_
o ~,a§f4‘:~'s‘
. .
]
o
|

Customer
Information
Control
System

Version1 Release 6
Application
Programming Primer

Volume I

Main
Instructional
Text

- BEE SRR
88 BEEwEREdE

Customer
Information
Control
System

Version 1 Release 6
Application
Programming Primer

Volume I

Program Numbers

5740-XX1 (CICS/0S/VS)
5746-XX3 (CICS/DOS/VS)

Main

Instructional
Text

First Edition (October 1984)

This edition of the CICS Primer applies to Version 1 Release 6 (Version 1.6) of the IBM program product
Customer Information Control System/Virtual Storage, program number 5746-XX3 (CICS/DOS/VS), and
program number 5740-XX1 (CICS/OS/VS).

Changes are made periodically to the information herein; before using this publication in connection with
the operation of IBM systems, consult the latest IBM System/370 and 4300 Processors Bibliography,
GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM program product in
this publication is not intended to state or imply that only IBM’s program product may be used. Any
functionally equivalent program may be used instead.

In this publication are illustrations in which names are used. These names are used solely for illustrative
purposes and not for the identification of any person or company.

Publications are not stocked at the addresses given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been removed,
comments may be addressed either to:

International Business Machines Corporation,
Department 6R1H,

180 Kost Road,

Mechanicsburg, PA 17055.

or to:

IBM United Kingdom Laboratories Limited,
Information Development, Mail Point 095,
Hursley Park,

Winchester, Hampshire, England, SO21 2JN.

IBM may use or distribute whatever information you supply in any way it believes appropriate without
-incurring any obligation to you.

(c) Copyright International Business Machines Corporation 1984
This book contains sample programs. Permission is hereby granted to copy and store the sample programs

into a data-processing machine and to use the stored copies for study and instruction only. No permission is
granted to use the sample programs for any other purpose.

Preface

With a little effort from you, this Primer can teach you how to write CICS application
programs, using the command-level CICS interface and the COBOL programming
language. We assume you’re an application programmer, bringing to CICS your
existing knowledge of COBOL gained in a batch programming environment.

However, experience of other (non-CICS) online systems, and of other high-level
programming languages (such as PL/I), will be helpful.

It will also be helpful (but not vital) if you can read the CICS/VS General Information
manual for the current release of CICS.

This Primer has two simple aims. We want to tell you just enough for you to be able
to design, code, test, and run your first CICS application program. And we want to
point you to the various books in the CICS library that will fill in the gaps because,
in a book this size, we won’t be able to tell you all about CICS.

We’ll be talking about, and basing our examples on, a CICS system that offers only a
subset of the full CICS facilities. This will make things easier for you because it
means we won’t have to keep referring you to other books in the CICS library while
you're learning. These other books are listed in “Bibliography” on page 317.

The CICS system we’ve chosen is as complete and self-sufficient as we can make it. It
will give you a sound framework for your first application programs, and offer a
logical starting point for more advanced work.

How to Use This Book

Read through it at your own pace until you reach Part 4. At that point, you meet the
COBOL source code for our example application. We’ve printed it separately for
easier reference. Our intention is to make the code available in machine-readable
form for you to translate and compile for your own system.

Study the code. Run the application. Think how you would improve it (this might
not be as difficult as you imagine!). Make your changes and try them out.
Remember: “I read, and I remember; I do, and I understand.”

Preface 1iii

The Structure of this Book

There are five main instructional parts, and some reference material in appendixes at
the back of the book.

“Part 1. Setting the Scene” introduces CICS, and tries to answer the question
“What’s different about CICS?” (compared to, say, a batch system).

“Part 2. Application Design” deals with application design from various angles: the
user interface, the design of the data, the splitting of the processing steps into
sensible transactions, the exercise of control and communication between
transactions, and so on.

“Part 3. Application Programming” tells you how to write the COBOL programs
that will implement the CICS example file inquiry and update application. These
programs form a realistic (non-trivial) working system.

“Part 4. The COBOL Code of our Example Application” is printed separately. It
contains the source code in full, along with detailed step-by-step notes of how the
code works.

“Part 5. Testing and Diagnosis” covers running, testing, and debugging
application programs. It shows you a complete debugging session using the powerful
facilities of the Execution Diagnostic Facility, EDF. (The bug is one we deliberately
added, in case you're wondering...)

It also shows you how to work through a transaction dump of the same problem,
arriving at the same conclusion.

Appendix A, “Getting the Application Into Your CICS System” tells you how to
install and bring up a CICS system sufficient for your first application.

Appendix B, “Additional CICS Facilities and Your Reference Manual (the
APRM)” tells you about the various features of CICS that we’ve not been able to
cover in a book this size. It also introduces you to the CICS book you’ll need when
you start writing your own programs: the CICS/VS Application Programmer’s
Reference Manual (Command Level), SC33-0077.

Finally, there’s a glossary and an index.
Just before Part 1, you’ll find a questionnaire in which we invite you to tell us what

you think about this book. We always welcome feedback on our books (praise or
criticism) and would be grateful for your comments.

iv CICS Application Programming Primer

A Note on Installing your CICS System

Before you can test your application, you need a CICS system on which to run it.
We've put all the necessary information about installing a CICS/DOS/VS system into
Appendix A, “Getting the Application Into Your CICS System” on page 269.

We suggest you refer to this appendix or, if you have access to a friendly system
programmer, get his or her help right now. By following the step-by-step instructions
you should end up with a working CICS system on which you can install and run
your first application program. -

Product Names

Throughout the book we’ve used the simple, commonly used, abbreviations for the
names of IBM program products. If you want to know exactly what these
abbreviations mean, refer to the glossary at the back of the book.

Computer Systems

CICS runs on a wide range of IBM computer systems. Most of the information in this
book applies to all these systems. However, where we need to make an assumption
about the computer system that you are using, we assume a relatively small,
single-processor system, controlled by the VSE operating system, and including all the
facilities available with SIPO and VSE/SP.

Terminals

Terminals are the interface between a CICS system and its users. You can use many
different types of terminal, depending on the functions that you need to perform.
However, the general-purpose terminals of the IBM 3270 Information Display System
are very widely used. For this reason, we’ll be assuming 3270 terminals are used for
the example application in this book.

Preface V

R

{... B

. d. |r:

B u

. H

i
¥
.
A
[
v

= o

- s

-

T ." -
= = r
o

B

CEER

P

B
PR
B .
- o
B .
N
_
S
L .
<k .
: B
LR

« S
. e
SR
.
SR
= -] Bl
. .
" b
=
fa P oa
e
- .}u—‘\rg.
-
= oanl ' -
._1:_..
- -..-1.

Contents

Part 1. Setting the Scene e e e AR 1
Chapter 1-1. Introductionto CICSttt neeneenenns 3
What is CICS? . . . e e e e e 3
Why You May Need an Online Systemo un... 4
Why Have CICS? ... e e et e e 5
What Does CICS Do? e e e e e e e 5
CICS Application Programst ittt 6
Couldn’t I Do All This Myself? 6
Can CICS Serve Very Large Systems and Very Small Systems Properly? 7
How Does a CICS-Based Application Differ from a Batch Application? 7
Basic Differences e e 7
Starting a Transactionttt et 10
Inside CICS e e e e e e 10
How Does CICS Help You Set Up an Online System? 13
How Do You Use CICS? it e ettt e e 13
Part 2. ApplicationDesign0t 15
Chapter 2-1. The CICS Example Application - A Department Store 17
Defining the Problem i e e 18
The Account File Records e 18
Requirements Imposed by the Environment 18
Refining and Developing the Specifications 19
Estimating the Number of Transactions0.iuiun..... 20
SUMMATY . ..ttt e e e e e e e 20
Designing the Transactions: Preliminaries 21
What Next? ... i it e e e e e e e 22
Chapter 2-2. 3270 Terminalscccoteeeetececsssosscosssssasas 23
3270 Field Structurettt e e e 23
3270 Output Data Streamttt e 25
3270 Attribute Bytes i e e 27
3270 Input Data Streamttt e 28
Unformatted 3270 Datavivssovvinonivssonsnasassssssnis ossisssvss 30
SEVEA BY BMS . cvvscvsos s dasieniandssanidsahedasoindntodssosdednssn 31
Chapter 2-3. Designing the UserInterfacec00ttiieeeennn 33
A First Approach e e e e 33
The Display Transaction . « v oo sssessnscsmnseaos sososssneossssnessss 33

Contents Vil

The Print Transactiono ittt ittt e ettt et e e 35

The Add Transaction::ssescsvaivssasvasssshossnassosssosnssss 35
The Modify Transactionttt enneenneennnnn 36
The Delete Transaction iiiiiimetie e 38
A User-Friendly Approachc.ciiiiiiireniioneconnonsssnssnns 39
Using a Menu SCreenttt 39
Printing the: LiOB . v vn e 6 o o6wdi 5 bew s m o s & o w o s o d 68 880 08 5o 5 boi o 41
NATE - TOGUABTES o ¢ wsias 5 0 0057 0 50w 00 L8 56 5 w0 s 8 4 m e @8 Gw B 8 8§08 8 W & b 4 41
Some Interface Design Principles it 43
Chapter 2-4. Coming to Grips withtheData 47
The Account File ... v vviiniveevonsunonsosensnonsnaanrnsossnsnessss 47
Access DY NAIME: %iiv v o iosswiaiosnsvsssnioansssssssssenisvaessssonioss 48
Recovery Requirements ittt 51
Chapter 2-5. Designing the Transactions: More Detail 5 s % B0t e 53
Request Analysiscuiii ittt it it et et et e e e e 54
Add Processing . 5% . sk« iiviv o asie v s wilhe a5 @ 08 %8 68 5 500 0d e 0w 6 B e om0 568 56
Modify Processingttt e e 58
Delete Processing it e e 60
Display Processing ...:..ceo.cciscivscaniasssssisasinnasssisiasessssss 62
PrNGPEOCOBBINE, 0Tk o 5w/ 5 i w rlelelhs o guaus s oo i ierm e ot o v 0 90000 5 wncnl) 0 6o T v 64
Name Inquiry Processing 66
Printing the Liog, . 5 s s 65 6.5 5560 5,8 6 6655 505,565 6 8% & 58 5 5 td 55 % &6 5055 0 s psd o 68
SUMMIATY ...ttt ittt ittt e e e e 70
Chapter 2-6. Programming for a CICS Environment 71
ReSOUTCES . .. ittt e 71
“Traditional” Resourcescitiiiiimmeeennnnnnnnnnnn 72
Resources Specific to Working Online, 74

Chapter 2-7. A Basic Decision: Conversational or Pseudoconversational .. 77

Conversational Transactionsttt 78
Pseudoconversational Transactionsiiiiiiunnn... 78
Maintaining File Integrityt 79
Double Updating... e e 80
wand HowTo Avoid It i 81
Chapter 2-8. Arranging the Processing into Transactions and Programs .. 83
Defining the Transactionsttt eunneennnnnn. 83
Digplayangthe MEnU. . i v oo sossssmis sssmssssssosinsisss o me s 83
Analyzing the User’'s Response i iiiiiieennnennn. 83
Adding a New Record 84
Handling Updates and Other Requestsou.un.... 84
Defining the Programs: . . .- ... ovccisivsssssionsossssasssossssseniness 84
Displaying the Menu - ACCTO000iiiiiiiineeniinnennnn. 84
Analyzing the User’s Response - ACCTO1cuiiiiinnno.n. 85

viii CICS Application Programming Primer

Handling Updates (Including Additions) - ACCT02 86

OUMMAET wim 5 000 5086 6 0526 b 5w oo e o 5w 2o oo wes S EREE BHAEE BEEAE D5 dws d 87
Chapter 2-9. Three Remaining Considerations 89
Communication Between Transactions0...... ... 89
Handling Errors and Exceptional Conditions 90
A “Catchall” Error Program - ACCTO04c.uiiiiiiiinnnn. .. 92
Transactions and Terminals i, 92
A Printer Program - ACCTO03 ittt .. 92
Chapter 2-10. Defining the Programs - A Final Look 95
Program ACCT00: Menu Display 0. 95
Program ACCTO1: Initial Request Processing, 95
Program ACCTO02: Update Processingc.cuiiiiiieinennnnnnnn.. 97
Program ACCTO03: Requests for Printing 99
Program ACCTO04: Error Processingiiiuniiinnennnnnn.. 100
Part 3. Application Programming 103
Chapter 3-1. Writing CICS Programs inCOBOL 105
How To Invoke CICS Servicesouiiiiiit e, 106
Restrictions in CICS COBOL ittt i i 107
Chapter 3-2. Defining Screens With Basic Mapping Support (BMS) 109
What BMS Do0eS . ..ottt ettt e e e e 109
The BMS MacCros . ..o vt ittt et et it e ettt e et e et et et e e iee s 111
The DFHMDF Macro: Generate BMS Field Definition 111
The DFHMDI Macro: Generate BMS Map Definition 114
The DFHMSD Macro: Generate BMS Map Set Definition 116
Rules on Macro Formats it 118
Map Definitions for the Example 119
Defining the Account Detail Map i innnnnn. 119
Defining the Error Map it ie e 123
Defining the Message Mapiiii ettt 124
The Map Setottt e e et et et e e e 125
SUMMIATY . . ittt e et et e e e 126
OptioHal EXEYCINE . cvssswsssssnmssiss obsofos s sl sasdssbsss naunsssss 126
Chapter 3-3. Using BMS: MoreDetailc00iiieeeeennn. 127
Symbolic Description Maps (DSECT Structures) 127
Copying the Map DSECT intoa Program 127
The Generated Subfields i 128
Sending a Map toa Terminal it iimnnnnnnnnn.. 133
The SEND MAP Command:c:cccicsocsssosssisosssnssissabssssa 133
Using SEND MAP in the Example Program 135
Positioning the Cursorttt 138
Sending Control Information Without Data 140

Contents 1X

Receiving Input from a Terminal 140

Finding Out What Key the Operator Pressed 142
The HANDLE AID Commandcuitniiumemneennnennnnnn 142
The EXEC Interface Block (EIB) ittt itie e 143

Errors on BMS Commands0iiiiiiittnnetnnenneenneennnnn 146
MAPFAIL Errorsottt ittt it et e et e et et e et e et 147
INVMPSZ BYTEOYS . 5o 56556 55555 0is 66 6555 5766 656 56 @85 656 esmae s s 148

Other Features of BMSttt et e 148

Chapter 3-4. Handling Files samessyeesavesvee 101

Read Commandsttt e et 151
Reading a Flle RECOTA « : ¢ oov w50 w5 s 5 50506855 050 o0 6000 a6e 06 e sl 151
Browsing a Fileot i e e e e 155
Using the Browse Commands in the Example Application 157

WIS COMMBIAR - & o5 v 50 0 b0 ois 0o o0 sm oo a s in s o oo diosmensssssssssmssss s 158
Rewriting a File Record i 159
Adding (Writing) a File Record0 .. 160
Deleting a File Record ittt et 160
Using the Write Commands in the Example Application 160

Errors on Pile-Commands .« .. s« oo sess 566 sssesonsssssssisasasssss s 161

Other File Servicesuuiiiit ittt e ettt 164

Chapter 3-5. Saving Data and Communicating Between Transactions ... 165

The Need for Scratchpad and Queuing Facilities 165

TempOraryrStOLARE & « v v s s namnus s o as 56058 doeis tissopeisssnessesnssdas s 166
Adding to, and Creating, a Temporary Storage Queue 166
Replacing Items in a Temporary Storage Queue 167
Reading Temporary Storage QUeUEsouuieeeerunnnnenennn 168
Deleting Temporary Storage QUEUEstttuinteeennnneeeenns 169
Naming Temporary Storage QUeuesouiuiieeeennnnnnen.. 169
Using Temporary Storage in the Example Application 170
Errors on Temporary Storage Commandscciiuvunn... 172

Transtent DAata «cas svoamsaosmes niah s oble s b s ik s eseons sy o s e dsiss 173

Chapter 3-6. Program Control ittt nnnneeennnnans 175

Tables for Program Controlc.0iiiiiiitiiiriennenn. 175

Commands for Passing Program Controlcciiiiiinininnnnnn. 176
The LINK Commandttt et 176
The XETL: Commmand s oo s 0005650 c85ss66saeisssssadsssssiss 177
The RETURN Commanduituitinemnnenneenneenneenneens 178
The COBOL CALL Statementc.0iitiitineeennnnnneennnnn 179
Subroutines Revisitedcovoeoesssssssnssnasosnssssoossssess 179

Examples of Passing Control and Data Between Programs and Transactions ... 180
Communicating Between Transactions in the Example Application 182

Errors on the Program Control Commandsc0iiiiiinennnn. 183

Abending a Transactionttt it 183

Other Program Control Commandsuiiiitiuuinneeennnnneeenn 185

X CICS Application Programming Primer

Chapter 3-7. Starting Another Task, and Other Time Services 187

Starting Another Task e 187
Retrieving Data Passed in the START Command 189
Using the START and RETRIEVE Commands in the Example Application 189
Errors on the START and RETRIEVE Commands 190
Other Time ServiCesttt et ettt 191
Chapter 3-8. Errors and Exceptional Conditions 193
The HANDLE CONDITION Commanduiiiiuniiunnnnn.. 194

Changing the HANDLE CONDITION “Destinations” 197
Errors Within the Example Application 198
Summary of Exception Handling Rules 199
Other Facilities for Exceptional Conditions 200
An Alternative Philosophy i 201

Part 4. The COBOL Code of our Example Application 203

Part 5. Testing and Diagnosisc0000... 205
Chapterd-1. Testing .::csciseassnssnsissssncsnasssmessenssssss 207
Preparing to Testt e e 207
Preparing the Application and System Table Entries 207
Preparing the System for Debugging 208
Typesof Problem . :cicssiponvassvsssvssiansoneasonsssnsonuesesssnns 209
ADENAS mmm o5 @ 50D 060 56566 b sl 6 % E 5HEE e 5Es s e Hes s brasEs s i 210
THOODB. 650 w1 350 55 @ 91 6115 901806 0 0 0 1 6L 5 01 0 o 6061 060 0 1 8 B 0 0 210
WELLE annom s s 966 aste S 6 e mbee SnEee e e s H Hen o8 te s b 9Ee o6 se 210
INCOTTECt DUEDUL v oo o ooie s s s s sm a8 & 66 50 o 66 oo o to 3056 o6 8 a8 ¥ 506 oo s 211
Tools for DEbBUGEINGE & w5 55 5w w5 5 0 6% i oo s e s o e 65 5 6066 S5 6 6S 5050008 @608 211
Execution Diagnostic Facility (EDF) 212
Temporary Storage Browse Facility (CEBR) 242
Transaction DUMDE « s s s 55w s s 056 6@ 566w e s w0 s e w8 b osa 6w e5 s 5o s 244
Chapter 5-2. FindingtheProblemc0iiiiiinneenns 255
Preliminary Cheeklist ; cvvosv sn v ssusssssasss s s sr 5o66esssenisssss 255
Docvmentation . .o:csesomas s on oo e @5 e 5w s 5me s 5 ab s 6 mE s s e 6 e s 255
Reference Materials .. vussassvvssaosessvomnnssomaneashossseaissss s 256
More Testing Considerationsouuitumneuneeneenneneennns 257
Regression TestiDE v vsunveasnmavmonusmns nsmesn nmssssososssssbssss 257
Single-thread Testingttt ettt ennnennenn. 258
Multisthread TEestiNg .. vs s 5w 50w 050 6 s e e oo sm s s b o sses e ss 258
ADEHAS i vnamsornamsseahs ¢ bonss o5 s 5 @EmE 68 5EE o 6E e s 06Ee s ahees 258
EOODE cweswdtsssprbdsansdnh arabas s dnl snsdE s dns s 256D BDEE S 5 &S 262
WAME s awsm e s s mms s b BE@ s & 5 SEE 5 5B 5856 575 666 o5 Row R 8 F5 5 55 6 & & 85 264
TNCOYTectOUEPUL. o 5 i o s v 5 0w wsiom 655 555 800 608ms b 6 @ oo ol B 6 & & ol b w9 5E b e 265
CICS System Problemsciiiiiiiiiineetneeneeeneeneeennnens 266

Contents X1

Appendixesttt ettt i e e 267

Appendix A. Getting the Application Into Your CICS System 269
000,05 el % o3 o RN o A O 269
What Has to be Done? e 269
How is it Done? e e 270
ACIXREC and ACCTREC e 270
Compiling and Link-Editing the Initialize Program 271
Compiling and Link-Editing the Index File Program 272
Creating and Initializing the Index and Account Files 274
Updating the File Control Tableot 275
Updating the Program Control Table 275
Updating the Processing Program Table 276
AC CT S ET .ottt e 276
Installing The Application Programs 286
Appendix B. Additional CICS Facilities and Your Reference Manual (the
APRM) cvooiiviosws soamensomamssnsissssassoenssossosseissiass 307
Other CICS Facilitiesuiiiiit ittt e 307
The Application Programmer’s Reference Manual 310
GIOBBBEY © o 4% s i 8 0% 5 Sk 6 5 % 4 S5 wed 1% 6 8 % md® @ a Em w0 mim €68 % e e 311
BiBHOZEAPRY. s .o 60 66 6 68 05 0 556 685 00 swsmsswsnnsmsnsspmenssss 317
INAeX vsonswswens smams s sasss Hies sosniiasas $assiss sosassss 319

xii CICS Application Programming Primer

Figures

L0 ok

The CICS Online Environment00i ittt eunnennnn 3
ADB/DC Systemciiiitin ittt e e 4
The Flow of Control During a Transaction00.uiui.... 11
Account File Record Formatttt iiennenennnn. 19
The CICS Sign-On Screenoiiiitiinn ettt 24
A 3270 Outpuat Data SEPAML « . v« o s s wiv s s6omssss s bassaesmisssssesssss 25
The Sign-On Screen in Use ittt ittt ittt 28
A 3270 Input Data Streamttt e 29
A Typical Display Screen Formatc0iiiinenenn... 34
The Original Customer Account Application Form 37
A Corresponding Skeleton Screeniiiiiiieiinennenn.. 38
A Typical Menu SCreenviiiintntneeneeenenennenenennn 40
An Expanded Menu Screeniutiiiiietnennennnnennn. 42
Account File Record Format:cuoscisvvvnsasosesnsesseesss snsss 47
The Name Index Record Format 0.0 iiiiiinunenn. 50
Request Analysisiiiiiiiininin e iteeteneneeeannnenns 55
Add PYOCESSING covm vossom s oot e e eissss o s esssssessdedssssmss 57
MOAILY PEOCESBITIE o v 5 0 oisis 5 556 o isl 5 6 lnis &rio e 35 5 el ol 800 30 sl 6 e 3 606 0 59
Delete Processingoi ittt n it e e e e e 61
Display Processingiiiitiietne et e 63
Print Processing ccve o vecenmnosesasaseansnesssssensesssssss 65
Name Inquiry Processing0itiiiiiitnetneennennnnnnenn 67
Prnting' the Lo . o . s e e mss @6 60 5 s e oo o068 5 s 5 e @06 e o5 66K s s 68 69
The Conversational Sequence of the Modify Transaction 77
The Pseudoconversational Structurecc0coun.... 78
The Three Transactions and Three Programs 87
The Six Transactions and Five Programs 0., 93
The Transaction Error Screen0, 101
A Detailed Look at the Menu Screenc.iiiiiinennnnn.. 110
The DFHMDF Macros forthe MenuMap0cvviinn... 113
The DFHMDI Macroforthe MenuMapc0iiinuenonn. 116
The Account Detaill Mapttt 119
The Account Detail Map Definition 120
The Error Screen Mapottt ittt ittt ettt et ettt 123
The Error Screen Map Definition i, 124
The Message Map Definition 0., 124
AL FOUFMADPE v ¢ voovmonnanssnsoesios sssdns daseesssdsssssasssssss 125
Copying the Menu Map into Your Program 128
The Menu Screen at Work ittt 129
Attribute Values for the IBM 3270 Data Stream 131
Attribute Values Used in this Primer, 131
Building the Detail Display Mapttt innnenennn. 137

43. The Standard Attention Identifier Values
44. Code to Handle MAPFAIL
45. The COBOL Record Definition for the Account File
46. The COBOL Record Definition for the Index File Records
47. The Name Summary Search Codeo....
48. Transferring Control Between Programs (Normal Returns)
49. Outline Logic of a Standard “Edit and Update” Module.
50. Passing Information to the Error Program
51. Receiving Information in the Error Program
52. Transferring Control Between Programs (After an Abend)
53. Program ACCTO01’s Error Condition Handling
54. The Exception Conditions for the Primer’s Subset of CICS Commands

55. Invoking the Account File Transaction
56. The Account File Menu i,
57. Let’s Delete Account Number 11111,
58. Now Confirm the Deletion...
59. . By typing Y e
60. Hold it! We’ve Got a Problem - and We’ve Been Backed Out
61. Deleting the Scratchpad Record,
62. GoINg, GOING, co. © vttt et et
B3: Gomel . ccivsiiiicrsainesadianiss nenmn o nsemiono e sy
64. Now Activate EDF
B85, OK o
66. Now Re-enter the Account File Transaction
67. And Into EDF e
B8. OK BOTFAT 5uvuvussinsonssossnnsmn esnamssrasnsnsnssssanesssssssn
69. Again “yes” to Continue With the Next Transaction
70. Backtothe Menu it
71. Now We Can Enter Record 11111 i, ..
72. Ready to Begin the Request Analysis
73. Response: QIDERR
T4, OK, Carry Ont e e et e e
75. “yes” to Carry On Into ACO2 i
76. OK - the Big Moment is (Nearly) Here! ro 5 BB B e 8 B B e e
T7. Here We GO ..o e e et e e e e e e
T8. Ready? ... e
79. The INVREQ (Invalid Request) Condition
80. The Error Reportttt e e
81. Here’s Our Abend, EACC e
82. Just Prior to the ABEND Command0.....
83. Sentthe Exrror Map,
84. Aboutto Sendthe Error Map
85. Starting the Error-Handling Program, ACCT04
86. Linking to the Error Program, ACCT04o....
87. The HANDLE CONDITION ERROR Command
88. Do the HANDLE CONDITION ERROR Command
89. Here’s Our Failing Instruction Again

Xiv CICS Application Programming Primer

90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.

Back With Our Abend, EACC, Again iiniueenn.. 240

The Abnormal Task Termination iiiinuernn.. 241
This is the CICS MeSSage cv vttt ittt ittt ettt et 241
The Temporary Storage Browse (CEBR) Display 242
The Foot of the Trace Table 245
The Absolute Address of the Failing Instruction 247
The Read-For-Update and the XCTL to ACCT02 250
Confirming the Application Module is ACCT02 251
How to Find the Size of the Program Stub 252
How to Find the Failing COBOL Verb 252

The Compiler Listing of the Incorrect Command 253

AEIx and AEIy Abend Conditionsccuuiiuieunnennn.. 263

Figures XV

.

ki

. .
N
.
- PR
B - - T
: Co
L
R
) DR
wmpt e
“
v
a
K [.
- > .
D e
B R
1 .
e
- =
I -
i — '

Questionnaire

(CICS/VS Version 1 Release 6)

Application Programming Primer

To help us produce books that meet your needs, please fill in this questionnaire. It would help us if
you provide your name and address in case we need to clarify any of the points you raise. Please
understand that IBM may use or distribute whatever information you supply in any way it believes

appropriate without incurring any obligation to you.

1. Please rate the book on the points shown below

The book is: accurate 1 2 3 4 5 inaccurate
readable 1 2 3 4 5 unreadable
well laid out 1 2 3 4 5 badly laid out
well organized pl 2 3 4 5 badly organized
easy to understand 1 2 3) 5 incomprehensible
adequately illustrated 1 2 3 4 5 inadequately illustrated
has enough examples 1 2 3 4 5 has too few examples
And the book as a whole?
excellent 1 2 3 4 5 ponxr
2. Which topics does the book handle well? 3. And which does it handle badly?

4. How could the book be improved?

5. How often do you use this book?

Less than once a month? 0O Monthly? O

6. How long have you been using CICS?

7. Have you any other comments to make?

Weekly? O Daily? O

years/months

Thank you for your time and effort. No postage stamp necessary if mailed in the USA. (Elsewhere,
an IBM office or representative will be happy to forward your comments or you may mail directly to
either address in the Edition Notice on the back of the title page.)

Questionnaire

Fold and tape Please Do Not Staple

Fold and tape

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Dept. 6R1H,

FE Publishing Services and Distribution,

180 Kost Road,

Mechanicsburg, PA 17055, USA

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Fold and tape Please Do Not Staple

Il
i
Iy
()

Fold and tape

Part 1. Setting the Scene

— This Part of the Primer:

B Describes the ideas behind CICS
B Explains some of the CICS terminology

B Describes a typical online application program

Part 1. Setting the Scene

1

what is CICS?

Chapter 1-1. Introduction to CICS

What is CICS?

CICS (Customer Information Control System) is a general-purpose data
communication system that can support a network of many hundreds of terminals.
You may find it helpful to think of CICS as an operating system within your own
operating system (although this definition might offend purists). In these terms, CICS
is a specialized operating system whose job is to provide an environment for the
execution of your online application programs, including interfaces to files and data
base products. See Figure 1.

Operating System

Cics

Users’
Application
Programs

]

Figure 1. The CICS Online Environment

The total system is known as a data-base/data-communication system, but this is
such a mouthful that we usually shorten it to DB/DC system.

Your host operating system, of course, is still the final interface with the computer;
CICS is “merely” another interface, this time with the operating system itself.

Operating systems are designed to make the best use of the computer’s various
resources. CICS helps out by separating a particular kind of application program
(namely, online applications) from others in the system, and handling these programs
itself.

Chapter 1-1. Introduction to CICS 3

reasons for an online system

Why You May Need an Online System

If you’re the sort of person we’ve imagined as a typical reader, until now you’ve
written programs that (typically) read a file, process individual data records, update a
carried-forward version of the file, and produce some type of printed output. These
files usually go offline when your program has finished with them, and the file data
thus becomes inaccessible for inquiry purposes. Furthermore, the records in the files
are only as up-to-date as the most recent program run, and don’t reflect any
intervening activity.

Nowadays, this often isn’t good enough. Your users want immediate responses to
their information processing needs. The overnight turnaround associated with
traditional systems is no longer adequate: accurate, up-to-date information is needed
within seconds. To achieve this you need an online information processing system,
using terminals that can give direct access to data held in either data sets or data
bases. In other words, you need a DB/DC system.

Developing a DB/DC system can be a major undertaking, particularly if you choose to
write all your own control programs for handling terminals and files, and provide
your own job-scheduling mechanisms. However, CICS can make it very much easier
by supplying all the basic components needed to handle your data communications.
This allows you to concentrate on developing application programs to meet your
organization’s business needs. You don’t need to concern yourself with the details of
data transmission, buffer handling, or the properties of individual terminal devices.

—
@
=
ES
=
D,
w

Data
Base

Central System

I

[]

==
=

Figure 2. A DB/DC System

I

I

Q
ol

4 CICS Application Programming Primer

why have CICS?

Why Have CICS?

The online end users within a network can make all sorts of demands on many
different sets of data. The things they want to do individually are usually short.
Often they are interrelated and share the same programs and data. Furthermore, the
response times they get should be as short as possible. For all these reasons, the
users’ transactions are done more efficiently within a single operating system job,
rather than as separate jobs.

If all the transactions are to be handled within the same job, a controller is needed to
look after them, in much the same way that an operating system is needed within a
computer to control the jobs. CICS carries out this controlling function within a
DB/DC job.

CICS provides the communications control and service functions necessary for users
to create their own, customized DB/DC system. This cuts down the total amount of
programming needed. You can customize CICS to the needs of practically any online
application, and it can support networks consisting of a wide variety of terminals and
subsystems.

For most of the time, the users will be unaware of CICS and, indeed, unaware of the
existence of other applications. They will spend their time using the online
application programs that you’ve designed for their particular transactions.

Because CICS is a general-purpose product, the view your users get of it will depend
far more on the configuration of your system and the application programs you
provide, than on any features of CICS.

What Does CICS Do?

CICS controls online DB/DC application programs. But what does this mean? In
fact, it means that CICS is a program that does a lot of work on your behalf. CICS
handles interactions between terminal users and your application programs. An
interaction may consist of one or more requests from, and responses to, a terminal
user in the course of a single job by that user.

CICS provides:

e The functions required by application programs for communication with remote
and local terminals and subsystems

e Control of concurrently running programs serving many online users

e Facilities for accessing data bases and files, in conjunction with the various IBM
data base products and data access methods that are available

Chapter 1-1. Introduction to CICS 5

CICS application programs

e The ability to communicate with other CICS systems and data base systems, both
in the same computer and in connected computer systems.

We've left things as open as possible to allow our customers to produce the system
they need. It’s up to your systems and applications designers (which could mean you,
of course) to choose what they want from the various CICS facilities, and to build
whatever kind of user interface that best suits the end users. So, although you still
have to provide the application programs that the end users actually run, CICS makes
it much easier. Your programs gain access to the CICS facilities they need by
straightforward, high-level, commands.

CICS Application Programs

Online application programs have certain features and needs in common. Typically,
they:

e Serve many online users, apparently simultaneously

e Require common access to the same data sets and data bases

e Try to give each end user a timely response to each interaction
e Involve telecommunications access to remote terminals.

The host operating system is in overall charge of the computer and manages resources
in whatever way you set up. But the very versatility of a general-purpose operating
system means that it often cannot give online programs the sort of priority treatment
they need. Instead, CICS may be given “privileged” treatment on behalf of all the
online programs that run under it.

To make the best use of the time and system resources that the operating system gives
to CICS, CICS takes on itself some of the aspects of an operating system. For
example, CICS allows more than one of its programs (tasks) to be in an active state at
the same time. But CICS doesn’t duplicate all of the services provided by the
operating system. Whenever appropriate, CICS goes straight to the operating system
to provide what its tasks ask for.

Couldn’t I Do All This Myself?

Yes, of course, but why reinvent the wheel?

CICS is a large, mature piece of software that has evolved in parallel with the growth
of online terminal networks and the movement toward distributed processing. It
supports a wide range of hardware and software (for details, have a look at the CICS
General Information manual). Many thousands of data-processing installations
around the world have made CICS the basis of their data communication systems.

6 CICS Application Programming Primer

large and small systems?

Can CICS Serve Very Large Systems and Very Small Systems
Properly?

Yes. CICS is designed in a modular fashion, and we supply it as a set of programs
that you can combine rather like building blocks. If you don’t need certain CICS
functions, you simply leave out those parts of CICS when installing your system. Or
perhaps, more typically, you might install everything, but only use what you need.

To start with, though, you’ll be putting together your first application on the subset
CICS system that we’ve chosen for this Primer.

How Does a CICS-Based Application Differ from
a Batch Application?

As we hinted in the preface, we expect you to have a batch programming background.
That being so, you don’t need us to tell you what batch programming is all about.
However, we do want to tell you how a CICS-based application differs from a batch
application.

Basic Differences

Not everything is different, of course. But here are some basic differences for you to
think about:

e In a batch program, you often define all the required input/output and work areas
within the program. In CICS, these areas are outside the program. They are
allocated by CICS, as needed, from a dynamic storage area within the CICS
partition or region. This lets CICS economize on main storage, and use the same
copy of a program to do work for several users at once.

e A batch program reads its own input data, whereas CICS reads the data on behalf
of the CICS application programs. A particular CICS application program need
not even be loaded into the computer before its first input message arrives.

e A batch program issues its input/output instructions directly to the operating
system. CICS application programs always issue such instructions to CICS, and

CICS handles the interface to the operating system.

e Recovering when things go wrong is more interesting (as we’ll see).

Chapter 1-1. Introduction to CICS 7

error recovery

Recovering When Things Go Wrong

The final major difference between a batch system and an online system comes up
when things go wrong.

Obviously, all data processing systems need to be able to survive faults and errors
such as the loss of power supply, processor failures, program errors, data set failures,
and (in online systems) communication errors. Procedures are required to recover
from such faults or to restart the system if a fault has stopped it.

Recovery and restart design is inevitably more complex for an online system than for
a batch system:

e For batch processing, input data is prepared before processing begins. The data
is then supplied to the batch process in one orderly sequence, which is controlled
and predictable.

e For online processing, input data isn’t prepared beforehand, but is entered as
needed while the application is running. Furthermore, the input data can come
from many different users working concurrently. In other words, input data does
not arrive in a predictable sequence.

If a failure occurs:

e With a batch program, you can repeat the processing, or continue it from the
point of failure. This is because the processing sequence is predictable (it is
based entirely on the predefined input data), and because the input data is still
available.

e With an online application, you cannot simply rerun the application or continue
from the point of failure because the state of the process is unknown. And even if
it were known, you couldn’t expect the terminal users to reenter a day’s work.

So, online application programs need a system that provides special mechanisms for
recovery and restart. In broad terms, these mechanisms ensure that each resource
associated with an interrupted online application is returned to a known state so that
processing can be restarted safely. As you work through this book, you’ll see how
CICS can help you get over your recovery and restart problems.

Perhaps the most striking difference is how a small, simple application program can
be loaded into the computer and promptly be used, by hundreds of people throughout
a terminal network. Not only that, but the same application program could be in use
by all these people at the same time. And yet these online application programs
aren’t necessarily more difficult to write and get working than the programs you've
been used to up to now.

8 CICS Application Programming Primer

tasks and transactions

Two Vital Terms

Next, we want to introduce two important words in the CICS vocabulary:
“transaction” and “task.” You’ll constantly see these so it’s good to know what they
mean right from the start.

A transaction is a piece of processing initiated by a single request, usually from an
end user at a terminal. A single transaction will consist of one or more application
programs that, when run, will carry out the processing needed.

In other words, “transaction” means in CICS what it does in everyday English: a
single event or item of business between two parties. In batch processing,
transactions of one type are grouped together and processed in a batch (all the
updates to the personnel file in one job, a list of all the overdue accounts in another,
and so on). In an online system, in contrast, transactions aren’t sorted by type, but
instead are done individually as they arrive (an update to a personnel record here, a
customer order entered there, a billing inquiry next, and so on).

Having given you this straightforward definition, we’ll immediately complicate things
a bit by admitting that the word “transaction” is used to mean both a single event (as
we just described) and a class of similar events. Thus we speak of adding Mary Smith
to the Payroll File with a (single) “add” transaction, but we also speak of the “add”
transaction meaning all additions to that particular file.

Things are further complicated by the fact that one sometimes describes what the user
sees as a single transaction (the addition to a file, perhaps) as several transactions to
CICS. We get to this nicety in “Chapter 2-7. A Basic Decision: Conversational or
Pseudoconversational” on page 77. Until we get there, you should use the definition
of transaction we’'ve given above; you’ll be able to tell from context whether we mean
a transaction type or a single bit of processing.

Now, what about a task?

Users tell CICS what type of transaction they want to do next by using a transaction
identifier. By convention, this is the first “word” in the input for a new transaction,
and is from one to four characters long, although this source of the identifier is
sometimes overridden by programming.

CICS looks up the transaction identifier in one of its internal tables, the Program
Control Table, where it finds out which program to invoke first to do the work
requested. It creates a task to do the work, and transfers control to the indicated
program. So a task is a single execution of some type of transaction, and means the
same thing as “transaction” when that word is used in its single event sense.

A task can read from and write to the terminal that started it, read and write files,
start other tasks, and do many other things. All these services are controlled by and
requested through CICS commands in your application programs. CICS manages
many tasks concurrently. Only one task can actually be executing at any one

Chapter 1-1. Introduction to CICS 9

using CICS

instant. However, when the task requests a service which involves a wait, such as
file input/output, CICS uses the wait time of the first task to execute a second; so, to
the users, it looks as if many tasks are being executed at the same time.

Starting a Transaction

Normally, end users wishing to begin an online session will first identify themselves
to CICS by signing-on. Signing-on to CICS gives users the authority to invoke certain
transactions. Once signed-on, they invoke the particular application (transaction)
they intend to use. They can do so by typing the transaction identification code at
the start of their initial request. But, if your designers decide otherwise, it’s just as
easy to set up a particular program function (PF) key to invoke a transaction with a
single keystroke or, indeed, for a given terminal always to invoke a particular
transaction.

Application programs are stored in a library on a direct access storage device (DASD)
attached to the processor. They can be loaded when the system is started, or simply
loaded as required. If a program is in storage and isn’t being used, CICS can release
the space for other purposes. When the program is next needed, CICS loads a fresh
copy of it from the library.

Inside CICS

In the time it takes to process one transaction, the system may receive messages from
several terminals. For each message, CICS loads the application program (if it isn’t
already loaded), and starts a task to execute it. Thus multiple CICS tasks can be
running concurrently.

CICS maintains a separate thread of control for each task. When, for example, one
task is waiting to read a disk file, or to get a response from a terminal, CICS is able to
give control to another task. Tasks are managed by the CICS task control program,;
the management of multiple tasks is called multitasking.

CICS manages both multitasking and requests from the tasks themselves for services
(of the operating system or of CICS itself). This allows CICS processing to continue
while a task is waiting for the operating system to complete a request on its behalf.
Each transaction that is being managed by CICS is given control of the processor
when that transaction has the highest priority of those that are ready to run.

While it runs, your application program requests various CICS facilities to handle
message transmissions between it and the terminal, and to handle any necessary file
accesses. When the application is complete, CICS returns the terminal to a standby
state. Figure 3 should help you understand what goes on.

10 CICS Application Programming Primer

inside CICS

ACCT

Operating System

Terminal
Control

System
Services

Program
Library

from....

(menu screen) ﬂ

@_

Storage
Manage-
ment

3. The program library into working storage, where....

Operating System

Program
ACCTO00

-

BMS

File
Control

The flow of control during a transaction (code ACCT) is shown by the sequence of numbers 1 to 8 on the panels.
Don’t take this transaction too seriously; we're only using it to show some of the stages that can be involved. The
meanings of these eight stages are as follows:

L Terminal control accepts characters ACCT, typed at the terminal, and puts them in working storage.

2. System services interpret the transaction code ACCT as a call for an application program called ACCTO00.
If the terminal operator has authority to invoke this program it is either found already in storage or loaded

®

Account
File

Program
Library

A

Account
File

’

4. A task is created. Program ACCTO00 is given control on its behalf. This particular program invokes....

5. Basic mapping support (BMS) and terminal control to send a menu to the terminal, allowing the user to
specify precisely what information is needed.

.

Figure 3 (Part 1 of 2).

The Flow of Control During a Transaction

Chapter 1-1. Introduction to CICS 11

setting up an online system

Operating System Program
Library
User’s
Next Input
(F:"e | Account
ontro File

\-P@—D Program 4._@_—;
i . ACCTO1
SR

BMS

6. BMS and terminal control also handle the user’s next input, returning it to ACCTO1 (the program designated
by ACCTO00 to handle the next response from the terminal) which then invokes....

7. File control to read the appropriate file for the information the terminal user has requested. Finally,
ACCTO1 invokes....

8. BMS and terminal control to format the retrieved data and present it on the terminal.

Figure 3 (Part 2 of 2). The Flow of Control During a Transaction

The transaction continues to run until it reaches a place in the program at which it’s
waiting for some activity (such as a disk access) to end. At this point, CICS allocates
the processor to the next task that can run. Only when there’s no work to do on
behalf of any CICS task does CICS pass control back to the operating system to allow
batch work to run. This allows CICS to maintain the priority of online working over
batch work in other address spaces or partitions.

In this way, CICS controls the overall flow of your online system.

Besides doing all the transaction processing, CICS also supports the bookkeeping side
of the system, by accumulating performance statistics and monitoring the resources
used. This gives you the information that enables user departments in an
organization to be charged accordingly. It also allows you to find out which parts of
CICS are being heavily or lightly used. This will help your systems people change the
CICS set-up when you wish to tune your system to improve its performance.

12 CICS Application Programming Primer

setting up an online system

How Does CICS Help You Set Up an Online
System?

After your system has been designed, the programming effort to turn the specification
into a working reality is normally divided between two groups: the people who install
and maintain the system, and those who write the application programs it will use.
(We don’t want to rule out the possibility of all this work being done by one heroic
person.) CICS offers a variety of helpful features for both groups. Concentrating on
the application programming side, CICS aids include:

e A choice of programming language. You can write your application programs
in COBOL, PL/I, RPGII (VSE only), or assembler language.

e A command-level programming interface with CICS. You need know little
about how CICS works. You request data or communication with terminals by
issuing CICS commands that resemble those of the programming language you are
using. A command language translator preprocesses the application source
code, translating CICS commands into the appropriate language statements. It
also provides useful diagnostics.

e An execution diagnostic facility (EDF), for testing command-level application
programs interactively.

How Do You Use CICS?

Now that you have some idea of what CICS is and how it fits into your computer
system, we can explain how you use it.

We’'re going to do so by showing you the stages in designing and implementing a
reasonably typical and useful application: a file inquiry and update system. This
example starts in the next chapter.

To get the best out of your CICS system (or, for that matter, any system) you should
design the system around its applications. However, for our purposes, we’ll assume
that you’ve been through this process for other applications, and simply wish to
extend your present system by adding this online file inquiry and update application.

In reality, if your proposed new application programs were very different from your
existing ones, your systems programmers might have to tailor your CICS system to
provide the necessary functions, typically by picking different sets of system
parameters for different occasions. This could mean initializing the system again, to
include IBM-supplied programs to help you do what you want. If your needs are very
unusual, they might have to customize some parts of your CICS system, adding code
of their own, before initializing the system.

Chapter 1-1. Introduction to CICS 13

The programs that we develop and describe in this book are all supported by a simple
CICS system, so you can forget about initialization or customization for the time
being.

14 CICS Application Programming Primer

Part 2. Application Design

—— This Part of the Primer:

Explains how to design your first CICS application programs
Defines the problem

Describes 3270 Information System data streams

Deals with designing the data

Talks about establishing the user interface

Examines special features of the CICS environment

Defines the example application programs involved, and their interactions

THE CICS EXAMPLE APPLICATION - A DEPARTMENT STORE

—— The Current Situation

A department store with credit customers maintains a master file of its
customers’ accounts. The record for each customer contains the customer’s
name, address, telephone number, charge limit, current balance, account
activity, payment history, and so on. At present, a set of batch processing
programs updates this file (and some related ones) twice a week with the
necessary charge and payment information. The records are also printed
periodically, to help in answering questions both from customers and from
within the Accounting and Customer Service Departments. However, this listing
is too large to be printed often, and so it is usually out-of-date.

Part 2. Application Design 15

our CICS example application

r—— Online Access to Information

The store would like to be able to access a customer’s record online, to have
absolutely current information. In addition, the Accounting Department wants
to be able to update these customer records online, for convenience and
currency. A facility to add new records, delete records and change addresses and
other information not related to billing is therefore required, as well as the
inquiry function.

Each customer has a unique account number, which is the key to the existing
master file. The users in the Accounting Department will presumably access
records by this number, because it is always available when they are processing
work or researching questions.

r— Access by Name

However, the Customer Service Department wants to be able to access the file by
customer name. When customers make an inquiry, they don’t usually know
their account numbers, but they normally do manage to remember their names!
If they want to charge items but don’t have their charge cards with them, a clerk
will call Customer Service, verify the existence and payment status of the
account, and get the account number for the charge slip.

—— Logging and Printing Changes

Finally, the people in the Accounting Department have asked us to make quite
sure that all changes to the file are logged, with a hard-copy report. They seem
to be rather nervous about subjecting their master file to online updating, but
assure us that they will feel more confident having a printed record of all
changes made. They are also concerned about the security aspects of this first
venture into online file updating, and want to be able to trace changes to
specific records. Later, they will probably agree to direct this log to tape,
printing it only when necessary, but for the moment they need it in hard-copy
form.

16 CICS Application Programming Primer

starting the design

Chapter 2-1. The CICS Example Application - A
Department Store

This chapter explains, by means of an example, how to set about designing a CICS
application. The text you’ve just been reading (in the boxes opposite) describes what
the application will do.

The outline specification for our example is a simple one. It shows design issues and
programming requirements that arise in nearly every application. The CICS services
required by this application are a subset of the full range available; however, this
subset consists of those functions that most straightforward applications need to use.
Let’s relate the department store’s needs to some general points about CICS
application programs. A CICS application usually consists of three main parts:

e The data to be processed
e The transactions to be performed on that data
e The interface with the user.

You can see these parts in the specifications just described for the example. The
customer information in the account file is the data to be processed; the online
operations (display a record, add a record, and so on) are the transactions to be
performed on that data; and the terminals, formatted screens, and operating
procedures are the interface with the user. Let’s see how each of these parts could be
designed.

It is important to note before starting, and it will certainly be clear in what follows,
that each of these three parts bears on the others. You cannot design one without
reference to the other two.

Moreover, design is an iterative process. Decisions about the user interface affect
transaction definition, which in turn causes a slight change in specifications, and the
whole cycle begins again. These adjustments are normal and should be expected in
any design process.

However, you must freeze the design at some point or you may never complete the
job.

Chapter 2-1. CICS Example Application 17

what’s the problem?

Defining the Problem

The first step in the design process is to specify broadly what the application will do.
In our case, the need for the application came from two user departments, and the
first functions they requested are:

e Display of customer account record, given an account number
e Addition of new account records

e Modification of existing account records (by account number)
e Deletion of account records (by account number)

e Hard-copy listing of changes to the account file

e Ability to access records by name.

The Account File Records

The detailed design of our programs is going to be influenced by the established form
of the existing customer data, of course. And the account file is very much at the
center of this application. Its records are shown in Figure 4.

The fields marked as Type “A” are the ones that are to be maintained by the online
program. Those marked “B” are updated by the batch billing and payment cycle and
need only to be displayed in the online system.

Requirements Imposed by the Environment

Besides the users’ requirements, we're going to assume that certain others are
imposed by the environment in which this application will run. These are:

e The terminals available are IBM 3270 system displays and printers. The screens
display 24 lines, each of 80 characters (the IBM 3278 Display Station model 2, for
example), with corresponding printers.

e Some of the people who will use the application will do so infrequently.
Consequently, the application should be as self-documenting as possible, and users
should not need to memorize very much to use it comfortably. On the other hand,
help to casual users should not result in slow or annoying interactions for
frequent users. Some hard-copy documentation on how to use the system will be
provided, but we hope users will only rarely need to look at it. The goal is to
keep everything nice and simple for all users.

18 CICS Application Programming Primer

our assumptions

FIELD LENGTH OCCURS TOTAL TYPE

5
18
12

4

4
10
72

128

Account Number (Key) 5
Surname 18
First Name 12
Middle initial 1
Title (Jr, Sr, and so on) 4
Telephone number 10
Address line 24
Other charge name 32
Cards issued
Date issued
Reason issued
Card code
Approver (initials)
Special codes
Account status
Charge limit
Payment history: (3
-Balance
-Bill date
-Bill amount
-Date paid
-Amount paid

WHRWHERRRERRMWRRRERRR
fovilvviiovii i i i i i i B B

WONWWRHRROR

~

VOO ONRFRFWRHR RO
[
o

Figure 4. Account File Record Format

e The integrity of the account file must be maintained. This means that it must be
protected from inconsistent or lost data, whether resulting from a failure in the
application or CICS or the operating system. It also must be protected from total
loss, such as a disk head crash or other catastrophe.

e The existing account file is a VSAM key-sequenced data set containing about
10 000 records of 383 characters each, including the 5-digit account number key.

Refining and Developing the Specifications

The next step in defining the problem is to verify the first program specifications with
whoever made the original requests. You should be especially alert for information or
functions that no-one requested but that nevertheless may actually be required when
real work is attempted. Otherwise the users will make the same discoveries right
after you complete your programming effort, and you’ll be faced with making changes
when it may prove difficult, rather than now when it is easy.

It is always useful to talk to the actual users of an application, to find out how they
do their work and how they view the functions you intend to provide. Supervisors
can provide other insights. It is very important to repeat this verification step as the
design process moves along from a broad outline toward more and more detailed
specifications.

Chapter 2-1. CICS Example Application 19

what’s the workload?

Estimating the Number of Transactions

Now is also the time to find out how often the system will be expected to cope with
the transactions of each type, what sort of response times will be expected, what times
of the day the application will have to be available, and so on. This will allow you to
design programs that are efficient for the bulk of the work, and it will help you in
determining system and operational requirements.

For the example application, let’s assume that our inquiries produced the following
information:

e There will be about 10 additions, 50 modifications, 5 deletions, and 200 inquiries
(by account number) per day in the Accounting Department.

e The people in Accounting are unable to estimate the number of inquiries that
they would make by name, but they sound intrigued with the possibility, and
therefore may be expected to make some use of this facility.

e Accounting would find it very useful to be able to get a printed copy of a
customer account record, besides being able to display it on the screen. (This is a
new requirement, not in the original specification. We should consider providing
1t:)

e Customer Service makes nearly 1000 inquiries per day against account records,
ninety percent of them by name. For most of these, the only items used from the
complete account record are the name and address (to verify that it is the right
record), and the credit status and limit.

Note: In assessing estimates of transaction frequency, we need to account for a fact
of life. That is, if we make it much easier to do something, such as an inquiry, users
will almost certainly do it more often than they used to do. Indeed, the eventual

transaction rates experienced with online systems are almost always higher than can
be predicted from the current workload - often a reliable indication of their success.

Summary

We've now identified some of the first steps when starting to design an application.
You should:

e Broadly set down the application functions based on user needs
e Identify the individual data elements involved in the processing.

e Consider any external environmental factors and restrictions

20 CICS Application Programming Primer

design preliminaries

e Verify your initial specifications with the users

e Estimate the expected load on the system from the various new functions that
your application will provide.

When you’ve done this, you can then go on to design the transactions and processing

programs that you’ll need. So, let’s continue now with some application design
considerations.

Designing the Transactions: Preliminaries

Earlier in this chapter, we described the functions needed in our example. Let’s now
see how we might define transactions to perform these functions. One obvious
approach is to make each function a separate transaction. The transaction to display
an account record, then, would work something like this:

e Find out from the terminal user which record is to be displayed.

e Read that record from the file.

e Display the information from that record at the terminal.

That seems straightforward. How about the add transaction?

e Get the data for the new record as keyed in by the user at the terminal.

e Write this data to the file.

Even simpler. However, there are a few things we've not taken into account.

First of all, we're not dealing with the familiar batch devices of card reader and line
printer here. The 3270-system terminals are radically different in their characteristics

from such batch devices. They are different, too, from line- or record-oriented devices
such as Teletypes! and IBM 2741s.

Second, there are human beings operating the terminals, and their happiness and
efficiency must be a major design goal in any application.

Third, we have to deal with the implications of processing in an online environment,
where our goals and constraints may be quite different from those that govern a batch
program.

1 “Teletype” is a trademark of the Teletype Corporation.

Chapter 2-1. CICS Example Application 21

what next?

Finally, we’ve not provided for any exceptional conditions. For example, what if the
record to be displayed isn’t in the file? Or if the one to be added is in the file? You
probably know that in a batch program about 80 percent of the effort and the code is
devoted to handling errors, even though this code is executed rarely. In online
programs, all these same problems have to be thought about and resolved, and there
are also some new potential problems.

What Next?

Before we continue trying to design our transactions, let’s learn a little more about
the 3270 systems that our users will be using to communicate with the transactions.
After all, one of the first things to be considered is the user interface: how will the
terminal operators communicate with this application, and how will it give them the
information they need?

We can then go on to find out more about a much wider range of issues: what makes
users happy (“human factors”), the design of data, programming for a CICS
environment, and so on.

But first, 3270s. If you are already familiar with 3270 terminals and the 3270 data
stream, you can skip ahead to “Chapter 2-3. Designing the User Interface” on
page 33.

22 CICS Application Programming Primer

IBM 3270 terminals

Chapter 2-2. 3270 Terminals

Remember, you're free to skip this chapter if you know about IBM 3270 terminals
already.

The 3270 Information Display System is a family of display and printer terminals.
Different 3270 device types and models differ in screen sizes, printer speeds, features
(like color and special symbol sets) and manner of attachment to the processor, but
they all use essentially the same data format.

You need to know a little about this format to make the best use of 3270-system
devices, and to understand the Basic Mapping Support (BMS) services that CICS
provides for communicating with these devices. That’s the purpose of this chapter.

Let’s talk about the IBM 3278 Display Station Model 2, which has a display screen
and a keyboard. This device is used for both input and output, and in both cases the
screen (or rather a buffer that represents it) is the crucial medium of exchange
between the terminal and the processor. The purpose of the keyboard is to modify the
screen, in preparation for input, and to signal when that input is ready to be sent to
the processor.

When your application program writes to a 3278, the processor sends a stream of data
in the special format used by 3270 devices. Most of the data in the stream is the text
that is to be displayed on the screen; the rest of it is control information that defines
where the text should go on the screen, whether it can be overtyped from the
keyboard later, and so on.

The printers that correspond to the 3278 can use this same data stream, so a stream
built for a display device can be used equally well for a printer.

3270 Field Structure

The screen of the 3278 Model 2 can display up to 1920 characters, in 24 rows and 80
columns. That is, the face of the screen is logically divided into an array of positions,
24 deep and 80 wide, each capable of displaying one character, with enough space
around it to separate it from the next character.

Each of these 1920 character positions is individually addressable. This means that
your COBOL application program can send data to any position on the screen,
without having to space it out with space characters to get it into the right location.
Your program does not, however, give an address for each character you want
displayed. Instead, within your program, you divide your display output into fields.

Chapter 2-2. 3270 Terminals 23

3270 field structure

A field on the 3278 screen is a consecutive set of character positions, all having the
same display characteristics (high intensity, normal intensity, protected, not
protected, and so on). Normally, you use a 3270 field in exactly the same way as a
field in a file record or an output report: to contain one item of data.

To show you how this works, Figure 5 shows the screen that the CICS system uses for
the standard sign-on transaction:

CICS/VS SIGNON - ENTER PERSONAL DETAILS

NAME: _
PASSWORD:

NEW PASSWORD:

Figure 5. The CICS Sign-On Screen

There are ten fields on this screen although, as shown, only four of the fields are
displaying character data. The first one is at row 1, column 1 (position 1,1), and it
contains the data “CICS/VS SIGNON - ENTER PERSONAL DETAILS”. The field is
specified as having the display characteristics of protected (meaning that the
terminal operator cannot type over that area of the screen) and bright (high
intensity, in this case just for emphasis). The second field is at position (4,5) and
contains the data “NAME:”. This is also protected and displayed at high intensity.
(The underscore after “NAME:” is the cursor and marks the position into which the
next character entered from the keyboard will go.) Both of these fields have been
used for output only, to convey something to the user. For the second field, it was to
show what should be typed into the third field, which is located immediately after the
second field at position (4,11).

This third field is different because we intend the user to key something into it which
will become input the next time the terminal transmits. So it isn’t protected. It is set
for normal intensity, and, even though you cannot see this by looking at the screen, it
is 20 positions long. This is the permitted length of the name field in the CICS
Sign-On Table, with which the contents of this field will latyr be compared.

At the end of this field is another field, known as a stopper field. (You can’t see this
one, either.) Its only function is to stop the user from keying more than 20 characters
into the name field. The reason for this is that the beginning, but not the end, of
each field is flagged in the buffer which represents the screen. The end of a field is
one position before the beginning of the next field. There is no data in this “stopper”
field; the important thing is that it is protected. Whenever you try to key into a
protected field on the screen, you are prevented from doing so, and the keyboard
locks. Users who try to key more than 20 characters into the name field, therefore,
run into this protected field, and are made aware of the error by the locking of the
keyboard.

24 CICS Application Programming Primer

output data stream

The next three fields are two lines down, at positions (6,5), (6,15) and (6,24). They are
rather like the three fields on the earlier line. The first of them contains the data
“PASSWORD:” and is protected. The second is the field into which the user is
supposed to enter the password. It is unprotected, and has another attribute that may
at first seem curious. It is dark or nondisplay. This means that the data in the field
does not show on the screen (whether the user puts it there or the program does),
even though it is very much there. Nondisplay is used for this field because
passwords are supposed to be secret, and this way no one passing by while the user is
signing-on will see the password. The third field is again a stopper field to stop the
user from keying in more than eight characters of password information.

The remaining three fields are two lines down again, at positions (8,5), (8,19), and

(8,28) and they are also parallel in function to the three on the previous line: label,
input field, and stopper field.

3270 Output Data Stream

Now let’s consider how this information is formatted for transmission from the
processor to the 3278. Figure 6 shows the data stream.

Control information affecting the whole transmission, such
as whether to unlock the keyboard or not, where to place
the cursor, and so on.

First ENCODED SCREEN ADDRESS showing where
field: the next field goes on the screen (row 1,
column 1)

CONTROL INFORMATION to show that a
field is about to begin

CONTROL INFORMATION to describe display
attributes of field: high intensity, protected

DATA to be displayed: "CICS/VS SIGNON -
ENTER PERSONAL DETAILS"

Figure 6 (Part 1 of 2). A 3270 Output Data Stream

Chapter 2-2. 3270 Terminals 25

output data stream

Second
field:

ENCODED SCREEN ADDRESS showing where
the next field goes on the screen (row 4,
column 5)

CONTROL INFORMATION to show that a
field is about to begin

CONTROL INFORMATION to describe display
attributes of field: high intensity, protected

DATA to be displayed "NAME:"

Third
Field:

CONTROL INFORMATION to show that a
field is about to begin

CONTROL INFORMATION to describe display
attributes of field: normal intensity,
unprotected

Fourth
Field:

ENCODED SCREEN ADDRESS showing where
the next field goes on the screen (row 4,
column 32)

CONTROL INFORMATION to show that a
field is about to begin

CONTROL INFORMATION to describe display
attributes of field: protected (stopper)

Fifth
Field:

ENCODED SCREEN ADDRESS showing where
the next field goes on the screen (row 6,
column 5)

CONTROL INFORMATION to show that a
field is about to begin

CONTROL INFORMATION to describe display
attributes of field: high intensity, protected

DATA to be displayed: "PASSWORD:"

...And so on for the remaining fields.

Figure 6 (Part 2 of 2). A 3270 Output Data Stream

There are several things to note about this data stream:

e For the first and second fields, a screen address appears in the data stream,
whereas for the next field it does not. This is because no new address needs to be
provided when one field immediately follows another. Addresses for these fields
could be included, but they would increase the length of the transmission. It is
important to keep transmissions as short as possible when dealing with terminals
that may be connected by telephone lines.

26 CICS Application Programming Primer

attribute bytes

e Similarly, data is included for the first two fields but not for the next two. Again,
if there is no data, it isn’t necessary to include anything in the data stream. This
also reduces the length of the transmission.

e We’ve shown the various fields for the screen being transmitted in the order they
appear on the screen. This is customary and natural, but it isn’t required by the
device, which will accept fields in any order.

e The most striking feature of the data stream is its variable length and format,
which depend on the presence or absence of data, adjacency or nonadjacency of
fields, and so on. This would be very cumbersome to produce in a COBOL
program, to say the least. Moreover, every time you moved something about on
the screen, you would have to change the program that produced the data stream.

Don’t panic! “Saved by BMS” on page 31 shows us the light at the end of this
particular tunnel.

3270 Attribute Bytes

One more point about this output data stream. If you followed the screen positions
used in the example carefully, you may have noticed that each field seems to be one
position too long. If the 20-position name field begins at (4,11), why doesn’t the
stopper field start at (4,31) instead of (4,32)? This is because the display attributes to
which we’ve referred (protected, bright, and so on) actually occupy one screen
position for each field. That is, if we start a 20-character field at position (4,11), the
attribute byte (as it is called) for the field is located at (4,11) and the actual data
goes from (4,12) through (4,31). The attribute byte looks like a space on the screen,
and is itself protected (whether or not the field to which it applies is protected), so
that the user cannot key into it and change the field identity.

As noted earlier, the attribute byte controls how data is shown on the screen. The
choices are:

e High intensity
e Normal intensity

e Dark (nondisplay).

The attribute byte also governs what can be done to the field from the keyboard.
Here the choices are:

e Unprotected: The user may key anything into the field.

e Numeric: The user may key only digits, decimal points, and minus signs into the
field.

e Protected: The user may not key into the field.

Chapter 2-2. 3270 Terminals 27

input data stream

e Autoskip: The user may not key into the field and, furthermore, the cursor will
automatically skip over the field if the previous field is filled.

Autoskip is usually used for stopper fields if the information in the previous field is of
fixed length and always fills the field. That way, the user can key continuously, and
doesn’t have to use the cursor advance key after filling a field to get to the next one.

After variable-length data, however, like the name field in the sign-on screen, it is
customary to make the stopper a protected field, instead. If you specify autoskip, and
the user keys too much, the excess goes into the next unprotected field, and the user
may not be aware of this. Where there are fields for both fixed-length and
variable-length data, some programmers like to use only protected stoppers, so that
the user consistently has to use the cursor advance key to get to the next field,
whether or not the current field is full. Others prefer to use both kinds on the same
screen.

The attribute byte also carries one more piece of information. This is the modified
data tag. It has to do with input, however, and so we’ll explain it later. (If you can’t
wait, you’ll find more details on page 29 and in “The BMS Macros” on page 111.)

Note: Not all combinations of attributes are permitted, but all the useful ones are.
We should also point out now that displays with additional features, like color and
special symbols, have more complex attribute combinations to express the additional
possibilities. However, the logic for formatting the data stream with these extended
attributes is essentially the same.

3270 Input Data Stream

Now that we’ve described what output to a 3278 looks like, what does the input look
like? There are several different possible formats, and the one used depends both on
the type of read command used and on certain other circumstances. Figure 7 shows
our sign-on screen after John Jones has been busy at it.

CICS/VS SIGNON - ENTER PERSONAL DETAILS

NAME: JOHN JONES
PASSWORD: OPNSESME

NEW PASSWORD: _

Figure 7. The Sign-On Screen in Use

We're showing you the password here but, remember, you wouldn’t normally see it
because it’s held in a nondisplay field.

28 CICS Application Programming Primer

input data stream

What is of interest to us is what CICS gets when it reads a screen like this one.
Figure 8 on page 29 shows us what comes back after the user presses the ENTER
key.

Control information affecting the whole transmission, such
as which key caused the input to be sent (ENTER, PFXx),
where the cursor is, and so on

First ENCODED SCREEN ADDRESS showing where
field: the field was on the screen (here Row 4,
Column 11).

CONTENTS of the field: "JOHN JONES" (10
characters, not the full 20 allowed).

Second ENCODED SCREEN ADDRESS showing where
field: the field was on the screen (here Row 6,
Column 15).

CONTENTS of the field: "OPNSESME"

Figure 8. A 3270 Input Data Stream
Points to note about this transmission are:

e Practically nothing came back. All the fields used for titles and labels have been
omitted from the transmission, and even the “new password” field, which the user
did not fill in, is missing. This is because only changed fields are transmitted
back on the kind of read used here by CICS. The reason the hardware works this
way is, again, to minimize the length of the transmission.

How does the 3278 know what to send? When a user keys into a field, a bit in the
attribute byte is turned on. This is the modified data tag, or “MDT.” You can also
turn this bit on when you write to the screen, so that the field is returned whether
or not the user keys into it. This provides a handy method for storing information
on the screen between transactions, but we’ll explain that later, in
“Communication Between Transactions” on page 89.

e The second thing to note is that only the significant portion of a changed field is
sent; the unused portion on the right-hand side of the field is not. This is because
the 3270 does not send empty positions on the screen. Empty positions are called
nulls, and have a character encoding of hexadecimal (hex) 00 (“LOW-VALUE” in
COBOL). If you ask for the screen to be erased (as you'll often want to) before
your data stream is written to it, the screen is set to nulls. Nulls aren’t the same
as spaces, even though they look the same on the screen. Spaces have a
hexadecimal representation of 40 and are transmitted; thus the space between
“JOHN“ and “JONES” comes in, but the unused part of the field after “JONES”
does not. This is, once again, to minimize the length of the data transmission.

Chapter 2-2. 3270 Terminals 29

“short-read” keys

The result of all these length-reduction measures is another data stream of extremely
variable format. This time the position of the data coming back depends not only on
the content of what was sent but also on what the operator did, presenting a
considerable challenge to decode.

We mentioned earlier that there were several different formats used for transmission
to the processor, depending on the type of read used and other circumstances.

One of the other circumstances is the type of key the operator used to send the input.
A number of keys cause the 3278 to send input to the processor at the earliest
opportunity (these keys include CLEAR and ENTER, the program access (PA) keys,
and the program function (PF) keys). Of these, the CLEAR key and the PA keys send
only the identity of the key itself, without sending any of the data on the screen. If
the operator uses one of these so-called “short-read” keys, the data stream shown in
Figure 8 ends right after the initial control information. This causes a special
situation which you’ll have to deal with in any program which tries to read a
formatted screen.

Unformatted 3270 Data

As well as transmitting a short data stream to the processor, the CLEAR key also
erases the screen. The entire screen is set to null values, and there are no fields.
You may prefer to think of the screen as just one big field, but it is a field without
attributes. The user can key into this field and send it to the processor. In fact, if
you think about it, almost every new transaction is going to start this way. The user
presses CLEAR to erase the leftovers from the previous operation, and then keys in
something to identify the next request and transmits it with the ENTER key. What
does this look like coming in to the processor?

Data that comes in from a screen that was not formatted into fields by a previous
write is called, very logically, unformatted data. The data stream looks like the one
in Figure 8 on page 29 except that no address is provided (the data is assumed to
start at the first position on the screen), and there is only one field. The field consists
of every character that isn’t a null - that is, every character that the user keyed -
regardless of where it is on the screen, and in the order it appears on the screen).

Unformatted data is handled in CICS with a slightly different set of commands from
formatted data. Unformatted data is actually simpler than formatted data (and you
can write it as well as receive it), but it isn’t nearly as useful. So we’ll only cover
formatted data in this Primer, and point you to where you can find out how to use
unformatted screens if you should want to.

30 CICS Application Programming Primer

BMS to the rescue

Saved by BMS

We said earlier that you do not have to deal directly with this data format in your
CICS program. The feature of CICS that spares you this complexity is called Basic
Mapping Support (BMS). BMS does several things for you:

e It allows you to deal with data in a fixed format, providing a data structure for
you to copy into your program in which the input fields (the name, password, and
new password in the example we showed) are always in the same place and of the
same (maximum) length.

e It allows you to deal with data by name. In this instance we might have called
the three fields where we expected input NAME, PSWD, and NEWPSWD. (We
would do this when we first defined the screen.) Then we could refer to these
variables by name in our program, without any concern for where they are on the
screen.

e It allows you to define all the constant data for the screen (titles, field labels, and

so on) separately from your program, so that you don’t have to clutter your code
with a great many statements like

MOVE 'CICS/VS SIGNON - ENTER PERSONAL DETAILS' TO

e It saves you from having to know about the details of the 3270 data stream.

With these facilities, you can change the arrangement of the screen, the words in the
titles, and so on without any changes to your program - a very important advantage.

“What BMS Does” on page 109 tells you more about BMS and explains how to use it.

Now, let’s go on and look at what we’ll have to consider when designing the user
interface.

Chapter 2-2. 3270 Terminals 31

the user interface

Chapter 2-3. Designing the User Interface

We know broadly what we want our application to do:

Display customer account records, given their account numbers
Add new account records

Modify existing account records

Delete account records

Print a list of the changes made to the account file

Print a single copy of a customer account record

Access records by name.

We also now know something about how the 3270 data stream works and how CICS
starts transactions. So we can start thinking about how our application might look
to the user.

A First Approach

One approach is to review the transactions which the user wants to do, and think
about what the user should see while performing each one.

The Display Transaction

If we take the simplest one as a starting point, displaying a record in the file, then we
need to decide:

1. How the user enters a request.

2. How we show the user the requested record.

3. What to do if the user makes a mistake.

The user need enter only a very little information to request the display of a record:
just the transaction type (display, in this case) and something to identify the record to
be displayed. The output, on the other hand, is quite extensive, consisting of all the

fields in the account record.

We can therefore imagine that a user wanting to display a record might switch on the
terminal, sign-on to the system, clear the screen, and enter something like:

Chapter 2-3. Designing the User Interface 33

displaying

DISP12345

“DISP” here is the transaction identifier that CICS needs to decide which transaction
the user wants to perform, and “12345” is the number of the account to be displayed.

If the requested record can be found in the Account File, the application program
should respond with a screen showing the data in the record.

To make the screen as easy as possible to understand, we should label each field to
show what it means. Figure 9 shows a possible screen format.

ACCOUNT FILE: RECORD DISPLAY

ACCOUNT NO: 12345 SURNAME : MOUNCE
FIRST: DAVID MI: C TITLE:
TELEPHONE: 7512483960 ADDRESS: 79 WISTFUL VISTA

PLEASANTVILLE, NY 10549
OTHERS WHO MAY CHARGE:

CHRISTA MOUNCE (WIFE) PETER MOUNCE (SON)

NO. CARDS ISSUED: 2 DATE ISSUED: 04/01/84 REASON: L

CARD CODE: C APPROVED BY: CES SPECIAL CODES: A J

ACCOUNT STATUS: OK CHARGE LIMIT: 2000.00

HISTORY: BALANCE BILLED AMOUNT PAID AMOUNT
0.00 04/25/84 101.37 05/04/84 101.37
0.00 05/25/84 42.50 06,/08/84 42.50

321.97 06/25/84 321.97

PRESS "CLEAR" OR "ENTER" WHEN FINISHED

Figure 9. A Typical Display Screen Format

If the request wasn’t correct, we have to write back some sort of message explaining
exactly what’s wrong. Very little can go wrong here with the display transaction
(unlike the add transaction, where all sorts of things can happen!). The user can
make a format error in specifying the record, or name a non-existent record and thus
try to display something that isn’t there.

Note that it is CICS that has to deal with errors in the transaction type. If the user
gets the “DISP” part wrong, CICS won’t know what transaction to start up, and will
so inform the user. So, if the user enters something other than “DISP”, but
something that happens to match a valid transaction identifier, CICS will happily
start up the “wrong” transaction. Beware! (The “cure” the user generally tries in
such a situation is usually to press the CLEAR key and try again.)

Other, “higher level” error possibilities include:

34 CICS Application Programming Primer

printing and adding

e The user may not be authorized for access
e The account file may not be online
e There may be a physical error while accessing a record from the file.

However, in the absence of these “high level” problems, as we said, very little can go
wrong here.

The Print Transaction

We can make the print transaction very similar to the display transaction. The only
functional difference will be that the output will go to a printer instead of the screen.
And if we intend to use more than one printer, we’ll probably want to let the user tell
us which one, which means another item of input (and, we must admit, more
opportunity for error).

The Add Transaction

When it comes to adding a new record to the file - an add transaction - we must still
think about the same three things as for the display transaction. Unlike the display
situation, however, the input required is very extensive. We could let users enter the
request and the particulars for an add at the same time, but this would make things
rather difficult for them, besides being a poor use of the 3270. With that many fields
to enter, we definitely want users to enter the input into formatted screens, with
labels to show where and how to enter the data.

So users will have to make two entries to do an add. The first one will display the
formatted screen, and the second will contain the input for the addition. The output
screen for the first stage of the add will be the skeleton into which the user is to enter
the data. No output is actually required from the second stage of the add, but good
human factors suggest that we consider telling the user that the transaction was
successful.

Also, unlike the display transaction, there are plenty of opportunities for errors on an
add. The record to be added might already exist on the file, or some of the fields
entered might be missing or incorrect or inconsistent with each other. We don’t want
to make our users start all over again if they get one or two items wrong, so we’ll
have to think of a way for them to fix any bad fields without rekeying the good ones.

Maybe an add transaction could go like this. The user would enter something like
“ADD 12345” and the transaction would do one of two things. Either it would
respond with an error message that the record to be added already existed (far better
to tell the user now, instead of after all the data for the record has been keyed in). Or
it would display a skeleton screen for the user to fill in.

Chapter 2-3. Designing the User Interface 35

data entry screen design

Now users entering records are probably reading from a form of some sort while they
do the data entry. It’s very helpful to them if you make the screen look as much like
their original data form as possible. If, for example, the original customer account
application form was as shown in Figure 10 on page 37, then Figure 11 on page 38
shows the sort of skeleton screen that we’d want. (The underscores simply show
where the input fields are; they wouldn’t appear on the screen.)

Notice there are some bits and pieces on the form that we haven’t transferred to the
data entry screen. For example, the addresses of the other account users, the
meanings of the four “Reason” codes, the format of the date, and the customer’s
signature.

While it’s generally true that a well-designed form will translate painlessly into a
data entry screen, never miss the chance to re-think aspects of the data entry task
from the terminal operator’s point of view. Also remember that if the operator’s
receiving information during a telephone conversation, the original form may be
largely irrelevant to that particular situation.

After the user had filled in this screen, the transaction would check the input fields
for reasonable and consistent values. If one or more of them were unacceptable, it
could redisplay the user’s input with the fields in error highlighted, and with a
message added that the highlighted fields were either wrong or inconsistent with each
other. The user could then fix the errors, and this input-edit-redisplay cycle could be
repeated until the input was right. Then the transaction would send a message to the
terminal saying that the record had been added to the file.

Strictly speaking, the transaction needn’t confirm that the addition was successful.
However, many users don’t entirely trust computers, and a wary user might develop
the habit of doing a display transaction after each add, just to make sure the add
worked. This would waste a lot of user and computer time, and can easily be avoided
by having a confirmation message.

The Modify Transaction

A modification could be almost like an add, except that instead of a skeleton screen
being displayed, the information in the record would be displayed instead. The user
would show the changes by typing over the old information on the screen.

36 CICS Application Programming Primer

original application form

Alibipiie
bouiique

CHARGE ACCOUNT — CUSTOMER APPLICATION FORM

Customer’s name: DAV|D MOU NCE

Home Address: 79 W|ST FU L V‘STA
PLEASANTVILLE NEW YORK 10549

Telephone Number: 75' Zu'a 39Go
Date: 03/ 27/9‘4' Signature@m C . MMCQ,

Other Account Users

vame: CHRISTA MOUNCE (Wife) ... PETER MOUNCE (Sew)
Address: o9 “’\,W{ Address: ad o LW’C

OFFICE USE ONLYJ

12345
2

Account Number:

No. of cards issued:

L Date: (MM/DD/YY) 0“- /OI /8"“

(N -new L-lost S-stolen R -revised)

AdJ

Reason:

CE€S

Special codes: Approved by:

Figure 10. The Original Customer Account Application Form

Chapter 2-3. Designing the User Interface

37

deleting

ACCOUNT FILE: NEW RECORD

ACCOUNT NO: SURNAME :
FIRST: MI: _ TITLE:
TELEPHONE : ADDRESS :

OTHERS WHO MAY CHARGE:

NO. CARDS ISSUED: _ DATE ISSUED: _ / /. REASON: _
CARD CODE: _ APPROVED BY: SPECIAL CODES: _ _

(message area)

Figure 11. A Corresponding Skeleton Screen

The Delete Transaction

The deletion could be a very simple matter. We could let the user enter
“DELE12345”, and then simply delete account number 12345, and send back a message
that we had done so. It turns out that this isn’t a good idea, however. Users could
easily make a mistake in keying the account number, and would be very distressed
when they realized that they had removed the wrong record and had to get it put back
again. Worse than that, they might not notice at all!

Generally, when you're about to perform something as potentially irrevocable as a
deletion in an online system, it’s a good idea to confirm that the user really wants to
go ahead with it.

Therefore, we probably want a deletion to be handled like a special case of a
modification. Users will enter the account number to be deleted; we’ll show them the
record they are about to delete; and instead of keying in changes as they would for a
modification, they will enter something to confirm that the record on the screen is
really the one they want to delete. Only then will we delete it and say that we’ve
done so.

Of course, we must give the user some way to say “no, I didn’t mean it,” that is, to
cancel the transaction, and escape the deletion. Come to think of it, we’ll have to do
that in all these update transactions. If a user starts to add a record and then can’t
complete the entry for some reason (perhaps some required information is missing),
then the user must be able to cancel the request without corrupting the files with a
half-completed addition, modification, or whatever.

38 CICS Application Programming Primer

menu screens

A User-Friendly Approach

Using a Menu Screen

Before going on to the other transactions, let’s look at an alternative approach to this
growing list of transaction identifiers. It’s called the menu technique, and it’s
become increasingly popular as a user interface.

It works like this. For any application, users need to remember just one transaction
identifier. When they want to do any transaction in that application (in our case,
add, display, print, and so on) they enter just the one transaction identifier. In
response, the screen displays a menu of things that the users can do in this
application. The menu has formatted fields for the data items that are required on
input. It also shows instructions in case users don’t remember exactly what to do.

The chief advantage of this technique is that the user has to remember almost
nothing, a big help to the “infrequent” users that we need to address in our example
application.

There are some other benefits as well: you can diagnose errors in the request input in
the same convenient way that we described for the “add” screen, so that the user gets
a good explanation of the problem and has to do a minimum of rekeying to correct the
errors. Also, when you complete a transaction such as an add, you can combine your
confirmation message with this menu screen. This way the user knows that the
previous entry was successful, and is all ready to enter the next request.

The menu for this application might look like the one here (Figure 12). Again, the
input fields are underscored in the figure to show their position, but the underscores
wouldn’t appear on the actual screen:

ACCOUNT FILE: MENU

TO SEARCH BY NAME, ENTER: ONLY SURNAME
REQUIRED. EITHER
SURNAME : FIRST NAME: MAY BE PARTIAL.

FOR INDIVIDUAL RECORDS, ENTER:
PRINTER REQUIRED

REQUEST TYPE: _ ACCOUNT: PRINTER: ONLY FOR PRINT
REQUESTS.
REQUEST TYPES: D = DISPLAY A = ADD X = DELETE
P = PRINT M = MODIFY
THEN PRESS "ENTER" -OR- PRESS "CLEAR" TO EXIT

(message area)

Figure 12. A Typical Menu Screen

Chapter 2-3. Designing the User Interface 39

menu screens

Almost the only disadvantage to this menu technique is that a user has to go through
one extra screen for the first transaction of a session, and one extra step (clearing the
screen in this case) to escape. The only time this is a serious matter is when users
need to mix transactions from different applications constantly. This isn’t the case in
our example, and we do have infrequent users to think about, so we’ll use the menu
approach.

So here’s how, say, a modify transaction will work:
1. The user keys in the four-character transaction identifier to get started.
2. The menu screen is displayed in response.

3. The user enters “M” for the request type, keys in an account number, and presses
ENTER.

If there’s a problem, the user will see the same screen with the fields in error
highlighted and a message at the bottom saying what’s wrong.

Otherwise, the response will be a display of the record to be modified, ready for the
user to change. The user will change the fields to be modified, and then press ENTER
to send the screen back. If there are errors in the changes, the transaction will send
back the input with the errors highlighted and a message if necessary. If (when) the
user gets it right, the transaction will update the file, and send back the menu screen,
with a message at the bottom saying that the modification just requested was
completed successfully. The user will then enter the next request, or clear the screen
to quit our application.

40 CICS Application Programming Primer

the log and name inquiries

Printing the Log

We've not yet dealt with the printing of the log of changes to the account file. The
log will be printed only occasionally, perhaps once a day, and this will be done by a
supervisor in the Accounting Department. We probably don’t want to include it in
our menu, because it will only confuse the other users, who may not even know what
a log is. So we’ll have a separate transaction identifier for this one function.

The main output, of course, will be the printed log. We should also send a
confirmation to the input terminal, however, in case the printer isn’t in the immediate
area or is busy with another task at the time of the request.

Name Inquiry
Finally, we must think a little more about the name inquiry transaction.

In view of the structure of the rest of the application, it would be very convenient if
we could just fetch a single record from the file on the basis of a name instead of an
account number. Unfortunately, this won’t usually be possible, because names are a
notorious problem. They cannot be depended on to be unique, they vary enormously
in format and length, and spelling is a great challenge. That, in fact, is exactly why
we assign an account number to each customer and use it as the file key, instead of
using the one identifier that is most natural (and that the customer is least likely to
forget).

It isn’t usually possible to guarantee a unique response to a request that specifies a
name, because we can’t depend on that name being unique (and the user may even
have misspelled it). What we want to do, then, is to give the users who need this
facility some way to get to the right account number by entering a name. Suppose
that our response to such a request is a list of customer names, in alphabetical order,
starting with the first one that matches the requested name, up to the capacity of the
screen.

In fact, since the user may be uncertain of the spelling, we’ll treat the name entered
as a generic or partial name, and show all the names that start in the way specified.
So, if the user enters “Adams,” the response will begin with the Adamses and
continue with the Adamsons. But if the name were one that had several common
spellings, such as “Reid” (also often “Reade”), then the user could enter just “Re” and
get both forms. We can treat the first name similarly. The user could enter the first
name (or initial) if known, to limit the number of responses, but we won’t make this
mandatory.

Chapter 2-3. Designing the User Interface 41

the full menu

In our example, remember, we learned from our user survey that the Customer
Service people are going to be the heaviest users. Most of their transactions will be
inquiries by name. Moreover, most of these inquiries involve just three items besides
the name: address, account status, and charge limit. So, when a user inquires by
name, it makes sense to display these items along with the name and account number.
That way these users will usually see all the data they want on the first response,
without having to ask for the detailed display of one particular record.

Sometimes, of course, they will want to see the whole record, and the Accounting
Department will want this facility as well. So we must provide some easy way to get
from the summary display to the other transactions that the users might want to do,
once they have the account number. Suppose we use the remaining lines on the menu
screen to display the results of a name search when one is requested. After a search,
the users can then enter the request directly, without changing screens, on the menu
to which they are accustomed. Figure 13 shows how the expanded menu screen might
look:

ACCOUNT FILE: MENU

TO SEARCH BY NAME, ENTER: ONLY SURNAME
. REQUIRED. EITHER
SURNAME : FIRST NAME: MAY BE PARTIAL.

FOR INDIVIDUAL RECORDS, ENTER:
PRINTER REQUIRED

REQUEST TYPE: _ ACCOUNT: PRINTER: ONLY FOR PRINT
REQUESTS.
REQUEST TYPES: D = DISPLAY A = ADD X = DELETE
P = PRINT M = MODIFY
THEN PRESS "ENTER" -OR- PRESS "CLEAR" TO EXIT
ACCT SURNAME FIRST MI TTL ADDRESS LIMIT

RERREEN

L Y A |
F A

(message area)

'

Figure 13. An Expanded Menu Screen

42 CICS Application Programming Primer

our interface guidelines

Some Interface Design Principles

In reaching our current idea of how our user interface will look, we’ve based most of
our decisions on what is easiest for the user. Indeed, that should be the cardinal rule.
Human time has become so much more valuable than computer time that it is worth a
lot of effort and coding to make the user as productive as possible.

It isn’t always obvious how to do this to best advantage, and what is best for one user
may not be best for another. This applies especially to occasional users of an
application. In fact, the style of conversation between users and computers has
changed significantly as people have learned more about the “human factors” aspect
of online systems.

The advent of sophisticated terminals, like those in the 3270 system, has also had an
enormous effect in this area, as it became practical to deal with users in ways not
possible with earlier devices. The whole idea of using a menu, for example, came
much later than the original release of CICS, and depends explicitly on the
characteristics of the 3270 for success.

Though there are no hard-and-fast rules, and though there can be many good designs
for the user interface, there are five guidelines that we can safely propose:

— 1. Make screens easy to understand

e Keep to the rules used in forms design: Try to give the screen layout an
uncluttered appearance and, to the extent possible, a columnar structure, so
that the reader’s eye moves easily from one item to the next and doesn’t have
to jump long distances.

e Put a title on the screen, so that users know where they are in the current
transaction.

e Be consistent from screen to screen. If you put the title on the top center of
one screen, put it there on all the screens. If you put the messages at the
bottom of one screen, put them there on all the screens.

e If the user will be reading from a form for input to a screen, make the screen
look as much as possible like the form. Put the fields in the same order, and
use the same placement as far as possible.

e Likewise, if a screen is used to display information that the user is
accustomed to seeing printed on a form, make the screen resemble the form
as nearly as possible.

Chapter 2-3. Designing the User Interface 43

our interface guidelines

— 2. Cut down what the user must remember

e If there are more than a few fields to be filled in, use a formatted screen with
labels and instructions.

e Where possible, put instructions on the screen to show what the user can do
next.

e Use consistent procedures, both within and across application programs. For
example, if the CLEAR key is used to cancel in one transaction, use it that
way in all transactions.

— 3. Protect users from themselves

If a user is about to do something that’s hard to undo, such as a file deletion, get
the user to confirm that it’s the right deletion.

—— 4. Save the user’s time and patience

e Minimize the number of characters that have to be keyed.
e Make the user change screens as little as possible.

e Make it as easy as possible to correct errors. There are many ways to do
this. In our application, for example, we stick to the following:

— We redisplay the user’s input in the same screen as the one in which it
was entered.

— We diagnose all the errors at once (to the extent possible).
— We highlight fields that have errors.

— If the user misses any required fields, we fill them with asterisks and
highlight them.

— We place the cursor under the start of the first field in error.
— We display an explanatory message if the error may not be obvious.
e Place the cursor where the user will probably want to key first.

e Minimize the number of times that the users have to skip over fields.

44 CICS Application Programming Primer

our interface guidelines

5. Reassure users

Give a positive confirmation that a requested action has been done
successfully.

When you know a particular response time is likely to be longer than usual
(because of the operation being performed) consider sending an intermediate

display.

Chapter 2-3. Designing the User Interface

45

the data

Chapter 2-4. Coming to Grips with the Data

Having decided what you want to do, you can now determine what data will be
required to do it and how to organize that data.

The Account File

In this application, we know that we need access to all the fields that make up
records in the existing account file, because this is the data that we intend to
maintain and display. We need direct access to these records by account number for
several of the required operations (display, add, and so on). Happily, this file exists in
a form directly usable by CICS (a VSAM key-sequenced data set (KSDS), with the
exact key that we need). This isn’t pure luck or coincidence. The account number is
the natural key for this file, and a VSAM key-sequenced data set is a good choice for
a mixture of sequential and direct processing, such as probably occurs now in the
batch programs that use this file. Figure 14 shows the record format for this file.

FIELD LENGTH OCCURS TOTAL
Account Number (Key) 5 1 5
Surname 18 i 18
First Name 12 1 12
Middle initial 1 1 1
Title (Jr, Sr, and so on) 4 1 4
Telephone number 10 4 10
Address line 24 3 72
Other charge name 32 4 128
Cards issued 1 1 1
Date issued 6 ell 6
Reason issued 1 4 A1
Card code 1 1 il
Approver (initials) 3 1 3
Special codes cl 3 3
Account status 2 i, 2
Charge limit 8 1 8
Payment history: (36) 3 108

-Balance 8

-Bill date 6

-Bill amount 8

-Date paid 6

-Amount paid 8

Chapter 2-4. The Data 47

access by customer name

Access by Name

As well as accessing the account file records by account number, we need to access
them by a second key - the customer name. There are many ways of achieving an
alternative path into a file. For example, VSAM provides a facility called an
alternate index, which can be used in CICS.

In addition, CICS/DOS/VS supports two data base systems: the relational Structured
Query Language/Data System (SQL/DS) and the hierarchical Data Language/1 (DL/1).
Similarly, CICS/OS/VS supports the DATABASE 2 relational product, and IMS/DB
DL/1. These systems provide powerful cross-indexing facilities, and they have many
other features that reduce the coding required in user applications. They support
complex data structures, provide increased function, and simplify the maintenance of
file integrity. If you have data that you need to access by more than just a few
different key fields, or if you have data that does not arrange itself into neat units
like the account records in this application, you should evaluate seriously the use of a
data base system.

However, all these data base products are beyond the scope of this Primer. For our
application we’ll use a simple technique, frequently used and quite appropriate to an
application of this size. We’ll build a small separate file, in name sequence order, to
use as an index into the account file.)

This is probably going to offer us better performance for sequential browsing of
customer names than, say, an alternate VSAM index.

Choosing the File Organization

For the initial read, we’ll need direct access to the index file when we process an
inquiry by name. After that, we’ll read sequentially until we have enough names to
fill one screen. So VSAM key-sequenced organization? is appropriate to this file as
well as to the account file. (“Other File Services” on page 164 lists the other file
access methods supported in CICS. VSAM KSDS is widely applicable, however, and
is the only one covered in this book.)

Name Index Records

What do we need in our name index records? We need the surname, clearly, and the
first name. We need the account number, for access to the main file and to ensure a
unique key. This is all we really need. However, since we're maintaining our own
index file, we've the option of putting more than pointers into it. Let’s see what else
we can usefully put into the name index file.

2 File organization, of course, isn’t generally chosen by an application programmer, but by
the application designer.

48 CICS Application Programming Primer

name index records

In our application, we could produce the display shown in Figure 13 on page 42 in
two different ways:

e Read the name from the name index record and, for each name, use the account
number in the index to access the account file. This can get us the address, the
account status, and the charge limit.

e Repeat the address, the account status, and the charge limit fields within the
name index file. We’d then only need to access the name index file (and not the
account file) to get these items.

In the second case, the index records would be a little larger as a result, and we’d
have two copies of some fields (a potential source of trouble in large file-based
systems). On the other hand, we could avoid one read for every name in the response
to a name inquiry.

This latter point turns out to be important. In VSAM, one read brings a whole
control interval (CI) of data into virtual storage. CICS passes to your program only
the particular logical record that your program asked for, but on your next program
read, CICS can return your record directly, without another VSAM read, if the record
is in the same control interval. When you are reading in key sequence, the
probability of the record being in the same control interval is very high. In our
example, we’ll be going through the name index records in name order, and the
records are small, so we can expect there to be only one physical read for several
logical reads.

However, if we needed to access the account file once for each of these reads, there
would probably be a physical read to that file for every logical read to the index file,
as we wouldn’t be reading the account file in sequential (customer number) order.

In deciding which method to choose, we must weigh the cost of the many additional
reads against file space and against the possible complications of keeping the two files
synchronized. Changes that will have to be made to the batch billing and payment
system need to be evaluated as well. If searching by name were an infrequent
request, or if any of these other factors had a large cost associated, we might choose
the first method. However, for our example we’ll assume that this isn’t so and, since
inquiry by name will be by far the most frequent transaction, we’ll include these fields
in the index.

Figure 15 on page 50 shows a reasonable layout for the name index record:

Chapter 2-4. The Data 49

the control interval size

Account Status
Charge Limit

FIELD LENGTH (in bytes)
Surname 12 These two fields form
Account Number 5 the key.
First name 7
Middle Initial 1
Title 4
Street Address 24
2
8

Figure 15. The Name Index Record Format

The first two fields together form the key. It will be unique because account numbers
are unique, and it will allow us to search by surname, using a partial key of variable
length. Notice that we chose field lengths for the surname and first name that were
shorter than the corresponding fields in the account file. We also included only one
line of the address. This keeps our index records reasonably small and lets us display
a name index record on a single line of the screen. We can afford to do this because
our purpose is to help the user in recognizing the right name, not to account for all
the possibilities that can occur in names and addresses.

Choosing a Control Interval (CI) Size

One of the issues in designing VSAM files is choosing control interval sizes for the
data and the index. The choice depends partly on the fit of records into the CI, but it
also depends on whether the data will be accessed directly or sequentially. In our
example, the account file will always be accessed directly. That is, there is little or
no chance of reading account records in account number order. So a large data
control interval will hurt rather than help us. It will mean larger buffers (more
demand for virtual storage), and more data will be transferred than can be used (the
larger the interval, the more records transferred in one read). Therefore a small data
CI is appropriate for this file.

In contrast, the name index file will be read sequentially more often than directly.
The first read in a name inquiry will of course be random, but after that we’ll tend to
read several records in sequence. Therefore it will be helpful to get many logical
records in a single physical read, and so we’ll choose a large data CI size for the name
index.

All these physical reads are done by CICS using VSAM. Your program is concerned
only with logical reads, which are completely unaffected by CI size. So you don’t
have to think about these factors. However, a good application designer will try to
take all such factors into consideration.

50 CICS Application Programming Primer

protecting the file

While learning, you can certainly put off the choice of the “best” CI size until your
program is working. After all, you can change the CI sizes of your files without
changing your application code or your CICS tables, and you may wish to do this
later if trying to tune your system for faster response.

Recovery Requirements

One of the first requirements for the example application was to maintain the
integrity of the account file. We'll see in “Chapter 2-7. A Basic Decision:
Conversational or Pseudoconversational” on page 77 how CICS prevents the loss of
integrity associated with partially completed transactions, and we’ll use this feature
to keep the two files (the name index file and the account file) properly synchronized.
However, we must also protect the account file from disasters such as a head crash.

In a batch environment, you can keep an extra copy of an important file, or keep
enough information to recreate it (by keeping back versions, for instance, with the
inputs to the update runs). In an online environment, this isn’t so easily done. You
cannot copy the file after every update. Nor can you afford to lose all the updates
since the last time you copied the file. These updates were entered at terminals by
many different users, who may not remember what stage they had reached when you
last secured the file, who may not have ready access to the input documents any
longer, and who will certainly be very cross if they have to rekey a large number of
transactions.

CICS solves this problem by using a variation on the batch technique. If you have a
file that must be protected, you ask CICS to journal the updates. CICS then keeps a
copy of every change made to the file on a tape or disk. It logs these changes on the
system log, which is journal number one. If you lose a file, you go back to the most
recent copy of it and recreate it from that. Then you run a program that applies the
changes recorded on all the journals created since that copy was made.

In our example application, the account file is clearly a file that must be protected in
this way. In contrast, the index file does not require these precautions. We do have
to protect its integrity from partially completed transactions, just as we do the
account file. However, we can always recreate the index file from the account file
with a very simple batch program (see “Compiling and Link-Editing the Index File
Program” on page 272) so it isn’t necessary to journal the changes to it, nor even to
make periodic security copies.

Chapter 2-4. The Data 51

- s R
1 - - . =
L] . B . Bl
ni = B
__I -!. st S - :
- % - . . - -1 -
I X LR s . -t .
B o= 1 1 " .
K LS N - B -
=
= - - N - .
. 0 D - - .
i . v - - - -
'_:_..!--v i R B “r, | g . - o .
- - I,H.'- - lI i.- N N i
- i -) 1 N N N B
. B a - - . - .
- % [B ':: Ir - - T - : -, 1 . S
. i . o % = - - '. - N i
B B “ B B - B -
L - N i - N
- N -
N . - - s B
- .
- El
- - o = =
- o
= . - . . v
- =- . " . N
N - Bl -
s wa
- e
=,
w -
Bl - .
P .
u, ' .'-n‘"
* 1 N -
.:.‘_ -,
- =~ - @
. yoocmea L
e
- .
-
. o F
y .
. -
Tk
B B
- " - -
-l i
=
e . e - i i
o
o -
» - B -
Lo - 1
a .
1, B . .
o .
L R
i "
. -
1
1 1
. 1 -

refining the design

Chapter 2-5. Designing the Transactions: More
Detail

We’ve now looked at several principles that we need to bear in mind when working on
application programs for online transactions. Next, let’s have a closer look at what
we have to do to accomplish the functions that make up our example. Some people
just write out, in English, the transaction flow. Others prefer flowcharts. You’ll find
both in this chapter.

Now that we’ve decided to give the user a “menu” screen, we’ll start by displaying
this menu and analyzing the request entered on it. After that we’ll describe the
requirements according to the type of request (add, display, and so on).

Chapter 2-5. Transaction Design 53

analyzing the request

Request Analysis

1. Display the menu screen, (as shown in Figure 12 on page 39).
2. Wait for the user to enter a request.
3. Analyze the request, which may be:
a. To leave the application entirely.
b. To add, modify, delete, display, or print a record.
c. To search on a name.
d. None of the above.
4. Process according to the type of request.
e In case a above, simply return control to CICS.
e In cases b and c, process as described on later pages.
e If the request cannot be deciphered (case d), send an error message to the

user. Then go back to step 2 to wait for the user to correct the input. (When
it arrives, repeat the processing from step 3 above.)

54 CICS Application Programming Primer

analyzing the request

Display the
Menu Screen

>

Get the Input
from the User

« ©

Analyze
the User’s
Request

Return Control
to CICS

Proceed, to
Add, Modify,
Delete, Display,
or Print . ..

Proceed,
to Name
Search

Send the User
an Error
Message

Figure 16.

Request Analysis

Chapter 2-5. Transaction Design 55

adding a customer

Add Processing

1. Check the customer account number that was entered along with the request. It
must be present, and:

a. Numeric

b. In the proper range (we’ll assume the Accounting Department restricts
numbers to the range from 10 000 to 79 999)

c. Not already used (that is, not already in the file).

If any of these conditions isn’t met, send a message to the user saying what is
wrong. Then go back to step 2 of “Request Analysis” to wait for the corrected
input. When it arrives, processing will resume at step 3 of that process, so that the
user has a full range of choices at this point. That is, the user can correct the add
request, change to a different type of request, or quit the application entirely.

2. If the account number is acceptable, send a skeleton screen (see Figure 11 on
page 38) back to the terminal so that the user can fill in the fields for the new
record.

3. Wait for the user to enter the data (or to signal a desire to quit by using the
CLEAR key).

4. See whether the user wants to continue this operation. (He or she might have
had trouble entering this particular record or had a change of mind.) If the user
doesn’t want to go on, display the menu screen again with a message like
“previous request cancelled” and go to step 2 of “Request Analysis” to wait for the
next request to come in.

5. Otherwise, check the fields read from the filled-in data entry screen for
reasonableness and consistency. If there are errors, send a message back to the
terminal saying what the errors are, and go back to step 3 to wait for the next
input.

6. If no errors are detected in the input, update the files:

a. Write an image of the new record to the change log.

b. Build a new account record using the information from the input screen, and
add this record to the file.

c. Build the corresponding name index record and add this to the name index
file.

7. Redisplay the menu screen, with a message to say what has just been done, and
resume at step 2 of “Request Analysis.”

56 CICS Application Programming Primer

adding a customer

Request
Canceled”

Message to
User

Is
Account Number:
-Numeric?
-In right range?
-New?

Send the User
an Error
Message

Send a Skeleton
Data Entry
Screen

to the User

Get the input
from the User

Does User
want to
quit?

Send the User
an Error
Message

Are fields
in Map OK?

Write an
image of the
New Record
to the

Change Log

Build, and Add,
New Record
to the

Account File

Build, and Add,
New Name

Index Record
to Index File

Send the User
a Confirmation
Message

Figure 17.

Add Processing

Chapter 2-5. Transaction Design 57

changing a record

Modify Processing

1. Check the account number that is entered along with the request. It must be
present, and:

a. Numeric
b. In the proper range (10 000 to 79 999)
c. Already on file.

Just as in the add processing, if any of these conditions isn’t met, send a message
to the user saying what is wrong, and then go to step 2 of “Request Analysis” to
await corrected (new) input.

2. Build a display of the current contents of the record from the information on file,
and send it to the user’s screen.

3. Wait for the user to enter the changes (or to indicate, with the CLEAR key, a
desire to abandon the transaction).

4. If the user doesn’t want to continue, send a fresh menu screen with a message
acknowledging the cancellation and then go to step 2 of “Request Analysis” to
wait for the next request.

5. Build a new version of the record by applying the changes entered on the screen
to the old version of the record.

6. Check all items in the new record for reasonableness and consistency with each
other. If there are errors, send the input screen back to the terminal with all the
errors noted. Also, if there are no differences between the new record and the old
one, send a message noting this (the user may have made an error and should be
notified). Treat this situation just like an error in a data item. Return to step 3
to await corrected input.

7. If there are no errors in the input, update the files:

a. Write a record of the changes (that is, images of the old and new records, plus
an indication of the changed areas) to the change log.

b. Replace the old record in the file with the new version.

c. If the changes affected the corresponding index record, replace that record,
too, with a revised version.

8. Redisplay the menu screen, with a message to say what has just been done, and
resume at step 2 of “Request Analysis.”

58 CICS Application Programming Primer

changing a record

Is
Account Number!
-Numeric?
-In right range?
-on the File?

No

Send the User
an Error
Message

Current Record
to the User

Get the Input
from the User

Does User

Send "Previous
Request
Canceled"
Message to
User

want to
quit?

Send the User
an Error
Message

Build the
new version
of the Record

Errors, or
no changes?

Write an
Image ofthe

New Record to
the Change
Log

Replace the
old Record on
the File; and
index Record
if affected

Send the
User a

Confirmation
Message

®

Figure 18. Modify Processing

59

Chapter 2-5. Transaction Design

deleting a record

Delete Processing

1. Check the account number entered with the request; the requirements and the
error processing are the same as for “Modify Processing” on page 58.

2. Build a display of the contents of the record from the information in the account
file and send this to the terminal.

3. Wait for the user to confirm or cancel the delete request.

4. See if the user has decided to cancel the delete request. If so, proceed as in step 4
of “Add Processing” on page 56.

5. If the user has not cancelled, see whether he or she has confirmed the delete
request. If not, send a message asking the user either to confirm or cancel, and go
back to step 3.

6. If the delete request is confirmed, update the files:

a. Write an image of the deleted record to the change log.
b. Delete the record from the account file.

c. Delete the corresponding name index record from that file.

7. Redisplay the menu screen, with a message to say what has just been done, and go
back to step 2 of “Request Analysis” on page 54 to wait for the next request.

60 CICS Application Programming Primer

deleting a record

Is
Account Number:
-Numeric?
-In right range?
con the File?

Send the User
an Error
Message

Build, and Show,
Current Record
to the User

Get the Input
from the User

Does User
want to
quit?

Yes

Send the User

Send "Previous

Request

Canceled" an Error
Message Message
to User

Is Deletion
Confirmed?

Write an
Image of

the Deleted
Record to the
Change Log

Delete both the
Record and the
corresponding
Index Record

Send the User
a Confirmation
Message

Figure 19. Delete Processing

Chapter 2-5. Transaction Design

displaying a record

Display Processing

1. Check the account number entered with the request; the requirements and the
error processing are the same as for “Modify Processing” on page 58.

2. Build a display of the contents of the record from the information in the account
file, and send it to the screen.

3. Wait for the next input from the terminal (indicating that the user has finished
looking at the display), and then go back to step 1 of “Request Analysis” on
page 54.

62 CICS Application Programming Primer

displaying a record

Is
Account Number:

No
-Numeric?
-In right range?
-on the File?
Send the User
an Error
Build, and Show, Message
Current Record
to the User

Get the Input
from the User

Figure 20. Display Processing

Chapter 2-5. Transaction Design 63

printing a record

Print Processing

1. Check the account number entered with the request; the requirements are the
same as for a “modify” request. Also check the name of the printer entered with
the request. It must be present and must correspond to the name of a real printer
known to CICS. If either input item is in error, send an appropriate message to
the terminal and return to step 2 of “Request Analysis” on page 54 to await
corrected input.

2. Build a display image of the contents of the record from the information in the
account file, (printers understand the same data streams that displays do).

3. Send this image to the indicated printer.

4. Send a message to the terminal, saying that the print request has been processed;
then go back to step 2 of “Request Analysis” on page 54 to await the next request.

64 CICS Application Programming Primer

printing a record

Send the User
an Error
Message

Is
Account Number:
-Numeric?
-In right ranc);e?
-on the File?

No

Send the User
an Error
Message

Is the Printer
both Present
and Known
to CICS

Build, and Send,
an Image of the
Record to the
Printer

Send "Print
Request

Processed”
Message to
the User

Figure 21.

Print Processing

Chapter 2-5. Transaction Design 65

finding a customer name

Name Inquiry Processing

1. Check the name search input:

e The surname must be present and alphabetic
e The first name must be alphabetic, if present.

If either condition isn’t met, send an error message to the terminal and go back to
step 2 of “Request Analysis” on page 54 to wait for corrected input or another
request.

2. If the names are correct, find the first index file record that has a surname that
matches the (full or partial) surname specified in the input, or which is just
higher in the alphabet than the input surname.

3. Build the search output part of the display, one line at a time.

a. Read the next record in the index file.

b. See if this record meets the input criteria for the given name. If it does, build
an output line from it.

Repeat this step (building one line at a time, remember) until the surname read

from the file is higher in the alphabet than any that would match the input

surname, or the end of the file is reached, or all the output lines have been used.
4. Send the completed output to the screen.

5. Wait for the user’s next request.

6. If the next input shows that the user wants to continue the search, go back to step
2, using as a starting point the last record read in producing the previous display.

7. If the user doesn’t want to continue, go to step 3 of “Request Analysis” on page 54
to find out what he or she wants to do instead.

66 CICS Application Programming Primer

finding a customer name

Is Surname
Present and
Alpha?

Is First
Name Alpha
(if present)?

Find the first
Index entry
that matches
or exceeds
Surname

—

Do

Send the User
an Error
Message

Search

Routine

Send Screen
to the User

Get the Input
from the User

Search
again?

Yes

v

Exit from
Search Routine

Read the next
Index Record

Is
Surname
High?

Output
Area
full?

Build Output
Line if
Appropriate

L |

Figure 22. Name Inquiry Processing

Chapter 2-5. Transaction Design 67

printing the change log

Printing the Log

1. Read the first (next) record from the log.

2. Write the information read to the log printer.

3. Repeat steps 1 and 2 until there are no more records on the log.

4. Delete the log records once they have been printed.

You'll find more information about this log in “Program ACCT03: Requests for
Printing” on page 99. (We mention this now because the concept of the log and its

printing has given some readers minor problems when reviewing earlier drafts of this
Primer.)

68 CICS Application Programming Primer

printing the change log

Read the
next Record
from

the Log

Write the
the Record
to the
Printer

More Log
Records?

Delete the
Log Records
that have
just been
printed

Figure 23. Printing the Log

Chapter 2-5. Transaction Design 69

summary

Summary

We’'ve now seen the requirements for the various functions our users can perform at
(or, in the case of printing, from) their terminals.

The next thing we need to do is to consider how to break up these functions into
CICS transactions, and what factors affect program design in a CICS environment.

70 CICS Application Programming Primer

saving resources

Chapter 2-6. Programming for a CICS
Environment

The overall design goals in an online environment are the same as those in a batch
environment: to provide as much service (do as much useful work) as possible while
using as little resource as possible.

Deciding what services to provide is, as we noted in “Defining the Problem” on

page 18, the first step in the design. It takes a little experience and experimentation
in online programming to know what additional services you can provide at
reasonable cost, beyond simply replacing batch services with equivalent online
services.

In our example, for instance, we decided initially to replace the function of the old
printed account listing with the ability to display individual records on the screen.
Originally, we had no plans to allow users to print individual records, even though it
seemed an obvious feature to provide, once a user pointed out how useful it would be.
This kind of interaction with potential users is invaluable in arriving at a design that
is good from the user’s point of view. It should be repeated often in the design cycle,
as your insight into the application and the programming requirements develops.

Resources

After deciding what to do, what resources do we have to conserve while providing this
function? Some of them are the traditional ones that are common to both batch
programming and online programming:

e Processor storage
e Processor time
e Auxiliary storage space and transmission capacity to it.

Others are new, and require some new considerations in design. They are:

e User time and good humor

o One-user-at-a-time resources, such as terminals, file records, scratch-pad areas,
and so on

e Line transmission capacity.

Let’s take these individually and develop some guidelines for designing and
programming CICS applications from them. Remember, there’s bound to be conflict

Chapter 2-6. The CICS Environment 71

processor storage

from time to time when trying to save one resource at the “cost” of another. The
appropriate compromises will vary from one program to the next.

“Traditional” Resources
Processor Storage

The first resource to consider is processor storage. Your applications use up storage
in two ways. First, there are the CICS control blocks associated with any transaction
being processed, and second, there is the program or programs being executed to
accomplish the transaction. The programs, in turn, take up space both for executable
code and for working-storage areas. In an online system, the storage needs for these
purposes constantly come and go. They exist only for at most the duration of a
transaction, and so in assessing storage needs, we have to consider not only how
much, but for how long. The trade-off between space and time is complex, but at a
minimum we can say:

—— Processor Storage Guidelines (1)

Keep programs short.
Keep Working-Storage short.

Keep programs short in duration of use.

How transactions use storage over time is taken up again in “Chapter 2-7. A Basic
Decision: Conversational or Pseudoconversational” on page 77.

We should also note that CICS/VS is a virtual storage system, and the good coding
practices observed in batch programming for a virtual storage environment apply
equally well to CICS. These include:

—— Processor Storage Guidelines (2)
Keep GOTOs to a minimum.
Place subroutines near the code that PERFORMs them.

Avoid long searches for data.

72 CICS Application Programming Primer

PERFORMs in CICS

Some Remarks About PERFORM: Having mentioned subroutines, let’s stay with
them for a few moments. COBOL programmers learning CICS often ask about the
pros and cons of using PERFORMs in CICS.

First of all, using PERFORM to execute a COBOL subroutine is very much more
efficient than the CICS overheads associated with a CICS command to link to, or
transfer control to, another program. However, repeating the subroutine in each of
your COBOL transactions is going to cost you more storage. That is, if you’re using
PERFORM for repeated code, you're trading space against (possible) paging.

Like earlier COBOL compilers, the new VS COBOL II compiler (OS/VS only) allows a
COBOL program to use CALLs to external routines, but now the called routines can
issue CICS commands. This avoids the CICS overheads, but it does mean link-editing
the routines with every calling program.

We've some more to say in the next part of the Primer (in “The COBOL CALL
Statement” on page 179).

Secondly, the matter also arises in COBOL loop situations. You see, COBOL doesn’t
let you put the PERFORM which controls the loop physically adjacent to the actual
code of the loop, unless you cheat and use a GOTO rather unnaturally. PERFORMs
are ok for loops, but always keep the code you PERFORM as near as you can to the
controlling PERFORM statement, to minimize the risk of the two things being in
separate pages of storage.

Finally, the question of a PERFORM also crops up with regard to code that isn’t a
true “subroutine” in the old-fashioned sense, and code which the programmer never
really considered breaking off as a separate (sub)routine.

This kind of PERFORM comes from some of the structured programming rules, where
you PERFORM blocks of code (often physically distant in the program, with
attendant paging implications) for reasons of neatness, readability, maintainability,
and so on. The response time impact of flipping through a lot of pages is of course
much more critical in a real-time environment than in batch, because you have to
compete with all those other terminal users instead of just a few other jobs.

—— Our “PERFORM?” Guidelines

Use PERFORMs to help structure your code (but watch out for increased
paging).

Keep PERFORMed code as close as possible to the PERFORM statement.

Use PERFORM for long code, or code used in a great many places.

Chapter 2-6. The CICS Environment 73

processor time and disk storage

Processor Time

In general, we need to conserve processor time in CICS in the same way as in a batch
program. The major factor is exactly the same: calls for operating system services
take much longer, relatively speaking, than straight application code. This is true
whether you are coding in CICS, where a call takes the form of a CICS command, or
in batch COBOL, where a call is implicit in your input-output statements (OPEN,
READ, WRITE and so on). So, avoiding unnecessary commands in a CICS design will
reduce processor time much more than fine tuning your COBOL code, just as avoiding

a single input/output operation in a regular program will make up for many MOVEs
and GOTOs.

It is never desirable to do long calculations (matrix inversion and such) in an online
program. This is because any online program is sharing the processor with many
other programs (or occurrences of the same program) servicing users who each think
they have the full attention of the “computer.” Fortunately, such long calculations
are rarely needed in online programs.

—— Processor Time Guidelines

Avoid unnecessary CICS commands.

Avoid excessively long calculations.

Auxiliary Storage

Disk space and transfer capacity are minimized in an online system in the same way
as in a batch system. What differs is the following. In a batch system, the system
programmer arranges data sets on disk according to what jobs might run
concurrently. In an online system, however, the system programmer arranges data
sets according to what transactions might execute concurrently. The same techniques
are used for tuning: statistics on device and channel utilization in combination with
knowledge of the applications.

Resources Specific to Working Online
This brings us to the new considerations.
User Time and Good Humor

We’ve already discussed (in “Some Interface Design Principles” on page 43) how user
time and aggravation can be minimized. You’'ll find our guidelines there.

74 CICS Application Programming Primer

“online” resources

One-User-at-a-Time Resources

The next candidates for conservation are a whole class of resources that can be used
by only one user (one transaction) at a time. A file record is a perfect example of this
type of resource. As we've noted several times, we do not want two transactions
updating the same record at the same time. CICS provides the enqueue mechanisms
to prevent conflicts between transactions over such resources. What you have to
remember in designing a transaction is that when one user has access to such a
resource, everyone else who wants it will have to wait. Therefore:

—— Exclusive-Use Resource Guideline

Minimize the duration of transactions that require exclusive use of resources.

We’ll say some more about these resources in later chapters.
Line Transmission Capacity

The last new element on our list is line transmission capacity. In an online system
with terminals located a long way from the processor, the signals between them are
generally (although not invariably) carried ove<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>