skipping back through
the trace table (see Figure 96 again) to see what other EIP entries exist for this
failing task (before the DELETE) we finally conclude that a READ FOR UPDATE is
outstanding and that we were therefore wrong to specify an RIDFLD value on the
DELETE command.

The cure is to write the DELETE command as:

EXEC CICS DELETE DATASET('ACCTFIL') END-EXEC.

Chapter 5-1. Testing 253

where do you start?

Chapter 5-2. Finding the Problem

Preliminary Checklist

Before looking in detail at how to cope with the various classes of errors, there are
some "simple" things for you to check first which may turn up a number of mistakes.
For example:

1. Go back and make sure that your translator, compiler and linkage editor outputs
were all error-free.

2. Check that the required PPT, PCT and FCT entries are present and correct.

3. If you change a PCT or PPT entry, remember that, unless you're using RDO, the
change will not take effect until you restart CICS.

4. If you are using RDO and you DEFINE or ALTER a transaction, program or
mapset, then be sure to use the INST ALL option to get the changes invoked.

5. If you changed any maps, be sure that you created both a new load module
(TYPE= MAP) and a new DSECT (TYPE= DSECT), and that you then recompiled
every program using that new DSECT.

6. If you changed any program or mapset since CICS was last started, make sure
that you are executing the most recent version, by using the transaction:

CEMT SET PROGRAM(pgrmid) NEWCOPY

Documentation

Next, collect all the documentation of the problem. There are many sources of
information, including:

1. Output from the translator, compiler and link editor.

2. Messages to the terminal associated with the failing transaction, and messages to
the master terminal.

3. Observations from the terminal operator and the master terminal operator. In the
case of the master terminal, you should note any unusual messages associated

Chapter 5-2. Finding the Problem 255

ref ere nee materials

with the startup of CICS and any that occurred for some time before the actual
problem.

4. Dumps. (You may not want to bother to print the dumps until you have tried
other te_chniques. You should be prepared to do so however, because sometimes
they are absolutely necessary.)

5. Shutdown statistics. These aren't usually necessary, and you should not
automatically shut down your system after a transaction abend to get them.
However, there are occasions on which they may give you insight into problems.
Among other things, they show:

• Which transactions were used
• Which programs were executed
• Which terminals were used
• A summary of temporary storage activity
• A summary of file activity.

6. CEMT output. You can use CEMT to find out status information about files,
programs, transactions, and executing tasks.

Reference Materials

You should also collect certain reference materials for debugging. These include:

• CICS/ VS Application Programmer's Reference Manual (Command Level) . This
book contains detail on the error conditions possible on the various commands,
and describes the EIB.

• CJCS/VS Messages and Codes. This book describes all the "DFHxxxx" messages
that CICS issues and all the CICS-generated transaction abend codes.

• CICS/ VS Problem Determination Guide. This manual contains a wealth of useful
information, including the following:

1. Techniques and tools for problem determination in CICS

2. Flowcharts for solving a number of specific problem types, including both
application and CICS-wide failures

3. Causes of waits, both in CICS and applications

4. Causes of slow response time and other performance problems

256 CICS Application Programming Primer

regression testing

5. Trace table format details, and an annotated example of the trace entries
produced by a program

6. CICS system dump format and content

7. Transaction dump format and content, including control blocks, register
conventions and save areas

8. Discussion of terminal and line errors

9. List of common coding and system setup errors.

Four other books relate to problem determination, but they are written for persons
with some GICS experience, and you'll probably not need them. They are:

• CICS/ VS Diagnosis Reference Manual. This manual describes the structure and
logic flow of CICS in considerable detail.

• CICS/DOS/VS Data Areas. This manual gives the format and contents of CICS
control blocks in a VSE environment.

• CICS/OS/VS Data Areas. This manual gives the format and contents of CICS
control blocks in an OS environment.

• CICS/VS Program Debugging Reference Summary. A pocket sized summary of
trace table and storage management information.

More Testing Considerations

Regression Testing

A regression test is used to make sure that all the transactions in a system continue
to do their processing in the same way both before and after changes are applied to
the system. This is to ensure that fixes that have been applied to solve one problem
don't go on to cause further problems. It's often a good idea to build a set of
miniature files to perform your tests on, because it's much easier to examine a small
data file for changes.

A good regression test will exercise all the code in every program - that is, it will
explore all tests and possible conditions. As your system develops to include more
transactions, more possible conditions, and so on, add these to your test system to
keep it in step. The results of each test should match those from the previous round
of testing. Any discrepancies are grounds for suspicion. You can compare terminal
output, file changes, and log entries for validity.

Chapter 5-2. Finding the Problem 257

a bends

Single-thread Testing

A single-thread test takes one application transaction at a time, in an otherwise
"empty" CICS system, and sees how it behaves. This enables you to test the program
logic, and also shows whether or not the basic CICS information (such as PPT, PCT,
FCT entries) is correct. It's quite feasible to test this single application in one CICS
partition or region while your normal, online production CICS system is active in
another.

Multi-thread Testing

A multi-thread test involves several, concurrently-active transactions. Naturally,
all the transactions will be in the same CICS partition or region, so you can readily
test the ability of ~ new transaction to co-exist with its future partners.

You may find that a transaction that sails through its single-thread testing still fails
miserably in the multi-thread test. Or it may cause other transactions to fail, or even
terminate CICS!

Now we can take a systematic look at abends, loops, waits, and incorrect output.
We'll start with abends.

A bends

The message with which CICS tells you that a transaction abended:

DFH2005 TRANSACTION xxxx PROGRAM yyyyyyyy ABEND zzzz

contains several vital pieces of information. It identifies the transaction (xxxx) that
failed. It tells which program (yyyyyyyy) was being executed at the time of the
failure. And, most important, it indicates which of the many things that could go
wrong did. This is the abend code, zzzz.

There are two kinds of abend codes: yours and CICS's. All the codes that CICS uses
begin with the letter A; yours are the ones that appear in the ABCODE parameter on
an ABEND command. For ease of recognition, therefore, don't start your ABCODEs
with the letter A.

The first step in tracking down the cause of an abend is to look up this code. If it is
one of yours, you'll know what condition it represents. From there you can look at
other information (values in Working-Storage and the sequence of calls leading up to
the crash) to find out how the situation came about. For CICS abends, the place to

258 CICS Application Programming Primer

ASRA, ASRB, and AICA

look is the Messages and Codes manual, which describes all of the CICS abend codes
and, for many of them, has suggestions for analysis.

When you are using the subset of commands described in this Primer, you are likely
to produce only a relatively small number of CICS ABENDs. With some
inventiveness you could produce others, but the ones you are most likely to encounter
are described under the following headings.

ASRA

To stop a simple error in one transaction from crashing the whole CICS system, CICS
issues an operating system SVC to intercept abends.

So, for example, if you try to do packed arithmetic with EBCDIC variables in your
COBOL code (producing what the operating system recognizes as a program check)
you don't get the abend that you would in a batch program. Instead, when the
operating system detects the program check, it returns control to CICS, which
terminates the offending transaction with an abend of its own: ASRA. All ASRA
means, therefore, is that a program has committed a violation of the program check
type. In COBOL, the source of this trouble is almost always an attempt to do
arithmetic with variables that are of mixed PICTURE types or that have not been
initialized properly.

The first step in diagnosing an ASRA is to find out where it occurred. This means
finding out the program status word (PSW) at the time of the program check. You
can find this information either in a dump or by using EDF. Next, you need to know
in what program it occurred, so that you can find out where in that program the
offending instruction was. Usually the program is the application program that was
executing at the time.

ASRB

An ASRB abend occurs in almost the same way as an ASRA, but it is the result of an
operating system abend other than the common program check. If CICS can contain
the damage, it terminates that transaction with ASRB. The procedure for finding the
source of the trouble is the same as for ASRA. An operating system abend isn't likely
to happen except as a program check in a CICS command-level program, however, and
so ASRB is much less common than ASRA.

AICA

As explained earlier, an AICA abend occurs when CICS detects that an application
program is looping. Whether CICS considers a program to be looping depends on the
length of time that elapses between successive CICS commands. If the time is longer
than the runaway task time interval (ICVR) parameter in the SIT, CICS assumes that
the program is looping and terminates it with code AICA.

Chapter 5-2. Finding the Problem 259

loops

When you have a loop, you need to know where it is in the code. With an AICA, you
know by definition that the loop started after the last CICS command was issued and
ended before any other command was issued. You can tell either from the trace table
in a dump, or by using EDF, what the last CICS command was and where it was in
the code, and the program listing will tell you where the next one was expected. If
this doesn't pinpoint the problem, look at the values of your Working-Storage
variables. Often these values, in combination with your knowledge of the program
logic, will tell you almost exactly how far you got in the code.

If you still need further information, however, you can use either EDF or transaction
dumps to work out how far through a section of code you are getting, and what the
values of the variables in Working-Storage are at each step. To do this with EDF,
choose a statement that you aren't sure gets executed. Using its statement number
(from the translator if you used DEBUG) or its hex location otherwise, enter it as a
stop condition. Then let the program run.

If the loop is far into the code, suppress the displays. If the program reaches the stop
condition, then you know that the statement got executed. Pick another statement
beyond this one and repeat the process. If the statement does not get executed before
the AICA occurs, pick another statement between it and the beginning of the loop.
Repeat this process until you've located the loop.

The technique with transaction dumps is very similar, except that you should pick out
all the questionable statements at once, and put a DUMP command after each one,
each with a different DMPCODE identifier. Then run the program and analyze the
dumps. You can tell from the sequence of DMPCODEs how far you got through the
code, and your Working-Storage at each point will also be available in the dumps, to
help you work out what went wrong.

We'll add two notes of caution here about AICA a bends.

1. Since in all but the most recent versions CICS uses real time rather than
processor time to detect loops, it's possible for a transaction to get terminated,
with AICA, without being in a loop. This can result from setting the runaway
task time interval (ICVR) value in the SIT too low, or from too much interference
with the CICS partition from other partitions, or a combination of both. If you've
any doubt that an AICA is valid, raise the ICVR value somewhat and repeat the
transaction several times. If it is a "true" AICA, the last CICS command executed
will al ways be the same one.

2. Certain CICS commands don't pass through task control and don't, therefore,
reset the runaway task time interval.

260 CICS Application Programming Primer

APCT and AFCA

APCT

This abend occurs when you attempt to execute a program that is either (1) disabled,
or (2) not defined at a ll in either the PPT or an active RDO group. For pure
command-level programs, APCT can occur only when the first program for a
transaction is invoked (before the command-level interface gets established). After
that, the same type of failure (during a LINK or XCTL command, for instance)
produces an AEIO abend instead.

So if you get an APCT, the cause is one of the following:

1. The program named as first executed for the transaction in the PCT isn't defined
in the PPT (with identical spelling).

2. The program named in the DEFINE TRANSACTION command hasn't been
defined in a DEFINE PROGRAM command.

3. The program is disabled.

Programs can be disabled by an operator or even by CICS for sufficiently unsuitable
behavior. By far the most common cause, however, is that CICS could not find the
program in the load library at startup time, and disabled the program for that reason.
If this occurs, therefore, make sure that:

• The name of the program in the load library matches the name in the PPT, and
the program has been successfully linked into the library.

• The name in the PCT matches the name in the PPT (or the program name in the
DEFINE TRANSACTION command is the same as the name in the corresponding
DEFINE PROGRAM command).

• The program is enabled. To find out the status of the program at the time of the
APCT failure, use the transaction:

CEMT INQUIRE PROGRAM(pgrrnid)

AFCA

This abend occurs when you try to use a file that has been disabled. This should
happen only rarely. If the file is closed for some reason (which is more likely) and if
you've not handled this condition, you'll get an AEIS abend instead. If AFCA does
occur, use the CEMT transaction to find out which of the files in question is disabled:

I CEMT INQUIRE DATASET(fileid)

The problem should disappear as soon as the file is properly available.

Chapter 5-2. Finding the Problem 261

loops

AEix and AEYx

All of the abend codes that start with the letters "AEI'' or "AEY" result from
exceptional conditions detected in command-level programs, for which no HANDLE
CONDITION command is active.

Figure 101 on page 263 lists all of the AEix and AEYx abends that may occur using
the commands described in this Primer. After each code the figure shows the
exceptional condition, and also the command type (such as file or BMS), and the
associated EIBFN and EIBRCODE values.

For the most part, the reasons for these abends are exactly what is described in the
APRM for the corresponding condition. Some of the errors may have multiple causes,
such as ILLOGIC and INVREQ. For example, on an ILLOGIC abend, Byte 1 of
EIBRCODE is the VSAM return code and Byte 2 is the VSAM error code.

If you determine that the condition was the result of a logic error in the program,
then you can correct that error and retry. If, however, it turns out that the condition
could arise naturally, then you should add a HANDLE CONDITION command to the
program to deal with it.

ATNI

A terminal error will lead to an ATNI transaction abend, and a CICS transaction
dump. In other words, the application will not get control back, and contact with the
screen will be lost.

Loops

We've already described a technique for finding loops that do not contain any CICS
commands. (It was in the discussion of AICA abends, and involved using either EDF
or transaction dumps.) For loops that do include CICS commands, the same tools
apply.

Using EDF, the easiest method is to invoke the transaction and let it run until you're
satisfied that it is looping. Then go to another terminal and invoke EDF for the
terminal running the suspect transaction. EDF will interrupt the execution of the
transaction at every CICS command, and send a display to this second terminal. As
each command is executed, note it in the associated program listing. Let the program
continue executing commands until a clear pattern of repetition emerges.

Having located the loop, the next step is to find the cause. There will usually be one
or more points in the loop at which the program should exit, provided certain
conditions are met. The problem is that the conditions are never met. When, under
EDF, you reach the command that is causing the problem, you may need to examine

262 CICS Application Programming Primer

AEix and AEly

CODE CONDITION SERVICE EIBFN EIBRCODE

AEIA ERROR Misc N/A N/A
AEIK TERMIDERR Time 10 12
AEIL DSIDERR File 06 01
AEIM NOTFND File 06 81

or Time 10 81
AEIN DUPREC File 06 82
AEIP INVREQ File 06 08

or Temp Stge OA 20
or Program OE EO

AEIQ I OE RR File 06 80
AEIR NOSPACE File 06 83

or Temp Stge OA 08
AEIS NOTO PEN File 06 oc
AEIT ENDFILE File 06 OF
AEIU ILLOGIC File 06 02
AEIV LENGERR File 06 El

or Temp Stge OA El
or Time 10 El

AEIZ ITEMERR Temp Stge OA 01
AEIO PGMIDERR Program OE 01
AEil TRANS I DERR Time 10 11
AEI3 INVTSREQ Time 10 14
AEI8 IO ERR Temp Stge OA 04

or Time 10 04
AEI9 MAP FAIL BMS 18 04
AEYB INVMPSZ BMS 18 08
AEYH QIDERR Temp Stge OA 02

Figure 101. AEix and AEly Abend Conditions

the values in Working-Storage to find out why this is occurring. The next time the
loop is executed, you may want to pause at the preceding command and look at the
same variables at that time. If there's too much code between these two commands to
see exactly what's going wrong, you can then use the techniques for the other kind of
loops (AICA abends) to locate the error within the statements between the CICS
commands.

The process is very similar using a transaction dump. Let the transaction run until
it's clearly looping, and then cancel it. Use the trace table in the resulting abend
dump to find the repeated sequence of CICS commands. At this point the contents of
Working-Storage may or may not give you enough information to work out the
problem. If they do not, put further dump requests near the expected exit point(s)
from the loop, and use the technique described above to close in on the problem.

Chapter 5-2. Finding the Problem 263

waits

Waits

Remember we're assuming you have a batch programming background.

With that in mind, you can avoid W AITs by avoiding two programming practices you
may be bringing with you from that background. You see, the most common cause of
a WAIT in a COBOL program is an ACCEPT FROM CONSOLE or STOP statement to
which the operator failed to reply. Check for these before going any further with
your debugging of a wait.

Now, what about approaching W AITs from a CICS point of view?

The key to recognizing a wait is the operator's observation. In other words, he or she
has typed in some data, pressed the ENTER key, and nothing much seems to be
happening.

When you first suspect a wait, use the CEMT transaction to make sure there is still a
task associated with the terminal. If there isn't, you've got an "incorrect output". A
waiting task will show as suspended or active.

If we leave aside the question of data base access (as beyond the scope of the Primer),
there are then just five reasons for a task to get suspended:

• terminal control wait
• unsuccessful enqueue - when a task needs, but has failed to gain access to, a

resource owned by some other task
• interval control wait
• not enough main storage
• not enough auxiliary storage

There are a further four reasons for a task to be active but waiting:

• dispatchable
• dispatchable, but on the point of an ABEND command
• non-dispatchable, because of too many other tasks in the system, or some other

CICS workload control
• waiting for some external or internal event to complete (for example, file

input/output or no VSAM string available, respectively)

Whatever the case, purge the task and print the dump. Work through the dump to
find the last CALL made by the program. If the troublesome task was suspended, look
for the KCP SUSPEND trace table entry. Just before this should be a clue to the
reason for the suspend, bearing in mind the above five reasons.

If, on the other hand, the task was active, look for the KCP WAIT trace table entry.
Just before this should be a clue to the reason for the wait.

264 CICS Application Programming Primer

incorrect output

Between them, the source code of the last CALL and the request causing either the
wait or the suspend should cast some light on the problem.

Of course, the problem may be entirely outside your task. There are two reasons for
the CICS partition or region itself to be in a wait state:

1. No CICS tasks are currently ready to be dispatched, so task control has issued an
operating system wait for the length of time specified by the ICV (a SIT operand
that basically says how long CICS is to give up control).

2. A wait has been issued from somewhere else in CICS, or an SVC (supervisor call)
has been issued.

In the first case, you must check each task to find out what it's waiting for. There
may also be some reason why new tasks aren't coming along. The system could be
short on storage; or the maximum number of concurrent tasks allowed could have
been reached; or terminal input could be failing to get through.

In the second case, you must find out what's going on in the operating system and
also, perhaps, confirm that a badly-behaved task hasn't issued an SVC. During
normal running, CICS issues only the task control operating system wait we
mentioned above.

However, this really isn't the place to start tackling system waits. The GIGS/VS
Problem Determination Guide has two chapters all about waits, and is there (waiting!)
for you.

Incorrect Output

As we've said, the symptoms of incorrect output are garbage on the screen (or
printer), a terminal that simply locks up, bad data in files, or wrong screen sequences.
In fact, incorrect output problems can present all kinds of bothersome symptoms and
be very interesting to pin down.

Here are some suggestions for you to think about when you have a program that's
compiled correctly but that seems to misbehave:

• Is the input data correct?

• Are you correctly validating entered data?

• Assuming you are getting some output at the terminal or printed out, check it
over:

Is the sequence what you expect?
Are the items correct?

Chapter 5-2. Finding the Problem 265

incorrect output

Are any totals correct?
Are some items being repeated when they shouldn't be?
Are any i terns missing?

• Print any output files, data files, and so on to see if they contain what you expect.

• Are you initializing or clearing program variables properly?

Be sure to look up any messages or codes that come up. Work through program dump
listings to see what command last executed. (Note, however, that an operation that
uncovers incorrect output may be completely innocent of having caused it.)

Try to find out what resource is failing. It's usually data on a disk (on a clear disk,
you can seek forever!) or data in a terminal data stream. Of course, data on the
terminal may be bad because of a bad file.

Work back, if possible, from the place where the symptoms first occur, and forward
from a point where the data is ok. Where you meet should be interesting.

Look at map or file data structures from appropriate listings. Compare each field, as
defined in the output from the map assembly, with the map as displayed in
Working-Storage. You can use EDF to do this, or a transaction dump. Note the
contents of each field carefully, and look at each field suspiciously.

Paranoid patience is sometimes the best approach. Good luck!

CICS System Problems

Problems that affect CICS as a system fall into the same four categories as those
which affect transactions: abends, loops, waits, and incorrect output. As noted before,
such problems are generally beyond the scope of this Primer.

266 CICS Application Programming Primer

Appendixes

This Part of the Primer describes:

• How to install the example application

• The remaining facilities of CICS

• The application programmer's reference manual

Appendixes 267

installing the application

Appendix A. Getting the Application Into Your
CICS System

Introduction

This appendix explains what you must do to enable you to use the example
application on your CI CS/DOS system. Your systems programmer will probably have
to help you with these tasks. You'll need a copy of the CICS/DOS/VS Installation and
Operations Guide (SC33-0070) to refer to.

What Has to be Done?

Assuming you already have a working CICS system, you must now do the following
before you can run the example application:

1. Copy the picture statements for ACIXREC and ACCTREC into your source
statement library.

2. Compile and link-edit the batch programs that

a. initialize the index and data files, and
b. perform "forward recovery" by rebuilding the index file from the account file.

3. Create and initialize the index and data files for account records.

4. Update the File Control Table to include records for the sample application files.

5. Update the Program Control Table to include the transaction ID/ program
relationship for the sample application.

6. Update the Processing Program Table to include entries for the sample
application program and maps.

7. Assemble the ACCTSET source into your core image library and assemble and
catalog the map as a copybook in your source statement library.

8. Translate, compile, and linkedit programs ACCTOO, ACCTOl, ACCT02, ACCT03,
and ACCT04 into your core-image library.

Appendix A. Getting the Application Into Your CICS System 269

270 CICS Application Programming Primer

the initialize program

02 ACCTDO PIC 9 (5) •
02 FNAMEDO PIC X(7).
02 MIDO PIC x.
02 TTL DO PIC x (4).
02 ADDRlDO PIC X(24).
02 STATDO PIC x (2) .
02 LIMITDO PIC x (8) .

BKEND
/*
/&

Compiling and Link-Editing the Initialize Program

Use the following job stream to compile and link-edit this ACCTINIT program. It
initializ~s the index and data files.

// JOB COMPILE ACCTINIT - PRIMER FILE INITIALIZATION PROGRAM
//OPTION CATAL,NODECK
// LIBDEF CL,TO=user-cil-filenarne
// LIBDEF SL,SEARCH=user-slb-filenarne

PHASE ACCTINIT,*
//EXEC FCOBOL

CBL APOST,CLIST,LIB
* ACCTINIT - PRIMER ACCOUNT/INDEX FILE INITIALIZATION
*
* VSAM KSDS FILES MUST BE INITIALIZED BEFORE BEING OPENED
* FOR I-0 UNDER CICS. THIS PROGRAM INITIALIZES THE TWO
* PRIMER FILES WITH DETAILS OF A DUMMY ACCOUNT.

IDENTIFICATION DIVISION.
PROGRAM-ID. ACCTINIT.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

* REMOVE "SYSOOS- 11 FOR OS
SELECT ACCT-FILE ASSIGN TO SYSOOS-ACCTFIL

ORGANIZATION INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS ACCT-KEY.

* REMOVE "SYSOOS- 11 FOR OS
SELECT ACIX-FILE ASSIGN TO SYSOOS-ACCTIX

ORGANIZATION INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS ACIX-KEY.

DATA DIVISION.
FILE SECTION.
FD ACCT-FILE

LABEL RECORDS
01 ACCT-RECORD.

02 ACCT-KEY
02 FILLER

FD ACIX-FILE
LABEL RECORDS

01 ACIX-RECORD.
02 ACIX-KEY
02 FILLER

ARE STANDARD.

PIC
PIC

ARE STANDARD.

PIC
PIC

X(S).
X(378).

x (17).
x (46).

Appendix A. Getting the Application Into Your CICS System 271

the index file program

/*

WORKING-STORAGE SECTION.
01 ACCTREC. COPY ACCTREC.
01 ACIXREC. COPY ACIXREC.
PROCEDURE DIVISION.

MOVE SPACES TO ACCTREC, ACIXREC.
MOVE '79999' TO ACCTDO IN ACCTREC, ACCTDO IN ACIXREC.
MOVE 'DUMMY' TO SNAMEDO IN ACCTREC, SNAMEDO IN ACIXREC.
MOVE 'A' TO FNAMEDO IN ACCTREC, FNAMEDO IN ACIXREC.
MOVE 'MAY BE DELETED' TO ADDRlDO IN ACCTREC,

ADDRlDO IN ACIXREC.
MOVE 'AFTER INSERTING' TO ADDR2DO IN ACCTREC.
MOVE 'OTHER ACCOUNTS' TO ADDR3DO IN ACCTREC.
OPEN OUTPUT ACCT-FILE
WRITE ACCT-RECORD FROM ACCTREC.
CLOSE ACCT-FILE.
OPEN OUTPUT ACIX-FILE
WRITE ACIX-RECORD FROM ACIXREC.
CLOSE ACIX-FILE.
STOP RUN.

// EXEC LNKEDT
/&

Compiling and Link-Editing the Index File Program

Use the following job stream to compile and link-edit this ACCTINDX program, to
prepare it for use. You'll only ever need to run it if you need to recreate the index
file from the master account file because of some disastrous file error involving the
index file.

It's the small batch program we mentioned in "Recovery Requirements" on page 51.

// JOB COMPILE ACCTINDX - PRIMER INDEX REBUILD PROGRAM
//OPTION CATAL,NODECK
// LIBDEF CL,TO=user-cil-filename
// LIBDEF SL,SEARCH=user-slb-filename

PHASE ACCTINDX,*
//EXEC FCOBOL

CBL APOST,CLIST,LIB
* ACCTINDX - REBUILD PRIMER INDEX FROM MASTER FILE
*
*
*
*
*
*
*
*
*

THE PRIMER INDEX FILE IS NOT JOURNALED UNDER CICS SO,
IN THE EVENT OF LOSS OF THE INDEX, FORWARD RECOVERY
IS NOT POSSIBLE. INSTEAD THIS PROGRAM RECREATES THE
INDEX FROM SCRATCH BY CREATING AN INDEX RECORD FOR EACH
RECORD ON THE CUSTOMER MASTER FILE AFTER THE MASTER FILE
HAS BEEN RECOVERED. RECORDS ARE WRITTEN IN ACCOUNT NO
SEQUENCE SO THEY MUST BE SORTED INTO NAME/ACCOUNT NO
SEQUENCE FOR LOADING TO THE VSAM INDEX FILE.

IDENTIFICATION DIVISION.
PROGRAM-ID. ACCTINDX.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.

272 CICS Application Programming Primer

the index file program

FILE-CONTROL.
* REMOVE "SYS004-" FOR OS

SELECT ACCT-FILE ASSIGN TO SYS004-ACCTFIL
ORGANIZATION INDEXED

I*

RECORD KEY IS ACCT-KEY.
* CHANGE ASSIGN FOR OS

SELECT ACIX-SAM ASSIGN TO SYSOOS-UT-FBAl-S-ACIXSAM.
DATA DIVISION.
FILE SECTION.
FD ACCT-FILE

LABEL RECORDS ARE STANDARD.
01 ACCT-RECORD.

02 ACCT-KEY PIC X(S).
02 FILLER PIC X(378).

FD ACIX-SAM
BLOCK CONTAINS 20 RECORDS
LABEL RECORDS ARE STANDARD.

01 ACIXREC. COPY ACIXREC.
WORKING-STORAGE SECTION.
01 ACCTREC. COPY ACCTREC.
PROCEDURE DIVISION.

OPEN INPUT ACCT-FILE
OPEN OUTPUT ACIX-SAM.

READ-MASTER.
READ ACCT-FILE NEXT INTO ACCTREC

AT END GO TO END-MASTER.
MOVE CORRESPONDING ACCTREC TO ACIXREC.
WRITE ACIXREC.
GO TO READ-MASTER.

END-MASTER.
CLOSE ACCT-FILE.
CLOSE ACIX-SAM.
STOP RUN.

II EXEC LNKEDT
I&

If and when you need to rebuild your account index file, use the following job stream:

II JOB ACCTIXEX EXECUTE ACCTINEX TO REBUILD ACCTIX
II LIBDEF CL,SEARCH=user-cil-filenarne
II DLBL IJSYSUC,'user.catalog' ,,VSAM
II DLBL ACCTFIL,'SAMPLE.TEST.ACCTFILE' ,,VSAM
II DLBL ACIXSAM,'SAMPLE.UNSORTED.INDEX.FILE' ,0
II EXTENT SYSOOS,,,,,extent information
II ASSGN SYSOOS,DISK,VOL=volser,SHR
II EXEC ACCTINDX,SIZE=AUTO
II EXEC IDCAMS,SIZE=AUTO

PRINT IFILE(ACCTFIL)
I*
II DLBL IJSYSUC,'P.UCAT' ,,VSAM
II DLBL SORTINl,'SAMPLE.UNSORTED.INDEX.FILE'
II EXTENT SYS002,volser
II DLBL SORTOUT,'SAMPLE.TEST.ACCTIX' ,,VSAM
II DLBL SORTWKl,,0,DA
II EXTENT SYS003,,,,,extent information
II ASSGN SYS002,DISK,VOL=volser,SHR

Appendix A. Getting the Application Into Your CICS System 273

index and account files

II ASSGN SYS003,DISK,VOL=volser,SHR
II EXEC SORT,SIZE=32K

SORT FIELDS=(l,17,CH,A)
RECORD TYPE=F,LENGTH=63
INPFIL BLKSIZE=1260
OUTFIL KSDS
END

I*
II EXEC IDCAMS,SIZE=AUTO

PRINT IFILE(SORTOUT)
I*
I&

Creating and Initializing the Index and Account Files

These files are VSAM clusters that you create using the IDCAMS utility. Then use
ACCTINIT to initialize the files. Here's a sample job stream:

II JOB INIT CREATE & INITIALIZE SAMPLE DATA FILES
II EXEC IDCAMS,SIZE=AUTO

DELETE SAMPLE.TEST.ACCTFILE CLUSTER PURGE
CATALOG(user.catalog)

DEFINE CLUSTER
(NAME(SAMPLE.TEST.ACCTFILE)

INDEXED
RECORDSIZE(383 383)
RECORDS(S 10)
KEYS(S O)
VOLUMES(xxxxxx))

DATA
(NAME(SAMPLE.TEST.ACCTFILE.DATA))

INDEX
(NAME(SAMPLE.TEST.ACCTFILE.INDEX))

CATALOG(user.catalog)
LISTCAT ENTRIES(SAMPLE.TEST.ACCTFILE) ALL

CATALOG(user.catalog)
DELETE SAMPLE.TEST.ACIXFILE CLUSTER PURGE

CATALOG(user.catalog)
DEFINE CLUSTER

(NAME(SAMPLE.TEST.ACIXFILE)
INDEXED
RECORDSIZE(63 63)
RECORDS(S 10)
KEYS(17 O)
VOLUMES(xxxxxx))

DATA
(NAME(SAMPLE.TEST.ACIXFILE.DATA))

INDEX
(NAME(SAMPLE.TEST.ACIXFILE.INDEX))

CATALOG(user.catalog)
LISTCAT ENTRIES(SAMPLE.TEST.ACIXFILE) ALL

CATALOG(user.catalog)
I*
II LIBDEF CL,SEARCH=user-cil-filename

274 CICS Application Programming Primer

II DLBL ACCTFIL,'SAMPLE.TEST.ACCTFILE' ,,VSAM
II DLBL ACCTIX,'SAMPLE.TEST.ACIXFILE' ,,VSAM
II DLBL IJSYSUC,'user.catalog' ,,VSAM
II EXEC ACCTINIT,SIZE=AUTO
II EXEC IDCAMS,SIZE=AUTO

PRINT IFILE(ACCTFIL)
PRINT IFILE(ACCTIX)

I*
I&

Updating the File Control Table

table entries

You must update the File Control Table to include the following entries:

DFHFCT TYPE=DATASET,DATASET=ACCTFIL, X
ACCMETH=VSAM,LOG=YES,JID=SYSTEM, x
SERVREQ=(GET,NEWREC,DELETE,UPDATE), X
JREQ=(WU,WN),BUFND=2,BUFNI=l,STRNO=l

DFHFCT TYPE=DATASET,DATASET=ACCTIX,ACCMETH=VSAM, X
SERVREQ=(GET,NEWREC,DELETE,UPDATE,BROWSE), X
LOG=YES,BUFND=2,BUFNI=l,STRNO=l

For more information on updating the File Control Table refer to Chapter 2.3 of the
CICS/DOS/VS Installation and Operations Guide.

Updating the Program Control Table

Any updates to your PPT and PCT should be done by whoever controls changes to
your CICS system as a whole. (Proper "change control" is a topic in its own right,
and an important one.)

With that caution in mind, let's update the Program Control Table:

DFHPCT TYPE=ENTRY,TRANSID=ACCT,PROGRAM=ACCTOO, X
DTB=NO,SPURGE=YES,TPURGE=YES

DFHPCT TYPE=ENTRY,TRANSID=ACOl,PROGRAM=ACCTOl, X
DTB=YES,SPURGE=YES,TPURGE=YES

DFHPCT TYPE=ENTRY,TRANSID=AC02,PROGRAM=ACCT02, X
DTB=YES,SPURGE=NO,TPURGE=NO

DFHPCT TYPE=ENTRY,TRANSID=AC03,PROGRAM=ACCT03, X
DTB=YES,SPURGE=YES,TPURGE=YES

DFHPCT TYPE=ENTRY,TRANSID=ACLG,PROGRAM=ACCT03, X
DTB=YES,SPURGE=YES,TPURGE=YES

DFHPCT TYPE=ENTRY,TRANSID=AC05,PROGRAM=ACCT03, X
DTB=YES,SPURGE=YES,TPURGE=YES

For more information on updating the Program Control Table refer to Chapter 2.3 of
the CICS/DOS/VS Installation and Operations Guide.

Appendix A. Getting the Application Into Your CICS System 275

ACCTSET

Updating the Processing Program Table

Next, you must update the Processing Program Table:

DFHPPT TYPE=ENTRY,PROGRAM=ACCTOO,PGMLANG=COBOL
DFHPPT TYPE=ENTRY,PROGRAM=ACCTOl,PGMLANG=COBOL
DFHPPT TYPE=ENTRY,PROGRAM=ACCT02,PGMLANG=COBOL
DFHPPT TYPE=ENTRY,PROGRAM=ACCT03,PGMLANG=COBOL
DFHPPT TYPE=ENTRY,PROGRAM=ACCT04,PGMLANG=COBOL
DFHPPT TYPE=ENTRY,MAPSET=ACCTSET

For more information on updating the Processing Program Table refer to Chapter 2.3
of the CICS/DOS/VS Installation and Operations Guide.

ACCTSET

You need to assemble and link-edit a physical and a symbolic description map set
named ACCTSET. Use the following job:

/I JOB ACCTSET ASSEMBLE MAP SET DSECT AND MAP
II DLBL IJSYSPH,'DISK.SYSPCH.EXTENT' ,0
II EXTENT SYSPCH,,,,extent-information
II DLBL IJSYSIN,'DISK.SYSPCH.EXTENT'
II LIBDEF SL,TO=user-slb-filename
II LIBDEF SL,SEARCH=(user-slb-filename,cics-slb-filename)
II LIBDEF CL,TO=user-cil-filename
II EXEC MAINT (see note 1)

CATALS A.DUMMYMAP
BKEND A.DUMMYMAP

ACCTSET DFHMSD TYPE=MAP,MODE=INOUT,LANG=COBOL,
STORAGE=AUTO,TIOAPFX=YES

* MENU MAP.
ACCTMNU DFHMDI SIZE=(24,80),CTRL=(PRINT,FREEKB)

DFHMDF POS=(l,1),ATTRB=(ASKIP,NORM),LENGTH=l8,
INITIAL='ACCOUNT FILE: MENU'

DFHMDF POS=(3,4),ATTRB=(ASKIP,NORM) ,LENGTH=25,
INITIAL='TO SEARCH BY NAME, ENTER:'

DFHMDF POS=(3,63),ATTRB=(ASKIP,NORM),LENGTH=12,
INITIAL='ONLY SURNAME'

DFHMDF POS=(4,63),ATTRB=(ASKIP,NORM),LENGTH=l6,
INITIAL='REQUIRED. EITHER'

DFHMDF POS=(S,7) ,ATTRB=(ASKIP,BRT),LENGTH=8,
INITIAL='SURNAME:'

SNAMEM DFHMDF POS=(S,16),ATTRB=(UNPROT,NORM,IC) ,LENGTH=12
DFHMDF POS=(5,29),ATTRB=(PROT,BRT),LENGTH=l3,

INITIAL=' FIRST NAME:'
FNAMEM DFHMDF POS=(5,43),ATTRB=(UNPROT,NORM),LENGTH=7

DFHMDF POS=(S,51),ATTRB=(PROT,NORM),LENGTH=l
DFHMDF POS=(S,63),ATTRB=(ASKIP,NORM),LENGTH=lS,

INITIAL='MAY BE PARTIAL.'
DFHMDF POS=(7,4),ATTRB=(ASKIP,NORM),LENGTH=30,

INITIAL='FOR INDIVIDUAL RECORDS, ENTER:'
DFHMDF POS=(8,63),ATTRB=(ASKIP,NORM),LENGTH=16,

INITIAL='PRINTER REQUIRED'

276 CICS Application Programming Primer

x

x

x

x

x

x

x

x

x

x

REQM

ACCTM

PRTRM

DFHMDF

DFHMDF
DFHMDF

DFHMDF
DFHMDF

DFHMDF
DFHMDF

DFHMDF

DFHMDF

DFHMDF

DFHMDF

DFHMDF

SUMTTLM DFHMDF

SUMLNM DFHMDF
MSGM DFHMDF
*
* DETAIL
ACCTDTL DFHMDI

DFHMDF

TITLED DFHMDF

DFHMDF

ACCTD DFHMDF
DFHMDF

SNAMED DFHMDF

DFHMDF
DFHMDF

FNAMED DFHMDF
DFHMDF

MID DFHMDF

TTLD

DFHMDF

DFHMDF
DFHMDF
DFHMDF

TELD DFHMDF
DFHMDF

ADDRlD DFHMDF

ACCTSET

POS=(9,7) ,ATTRB=(ASKIP,BRT),LENGTH=13,
INITIAL='REQUEST TYPE: I

POS=(9,21) ,ATTRB=(UNPROT,NORM) ,LENGTH=l
POS=(9,23) ,ATTRB=(ASKIP,BRT),LENGTH=lO,
INITIAL=' ACCOUNT: '
POS=(9,34),ATTRB=(NUM,NORM),LENGTH=5
POS=(9,40),ATTRB=(ASKIP,BRT),LENGTH=10,
INITIAL=' PRINTER:'
POS=(9,51),ATTRB=(UNPROT,NORM) ,LENGTH=4
POS=(9,56) ,ATTRB=(ASKIP,NORM),LENGTH=21,
INITIAL=' ONLY FOR PRINT'
POS=(l0,63),ATTRB=(ASKIP,NORM) ,LENGTH=9,
INITIAL='REQUESTS. I

POS=(ll,7),ATTRB=(ASKIP,NORM),LENGTH=53,
INITIAL='REQUEST TYPES: D = DISPLAY A ADD
DELETE'
POS=(12,23),ATTRB=(ASKIP,NORM),LENGTH=25,
INITIAL='P = PRINT M = MODIFY'
POS=(14,4) ,ATTRB=(ASKIP,NORM) ,LENGTH=l8,
INITIAL='THEN PRESS "ENTER"'
POS=(14,35) ,ATTRB=(ASKIP,NORM) ,LENGTH=28,
INITIAL='-OR- PRESS "CLEAR" TO EXIT'
POS=(16,1),ATTRB=(ASKIP,DRK),LENGTH=79,
INITIAL='ACCT SURNAME FIRST MI TTL

ST LIMIT'
POS=(17,1),ATTRB=(ASKIP,NORM),LENGTH=79,0CCURS=6
POS=(24,1) ,ATTRB=(ASKIP,BRT),LENGTH=60

MAP.
SIZE=(24,80),CTRL=(FREEKB,PRINT)
POS=(l,1),ATTRB=(ASKIP,NORM),LENGTH=l3,
INITIAL='ACCOUNT FILE: I

POS=(l,15) ,ATTRB=(ASKIP,NORM) ,LENGTH=14,
INITIAL='RECORD DISPLAY'
POS=(3,1),ATTRB=(ASKIP,NORM),LENGTH=ll,
INITIAL='ACCOUNT NO: I

POS=(3,13) ,ATTRB=(ASKIP,NORM),LENGTH=S
POS=(3,25),ATTRB=(ASKIP,NORM),LENGTH=10,
INITIAL='SURNAME:
POS=(3,36),ATTRB=(UNPROT,NORM,IC),
LENGTH=l8
POS=(3,55) ,ATTRB=(PROT,NORM) ,LENGTH=l
POS=(4,25) ,ATTRB=(ASKIP,NORM),LENGTH=lO,
INITIAL='FIRST:
POS=(4,36),ATTRB=(UNPROT,NORM) ,LENGTH=12
POS=(4,49),ATTRB=(PROT,NORM) ,LENGTH=6,
INITIAL= I MI: I

POS=(4,56),ATTRB=(UNPROT,NORM),LENGTH=l
POS=(4,58) ,ATTRB=(ASKIP,NORM) ,LENGTH=7,
INITIAL=' TITLE:'
POS=(4,66) ,ATTRB=(UNPROT,NORM),LENGTH=4
POS=(4,71) ,ATTRB=(PROT,NORM),LENGTH=l
POS=(S,1),ATTRB=(ASKIP,NORM) ,LENGTH=lO,
INITIAL='TELEPHONE:'
POS=(S,12) ,ATTRB=(NUM,NORM),LENGTH=lO
POS=(S,23) ,ATTRB=(ASKIP,NORM),LENGTH=12,
INITIAL=' ADDRESS:
POS=(S,36),ATTRB=(UNPROT,NORM) ,LENGTH=24

x

x

x

x

x

x
x x

x

x

x

x
ADDRESSX

x

x

x

x

x

x

x

x

x

x

Appendix A. Getting the Application Into Your CICS System 277

ACCTSET

DFHMDF POS=(S,61),ATTRB=(PROT,NORM) ,LENGTH=l
ADDR2D DFHMDF POS=(6,36),ATTRB=(UNPROT,NORM) ,LENGTH=24

DFHMDF POS=(6,61),ATTRB=(PROT,NORM) ,LENGTH=l
ADDR3D DFHMDF POS=(7,36),ATTRB=(UNPROT,NORM),LENGTH=24

DFHMDF POS=(7,61),ATTRB=(PROT,NORM),LENGTH=l
DFHMDF POS=(8,l),ATTRB=(ASKIP,NORM),LENGTH=22, x

INITIAL='OTHERS WHO MAY CHARGE:'
AUTHlD DFHMDF POS=(9,l) ,ATTRB=(UNPROT,NORM),LENGTH=32

DFHMDF POS=(9,34),ATTRB=(PROT,NORM) ,LENGTH=l
AUTH2D DFHMDF POS=(9,36),ATTRB=(UNPROT,NORM) ,LENGTH=32

DFHMDF POS=(9,69),ATTRB=(PROT,NORM),LENGTH=l
AUTH3D DFHMDF POS=(lO,l),ATTRB=(UNPROT,NORM) ,LENGTH=32

DFHMDF POS=(l0,34),ATTRB=(PROT,NORM) ,LENGTH=l
AUTH4D DFHMDF POS=(l0,36),ATTRB=(UNPROT,NORM) ,LENGTH=32

DFHMDF POS=(l0,69),ATTRB=(PROT,NORM),LENGTH=l
DFHMDF POS=(l2,l),ATTRB=(ASKIP,NORM),LENGTH=l7, x

INITIAL='NO. CARDS ISSUED: I

CARD SD DFHMDF POS=(l2,19),ATTRB=(NUM,NORM),LENGTH=l
DFHMDF POS=(l2,21),ATTRB=(ASKIP,NORM),LENGTH=l6, x

INITIAL=' DATE ISSUED: I

!MOD DFHMDF POS=(l2,38),ATTRB=(UNPROT,NORM),LENGTH=2
IDA YD DFHMDF POS=(l2,41),ATTRB=(UNPROT,NORM),LENGTH=2
IYRD DFHMDF POS=(l2,44),ATTRB=(UNPROT,NORM) ,LENGTH=2

DFHMDF POS=(12,47),ATTRB=(ASKIP,NORM) ,LENGTH=l2, x
INITIAL=' REASON: I

RSND DFHMDF POS=(l2,60),ATTRB=(UNPROT,NORM) ,LENGTH=l
DFHMDF POS=(l2,62),ATTRB=(ASKIP,NORM),LENGTH=l
DFHMDF POS=(l3,l),ATTRB=(ASKIP,NORM),LENGTH=l0, x

INITIAL='CARD CODE:'
CCODED DFHMDF POS=(l3,12),ATTRB=(UNPROT,NORM),LENGTH=l

DFHMDF POS=(13,14),ATTRB=(ASKIP,NORM),LENGTH=l
DFHMDF POS=(l3,25),ATTRB={ASKIP,NORM) ,LENGTH=12, x

INITIAL='APPROVED BY: I

APP RD DFHMDF POS=(l3,38),ATTRB=(UNPROT,NORM),LENGTH=3
DFHMDF POS=(13,42),ATTRB=(ASKIP,NORM) ,LENGTH=l
DFHMDF POS=(13,52),ATTRB=(ASKIP,NORM) ,LENGTH=l4, x

INITIAL='SPECIAL CODES:'
SCODElD DFHMDF POS=(l3,67),ATTRB=(UNPROT,NORM) ,LENGTH=l
SCODE2D DFHMDF POS=(13,69),ATTRB=(UNPROT,NORM),LENGTH=l
SCODE3D DFHMDF POS=(l3,71),ATTRB=(UNPROT,NORM),LENGTH=l

DFHMDF POS=(l3,73),ATTRB=(ASKIP,NORM) ,LENGTH=l
STATTLD DFHMDF POS=(lS,l) ,ATTRB=(ASKIP,NORM) ,LENGTH=lS, x

INITIAL=' ACCOUNT STATUS: I

STA TD DFHMDF POS=(15,17),ATTRB=(ASKIP,NORM),LENGTH=2
LIMTTLD DFHMDF POS=(lS,20),ATTRB=(ASKIP,NORM) ,LENGTH=l8, x

INITIAL=' CHARGE LIMIT: I

LIM I TD DFHMDF POS=(lS,39),ATTRB=(ASKIP,NORM) ,LENGTH=8
HISTTLD DFHMDF POS=(l7,1),ATTRB=(ASKIP,NORM),LENGTH=71, x

INITIAL='HISTORY: BALANCE BILLED AMOUNT x
PAID AMOUNT'

HISTlD DFHMDF POS=(18,ll) ,ATTRB=(ASKIP,NORM) ,LENGTH=61
HIST2D DFHMDF POS=(19,ll),ATTRB=(ASKIP,NORM) ,LENGTH=61
HIST3D DFHMDF POS=(20,ll),ATTRB=(ASKIP,NORM) ,LENGTH=61
MSGD DFHMDF POS=(22,l),ATTRB=(ASKIP,BRT),LENGTH=60
VFYD DFHMDF POS=(22,62) ,ATTRB=(ASKIP,NORM),LENGTH=l
*

278 CICS Application Programming Primer

ACCTSET

* ERROR MAP.
ACCTERR DFHMDI SIZE=(24,80),CTRL=FREEKB

DFHMDF POS=(4,1),ATTRB=(ASKIP,NORM),LENGTH=26, X
INITIAL='ACCOUNT FILE: ERROR REPORT'

DFHMDF POS=(6,1),ATTRB=(ASKIP,NORM),LENGTH=12, X
INITIAL='TRANSACTION I

TRANE DFHMDF POS=(6,14),ATTRB=(ASKIP,BRT) ,LENGTH=4
DFHMDF POS=(6,19),ATTRB=(ASKIP,NORM),LENGTH=23, X

INITIAL=' HAS FAILED IN PROGRAM '
PGME DFHMDF POS=(6,43),ATTRB=(ASKIP,BRT),LENGTH=8

DFHMDF POS=(6,52),ATTRB=(ASKIP,NORM),LENGTH=ll, X
INITIAL=' BECAUSE OF'

RSNE DFHMDF POS=(8,1),ATTRB=(ASKIP,BRT),LENGTH=60
FILEE DFHMDF POS=(l0,1) ,ATTRB=(ASKIP,BRT) ,LENGTH=22

DFHMDF POS=(12,1),ATTRB=(ASKIP,NORM),LENGTH=60, X
INITIAL='PLEASE ASK YOUR SUPERVISOR TO CONVEY THIS INFORX
MATION TO THE'

DFHMDF POS=(13,1) ,ATTRB=(ASKIP,NORM),LENGTH=17, X
INITIAL='OPERATIONS STAFF.'

DFHMDF POS=(15,1),ATTRB=(ASKIP,NORM),LENGTH=64, X
INITIAL='THEN PRESS "CLEAR". THIS TERMINAL IS NO LONGERX

UNDER CONTROL OF'
DFHMDF POS=(16,1),ATTRB=(ASKIP,NORM) ,LENGTH=23, X

INITIAL='THE "ACCT" APPLICATION.'
* * MESSAGE MAP.
ACCTMSG DFHMDI SIZE=(24,80) ,CTRL=FREEKB
MSG DFHMDF POS=(l,1),ATTRB=(ASKIP,NORM),LENGTH=79

DFHMSD TYPE=FINAL
BKEND

I*
II OPTION DECK,SYSPARM='DSECT'
ASSGN SYSPCH,DISK,VOL=volser,SHR
II EXEC ASSEMBLY,SIZE=128K

I*

PUNCH I CATALS C.ACCTSET'
COPY DUMMYMAP
END

CLOSE SYSPCH,PUNCH
ASSGN SYSIPT,DISK,VOL=volser,SHR
II EXEC MAINT
CLOSE SYSIPT,SYSRDR
II OPTION CATAL,NODECK,SYSPARM='MAP'

PHASE ACCTSET,*
II EXEC ASSEMBLY,SIZE=128K

COPY DUMMYMAP
END

I*
II EXEC LNKEDT
II EXEC MAINT

DELETS A.DUMMYMAP
I*
I&

(see note 2)

(see note 3)

(see note 4)

(see note 5)
(see note 6)

Appendix A. Getting the Application Into Your CICS System 279

the DSECT

Notes:

1. This step places the BMS source statements in your source statement library using a
dummy name.

This lets you produce both the physical map and the symbolic map definition
statements in a single job, without needing to have two separate copies of your map
source.

2. This step assembles the BMS source statements to create a symbolic description map
set.

3. This step catalogs the symbolic description map set in your source statement library.

4. This step assembles the BMS source statements to create the physical map set.

5. This step link-edits and catalogs the physical map set in the core image library.

6. This step deletes the dummy set of source statements from your source statement
library.

The Result of the SYSP ARM= DSECT Assembly

We've cataloged the DSECT in the source statement library, ready to be copied in
during the compilation of the COBOL programs.

This is what it looks like:

01 ACCTMNUI.
02 FILLER PIC X(12).
02 SNAMEML COMP PIC S9(4).
02 SNAMEMF PICTURE X.
02 FILLER REDEFINES SNAMEMF.

03 SNAMEMA PICTURE X.
02 SNAMEMI PIC X(12).
02 FNAMEML COMP PIC S9(4).
02 FNAMEMF PICTURE X.
02 FILLER REDEFINES FNAMEMF.

03 FNAMEMA PICTURE X.
02 FNAMEMI PIC X(7).
02 REQML COMP PIC S9(4).
OQ REQMF PICTURE X.
02 FILLER REDEFINES REQMF.

03 REQMA PICTURE X.
02 REQMI PIC X(l).
02 ACCTML COMP PIC 89(4).
02 ACCTMF PICTURE X.
02 FILLER REDEFINES ACCTMF.

03 ACCTMA PICTURE X.
02 ACCTMI PIC X(S).
02 PRTRML COMP PIC 89(4).
02 PRTRMF PICTURE X.

280 CICS Application Programming Primer

02 FILLER REDEFINES PRTRMF.
03 PRTRMA PICTURE X.

02 PRTRMI PIC X(4).
02 SUMTTLML COMP PIC S9(4).
02 SUMTTLMF PICTURE X.
02 FILLER REDEFINES SUMTTLMF.

03 SUMTTLMA PICTURE X.
02 SUMTTLMI PIC X(79).
02 SUMLNMD OCCURS 6 TIMES.

03 SUMLNML COMP PIC S9(4).
03 SUMLNMF PICTURE X.
03 SUMLNMI PIC X(79).

02 MSGML COMP PIC S9(4).
02 MSGMF PICTURE X.
02 FILLER REDEFINES MSGMF.

03 MSGMA PICTURE X.
02 MSGMI PIC X(60).

01 ACCTMNUO REDEFINES ACCTMNUI.
02 FILLER PIC X(l2).
02 FILLER PICTURE X(3).
02 SNAMEMO PIC X(l2).
02 FILLER PICTURE X(3).
02 FNAMEMO PIC X(7).
02 FILLER PICTURE X(3).
02 REQMO PIC X(l).
02 FILLER PICTURE X(3).
02 ACCTMO PIC X(S).
02 FILLER PICTURE X(3).
02 PRTRMO PIC X(4).
02 FILLER PICTURE X(3).
02 SUMTTLMO PIC X(79).
02 DFHMSl OCCURS 6 TIMES.

03 FILLER PICTURE X(2).
03 SUMLNMA PICTURE X.
03 SUMLNMO PIC X(79).

02 FILLER PICTURE X(3).
02 MSGMO PIC X(60).

01 ACCTDTLI.
02 FILLER PIC X(l2).
02 TITLEDL COMP PIC S9(4).
02 TITLEDF PICTURE X.
02 FILLER REDEFINES TITLEDF.

03 TITLEDA PICTURE X.
02 TITLEDI PIC X(l4).
02 ACCTDL COMP PIC S9(4).
02 ACCTDF PICTURE X.
02 FILLER REDEFINES ACCTDF.

03 ACCTDA PICTURE X.
02 ACCTDI PIC X(S).
02 SNAMEDL COMP PIC S9(4).
02 SNAMEDF PICTURE X.
02 FILLER REDEFINES SNAMEDF.

03 SNAMEDA PICTURE X.
02 SNAMEDI PIC X(l8).
02 FNAMEDL COMP PIC S9(4).
02 FNAMEDF PICTURE X.
02 FILLER REDEFINES FNAMEDF.

03 FNAMEDA PICTURE X.

the DSECT

Appendix A. Getting the Application Into Your CICS System 281

the DSECT

02 FNAMEDI PIC X(l2).
02 MIDL COMP PIC S9(4).
02 MIDF PICTURE X.
02 FILLER REDEFINES MIDF.

03 MIDA PICTURE X.
02 MIDI PIC X(l).
02 TTLDL COMP PIC S9(4).
02 TTLDF PICTURE X.
02 FILLER REDEFINES TTLDF.

03 TTLDA PICTURE X.
02 TTLDI PIC X(4).
02 TELDL COMP PIC S9(4).
02 TELDF PICTURE X.
02 FILLER REDEFINES TELDF.

03 TELDA PICTURE X.
02 TELDI PIC X(lO).
02 ADDRlDL COMP PIC S9(4).
02 ADDRlDF PICTURE X.
02 FILLER REDEFINES ADDRlDF.

03 ADDRlDA PICTURE X.
02 ADDRlDI PIC X(24).
02 ADDR2DL COMP PIC S9(4).
02 ADDR2DF PICTURE X.
02 FILLER REDEFINES ADDR2DF.

03 ADDR2DA PICTURE X.
02 ADDR2DI PIC X(24).
02 ADDR3DL COMP PIC S9(4).
02 ADDR3DF PICTURE X.
02 FILLER REDEFINES ADDR3DF.

03 ADDR3DA PICTURE X.
02 ADDR3DI PIC X(24).
02 AUTHlDL COMP PIC S9(4).
02 AUTHlDF PICTURE X.
02 FILLER REDEFINES AUTHlDF.

03 AUTHlDA PICTURE X.
02 AUTHlDI PIC X(32).
02 AUTH2DL COMP PIC S9(4).
02 AUTH2DF PICTURE X.
02 FILLER REDEFINES AUTH2DF.

03 AUTH2DA PICTURE X.
02 AUTH2DI PIC X(32).
02 AUTH3DL COMP PIC S9(4).
02 AUTH3DF PICTURE X.
02 FILLER REDEFINES AUTH3DF.

03 AUTH3DA PICTURE X.
02 AUTH3DI PIC X(32).
02 AUTH4DL COMP PIC S9(4).
02 AUTH4DF PICTURE X.
02 FILLER REDEFINES AUTH4DF.

03 AUTH4DA PICTURE X.
02 AUTH4DI PIC X(32).
02 CARDSDL COMP PIC S9(4).
02 CARDSDF PICTURE X.
02 FILLER REDEFINES CARDSDF.

03 CARDSDA PICTURE X.
02 CARDSDI PIC X(l).
02 IMODL COMP PIC 89(4).

282 CICS Application Programming Primer

the DSECT

02 IMODF PICTURE X.
02 FILLER REDEFINES IMODF.

03 IMODA PICTURE X.
02 IMODI PIC X(2).
02 IDAYDL COMP PIC S9(4).
02 IDAYDF PICTURE X.
02 FILLER REDEFINES IDAYDF.

03 IDAYDA PICTURE X.
02 IDAYDI PIC X(2).
02 IYRDL COMP PIC S9(4).
02 IYRDF PICTURE X.
02 FILLER REDEFINES IYRDF.

03 IYRDA PICTURE X.
02 IYRDI PIC X(2).
02 RSNDL COMP PIC S9(4).
02 RSNDF PICTURE X.
02 FILLER REDEFINES RSNDF.

03 RSNDA PICTURE X.
02 RSNDI PIC X(l).
02 CCODEDL COMP PIC S9(4).
02 CCODEDF PICTURE X.
02 FILLER REDEFINES CCODEDF.

03 CCODEDA PICTURE X.
02 CCODEDI PIC X(l).
02 APPRDL COMP PIC S9(4).
02 APPRDF PICTURE X.
02 FILLER REDEFINES APPRDF.

03 APPRDA PICTURE X.
02 APPRDI PIC X(3).
02 SCODElDL COMP PIC S9(4).
02 SCODElDF PICTURE X.
02 FILLER REDEFINES SCODElDF.

03 SCODElDA PICTURE X.
02 SCODElDI PIC X(l).
02 SCODE2DL COMP PIC S9(4).
02 SCODE2DF PICTURE X.
02 FILLER REDEFINES SCODE2DF.

03 SCODE2DA PICTURE X.
02 SCODE2DI PIC X(l).
02 SCODE3DL COMP PIC S9(4).
02 SCODE3DF PICTURE X.
02 FILLER REDEFINES SCODE3DF.

03 SCODE3DA PICTURE X.
02 SCODE3DI PIC X(l).
02 STATTLDL COMP PIC S9(4).
02 STATTLDF PICTURE X.
02 FILLER REDEFINES STATTLDF.

03 STATTLDA PICTURE X.
02 STATTLDI PIC X(lS).
02 STATDL COMP PIC S9(4).
02 STATDF PICTURE X.
02 FILLER REDEFINES STATDF.

03 STATDA PICTURE X.
02 STATDI PIC X(2).
02 LIMTTLDL COMP PIC S9(4).
02 LIMTTLDF PICTURE X.
02 FILLER REDEFINES LIMTTLDF.

03 LIMTTLDA PICTURE X.

Appendix A. Getting the Application Into Your CICS System 283

the DSECT

02 LIMTTLDI PIC X(l8).
02 LIMITDL COMP PIC S9(4).
02 LIMITDF PICTURE X.
02 FILLER REDEFINES LIMITDF.

03 LIMITDA PICTURE X.
02 LIMITDI PIC X(8).
02 HISTTLDL COMP PIC S9(4).
02 HISTTLDF PICTURE X.
02 FILLER REDEFINES HISTTLDF.

03 HISTTLDA PICTURE X.
02 HISTTLDI PIC X(71).
02 HISTlDL COMP PIC S9(4).
02 HISTlDF PICTURE X.
02 FILLER REDEFINES HISTlDF.

03 HISTlDA PICTURE X.
02 HISTlDI PIC X(61).
02 HIST2DL COMP PIC S9(4).
02 HIST2DF PICTURE X.
02 FILLER REDEFINES HIST2DF.

03 HIST2DA PICTURE X.
02 HIST2DI PIC X(61).
02 HIST3DL COMP PIC 89(4).
02 HIST3DF PICTURE X.
02 FILLER REDEFINES HIST3DF.

03 HIST3DA PICTURE X.
02 HIST3DI PIC X(61).
02 MSGDL COMP PIC S9(4).
02 MSGDF PICTURE X.
02 FILLER REDEFINES MSGDF.

03 MSGDA PICTURE X.
02 MSGDI PIC X(60).
02 VFYDL COMP PIC S9(4).
02 VFYDF PICTURE X.
02 FILLER REDEFINES VFYDF.

03 VFYDA PICTURE X.
02 VFYDI PIC X(l).

01 ACCTDTLO REDEFINES ACCTDTLI.
02 FILLER PIC X(l2).
02 FILLER PICTURE X(3).
02 TITLEDO PIC X(l4).
02 FILLER PICTURE X(3).
02 ACCTDO PIC X(S).
02 FILLER PICTURE X(3).
02 SNAMEDO PIC X(l8).
02 FILLER PICTURE X(3).
02 FNAMEDO PIC X(12).
02 FILLER PICTURE X(3).
02 MIDO PIC X(l).
02 FILLER PICTURE X(3).
02 TTLDO PIC X(4).
02 FILLER PICTURE X(3).
02 TELDO PIC X(lO).
02 FILLER PICTURE X(3).
02 ADDRlDO PIC X(24).
02 FILLER PICTURE X(3).
02 ADDR2DO PIC X(24).
02 FILLER PICTURE X(3).

284 CICS Application Programming Primer

the DSECT

02 ADDR3DO PIC X(24).
02 FILLER PICTURE X(3).
02 AUTHlDO PIC X(32).
02 FILLER PICTURE X(3).
02 AUTH2DO PIC X(32).
02 FILLER PICTURE X(3).
02 AUTH3DO PIC X(32).
02 FILLER PICTURE X(3).
02 AUTH4DO PIC X(32).
02 FILLER PICTURE X(3).
02 CARDS DO PIC X(l).
02 FILLER PICTURE X(3).
02 IMO DO PIC X(2).
02 FILLER PICTURE X(3).
02 IDAYDO PICX(2).
02 FILLER PICTURE X(3).
02 IYRDO PIC X (2).
02 FILLER PICTURE X(3).
0'2 RSNDO PIC X(l).
02 FILLER PICTURE X(3).
02 CCODEDO PIC X(l).
02 FILLER PICTURE X(3).
02 APPRDO PIC X(3).
02 FILLER PICTURE X(3).
02 SCODElDO PIC X(l).
02 FILLER PICTURE X(3).
02 SCODE2DO PIC X(l).
02 FILLER PICTURE X(3).
02 SCODE3DO PIC X(l).
02 FILLER PICTURE X(3).
02 STATTLDO PIC X(lS).
02 FILLER PICTURE X(3).
02 STATDO PICX(2).
02 FILLER PICTURE X(3).
02 LIMTTLDO PIC X(18).
02 FILLER PICTURE X(3).
02 LIMITDO PIC X(8).
02 FILLER PICTURE X(3).
02 HISTTLDO PIC X(71).
02 FILLER PICTURE X(3).
02 HISTlDO PIC X(61).
02 FILLER PICTURE X(3).
02 HIST2DO PIC X(61).
02 FILLER PICTURE X(3).
02 HIST3DO PIC X(61).
02 FILLER PICTURE X(3).
02 MSG DO PIC X(60).
02 FILLER PICTURE X(3).
02 VFYDO PIC X(l).

01 ACCTERRI.
02 FILLER PIC X (12).
02 TRANEL COMP PIC 89 (4) .
02 TRANEF PICTURE X.
02 FILLER REDEFINES TRANEF.

03 TRANEA PICTURE X.
02 TRANEI PIC X(4).
02 PGMEL COMP PIC 89 (4).
02 PGMEF PICTURE X.

Appendix A. Getting the Application Into Your CICS System 285

the application source code

02 FILLER REDEFINES PGMEF.
03 PGMEA PICTURE X.

02 PGMEI PIC X(8).
02 RSNEL COMP PIC S9(4).
02 RSNEF PICTURE X.
02 FILLER REDEFINES RSNEF.

03 RSNEA PICTURE X.
02 RSNEI PIC X(60).
02 FILEEL COMP PIC S9(4).
02 FILEEF PICTURE X.
02 FILLER REDEFINES FILEEF.

03 FILEEA PICTURE X.
02 FILEEI PIC X(22).

01 ACCTERRO REDEFINES ACCTERRI.
02 FILLER PIC X(12).
02 FILLER PICTURE X(3).
02 TRANEO PIC X(4).
02 FILLER PICTURE X(3).
02 PGMEO PIC X(8).
02 FILLER PICTURE X(3).
02 RSNEO PIC X(60).
02 FILLER PICTURE X(3).
02 FILEEO PIC X(22).

01 ACCTMSGI.
02 FILLER PIC X(12).
02 MSGL COMP PIC S9(4).
02 MSGF PICTURE X.
02 FILLER REDEFINES MSGF.

03 MSGA PICTURE X.
02 MSGI PIC X(79).

01 ACCTMSGO REDEFINES ACCTMSGI.
02 FILLER PIC X(12).
02 FILLER PICTURE X(3).
02 MSGO PIC X(79).

The installation of map sets is more fully described in the CICS/DOS/VS Installation
and Operations Guide.

Installing The Application Programs

Your next step is to install the application programs (ACCTOO through ACCT04). The
three steps to do this are called translate, compile and link-edit. A sample job stream
to do this for each program is shown below.

II JOB ACCTOO TRANSLATE, COMPILE AND LINK
II OPTION CATAL,NODECK,SYM
II DLBL IJSYSPH,'DISK.SYSPCH.EXTENT' ,O
II EXTENT SYSPCH,,,,extent-inforrnation
II DLBL IJSYSIN,'DISK.SYSPCH.EXTENT'
II LIBDEF CL,TO=user-cil-filenarne,SEARCH=cics-cil-filenarne
II LIBDEF SL,SEARCH=(user-slb-filenarne,cics-slb-filenarne)
II LIBDEF RL,SEARCH=cics-rlb-filenarne
ASSGN SYSPCH,DISK,VOL=volser,SHR
II EXEC DFHECP1$

CBL APOST,CLIST,LIB,NOTRUNC,SXREF,XOPT(LANGLVL(2))

286 CICS Application Programming Primer

l

I*

IDENTIFICATION DIVISION.
PROGRAM-ID. ACCTOO.

ACCTOO and ACCTOl

REMARKS. THIS PROGRAM IS THE FIRST INVOKED BY THE 'ACCT'
TRANSACTION. IT DISPLAYS A MENU SCREEN FOR THE ON-LINE
ACCOUNT FILE APPLICATION, WHICH PROMPTS THE USER FOR
INPUT. TRANSACTION 'ACOl' IS INVOKED WHEN THAT INPUT
IS RECEIVED.

ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
INITIAL-MAP.

EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET') ERASE
FREEKB MAPONLY END-EXEC.

EXEC CICS RETURN TRANSID('ACOl') END-EXEC.
GOBACK.

CLOSE SYSP,CH,PUNCH
ASSGN SYSIPT,DISK,VOL=volser,SHR

PHASE ACCTOO,*
INCLUDE DFHECI

II EXEC FCOBOL
CLOSE SYSIPT,SYSRDR
II EXEC LNKEDT
I&

II JOB ACCTOl TRANSLATE, COMPILE AND LINK
II OPTION CATAL,NODECK,SYM
II DLBL IJSYSPH,'DISK.SYSPCH.EXTENT' ,o
II EXTENT SYSPCH,,,,extent-inforrnation
II DLBL IJSYSIN,'DISK.SYSPCH.EXTENT'
II LIBDEF CL,TO=user-cil-filenarne,SEARCH=cics-cil-filename
II LIBDEF SL,SEARCH=(user-slb-filename,cics-slb-filename)
II LIBDEF RL,SEARCH=cics-rlb-filename
ASSGN SYSPCH,DISK,VOL=volser,SHR
II EXEC DFHECP1$

CBL APOST,CLIST,LIB,NOTRUNC,SXREF,XOPT(LANGLVL(2))
IDENTIFICATION DIVISION.
PROGRAM-ID. ACCTOl.
REMARKS. THIS PROGRAM IS THE FIRST INVOKED BY THE 'ACOl'

TRANSACTION. IT ANALYZES ALL REQUESTS, AND COMPLETES
THOSE FOR NAME INQUIRIES AND RECORD DISPLAYS. FOR
UPDATE TRANSACTIONS, IT SENDS THE APPROPRIATE DATA ENTRY
SCREEN AND SETS THE NEXT TRANSACTION IDENTIFIER TO
'AC02', WHICH COMPLETES THE UPDATE OPERATION. FOR PRINT
REQUESTS, IT STARTS TRANSACTION 'AC03' TO DO THE ACTUAL
PRINTING.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 MISC.

02 MSG-NO
02 ACCT-LNG
02 ACIX-LNG
02 DTL-LNG
02 STARS
02 USE-QID.

04 USE-QIDl
04 USE-QID2

PIC
PIC
PIC
PIC
PIC

S9(4)
S9(4)
S9(4)
S9(4)
X(l2)

COMP VALUE +O.
COMP VALUE +383.
COMP VALUE +63.
COMP VALUE +751.
VALUE '************'.

PIC X(3) VALUE
PICX(S).

'ACO'.

Appendix A. Getting the Application Into Your CICS System 287

ACCTOl

02 USE-REC.
04 USE-TERM PIC X(4) VALUE SPACES.
04 USE-TIME PIC S9(7) COMP-3.
04 USE-DATE PIC S9(7) COMP-3.

02 USE-LIMIT PIC S9(7) COMP-3 VALUE +1000.
02 USE-ITEM PIC S9(4) COMP VALUE + 1.
02 USE-LNG PIC S9(4) COMP VALUE +12.
02 IN-AREA.

04 IN-TYPE PIC X VALUE 'R'.
04 IN-REQ.

06 REQC PIC X VALUE SPACES.
06 ACCTC PIC X(S) VALUE SPACES.
06 PRTRC PIC X(4) VALUE SPACES.

04 IN-NAMES.
06 SN AMEC PIC X(l8) VALUE SPACES.
06 FNAMEC PIC X(l2) VALUE SPACES.

02 COMMAREA-FOR-ACCT04.
04 ERR-PGRMID PIC X(8) VALUE I ACCTOl'.
04 ERR-FN PIC x.
04 ERR-RCODE PIC x.

02 LINE-CNT PIC S9(4) COMP VALUE +O.
02 MAX-LINES PIC S9(4) COMP VALUE +6.
02 IX PIC S9(4) COMP.
02 SRCH-CTRL.

04 FILLER PIC X VALUE Is I•
04 BRKEY.

06 BRKEY-SNAME PIC x (12) .
06 BRKEY-ACCT PIC X(S).

04 MAX-SNAME PIC x (12).
04 MAX-FNAME PIC x (7).
04 MIN-FNAME PIC x (7).

02 SUM-LINE.
04 ACCT DO PIC x (5) •
04 FILLER PIC X(3) VALUE SPACES.
04 SN AME DO PIC x (12).
04 FILLER PIC X(2) VALUE SPACES.
04 FNAMEDO PIC X(7).
04 FILLER PIC X(2) VALUE SPACES.
04 MIDO PIC X(l).
04 FILLER PIC X(2) VALUE SPACES.
04 TTLDO PIC X(4).
04 FILLER PIC X(2) VALUE SPACES.
04 ADDRlDO PIC X(24).
04 FILLER PIC X(2) VALUE SPACES.
04 STATDO PIC x (2).
04 FILLER PIC X(3) VALUE SPACES.
04 LIMITDO PIC X(8).

02 PAY-LINE.
04 BAL PIC x (8) .
04 FILLER PIC X(6) VALUE SPACES.
04 BMO PIC 9 (2) .
04 FILLER PIC X VALUE I/'•
04 BDAY PIC 9 (2) .
04 FILLER PIC X VALUE I/'•
04 BYR PIC 9 (2) .
04 FILLER PIC X(4) VALUE SPACES.
04 BAMT PIC x (8) .

288 CICS Application Programming Primer

*

*
*

04 FILLER PIC X(7) VALUE SPACES.
04 PMO PIC 9(2).
04 FILLER PIC X VALUE '/'.
04 PDAY PIC 9(2).
04 FILLER PIC X VALUE '/'.
04 PYR PIC 9(2).
04 FILLER PIC X(4) VALUE SPACES.
04 PAMT PIC X(8).

COPY DFHBMSCA.
COPY DFHAID.

01 ACCTREC. COPY ACCTREC.
01 ACIXREC. COPY ACIXREC.

COPY ACCTSET.
01 MSG-LIST.

02 FILLER PIC X(60) VALUE

ACCTOl

'NAMES MUST BE ALPHABETIC, AND SURNAME IS REQUIRED.'.
D2 FILLER PIC X(60) VALUE

'ENTER SOME INPUT AND USE ONLY "CLEAR" OR "ENTER".'.
02 FILLER PIC X(60) VALUE
I REQUEST TYPE REQUIRED i MUST BE "D"' "P"' "A"' "M" OR "X". I.
02 FILLER PIC X(60) VALUE

'PRINTER NAME REQUIRED ON PRINT REQUESTS'.
02 FILLER PIC X(60) VALUE

'ACCOUNT NUMBER REQUIRED (BETWEEN 10000 AND 79999) I.
02 FILLER PIC X(60) VALUE

'ACCOUNT NO. MUST BE NUMERIC AND FROM 10000 TO 79999'.
02 FILLER PIC X(60) VALUE

'NO NAMES ON FILE MATCHING YOUR REQUEST'.
02 FILLER PIC X(60) VALUE

'ENTER EITHER NAME OR A REQUEST TYPE AND ACCOUNT NUMBER'.
02 FILLER PIC X(60) VALUE

'THIS ACCOUNT NUMBER ALREADY EXISTS'.
02 FILLER PIC X(60) VALUE

'NO RECORD OF THIS ACCOUNT NUMBER'.
02 FILLER PIC X(47) VALUE

'THIS ACCOUNT NUMBER ALREADY IN USE AT TERMINAL '
02 MSG-TERM PIC X(13).
02 FILLER PIC X(60) VALUE

'PRINT REQUEST SCHEDULED'.
02 FILLER PIC X(60) VALUE

'PRINTER NAME NOT RECOGNIZED'.
02 FILLER PIC X(60) VALUE

'INPUT ERROR; PLEASE RETRY; USE ONLY CLEAR OR ENTER KEY'.
02 FILLER PIC X(60) VALUE

'THERE ARE MORE MATCHING NAMES. PRESS PA2 TO CONTINUE.'.
01 FILLER REDEFINES MSG-LIST.

02 MSG-TEXT PIC X(60) OCCURS 15.
LINKAGE SECTION.
01 DFHCOMMAREA.

02 SRCH-COMM PIC X(44).
02 IN-COMM REDEFINES SRCH-COMM PIC X(41).
02 CTYPE REDEFINES SRCH-COMM PIC X.

PROCEDURE DIVISION.

* INITIALIZE.
EXEC CICS HANDLE CONDITION MAPFAIL(NO-MAP)

Appendix A. Getting the Application Into Your CICS System 289

ACCTOl

*
*

*
*

*
*
*

*

NOTFND(SRCH-ANY)
ENDFILE(SRCH-DONE)
QIDERR (RSRV-1)
TERMIDERR(TERMID-ERR)
ERROR(OTHER-ERRORS) END-EXEC.

MOVE LOW-VALUES TO ACCTMNUI, ACCTDTLI.

CHECK BASIC REQUEST TYPE.
IF EIBAID = DFHCLEAR

IF EIBCALEN = 0,
EXEC CICS SEND CONTROL FREEKB END-EXEC
EXEC CICS RETURN END-EXEC

ELSE GO TO NEW-MENU.
IF EIBAID = DFHPA2 AND EIBCALEN > 0 AND CTYPE = 'S',

MOVE SRCH-COMM TO SRCH-CTRL, GO TO SRCH-RESUME.
IF EIBCALEN > 0 AND CTYPE = 'R', MOVE IN-COMM TO IN-AREA.

GET INPUT AND CHECK REQUEST TYPE FURTHER.
EXEC CICS RECEIVE MAP('ACCTMNU') MAPSET('ACCTSET') END-EXEC.
IF REQML > 0 MOVE REQMI TO REQC.
IF REQMF NOT = LOW-VALUE, MOVE SPACE TO REQC.
IF ACCTML > 0 MOVE ACCTMI TO ACCTC.
IF ACCTMF NOT = LOW-VALUE, MOVE SPACES TO ACCTC.
IF PRTRML > 0 MOVE PRTRMI TO PRTRC.
IF PRTRMF NOT = LOW-VALUE, MOVE SPACES TO PRTRC.
IF SNAMEML > 0 MOVE SNAMEMI TO SNAMEC.
IF SNAMEMF NOT = LOW-VALUE, MOVE SPACES TO SNAMEC.
IF FNAMEML > 0 MOVE FNAMEMI TO FNAMEC.
IF FNAMEMF NOT = LOW-VALUE, MOVE SPACES TO FNAMEC.
MOVE LOW-VALUES TO ACCTMNUI.
IF IN-NAMES = SPACES GO TO CK-ANY.

NAME INQUIRY PROCESSING.
VALIDATE NAME INPUT.
IF FNAMEC NOT ALPHABETIC, MOVE 1 TO MSG-NO,

MOVE -1 TO FNAMEML, MOVE DFHBMBRY TO FNAMEMA.
IF SNAMEC = SPACES, MOVE STARS TO SNAMEMO,
ELSE IF SNAMEC ALPHABETIC, GO TO CK-NAME.
MOVE 1 TO MSG-NO.
MOVE -1 TO SNAMEML, MOVE DFHBMBRY TO SNAMEMA.

CK-NAME.
IF MSG-NO > 0 GO TO MENU-RESEND.

* BUILD KEY AND LIMITING NAME VALUES FOR SEARCH.

*
*

SRCH-INIT.
MOVE SNAMEC TO BRKEY-SNAME, MAX-SNAME.
MOVE LOW-VALUES TO BRKEY-ACCT.
TRANSFORM MAX-SNAME FROM SPACES TO HIGH-VALUES.
MOVE FNAMEC TO MIN-FNAME, MAX-FNAME.
TRANSFORM MIN-FNAME FROM SPACES TO LOW-VALUES.
TRANSFORM MAX-FNAME FROM SPACES TO HIGH-VALUES.

INITIALIZE FOR SEQUENTIAL SEARCH.
SRCH-RESUME.

EXEC CICS STARTER DATASET('ACCTIX') RIDFLD(BRKEY) GTEQ
END-EXEC.

290 CICS Application Programming Primer

ACCTOI

*
* BUILD NAME DISPLAY.

*

SRCH-LOOP.
EXEC CICS READNEXT DATASET('ACCTIX') INTO(ACIXREC)

LENGTH(ACIX-LNG) RIDFLD(BRKEY) END-EXEC.
IF SNAMEDO IN ACIXREC > MAX-SNAME GO TO SRCH-DONE.
IF FNAMEDO IN ACIXREC < MIN-FNAME OR

FNAMEDO IN ACIXREC > MAX-FNAME, GO TO SRCH-LOOP.
ADD 1 TO LINE-CNT.
IF LINE-CNT > MAX-LINES,

MOVE MSG-TEXT (15) TO MSGMO,
MOVE DFHBMBRY TO MSGMA, GO TO SRCH-DONE.

MOVE CORRESPONDING ACIXREC TO SUM-LINE.
MOVE SUM-LINE TO SUMLNMO (LINE-CNT).
GO TO SRCH-LOOP.

SRCH-DONE.
EXEC CICS ENDBR DATASET('ACCTIX') END-EXEC.

SRCH-ANY.
IF LINE-CNT = 0, MOVE 7 TO MSG-NO,

MOVE -1 TO SNAMEML, GO TO MENU-RESEND.

* SEND THE NAME SEARCH RESULTS TO TERMINAL.

*
*
*

*
*

MOVE DFHBMUNP TO SUMLNMA (1), SUMLNMA (2), SUMLNMA (3),
SUMLNMA (4), SUMLNMA (S), SUMLNMA (6).

MOVE DFHBMBRY TO MSGMA, MOVE DFHBMASB TO SUMTTLMA.
EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET')

FREEKB DATAONLY ERASEAUP END-EXEC.
IF LINE-CNT NOT > MAX-LINES,

EXEC CICS RETURN TRANSID('ACOl') END-EXEC
ELSE EXEC CICS RETURN TRANSID('ACOl') COMMAREA(SRCH-CTRL)

LENGTH(44) END-EXEC.

DISPLAY, PRINT, ADD, MODIFY AND DELETE PROCESSING.
CHECK ACCOUNT NUMBER.

CK-ANY.
IF IN-REQ = SPACES, MOVE -1 TO SNAMEML,

MOVE 8 TO MSG-NO, GO TO MENU-RESEND.
CK-ACCTN0-1.

IF ACCTC = SPACES, MOVE STARS TO ACCTMO,
MOVE 5 TO MSG-NO, GO TO ACCT-ERR.

IF (ACCTC < '10000' OR ACCTC > '79999' OR ACCTC NOT NUMERIC),
MOVE 6 TO MSG-NO, GO TO ACCT-ERR.

CK-ACCTN0-2.
EXEC CICS HANDLE CONDITION NOTFND(NO-ACCT-RECORD) END-EXEC.
EXEC CICS READ DATASET('ACCTFIL') RIDFLD(ACCTC)

INTO(ACCTREC) LENGTH(ACCT-LNG) END-EXEC.
IF REQC = I A I ,

MOVE 9 TO MSG-NO, GO TO ACCT-ERR,
ELSE GO TO CK-REQ.

NO-ACCT-RECORD.
IF REQC = 'A', GO TO CK-REQ.
MOVE 10 TO MSG-NO.

ACCT-ERR.
MOVE -1 TO ACCTML, MOVE DFHBMBRY TO ACCTMA.

CHECK REQUEST TYPE.
CK-REQ.

IF REQC = 'D' OR 'P' OR 'A' OR 'M' OR 'X',

Appendix A. Getting the Application Into Your CICS System 291

ACCTOl

*

IF MSG-NO = 0 GO TO CK-USE, ELSE GO TO MENU-RESEND.
IF REQC = SPACE, MOVE STARS TO REQMO.
MOVE -1 TO REQML, MOVE DFHBMBRY TO REQMA ,
MOVE 3 TO MSG-NO.
GO TO MENU-RESEND.

* TEST IF ACCOUNT NUMBER IN USE, ON UPDATES ONLY.

*

CK-USE.
IF REQC = 'P' OR 'D' GO TO BUILD-MAP.
MOVE ACCTC TO USE-QID2.
EXEC CICS READQ TS QUEUE(USE-QID) INTO(USE-REC)

ITEM(USE-ITEM) LENGTH(USE-LNG) END-EXEC.
ADD USE-LIMIT TO USE-TIME.
IF USE-TIME > 236000, ADD 1 TO USE-DATE,

SUBTRACT 236000 FROM USE-TIME.
IF USE-DATE > EIBDATE OR

(USE-DATE = EIBDATE AND USE-TIME NOT < EIBTIME)
MOVE USE-TERM TO MSG-TERM, MOVE 11 TO MSG-NO,
MOVE -1 TO ACCTML, MOVE DFHBMBRY TO ACCTMA,
GO TO MENU-RESEND.

* RESERVE ACCOUNT NUMBER.

*

RSRV.
MOVE EIBTRMID TO USE-TERM, MOVE EIBTIME TO USE-TIME.
MOVE EIBDATE TO USE-DATE.
EXEC CICS WRITEQ TS QUEUE(USE-QID) FROM(USE-REC)

LENGTH(l2) ITEM(USE-ITEM) REWRITE END-EXEC.
GO TO BUILD-MAP.

RSRV-1.
MOVE EIBTRMID TO USE-TERM, MOVE EIBTIME TO USE-TIME.
MOVE EIBDATE TO USE-DATE.
EXEC CICS WRITEQ TS QUEUE(USE-QID) FROM(USE-REC)

LENGTH(l2) END-EXEC.

* BUILD THE RECORD DISPLAY.
BUILD-MAP.

IF REQC = 'X' MOVE 'DELETION' TO TITLEDO ,
MOVE -1 TO VFYDL, MOVE DFHBMUNP TO VFYDA,
MOVE 'ENTER 11 Y11 TO CONFIRM OR "CLEAR" TO CANCEL'

TO MSGDO,
ELSE MOVE -1 TO SNAMEDL.
IF REQC = 'A' MOVE 'NEW RECORD' TO TITLEDO,

MOVE DFHPROTN TO STATTLDA, LIMTTLDA, HISTTLDA,
MOVE ACCTC TO ACCTDI,
MOVE 'FILL IN AND PRESS "ENTER," OR "CLEAR" TO CANCEL'

TO MSGDO,
GO TO SEND-DETAIL.

IF REQC = 'M' MOVE 'RECORD CHANGE' TO TITLEDO,
MOVE 'MAKE CHANGES AND "ENTER" OR "CLEAR" TO CANCEL'

TO MSGDO,
ELSE IF REQC = 'D',

MOVE 'PRESS "CLEAR" OR "ENTER" WHEN FINISHED'
TO MSGDO.

MOVE CORRESPONDING ACCTREC TO ACCTDTLO.
MOVE CORRESPONDING PAY-HIST (1) TO PAY-L I NE.
MOVE PAY-LINE TO HISTlDO.
MOVE CORRESPONDING PAY-HIST (2) TO PAY-LINE.

292 CICS Application Programming Primer

*

MOVE PAY-LINE TO HIST2DO.
MOVE CORRESPONDING PAY-HIST (3) TO PAY-LINE.
MOVE PAY-LINE TO HIST3DO.
IF REQC = 'M' GO TO SEND-DETAIL,
ELSE IF REQC = 'P' GO TO PRINT-PROC.
MOVE DFHBMASK TO

ACCTOl

SNAMEDA, FNAMEDA, MIDA, TTLDA, TELDA, ADDRlDA,
ADD~2DA, ADDR3DA, AUTHlDA, AUTH2DA, AUTH3DA,
AUTH4DA, CARDSDA, IMODA, IDAYDA, IYRDA, RSNDA,
CCODEDA, APPRDA, SCODElDA, SCODE2DA, SCODE3DA.

* SEND THE RECORD DETAIL MAP TO THE TERMINAL.

*

SEND-DETAIL.
EXEC CICS SEND MAP('ACCTDTL') MAPSET('ACCTSET') ERASE FREEKB

CURSOR END-EXEC.
IF REQC = 'D', EXEC CICS RETURN TRANSID('ACCT') END-EXEC,
ELSE EXEC CICS RETURN TRANSID('AC02')

COMMAREA(IN-REQ) LENGTH(6) END-EXEC.

* START UP A TASK TO PRINT THE RECORD.

*
*
*

*

PRINT-PROC.
IF PRTRC SPACES, MOVE STARS TO PRTRMO

MOVE 4 TO MSG-NO, GO TO TERMID-ERRl.
EXEC CICS START TRANSID('AC03') FROM(ACCTDTLO)

LENGTH(DTL-LNG) TERMID(PRTRC) END-EXEC.
MOVE MSG-TEXT (12) TO MSGMO.
EXEC CICS SEND MAP('ACCTMNU') MAPSET ('ACCTSET') DATAONLY

ERASEAUP FREEKB END-EXEC.
EXEC CICS RETURN TRANSID('ACOl') END-EXEC.

TERMID-ERR.
MOVE 13 TO MSG-NO.

TERMID-ERRl.
MOVE -1 TO PRTRML, MOVE DFHBMBRY TO PRTRMA.

ERROR PROCESSING, FOR ALL REQUESTS.
RESEND MENU SCREEN.

MENU-RESEND.
MOVE MSG-TEXT (MSG-NO) TO MSGMO.
EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET')

CURSOR DATAONLY FRSET FREEKB END-EXEC.
EXEC CICS RETURN TRANSID('ACOl') COMMAREA(IN-AREA)

LENGTH(41) END-EXEC.

* PROCESSING FOR MAP FAILURES, CLEARS.

*

NO-MAP.
IF (EIBAID = DFHPAl OR DFHPA2 OR DFHPA3 OR DFHENTER)

MOVE 2 TO MSG-NO, MOVE -1 TO SNAMEML, GO TO MENU-RESEND.
MOVE MSG-TEXT (14) TO MSGMO.

NEW-MENU.
EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET')

FREEKB ERASE END-EXEC.
EXEC CICS RETURN TRANSID ('ACOl') END-EXEC.

* PROCESSING FOR UNEXPECTED ERRORS.
OTHER-ERRORS.

MOVE EIBFN TO ERR-FN, MOVE EIBRCODE TO ERR-RCODE.
EXEC CICS HANDLE CONDITION ERROR END-EXEC.
EXEC CICS LINK PROGRAM('ACCT04')

Appendix A. Getting the Application Into Your CICS System 293

ACCT02

COMMAREA(COMMAREA-FOR-ACCT04) LENGTH(lO) END-EXEC.
GOBACK . .

I*
CLOSE SYSPCH,PUNCH
ASSGN SYSIPT,DISK,VOL=volser,SHR

PHASE ACCTOl,*
INCLUDE DFHECI

II EXEC FCOBOL
CLOSE SYSIPT,SYSRDR
II EXEC LNKEDT
I&

II JOB ACCT02 TRANSLATE, COMPILE AND LINK
II OPTION CATAL,NODECK,SYM
II DLBL IJSYSPH,'DISK.SYSPCH.EXTENT' ,0
II EXTENT SYSPCH,,,,extent-information
II DLBL IJSYSIN,'DISK.SYSPCH.EXTENT'
II LIBDEF CL,TO=user-cil-filename,SEARCH=cics-cil-filename
II LIBDEF SL,SEARCH=(user-slb-filename,cics-slb-filename)
II LIBDEF RL,SEARCH=cics-rlb-filename
ASSGN SYSPCH,DISK,VOL=volser,SHR
II EXEC DFHECP1$

CBL APOST,CLIST,LIB,NOTRUNC,SXREF,XOPT(LANGLVL(2))
IDENTIFICATION DIVISION.
PROGRAM-ID. ACCT02.
REMARKS. THIS PROGRAM IS THE FIRST INVOKED BY THE 'AC02'

TRANSACTION. IT COMPLETES REQUESTS FOR ACCOUNT FILE
UPDATES (ADDS, MODIFIES, AND DELETES), AFTER THE USER
ENTERED THE UPDATE INFORMATION.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 MISC.

02 MENU-MSGNO
02 DTL-MSGNO
02 ACCT-LNG
02 ACIX-LNG
02 DTL-LNG
02 DUMMY
02 FILLER REDEFINES

04 FILLER
04 HEX80

02 STARS
02 USE-QID.

04 USE-QIDl
04 USE-QID2

02 USE-REC.
04 USE-TERM
04 USE-TIME
04 USE-DATE

02 USE-LNG
02 OLD-IXKEY.

04 IXOLD-SNAME
04 IXOLD-ACCT

DUMMY.

02 COMMAREA-FOR-ACCT04.
04 ERR-PGRMID
04 ERR-FN

294 CICS Application Programming Primer

PIC
PIC
PIC
PIC
PIC
PIC

S9(4)
S9(4)
S9(4)
S9(4)
S9(4)
S9(4)

x.

COMP
COMP
COMP
COMP
COMP
COMP

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

+1.
+O.
+383.
+63.
+751.
+128.

PIC
PIC
PIC

x.
X(12) VALUE '************ ' .

PIC X(3) VALUE 'ACO'.
PICX(S).

PIC X(4).
PIC S9(7) COMP-3.
PIC S9(7) COMP-3.
PIC S9(4) COMP VALUE +12.

PIC X(l2).
PIC X(S).

PIC X(8) VALUE 'ACCT02'.
PIC X.

ACCT02

04 ERR-RCODE PIC X.
02 PAY-INIT PIC X(36) VALUE

0.00000000 0.00000000 0.00'.
* MESSAGES DISPLAYED ON MENU SCREEN

02 MENU-MSG-LIST.
04 FILLER PIC X(60) VALUE

'PREVIOUS REQUEST CANCELED AS REQUESTED'.
04 FILLER PIC X(60) VALUE

'REQUESTED ADDITION COMPLETED'.
04 FILLER PIC X(60) VALUE

'REQUESTED MODIFICATION COMPLETED'.
04 FILLER PIC X(60) VALUE

'REQUESTED DELETION COMPLETED'.
* MESSAGES DISPLAYED ON DETAIL SCREEN

*

*

02 MENU-MSG REDEFINES MENU-MSG-LIST PIC X(60) OCCURS 4.
02 DTL-MSG-LIST.

04 FILLER PIC X(60) VALUE
'EITHER ENTER "Y" TO CONFIRM OR "CLEAR" TO CANCEL'.

04 FILLER PIC X(60) VALUE
'YOUR REQUEST WAS INTERRUPTED; PLEASE CANCEL AND RETRY' .
04 FILLER PIC X(60) VALUE
'CORRECT HIGHLIGHTED ITEMS (STARS MEAN ITEM REQUIRED) '.
04 FILLER PIC X(60) VALUE
'USE ONLY "ENTER" (TO PROCEED) OR "CLEAR" (TO CANCEL)'.
04 FILLER PIC X(60) VALUE
'MAKE SOME ENTRIES AND "ENTER" OR "CLEAR" TO CANCEL'.

02 DTL-MSG REDEFINES DTL-MSG-LIST PIC X(60) OCCURS 5.
02 MOD-LINE.

04 FILLER PIC X(25) VALUE
'==========> CHANGES TO:

04 MOD-NAME PIC X(6) VALUE SPACES.
04 MOD-TELE PIC X(S) VALUE SPACES.
04 MOD-ADDR PIC X(6) VALUE SPACES.
04 MOD-AUTH PIC X(6) VALUE SPACES.
04 MOD-CARD PIC X(6) VALUE SPACES.
04 MOD-CODE PIC X(S) VALUE SPACES.

02 UPDT-LINE.
04 FILLER PIC X(30) VALUE

'==========> UPDATED AT TERM:
04 UPDT-TERM PIC X(4).
04 FILLER PIC X(6) VALUE ' AT
04 UPDT-TIME PIC 9(7).
04 FILLER PIC X(6) VALUE ' ON
04 UPDT-DATE PIC 9(7).

01 NEW-ACCTREC. COPY ACCTREC.
01 OLD-ACCTREC. COPY ACCTREC.
01 NEW-ACIXREC. COPY ACIXREC.
01 OLD-ACIXREC. COPY ACIXREC.

COPY ACCTSET.
COPY DFHAID.
COPY DFHBMSCA.

LINKAGE SECTION.
01 DFHCOMMAREA.

02 REQC PIC X.
02 ACCTC PIC X(S).

PROCEDURE DIVISION.

Appendix A. Getting the Application Into Your CICS System 295

ACCT02

* INITIALIZE.

*

MOVE LOW-VALUES TO ACCTDTLI.
MOVE SPACES TO OLD-ACCTREC, NEW-ACCTREC,

OLD-ACIXREC, NEW-ACIXREC.
EXEC CICS HANDLE AID CLEAR(CK-OWN) PAl(PA-KEY)

PA2(PA-KEY) PA3(PA-KEY) END-EXEC.
EXEC CICS HANDLE CONDITION QIDERR(NO-OWN)

MAPFAIL(NO-MAP) ERROR(NO-GOOD) END-EXEC.

* GET INPUT AND BUILD NEW RECORD.
EXEC CICS RECEIVE MAP('ACCTDTL') MAPSET('ACCTSET') END-EXEC.
IF REQC NOT = 'A',

EXEC CICS READ DATASET('ACCTFIL') INTO(OLD-ACCTREC)
RIDFLD(ACCTC) UPDATE LENGTH(ACCT-LNG) END-EXEC

MOVE OLD-ACCTREC TO NEW-ACCTREC,
MOVE SNAMEDO IN OLD-ACCTREC TO IXOLD-SNAME,
MOVE ACCTC TO IXOLD-ACCT.

IF REQC = Ix I '

IF VFYDI = 'Y', GO TO CK-OWN,
ELSE MOVE -1 TO VFYDL, MOVE DFHUNIMD TO VFYDA,

MOVE 1 TO DTL-MSGNO,
GO TO INPUT-REDISPLAY.

IF SNAMEDL > 0 MOVE SNAMEDI TO SNAMEDO IN NEW-ACCTREC.
IF FNAMEDL > 0 MOVE FNAMEDI TO FNAMEDO IN NEW-ACCTREC.
IF MIDL > 0 MOVE MIDI TO MIDO IN NEW-ACCTREC.
IF TTLDL > 0 MOVE TTLDI TO TTLDO IN NEW-ACCTREC.
IF TELDL > 0 MOVE TELDI TO TELDO IN NEW-ACCTREC.
IF ADDRlDL > 0 MOVE ADDRlDI TO ADDRlDO IN NEW-ACCTREC.
IF ADDR2DL > 0 MOVE ADDR2DI TO ADDR2DO IN NEW-ACCTREC.
IF ADDR3DL > 0 MOVE ADDR3DI TO ADDR3DO IN NEW-ACCTREC.
IF AUTHlDL > 0 MOVE AUTHlDI TO AUTHlDO IN NEW-ACCTREC.
IF AUTH2DL > 0 MOVE AUTH2DI TO AUTH2DO IN NEW-ACCTREC.
IF AUTH3DL > 0 MOVE AUTH3DI TO AUTH3DO IN NEW-ACCTREC.
IF AUTH4DL > 0 MOVE AUTH4DI TO AUTH4DO IN NEW-ACCTREC.
IF CARDSDL > 0 MOVE CARDSDI TO CARDSDO IN NEW-ACCTREC.
IF IMODL > 0 MOVE IMODI TO IMODO IN NEW-ACCTREC.
IF IDAYDL > 0 MOVE IDAYDI TO IDAYDO IN NEW-ACCTREC.
IF IYRDL > 0 MOVE IYRDI TO IYRDO IN NEW-ACCTREC.
IF RSNDL > 0 MOVE RSNDI TO RSNDO IN NEW-ACCTREC.
IF CCODEDL > 0 MOVE CCODEDI TO CCODEDO IN NEW-ACCTREC.
IF APPRDL > 0 MOVE APPRDI TO APPRDO IN NEW-ACCTREC.
IF SCODElDL > 0 MOVE SCODElDI TO SCODElDO IN NEW-ACCTREC.
IF SCODE2DL > 0 MOVE SCODE2DI TO SCODE2DO IN NEW-ACCTREC.
IF SCODE3DL > 0 MOVE SCODE3DI TO SCODE3DO IN NEW-ACCTREC.
IF REQC = 'A' GO TO EDIT-0.
IF SNAMEDF = HEX80 MOVE SPACES TO SNAMEDO IN NEW-ACCTREC.
IF FNAMEDF = HEX80 MOVE SPACES TO FNAMEDO IN NEW-ACCTREC.
IF MIDF = HEX80 MOVE SPACES TO MIDO IN NEW-ACCTREC.
IF TTLDF = HEX80 MOVE SPACES TO TTLDO IN NEW-ACCTREC.
IF TELDF = HEX80 MOVE SPACES TO TELDO IN NEW-ACCTREC.
IF ADDRlDF HEX80 MOVE SPACES TO ADDRlDO IN NEW-ACCTREC.
IF ADDR2DF HEX80 MOVE SPACES TO ADDR2DO IN NEW-ACCTREC.
IF ADDR3DF HEX80 MOVE SPACES TO ADDR3DO IN NEW-ACCTREC.
IF AUTHlDF HEX80 MOVE SPACES TO AUTHlDO IN NEW-ACCTREC.
IF AUTH2DF HEX80 MOVE SPACES TO AUTH2DO IN NEW-ACCTREC.
IF AUTH3DF HEX80 MOVE SPACES TO AUTH3DO IN NEW-ACCTREC.
IF AUTH4DF HEX80 MOVE SPACES TO AUTH4DO IN NEW-ACCTREC.

296 CICS Application Programming Primer

*

ACCT02

IF CARDSDF = HEX80 MOVE SPACE TO CARDSDO IN NEW-ACCTREC.
IF IMODF = HEX80 MOVE ZERO TO IMODO IN NEW-ACCTREC.
IF IDAYDF = HEX80 MOVE ZERO TO IDAYDO IN NEW-ACCTREC.
IF IYRDF = HEX80 MOVE ZERO TO IYRDO IN NEW-ACCTREC.
IF RSNDF = HEX80 MOVE SPACE TO RSNDO IN NEW-ACCTREC.
IF CCODEDF = HEX80 MOVE SPACES TO CCODEDO IN NEW-ACCTREC.
IF APPRDF = HEX80 MOVE SPACES TO APPRDO IN NEW-ACCTREC.
IF SCODElDF HEX80 MOVE SPACES TO SCODElDO IN NEW-ACCTREC.
IF SCODE2DF = HEX80 MOVE SPACES TO SCODE2DO IN NEW-ACCTREC.
IF SCODE3DF = HEX80 MOVE SPACES TO SCODE3DO IN NEW-ACCTREC.
IF OLD-ACCTREC = NEW-ACCTREC,

MOVE 5 TO DTL-MSGNO,
GO TO INPUT-REDISPLAY.

* EDIT INPUT.
EDIT-0.

MOVE LOW-VALUES TO ACCTDTLI.
IF SNAMEDO IN NEW-ACCTREC = SPACES,

MOVE STARS TO SNAMEDI,
ELSE IF SNAMEDO IN NEW-ACCTREC ALPHABETIC GO TO EDIT-1.
MOVE DFHUNIMD TO SNAMEDA, MOVE -1 TO SNAMEDL.

EDIT-1.
IF FNAMEDO IN NEW-ACCTREC = SPACES,

MOVE STARS TO FNAMEDI,
ELSE IF FNAMEDO IN NEW-ACCTREC ALPHABETIC, GO TO EDIT-2.
MOVE DFHUNIMD TO FNAMEDA, MOVE -1 TO FNAMEDL.

EDIT-2.
IF MIDO IN NEW-ACCTREC NOT ALPHABETIC,

MOVE DFHUNIMD TO MIDA, MOVE -1 TO MIDL.
IF TTLDO IN NEW-ACCTREC NOT ALPHABETIC,

MOVE DFHUNIMD TO TTLDA, MOVE -1 TO TTLDL.
IF (TELDO IN NEW-ACCTREC NOT = SPACES AND

TELDO IN NEW-ACCTREC NOT NUMERIC),
MOVE DFHUNIMD TO TELDA, MOVE -1 TO TELDL.

IF ADDRlDO IN NEW-ACCTREC = SPACES,
MOVE STARS TO ADDRlDI,
MOVE DFHBMBRY TO ADDRlDA, MOVE -1 TO ADDRlDL.

IF ADDR2DO IN NEW-ACCTREC = SPACES,
MOVE STARS TO ADDR2DI,
MOVE DFHBMBRY TO ADDR2DA, MOVE -1 TO ADDR2DL.

IF CARDSDO IN NEW-ACCTREC = SPACES,
MOVE STARS TO CARDSDI,

ELSE IF (CARDSDO IN NEW-ACCTREC > '0' AND
CARDSDO IN NEW-ACCTREC NOT> '9'), GO TO EDIT-3.

MOVE DFHUNIMD TO CARDSDA, MOVE -1 TO CARDSDL.
EDIT-3.

IF IMODO IN NEW-ACCTREC = SPACES,
MOVE STARS TO IMODI,

ELSE IF IMODO IN NEW-ACCTREC NUMERIC AND
IMODO IN NEW-ACCTREC > '00' AND
IMODO IN NEW-ACCTREC < '13', GO TO EDIT-4.

MOVE DFHUNIMD TO IMODA, MOVE -1 TO IMODL.
EDIT-4.

IF IDAYDO IN NEW-ACCTREC = SPACES,
MOVE STARS TO IDAYDI,

ELSE IF IDAYDO IN NEW-ACCTREC NUMERIC AND
IDAYDO IN NEW-ACCTREC > '00' AND
IDAYDO IN NEW-ACCTREC < '32',

Appendix A. Getting the Application Into Your CICS System 297

ACCT02

*

GO TO EDIT-5.
MOVE DFHUNIMD TO IDAYDA, MOVE -1 TO IDAYDL.

EDIT-5.
IF IYRDO IN NEW-ACCTREC = SPACES,

MOVE STARS TO IYRDI,
ELSE IF IYRDO IN NEW-ACCTREC NUMERIC AND

IYRDO IN NEW-ACCTREC > '75', GO TO EDIT-6.
MOVE DFHUNIMD TO IYRDA, MOVE -1 TO IYRDL.

EDIT-6.
IF RSNDO IN NEW-ACCTREC = SPACES,

MOVE STARS TO RSNDI,
ELSE IF (RSNDO IN NEW-ACCTREC = 'N' OR

RSNDO IN NEW-ACCTREC 'L' OR
RSNDO IN NEW-ACCTREC = 'S' OR
RSNDO IN NEW-ACCTREC = 'R'), GO TO EDIT-7.

MOVE DFHUNIMD TO RSNDA, MOVE -1 TO RSNDL.
EDIT-7.

IF CCODEDO IN NEW-ACCTREC = SPACES,
MOVE STARS TO CCODEDI,
MOVE -1 TO CCODEDL, MOVE DFHBMBRY TO CCODEDA.

IF APPRDO IN NEW-ACCTREC = SPACES,
MOVE STARS TO APPRDI,
MOVE -1 TO APPRDL, MOVE DFHBMBRY TO APPRDA.

IF ACCTDTLI NOT = LOW-VALUES,
MOVE 3 TO DTL-MSGNO, GO TO INPUT-REDISPLAY.

IF REQC = 'A' MOVE ACCTC TO ACCTDO IN NEW-ACCTREC,
MOVE 'N ' TO STATDO IN NEW-ACCTREC,
MOVE ' 1000.00' TO LIMITDO IN NEW-ACCTREC,
MOVE PAY-INIT TO PAY-HIST IN NEW-ACCTREC (1),

PAY-HIST IN NEW-ACCTREC (2),
PAY-HIST IN NEW-ACCTREC (3).

MOVE CORRESPONDING NEW-ACCTREC TO NEW-ACIXREC.

* CHECK OWNERSHIP OF ACCOUNT NUMBER.

*

CK-OWN.
MOVE ACCTC TO USE-QID2.
EXEC CICS HANDLE CONDITION LENGERR(NO-OWN) END-EXEC.
EXEC CICS READQ TS QUEUE(USE-QID) INTO(USE-REC)

LENGTH(USE-LNG) ITEM(l) END-EXEC.
EXEC CICS HANDLE CONDITION LENGERR (NO-GOOD) END-EXEC.
IF USE-TERM NOT = EIBTRMID OR USE-LNG NOT = 12, GO TO NO-OWN.
IF EIBAID = DFHCLEAR GO TO RELEASE-ACCT.

* WRITE HARDCOPY LOG RECORDS.
MOVE LOW-VALUES TO ACCTDTLO.
MOVE DFHBMDAR TO HISTTLDA, STATTLDA, STATDA, LIMTTLDA,

LIMITDA.
IF REQC = 'A' MOVE 'NEW RECORD' TO TITLEDO, GO TO LOG-1.
MOVE CORRESPONDING OLD-ACCTREC TO ACCTDTLO.
IF REQC = 'X' MOVE 'DELETION' TO TITLEDO, GO TO LOG-2.
MOVE 'BEFORE CHANGE' TO TITLEDO.
IF SNAMEDO IN OLD-ACCTREC NOT = SNAMEDO IN NEW-ACCTREC OR

FNAMEDO IN OLD-ACCTREC NOT = FNAMEDO IN NEW-ACCTREC
OR MIDO IN OLD-ACCTREC NOT = MIDO IN NEW-ACCTREC OR
TTLDO IN OLD-ACCTREC NOT = TTLDO IN NEW-ACCTREC
MOVE 'NAME' TO MOD-NAME.

IF TELDO IN OLD-ACCTREC NOT = TELDO IN NEW-ACCTREC

298 CICS Application Programming Primer

*
*

*
*

ACCT02

MOVE 'TEL' TO MOD-TELE.
IF ADDRlDO IN OLD-ACCTREC NOT = ADDRlDO IN NEW-ACCTREC OR

ADDR2DO IN OLD-ACCTREC NOT ADDR2DO IN NEW-ACCTREC OR
ADDR3DO IN OLD-ACCTREC NOT = ADDR3DO IN NEW-ACCTREC
MOVE 'ADDR' TO MOD-ADDR.

IF AUTHlDO IN OLD-ACCTREC NOT = AUTHlDO IN NEW-ACCTREC OR
AUTH2DO IN OLD-ACCTREC NOT AUTH2DO IN NEW-ACCTREC OR
AUTH3DO IN OLD-ACCTREC NOT AUTH3DO IN NEW-ACCTREC OR
AUTH4DO IN OLD-ACCTREC NOT = AUTH4DO IN NEW-ACCTREC
MOVE 'AUTH' TO MOD-AUTH.

IF CARDSDO IN OLD-ACCTREC NOT = CARDSDO IN NEW-ACCTREC OR
IMODO IN OLD-ACCTREC NOT = IMODO IN NEW-ACCTREC OR
IDAYDO IN OLD-ACCTREC NOT = IDAYDO IN NEW-ACCTREC OR
IYRDO IN OLD-ACCTREC NOT = IYRDO IN NEW-ACCTREC OR
RSNDO IN OLD-ACCTREC NOT = RSNDO IN NEW-ACCTREC OR
CCODEDO IN OLD-ACCTREC NOT = CCODEDO IN NEW-ACCTREC OR
APPRDO IN OLD-ACCTREC NOT = APPRDO IN NEW-ACCTREC
MOVE 'CARD' TO MOD-CARD.

IF SCODElDO IN OLD-ACCTREC NOT = SCODElDO IN NEW-ACCTREC OR
SCODE2DO IN OLD-ACCTREC NOT SCODE2DO IN NEW-ACCTREC OR
SCODE3DO IN OLD-ACCTREC NOT = SCODE3DO IN NEW-ACCTREC
MOVE 'CODES' TO MOD-CODE.

MOVE MOD-LINE TO MSGDO.
EXEC CICS WRITEQ TS QUEUE('ACCTLOG') FROM(ACCTDTLO)

LENGTH(DTL-LNG) END-EXEC.
MOVE 'AFTER CHANGE' TO TITLEDO.

LOG-1.
MOVE CORRESPONDING NEW-ACCTREC TO ACCTDTLO.

LOG-2.
MOVE EIBTRMID TO UPDT-TERM, MOVE EIBTIME TO UPDT-TIME,
MOVE EIBDATE TO UPDT-DATE, MOVE UPDT-LINE TO MSGDO.
EXEC CICS WRITEQ TS QUEUE('ACCTLOG') FROM(ACCTDTLO)

LENGTH(DTL-LNG) END-EXEC.

UPDATE THE FILES FOR ADD REQUESTS.
IF REQC = 'X' GO TO UPDT-DELETE.
IF REQC = 'M' GO TO UPDT-MODIFY.

UPDT-ADD.
MOVE 2 TO MENU-MSGNO.
EXEC CICS WRITE DATASET('ACCTFIL') FROM(NEW-ACCTREC)

RIDFLD(ACCTC) LENGTH(ACCT-LNG) END-EXEC.
EXEC CICS WRITE DATASET('ACCTIX') FROM(NEW-ACIXREC)

RIDFLD(SNAMEDO IN NEW-ACIXREC) LENGTH(ACIX-LNG)
GO TO RELEASE-ACCT.

UPDATE THE FILES FOR MODIFY REQUESTS.
UPDT-MODIFY.

MOVE 3 TO MENU-MSGNO.

END-EXEC.

EXEC CICS REWRITE DATASET('ACCTFIL') FROM(NEW-ACCTREC)
LENGTH (ACCT-LNG) END-EXEC.

IF SNAMEDO IN NEW-ACCTREC NOT = SNAMEDO IN OLD-ACCTREC
EXEC CICS DELETE DATASET('ACCTIX') RIDFLD(OLD-IXKEY)

END-EXEC
EXEC CICS WRITE DATASET('ACCTIX') FROM (NEW-ACIXREC)

RIDFLD (SNAMEDO IN NEW-ACIXREC) LENGTH(ACIX-LNG)
END-EXEC

ELSE IF FNAMEDO IN NEW-ACCTREC NOT = FNAMEDO IN OLD-ACCTREC
OR MIDO IN NEW-ACCTREC NOT = MIDO IN OLD-ACCTREC OR

Appendix A. Getting the Application Into Your CICS System 299

ACCT02

/*

*
*

*

TTLDO IN NEW-ACCTREC NOT = TTLDO IN OLD-ACCTREC OR
ADDRlDO IN NEW-ACCTREC NOT = ADDRlDO IN OLD-ACCTREC
EXEC CICS READ DATASET('ACCTIX') INTO (OLD-ACIXREC)

RIDFLD(OLD-IXKEY) LENGTH(ACIX-LNG) UPDATE END-EXEC
EXEC CICS REWRITE DATASET('ACCTIX') FROM(NEW-ACIXREC)

LENGTH(ACIX-LNG) END-EXEC.
GO TO RELEASE-ACCT.

UPDATE THE FILES FOR DELETE REQUESTS.
UPDT-DELETE.

MOVE 4 TO MENU-MSGNO.
EXEC CICS DELETE DATASET('ACCTFIL') END-EXEC.
EXEC CICS DELETE DATASET('ACCTIX') RIDFLD(OLD-IXKEY)

END-EXEC.

* RELEASE OWNERSHIP OF ACCOUNT NUMBER.
RELEASE-ACCT.

EXEC CICS DELETEQ TS QUEUE(USE-QID) END-EXEC.
* * SEND MENU MAP BACK TO TERMINAL.

*
*

*

MENU-REFRESH.
MOVE LOW-VALUES TO ACCTMNUO.
MOVE MENU-MSG (MENU-MSGNO) TO MSGMO.
EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET') ERASE FREEKB

END-EXEC.
EXEC CICS RETURN TRANSID('ACOl') END-EXEC.

FOR INPUT ERRORS, RESEND DETAIL MAP.
INPUT-REDISPLAY.

MOVE DTL-MSG (DTL-MSGNO) TO MSGDO.
IF DTL-MSGNO = 2 OR 4 OR 5, MOVE -1 TO SNAMEDL.
EXEC CICS SEND MAP('ACCTDTL') MAPSET('ACCTSET') DATAONLY

CURSOR FREEKB END-EXEC.
EXEC CICS RETURN TRANSID('AC02') COMMAREA(DFHCOMMAREA)

LENGTH(6) END-EXEC.

* PROCESSING FOR RECOVERABLE ERRORS.

*

NO-OWN.
IF EIBAID = DFHCLEAR GO TO MENU-REFRESH.
MOVE 2 TO DTL-MSGNO, GO TO INPUT-REDISPLAY.

NO-MAP.
IF REQC = 'X' MOVE 1 TO DTL-MSGNO, MOVE -1 TO VFYDL

ELSE MOVE 5 TO DTL-MSGNO.
GO TO INPUT-REDISPLAY.

PA-KEY.
MOVE 4 TO DTL-MSGNO, GO TO INPUT-REDISPLAY.

* PROCESSING FOR UNRECOVERABLE ERRORS.
NO-GOOD.

MOVE EIBFN TO ERR-FN, MOVE EIBRCODE TO ERR-RCODE.
EXEC CICS HANDLE CONDITION ERROR END-EXEC.
EXEC CICS LINK PROGRAM('ACCT04')

COMMAREA(COMMAREA-FOR-ACCT04) LENGTH(lO) END-EXEC.
GOBACK.

CLOSE SYSPCH,PUNCH
ASSGN SYSIPT,DISK,VOL=volser,SHR

300 CICS Application Programming Primer

PHASE ACCT02,*
INCLUDE DFHECI

II EXEC FCOBOL
CLOSE SYSIPT,SYSRDR
II EXEC LNKEDT
I&

II JOB ACCT03 TRANSLATE, COMPILE AND LINK
II OPTION CATAL,NODECK,SYM
II DLBL IJSYSPH,'DISK.SYSPCH.EXTENT' ,0
II EXTENT SYSPCH,,,,extent-information
II DLBL IJSYSIN,'DISK.SYSPCH.EXTENT'
II LIBDEF CL,TO=user-cil-filename,SEARCH=cics-cil-filename
II LIBDEF SL,SEARCH=(user-slb-filename,cics-slb-filename)
II LIBDEF RL,SEARCH=cics-rlb-filename
ASSGN SYSPCH,DISK,VOL=volser,SHR
II EXEC DFHECP1$

CBL APOST,CLIST,LIB,NOTRUNC,SXREF,XOPT(LANGLVL(2))
IDENTIFICATION DIVISION.
PROGRAM-ID. ACCT03.

ACCT03

REMARKS. THIS PROGRAM IS THE FIRST INVOKED BY TRANSACTIONS

*

*

'AC03', 'ACLG' AND 'ACOS'. 'AC03' COMPLETES A REQUEST FOR
PRINTING OF A CUSTOMER RECORD, WHICH WAS PROCESSED
INITIALLY BY TRANSACTION 'ACOl'. 'ACLG,' WHICH IS A
USER REQUEST TO PRINT THE LOG, MERELY REQUESTS 'ACOS'
BE STARTED WHEN THE LOG PRINTER ('L860') IS AVAILABLE.
'ACOS' TRANSFERS THE LOG DATA FROM TEMPORARY STORAGE TO
THE PRINTER.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 COMMAREA-FOR-ACCT04.

02 ERR-PGM
02 ERR-FN
02 ERR-RCODE

01 TS-LNG
COPY ACCTSET.

PROCEDURE DIVISION.

PIC X(8) VALUE 'ACCT03'.
PIC X.
PIC X.
PIC S9 (4) COMP VALUE +751.

* INITIALIZE.

*

INIT.
EXEC CICS HANDLE CONDITION ITEMERR(LOG-END)

QIDERR(RTRN) ERROR(NO-GOOD) END-EXEC.

* TEST FOR TRANSACTION TYPE.
IF EIBTRNID 'AC03' GO TO AC03.
IF EIBTRNID = 'ACLG' GO TO ACLG, ELSE GO TO ACOS.

*
* PROCESS TRANSACTION 'AC03'.

*

AC03.
EXEC CICS RETRIEVE INTO(ACCTDTLI) LENGTH(TS-LNG) END-EXEC.
EXEC CICS SEND MAP (I ACCTDTL I) MAP SET (I ACCTSET I\ PRINT

ERASE END-EXEC.
GO TO RTRN.

* PROCESS TRANSACTION 'ACLG'.
ACLG.

Appendix A. Getting the Application Into Your CICS System 301

ACCT04

I*

*

EXEC CICS START TRANSID('ACOS') TERMID('L860') END-EXEC.
MOVE LOW-VALUES TO ACCTMSGO.
MOVE 'PRINTING OF LOG HAS BEEN SCHEDULED' TO MSGO.
EXEC CICS SEND MAP('ACCTMSG') MAPSET('ACCTSET')

FREEKB END-EXEC.
GO TO RTRN.

* PROCESS TRANSACTION 'ACOS'.

*

ACOS.
EXEC CICS READQ TS QUEUE('ACCTLOG') INTO (ACCTDTLI)

LENGTH(TS-LNG) NEXT END-EXEC.
EXEC CICS SEND MAP('ACCTDTL') MAPSET('ACCTSET') PRINT ERASE

END-EXEC.
GO TO ACOS.

LOG-END.
EXEC CICS DELETEQ TS QUEUE('ACCTLOG') END-EXEC.

* RETURN TO CICS.
RTRN.

EXEC CICS RETURN END-EXEC.
*
* PROCESS UNRECOVERABLE ERRORS.

NO-GOOD.
MOVE EIBFN TO ERR-FN, MOVE EIBRCODE TO ERR-RCODE.
EXEC CICS HANDLE CONDITION ERROR END-EXEC.
EXEC CICS LINK PROGRAM('ACCT04')

COMMAREA(COMMAREA-FOR-ACCT04) LENGTH(lO) END-EXEC.
GOBACK.

CLOSE SYSPCH,PUNCH
ASSGN SYSIPT,DISK,VOL=volser,SHR

PHASE ACCT03,*
INCLUDE DFHECI

II EXEC FCOBOL
CLOSE SYSIPT,SYSRDR
II EXEC LNKEDT
I&

II JOB ACCT04 TRANSLATE, COMPILE AND LINK
II OPTION CATAL,NODECK,SYM
II DLBL IJSYSPH,'DISK.SYSPCH.EXTENT' ,o
II EXTENT SYSPCH,,,,extent-information
II DLBL IJSYSIN,'DISK.SYSPCH.EXTENT'
II LIBDEF CL,TO=user-cil-filename,SEARCH=cics-cil-filename
II LIBDEF SL,SEARCH=(user-slb-filename,cics-slb-filenarne)
II LIBDEF RL,SEARCH=cics-rlb-filename
ASSGN SYSPCH,DISK,VOL=volser,SHR
II EXEC DFHECP1$

CBL APOST,CLIST,LIB,NOTRUNC,SXREF,XOPT(LANGLVL(2))
IDENTIFICATION DIVISION.
PROGRAM-ID. ACCT04.
REMARKS. THIS PROGRAM IS A GENERAL PURPOSE ERROR ROUTINE.

CONTROL IS TRANSFERRED TO IT BY OTHER PROGRAMS IN THE
ONLINE ACCOUNT FILE APPLICATION WHEN AN UNRECOVERABLE
ERROR HAS OCCURRED.
IT SENDS A MESSAGE TO INPUT TERMINAL DESCRIBING THE
TYPE OF ERROR AND ASKS THE OPERATOR TO REPORT IT.

302 CICS Application Programming Primer

ACCT04

THEN IT ABENDS, SO THAT ANY
UNCOMPLETED TRANSACTION ARE
ABEND DUMP IS AVAILABLE.

UPDATES MADE IN THE
BACKED OUT AND SO THAT AN

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

COPY ACCTSET.
01 MISC.

02 I
02 IX
02 DSN-MSG.

04 FILLER
04 DSN
04 FILLER

02 HEX-LIST.
04 HEX-0601
04 HEX-0602
04 HEX-0608
04 HEX-060C
04 HEX-060F
04 HEX-0680
04 HEX-0681
04 HEX-0682
04 HEX-0683
04 HEX-06El
04 HEX-OAOl
04 HEX-OA02
04 HEX-OA04
04 HEX-OA08
04 HEX-OA20
04 HEX-OAEl
04 HEX-OEOl
04 HEX-OEEl
04 HEX-1001
04 HEX-1004
04 HEX-1011
04 HEX-1012
04 HEX-1014
04 HEX-1081
04 HEX-lOEl
04 HEX-10E9
04 HEX-lOFF
04 HEX-1804
04 HEX-1808
04 HEX-18El
04 HEX-MISC

02 HEX-CODE REDEFINES
02 ERR-LIST.

04 MSG-0601
'A PROGRAM OR

04 MSG-0602
'A PROGRAM OR

04 MSG-0608
'A PROGRAM OR FCT
04 MSG-060C

'A FILE BEING
04 MSG-060F

'A PROGRAM OR

PIC S9(4) COMP.
PIC S9(4) COMP VALUE +31.

PIC X(13) VALUE 'THE FILE IS: '
PIC X(8).
PIC x VALUE I I

PIC S9(4) COMP VALUE +1537.
PIC S9(4) COMP VALUE +1538.
PIC S9(4) COMP VALUE +1544.
PIC S9(4) COMP VALUE +1548.
PIC S9(4) COMP VALUE +1551.
PIC S9(4) COMP VALUE +1664.
PIC S9(4) COMP VALUE +1665.
PIC S9(4) COMP VALUE +1666.
PIC S9(4) COMP VALUE +1667.
PIC S9(4) COMP VALUE +1761.
PIC S9(4) COMP VALUE +2561.
PIC S9(4) COMP VALUE +2562.
PIC S9(4) COMP VALUE +2564.
PIC S9(4) COMP VALUE +2568.
PIC S9(4) COMP VALUE +2592.
PIC S9(4) COMP VALUE +2785.
PIC S9(4) COMP VALUE +3585.
PIC S9(4) COMP VALUE +3809.
PIC S9(4) COMP VALUE +4097.
PIC S9(4) COMP VALUE +4100.
PIC S9(4) COMP VALUE +4113.
PIC S9(4) COMP VALUE +4114.
PIC S9(4) COMP VALUE +4116.
PIC S9(4) COMP VALUE +4225.
PIC S9(4) COMP VALUE +4321.
PIC S9(4) COMP VALUE +4329.
PIC S9(4) COMP VALUE +4351.
PIC S9(4) COMP VALUE +6148.
PIC S9(4) COMP VALUE +6152.
PIC S9(4) COMP VALUE +6369.
PIC S9(4) COMP VALUE +0001.

HEX-LIST PIC X(2) OCCURS 31.

PIC X(60) VALUE
FCT TABLE ERROR (INVALID FILE NAME).'.

PIC X(60) VALUE
FILE ERROR (VSAM ILLOGIC).'.

PIC X(60) VALUE
TABLE ERROR (INVALID FILE REQUEST).'.

PIC X(60) VALUE
CLOSED THAT MUST BE OPEN.'

PIC X(60) VALUE
FILE ERROR (UNEXPECTED END-OF-FILE).'.

Appendix A. Getting the Application Into Your CICS System 303

ACCT04

04 MSG-0680 PIC X(60) VALUE
'A FILE INPUT/OUTPUT ERROR.'.

04 MSG-0681 PIC X(60) VALUE
'A PROGRAM OR FILE ERROR (RECORD NOT FOUND).'.

04 MSG-0682 PIC X(60) VALUE
'A PROGRAM OR FILE ERROR (DUPLICATE RECORD).'.

04 MSG-0683 PIC X(60) VALUE
'INADEQUATE SPACE IN A FILE. I.

04 MSG-06El PIC X(60) VALUE
'A PROGRAM OR FILE ERROR (LENGTH ERROR, FILE CONTROL).'.
04 MSG-OAOl PIC X(60) VALUE
'A PROGRAM OR TEMPORARY STORAGE ERROR (ITEM ERROR).'.
04 MSG-OA02 PIC X(60) VALUE
'A PROGRAM OR TEMPORARY STORAGE ERROR (UNKNOWN QUEUE).'.
04 MSG-OA04 PIC X(60) VALUE

'AN INPUT/OUTPUT ERROR IN TEMPORARY STORAGE.'.
04 MSG-OA08 PIC X(60) VALUE

'NO SPACE IN TEMPORARY STORAGE.'.
04 MSG-OA20 PIC X(60) VALUE
'A PROGRAM OR SYSTEM ERROR (INVALID REQUEST IN TS).'.
04 MSG-OAEl PIC X(60) VALUE
'A PROGRAM OR TEMPORARY STORAGE ERROR (TS LENGTH ERROR)'.
04 MSG-OEOl PIC X(60) VALUE
'A PROGRAM OR PPT TABLE ERROR (UNKNOWN PROGRAM NAME).'.
04 MSG-OEEO PIC X(60) VALUE

'A PROGRAM ERROR (INVALID PROGRAM REQUEST) . ' ..
04 MSG-1001 PIC X(60) VALUE

'A PROGRAM ERROR (END OF DATA, USING IC).'.
04 MSG-1004 PIC X(60) VALUE
'AN INPUT/OUTPUT ERROR IN TEMPORARY STORAGE (USING IC).'.
04 MSG-1011 PIC X(60) VALUE
'A PROGRAM OR PCT TABLE ERROR (TRANSID ERROR USING IC).'.
04 MSG-1012 PIC X(60) VALUE

'A PROGRAM OR TCT TABLE ERROR (TERMIDERR USING IC).'.
04 MSG-1014 PIC X(60) VALUE

'A PROGRAM OR SYSTEM ERROR (INVTSREQ USING IC).'.
04 MSG-1081 PIC X(60) VALUE

'A PROGRAM OR SYSTEM ERROR (NOT FOUND USING IC).'.
04 MSG-lOEl PIC X(60) VALUE
'A PROGRAM OR TEMP STORAGE ERROR (IC LENGTH ERROR).'.
04 MSG-10E9 PIC X(60) VALUE

'A PROGRAM ERROR (INVALID REQUEST USING IC).'.
04 MSG-lOFF PIC X(60) VALUE

'A PROGRAM ERROR (ENVDEFERR USING IC).'.
04 MSG-1804 PIC X(60) VALUE

'A PROGRAM ERROR (BMS MAPFAIL).'.
04 MSG-1808 PIC X(60) VALUE

'A PROGRAM ERROR (INVALID MAP SIZE).'.
04 MSG-18El PIC X(60) VALUE

'A PROGRAM ERROR (BMS LENGTH ERROR).'.
04 MSG-MISC PIC X(60) VALUE

'AN UNKNOWN TYPE OF ERROR.'.
02 ERR-MSG REDEFINES ERR-LIST PIC X(60) OCCURS 31.

LINKAGE SECTION.
01 DFHCOMMAREA.

02 ERR-PGRMID PIC X(8).
02 ERR-CODE.

304 CICS Application Programming Primer

04 ERR-FN PIC X.
04 ERR-RCODE PIC X.

PROCEDURE DIVISION.
MOVE LOW-VALUES TO ACCTERRO.
PERFORM CODE-LOOKUP THROUGH CODE-END

VARYING I FROM 1 BY 1 UNTIL I NOT < IX.
MOVE ERR-MSG (IX) TO RSNEO.
MOVE EIBTRNID TO TRANEO.
MOVE ERR-PGRMID TO PGMEO.
IF IX < 11 MOVE EIBDS TO DSN,

MOVE DSN-MSG TO FILEEO.

ACCT04

EXEC CICS SEND MAP('ACCTERR') MAPSET('ACCTSET') ERASE FREEKB
END-EXEC.

EXEC CICS ABEND ABCODE('EACC') END-EXEC.
CODE-LOOKUP.

IF HEX-CODE (I) = ERR-CODE MOVE I TO IX.
CODE-END. EXIT.
DUMMY-END.

GOBACK.
I*
CLOSE SYSPCH,PUNCH
ASSGN SYSIPT,DISK,VOL=volser,SHR

PHASE ACCT04,*
INCLUDE DFHECI

II EXEC FCOBOL
CLOSE SYSIPT,SYSRDR
II EXEC LNKEDT
I&

Appendix A. Getting the Application Into Your CICS System 305

other CICS facilities

Appendix B. Additional CICS Facilities and Your
Reference Manual (the APRM)

The aim of this appendix is to mention the CICS facilities we haven't covered in the
Primer, and to introduce you to your application programming reference manual.

Other CICS Facilities

In no particular order, these include:

• Getting access to control blocks and control information using ADDRESS and
ASSIGN commands.

The ADDRESS command gives you access to the common storage area (CSA), the
common work area (CW A), the transaction work area (TWA), and so on.

The ASSIGN command allows you to get values from outside the local
environment of your application program. For example, lengths of storage areas,
values needed during BMS operations, information about terminal characteristics,
and so on.

• The use of the command interpreter transaction, CECI (which we very briefly mf'.t
in "A Session With EDF" on page 219 and in "Optional Exercise" on page 126).

CECI is very useful for deleting, repairing, inspecting, and creating all sorts of
items. We used it, if you remember, to delete our temporary storage scratchpad
record (to save waiting 10 minutes).

• The DL/I interface.

DL/I is a general-purpose data base control system. CICS application programs
can access DL/I data bases using EXEC DLI ... commands.

• The SQL/DS interface (DOS).

SQL/DS is a relational data base control system. CICS application programs can
access SQL data bases using EXEC SQL... commands. You can find out more
about it in the CICS/DOS/VS Release Guide.

Additional CICS Facilities 307

other CICS facilities

• The DATABASE 2 interface (MVS).

DAT ABASE 2 is a relational data base control system. CICS application
programs can access DB2 data bases using EXEC SQL... commands. You can find
out more about it in the CICS/OS/VS Release Guide.

• Terminal operations that don't use BMS.

This means using native terminal control commands.

• Batch Data Interchange.

The CICS batch data interchange program allows your application to talk to
programmable subsystems such as the IBM 8100.

• The task control commands, SUSPEND, ENQ, and DEQ.

The SUSPEND command allows you to give up control and allow other, higher
priority, tasks to run. The task from which you issue the SUSPEND gets control
back as soon as all higher priority tasks that can run have "had their turn".

ENQ (enqueue) tells CICS that a given task wants a particular resource (of the
one-user-at-a-time type). CICS returns control to the task when the resource
becomes available.

Similarly, DEQ (dequeue) tells CICS that a given task has finished with such a
resource.

• The storage control commands, GETMAIN, FREEMAIN.

The GETMAIN command gets a specified amount of main storage. If you want, it
can also initialize the contents of that storage to a particular bit configuration.

The FREEMAIN command, as you'd expect, releases such storage.

• User journal operations.

The CICS journal control facilities allow you to direct any information you want
to special-purpose sequential data sets (called journals). These journals are to
help you reconstruct events or data changes for both audit purposes and in case of
system failures.

• Sync point command.

The SYNCPOINT command allows you to divide a task - usually a long-running
one - into smaller units known as logical units of work. This makes it easier to
recover from a task abend or a system failure.

308 CICS Application Programming Primer

other CICS facilities

• The DUMP command (which we mentioned on page 199).

This allows you to dump specified main storage areas without terminating your
program, as you do with an ABEND command. You can dump the same areas as
appear in a transaction abend dump, and/or other areas too.

• Trace commands.

CICS trace control uses a trace table (which we've already seen in "Transaction
Dumps" on page 244). You can put your own entries into this table for use as
"flags" to help you spot what your application program is doing.

• The monitor program and its exits.

You can define a user event monitoring point (EMP) with the MONITOR option
of the ENTER command. At each user EMP you can accumulate all sorts of
information of an accounting and performance nature. You'll find more details in
the Customization Guide.

• Intersystem communication (ISC) and multi-region operation (MRO) facilities.

These allow independent CICS systems to talk to each other. The systems may be
in the same processor or in different processors. ISC and MRO are dealt with in
the Intercommunication Facilities Guide.

• Exits within the management modules.

You may, despite the many options that CICS offers, still have special
requirements that a standard CICS system cannot meet. In this case, you can add
your own user exit code to certain CICS modules. This code will then be invoked
whenever one of these modules is used.

See the Customization Guide for more details.

• Transaction restart facilities.

The Recovery and Restart Guide tells you all about designing applications with
recovery in mind.

• Program error programs (PEPs), node error programs (NEPs), and terminal error
programs (TEPs).

IBM supplies programs to handle certain common error sisuations. There's one to
handle program errors (PEP), one for VTAM terminal errors (NEP), and one for
non-VTAM terminal errors (TEP). If you prefer, you can supply your own
versions of these programs, and tailor the processing of certain types of error for
your particular needs. There are special macros to help you build your own

Additional CICS Facilities 309

the·APRM

versions of these programs. Either way, please see the Customization Guide for
more information.

• The external security interface.

CICS offers you an interface to an external security manager. You can write this
yourself or, if you use MVS, you can use the Resource Access Control Facility
(RACF) program product.

See the Customization Guide for details.

• Dynamic OPEN and CLOSE.

This facility allows you to open and close data sets dynamically while CICS is
running. Again, see the Customization Guide for details.

• The phonetic key routine.

CICS provides a subroutine to convert words to a condensed "phonetic" form.
The major use of phonetic codes is for keys to data sets (usually names), so that
you can access records in the file without knowing the exact spelling of a name or
a word in the file key. We might have chosen to use this subroutine in building
the name index to our account file . See the Customization Guide for details.

• The master terminal operator (CEMT) transaction application interface.

The master terminal (CEMT) transaction functions are also available to an
application program. See the Operator's Guide for details.

The Application Programmer's Reference
Manual

This is the application programmer's authoritative source of all information about the
application programming interface to CICS.

You'll find within it all that you need to know about every CICS command-level
instruction.

Its appendixes also contain a variety of sample material that is available as part of ·
your CICS system. This material contains some useful coding hints, tips, and
techniques.

310 CICS Application Programming Primer

Glossary

This glossary defines special CICS terms
used in the library and words used with
other than their everyday meaning. It
includes terms and definitions from the
IBM Vocabulary for Data Processing,
Telecommunications, and Office Systems,
GC20-1699. In some cases the definition
given isn't the only one applicable to the
term, but gives the particular sense in
which we've used it.

American National Standards Institute
(ANSI) definitions are preceded by an
asterisk.

abend. Abnormal end of task.

access method. A technique for moving
data between main storage and input/output
devices.

application. This refers to a set of one or
more application units of work designed
to fulfill a particular need (or needs) of the
user organization.

application program. (1) A program
written for or by a user that applies to the
user's work. (2) In data communication, a
program used to connect and communicate
with stations in a network, enabling users
to perform application-orient~d activities.
affecting the contents of a record.

auxiliary storage. Data storage other
than main storage; for example, storage on
magnetic tape or direct access devices.

useful terms

backout. A general term meaning to
restore a previous state of all or part of a
system. See dynamic transaction backout.

Basic Mapping Support (BMS). A
facility which moves data streams to and
from a terminal. It provides device
independence and format independence for
application programs.

batch. An accumulation of data to be
processed.

blanks. See space.

BMS. See Basic Mapping Support.

byte. In System/370, a sequence of eight
adjacent binary digits that are operated on
as a unit.

CEMT. The master terminal transaction.

CI. See control interval.

CICS. Customer Information Control
System

COBOL. Common business-oriented
language. An English-like programming
language designed for business data
processing applications.

command. In CICS, an instruction similar
in format to a high-level programming
language statement. (Contrast with macro.)
CICS commands invariably include the verb
EXECUTE (or EXEC). They may be issued

Glossary 311

useful terms

by an application program to make use of
CICS facilities.

command-language statement. In CICS,
synonym for command.

common system area (CSA). In CICS, a
basic system control block to which all
transactions have access.

*concurrent. Pertaining to the
occurrence of two or more activities within
a given interval of time.

control block. In CICS, a storage area
used to hold dynamic data during the
execution of control,programs and
application programs. Synonym for control
area. Contrast with control table.

control interval (CI). A fixed-length area
of direct access storage in which VSAM
stores records. The unit of information that
VSAM transmits to or from direct access
storage.

control table. In CICS, a set of
information used to define or describe the
configuration or operation of the system in
a relatively permanent way. Contrast with
control block.

conversational. Pertaining to a program
or a system that carries on a dialogue with
a terminal user, alternately accepting input
and then responding to the input quickly
enough for the user to maintain his or her
train of thought.

CSA. Common system area.

CWA. Common work area, an extension of
the common system area (CSA).

312 CICS Application Programming Primer

DAM. Direct access method.

DASD. Direct access storage device.

data base. An organized collection of
interrelated or independent data items
stored together without unnecessary
redundancy, to serve one or more
applications.

data set. The major unit of data storage
and retrieval, consisting of a collection of
data in one of several prescribed
arrangements and described by control
information to which the system has access.
See file.

DB2. DATABASE 2, IBM's relational data
base management system program product
for the MVS/XA and MVS/370
environments.

DB/DC. Data-base and
data-communication.

deadlock. (1) Unresolved contention for
the use of a resource. (2) An error
condition in which processing cannot
continue because each of two elements of
the process is waiting for an action by, or a
response from, the other.

device independence. An application
program written in such a way that it does
not depend on the physical characteristics
of devices. BMS provides a measure of
device independence.

direct access storage. (1) *A storage
device in which the access time is in effect
independent of the location of the data. (2)
A storage device that provides direct access
to data.

DL/l. Data Language/1, the high-level
interface between a user application and an
IMS/VS data base.

DTB. See dynamic transaction backout.

dynamic transaction backout. The
process of canceling changes made to stored
data by a transaction following the failure
of that transaction for whatever reason.

EDF. Execution (command-level)
diagnostic facility for testing
command-level programs interactively at a
terminal.

emergency restart. The CICS facility for
use following a system failure. It restores
the data files of all interrupted transactions
to the condition they were in after the last
complete transaction (that affected them)
before the failure.

end user. In CICS, a person using a
terminal to cause execution of a CICS
transaction. Typically, a
non-data-processing professional, for
example, a reservation clerk.

exception. An abnormal condition such as
an I/O error encountered in processing a
data set or a file.

* itle. A set of related records treated as a
unit, for example, in stock control, a file
could consist of a set of invoices. See data
set.

file control table. A CICS table
containing the characteristics of the files
acces~ed by file control.

*format. , \['he arrangement or layout of
data on a data medium. In CICS, the data
medium is usually a display screen.

format independence. The ability to send
data to a device without having to be
concerned with the format in which the

useful terms

data will be displayed. The same data may
appear in different formats on different
devices.

high-values. Hexadecimal FF.

* I/0. Input/Output.

IMS/VS. Information Management
System/Virtual Storage.

inquiry. A request for information from
storage; for example, a request for the
number of available airline seats.

installation. (1) A particular computing
system, in terms of the work it does and the
people who manage it, operate it, apply it to
problems, service it and use the work it
produces. (2) The task of making a program
ready to do useful work. This task includes
generating a program, initializing it, and
applying PTFs to it.

interactive. Pertaining to an application
in which each entry calls forth a response
from a system or program, as in an inquiry
system or an airline reservation system. An
interactive system may also be
conversational, implying a continuous
dialogue between the user and the system.

ISAM. Indexed Sequential Access Method.

journal. A chronological record of the
changes made to a set of data; the record
may be used to reconstruct a previous
version of the set.

Glossary 313

useful terms

journaling. Recording transactions
against a data set in such a way that the
data set can be reconstructed by applying
transactions in the journal against a
previous version of the data set.

keyword. (1) A symbol that identifies a
parameter. (2) A part of a command
operand that consists of a specific character
string.

label. See paragraph name.

linkage editor. A computer program used
to create one load module from one or more
independently-translated object modules or
load modules by resolving cross references
among the modules.

logging. The recording (by CICS) of
recovery information onto journal 01 (the
system log).

low-values. Hexadecimal 00.

main storage. Program-addressable
storage from which instructions and data
can be loaded directly into registers for
subsequent execution or processing. See
also real storage, storage.

map. In CICS, a format established for a
page or a portion of a page.

master terminal. In CICS, the terminal
at which a designated operator is signed-on.

314 CICS Application Programming Primer

master terminal operator. Any CICS
operator authorized to use the master
terminal functions.

multitasking. *Per taining to the
concurrent execution of two or more tasks
by a computer.

multithreading. Pertaining to the
concurrent operation of more than one path
of execution within a computer. In CICS,
the use, by several transactions, of a single
copy of an application program.

null. A character encoding of hexadecimal
00 - LOW-VALUE in COBOL.

online. (1) * Pertaining to a user's ability
to interact with a computer. (2) *
Pertaining to a user's access to a computer
via a terminal. The term "online" is also
used to describe a user's access to a
computer via a terminal.

operating system. Software that controls
the execution of programs; an operating
system may provide services such as
resource allocation, scheduling,
input/output control, and data management.

OS. Operating System.

paragraph name. COBOL term for
destination of a branch or GOTO
instruction.

* parameter. A variable that is given a
constant value for a specified application
and that may denote the application.

partition. A fixed size subdivision of main
storage, allocated to a system task.
Contrast with region.

PCT. See program control table.

PPT. See processing program table.

processing program table (PPT). A
CICS table defining all application
programs valid for processing under CICS.
It also keeps track of whether an
application program is in main storage or
not.

program control. The CICS element that
manages CICS application programs.

program control table (PCT). A CICS
table defining all transactions that may be
processed by the system.

program function (PF) key. A key that
passes a signal to a program.

pseudoconversational. A series of CICS
transactions designed to appear to the
operator as a continuous conversation
occurring as part of a single transaction.

quasi-reentrant. Applied to a CICS
application program that is serially
reusable between CICS calls because it does
not modify itself or store data within itself
between calls on CICS facilities.

real storage. The main storage in a
virtual storage system. Physically, real
storage and main storage are identical.
Conceptually, however, real storage
represents only part of the range of

useful terms

addresses available to the user of a virtual
storage system.

recoverable resources. Items whose
integrity CICS will maintain in the event of
a system failure. They include individual
CICS files, and auxiliary temporary storage
queues.

reentrant. The attribute of a program or
routine that allows the same copy of the
program or routine to be used concurrently
by two or more tasks.

* response time. The elapsed time
between the end of an inquiry or demand on
a data processing system and the beginning
of the response. For example, the length of
time between an indication of the end of an
inquiry and the· display of the first
character of the response at a user
terminal.

SAM. Sequential Access Method.

screen page. The amount of data
displayed, or capable of being displayed, at
any one time on the screen of a terminal.

SIPO. System Installation Productivity
Option.

SIT. System initialization table. A CICS
table.

space. A character encoding of
hexadecimal 40.

SQL/DS. Structured Query
Language/Data System. A relational data
base management facility.

storage. A functional unit into which data
can be placed and from which it can be
retrieved. See main storage, real storage.

storage control. The CICS element that
manages working storage areas.

Glossary 315

useful terms

system initialization table. A table
containing user-specified data that will
control a system initialization process.

system log. The (only) journal data set
(identification= '01') that is used by CICS to
log changes made to resources for the
purpose of backout on emergency restart.

task. (1) A basic unit of work to be
accomplished by a computer. (2) Under
CICS, the execution of a transaction for a
particular user. Contrast with transaction.

task control. The CICS element that
controls all CICS tasks.

task control area (TCA). A basic CICS
control block provided for each task.

TCA. See task control area.

TCT. Terminal control table. A CICS
table.

terminal. (1) *A point in a system or
communication network at which data can
either enter or leave. (2) In CICS, a device,
often equipped with a keyboard and some
kind of display, capable of sending and
receiving information over a
communication channel.

terminal control. The CICS element that
controls all CICS terminal activity.

terminal control table. A table
describing a configuration of terminals,
logical units, or other CICS systems in a
CICS network with which the CICS system
may communicate.

316 CICS Application Programming Primer

terminal operator. The user of a
terminal.

terminal paging. A set of CI CS
commands for retrieving "pages" of an
oversize output message in any order.

threading. The process whereby various
transactions undergo concurrent execution.

TIOA. Terminal input/output area.

transaction. A transaction may be
regarded as a unit of processing (consisting
of one or more application programs)
started by a single request, often from a
terminal. A transaction may require the
starting of one or more tasks for its
execution. Contrast with task.

transaction backout. The cancellation,
as a result of a transaction failure, of all
updates performed by a partially-completed
task.

transaction identification code.
Synonym for transaction identifier. A
group of up to four characters used to
identify (name) a particular transaction
type in the PCT.

transaction identifier. Synonymous with
transaction identification code.

transaction restart. The restart of a task
after a transaction backout.

update. To modify a file with current
information.

Bibliography

CICS/VS General Information (GC33-0155)

CICS/VS System/Application Design Guide
(SC33-0068)

CICS/OS/VS Version 1 Release 6 Release
Guide (GC33-0132)

CICS/DOS/VS Version 1 Release 6 Release
Guide (GC33-0130)

CICS/OS/VS Version 1 Release 6
Installation and Operations Guide
(SC33-0071)

CICS/DOS/VS Version 1 Release 6
Installation and Operations Guide
(SC33-0070)

CICS/DOS/VS Version 1 Release 6
Application Programmer's Reference
Manual (RPG II) (SC33-0085)

VS COBOL II for CICS Users (SC33-0203)

CICS/OS/VS Version 1 Release 6 Data
Areas (L Y33-6035)

CICS/DOS/VS Version 1 Release 6 Data
Areas (L Y33-6033)

CICS/VS IBM 3650/3680 Guide (SC33-0073)

CI CS/VS IBM 3767 /3770/6670 Guide
(SC33-0074)

CICS/VS Intercommunication Facilities
Guide (SC33-0133)

CICS/VS Recovery and Restart Guide
(SC33-0135)

the CICS library

CICS/VS Operator's Guide (SC33-0080)

CICS/VS IBM 3270/8775 Guide (SC33-0096)

CICS/VS IBM 4700/3600/3630 Guide
(SC33-0072)

CICS/VS IBM 3790/3730/8100 Guide
(SC33-0075)

CICS/VS Resource Definition Guide
(SC33-0149)

CICS/VS Customization Guide (SC33-0131)

CICS/VS Performance Guide (SC33-0134)

CICS/VS Application Programmer's
Reference Manual (Command Level)
(SC33-0077)

CICS/VS Application Programmer's
Reference Summary (Command Level)
(GX33-6012)

CICS/VS Application Programmer's
Reference Manual (Macro Level)
(SC33-0079)

CICS/VS Messages and Codes (SC33-0081)

CICS/VS Problem Determination Guide
(SC33-0089)

CICS/VS Program Debugging Reference
Summary (SX33-6010)

CICS/VS Diagnosis Reference (LC33-0105)

CICS/VS Master Index (SC33-0095)

Bibliography 317

Index

ABCODE parameter 183
abend code (ABCODE) 183
ABEND command 183
abending a transaction 183
access by name to the account file 48
account file 4 7

choice of file organization 48
choice of record key 48
protecting its integrity 19

account file record format 19, 48
account file, access by name 48
account number inquiries 20
add transaction 35
adding a new record 84
adding to a temporary storage queue 166
additional CICS facilities 307
advantages of online working 4
AID byte definitions 145
aids

for application programmers 13
aims of this book iii
alternate index 164
alternative exception handling

strategies 199
analyzing the user's response 83
appendixes 267
application

program development 4
application design issues 17
application programmers 13
application, how to install the

example 269
arranging the processing 83
assessing estimates of transaction

frequency 20
attribute bytes 27
avoiding double updating 80

Basic Mapping Support (BMS) 109
DFHMDF macro 111
DFHMDI macro 114
DFHMSD macro 116
errors 146
macro format rules 118
other features 148

batch versus online 7
BDAM and ISAM 164
blank positions on the screen 29
BMS - see basic mapping support
books, CICS 317
bright fields 24
browsing a file 155
bytes, 3270 attribute 27

index

CALL statement, COBOL 179
changes to the account file 41
changing the HANDLE CONDITION

"destinations" 197
characteristics of IBM 3270 terminals 23
characteristics of the existing account

file 19
choice of programming language 13
CICS

processing program table (PPT) 175
program control LINK command 176
program control RETURN

command 1 78
program control table (PCT) 175
program control XCTL command 176,

177
signing-on 10
transaction identifier 175

CICSbooks 317
CICS COBOL restrictions 107
CICS department store example 17

designing a CICS application 17
CICS environment
CICS facilities , additional 307
CICS glossary of terms 311

Index 319

index

CICS online environment 3
CICS scratchpad areas 165
CICS services 106

invoking 106
CICS system standard sign-on 24
CICS tables

program control table (PCT) 9
CICS terminology 311
CICS/VS Application Programmer's
Reference manual iv

CICS/VS General Information manual iii
CLEAR key and input 30
COBOL CALL statement 179

and VS COBOL II 179
command language translator 13
command-level

programming interface 13
COMMAREA 165
common work area (CWA) 166
communicating between transactions 89,

182
consequences of having infrequent
users 18

control functions 5
control interval (CI - VSAM) 48
conversational transactions 78
creating a temporary storage queue 166
cross-checking the specifications 19
cursor positioning 138
customer name inquiries 20
customizing the CICS system 13

data base capabilities of CICS 5
data stream

for input 28
for output 25

data transmission
length-reduction measures 30

data-base/data-communication (DB/DC)
system, definition 4

DATABASE 2 48
DB/DC (data-base/data-communication)

system, definition 4
DB/DC (data-base/data-communication)

system, illustration 4
DB/DC system 3
decisions about the user interface 18
defining the problem 18

320 CICS Application Programming Primer

defining the transactions 83
definition of CICS 3
delete transaction 38
DELETEQ TS QUEUE command 169
deleting a temporary storage queue 169
department store, CICS example 17

CICS application design 17
department store application 17
example application 17

department store's account file 47
design issues, application 17
designing the transact ions:

preliminaries 21
designing the user interface 33, 43
developing the specifications 19
DFHCOMMAREA 181
differences between online and batch 7
display transaction 33
displaying an account record 21
displaying the menu 83
DL/1 48
double updating, how to avoid 80
DSECT structures 127
dump, getting a transaction 183

EDF (execution diagnostic facility) 13
effects of programming for a CICS

environment 71
effects of the environment on the

application requirements 18
EIB - see EXEC Interface Block
empty positions on the screen 29
end users 5
ENDFILE 195
ending the browse 156
ENTER key and input 30
error conditions on temporary storage

commands 172
error handling and exceptional

conditions 22, 90
error handling program, ACCT04 180
error recovery 8
errors 193
errors on BMS commands 146
errors on file commands 161
errors on the program control

commands 183
errors on the RETRIEVE command 190

errors on the START command 190
errors within the example application 198
ESDS VSAM files 164
estimating the number of transactions 20
example (department store) application

outline specification 15
example application specification 17
example application, how to install

the 269
example application's account file 47
exception handling rules, summary 199
exceptional conditions 22, 90, 193
EXEC Interface Block (EIB) 143
execution diagnostic facility (EDF) 13
extrapartition transient data 173

facilities, additional CICS 307
facilities, temporary storage 166
features of BMS 31
fields on the 3278 screen 24
file browsing 155

ENDBR command 156
ending the browse 156
STARTBR command 155
starting the browse 155

file command errors 161
file control 5, 12
file handling 151
file integrity 79
file services 164
file, name access to the account 48
final summary of transactions 95
finding out what key the operator

pressed 142
finishing the browse 156
format of the account file record 19, 48
frequency of transactions, how to estimate

the 20

generic delete 164
generic key 164
getting a transaction dump 183
getting into pseudoconversational

mode 178

getting started
CICS/VS General Information
manual iii

glossary of terms 311
guidelines on interface design
principles 43

guidelines on saving resources 71
guidelines on subroutines 179

index

HANDLE AID command 142
HANDLE CONDITION command 193
handling errors and exceptional

conditions 22, 90, 193
handling files 151
handling other requests 84
handling updates 84
hex 40 characters 29
how do you use CICS? 13
how to install the example application 269
how to organize the data. 4 7
how to use this book iii

IBM 3270 terminals 23
IGNORE CONDITION command 193
implications of programming for a CICS

environment 21, 71
implications of writing CICS programs in

COBOL 105
IMS/DB DL/1 48
indexing into the account file 48
information processing system, online 4
initial summary of transactions 87
initial transaction to display an account

record 21
initializing the CICS system 13
input data stream 28
input, how to override user's 178
inquiries (by account number) 20
inquiries (by customer name) 20, 41
installing the example application 269
integrity of the account file 19, 79
interface design principles 43
interface, designing the user 33
INTERVAL option 188

Index 321

index

intrapartition transient data 173
introduction to CICS 3
INVMPSZ errors 148
invoking CICS services 106
issues, application design 17

library
current CICS books 317

LINK command 176
logging changes to the account file 41
LOW-VALUE characters 29

maintaining file integrity 79
MAPFAIL 195
MAPFAIL errors 147
mass insert 164
MDT - see modified data tag
minimizing data during transmissions 30
modified data tag (MDT) 29
modify transaction 36
monitoring 12
multitasking 6, 10

name access to the account file 41, 48
names of products v
naming temporary storage queues 169
nature of the existing account file 19
next transid 178
NOHANDLE option 193
nondisplay fields 25
NOTFND 195
nulls (hex 00) 29

322 CICS Application Programming Primer

online application programs
features 6

online processing
goals and constraints 21

online processing implications 21
online versus batch 7
online working

advantages 4
organizing the data. 47
other features of BMS 148
other file services

alternate index 164
BDAM and ISAM 164
ESDS VSAM files 164
generic delete 164
generic key 164
mass insert 164
relative byte address (RBA) 164
RRDS VSAM files 164
UNLOCK command 164

other time services 191
output data stream 25
overriding any user's input 178

PA keys and input 30
Part 1 - setting the scene 1
Part 2 - application design 15
Part 3 - application pr ogramming 103
Part 4 - the COBOL source code 203
Part 5 - testing and diagnosis 205
PCT (program control table) 175
performance statistics 12
PF keys and input 30
positioning the cursor 138
possible transaction to display an account

record 21
PPT (processing program table) 175
preliminary aspects of transaction

design 21
principles of interface design 43
print transaction 35
printing the log 41
priority of online working 12
processing program table (PPT) 175

processing, arranging the 83
product names v
program control 175
program control commands

INVREQ error 183
PGMIDERR error 183

program control table (PCT) 175
program development 4
program library 11
programming

languages 13
productivity 5

programming for a CICS environment 71
programming implications 71
programming interface

command-l~vel 13
protected fields 24
pseudoconversational mode, how to get

into 178
pseudoconversational transactions 78

QIDERR 195
QIDERR on READQ TS command 172
questionnaire iv
queues, temporary storage 166
queuing facilities 165

random access to a temporary storage
queue 169

read commands 151
reading a file record 151
reading a temporary storage queue 168
reading the next record 156
READQ TS QUEUE command 168
reasons for a self-documenting

application 18
RECEIVE MAP command 140
receiving input from a terminal 140
recovering when things go wrong 8
recovery and restart design 8
recovery requirements 51
reduction of programming effort 5
refining the specifications 19
relative byte address (RBA) 164

index

replacing items in a temporary storage
queue 167

requirements imposed by the
environment 18

resources 71
auxiliary storage 71
guidelines 71
line transmission capacity 71
one-user-at-a-time 71
PERFORM guidelines 73
processor storage 71
processor time 71
user time and good humor 71

restrictions in CICS COBOL 107
RETRIEVE command 189
retrieving data passed in the START

command 189
RETURN command 178, 182
returning control to CICS 182
REWRITE command 159
rewriting a file record 159
RRDS VSAM files 164

saving data during transmissions 30
scratchpad areas

common work area (CWA) 166
communication area 165
temporary storage 165
transaction work area (TWA) 166

scratchpad facilities 165
scratchpad mechanism 81
screen characters

nulls (LOW-VALUES, hex 00) 29
spaces (hex 40) 29

screen fields 24
self-documenting applications 18
SEND CONTROL command 140
SEND MAP command 133
sending a map to a terminal 133
sending control information without
data 140

service functions 5
short-read keys 30
signing-on to CICS 10, 24
size of the existing account file 19
spaces (hex 40) 29
specification of the example application 17
SQL/DS 48

Index 323

index

standard sign-on 24
start browse command (ST ARTBR) 155
START command 187
STARTBR command (start browse) 155
starting a transaction 10
starting another task 187
starting the file browse 155
stopper fields 24
structure of this book iv
subroutine guidelines 179
summary of exception handling rules 199
symbolic cursor positioning 138
symbolic description maps (DSECT

structures) 127
system services 11

task control 10
task, definition of a 9
task, starting another 187
temporary storage

deleting a queue 169
error conditions 172
facilities 166
naming queues 169
QIDERR on READQ TS command 172
queue names 167
random access to a queue 169
reading a queue 168
replacing items 167
REWRITE option 167
using queue name as an index 169

temporary storage queues 166
TERMIDERR 195
terminal control 11
terminals available to the application 18
terminating the browse 156
terminology 311

task 9
transaction 9

terms, glossary of CICS 311
TIME option 188
time services 191
transaction

identification code 10
transid 10

transaction dump

324 CICS Application Programming Primer

as a consequence of ABEND
command 183

getting a 183
transaction frequency, how to estimate 20
transaction identifier 175
transaction rates 20
transaction starting 10
transaction to display an account

record 21
transaction volumes 20
transaction work area (TWA) 166
transaction, definition of a 9
transid 10
transid, next 178
transient data

extrapartition transient data 173
intrapartition transient data 173

translator, command language 13
error checking 193

type of key used to send the input 30

unformatted 3270 data 30
UNLOCK command 164
updating

how to avoid double 80
scratchpad mechanism 81

user interface design 33
user-friendliness 39
user's input, how to override 178
user's response, analyzing the 83
using a menu screen 39

verifying the specifications 19
volume of transactions 20

additions 20
deletions 20
inquiries (by account number) 20
inquiries (by customer name) 20
modifications 20

VS COBOL II and CICS 107
VSAM account file 48
VSAM key-sequenced data set (KSDS) 47

what can a task do? 9
what does CICS do? 5
what is CICS? 3
what key did the operator press? 142
why have CICS? 5
workload

estimating the number of
transactions 20

write commands 158
WRITEQ TS QUEUE command 166
writing CICS programs in COBOL 105

XCTL command 176, 177

I Numerics I
3270 attribute bytes 27
3270 field structure 23
3270 input data stream 28
3270 output data stream 25
3270 terminal characteristics 23
3270 terminal data streams 23
3278 Display Station Model 2 23
3278 screen fields 24

index

Index 325

Q.)

c:
::i
"O
Q.)
+-'
+-'
0
Cl
O>
c:
0

~

Customer Information Control System/Virtual
Storage (CICS/VS) Version 1 Release 6
Application Programming
Primer

Order No. SC33-0139-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you. Your comments will be sent to the
author's department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Number of your latest Technical Newsletter for this publication ...

If you want a reply, please give your name and address below.

Name ... ···············

Job Title Company

Address

. Zip

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you may
mail directly to either address in the Edition Notice on the back of the title page.)

SC33-0139-0

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL

FJRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Dept. 6R1 H,
FE Publishing Services and Distribution,
180 Kost Road,
Mechanicsburg, PA 17055, USA

Fold and tape Please Do Not Staple

--..- -= --- -® - -- ------- -- -_ _.._ " -

Fold and tape

NO POSTAGE

NECESSARY

IF MA~LED

IN THE

UNITED STATES

Fold and tape

--------- - - --- - -= - -~~§:®

•

•

•
• • • • ••

• •

•
• • • •• • • •• • • • ••• • •• • • • • ••• • ••••• • ••••••• • ••• • •••••••

0
6
(Y)
.---
0
M
(Y)

u
(/)

<(
u) .

:::>
c

""O
Q) -c

"i::
a_

I....
Q)

E
"i::
a_

CT>
c
E
E
co
I....
CT>
0
I....

a_
c
0

·;:::;
co
.~
Q.
Q.
<(
(/)

u
u

