
Program Product

SH20-9025-5

IMS/VS Version 1
System I Application
Design Guide

Pro.gram Number 5740-XX2

Release 1.4

Sixth Edition (July 1977)

This edition replaces the previous edition (numbered SH20-9025-4) and its technical
newsletters (numbered SN20-91<:J8 and SN20-9206) and makes them obsolete.

This edition applies to Version 1 Release 1.4 of IMS/VS, program number 5740-XX2, and
to any subsequent releases unless otherwise indicated in new editions or technical
newsletters.

Information concerning the Multiple Systems Coupling feature is provided for planning
purposes until availability of the feature with Release 1.4. This feature is supported on
installations running,IMS/VS under OS/VSl or OS/VS2 MVS system control programs.

Technical changes are summarized under "Summary of Amendments" following the list of
figures. Each technical change is marked by a vertical line to the left of the change.

Information in this publication is subject to significant change. Any such changes will be
published in new editions or technical newsletters. Before using the publication, consult the
latest IBM System/370 Bibliography, GC20-000l, and the technical newsletters that amend
the bibliography, to learn which editions and technical newsletters are applicable and
current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for readers' comments are provided at the back of the publication. If the forms have
been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California 95150. All comments and suggestions
become the property of IBM.

© Copyright International Business Machines Corporation 1974, 1975, 1976, 1977

This publication presents the design considerations associated ~ith
installing and o~eratir.g Infcrmatior. Management System/Virtual storage
(IMS/VS). It presents IMS/VS concepts, and the facilities available
for designing IME/VS Data Base (DB) and Data Ease/Lata Communication
(DB/DC) syst'=!ms.

This publication provides data base administratcrs, system designers,
systerr rrcgrarrroers, and a~rlicaticn programmers with the information
they r~quire to design an IMS/VS system and to design the arplications
which orerate under IM~/VS.

Prerequisite to this publication is the !~§!Y2 2~D~~~1 lniQ~IDE~jQn
M~rill~l, GH2o-1260. In addition to information in the IM§LY§ <l~!!g~~l
lD!9~~tigD M~nY~l, the reader is expected to have a knowledge of
op'=!rating System/Virtual Storage (OS/VS) and OE/V~ access methods. The
chapters in this ~ublicaticn are:

1. "Design, Installation, and Maintenance of the IMS/VS Data Base
System" that address es "':.he factors to 1:e ccnsidered when
installing a DB systerr.

2. "Design and Control of the Dat.a Base/Data Communication System"
that addresses the factors to be considered when installing a
DB/DC system.

3. "Application Program Design" t.hat incl udes considerations for
design of batch and teleprccessing IM~/VS ar~lications.

4. "Data Base Design cor.siderations" that describes data base
concepts, structures, and the options available for designing
IMS/VS data bases.

5. "Design consideraticns for the Multiple systems Coupling (MSC)
Feature" that describes MSC and contains design considerat.ions
for its use.

6. "Design Ccnsideraticr.s for the Fast Path F.eature" that describes
Fast Path and contair.s design considerations for its use.

IM2!Y~ ID~1~!!~!ifD Gui~~, SH20-9081
This ~ublication presents step-by-st.€r details for the IMS/VS
installaticr. ~rccess.

IM§LY§ ~y~~~ f~Qg~~uminq Eef§~~n£§ ~~n~gl' SH20-9027
This manual provides system programming personnel with
inst.allation considerat.ions and details for generation
(definiticn) of an I~S/VS system.

IM§LY§ ~Qpli£~iioD ~~Qg~~ID~inq Re!~§D£§ ~grrual, SH20-9026
This document is a reference manual for the application
programmer. It provides inforrraticn abcut the coding
techr.iques necessary ~o implement a designed application
under the IMS/VS system.

Preface iii

IM~LY§ Qiiliii~§ E~f~~~D£~ MaDY~l, SH20-9029
This rranual prov'ides a descripticn of tte IMS/VS system
utility I=rcgrarrs. It describes how to execute ~hese
utilities under the operating systerr.

IM§LVS Q2~~~!Q~~~ E§!~reD£~ M~nY~l, SH20-9C28
This manua I prcvides the rna ster terminal, remote terminal,
and sys~em console operators witt tte ir.formation associated
with Cferating IMS/VS once the system has b~en established
in a user environment.

IMS/VS M~ss~gf Fo~m~1 §~~Yi£~ us~~~§ §yig~, SH20-9053
This manual describes the use, defir;ition, and irr.p I ement at ion
of the Message Format Service (MFS).

IM§!Y§. ~Qygn£§g .!yngtiQD IQ1: CO!rm}Jni.f~1.i.911§, SH20-9054
This rrar.ual eXflains the IMS/VS sU~fort for advanced function
cowrounicaticns systems. It addresses the areas that
programmers or analysts involved in ccrrrrunicating ~ith IMS/VS
must be farriliar with.

IM~LY~ ~~~~§ ~ng ~Qg§~ E~fE~~£~ MAry~l, SH20-9030
This rranual lists, eXflains, and sugg~sts a~frcpriate
resFcnses to the completion codes and messages produced by
all the IEM-supplied components cf the IMS/VS system.

IMS/VS ~~Q~~~ Logi£ ~~ny~l,
Volume 1 of 3, LY20-8004
Volu~e 2 of 3, LY20-8005
Volu~e 3 cf 3, LY20-8041

iv IMS/VS Systerr/AI=~licaticn Design Guide

PREFACE.

FIGUPES.

SUMMARY OF AMENtMENCS.

CHAPTER 1. DgSIGN, INSTALLATIO~, AND MAINTENANCE OF THE
IMS/VS DATA BASE SYSTEM •

Descriptior. of Facilities.
Syst~rrs •
DE System Generation resign Lecisions.

OS/VS 0 p. ion ccnsidera tiens.
IMS/vS System Defi~i~ion

Spec~al Access Method -- OSAM.
Generalized sequential Access Method (GSAM).

Data Ease and Applicatior. tesign cecisions •
Data Base DescriI;tien (DBD) Genera tion •
Program Specification Elock (PSE) Generaticn •
Application Ccntrcl Elecks (ACB) Creation and Maintenance.
Application Pregrarr Design •

Execution and Control of the Lata Base systerr.
Essen~ial Prcgram Elements for Execution •

Program Specification Elock (FSB).
Data Pase Descriptior. Eleck (tED).
Application Ccntrol Blcck (ACB).
Application Frogram.
IMS/VS Systerr Modules.

rata Ease system Execu~ion •
Data Ease System JCL Ccnsiderations.
Data Base Systerr Centrol sequence Flow.
Data Ease Buffering.

Systerr Integrity and Maintenance Considerations.
Da ta Ease Logging.
Batch checkpoint/Restart.
Ba".".ch Backout ttility Pregram.
IMS/VS Use of STAE/ ESr:' AE •
IBM System/370 Power warning Feature support •
IMS/vS DB Monitor.

CHAPTER 2. DESIGN ANt CONTROL OF A tATA BASE/DATA
COMMUNICATION SYSTEM.

pela'tionship of LE/tc to :CE System.
Organization of DB/DC Prccessing •

Message Processing -- MFP Region •
Fast Path Processing -- IFP Fegion •
Batch Message Processing -- BMF Region •

Configuring the System through Options •
OS/VS Op+ions.

Fixed or Variable Tasking.
IMS/VS Program Module Preload Function •
performance Consideratiens for ~odules Freloaded

in MFPs/IFPs.
IMS/vS in an OS/VS Systerr.

Supported Configurations •
OS/VS Op-":.icns Required cr Reeomrrended for IMS/VS •
OS/VS superviser Call Fcutines •
Special Access Method -- OSAM.

Alloca+ion of OSAM Data Sets

contents

iii

xv

xix

1. 1
1 .1
1 .2
1. 4
1 .4
1. 4
1 .5
1 .6
1.6
1 .6
1. 8
1.9
1. 10
1. 10
1.10
1. 11
1.11
1. 11
1. 11
1 .11
1. 13
1 .15
1. 15
1. 17
1 .18
1. 18
1 .19
1.20
1.21
1 .21
1. 21

2. 1
2.1
2.1
2. 2
2.
2.2
2.2
2.2
2. 2
2.2

2.4
2.4
2.4
2.4
2. 6
2.7
2.7

v

IMS/vS Features.
Control Program.

I~S/VS Virtual Control Region.
o SAM

Processing Regions
Ac':ive I/O Requests.
Checkpoir.t Frequency
Immediate Checkpoint
System Queue Space
I~S/VS Enqueue/tequeue
Program Isolatien.

Message scheduling
Message Class and Region Class
Load Balancing
selection Priorities
Processing Lirrits.
Application Program OUtput I.imits.
Multiple and Single segment Messages

MultiFle and Single Me~~age Mode
Response Mode.
Non-Update Transactien Prece~~ing.
Conversational Attribute
Data Pase Processing Intent.
Processing Intent SFecifications •
Application Frogram Abnormal ~ermination •
Centention fer Resources •
Control Block Buffer Peels FSB and D~E.

Da ta Eases.
Batch CheckpointlRestart
Message Queues
Queue DaT.a Sets.

operatien of Queue~.
Emergency Restart Queue Repositioning.
Message Queue Reuse.

Physical Terminals
D ev ices Supported.
BTAM Data Set Line Greur~.
Terminals Attached through VT~~.
Physical Terminal Netwerk Design •

Loaical Terminals.
Definition of the I.egical Terminal Concept
The IMS/VS Logical Terrrinal.
Logical Terminal Network resign.

Logical Terrrinal/Physicai Ter~inal Relationship.
Ma ste r Te rmin al •

Systerr Console Surport •
Systems with Inoperable Master Terminal.

Message Format Service •
overview ef IMS/VS 3270 Surrert.

327 () Copy Fun ction
3284 Model 3 Frinter Surrert
3270 Master Terrrinal Surrert

Intelligent Remote Station Support
Transmission Bleck~.
System/3 and System/7 Program Function Requirerrents.

IMS/VS Systerr Me~sagEs •
Transrrission Centrel
System Definition.

Pestpene Type station.
~_sk Type station
Transrrission Lirrit •
Combining Modes.

vi IMS/VS System/Application Design Guide

2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.9
2.9
2.9
2.9
2. 10
2.11
2.12
2. 12
2.13
2. 13
2.13
2.15
2. 16
2.18
2. 18
2.20
2.21
2.24
2.26
2.27
2.27
2.27
1.32
2.32
2.33
2. 34
2.34
2. 34
2.35
2.36
2.36
2.37
2.38
2.38
2.39
2.40
2.43
2.47
2.47
2.48
2.48
2.51
2. 51
2.52
2.53
2.53
2.53
2.54
2.55
2.55
2.56
2.56
2.56
2.57
2. 58

considerations Unique to sys~em/7. • • • • • • • •
Syst~ml7 Start/StcF Trar.smi8sion Code Modes ••
Supported System/7 start/stop Line Typ~s •
supported System/7 BSC Line Types. • • •
Process Controlling Eystem/7 • • • • • •
1MS/VS Processing of a Elock Transmitted Start/StoF from

a SysteITll7 • • • • • • • • • • • • • • • •
Considerations Unique to System/3 •••••••••••••••

Design of the system/3 Application Using MLMP ••••••
1MS/VS Processing of a Block Transmitted from a System/3
or a BSC System/7 • : • • • • • • • • • •

Control of the DB/o'C S ysterr. • • • • • • •• • •
Sec uri t y an d P r i va cy • • • • • • • • • • • • • • • • • • •

Authorizing Use of Terminal Ccmmands •
Restricting Entry cf Transaction Codes • •
Display Bypass Feature ••••. & •

Limiting Access to Data ••••••
Violation Control. • • •

3270 Switched Terminal Security.
1MS/vS DC Monitor. • • • • • • • •

...

Using the 3850 Mass Storage System (MSS) for DB/DC Processing ••
Terroinology. • • • •.• • • • • • • • • .'
1MS/vS Batch Environment • • • •
I MS/VS On 1 in e (r: E/ r:C) Env ironm Ent • • •

1MS/vS Online U8ing Bcund Data and/or DASD without Batch
I~S/VS Online using Bound Data and/or Real DASD ~ith

1MS/VS Batch. • • • • • • • • • •
IMS/vS Online and Batch Using Some Bound and Some

Nonbound Data • • • • • • • • • •
Sharing of Staging space • • • • • •
Da ta Base Organiz at ion and Access Method •
How to Use the Additional Capacity of MSS with IMS/VS.

CHAPTER 3. APPLICATION PROGRAM DESIGN.
Batch Application Program resign ••••

General Consideraticns •••••••
programming Language to be Used. •
Future Conversion to Teleprocessing ••

Batch C heckpoint/Resta rt Considera tions. •
Establishing Useful OO~ventions •••

Testing. • • • • • • •
Naming Conventions • • • •
Use of COpy or INCLUr:E • • • • • •
Using the Right DL/I Ca 11. • • • •

.. .

. .

Relationship between eL/I Calls and Physical I/O O~erations ••
Performance Consideration s • • • • • • •• • •

Using Accumulated eL/I Sta-:'istics •••
STATIC Declaration for PL/I. • • • • • •

Teleprocessing AFplicaticn Program Design.
Teleprocessing Input/output Interface.

Input Calls. • • • • ". • • • • •
output Call s • • • • • • • • • •

output to Alternate ee8tinations •
Modifiable Al terna te PCBs. • •
Response Alternate PCEs ••••

Converting frcm Ba tch to 'Ie Ie Frace ssing • • • • • •
Teleprocessing Device Independent Prograrrrring.
Device Class Ccntrol Considerations ••
Utilization of Sysout Devices. • • • • • • • •

Program Testing Using SYSIN/SYSOUT • •
Conversational Processing •••••••••••••••••••
Paging Fea~ure -- 2260 and 2265 •••

Contents

2.62
2.62
2.62
2.63
2.63

2.64
2.65
2.65

2.E6
2.67
2.67
2.67
2.68
2.69
2.70
2.70
2.71
2. 71
2.72
2.73
2.73
2.75
2.75

2.76

2.78
2.81
2.81
2.83

3.1
3. 1
3.1
3. 3
3.3
3.4
3. 5
3.5
3.5
3.6
3.7
3.9
3.11
3. 11
3.12
3. 12
3.12
3.16
3. 17
3.17
3. 18
3. 19
3.19
3.20
3.20
3.22
3.22
3.22
3.24

vii

Batch Message Processing Programs.
Use of EMP
Bu ffering.

Useful Tecbniques.
Int~rrnediate Cata Eases.
r-'" es sag~ Editing.
outputting a Mask to the 2260.
Passing Information from One Program to Another.
Interactive Query Facility (IQF) Full File Searches.
security Control in IQF.
Choosing IQF Indexing Pararoeters •

Choice of Fields to be Indexed
Frequency of Index Updates
f"umber of Index Data Bases and Index Field Size.

Use of Predefined Phrases in IQF •

CHAPI'EF 4.
Concepts of

Segm,,=nts

DA~A EASE rESIGN CONSIDERATIONS.
Physical Data Bases.

S egrrent Formats.
segrrent Code
Delete Byte.

Fields
structure.

Defining a Fhysical rata Ease Hierarchy.
Calls.

Get Unique.
Get Next
Get Next within Parent
Hold Form of Get Calls
Insert
Delete •
F. eplace.
SSA (Segment Search Argument).

Physica~ Data Ease Organization in Storage
Hierarchic seque~tial and Direct Methods of storing a

Data Base.
Pointers
Hierarchic Pointers.
Physical Child/Physical Twin Pointers.

Data Set Grou~s.
Fules for Dividing a rata Ease into Data Set Groups.

HSAM Storage Organizaticn.
Simpl e H SAM.

HISAM storage organization
HISAM Data Base Stored as One Data Set Group.
HISAM Logical Record Lengths
HISAM Root Segment Insertion
HISN1 Dependent Segment Insertion.
HISAM Segm~nt Deletion
Seccndary Da ta set G rou};:s.
Simple HISAM •

HDAM and HIDAM Storage organizations
HDAf\1

Size of Root Addressable Area.
Loading an HDAM Data Base.

HIDAM.

viii

Loading a HIrAM Cata Ease.
HIDAM Data Base ·Root Segment ~ype Pointer Cptions.
Format of Data Sets Used for HDAM and HIDAM.
Free Space Anchcr Point.
Free Space Element
Anchor Point Area.
Bit Map Block.
Bi t Map.

IMS/VS System/Application Design Guide

3.25
3. 25
3.26
3. 26
3.26
3.26
3. 27
3.27
3.27
3. 28
3.28
3. 28
3.29
3.29
3. 29

4. 1
4.1
4. 1
4.2
4. 3
4. 3
4.4
4.6
4.9
4. 13
4. 13
4.13
4. 13
4.13
4.13
4. 14
4.14
4. 15
4.15

4. 15
4.15
4. 17
4.18
4.20
4. 20
4.12
4.23
4.23
4.23
4. 26
4.27
4. 31
4.35
4.35
4. 36
4.36
4. 37
4.39
4.39
4.40
4.40
4.43
4.43
4.46
4.46
4.46
4. 47
4.47

Inserts and Leletes in BeAM and BIDAM Data Bases
Inserts.
Deletes.
Distributed Free Space

HISAM and BI~M Key Segments •
Options Available in Defining Physical Data Bases.

HSAM
HISAM.
HDAr.'! or HIDAM.

Logical R elationshiFs.
Methods ot Relating Segment Types through a Logical Child.

Method One •
Method Two
Logical Relaticnship Paths
Logical Child Segment.

Unidirectional Logical Relationship.
Physically Paired Bidirectional Logical Relationship
Virtually Paired Bidirectional Logical Relaticnship.

Defining Fields in Lcgical Child Segment ~ypes
Pointers and the Counter Used in Logical FelaticnshiFs

Loqical Parent Pointer •
Logical Child/Logica I ~win Pointers.
Physical Parent Pointers •
Counter.

Defining sequence Fields for Data Eases Invclved in Logical
Fe la ti en sh ips •

Rules for Defining Logica I Rela tionships in Physical Lata
Bases •
Logical Child.
Logical Parent
Physical Parent.

Peplace, Insert and Delete Rules.
Introduction Summary •

RULES Coding.
~he Replace Rules.

The Repl ace Call
Physical Replace ~ule ExarrFle.
Logical Replace Rule Example
Virtual Replace Pule Exarr.ple
Replace Rules SUrrrrary.

The Insert Rul es •
Logical Child Insertion.
The Insert Call.
Status Codes.
Physical Insert Rule Example
Logical Insert Rule Example.
Virtual Insert Pule Exarrt:le.
Insert Rules Summary

Delete Rules Introducticn.
Physical and Logical Deletion.
Deleting Concatenated segments
The Third Access Path.

Delete Byte Definition •
Segment Prefix -- Delete Eyte.
The Delete Call.
Status codes •

DASD Space F elea se
Delete Pules

Logical Parent •
Physical Parent (Virtual Pairing Only)
Logical Child.

Exarrples •
Logical Child, Virtual Pairing -- Physical Lelete Rule

ExamFle • .
To Delete the Logical Child.

Contents

4.47
4.47
4.48
4.50
4.50
4.51
4.51
4. 51
4.51
4.53
3.~4
4.55
4.55
4.58
4.59
4.60
4.61
4.62
4.64
4.64
4.65
4.66
4.66
4.66

4.66

4.67
4.67
4.67
4.68
4.69
4.70
4.71
4.72
4.72
4.73
4.74
4.75
4.75
4.78
4.78
4.78
4.79
4. 80
4.81
4.82
4.83
4.84
4.85
4.85
4.86
4.87
4.87
4.87
4.88
4.88
4.88
4.88
4.89
4.89
4.89

4.90
4.90

ix

Logical Child, Virtual Fairing -- Logical Delete Rule
ExaJllfle. •

'!'o D-?l ete the Logica I Child. • • • • • • • • • • • • •
Logical Child, Physical Pairing -- PhysicallIcgical Delete
Rul~ Exaro~le. •

To Delete the Paired Logical Children. • • • • • • • • •
Logical Child, virtual Fairing -- Virtual Delete Rule

Exampl e • • • • • • • • • • • • • . • • • • • • •
To Delete the Logical Child. • • • • • • • • • • •
Logical Child, Physical Fairing -- Virtual Delete Rule

Example •
To Delete the Paired Logical Children •••••••
Logical Parent, Virtual Pairing -- Physical [elete Rule

Examfle • • • • • • • • • • • • • • • • • •
Tc Delete the Logical Parent ••••••••
Logical Parent, Physical Pairing -- Physical Delete Rule

Examfle •
To Delete Either of the Logical Parents •••••••••
Logical Parent, Virtual Pairing -- Logical Delete Rule

Exampl e •
To Delete the Logical Parent • • • • • • • • • • •
Logical Parent, Physical Fairing -- Logical Delete Rule

Exampl e •
To Delete Either cf the Logical Parents ••••••
Logical Parent, Virtual Pairing -- Virtual Delete Rule
Exam~le •

Deleting Last Logical Child Deletes Logical Farent •••
Physical Parent, Physical Pairing -- Virtual Delete Rule

Example •
Deleting Last Logical Child Deletes Fr.ysical Farent. • •
Physical Parent, Virtual Pairing -- Bidirecticr.al Virtual

Examfle •
Deleting Last Logical Child Deletes Physical Parent. • • • •
Accessibility cf Deleted segments. • • • • •••

Avoiding Possible 801 Ab~ormal ~erminatior. ••
First Soluticn • • • • • • • • • • • • ••
Second SOlution •••••••••••••••••••

Detection of Physical Delete Rule Violatic~.
Physical Delete Rule Treated as Logical ••••••••••••
Inserting Physically and/or Logically Deleted segrrents
Delete Rules S urrma ry • •

The DLET Call. • •
Physical Deletion.
Logical Deleticn ••
Acces s Paths •
Propagation of Delete.

Delete Fules • •
Logical Parent ••• •
Physical Parent of a Virtually Paired Logical Child. • • • •
Logical Child. • • • • • • • • • • • • • • • •
Space Release. • • • • • • • • • • • •••••

Defining a LOgical Data Ease. • • • • • • • • • • •••
Definition cf crossing a Logical Relationship. • •••
Definition of First and Additional Logical Relationships

Crossed • • • • • • • • • • • • • • • •
Rules for Defining Lcgica 1 Da ta Ba se s. •
Example 1. •

Secondary Index ing • • • • • • • • • • •
Sec ondary Process ing sequence. • • • • • •
Secondary Data Structure •••

options and Rules fer seccndary Indexing •••••
Organization of secor.dary Indexes in Auxiliary storage.

x IMS/VS System/Application Design Guide

4.91
4.91

4.92
4.92

4.93
4.93

4.94
4.94

4.95
4.95

4.96
4.96

4.97
4.97

4.98
4.98

4.99
4.99

4.100
4. 100

4. 101
4. 101
4.102
4.108
4.108
4.108
4.109
4. 110
4. 110
4.111
4. 111
4.111
4.111
4. 111
4.111
4. 112
4.112
4. 112
4. 112
4. 1.12
4. 113
4.113

4. 114
4.116
4. 118
4.120
4. 122
4.122
4.124
4. 125

Index Pointer Segment Format ••
Constant •
Search Field.
Subsequence Field.
Duplicate Data Field (DDATA)
Addi~ional rata in Index Pointer Segments.
Systerr Rela ted Field s.
Suppression of Inqex Entries •
Index Maintenance Exit Rcutine •
Index Maintenance Processing
Shared Index Lata Eases.
Process ing a Sec onda ry I nde x a s a Da ta Ease.
secondary Indexes and Segment Search Argurrents •
Consideraticns •

Variable Length Segwents •
Considerations •
Conversicn Consideraticns.

Segment Edit/Compression Exit.
considera tions •

Data Base Design Considera tions.
Hierarchical Sequential resign considerations.
Processing Tirre.
Direct Access storage Space Utilization.
Design Tradeoffs •
Viability of Data Base Design.
Hierarchical rirect resign considerations.

. .

Design Considerations fer the Index of a HIDAM Data Base.
Design Considerations for Data Portion of HIrAM Cata Ease.
Design Considerations for an ErAM Data BasE.

HDAM -- HIDAM Ccnsideratiens for Dependent Segments.
I~S/VS Use of EISAM/QIS~M.

Interactive' Query Facility (IQF) resign considerations
Utilities.

Data Base Recovery •
Data Base Reorganiza tien •
Utility Control Facili~y

Reorganiza~ien Interval.
P eorganizatien of HI SAM Da ta Bases.
Reorganization of EDAM and HIrAM Data Bases.

IMS/VS Data Base Space Allocation.
Allocation Considerations.

Interactive Query Facility rata Ease Space Allecation.

. .

Space Alloca tien Guidelines for IQF Frocessor rata Bas es •

CHAPTER 5. DESIG~ CONSIDERATIONS FOR THE MULTIPLE SYSTEMS
COUP LING (MSC) FEATURE.

Relationshi~ of a DB/DC/MSC System to a
Single DB/DC System •

Overview of the MSC Feature ••
Links.

Physical Lir.k.
Logical Link •

Message Routing.
Routing Path.
Logical Link Path.
Logical Destinations •
Input and Destinaticr. Systems.
Intermediate System.
Remo~e Transaction Priorities.
stopped Transactions •
Routing Exit Routines.

Contents

4.126
4.127
4. 127
4.128
4. 128
4.128
4.128
4. 129
4.129
4. 130
4.131
4.131
4. 131
4.133
4. 134
4. 137
4.137
4. 138
4.141
4. 141
4. 141
4.141
4. 147
4.153
5.154
4. 160
4.160
4. 160
4.161
4.161
4. 162
4.163
4. 164
4. 164
4.165
4. 165
4.166
4. 166
4. 167
4.167
4. 168
4.170
4.171

5.1

5. 1
5.3
5. 3
5.4
5. 5
5.6
5.7
5.7
5.8
5.8
5.9
5.10
5. 10
5.10

xi

Pemote Destination Verification.
Applicatien Pregrarr Abnermal Termination

Conversational Processing.
pouting Exit Routines.
P emote Destir.a tien Verifica tion.
Normal Conversation Termination.
A bnorrral Cenver~ tior. Termina tion.

Multisystem Operations
Multi system Commtmicat iO!l Initi aliz a"tion
Multisystem Cerrmunicatien Termination.
Logical Link Assignments
security •
Recovery •

Compa ti bili ty.
P erforrnance Considera tier.s fer ~SC •

Minimizing Resource Consumption.
Balancing Reseurce Demand.
MSC Examples

CHAPTER 6. DESIG~ CONSlrEFATIONS FOR THE FAS~ PA!H FEA~URE.
Fast Path Data Bases.

Mair. Storage rata Base (~SDB).
Def ining an ~S rE •
MSDB DL/I Ca lIs.
The FID Call
MSDB Buffer Allocatien •

Data Entry Data Base (DEDB).
DEDE Synchronizatior. Processing.
DEDB Resource Management
sequential Processing of CErB Data •
Defining DEDB Data Bases.

Message Handlir.g •
'Inpu+-. Messages.
Output Messages.

Fast Path Program Types.
Synchronizatien Peint Precessing

xii IMS/VS System/Application Design Guide

5. 11
5.12
5. 12
5.12
5.13
5. 13
5.13
5.14
5.14
5.14
5. 14
5.14
5.15
5.15
5.15
5. 16
5.16
5.17

6. 1
6.1
6. 1
6.2
6.2
6. 3
6.3
6.3
6.7
6.7
6.8
6.8
6.8
6.8
6.9
6.9
6.10

1- 1.
1-2.
1-3.
1- 4.
1-5.
1- 6.
1-7.
1-8.
2- 1.
2 -2.
2- 3.
2-4.
2-5.
2- 6.
2 -7.
2- 8.
2-9.
2-10.
2- 1 1.
2-12.
3-1 •
3-2.
3 -3.

3-4.

3-5.
3 -6.
3-7.
3 -8.
3- 9.
3-10.
3 -11.
3-12.
3-13.
3-14.

3 -15.
3-16.
4 -1.
4-2.
4- 3.
4 -4.
4- 5.
4-6.
4-7.
4- 8.
4 -9.
4-10.
4 -11.
4-12.

IMS/vS Data Base system Environment.
CBD Generation Execution. • • •
PSE Generation Execution. • • • • • •
ACB Creation and/or Maintenance • •
Essential Program Elements for Executien ••
Initializing ~he Patch Data Base System, step One •
Initializing the Eatch rata Base systerr, SteI; Two ••
Data Base systerr Flew • • • • • •
General M~ssage Queue struc~ure • • • • • • •
Queue Dat a set Felat ions hips. • • • • • • • •
separating Device Cla~s Sensi ti ve Terminal I/O ••
Possible Fhysical/Logical Terminal Relaticnships.
Message Fcrreatting Using MFS ••••••
overview of Me~sage Forma t service.' •
3270 Copy Function Example ••••••
MSS in ar. IMS/VS Batch Environment ••
MSS in an IMS/VS Online Envircnment with Ecund rata
MSS in an IMS/VS Online and Batch Envircr.rrent • • •
MSS with IMS/VS Or.line and Batch and Non-IMS/VS rata.
MSS in an IMS/VS Environment Using Snared Data Bases.
Batch Applica tien Prcgram Design. • • • • • • • • ••
Planning Future Conversion to TeleI;rccessing •••••
Application Program Using OS/VS Data Files and DL/I
Data Base • • • • • • • • • • • • • • • •
Application Program Using COBOL PEAI::/WRITE Logic and
File DescriI;ticn. • • • • • •
QUalified Segment Search Arguments. • • • • •
Teleproce~sing A~~lication Program Design •
Applicatien Pregrarr.'s View of the Terminal.
DB and TP PCEs. • • • • • • • •
Message Segrrent Fcrrrat. • • •••
Input Call Format • • • • • • • •
Three-Segment Me~sage • • • • ••
output to Al terre te Destina tion s. • •
Converting from Eatch to Teleprocessing • • • • •
Six-segment Message Separated into Two Three-Segment
Messages by Use of the Purge Ca 11 • • • • •
Conversational Frogram. • • • • •
Intermediate Data Base ••
Segment Formats •
Delete Eyte • • • • • • •
Concatenated Keys • • • •
Hierarchy of Segment Types. • • • •
Data Base in Storage. • • • • • •
Segment Types Numbered in Hierarchic Sequence
Physical Twin~. • • • • • • • • • •
Direct Address Pointers • • • • • •
Use of Eackward Pointers for Delete •
Use of Physica 1 Child I.a st Pointer. •
Cne Data Ease Record of ESAM. Data Base on Ta!=e. •
HISAM Data Base Reccrd in Storage (Single Data Set
Group). •

4-13. HISAM Data Ease VSAM, ISAM and OSAM Logical Record
Formats • • • • • • • • •• ••• • • • • • • •

4-14. Root segment Insertion into Key Sequenced Data Set
Centrol Interval. • • • • • • • • • •

4-15. FOot Segment Insertion when ISAM/OSA~ are HISAM rata
Ease Access Methods ••.•••••••

4-16. HISAM Root Segment Insertion Sequence

. .

. .

Figures

1 .3
1.7
1.8
1. 9
1.10
1 .13
1. 15
1 .16
2.31
2.32
2.41
2.42
2.48
2.50
2.52
2.74
2.76
2.77
2.78
2.81
3.2
3.4

3.6

3.7
3.9
3.13
3.14
3.15
3.15
3.16
3.17
3.18
3.20

3.21
3.23
3.26
4.3
4.4
4.5
4.7
4.8
4.10
4.12
4. 16
4.18
4.20
4.22

4.24

4.25

4.28

4.29
4.30

xiii

4-17. Dependent Segment Insertion into a HISAM Data Base with
One Data set Grcup. • • • • • • • • • • • • • •

4-18. One Data Base Record in a HISAM Data Ease (Multiple

4-19.
4- 20.

4- 21.

4- 22.
4-23.
4-24.
4- 25.

4- 26.

4- 27.

4 -28.
4- 29.
4 -30.
4- 31.
4 -32.
4-33.
4- 34.
4 -35.

4 -36.

4-37.

4- 38.
4-39.

4 -40.
4-41.
4- 42.
4 -4 3.
4- 44.
4-45.
4 -46.

4 -U7.
4-,48.
4-49.
4 -50.

4 -51.
4-52.
4- 53.
4 -54.
4- 55.
4 -56.
4-57.
4- 58.
4 -59.
4- 60.

4- 61.

4-62.

4 -63.

Da ta S et Group) • • • • • • • • • • • • • • • •
HDAM Data Base Reccrd in Auxiliary storage •••
Insert of a Root Segrr€nt into a HIDA~ Lata Ease after
Ini ti al Load. •
Co~trol Fields Used to Manage Entry Sequenced or OSAM
Data Sets Used for HL~M or HIDAM Data Bases • • • • • • •
Hierarchic Direct Deleticn of Dependent Segment • • •
Relating Occurrences of SKILL to Occurrences of NAME.
Relating Occurrences of NAME to Occurrences of SKILL.
Defining a Physical Parent to Logical Farent Path in a
Logical Data Ease •
Defining a Lcgical Farent to Physical Parent Path in a
Logical Data Ease • • • • • • • • • • • • • • • •
Format of Concater.ated Segment Returned to User I/C
Area. . • . • • . • • • • • • . • • • .
Unidirecticnal Logical Relationship • • • • • •
Physically Paired Bidirectional logical Relationship. • •
Physically Paired Logical Child segments. • • • • •
Virtually Paired Bidirectional Logical Relationship •
Pointers Used in Logical Relationships. • • • • • • •
Replace Pules •
Definiticn of crossir.g a Logical Relationship ••••
The First Logical Relationship Crossed in a Hierarchic
Path of a Logical Data Base ••••••••••
Logical rata Ease Hierarchy Enabled by Crcssing the
First Logica 1 Rela ticnshi p. • • • • • • • • • • •
Variations of a Concatenated segment Type Enabled by
Specification of KEY and DATA Sensitivity ••••••
Segment ~ypes Associated with a secondary Index •••
Indexing to NAME segments Eased on tte Cclcr Field of
a Dependent • • • • • • • • • • • • • • • • • •
Secondary Data Structure. • • • • • • • • • • •
VSAM Logical Pecord and Index Pointer Segrrent Fcrrrats
Variable Length Segrrents. • • • • • •
Variable length Segment Formats • • • • • • •
Segment Edi t/C crrpre s sian. • • • • • • • • • •
HISAM Data Ease Pecord in Auxiliary Storage.
HISAM Data Ease Record -- Larger Prirrary Data set

. . . .
Logical Record. • • • • • • • • • • • • • • • • •••
Storage sequence of Segments in HISAM Data Base Record ••
HI SAM -- Multiple Da ta Se t Groups • • • • • • • • • •
HISAM Segment Storage -- Multiple Data Set Grcups ••
HISAM secondary Data set Group with a Larger Primary
Data Set Logical Pecord Length ••••
HISAM Small Logical Record Length.
HISAM -- Large Logical Record Length •••
HlSAM -- ti'tilizing Slack Space ••••••••••
Data Base Record segmentation options
HlSAM Si~gle Da ta Set Group Segmentation.
HISAM Multiple rata set Group Segmentation. •
Data Base Structure Pule s • • • • • • • • • •
HISAM Physical stcrage -- ISAM, OSA~, or VSAM
HISAM Physical Storage Elocked One or MultiFle. • • • • •
Data Structure Change -- New segment Type refined at
End of Hi er archy. •
Data Structure Change -- New segment Type refined
within Existing Hierarchy ••••••••••••
Data Structure Change -- New segment ~ype Defined
within a Leg of the Existing Hierarchy. • • • • • • •••
Data Base structure -- Hierarchic Leg Inde~endence ••

xiv 1MS/VS System/Application Design Guide

4.32

4. 36
4.38

4.42

4.45
4.49
4.54
4.57

4.58

4.59

4.61
4.61
4.62
4.62
4.63
4.65
4.77
4. 114

4.115

4.116

4.117
4. 120

4.121
4.123
4.126
4.135
4.137
4.139
4. 142

4.143
4.144
4.145
4. 146

4.147
4. 148
4.149
4.149
4.150
4.151
4.152
4.153
4.154
4.155

4.156

4.156

4. 157
4. 158

4- 64.
4 -65.
4- 66.
4 -67.
5-1.
5- 2 ..
5 -3.
5- 4.
5-5.
5-6.
5-7 ..

5- 8.
5-9.
5-10.
5- 11.
5-12.
5- 13.
6 -1.
6-2.
6- 3 ..
6 -u.
6- 5.

R,=structured Data Ba se. • • • • • • • • • • • • • • •
Data Base structure -- Absence of Segmer.t ~YFes • • •
Applicaticn Program I/C work Area size Considerations
Logical Record Length Distribution. • • • • • • •
Single DB/DC System Transaction Flow. • • • • • •
Mul tipl e DB IDC Systems Transaction Flow • •
A Sample Configuration of Three SysteITS • • • • •
Sun-mary of Physica 1 Link, 'Type s. • • • • • • • • •
Multiple Physical Links in One Systerr/370 CPU
Multiple Physical Links in Multiple System/370 CPUs •
Relationship of Physical Link to Logical Link to

Logical iink Path. • • • • • • • • • • • • • • • • •
Input Terrrinal ar.d In~ut System on Input. • • • • • •
Destination Termi~al and Destinaticn Systerr on OU~Fut
Input froIT and' OutFut ~o Different Terminals. • •••
An Intermediate System ••
Horizontal Partitioning •
Vertical Partitioning • • • • •
DEDE Structure. • • • • • •
DE DB Area& • • • •
DEDB Area Divisior.
DEDB Uni ts-of'-Work.
Storage of DEDB DeFer.dent segments in an Area

4. 158
4. 159
4.160
4. 168
5.1
5. 2
5.3
5.4
5. 5
5.5

5.6
5.8
5. 9
5.9
5.9
5.17
5.18
6. 4
6.5
6. 5
6.6
6.7

Figures xv

NEW PROGRAMMING FEATURE

The Fast Path feature ~rcvides data base and cata ccmrrunication
faciliti~s for ar~licaticns requiring high transaction rates but needing
only simple data base s~ruc"t.ures. The Fast Path feature uses functions
of the Data COITflunication feature and operates in exis~ing
~elecommunicatio~ networks.

Fast Path ~rcvides twc new ty~es of data basEs that are accessed
wi~h standard DLII calls and, optionally, with Fast Path tL/I calls.
The feature includes a message-handling facility tc expedite the
processi~g of Fast Path rressages.

This publication has been revised to reflect technical and editorial
changes made for Release 1.2.

The Multiple Systems Coupling feature allows a user tc define a
configuration ccnsisting of u~ to 255 interconnected IMS/VS systems
running on any combina~ion of OS/VS1 and OS/VS2. Informaticn on
channel-to-channel comrrunication with the Multiple systems Coupling
feature is for planning pur~oses cnly until IMS/VS support for this
facili~y becomes available.

with the addition cf Synchronous Data ~ink Control, 3270s can now
be attached on StLC lines as well as BSC lines.

The 3350 may now be specified for data base and message queue data
set residence.

]l~l corrmunicaticn ~erminal
]ll~ ~~i~ ~Qmmuni££irQn §i§~gID

The 3767 and 3770 are supported on an SDLC link through VTAM. Full
IMS/VS functional ca~abili~ies are included.

Surrrrary of Amendments xvii

EDITORIAL CHANGES

• The IMS/VS ~lanning information about MSS (mass storage system) ,
previously contained in Q~L~Q M§§ El~DDiDg In!£~ID~~i~D: lMELY~,
~!CS/~~, ~ng §l§LY§, is now contained in Chapter 2 of this
publication. The former MSS publication is ncw obsolete.

• The inforroaticn previously contained in ChaFter 1 of this
publication has been moved, to the I~§/V~ g§D~~~! 1nforIDA~iQD ~~D~~l.

• The information previously contained in Cha~ters 6 and 7 and
A~pendixes C and D of this publication has been moved to the IMSLY~
~Y£~~m PrQg~gm-IDing E~t§~~D£~ MEDygl·

• The information previously contained in A~~endix A of this
publication has been recved to the I~§LY~ In§!~11~~iQD ~ig§.

• The informaticn previously contained in Appendix B of this
publication has been moved to the lM§L.Y~ 8~~!~£atiQll E~Qg~~IDmiDg
B§ler~n£~ Mgllyg!.

xviii IMS/VS Systerr/Ap~lication Design Guide

This chapter addre~~es the factors to be considered by the user data
processing organization in ~lanning, scheduling and controlling the
installation of the IMS/VS Cata Ease (DB) systerr. Three major time
phases should be con~idered:

• Pre-installation sys~em design and configuration

• Installation

• System tuning and phased expansion

For each of ttese pha~es, this chapter suggests the steps to be
~aken, referencing the teols provided by the data base management
services of IMS/VS to facilitate the effort, and identifying those
element~ of the user installation which are involved or affected.

The data base management services of I~S/VS are packaged as basic
material in an orderable component called tte Data Base (DB) system.
The DB system sUfports the irrplementation of multiple user-written
batch processing applications in a common data base environment.

The DB system provides the user with full IMS/VS facilities to:

• Define, load, and reorganize data bases

• Access a data base fron application programs via a high-level
1 anguage interface called D1./I

• Support systems integrity via data base logging, checkpoint/restart,
and data base recovery programs

• Use system- ~rovided exits to incorporate user extensions to IMS/VS

• Migrate to a full IMS/vS DB/DC system in a shared terminal
environmen~

The roajor executior.-tirre elements of the IMS/vS DB system are the
DL/I (Data Language/I) interface and the data base logging program.
D1./I interfaces betwEen the problem prograrr and the data bases the
progra~ wishes tc acce~s. The use of D1./I and its functions are
described in detail in the IM~LY§ ~2Qlb~~!~QU ~~£9~gmIDing B~fe!~n£§
M~~al. The data base logging capability is one of the principal IMS/VS
recovery features. It provides a log of all activity against a data
base. The log enables a user to analyze and tune his system, and is
the basic support for recovery, restart, and backcut activity. The
log is discussed later in this chapter.

In addition, several utility programs which a~sis~ in creation and
maintenance of the rE systero are supplied. Ireluded in this utility
prograro set are:

IMS/VS System Definition

IMS/VS Data Ease rescription Generation

Design and Installation of a DE System 1 .1

IMS/VS Program Specification Plock Generation

IMS/VS Applicatior. Control Blocks Creation and Main~enance

IMS/VS Data Ease Feorganization and Load

IMS/VS Data Ba se Fec CV19 ry

IMS/vS Utility Contrel Facility

System definition is described in the I~§LY§ lD§!~11£~iQn ~i~~; th19
other programs are described in the !~~LY§ Y!ili!i§§ B~i§~n£§ M~n~£!.

The DB system operates on an IEM Systerr./370, using the services of
as/vs in its m\,llti~rograrrrning configuration.s OS/VS1 and CS/VS2.

In the IMS/VS DB 8ystern, applications are scheduled for execution
through the OS/VS job s·tream in a process callec batch scheduling. The
basic unit of work is assurred to be the operating system job step. Tr.e
application itself can be either transacticn-eriented or batch-oriented.
A transaction-oriented ~rograrn facilitates migration to a DB/DC
envi ronment.

It 'is common system practice to irrplement the full LB/tC capabilities
in a phas19d manner by in~talling a batch CB systerr first. Once an
initial program/data base cluster has been designed and installed,
users can see the step-wise expansion leading tc a coropretensive on-line
installaticn.

Figure 1-1 shows the relationship of CS/VS, the IMS/VS tB system,
and an applicat.ion program at execution ti1l'€. 'Ihe prograrr and the DB
systerr are contained in a single batch-processing problem program
address space (region, memory). A second applicaticn prograrf can occupy
a second addre~s space, with a replica of the DL/I and data base logginq
functions, accessing' a separate data base and writing a second log
tape. Two or more IMS/VS batch systems can run cencurrer.tly in separate
address spaces, if they de net access the same data bases. Most of
the IMS/VS DB system is composed of reenterable cede.

The user's application program operates as an OS/VS prcblem program.
As illustrated in Figure 1-1, the application program has two basic
interfaces. These are:

1. Transaction In~ut and Response Output

2. Data Base Input/Output Operations

Although this is a batch processing environment, the concept of
transaction processing is advocated, because it can be carried over to
the IMS/VS message processing enviro~~ent. Typically, transaction
input and response output are performed wi~h OS/VS data management.
Within the applicaticn program, file d~scriptions and read/write
statements are in COBOL, PL/I, or Assembler Language syntax.
Alternatively, the user ef IMS/VS can build an interface for transaction
input and response output sirrilar to the data base input/output
interface described below.

1.2 IMS/VS Systerr/Application Design Guide

OSIVS

,
.....

APPLICATION PROGRAM

CALL

-------- -------------- -

DATA BASE SYSTEM
,

DATA
LANGUAGE!I

,t

e
~

I

DATA ..
BASE
LOGGING

TRANSACTIO~

.~

-------- --,

·8

_________________________________ J

Figure 1-1. IMS/VS Lata Ease System Envircr.rrent

~~l data base operations are initiated by the arrlication rrogram
~n~e~face with rLlI. This interface consists of execution of a CALL
staterrent fro~ the a~~licaticn rrograrn. Parameters in this CALL
statement provide the information necessary tc rerform a data base
operaticn en a erecific data element or segment in a specific data
base. An application prograrr can interface with cne or more DLII data
bases. In additicn, standaId OS/VS data management can be used for
any purpose in the application program.

The argum~nts in the CALL sta~ement issued by an a~rlicaticn ~rogram
allow DL/I to determine ~hich data base is to be used and which data
segment in the data base is to te retrieved, inserted, rer1aced, or
deleted. From this informaticn DL/I performs a VSAM, SAM, ISAM, or
OS AM input/output operation. If the desirea data segment already exists
within the data base reain storage buffers, no input/output operation
is required.

When the data base operation consists of data segment insert,
replace, or delete, a record of the data base modificaticn is written
on an IMS/vS log for the batch processing address space. The content
and format of logg~d information are described in a subsequent section
of this chapter.

resign and Installation of a DB System 1 .3

One significant conce~t of the data base input/output interface is
that the format and content of all information used to establish the
interface are symbolic. None of this inforrraticn is dependent upon a
sp~cific data management access method or organization.

Before the DB system can be used for batch data base processing, it
must be tailored to the user's data processing envircnment. ~his
process of systerr tailoring is called system definition. The details
of IMS/VS system definition are provided in the I~~L~~ !D2t~!1~~iQD
gyig~. For IMS/VS, the system definition function is sirrilar, in
concept, to OS/VS syetem genera tion.

o S/VS OPTION CON SIDERA TI ONS

The DB system operates under OS/VS1 or CS/VS2. Very little
difference is experienced by the IMS/vS user, whether VS1 or VS2 is
used~ The primary differences are attributable to the OS/VS option
chara.cteristics. Chapter 2 of this rranual describes the considera tions
for operation under VS1 or VS2. ~hese are primarily concerned with
main storage management and reliability/serviceability. ~he effects
of VS1 v~rsus VS2 are considerably greater with the IMS/VS DE/DC
system.

Only one os/VS opticn defined during OS/VS system generation is a
requirement for the DB system. This is user SVC inclusion.

Other OS/VS options or features which are desirable, but not
required, for IMS/VS are VS~M access method, ISAM access methcd,
ANS-COBOL, PL/I F, PL/I optimizing Compiler, and a Sort/Merge fun ct. ion.

The ASSEMBLER, an IMS/VS requirement, is automatically incorporated
in OS/VS. Alternatively, the Assembler H program ~roduct may be used.

IMS/VS SYSTEM DEFINITION

The DB system definiticn process includes the specification of the
following parameters •

• OS/VS system under which IMS/VS operates -- VS1 or VS2

• OSAM access method's supervisor call number and channel end
appendage narre

During and after system definition and befcre rE system execution,
several IMS/VS library data sets must be defined. ~hese include control
block libraries, load rrodule libraries, and a procedure library. The
details of data set definition and allocation are defined in the IMS/VS
In2i£!!atioU 2~ig~. Libraries which are of importance to the discussIon
in this chapter are:

IMSVS.RESLIB - the IMS/VS system load module library

IMSVS.PGMLIE - the user's application prcgrarr library

IMSVS.DBDLIB - the IMS/VS control block library containing data
base deecriptions (DBD). Each member describes tr.e
logical structure of data and its physical storage
in a da ta ba se •

1.4 IMS/VS System/Application resign Guide

IMSVS.PSBLIB - the IMS/VS control library co~taining application
prograro specifica tion blocks (FSE). Each member
contains a description of how its asscciated
application ~rogram uses one or more data bases.

IMSVS.ACBLIB - the IMS/VS library which contains control blocks
required for a specific application program. This
is a ccrrbina tion of the DEDs and PS Bs in an int ernal
forroat required by DL/I for data base systerr.
executic~.

IMSVS. PRJCLIE - the IMS/VS procedure library ccntai ning IEM-s uppl ied
pro ce dur es.

IMSVS.MACLIB - the IMS/VS macro instruction library containing at
least DBD generation and FSE generation macro
instruct ions.

The Overflow sequential Access ~thod (CSAM) is a special data
management access method supplied with IMS/VS. It is used with some
of the IMS/VS data base organizations. The functions which OSAM
performs vary and depend upon the data base organization specified for
a particular OSAM data set. 'These functions are described in a
subsequent chapter of this rranual. The other rrodules cf IMS/VS
in~erface with O~M through OPEN, CLCSE, REAL, and WRITE macro
instructions similar to those provided for any OS/vS access method.
OSAM roodules interface \-;i th the CS/VS input/output supervisor through
th~ EXCPVR macro instruction in VS1 and SVS and through the I/O driver
interface in MVS. As far as OS/VS is co~cerned, a~ O~M data set is
described as data set crganizaticn equals physical sequential
(DSORG=PS). In fact, an OSAM data set can l::e read using BSAM or QSAM.

The advantages of OSAM to IMS/VS relative to either ESAM or BDAM are:

1. An OSAM data set can occu~y a s many extents and direct access
vol~es as a ECAM data se~.

2. An OSAM data set can be opened for update in place and extension
to the end through cne data control block (rCE). The phrase,
extension to the end, means that records rray be added to the
end of the data set and that ne\-; direct access extents may be
obtained.

3. An OSAM data set need not be formatted prior to use.

4. An OSAM data set can have fixed length blocked or unblocked
record format.

5. File mark definition is always used to define the current end
of the data set. 'The addition of a new block causes the file
mark to be placed after the new block. 'Ihis concert is used as
a reliability aid while the OSAM data set is open.

During data set open, OSAM requires a type 4 su~~rvisor call and a
channel end appendage. The SVC nurober and the channel end appendage
name are specified during IMS/VS sys~m definition. The corresponding
svc modules and channel end appendage must be rlaced in SYS1.S~LIB by
the user. See tr.e IMS/vS Installation Guide for information cn how to
accomplish this task:---- ------------ -----

Design and Installation of a DE system 1.5

It should be remembered tha~ other OS/VS access m~thods, VSAM, ISAM,
and SAM are used for physical storage of data elerrents in addition to
OSAM&

r OSM1 data sets are restricted to a 31 bit addressing limit.

The Generalized Sequential Access Method (GSAM) provides acc~ssing
support for simple physical sequential data sets, such as tape files,
SYSIN, SYSOUT, and others that are not hierarchical. These are data
sets which, before GSAM, could not be used as IME/vS data sets.

Su~port provided includes sequential or direct retrieval by a record
identifier which d~fines the relative position of that record.

Support is provided for both OS/VS Sequential Access Method (SAM)
and OS/VS Virtual Storage Access MEthod (VSAM) for entry sequenced da ta
sets (ESDS). G SAM is fully de scribed ill I~§LY§ ~I;I;li£~1.icn ~Q9~~!!!!!!iD9
E§!§!:en£~ Mm:g~l. 'The ccncepts of hierarchy and segment desc'ribed in
~~is manual do not apply to GSAM.

DATA BASE DESCRIP'IION ~BD) GENERATICN

Subsequent tc IMS/VS system definition and its related functions
(such as incorporation of the OSAM SVC modules and char.nel end appendage

module into SYS1.SVCLIB (OS/VS1) or SYS1.LFALIE (CS/VS2», CBt
generations can be performed. A tED must be provided for each data
base to be used by an a~~licaticn ~rogram, prior to executicn of the
program. The IM~LY§ Qtilitie~ B~fgIgn~~ M~n~~l describes the details
of DED generation.

DBD generaticn is the execution of IMS/VS macro instructions to
create a descripticn cf a data base. This data base description
includes a definition of:

• The data base organizaticn and access method

• seg~ent forrrats, ~hether fixed or variable

• whether the segments are subject to dat,a compression routines

• Inter-segment relationships

• Field formats within segments

• ~he existence of index relationships for any field

• The relationships, if they exist, betwEer. segrrents in two or more
data bases

1.6 IMS/VS System/Application Cesign Guide

Figure 1-2 illustrates the execution of a DBD generation. The IMS/VS
user creates control card sta~ements ~ha~ are presented to LEL
qenera+ion as a ~ormal OS/VS problem program job. The IMS/VS macro
instruct.ions used for DBD genera tion exist in I~SVS. MACLIE. The result
of a DPD qeneration executio~ is the placement of the corr~iled DBD into
IMSVS.DBDLIB as a merrber of the ~artitioned data set. The members of
~e IMSVS.DBDLIE library can be used during the Data Base system
execution.

A job control la nguage I=roc~d ure, named DEDGE!', is pl aced in' the
IMSVS.PROCLIB data se~ by IMS/VS system definiticn for subsequent DBD
generation execution. This I=rocedure is described in the lM~~Y~ §Y§!~ID
£~Qg~~mmiug R~!§I~n£~ ManY~l·

Figure 1- 2.

os/Vs

DBD
GENERATION

DBD Generation Execution

Cesign and Installation of a DE System 1.7

PROGRAM SPECIFICATION ELOCK (PSE) GENERATION

The third necessary function prior to executicr. in the DB system
ba":ch processing environment is PSB generation. Associated with "any
batch processing application program is a'PSB centrel bleck. The PSB
control blcck defines the data bases used by the application program.
In addition, it defines the manner in which the data bases are used
(that is, retrieval only, retrieval and update, or data base create)
and the segments within each data base to which the application program
is sensitive. It also dEfines which, if any, additional seccndary
indexes can be used to assist in segment selection.

PSB generation is the execution of 1MS/VS macro instructions to
define an application program's use of one cr rrere data bases. The
IMS/VS user creates centrel statements that are executed during PSE
generation as a normal OS/VS job. The 1MS/VS mac Ie instructicns used
for PSB generaticn are in IMSVS.MACLIP. Tbe result of PSE generation
execution is the placement of the compiled PSB intc IMSVS.PSBLIB as a
member of the partiticned data set (Figure 1-3). The members of the
IMSVS.PSBLIB data set are used during the Data Base's system executicn.
The lMS/v§ Qtiliti~2 E~f~~~D~~ ~EnY~l describes the details of PSB
gene ra tion.

A procedure, named PSEGEN, is ~laced in the IMSVS.PROCLIB data set
by 1MS/VS system definitien fcr subsequent FSE generation execution.
This procedure is described in the 1M§{y§ ~Y§t~ill ~IQgIgmmjDg B~f§I§n~~
t1~n.Q!!'!.·

Figure 1-3.

oS/VS

PSB
GENERATION

FSE Generation Execution

1.8 IMS/VS System/Application resign Guide

APPLICATION CONTFOL ELeCKS (ACE) CREATION AND MAINTENANCE

The fourth necessary function prior to executicn of the data base
systero, is ACB creation and/or maintenance. This function is optional
in a DB system. It is required in a DB/DC systew. Associated with
all batch processing a~~licaticn ~rograms are DL/I control blocks which
define the data bases, s~ructures, and methods to be used with a
particular application.

The informaticn in these blocks can be constructed in either of two
ways: (1) at initializa ~icn time, the logical block builder module
(DFSDI.BLO) is called to construct the blocks froIT the PSBs and DBDs
associated with the ap~licaticn ~rogram to be scheduled; or (2) the
Application Control Elocks Creation and Maintenance utility ~rogram
(DFSUACBO) is used to ~rebuild the control blocks for the application
program. In this case, the necessary centrcl blccks are loaded directly
from the IMSVS.ACBLIB data set, saving processing overhead.

Application Control Blocks Creation and Maintenance requires no
IMS/VS resources other than IMSVS.PSELIB, IMSVE.DBDLIB, and
IMSVS.ACBLIB. ~he user su~~lies control statements which specify the
operations to be performed. (see Figure 1-4.) ThE IM~LY~ ~i!iti~~
E§1~~~n£§ M£UY£! describes the details of ACE creation and maintenance.

A procedure, named ACPGEN, is placed in tte IMSVS.PROCLIE data set
by IMS/VS systerr definiticn for subsequent ACB creation and/or
maintenance. This rrccedure is described in the 1~2!Y~ E~~~m
R±Qq±~mminq R~!~±§n£s MangEl·

ACB
CONTROL

PSB

LIBRARY

os/Vs

ACB
CREATION
AND
MAINTENANCE

Fiqure 1- 4. ACB Creaticn and/or Maintenance

Design and Installation of a DE System 1.9

APPLICATION PROGRAM DESIGN

The final function performed prior to ~B SystEID execution is the
crea~ion of applicaticr. Frcgraws. Applicatien ~rcgrams are required
to create and maintain all user-defined data bases. These programs
are written in Assembler Language, COBOL, or PL/I, and must be placed
in t.he IMSVS.PGMLIB data set after compilation and link edit. IMS/VS
JCL procedures are available to the user fer ~regraw compilatien and
link Edi~. These procedures are placed ir. the IMSVS.PROCLIE data set
by IMS/VS system definition. Each compiled a~plicatien ~rogram must
be link-edited with modules that will be called by the application
program during executior.. JCL procedures cause ttis link-edit to be
performed. For details see the I~~LY§ ~Y~~~rr f~Qg~gmming B~!~~~n~g
~.9nYE:l·

This section ef the chapter descrioes batch processing in the I:E
system. Prior to execution, the functions cf IMS/VS system definition,
DBD generatien, PSB generatien, and application program compilation,
and optionally, ACE creation, are assumed to haVE been perforrred.

ESSENTIAL PROGRAM ELEMEN'IS FOR EXECUTION

Figur~ 1-5 illustrates the program elements neCEssary for batch
execpticn. The IMS/VS centrol blocks are obtained from the IMSVS.ACBLIB
(if prebuilt blocks are to be used) or are constructed dynamically at
execution time from the FSEs and I:EDs associatEd ~ith the application
program. The ap~licaticn Frogram is obtained from the IMSVS.PGMLIE
data set. The IMS/VS I:E system modules are o~tainEd frow the
IMSVS. RESLIB data set.

IMSVS.DBDLIB

I MSVS.RESLI B

Figure 1-5.

OS/VS

APPLICATION PROGRAM

LANGUAGE INTERFACE

DATA
lANGUAGElI

DATA
BASE

LOGGING

IMSVS.PGMLlB

IMSVS.PSBLIB

Essential Prcgram Elements for Execution

1.10 IMS/VS System/Application Design Guide

As previously d~scribed, ~here is a PSB a8sociated with the batch
proc~ssing application program. The PSB is ccmpcsed of cne or more
subordinate control blccks called data base program communication blocks
(PCB). ~ach data base PCE specifies a data base cr logical structure
of data segments u8ed by th~ application program. The PCE specifies
the name of the LED associated with the desired cata base and the names
of segrnent.s within the data base to which the program is sensitive.
secondary index~s ca~ be specified to aid in segment selection.
Segments to which an applicaticn program is sensitive can be retrieved,
updated, ir.s~rted, and deleted. Segments to which an application is
no-+: sensi tiveare never present90 ~o the application prograrr.. The
concept of segment sensitivity provides some degree of data
indep9ndenc~. Additional constraints can be placed on the mann9r in
which an applica ticn prograrr is 8ensi ti ve "':0 a segment. Levels of
s~nsi t.i vi ty can l:e defined for each segm9nt. 'The lowest level of
sensitivity is 8egment retrieval only. The next level of sensitivity
allows segment retrieval, update, insert, or delete.

Each data base PCE in the PSE associated with the applicaticn program
to be executed defines a DBD by name. This means that one or more DEDs
are required for any batch program execution. Each DBD defines the
organiza~ion and segment structure in its associated data base. The
conc~pt of a logical data base and associated DBD is defined in a
subsequent chapter of this rranual. If the DED named in a data base
PCB is associated with a logical data base, one cr rrore additional DBDs
are requir~d to define t~e data base and id~ntify the segments within
the data base to which the program is sensitive.

Together, the PSBs and DBDS are used to construct the IMS/VS
application control blocks. This may be done dyr.arrically or by a
utility prograrr which ~rebuilds the blocks. The I~~/V~ ~tili!i~§
R~t~~~g~~ ~an~£l describes this process.

An applicaticn prcgram to b~ executed in the batch processing DB
system environment may be written in COBOL, PL/I, or Asserrbler Language.
A subsequent chapter cf this rranual describes design considerations
for an application program. The details cf application program
irrplernen~ation aze provided in the !~S!y~ ~£~li£s!iQn PrQ~amming
E~f e !:~n~§. M~£l.

The IMS/VS modules utilized in the DE system environment are obtained
from the IMSVS.RESLIB data set. 'These modules are placed in that data
set by the execution of IMS/vS system definition. The majority of the
modules are involved with handling data base requests frorr the
application program. 'These modules in turn utilize the data management
access m~thod modules of VSAM, ISAM, OSAM, GSAM, and sruM.

Cesign and Installaticn cf a DE System 1. 11

The primary IMS/VS modules are:

Data Base Retrieval Module

Data Base Insert Module

Data Base Delete/Replace Module

Data Base VSAM Interface Module

Data Base ISAM Sirrulator Module

Data Base Hierarchical Direct Space ~anagement Module

Data Base I SAM/OSAM Buffe r Handler Module

Data Base Buffer Eandler Router Module

Data Base Hierarchical ~irect Index Mainter.ance Mcdule

GSAM Access Method Modules

OSAM Access Method Mcdules

Data Base Logging Medules

A later chapter of this rranual describes the I~S/VS data base access
me~hods. Each of these data base access rrethcds uses either standard
OS/VS da~a management access methods or OSA~ for the physical storage
of segments. The following illustrates the relaticnships.

HSAM

HI SAM

HDAM

HIDAM

GSAM

LOW LEVEL ACCESS ME'IHOD
Q§ED FOR-~BX§1£~1_§lQRAG~

QSAM or BSA.NI

BISAM-OSAM, QISAM-O~M, or VSAM

OSA~ or VSAM

EISAM-OSAM, CISAM-CSAM, or VSAM

ES~M or VSAM (ESDS only)

If sequential precessing cf an HSAM data base is defined, QSAM is
used in support of HSAM. If nonsequential processing of an HSAM data
base is requested, BSAM is used in support of HSAM. When a HISAM data
base is created cr reorganized, QISAM load mode and OSAM are used.
When an existing HISAM data base is used for retrieval, insert, update,
and/or delete, QISAM scan mode and OSAM are errployed. If a PSB
generation defines twc or rrcre data base FCEs which relate to the same
HISAM data base, BISAM read and write are used for HISAM retrieval,
update, delete, and/or insert. OSAM or VSAM is used for all data
segment storage when the data case access rretbed is HIDAM or HDAM.
The use of ISAM (BISAM or QISAM) in an HIDA~ data base is for index
segment storage only. 'Ihe use of BISAM or CISAM in support of the
HIDAM da~a base access method is equivalent to that described for HISAM.

1 .12 IMS/VS Systerr/Application Design Guide

DATA BASE SYSTEM EXECUTION

Once the functions of IMS/VS system defir.itior., DBD generation, PSB
generatior., and arplicaticr. ~rogram creation have been accorrplished,
execution of the Data Base system may be performed. The initial DB
system execution presumably loads data into one cr more of the data
bases previously defined by DBD generation. (The load process is
described in the IM~LY~ ~!i!i~i~~ E§i§~§n£~ M!nY~i.) Subsequent
executions would perform retrieval, update, insert, and/or delete
operatio!ls against existing data tases and/cr create additional data
bas es.

When a batch processing execution of the DE system is initiated,
the control blocks associated with the applicaticn ~rograrr rrust be
oh't ained and initialized. This control block initialization process
is part of the batch processing job step executicr. but precedes the
loading of the a~plicaticn ~rogram. The first step involves obtaining
the DLII control blocks. If PARM=DEB was specified, the required
control blocks are obtair.ed from I~SVS.ACBLIE by the block loader
module. If PARM=DLI was specified, the block builder module is called
to construct blocks dynarrically. In this case, I~SVS.PSELIB and
IMSVS.DEDLIB are used to ottain the required PSBs and DBDs. Once the
blocks have been obtained, the initialization routines load the required
DL/I action modules, initialize STAE, and format the necessary storage
areas in preparation for loadir.g and giving the a~~licaticn program
central. Figure 1-6 illustrates this initialization process.

APPLICATION
CONTROL

BLOCKS

IMSVS.ACBLIB

r----------
I
I

DBD
LIBRARY"

OS/VS

PROGRAM -CONTROLLER

I •
-----. BLOCK

LOADER

~
CONTROL
BLOCKS

... -------1---- - --

BLOCK +-
- ----+ BUILDER ... -- ---

~

I MS/VS
SYSTEM
LIBRARY

.....
IMSVS.RESLI

~-~ -
PSB

---- LIBRARY

...... ~

B

- -,
I
I
I
I , ,
I
I

I IMSVS.DBDLIB ·IMSVS.PSBLIB I L _____________________________________ ~

Figure 1- 6. Initializing the Batch Data Ease System, step One

Design and Installation of a DE System 1. 13

The I~S/VS module which controls the D~ systerr ~nviror.ment is called
the ~rogram controller. The primary functicns cf the frcgram controller
are:

• Initiate the IMS/VS DB system block building process by passing
control to the IMS/vS ccntrol block building rredules (Figure 1-6).

• Initiate the DB system ~L/I and data base logging modules and fass
control to the u~er's arplication program (Figure 1-6).

• Terminate the DE system execution by returning to OS/VS.

The EXEC statement provided as part of tte OS/VS job ccntrel language
for th~ DB systerr batch rrccessing execution includes, within the values
of its PP-.RM= operand, the names of the PSE and the application program
to be executed. Control is passed from the regicr. contreller (not
shown in Figure 1-6) te the frogram controller, to the block loading
and building modules. The name of the PSE is su~~lied. U3ing the PSE
name, the required centro1 blocks are pbtained. If the first FARM=
value is DBB, the required centrol blocks are loaded from the
IMSVS. ACBI.IB data set. If the first FARM= value is DLl, the named PSB
is loaded from the IM$VS.PSBIIB data set and r~ferenced LEOS are loaded
from the IMsvs.rEDLIE data set. From the PSB and DBD control blocks,
internal IMS/VS centro1 b1ccks are bullt for subsequent input/output
operations in the rE system envirenment.

After the control block construction is comf1ete, control ~ithin
the OS/vs addreE~ sface is returned to the program controller. At this
point the remainder of the LE system functions are initialized (Figure
1-7). This includes leading of the required DL/I dat-a base modules,
loading of the data base leg modules, creation of a data base buffer
pool, and loading of the required data managewent access rrethed medu1es.

De~nding upon the data base organizations and the marner in which
each data base is used by the application program, only the necessary
nUl and access method modules r.re loaded.

Finally, the applicatien ~rogram to be executed is obtained from
the application ~rograrr library, l~SVS.FGMI.IE. Control is given to
the application program.

1. 1 u IMS/VS system/Application resign Guide

OSIVS
I •

PROGRAM
CONTROLLER

I
I

r-------I
I I ~-::::.

I •
-

I APPLI-

I APPLICATION' - CATION

I PROGRAM
..... PROGRAM

I
LIBRARY

I _-
I
I IMSVS.PGMLI B

~-:;::, - • --
I MS/VS

,
I DATA

SYSTEM .. DATA I BASE CONTROL
LIBRARY

..
LANGUAGE/I, I BLOCKS LOGGING

I --..... --
MSVS.RESLIB

DATA BASE
BUFFER POOL

F~gure 1-7. Initializing the Batch Data Base System, Step ~wo

IMS/VS provides procedures for CB syst€~ ba~ch ~rocessing execution.
Th~y are DLIBATCH, DBBBA'TCH, I~SFLIGO, and IMSCOEGC. They are placed
in IMSVS.PFOCLIE during IMS/vS system defir.ition. ~hese ~rocedures

are described ir. detail in the I~~LY§ Sys!~m frQg~smrning B~!g~~n£~
MAnll~l and include the basic JCL for execution. ~he user must add DD
statements for all data ba~es to be used. The content and format of
these DC statements are described in the ~~LY~ Y!ili~i~~ E~fe~~n£~
~£nY£!.·

Figure 1-8 illustrate~ the DB system control sequence flow once the
application program has been given central. U~en entry to the
application program, a pararreter address list is provided. The
addresses in this list provide visibility to each oata base PCB in the
PSB for the application ~rogram (see arrow 1). These data base PCE
addresses are subs~quently used by the applicaticr. ~rograrr when issuing
data base input/output call requests.

Design and Installation of a DB System 1 .15

8
U

Figure 1- 8.

PSB

BJ.CD
I t
I I
I I
I I

os

REGION
CONTROLLER

LINK

APPLICATION
PROGRAM

: I
I I r--------------.
I I I DATA LANGUAGE/I I
I I I INTERFACE I I I L ______________ J

I \,CD CD
,...+~-.." --,...-......;------r-----,

DBDs

DATA
LANGUAGE/I

ACCESS
METHOD 14--"'"

DATA BASE BUFFER POOL

Data Base System Flow

DATA
BASE

LOGGING

TRANSACTION

RESPONSE

Arrows 2 and 3 in Figure 1-8 indicate the transaction input and
response output in~erface wi~h the applicaticn ~rcgram.

All applicaticn Frcgrarrs oFerating under 1MS/VS have a language
in-l:erface link-edited ~ith the apFlication program. The language
interface accepts a data base call from tbe aFFlicaticn Frcgram and
passes control to the DL/I data base modules (arrow 4).

The purpose of the language interface is to provide a oonsistent
format to DLII for all data base call requests, indeFendent of the
prograrrrring language used to write the application program. The
IMS/VS-supplied as/vs procedures for compiling and link editing
application programs are deecribed in the 1~~LY~ §y§!gm grog~Emming
E~t~~~U£g M£n~~l. The link edit step for each of these procedures
provides for the inclusicn cf the language interface wi~h the oorrectly
compiled PLlI, COBOL, or Assembler Language application program.

The language interface function of IMS/VS is reenterable and is
upwardly compa~ible ~ith that of 1~S/360 Version 2. ~o take advantage

1.16 1MS/VS system/Application Design Guide

of the reenterable capability of the IMS/VS language interface,
applicatior. modules from IMS/360 installaticns must be re-link-edited,
replacing the IMc/360 la nguage interface \<Vi th the IMS/VS language
in"':erface.

After control is ~a~sed to the DL/I moaules for execution of the
data base call requeet, the following functions are performed.

1. '!he parameters in the call request are checked for valid content.
This checking involves the use of data base PCBs (arro\<V 5) and
DBDs (arrcw 6).

2. If the data base call involves segment retrieval, the information
contained in control blocks and data base tuffers is used to
attempt tc sa tiefy the request. If the reques~ can be satisfied,
the desired data segment is placed in the ir.put/output work area
cf the applicaticn program provided in the data base call.

3. If the retrieval request cannot be satisfied with information
already contained in the data base buffer ~ccl, the appropriate
data management access method modules are invoked (arrow 7),
and the da~a management access method ncdules perform the
necessary input requests to place necessary data in the data
base buffer pool (arrow 8).

4. If the data base call request involves data segment update or
deletion, the segrrer.t must first be retrieved (from either the
buffer pool or secondary storage). Subsequently, the segment
is deleted or updated (arrow 10).

5. If the data base call request involves data segment insertion,
t~e segment is placed in the data base buffer pool and
subsequently written to direct access storage (arrow 10).

6. When the data base call request involves segment insertion,
upoating, or deleting, a record of the data base modification
is placed on an IMS/VS log for the batch address space ~egion)
execution. This logical information can subsequently be used
for data base recovery or reconstruction (arrow 9).

IMS/VS mainta ins t\<Vc da ta ba se buff ering functions: one for VSAM
data bases, and one for ISAM/OSAM data bases. A separate pcol of
butfers is allocated for each type of data base (VSAM and ISAM/OSAM)
and the data management access methods (VSA~, ISAM, and CSAM) are
directed to read into and write from these buffers.

The concept of the buffer pool is to allow blocks of data to remain
in main storage as long as possible to avoid seccndary storage reads
and writes. Data i~ the buffer pool can be accessed and updated without
I/O as long as there is no need to reuse the tuffer space the data
occupies. A use chairi determines the order in \<Vhich the buffers are
used. Empty buffers are placed at the bottcrr of tbe use chain and are
always available for reuse. As buffers are accessed, they are placed
at the top of the use chain. When a retrieve request cccurs, the buffer
pool is searched using t~e use chain (for ISAM/CSAM a hush table is
used to 1irect the search), to determine if the requested data is
already in main etorage. If the data is not found, the least recently
used buffer (bottom of the use chain) is selected, the old data is
written out if it has been changed, and the requested data is read into
the selected buffer.

Design and Installaticn of a DB System 1. 17

The sizE of the data base buffer ~ools can have a significant effect
on the ~erformance of the I~S/VS systEm. The size of the buffer pool
is defined during LLII initialization, baSEd o~ ccr.trol stateff'ents
provided by the user (eee the sectior. "DEfining the IMS/VS Buffer Pool"
in the IM2LY~ ID~!sllq!ifD gyi~~). The size of the ISAM/OSAM buffer
pool, for IMS batch jobs, can be definEd ty the BUF ~ararreter on the
EXEC stateroent for the job step or by buffer control statements.

At t.he beginning cf each of the data base buffer pools, there exists
a work area used by IMS/VS to record statistics cr. the activity in the
pool& These statistics are of value to the I~S/VS user in determining
th~ appropriate buffer pool size for a given application program. The
DL/I statistics call (STAT) can be used to obtain these statistics in
an application program (see the !~~LY~ ~£lifA!j£D PrQg~AmmiD.9 B~t~~sn~~
M~YAl for a description of thE STAT call).

For additional infcrmaticn on tuffering see the secticn "DL/I Data
Base Buffering Facilities" in theI~S/Y~ §y~te~ f~Qg~gmmin9 E~t~~~n~~
MADYA.!·

DATA EASE LOGGING

All rrodifications tc any data base used in the DB system environment
are recorded on the IMS/VS log tape for the address space. If multiple
data base system executions are performed concurre~tly under as/VS1 or
VS2 a separate IMS/VS log taFe is associated with each address space.
Unless a data base is being used for retrieval purFcses cnly in all
address spaces accessing the data base, no attempt should be made to
access the same data base from rrore than one as/VB acdrees space at
any one time.

Data base logging provides the IMS/VS system user with a recording
of all modifications to all data tases used during a data base
execution. The log can be written with ESAM or CSAM. See "Chapter 2.
Log Facility" in the lMSlY§ ~:Y§1~ID Exg.9!:ArrrriD.9 E~:t.erenc~ M~DY~l for
performance improvement considerations using ~OSAM. An IMB/VS option,
log-tape write-ahead, ineures that log records are written before the
da ta in the data base is changed. See the section "DL/I Da ta Ba se
Buffering Facilities" in the i~'§LY§ §yst.§!r .FrQg~~mmi.ng B~t~~~n£~ ManYA.!
for additional information on log-tape write-ahead. The IMS/VS log
tapes can be used in ccnjur.ction ~ith the IMS/VS Data Base recovery
utility to rebuild a data base. !he I~§LY~ Y1j'!j1i~~ Referen~§ MaDyq!
provides details cn the use of da ta base log information for recovery.

If no data base changES ~ill be mad~ or if no data base recovery
utilities will be used, the logging function can be rrade inoperable by
specifying DD DUMMY en the primary log DD statement (~t name IEFRDER).
If dual system logs are used and the primary log is specified as DD
DUMMY the secondary leg is ignored and no logging is done.

If a data base is destroyed because of input/output errors, it can
be restored with the following procedure •

• Restore the data base ~ith a ~reviously dumped copy. ~he Data Base
Reorganization utilities can be used for this purpose. Fefer to
the IMS/V~ ~!i!iti~~ Refe~D~§ MsUyql for detailed information.

1.18 IMS/VS System/Application ~esign Guide

• Apply all data base rredifieations made to the data base since the
durrped copy was erea~ed. The 1MS/VS Data Ease Recovery utility
programs provide this function •

• Repeat the current CE system processing frorr the begi~ning.

The image for the data base log tape record format is contained in
~he I~~/V~ PrQg~~~ ~Qgj£ M~D~l.

~Qt~: The above discussion of data base logging ar.d recovery does not
apply tc the HSAr·, organiza tion. Since the old data is not destroyed
when updatip-g HSAM, logging and tackout are not required to maintain
da~a tase integrity.

BATCH CHECKPOIN'I IHE S'IART

The batch checkpoint facility provides fer synctrcnizing checkpoints.

The CHKP func~ion call to CL/1 allows the coordinaticn of ~rogram
activity with data ba~e activity. Lacking any means to identify
significant eve~ts in an applicatien program, OL/1 treats data base
calls as cne continuou~ string of related actions. When a CHKP call
is issued, the program is indicating to DL/I that a sync ~oint has been
reached and the data base buffers should be written to secondary
storag~. FOr batch programs, a checkpoint reccrd is also recorded on
the log data set to indicate the sync point and set the maximum point
to which the data base backout occurs if it beceITes necessary.

In the batch environment, the duration of the job may be leng and
the nuwber of data base changes may be large. If the job lasts for
many hours then the time for reloading direct access data sets and
rerunning, if nece~sary, way be exces~ive. Batch checkpoint/restart
allows the user to take one or more sync points during execution. The
sync point then de~ermines the amount of time required to backout the
data base if restart occurs. Backout is effected cnly back to a
specified check~cint recerd.

The action taken by the OB system for batch programs when a CHKP
call is issued is as follows:

1. Altered data base buffers are written.

2. The check~oint 10 su~plied in the CHKF call is written to the
log tape.

3. Message DFS6811, ccntaining the checkpoint ID supplied, is ser.t
by a WTO to the sy~terr console, and to the programmer.

4. Optionally, an OS/VS checkpoint of the user's region is taken.
If the 1MS/VS log access method is OSAM, tte OS/VS checkpoint
is not taken.

It is the user's responsibility to checkpcint any non-IMS/VS
information or data sets (such as transacticn/res~ense data sets) ~ith
issuance of the CHKP call. This can be done with the OS/VS
checkpoint/restart option in the DL/I CHKP call.

As an alternative to the OS/VS checkpoint/restart option, the user
can specify the IMS/VS expanded checkpoint/restart facility. This
consists of a restart call (function code XRST) ar.d o~tional ~rameters
on the CHKP call. If used, the XRST call is the first call to IMS/VS
issued by the user program. If a restart is net in progress, the XRST
call is effectively a NOP.

Design and Installatien of a DE System 1.19

The issuance of an XRST call causes the fo110wir.g acticn to be taken
for subs~quent CHKP calls issued by the program:

1. optionally, user specified areas, that is, application variables,
control tables, and position informaticn fer non-IMS/VS data
sets, are recorded cn the I~S/VS log.

2. '!he fully qualified key of the last reccrd Frocessed by the
program on each IMS/VS data base is reccrded on the log.

3. The functicns cf the standard CHKP call are perfcrmed, except
that the OS/VS checkpoint cf the user's region is not taken.
The user has the option of using OS/VS CheckFoint/Restart, or
the IMS/VS restart (XFST call) , or neither, but not both.

A checkpoint ID can be supplied to the IMS/VS Batch Backout utility
program through a control statement. The backout of data segments from
the data base is done from the end of the log tare until the matching
checkpoint record is er.countered.

In the case of a batch program, the checkFcint/restart facility used
can then be invoked to restart the prograrr frerr that Fcint.

The batch checkFcint facility is implemented by the use of the CHKF
system service call frcrrthe application program. This call is used
to indicate a sync point at which any data base uFdates can be
restarted. The actual checkpointing of the batch program environment
and the routine used to restart i~ are at tte oFticn of the user. The
DL/I checkpcint Frograrr cannct issue the CS CHKP~ macro.

If the DL/I user chooses to write his own checkpoint/restart
routines, he must:

• Record applica ticn vari abIes and contra 1 tables.

• Record positicn information for non-IMB/VS data sets.

• Provide a restart ent.ry roint and reinitia1ization procedure.

• Initialize IMS/VS control blocks, for examrle, PXPARMS.

Use of the XFST call and user area parameters en the CHKP call
simplifies the task for the user writing his own restart routines.

• A restart situation is indicated by specifying a checkpoint ID in
the PARM field (on the EXEC statement in tte JCL) or in the XRST
call itself.

• Normal entry point and initialization rrocedures are used.

• User areas recorded at checkpoint time are restored.

• A GET UNIQUE is issued for each GSAM data base for the last used
record, if the data base was open at the time the checkpoint was
taken.

• No data is returned as the result of the GU, but key feedback and
status codes are saved in the user PCEs.

• If the data base was opened for output, then a PNT function code,
requesting FOINT, is used~

1.20 IMS/VS System/Application cesign Guide

• GSAM data bases are automatically repositicneo at restart if the
XRST call i~ u~ed •

• Th~ checkpoint I£ is returned to the user rregram to allow it to
link to its own restart subroutine.

Batch ~rograrr~ that de not utilize the batch checkpoint facility
should be reprogramrred to do ~o. The major advantage comes from
significantly shorter backout runs after failure, and the ability to
terminate a long runnir.g job and restart it at a current point with
very small backout preparation and minimal rerun tirre.

IMS/VS USE OF STAE/ESTAE

In order to ensure that all IMS/vS data base log buffers are written,
IMS/VS establishes a S~E/ESTAE routine in order to gain control during
an abnormal termination.

If an application rreqrarr uses the STAE/ESTAE facility, it should
issue only one S1AE/ES~E. when IMS/VS STAE/EST~E processing is
completed the abnormal termination is reissued te ensure that the
application STAE/ESTAE routine i~ given control. If the application
program issues multiple STAE/ESTAEs, in order to be first on the list,
the following precautions rrust be obserVEd:

1~ The applica~ion program must not delete the IMS/VS STAE/ESTAE
control block, nor use the OVERLAY crtion in issuing its
STAE /E STAE •

2. If the application STAE/ESTAE routine gains contrel ~rier to
the IMS/VS STAE/ESTAE routine, the abnorrral termination must be
reissued in order te give control to th~ IMS/VS STAE/ESTAE
routine. Also, the IMS/VS log buffers and control blocks must
not. be ITIodified and nc DL/I call can be issued.

Eot~: Programs that are OS/VS subtasks of an application program called
by IMS/VS must not issue £L/I calls. If they dc, the results ~ill be
unpredic~able.

IBM SYSTEM/370 POw"ER WARNING FEATURE SUFFCRT

The IMS/VS Power warning Log Terrrinatcr ~rcgrarr surrorts the ~ower
warning feature on Systerr/370 Models 158 and 168. This sup~ort enables
the user to close the IMS/VS log from a dump data set without having
to restore memory. The procedure used to accorr~lish this is described
in the IM.§LY.§ Q!?~~to!: 's E~f~!:~n~~ M.snY~l.

I~S/VS DB MONITOF

The IMS/VS DE monitor is a tool for collecting rerforroance data to
investigate specific application designs, data base designs, and
resource allocations. It consists of a monitor rredule, and a Monitor
Report Print program. when activated, it analyzes and records the
internal activities of the IMS/VS CB system. The rronitor rerort print
program is proces~ed offline to ~roduce reports that summarize and
categorize, at various levels of detail, the inferrration recorded by
the moniter module. 'Ihe actiens required to activate the monitor module
are described in the IMSLY.§ Qf~~£~Q!:~§ R§!§~§D£§ ~anY~l. The monitor
report print program i~ d~scribed in the !~§LY£]1ili1i~§ B~!~ren~~
MS!UY£1.·

te sign and Installat ier. ef a DB Sy stem 1.21

The monitor ~cdule collects data from IMS/VS control blocks during
operation of the batch systero (with minimum interfe~ence to th~ system)
and records the data either on an independent data set or on the I~S
log. The monitor rernaine resident and is activated and deactivated
through the system console.

The following are reccrrrrendations for use cf tte DB mcnitor:

• collecting data -- The DB Mcnitor enables an IMS/VS user to collEct
performance data to assist in analyzing an existing IMS/VS batch
system. The amount of data collEcted and the analysis tiroe to
understand the reFcrt cut~ut Euggest short traces during various
time periods. Feports produced from profiles cf a batch executio~
considered as norrral can be used as a profile and compared with
reports produced during a batch executicn with unusual performance
characteristics.

• Tuning system -- The DB Monitor can be used tc quantify the effect
of actual changes to data base structures, Frcgram characteristics,
data set placemen~, and Fool sizes.

• Testing application -- In the final- testing of new or revised
applications, the tE Monitor can be useful ir. validating the
internal operation of the Frograms and data bases. For example,
the programmer thought a specific DL/I call cculd be satisfied with
a single I/O retrieval, yet the DL/I call report indicated a large
data base scan as shown by many !WAITs. Investigaticn of such
ite~s could assist in determining whether a new or revised
application meets the performance objectives. Data contained in
the reForts rray also aesist in defining the resources required by
an application program.

1.22 IMS/vS System/Application Design Guide

This chapter concerns the decisions and planning that must precede
the installation and use of the IMS/VS Data Base/Data Communication
(DB/DC) system. Familiarity with chapter 1 of this manual is assumed.

For the most part, the design and control considerations of a Data
Base system, as discussed in chapter 1, are applicable to the combined
DB/DC (Data Base/Data Communication) system discussed in this chapter.
The fundamental differences in the data base oriented considerations,
when viewed from within the combined DB/DC environment, have to do with
multiplicity and interaction. In the Data Base system, for example,
only one program and its associated program specification block are
used at a time. In the DB/DC system, planning must consider that
multiple programs and their associated control blocks may be in use at
the same time. Furthermore, the interactive effects among those
multiple programs and control blocks must be considered. This kind of
relationship applies, as well, to other resources managed in the DB/DC
system; such as data base buffers, data base control blocks, terminal
buffers, and message processing regions.

The contents of this chapter provide guidance in:

• Selecting an as/vs configuration

• Selecting an IMS/VS configuration

• Establishing a message scheduling algorithm

• Selecting and configuring a physical terminal network

• Establishing a logical terminal network

Regions are distinguished by the kind of processing psrformed within
them. There are three kinds of regions. They are the IMS/VS control,
message processing, and batch processing regions. A further distinction
is made between batch processing using a private or local control
program, and batch processing through the online control program. The
private use of the control program is simply called batch processing.
Batch processing is provided by the DB system of IMS/VS. The use of
the online control program to support batch-oriented operations is
called batch-message processing. There are three names that relate to
mode of operation: centrol, message, and batch. A combination of
batch and message processing is called batch-message processing.

When necessary, communication between regions is supplied through
type 2 SVCs (supervisor call routines). The control within the IMS/VS
control program region, where mUltiple input/output operations are
occurring asynchronously, is provided by use of tme as/vs EVENT
ca pabili ty.

Design and Control of a DB/DC System 2.1

MESSAGE PROCESSING -- MPP REGION

The IMS/VS control program region is initiated through an OS/VS
START command. The IMS/VS control program and one or more message
processing regions are initiated by the job aanagement facilities of
OS/VS.

FAST PATH PROCESSING -- IFP REGION

The IFP Region is described in Chapter 6.

BATCH MESSAGE PROCESSING -- BMP REGION

A BMP region may contain an application program for processinq
against data bases in the batch manner. The application program in
the batch region is scheduled by OS/VS job management, but may utilize
th~ DL/I facility for data base reference. An application program
executed in a BKP region can access only IMS/VS data bases that are
defined in the I~S/VS control region.

A BMP region, in addition to being able to process data bases used
for message processing, has access to input message queues and can
provide output to the message queues. Access to the input message
queues is provided by specifying, in the JCt for a BKP region, a
transaction type to which access is wanted. Access to the output
message queues is provided by specifying output terminal PCBs in the
PSB for the application program that executes in the BKP region.

When the data bases normally used for message processing are not
being used for that purpose, they can be processed in a batch processing
r-egion as described. in chapter 1 of this publication. This can be done
when the IKS/VS control program is not operative as an OS/VS job.

OS/VS OPTIONS

Fil~~ ~~ !g~ig~~ Iaskinq

The selection of an OS/VS configuration has some effect on the
potential performance and reliability and availability characteristics
of IKS/VS. Certain options are required by IMS/VS in all of the
applicable configurations. The functional characteristics of IKS/VS,
based on the use of these options, are identical regardless of the
OS/VS configuration selected.

The IMS/VS DB/DC system runs under OS/VS1 and OS/VS2.

!~~L!§ ~~~g~~m Kogule PrelQ~g Igncti2n

OS/VS,IMS/VS, and application programs that will run in regions of
IKS/VS can be made permanently resident in virtual storage. This can
significantly improve throughput and response time for frequently
referenced transactions, if. sufficient virtual storage is available
with high performance paging DASD.

2.2 IKS/VS SysteDVApplication Design Guide

Programs can be made permanently resident in two vays:

1. In LINKPACK/RAM

a. These programs are shared among all regions, resulting in
a saving of virtual storage space. Initial access can be
slow because the region JOBPACK and STEPLIB/JOBLIB are
searched before LINKPACK is searched. Subsequent access
can be at CPU speeds, if the region JOBPACK has not been
purged by OS/VS space management (this would be the case if
sufficient virtual storage were not available to satisfy a
user request for space).

b. These programs are made resident by the same method used
for OS/VS and IMS/VS modules.

c. Application modules with names identical to PSBs should not
be placed in OS/VS LINKPACK, since this causes a conflict
during the ACB generation process.

2. In REGION/pARTITION

a. These program modules are used only for transactions serviced
by the region involved, and only for the duration of that
region.

b. OS/VS and IMS/VS modules that are used in a dependent region
can reside in that dependent region. An example is the
In terregion Copy routine.

c. Because these modules are in the region JOBPACK, they are
invoked without repeating the overhead of searching
STEPLIB/JOBLIB, LINKPACK, and SYS1.LINKLIB. The overhead
of fetching the module into virtual storage is encountered
only at region initialization time.

d. They are made resident by invoking the IMS/VS Program Module
Preload function via the step execution JCL parameter.

e. In addition to those modules automatically preloaded into
the IMS/VS control region, other as/vs and IKS/VS modules
can be made resident in the IMS/VS control region by using
Module Preload.

f. Module Preload can also be used for modules resident in
LINKPACK/RAM. Thus, although the modules are physically
residing in LINKPACK (and are being shared among multiple
regions), the overhead involved in searching program
libraries and LINKPACK are only experienced at region
initiation.

Serially reusable programs can be resident only in the
region/partition. They are made resident by invoking the Module Preload
function via the step execution JeL parameter.

The OS/VS task under which modules are preloaded varies based on
the IKS/VS region type:

IMSLVS R~iQ!! ~

Con trol (CT L)
Message (MSG)
Batch Message (BMP)
Batch (DLI)
Fast Path (IFP)

Q~L!~ 19§!

Physical Log
Region/Program Control
Regiontprogram Control
Region/Program control
Region/Program Control

Design and Control of a D,B/DC system 2.3

~f~~~~ ~Q~§ig~~!ions !~ ~Qdul~§ Pr~!Qgg~g i~ ~f~§/!lg§

If modules are pre loaded into ftPPs, the following performance
considerations apply:

1. Preloaded applications are invoked via the BRANCH instruction;
this avoids os overhead.

2. Applications that are not preloaded and that have not been
previously invoked are located by issuing the BLDL macro
instruction; this reduces operating system overhead by avoiding
a PDS directory search for the application modules in subsequent
scheduling. The maximu m number of BLDL entries in the BLDL list
can be specified in the PARM field of the MSG region JCL.· The
entries are kept in the list on the basis of:

a. most recently referenced

b. most often referenced

3. All non-reentr~nt preloaded modules are reloaded after each
abnormal termination.

4. If an abnormal termination with DUftP occurs, all preloaded
modules will be printed.

IftS/VS IN AN OS/VS SYSTEM

REGIQ!! nl~!

CONTROL
MESSAGE
BATCH-MESSAGE
BATCH
FAST PATH

Q~L!~!

X

X
X
X
X

!=R

X

Q.~L!~l

I=V ~!!f

X
X X
X X
X X*
X

* IMS/VS determines whether a batch region is swapped
regardless of whether the user specifies the region
as being swappable. To IMS/VS, a batch region is
swappable if it has no log, and it is not swappable
if it has a log.

OS/VS OPTIONS REQUIRED OR RECOftftENDED FOR IMS/VS

• Options Required

ftany of the OS/VS system generation macro instructions must specify
certain options and values to support an IMS/VS DB/DC system. The
required operands of the macro instructions are discussed below.

• Options Recommended

certain as/vs options are not required by IMS/VS, bmt are
recommended for various reasons. A discussion of the reasons why
they are recommended, by macro instruction, follows:

2.4 IftS/VS SysteDVApplication Design Guide

Either requirements or recommendations are made for the following
OS/VS SYSGEN macro instructions:

CENPROCS
CTRLPROG
IODEVICE

DATAMGT
EDITOR
MACLIB

PARTITNS
RESMODS
SVCLIB

LPALIB
SVCT ABLE

CENPROCS
Values that can be assigned to the MODEL keyword are System/370
machines equal to or greater than 384K. The CPU instruction
set must be specified as INSTSET=UNIV.

CTRLPROG
In VS1 RESIDNT=TRSVC is required to allow for making load 4 of
the IMS/VS type 4 SVC routine resident. The value of MAXIO
should be reviewed to ensure that sufficient capacity is
available to support the DB/DC system. Use of the asynchronous
overlay superwisor, in conjunction with PCI fetch, is
recommended. At least the ADVANCED level of the overlay
supervisor is required. If the configuration is OS/VS1, system
queue area size must be increased over the default size.
Although in OS/VS2, system queue space expands dynamically as
required, it is recommended that the initial size be adjusted
to account for increases in the DB/DC environment. See "IMS/VS
storage Estimates" in the ~LU Sys~~J! f~9.il!!.!.ing Ref~~~
~~Ysl for further information about system queue space.
Additional transient areas are recommended. A discussion of
the potential improvements in performance available through the
use of additional transient areas is in the topic "Fixed or
Variable Tasking."

IODEVICE

DATAMGT

EDITOR

MACLIB

If the online system contains 7770-3 lines, the IODEVICE
specification for the 7770-3 lines must indicate a teleprocessing
device class in the device type field.

Access methods ISAM and BTAM are required. If VSAM and/or VTAM
are to be used, they must be included at system generation.

The F-level linkage editor is required.

Consul t the il~ ~yst2 ~l::Q.9~!.i.n.9 ~fe~~ l1~yal to
determine the block ~ize of the DB/DC system macro definition
library. The block size of the OS/VS and IKS/VS macro definition
libraries should be the same.

PARTITNS
The PARTITNS macro instruction is used only on an OS/VS1 system.
Although partitions can be reconfigured through use of the OS/VS
DEFINE command, it is recommended that they be established at
generation. The DB/DC control program must operate from a
partition defined as a resident reader partition. Refer to
"IMS/VS Storage Estimates" in the l!l~Lll Sys1U f.£Qg~!i.ng
R§f§~~~ ~~gl to determine the partition size. In OS/VS1
the partition number is related to execution dispatching
priority. A lowe+ partition number implies higher relative
dispatching priority. P1 has a higher dispatching priority than
P2 but lover than PO.

Design and Control of a DB/DC System 2.5

RESKODS

I
SVCLIB

LPALIB

Three user SVCs are supplied with I8S/VS. Two are
nucleus-resident. If the IKS/VS SVCs are available at OS/VS
system generation, it is convenient to incorporate them by using
this macro instruction.

One of three user supervisor calls (SVCS) supplied with IKS/VS
is a Type 4 SVC. If it is available at OS/VS system generation,
this macro instruction provides a convenient way to incorporate
it~ This macro instruction is valid for OS/VS1 only.

Provides the same function for OS/VS2 as SVCLIB provides for
OS/VS1.

SVCTABLE

TYPE1

TYPE2

TYPE4

Three user SVCs are supplied with IKS/VS. See the paragraph
enti tIed "Supervisor Call Routines" for further planning
information. The SVC numbers are assigned through your
installation's normal procedures. The attributes of the user
SVCs are:

OS/VS1

Entered disabled
No APF required

Six doublewords
SRVB extension,
Load 4 resident

OS/VS2

Not required

No locks
Entered enabled

Six doublewords
SRVB extension

OS/VS SUPERVISOR CALL ROUTINES

The Data Base/Data Communication system uses three SVCs. Provision
for these SVCs must be made during the generation of your OS/VS
configuration. 'l'he SVC numbers designa ted must .also be specified during
IKS/VS system definition. It is recommended that the three numbers
designated be established as an installation or company standard to
provide for interchangeability among CPUs, operating system
configurations, and installations. In the Data Base System, only one
SVC number, a type 4 SVC, is required. In the DB/DC System, that same
nu,mber plus one type 1 and one type 2 number are required. The type
1 and 2 SVCs are resident in the operating system nucleus. The main
storage requirements for the type 1 and type 2 SVCs are quite small.
If possible, it is recommended that they be incorporated in the nucleus
of each operating system that is used on a CPU liaensed for IMS/VS.
The routines are appendage tables that serve only as access routes to
the actual SVC code. The extended SVC code is resident only while the
DB/DC system is active. Because of the limited function performed by
the resident appendage tables, the likelihood of change through future
modification level releases is small.

In VS1, load 4 of the IKS/VS Type 4 SVC routine must be made resident
for all IMS services. Accordingly, IEARSVOO must be modified to include
the module name, or an alternate list must be specified as a parameter
at IPL time.

2.6 IKS/VS System/Application Design Guide

SPECIAL ACCESS METHOD -- OSAM

The functions and operations of OSAM described for the Data Base
system in chapter 1 of this publication also apply to the DB/DC system.
The DB/DC system uses OSAM for message queue management. Further
discussion of message queue management appears later in this chapter.

j!!Q£~liQn of OS!~ ~~!g ~g!§

The normal mode of OSAM data set allocation is through the use of
the JCL at the time the data set is loaded. This can be for single or
multiple volumes, and is done using the SPACE parameter.

If the installation control of direct access storage space and
volumes is such that the OSAM data sets must be preallocated, or if it
is decided that a message queue data set will require more than one
volume, the OSAM data sets may be preallocated.

Preallocation is done by any of the accepted methods, with the
following restrictions:

• DCB parameters should be specified only if they exactly match those
that will be assigned to the DCB at load time •

• If the data set is to be expanded beyond the preallocated space,
a secondary quantity must be specified in the DD statements during
pre allocation. Note that queue data sets will not be expanded
beyond their initial or pre-allocated space quantity.

When a m~!liE!~~XQ!g~ data set is preallocated, the method of
allocation should either allocate extents on all of the volumes to be
used, or guarantee that the end of the data set is correctly indicated
in the DSCB for the last extents. Suggested methods are:

1. Issue the IEFBR14 utility once for each volume.

2. write the first extent using BSAM or QSAM.

3. Execute a program that opens and c10ses a DCB to preallocate on
the first volume only. A file mark should be written on the
first track of the extent.

4. Use IEFBR14 on the first
the DSCB. ~ nQ! simply
a multi-volume data set.
volume only and will not
volume of the data set.

volume only but use AMASPZAP to correct
use IEFBR14 and specify a DD card for
This will put an extent on the first

indicate that the volume is the last

Do not preallocate more volumes for data base extents than the
initial load of the data set will use. IMS/VS has no way to indicate
the end of data before the last volume on which the data resides. If
extra volumes are allocated, OSAM will be forced to close the data set
at the end of the load step without indicating the end of the good data
(by placing a valid TTR in the DSCB of the last volume). This
restriction" does not apply to message queue data sets.

If the data set is preallocated by a program that writes records in
the extents, an invalid (to OSAM) TTR is placed in the last volume of
the data set. Unless the CLOSE after loading the data base overrides
the TTR, OSAM is unable to properly re-open the data set. The Unload
utility program, and any other programs using the OSAM data set as a
sequential data set, will operate sucessfully, since physical sequential
processing starts at the beginning of a data set, and ends at the
filemark placed by OSAM to define the logical end of the data set.

Design and Control of a DB/DC System 2.7

configuring the IKS/VS system for a particular user environment is
accomplished through IKS/VS system definition. The l~~LI~ In2tgllation
Gui~~ pro vides t be information necessary to perform a system def ini tion.
IKS/VS system definition consists of macro statements, the operands of
which tailor the IKS/VS system for the user. The next several sections
of this chapter discuss the design considerations in selecting various
system definition options. You may wish to subsequently review this
chapter with the system definition details in the I~StV[I~stai!!iion
Gui~~·

CONTROL PROGRAM

For OSAM operations, IKS/VS allows you to include the EXCPVR option
at system definition time. This increases performance and lowers CPU
overhead because it provides translation of channel programs in place.

g~Q~~in~ !~~ion§

The specification of maximum processing regions places a limit upon
processing capabilities that can be changed only through redefinition.
The value assigned to the MAXREGN keyword of the IKSCTRL macro statement
includes both message and batch message processing regions. The maximum
number of regions specified influences the calculation of maximum I/O
requests. The largest value that should be specified is 15.

J&liY§ ILQ R~g~§~§

The specification of active I/O requests is one of the system-related
specifications that directly influences the performance potential' of
the DB/DC system. It governs the maximum number of I/O requests
outstanding at any time. You must specify a value that exceeds, by at
least two, the maximum number of regions that can be executing
concurrently. It is recommended that the value be one-half the sum of
the number of communication lines, plus the number of concurrently
operating processing regions. This number should reflect a prediction
of maximum to average number of active communication lines. If the
autopoll feature is used, it should be possible to reduce the assigned
value without significantly affecting performance. The value assigned
to the KAXIO keyword of the IKSCTRL statement requires a significa nt
amount of main storage. Each potentially active I/O event requires
approximately 500 bytes of storage.

~h~ckpoinl Fr~.9!!~.ng

The selection of a checkpoint frequency should be influenced by
anticipated message and data base processing activity, and the need
for rapid restart. The frequency value chosen determines the number
of log records that are written between automatic environment
checkpoints. Whatever the value chosen, it is somewhat self-adjusting
to system processing rates. That is, as more messages and data base
update activities are processed, more log records are written. Hence,
automatic checkpoints occur more frequentlYA

2.8 IKS/VS System/Application Design Guide

The Immediate Checkpoint feature reduces the impact of frequent
I8S/VS system checkpoints on system performance by eliminating forced
termination of message processing programs at simple checkpoint time.
System activity is interrupted only during the time the system control
blocks are actually being written to the log.

;z

~Y.§1~m .Q.1!~~ ~M:£~

System queue space must be sufficient to support the requirements
of the OS/VS control blocks necessary for the operation of an I8S/VS
system. See It IMS/VS Storage Estima tes" in the ~L!~ SY~1~! ~1:ogrammi!lil
~§!~~n£§ ~~~~al for the information necessary to estimate the required
system queue space.

Main storage is obtained dynamically within the control region bV
the 18S/VS enqueue/dequeue routines. The maximum amount of main storage
that these routines -obtain, and the maximum that these routines keep
on an internal free chain, are specified by the CORE keyword in the
I~SCTF macro statement.

f1:Qg1:s! ~lation

Under the program isolation concept, all activity (data base
mo'difications and message creation) of an application program active
in the DB/DC system is isolated from any other application program(s)
active in the system until that application program commits, by reaching
a synchronization point, that the data it has modified or created is
valid.

TMls concept makes it possible to dynamically back out the activities
of an application program that terminates abnormally, without affecting
the integrity of the data bases controlled by IK5/VS. It does not
affect the activity performed by the other application program(s)
processing concurrently in the system.

with program isolation and the dynamic backout facility, it is
possible to provide data base segment occurrence level control to
application programs. A means is provided for resolving possible
deadlock situations in a manner transparent to the application program.
The deadlock situation is detected by an IKS/VS routine called Exclusiye
Control Enqueue/Dequeue. Upon detecting a deadlock situation, one of
the application programs involved in the deadlock is abnormally
terminated with a special abnormal termination code. The abnormal
termination causes the activity of the terminated program to be
dynamically backed out to a previous synchronization point. Its held
resources are freed. This allows the other program(s) to process to
completion. The special code causes the transaction that was being
processed to be saved. The application program is rescheduled. This
process is transparent to application programs.

Performance is enhanced by allowing control of data base updates to
be maintained dynamically, as opposed to establishing the control at
message scheduling time. This dynamic maintenance is controlled by
the DL/I action modules through the use of the IKS/VS Enqueue/Dequeue
routine. During the scheduling process, an analysis is made of the
intent of an application program toward the data base it uses. If a
conflict exists with the data base usage of a currently scheduled

Design and Control of a DB/DC System 2.9

transaction, the scheduling process must select another transaction
code and try again.

KESSAGE SCHEDULING

Within IKS/VS each input message type is declared through system
definition. Kessage types are called "transaction codes" or
"transactions." At the time a transaction code is declared, many
optional attributes can be selected. These attributes, either directly
or indirectly, affect the schedulability of a transaction.· They can
also affect the manner in which a physical terminal reacts to entry of
a transaction type.

Application programs are declared in separate but related macro
instructions. However, the application program designated to process
a particular transaction code is really just another transaction
attribute. The process through which a completely received input
transaction is united with its associated application program is called
"message scheduling." The variable a ttributes associated with the
transaction code, the number and relative importance of other
transaction codes, the number of received but not processed messages,
the intent of associated application programs toward the data to be
processed, the amount of currently available space in control block
storage pools and buffers -- these and other factors influence the
process of message scheduling. The influencing factors are called the
"message scheduling algorithm."

Through selection of options at system definition time, through the
design and use of data bases, specification of buffer sizes, and, most
directly, through the declaration and selection of transaction
code-related options, the IftS/VS system designer can influence the
scheduling algorithm. Depending upon the breadth of his understanding
of the algorithm, he can enhance the performance of the system by
manipulating the algorithm to meet his requirements.

The remainder of this section on message scheduling considers the
scheduling algorithm in these topics:

• Kessage class and region class

• Load balancing

• selection priorities

• Processing limits

• Application program output limits

• Kultiple and single segment messages

• Multiple and single message mode

• Response mode

• Non-update transaction processing

• Conversational attribute

• Data base processing iQtent

• Processing intent propagation

• Application program abnormal termination

2.10 IMS/VS System/Application Design Guide

• contention for resources

• Control block buffers -- PSB and DMB

11!t§§~g~ CIS§2 .911g Regi2!l Cl~2.§

Each message is assigned a class at system definition time. This
class assignment determines into which message region an application
program is loaded~ When the IKS/VS messag~ regions are started, they
are assigned from one to four message classes. When a message region
is assigned more than one class, the scheduling algorithm treats the
first class specified as the highest priority class, and each succeeding
class as a lower priority class.

If more than one class is specified, the message selection process
is handled as follows. The first class specified is scanned, in
transaction priority sequence, for waiting messages. If there are no
"message s waiting for the first class, the second and following classes
are also scanned in priority sequence. If there are messages waiting
in the first class, the highest priority message is selected for
scheduling. If, for external reasons (for example, program or
transaction stopped by master terminal operator), this message is not
schedulable, the next message of equal or lower priority in that class,
or the highest priority message in the next class, is selected for
scheduling. If the highest priority message in the first class is not
schedulable for internal reasons (data base intent or no more space in
PSB pool or DKB pool to bring in needed blocks), the scheduling option
of the transaction indicates the type of scheduling algorithm that is
used. The scheduling option is specified at system definition by the
TRANSACT macro. The options are:

1. Schedule only transactions of equal or higher priority in the
selected class.

2. Schedule higher priority transactions in the selected class.

3. Schedule any transaction in the selected class.

4. Skip to the next class and attempt to schedule the highest
priority transaction in that class.

Note that these scheduling options are specified for each transaction;
therefore, each attempt to schedule a different transaction may change
the algorithm, if the algorithms are different for transactions within
the same class.

Message region class assignments and transaction class assignments
can be modified at execution time to control message throughput.

If multiple message regions process the same message class and a
data base processing intent conflict occurs, the highest priority
transactions scheduled against a data base will not necessarily be
processed before processing lower priority transactions scheduled
against the same data base. If you desire to process all higher
priority transactions scheduled against a data .base before processing
any lower priority transactions, no processing limit should be specified
for the higher priority transactions, or only one message region should
process that message class.

Design a nd Control of a DB/DC System 2.11

LOg,9 ~!~ing

Load balancing is the facility to schedule the same application
program and the same transaction in multiple message regions. The
application program and the transaction are designated for parallel
scheduling at system definition time. The application must be
designated as a parallel scheduled application before any transaction
processed by that application will be scheduled in multiple regions.

When an 5MB is available to be scheduled but is already scheduled
in another region, it is checked to determine whether it can be parallel
scheduled. The PARMLIM value of the TRANSACT macro specifies the number
of messages that should be enqueued before another regiQn is scheduled.
This value is multiplied by the number. of regions already scheduled
for this transaction. If the result is less than the number of messages
enqueued, another region is scheduled for the transaction. 1f the
region is unschedulable for internal reasons (data base intent), the
next transaction within the class is scheduled. No cutoff priority
viII be set as the transaction is already scheduled within IMS/VS.

SelectiQ!1, fri~iti~

When more than one transaction of a given type is waiting to be
scheduled, the specified transaction scheduling priority determines
which transaction code is selected next. It does not determine which
is actually scheduled. Only the tests of the transaction's readiness
for scheduling, which occur after selection, determine if the
transaction queue is allocated to an application program. The selection
priorities are useful for influencing the response time to input
transactions and for load balancing. Tvo priorities can be specified.
One is called the "normal priority"; the other, "limit priority."
Related to t4e normal and limit priorities is a "limit count." When
the number of inp ut messages 0 f a specific transaction type wai ting to
be scheduled is equal to or greater than the limit count, the normal
priority is reset to the limit priority value.

The priority of a transaction code causes it to be selected either
before or after other transaction codes. If there are multiple
transaction codes at the same priority, they are selected on a
first-in/first-out basis. However, if there are multiple transaction
codes at the same priority and the same class, with many messages
already enqueued for each transaction code, the individual transaction
codes will be selected on a first-in/first-out basis, but the different
messages may not be selected in the same sequence in which they were
entered. For example, A, B, and C are transaction codes wi th processing
limit counts of 1. These codes are entered in the sequence ABCBACCAC.
The sequence in which they are selected is ABCABCACC. An example of
the typical use of selection priorities can be found under the topic
"Message Scheduling Facility" in the il'§L!~ 2~§nl Inf2UA!!QIl Manual.

Another effective way to utilize the selection priorities is to
declare a normal priority value of zero. Zero priority is a null or
"not eligible for scheduling" level. Messages accumulate until the
processing limit count is reached; at this point the limit priority is
effected and scheduling occurs. This technique is called "ba tching
messages."

The normal priority is not restored until all messages enqueued on
the transaction code have been processed. It is possible that more

·messages will be added to the queue ~hile the transaction is waiting
or in process at the limit priority. Note that the priorities are
selection priorities, not execution priorities. Once a transaction
has been selected for scheduling, the selection priorities ha ve no
influence until it is again recognized to be waiting for schedulinq.

2.12 IMS/VS System/Application Design Guide

The effectiveness of the selection priority assignments is related
to how frequently the selection process occurs. The following section
discusses a means of influencing this.

Through the establishment of processing limits, the frequency with
which scheduling selection occurs can be influenced. In the time
between schedulings, processing is going on in the message regions.
Keanwhile, messages are accumulating in the message queues. As they
accumulate, the inter active effects introduced by new message types,
and the changing of selection priorities, are rearranging the order of
waiting transaction codes. Conceivably, while a large queue of messages
is being processed, important activity assigned to a high priority
transaction code is waiting.

When the program processes a large queue of messages and updates
data base segments, other application programs wishing to access an
updated segment are placed into a wait state. The length of time that
the other application programs have to wait depends on whether the
updating program is processing its queue in multiple or single message
mode.

To allow controlled re-entry to the message scheduling selection
process, a processing limit count can be specified for each transaction
code. Each time a scheduled (processing) program requests a new
message, the limit count is checked. When the number of requests
exceeds the limit count, the application program is told by the control
program that there are no more messages. In fact, there may be more.,
When the application program is told there are no more messages, it
completes its processing and returns the transaction queue to its proper
place among others waiting to be scheduled. If it is returned to a
priority level where other transaction codes are waiting, it assumes
an eligibility for selection below them, even though all have the same
numeric priority.

!l!l!!~ tiQJ! ~rog~Al!! Qutpu! U!\il§

By establishing program output limits durinq system def inition, the
IKS/VS user can influence the number and the size of the output segments
from the application program to the message queues. When an application
program exceeds the previously-specified limits, a status code is
returned indicating an error. 'Any further attempt by the application
program to exceed the limits results in abnormal termination.

Abnormal terminations can be prevented by checking the number and
the size of application program segments. This process of checking
eliminates IKS/VS system abnormal terminations that occur when
application programs loop while inserting messages or segments into
the message queues, or when they inadvertently insert segments of
invalid lengths.

A message, in the most general sense, is a finite sequence of
transmitted symbols. In the context of IKS/VS, this is called a
transmission. A transmission is terminated by a logical condition
called end-of-data (EOD). The transmission is partitioned into
sequences of symbols, called messages, by an end-Gf-message (EOK)
symbol.

Design and Control of a DB/DC System 2.13

A message is partitioned into smaller sequences of symbols, called
segments, by an end-of-segment (EOS) symbol. There are only three
valid combinations of tAe conditions represented by EOS, EOM, and EOD.
They are:

EOS
EOM
EOD

EOS
EOSjEOM
EOS/EOM/EOD

In the most complex case, a transmission containing several
multisegment and single segment messages would look like this:

SEG1Io1ENT

MESSAGE MESSAGE MESSAGE

TRANSMISSION

Using the simple symbols, the same transmission would be represented
like this:

SEG~..ENT SEGMEWr SEGr-mNT SEGNENT SEGMENT

.....
MESSAGE MESSAGE MESSAGE

TRANSMISSION

The.assignment of values to the symbols that represent the conditions
end-of-transmission, message, and segment is not significant to this
discussion. However, it is significant that the conditions can be
represented by more than one transmitted data character. Most
key-driven terminals generate only one character per keystroke. Thus,
it may be necessary for the terminal operator to perform more than one
manual operation to signify EOS or EOM.

For input transmission, detection of the EOM condition by IMS/VS
indicates that a complete message has been received. A complete message
is eligible for scheduling, and ultimately processing, by the
application program to which it is destined.

At the time the first EOS condition, or the first EOS followinq an
EOM, is detected, I8S/VS examines the text of the preceding segment.
Within the extent of the segment there must appear a valid transaction
code, predefined through use of the TRANSACT macro instruction. One
of the attributes that can be assigned to a transaction code specifies
whether a message is multiple or single segment. The effect of this
specification is null if multiple segment specification is selected.

2.1q IMS/VS System/Application Design Guide

If single segment specification is selected, the system equates the
EOS condition to an EOM condition. Thus, each segment is treated as
a complete message.

The primary concerns when selecting the multiple or single segment
attribute are human factors, application requirements, and physical
terminal characteristics. For example, let us assume the following:

• An application requires only single segment entry.

• Most users enter data from a key-driven terminal.

• The terminal has an automatic character generation feature (EOS
after pressing carriage return).

Then, the selection of multiple segment as an attribute of a
transaction code would require an additional keystroke to signify EOM
or EOD.

Another example: assume all of the preceding conditions are true
except that the line length of the data to be entered exceeds the
single-line capacity of the terminal. The appropriate and more natural
selection is multiple line. However, if the application were one with
very high usage, the overhead of processing multiple line messages
might be sufficient to justify adjustment of the short message buffer
length. The operational characteristics of transaction entry would be
altered. Using the same terminal with the special EOS generation
feature disabled, the operator enters the first line, presses the
carriage return, enters the remaining data on the second line, then
presses the EOS key. The result is a single segment message.

When the Message Format Service (MFS) is used to format input, the
relationship between the segments described above and the actual message
segment created by MFS is user-defined.

When MFS is used to edit input, the end of input for a given message
is sign alled by:

• EOM or EOD
• Completion of processing for all defined DFLDs

At the end of input for a message, MFS presents the completed message
segments to the DC component of IMS/VS; this component looks for a
destination name. If the destination is a transaction defined as a
single segment and more than one segment has been created by MFS, an
error message is sent to the input terminal.

For more information on MFS, see the section in this chapter called
"Message Format Service."

Consult the I~~/VS Opera!Q~!§ Reference ~~ngg! for more information
about the various terminals supported by IMS/VS.

MULTIPLE AND SINGLE MESSAGE MODE

The message mode attribute of a transaction code is used to notify
the system of the manner in which an application program views the
transactions it processes. Single mode indicates that each message is
processed independently of all other messages that are read. Multiple
mode indicates that all the messages of this transaction code, read
during a given scheduling of the application program, are to be
considered as related to one another. For example, the application
program accumulates control totals that are written out only at program
termination. It does not affect the message se~ection criteria of the

Design and Control of a DB/DC System 2.15

scheduling algorithm. It does, however, affect the amount of main
storage required by program isolation, message processing throughput,
and, potentially, the integrity of the data bases used by user programs.
If mUltiple mode is selected, there is potential for greater throughput.
Multiple mode results in fewer system-generated I/O operations, and
less system time per message, when more than one message is -processed
per application program scheduling. However, all data base resources
modified in any way by the user remain enqueued until user program
termination.

If more than one message is processed per scheduling of a user
program, large storage requirements for IMS/VS program isolation could
result. If program isolation enqueue chains become very long,
throughput is adversely affected. Also, if a program must be terminated
and rolled back by IMS/VS to break a data base deadlock situation, the
backout and reprocess time is increased in proportion to the number of
messages processed. In addition, very long backout chains in the
Dynamic Log may require extra I/O operations and increase the
possibility of exceeding the capacity of the data set. If this happens,
application activity is quiesced.

Internally, the difference in single and multiple mode transaction
processing is related to the frequency at which pending data base
buffers are written. In single mode, all pending data base buffers
are- written each time a new message is requested by the application
program. These operations are performed regardless of the value
assigned as a processing limit count. Multiple mode defers buffer
write until the application program terminates, unless a CHKP call was
issued by the application program. A CHKP call causes all buffers
modified by the user to be written at the time the call is issued.

An additional consideration is imposed for program isolation. When
the transaction code causes data base updates, the enqueue of the
updated segments is held until the point at which the program can be
restarted without having to reprocess those updates. In singl~ mode,
this point is reached each time a new message is requested by the
application program. Multiple mode defers reaching this point until
the application prcgram terminates. This causes more segments to be
enqueued, and the enqueued seqments to be held longer. Other programs
needing access to the enqueued segments are delayed, and the chance of
deadlock is increased. Since message response is also held, and not
sent to its destination until the same point is reached, the choice of
multiple mode processing can significantly increase terminal response
time. For information on the use of the checkpoint call in conjunction
with multiple mode processing, see the I~SL!~ !£E!icatign froq£amming
Bef~~n£~ ~any'li..

Bg§Ron s~ 112~

Response mode describes a connection between I~S/VS and a
communication line or terminal that can occur only for certain terminal
types under condition specified during IMS/VS system definition. When
response mode is in effeGt, IMS/VS will not accept any input from the
communication line or terminal until it has sent the output response
to the previous input.

~ Response mode is in effect from the time the last segment of a
transaction has been received by IMS/VS until the application program
inserts a response to the response PCB, which is usually the 1/0 PCB.
-When more than one message is inserted using the response PCB, response
mode is reset when the first message using the response PCB is
transmitted. Any remaining messages issued by the application program
are treated as non-response application program output. If the
application program does not produce a response, the terminal remains

2.16 IMS/VS System/Application Design Guide

in response mode and master terminal intervention is required to restore
proper terminal operation.

The terminal types that can be defined (TERMINAL or TYPE macro) to
operate in response mode are the: 1050, 2140, 2141, CPT-TWX, 3270,
3600, 3761, 3770, and 3790. The 3190 is forced to operate in response
mode. The ot hers may be defined as: "forced" -- always operating in
response mode, "negated" -- never operating in response mode or
"transaction dependent" -- operating in response mode only when a
transaction defined by the TRANSACT macro as a response mode transaction
is entered.

Response mode for the 1050, 2140, 2741, and CPT-TWX terminals stops
all operations on the communication line and is referred to specifically
as "line response mode." Response mode for the 3210, 3600, 3161, and
3790 stops all operations on the terminal and is referred to
specifically as "terminal response mode."

~~§ign COn§i~~~~ti2n§: Before response mode definitions are specified
for terminals and transaction codes, consider the following:

• On a switched line, response mode enforces synchronization terminal
operation.

• In response mode, terminal operators can only enter one transaction
at a time and must wait for a reply before entering another
transaction.

• For a terminal defined as "transaction dependent," transaction that
are nQ~ defined as response mode transactions permit entry of
additional input without waiting for a reply from the previous
transaction.

• Master terminal intervention is required when an application program
fails to respond to a transaction from a terminal in reponse mode.

• In some environments, specifying "forced" response mode for some
terminal types may result in fewer line operations and improved
performance.

• For some terminal types (2740 without station Control Feature,
2741, and CPT-TWX), a specification of response mode prevents the
operator from having to enter a null message to receive the response
to the last input.

For BTA" or VTAM terminals don't use the following specifications:

• The combined specification of FORCRESP and NPGDEL.

• The combined specification of TRANRESP and NPGDEL if
MSGTYPE=RESPONSE is specified for the TRANSACT macro.

The first specification is not recommended because NPGDEL prevents the
current output message from being degueued at the time of input; the
second specification prevents the terminal response from being reset
until the current output message is dequeued.

Further information on terminal operations using response mode is
contained in ~~ QRerator's !~fer~n~ ~yal, !~L!~ la§ta!!gti2D
~!~~. and !l1'§L!~ Message lQilU ~~.!i.£~ ~!:.!.§. Gu~~. IaSlU Advanced
IYJ!£!i2D ~Q.!: ~Q1!!!!unic~tion§ contains specific information about 3600
and 3190 operations.

Design and Control of a DB/DC System 2. 11

!Qn=Updat~ ~~gD§actiQn Pro~~§ing

A transaction code which does not cause an update to a data base
can be so defined to the system. This allows a program that handles
multiple transaction codes, and only updates the data base for a subset
of these transactions, to be scheduled concurrently with other update
programs when it is to process a transaction that does not cause an
update.

Transactions must be defined as non-update transactions when entered
from non-error-checked terminals supported by IMS/VS. They are also
non-update for entry by switched terminals that are signed on for
INQUIRY purposes.

When a transaction is defined as non-update, the associated
application program is prevented from updating the data base. This is
the case even though the processing option in the PSB specifies update
capability.

COn!~~§~iiQn~! !itI!QY~

scratch pad areas (SPAs) are work areas through which an application
program and a terminal establish a quasi-interactive relationship called
a conversation. That is, continuity is established with the terminal
operator, by the application, across multiple message entry and response
sequences. The conversation can be suspended, reinstated, or
terminated, by the terminal operator, through the command language. A
conversation is normally terminated by the application, not the terminal
operator.

The system maintains scratch pad areas on a direct access data set
or in main storage~ Residency is specifiable by transaction code. The
'choice of main storage or direct access residency influences the
response time for transactions that have the conversational attribute.

Although the system can operate with one maximum size main storage
SPA, or one direct access SPA, then only one conversation can be in
process at a time. If a high percentage of transaction processing is
conversational, a similar number of SPAs should be specified in the
system definition SPAREA macro statement. If a conversational
transaction code is entered, and all SPAs are in use, that transaction
is rejected by the system. An insufficient number of available SPAs
could result in terminal user dissatisfaction.

If a transaction code has the conversational attribute, it can have
effects on overall system performance. The choice of main storage
versus direct access residency affects, not only system performance,
but also the response characteristics of the conversational transaction.
The following discussion elaborates on the potential effects of buffer
fragmentation and the relative throughput and response characteristics
of conversational transactions.

Kain storage resident SPAs, and read/write space for direct access
resident SPAs, are acquired from the buffer pool when a conversation
is initiated by entry of a conversational transaction code. Kain
storage is retained throughout subsequent exchanges between the terminal
and destination applications. It is released upon termination of the
conversation. Since the main storage SPA buffer space is retained over
a relatively long period of, time, its potential ability to fragment
the buffer pool is relatively high. Fragmentation of the buffer pool
can cause processing delays in terminal I/O service and in the
initiation of other conversations. However, since the SPA is both main
storage resident and dedicated for the life of the conversation,
response and throughput are significantly improved~

2.18 IKS/VS System/Application Design Guide

If the SPA is on direct acce.ss, space is initially acquired from
the buffer pool at the same time as for a main storage resident SPA.
However, it is retained only long enough to write to direct access.
SPA buffer space is freed. Space is re-acquired when the application
program returns the SPA. and is freed as soon as the SPA is rewritten
to a direct access device. The use of direct access SPAs decreases
the possibility of extended delays introduced by buffer fragmentation.,
However, because buffer requests are made during the time an application
is active in the message processing region. any delay due to lack of
buffer space directly affects throughput. In addition, since the
application must wait for the SPA to be written out. overall processing
time for each transaction is increased and response time extended.

To enhance performance for conversational processing, conversational
transactions can be defined with fixed-length SPAs. For such
transactions, the main storage SPA uses only the fixed length that was
defined. For direct access resident SPAs. the defined maximum length
is always used, however, performance is increased on program-to-program
switches because the direct access SPA is not updated.

Fixed-length SPAs defined during conversation initialization must
remain in effect for the duration of that conversation. For
conversations whose first transaction code defined fixed-length SPAs.
all successive transactions used as destination applications in the
same conversation must also be defined with fixed-length SPAs o£ the
same length. If not, a status code indicating an error is sent to the
calling application. If the Multiple Systems coupling feature is used
and conversations will run in a system that is not the input terminal
system. fixed length SPAs must be used. For more information about
the Multiple Systems Coupling feature, see Chapter 5 of this
publication.

An addi tional performance enhancement for con versational processing
is the automatic compaction of all SPAs fqr queuing and logging. All
blanks and X'OO's are eliminated for queuing and logging, and the
application program receives the unpacked SPA.

~!a ~~§~ g~essing: !~~

A factor that can significantly increase the overhead of the
scheduling process is the intent of an application toward the data
bases it uses. Intent is determined by examining the intent list
associa ted with the PS B to be scheduled. At initial selection, this
process involves bringing the intent list into the control region. The
location of the intent list is maintained in the PSB directory. If
the analysis of the intent list indicates a conflict in data base usage
with a currently scheduled transaction, the scheduling process must
select another transaction code and try again.·

There are several intent levels that can be stated for a given
segment type. The list below shows the level of intent, how it may be
stated for the PSB Generation utility program, and the code that is
used in the decision tables that follow:

N = No sensitivity ~- segment type not referenced.

R = Express read-only -- segment type referenced -- PROCOPT=GO.

Note: See "Processing Intent Specifications" in this chapter
for an explanation of the various processing options (PROCOPTs).

G = Retrieve segment type referenced -- PROCOPT=G or K.

Design and Control of a DB/DC System 2.19

U = Update -- segment type referenced -- PROCOPT=A, I, R, or D
or segment type has propaga ted intent.

E = Exclusive use -- segment type referenced -- PROCOPT=E.

If exclusive use is specified for a program, that program will
not be scheduled concurrently with any other program that is
sensitive to the same segment types.

The following decision table shows which programs can be scheduled
concurrently.

r-----------------------------,
1 Intent of Currently I
1 Executing Program 1
1 1

r-----------------------I----------------------------~1
1 Intent of Program 1 1 1 1 1 1
1 Being Scheduled lEI U 1 G 1 R 1 N I
1-----------------------1-----1-----1-----1-----1-----1
lEI X, X 1 X 1 II 1
1 I I 1 1 I 1
1-----------------------1-----1-----1-----1-----1-----,
1 U I Xliii 1
1 1 1 1 1 1 1
1-----------------------1-----1-----1-----1-----1-----1
1 G 1 Xliii ,
I I 1 I 1 ·1 1
i----·------------------I-----I-----I-----I-----I-----I
1 R I X I I 1 I 1
I I 1 1 1 I I
I-------~---------------'-----I-----I-----'-----I-----1
I N I' 1 I 1 ,
I I 1 1 1 1 1
L---~

X Indicates Conflicting Actions When Transaction
Scheduling Is Attempted

Since exclusive intent does not allow a program to be scheduled
while programs sensitive to those segments are operating, no dynamic
serialization is done via the enqueue/dequeue facility.

Conflicting actions occur only if the same seg_ent type is declared
"Exclusive Use" by at least one of two programs intending to reference
the segment type.

A PSB that contains a PCB for a SHISAM segment that has delete
sensitivity will be scheduled exclusively. This is because the method
used by IMS to ensure program isolation cannot be used for SHISAM
deletes. since there is no delete flag, a VSAM erase must be done to
delete the segment, and since IMS/VS uses relative byte addresses as
the identification of a segment, there is no way to prevent another
user from inserting a segment with the same key prior to the time the
p-rogram which did the delete reaches a sync point.

Unless the PS B for the program being scheduled is currently resident
1n the PSB buffer pool, determining schedulability involves a direct
access I/O operation.

Exclusive intent may be required for long running BMP programs that
do not issue checkpoint call because of the excessively large .size of
the enqueue/dequeue table.

2.20 IMS/VS System/Application Design Guide

An exception to the use of the enqueue/dequeue facility to provide
program isolation is accomplished by the use of the GO option; this
allows programs to access segments without an enqueue being done for
those segments. When this occurs, a program can retrieve segments
which have been altered or modified by programs which are still active
and while the changes are subject to being backed out. See the IKS/VS
Y!iliti~§ Befe~~~ ~~nual for a detailed explanation of the GO option.

The only processing intent that affects the schedulability of IKS/VS
programs is exclusive intent. However, if the data base portion of
IMS/VS is utilized by CICS, program isolation is not operative and the
following information on scheduling intent applies. If you do not use
CICS, skip this section.

The processing option parameter (PROCOPT) of the PCB and SENSEG
statements of a PSB generation determines the processing intent an
application program has on data. The scheduling options are:

G = Get function.

I = Insert function.

R = Replace function.

D = Delete function.

A = All, includes the previous four functions.

E -- Used in conjunction with the previous five functions, and
specifies that an application program has exclusive use of
the data base or segment specified.

K = Indicates key sensitivity only.

~£i~du!!~g ~~1 lYR~: There are three scheduling intents used to
determine the schedulability of an application program. Exclusive
intent prohibits the concurrent scheduling of any programs that
reference the same segment types as the program that has specified
exclusive use. Update intent allows any number of programs that
reference the same segment types for read only to be sCheduled with
the updating program. All programs that reference the same segment
type for update intent must be scheduled serially. Read only intent
allows the program to be scheduled with any number of other read only
users and one update intent program. If a segment has more than one
intent type as the result of multiple references or intent propagation,
the most restrictive use is set. These intent types are associated
with the aforementioned processing intent specifications in the
following manner:

• Read Only Intent

This intent is set for any segment that specified PROCOPT=G or
PROCOPT=K on the associated SENSEG statement. In addition, this
intent is propagated to all segments that are required to obtain
the informat ion necessary to sa tisf y a DL/I call. For exam pIe, a
logical child segment is requested in a call, and the logical
parent's key was specified as "VIRTUAL." All segments that must be
retrieved to construct the logical parent's concatenated key have
read only intent set. The extent of propagation is discussed below.

Design and Control of a DB/DC System 2.21

• Upda te In ten t

This intent is set if the associated SENSEG statement specified
PROCOPT=I, R, or D. Update intent is set for tb e associated segment
regardless of any key sensitivity specification, either explicitly
or implicitly specified. This intent can be propagated to other
segments in this data base or related data bases. The a mount of
propagation is determined by the processing options specified, the
data base organization, the pointer combinations used, and the SEGK
statement RULES options chosen at physical DBDGEN time •. The
implications and extent of intent propagation are discussed belove

• Exclusive Intent

This intent is set if the associated SENSEG statement specified
PROCOPT=E and the segment does not have key sensitivity. Key
sensitivity can be specified on the associated SENSEG statement,
using the KEY/DA TA option of the SOURCE operand in a logical DBD,
or by omitting the specification of the complete concatenated
segment in a logical DBD. This occurs when you specify the logical
child segment and not the logical or physical parent in the
concatenated segment definition. There is no propagation of the
E option. Note that the specification of both PROCOPT=E and K on
a SENSEG statement causes the exclusive (El option to be ignored.

l~]!icg!iQn~ and ExteD! of Int~n! g£QRa~1ion: As discussed earlier
in this section, the implications of intent propagation depend on many
factors. Some of these factors are physical organization, pointer
combinations, processing options, segment rules, and logical
relationships. The following paragraphs explain their effect on
scheduling concurrency as they relate to typical data base structures.
Each processing opti.on is discussed in a separate section. Keep in
mind the fact that if a segment has more than one processing intent
type (as the result of explicit or implicit processing options) the
most restrictive intent is used.

• Get Processing Option

A segment using PROCOPT=G or K causes read only intent to be set
for that segment. In addition., read only intent is propagated to
all segments that are used to complete a GET type call. Sensitivity
to a logical child segment implies sensitivity to its associated
logical or physical parent. In either case, read only intent is
propagated to the associated parent segment, and all its parent
segments, in a direct line upward to the root segment.

• Replace Processing Option

A segment using PROCOPT=R causes update intent to be set for that
segment. If the segment is part of a concatenated segment
definition, and the logical parent/physical parent part of the
concatena tion can be replaced, it has update intent propaga ted to
it. No other propagation of intent occurs.

• Insert Processing Option

Insert intent propagation is based on two basic rules. These rules
do not apply if Program Isolation is operative.

2.22

1. Programs that separately insert a physical parent segment and
its ph ysical child are not scheduled concurrently. I f the
program inserting the physical child terminates first, and if
I8S/VS abnormally terminates before the program inserting the
physical parent terminates, the physical parent segment is backed

IMS/VS System/Application Design Guide

out of the data base by /ERESTART processing, leaving a dangling
physical child segment.

2. Programs that insert child/logical parent concatenated segments
involving the same logical parent are not scheduled concurrently.
If the insert rule of the logical parent is either virtual or
logical. The physical insert rule prohibits inserting the
logical parent by means of a concatenated segment. Only the
logical child need be inserted.

Update intent is set for the segment type designated by PROCOPT=I
in the SENSEG statement of the PCB, or for all the segments designated
by SENSEG statements when th~ PROCOPT=I is coded in the PCB statement
(rule 1). Update intent is propaga ted to all the immediate childr en
(down one level) from the designated segment because of rule 2. If
the designated segment is a logical child, the update intent is
propagated to the logical parent segment as specified by rule 3, and
to the immediate children of the logical parent as specified by rule
2. If the insert rule of the logical parent is physical, then one
program per logical child segment type can be concurrently scheduled.

The first variable that affects insert intent is the data base
organization. Since segments in a HISAM data base are hierarchically
related by physical juxtaposition, a segment insert can cause other
segments in the data base record to shift physical location. However,
since a data base record can reside in several separate data set groups,
only the data set group containing the inserted segment type is
affected. The rule is: all segments residing in the same HISAM data
set group as the segment type to be inserted have update intent
propaga ted to them.

The second variable that affects insert intent is the printer
combinations specified for segments residing in HD type data base
organizations. When physical child pointers are selected to address
the designated segment, the physical parent has a different pointer
for each of its children that concurrent programs maintain separately.
However, if the choice is hierarchical pointers to address the
designated segment, the physical parent addresses all of its children
by a single hierarchical pointer chain. Concurrent update programs
for the different physical children, therefore, violate rule 1. When
the immediate physical parent segment has hierarchical pointers, the
data structure is scanned in an upward direction until a parent segment
is found that uses physical child pointers, or until a root segment is
encountered. The immediately previous physical child segment of the
parent segment so located, and all dependent segment types of that
immediate physical child segment, have update intent propagated to
them •

• Delete Processing option

The propagation of update intent from segments designated with
PROCOPT=D is based on the physical child's dependence on the
physical parent. If the physical parent is deleted, its physical
children must also be deleted. Therefore, beginning at the
designated segment type, update intent is propagated to all its
physical dependent segment types and to their physical dependents,
down to the lowest level of the data structure. When a segment
that is a logical child is encountered in the downward scan, its
logical parent's delete rule is determined. If the rule is virtual,
update intent is propagated to the logical parent and its physical
dependents. When a segment type that is a logical parent is
encountered in the downward scan, the delete rules of its logical
children and their physical parents are determined.

Design and control of a DB/DC System 2.23

If the delete rule is virtual and/or bi-directional virtual, then
update intent is propagated to the logical child and to its physical
dependents, and/or to the physical parent and its physical dependents.
Since the propagation is downward, all segments in the downward scan
are inspected for logical relationships. As they are encountered, the
logical child/logical parent/physical Barent segment types are processed
in the same manner as the original segment type. Deletion ,of the parent
requires deletion of all physical dependents.

I/'

When the immediate physical parent of the designated segment has
hierarchical pointers, the data structure is scanned in an upward
direction until a parent segment is found that is a root segment, or
a parent segment is found that is pointed to by physical child pointers.
That segment type found, along with all its dependent segment types,
have update intent propagated to them •.

Upon abnormal termination of a message or batch-message processing
application program, internal commands are issued to prevent,
rescheduling. These commands are the equivalent of ISTOP. They prevent
continued use of the program and the transaction code in process at
the time of abnormal termination. The master terminal operator can
restart either or both stopped resources. At the time abnormal
termination occurs, a message is issued to the master terminal and to
the input terminal that identifies the application program, transaction
code, and input terminal. It also contains the system and user
completion codes. In addition, the first segment of the input
transaction, in process by the application at abnormal termination, is
displayed on the master terminal.

The stop action is performed automatically. Even though a message
is issued, its occurrence could go unnoticed by the master terminal
operator. Such a failure, involving a major application that serves
many transaction codes, could have adverse effects on system
performance.

The potential effects of commands entered from any terminal, that
cause unavailability of scheduling resources, are severe. Operators
should be instructed to display system status frequently. If a program
that terminated abnormally inserted any message segments, they are
transmitted, although the message may not be logically complete.

Program isolation dynamically backs out data base updates, and
cancels message output made by application programs that terminate
abnormally. To avoid the adverse effect that this backout can have on
programs concurrently processing in the system, data base segments that
have been changed are enqueued using the IKS/VS enqueue/dequeue routine.
This routin~ ensures that no other programs can access the changed data
base segments until either the application program that reguested~the
change completes successfully, or terminates abnormally; and until all
changed segments are restored to their original states.

Program isolation ensures that a dynamic log (IKSVS.DBLLOG) is
maintained. The dynamic log is a sequential data set, on direct access
storage, written with OSAK to facilitate following chains througheit.
All the log records created beca use of a given user program are'·
back-chained, with the chain anchor in the PST to which the program is
attached. The chain pointer is the block number and the offset within
the block. When a synchronization point is reached, or if the program
terminates successfully, the anchor in the PST is reset to zero. If
the program terminates with an abnormal termination, the data base
changes are backed out to the last synchronization point specified by
the KODE parameter of the scheduled transaction code. If it is a

2.24 IMS/VS System/Application Design Guide

batch-message processing program that does not reference a transaction
code, or whose transaction specified MODE=MULT, it is backed out to
its schedule point, or to the last checkpoint; whichever is most recent.
The backout is accomplished by passing the data base log records, that
were dynamically logged and chained, from the PST to the data base
backout module.

A synchronization point is defined as the point at which an
application program can be restarted.

SYNC POINT IS LATEST ACTION
r---------------------------,
I I I
I Msg GUI CHKP 1 SCHEDULING
1 I 1

r------------------------------------~------~----------
I I

If MPP I Transaction I

If BMP

I MODE=Single X I X X
I I I I
1---
1 1 1 I
1 Transaction I I I
I MODE=Multiple I I X I X
I 1 I I

Transaction
MODE=Single X X X

1------------~---~--------------------------
I I I I
I Transaction I I I
I MODE= Multiple I I I
I or I I ,
I No Transaction I I X I X
I I I I

L----------------~-------------------------------------~

All output messages inserted by an application program, with the
exception of messages inserted to alternate PCBs that have been
designated to have the Express Message feature, are enqueued to a
temporary destination associated with the PST. The Express Message
feature is a PSB Generation option for an alternate PCB. It specifies
that messages sent to this PCB are not to be backed out if the
application program terminates abnormally. When the application program
successfully reaches a synchronization point, the program's output
messages are transferred from their temporary destinations to their
final destinations. If the application program abnormally terminates,
all messages enqueued to temporary destinations are deleted and
cancelled. Those messages inserted to the alternate PCBs that have
the Express Message feature were never enqueued to the temporary
destination and cannot be cancelled.

Program Isolation provides a call function (ROLL) through which an
application program can remove the effect of its processing. Issuance
of this call function abnormally terminates the application program
task with an indicative completion code. Voluntary abnormal termination
using this call function does not cause the program and transaction to
be stopped, nor does it produce a storage dump.

One other application program abnormal termination situation is
possible. Since data base updates are isolated by the program isolation

Design a nd Control of a DB/DC System 2.25

enqueue/dequeue facility, the possibility of deadlock situations can
arise. These situations are avoided by selecting one of the deadlocked
programs for abnormal termination, with a special code that causes the
prog ram' s data base updates a"nd unsent message output to be backed out.
The transaction input that was being processed by the program is
retained, and the program is rescheduled.

since deadlock is usually an e~ception, it can be treated in this
manner to make deadlock detection and correction transparent to the
application program and the terminal operator. The program to be
abnormally terminateded and rescheduled in a deadlock situation is
determined based on the decision table that follows:

If calling
program whose
request will
cause a
deadlock

Is BMP Mult
program Mode
with or no

Tran

Sngl
Mode

Is MSG Mult
program Mode
with Tran

Sngl
Mode
Tran

And if the waiting program which completes
the deadlock circuit

Is a MSG Is a BMP Is
program with program with multiple

Single Mult Single Mult
Mode Mode Mode Mode
Tran Tran Tran or no

Tran

DO B DO B DO B

DO B DO B

DO B DO A

A ABEND the calling program

B ABEND the program with which the
calling program would deadlock

programs

In IMS/VS installations running under OS/VS1, after any abnormal
termination in an MPP (for example, application program abnormal
termination, program isolation deadlock, or ROLL call), the MPP may
not be able to reclaim all the storage used by the application for
future scheduling. A system abend may eventually occur because of
insufficient storage and the MPP will be terminated by IMS/VS, after
two consecutive GETMAIN failures are detected, to release unusable
storage in the region.

~QB!~iQn !Q~ Resour~

contention for the use of resources affects scheduling in more ways
than have been discussed. The material that appears here is based on

2.26 IKS/VS system/Application Design_ Guide

the specifications for IMS/VS. If more detailed information about how
the IMS/VS system works is needed, consult the !MSL!~ ~roq£g~ ~9gi~
1!!!!yal.

£2!!!~!. BIQ~~ ~!:!~ ~2ols -- g~~ ang DM~

controi block pools are maintained in the IMS/VS control region for
program specification blocks (PSB) and data management blocks (DMB).
Each buffer pool must be at least as large as the largest control block
it will contain, plus the next successively larger block, for each
additional processing region concurrently active.

The IKSVS.ACBLIB data set must contain control blocks for all
application programs (PSBs) and all data bases (DMBs) referenced by
the application programs. When an application program is to be
scheduled, the P SB and DMB pools are examined to determine which control
blocks must be brought into main storage. If all required blocks are
resident, the program is scheduled. If required control blocks are
not resident, the applicable pool is searched for space to hold the
block. If space is found, the block is loaded and the program is
scheduled. If the pool does not contain the required free space, the
blocks currently resident are examined to determine which unused blocks
can be removed. When the selection process is complete, any open data
bases referenced by the unused blocks are closed, and the space is
released for use by the new control blocks. The new control blocks
are then loaded, and the application program is scheduled.

Excessive loading of control blocks can have a severe impact on
performance. If possible, the DMB pool should contain enough space to
hold all DMBs used with online data bases. This reduces the number of
OS/VS opens and closes, and their impact on system performance.

System definition requires that data bases to be used in the DB/DC
system configuration be identified. The positive declaration of data
base names enables the system to limit the domain of the online control
program to only some specific subset of all installation data bases.

The batch checkpoint facility provides batch-message programs with
the means of synchronizing checkpoints taken of their environment with
the IMS/VS log tape. It also enhances the integrity of data bases
updated by batch-message programs, by allowing the restart facility to
back out data base changes being made by such programs at the time of
a system failure. If a batch-message processing program abnormally
terminatess, program isolation ensures that back out procedures occur
automatically. The data to be backed out is the data base change
records logged since the last synchronization point created by a CHKP
call. The time lag is significantly less using program isolation with
batch checkpoint/restart, than if the data base had to be stopped and
taken offline for batch backout.

The batch checkpoint facility is implemented by the use of the IMS/VS
checkpoint (CHKP) system service call from the application program.
This call is used to indicate a synchronization point at which data
base updates can be restarted. The actual checkpointing of the batch
program environment, and the routine used to restart it, are at the
option of the user. If OS/VS checkpoint is to be used, the user must
request, as part of the DL/I CHKP call, that the system take the
checkpoint.

Design and Control of a DB/DC System 2.27

!21~: The checkpoint ID table, as referenced below, is used to
coordinate the checkpoints on the IMS/VS system log with the activity
of any batch-message regions, for the purpose of emergency restart.
This table also contains the ID and serial number of the last startup
or shutdown checkpoint.

For batch-message programs (not message-driven):

A non-message driven BMP program functions like a batch program,
but recei ves data base service like an MPP. No identifiable (explici t)
synchronization point exists until the program issues the CHKP call.

1. Optionally, an OS/VS checkpoint of the user's region is taken.

2. Altered data base buffers are written.

3. The checkpoint ID, supplied in the CHKP call, is writt~n to the
log tape.

4. The checkpoint-ID table is updated, for use in subsequent
emergency restarts.

5. The dynamic log is updated by releasing all change records prior
to the current synchronization point.

For 'batch-message programs (message-driven):

BMP programs that access the message queue via the I/O PCB, have a
defined (implicit) synchronization point established by the MODE=
parameter in the TRANSACT macro. To 18S/VS, the BMP program looks like
an MPP. If MODE="ULT is selected, end-of-job is the natural
synchronization point. BMP programs can issue the CHKP call to cause
an explicit synchronization point, and define a point from which restart
can be performed. Care must be taken to ensure that the dynamic log
buffers do not become full because the CHKP calls are too infrequent.
All output messages, that are not destined to express alternate PCBs,
are held until a synchronization point occurs. All input messages
since the last CHKP are reprocessable. The following general events
occur in this type of EMP:

1. Optionally, an OS/VS checkpoint of the user's region is taken.

2. Altered data base buffers are written.

3. The checkpoint ID, supplied in the CHKP call, is written to the
log tape.

~. The checkpoint-ID table is updated, for use in subsequent
emergency restarts.

5. The dynamic log change records for the calling BMP are released.

6. Output messages to all TP PCBs are sent, and input messages are
dequeued.

1. A GU to the I/O PCB is internally generated for the application
program.

If KODE=SNGL is specified on the TRANSACT macro, instruction, a
natural synchronizaticn point exists at each GU on the I/O PCB.
Functions similar to those above are performed by IM5/V5; however, the
'user does not have to execute a CHKP call because the GU causes the
necessary synchronization points.

2.28 185/VS System/Application Design Guide

Instead of the OS/VS Checkpoint/Restart option, the user can specify
the IftS/VS Expanded Checkpoint/Restart facility. This consists of a
restart call (function code XRST) and optional parameters on the CHKP
call. If used, the XRST call is the first call to IMS/VS issued by
the user program. If a restart is not in progress, the XRST call is
effectively a Nap.

The issuance of an XRST call causes the following action to be taken
for subsequent CHKP calls issued by the program:

1. Optionally, user specified areas, that is, application variables,
control tables, and position information for non-IftS/VS data
sets, are recorded on the IMS/VS log.

2. The fully qualified key of the last record processed by the
program on each IftS/VS data base is recorded on the log.

3. The functions of the standard CHKP call are performed, except
that the OS/VS checkpoint of the user's region is not taken.
The user has the option of using OS/VS Checkpoint/Restart, the
IMS/VS restart (XRST call), or neither, but not both.

For message processing programs:

The CHKP call functions exactly as a message GU for a single mode
program, allowing a program operating in multiple mode to control the
spacing of its synchronization points.

In the case of a checkpoint FREEZE or DUMPQ shutdown, IMS/VS waits
for any batch-message programs that are processing to issue a CHKP
call, before proceeding with the shutdown. This action makes it
possible to identify the point at which the batch-message program should
be restarted.

In the case of a PURGE shutdown, IftS/VS waits for batch-message
programs to terminate before proceeding with the shutdown.

The log record containing the checkpoint ID is used by emergency
restart'as follows:

Using the checkpoint-ID table, emergency restart determines, and
identifies to the operator, the point on the log where restart
processing is to begin in order to back out incomplete updates made
by the message and batch-message programs processing at the time of
the system failure. It initiates restart processing from that point.
If backout is successful, the CHKP ID from which each BMP can be
restarted is identified to the operator.

Transactions, partially processed by message processing programs at
the time of system failure, that caused data base modifications, have
their associated data base modifications backed out by emergency
restart.

The IMS/VS user must determine the means of checkpointing and
restarting his batch and batch-message processing programs. He may
use the OS/VS checkpoint/restart facility, or create one of his own.

Design and Control of a DB/DC System 2.29

If the DL/I user chooses to write his own checkpoint/restart
routines, he must, as a minimum:

• Record application variables and control tables.

• Record position information for non-IKS/VS data sets.

• Provide a restart entry point and reinitia1ization procedure.

• Properly initialize IKS/VS control blocks; for example 6 PXPARKS.

Use of the XRST call and user area parameters on the CHKP call
simplifies the task for the user writing his own restart routines.

• A restart situation is indicated by specifying a checkpoint ID in
the parm field on the execute card in the JCL or in the XRST call
itself.

• Normal entry point and initialization procedures are used.

• User areas recorded at checkpoint time are restored.

• A GET UNIQUE is issued for each GSAK data base for the last used
record if the data base was open at the time the checkpoint was
taken.

• No data is returned as the result of the GU, but status codes are
saved in the user PCBs.

• If the data base vas opened for output, then a PNT function code,
requesting POINT. is used.

• GSAK data bases are automatically repositioned at restart if the
XRST call is used.

• The checkpoint ID is returned to the user progr~ to allow it to
link to its own restart subroutine.

In the case of batch-message programs, an actual checkpoint/restart
routine may not be required. If the program is truly driven by the
message queues, IKS/VS repositions the queues to the point where a CHKP
call was issued. The user need only start the batch-message program
normally.

Even though most batch-message programs require some re-programming
to accommodate the CHKP function, the increased data base integrity
and availability should justify the effort.

since the IKS/VS control region waits until all batch-message regions
issue CHKP calls before proceeding with a shutdown checkpoint, a
batch-message program with few or no CHKP calls can delay or prevent
system shutdown. The /STOP REGION command with ABDUKP can be used to
force the abnormal termination of such a region. However, it is
recommended that the user add CHKP calls to batch-message programs,
particularly if a FREEZE or DUKPQ checkpoint is to be requested. If
a PURGE shutdown is used, re-programming is suggested for batch-message
programs that run for a long time, because IKS/VS waits for these
programs to terminate before proceeding with the shutdown.

2.30 IKS/VS System/Application Design Guide

The IMS/VS control program provides the ability to queue messages
received on direct access storage and in main storage. Messages can
be received from communication terminals or application programs and
can be destined for communication terminals or application programs.
A Bessage destined for an application program is called a transaction
and begins with a transaction code. All transactions of the same type
(same code) are queued in a serial chain based upon time of receipt by
IMS/VS. A serial queue exists for each defined transaction code. All
messages destined for a particular communications logical terminal are
queued serially like transactions. A serial queue exists for each
defined logical terminal (Figure 2-1).

TRANSACTION
CODE
X
QUEUE
CONTROL
BLOCK

END OF
MESSAGE X
QUEUE

COMMUNICATION
LOGICAL
TERMINAL
y

QUEUE
CONTROL
BLOCK

END OF
MESSAGE Y
QUEUE

Figure 2-1.

X QUEUE

BEGINNING OF MESSAGE Y QUEUE

General Message Queue structure

Design and Control of a DB/DC System 2.31

gUE!I] R!1! ~~!~
The IMS/VS control program utilizes three OSAM data sets for direct

access queue storage. All queue data sets have the same block size,
which is specified by the IMS/VS user at system definition time.

Figure 2-2 illustrates the relationship between the three queue data
sets.

Figure 2-2.

TRANSACTION

OR LOGICAL

TERMINAL

QUEUE

Queue Data set Relationships

2.32 IMS/VS system/Application Design Guide

OPERATION OF QUEUES

All messages received are assigned OSAM relative record numbers.
However, they are not written immediately to the queue data sets. If
no space is available in the main storage buffers, the buffer which
has been referenced the least is written to its queue data set, and
the space in main storage is assigned to the new message. If a message
still exists in main storage when it is dispatched to its destination
(input to a program or output to a terminal or another program), no
reference to the direct access data sets is required. All messages
are logged by the I8S/VS control program to provide message queue
recoverability in case of failure of either the IMS/VS or host operating
system control programs.

Messages received are represented by either single or multiple
segments. The amount of space required to contain a message determines
the size of the records to which it is allocated. When the transaction
or logical terminal queue is known, the average message size is also
used to determine the record to be allocated. Th.e lines of text are
placed in a variable-blocked format within a record.

The IMS/VS message queue data sets must be preformatted before
initial usage. The use of preformatted queues provides increased
reliability. Reliability is increased with the preformatted data sets
becaus the count field of the direct access device record X is not
relied upon to write record X+1. Preformatting is performed upon
request during restart procedures. The need to reformat the message
queues arises only if an input/output error occurs within a q~eue data
set. A write error does not result in the inability to write subsequent
records in the data set as is the case with unformatted queue data
sets. Approximately 1.5 seconds is required to format each 2314
cylinder in an 1M S/VS message .queue da ta set and .8 seconds for each
3330 cylinder.

In order to provide for message queuerecoverability if the queue
data sets are destroyed, the IMS/VS control program logs:

• all input and output message text

• the queue pointers to each message queue chain, whenever a message
is enqueued onto or dequeued from the chain

If a system failure occurs and the message queQe data sets are
retained intact, the restart facilities of IMS/VS can reposition the
queues by use of the enqueue/dequeue pointers which were logged. If
the queue data sets are destroyed, the restart facilities of I8S/VS
can be employed to rebuild the queues from the log entries of message
text.

Design a nd Control of a DB/DC System 2.33

EKERGENCY RESTART QUEUE REPOSITIONING

In an emergency restart situation, the message queues are
repositioned as follows:

• SNGL mode processing

The message being processed at the time of the failure is the first
message processed after the restart •

• KULT mode processing

All messages read by the program are processed at the tim~ of the
failure are returned to the queue. The first message processed
after the restart is the first message read after the program's
most recent CHKP call or scheduling.

~ESSAGE QUEUE REUSE

Kessage queue records reside in fixed-length blocks with a block
size common to all three data sets. The first record in each data set
is a bit map which controls the assignment of the next n records (n =
8 * LRECL-1). Records in each data set are assigned from low to high
by testing the bit map for the first bit which is on. When a bit is
found on, it is turned off to indicate that the corresponding has been
assigned. When a record contains a message that has been completely
processed at its destination (has been dequeued and will not be required
in restarting the system), the bit corresponding to the record is turned
on. This makes the record available for reuse.

For details on message queue data set space allocation, refer to
the IK.§L!.§ SysRI! f~gnuing Refer§!!.£~ 1!Sl.!U!a!..

A physical terminal is the actual hardware device attached to the
computer. The types of terminals supported include typewriters, CRTs
(cathode ray tubes), paper tape readers, card readers, high-speed
printers, and remote computers. The I8S/VS terminal configuration is
defined to IMS/VS during system defini tion.

2.34 IRS/VS System/Application Design Guide

DEVICES SUPPORTED

IMS/VS supports:

• IBM 1050 Data Communication System

• IBM 2260 Display Station, Models 1 and 2

• IBM 2265 Display Station, Model 1

• IBl'J 27"0 communication Terminal Models 1 and 2

• IBM 27q1 Communication Terminal

• IBM 2770 Data communication System

• IBM 2780 Data Transmission Terminal

• IBM 2980 General Banking Terminals, Models 1 , 2, and 4

• IBM 3270 Information Display System

• IBM 3600 Finance Ccmmunication System

• IBM 3767 communication Terminal

• IBM 3770 Data Communication System

• IBM 37 "0 Data Entry System, Models 2 and q

• IBM 3790 communication System

• IBM 7770 Audio Response unit, Model 3 with a Touch-Tone* (or
equivalent) telephone or IBM 2721 Portable Audio Terminal

• IBM System/3 Model 10

• IBM System/7

• IBM Communicating Magnetic Card/Selectric Typewriter (CMC/ST)

• Card reader/printer devices

• 33/35 Teletypewriter (ASR)

IMS/VS supports various communication/attachment modes for the above
terminals. The major distinction is whether the attachment is local
(through a channel) or remote (over telephone lines). Remote
attachments are further broken down into two categories: switched and
nonswitched (or leased). switched communication lines permit the
attachment of only one remote station or terminal at a time to a line,
and require that the terminal operator use a data set, which is attached
to the remote terminal, to dial up the main computer to establish
connection. Nonswitched communication lines are leased; that is, they
are dedicated to use by the terminals physically attached to them. A
nonswitched line may be either a contention or polled line. contention
or polled refers to the line discipline used to communicate with the
terminal. Only one contention-type terminal may exist on a line, while
one or more can share a polled line concurrently. A polled line with
more than one terminal is called a multipoint line.

* Registered Trademark of the American Telephone & Telegraph co.

Design and Control of a DB/DC System 2.35

See the 1~L!~ Gey~~gl ~nfQ~~A!iQD ~anY~! for a description of the
communications modes supported by IMS/VS for each physical terminal
and for lists of the required and optional features for each supported
terminal, control unit, and cpu.

BTAM DATA SET LINE GROUPS

The LINEGRP macro is used to describe each BTAM data set line group.
The terminal(s) defined for anyone LINEGRP must be of the same type
(communication mode, polling techniques, transmission code). This
means that a separate line group must be used for each of the following
terminal configurations (when used):

• 1050 switched
• 1050 nonswitched with poll
• 1050 nonswitched with autopoll
• 2260/2265 remote and 2260 local mode, nonsvitched
• 2740 switched with transmit control
• 2740 nonswitched contention
• 2740 nonswitched polled
• 2740 polled with autopoll
• 2741 switched*
• 2741 nonswitched EBCDIC and nonswitched correspondence
• 2770 nonswitched
• 2780 nonswitched polled
• 2780 nonswitched polled ASCII
• 2780 nonswitched polled 6-bit transcode
• 2780 nonswitched contention EBCDIC
• 2780 nonswitched contention ASCII
• 2780 nonswitched contention 6-bit transcode
• 2980 nonswitched
• 3270 local
• 3270 local printer
• 3270 polled remote
• 3270 polled remote ASCII
• 3270 switched
• 3270 switched (ASCII)
• 3740 switched
• 7770 switched
• System/3
• System/7 nonswitched contention
• System/7 nonswitched polled
• System/7 nonswitched polled with autopoll
• Local card reader
• Local output device (printer, punch, tape, DASD)
• Spool S YSOUT
") 33/35 switched

*For 2741 switched, transmission codes for anyone line group do
not' have to be of the same type.

For further definition of a BTAM data set line group, refer to OS/VS
]I1H, GC21-6980. At least one communication line must exist within
each line group. At least one physical terminal must exist for each
communication line.

TERMINALS ATTACHED THROUGH VTAM

'Terminals attached through VTAM are defined accorOding to terminal
type by using the TYPE macro. Valid terminal types are: 3270 local,
3270 remote, 3601, 3614, 3767, 3170, and 3790.

2.36 IMS/VS System/Application Design Guide

PHYSICAL TERMINAL NETWORK DESIGN

Selection of terminal types should be based on what function is
expected, the location and personnel using the equipment, and the speed
or volume of data which the terminals are expected to handle.

Inquiry and conversational capabilities are best suited to typewriter
or graphic type devices, the graphic devices being faster, while the
typewriter gives a hard copy of the transact~on.

Batches of input can best be handled by cards or paper tape, with
the 2170, 2180, or 3710 being used for high volume and the 1050 for
low.

The printer-type terminals are best suited for applications where
the shop floor requires information from the computer but has no need
to supply any in return. Again, the 2770 or 2780 is best suited for
high volume, with the others handling less volume.

Once the types of terminals required for the job are determined,
the method of connecting them to the computer must be considered.

If many terminal locations are required with minimal volume, a
switched network should be considered. This allows the use of standard
telephone ,lines. The terminal operator dials the computer when he
wishes to make ari entry. One drawback to this approach is the
possibility of busy lines, which may cause the operator to place a call
several times. Another disadvantage is that voice-grade lines are 'more
susceptible to malfunction than leased lines. This might require the
operator to request entry- more than one time to allow the computer to
read it error-free. Unchecked terminals (27Q1, 33/35, and 7770) can
cause input and output to be lost due to line errors which are
transparent to the IMS/VS system.

When high volume is required or the terminal must be connected to
the computer for long periods of time, a leased line may be more
practical. This type of line is generally more error-free, can handle
higher volume of data, and requires no operator action to connect to
the computer. If the leased line is chosen, the next step is to
determine how many terminals are to be connected to this line. If
several unbuffered terminals are connected to the line, significant
delay may occur in the response to a terminal. It is therefore
recommended that unbuffered terminals be attached alone to a line.
Another consideration may be the need to cluster several terminals in
one location. The expense of running several telephone lines to the
same loca tion may be prohibitive. If so, buffered terminals should be
considered. 'Their slightly higher cost may be more than offset by the
need to run only one line, thus reducing the contention for line time,
as the data is transferred to a buffer at operator speed and then sent
across the line at machine speed.

Most terminals supported by IMS/VS are polled. For some terminals,
consideration should also be given to the type of polling to be used:
programmed or autopoll. For small networks, programmed polling may
prove more economical, since autopoll, except for binary synchronous
lines, is an extra cost feature. However, programmed polling requires
more CPU interruptions and, for a larger network, may use enough CPU
time to make the cost of autopoll worthwhile. For each terminal in
the system, programmed polling causes a hardware interrupt approximately
every second. Autopoll causes this interruption only when the operator
has initiated some action on the terminal, which will generally be
several minutes.

Lines can be collected by terminal type into line groups. Each new
line group requires main storage for control blocks used by IMS/VS and

Design and Control of a DB/DC System 2.37

the operating system. All lines for a particular type of terminal can
be collected into one line group, minimizing this storage requirement.
However, this means that all these lines must be allocated to the system
at all times. When one is removed (possibly for use by a different
job or system), IM5/V5 does not function properly. Therefore, if one
or more lines are to be used by ,IM5/V5 on a part-time basis, and it is
desired to allocate them to other functions a t times, they should be
organized into separate line groups. Lines may be removed from the
system by line group.

When binary synchronous terminals (except 3270) are used in the
online IM5/V5 system, timeout conditions can occur when the system is
so loaded that it cannot process an input line buffer and respond to
the terminal. If the terminal operator re-enters the data before
verifying the application program response, to determine the proper
restart point in the data stream, this could lead to duplicate data.

DEFINITION OF THE LOGICAL TERMINAL CONCEPT

The characteristics of terminal devices vary widely. There are
differences in the control mechanics, transmission code, display media,
entry keyboards, switches, timing, and optional features. Communication
line and network characteristics further complicate and multiply the
possible combinations of characteristics that must be managed in the
data communication environment. It is readily apparent that the
application program should not become directly involved with or
dependent upon the characteristics of the terminal network with which
it deals.

'By isolating the application program from its terminal network,
economies in development cost, development time, and maintenance are
achieved. In addition, a certain degree of, if not complete, device
independence is available. Applications written to a device-independent
interface may be expanded without modification for the use of new
terminal types or classes.

At the same time, use of device class dependent functions may be
highly desirable in certain application areas. Control of device class
dependent functions for an application system which serves only CRT-type
devices could enhance the usability of that application.

Another requirement directly related to device independence is
application independence. An application-supported function must be
a vailable from different terminal types. It is not feasible or
practical to expect that a unique terminal be assigned to each function
to be performed.

For reasons of security or resource management, it may be desirable
to associate the use of a physical terminal with its user. Whereas
users may exist in greater numbers than physical teL'minals, they must
be represented by abstractions. The primary characteristic of the
abstract terminal is its identity. The identity is known within I8S/VS
as the "logical terminal name" or simply as "logical terminal."

2.38 IM5/V5 System/Application Design Guide

THE IMS/VS LOGICAL TERMINAL

Each logical terminal within IMS/VS has a unique set of attributes.
A description of the attributes constitutes a partial description of
the features available through use of the logic~l terminal concept.

• Current physical terminal assignment -- this characteristic may be
dynamically altered for reasons of terminal resource management.
Once a sign on has been accomplished by connecting a logical
terminal to a physical terminal, the functions and services
available are the same as those for a nonswitched terminal.

• security authorization -- can be unique for each logical terminal
in the system or can represent a security level or group.

• Next logical terminal assignment -- multiple logical terminals can
be associated with a single physical terminal. This provides, in
conjunction with security, the ability to uniquely identify multiple
users of a single physic~l terminal.

Logical terminals can be assigned to physical terminals for output
and input purposes. When a logical terminal is assigned to a physical
terminal for output purposes, all messages sent to that logical terminal
are transmitted to its associated physical terminal. More than one
logical terminal can be assigned to a given physical terminal for output
purposes. Only one physical terminal can receive the output for a
given logical terminal~ The diagram below shows the relationship
between physical and logical terminals for output purposes:

Physical
Terminal

Logical
Terminal

Logical
Terminal

Design and Control of a DB/DC System 2.39

When a physical terminal is assigned to a logical terminal for input
purposes, any message entered from the phy~cal terminal is considered
to have originated at the logical terminal. When more than one logical
terminal is assigned to a physical terminal for input purposes, a chain
of input logical terminals is formed. Any input from the physical
terminal is considered to have originated at the first logical terminal
on the chain. If, for some reason (such as security or a stopped
logical terminal), the first logical terminal is not allowed to enter
a message, all logical terminals on the input chain are interrogated
in chain sequence for their ability to enter the message. If the
physical terminal is a 3770 or a 3767, only the logical terminals
associated with the input component are scanned. The first appropriate
logical terminal found is considered the originator of the message.
If no appropriate logical terminal is found, the message' is rejected
with an error message. The diagram below shows the relationship between
physical and logical terminals for input purposes:

Physical
Terminal

INPUT CHAIN

Logical
Terminal

Logical
Terminal

Use of a queue for input messages received or pending output messages
enables the application to be independent of time of arrival or
transmission of messages. Association of the queue with the logical
rather than 'the physical terminal permits it to be moved, independent
of the application, from device to device. Within restrictions, it
permits a queue of messages to be moved even among device classes.

The logical terminal provides a stable platform or reference for
the application program. Regardless of how the physical terminal
network changes, the application remains insensitive. To the
application program, a logical terminal can be viewed as just another
sequential data input source or output destination.

The application program interface to the logical terminal is through
the same call interface mechanics described for the DB system.

When 2980 terminals are defined, IMS/VS uses a logical terminal to
define the 2972 common buffer. This is an exception to the physical
terminal/logical terminal relationship, in that the 2972 common buffer
is not a physical terminal in the conventional sense.

LOGICAL TERMINAL NETWORK DESIGN

Design of a logical terminal network can be as important as design
of a physical terminal network. It has potential impact upon system
security, maintainability, and usability. Careful consideration should
be applied from each viewpoint.

System security administration can be hampered by not providing an
appropriate number of logical terminals through which proper terminal
security authorization may be applied. Too few logical terminals limits
the number of unique security authorizations. Too many may prove
'cumbersome or ineffective in achieving sec uri ty objectives. A judicious
combination of password and logical terminal security can reduce the
number of logical terminals required to administer secllrity policy.

IMS/VS System/Application Design Guide

Where a community of users deals with multiple applications through
a common set of physical terminals, output volumes, schedules,
priorities, human factors, and terminal availability are some of the
more important usability factors to. consider. If priorities require
that management or supervision have ready access to terminals ordinarily
used for operational purposes, then ~rovision must be made for
interrupting operational work. A physical terminal might have tvo
logical terminals ardinarily assigned -- one for operations, one for
priority work. Authorization of the /LOCK command to the priority
logical terminal would enable it to stop input and output from the
operations terminal. Further discussion of the security planning for
this particular case may be found under the topic "Security and Privacy"
in this chapter. It is mentioned here to illustrate several of the
aspects of logical terminal network planning. The same solution to
the security or priority aspect, that is, multiple logical terminals,
can be applied if the control of output volume is a problem.

Where particular applications make use of device class dependent
functions, such as cursor control, it might be useful to specify a
separate set of logical terminals which have a relationship to that
group of applications. Calling the application group an application
class and the logical terminal group a logical terminal class, it is
possible through logical terminal security to associate all input and
output relationships with a known set of logical terminals. At the
same time, non-device-class sensitive transactions may be used through
non-specific logical terminals from the same physical terminals.
Processing applications are insensitive to the separation. The
following example (Figure 2-3) illustrates this use of logical
terminals:

PHYSICAL
TERMINAL

Figure 2- 3.

LOGICAL
TERMINALS

r----'
APPLICATION

). AAA . r-......... ,-- - --I
/1 ---' ''il I /' L---

r---r/
~ ccc J

/
/1 __
1.--

./

I x I !L ____ J

/
/

[J

DEVICE
CLASS

SENSITIVE

NOT DEVICE
CLASS

SENSITIVE

Separating Device Class Sensitive Terminal 1/0

Design and Control of a DB/DC System 2.41

To establish such a relationship requires defining two logical
terminals for each physical terminal, then securing the transactions
destined for application X through logical terminals AAA and CCC. The
common' entry security for AAA and CCC could be referred to as a device
class sensitive security group. All logical terminals defined for that
purpose would then be secured in the same group.

In certain applications it may be necessary to associate a different
physical device for output than the one ordinarily used for input.
Conversely, certain physical terminal types are input-only devices.
If output is required, a different device must be associated with this
type for output. I~S/VS system definition and commands support
assignment of output devices different from the input device. The
allowable physical/logical relationships which can be expressed are
shown in Figure 2-4.

[

PHYSICAL
TERMINAL

Figure 2-4.

•

LOGICAL
TERMINAL

APPLICATION

NORMAL ASSIGNMENT OF ONE
OR MORE LOGICAL TERMINALS!
PHYSICAL TERMINAL, OUTPUT
GOES TO INPUT TERMINAL
APPLICATION INSENSITIVE

ALTERNATIVE ASSIGNMENT,
INPUT AND OUTPUT THROUGH
SAME LOGICAL TERMINAL,
OUTPUT TO DIFFERENT PHYSICAL
TERMINAL - APPLICATION
INSENSITIVE

I INPUT! APPLICATION INSENSITIVE
~ 'TO INPUT, USES SPECIFIC

LOGICAL TERMINAL FOR
OUTPUT

possible Physical/Logical Terminal Relationships

2.42 IMS/VS System/Application Design Guide

1Qgic a! ~~~~i~!!LehY§i£g! I~~inA!-Relalion2~~

!Qn§wil£h~g communicatiQn§ !~1~~k: The best way to describe the
relationship between a terminal user. a physical terminal, a
communication line, and a logical t~rminal is a diagram:

IMSNS

r-------,
I
I
I I I ·

I
USER

PHYSICAL • .. I NON SWITCHED I • I· LOGICAL • TERMINAL I COMMUNICATION LINE I TERMINAL

I
I I ------.--1

IMS/VS system definition describes the characteristics and
relationship of physical terminals, communication lines, and logical
terminals. On a nonswitched communication line, the relationship
between a physical terminal at one end and a logical terminal within
IMS/VS at the other is a stable relationship defined at system
definition time. If there is only one user of a particular physical
terminal, typically there would be a one-to-one relationship between
physical terminal and logical terminal. However, if a physical terminal
is operated by multiple users, it can have many logical terminals
associated with it. IMS/VS system definition might include a separate
logical t~rminal for each user of a particular physical terminal.

The relationship established between a physical terminal and one or
more logical terminals at system definition can be changed through the
command language or by a new ~ystem definition. The IASSIGN command
changes logical/physical relationships dynamically. It is normally
executable only from the master terminal.

Design and Control of a DB/DC System 2.43

~~i!~h~g communi£gtioD§ !~~2I!: The logical/physical terminal
relationship on a switched communications network is considerably more
complex than in the nonswitched communication line environment. IMS/VS
system definition defines the characteristics of a physical terminal,
communication lines, and logical terminals. However, the relationship
between a particular physical terminal and a logical terminal is not
established until the remote terminal user dials the System/370 computer
to communicate with IMS/VS. The relationship between a terminal user,
a physical terminal, a communication network, and logical terminals at
system definition time is depicted in the following diagram:

LINES

I I PHYSICAL

~_. ___ U_S_E_R _____ ~.~--~.--I~ __ T_E_R_M_IN_A_L---

~ IMSNS
/~, r------,

", . "J I
r-:\ 1 LOGICAL I - - V-- ~I TERMINAL I

: --I I
...... • """ I J '0/ L ____ ·_

Once the remote terminal user dials in to the computer and issues
the /IAM command to sign himself on to IMS/VS, a stable relationship
between the physical terminal and one or more logical terminals is
established.

I MSNS

r-----'
SIGNED-ON PHYSICAL
USER - TERMINAL •

LINE 1 I

0- ~ LOGICAL I ...----_1 -I TERMINAL I
L _____ J

In a switched communications network environment, one logical
terminal per line is created automatically as the inquiry logical
terminal. In addition to the physical line/terminal definition, and
the automatic creation of the inquiry logical terminal~ a pool of
logical termi~als can be defined at system definition time. Wheri a
remote terminal user dials into IKS/VS, an IIAM command can be issued
which associates logical terminals from a pool with the physical line
and physical terminal issuing the /IAM command.

2.44 IMS/VS System/Application Design Guide

Within any logical terminal pool for a switched communications
network, the IKS/VS user must define one or more logical terminal
subpools. A logical terminal sub pool is composed of one or more logical
terminals within a given logical terminal pool. A particular logical
terminal can exist in only one pool and subpool. A remote terminal
user can dial the IKS/VS system and sign on for a single logical
terminal or all logical terminals within a logical terminal subpool.
At system definition, the environment appears as indicated in the
following diagram:

REMOTE I
TERMINAL • • PHYSICAL

~

USER TERMINAL

\

--

INQUIRY
LOGICAL
TERMINAL 1

r---------,
I
I
I
I
I
I
I

r- - ----,

LOGICAL
TERMINAL
POOL

I
I
I
I

r-----' I
I LOGICAL I I
I TERMINAL I I
I SUBPOOL I

I
I '-_ - - --.I I

I
INQUIRY
LOGICAL
TERMINAL 2

--~
I

--~
I

r-----,
I LOGICAL I
I

TERMINAL I
SUBPOOL L ____ J

I
I
I
I
I --1 '--------' ------ I _--~___. r------,

I I r-----'
I I LOGICAL I I I TERMINAL I

I I SUBPOOL I I I L ____ _

I I
r-----'
I LOGICAL I
I TERMINAL I

SUBPOOL
I I
~----~

I I
I I
I I
I I I L ______

~--------

Design and Control of a DB/DC System 2.45

After a remote terminal user has dialed the System/370 computer
operating under IKS/VS, several situations can exist. If the IIAM
command is used to sign on and the LTERK parameter specifies the inquiry
logical terminal, the following diagram applies:

R.EMOTE PHYSICAL
INQUIRY --'" ..

TERMINAL
USER

•

IMSNS'

r------,
LINE I I

INQUIRY I t::\ ~ LOGICAL
~-·----I""-I TER~INAL I

I FOR LINE X I
L- _____ J

If the IIAM command is used to sign on and the LTERM parameter
specifies a logical terminal from the logical terminal subpool, the
following diagram applies:

I MS/VS
r--------,

REMOTE PHYSICAL
TERMINAL -'"

USER
TERMINAL

LINE I LOGICAL I

8 .. L TERMINAL I
~--I~I FROM I

. POOL

I I
~----~

REMOTE
PHYSICAL

TERMINAL -- -
USER

TERMINAL

.------1
LINE I I

L
SUBPOOL

0~.---.....I!I,~, OF II LOGICAL
TERMINALS

I I
'---------'

If the IIAM command is used to sign on and the LTERM and PTERM
parameters are specified, all logical terminals within a subpool are
as~ociated with the physical terminal.

The use of the logical terminal subpool concept allows for efficient
use of communication facilities. All output queued on each of the
logical terminals in the sub pool for which the IIAM command was issued
is sent to the physical terminal.

2.46 IMS/VS system/Application Design Guide

A subpoo1 can be defined to contain the logical terminals for all
of the users of a single physical terminal. While a user is signed on
to a logical terminal within the sub pool, the subpoo1 is unavailable
to users signing on from other physical terminals.

All inquiry logical terminal names must begin with INQU. When
signing on for an inquiry logical terminal, only these first four
characters are considered significant by IRS/VS. This lets a user call
any autoanswer line and sign on for, and use, the inquiry logical
terminal (for inquiry transactions only), if he is aware of the INQU
prefix. The inquiry logical terminal can only be used for non-update
transactions, and queued output is preserved only while the user is
signed on. So that IKS/VS can distinguish inquiry logical terminal
names from subpocl logical terminal names at the time a user signs on,
no subpoo1 logical terminal name can begin with INQU.

The master terminal is the IRS/VS control center. It must be either
a 1050, a station-controlled 2740, a 3270, a 3767, or a 3770. If a
1050 or 2740 is used, it must be attached through a non-switched polled
communications line. A 3270 master terminal can be attached local1v
or through a non-switched polled line. The IRS/VS provision for a 3770
master terminal is intended for the 3770 console component. The
non-console components will not operate correctly if they are used as
the master terminal.

The master terminal operator should know all the operating aspects
of the system. The physical location of the master terminal in relation
to the computer console is important. If, for security reasons, they
are not close, telephone communications should be provided.

The details of starting the system, checkpoint, restart, and all
commands available to the master terminal are in the IKS/V~ ~~~!Q~!§
R~&~~n.~ !1~yal.

SYSTEM CONSOLE SUPPORT

IRS/VS provides support for the OS/VS system console using the OS/VS
write-to-operator (WTO) and vrite-to-operator-with-reply (WTOR)
facilities. All functions available to the IRS/VS master terminal are
available to the system console. The system console and master terminal
can be used concurrently, to control the system. Usually, however,
the system console's primary purpose is as a backup to the master
terminal. The system console is arbitrarily defined as IKS/VS line
number one.

Design and Control of a DB/DC system 2.47

SYSTEMS WITH INOPERABLE KASTER TERMINAL

IMS/VS requires a master terminal be defined for its use during
IMS/VS system definition. Under certain conditions, however, it may
be impractical to provide a master terminal facility; for example when
the 270X line is inoperable. In these instances, the as/vs system
console can be utilized to replace the IKS/VS master terminal~ If
desired, the master terminal DD statement can be omitted. If the master
terminal is inoperable, messages will continue to be routed to it until
they are routed to the system console or another terminal with the
/ASSIGN command. In addition, all of the functions ordinarily performed
at remote operational terminals can also be performed through the
System/370 console.

~j~~!2~ r~ ~~R!!£!

Through the Message Format service (MFS) ~ a comprehensive facility
is provided for IKS/VS users of 2740, 2741, 3270, 3600, 3767, and 3770
devices. MFS allows application programmers to deal with simple logical
messages instead of device dependent data; this simplifies application
development. The same application program may deal with different
device types using a single set of editing logic while device input
and output are varied to suit a specific device. The presentation of
data on the device or operator input may be changed without changing
the application program. Full paging capability is provided for display
devices. Input messages may be created from multiple screens of data.

A program using MFS need not be concerned with the physical
characteristics of the device used for input and output messages unle~s
it wants to use certain very specific device features. Even when these
features are utilized, the program can request functions in a logical
manner; no device control characters or orders may be sent directly
from the program or may be received by the program. The presentation
of data on the device may be changed without application program
changes. Both logical and physical paging facilities are provided for
the 3270 and 3604 display stations; this allows the application program
to write a large amount of data that will be divided into multiple
screens for display on the terminal. The capability to page forwa rd
and backward to different screens within the message is provided for
the terminal operator. The conceptual view of the formatting operations
for messages originating from or going to an MFS-supported device is
shown in Figure 2-5.

MFS
Supported
Device

Figure 2-5.

Device
Input

MFS

Input
Message

IMSIVS
Application
Program

Output
Message

Message Formatting Using MFS

2.48 IMS/VS System/Application Design Guide

MFS

Device
Output

MFS
Supported
Device

MPS has three major components:

• MFS language utility

• MFS pool manager

• Message editor

The MFS language utility is executed offline to generate control
blocks and place them in a format control block data set named
IMSVS.FORMAT. The control blocks describe the message formatting that
is to take place during message input or output operations. They are
generated according to a set of utility control statements specified
by the IMS/VS system designer. There are four types of format control
blocks:

• Message input descriptor (MID)

• Message output descriptor (MOD)

• Device- input format (DIF)

• Device output format (DOF)

The MID and MOD'blocks relate to application program input and output
message segment formats, and the DIF and DOF blocks relate to terminal
I/O formats. The MID and DIF blocks control the formatting of input
messages, while the MOD and DOF blocks control output message
formatting.

The message editor and MFS pool manager operate online during the
normal production mode of operation. The message editor performs the
actual message formatting operations using the control block
specifications. The MFS pool manager controls residence in the main
storage MPS buffer pool of the format control blocks required by the
message editor. Efficient use of available pool space is provided by
look-ahead fetching of required control blocks from direct access
storage, and by maintenance of last-referenced format control block
chains for reuse of pool space~

Two other MFS components, a MFS service utility and a MFTEST pool
manager are available to support optional KFS operations.

The KFS service utility provides a method for additional control of
the format control block data sets. It executes offline and can be
used to create and maintain an index of control blocks for online use
by the MFS pool manager.

The MFSTEST pool manager replaces the KFS pool manager to support
the optional MFSTEST mode of operation. The IKS/VS /TEST MFS command
can be used to place online KFS terminals into MFSTEST mode during
which new applications and modifications to existing applications can
be exercised without disrupting production activity.

Design and Control of a DB/DC System 2.49

Figure 2-6 provides an overview of ma~or MFS operations. The circled
numbers reference notes that indicate maJor distinctions in MFS
processing when the MFSTEST facility is used. The !~!~ ~~~ag~ ~Q~mat
Se!vice ~§~!~§ Gui~ provides a complete description of MFS.

PROVIDED
BY MFS
APPLICATION
DESIGNER

Message and
Format Control
Statements

Service Utility
Control
Statements

OFFLINE
EXECUTION

Message! G)
Format
Language
Utility

Maintenance
I

MFSTEST DISTINCTIONS

ONLINE
EXECUTION

MFS 0
1--__ ... Buffer

Pool

MFS 0
Pool Manager

Message
Editor

Message
Queue

1. Can execute concurrently with the IMS!VS online control region only in MFSTEST mode.

MFS
TERMINAL

2. Replaced by I MSVS. TFORMAT in MFSTEST mode; IMSVS. FORMAT is available as secondary source of
control blocks in MFSTEST mode.

3. The communication line buffer pool is used in MFSTEST mode.

4. Replaced by MFSTEST pool manager in MFSTEST mode.

5. Terminal operator must use !TEST MFS command to enter MFSTEST mode.

Figure 2-6. Overview of Message Format Service

2.50 IMS/VS System/Application Design Guide

The IMS/VS Message Format Service (MFS), described in the previous
section, is used exclusively to format data transmitted between IMS/VS
and the devices of the 3270 Information Display system. KFS provides
a high level of device independence for the application programmers
and a means for the application system designer to make full use of
the 3270 device capabilities in terminal operations. The I~~L!~ Message
12Ims1 ~~£!ic~ Q§§r's Guide contains a complete description of MFS.

3270 COpy FUNCTION

When an IMS/VS system is defined to include printer components of
the 3270 Information Display Sys~em attached through a polled BSC or
SDLC line, it is possible to allow an automatic or operator-controlled
hard copy of the video output (or input) to be sent to a 32SQ/3286
printer. This hard copy can be requested through the use of the SCA
field in the application program's output data, the definition of the
message (see !~~ ~§§§!~ FO~~A!Se~!~ ~§§I~§ §uide), or by operator
action. The hard copy listing is produced on an appropriate printer,
which" must be attached to the same control unit (3271 or 3275) as the
display "station containing the information to be copied. If a request
is sent to a terminal that is not defined as allowing the copy function,
or that does not support the copy function (3270 local attachment) ,
the request for the copy f.unction is ignored.

The format of the printed output can vary from that on the display
station as a result of blank lines (or null lines), which are ignored
by some models of the 3284/3286 printers. In all cases, the buffer
size of the printer must be equal to or larger than the buffer size of
the display station to be copied (3275/328Q Model 3 has no printer
buffer and this consideration does not apply).

When printers are attached to a 3271, the IKS/VS system definition
process determines which printers are eligible to receive the hard-copy
output of a copy operation. These printers are called candidate
printers. When a copy operation is requested by the operator or an
application program, the candidate printers are searched in a
predetermined order to find a printer that can be used. The first
printer that is not stopped, is not currently printing a message, is
not in exclusive status, and is ready, is used. If the operator made
the copy request and all printers are busy, the keyboard on the display
station is left inoperable until a printer is available and the message
is successfully copied to the printer. If the copy request is from an
application program and all printers are busy, the message is not
displayed until a printer becomes available. This prevents the operator
from altering the data to be printed before the message is successfully
copied to the printer. If no candidate printers are currently
available, an appropriate error message is sent to the display station
requesting the copy operation. If the copy operation was requested by
the application program or the format description (DEV statement, DSCA
operand) , an attempt to send the message will be retried when the error
message is cleared from the screen through the Message Advance Function
(see the !~~L!~ QR~~§ Ref~~~~ ~ADYal). If the copy function
was requested by the operator, the operator can ready the candidate
printer(s) and retry the copy operation.

Candidate printers for a particular display station result from the
way the physical terminals are defined during IMS/VS system definition.
Candidate printers for a display station must be defined after that
display station but before any other display station~printer groups.
other display stations can intervene between a display station "and its
candida te printers, but other display station-printer sequences can
not intervene. For example, in Figure 2-7, PTERK 1 might be a 3275

Design and Control of a DB/DC System 2.51

with its own dedicated printer. If PTERM 2 and 3 allow the copy
function, then PTERMs 4 and 5 will be the candidate printers for these
PTERMs. If PTERM 6 is allowed to use the copy function, then PTER~ 7
will be the candidate· printer for PTERM 6.- Note that the candida te
printer PTERM 7 will not be used for copy functions from PTERMs 2 and
3, nor will candidate printers PTERMs 4 and 5, be used for copy
functions from PTERM 6. And, in no instance, is a copy function
permitted across line, linegroup, or 3270-control-unit boundaries.

3275 WITH 3284 MODEL 3 3277 MODEL 1

~ PTERM 1

..................... 1:::~JmRM6
3277 MODEL 1 3284/3286 MODE L 1

~ ~ PTERM 2

....
~ ~PTERM7

3277 MODEL 2

~

~ PTERM 3
.....................

3284/3286 MODEL 2
3271

LJ PTERM 4

3284/3286 MODE L 2

~

D PTERM 5

Figure 2-1. 3270 copy F unction Example

3284 MODEL 3 PRINTER SUPPORT

3271, MAY BE ON SAME
3271 AS PTERMS 2,

3, 4AND 5

The 3284-3 printer, when attached to a 3275, is supported by IMS/VS
as a component of the 3275 terminal. Messages are sent to the two
components on a rotating basis, as with any component-type terminal.
If no messages can be sent to the printer component, messages are sent
continuously to the display component, just as if no printer component
existed. If no messages can be sent to the display component, messages
are sent to the printer as though the display component did not exist.
As long as messages can be sent to the printer, no operator intervention
is required. When a message is sent to the d isp lay componen t while
messages are enqueued for the printer, the operator must intervene to
allow either further display output or printer output. Any situation
(s~ch as a stopped LTERM or an inoperable printer) that prevents the

2.52 IflS/VS System/Application Design Guide

sending of messages for the LTERM(s) assigned to a particular component
causes message transmission to cease to that component.

3210 MASTER TER~INAL SUPPORT

IMS/VS supports a 3270 terminal as a master terminal. A 3210 master
terminal consists of two 3270 components: a 3271 display and a
3284/3286 printer. The 3215 with an attached 3284-3 is not supported
as a 3270 master terminal.

When IMS/VS uses a 3270 master terminal, all messages are routed to
the display component. certain selected system-generated messages,
critical to IMS/VS operation, are also sent to the 3284/3286 component.

IN~~1ll~~Hl B!!Q~ ~!TIO! ~~~Qj!

1MS/VS provides for attachment of a System/3 Model 10 and System/7
using the IRSS (intelligent remote station support) interface. The
interface_provides a remote station with powerful tools to control the
flow of data between a System/310 and terminals attached to the
intelligent remote station. This interface provides the definition of
transmission block formats. A primary purpose for these formats is to
define message transmission associated with one or more terminals
attached to the intelligent remote station. These formats are described
in detail in the IMS/!~ ~Y§1~ ~rog{s!~i~3 R~fe~~ ~~nya!.

Conversational processing as well as presetting of destinations are
available to terminals attached to the remote station. I~S/VS provides
the facility of routing transaction responses to the originating source
as well as to alternate destinations without application program
involvement. IMS/VS provides a restart facility for the remote station
by logging and retransmission of appropriate block and message
iden tifiers.

TRANSMISSION BLOCKS

Two types of transmission blocks are defined in the IRSS interface.
The data block type is used to carry message segments. The
synchronization block type is used to carryall other required
information such as shutdown, restart, status change, ask for output,
and deque ue output.

Each data block contains a block identifier containing, in four
bytes, information that can be used by the remote station to restart
its transmission of data to IMS/VS, if it has a restart facility. The
content of this identifier is up to the remote station, but if the same
identifier appears in the first data block received by IMS/VS as was
contained in the restart message, after IMS/VS has transmitted a restart
message, IMS/VS considers the block retransmitted and will scan for a
restart point as described below.

Each data segment in a data block contains a message identifier.
This one byte message identifier contains information that enables the
remote station to identify a message or segment within a block. In
addition, I"S/VS appends the message identifier from a segment i~ error,
if an error message must be transmitted by 1"S/VS to the remote station
due to an error discovered while processing a segment. The message
identifier is also contained in restart messages and can be used by
the remote station to restart its transmission of data because it
indicates the last complete message processed by I"S/VS within the
iden tified block.

Design and Control of a DB/DC System 2.53

The message identifier is used by IMS/VS to scan for a restart point
if a block was retransmitted after restart. IKS/VS scans the received
block until a segment with the same message identifier as in the restart
message, and which is flagged as the last segment, is found. IMS/VS
then starts processing with the segments following the one found, if
any. The entire block is discarded if no segment that meets the above
specifications is found. Cold start messages do not contain block and
message identifiers since none are a vailable. but they imply binary
zero identifiers. Therefore, the remote station should not use a block
identifier of binary zeros in the first block transmitted to IMS/VS
following a cold start message from IMS/VS. or the block will be
ignored.

A two-byte terminal identifier is used by the IRSS interface for
destination control. The terminal identifier used in communication
with IMS/VS must be defined when performing the IMS/VS system
definition. The TERMINAL macro is used for this purpose. IMS/VS treats
each defined terminal identifier as a physical terminal. Since IMS/VS
has no knowledge about the actual physical terminals attached to a
remote station. there is no requirement that the terminal identifier
correspond to a physical terminal address. The number of physical
terminals attached is also independent .of the number of terminal
identifiers specified. The terminal identifiers employed by IMS/VS
IRSS provide a means of extending all IMS/VS facilities characteristics
of a physical terminal to any logical destination within a station
supported by IRSS. Since IMS/VS has no knowledge of the terminal
itself, this designator can be used to accomplish a variety of
application-dependent functions; for example:

• Routing to specific terminals or devices in the remote station

• Scheduling of specific application programs within the remote
station

• Batch-type terminal support similar to 2770 or 2780 terminals by
proper definition of the remote station I/O components

• Data collection from a variety of I/O devices into a single stream
identified to IMS/VS as a unique terminal for specific IMS/VS
application program processing

Prior to the enqueue of a message received from a remote station,
IMS/VS logs the identifiers'pertaining to the last block and segment
of the message. This information is also kept in the communications
restart block (CRB) and is restored by restart. The identifiers.
pertaining to the last message enqueued. are transmitted to the remote
station in all types of restart messages except the cold start message.

SYSTEM/3 AND SYSTEM/7 PROGRAM FUNCTION REQUIREMENTS

The IMS/VS support for System/3 and system/7 does not include a
program resident in either computer. The IMS/VS user must supply this
program. The user's program residing in the System/3 or the System/7
must be able to handle at least the following parts of the IRSS
interface:

• Transmission control

• Data blocks

• Immediate shutdown request from IMS/VS

• Send output complete message to IMS/VS

2.54 IMS/VS System/Application Design Guide

It is recom men ded that the progra m be ca pable ()f recognizing error
messages. All other information provided by IKS/VS can be used or
ignored at the discretion of the user.

All IMS/VS system messages contain a message identification whose
first three characters are DFS. The IRSS support extracts the number
from the message, in case of an error message, and builds a
synchronization block. All user initiated messages should be set up
so they cannot be confused with an IKS/VS system message.

TRANSMISSION CONTROL

IMS/VS receives transmission blocks from a remote station in input
mode and transmits blocks to a remote station in output mode.

IMS/VS may request the line to do the following while in input mode:

• Transmit error messages pertaining to received data.

• Transmit command completed messages pertaining to received commands.

• Return a test message if a terminal has been placed in test mode
through the /TEST command.

• Transmit an immediate shutdown request message.

IMS/VS causes a reverse interrupt sequence to be transmitted if any
of the preceding conditions occur when in input mode. IMS/VS then
accepts one additional input block after transmission of the reverse
interrupt. An attempt to transmit more than one block results in a
transmission error and the station is logically deactivated.

Error messages and shutdown request messages are transmitted using
the appropriate synchronization block. Command completed messages and
test messages are transmitted using data blocks.

A message transmitted by IMS/VS in output mode must be removed from
the queue through a request from the remote station. This is done to
ensure that no message is removed from the IMS/VS queue until it has
reached its final destination at the remote station. The request to
remove a message is made using the appropriate synchronization block.
This can be performed at any time after the last segment of the message
has been received by the remote station but before any message is
transmitted to IMS/VS using the same terminal identifier. IMS/VS
retains an output message in progress on the queue if an input message
is received for the same terminal identifier, even if the last segment
has been transmitted but the remove request is not received.

The remote station can transmit an error message to IMS/VS at any
time after the first segment of the message has been received, but
before it is removed from the queue or retained on the queue because
of an input message. An error message causes the logical terminal, on
which the message is queued, to be stopped and a message sent to the
master terminal. The message is retained on to the queue. Error
messages are transmittted using a synchronization block. Messages
transmitted by IMS/VS while in input mode are not queued and, therefore,
cannot be removed from a queue. Consequently, the remove from queue
message should not be sent.

Design and Control of a DB/DC System 2.55

Any error detected in the interface between IMS/VS and the remote
station results in logical deactivation of the remote station by an
EOT.

SYSTEK DEFINITION

The System/3 and System/1 are defined using the STATION macro.
Incl uded in this macro are the station's polling address (if applicable)
and the station's operating modes.

Three operating modes may be defined in any combination:

• Postpone type -- non-postpone type
• Ask type -- non-ask type
• Transmission limit -- no-transmission limit

A System/1 station on a start/stop line has the added definition of
output transmission code modes. The station can be defined to require
all data blocks to be transmitted in PTTC/EBCD code, pseudo-binary
PTTC/EBCD code, or to allow IKS/VS to determine the code.

f2~iEQn~ IY~ ~i~!iQn

A station defined as postpone type is started with the postpone
output flag set in all defined terminals. The remote CPU must send
the resume output I/O-synchronization block to IKS/VS to receive output.

A postpone type station has the advantage of specific terminal output
requests by the user program in the remote CPU. This function can
conserve resources within that system.

To allow the user's program to control when to receive blocks from
IMS/VS, the station can be defined as ask type. After the restart
message has been transmitted by IMS/VS, IMS/VS waits to receive an ASK
message before transmitting anything else. The ASK message is sent by
a remote station to inform IKS/VS that the station is ready to receive.
This message is required:

• After IKS/VS has transmitted the NO-OUT message (I/O synchronization
message flag value X'08') to the remote station.

• After IMS/VS has transmitted a user specified number of blocks to
the remote station. This count is reset each time an ASK message
is received. Messages sent following a LINE TURN AROUND requested
by IKS/VS are not counted.

IKS/VS transmits blocks according to normal rules after an ASK
message has been received. When all available output that can be sent
has been sent, IMS/VS transmits the NO-OUT I/O synchronization message.
IRS/VS then waits to receive an ASK message before transmitting any
further output. The transmission of the NO-OUT message can be preempted
by reaching transmission limit. The ASK message is an I/O
synchronization message with flag value X'10'. The NO-OUT message is
an I/O synchronization message with flag value X'08'. The format of
these messages is described in the IK~LVS ~~!§m. PrQqramming R~~~
Manual.
~~-,...-

2.56 IKS/VS System/Application Design Guide

IMS/VS system definition allows for the specification of a
transmission limit fer each remote station defined. The transmission
limit is the maximum number of transmission blocks, excluding the block
transmitted following a reverse interrupt sequence and the shutdown
synchronization block, that I8S/VS will send in output mode between
remote station initiated resets. The remote station uses the ASK
message to perform this function. The ASK message is sent by a remote
station to inform I8S/VS that the station is ready to receive. The
transmission limit defined to I8S/VS should be the number of buffers
in the remote station minus one, because IMS/VS may be required either
to transmit blocks to the remote station while in input mode (see the
description under "Transmission Control" in this chapter) or send a
shutdown synchronization block while in output mode.
This message is required:

• After I8S/VS has transmitted the NO-OUT message (I/O synchronization
message flag value X'OS') to the remote statiGn.

• After I8S/VS has transmitted a user specified number of blocks to
the remote station. This count is reset each time an ASK message
is received. Messages sent following a LINE TURN AROUND requested
by I8S/VS are not counted.

The transmission limit can range from 1 to 15, or be defined as
zero, indicating unlimited transmission.

The three remote CPU operating modes can be defined in any
combination. The presence (or absence) of postpone type does not impact
18S/VS function. 18S/VS function does vary, however, when ask type
and/or transmission limit are specified or are not specified.

The flowcharts below show I8S/VS function for the possible
combinations of operating modes:

• Basic (non-ask type~ no-transmission limi~
• Ask-type, no-transmission limit
• Non-ask type, transmission limit
• Ask-type, transmission limit

Design and Control of a DB/DC System 2.57

Basic (non-ask type, no transmission limit)

*****B1**********
* * * TRANSMIT A * *-->* BLOCK *
* * * * *****************

v
0*0

C1 *0
0* MORE *0

YES Q* OUTPUT *0
*---*0 AVAILABLE? 0*

*0 0 * *0 0 * *0 0* .
* NO

V
*****01**********
* * * * *RESET THE LINE *
* * * * *****************

IMS/VS wILL START TRANSMITTING OUTPUT
AS SOON AS THE LINE IS AVAILABLE AFTER
AN OUTPUT MESSAGE HAS BEEN EN'UEUECo

IMS/VS CONTINUES TRANSMITTING AS LONG
AS THERE IS OUTPUT AVAILABLE THAT ~AY
BE SENTo
I~S/VS TRANSMITS CNLY G~E MESSAGE FeR
A GIVEN TERMINAL IDENTIFIER REGARDLESS
OF THE NU~EER OF MESSAGES ENQUEUED o

I~S/VS TRANSMITS EOT Te TERMINATE
TRANSMI SSICNc

2.58 IMS/VS System/Application Design Guide

Ask-type, no-transmission limit

*****B1**********
* * * TRANSMIT A *

--> BLOCK *
* * * * *****************

I
V .*.

C1 *.
.~ MORE *.

YES.* OUTPUT *.
---*. AVAILABLE? .*

. . *. .* *. .* I NO

*****01**********
* * * TRANSMIT *
* .INo-OUT-*
* MESSAGE *
* * *****************

V
*****El**********
* * * * :R ESET THE lINE ':

* * *****************

I

IMS/VS wIll START TRANSMITTING OUTPUT
AS SOON AS THE LINE IS AVAILABLE AFTER
AN "ASKU FOR OUTPUT MESSAGE HAS BEEN
RECEIVED. .

IMS/VS CONTINUES TRANSMITTING AS LONG
AS THERE IS OUTPUT AVAILABLE THAT MAY
BE SENT.
IMS/VS TRANSMITS ONLY ONE MESSAGE FOR
A GIVEN TERMINAL IDENTIFIER REGARDLESS
OF THE NUMBER OF MESSAGES ENQUEueo.

IMS/VS TRANSMITS A SYNCHRONIZATION
BLOCK INOICATING TO THE REMOTE CPU THAT
NO OUTPUT MESSAGES. THAT MAY BE SENT.
ARE CURRENTLY AVAILABLE.

IMS/VS TRA~SMITS EaT TO TERMINATE
TRANSHISSICN.

Design and Control of a DB/DC System 2.59

Non-ask type, transmission limit

*****B1**********
* * * TRANSMIT A *

~-> BLOCK *
* * * *

I
V

.*.
Cl *.

.* *. .* REACHED *. YES
.TRANSMISSION .---* *. lIMITl .* *. .*

. . i NO

\J .*.
01 * • • * ~ORE *.

Y~S .* OUTPUT *.
---*. AVAILABLE? .*

. .
. . *. . *

j<NC ______ .

V
*****El**********
* * * * *RESET THE LINE *
* * * * *****************

I

IMS/VS WILL START TRANSMITTING CUTPUT
AS SOON AS THE LINE IS AVAILABLE AfTER
AN OUTPUT MESSAGE HAS BEEN ENQUEUED.

IMS/VS CONTINUES TRANSMITTING AS LONG
AS THERE IS OUTPUT AVAILABLE. THAT MAY
BE SENT, UP TO A USER SPECIfIED NUMBER
(f TRANSMISSION BLOCKS.
IMS/VS TRANSMITS ONLY ONE ~ESSAGE fOR
A GIVEN TERMINAL ICENTlflER REGARDLESS
OF THE NUMBER Of ~FSSAGES ENQUEUED.

IMS/VS TRA~SMITS EaT TO TERMINATE
TRANSMISSIOf\.

2.60 IKS/VS System/Application Design Guide

Ask type, transmission limit

*****B1**********
* * * TRANSMIT A *

--> BLOCK *
* * * * *****************

v
.*.

C1 *.
.* *.

.* REACHED *. YES
.TRANSMISSION .---*

. LIMIT? .
*. . * * •. * i NC

V .*.
01 * • • * MORE *.

YES.* OUTPUT *.
--*. AVAILABLE? .*

. . *. .*
* •• * * NO

" *****E1**********
* * * TRANSMIT *
* "NO-OUT" * 1 * MESSAGE *
* * *****************

<-------*

V
*****F1**********
* * * * *RESET THE LINE *
* * * * *****************

I

IMS/VS ~ILL START TRANSMITTING OUTPUT
AS SCON AS THE LINE IS AVAILABLE AFTER
AN "ASK" FOR OUTPUT MESSAGE HAS BEEN
RECEIVE:l.

IMS/VS -CONTINUES TRANSMITTING AS LONG
AS THERE IS OUTPUT AVAILABLEl~THAT MAY
BE SENT, UP TO A USER SPECIF EO NUMBER
OF TRANSMISSION BLOCKS. . .
IMS/VS TRANSMITS ONLY ONE MESSAGE FOR
A GIVEN TERMINAL ICENTIFIER REGARCLESS
OF THE NUMBER OF MESSAGES ENQUEUED.

IMS/VS TRANSMITS A SYNCHRONIZATION
BLCCK INDICATING TO THE REMOTE CPU THAT
NO OUTPUT MESSAGES, THAT MAY BE SENT,
ARE CURRENTLY AVAILABLE.

IMS/VS TRANSMITS EOT TO TERMINATE
TRANSMISSION.

Design and Control of a DB/DC System 2.61

CONSIDERATIONS UNIQUE TO SYSTEM/?

~I212mLl Stg~1~!2~ T~gn§!i§2i2n ~2~~ ~de~

IMS/VS requires synchronization blocks to be transmitted using the
pseudo-binary PTTC/EBCD transmission code. This code is described in
the Syste!Ll lYn£1igDg! Chg~£!§~i§1i~§ ~~nYal, GA34-0003.

Data blocks are transmitted using either the standard PTTC/EBCD
transmission code or the pseudo-binary PTTC/EBCD transmission code.
18S/VS accepts either code on input and scans the output data to
determine if the block contains any characters that cannot be
transmitted using the standard PTTC/EBCD transmission code. If such
characters are found, the block is converted to pseudo-binary PTTC/EBCD.
otherwise, the message is translated as standard PTTC/EBCD transmission
code.

1MS/VS allows the user to specify at IMS/VS system definition, on
a per station basis, that all data blocks should be transmitted in one
of the above transmission codes. If all data blocks are to be
transmitted in the standard PTTC/EBCD code, all characters that cannot
be transmitted in that code are replaced by a colon.

The output buffer size specified by the user at IMS/VS system
definition is doubled to allow for conversion to pseudo-binary
PTTC/EBCD, unless the user specifies that all data blocks are to be
transmitted using the standard PTTC/EBCD transmission code.

1MS/VS allows a System/7 to be attached on a nonswitched contention
line or a nonswitched polled line. A polled line may be polled using
programmed polling or autopoll.

1MS/VS can control a polled line and therefore initiate output, if
allowed to, at any time data transfer is not taking place without a
potential loss of data and without System/7 intervention. To try to
avoid errors caused by loss of data on a contention line, some of the
responsibility for keeping communication open is dependent upon the
System/7 program. 1MS/VS issues a read when output is not available
to send and this read must be terminated by transmission from the
System/1. Since there is no indication of whether, after receiving a
block, 1MS/VS intends to transmit or return to read, unless the System/1
is defined as ask type, it is recommended that a System/7, attached on
a contention line, be defined as ask type. The receipt of the output
not available (NO-OUT) message informs the System/7 program that IMS/VS,
immediately following the completion of this message, is issuing a
read.

2.62 IMS/VS System/Application Design Guide

~YEEQ[!~~ ~I§1~Ll ~~ Li~ ~IE§§

IMS/VS allows a System/7 to be attached on a nonswitched contention
or polled line. IMS/VS is defined as the controlling station. All
transmissions must be in BSe EBCDIC transparent mode.

Since there is no facility to prevent an IMS/VS shutdown checkpoint
while a process controll;i.ng System/7 is acti ve, the System/7 should
transmit a message to the IMS/VS master terminal operator, when
communication is started, inforaing the operator that a process
controlling machine is attached and that the operator should not issue
a shutdown checkpoint until informed that the process controlling
machine is either stopped or stoppable.

Design and Control of a DB/DC System 2,.63

~~L!~ f£2£~ing 2! s BlQ£~ 1~~n2mi11~g ~1a~1L~1~~ frg~ a ~ystg~1

The flowchart below shows how IMS/VS processes a transmission block
received from a System/7.

*****81********** * ..
* * *-->*RECEIVE A BLeCK*
* * * * j

c *0
C1 *.,

0* *0
0* EOT *0 YES

0 RECEIVED? 0----
*c <' *

*" 0 * *0 e*

I"
*****01**********
* * * PROCESS ThE *
* BLCCK *
* * * * j

v
C *0

E1 *"
~* EIlRCIl *c

0* MESSAGE *c YES

.O.::~:~A~:~:o.O·---i

r i
v

*****F1**********
* * * MAKE REAC *

(--* CO~TINUE *
*(CIRCLE Y ACKI *
* * *****************

*---~-------. I
V

*****G1**********
* MAKE ~RITE *
• POSITIVE •
* ACKNOWLEDGE ..
.(CIRCLE 0 ACKI *
* *

········l::::::~:---·
V

*****H1**********
* * *TRANSMIT ERRO~ *
* MESSAGE *
* *
* * j

V
" *0

Jl *c
0* MORE *0

0* ERROR *0 YES
0 ~ESSAGES 0---*

0 NEECEC? ,
*c 0 *

*" c * r
V

*****Kl**********
* * • *

*---*RESET TH~ LINE *
* * * ..

THE INPUT SEQUe~CE IS STARTED WHEN
IMS/VS RECEIVES A BLOCK FkOM A SYSTEM/7~

ASK TYPE: IF ASK REQUEST RiCEIVEu, OUT~UT IS
SEIliT IF AVtILAeLE~ OTHEkw,ISE, ~U<t'AL IMS/VS
PRCCESSIIliG PESU~ESa .

/liCN-ASK TYPt: IF TRANSMISSI~N LI~IT NOT ReACHED
OR NOT SPECIFIED. OUTPUT IS SENT IF AVAILABLEc
CTHERwISE NCRMAL IMS/VS PROCESSING RESU~ES:

THE INFORMATION CONTAINEC IN THE kiCEIVEC
BLOCK IS PROCESSEDa ONE GP MGRE ERqG~
MESSAGES MAY Ee GENERATEC AS A RESULT
OF THE BLOCKS CCNTENTS"

IMS/VS MAKES A ~EAC CC~TINUt CAuSI~G
A CIRCLE Y TO BE TRA~SMITT~D IF AN ERRDk
MESSAGF WAS NCT G~~ERATEOc

IMS/VS MAKES A ~~ITE PGSITIVE
ACKNCWLEOGE CAUSING A CIRCLE D TO BE
TRt~S~ITTED IF A~ ERkOF MESSAf:E WAS
GENERATEDc

IMS/vS TRANSMITS THE ERkCR MESSAGE
USING A SYNCHRCNIZATION ~LOCKc

IMS/VS T~A~S~ITS EeT TC Tf~MI~ATE
TRANSMISSICN c

2.64 IMS/VS system/Application Design Guide

CONSIDERATIONS UNIQUE TO SYSTEK/3

IMS/VS support of the System/3 is designed to provide a high degree
of flexibility in function but 1S consistent with the main storage
constraint inherent in smaller computers.

While IMS/VS IRSS does not require it, it is anticipated that
System/3 programs designed to interface with IKS/VS will take advantage
of the ask-type station facility described under "System Definition."
This facility allows the System/3 programmer to allocate his main
storage resource only when he is ready to accept data from IKS/VS; thus
alleviating the requirement for a larger, permanently-dedicated buffer
area.

Transmission of data in the EBCDIC transparency mode allows all
types of data to be transmitted from an I"S/VS application program.
This could save additional storage or programming in the System/3.

If the System/3 is used as a subhost for locally attached terminals,
using either the MLTA (for start-stop) or KLKP (for BSC) features of
the System/3 Disk system Control Program, the IRSS provides each of
these terminals direct access to an IMS/VS system with the additional
advantage of a common 1/0 interface.

Though IMS/VS IRSS supplies a large amount of status type information
to the System/3, the System/3 programmer does not heed to design his
application to process all types. consequently he can realize a savings
in main storage or programming within the System/3.

To fully utilize the features provided by IRSS to the System/3, the
System/3 programmer should design his application to use the Disk System
Control Program with the BSCA Multiline Multipoint feature. This
support allows the user to directly control the line discipline and to
recognize many types of responses from IMS/VS.

~§ig!l 2t lh~ Systeml3 A~plica t!QD JIUrul 1!1R

To utilize MLMP support in the System/3 to communicate with IMS/VS
through the IRS5, the System/3 user should:

1. Define two BSCI files, one for transmit and one for receive.

2. The transmit file should be single buffered to prevent more than
one block being transmitted after a reverse interrupt (RVI)
indicator has been sent by IMS/VS. The reverse interrupt
indicator must be defined and recognized for this file.

3. It is recommended that the System/3 user utilize the get-block
and put-block modes of the GET and PUT macros. This is
recommended because IM5/VS IRSS data structures do not normally
lend themselves to the record separator mode of deblocking
(unless of course the data to be transmitted can be guaranteed
not to contain a particular character).

4. If multiple System/3s are to be multidropped on a single
communication line. it is important for the System/3 application
program to take the necessary steps to assure a negative response
to polling when communication is inactive between the System/3
and IMS/VS. This usually requires the issuance of a GET type
operation in the System/3 and the use of the cancel function
when the next direction of transmission is to be a PUT type
operation for the System/3.

Design and Control of a DB/DC system 2.65

The flowchart below shows how IMS/VS processes a transmission block
received from a System/3.

" *c
&2 ."

c. * *~ c* PREVIOUS *0 YE~
*--------------~--------~---->*c BLCCK TO 0*---* *"PROCESS? c*

.~ 0*
"'0 0 * r

*****C2**********
* * * * *---------------->*KECEIVE A BLOCK*
* * * *

o "'c
02 *c

C * *0
YES 0* EOT *0
----*0 ~ECEIVED? 0*

0 ,,
c 0

0 ~

i<~~-------·
V

*****E2**********
* * * PROCESS THE *
* eLCCK *
* * * * *"'**"'************

I

I J
****.Fl********** F2 *0 * * ., * EPI\OR "'c
* MAKE READ * ~C 0* MESSAGE *0
*CONTINUECACK-O *<--------*0 GENERATED? c* * OR ACK-il * *0 0"
* * *0 0 * **********.****** "0 ~~

i
YES

V
****~G2***~~~***"

* * * MAKE REAC •
*INTERRUPT CRVl *
* SEQ~ENCEI *
* ¥

········1:::::::~--*
v

*****H2********** . '" *TRANSMIT ERReR ..
* MESSAGE *
* * * *
········i········

v
C*':J

J2 *0
~* MCRE *0

,,* HROR *0 YES
0 MESSAGES 0---*

0 NEEDED? .0
*0 0 *

c e

1""
.*~K2********
* * *-----------------------------*RESET THE LINE *
* * * ..

IF AN ACDITIU~AL BLOCK wAS TRANSMITTED
wHEt-. It-'S/VS SE~T RVI IT WILL NOW
~E Pf<OCESSED~

THE INPUT SEwU~NCE IS STARTEC WHEN
IMS/VS RECEIVES A BLOCK FROM A SYSTEM/3c

ASK TYPE: IF ASK REQUEST RECEIVED, OUTPUT IS
SENT IF AVAILABLEo OTHERwISE, NORMAL IMS/VS
PROCESSING RESUMES~

NON-ASK TYPE: IF TRAN~MISSION LIMIT NOT RcACHEi;
OR NCT SPECIFIED, OUTPUT IS SENT IF AVAIlABLc~
OT~EkWISE NO~MAL IMS/VS PRCCESSIN~ RESUMES"

THE INFOR~ATICN CONTAI~ED IN THE RECEIVED
BLOCK IS PROCESSED" ONE OR MOR~ ERROR
MESS~GESM~Y eE GENERATED AS A RESULT
CF THE SLCCKS CONTENTSc

IMS/VS MAKES A R~AO CONTINUE CAUSING
AN ACK-u GR ACK-l TO Bf TRANSMITTEQ IF AN
ERROR M~SSAGE WAS NOT GENERATEDo

IMS/VS MAKES A READ INTERRUPT
CAUSING A~ RVI SEQUENCE TO BE
TRANSMITTED IF AN ERROR MESSAGE WAS
GENERATED~ ~N ADDITIONAL INPUT BLOCK
MAY BE RECEIVED AT THIS TIME~

IMS/VS TR~NSMITS THE ERROR MESSAGE
USING A SYNCHRONIZATION BLOCKo

IMS/VS TRANSMITS EOT TO TERMINATE
TRA~SMI SS ION~

2.66 IKS/VS System/Application Design Guide

SECURITY AND PRIVACY

In government, education, and private industry, there has been a
long-term trend toward centralization of data. Data base/data
communication systems like IMS/VS are accelerating this trend. More
and more information is being consolidated about individuals,
businesses, governments, and institutions. It is predictable that this
data will grow into vast, interconnected national or even international
data networks. As consolidation increases, so do the fears of
individuals and businesses that their rights to privacy and to
protection of privileged and confidential information vill be
compromised. Equally important are the concerns for protecting data
from malicious or accidental modification.

It is the objective of IMS/VS to provide safeguards through which
access to data may be limited. The mechanics of the safeguard system
can be used to administer security and privacy policies. Administration
is accomplished by careful interpretation of policy in system and
application design, and into parameters and control statements used
for:

• System definition

• Program specification block generation

• Data base description generation

• Security maintenance program

• Statistical analysis program

!Y~horizin~ Q§~ 21 !~~~al ~Q.~~Dg§
In the newly generated DB/DC System, only a basic subset of the

terminal commands is protected against unauthorized entry. The terminal
command language, if properly used, provides flexible control of the
DB/DC system while it is in operation. The commands permit alteration
of the status of many system resources. Among the functions that can
be performed, several are vital to the integrity of the security
safeguards themselves. Other functions, although not thre~tening the
security safeguards, are capable of crippling operations or shutting
down the entire DB/DC system. Freedom from concern over capricious or
malicious use of the commands can be achieved by designing and
implementing a command authorization plan. The tool provided by IMS/VS
to implement this plan is the Security Maintenance Program. Refer to
the I~~LI~ in§tallatiQD Guig~ for information about the use of this
program.

Commands are protected individually. Each command verb performs a
separate function. However, it can perform that same function for many
kinds of system resources. For example, the /START command function
can be performed for communication lines and terminals, making them
available for use. The /START command can" also specify as its object
programs, data bases, logical terminals, and transactions. The command
function, as represented by its associated verb, is what the security
safeguards protect.

The objects of command verb action are represented by keywords in
the command language. These objects are, in general, a class of
resources within the DB/DC system such as data bases, terminals, and

Design and Control of a DB/DC system 2.67

programs. A specified member or all of a class of resources can be
the object of a command verb.

Command functions can be protected against unauthorized use in three
ways: by permitting the command verb to be entered only from certain
logical terminals, by requiring that a password be entered with the
command verb, or both. Some objects of commands can be protected
against unauthorized action by requiring a password to be entered with
the parameter. The protection of the command object is controlled by
assigning a protected attribute to each member of the class of objects
to be protected.

For example, to require a pas$word be entered to alter the status
of logical terminals (LTERM) 111, 222, and 333, one must specify to
the Security Maintenance Program a password for each terminal. If
LTERMs 111, 222, and 333 are the only LTERMs in the system and all are
protected by the same password, then the object keyword is secured
throughout the system. If, however, it is only necessary to protect
LTERM 222, then the LTERM keyword can be used without a password on
LTERMs 111 and 333.

Another way to look at using safeguards to protect the command
language is by individual user profile. Equate passwords to user
sign-on or identification codes. An authorization plan can be developed
that authorizes each user to use, individually, a set of command
functions. That authorization could be localized geographically through
restricting entry of the command verb to a group of logical terminals.

A class profile system could be used. For example, password x
validates the use of four command verbs, YYYY validates three different
command verbs. ZZZZ however is valid not only for the commands
protected by x and YYYY, but also authorizes the holder to enter an
immediate DB/DC system shutdown command from any terminal.

Although all documentation emphasizes the identity and importance
of the master terminal, there are only a few characteristics that make
it unique in the DB/DCsystem. It is the only logical terminal to
which messages about the operational status of the system are
amtomatically routed. It and the System/370 console are the only
terminals through which the DB/DC system can restarted. The control
that the master terminal exercises over the system is made possible
through the IMS/VS command language.

A thorough examination of the commands, the system to be protected,
the requirements of users, and the objectives of your security and
privacy policy will provide guidance in the distribution of authority
to use the command language. Refer to the IMSL!~ gperat2£~~ ~~!~.~n£~
A~~yal for a complete description of the commands and the command
language.

!~~ric~i~ ~~!~y g! lI~~a£1ion ~Qg~§

Through the entry of transaction codes, the terminal operator
iden tifies the destination of the text or data that follows. When one
examines the syntax of input messages, as defined by IMS/VS, it can be
seen that all entries from terminals are classified by means of an
id~ntity code. The precise rules which govern the recognition of
identity codes by IKS/VS vary from device to device~ In general, there
are two levels of recognition. The first level establishes whether
the entered data is a command by reserving the initial character I.
The first character of every input segment is examined for a I. If
one is present, the segment is treated as a command segment. Input
destined to a program or logical terminal must not contain a / as the
first character of any segment. The second, or operational, level

2.68 IMS/VS System/Application Design Guide

verifies that the identity code is known to IMS/VS. If it is known,
then it and the text that follows are classified based upon the
attributes of the identity code. If the code vas defined during system
definition as a transaction code, the message is routed tqthe
application program which is to process it. If the code vas defined
as a logical terminal name, then the message is routed to the physical
terminal to whi~h that logical terminal is attached. It becomes a
message switch transaction.

The possible contents of a message destined for an application
processing program, the actual functions which are performed by that
program, and the content of any output subsequently generated by that
program are unknown to IMS/VS. Because applications may deal with
critical or private matters, safeguarding tools are provided by the
system to prevent unauthorized entry of transaction codes, and hence
unauthorized use of application program functions.

The entry of each transaction code can be limited to anyone or any
group of logical terminals in the system. Depending on the ratio of
secured to unsecured transaction codes, the authorization plan that is
developed can be inclusive or exclusive. To use the Security
Maintenance Program effectively, the operational plan must be inclusive.
That is, you must specify the transaction codes which are to be secured.
There is no provision for specifying those which are not to be secured.
There are, however, alternative views of the plan that can be helpful.
You can look at the transaction codes as being authorized for entry
from a list of logidal terminals. Or, think of each logical terminal
as being authorized to enter a list of transaction codes. Either
viewpoint may be translated as easily into the operational input
statements that describe what you want to do with the Security
Kaint~nance Program. However, the number of input statements can vary
substantially between the two viewpoints. If, for example, you have
one transaction code you vant to authorize from five logical terminals,.
six input statements are required. Conversely, if you specify five
logical terminals and authorize the same transaction code from each,
ten input statements are required.

Passwords can be used instead of, or in addition to, logical
terminals to limit transaction entry. The security provided by
passwords can be specified and viewed in the same manner as that
provided through logical terminals. without appropriate hardware
features on physical_ terminals however, there is exposure to possible
compromise of the passwords.

~!§~laI ~~g§§ !~~ture

I MS/VS does not provide a software feature to blank out or obli tera te
passwords from the terminal device display media after they are
accepted. It does remove passwords from messages prior to recording
them on the log.

Kost hard copy key-driven terminals have a feature which permits
characters to be entered without displaying them. This feature is the
bypass feature. Ordinarily, a terminal with this feature is operated
continuously in display or bypass mode. If passwords are to be used
to support security requirements, this feature is a necessity.

The bypass featurE can be used operationally; that is, by
establishing standards for protection not only of passwords, but also
of command verbs, commands, transaction codes, and text.

Design and Control of a DB/DC System 2.69

Li!!1ing !~~§§ 1Q Data

Through centralized control over the content of Data Base
Definitions, Program Specification Blocks, and the libraries which they
reside, an effective scheme of protection attributes can be assigned
to data. This assignment is made relative to each application program
which has access to the data base. The smallest unit of data which
may be so protected is the segment. The basic actions that can be
a uthori zed are:

• None no access to segment type.

• Read segment type may only be retrieved.

One or more of the following additional actions combined with read
can be authorized:

• Add -- new occurrences of segment type can be inserted.

• Update an existing occurrence of a segment type can be replaced.

• Delete an existing occurrence of a segment type can be deleted.

Although access authorization is declared at the program level, if
necessary, enforcement of the authorization can be made to appear at
the transaction code or individual hierarchical lev~l of a data base.
If only one transaction code is associated with a particular program,
then the access authorization has been promoted to the transaction
level. Through use of passwords or through use of the transaction code
and terminal bypass feature, access authorization can be promoted to
the individual level.

For information about specifying access authorization, refer to "PSB
Generation" in the !l1S/VS !!tiliti.~§ .Ref~1!~~ I1~lBl~!. The control
statements through which data access is authorized are PCB and SENSEG.

Users of the Interactive Query Facility (IQF) feature must name each
PCB associated with a data base, and use this name when entering a
query at the terminal. By having multiple IQF PSBs, and assigning a
unique transaction code or set of transaction codes to each PSB, the
IQF user can restrict the domain of IQF processing to specific subsets
of all the installation's data bases. Each IQF PSB is thus treated as
though it were a different application, and the IMS/VS security
capabilities are easily extended to users of IQF.

VIOLATION CONTROL

As stated above, IMS/VS provides a terminal security arrangement or
the user can create his own with the Security Maintenance Program. The
amount of control the user wants exercised over the security arrangement
can be defined during IMS/VS system definition.

• Password and/or terminal security can be defineG as a system
default; each time IMS/VS is initialized, the security tables are
loaded automatically.

• The master terminal operator can be allowed to negate, or be
prohibited from negating,. the automatic loading of security tables.
System initialization prevents an operator from starting the system
without security if he is not authorized to do so.

2.70 IMS/VS System/Application Design Guide

IMS/VS records'all security violation attempts on the I~S/VS system
log tape. The violations recorded are:

• Input message frcm an unauthorized terminal

• Password omitted when one is required

• Password incorrect for authorization

• Misspelled password

IMS/VS rejects invalid input messages by sending a message to the
terminal sending the message, and logging the violation.

The log tape provides an audit trail to look into possible security
problems. If more immediate action is desired, the user can request
notification to the master terminal at the time of the violation. Since
the number of violations for a large network may be high due to
misspelled passwords, transaction codes, commands, etc., the user can
specify a threshold for notification such that the master terminal is
not notified until the specified number of violations occur without a
valid input from a given terminal. This eliminates or reduces the
number of notifications due simply to operator error, while still
providing evidence of real attempts to avoid security safeguards.

3270s on a switched line can have their hardware IDs verified for
authorization to access IMS/VS by use of the IDLIST macro. For
additional terminal security information concerning 3270 switched
terminals, refer to the IMSL!§ln§lg!!aiion §Yig~.

IMS/VS DC MONITOR

TheIMS/VS DC monitor is a tool for collecting performance data to
investigate specific application designs, data base designs, and
resource allocations. It consists of a monitor module, and a Monitor
Report Print program. When activated, it analyzes and records the
internal activities of the IMS/VS DB/DC system. The monitor report
print program is processed offline to produce reports that summarize
and categorize, at various levels of detail, the information recorded
by the monitor module. The actions required to activate the monitor
module are described in the lH~L!~ QEerato~~ R~fereD&~ ~ngg!. The
monitor report print program is described in the IMS/V~ yti!i!!g§
!§!~~~n£§ ~~al.

The monitor module collects data from IMS/VS DC control blocks during
operation of the online system, with minimum interference to the system,
and records the data on an independent data set. The monitor remains
resident and is activated and deactivated through master terminal
control.

Following are recommendations for use of the IKS/VS DC monitor:

• Collecting data -- The IMS/VS DC monitor enables an IMS/VS DC user
to collect performance data to assist in analyzing an existing
IMS/VS online sys~em. The amount of data collected and the analysis
time to understand the report output suggest short traces during
various time periods. Reports produced from profiles of a time
period conside~ed as normal can be used as a profile and compared
wi th reports produced during a time period characterized by unusual
responses.

Design and Control of a DB/DC System 2.71

• Tuning system -- The IMS/VS DC monitor can be used to quantify the
effect of actual changes to data base structures, program
characteristics, data set placement, pool sizes, number of message
processing regions, transactions, and message region class
scheduling.

• Testing application -- In the final testing of new or revised
applications, the IMS/VS DC monitor can be useful in validating
the internal operation of the programs and data bases. For example,
the programmer thought a specific DL/I call could be satisfied with
a single I/O retrieval, yet the DL/1 call report indicated a large
data base scan as shown by many IWAITs. Investigation of such
items could assist'in determining whether a new or revised
application meets the performance objectives. Data contained in
the reports may also assist in defining the resources required by
an application program.

• Integrating applications The IMS/VS DC monitor can be used to
determine the effects on the IMS/VS production system as new
applications are merged from a test system to the production system.
One of the basic problems in integration of new applications into
an existing system is the requirement of re-tuning options in the
production system, such as data set placement and buffer pool sizes,
as discussed above in the tuning of the system.

• Communicating criteria -- If the above recommendations are
implemented, then data is collected to establish a performance
base, profiles are 'available for the problem periods, the system
is-tuned for the production and test systems, and applications are
tested and merged into the IMS/VS production system with an
understanding of their effects and interactions. Thus, the IMS/VS
DC monitor reports can be 'used as a basis to communicate and define
performance.

Y~i!~ 1~~ d850 ~!~~ STORAGE SY§1~~ l~~~L !Q! DBL~ PRO£~[I!2

IMS/VS supports the IBH 3850 Mass storage System (M5S) through its
normal OS/VS1 and OS/VS2 interface. MSS extends the capacity of 3330
Disk Storage. The uses of HSS with IMS/VS are:

• As a residence device for batch and online data bases

• For the development and testing of new applications

• As the storage media for historical or cutoff versions of data base

• As a centrally controlled location for data (DB/DC and othe-r types)
in a data processing system

Each of the preceding uses requires an understanding of the
characteristics of IMS/VS and !SS that could affect an installation.
This section presents the information needed to understand and take
advantage of these characteristics. Design considerations and
guidelines related to the following topics are described in detail.

• Using MSS in a batch IMS/VS environment.

• Using M5S in an online IHS/VS environment. Three different online
environments, ranging from simple to complex, are described.

• Sharing staging space.

2.12 I!S/VS system/Application Design Guide

• Data base organization and access methods.

• Using the additional capacity of the MSS with IMS/VS.

In this section, MSS is described only as it relates to IMS/VS, even
though the considerations and guidelines generally apply to any DB/DC
system. Since no attempt is made to explain the facilities of MSS and
its operating system support, you should be familiar with the following
publica tions:

• Int~QgY£1iQ~ to th~ ~~ J~2Q ~~§§ ~iQI~q~ ~2te~ ~~~l

• QSLV~ !1s§§ Storage ~Istem .a~ll g.!~.!ling 2.!!ig~

• !~ 38~~ !1~22 ~~g§ ~~§i~m (MS~l R~i.!l£!El~2 Q! operati~

TERMINOLOGY

The terms "stage," "bind," and "cylinderfault" are used in this
section. Stage, bind, and cylinderfault specify how data that is stored
on an MSS volume is to be staged.

~i2g~: Stage specifies that the data is to be staged from mass storage
to a direct-access staging device when the cluster or component is
opened. If it can't be staged at the time the cluster or component is
opened, because of other staging activity, data is staged as a
processing program needs it through page fault.

~!n~: Bind specifies that the data is not only to be staged but also
to be kept on the direct-access staging device until it is closed. If
it can't be staged at open time because of other staging activity and
if there is staging pack space available for the entire data set, data
is staged as a processing program needs it through page fault.

~Ylind~~f2Y.!1: Cylinderfault specifies that the data is not to be
staged when the data set is opened. It will be staged as the processing
program needs it.

As a general rule, KSS can be used in a batch IKS/VS environment in
stage, bind, or cylinderfault mode. In an online environment, it is
recommended that the data base reside on real DASD or that it be staged
with the bind option if transaction throughput and response time are
cri tical.

IMS/VS BATCH ENVIRONMENT

Figure 2-8 shows the use of MSS in an IMS/VS batch environment for
data base residence. A batch environment that includes MSS allows:

• Operational control of an entire system of data bases and files
through KSS.

• An extra dimension of flexibility because processing of large data
bases can be done with fewer staging drives compared to the number
that would be required if real drives were used. In this
environment, it might be more efficient to do some types of
processing at a reduced throughput' rate and save the investment in
additional disk drives.

• The testing of large data base applications can be done using fewer
staging drives than would normally be required in a production
environment; this can be tailored to meet the needs of an
inst allation.

Design and Control of a DB/DC System 2.73

lMS/VS
Batch

Mass Storage Facility

MSS

Fiqure 2-8. MSS in an IMS/VS Batch Environment

The paragraphs that follow describe how MSS can be used to advantage
in an IMS/VS batch environment with certain disk drive saving
opportunities. You may know from experience that you will process only
a fraction of a very large data base. For example, only 10% of an
insurance data base might have policy updates, claims, or billing
activity in the course of a day. If the full data base occupied 10
disk drives, then some number of staging drives equal to or less than
10 might be sufficient to handle the day's activity in cylinderfault
mode. The exact number of staging drives required would depend on data
storage patterns, reuse of staging drive space, the distribution of
data across cylinder pages, and MSS staging algorithms. The MSS
publications referenced earlier contain detailed information on these
factors.

If you know the reference patterns that your applications require,
then possibly only a DL/I data set group has to be staged for
process ing.

Month-end cutoff processing of a data base also lends itself to the
use of MSS with IMS/VS batch. In a non-MSS environment, a month-end
cutoff copy of a data base is normally gotten by copying the data base
to tape. The tape is later restored to disk so month-end reports,
etc., can be written from the month-end copy of the data base. The
MSS allows you to destage a month-end cutoff to MSS cartridges; later
stage the data from the cartridges, possibly to a subset of data base
staging drives; and process. the month-end cutoff data without having
to go through disk to tape and tape to disk dumps and restores.

2.74 IMS/VS System/Application Design Guide

IMS/VS ONLINE (DB/DC) ENVIRONMENT

Just as M55 offers an added dimension of flexibility in an IK5/VS
batch environment, there are added opportunities in an online
environment, but planning is far more critical. An online DB/DC
environment usually includes certain transactions that require fast
response and throughput as well as fast recovery. These transactions
will be referred to as critical transactions.

In the online environment the following assumptions are made:

• Response time and transaction throughput for critical transactions
should be the same whether or not M5S is part of the operational
environment.

• Recovery time in the event of an IM5/VS, 05/V5, or hardware failure
should he the same in an MS5 environment as in a non-M5S environment.

To maintain the response and recovery time criterion required by
your installation and still use K55 effectively in an online IM5/V5
environment requires that you consider the following factors during
planning:

• Logging and restart processing

• Sharing of staging drives

• Sharing of data bases

• Update activity

• Initialization and prestaging

The following contains considerations and guidelines for these
factors in each of three different online environ.ents: (1) IM5/V5
online using bound data or real DASD and no batch applications, (2)
IKS/V50nline bound data using bound data and/or real DA5D with IM5/V5
batch, and (3) 1KS/V5 online using some bound and some unbound data.

Additional factors, data base organization and access methods, apply
equally to all environments and will be described as a separate topic
later in this section.

!KSLn Qnl!.!lSl Usi.ng Bound];!ata gndL2I. Q!~ .!ithQut §~

This is the simplest online environment to plan for. IK5/VS logs
the system activity and runs recovery as necessary using the log tape
much the same as in a non-M55 environment. Because all data is either
mounted and bound on staging volumes or residing on real DA5D, there
is minimal planning necessary for sharing staging DA5D. The sharing
of data bases by multiple Message Processing Programs (MPPs) requires
the same planning as in a non-M5S environment. Figure 2-9 shows this
kind of environment.

Design and Control of a DB/DC System 2.15

IMS/VS
Control

MPP MPP
or or

BMP BMP

Mass Storage Facility

MSS

Figure 2-9. !SS in an IMS/VS Online Environment with Bound Data

Initialization and prestaging must be planned if real DASD is not
used. If the data is to be bound, it is important to ensure that the
data be staged and bound on the staging packs before starting I!S/VS
online operations. If the staging packs are used to hold only the
bound data, and never used to hold other data, then the data is staged
and bound once, and it does not have to be restaged and bound each time
I!S/VS is started. However, if the staging packs are used for other
work (for example, during off-shift operations), the staging and binding
of IMS/VS online data must be scheduled before starting IMS/VS at the
beginning of each work day. The process of staging and binding data
can be a lengthy process requiring careful scheduling to ensure that
it completes prior to starting online I MS/VS opera tions. Also, ther e
should be sufficient staging pack space available to hold all the data
to be staged and bound.

Methods of staging bound data prior to data set OPEN processing are
contained in "How to Use the Additional Capacity of MSS with IMS/VS"
later in this section.

All planning considerations are the same as in the previous
environment if the IMS/VS batch is also using bound data and/or real
DASD, which is unlikely. If IMS/VS batch is cylinderfaulting to the
staging volumes, there could be a delay as IMS/VS batch and online
contend for staging pack space. As a general rule, if IKS/VS batch

2.76 IKS/VS System/Application Design Guide

will cause contention for staging pack space, stage and bind the
critical online data before the batch operations begin.

Although this example uses IMS/VS online and batch, the same
considerations apply to any activity (OS/VS batch, TSO, etc.) running
with an online IMS/VS system. See "Sharing of Staging Space" in this
section for additional information on this topic. Figure 2-10 shows
this kind of environment.

IMS/VS
Control

MSS

Fiqure 2-10.

,MPP
or

BMP

MPP
or

BMP

IMS/VS
Batch

Mass Storage Facility

·MSS in an IKS/VS Online and Batch Environment

Recovery should be the same in this environment as in a non-MSS
environment because IKS/VS online has its own separate logging facility
and data bases are not shared between·online and batch operations.
Operational procedures may differ, however. For example, where batch
backout in a non-MSS environment involves quiescinq activity to a data
base, closing the log tape, and moving the data base and log tape to
a different address space or CPU, the KS5 environment involves quiescing
the activity to the data base, closing the loq tape, demounting the
virtual volume, and remounting the virtual volume for batch backout.
Again~ this procedure varies depending on where batch backout is to be
run: in the same host or in another host of a multihost system.
Destage and restage mayor may not be necessary at batch backout time

Design and Control of a DB/DC System 2.77

depending on the configuration and the virtual unit address (VUA)
specified in the mount order for the mass storage volume at initial
I"S/VS load.

Even though staging packs with their virtual volume data cannot be
physically moved from one staging disk drive to another, as is often
done for batch backout with real DASD, the data can be moved (destaged
and staged to another disk drive) to accomplish the same purpose.

This environment requires considerable planning. Again, the
objective is to work in this environment and for certain critical
transactions to maintain the same response time and throughput as well
as recovery time, in the event of failure as would be experienced in
a non-"SS environment. Figure 2-11 shows this kind of environment.

IMS/VS
Control

MSS

Figure 2-11.

MPP
or

BMP

MPP
or

BMP

IMS/VS
Batch

Mass Storage Facility

Non-IMS
Batch or

TSO

"SS with I8S/VS Online and Batch and Non-IMS/VS Data

The data to be bound should be staged onto the staging packs before
I8S/VS transaction processing begins assuming there will be contention
for the staging packs. Next, data sets or data set groups that will
be referenced should be staged onto staging packs. Also, selected
portions of a data base that will definitely be referenced, if that
can be determined, can be staged onto the staging packs. This might
be accomplished by starting a batch message processing (BMP) program
that issues DL/I calls causing selected data to be staged in
cylinderfault mode. This essentially is prestaging. Prestaging data
to staging packs is somewhat analogous to putting and keeping data in
the data base buffer pool for future reference.

Prestaging through an" I8S/VS application program can be very
effective in a DL/I environment because it allows the user to stage

2.18 I8S/VS System/Application Design Guide

selected portions of the DL/I data base using the standard DL/I
facili ties.

F requen tl y the data bas e reference patterns cannot be determined.
For example, it is almost impossible to determine which customer of an
insurance company will phone to report a theft. Prestaging, in this
case, could be accomplished by entering a simple transaction that does
no more than read the data from the data base using DL/I for the
customer phoning the report. This would cause cylinderfault staging
of policy information about that customer while information for a more
complex transaction is being gathered based on the conversation between
the insurance agent and his customer.

This environment assumes a mix of transactions in the system, some
critical transactions requiring fast response and throughput as well
as fast recovery in the event of failure, and transactions that are
not so critical.

since both the critical and the noncritical transactions share the
same log tape used for emergency restart, and since critical
transactions require a fast restart, it is important that cylinderfaults
do not occur during emergency restart. This can only be guaranteed in
this environment if all data required at restart time is available on
real DASD or staging packs. This means that either there must be enough
staging pack space available so data is never destaged to make room
for other data, or that there is no update activity to data bases
running in cylinderfault mode. Data base updates could cause
cylinderfaulting during emergency restart if the changed data base
records had been destaged to MSS cartridges to make room for other data
on the staging packs and some of the data that had been destaged was
required during restart. Emergency restart of critical transaction
activity would be delayed by cylinderfaulting of noncritical transaction
activity because backout is done serially.

If only BMPs are using online data bases in cylinderfault mode then
specifying NOBMP at emergency restart would eliminate the backout of
BMP updates and the delay to emergency restart caused by
cylinderfaulting.

In addition, batch backout and program isolation dynamic backout
will take longer if cylinderfaulting must occur during backout. Similar
guidelines apply to batch backout and program isolation dynamic backout
as apply to emergency restart with the exception of NOBMP, which applies
only to emergency restart.

The preceding point regarding no update activity for data bases
running in cylinderfault mode may appear restrictive. It is only a
recommended guideline to ensure fast emergency restart. It is also
tunable where the number of emergency restarts or batch backouts, the
number of updates, and the degree to which staging pack space is
overcommitted are the tunable considerations. For example, it may be
satisfactory to allow updates to data bases running in cylinderfault
mode depend~ng on the number of updates per syncpoint or checkpoint,
or if emergency restarts are infrequent.

Data bases that are read to gather data to generate reports are
likely candidates for use of shared, overcommitted staging pack space.
An example here might be month~end accounting reports that are generated
from month-end cutoff versions of a data base.

In this environment, transactions requiring fast response and
throughput should not be scheduled to run in the same message processing
region as transactions that could require cylinderfault staging. The
critical transactions could end up being queued until transactions
requiring a call for data on MSS have completed.

Design and Control of a DB/DC System 2.79

Message class scheduling affects the queuing of transactions in
IKS/VS. Transactions requiring fast response and throughput should be
assigned to a separate class from transactions that could require
cylinderfaulting. The classes should then be assigned to separate
regions when IMS/VS is started.

The MSS staging drive group concept can be used for added tuning in
this environment. Not all data bases have to use the same level of
overcommitment. staging drives can be divided into staging drive groups
so that there may be more contention for staging drive space for very
low priority work and less contention, or even no contention, for higher
priority work. Activity from work outside the IMS/VS online system,
such as batch work, could adversely affect the IMS/VS online system if
all work shared the same staging drive group and the scheduling of work
was not otherwise controlled.

The sharing of data bases has to be well planned in this environment.
Avoid having a transaction that requires fast response use data from
both a data base on a bound volume or real DASD and also from a data
base residing on overcommitted staging packs. Also avoid a logical
relationship between these same two data bases where processing,
especially insert or delete processing, could slow down processing of
the bound or real DASD data base.

Also to be avoided. but less obvious. is a situation with the
following or equivalent characteristics:

• Program A scheduled by transaction A requires fast response.

• Program B scheduled by transaction B does not require fast res~onse.

• Program A uses data base A which is on bound staging packs.

• Program B uses data base B which is on overcommitted staging packs
and also uses data base A.

Figure 2-12 shows this situation. It is possible that a program B
could impact program A's processing and it would depend on the extent
to which program B was holding data from data base A while staging data
base B. and program A required the same data being held by program B.

This may be an unusual situation but it points out that application
scheduling and use of data bases in this environment should be well
planned to avoid less obvious throughput problems. Again. the same
caution regarding doing updates to a data base on overcommitted staging
packs. as described earlier. applies in the above example.

2.80 IKS/VS system/Application Design Guide

IMS/VS
Control

MSS

MPP
Program A

MPP
Program B

Mass Stor~ge F:Jcility

Figure 2- 12. MSS in an IMS/VS Environment Using Shared Data Bases

SHARING OF STAGING SPACE

Closely related to the sharing of a data base is the sharing of
staging space. staging space sharing considerations were partially
described under the second and third environments earlier in this
section. Well planned use of the MSS staging drive groups is a valuable
way to control the amount of staging pack space allotted to various
applications or data bases.

When allocating staging space for IMS/VS, view the entire system as
known to MSS. This could include not only IMS/VS online and batch
systems, but non-IMS batch or TSO, for example. staging pack space
may be known to MSS across multiple CPUs. It is necessary, then, to
consider possible interference to IMS/VS processing from outside of
IMS/VS itself. MSS staging drive groups can be used to help control
unwanted staging from shared staging space. This should be well
planned, because there could be interactions between the IMS/VS and
non-IMS/VS environments. The use of staging drive groups is further
described under the topic "How to Use the Additional Capacity of MSS
with IMS/VS."

DATA BASE ORGANIZATION AND ACCESS METHOD

ISA" data sets can only be accessed in the cylinderfault mode. This
means that the ISAM portion of an I51M/OSA" data base cannot be staged
or bound at OPEN time; the time of the first Dt/I call. Staging of a
cylinder of data takes place only as the result of a "DL/1 call for data
in that cylinder. It then follows that if 15AM/05AM is used, and
cylinderfaulting presents an unwanted delay, some form of prest aging
or, better yet, V51M should be used.

OSAM data sets can only be defined with the stage attribute. Because
OSA" uses EXCPVR, the operation of "S5 with EXCPVR applies to 05AM.

Design a nd Control of a DB/DC System 2.81

The OSAK portion of an ISAM/OSAK data base will be staged at OPEN time
because that is when the data sets using EXCPVR are staged.

The entire extent of an OSAM data set will be staged, even at initial
load t.ime. An exception to this occurs when IKS/VS uses QSAM to write
an OSAM data set as in recovery when the DFSRRCOO PARM is UDR. Under
such a condition there is no staging of the output data set at OPEN
time.

OSAM data sets cannot be bound. Therefore, there are some
implications that should be considered. Even though the data requested
in the first DL/I call will be returned to the application as soon as
the requested page is staged, the entire data set will be scheduled
for staging at the time of the first DL/I call. If you can determine
ahead of time that data from the ISAM/OSAM data set will be required,
it might be advisable to do one of the following: cause staging to
begin shortly after IMS/VS is started by scheduling a simple application
that issues a DL/I call to the 1SAM/OSAM data base, or cause staging
of the OSAM data by running a short IMS/VS batch job ahead of the IMS/VS
job that requires the OSAM data to be staged. The 1MS/VS batch job
would issue a DL/1 call, which would cause OPEN and staging. At the
end of the batch job the data would remain staged. This assumes there
is enough staging pack space available for the OSAM data. It also
assumes other activity in the system does not cause destaging of the
OSAK data befote it is needed. Refer to "Data Reuse" in the
Int£QgY£~iQn i~ ih~ I]~ 38~Q ~~§§ stQ£~~g ~Y§~~m j~~~ manual for
details on the reuse of virtual volume data.

VSAM data bases can have the stage, bind, or cylinderfault staging
attribute. Also, VSAM data can be destaged synchronously or
asynchrononsly, where ISAM/OSAK data bases can only be destaged
a synch rono usl y. .

The following points should be considered in determining whether a
VSAM data base should be destaged at CLOSE time with the delayed
response request. Destaging at normal CLOSE time with the delayed
response request causes synchronous de staging and insures successful
de staging of the updated cylinders before CLOSE is complete. However,
there are conditions under which IMS/VS closes a data base during
on-line processing, for example, if the DMB pool runs out of space, or
if the IDBR command stops the data base. Under such a condition the
IMS/VS control region waits for CLOSE processing to complete before
allowing any other on-line processing to proceed. This temporarily
stops all on-line processing until the destage of updated cylinders
completes if the data base was closed with delayed response. Each
installation has to determine how it wants to close its data bases
depending on the frequency of situations that can close a data base
during on-line operations, the importance of never interrnpting on-line
operations, and the importance of insuring a successful destage of
update cylinders at CLOSE time.

In general, data bases should be VSAM based to provide maximum
flexibility in both staging and destaging. For a very large noncritical
HISAK or H1DAM data base, it might be desirable to define the HIDAM
index cluster or the HISAM index component of the KSDS as bound and
the data portion as cylinderfault. This could be somewhat better than
accessing the entire data base in cylinderfault mode, and it would
require bound disk drive space for just the index portion of a large
da ta base.

The same guideline applies to secondary indexing. It might be
helpful to define the secondary index as a bound data set.

2.82 IMS/VS System/Application Design Guide

HOW TO USE THE ADDITIONAL CAPACITY OF MSS WITH IMS/VS

Since MS5 offers a vast amount of storage beyond what has, in the
past, been used in an IMS/VS system, it is meaningful to ask how that
additional storage should be used. What kind of vork can be put on
IMS/VS given the added capacity of the MSS?

As a general rule, applications requiring a small number of large,
infrequently referenced, preferably read-only data bases, where response
time or batch turnaround time is not critical, can be added to an
existing IM5/VS system to take advantage of the additional capacity of
the MSS.

The applications could be new or they could be old ones that
previously required data to be restored to disk from a save tape before
they could be run.

It is likely that the added applications would run in cylinderfault
mode to avoid an investment in additional disk drive space. It then
follows that the new applications would use new data bases that are
separate from the existing critical IMS/VS online data bases.

The added data bases should be infrequently referenced. Added work
in cylinderfault mode could eventually impact existing work in the "55
system as the staging facilities of the MSS are absorbed. This cannot
be quantified because it depends on the existing load on the IMS/VS
MSS system, but it should be considered.

It is recommended that the new applications be read-only because
changes to a data base require a destage of updated cylinders.
Therefore the impact of additional applications can be minimized by
adding mostly read-only applications to the IMS/VS MS5 system.

An example of a new application is a report writing application
using a small amount of data from a large data base.

The staging and binding of data in an IMS/V5 environment can be
handled "in several ways depending on when the user wishes to experience
a possible delay for staging. As stated earlier, if staging packs are
not used for other work during off-shift operations, then there is no
staging required each day because the data still exists on the staging
packs. Staging at a data set level is determined at data set OPEN time
based on the DEFINE attributes for the data set. Since IM5/VS OPENs
a data set only when required at the first DL/I call, any necessary
data set staging could take place at the first DL/I call. Again, if
the staging disk drives were not used for other work, this would not
caase any delay in processing at the first DL/I call.

If your IMS/V5 installation requires that bound data be available
for critical processing during a relatively short period of time, for
example 8 to 12 hours a day, it might be better or necessary to use
the staging disk drives for other off-shift work. After the off-shift
work has completed, and before IMS/VS critical processing is again
started, it might be advisable to run a short IMS/VS batch job that
OPENs the critical data sets and causes restaging and binding of the
critical data. Then when IMS/VS critical processing is started, there
will not be a delay for staging at the first DL/I call.

Because most installations require IM5/VS to be up for more than
one shift, it is not necessarily restrictive to dedicate bound staging
space for certain critical data bases. This can greatly reduce the
staging time that might otherwise be required if staging space was used
for other work during off-shift operations.

Design and Control of a DB/DC System 2.83

If certain staging drives are to be dedicated to bound staging space
that will not be used by other work during off-shift, they should be
put in a separate staging drive group to ensure that the disk drives
are not inadvertently used when IKS/VS is stopped.

The staging drive groups are set up at MSS Table Create time. IMS/VS
data sets are allocated to the staging drive groups as part of normal
IMS/VS initialization via the UNIT assignment in the DD statements for
the data bases.

This section has described some of the point§ that should be
considered to effectively use MSS with IKS/VS. With proper planning,
the MSS can provide both added storage capacity and flexibility to the
IMS/VS system.

2.84 IMS/VS System/Application Design Guide

This chapter includes considerations for design of both IM~/VS batch
and teleproce8~ing ar~licaticns. Information concerning the data ba8e
interface applies to batch and online applicaticnE. The designer of
a ~eleprocessing a~~licaticn should cover all material in this chapter
prior to designing his application •. The designer cf the batch
application need cnly cover the rna te rial relating to batch applications,
bu~ is encouraged to cover the entire chapter ~ricr to deEign of an
application.

GENERAL CONSIDERATIONS

Design of IMS/VS batch a~plication programs deals with the
environment shown in Figure 3-1. This envircnroent is established
through the IMS/vS system definition utility. Considerations for
establishing this environment can be found in Cha~ter 2 of this manual.

The application program, in conjunction with IMS/VS, runs as an
operating system job in VS1 or VS2. For the individual application
program design, eLlI c~ be looked at as an additicnal access method.
~he logging facility ie a eYEtem function and does not involve the
application program directly. Changes to the data base are
automatically legged. Instead of the standard CS/VS terminology of
SYSIN (input) and SYSOUT (output), TRANSACTION inI;ut and RESPONSE output
respectively are used. This choice of nomenclature is used to encourage
the design of a transac~ion-oriented system.

Application Program Design 3.1

OS/VS

r----------,
I 1.---
I
I APPLICATION II

PROGRAM

I I
I I
I r-L_--, _______ --.J

I

DATA
LANGUAGE/I

DATA
BASE

DATA
LOGGING

TRANSACTION

RESPONSE

Figure 3-1. Batch Application Program ~esign

3.2 IMS/vS SystemlApplication Design Guide

A transaction-oriented system can reduce recovery problems for
program ab~ormal terminations and system failures. A
transactien-oriented systerr is one in Which there is·a definite point
at which each transaction (input) is considered ccrr~lete. This ~eint
must be prior te receiving the next transaction. ~his isolates recovery
problems to a particular transaction.

Design of the application program must be done in ccncert with data
base design. Each influences the other. With geed communica tions
between applica tion desigr. and da ta base design, a more viable system
will be developed. A viatle system is one which acccmmodates change
with rrinirrum modificatien.

Programs that are OS/VS subtasks of an application program called
by IMS/VS must not issue LL/I calls. If they dc, the results ~ill be
unpredictable.

The use of IMS/VS should have little influence on the choice of a
programming language for the application. The standard o~erating system
CALL interface is used for COBeL, PI./I, and Assembler. IMS/VS offers
no special advantage to these languages. However, the basic benefits
attained by using a high level language do apply.

The Program Module Preload function of IMS/VS does offer a potential
performance improvement, if application prograrrs are written te be
serially reusable or reenterable.

When designing an application program it is irr~ortant to determine
if there is a pessibility cf converting the program to a message
processing program to be used in a teleprocessing system. Making this
determination prier to design of the application can save conversion
time and cost.

Figure 3-2 shcws the e~sential difference between the batch and
~eleprocessing ar~licatiens with I~S/VS. In the batch environment,
the application program deals with DL/I for data base input/output and
with OS/VS data rranagement fer external input/output such as SYSIN and
SYSOUTc The same application program is shewn below after being
converted to a teleprccessing a~plication. The basic change is the
replacing of REAL/WRITE or GET/PUT logic ·witt calls to DL/I for external
input (1RAN~CTION) and cut~ut (RESPONSE).

By centralizing the statements in the batch application program
which deal with external input/output, the future ccnversicn to
teleprocessing can be ITade with a great deal more ease.

Applicaticn Program Design 3.3

BATCH

APPLICATION PROGRAM

PROCEDURE

OS/VS EXTERNAL INPUT/OUTPUT

DL/I
DATA BASE
INPUT/OUTPUT

DATA
BASE

TELEPROCESSING

Figure 3-2.

APPLICATION PROGRAM

PROCEDURE

Dl-/I TELEPROCESSING
INPUT/OUTPUT

DLII
DATA BASE
INPUT/OUTPUT

DATA
BASE

Planning Future Conversion to Tele~rccessing

BATCH CHECKPOINT/RESTART CONSIDERATIONS

A general facility for batch checkpoint/restart is provided. It
consists of a DL/I call function for checkpoint (CHKP) and the batch
backout utility program. Eatch checkpoint/restart can be corrFlemented
either by OS/VS checkFoint/restart"or by installation-supplied
checkpoint/restart routines. Installation-SuFplied routines can be
simplified by using the IMS/vS restart call (XRST) and user-area
parameters on the CHKP call.

3.4 IMS/vS System/Application Design Guide

To use batch checkpoint/restart, the a~plica~icn first invokes its
corrpleroentary check~cirt rcutines. If the user wants to issue an OS/VS
checkpoint within a batch cnly region, he must first close all open
data bases, generate a unique checkpcint IL, issue an OS/VS checkpoint
macro, and i~sue tte DL/I call with a matching checkpoint I~ ~his is
required because OS/VS restart does not restore data management storage
in total). If the user wants I~S/VS to issue an CS/VS checkpoint for
him, a fourth parameter, which points to an CS/VS checkpcint reB, must
be specified for the CLiI check~cint call. Upcn ccropleticn of those
routines, and before issuing any other D~/I call, a CL/I checkpoint
call is submitted. Along wi~h the checkpcint call, the a~plicaticn
passes the identification cf its ~reviously completed complementary
checkpointc DLiI ensures that all ~ending data base activity is
physically recorded. Then the supplied checkpoint identification is
recorded on the log tape and supplied to the cFerator in a WTO message.
Control is returned to the a~plication program, which can then proceed
to execute, submitting other DL/I calls as necessary.

To restart at a selected check~oint, tte batch backout utility is
used to restore the data bases to their condition at the time of the
checkpoint. Then the batch job is restarted at the same checkpoint.

ES~ABLISHING USEFUL CONVE~~IONS

Designing applications for use with IMS/VS affcrds an cF~ortunity
for establishing useful conventions and procedures. AdoFting
conventions which prove useful in application design and implementation
can reduce cos~s and development cycle tirre.

Each program that is designed and irrplemented rrust be tested.
Testing the a~plicaticn requires a test data base. A test data base
requir!?s a data base description generation, a Frcgram specification
block generation, and a data base load program. Since a number of
application programs will be dealing with the sawe data structure, a
central agency for generating and maintaining test data bases should
e xi st.

It is important to establish naming conventions for data bases, data
segments, fields, PSEs, and programs. A requirerrent in the IMS/VS
DB/DC system is that the narre of the PSB and the application program
must be the same. Adopting this convention in the batch system can
reduce conversicn time.

As the system increases in sco~e through time there will be multiple
data bases, each with a nurrber of different segment types. One narning
convpntion which can be helpful is to adopt a twc-character code as
the first two characters fer a data base name. This two-character code
can then be used as a prefix for all segment r.arres within the data
base& This ensures that nc two segments will have the same name,
eliminating communications problems.

As the systerr becerres rrcre com~lex with the relationship of ~rograms,
PSBs, data bases, segrrent types, and fields, a dictionary will be
necessary. Questions such as, "wtat data segments and fields does this
program update?" or "~hich Frcgrams update this segment?" could be
included in a data dictionary. Maintenance and centrol cf such a
dictionary should be the res~onsibility of the Systems Operation
personnel responsible for all system control.

Applicaticn Prograrr: Design 3.5

Extensive use of COFY or INCLUCE can be rrade for segment I/O area
definit.ion, PCB rrasks, and Segment Search Arguments (SSAs) within an
application program. The use of COpy or INCLUDE in conjuncticn with
a data dictionary can reduce maintenance disruptions to a minimum.

Figure 3-3 shows an a~Flicaticn program that is making use of
standard operating system data sets and DL/I data bases. DL/I makes
use of standard OS/VS data management facilities and provides a special
access method called OSAM (OVerflow sequential Access Method).

<==>
DATA ..
FILES -

........ _/

Figure 3- 3.

oS/VS
~--;, -

-------------- DATA
DATA MANAGEMENT ..

~ BASES

l......-...+ APPLICATION
PROGRAM

~-
DATA

f'4--LANGUAGE/I

Applicaticn Program Using OS/VS Data Files and DL/I
Data Base

A parallel can be drawn between operating system data management
input/output and DLII input/output. Figure 3-4 shows an application
prograrr making u~e ef the READ/WRITE logic of COECI, which in turn
makes use of a file description block. The sarre ~regram is also reading
and writing a data base through DI/I. The tI/I interface makes use of
the standard OS/VS CALL facility. The centrel blcck for DL/I that
replaces the file de~crirticn of the operating system is called a
program communication block (PCB). Just as a file descriFtion block
is used for each file that is accessed by a program, each logical data
structure that is accessed requires a Frograrr ccrrrrunicatien block. The
I~~LY~ ~£li£atjQn ~QgrEmming B~f~~~n~~ MaDYEl provides a discussion
of logical data structures and their relaticn tc cata bases.

A unique characteri~tic cf the application program interface with
DL/I is that all inforrraticr. passed across the interface is described
symbolically. There is nothing in the interface definiticn which
relates to a specific access method or physical storage organization.

3.6 IMS/vS systerr/APFlicaticn Design Guide

FILE
OESCR.

~--:> -

DATA
FILE

......... .-' -

Figur~ 3- 4.

READ CALL DL/I
PROGRAM

APPLICATION COMMUNI·
CATION PROGRAM

CALL DL/I WRITE BLOCK

-'-
~ ::> -

DATA
BASE

'----"

Application Program Using CCECL FE~LlWRITE Logic and
File I:escription

D~tails of C~LLs to DL/I can be found in the IMS/Y~ 8~Q!i£~tiQU
E~Qg~EEming Bgf~rell£§ M~n~~!.

Traditionally, applicatien I=rograms have been designed to obtain an
entire record from a file and then deal with crly Eelected I=orticns cf
the reccrd for reference or update. The application program was record
orientedc with eLI I, the application ~rograrr is designed to obtain
only those porticnE of the record necessary to perform the required
procedure. I/O is on a segment basis. The segment can ccntain one or
more fields of inforrratien.

The fact that I/O is on a segment basis should have some influence
on the design of the application, as well as cn the design of the data
base. Once a segment is retrieved ~ith a Get Hold type call, the next
call using the sam~ data base PCE can be a re~lacE or delete call. If
an intervening call is made, it would be necessary to do another Get
Hold type call to update the segment. One way tc avcid this is to use
multiple data base PCBs for the same data base. This allows multiple
positions, as well as multiple segments, to be in HOLD status at one
+: imec

Application ~rograrrroers are sometimes faced with a decision
concerning the use of DL/I functicn codes and seg~ent search arguments.
A function code is a fcur-character code ~hich is supplied to I:L/I by
the calling application program to specify the in~ut/output function
to be performed. SSAs (segment Eearch arguments) are used to give
specific informaticn about the path to be followed in satisfying a
call. SSAs are qualified or unqualified. An unqualified SSA specifies
only the name of the desired segment. A qualified S~ specifies, in
addi~ion to the segment name, a field name within the segment, a
rela~ion operator, and a co~parative value.

For segment insert, delete, and replace, ttere is only one code for
each specific functicn tc be performed. For the segment retrieval
function, however, there is a family of functicn cedes: GE~ UNIQUE
(GU), GET HOLD ~NIQUE (GHU), GET NEXT (GN), GFr HCLt NEXT (GHN), GET
NEXT WITHIN PARENT (GNP), and GET HOLD NEXT WITHIN PARENT (GHNP). Each
of these call functicns ~rcvides for a variation in the method of
retrieving a segrrent, deI=ending on the existing position in the data

Application Frogram I:esign 3.7

base and the segment qualification. There are times when more than
one of these calls will accomplish the same tting.

When faced with a choice of GU, GN, or GNP with or without the HOLD
option, there are a number cf considerations. In addition ~o choosing
a function code, the question of whether or nct eegroent eearch arguments
(SSAs) should be provided must be answered. If the SSAs are provided,
the question of qualified or unqualified must be answered.

Generally speaking, the GO call is used to retrieve a e~ecific
segment or to obtain a s~ecificposition within a data base. The GN
or GNP only moves forward in the data base, exce~t when 'the F coromand
code is used. Once a logical fosition is established within a data
base, the GU or the GN and GNP, used in conjur.cticn with the F command
code, are the only calls ~hich can establish a position at some earlier
logical point in the data base.

There is no rreasurable difference between a GU, GN, or GNP call, if
each has fully qualified SSAs and no logical position exists within
the data base. If a logical position exists ar.d ncvement ie forward,
a GN or GNP function call may be more efficient. .An additional
difficul~y in making a choice of GU function calls comes when there is
insufficient knowledge to ~rcvide complete qualification.

Normally, a GU call requires more time to execute than a GN or GNP
call statement.

The implicaticns of froviding unqualified segment search arguments
can be seen in Figure 3-5. 7he calIon the left has an unqualified
segment search argument at level two for B. As a result, DIll searches
through all segment Be under Segment A with key of 6. All Segment cs
are searched before finding that ~he call cannot be satisfied. The
calIon the right is the eane, except that the segment search argument
for B is qualified at level two. When DL/l encounters the E with a
key of 4, the search ends. At this point, DL/l realizes that the call
cannot be satisfied.

3.8 lMS/VS System/A~flication Design Guide

I
I

8
B --,

4
1 ~ /
~'/

/,:y
~'/'

//'
//

/,/
/ I
I

6
C 1~

~
5

A

6

D

2

GU A (KEYA=6)
B
C (KEYC=4)

Figure 3-5. Qualified Segment Search Argumer.ts

RELATIONSHIP BE~~EEN DL/I CALLS AND FHYSICAL I/C CFERATICNS

GU A (KEYA=6)
B (KEYB=3)
C (KEYC=4)

Although DL/I calls issued by application ~rc9rams are independent
of the ~hysical stcrage techniques used to store and access data, it
is important for the reader to understand tr.e physical I/O operations
performed by IMS/VS. ~he use of any DL/I call mayor may not require
physical I/O operations. If the CL/I call can be satisfied from
inforroation in the data base buffer pool, no physical I/O operations
are required. When this is not the case, the actual physical I/O
operaticns performed de~end u~on the following:

• The DL/I call issued

• The physical data base access method and organization

• The current position in the data base known by the DL/I control
blocks for this application's use of the data base

• Infcrrration in the data base cutfer pool

The following tables should be of assistance in understanding the
physical I/O operation which may be ~erforrred in satisfying GET UNIQUE
(GU) or GET NEX~ (GN) calls.

Application Program Design 3.9

IMS/VS DBIDC CC~TFC~ FRCGFAM

r-----~--,
•
• DL/I
•
• CAI.L
•

•
• DATA EASE ACCESS METHOD

•
• .---.

•
•

HISAM EI:AM • HIDAM • .---------------------------.
• FUNcrION •

•
•
•
•

• INDEX • HIDAM •
• • • • Data Ease • rata Base

.--.
• • • • • •
• • VSAM-Get • VSAM-Get • VSAM-Get .VSAM-Get :Cirect.
• • Direct • I:irect • Dir€c~ • •
• GU • or BISAM • or OSAM • or BISAM .or OS AM •
• • or os AM • Read • Read .Read •
• • Read • • or OSAM • •
• • • • Read • • .--.
• • • • • •
• • VSAM-Get • VS].\.M-Get • VSAM-Get .VSAM-Get Direct.
• • Direct • Direct • Direct • •
• GN • or EISAM • or OSAM • or BISAM .cr o SAM •
• • or o SAM • Read • Read .Read •
• • Read • • or CSAM • •
• • • • Read • • L--J

3 .1 0 IMS/VS SyetemlAFplication Design Guide

IMS/VS DB BATCH PROCESSING

r-------------~--,
• •

• DATA EASE ACCESS METHOD
•
• • DL/I

• .---.
• CALL
•

•
•

• FUNcrION •
• •

HIS AM •
•
•
•

EDAM • HIDAM •
.---------------------------.
• INDEX • HIDAM
• Data Base • rata Ease

•
•

.--.
• • • • • •
• • VSAM-Get- • VSAM-Get • VSAM-Get • VSAM-Get •
• • Skip seq • rirect • Skip Seq • Direct •
• GU • or QISAM • or OSAM • or QISAM • or OS AM •
• • SetL & • Read • SetL & • Fead •
• • Get • • Get • •
• • - - - - - • • - - - - - • •
• • VSAM-Get- • • VSAM-Get- • •
• • Direct • • Direct • •
• • or • • or • •
• • EISAM • • BISAM • •
• • Read • • • Read • • •
• • • • • • .--.
• • VSAM-Get - • VS~.M-Get • VSAM-Get- • VSAM-GET •
• • Ski~ seq • Direct • Skip Seq • Direct •
• GN • or QISAM • or OSAM • or QISAM • or OS AM •
• • Get, OS AM • Fead • SetL & • Read •
• • Read • • Get • •
• . - - - -. .- - - -. •
• • VSAM-GET • • VSAM-GE'I • •
• • Direct • • Direct • •
• • or • • or • •
• • BISAM • • BISAM • •
• • Read • • • Read * • •
• • • • • • L---_____ ~
* BISAM read or VSAM Get rirect is used if twc cr rrcre data base PCBs

are defined in an a~J;licaticn I;rogram"s PSB for one physical data
base. Randcm or direct access operation is assumed. QISAM setL/Get
or VSAM Skip Sequential is used if one data base PCB ~er ~hysical
data ba~e is ueed.

It is ~uggested ~hat, where J;ossible, the GET NEXT call, with or
without SSAs, be used in preference to the GE'I UNIQUE call function
for segment retrieval. 'Ihi~ results in more efficient operation.
Remember, however, that the GET NEXT call functicr. can only be used to
progress forward in a data ~tructure, and across data structures in a
data base.

PERFORMANCE CONSIDERATIONS

During execution of the batch applicaticn ~rogram, statistics are
accuITulated by DL/I ccncerning reading, writing, and buffering activity.
This information can be utilized to tune the applicaticn for higher
performance. Details fer obtaining these statistics are in the 1M§LY§
§Y§~~m ~Qg~mmiug B~t~I~n£~ MaDY~l·

Application Program Design 3. 11

The programming language PL/I has the ability tc allocate storage
for variables, statically at com~ile time, or dyr.amically at execution
timec It is suggested that if a tatch or rressage ~rograrr is ~ritten
in PL/I, the S~AT.IC attribute be used in the declaration of the
variables (except the peEs) so that they do nct default tc the AUTOMATIC
at~ribute. The AUTO~ATIC attribute allocates the storage dynamically.
STATIC declaration speeds up the loading and execu~ion of a PL/I ~rogram
in an IMS/VS address s~ace. I nc rea sed pe rf ormance is 0 btained becau se
as GE'IMAIN and FREEMAIN c{:erations required for storage of variables
are eliminated at execution time.

TELEPROCESSING INPUT/OUTPUT INTERFACE

Design of a TP (teleprccessing) application encompasses th~ batch
application program design as well. There is little difference between
the batch ~rograrr and the teleprocessing program ~hen using IMS/VS.

Figure 3-6 shews the environment in which the TF application
functions. This shows CL/I as the interface be~ween tele~rccessing
terminals as well as data bases. ~e application program in a TP
environment deals exclusively with DL/I for in~ut and out~ut for
terminals as well as data bases.

3.12 IMS/VS Systerr/A~plication Cesign Guide

Figure 3-6.

I MSNS
CONTROL

DATA
COMMUNI
CATIONS

OSNS

r----l
l APPLICATION I,
I PROGRAM , ,
I I
I I
I I
I I
: I L_, __ .J

___ .J

r----l
I I
I APPLICATION I

PROGRAM
I I
I I
I I
I I
J I
: I L_-. __ ..J

I ___ J

Tele~rece~sing Ap~lication Program Design

The three areas shown under the operating systerr each represent
operating systerr jobs. Each is under a different storage protection
key. The job on the left consists of the IMS/VS centrol ~rogram, which
is respcnsible fer all ~hysical input/output for IMS/VS applications.
The control program is also responsible fer rraintaining legical
inforrraticn for restart and reccvery purposes. ~t.e two a~plication
programs ~hown are each contained in a message processing region. Each
message processing region is an operating system job. This IMS/VS
control region is res~ensible fer causing the appropriate application
program to be loaded for processing.

with IMS/VS, the ir.terface to data bases is ur.changed when going
from a batch applicatien tc a TP application. In addition, the same
interface used for data bases is used for input and output te terminals.

Applicaticn Program Design 3.13

The applicaticn prcgrarr deals with logical terminals. These are
control blocks that IMS/VS associates with physical terminals. Thus
the application programmer generally does nct ccncern hirrself ~ith the
physical at~ributes cfthe terminal w~th which he is dealing. Figure
3-7 shows an application program's view of the terrrinal.

The control block with which the applicaticn ~rcgraro deals is the
TP PCB (teleprocessing progIam communication block). There are two
types of TF PCBs -- the I/O PCB and alternate PCBs. An I/O PCB is
always provided by IMS/vS tc an application program that executes in
a TP environment. Alternate PCBs are optional, and are created as part
of the FSB (Program specification Block). To obtain an input message
and reply to i~, the application program must reference the I/O PCB.
To send a reply to a terminal other than the terrrir.al that orginated
the input message, the prcglam references an alternate PCE. The section
named "Output to Al ternat € ~est inations" contains a further description
of alternate PCBs. Figure 3-8 shows a DB FCE (data base program
communication block) in addition to the TP PCB. ~he data base is viewed
as a logical structure a nd the te rminal is viewed as a logical terminal.

Figure 3-1.

APPLICATION PROGRAM

B----~ MASK ~

I
I ,
\

/
I

\ , ,

Application Program's View of the ~erminal

3. 14 IMS/vS System/Application Design Guide

APPLICATION PROGRAM

'-1--'-~
D ____ ~

I
I
I
\

/

\ ,
"
/

/
I

I
I
\
\
\
\ ,

Figure 3-8. r:E and 'IP PCBs

'-

LOGICAL
DATABASE
STRUCTURE

Information received frcrr or sent to a terminal is called a message.
A message is comprised of one or more segments. Figure 3-9 shows the
format of a message segment. The ~ field specifies the length of the
segment. If line addressing is being used, field Z is used for screen
control when sending output to a 2260 or 2265 r:isplay station. ~he Z
field is followed by the message text. This is the inforwatien input
at the terminal. Belew the segment format are shown two examples of
input. -- one with a password and the other without. Notice that the
password has been eliminated from the text prier tc the application
program ~eceiving it.

r--------------------------------------,
1 ~ I z t TEXT 1
L--------------------------------------~

I I I
I' 1--> Message segrrent u{: to 130 characters
I I
, 1--> Reserved for D~/I (halfwcrd binary)
I
1--> Segment length in bytes including L, Z, and TEXT

(halfword binary)

Terminal input segment
with password: TRANS (FASSWORL) THIS IS THE SEGMEN~ TEXT

Received by applicaticn:

Te nninal out.put segment
witheut passwcrd:

Received by applica ticn:

TRANS THIS IS THE SEGMENT TEXT

TRANS ~HIS IS 'IHE SEGMEN'I ~EXT

TRANS THIS IS 'IEE SEGMENT '!EX'!

Figure 3-9. Message Segment Format

Applicaticn Prograrr Design 3. 15

Calls for infut wessage segments are like calls for data base record
segments, except that no segment search arguments are required. The
get unique call is used tc cbtain the first segment of each message
and the get next call is used to obtain subsequent segments. Figure
3-10 shows the format cf the input call. The three parameters shown
being passed to tL/I are the function code, the I/C PCE address, and
the address of an input area. Message A, as sbcwr., consists of three
segments, while Message B ccnsists of two segments.

ENTER LINKAGE. COMMENT ONI. Y
CALL 'CBLTDLI' USING IFUN, LTPCE, IMSG-IO-AREA.
ENTER COBOL. COMMENT ONI. Y

MESSAGE A

r--------------------------------------, 1 FIRST SEGMENT 1 (---------GET UNIQUE
1--------------------------------------1 1 SECONt SEGMENT 1 (---------GET NEXT
1--------------------------------------1
I THIRt SEGMENT 1 (---------GET NEXT
L--------------------------------------~

MESSAGE B

r--------------------------------------,
I FIRST SEGMENT 1 1 <---------GET UNIQUE
1--------------------------------------1 1 SECaNt SEGMENT 2 I <---------GE.T NEXT
L--------------------------------------~

Figure 3- 10. InJ::ut Call Fcrma t

3.16 IMS/VS System/Application Design Guide

Sending output to a logical terminal is like ir.serting new ~egments
to a data base. As with the in~ut call, no segment search arguments
ar~ required. Figure 3-11 shows a three-segment neesage being built.
The parameters ~assed in the call to DL/I represent the function code,
TP PCB, output area, and message format narr.e. The message fermat name
is ignored en syst~ms without the Message Fcrrrat Service. Fermat ef
the output message is the same as that of the input message. The
application programmer must supply the character count.

Message X

r------------------------------,
I I I FIRST SEGMENT 1
I I
1------------------------------1
I I 1 SECOND SEGMENT 1
I I
1------------------------------1
I I
I THIRD SEGMENT I
I I
L------------------------------J

Figure 3-11. Three-segment Message

OUTPUT TO ALTERNATE BESTINATIONS

CALL ·CBL~DLI· USING OFUN, TPPCB,
CMSG-IC-AFEA, MSG-FMT.

CALL 'CBL~DLI' USING OFUN, TPPCB,
OMSG-IC-AFEA.

CALL 'CBL~DLI' USING OFUN, ~PPCB,
CMSG-IO-AFEA.

In addition te sending cut~ut back to the terminal that generated
the input, the application program can send out~ut to additior.al
destinations. Output can be sent to other logical terminals or to
other programs. The mechanism for sending to these alternate
destinaticns is the alternate PCB, as shown in Figure 3-12. When
sending output to another program, the receiving ~rogram can be a
message processing prcgra~ or a batch message precessing ~rogram. The
batch message precessing prcgram, in addition to making use of online
data bases and message queues, can utilize operating system data
management facilities. Uee of batch message processing programs is
discussed later in this chapter.

Applicaticn Prograrr Design 3.17

APPLICATION PROGRAM

r- - -.- - ---....
I I
I MASK I
I I

1/0
PCB

L ___ .L __ __ _

r- --r---..----......,
I I
I MASK I

ALT.
TERMINAL

PCB I I L ___ ~ __ ___ _

r---"--
I I ALT.

I
MASK I 'PROGRAM

I PCB L __ --' ___ ~ __ ---'

I ,
\

/
I

\
\ ,
/

I
I ,
\
\

"
/

I

(I PROGRAM X I
\
\ ,

Figure 3 -12. output to Alternate Destinations

The modifiable PCE and change call have been ~rcvided for those
users who would other~ise require a prohibitively high number of
alternate PCBs to allow for all possible destinaticns. This ~ould,
for exarrple, be those 1050 or 2780 users with a requirement for an
alternate PCB for each corrponent assigned to the terminal represented
by the I/O PCE. witbout this function these users would require as
many as fcur alternate PCBs per terminal defined in the system. By
providing a naming convention withi~ the IMS/VS system to allow the
applicaticn programmer tc identify a group of logical terminals by I/O
PCB name, this requirement could te reduced to fcur rrodifiable alternate
PCBs or less.

For example: If NAME is found to be the I/O peE logical terminal
name, N~1ECP is the logical terminal assigned tc the card ~unch, NAMEFRT
is the ~rinter, etc. ~ith this ccnvention the user could add the suffix
CP to the I/O PCE name to cause output to go to the card punch
associated with the physical terminal that entered the message, PRT
would allow the output to go to· the printer, etc. This requires that

3.18 IMS/vS System/Application Design Guide

the naming convention be estarlished by systerr definition and maintained
by instructing tte master terrrinal operator to reassign component LTERMs
by groups, so that all the components are always associated with the
same physical terminal.

This function could also be used by any application that, depending
on +,he processing involvEd, requires one of rrany ~cssible output
destinaticns.

The user should define one modifiable FCE per possible destination
per transaction, as the destination can be set only cnce ~er message
without use of tte purge call, which is not recommended. This means
simply that the destination cannot be changec once a message segment
has been inserted tc the PCB until a get unique to the I/O PCE is
i ssued c

Norrral use of the functicn would therefore be:

GU I/O PCB
CHNG Modifiable alternate PCB
ISFT Modifiable alternate FCB
GU I/O PCE
CHNG Mcdifiable alternate FeB
etc.

An alternate FCE can be used to respond te terrrinals in response
mode, cenversaticnal roode, er exclusive mode, if the PCE is so defined
on the alternate PCE statement. Use of this res~cnse alternate PCB
allows the applicaticn program to send output to a logical terminal
tha t did not originat e the input message, wtile still sa tisfying the
requirerr~nts of these operating modes. This response alternate PCE is
only valid for naming a logical terminal.

IMS/VS can also be directed to verify that the logical terminal
named in the res~cnse alternate PCB is assigned to the same physical
terminal as the logical terminal that originated tte input message.
This verificaticn is required for alternate response PCBs used h¥
conversational programs and response mode transactions. Verification
is not needed if alternate response PCBs are used tc send messages to
output-cnly devices that are in exclusive mode. Additional information
on response alternate PCEs is found in lMS/Y~ ~QQ!icatiQn R~Q9~IDIDing
B~i~.§n£.§ Mruill£!· .

CCNVEFTING FROM EA'I'CH 'IO 'IEIEFRCCESSING

Conversion from batch to online with IMS/VS can be a sim~le process.
Figure 3-13 shows a batch a~~licaticn program which deals with DL/I
data bases. The procedural ~ortion of the application program differs
little b~twe~n batch and TP. The TIL/I data base I/O calls need not be
altered at all. 'Ihe area cf conversion will be that portion which
deals with external input (SYSIN) and output (SYSOU'I). 'The TRANSACTICN
and FESPONSE in the ap~licaticn program shown represent the primary
input and output. The REA[/WRITE or GET/PU'I in the batch system are
replaced by DL/I calls fer in~ut and output for teleprocessing. Instead
of the input corning in from SYSIN, it comes frorr a logical terminal.
output, instead cf being written to SYSOU'I, is written to a logical
terminal. It can be seen that use of DL/I for transactions and
responses as well as data base I/O, makes DL/I the single I/O interface
with which the a~~licaticn ~rogram deals.

Applicaticn Prograrr Design 3. 19

/
I
I

CONVERTING I
TO TELE- ,

PROCESSING I ,
\
\

',{

APPLICATION PROGRAM r-----------..,
: PROCEDURE :

I READ I
I OSNS

I
I
I

EXTERNAL INPUT/OUTPUT WRITE

DL/I
DATABASE

INPUT /OUTPUT

L __________ _

DL/I
TELEPROCESSING CALL DL/I r---i~

INPUT /OUTPUT

Figure 3-13. Ccnverting from Batch to Teleproce8sing

TELEPROCESSING DEVICE INDEPENDENT FROGRAM~ING

TRANSACTION

RESPONSE

DATA
BASE

If a variety of devices are to be used on an I~S/VS teleprccessing
system, scme consideraticr. shculd be given to designing a~~lication
programs in such a way that input is processed properly regardless of
~he physical terminal type from which it is received. Fer example,
input might be received frcm either a 2740 or a 3270. The maximum
physical line length for a 2740 is 130 characters, and one line of
inpu~ is handled as one rre~sage segment. For a 3270, On the ether
hand, the user defines the structure and length of a message segment.

If I/O formats are to be consistent between devices with different
length I/O characteristics, design must be aiwed toward the limiting
device. 'For exarr~le, a 3270 can only accommodate 80 characters on each
line, while the 2740 can handle 130. A design for a 130-character line
would net operate identically with the 2740 and the 3270. Another
approach is to have the application program written so that it can
determine the class of device with which it is dealing. 'Ihis can be
accomplished threugh the use of naming conventions. For example, the
first character of each logical terminal associated with an 80 character
device could begin with the letter V.

The applicaticn prcgrarr has access to this name at the time the
message is acquired.

DEVICE CLASS CONTROL CONSIrERATIONS

Control characters for ccntrol of output devices are the
responsibility of the application programmer. The 2260, 2265, and the
2265 component of the 2770 system makes use of the Z field in the
message format shown earlier, in conjunction with the line addressing
feature of' the 2260/2265 and the paging feature of IMS/VS. On a 2980
General Banking 'Ierrrinal Medel 1 or Model 4, the Z field of the message
format is used to direct output message segments tc a passbook; on a
2980 Model 2 terrrinal, this field is used to require the presence of

3.20 IMS/VS Sy~terr/Application Design Guide

the audi~or's key, in order to receive an output message segment.
Switched devices (except 3270) also make use of tte Z field in the
message ferrrat shewn earlier. This is used by the application program
~o request that the line be disconnected after tte present message is
sent. This field is igncred by communications control if the output
is physically sent to a device without this capability.

carriage return characters, or new line syrrbels, are errbedded i~
~he ~ext portion of the rreesage by the application programmer. If
output is going to a 2770 printer component, 2780, cr local printer
(SYSOUT) device, the first two characters of the message can be carriage
control characters. These are also the respensibility of the
applicatien prcgrarrrrer. .

Vocabulary drum address cha racters may be the text portion (or part
thereof) of the message going to a 7770-3 line. These are also the
responsibility cf the applicaticn programmer.

Under speci al conditions, it may be de sirable to terminate an output
message at a specific pOint. The DL/I purge call with TP PCB address
can be used to accomplish this function. Figure 3-14 shows two messages
to the destination being built.

The purge call releases the output message segroents fer precessing
without wait~ng for the application program to signify normal c~mpletion
(by a get unique of the next transaction er ncrrral terminaticn) of the
current transaction.

ENTER LINKAGE. COMMENT ONLY
CALL 'CBLTDLI' USING PUFG, TPPCB.
ENTER COBOL. COMMENT ONLY

Message A (1)

r--------------------------------------,
I FIRS~ SEGMENT I <---------INSERT
1--------------------------------------1 1 SECOND SEGMENT 1 <---------INSERT
1--------------------------------------1 1 THIRD SEGMENT 1 <---------INSERT
L--------------------------------------J

<---------PURGE

Message A (2)

r--------------------------------------,
1 FIRST (FOtRTH) SEGMENT I < --------- INSERT
1--------------------------------------1
1 SECOND (FIFTH) SEGMENT I <---------INSERI
1--------------------------------------1
1 THIRD (S IXTH) SEGMENT , <---------INSER I
L--------------------------------------J

<---------GET UNIQUE er program
termination

Figure 3- 14. Six-segment Message Separated into Two Three-Segment
Messages by Use of the Purge Call

Application Program Cesign 3.21

UTILIZATION OF SYSOUT rEVICES

The use of support provided for SYSOUT devices (~rinters, tape, or
DASD) allows a wide range cf a~~lications, including:

• Local terminal sirrulaticn using a card reader and printer.

• High volume output, such as re~orts using either a printer or tape
volume.

• In~ermediate out~ut tc be used by a non-IMS/VS application program
using either ta~e cr disk volumes.

since record formats, logical record lengths, and block sizes are
user-defined, a SYSOUT data set can have a variety cf different
attributes.

By using the spool SYSOLT option, a local printer can be simulated
without dedicating the device to the IMS/VS systerr.

SYSIN data strearos can be a ssigned to a local card reader line,
providing a means by which nonconversational teleprocessing ap~lication
prograrrs can be tested. When such an assignment is made, a program
can be tested with data entered through SYSIN and cutput ~roduced using
any of the optional type~ of SYSCUT support available. Only one file
of data can be entered per line. Any logical errcrs detected in
processing the data strearr (for example, invalid transaction codes)
are ignored by IMS/VS. Care must be taken to avcid undesirable results
when this type cf errcr cccurs in the first segment of a multisegment
transaction, since all following segments are ~rocessed a s new message s.

w.hen SYSIN data streams are used by IMS/VS, no logging of position
occurs while me~sage~ are being processed. Consequently, only a cold
start of IMS/VS operation should te performed after using SYSIN in~ut
stream~, or du~licate rressage processing may occur.

CONVERSATIONAL PROCESSING

Conversational processing is an optional IMS/VS feature available
to users of the data communications facility. It allows a user's
application program to retain infcrmation acquired through mUltiple
interchanges with a terminal, even though the program leaves the message
region between interchanges.

If conversational processing is to be used, it must be considered
during system definition. Transactions that will invoke a
conversational program must be identified at this time. The user must
also describe the number and size of the SPAs (scratchpad areas) to be
allocated, either in main storage or on a direct access device. An
SPA is used to contain the information to be retained during
conversational interchanges.

Figure 3-15 shows a simple conversational process. When IMS/VS
receives a conversational transaction it assigns an SPA tc the input
terminal and schedules the associated application program.

3.22 IMS/VS System/Application Design Guide

(0 o

.------..,
I SCRATCH I

PAD I L _____ .J

Figure 3-15. Conversational Program

When the pro"gram executes and issues its first GU, it receives the
SPAe The first eegreent cf the message input from the terminal is
ob~ained by a GN call. After processing the segment, the ~rog~m must
issue an ISRT call to return the SPA to IMS/VS. IMS/VS retains the
scratchpad either in main storage or on disk until needed. 'Ihe program
then rrust use ISRT to send an output message to the terminal in
conversation.

A response to the terminal in conversaticn is required to allow the
conv,=rsation to continue. 'Ihe conversational transaction need only be
en~ered to initiate the conversation; during subsequent interchanges
IMS/VS considers all in~ut from that terminal to be a part of the
conversation.

IMS/VS allows more than cne ~rogram to partici~ate in a ccnversation.
One conversational ~rograrr ~asses control to another, either by changing
the transaction code in the SPA to another conversational transaction,
or by inserting the SPA te an alternate PCE identifying the program to
take control of the conversation.

When a conversation is ~rocess€d to its nermal cempletion, it is
terminated by the ap~licaticn ~rogram. The program places blanks in
the transaction code in the SPA before returning it through the ISRT
calle The program can alse ~ut the code of a nonconversational
transaction in the SPA; the conversation then rerrains active until the
next input is received from the terminal. IMS/VS routes this input to
the nonconversational transaction, thus terminatir.g the ccnversation.

IMS/VS terminal commands are valid during a cenversaticn. Commands
are provided, in fact, tc allow the operator to temporarily suspend a
conversation in progress (/EOLD command) and to resume it at a later
time (/RELEASE cerr-mand). 'Ihe /EXIT command is available for the
operator to terminate the conversation.

Application Program resign 3.23

o

Some applications require that a conv~rsatienal rrocess not be
interru~ted once it has started. This is because non-~rogram initiated
terroinaticn could result in ~artially-updated data bases. This type
of termination can occur if the o~erator ~rerraturely uses the /EXIT
comroand, or if a prograrr invelved in the conversation abnormally
terminatesc When this condi~ion occurs, a user exit reutine can be
en~ered to analyze the terrrination and, if desired, to cause another
program to be scheduled to complete or backout any data base updates.
The us~r exit rcutine cannet cause the conversation to continue. The
IM§!Y§ 2y£!em R~Q~~ming E§f~~~n~~ M~n~El contains specifications for
a cor: ve rsation abnormal terminat icn €X it routir.e.

When the Interactive Query Facility (IQF) feature is incer~orated
into the user's system, the user must specify conversational mode as
well as an SPA at system definition time. ~he IME/VS system definition
mu~t contain ene or more APPLCTN macro instructions for IeF. Each
APPLCTN macro must have a 7RANSAC~ macro with an SPA specified to define
the transaction code used by the terminal user.

The SPA should be large enough to nold the maximum IQF query that
could requir~ a full file search; an additional 40 bytes are required
for systero usage. If an installation wants to process full file
searches under a different transaction code (in crder to control when
the processing is te be done), another TRANSACT macro must be added.
This additional TRANSACT macro defines a non-ccnversatier:al transaction
code and rrust not have an SPA defined for it. The non-conve~sational
code is used by IQF only during internal ~rccessing; it should not be
entered from a terminal.

PAGING FEATURE -- 2260 AND 2265

The- paging feature allows an application prcgrarr to insert a multi~le
screen rressage tc the 2260 cr 2265 which can be viewed by the operator
in any sequence he wishes. If, after viewing the first screen, the
operator chooses to skip all remaining scrEens and ge to the next
message, he- can. Alternatively, as an example, he can look at the
first screen, page forward to the 17th scr~en, page back to the fifth
screen, view several screens in sequence, etc. Ee can go to the next
message or series of screens at any time, whether or not he has leeked
at all the screens in this serie s. Once thi s option is taken however,
he cannot return to look at any image frorr a previeus series. I MS/vS
prevents the operator frem inadvertently paging past the end of one
series into another, thus losing the current series.

The operator is su~~lied with a page-request indicator (=) to specify
which page is 'te be viewed next. If Auto Delete was specified in system
definition, any other input message, that is, cne that dces not begin
with a page-request indicater, causes the series of pages being viewed
to be considered complete and the series to be dequeued. Therefore,
when an operator has com~leted viewing a series of pages he has merely
to enter a new transaction code to signify this to the system. If a
mUltiple-page message is routed to a non-~agEd terrrinal, such as a
2740, the ~aging is ignored, and the message is transmitted as any
other message. If Auto relete was not specified, the operator can
enter a message while viewing a page. This causes the first page of
the series to be redisplayed, and the operatcr rr.ust specifically enter
a next- output indica tcr (1) to ca use the series of pages to be dequeued.
While this mode of operation may have merit in s~ecific applications,
it roay prove curobersome to the o~Brator in a generalized system
application. It is recorrmended, therefore, that the user be aware of
the operational rrccedures required for non-Auto relete operation before
specifying this mode of operation.

3.24 IMS/VS system/Ap~lication Design Guide

While the IMS/VS teleprocessing system is in c~eration, it may be
desirable to let a batch ~rograro have access to online data bases or
input/ou~put message queues. This can be acccrrplished by a batch
mes8age proce~sing program (BMP). This program is loaded in the
conventional operating system manner. It has access te enline data
bases and message queues, and can also make use of operating system
da~a management facilities.

When starting a EMP, several parameters rray be s~ecified on the EXEC
statement. These ~nclude the PSE and prograrr narre. For rressage
processing programs, the PSB and program name must be ~he same; however,
~hey can be different for EMPs. This allows a utility pregram to be
run using different PSBe.

EMP can implement a checkpoint to purge data base and message
buffers. It writes a checkpoint ID to the systerr log. This checkJ;oint
is independent of CTL (central region) and other EMP region checkpoints.
IMS/VS maintains a checkpoint table to correlate BMP checkpoints with
control region check~cints fer purposes of emergency restart. Design
considerations for using this checkpoint table are contained in chapter
2 under the topic "Ba tch Checkpoint Re start. " The l~§'L~§' lil?.Pl.i££.t.i..9D
E~g~£illrning R~!§~gD£~ Man£El contains a description of the checkpoint
(CHKP) call.

Emergency restart after a system failure backs out all resources
for each BMP region to the last checkpoint for that EMP region. The
master t~rminal operator has the option of sJ;ecifying that BMP data
base chang~s NOT be backed out at emergency restart.

If there is no backout for a B~F, the oJ;erator also has the option
of releasing the resources that were reserved for the BMP (tha t is,
starting stopped data bases). If backout has been done, the resources
are not reserved since data tase integrity has been rraintained.

USE OF EMP

The BMP is useful for several types of processing. If data is being
collected for batch processing, the message processing program can
retrieve the collected data from the queue. UJ;on a single leading, a
BMP can deal with only one in~ut queue (transaction code). The
transaction code is also specified on the EXEC statement when the BMP
is started. The Br1P sends eutput to logical terminals or other programs
through the queues. The EMF is useful for dcing surrmary reJ;orts while
the data bases are being utilized in a TP environment. use of the BMP
to update data bases, while the online systerr is in oJ;eration, can
cause the scheduling of 8erre rressage processing programs to be
temporarily suspended. This occurs for me8sage J;recessing programs
which are sensitive to the same segments for update as is the EMP.

Applicatien Prograrr Design 3.25

BUFFERING

Heavy utilization cf data base buffers by a BMP can impact response
time at a terminal, if a relatively small data base buffer pool is
allocated. Since the pool is utilized for all data bases, and the
oldest buffer is alway~ freed for current I/O requests, additional I/O
requests may be required for those TP programs performing data base
updates. It is J;os~ible that a message processing program may obtain
a segment for update, and prier to the REFIACE call have the buffer
containing the segment may be freed. DL/I rrust then reread the segment
for replacement.

INTERMEDIATE DA~A EASES

If the user wants to save information between lcads of an application
program, without rraking u~e of the conversational capability,
intermediate data bases can be utilized. Figure 3-16 shows an
intermediate data base being utilized for purchase order writing. Each
logical terminal is represented by a root key in the data base. Since
all logical terminal names are unique, there is nc possibility of
conflicts between terrrinals. The application program has aCC9SS
to the source of each input through the input/cutJ;ut logical terminal PCB.

I~I-- ------------
~--~--L-----_,

I~~-- ----------
r----r-~---__,

Figure 3-16. Intermedia te Da ta Ba se

MESSAGE EDITING

If free forrr input is allowed from input terminals, a single message
editing routine is an alternative to redundant code in the COEOL or
PLII program. The message editing routine can convert the message from
a free format intc a fixed format.

The edit routine can be located in the IMS/VS control region or in
the message processing region with the applicaticr. J;rograrr. If an edit
routine is to be used a great deal, it should be included in the IMS/VS
control region. In some instances this helps reduce the regicn size
required for the rressage prcce$sing region.

3.26 IMS/vS System/Application Design Guide

If the edit routine is to be included in the rressage ~rocessing
region as a part of the a~~licatien program, the possibility of placing
th~ module in link pack should be ex~lored.

Use of a single message edit routine for all ~rcgrams could have
value fer some user envirenments. The message edit routine could be
the only user module making calls on DL/I for rressage input/output.
This could reduce the arrcunt ef error checking required in each
application program.

OUTPUTrING A MAS R TO THE 2260

When a 2260 is being used in an interactive manner, terminal operator
time can be saved by having the application program send out a mask or
form to the 2260. The terminal operator then fills in the a~~ropriate
inforrraticn and transrrits the entire screen as input.

PASSING INFORMA~ION FROM ONE PROGRAM TC ANCTHEF

When a program is to be designed in a rredular fashion, there are
several ways in which infcrroation can be passed frcrr one ~rogram to
another. The first way is by sending output to an alternate destination
through the queues. Another is to store inforrratien in an intermediate
data base, as discussed earlier. A third way is to use a scratchpad
area for passing the information from one pregrarr tc another. If the
scratchpad area is resident in storage, the input/output overhead is
less than by the other approaches.

INTERACTIVE QUERY FACILI~Y (IQF) FULL FILE SE~FCHES

When it is not possible for IQF to eliroir.ate ~crtions cf a file frem
consideration withcut reading them (by means of IQF indexes or IMS/VS
root keys), IQF requests confirmation ('YES') frerr the terminal user
before corrmencing a full file search. When the confirmation is
received, IQF causes a transaction switch to a new transaction code
defined in the IQF system Cata Ease. This allcws an installation to
control when queries invelvinq a full file search are to be executed.
The master terminal operator, -for instance, can issue a /FSTOP for the
new +ransaction code, and any future full file search precessing can
be queued for execution at a later time (when a /START command is
issued) •

This ca~ability is desirable because in the r.crrral course of
operations, IMS/vS takes checkpoints at periodic intervals. If a
ch~ckpoint is to be taken while IQF is doing a full file scan (which
could require a long processing time), the checkpoint cannot be
performed until IQF terminates. The resulting delay could cause
unacceptable res~cnse tirres for cther transacitons.in the system.

Depending upon the installation procedure, the IQF terminal user
may know when a full file search transaction cede has been queued (by
a master terminal cperatcr issuing a /PSTCF command); it might, however,
be necessary for him to communicate with the roaster terminal e~erator
for this informaticr..

It is possible for IQF indexes to be somewhat out-of-date. In a
normal IQF query, this situation results in the crrissicn cf fields that
have been added since the last index update.

Application Frogram Cesign 3.21

When it is im~erativE that information to be displayed by lQF be
up-to -date, and "':he us er data bas e might haVE been changed since the
last update of tl:e relevar.t lQF index(es) , a full file search can be
forced by including some criterion which does not affect the result,
bu~ which causes IQF te reject the use of indexes. For example, if
the original criterion is:

WHEN SALAFY EQ 20000

the user could force a full file search by changing the query to read:

WHEN SALARY NE SALAFY OR SALARY EQ 2COOC

IQF does not recognize that this is a trivial special case; it only
knows that indexes are useless in resolving certair.
"Field-Operator-Field" ex~ressions and that a full file search is
requiredc

SECURITY CONTROL IN IQF

Since the Interactive Query Facility (IQF) feature is a generalized
transaction, its PSB could include the majority of the peEs used by
the transactions in an installation. This would nake norrral IMS/VS
security control useless fer IQF. To avoid this, an installation could
establish several different transaction codes for IQF, each transaction
code having its ewn Fasswcrd or terminal security, and a PSB~hich
permits access to only those PCBs needed by a Farticular grouF of users.

CHOOSING IQF INCEXING PARAMETERS

The Froper use of IQF' s eta tic indexing capability can significantly
reduce query response time. In crder to achieve the optimum indexing
structur~, an installation should consider the fcllowing factcrs:

• Choice of fields tc be indexed
• Frequency of index uFdates
• Number of index data bases (0, 1 or 2) and SiZE of each index field

As an installaticn becomes_more familiar with the different
possibilities for indexing, the system programmer will be able to
optimize the choice of fields to te indexed. Frerr time tc time, a
simple rerun of the Index utility program can be used to restructure
the indexes to suit the requirements of the installatien.

The choice of fields tc be indexed can often be the most significant
factorc If frequently used fields are not indexed, many queries can
result in full file searches. If seldom used fields are indexed, the
Index Data Bases can become unwieldy and tte tine required to update
them can become excessive. Fields which occur only a few times, or
which have only two or three possible values, rrobably shculd not be
indexed.

In this connection, it should be noted that fields unknown to IMS/VS,
or subfields of other fields (notably the month, day and year Fortions
of a date field), can be indexed by IQF if they are specified to IQF
by *FIELD cards.

3.28 IMS/VS System/Application Cesign Guide

The user should be aware that between index u~cates the data bases
described by the index(e~) rright have been updated by nan-IQF
applications. As an index becorres out-of-date, queries using ~he index
will miss a growing nurrber of valid occurences. ~hether or not this
creates a problerr for the terminal operator is largely determined by
the degree of accuracy desired. In establishing schedules for index
updates, the system prcgrarrrrer should consider the frequency of updates
to a given field, as well as the expected requirerrent for accuracy in
quer~es involving that field.

since it usually is not practical to update indexes as often as the
data bases, the IQF user who requires absolute accuracy, at the expense
of time, can by~ass the indexes and force a full file search (as
described under "IQF Full File Searches" in this chapter). This ensures
selection of all data base records that are valid for a particular
query.

The number of IQF Index Cata Bases required is closely related to
the size of the index field in each.

If most of the user data base fields being indexed are nearly the
same size (and if none is very much larger), tten cne Index Data Base
may suffice. Its index field must be as large as the largest field
being indexed.

If, on the otter hand, a few fields to be indexed are considerably
larger than the rest, stcrage space and query time can be saved by
designing one Index Data Ease to index the relatively small fields and
a second Index Data Base to index those fields larger than is allowable
in the first Index Cata Ease.

USE OF FREDEFINEC PHRASES IN IQF

IQF predefined ~hrases can be used in different ways.

• As abbreviaticns tc save typing
• As null words to permit flexible typing style
• As general-~urpose syncnyrrs for clarity or easy learning
• As foreign-language equivalents

performance can be adversely affected wten predefined phrases are
overused, and when the IQF Phrase data base has been updated
considerably without beir.g reorganized. !he usual HIDAM reorganization
techniques should be u~ed frequently on the Phrase data base to help
maintain IQF performance.

The tendency is to use IQF's predefined phrase capability hea vily
at firsts After an installation has gained more experience with IQF,
fewer predefined phrases are used (and these prirrarily as
abbreviations). At that time, it is recommended that you delete unused
phrases, both to eliminate confusion and to reduce the size of the
Phrase data base, which is used at least once for each word in each
query.

Application Program Design 3.29

The data management portion of IMS/VS is designed to sirr~lify the
task of assembling and rraintaining large amounts of data while still
offering flexibili~y in how the data is organized and used. To
accomplish this, IMS/VS uses an organization for data called a data
base.

Under IMS/VS, different types of data bases can be created by the
user. Each requires two definitions before the data base can be used
by application programs. The user defines the data base structure and
content through Data Base Description Generation ([EDGEN). He also
defines what data within the data base each application ~rogram will
use, and what processing c~tions each application program is allowed
~o use on that data through Program specificatior. Block Generation
(PSBGEN). Each of the data base types is supported by and named after
its own access method. The access methods and the data base type each
is used for are:

• Hierarchic sequential Access Method (HSAM)
• Hierarchic Indexed Sequential Access

Method (HIS AM)
• Hierarchic Direct Acce·ss Method (HJ:AM)
• Hierarchic Indexed Direct Access

Method (HIr:AM)
• Logical
• Generalized sequential Access Method (GSAM)

HSAM

HI SAM
Br:AM

HIDAM
Logical
GSAM

All of the data base ty~es, except the logical data base, are called
physical data bases since each physically exists in auxiliary storage
as defined through J:EDGEN. A logical data base is corrprised of data
stored in one or more ~hysical data bases that is structured logically
to satisfy the requirements of an applicaticn ~rcgram.

GSAM data bases are lirrited to a single, unstructured data set.

Prior to discussing the advantages and disadvantages of each type
of data base, the concepts and terms used for IME/vS data bases must
be understood.

In general, an IMS/VS data base is a hierarchic organization of the
different types of data required by' one or more a~~lications. We'll
examine first its content and structure, and we'll then describe the
DLII calls that are used to process a data base. Included in content
are segroents and fields. structure includes the definition of the
hierarchy of a physical data base. Note that GShM data bases are not
hierarchic and are based on physical records rather than segments.

SEGMENTS

A data base is a storage organization that enables the user to wanage
mult.iple sets of data, ar.d ITultiple elements of each set. 'Ihe content
of a data base is defined by segment type through the J:B[GEN utility.
For each set of data the user wants to store in a data base, he defines

r:ata Base Design Consideraticns 4.1

a segment type and tbe physical characteristics tc use when storing
segments of that type. In turn, ~hen multiple elements of data of a
se~ are stored in a data base, they are stored as segments of the type
defined and use the physical characteristics defined for that segment
typec A segment in a data base is also called an occurrence. Both
terms are used interchangeably to refer to a segment. A data base can
contain a maximum of 255 segmer.t types, and the nurrber of segments of
any type defined is lirrited only by the space allocated for the data
base&

The input to DBDGEN that defines a segrrent type and the physical
characteristics of that segment type is the SEGM statement. Among the
physical characteristics defined for each segment type are the name,
length, and hierarchic position to be used when stcring segments of
that type. The name s~ecified is used to identify segments of that
type in storage, and in turn, the applicaticn ~rcgram uses the name of
a segmen~ tYfe to address the type of segment to be processed. The
length specified for a segment type tells IMS/VS the number of bytes
of auxiliary storage tc use for the data portion cf each segment of
that type. For the segmentE in storage that contain a prefix and data
portion, the prefix is used by IMS/vS in managing the segroent, and the
data portion of the segment contains the user data. The length
specified for the data portion of a segment type rrust be fixed, except
when VSAM is used as the cperating system access method. When VSAM is
used, the length specified for the data porticn cf a segment type can
be either fixed or variable. when variable length is specified, the
amount of auxiliary storage space used for the data ~orticn of each
segment of that type can vary bet~een a user specified minimum and
maximum number of bytes. In the case of fixed, the data ~ortion of
each segmen"':: of the sarre tYI;e occupies the same amount of auxiliary
storage space. The leng"'::h specified for a segment type cannot exceed
the physical record length cf the storage device used. The hierarchic
position defined for a segment type determines hcw segments of that
type are stored in a data base in relation to segments of other types.
For an explanation of the hierarchic position of a segment type in a
physical data base, refer to "structure" in this chapter.

SEGMENT FOR~.TS

When defining a segment type, the segment length specified by the
user can be either fixed cr variable. In either case, segments in
IMS/VS data bases ccntain a prefix and a data portion except for three
cases where only the data portion is present. Fer an HSAM, simple HSAM
or sirrple HISAM data base that contains only one segment type, n0 prefix
is stored with occurrences of the segment type in the data base.

The fixed and variable length format for segments in HSAM, HISAM,
HDAM and HIDAM data bases are shown in Figure 4-1.

4.2 IMS/VS Syste~/Ap~licaticn ~esign Guide

SEGMENT
CODE

Fixed length segment format

PREFIX

DELETE
BYTE

..
POINTER AND COUNTER
AREA

DATA

FIXED LENGTH
USER DATA

~--------~------~~-------i#~--------~--------------------------

Variable length segment format

PREFIX
, .

SEGMENT DELETE POINTER AND COUNTER
CODE BYTE AREA

.

Figure 4-1. segment Format.s

DATA I ,

E~
T~

,

VARIABL
USERDA . ..

segments in all data base types contain a {:refix a.'1d data portion
exc:pt in the 3 cases stated previously. ~he {:refix of a segment
contains data ueed by IMS/VS that is transparent to application
programsc The data portion of a segment contair.s user data. As.a
minimum, the prefix of a segment contains a segment code and a delete
by tee The content of the remaining portion cf the {:refix varies by
data base type. segreente are related through direct address pointers
in HDAM and H1DAM data bases, so all segments in these data bases will
contain one or mere {:ointers in their prefix. Segments in ESAM and
H1SAM dat.a bases are related through physical adjacency se they will
have ne direct addre~s pcinters in their prefixc The one exception to
this is a segment in a H1SAM data base that is ir.vclved in a legical
relationship with a segment in an HDAM or HleAM data base. When the
segment in the H1SAM data base points to the segrrent in the HDAM or
HIDAM data base, it can have a direct address ~eir.ter specified to
point te the HDAM er H1DA~ segment directly. A counter is only present
in the prefix of a segment under certain conditicr.s when it is involved
in a logical relaticnship. For the conditions under which the counter
will be present in a prefix and the use of the counter, see "Pointers
and the ceunter Used in ~ogical Relationships" in this chapter.

§~g1!l~D~ QQ~~

To identify each segment stored in an 1MS/VS data base, a cne byte
segment code is placed in the first byte of the prefix of the segment.
The segment code is a number from 1 to 255 that identifies a segment
type to 1MS/VS in {:lace of its name. segment code values are assigned
to the segment types in a data base in ascending sequence starti.ng with
the root segment type and then continuing to all de~endent segment
types following the hierarchic sequence d9fined for the segment types
in a data base by the user.

!2el§.i~ ~1~

The delete byte is used by 1MS/VS to maintain the delete status of
segments within a data base. The meaning of each bit within the delete
byte is shown in Figure 4-2.

~ata Base Desigr. Consideraticns 4.3

DELETE BYTE

BIT MEANING

o SEGMENT HAS BEEN DELETED (HISAM OR INDEX ONLy)

DATA BASE RECORD HAS BEEN DELETED (HISAM OR INDEX ONLY)

2 SEGMENT PROCESSED BY DELETE

3 RESERVED

4 DATA AND PREFIX ARE SEPARATED IN STORAGE

5 SEGMENT DELETED FROM PHYSICAL PATH
(PHYSICAL DELETE BIT SET)

6 SEGMENT DELETED FROM LOGICAL PATH
(LOGICAL DELETE BIT SET)

7 SEGMENT HAS BEEN REMOVED FROM ITS LT CHAIN
(BIT 7 IS ASSUMED SET IF BITS 5 AND 6 ARE SET)

Figure 4-2. I:elete Eyte

FIELDS

An application program addresses segments in a cata base through.
~he narre s~ecified for their segment type, and through the names of
fields defined within a segment type. The segrrent name alone allows
an ap~lication rrograrr tc address a specific segment type within a data
base. To address a specific occurrence of a segment type, fields must
be defined within thatsegwent type.

Within the data rortion of each segment type, the user can define
fi~lds through the tBI:GEN utility. Each is defined through a FIELD
staterren~ which is input tc DBDGEN. The maximum number of fields that
can be defined within a segment type is 255 and tte maxirrurr within a
data base is 1000. ~he twc types of fields that can be defined are
sequence fields and data fields. Both fields can be used by an
applicaticn program tc address specific segments in a data base. A
sequence field, often referred to as a key field, has twc Furroses in
addition to that of the data field. It is used to store occurrences
of a segment type in a sequential order. The order is determined by
the value placed in the sequence field of each cccurrence. The value
in the sequence field of a segment is called the key of that segment.
Occurrences of a segment type are stored in ascending order in the data
base starting with the occurrence that contains the lowest sequence
field key. The sequence field is also used as all or part of a symbolic
pointer to a segment iT. a data base. The symbolic pointer is actually
the concatenation of the keys in the sequence fields of all segments
tha~ rrust be retrieved tc reach the desired segment including the
sequence field key of the desired segment as shcwr. in Figure 4-3.

only one sequence field can be defined in each segment type.
sequence fields can be defined as unique or non-unique by the user.
When defined as unique, occurrences of a segment type must contain
sequence field values that uniquely identify them within a data base,
and segments are stored in the data base in the rrar.ner described
previously. When defined as non-unique, sequence field values do not
have to uniquely identify a segment within a data base. In this case,
segment occurrences are still sequenced according to their sequence

4.4 IMS/vS System/ApFlication Design Guide

field value which controls all segments except those with the same
value. If placement of those with the same value is cf ccncern, the
user rrust contrcl their ~lacement either through his data base load
program, or through the comtination of his load ~rcgram and by stating
insert rules for segment ~lacement through LEDGEN.

CONCATENATED KEYS

SKILL
SEGMENT

r,=============~==~ STCLERK
STCLERK

NAME

SEGMENT

rr======+==~>SMITH

STCLERKSMITH
SEQUENCE FIELD KEYS

Figure 4-3.

EXPR
SEGMENT

RWa

STCLERKSMITHRW8

Concat. enated Keys

EDUC
SEGMENT

c:t===~ PHAR

Data Base Lesign COnsiderations 4.5

STRUCTUR.E

The hierarchy of a data base is created by defining an crder of
dependence for the segrrent tYFes it contains. To IMS/VS, the hierarchy
represents the order in which the user wants his aFplication data
stored. ~o the applicaticn program, it represents the order in which
~e segm~nt types in a data base are available fcr proce~sing. The
criteria normally used in determining the hierarchy is how the data in
one segm~nt type relates to data in another segment type, and the
frequ~ncy in which a ~egment type will be accessed by an application
program.

To understand how a data base hierarchy is developed, we'll use as
an example a skills inventory application. We'll determine what segment
~ypes a data base should contain for the applicaticn and the hierarchic
order of those segment types. In addition, we'll show the data base
that could result in storage by defining the segment types and their
hierarchic order through the DBDGEN utility.

Let's assume in our example that an application program wants to
locate a given skill, and then find out wbat errplcyees pc€sess that
skill. In addition, the aFplication must have access to the experience
and education records of each employee.

In the assumpticns, four sets of data were required by the skills
inventory application. Each will be defined as a segment type in our
skills inventory data base. Let's now create a hierarchic data
structure that reflects the order in which the four segment types are
required by the application. To do this, we roust determine both the
order in which the application program must use each type of data, and
the order in which each type of data must be Fresented to the
applicaticn program so that the data retains its meaning. In the
assumptions, it was stated that the applicaticn wanted to find a given
skill and then find the name~ of the employees that possessed that
skill. From this statement we know that skill shculd be the first type
of data in our structure and that name should follow Skill. For the
remaining types of data, experience and education, no indication was
given as to how they should fit in our structure, but we can determine
their position in the structure if we can establish how they should
relate to the skill and name types of data. For cur application,
experience and education data have no meaning by themselves, to each
other, or in relation to skill. When related to r.ame data however,
the experience and education types of data do have meaning since they
ar~ the experience and education records of specific employees. We
can now complete our data structure. At the top is skill, below skill
is name, and narre in turn is followed by experience and education as
shown in Figure 4-4. Experience and education are below name since
they are dependent on name for the skills inven'tory application. An
employees name must be estatlishec before his experience and education
records have meaning. In turn, name is dependent on skill since the
application will locate a given skill and then a~scciate employee names
to that skill. In surrrrary, the data structure shown in Figure 5.4
represents the sets of data and the order of dependence fer those sets
required by the skills inventory application. It contains four sets
of data arranged in three levels of dependence. An IMS/VS data base
can contain a maximurr cf 255 sets of data arranged in up to 15 levels
of dependence.

4.6 IMS/VS System/Application Cesign Guide

SKILL

NAME

I I
EXPERIENCE EDUCATION

Figure 4 -4. Hierarchy of Segment Types

The data structure just created is called a hierarchy cf segment
types. It repreeents the segment types and the hierarchic arrangement
of those segment types that would re defined through DBDGEN to define
our skills inventory data base. If we now assume data for each seqment
type, Figure 4-5 shows the data rase that wculd result in storage.-

cata Base Design Ccnsideraticns 4.7

1-----------
I

I
I
I
I

Hierarchy of segment types
defined through DBDGEN

Resulting data base in storage

I
I

/
L_

/

/
/

/

/

Figure 4-5 sbcws how segments of each type can be loaded in a data
base& Three occurrences of the skill segment type are shown. Related
~o each are the specific occurrences of the Narre segment type that
contain the name~ of the errt:loyees who possess that particular skill.
Related to each Name segment in turn, are thE specific segments of the
Experience and Education segment types that contain the experience and
education records of each emploYEE. Skill is the root segment type in
this data base, and each data base has only one. ~e root segment type
is always the first segment type defir.ed in a data base, and, as shown,
it is the-only segment tYt:e that OCCUpiES tte first level of a data
base hierarchy. segments of all other types in a data base are stored
in relation to an occurrence of the root, and as such are termed
dependents of the root. In addition, occurrences of the Experience
and Education segment types, shown at the third level of the hierarchy,
are dependents of the Narre segment type since they are stored in
relation to occurrences of the Name segment tyt:e. when a data base
hierarchy is read frcrr to~ tc bottom with the root at the top, each
lower level in the hierarchy contains the deFendent segments of the
segments at the next higher level. Before any dependent segment is
load~d in a data base, the segments on which it is dependent rrust be
loaded. In all cases, a de~endent segment in a data base is dependent
on one segment at each highEr level in thE bierarchy.

The major unit of organizaticn for segments within a data base is
the data base record. A data base is comprised of one or more data
base records, and a data base record contains cnE cccurrence of the
root segment ty~e and all of its dependents arranged in hierarchic
sequence. Hierarchic sequence for the segments in a data base record
is top to bottom, then left to right passing through each segment only
once. The skills inventory data ·case shown in Figure 4-5 contains
three data base records, and the hierarchic sequence of each is shown.

The hierarchy of a ~hysical or logical data base can contain a
maximum of 15 levels. The order of dependence for segment types in
the hierarchy is frcrr level one, or the top of the hierarchy, to level
15, the bottom of the hierarchy. The top level cf the hierarchy of
any data base can contain cr.ly one segment type. It is called the root
segment type for that data caSE. Subsequent levels below the root can
contain any number of segment tYFes such that the maximum of 255 total
segment types in the data base is no~ exceeded.

The input to the DBDGEN utility that defines the segment types a
data base contains, their physical characteristics and their hierarchic
position is the SEGM statement. (The SEGM statement is described in
the IM£/V~ ~tili!ig§ Ref§ren£§ ~~n~~.) For our ex~lanation here, it
is only necessary to know that a data base hierarchy is defined through
the order in which SEGM statements are arranged fcr in~ut to DBDGEN,
and through use of the PAREN~= operand of the SEG~ statement.

The PARENT= oFerand of the SEG~ statement is used to define the
physical relationships that exist l:;etween tte segrrent tYFes on each
two adjacent levels in a data base hierarchy. The two segment types
involved in the relationships are called a physical parent and a
phys ical child. A physica I 14 ren tis a segment type that has a
dependen~ segment type defined at the next lower level in the data base
hierarchy. A physical child is a segment type that is dependent on a
segment type defined at the next tigher level in the data base
hierarchy. These two terms are ueed to state the order of dependence
for the segment types in a data base. In a data base with multiple
segment types defined, the root segment type is the physical parent of
all segment types defined at the second level of the data base. In
turn, the segment tYFes on the second level are physical children of

Data Base Cesign Considerations 4.9

the rcot& Each level cf a data base contains the physical parent
segment types of any segment types defined at the next lcwer level,
and the physical child segrrent ty~es of any segment types defined at
+~e next higher level. The PARENT= operand of the SEGM statement is
used to state specifically which segment type at the next higher level
is the physical parent of a physical child. All segment types in a
da~a base, exce~t the rcct, are physical children since each is
dependent on at least "the root. On the SEGM staterrent that defines
each physical child, the PARENT= operand is used to specify the name
of the physical parent segment type.

The PARENT= c~erand of the SEGM statement defines the top tc bottom
order of segment types. ~he arrangement of SEGM statements for input
to the DBDGEN utility defines the left to right arrangement of segment
types. For input to DBDGEN, SEGM statements must be arranged in
hierarchic sequence. Eierarchic sequence is defined as tcp to bottom,
then left to right passing through each segment type only once. The
segment ~ypes in the hierarchic structure shown in Figure 4-6 are
numbered to show the order in which SEGM statements to define that
structure rrust be arranged for DBDGEN input.

1

I I
2 5 9

I I
I I I I r ~
3 4 6 7 10 11

I
8

Figure 4-6. segment Types Numbered in Hierarchic Sequence

Previously, the terms physical parent and physical child were
defined. The remaining term used to describe physical relaticnships
is physical twin. Physical twins are occurrences of the same segment
type that are dependent on the same occurrence cf the physical parent
segment type. In Figure 4-7, the three Name segments Adams, Jones and
smith are physical twins since all three are de~endent on the skill
segment that cor.tains the data artist. Under Adams, the three
Experience segments are physical twins and tte three Education segments
are physical twins since, in each case, the three are of the same
segment type under the same occurrence of the ~hysical ~arent segment
type.

4.10 1MS/VS system/Application Design Guide

The terrr sibling, u~ed frequently in data tase literature, refers
to the relationshi~ between two or more segment types at the same level
that are dependents of the sam~ parent ty~e segmerot.

The hierarchies cf all four ~hysical data base tYFes are defined as
just described, but ir. auxiliary storage, each of the four physical
data base types is organizEc differently. ~o understand the advantages
of one data base organizaticn over another, a basic understanding of
the DLl1 calls used to process s~gments in a data base is required,
since the primary trade cff between the four types is auxiliary storage
space versus the performance of a~plication prcgrarrs Frocessing a data
base through DL/1 calls.

Data Base resign considerations 4.11

./

r-------~------/~./
/

Hierarchy of segment types
defined through DBDGEN

Resulting data base in storage

EXPf]
2-1-1

~ --

I\'''
\ \\ "'-

\ \
\ \
\

CALLS

The segments in an IMS/VS data base are ~recessEd through calls
issued by an ap~licaticn ~rogram. Calls are issued to get, insert,
delete or replace a segment or a ~ath of segments at a tirre. A call
references a parameter list ~hich includes all data required by IMS/VS
to complete the call. Included in the list are a function code and an
SSA (segment search argument). The function cede states the call to
be perforrred, and the SSA states the segment or path of segments to be
proc9s~ed. A call is unqualified when no SSA is iT;cluded with the
call, and a call is qualified when an SSA is provided for the call. A
brief description of the primary calls used in ~recessing a data base
and a brief descri~tien ef SSAs fello~s. For more detailed information,
refer to the IMSLY2 ~~~!i£~!iQn Erog~sIDming E~f~~~ng~ M~nY~!.

The direction of movement in a data base is called for~ard ~hen the
search for a given segrrent is going away from the first occurrence of
the root stored in a data base towards the last segment stored in the
data base. Backward reovement is movement in the opposite direction.
position in a data base is the segment or segrrents in a data base from
which the search for anether segment starts.

The GU (get unique) call is used to retrieve a s~ecific segment or
path of segmentE frem a data base, and at the same time establishes a
position in a data base from.which additional segrrents can be processed
in a forward directior..

The GN (get next) call is used to retrieve the next desired segment
or path of segments frew a data base. The get next call normally moves
forward in the hierarchy of a data base frorr current ~osition. It can
be modified to start at an earlier position than current position in
the data base through a command code, but its nerrral function is to
move forward frerr a given segment to the next desired segment in a data
base.

The GNP (get next within parent) call is used to retrieve dependent
segments of a given parent segment from a data base. A get unique or
get next call is used to establish parentage for the get next within
parent. After a get unique or get next retrieves a given parent
segment, successive get next within parent calls retrieve the dependent
segments of that parent in hierarchic sequence.

!!olg, FOm Qt 2~! ~!!ll§.
Another form of the three get calls is tte held form. 'A GHU (get

hold unique), GHN (get hold next) , or GHNF (get hold next within parent)
indicates the intent of the user to issue a subsequent delete or replace
calla A get hold call must be issued before issuing a delete or replace
call.

The ISFT (insert) call is used to insert a segrrent or a path of
segments into a data base. It is used to initially load segments in

Data Base resign considerations 4.13

all data base ty~es, and te add segments to existing HIS AM, HLAM and
HIDAM data bases. Segments can not be inserted cr added into an HSAM
data base exce~t at lead tirre.

To control where cccurrences of a segment type are inserted into a
data base, the user can define a unique sequence field in the segment
type, or specify insert rules that control placement of occurrences of
a segment type that has no sequence field or a ncn unique sequence
field defined. when a ur.ique sequence field is defined in a root
segment type, the sequence field of each occurrence of the roct segment
type rrust contain a unique value. When defined for a dependent segment
type, the sequence field of each occurrence under a given physical
parent rrust contain a unique value.

Following are the insert rules the user can specify to control the
placement of segments in a data base. They are used to centrol the
placement of occurrences of a segment type with non-unique sequence
field values and for placement of all occurrences of a segment type
when no sequence field has been defined.

FIRST - states that a new occurrence of a segment type is
inserted before the first existing occurrence of this
segment ty~e. If this segment has a non-unique key, a
new occcurrence is inserted before all existing
cccurrences of the same type that contain the same
sequence field key.

lAST - States that a new occurrence is inserted after the last
existing occurrence of this segment type. If this
segment has a non-unique key, a new occurrence is
inserted after all existing occurrences of the same type
that contain the same sequence field key.

HERE - Assumes the user has established position on the
s~ecified segment type by a previous Data Language/I
call and the new occurrence is inserted before the
segment which satisfied the last call. If current
position is not within occurrences of the segment type
being inserted, the new occurrence is inserted before
all existing occurrences of that segment type. If this
segment has a non-unique key and data base position is
not within occurrences of the segment type with
equivalent key value, a new occurrence is inserted before
all existing occurrences that contain the same sequence
field key.

The DLET (delete) call is used to delete a segment or path of
segments from a data base. It should be noted that, due to the
hierarchic arrangement of segments in a data base, the deletion of a
parent segment implies the deletion of that parent's dependents. When
a parent segment is deleted in an IMS/VS data base, all of its
dependents are deleted.

The REFL (replace) call is used to replace the data in the data
portion of a segrrent or ~ath cf segments in a data base.

4.14 IMS/VS Systerr/Application Design Guide

An SSA identifies a segment or group of segrrents that are to be
processed by a call. An SSA can contain three parts. As a minimum,
it contains the name of the segment type to be precessed. Optionally,
an SSA can contain corrrrand codes and/or qualification statements.
Command codes, when used, specify a functional variaticn of a call.
Qualifica~ion statement8 identify through fields which segment or
segments of the specified segment type are to be ~rccessed by the call.
A qualification staterrent ccntains a field name, relational operator
and comparative value. ~hen occurrences of the segment type are
searched, the specified field is compared to the ccrrparative value in
accordance to tbe relaticnal operator specified.

HIERARCHIC SEQUENI'I~L 1!ND rIREC'I METHODS OF STORING A DATA EASE

Two storage organization methods are used tc create the hierarchic
arrangerrent of segments iT. stcrage for the four physical data base
types. The hierarchic sequential method is used for HSAM and HISAM
data bases, and the hierarchic direct method is used for HDAM and HIDA~
data bases. The hierarchic sequential method consists of using
physically adjacent storage locations to stcre all segments within a
dat a base record in hiera rchic sequence. This creates a hier archy for
the occurrence of the root and all of its dependents within each data
base record in which each segment is related to the segment that
hierarchically follows it through physical adjacency in storage. The
hierarchic direct methcd censists of placing four byte direct address
pointers in the prefix of each segment stored in the data base to
establish the hierarchy of segments in each data base record. A
description of the types of pointers used in HDAM and HIDAM data bases
follows.

To relate each segment in an HBAM or HIDAM data base to its related
segments, direct address pcinters are used. The pointers are four
bytes long, and they are placed in the prefix of each segment stored
in the data ba8e. A direct addre8s pointer consists of the relative
byte address of a segment from the beginning cf a data set. Either
one of two methcds of direct address pointing can be specified for each
segment type in an HDAM or HIDAM data base. The two methods are
hierarchic pointing, or the combination of physical child/physical twin
pointing. Figure 4-8 shculd be referred to when reading the following
descriptions of the types of pointers.

Cata Base Design Ccnsiderations 4.15

llunu-c:l

rr----~

I
I
I \,L-"":==::U

'-IIBX'I'SltILL

fa : BDUCA'1'I~
l_ 1

.hya1cal twiD
"f_r4 poiDter.

f"lE] I,
Ie KILL
I'

r..------.
I
I

'IUCIIDIIIC SJ:ILL--~L--"'::::=::£I ,
'- IIBft lULL

fa : BDUCA'I'IOII

l_ 1

~--- _--+--'Io:::~------,-_-"'_"'_I" - -....
/; ""',

I NAIIE \
I ,
\ I
, I , /

' _-----.,;" ,., __ fIIII

..... ,.-

.. ...-_"'_IKILL

Figure 4- 8. Direct Address Pointers

4.16 IMS/VS System/Application Design Guide

r"'EJ II
II DILL

I 2

J-L-

Plt.ydcal twiD forward
&ad beckward pointer.

Two options for hierarchic pointing can be s~ecified for each segment
type in an HDAM cr HIDAM data base. They are hierarchic forward, or
hierarchic forward and backward pointing. wten hierarchic forward
pointers are specified for all segment types in a data base, each
segment in a data base record points to the segment that hierarchically
follows it through a four byte hierarchic forward pointer. When forward
and backward pointers are specified, the backward ~einter Feints from
each segment in a data base record to the segment that hierarchically
precedes it. The use of hierarchic pointers in an HCAM or HILAM data
base results in the same arrangement of segments ~ithin each data base
record as the hierarchic sequential method provides in an HSAM or HISAM
data base, but rather than segments being related through physical
adjacency, they are related through pointers that require additional
auxiliary storage space. For most data bases with high u~date activity,
the additional auxiliary storage space used for pointers is more than
compensated for through the space reuse facilities gained in BCAM and
HIDAM data bases.

In a data base that ccntains hierarchic pointers, when a call is
issued to process a segment in the data base, the hierarchic forward
pointers are followed in searching for the segment to be ~rocessed.
Hierarchic backward peinters are used only when a segment is being
deleted. For delete, the backward pointers irr~reve perfcrmance by
enabling the pointers in the segments that hierarchically precede and
follow the segment to be deleted to be updated ~ithout first going to
the physical Farent of the segment being deleted. With forward only
pointers, deletion of a dependent segment requires going to the physical
parent of the de~endent, and then searching forward to update the
pointer in the segment that precedes the segment being deleted as shown
in Figure 4- 9.

Data Base cesign Considerations 4.17

Delete segment B4:

Al

B4

BI

Al

B4

BI

B5

Enter B4 to delete B4:
(1) Place pointer to B5 that is in B4 in work area.
(2) Go up to AI.
(3) Follow pointers forward to B3.
(4) Replace pointer to B4 that is in B3 with pointer to B5 from

work area.
(5) Delete B4.

BS.

Enter B4 to delete B4:
(1) Place Forward & Backward pointers that are in B4 in work area.
(2) Follow backward pointer to B3.
(3) Replace pointer to B4 that is in B3 with pointer to B5 from work

area.
(4) Follow Forward pointer to B5.
(5) . Replace pointer to B4 that is in BS with pointer to B3 from work

area.
(6) Delete B4.

Figure 4-9. Uee of Eackward Pointers for Delete

Physical child/physical twin ~ointers benefit applications that
process the segment types in a data base randcrrly. They allow the most
direct ~aths to the de~e~dent segment types in a data base. TWO options
for physical chiYd and/or physical twin pointers can be s~ecified for
each segment ty~e in a data base. The physical child pointers that
can be specified are physical child first, cr both ~hysical child first
and last. The physical twin ~ointers that can be specified are physical
twin forward, or both physical twin forward and backward. When
specified for all physical child segment types, physical child pointers
are stored in the prefix of each physical parent segment, and they
point tc each of the physical child segment types of that physical
parent segment. A physical child first pointer ~cints frcm a ~hysical
parent segment to the first occurrence of a physical child segment type
in a data base that is a de~endent of that physical parent. A physical

4.18 IMS/VS System/Application Design Guide

child last pointer];:oints from a physical parent segment to the last
occurrence of a ~hysical child segment type in a data bas e that is a
dependent of that physical parent. If a physical rarent segment has
multi~le physical child segrrent types, its prefix contains physical
child first, or first and last pointers to each of those ~hysical child
segment types. Physical t~in pointers are used to relate all
occurrences of the same physical child segment ty~e that are dependents
of the sarre physical ~arent segment. Physical twins are mUltiple
occurrences of the same segment type that are de~endent en one
occurrence of a ~hysical rarent segment type. A physical twin forward
pointer points from a given twin to the twin fcllcwing it in the data
base, and a physical twin ba~k~ard pointer points from a given twin to
the twin before it in the data base.

In searching for a given segment in a physical data base using
physical child/~bysical twin ~ointers, the physical child first and
physical twin forward pointers state the hierarchic path to be followed
in search of the segment. ~he normal path followed in locating a
desired segment is from a given physical ~arent segment tc the first
occurrence of one of its physical child segment types, and then forward
through all occurrences of t'hat segment type to tte last cccurrence
following physical t~in fcrward ~ointers.

A physical child last pointer enables a search to go directly from
a physical parent to the last occurrence of one cf its physical child
segment types a s shown if} Figure 4 -10. In so doing, the phys ical child
last pointer eliminates the forward search of all cccurrences of a
segment type under one physical ~arent When only the last occurrence
of the physical child is desired. A physical child last ~ointer is
used when inserting a new segment with no sequence field and the insert
rule specified is last, or for get or insert, wher. ccmrnand code L is
specified for the call and the SSA for the call has no qualification
statement. When a physical child last pointer is fcllowed to the last
occurrence of a de~endent segment, any further movement in the data
base is forward. A physical child last pointer does not enable
searching from the last tc the first occurrence of a dependent segment
under one physical parent segment.

Lata Base Design Consideraticns 4.19

A1

B1

Figure 4- 10.

B9
B8

B7

Physical child last pointer eliminates
the need for a forward search of all
occurrences stored before the last
occurrence

Use of Physical Child Last Fointer

Physical twin backward ~einters in dependent segment types are used
to improve delete performance as described for tierarchic backward
pointers. In addition, when ~hysical twin forward and backward pointers
are specified for the root segment type of a HIDAM data base, they
enable sequential ~rccessing across data base records without
intervening referenc~s to the HleAM index. when cr.ly ~hysical twin
forward pointers are s~ecified for the root segment type of a HIDAM
data base, sequential processing across data base records requires
intervening references tc the HIDAM index.

DATA SE'I GROUPS

To describe what data sets are used for stcring the segment ty~es
in a data base, and to describe the physical characteristics of those
data sets, data set grou~s are defined through the rBDGEN utility using
DATASET statements. For an ESAM data base, one data set grou~ is
defined. For HI~, HDAM and HIDAM data bases, from one to 10 data
set groups can be defined. The terms used to describe data set groups
are priwary and secondary. A primary data set group contains the root
segment type. All other data set groups are called secondary data set
groupsc A primary data set grou~ must be defined for each data base
type~ A secondary data set grou~ is normally defined to enable using
data sets with different logical record and centrcl interval or block
lengths to enhance auxiliary storage space utilization. In a HISAM
data base, a secondary data set group offers one additional advantage.
It enables direct access te a segment type at the second level of a
HISAM data base without first accessing a reot.

HISAM, HDAM and HIDAM data bases can be divided into a maximum of
10 data set groups according to the rules ttat fellow.

4.20 IMS/VS Systerr/A~plication Design Guide

For HI~M data bases, sec cnda ry data set groups cannot be defined
when VSAM is used as the OS/VS access method for the data base, or when
a HISAM data base is indexed by a secondary index. HISAM data bases
using ISAM/OSAM as the OS/VS access methods and nct indexed by a
secondary index can only be divided into rnulti~le data set groups at
the second level of its hierarchy. The first segment type defined in
a secondary data set group must be a segment ty~e defined at the second
level of the hierarchy of a HISAM data base. Included in a secondary
data set group, are all segment types dependent en the first segment
type defined in that seccndary data set group.

For HDAM or HIDAM data bases, secondary data set groups can be
started with a segment type defined at any level cf the hierarchy and
the seccndary data set grcup can contain any combination of the segment
types in the data base. However, the following restricticn must be
met. A physical parent and its physical children must be connected b¥
PClPT pointers when they are in different data set groups; a PC/PT
pointer means that each ~rent must be a physical child (PC) pointer
to the first occurrence of each child type, and that the children must
be connected to each other ty physical twin (P~) ~cinters.

HSAM STORAGE ORG~NIZATION

In an HSAM data base, all data base records within a data base, as
well as all segments within each data base record are related through
physical adjacency in storage as shown in Figure 4-11. An HSAM data
base is stored cn a ta~e, er a direct access storage device as a
sequential data set. The data set is loaded in chrcnological sequence
and it uses a fixed length unblccked format (RECFM=F). Since the data
set is loaded in chronological sequence, tbe crder in which the user
presents each segment tc be stored in the data set establishes the
hierarchic arrangement of segments in the data base. A sequence field
is not required in the rect segment type of an HSAM data base.

Data Base ~esigr: ccnsideraticns

I
I

I

MTA BASE IIECGD
STROCTUIIE

SKIlL
1

I NAPE
I NNE

3
NNE '2T

IlJ1l1
I "" . "", L. I ,

~ It
.~ 'iI' I

i 1
.~

EXPERI E.'CE If
l2~~ EDUCATUII

(EXPR) 1 r- (EDUC) 1 ~1

BlOCK .1 BlOCK .2 BLOCK 13
I SKILUI fW£11 EXPRlI EDUClll NAPE2 I EXPR21 EXPR31 EXPR"II"""Mft3===--rI-=EIIIC2=~I-=EiJC3==-=-"''''''. ---.

IfEXI'Ja REa.

Figure 4- 11. One Data Ba~e Record of HSAM Data Ease on Tape

When a sequence field is defined in the root segment type, each data
base record must be presented for loading in ascending key sequence.
Within each data base record, all segments must be presented for loading
in hierarchic sequence.

In the data set, cne cr Ircre consecuti ve blocks are u sed to store
a data base record. Each block is filled ~ith segments of a data base
record until the remaining space is not sufficient for the next segment
to be stored. When not sufficient for the next segment to be stored,
the remaining space in the block is padded with zeros and the segment
is stored in the next consecutive block. When the las~ segment of a
data base record has been stored in a block, any unused sFace, if
sufficient, is filled ~ith segments from the next data base record.

Initial entry to an HSAM data base is through get unique or get next
calls. When the first call is issued, the search for the desired
segment starts at the begirning of the data base in storage, and passes
sequentially through all segments stored in the data base until the
desired segment is reached. After the desired segment is reached, the
position it occupies is used as the starting positien for any additional
calls that process the data base in a forward direction. From current
position in an HSAM data base that has a unique sequence field defined
in the root segment type, if a get unique is issued to retrieve a
segment that is forward in the data base, the search starts from current
position and moves fcrward to the desired segment. If the desired
segment requires backward movement in the data base, the Frocessing
option parameter~ G or GS, whiCh are specified during PSEGEN, determine
how backward movement is accomplished. The G precessing crticn

4.22 IMS/VS System/Application Design Guide

specifies the get functicn only, ~hereas the GS Frocessing option
specifies get segments iT; ascending s=quence only. If GS has been
specified and backward movement in a data base is required to sa tisfy
a get unique, the search for the desired segment will start at the
beginning of the data base and move forward. Under the same conditions
when the G proce~sing opticn is ~pecified, from current position the
search will move backwards iL the data base. ~his is acccIT'plishEd by
backspacing over the block just read on tape or disk, and the block
previous to the block just read, ther. reading the previous block forward
until the desired segment is found.

An H~M data base can be randorrly processed through get unique calls
wi~hin one volume. When no sequence field tas been defined in the root
segment type of an HSAM data base, each get unique causes the search
for the desired segment to start at the beginning cf the data base
regardless of current po~ition.

Insert, delete and replace calls cannot be used when processing an
existing HSAM data base. The only calls that are valid for processing
an existing H~M data ba~e are the get calls which e~able retrieval of
segments from the data base only. To update an ESAM data base, it must
be reloaded.

A simple HSAM data base is an ESAM data base that contains cnly one
segment type. when a sirrple HSAM data base is defined, occurrences of
the segment type are loaded into the data base without prefixes.

HISAM STORAGE ORGANIZATICN

In a HISAM data base, segments within each data base record are
rela ted through physical adjacency in storage as with an HSAM data
base. Unlike HSAM however, in a HISAM data base each data base record
is indexed. In defining a HISA~ data base, the user must define a
unique sequence' field in the root segment type of the data base. When
defined, the sequence field values in occurrences of the root are used
to index to each data base record in the data base.

In defining a HISAM data base, the user can specify VSAM or the
combination of ISAMIOSAM as the access methods tc be used for the data
base. When I~M/OSAM are specified, he can also specify that the HISAM
data base be stored as one to 10 data set groups. If VSAM is specified,
a HISAM data base can have cnly one data set group. When VSAM is
specified as the access method, a data set group ccntains one key
sequenced data set and one entry sequenced data set. When ISAM/OSAM
are specified as the access methods each data set group ccntains one
ISAM data set and one OSAM da ta set. In both cases, one data set, key
sequenced or ISAM, is used for primary storage cf segments and a s an
index. The other data set, entry sequenced or CSAM, is used for
overflow storage of segments. The terms used to describe data set
groups are primary and seccndary. A primary data set group contains
the root segment type. All other data set groups are called seccndary
data set group~.

When only one data set group is defined for a HISAM data base, the
data base is stored as shown in Figure 4-12. Each key sequenced or
ISAM lcgical record will ccr.tain in hierarchic sequence an occurrence
of the root, plus all dependents of the root that there is sufficient
space for in the logical record. When no space remains for the

Data Base resign OOnsiderations 4.23

remaining segment~ in a data base record, the remaining segments are
stored in hierarchic sequence in cne or more lcgical records of the
~n~ry sequenced cr OSAM data set. To relate all logical records in
bo~h data sets that contain segmen~s in one data tase reccrd, a direct
address pointer is stcred in each logical record to chain them in
hierarchic sequenc~.

KEY SE;QUENCED
OR

ISAM DATA SET

Figure 4- 12.

MTA lASE IECORD STROCTUIIE

ENTRY SEQUENCED
OR

OSAM DATA SET

HlSAM Data Base Record in storage (Single Cata Set Group)

The structures of logical records for VSAM, and ISAM or OSAM data
sets are shown in Figure 4-13. The first 3 bytes of each logical recozn
for ISAM or OSAM, and the first 4 bytes of each logical record for VSAM
are used for a direct address pointer. Tr.e pcinter is used to maintain
root segments in ascending key sequence and to rraintain all segments
within a data ba~e record in hierarchic sequence when new segments are
inserted into a data base after initial load. Fcllowing the ~ointer
are one or more ~egrrents cf a data base record in hierarchic sequence.
At the end of the last segment in the logical record for VSAM, ISAM or
OSAM, a one byte segment ccde of zero is stored to indicate that the
last segment in the logical record has been reached. Following the
zero segment code for VSAM, remaining space in a lcgical record is
residual. Following the zero segment code for ISAM or OSAM, there are
thre~ by~es of zeros, or a 3 byte direct address fcinter.

4.24 IMS/vS systerr/Application Design Guide

ISAM/OSAM Format

SEGMENT

t CODE 000 RESIDUAL SEGMENT SEGMENT SEGMENT a OR
NOTE 1

VSAM Format

t SEGMENT SEGMENT SEGMENT
NOTE 3

NOTES:

1. The pointer is comprised of the 3 byte relative record number
of the OSAM data set logical record that contains a root inserted
after initial load.

2. The pointer is comprised of the 3 byte relative record number
of the OSAM data set logical record that contains the next
dependents in hierarchic sequence.

3. The pointer is comprised of the 4 byte relative byte address of
the entry sequenced data set logical record that contains the
next dependents in hierarchic sequence.

(1 BYTE) NOTE 2

SEGMENT
CODE RESIDUAL a
(1 BYTE)

Figure 4 -13. HISAM Cata Ease VSAM, ISAM and OSAM Logical Record
Fcrrr.a t~

Three bytes of zeros indicate that this logical record contains the
last segment in a data base record. If not zercs, a three byte ~ointer
points to the logical record that contains the next segments in the
data base record in hierarchic sequence.

In a VSAM data set, cne er more logical records are centained in
each control interval. In an ISA~ or CSA~ data set, one or more logical
records are contained in each block. A ccntrel interval or block is
the u~it ef data transferred bet~een an I/C device and main storage.
For VSAM and ISAM data sets, the respective access method uses an index
to address a specific contrcl interval or block in a data set. For an
entry sequenced data set or an OSAM data set, direct addresses are used
to address each centrel interval or block respectively in a data set.

To load a HISAM data base, occurrences of the root segment type must
be arranged in ascending key sequence, and all de~endents of each root
must follow that root in hierarchic sequence. In the key sequenced or
ISAM data set, consecutive logical records within a contrel interval
or block are used to stcre root segment occurrences in ascending key
sequence. The first logical record contains the rcot segment with the
lowest key, the next consecutive logical record contains the root
segment with the next higher key, and the last lcgical record contains
the root segment with the highest key in that control interval or block.
In addition, control intervals or blocks within a data set are loaded
in ascending root segment key sequence, this enables a given data base
record to be accessed directly through the key of its roct.

Da ta Ba se r:e si g n Con si d er at ions 4.25

Logical record lengths are a major consideration in a EISAM data
base. They affect space and access time.

Extremely shcrt cr long lcgical records tend tc increase wasted
space. since only cOIr~lete segments are stored in a logical record,
a g'ap of space is usually unused at the end of each logical record.
The number of ga~s increases as the LRECL becomes small, and the size
of gaps increases as the logical record lengtt beccmes large (if data
base records are shcrter than the logical reccrd length, the remaining
space is lost) •

All segments in a logical record are accessed with one read of an
1/0 device. Accessing additional logical reccrds Iray require additional
reads and seeks depending cn ~hysical positioning. The number of seeks
and reads to access an entire data base record is in pro~orticn to the
number of logical records ~hich comprise that data base record, and
therefore increases as the logical record length decreases.

To choose a value for LRECL, several choices shculd be tried with
~he fcllowing restrictions:

1. The minimum length must be at least equal to the m?,JC1 .. lllUm segment
length, including prefix, ~lus 5 for VSAM cr 7 for ISAM.

2. For ISAM/CSAM the rraximum length cannot exceed the physical
block size of the IIC device used. For VSAM, the maximum logical
record length is 30720.

3. For ISAM/CSAM, LRECLs must be evenly divisable into ~hysical
block size (1/2, 11'4, etc.)

4. VSAM LRECL values roust be an even length.

For each LRECL value chosen, the average usable space ~ithin a record
can be calculated as follows:

u = (LR EeL - ~ - B)
2

where:

u usable data characters per logical record.

A weighted average cf segment lengths not including the
root segment.

B = 7 for ISA~/OSAM, and 5 for VS~M.

The nu~ber of logical records required for a particular type data
base record is then calculated by dividing the usable logical record
length into the total length of the data base record. By breaking the
file into a number of typical record types and calculating the space
required for eacr., the total space requirements can be approximated.

As stated before, the number of reads required to obtain an entire
data base record is proportional to the nurrber of logical recozrls it
requires. By using" typical" record s the number of logical reoords
required for the entire file can be calculated. Due to record blocking
and the IMSIVS buffer ~ocl rranagement, the actual number of accesses
required will be less than the number of logical records. A file
requiring fewer (large logical record length) logical records can be
accessed faster than the same file with an LRECL value requiring more
logical records Csrra 11 lcgica 1 record 1 ength) •

4.26 IMS/VS System/Applica~ion Design Guide

If the nu~ber ef legical records (relative access ~ime) and total
space are plotted against several trial LFECL values, the graph should
take the following general form:

High

-..........
......... rn ro

T
......... ~

......... 0
......... U Q)

..........
p:;

~
tTl U

~ 0
Pol H
CI)

........... '4-1
H _--- 0
~
8
0 0
8 Low Z

LRECL increase~

As shown, as the value ef LRECI gets larger, the number of logical
records decreases continualiy, until the LRECL s~ecification equals
the largest data base record length. At this point, the number of
logical records equals the number of data base recerds.

The total s~ace requirements tend to rise if tte value of LRECL is
either too long .cr toe short. Once several trial LRECL values have
been plotted, it should be possible to pick a geed ene for the file.
Consideration sheuld be given to the relative importance of space and
access time in. the individual situation.

The ISAM and OSAM porticns of the data base need not have the same
LRECLs. To determine the effect of different values for LRECL, each
portion of the data base must be figured se~arately as above.

To maintain root segment in ascending key sequence when new roots
are inserted after initial load of a HISAM data base, one method is
used when VSAM is specified as the access method for the data base and
another method is used when the cembinatien ef ISAM and OSAM are
specified as the access rrethcds.

The reethod shewn in Figure 4-14 is used when VSAM is specified. The
proper control interval in the key sequenced data set for the r.ew root
is obtained, and if the ccr.trol interval has a free logical record,
the new root is stored in ascending key sequer.ce in the centre I interval
by pushing all lcgical records that contain roots with higher keys to
the right one position. If no free logical record exists in the control
interval, the centrel interval is split forming two control intervals
that are both equal in size to the original.

Data Base Design COnsiderations 4.27

Insert root with key of 15

BEFORE

t ROOT I DEP I DEP t ROOT' DEPIDEP
10 BYTES OF

* 10 * 20
FREE LRECL FREE LRECL FREE LRECL VSAM CONTROL

INFORMATION**

AFTER

t ROOT I DEP I DEP t ROOTI DEP ,DEP t ROOT' DEP I DEP
10 BYTES OF

* 10 * 15 * 20
FREE LRECL FREE LRECL VSAM CONTROL

INFORMATION**

t~~ I
~-----------------------------CONTROLINTERVAL----------------------______ ~~~

* The pointer is comprised of the 4 byte relative byte address of the
entry sequenced data set logical record that contains the next
dependents in hierarchic sequence.

** For unblocked data sets, the VSAM control information is
only 7 bytes.

Figure 4-14. Root Segment Insertion into Key sequenced Data set
centrel Interval

Each new control interval will contain approximately one half of
the logical records that were stored in the origir.al control interval
which results in free logical records in the last half of each new
control interval. After the control interval has been split, the new
root is stored in the ~reFer centrol interval in ascending key sequence
by pushing all logical records that contain rcots with higher keys to
the right one legical reccrd.

To maintain root segments in ascending key sequence when ISAM and
OSAM are specified as the access methods for a HI~M data base, the
method shown in Figure 4-15 is used. Each new root is stored in an
OSAM logical record. To maintain root key sequence, a direct address
pointer is placed at the beginning of the ISAM logical record that
contains the root segment with the next higter key to ~oint tc the OSAM
logical record that contains the inserted root as shown in Example 1.
Example 2 shows a second root segment being inserted in the OSAM data
set. The logical reccrd that contains the root with the next higher
key in ~he ISAM data set ~cints to the CSAM logical record that contains
the root with the lowest key. That OSAM logical record in turn ~oints
to the OSAM logical record that contains the next higher key.

4.28 IMS/vS System/Application Design Guide

EXNI'l£ 2 - INSERT ROOT 17

Figure 4-15.

EXAlf»l£ 3 - INSERT ROOT 13

Foot segment Insertion When ISAM/OSAM are HISAM Data
Base Acce~s Method~

rata Base Design Consideraticns 4.29

In a HI~M data base, the crder of chaining a series of root segments
can significantly impact updates. If the addition of root segments is
a part cf the update, insertions should be made in descending sequence,
highest key first when ISAM/OSAM are the os access methods. ~his
~educes the number of reads necessary to find a point at which to insert
a new root. It can be seen in Figure 4-16 that, even with a short
chain, the insertion of higher rect keys requires a larger number of
accesses than the insertion of lower keys. For exam~le, to insert Root
46 it was necessary te read both Roots 34 and 36. The insertion of
32, however, only required the reading of Roct 34. Note that the
building of long chains cf reots occurs only when a large number of
updates affects the same area of the data base. ~he need for descending
insertions is less if the inserts are distributed over the data base.

Wh en VSAM is used f or a HI SAM da ta base, new roots c an be ins ert e d
in ei ther ascending or descending sequence. Ascending sequence should
provide sightly faster Ferfcrmance.

-.------ PHYSICAL RECORD-------------,

~OGICAL R[CORD ----y-- LOG) CAL RECORD ,-LOGI CAL RECORD--.
, ,. + ~,

ROOT DEP1 ROOT DEP1
A
2

ROOT DEPI

27 31 48

ROOT
B A

ROOT

(<:: 1 36 1 3q 2ND

I4--LOGICAL RECORD 1--~.I4--LOGICAL RECORD 2~
PHYSICAL BLOCK A

-
ROOT

3RD L!7
14-- LOGICAL RECORD 1--+

PlIYSICAL BLOCK 8

ROOT

4TH
~--~------~--------

32

Figure 4-16. HISAM Root segment Insertion sequence

4.30 IMS/VS SystenVAFplica tion De sign Guide

The method used to maintain the hierarchic sequence of segments
withir. a databaee record ~hen new dependent segments are inserted into
a HISAM data base is essentially the same fcr beth V~M, and the
combinaticn of ISAM and OSAM access methods.

In a HISAM data base, one logical record in the primary storage data
set and, if necessary, one or more logical recorde in the overflow
storage da~a set, are used to store each data base record. Within each
logical record and across all logical records that contain segments in
one data base record, segmente are hierarchically related through their
physical sequence in storage. Within each logical record, segments
are physically stored in hierarchic sequence, and across logical
records, a direct address pointer relates each lcgical record to the
next in hierarchic sequence.

Figure 4-17 shows how the physical sequence of segments within a
data base record in storage is maintained wr.en inserting dependents
into a data base after intial load. Example 1 shows a dependent segment
being inserted into a logical record that ccntains sufficient epace
for the new dependent. The new dependent is stored in its proper
hierarchic position within the logical record by shifting the segments
that will hierarchically fcllow it to the right within the logical
recordc Example 2 shows segments displacEd to a lcgical record at the
end of the overflow data set when the inserted segment did not leave
sufficient space for them at the End of the origir.al logical record.
In Example 3, the length of the segment being inserted is greater than
the space remaining in the original logical recerd even after displacing
following segments in that logical record, so all are placed in an
overflow storage logical record. Example 4 shows an inserted segment
that will.not fit into the original logical record, and a disFlaced
segment that will nct fit ir.tc the first overflow logical record with
the inserted segment. Two overflew logical records are used, and they
are chained tegether in hierarchic sequence.

In the previous examples, the overflow logical reoords referred to
are at the end of the entry sequenced data set wr.en VSAM .is the access
method specified, and they are at the end of the CSAM data set when
ISAM/OSAM are specified as the access methods. In both cases, logical
records at the end of the respective data sets are used for newly
inserted or displaced segments frem both the Frirrary storage data set
and the overflow storage data set.

I:ata Base Design censidera ticns 4.31

Example 1- Space available in logical record for dependent being inserted.

Key sequenced,
ISAMorOSAM
data set

BEFORE
~------~---------r--------~------~

I ROOT
~EGM100

DEP10 DEP30

Example 2- Space available in logical record for dependent being inserted by displacing
existing segments in logical record to an OSAM or entry sequenced
data set logical record.

BEFORE

I ROOT
SEGM100

Key sequenced, or
ISAM data set

DEP10 DEP20 DEP30

Entry sequenced
or

OSAM data set

*The pointer is at the beginning of VSAM logical records.

Figure 4-17 (Part 1 of 3). Dependent segment Insertion into a BISAM
I:ata Ease with One Data Set Grcup

4. 32 IMS/vS System/Application Design Guide

Example 3- Space available in logical record after segments are displaced but
dependent being inserted is too large.

BEFORE

Key sequenced,
ISAM or OSAM
data set

I :eOGO~100 I DEP10 DEP20

AFTER

Entry sequenced or
OSAM data set

*The pointer is at the beginning of VSAM logical records

Figure 4-17 (Part 2 of 3). Dependent Segment Insertion into a HISAM
Cata Ease with One Data Set Group

Cata Base Design Considerations 4.33

Example 4- Space available in logical record after segments are desplaced to
overflow, however, segment being inserted is too large and segment
displaced will not fit in 1st overflow.

BEFORE

Key sequenced, or
ISAM data set

I ~~g~100 I DEP 10 DEP20

AFTER
INSERT DEP15

Entry sequenced or
OSAM data set

*The pointer is at the beginning of VSAM logical records

Figure 4-17 (Part 3 of 3). Dependent Segment Insertion into a HISAM
Bata Ease with One Data Set Grcup

4.34 IMS/vS System/Application Cesign Guide

ISAM/OS~: When segments are deleted in a HlSAM cata ba~e that uses
IS~M/OSAM, segments are sirrrly marked as being deleted in the delete
byte contained in their prefix. They are not ~hysically deleted from
a data base. To rega in s~ace occupied by deleted segments, a HISAM
data base must be unloaded and reorgar.ized by the user through the
HISAM reorganization unlcad and reload utilities.

VSAM: Segment deletion in a HISAM data base using V~M is the same as
stated for ISAM/O~M excert as follows. wben a root segment is deleted
from a HISAM data base that uses VS~1, the lcgical record in the key
sequenced data set that contains the root is either erased or the delete
byte is marked as when using IS~M/OSAM. An erase is only done when
processing the data base in batch mode, the root or any dependent of
the root is not involved in an active logical relaticnshir, and there
is only one PCB rer da ta ba se wi thin the FSE.

Secondary data set groups should be considered for HISAM data bases
using ISAM/OSAM as the OS/VS access methods in two cases. They should
be considered when storage space is wasted because an efficient logical
record length cannot be found for the primary data set group due to
segment types in the data base whose lengths vary considerably. And,
when access to a dependent segment type in the data base is too time
consuming through the primary data set group.

As in a rrimary data set group, each secondary data set group uses
~wo data sets. An ISAM data set is used as the first storage data set
and as the index to the first segment type defined in that data set
group. Ann O~M data set that is used as the overflow storage data
set. The benefit gained in defining multiple data set groups is that
each data set grcup defined can have different logical record and block
lengths. In addition, the occurrences of tle first segment type defined
in each secondary data set group are indexed through the key of the
root segment they follow in a data base record. ~hen defining a
secondary data set group, the minimum LRECL must be expanded by the
amount necessary to append sequence field keys of the root segment type
onto occurrences of the first segment type defined in the secondary
da ta set group.

When only one data set group is defined for a HISAM data base, the
segments in each data base record are stored in hierarchic sequence
using one logical record in the first storage data set and, if
necessary, one or more lcgical records in the overflow data set. To
index each data base record, the key of tte rcot that starts each data
base record is used. ~hen rrultiple data set groups are defined, one
logical record in the firs~ storage data set of each data set group
and, if necessary, one or more logical records in each overflow data
set are used to store the segments of one data base record as shown in
Figure 4-18. ~o index each data base record, the key of the root that
starts each data base record is duplicated and is used to index the
segments in each seccndary da ta set group that are in the s arne data
base record. In the figure, the secondary data set grou~ contains a
duplicate of the key of the root that starts that data base record.
~he duplicate key is followed by the first occurrence of the description
segment type in the data base record, which in turn, is followed by
all other segments in that base record in hierarclic sequence.

Data Base Design Ccnsiderations 4.35

The use of multiple data set groups to store a HI~M data base has
an affect on mai~ storage requirements. Each data set group requires
additional space ir. the rME pool.

Duplicate Of
SKILL 1
Key

Figure 4-18.

MTA BASE RECORD STRUCTURE

PlIMRY DATA SET GROUP

SECONDARY DATA SET GRuUP

One Data Base Record in a HIS~M rata Base (Multiple Data
Set Group)

A simple HISAM data base is a HISAM data base ttat contains only
one segment type. when defining a simple HIS~M data base, VSAM must
be the access method specified. When defined, cccurrences of the
segment type are loaded intc the data base without prefixes, thus making
the data sets that contain the data base compatible for use by VSAM as
well as IMS/VS.

HDAM AND HIDAM STORAGE OFG~NIZATIONS

TWO of the primary advantages gained with HDAM and HIDAM data bases
are space reuse and the ability to access segments within the data base
through direct address pointers. Either data base ty~e is stored in
on~ or rrore Vs\M entry sequenced or CSAM data sets depending on the
number of data set groups defined. Space withir. each data set is
managed through free space elements and bit maps. When segments are
inserted or deleted from either data base type, tte s~ace used or freed
by those segmentE is reccrded in a bit map to enable its reuse when
inserting new segments. To hierarchically relate segments in HDAM and

4.36 IMS/VS System/Application cesign Guide

HIDAM data bases, direct address pointers are used. In either data
base type, hierarchic, physical child/physical twin pr any combination
of the two types of pointers can be specified.

The storage organization methods used for HDAM and HIDAM data bases
are essentially the same. ~he primary di~ference between BCAM and
HIDAM data bases is that access to occurences of the root segment type
is through a user randomizing module for an HLAM data base, and through
an index for a HIDAM data base. To access a given root in an HDAM data
base, the randorrizing rrodule examines the key of the root, and through
hashing or some other arithmetic technique, ccrr~utes the address of
the rcet and passes it tc IMS/VS. To access the same root in a HlCAM
data base, an index must be searched by IMS/VS tc find the address of
the reot. When found, the root is accessed. Ey using a randomizing
module to locate roots, the I/O operations required to search the index
are elirrinated.

HDAM

To use an HDAM data base, the user wust su~ply a randorrizing module.
The randorrizing rrodule determines ~here each roct should be stored in
the data base, and supplies the address of each root stored to IMS/vS
each time that root must be accessed. Addresses sup~lied by a
rando~izing module consists of a relative block number and an anchor
point number. Anchor points are stored in the anchcr point area of
each control interval er bleck, and each is a four byte direct address
pointer to a root. To access a given root, the relative bleck nuwber
locates a specific contrel interval or block in relation to the start
of the data set, and the anchor point number locates a specific anchor
point in the anchor point area of that control interval or block.

Figure 4-19 shows the organization of an HLAM data base in storage.
The entry sequenced or OSAM data set in the primary data set group is
divided into two areas called the root addressable area and the overflow
area. The root addressable area is the first n ccntrol intervals or
blocks in the data set, and the overflow area is the remaining portion
of the data set.

Data Base Lesign considerations 4.37

HDAM
DATA BASE RECORD STRUCTURE

SKILL
1

I NAME
NAME

3
NAME 2~,

107 \~,
I .//~ \',

I, "'~~ " , " ... ~ , " ... I ~

EXPERIENCE 4 EDUCATION 2.1 (EXPR) 1 2~- (EDUC) 1 ~
....;;;;.

Figure 4 -19. H[AM ~a~a Ease Record in Auxiliary Storage

The roo~ addressable area is the area in which the user randomizing
module assigns rect~. The length of the root addressable area is
specified by the user through the DBDGEN utility. Also s~ecified is
the number of anchor ~cir.ts to be placed in the anchor point area of
~ach control interval or block in the root addressable area. A third
parame~er specified is the rraximurr number of bytes of a data base record
to be stored in the root addressable area. The root addressable area
is used as the primary storage area for segrrents ir. each data base
record, and the cverflcw area is used for overflow storage. since data
base records vary in length, the bytes pararreter is used to centrol
~he arrount of s~ace used for each data base record in the root
addre ssable area. The bytes parameter lirrits the number ef segments
of a data base record that can be consecutively inserted into the root
addressable area. When consecutively inserting a root and its
dependents, each segment is stored in the root addressable area until
the next segment to be stored will cause the total space used to exceed
the bytes parameter. The total space used for a segment is the combined
lengths of the prefix and data portions of the segrrent. ~hen exceeded,
that segment and all remaining segments in the data base record are

4.38 IMS/VS Syste~/A~plication ~esign Guide

stored in the overflcw a rea. I t should be noted that the bytes
parameter only controls segments consecutively inserted in one data
base record. consecutive inserts are inserts to cne data base record
that are not intervened by any call to process a segment in a different
data base record.

The general criteria to determine the size of the root addressable
area is:

Number of bytes of
a data base record
to be stored in the
root addressable area

x
the expected number
of data base records

--(Nurrber cf bytes per block)
= re qui red si ze

of the root
addressable
area in blocks

In addition, if distributed free space is specified, the space
estimate obtained must be multiplied by one facter fer free blocks and
another for free space within each block as sh9wn in the following
formula:

(Total Space) = (Minimum Space) X ___ tQtf __
fbff-1

where:

x _____ 1 ___ _
1-f~f

100

2 ~ fbff ~ 100 or fbff = 0 and 0 ~ fspf < 100

See "Distributed Free Space" in this chapter fer definitions of !l!ff
and t:§Qt.

At least root segments should be stored in the root addressable
area. In addition, active dependent segments should be placed in the
root addressable area since this will provide fast access to them
because of their physical ~roximity to the root segment. when all
space in the root addressable area is occupied, all segments inserted
(roots included) are placed in the overflow area.

The size of the root segment addressable area is fixed with DBD
generation. The overflow area however, can be dynaIrically extended if
the overflow storage data set allocation is specified as secondary
allocation.

~oading AD IrnM1 12~j;~].9§.§

To load each data base record into an HDAM data base, the user
randomizing module generates a relative block and anchor point number
for the root that starts that data base record and passes them to
IMS/vS. IMS/vS in turn, attempts to store the root in the control
interval or block specified. If space is available-in that ccntrol
interval or block, the rcot is stored and a four byte direct address
pointer to the root is stored in the specified anchor ~oint position
in the anchor point area of that control interval or block. When space
is not available in the control interVal or bleck specified, IMS/VS
uses the HD space search algorithm to find the available space nearest
to the control interval or block specified by the randomizing module.
When found, the root is stored a~d a pointer to that root is stored in

Data Base Design Considerations 4.39

the original anchor point posi~ion and relative block number specified
by the randomizing module.

When a randomizing module produces the same relative block and anchor
point number for multiple roots, the specified ancbor ~oint peints to
one, and the rest are chained thorugh physical twin pointers. When a
unique sequence field has been defined in tbe roet segment type, the
anchor point points to the root with the lowest key and the rest are
chained in ascending key sequence through physical twin pointers. When
a unique sequence field is not defined, the insert rules of FIRST, LAST
or HERE determine the sequence in w.hich the roots are chained. All
roots chained from a given anchor point are called synonyrrs since all
have the same relative block and anchor point number. To reduce the
length of root segment synonym chains if they affect performance, the
user should increase the nurrber of root anchor points specified for
each control interval or block in the root addressable area. The user
randomizing routine can then distribute the roots across more anchor
points, thereby reducing the number of synonyrrs ~er anchor ~oint.

After a root is loaded into the root addressable area, the next
segments in a data base record are stored following the root until the
bytes parameter causes the remaining segments iT. a data base record,
if any, to be stored in the overflow area.

HIDAM

A HIDAM data base in auxiliary storage is actually com~rised of two
data bases that are nerrrally referred to collectively as a HIDAM data
base& When defining each through the DBDGEN utility, one is defined
as the primary HIDAM index data base and the ether is defined as the
HIDAM data base. In the following discussion the terms 'HIDAM data
base' will refer to the BICAM data base defined ttrough DBDGEN.

The primary HIDAM index data base is used to index to the data base
records stored in a HIDAM data base. When a HICA~ data base is defined
through DEDGEN, a unique sequence field must be defined in the root
segment type. 'The resulting key in the sequence field of each
occurrence of the root is used by IMS/VS to create an index segment
for each root that is stored in the index data base. To identify which
root an index segment inde~es, the key in the sequence field of a root
is stored in the data portien of an index segment. To index to that
root, the address of the root in the HIDAM data base is stored as a
direct address ~cinter in the prefix of its index segment.

When the user loads a HIDAM data base, the primary HICAM index data
base is loaded automatically by IMS/VS. In leading a HIDAM data base,
all roots must be inserted in ascending key sequence, and all dependents
of a root must be inserted following that reot in hierarchic sequence.
As each root is stored in the HIDAM data base, IMS/VS generates the
index segment for that root and stores it in the index data base.

The index data base consists of an ISAM and an OSAM data set when
ISAM/OSAM are specified as the access methods for the data base, or it
consists of a key sequenced data set when VSAM is specified as the
access method as shown in Figure 4-20. When ISAM/OSAM are specified
for the index data base, the ISAM data set is used for storage of index
segments created during initial load of a HIDAM data base, and it is
called the primary data set. The OSAM data set is used for storage of
index segments created when new roots are added to a HIDAM data base
after initial load, and it is called the overflow data set. When VSAM
is specified for the index data tase, the key sequenced data set is

4.40 IMS/VS System/Application Design Guide

us~d for both index segments created during initial load and after
init ial lead.

When ISAM/OSAM are used for an index data base, all index segments
for roots initially loaded are stored in ascendir:g key sequence in the
ISAM data set. when rcote are added after initial load, the index
segment fer ~hat root is stored in the first available logical record
in the OSAM data set. ~hen this cccurs, a pointer is s~ored at the
beginning of the logical record in the ISN1 data set that contains the
nex~ higher key. The reinter ~oints to the logical record in the OSAM
da~a set that con~ains the added index segment. when rrultiple index
segments have te be chained from +~e same logical record in the ISAM
da~a set, the logical record in the ISAM data set ~cints to the OSAM
logical record that contains the index segment with the lowest key.
Any a ddi tiona I C SA!·1 logica I rec ord s to be chained are ch ained from the
first OSAM logical record in ascending key sequencE. Since index
eegments added after initial load are stored in the OSAM data set,
~heir access requires additional I/O operations. ~o imprcve ~erforrnance
degraded by reot in~erts, the index data base should be reorganized
through the HISAM Reorganization Unload and Reload utilities.

A HIDAM data base is stored in from one to ten entry sequenced or
OSAM data sets derending en the number of data set groups defined and
the access m~thod spEcified. Each data set grour uses one entry
sequenced data set when VSAM is specified as the access method, and
on~ OSAM data set when OSAM is the access rrethod s~ecified. ~hen
initially loading segmente inte a HIDAM data base or when inserting
segments into a HIDAM data base after initial load, the HI: space search
alqori~hm is used ~o find the most suitable space available.

I:ata Base Design Consideraticns 4.41

,I:: I-1j . 1-'-
VSAM ISAM/OSAM

,I:: i.Q
tv c::

t1
:-INDEX------- - --- - - - - - - --- - -----------,
t

-,NO'Ex---------- ------ ---- -----------..,
CD

~ ,I::

I en tv

Key Sequenced Data Set

~ 0 .
en
Ul

"<! I-! I-!
(I) !':1 !:1 c+ I-'-en (0 c+ (0 g 1-'-11

~ PI rt,
'l1 0
Itj ~,

(')
1-'- PI PI 0 0..
PI '8 c+
1-'- 0 0 rt
::i

tj en
m (1)

\.Q en E 1-'-
\.Q m

!:1 ::i rt
G) 1-" c:: tj
1-" c+ 0.. (')
(J)

PI

tIl
I-!

~
3:

0
PI
rt
PI

trJ
PI
en
(J)

PI
......
rt
(J)

11

HI12~ !2at.£ Ba.§~ BOO!: §~g!r~n:t IY~.§ fQi.!lte~ Q1:tif.D.§

If forward only hierarchic or physical twin pci~ters are specified
for the rcot segrrent type of a HIDAM data base, sequential access to
each root segment is accomplished by using the index. When fcrward
and backward hierarchic cr physical twin pointers are ~pecified for
the root segment type, for sequential processing the index is only used
to access the first rcct ~egment. From the first root, additional
roots can be processed sequentially without further reference to the
index.

In definir-g an HDAM or HIDAM data base, the user can specify VSAM
or OSAM as the access methoc to be used for the cata base, and he can
also specify that the data base be stored as one to ten data set groups.
When VSAM is specified, each data set group ccnsists cf cne entry
sequenced data ~et. ~hen OSAM is specified, each data set group
consists of one CSAM data set. In either case, tbe resulting data set
will have an unblocked fcrrrat. When not specified by the user, LBDGEN
generates logical record lengths for the data sets that are equivalent
to a quarter-track, third-track, half-track, or full-track block.

~ata Base Design Consideraticns 4.43

Direct address rointers ~ithin the prefi~ of a segment and the anchor
point(s) of a blcck are ccnetructed by the following formula:

Pointer Value (Block Size) X (Block Number) + (Cffset within Block) •

This formula is also used for pointers in tte rrefix of segments of
an INDEX data baee when relating to segments in a HIrAM data base.

In order that all segments will be on half word alignment, within
~h~ data set a slack byte is added to thE end cf any segment in HDAM
data bases or HIDAM whose tctal length is an odd number.

The control fields used in managing entry sequenced or OSAM data
sets for HDAM and HIrAM data bases arE (See Figure 4-21):

• Free space anchor point

• Free space element

• Anchor point area

• Bit map control interval or blocks

4.44 IMS/VS System/Application Design Guide

ITj
~.

~
11
(()

+:
I

r-.>
Entry Sequenced or OSAM Data Set

~

on
~ (')
rttj
~ rt

11
(flO
(()~
rt
OOI-rl

~.

cj(1)
OO~
(1)0.
0..00

me:
o 00
Ii (()

tJ a.
~ :::x::
rt t:lrt
~ !J:.lIO

tl1 ~:s:
~ o ~
00 Ii ::1
(() ~

:r:~
0 H(()
(1) t"1
00 ~I::tj
~. ~~

l.Q rt
::1 Hii

n ~I<:
rt

0 ~ {fl
tj (()
00 ttI..Q
~. ~ c:
0.. 00 (J)
(() (() tj
Ii 00 (')
~ (()
rt 0..
f-J.
0 0 ::s 11

* VSAM only; 7 bytes of VSAM control information

en
0
{fl

:J:oI
+: :;:

+:
U'I

Each control interval or block in an entry sequenced or OSAM data
set respectively starte with a four byte free space anchor point (FSEAP)
field. The field contains, in the first two bytes, the cffset in bytes
to the first free space element ip that control interval or block. The
second two bytes contain a flag that identifies bit map blocks. For
blocks other than bit roa~ blocks, +~e second two bytes of the field
contain zeros.

· A free space element identifies each area of free space in a control
interval er block that ie eight bytes or more in length. To identify
each area of free space, a free space element occuries the first 8
bytes of each area of free etace. The fields in each free space element
are:

• Free space chain pointer field (CP) -- This field contains, in
bytes, the offset to the next free space element in the control
interval or block from the beginning of tbe centrol interval or
block.

• Available length field (AL) -- This field certains in bytes the
length of the vacant space that this free space element identifies.
~he value in the available length field includes the length of the
free space element itself.

• Task ID f-ield (11::) -- This field contains the task ID of the program
that freed tbe srace that is identified by this free space element.
The task ID enables a given pregram to free and reuse the same
space during a given scheduling ~~thout contending for that space
wi th other programs.

The task ID censists ef a one-tyte calendar date followed by a three
byte currulative sync peint count for the day.

For an HDAM data base, the user specifies the number of four byte
direct address root anchor points desired in each control interval or
block in the roct addreseable area. For each anchor point specified,
four bytes of space is reserved in the ancher point area of each control
interval or block in the root addressable area. The space for anchor
pOints is not_ reserved in those control intervals outside the root
addressable area, including the bit map control intervals. This space
is initially made free space and is available just as other free space
in a control interval.

For a HIDAM data base, wben forward-only hierarchical or physical
twin pointers are specified for the root segment ty~e, one 4-byte anchor
point is ~resent in each centrcl interval or block. The anchor point
addresses the last root inserted into the control interval and the
roots are chained in the reverse order from the sequence in which they
were inserted into the control interval. With a forward-only (not
forward and backward) ~ointer at the root level, it is impossible for
IMS/VS to keep the roots chained in key sequence when new roots are
inserted into an existing data base. Because the forward pointer chains
roots in reverse time sequence and not in key sequence, it is not used
by IMS/VS to obtain the next sequential root. The index is used to do
sequential processing. For a H11::AM data base we recerrmend that you
use no-twin, twin forward and backward, or hierarchical forward and
backward pointers at the root level. When one cf these ortions is

4.46 IMS/VS System/Application 1::esign Guide

used, no anchor rOint is rlaced in the contrel interval. If your
processing is primarily random, no-twin is best because all accesses
to the root segments are via the index. If yeur rrccessing is primarily
sequential, use ~hysical er hierarchical forward and backward. With
these pointers the roots are chained in key sequence.

A bit map control interval or block starts ~itb a two byte free
space chain pointer field. The field always contains zeros in a bit
map control interval or block in the root aodressable area of an HDAM
data base since no space is available in those bit map control intervals
or blocks for segments. The next two bytes ccntain a bit map flag. A
low order one in the sec end two bytes of a control interval or block
indicates that the control interval or block contains a bit map. The
same two bytes in all ether control intervals or blocks in a data set
will contain zeros. The next 0 to n bytes of a bit mar control interval
or block are for roet ancher points. Following the anchor point area
when present, the remainder of the centrol interval or bleck is a bit
map.

The first control interval or bleck of the first extent of the data
set specified for each data set group in an BDAM or BIDAM data base is
used for a bit map. If, however, the organizatien is VSAM, the second
block is used for the bit map and the first block is reserved. In the
bit map, each bit is used to describe whether or net space is available
in a particular control interval or block. The first bit, corresponds
to the block the bit map itself is in, and each ccnsecutive bit
corresponds to the next consecutive block in the data set. when the
bit value is one, it indicates that the associated block has sufficient
space remaining te'store an occurrence of the longest segment type
defined in this data set group. When the bit value is zero, sufficient
space is not available for an occurrence of the longest segment type
defined in this data set group. The first bit rrar in'a data set
contains n bits that describe space availability in the next n
consecutive control intervals or blocks in the data set. After the
first bit map, another bit map is stored at every nth control interval
or block to describe space availability in the rerraining centrol
intervals or blocks in the data set.

The techniques used to insert or delete segments are the same for
both HDAM and HIrAM data bases. The techniques invclve use of bit
maps, space available chains and available length fields. The three
are used to find space when inserting a segment, cr to record free
space when a segment is deleted.

The following ED space search algorithm is used to find the most
suitable space for a segment being inserted into an HDAM or HIDAM data
base ..

Data Base Design Consideraticns 4.47

HD Space Search Algorithm

SEARCH CRITERIA: When searching for space, if space t.he exact size of
the request is feund, it is used; otherwise, three free areas are
selected in the following order of preference:

1. Smallest ~ REQUEST + min. segment in data set
2. Smallest ~ REQUES~ *2
3. Smallest ~ REQUEST From this set, the first area that does not

al~er bit map setting is selected, if there is one. Otherwise, the
first area found is selected.

1 • SAME BLOCK
2. ANY BLOCK CURFEN~LY IN BUFFER PCOL eN SAME TRACK
3 _ ANY BLOCK CURRENTLY IN EUFFER POOL ON SAME CYLINDER
4. ANY BLOCK ON SAME TRACK WHEFE SPACE FCR MAXIMUM SEGMENT LENGTH

EXISTS (Eased on bit map)
5& ANY BLOCK ON SAME CYLINDER WHERE SPACE FOR MAXIMUM SEGMENT LENGTH

EXISTS (Eased on bit rrap)
6. ANY BLOCK CURRENTLY IN BUFFER POOL WITHIN ± N CYLINDERS
7. ANY BLOCK ON + N CYLINDERS WHERE SPACE FOR ~AXIMUM SEGMEN~ LENGTH

EXISTS (Based-en bit rrap)
8. ANY BLOCK IN EUFFER POOL AT END OF DATA SET
9. &~Y BLOCK AT END OF DATA SET (Based on bit map)

10. ANY BLOCK IN THE rATASET WHERE SPACE FOR MAXIMUM SEGMENT LENGTH
EXISTS (Based en bit ma p)

In the algorithm, the same block as that which contains the
immediately preceding segment in the hierarchy of a data base record
is 'chosen for the new segment insertion under search criteria one. If
not satisfied, search criteria two through ter. are used in sequence in
attempting to obtain space for insertion.

Deletion of a segment frem an HDAM or HIrAM data base involves:

• Updating the poir.ters in any other segrrents that point to the
deleted segment •

• Accumulating the space occupied by the deleted segment on the space
available chain for the block and possible adjustment to the bit
map_ If a deleted segment is adjacent to an already available area
of space, the twe areas are combined into one.

Figure 4-22 illust.rates the deletion of segrrent EXPR4 and the
incorporation of the space it occupied on the space available chain.

4.48 IMS/VS System/Application Cesign Guide

~
lQ
s:
11
CD

~
I

IV
IV .
ttl
~
I»
11
()
::J'
n
t1
11·
CD

~
t'j t'j
III CD
rt
I» ~
OJ
I» 0
en ~
m

0
t:1 t-h
CD
en t:1 CD
~ 'T1
::s CD

()
:1
0..

0 CD
~ ~
en c+
0.. en
CD CD
H ~ I»
c+ CD ~
n rt ::s
en

.a:

+:
1.0

RELATIVE
BLOCK OR
CONTROL
INTERVAL !:N

RELATIVE
BLOCK OR
CONTROL
INTERVAL =*M

FSEAP

FSEAP

ANCHOR POINT
AREA

ANCHOR
PTS

Entry sequencec:' or OSAM data set

BITMAP
'Relative Blo, k or Control Interval = 1

011111- - - - -1011 111001- - -- - - - - - - - -10111 I · I
Relative Blo, 'k or Control Interval :t 2

190 FSE ------.

~ ______ ~ ______ ~~ ______ ~ ______ ~~ ______ ~ __ _L __ ~ ____ L_ ______________________ F_R~EES;;~,,_(_'E __________________________ -7I __ ~1
\4--- .~2 -+--150 -. .. +I.4---------------·m .1 4

480 FSE

FSEAP

UNUSED

2 ~~ __ ---------25----------~
232

FSEAP cp I AL I 10 I
EDUC3 00 ~-----------------------UNUSED--------------------------~

2 ~ .. ~1·._----------------------------273------------------------------~
FSE

... VSAM only. 7 bytes of VSAM control information

A consideration affecting HDAM or HIDAM data base performance is a
result of certain types of dependent segment insert activity. After
an HDAM or HIDAM data base is initially loaded or reorganized, high
segment insert activity may degrade performance. ~his degradation
occurs when added segments are not placed physically adjacent to their
related segments. For HDAM or HIrAM, segments inserted after a data
base is initially loaded or reorganized are stored at the end of their
data set group, or in the position of previously leaded segments that
have been deleted frorr tha t da ta set group as follows:

Space for an inserted segment in an HDAM Or HIrAM data base·is
acquired by scanning a user specified number cf disk cylinders to locate
the free space nearest tc its related segments. If no space is found,
the segment is inserted at the end of that data set group. This method
attempts to place added segnents in the position physically closest to
their related segments to keep direct access stcrage device access time
to a minirrum. However, since this method does not always plaee added
segments in space physically adjacent to their related segments, data
bases must be recrgar.ized periodically to eliminate the degradation to
performance.

The distributed free space oFtion can be selected during DBDGEN for
HDAM and HIDAM data bases. It is intended to minimize degradation to
performance caused by insert activity, and in so dcing, decrease the
frequency in which HDAM cr HIDAM data bases must be reorganized. It
accomplishes this by allowing the user to specify, on the DATASET
staterrent for each data set group, periodic blocks cf free space and/or
a percentage of free space in each block to be left vacant during
initial load or reorganization of the data base. ~hese free spices
are then used after data base initial load or reorganization to store
added segments physically close to their related segments.

The FRSPC= operand on the DATASET statement is used to specify free
space in each data set grouF of an HDAM or HIrAM or data base. In the
operand, any combination of two parameters can be specified. One is
the fbff (free block frequency factor). The fbff specifies that every
nth block in a data set group will be left as free space during data
base lead or reorganization (~here fbff=n). The range of fbff includes
all integer values from 0 to 100 excluding fbff=1. The seccnd parameter
that can be specified is the fspf (free space percentage factor). The
fspf specifies- the rrinirrurr Fercentage of each block in a data set group
that is to be left as free space during load or reorganization. The
range ef fspf is frerr 0 te 99.

For HlSAM or HIDAM index data bases using ISA~/OSAM, IMS/VS generates
an additional root segment and stores it as th~ last root segwent in
the data base. ~his additional root segment has the sequence field
filled with X'FF's. It is generated and placed in the data base by
IMS/VS because added roct segments are chained from the root with the
next higher sequence field key.

HIDAM data bases using VSAM also contain an X'FF' key segment. It
is used for twin backward Feinting at the root level.

For variable length or compressed segments, an X'FF' key segment is
allocated the maximum length specified for the segment type, and the
size field of the segment has the high order bit turned on (X '8XXX').
This segment is never compressed.

4.50 IMS/VS SystemlApplication Design Guide

Following is a surrrrary of the characteristics of the four physical
data base types.

HSAM

• All segments and data base records are related through physical
adjacency.

• stored as a sequential data set.

• Can only retrieve segments from existing data base. 10 update
requires relcad.

• Can be stored on tape.

HISAM

• segments within data base record~ are related through physical
adjacency.

• Indexed access to data base records.

• User can specify multiple data set groups.

• Space occupied by deleted segments is not reusable, except when
rcot segments are deleted in a key sequenced cata set.

• VSAM or the combinaticn of ISAM/CSAM can be specified as the
operating system access method.

• Logical relationships using symbolic pointers.

• When VSAM is specified as the operating system access methcd for
a HISAM data base, the additicnal options available are:

~condary Indexing using symbolic pointers

Variable Length Segments

User Segrrent Ccrrpaction/Expansion Routines

HDAM OR HIDAM

• segments within data base recoIds are related through hierarchic
and/or physical child/physical twin direct address pointers.

• Access to the root in each data base record is through a user
randorrizing rrcdule fcr BCAM and through an i~dex for HIDA~.

• User can specify reultiFle data set groups.

• Space occupied by deleted segments is reusable.

• VSAM or OSAM (combination of ISAM/OSAM for HIrAM index) can be
specified as the operating system access rrethcd.

• Logical relaticnshiFs using direct address or symbolic pointers.

• Distributed Free Space.

Cata Base Design Considerations 4.51

• When VSAM is specified as the operating systerr access method for
the data base, tr.e acditicnal options available are:

Secondary Indexing using direct address or symbolic pointers

Variable Length segments

USEr segrren~ ccrr~action/Ex~ansion Routines

In rrulti-application data management systems, data duplication is
of~en a problem. Duplicates in storage waste stcrage space and cause
duplicate maintenance. Du~licates are caused when a given type of data
is common to several applications, but each applicaticn requires the
commor. data stored in relaticn to different types of data, or in
combination wi~h different types of data. ~o elirrinate storage
duplication, logical relaticnshirs are used. Logical relationships
enable the user ~o store a given segment tyre cnce and to define that
segment ty~e as dependen~ on cne segment type in a physical data rase
and a different segment ~ype in a logical data base. Logical
relaticnships are also used to create logical data bases that contain
a combination of segment types frem different physical data bases
withou~ duplicating them. ~his means the segment types in two different
physical data bases, for two different applicatiens, can be combined
into a logical data base fer a third application without creating a
third physical data base.

All logical relationshirs establish a relaticnship between two
segment types in cne cr ITcre physical data bases. They are defined in
the physical data bases of the segment types they relate to, and they
are used when the related segment types are processed through a logical
data base. Wher. defined between segment types in the same physical
data base, a logical relaticnship enables a different hierarchy of
segment types to be defined for the segment tyres in that physical data
base~ When defined between segment types in different physical data
bases, it enables a hierarchy of segment types tc be defined that
combines the segment types in both data bases into a single data base.
In each case, the new hierarchy of segment types is defined through
th~ DBDGEN utility to create a logical data base. The hierarchy of
segment types for a logical data rase is corrprised of a subset of the
physical and logical relatienships defined between the segment types
in their physical data bases.

Logical relaticnships enable occurrences of twc segment tyres to be
stored independently of each other, yet enable an application program
to process them through a logical data base as if stored in relation
to each other. ~hrough the logical data base, the relationship between
the two segment types appears to be that of a physical parent segment
type and one of its physical child segment types in a physical data
base. An application processes occurrences of the related segment
types through their lcgical data base in the same manner as occurrences
of a physical parent segment type and a physical child segment type
are processed in a physical data base.

A logical relationship is defined in the physical data base or data
bases of the segment types being related. 7hrougt a logical
relationship, segment ty~es in the same or different physical data
bases are related in a manner that is in most cases transparent to
applicaticn programs using the physical data bases. To enable use of
a logical relationship defined tetween two segment types in one or mere
physical data bases, a lcgical data base must be defined.

4.52 IMS/VS System/Application Design Guide

The terms used to descrite the segment ty~es i~volved in logical
relationships are physical ~arent, logical parent, and logical child.
The terms physical parent and logical parent are used to describe the
two segment types being related through a logical relationship. The
term logical child is used to describe one cr bcth of the additional
segment types that are required to relate two segment types through a
logical relationship.

METHODS OF RELATING SEGMENT TYPES THROUGH A LOGICAL CHILD

Three types cf logical relationships can be defined in IMS/VS data
bases. The three types are unidirectional, physically paired
bidirectional, and virtually paireo bidirecticnal lcgical relationshi~s.
For each of the three ty~es of logical relationships, a logical child
segment type relates two segment types by one of two methcds. The
first method described in the following text is used for unidirectional
and physically paired bidirectional logical relaticnshi~s. The second
method described is used fer virtually paired bidirectional logical
relationships. In both methods, a logical child is physically related
to one of the segment tyres being related through a logical
relationship. In addition for the first rrethed, the logical child
points to the otber segment type. In the second method the logical
child points to the other segment type, and is ~cinted to by the other
segment type. Figure 4-23 shews the first method of relating segment
types through a logical child segment type.

Data Base ~esign aonsiderations 4.53

NAME

NAMES KILL

ARTIST

STENO

NAME

JONES

NAMESKILL

STENO

NAME

NAME SKILL

ARTIST

STENO

Figure 4- 23.

SKILL

ARTIST

SKILL

STENO

SKILL

TYPIST

Relating Occurrences of SKILL to Cccurrences of NAME

4.54 IMS/VS System/A~plication Design Guide

Methog On~

Figure 4-23 shews occurrences of the SKILL segment type being related
to occurrences of the NAME segment type through cccurrences of an
additional segment ty~e that is required to relate NAME and SKILL
segments. A logical child is an additional segment type that is
required to relate two segment types through a logical relationship.
A logical child segment type relates two segment types by being
physically related to one segment type and by pointing to the other
segment type. The segment type ~hat the logical child segment ty~ is
physically rela ted to is called the physical parent of the logical
child. The segment type that the logical child segment ty~e points to
is called the logical parent of the logical child. The pointer in a
logical child that points to a logical parent is called a logical parent
pointer. In Figure 4-23, NAME is the physical parent, SKILL is the
logical parent, and NAMESKILL is the logical child segment type. To
establish the physical relationship between the N~~E and NAMESKILL
segment types shown in Figure 4-23, NAMESKILL is defined as a physical
child segment type of NAME in the physical data base of the N~ME segment
type. Since NAME and NAMESKILL are a physical parent and a physical
child segment type in the same physical data base, occurrences of each
are related when loaded into their physical data base. To relate an'
occurrence of SKILL to an occurrence of NAME in storage, the user loads
an occurrence of NAMESKILL, the logical child segment type, as a
physical child of a given NAME segment. This precess i,s repea ted for
each occurrence of the logical parent that is to be related to that
NAME segment. When loading a logical child segment into its ~hysical
data base, the user identifies which logical parent segment the logical
child points to, by placing the concatenated key of the logical parent
in the data portion of the logical child segment. Since the
concatenated key of a logical parent segment is the symbolic pointer
to that segment in its physical data base, when the user loads logical
child segments as physical children of a given physical parent segment,
the respective legical parent segment pointed to by each logical child
is related to the physical parent segment. When processing the related
segment types through a logical data base, it is the ~hysical
relationship between cccurrences of the physical parent and logical
child segment types in their common physical data base, plus the logical
parent pointer contained in each logical child segment, that enables
access to related occurrences of the logical parent segment type from
each occurrence cf the physical parent segment type.

Methog TWQ

In the second method of relating two segment types through a logical
child segment type, all of the conditions described for the first method
remain the same. The logical child segment type is physically related
to its physical parent segment type and points to its logical parent
segment type. One occurrence of the logical child segment ty~e is
loaded as a physical child of a given physical parent segment for each
occurrence of the logical parent segment type that is to be related to
that physical parent. To identify which logical parent segment is
being related to a physical parent segment through a logical child
segment, the user places the conca tena ted key of the logical parent in
the data portion of each logical child segment leaded. Through the
relationship of physical parent and logical child segments in their
physical data base, and the logical parent pointer in each_ logical
child segment, related occurrences of the logical parent segment type
can be accessed from physical parent segments. In addition, logical
child pointers are used in the logical parent segment type, and logical
twin and physical parent pointers are used in the logical child segment
type, as shown in Figure 4-24. The additional pointers are used to
enable 4ccessing specific occurrences of the physical parent segment
type that are related to each occurrence of the logical parent. Logical

Data Base Design COnsiderations 4.55

twins are roulti~le occurrences of the same logical child segment type
that point to the same occurrence of the logical ~arent segment type.
When specified in the logical child segment type, logical twin pointers
point from each logical twin to the next to chain together all logical
twins that point to a given logical parent. ~he ~hysical parent ~cinter
in each occurrence of the lcgical child segment type is generated
automatically by 1MS/VS to enable access to the ~hysical ~arent segment
of each logical child frcrr. that logical child. A logical child pointer
is specified for the logical parent segment type tc enable accessing
a logical child segment frcrr a logical parent segment. A logical child
pointer points from a given logical parent segment to cne of the logical
twins, which alse pcints back to that logical parent segment. since
all logical twins that point to the same logical ~arent are chained
through logical twin ~cinters, and each logical child contains a
physical parent pointer, the specific physical ~arent segments that
are related to a given logical ~arent segment can be accessed from that
logical parent segment.

4.56 IMS/VS Systerr/Application Design Guide

Figure 4 -24.

NAME

ADAMS

NAMESKILL

ARTIST

STENO

TYPIST

STENO

NAME

SMITH

PP

NAMES KILL

ARTIST

STENO

SKILL

ARTIST

SKILL

STENO

SKILL

TYPIST

Key:
PP-Physical parent pointer
LP-Logical parent pointer
LCF-Logical child first pointer
LTF-Logical twin forward pointer

Relating OccurrenCES of NAME tC Occurrences of SKILL

Data Base resign Considerations 4.57

The physical relation~hi~ between physical parent and logical child
segments in their physical data base, and tte logical parent ~ointer
in each logical child Elegment crea te s a physical parent to logical
parent path between each phys ical parent segIT'ent and the logical parent
segments r,=l'ated to each physical parent segment. To define use of
the path in a logical data tase, the logical child and logical parent
segment ~ypes are defined as one concatenated segment type that is a
physical child of the physical parent segment ty~e as shown in Figure
4- 25.

PHYSICAL DATA BASE(S) LOGICAL DATA BASE

PHYSICAL

PARENT

LOGICAL

CHILD

Figure 4- 25.

LOGICAL

PARENT

PHYSICAL

PARENT

LOGICAL I LOGICAL
I

CHILD I PARENT

Concatenated Segment Type

Defining a Physical Parent to Logical Parent Path in a
I.ogical Cat a Eas e

In addition, when logical child pointers are used in the logical
parent s~gment type, and logical twin and physical parent pointers are
us~d in the logical child segment type, a logical ~arent to physical
parent path is created bet~een each logical parent segment and the
physical parent segments related to each logical ~arent segment. To
define use of the path i~ a logical data base, the logical child and
physical parent segment types are defined as cne ccncatenated segment
type that is a ~hysical child of the logical parent segment ty~e as
shown in Figure 4-26.

4.58 IMS/VS System/Application Design Guide

PHYSICAL DATA BASE(S) LOGICAL DATA BASE

PHYSICAL

PARENT

LOGICAL

CHILD

Figure 4-26.

LOGICAL

PARENT

LOGICAL

PARENT

LOGICAL I PHYSICAL

CHILD I
I PARENT

Concatenated Segment Type

D~fining a Logical Parent to Physical Parent Path in a
Lcgica 1 Da ta Ba se

when use of a physical Farent to logical parent path tetween segment
types is defined in a logical data base, tte Fhysical ~arent segment
type involved in the lcgical relationship is the physical parent of
the concatenated segment type. When an aFplicaticr. Frogram retrieves
an occurrence of the concatenated segment type from a physical parent
segment, an occurrence of the logical child ar.a tr:e respective logical
parent pointed tc by the logical child are concatenated and presented
to the application program as one segment. wr:en use of a logical parent
to physical Farent path is defined in a logical data base, the logical
parent segment type is the physical Farent of the concatenated segment
type& when an atFlication Frogram retrieves an occurrence of the
concatenated segment type from a logical Farent segrrent, an occurrence
of the logical child and the physical parent segment pointed to by the
logical child are concatenated and presented to the apFlicaticn program
as one segment.

In each case the physical parent or logical parent segment type
included in the concatenated segment type is called the destination
parent. For a Fhysical Farent to logical parent path, the logical
parent is the destination parent in the concatenated segment type. For
a logical parent to physical ~rent path, the physical parent is the
destination parent in the concatenated segrrent.

By definition, a logical child segment contains the concatenated
key of the destination parent followed by intersection data, if any.
A logical child segment relates a specific physical parent segment to
a specific logical parent segment. Since a logical child is the point
of intersection for a Fhysical parent and logical parent segment, any
data contained in a logical child segment in addition to the
concatenated key of a destination parent is called intersection data.
When defining a logical child segment type in its physical data base,
the length specified for the segment type must be sufficient to contain
the concatenated key of a logical parent. Any length greater than that
required for the concatenated key can be used for intersection data.

Data Base Design Considerations 4.59

To identify which logical parent segment will be pointed to by a
logical child segment, the concatenated key of the logical parent
seqment must b~ present, with each logical child Eegment, in the user's
I/O area when the logical child Eegment is initially presented for
loading into a data base. Eowever, if the logical parent segment is
in a HDAM or HIDAM data base, its concatenated key may not be wri~ten
to storage when the logical chile segment is leaded. If the logical
parent is in a HI~M data base, a logical child in storage must contain
th~ concatenated key of its logical parent.

When a concatenated segment is retrieved through a logical data
base, it con~ains the concatenated key of the destination parent,
followed by intersection data in the logical child Eegment, which in
turn is fcllowed by the data in the destination parent segment. Figure
4 -27 shows the format of a retrieved concatenated Eegment in the user
I/O area. The concatenated key of the destination parent is returned
with each concatenated segment to identify the destinaticn parent
retrieved. IMS/VS obtains the concatenated key of the destination
parent from the logical child in the concatenated segment, or by
constructing the concatenated key. If the destination parent is the
logical parent of the logical child and the ccncatenated key of the
logical parent has not been stored ~ith the logical child, IMS/vS
constructs the concatenated key of the logical parent segment and
presents it to the user as a part of the concatenated segment. If the
destination parent is the physical parent of the logical child, IMS/VS
must always construct the concatenated key of the physical parent.

Logical child segment Destination parent segment

Destination
Intersection Destination

parent concatenated
data parent segment key

Figure 4 -27. Format of Concatenated segment Returned to User I/O Area

UNIDIRECTIONAL LCGICAL RELATIONSHIP

A unidirectional logical relationship is used to relate two segment
types in one directicn. Figure 4-28 shows the schematic view of a
unidirectional logical relationship that is defined between two segment
types in the saroe or different physical data bases, and the reSUlting
view of the segment types involved that is defined in a logical data
base. In a physical data base, a logical child segment type is defined
as a physical child of one segment type, and a direct address or
symbolic pointer is specified in the logical child segment type to
~oint to the other segment type. This results in creating a physical
parent to logical parent path between occurrences of the two segment
types when they are loaded into storage.

4.60 IMS/vS System/Application cesign Guide

PHYSICAL DATA BASE(S) LOGICAL DATA BASE

A C A

B B C

Concatenated Segment Type

Figure 4 -28. Unidirectional Logical RelationshiF

PHYSICALLY PAIREr BIDIRECTIONAL LOGICAL RELA~IONSHIP

A physically Faired bidirectioral logical relationship is used to
relate two segment types in two directions, and to provide the same
intersection data in both directions. Figure 4-29 shows the schematic
view of a physically paired bidirectional logical relationShip "that is
defined in a physical data base or data bases, and the resulting viewS
of the segment types invclved that are defined in a logical data base.
In a physical data base or dat.a bases, a logical child segment tYFe is
defined as a physical child of each of the two segment types being
related, and a direct address or symbolic lcgical Farent Fointer is
specified for each logical child segment type. One logical child
segment ~ype creates a physical parent to lcgical rarent Fath between
occurrences of the twc_ segment types in storage in one direction, and
the other logical child segment type creates a Fhysical Farent to
logical parent path between occurrences of the two segment types.- in
storage in the other direction as shown in Figure 4-29. ~hen defining
each logical child segrrent tYFE in its physical data base, the user
specifies that each logical child segment tYFe is Faired ~ith the other·
logical child segment tYFeto enable IMS/VS tc maintain the same
intersection data in paired logical child segments. In storage, paired
logical child segments provide two different Faths between the same
two segments, and both lcgical child segments contain the same
intersection data. For example, in Figure 4-30 under the NAME segment
ADAMS, the occurrence of NAMESKILL tha t points to AR~IS'I, and under
the SKILL segment AR'IIST, the occurrence of SKILLNAME that points to
ADAMS are physically paired logical child segments since they Frovide
~wo different Faths between the same two segments and they contain the
same intersection data. In a physically paired lcgical relationship,
if the user updates intersection data in one logical child segment,
IMS/VS automatically updates the intersection data in the paired logical
child segment. When initially loading paired logical child segments,
the user must place the same intersection data in each of the paired
logical child segments.

During the initial lead cf a data base that cor.tains Fhysically
paired logical children, the apFlication program must load (using an
ISRT call) both sides of the physical pair. !he intersection data for
the paired segments must be identical. After the initial load, in any
update step, if an insert, delete, or replace is dcne for one cf the
paired segments, IMS/VS ~erforms the same function for the paired
segment.

Data Base Design Consideraticns 4.6l

PHYSICAL DATA BASE(S) LOGICAL DATA BASE(S)

A c A C

~ and/o r~

I I
B D B I c D I A

I I
I L

Concatenated Segment Types

Figure 4-29. Physically Paired BidirectioLal Lcgical Relaticnshi~

NA."1E

N~~M..ESKILL

ARTIST

Figure 4-30.

SKILL

ARTIST

SKILLNAME

ADAMS

Physically Paired Logical Child Segments

VIRTUALLY PAIREr EICIRECTIONAL LOGICAL FELA~IONSHIP

In a virtually ~aired bidirectional logical relationship, one logical
child segment type iT; storage relates two segment types in two
directions, and provides the same intersection data in both directions.
Figure 4-31 shows "the scherratic view of a virtually paired bidirectional
logical relationship that is defined in a physical data base or bases,
and the resulting views of the segment types involved that are defined
in a logical data base.

4.62 IMS/VS System/Application Cesign Guide

Physical Data Base(s)

A

B

~
Real logical child

Key:

C

r-- ---,
I I
, D I
, I
L

7
- __ .J

Virtual logical child
(Represents B when
accessed from C)

PP-Physical parent pointer
LP-Logical parent pointer
LCF-Logical child first pointer

Logical Data Base (s)

A C

~and/or--"

I I
B I C D I A

I I

Concatenated Segment Types

Figure 4-31. Virtually Paired Bidirectional Logical Felaticnship

To define a virtually paired bidirectional logical relationship,
two logical child segment types are defined in t~e physical data bases
involved in the logical relationship, but only one is actually placed
in storage. The logical child segment type ttat is defined and results
in storage is called the real logical child. The logical child segment
type that is defined, but does not result in storage is called the
virtual logical child.

In a virtually paired bidirectior.al logical r~lationship, occurrences
of the real logical child create physical ~arent tc logical parent,
and logical parent to physical parent paths between occurrences of the
two segm~nt types being related. To accomplish this the real logical
child is defined as a physical child segment type of one of the segment
~ypes being related, apd a symbolic or direct address logical parent
pointer is specified for the real logical child segment type. This
creates a physical parent to logical parent path between cccurrences
of t,he two segment types being related. In addition, logical child
pointers are specified for the logical parent segrrent ty~e of the real
logical child, and logical t~in pointers are specified for the real
logical child segment type to create a logical ~arent to physical parent
path in storage between cccurrences of the two segment types being
related. The physical parent pointers required in cccurrences of the
real logical child for a lcgical parent to physical parent path are
generated automatically by 1MS/VS.

For the physical parer.t to logical parent patt, the user ccntrcls
the sequence in which occurrences of the real logical child are accessed
from their physical parent segment by defining a sequence field in the
real logical child segrrent type, or'bY specifying use of the insert
rule of first, last or here when defining the real logical child in
its physical data base. For the logical parent to physical parent
path, the uSer controls the sequence in which occurrences of the real
logical child are accessed from their logical parent by defining a
vi~tual logical child segment type as a physical child of the logical
parent of the real logical child, and in addition, by defining a
sequence field in the virtual logical child. Or, the user can specify
a seccnd insert rule of first, last or here that controls the sequence
of real logical child segments as viewed frorr their logical parent
segment. The insert rule that controls the sequence of real logical
child segments as viewed from their physical parent segment is specified
on the SEGM statement that defines the real loqical child segment type

Data Base resign Considerations 4.63

in i~s physical data base. The insert rule ttat centrols the sequence
of real logical child segrrentE as viewed from their logical parent is
specified on an LCHILD statement. As input to DEDGEN when defining a
segment type in a Fhysical data base that is used as a logical parent
in one or more logical relationships, an LCHILr statemen~ must follow
a SEGM statement that defines a logical parent segrrent tYFe for each
logical child segment type of that logical parent. LCHILr statements
identify the logical child segment types of a logical Farent by
following a SEGM staterrent that defines a logical parent. For a
virtually paired bidirectional logical relaticnship, when no sequence
field or a non-unique sequence field is defined for the real logical
child segment type as viewed from its logical parent segment type, the
insert rule of first, last or here specified on an LCHILD statement
controls the sequence in which occurrences of the real logical child
are accessed from their logical parent segment.

To enable using a sequence field for sequencing cccurrences of the
real logical child frorr its lcgical parent segment type, a virtual
logical child segment type is defined. A virtual logical child segment
type is defined as a physical child of the logical parent segment type
of the real logical child. A virtual logical child segment type is
defined in the Fhysical data base of the logical parent of the real
logical child to represent the view of the real logical child when
accessing the real logical child from its logical parent. In defining
a virtual logical child segment type, a narre is sFecified for the
virtual segment type and the name of the real logical child segment
type is associated to the name specified. ~o enable sequencing
occurrences of the real logical child through sequence field values
from the logical parent, a sequence field is defined in the virtual
segment type. since the virtual segment type represents the real
logical child as viewed from its logical parent, the sequence field
defined represents fields in the real logical child segment type as
viewed from its logical parent type.

since a logical child segment, by definition ir. a logical data base
contains the concatenated key of a destination parent, followed by
intersection data, if any, the concatenated key of the destination
parent is includ~d as a part of the logical child segment type when
def·ining fields wi~hin the logical child segment. For a Fhysical parent
to logical parent path, fields can be defined within the logical child
segment type that are comprised of the concatenated key of the logical
parent. For a lcgical parer.t to Fhysical parent path, fields can be
defined within the logical child segment type that are comprised of
the concatenated key cf the Fhysical parent. In addition for a logical
parent to physical parent path, fields defined within the logical child
segment type car. be corrprised of non-contiguous data in the logical
child.

POINTERS AND THE COUNTER USED IN LOGICAL RELA~ION~HIPS

Logical relationshirs can be defined in HISAM, HDAM and HIDAM data
bases, or between any combinat,ion of the three. In 'defining logical
relationships in each type or tetween types, the data organization
methods used for the data bases must be considered when specifying the
pointers used in logical relationshiFs. Physical adjacency in storage
is used to relate segrrents in a HISAM data base which means that all
pointers to segments stored in a HISAM data tase rrust be syrrbclic. In
HDAM and HIDAM data bases, segments in storage are related through
direct address pointers. Segments stored in HDAM and HIDAM data bases
can be Fainted to by symbolic or direct address pointers.

IMS/VS Systerr/Arplication Design Guide

The following ~ointer~ are used in defining logical relationships
(see Figure 4 -32) :

• Logical Parent Pointer
• Logical Child Pointer
• Logical Twin Pointer
• Physical Parent Pointer

Key:
PP-Physical parent pointer
LP-Logical parent pointer
LCF - Logical child first pointer
LCL-Logical child last pointer
LTF -Logical twin forward pointer
LTB-Logical twin backward pointer

Figure 4-32. Pointers Used in Logical Felationshi~s

1Qgjgal Esrgu~ ~£in1§~

A logical parent pcinter ~oints from a logical child segment to a
logical parent segment. To point to a logical ~arent segrrent type in
a HISAM data base, a symbolic pointer must be stored with each logical
child segment. To point to a logical parent segment type in an HDAM
or HIDAM data baee, a syrrbclic pointer can be stored with each logical
child segment and/or a direct address logical parent ~cinter can be
specified.

Lata Base Design Considerations 4.65

Logical child and logical twin pointers are enly specified in
virtually paired bidirectier.al logical relationships. The logical
child pointers that can be specified are logical child first, or logical
child first and last ~ointers. A logical child first, or a combination
of logical child first and last pointers are stered in the prefix of
a logical parent segment te ~eint to each of its logical child segment
types. A logical child first pointer points to tt.e first occurrence
of a logical child segment ty~e, and a logical child last pointer points
~o the last occurrence of that segment type when viewed froIT the logical
parent.

The logical twin pointers that can be specified are logical twin
forward or the combination of logical twin forward and backward
pointers. Logical twins are multiple logical child segments of the
same typ~ that point to the same occurrence of a lcgical ~arent. A
logical twin forward peinter points from a given logical twin to the
logical twin stored after it and a logical twin backward pointer points
from a given logical twin to the logical twin stored before it. Use
of +~e l~gical twin backward pointer improves delete performance.

In HDAM and BleAM data bases involved in logical relationships,
physical ~arent ~ointers are generated automatically by IMS/VS. IMS/VS
places physical parent pointers in the pr.efix cf all logical child and
logical parent segments, ard in the prefix of all segments on which a
logical child or logical parent segment is de~endent in its physical
data base. This creates a Fath from a logical child or logical parent
segment to the roo~ segment on which the logical child or legical parent
segment is de~endent. since all segments on which a logical child or
logical parent segment is dependent are chained tt.rough physical parent
pointers from the logical child or logical parent segment to its root,
access to those segments in reverse order is enabled through a logical
data base.

A four-byte ceunter is required in all logical parent segments that
do not contain logical child pointers. It is stcred in the prefix of
a logical parent segment tc maintain a count of how many logical child
segments point to the logical parent. When required, it is placed in
logical parent segments autcwatically by I~S/VS.

DEFINING SEQUENCE FIELDS FOR DA'IA EASES INVCLVED IN LOGICAL
RELATICNSHIPS

To avoid potential ~rcblems in processing data bases involved in
logical relationships, unique sequence fields should be defined in all
logical parent segment types, and in all segment types that a logical
parent is dependent on in its physical data base. When unique sequence
fields are not defined in all segment types en the ~ath to and including
a logical parent segrrent ty~e, muitiple logical parent segments ina
data base can have the s arne concatenated key. When rrultiple logica I
parent segments have the sarre concatenated key, problems can arise
during initial data base load, and after initial data base load when
symbolic logical ~arent ~cinters in logical child segments, are used
to establish position on a logical parent segrrent to be processed.

4.66 IMS/VS Syst~m/ Application Design Guide

At initial data base lead time, if logical parent segments with
nonunique concatenated keys exist in a data base, the logical
relationship resolution utilities attach all lcgical child segments
that contain the same concatenated key to the first logical parent
segment in a data base that has ~hat concatenated key.

When inserting or deleting a concatenatec segmer.t and fosition for
the logical parent Ferticn ef the concatenated segment is determined
by the logical parents concatenated key, positioning for the logical
parent steps on the first segment at each level of the logical parents
data base that satisfies the key equal condition fer that level. For
insert when using this method of establishing position in the logical
parents data base, if a segment is missing on the fath to the logical
parent segment te be inserted, a GE status code is returned to the
application program. Under the same conditiens fer deletien of a
logical parent segment a UBD3 abnormal termination occurs.

RULES FOR DEFINING LOGICAL RELATICNSHIFS IN FHYSICAL CATA EASES

Following are the rules that must be fcllowed when defining lcgical
relationships in physical data bases.

1. A logical child segment tYFe must have a physical parent segment
type and a logical parent segment tYFe.

2. A logical child segment type can have cnly cne physical parent
segment type ar.d one lcgical farent segment type.

3. A logical child segment type is defined as a physical child
segment type in the physical data base of its physical parent.

4 c A logical child segrrent tYfe is always a dependent segment type
in a physical data base, and as such, it can be defined at any
level except the first level of a data base.

5. In its physical data base, a logical child segment type can not
have a physical child segment type defined at the next lower
level in the data base that is also a lcgical child.

6. A logical child segrrent type can have physical child segment
types. However, if a logical child segment type is physically
paired with another logical child segment tYfe, cnly cne of the
paired segment tYfes can have physical child segment types.

1. A logical parent segment type can be defined at any level of a
Fhysical data base including the root level.

2. A logical parent segmen~ type can have one or multiple logical
child segment types. Each logical ctild segment tYfe related
to the sarre legical farent segment type defines a logical
relationship.

3. A segment type in a fhysical data base can not be defined as
both a logical farent and a logical child.

4. A logical parent segment type can be defined in the same physical
base as its logical child segment tYfes, cr in a different
fhysical data base.

Data Base Cesign Cbnsiderations 4.67

1. A physical parent segment type of a logical child cannot also
be a logical child.

4.68 IMS/VS Systerr/Application Design Guide

REPLACE, IN SER 'I A~"TI DELE'IE RULES

xxxxxxxxxxxx
x CUSTOMER x
x PP x
xxxxxxxxxxxx

x

xxxxxxxxxxxx
x LOANS x
x LF x

* xxxxxxxxxxxx
* * v

x
xxxxxxxxxxxxxxxxxxxxxxxxx

*
* *

* v
v
v
v

x
x

xxxxxxxxxxxx
x ACCOUNTS x
x x
xxxxxxxxxxxx

PHYSICAL PA'IH

x
x

* *
* *

xxxxxxxxxxxx *
x BORROW x
x IC x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxx
x PAYMEN'TS x
x x
xxxxxxxxxxxx

vvvvvvvvvvvv
v QJST v
v VLC v
vvvvvvvvvvvv

TO CUSTOMER and ECRROW
xxxxxxxxxxxx

FHYSICAL FATH
TO LOANS
xxxxxxxxxxxx
x LOANS x x CUSTOMER x

x x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxx
x BORROW/LOANS x
x x
xxxxxxxxxxxxxxxx
LOGICAL PA'IH
TO LOANS

x x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxx
x CUST/CUS'IOMER x
x x
xxxxxxxxxxxxxxxxx
LOGICAL FATH
'IO CUS'IOMER ar.d BORROw

Insert, Delete, and peplace rules are needed wten a segment is
involved in a lcgical relaticnshi~ because that segment is updatable
from two paths; a physical path and a logical ~att.

Think a minute about the following questions:

1. Should the CUSTOMER segment be insertable by both its physical
and logical paths?

2. Should tb~ EORRCW segment be replaceable via only the physical
path, or by both the ~hysical and logical paths?

3. If the LOANS segment is deleted by its ~hysical ~ath, should it
be erased from tbe data tase or should it te marked as ~hysically
deleted but remain accessible by its logical path?

Data Base ~esign Considerations 4.69

4. If the logica I child segment BOFRCW or the concatenated segment
BORROW/LeANS is deleted from the physical ~ath, shculd the
logical pa th CUST/CUSTOMER al so be automatically deleted or
should ~he logical path rerrain?

The an~wer te these questions depends on the application, but the
enforcerrent cf the answer depends on choosing the correct
insert/delete/replace rules for the logical child, lcgical parent and
physical parent segrrents.

The applicaticn prece~sing requirements must be determined first,
and the rules that support (enforce) ~hose applicatien precessing
requirerrer.ts must be deterrrined second.

For instance, the answer to question one depends on whether or not
the application defines that a CUSTOMER segrrent rrust have been
previou~ly inserted into the Data Base prior to accepting the loan.
An insert rule of physical (P) on the CUSTOMER segment would prohibit
~he insertion of the CUSTOMEP segment except by the physical path.
While an insert rule of virtual (V) would allow inserting the CUSTOMER
segment by either ~he physical or logical patte

It probably rrakes sense for a customer to be cbecked (~ast credit,
time or. current job, etc) and the CUSTCMER segment inserted prior to
approving the loan and inserting the BOFROW segment. Thus, the insert
rule of the CUSTOMER segrrent should be physical (P) to prevent this
segment from being inserted logically (which incidentally provides
'better control cf the a~plication) •

consider question three. We can reason two ways: (1) If it is
possible for this load institutien to terrrinate a ty~e of lean (cancel
7% car loans -- create 9% car loan~ before everyone who has that type
of loan has fully paid the loan, then we are saying that it's possible
for the LOANS segment to be physically deleted and still be accessible
from the logical path. This condition is su~~ortable by specifying
the delete rule for LOANS as ei ther logical (L) or virtu al (V) but not
as physical (P).

The physical (P) delete rule prohibits physically deleting a logical
parent segment Frior to all its logical children having been physically
deleted (which means the logical path to the legical parent is deleted
first) •

INTRODUCTION SUMMARY

Data Base Administrators should examine all aPFlication needs and
decide who may ir.sert, delete, and replace segments involved in logical
relationships and hew these updates are to be made (physical path only
or physical and logical path). The insert/delete/replace rules in the
physical DBD and the PROCOPT parameter in the FCB are the means of
control. These rules are explained in detail in the following pages.

4.70 1M S/VS System/Applica tion De sign Guide

FPF FIFST
SEGM NAME= """, RULES= (LLL,LAS'I)

VVV HERE
B

insert ///
del.§i§=====//
!:~r!g,£~ ____ /

P = PHYSICAL
L = LOGICAL
V = VIF'IUAL
E EI~IRECTIONAL VIRTUAL

The operands of the RULES parameter are positicr.al. position one
defines the INSERT rule, position two defines the ~ELETE rule and
position three the REPLACE rule.

For examPle, FULES=PLV says the insert rule is ~hysical, the delete
rule is logical and the re~lace rule is virtual. Notice the "E" rule
is only applicable for delete.

The second positior.al o~erand (FIFST,LAS'I,HERE) does not apply in
any way to a discussicr. cencerning LOGICAL UprATE RULES and was only
included to maintain the correctness of the ceding example.

In general the "P" rule (physical) is the mest restrictive and the
"V" rule (virtual) the least restrictive with the "Lit rule (logical)
somewher~ in between.

RULES are applicable cr.ly tc the segments invelved in logical paths;
the Logical Child segment and its logical Parent and Physical Parent
segmentsc Rules are not coded for the virtual lcgical child.

xxxxxxxxxxxx
x CtS'IQMER x
x pp x
xxxxxxxxxxxx

x

*

xxxxxxxxxxxx
x LCANS x
x IP x

* xxxxxxxxxxxx
* * v

* x
xxxxxxxxxxxxxxxxxxxxxxxxx
x x

* *
v
v
v
v x

xxx xx xxxxxxx
x ACCCUNI'S x
x x
xxxxxxxxxxxx

* *
x * *

xxxxxxxxxxxx *
x BORROW x
x LC x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxx
x PAYMEN'IS x
x x
xxxxxxxxxxxx

vvvvvvvvvvvv
v CUST v
v VLC v
vvvvvvvvvvvv

Data Base cesign Cbnsiderations 4.71

THE REPLACE FULES

Applicable to the Physical Parent, Logical Parent and Logical Child
segments of a Legical Path.

1. ~BX~IQ~~: The segment can only be replaced when retrieved via
a physical ~ath. If this rule is violated, no data is replaced
and a~ 'FX' status code is returned.

2c !QgICAb: 'Ihe segrrent can only be replaced when retrieved via
a physical path. If this rule is violated, no data is replaced,
however, an 'RX' ~tatus code is not returned. A ,~~, status
code is returned.

3. VIRTUAL: ~he segment can be replaced when retrieved by either
a-physIcal or logical path.

A replace can be performed only en that pertien of a concatenated
segment to which an applicatien ~rogram is data sensitive.

If no data is changed in a segment, no data is replaced and no
replace rule is violated.

If data in a concatenated segment has been changed, data is replaced
only if neither ~ortion ef the ~oncatenated segment violates its replace
rulec

The re~lace rule is net checked for a segment which is part of a
concatenated segment but wae not retrieved.

The status code returned to an applicatien ~regram ~ill indicate
the first violation that was detected. Tbese status codes are:

, AM' Fe~lace attem~ted and PROCOP~~R

'DA' Rey field of segment was changed

, RX' Re~lace rule violated

4.72 IMS/VS Systerr/A~plication Cesign Guide

RULES= (--F)
xxxxxxxxxxxx
x CUSWMER x
x FP x
xxxxxxxxxxxx

x •

FULES= (--P)
xxxxxxxxxxxx
x LCANS x
x LP x

* xXJ(xxxxxxxxx
* V

x * * V
xxxxxxxxxxxxxxxxxxxxxxxxx *.
x x * *
x x * *

xxxxxxxxxxxx ~~~~xxxxxxxx *
x ACCCUNTS x x BORROW x
x x x LC x
xxxxxxxxxxxx xxxxxxxxxxxx

x RULES= (--P)
x

xxxxxxxxxxxx
x PAYMEN'IS x
x x
XX~XJ(xx~xxxx

xxxxxxxxxxxx
x CUSTOMER x

~xxxxxxxxxxx

x LOANS x
x x x x
x~xxxxxxxxxx xxxxxxxxxxxx

x x

V

V

V
vvvvvvvvvvvv
V CUST V

V VLC V

vvvvvvvvvvvv

x
xxxxxxxxxxxxxxxx
x BORROW/ LOANS x

x
XJ(xxxxxxx~xxxxxxx

x CUST/CUS'IOMER x
x x x x
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx

GHU 'CUSTOMER' STATUS CODE=' ~11f'

REPL STA'IUS CODE='11f~'

GHN , BORROW/ LCANS ' STATUS CODE=' ~11f'

REPL S'IA'It:S CODE='FX'

The physical replace rule ~revents replacing the LOANS segment as
part of a concatenated segment. Replacement rrust be by the segment's
physical ~a the

Data Base resign Considerations 4.73

xxxxxxxxxxxx
FULES=r-L)x CtE~OMER x

x LP X

XXXXXXXX}(XXX *

xxxxxxxxxxxx
RULES=(--L)x LOANS x

x LF x
xxxxxxxxxxxx

X * *
X

xxxxxxxxxxxxxxxxx~xxx~xxx
*

*
*

*

x
x
x
x
x

x
x

xxxxxxxxxxxx
x ACCOUNTS x
x x
xxxxxxxxxxxx

xxxxxxxxxxxx
x CUS'IOMEF x
x x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxx
x BORROW/LOANS x
x x
xxxxxxxxxxxxxxxx

GHU

REPL

'CUS~OMER '
'BORRCW/LOANS'

x
x *

*
xxxxxxxxxxxx * * x~xxxxxxxxxx

x BORROW x • x CUST x
x I.C x
~x~~xxxxxxxx

x RULES=any
x

xx~~xxxxxxxx

x PAYMENTS x
x x
xxxxxxxxxxxx

xxxxxxxxxxxx
x LeANS x
x x
xxxxxxxxxxxx

x

x I.C x
xxxxxxxxxxxx

FULES=any

x
xxxxxxxxxxxxxxxxx
x CUST/CUSTCMEF x
x x
xxxxxxxxxxxxxxxxx

S~ATUS CODE=' J5l1f'

S'IA~US CODE='ldJ5'

The logical replace rule prevents replacing the LOANS Eegment as
part of a concatenated segrrent, since replacerrent rrust be by the
segment's physical ~ath. However, the status code returned is '~l1f'.
The BORROW segment, bei~g accessed by its physical path, is
replaced& Since the access of the logical child is by its ~hysical
pa~h, it dces nct matter ~hat replace rule is selected.

The LOGICAL re~lace rule ~rovides for the special case of allowing
the replacemen~ of only 7he logical child half of the concatenation,
and the return of a ,~~. status code.

4.74 IMS/VS System/Application Cesign Guide

RUI.ES= (--V)
xxxxxxxxxxxx
x CUSTOMER x
x PP x
xxxxxxxxxxxx

x

RCLES= (- -V)
xxxxxxxxxxxx
x LOANS x
x LP x

* xxxxxxxxxxxx
* * V

x
XXXXXXXXXXXXXX~XXXXXXXXxx

* *
* *

v
V

V

V

X

X

xxxxxxxxxxxx
x ACCOUNTS x
x x
xxxxxxxxxxxx

xxxxxxxxxxxx
x CUSTOMER x
x x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxx
x BORROW/LOANS X

x x
XXXXXXXXXXXXXXXX

GHU 'LOANS'

x * *
X * *

xxxxxxxxxxxx *
X BORROW x
x I.C X

~XXJ!xxxxxxxx

X RUI.ES= (- -V)
x I

XXXJ!XJ!xxxxxx
X PAYMENTS x
X x
xxxxxxxxxxxx

xxxxxxxxxxxx
X LeANS x
x x
XXXXXXX~xxxx

x

vvvvvvvvvvvv
V mST V

V VLC V

vvvvvvvvvvvv

x
xxxxxxxxxxxxxxxxx
x CUST/CUSTCMER x
x x
xxxxxxxxxxxxxxxxx

, CUST / CUSTOMER' STATUS CODE='~~'

REPL STA'IUS CODE='~15'

The virtual replace rule allows replacing the CUSTOMER segment via
its logical path as part cf a concatenated segment.

specifying the replace rule as virtual, on any of the segments
involved in the logical relationship, allows replacing that segment by
either its physical path or logical path.

Specifying the replace rule as physical, on any of the segments
involved in the logical relationship, prevents the replacement of that
segment except when retrieved via its physical ~ath.

Data Base Design Ccnsideraticns 4.75

The logical replace rule provides for a special case. Specifying
the replace rule for the lcgical parent as LOGICAL, allows IMS/vS to
return a ,~~, status code but without replacing any data ~hen the
logical parent is accessed concatenated with the logical child. Since
the logical child has been accessed by its ~hysical path, its replace
rule rray be any cf the three. Thus using the LOGICAL replace rule
allows the selective replacement of the logical child half of the
co~catenation and a ,~~, status code.

Figure 4-33 shows all possible combinaticns cf the re~lace rules
that car. be specified, and the resulting acticns that take ~lace for
each corrbination wher. a call is issued to replace a concatenated segment
in a logical data base.

4.76 IMS/VS System/A~plication ~esign Guide

Logical
View I

8 -C

Logical
View 2

8 A

Physical
Data Base I r------,

I I
I I
I
I

~ I L- ______ -'

SEGMENT REPLACE RULES

Replace B P P P P P P P P P LL LL
rule specified

CP P P LL LV VV P P P L

Denotes segment BX XX XX XX XX
you are attempting
to replace C XX XX XX XX

Status code RXRX RX RX

Data BY NY YY YY NY
replaced?

Y = yes N = no C NN NN YY NN

Replace B P P P P P P P P P LL L L
rule specified AP P P LL LV VV P P P L

Denotes segment BX XX XX XX XX
your are attempting
to replace A XX XX XX XX

Status code RXRX RX RX RX KX RX RXRX

Data
replaced?
Y = yes N = no

Physical
Data Base 2

BN

A

r------,
I I
I I
I I
I I
I I

I
I
I

1 LC I
i I
L... ______ J

NN

NN

NN NN

NN YN

Logical
View I

NN

NN

Figure 4-33. Repl ace Rul es

LL LL LV

LL VV VP

XX XX

XX XX

YY
1

YY

NN YY

L L LL LV

L L VV VP

XX

XX

NN

NN

XX

XX

NY
yy

Logical
View 2

VV VV VV VV

P P LL LV VV

XX XX X

XX XX XX

RX RX

NY YY Y

NN NN YY

VV VV VV VV

P P LL LV VV

XX XX X

XX XX XX

RX RX

NY YY Y

NN NN YY

Da ta Base resign Considerations 4.77

THE INSER'T RULES

Applicable to the Cestination Parent (Logical Parent and Physical
Parent) segwente, but not tc the Logical Child segment. See "Logical
Child Insertion" belcw.

1. PHYSI£~1: The destination parent rray be inserted Qnl~ via its
P'lysical parent path.

This means that the'destination parent must exist prior to
inserting a logical tath. A concatenated segment is not needed;
the logical child is inserted by itself.

2. LO@IQ~1: 'The destination parent may be inserted either via its
physical path or concatenated with tbe lcgical child via the
logical I=ath.

When a logical child/destination parent concatenated segment is
inserted, the destination parent is inserted ~~ovided it does
not already exist and the I/O area key check does not fail (see
'DA' status code). If the destination ~arent does exist, it
will remain unchanged and the logical child will be connnected
to it.

3. VIRTUAL: The destination tarent may be inserted via its physical
path-or concatenated with the logical ctild via the logical
path.

When a logical child/destination parent concatenated segment is
inserted, the destination parent is reI=laced if it already
exists, ar.d is ineerted if it does not.

The RULES operand must be coded to supply replace and delete rules
for the logical child. However, the insert rule has no rreaning exceI=t
to satisify the RULES rracro'e coding scheme, so any insert rule (P,L,V)
may be coded.

1« A logical child will be ineerted provided that the insert rule
of the destination parent is not violated, and

2. The logical child to be inserted does not already exist (i.e.,
is not a duplicate).

The I/O area in an application program rrust contain either the
logical c1:ild or the logica 1 child/destination parent concat enated
segment in accordance with the destination parent's insert rule.

The logical child/destination I=arent concatenated segwent insert
operaticn is performed only if both components of the concatenated
segment can be inserted.

The insert o~eration is not affected by KEY or DATA sensitivity as
specified in a lcgical DBD or a FCB. This means that if a program is
other than DATA sensitive to both the logical child and the destination
parent of a concatenated segment, that program must nevertheless supply
both in the I/O area when inserting a logical path, and the insert rule
is logical or virtual. Thus maintenance programs that insert
~oncatenated segments should be DATA sensitive to both segroents in the
concatenation.

4.78 IMS/vS Systew/Application Design Guide

'AM'

'GE'

'II'

'IX'

~n insert was attempteo and FFOCOPT#I.

Parent of the destination parent or logical child
was not found.

Attem~t to insert duplicate segment.

Physical rule and destination parent not found.

I/O area key check fails. concatenated segments
contain the destipaticn ~arent's key twice -- once
a~ part cf LCHILD's LPCK and second as a field in
the parent. The keys rrust be equal.

cata Base Design Consideraticns 4.79

RULES= (P- -)
xxxxxxxxxxxx
x CUSTOMER x
x PP x
xxxxxxxxxxxx

x
x

XXXXXXXXXXXXXXXXXXXXXXXXX
x x

RULES= (P--)
xxxxxxxxXxxx
x LOANS x
x LP x

* xxxxxxxxxxxx
* * v

*
* *

* *
*

x
xxxxxxxxxxxx
x ACCOUNTS x

x * *
XXXXXXXXXXXX *
x BORROW x

v
v
V
v

vvvvvvvvvvvv
v ruS'I v

x x V VLC V
xxxxxxxxxxxx

x lC x
xxxxxxxxxxxx vvvvvvvvvvvv

U.80

xxxxxxxxxxxx
X CUS'IDMER x
X x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxx
X BORROW/LOANS X
X X
xxxxxxxxxxxxxxxx

X RULES= (P--)
x

XXXXXXXXXXXX
x PAYMENTS X

x X

xxxxxxxxxxxx

xxxxxxxxxxxx
x LOANS X
x X

xxxxxxxxxxxx
x
x

xxxxxxxxxxxxxxxxx
X CUST/CUSTCMEF x
x X

xxxxxxxxxxxxxxxxx

If the LOANS segment dces exist then:

I SRT 'CUS'IDMER' STA'IUS CODE='Jt~·

I SRT ' BORROW' STATUS CODE=' ~Jt'

However, if LOANS does not exist, then:

I SF T 'CUSTOMER' STA'IUS CODE='1I1l5'

ISRT 'BOFROW' STATUS CODE=' IX'

IMS/VS System/Application Design Guid~

RULES= (L- -)
xxxxxxxxxxxx
x CUSTOMER x
x pp x
xxxxxxxxxxxx

x

RULES= (L--)
xxxxxxxxxxxx
x LOANS x
x LF x

* xxxxxxxxxxxx
* * V

x
xxxxxxxxxxxxXX~XXXXXXXxXX

*
* *

* *
* V

V

V

V

x
x

xxxxxxxxxxxx
x ACCOUNTS x
x x
xxxxxxxxxxxx

xxxxxxxxxxxx
x CUS'IDMER x
X X

xxxxxxxxxxxx
X

X

xxxxxxxxxxxxxxxx
x BORROWILOANS x
X x
xxxxxxxxxxxxxxxx

ISRT 'LOANS'

ISRT 'CUST'

x
x * * xxxxxxxxxxxx *

x BORROW x
x LC x
xxxxxxxxxxxx

X RULES= (L--)
x

xxxxxxxxxxxx
x PAYMENTS x
X X
xxxxxxxxxxxx

xxxxxxxxxxxx
X LOANS x
x x
XXXXX)(XXXXXX

X

VVVVVVVVVVVV
V aJS'I V

V VLC V

vvvvvvvvvvvv

X

XXXXXXXXXXX)(XXXXX
X CUST/CUSTCMEF X

x X

)()(XXX)(X)(XXx~xxxxx

STATUS CODE=')J~'

STATUS CODE=' IX'

The 'IX' status code is the result of oFitting the concatenated
segment CUST/CUS~OMER in the second call. IMS/VS checked for the key
of the CUSTOMER segment (in the I/O area) and failed to find it. with
the logical" insert rule, the concatenated segment must be inserted to
create a logical path.

Data Base Design Considerations 4.81

RULES= (V--)
xxxxxxxxxxxx
x CUSTOMER x
x PP x
xxxxxxxxxxxx

x
x

XXXXXXXXXXXXXx~XXXXXX~XXX

x x

*
*

*

RULES= (V--)
XXXXXXXXXXXX
x LOANS x
x LP x

* xxxxxxxxxxxx

* * v
*

*
x

xxxxxxxxxxxx
x ACCOUNTS x

x *
xxxxxxxxxxxx *
x BORROW x

*

v
v
v
V

VVVVVVVVVVVv
V CUST V

v VLC V

vvvvvvvvvvvv
x x
XXXXXXXXXXXX

x I.C x
xx~xxxxxxxxx

Xl(XXXXXXXXXX
x CUSIDMER x
x x
XXXXXXXXXXXX

x
x

xxxxxxxxxxxxxxxx
x BORROW/LOANS x
x x
XXXXXXXXXXXXXXXX

I5FT 'CUSTOMER'

x RULES= (V--)
X

XXXl(XXXXXXxx
X PAYMENTS x
x x
XXXXXXXXXXXX

XXXXXXXXXXXX
x LOANS x
x X
XXXXXXXl(XXXX

X

X
XXXXXXXXXXXXXXXXX
x CUST/CUSTOMEF x

x
XXXXXXXXXXl(XXXXXX

S'IATUS CODE= '1P1~'

ISRT 'BOFROW/LCANS' STATUS CODE='~1P1'

Remember this action will replace the LOANS segment if present, and
insert the LOANS segment if not, so the virtual insert rule is a very
powerful option.

4.82 IMS/VS SystemlApplication Design Guide

The virtual insert rule is the most powerful of the three rules in
that it will insert the destination parent (inserted as a concatenated
segment via the logical ~ath) if the parent didn't previously exist,
and replace the existing destination parent with the inserted
destination parent ctherwise.

Specifying the insert rule as logical on the logical parent and the
physical parent, allows insertion via eitter its ~hysical path or its
logical path as ~art of a ccncatenated segment. When inserting a
concatenated segment, if the destination parent already exists, it will
remain unchanged and the lcgical child will be connected to it. If it
does not exist, it will be inserted. In either case, the logical child
will be inserted prcvided that the segment is not a duplicate and that
the destination parents insert rule is not violated.

specifying the insert rule as physical prevents inserting the
destination parent as part of a concatenated segment. 'Ihis means that
a destination parent tray be inserted only by its physical path. If
the insert creates a logical path, only the logical child needs be
inserted.

Lata Base Design Considerations 4.83

DELETE RULES INTRODUCTION

xxxxxxxxxxxx
x CUS'roMER x
x PP x
xxxxxxxxxxxx

x

xxxxxxxxxxxx
x LCANS x
x LP x

* xxxxxxxxxxxx
* * V

x
xxxxxxxxxxxxxxxxxxxxxxxxx * *

* *
V

V
V

V
x
x

xxxxxxxxxxxx
x ACCCUNI'S x
x x
xxxxxxxxxxxx

PHYSICAL PATH

x
'x

* * * *
xxxxxxxxxxxx *
x BORROW x
x LC x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxx
x PAYMEN'IS x
x x
xxxxxxxxxxxx

PHYSICAL PA'IH

vvvvvvvvvvvv
V CUST V

v VLC V

vvvvvvvvvvvv

TO CUS'IDMER and BORROW
xxxxxxxxxxxx

TO LOANS
xxxxxxxxxxxx
x LOANS x
x x
xxxxxxxxxxxx

x CUS'IOMER x
x x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxx
x BORROWILOANS x
x x
xxxxxxxxxxxxxxxx
LOGICAL PATH
TO LOANS

x
x

xxxxxxxxxxxxxxxxx
x CUST/CUSTOMER x
x x
xxxxxxxxxxxxxxxxx
LOGICAL PATH
'10 CUSTCMEF and EORROW

The DLET call is a request for access path deletion not DASD space
release of a segment. Delete rules are needed when a segment is
involved in a logical relaticnshi~ because that segment belongs to two
paths; a physical path and a logical path.

The selection of the delete rules for the logical child and its
logical and physical ~arent (or two logical parents if physical
pairing), determines whether one or two DLET calls are necessary to
delete the two access paths.

4.84 IMS/VS system/Application Design Guide

fnY2i£s! ADQ Logical Q~!~1i£n

1. PHYSIC~l! CELFI'10N: Physically deleting a segment prevents
further access to that segment via its ~hysical ~arents.
Physically deleting a segment also physically deletes its
physical dependents.

EXCEPTION: If one of the physical parents of the ~hysically
deleted segment is a logical child segment which has been
accessed from its logical parent, ,then the ~hysically deleted
segment is accessible from that logical child since the physical
dependents of a logical child are "Variable Intersection' Da ta. "

2. LOGICAL DELETION: Logically deleting a lcgical child prevents
further access-via its logical parent. Unidirectional logical
child segments are assumed to be logically deleted.

A logical ~arent is considered logically deleted when all of
its logical children are physically deleted. For physically
paired logical relationships, the physical child ~aired to the
logical child must also be physically deleted, before the logical
parent is considered logically deleted.

The picture below shows that an application ~rcgram can be sensitive
to either the concatenated segment (SOURCE= (DATlVI:ATA), (I:ATA/KEY),
(KEY/DATA) or only the logical child, since it is the logical child
that is either physically or logically deleted (depending on the path
accessed) in all cases.

xxxxxxxxxxxx
x CUSTOMER x
x x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxx
x BORROW/ LOANS x
x x
xxxxxxxxxxxxxxxx
SOURCE= (DATA/DATA)

xXJ.(xxxxxxxxx
x CUSTOMER x
x x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxx
x BORROW x
x x
xxxxxxxxxxxx
(DA 'IA/ KE Y)

xxxxxxxxxxxx
x CU S'IOMER x
x x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxx
x LOANS x
x x
xxxxxxxxxxxx
(KEY/ I: AT A)

Cata Base Design Considerations 4.85

xxxxxxxxxxxx
x x SEG1 x
x x PP x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxx
x x SEG2 x
x x LC x*
xxxxxxxxxxxx *

*
*

xxxxxxxxxxxx
xPI:x SEG3 x
x x FP x

xxxxxxxxxxxx
*x x SEG7 x

* *x x LP x
xxxxxxxxxxxx * * xxxxxxxxxxxx

x * * v
x * * v

XXXJ!XXXXXXXX* *
xPDc SEG4 x *
xLDx LC x
xxxxxxxxxxxx

x
x

vvvvvvvvvvvv
v SEG8 v
v VLC v
vvvvvvvvvvvv

* xxxxxxxxxxxx
* xPDx SEG5 x

* x x x
* xxxxxxxxxxxx
* x
* x * xxxxxxxxxxxx

*xPDx SEG6 x
x x LP x
xxxxxxxxxxxx

There are three paths to the logical Child segment SEG4. The
'physical path from its physical parent SEG3, the logical ~ath from its
logical parent SEG7, and a third path from its physical dependents
(SEG5 and SEG6) because segment SEG6 is a legical parent accessible
from its logical child SEG2.

These paths are "full-duplex" paths, meaning that accessibility is
two way (up and down). There are two delete bits that centrol access
along the paths, but they are "half-duplex," mean:*lg that they only
block half of each respective path. There is net a bit that blocks
the third path. If SEG4 were both physically and logically deleted
(PD and LD bits set), it would still be accessible from the third path
and so would both of its ~arents.

Neither physical nor logical deletion prevents access to a segment
from its physical or logical children. Logically deleting SEG4 prevents
access to SEG4 from its logical parent SEG7, but does not prevent access
from SEG4 to SEG7. Likewise, physically deleting SEG4 prevents access
to SEG4 from its physical parent SEG3, but does net prevent access from
SEG4 to SEG3.

4.86 IMS/VS System/Application Design Guide

DELETE BYTE DEFINITION

o segment de Ie ted (HI SAM)
1 DE record deleted (HISAM)
2
3
4
5 segment deleted/physical path (PD bit)
6 segment deleted/logical path (LD bit)
7

The logical delete bit is only meaningful for logical child segments
and their lcgical parents. The PD and LD bits are set or assumed set
as follows:

• If a segment is physically deleted (prevent further access from
its physical parent), then delete processing scans downward from
that segment through its dependents, turns upward and either
releases each segment's DASD space or sets the PD bit. HISAM is
an exception -- the delete bit is set in the segment specified by
the DLET call and processing termina tes.

• If the PO bit is set in a logical parent, then the LD bit is set
in all logical children that can be reached frem that logical
parent.

• In physical pa~r~ng when the PO bit is set in the physical child
of a pair of logical children, the LD bit is set in its pair.

• When a virtually paired logical child segment is logically deleted
(prevent further access from its logical parent), the LD bit is
set in the logical child. If physical pairing, the LD bit is set
in the logical child and the PD bit is set in its pair (a physical
child of the logical parent).

• The LD bit is assumed to be set in all logical children of
unidirectior.al logica I rela tionships.

• The LD bit is assumed set in a logical parent when the PD bit is
set in all of its logical children. If physical pairing, the PO
bit must be set in beth paired logical children.

A DL/I delete call may be issued against a segment defined in either
a physical or logical DEL. The call can be issued against either a
physical segment or a concatenation.

A delete call issued against a concatenated segment is a request
for the deletion of the logical child along the acc~ssed path.

Data Base Design Considerations 4.87

If a concatenated segment or a logical child is accessed from its
logical parent, then the DLET call is a request fer logical deletion.
In all ether cases, a DLET call is a request for physical deletion.

Physical deletion of a segment propagates logical deletion request
to its logical children and propagates physical deletion request to
its physical children and to any index pointer segments for which it
is the source segment.

Delete sensitivity must be specified in the PCB for each segment
against which a DLET call may be issued, but need not be specified for
the physical dependents of those segments.

Delete operations are not affected by KEY/DA~A sensitivity as
specified in either the PCB or logical DBD.

'DX' A delete rule is violated

, DA' Key changed in the I/O area

DASD SPACE RELEASE

The delete call is not a request for DASD space release. Depending
on the data base organization, DASD space mayor may not be reused when
it is released. DASD space for a segment is released when the following
conditions are met:

• Space has been released for all physical dependents of the segment.

• The segment is physically deleted (PD bit set or being set).

• If the segment is a logical child or a logical parent, then it must
be physically and logically deleted (PD bit set/being set, and LD
bit set/assumed set) •

• If the segment is a dependent of a logical child (variable
intersection data) and the DLET call was issued against a physical
parent of the logical child, then the logical child must be both
physically and logically deleted.

• If the segment is a ~rirrary index pointer segment, the space has
been released for its target segment.

DELETE RULES

1. ~HYSICAL: The lcgical parent must be previously !Qgi£~l!Y
deleteg before a DLE~ call is effective against the segment or
any of its physical parents. Otherwise the call results in a
'DX' status cede and no segments are deleted.

However, if a delete request is made against the segment as a
result of propagation across a logical relationship, then the
PHYSICAL rule acts like the following LOGICAL rule.

2. LOGIC~: Either physical or logical deleticn can cccur first.
All logical children are logically deleted. The logical parent
remains accessible from its logical children.

4.88 IMS/VS system/Application Design Guide

3. VIETUAb: A logical ~arent will be physically deleted:

a~ Explicitly when deleted by a D~ET call. Logical children
are logically deleted. The logical parent rerrains accessible
from its logical children.

b~ Implicitly when it is logically deleted. When the last
logical child is physically d~leted, as the result of a D~ET
call, the logical parent will be logically dele~ed and
physically deleted. If physical pairir.g, the ~hysical child
paired tc the last logical child must also be physically
deleted before the logical parent is in~licity deleted.

1. !:!!YSICALL~I£~1lY"iBl!J~!:: Meaningless.

2. ~IQIRECTION~1 Y!El~~I: When all physical child segments of a
physical ~arent which are virtually paired logical children have
been logically deleted, the physical ~arent is autcmatically
deleted.

!:!Qg.igal Child

1. PHYSIC~1: The logical child segment must be logically deleted
first and physically deleted second. If ~hysical deletion is
attempted first, the D~ET call issued against the segment or
any of its physical parents results in a 'DX' status code and
no segments are deleted. If a delete request is made against
the segment as a result of propagation acrcss a lcgical
relationship, or if the segment is one of a physically paired
set, then the rule acts like the fcllowing LOGICA~ rule.

2. tQGICA1: Deleticn of a logical child is effective for the path
for which the delete was requested. Physical and logical
deletion of the lcgical child can be performed in any order.

The logical child and any physical dependents remain accessible
from the non-deleted path.

3. VIRTUA1: A logical child is both logically and physically
deleted when it is deleted through either its lcgical or physical
path (setting either the PD or LD bits, sets both). If this
rule is coded on only one logical child segment of a physically
paired set, it acts like the ~OGICA~ rule.

For logical children involved in unidirecticr.al logical
relationships, the meaning of all three rules are the same, sc any of
the three rules can be s~ecified.

EXAMPLES

The following examples illustrate the use of the delete rules
individually for each of the segment types that the rule can be coded
for (logical children, and their logical and physical parents).

Only ~he rule pertinent to the examples are shcwn in each figure.
The explanation ap~lies to the specific example.

Data Base Lesign OOnsiderations 4.89

xxxxxxxxxxxx
RULES=(---)x CtS'IOMER x

x FP x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxxxxxxx
x

xxxxxxxxxxxx
RULES=(---)x LeANS x

x LP x
* xxxxxxxxxxxx

* * v
* * v

:t •

• *
x

xxxxxxxxxxxx
x ACCCUt-."TS x

x
x * *

XXJ<J<XXXXXXXX *
x BORROW x

v
v
v

vvvvvvvvvvvv
v CUSI' v

x x v VI£ v
xxxxxxxxxxxx

x LC x
xxxxxxxxxxxx vvvvvvvvvvvv

4.90

x RULES= (-P-)
x

xxxxxxxxxxxx
x PAYMEN'IS x
x x

xxxxxxxxxxxxxxx
x x LOANS x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
x x COST/CUSTOMER x
xLDx x
xxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxx
x x CUS'IOMEF x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
xPDx BOPROW/LOANS x
xLDx x
xxxxxxxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxx
xPDx PAYMENTS x
x x x
xxxxxxxxxxxxxxx

XXJ<}iXXXXXxxx

GHU

DLET

'LOANS'
'CUST/CUSTCMER' ST ATUS=' }5)1'

S'IA 'IUS = '1d~'

'Ihe physical delete rule requires the
logical child be logically deleted
first. The LD bit is now set in
the BORROW segment.

GHU

DI.E'I

, CUS'IOMER '
'BORROW/LCANS' SI'ATUS=' .l'5)['

ST ATU S=' ~Ji'

The logical child can be physically
deleted only after being logically
deleted. After the second delete,
both the LD and PL bits are set.

The physical delete of the lcgical
child also physically deletes the
physical dependents cf the logical
child. The FD bit is set.

IMS/VS System/Application Design Guide

xxxxxxxxxxxx
RULES= (---)x CUSTOMER x

x pp x
xxxxxxxxxxxx

x

xxxxxxxxxxxx
RULES=(---)x LOANS x

x LP x
* xxxxxxxxxxxx

* * v
x

xxxxxxxxxxxxxxxxxxxxxxxxx *
* *

* *
* v

v
V

V

x x
x x * * xxxxxxxxxxxx

x ACCOUNTS x
x x
xxxxxxxxxxxx

xxxxxxxxxxxx •
x BORROW x

vvvvvvvvvvvv
v COST v
V VLC v
vvvvvvvvvvvv

x LC x
xxxxxxxxxxxx

x RULES= (-L-)
x

xxxxxxxxxxxx
x PAYMENTS x
x x
xxxxxxxxxxxx

xxxxxxxxxxxxxxx
x x CUSTOMER x
X X X

xxxxxxxxxxxxxxx
X

X

xxxxxxxxxxxxxxxxxxxx
xPDx BORROW/LOANS X

X X X

xxxxxxxxxxxxxxxxxxxx
X

X
xxxxxxxxxxxxxxx
xPDx PA YMEN'I S X

X X X

xxxxxxxxxxxxxxx

xxxxxxxxxxxxxxx
x X LOANS X

X X X
xxxxxxxxxxxxxxx

X

x
xxxxxxxxxxxxxxxxxxxx
xPDx CUST/CUSTOMER x
xLDx x
xxxxxxxxxxxxxxxxxxxx

GHU • CUSTOMEF'
• BORROW/LOAN S' S'IA 'IUS= ',UP

DI.ET STATU S=' .t5if'

The logical delete rule allows the
logical child to be deleted
physically or logically first.

Physical dependents cf the logical
child are physically deleted, but
remain accessible frcrr the lcgical
path not logically deleted.

GHU

DLET

'LOANS'
'CUST/CUSTCMEF' STATUS=' l!'5lS •

S'IA 'IUS = • ~15 '

The delete of the virtual logical
child sets the LD bit on, in
the physical logical child ECRROW
(BORROW is logically deleted)

Data Base Lesign considerations 4.91

XXXXXXXXXXXX
RULES= (---) x CUSTOMER x

x LP X

XXXXXlCXXXXXX *
X *
X

XXXXXXXXXXXXXXXXXXXXXXXXX
x x

*

xxxxxxxxxxxx
RULES=(---)x LOANS x

x LP x
xxxxxxxxxxxx

* x
* x

* * x

x
XXXXXXXXXXXX
x ACCCUNI'S x

x * *
*

XXXlClClCXXXXXX *
x EORROW x

x
x

* xxxxxxxxxxxx
• x CUST x

x x x LC x x LC x
xxxxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxxx

4.92

x RULES= (-P-)
x -L-

xxxxxxxxxxxx
x PAYMENTS x

RULES= (-P-)
-L-

x x

xxxxxxxxxxxxxxx
x x CUSTOMER x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
xPDx BORROW/LOANS x
x x X
XXXXXXXXXXXlCXlCXXXXXX

X

X

xxxxxxxxxxxxxxx
xPDx PAYMENTS x
x x x
xxxxxxxxxxxxxxx

xxxxxxxxxxxxxxx
x x LOANS x
x x x
XXXXXXXXXXXXXXX

x
x

xxxxxxxxxxxxxxxxxxxx
xPDx COST/CUSTOMER x
xLDx x
xxxxxxxxxxxxxxxxxxxx

GHU 'CUSTOMER '
, EORROW/LOAN S ' STA 'IUS=')S!S'

DLET ST ATU S=' lSi!'

with the physical or lcgical delete
rule, each logical child must be
deleted from its ~hysical path.

Physical dependents cf the logical
child are physically deleted, but
remain accessible frcrr the ~aired
logical child not deleted.

GHU

DLET

'LeANS'
'CUST/CUSTCMER' sr ATUS='}5l!J '

STA 'IUS = ')f~'

Physically deleting EOFROW set
the LD bit in CUST. Physically
deleting CUST will set the LC
bit in the BORROW segment.

I~'1S/VS Systezr/Application Design Guide

xxxxxxxxxxxx
RULES=(---) x C(S'IOMER x

x PP x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxxxxxxx
x x
x x

xxxxxxxxxxxx
RULES=(---)x LOANS x

x LP x
* xxxxxxxxxxxx

* * v
*

* *
* *

* *

* v
v
v
v

xxxxxxxxxxxx
x ACCCU~"I'S x

xxxxxxxxxxxx *
x EORROW x

vvvvvvvvvvvv
v CUST v
v VLC v
vvvvvvvvvvvv

x x
xxxxxxxxxxxx

x LC x
xxxxxxxxxxxx

x RULES= (-V-)
x

xxxxxxxxxxxx
x PAYMEN'IS x
x x

xxxxxxxxxxxxxxx
x x CUS'IOMER x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
xPDx P-ORROW/LOANS x
xLDx x
xxxxxxxxxxxxxxxxxxxx

x
X

XXXXXXXXXXXXy,xx
xPDx PAYMENrS x
x x x
xxxxxxxxxxxxxxx

xxxxxxxxxxxxxxx
x x LOANS x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
xPDx CUST/CCSTOMER x
xLDx x
xxxxxxxxxxxxxxxxxxxx

GHU 'CUSTOMER '
, BOBRCw/LCANS ' ST ATUS=' .iSIS '

CLFT S'IA 'IUS = 'l!f~'

The virtual delete rule allows the
logical child tc be deleted
~hysically and logically. Deleting
either path, deletes beth ~aths.

Physical dependents of the logical
child are physically delet9d.

GHU , LOANS'
'CUST/CUSTCMEB' STATUS=' GE'

The previous physical delete,
deleted both paths, because the
delete rule is virtual. Deleting
either path, deletes both.

Lata Base Design Consideraticns 4.93

xxxxxxxxxxxx
RULES= (---)x CUSTOMER x

x LP x
xxxxxxxxxxxx *

x *
x *

xxxxxxxxxxxxxx~xxxxxxxxxx

x
*

xxxxxxxxxxxx
RULES=(---)x LOANS x

x LF x
xxxxxxxxxxxx

*
*

* x
x
x

x
xxxxxxxxxxxx
x ACCOUNTS x

x
x

• *
*

xxxxxxxxxxxx •
x BORROW x

x
x

* xxxxxxxxxxxx
* x CUS'I x

x LC x
xxxxxxxxxxxx

x x x I.C x
xxxxxxxxxxxx xxxxxxxxxxxx

4 .94

x RULES= (-V-) FULFS= (-V-)
x

xxxxxxxxxxxx
x PAYMENTS x
x x
xxxxxxxxxxxx

xxxxxxxxxxxxxxx
x x CUS'IOMER x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
xPDx BORROW/LOANS x
xLDx x
xxxxxxxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxx
xPDx PAYMENrS x
x x x
xxxxxxxxxxxxxxx

xxxxxxxxxxxxxxx
x x LOANS x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
xPDx CUST/CLS'IOMER x
xLDx x
xxxxxxxxxxxxxxxxxxxx

GHU 'CUS'IOMEF'
, BORRCW/LeANS ' ST ATUS = , lS)J 1

DLET STA 'IUS = 1111.15 '

wi th the virtual delete rule,
deleting either logical child deletes
both paired logical children.
(notice the FD & LD in both)

Physical dependents of the logical
child are physically deleted.

GHU 1 LOANS'
'CUST/CUSTOMER' STATUS=' GE'

Physically deleting BORROw also
physically deleted CUST, so the
CUST segment was not found,
i.e., 'GE' status code.

IMS/VS System/Application ~esign Guide

xxxxxxxxxxxx
RULES= (---)x CUSTOMER x

x PP x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxx
RULES=(-P-)x LOANS x

x LP x
* xxxxxxxxxxxx

* * v
* * v

xxxxxxxxxxxxxx~xxxxxxxxxx * * v
v
v

x x * *
x x *.

xxxxxxxxxxxx xxxxxxxxxxxx * vvvvvvvvvvvv
v aJS'I V

V VLC v
vvvvvvvvvvvv

x ACCOUNTS x x BORROW x
x x x ~C x
xxxxxxxxxxxx xxxxxxxxxxxx

x RULES= (---)
x

xxxxxxxxxxxx
x PAYMENTS x
x x
xxxxxxxxxxxx

"BEFORE"
xxxxxxxxxxxxxxx
x x LOANS x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
xPDx CUST/CUS'IOMER x
x x x
xxxxxxxxxxxxxxxxxxxx

" AFTER"
xxxxxxxxxxxxxxx
xPDx LOANS x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
xPDx CUST/Cl:S'IOMER x
xIDx x
xxxxxxxxxxxxxxxxxxxx

GHU '~OANS' S1' ATUS=' }5)5 ,

CLET STA 'IUS = 'i1~ ,

The physical delete rule requires
that all logical children be
previously physically deleted.

Physical dependents cf the logical
pi rent are physically deleted.

The CLET status code will be 'OX'
if all of its logical children
were not previously ~hysicaily
deleted.

All logical children are logically
deleted. LD bit is set in the
physical logical child BORRO~.

Data Base Cesign Cbnsiderations 4.95

xxxxxxxxxxxx
RULES= (-P-)x CUSTOMER x

x LP x
xxxxxxxxxxxx •

x •

x *
xxxxxxxxxxxxxxxxxxxxxxxxx *
x x

xxxxxxxxxxxx
RULES=(-P-)x LOANS x

x LP x
xxxxxxxxxxxx

* x
• x

* x

* * x
X

XXXXX}(X}(XXXX
X ACCOUNTS x

x
xxxxxxxxxxxx *
x BORROW x

* :lie

*

x
X}(xxxxxxxxxx
X CUST x

x x x IC x x LC x
xxxxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxxx

FULEB= (---)

4.96

x RULES= (---)
x

XXXJCXJCXXXXXX
X PAYMENTS x

"EFFOFE"
xxxxxxxxxxxxxxx
x x CUSIDMER x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
xPDx BORROW/LOANS x
xLDx x
xxxxxxxxxxxxJCJCxxxxxx

" AFTEF"
xxxxxxxxxxxxxxx
xPDx CUSIDMER x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
xPDx BORROW/LOANS x
xI.Dx x
xxxxxxxxxxxxJCxxxxxxx

X

X
xxxxxxxxxxxxxxx
xPDx PA YMEN'I S x
x x x
XXXXXXXXXXXX}(XX

x x
xxxxxxxxxxxx

GHU 'CUSTCMEF' ST ATUS = • .mJ •

DLET STATUS = 'lIf,l) ,

The physical delete rule requires:
(1) all logical children to be

previously physically deleted.
(2) physical children paired to its

logical child tc be previously
physically deleted.

CUSTOMER, the lcgical parent
ha s been physically deleted.

Both the logical child and its pair
had previously been physically
deleted. (PD and LD set en in the
"BEFCFE" figure of ECFROW/LCANS)

All physical depender.ts of the
physical parent are physically
deleted; ACCOUNTS (r.ct shown)
is physicall y deleted.

IMS/VS Syeterr/Application Design Guide

xxxxxxxxxxxx
RULES=(---)x CUSTOMER x

x FP x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxxxxxxx
x x

xxxxxxxxxxxx
RULES=(-L-)x LOANS x

x LP x
* xxxxxxxxxxxx

* =* v

* *
lit *

* * x
xxxxxxxxxxxx
x ACCCUNTS x

x =* =*
XX}(X}(xxxxxxx *
x EORROW x

v
v
v
V

vvvvvvvvvvvv
V CUST V

x x V VIC v
xxxxxxxxxxxx

x LC x
xxxxxxxxxxxx vvvvvvvvvvvv

x RULES= (---)
x

xxxxxxxxxxxx
x PAYMENTS x
x x

" BEFORE"
xxxxxxxxxxxxxxx
x x LOANS x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
x x COST/CUSTOMER x
x x x
xxxxxxxxxxxxxxxxxxxx

"AFTER"
xxxxxxxxxxxxxxx
xFDx LOANS x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
x x CUST/CUSTCMER x
xLDx X
xxxxxxxxxxxxxxxxxxxx

XXX}(XXXXxxxx

GHU 'LOANS' STA-:IUS= 'iUS'

o I.E 'I STATUS=' ~1If'

The logical delete rule allows
either physical or lcgical deletion
first; neither causes the other.
Physical dependents cf the logical
parent are physically deleted.

The logical parent LeANS remains
accessible frorr its lcgical
children.

All logical children are logically
deleted. LD bit is set in the
physical logical child BOFRCW.

The above processing and results would be the same if the logical
parent LOANS delete rule were virtual instead of logical. An additional
example to explain the virtual delete rule fcllows.

Data Base Cesign OOnsiderations 4.97

xxxxxxxxxxxx
RULES= (-L-)x CUSTOMER x

x LP x
XXXXXXXXXXXX *

x *
X '"

XXXXXXXXXXXXXXXXXXXXXXXXX
X '"

xxxxxxxxxxxx
RULES=(-L-)x LOANS x

x LF X

xxxxxxxxxxxx
* x

'" X

* X

* x
X

XXXXXXXXXXXX
X ACCOUNTS x

X

X *
XXXXXXXXXXXX - *
x BORROW x

X

XXXXXXXXXXXX

* x CUST X
x X

XXXXXXXXXXXX
x I.C X

xxxxxxxxxxxx
x LC x
xxxxxxxxxxxx

FULES= (---) X RUI.ES= (---)
X

xxxxxxxxxxxx
X PAYMENTS X

x X

xxxxxxxxxxxx

"BEFORE"
xxxxxxxxxxxxxxx
X X LOANS X

X X X
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
X x CUST/C tS'IOMER x
X X X

xxxxxxxxxxxxxxxxxxxx

"AFTER"
xxxxxxxxxxxxxxx
xPDx LOANS x
x X X
XXXXXXXXXXXXXXX

x
x

xxxxxxxxxxxxxxxxxxxx
xPDx CUST/C DS'IOMER X

X X X

xxxxxxxxxxxxxxxxxxxx

GHU 'LOANS' ST ATUS=' mJ '

r:LET STA'IUS='R1l>'

The logical delete rule allows
either physical or logical deletion
first; neither causes the cther.
Physical dependents of the logical
parent are physically deleted.

The logical ~arent LOANS remains
accessible from its logical
children.

All physical children are physically
deleted. Paired logical children
are logically deleted.

The above processing and results would be the same if the logical
parent LOANS delete rule were virtual instead of lcgical. An additional
exarrple tc explain the virtual delete rule follows.

4.98 IMS/VS System/Application Design Guide

XXXX}(J(XXJ(XXX
RULES= (---)x CUSTOMER x

x PP x
xxxxxxxxxxxx

x

xxxxxxxxxxxx
RULES=(-V-)x LOANS x

x LF x
* xxxxxxxxxxxx

* * v
X

XXXXXXXXXXJ(}(XX}(XXXXXXXXXX
* * V

* *
* *

V

V

V

X X
x lie * x

xxxxxxxxxxxx
x ACCOUNTS x
x x
xxxxxxxxxxxx

xxxxxxxxxxxx *
x BORROW x
x I.C X

X}(}(X}(XXXxxxx

vvvvvvvvvvvv
V CUS'I V

v VLC v
vvvvvvvvvvvv

X FUI.ES= (---)
x

X}(XXXXXxxxxx
X PAYMENTS x
x x
xxxxxxxxxxxx

"EEFORE"
xxxxxxxxxxxxxxx
x x CUSTOMER x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
x x BORROW/LeANS x
x x x
xxxxxxxxxxxxxxxxxxxx

"AFTER"
xxxxxxxxxxxxxxx
xPDx LOANS x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
xPDx COST/CUSTOMER x
xLDx x
xxxxxxxxxxxxxxxxxxxx

GHU 'CUSTOMEF'
, OORROWILOANS' S'IA 'IUS = '11f~ •

DLET STA 'IUS = '11f~'

'Ihe virtual delete rule allows
explicit and implicit deleticn.

Explicit is sarre as lcgical rule.

Implicit means ~he lcgical ~arent
is {:hysic all y deleted when the 1 ast
logical child is ~hysically deleted.

Physical dependents of the logical
child are physically deleted.

'Ihe logical parent is physically
deleted. Physical d€~endents of
the logical parent are physically
deleted.

All logical children are logically
deleted. LD bit is set in the
physical logical child EORROW.

Data Base Cesign Consideraticns 4.99

xxxxxxxxxxxx
RULES= (-V-)x CUSTOMER x

x LP x
xxxxxxxxxxxx *

xxxxxxxxxxxx
RULES=(-V-)x LOANS x

X LP x
xxxxxxxxxxxx

x lit * x
x

xxxxxxxxxxxxxx~xxxxxxxxxx

x x
*

* *
* *

* X
X

X

X x
xxxxxxxxxxxx
x ACCOUNTS x
x x
xxxxxxxxxxxx

"BEFORE"
xxxxxxxxxxxxxxx
x x CUSTOMER x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
x x BORROW/LCANS x
xLDx X

xxxxxxxxxxxxxxxxxxxx

"AFTER"
xxxxxxxxxxxxxxx
xPDx LOANS x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxx
xPDx CUST/CtS'IOMER X

xLDx x
xxxxxxxxxxxxxxxxxxxx

x * xxxxxxxxxxxx * lit

x BORROW x
xxxxxxxxxxxx

* x CUS'I x
x LC x
xxxxxxxxxxxx

FULES= (---)

x LC x
xxxxxxxxxxxx

x RULES= (---)
x

xxxxxxxxxxxx
x PAYMENTS x
x x
xxxxxxxxxxxx

GHU 'CUSTCMEF'
• IDRROW/LOANS' S'IA'IUS= '}I~'

DLET STA 'I·US = '}I~ •

The virtual delete rule allows
explicit and implicit deleticn.

Explicit is sarre as logical rule.

Implici~ means the lcgical ~arent
i ~ physic all y deleted when the last
logical child is physically and
logically deleted. Fhysical
dependents of the lcgical
child are physically deleted.

The logical parent is physically
deleted. Any ~hysical dependents
of the logical parent are
physically deleted.

~Q1!Q~: CUST segment must have
physically deleted prior to the
CLET call. (See abcve that the
In is set in BCFFCW)

4.100 IMS/VS Systerr/AF~lication Design Guide

xxxxxxxxxxxx
RULES= (-E-)x CUSTOMER x

x PP x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxxxxxxxxxxx
x x
x x

xxxxxxxxxxxx
RULES=(---)x LOANS x

x LF x
* xxxxxxxxxxxx

* * v
*

* *
* *

* *

* v
v
v
v

xxxxxxxxxxxx
x ACCOUNTS x

xxxxxxxxxxxx ,...
x BORROW x

vvvvvvvvvvvv
v COS'I v
v VLC v
vvvvvvvvvvvv

x x
xxxxxxxxxxxx

x Ie x
xxxxxxxxxxxx

x FUIES= (---)
x

xxxxxxxxxxxx
x PAYMENTS x
x x
xxxxxxxxxxxx

"BEFORE"
xxxxxxxxxxxxxxx
x x LOANS x
x x x
xxxxxxxxxxxxxxx

.x
x

xxxxxxxxxxxxxxxxxxxx
x x COST/CUSTOMER x
x x x
xxxxxxxxxxxxxxxxxxxx

"AFTER"
xxxxxxxxxxxxxxx
xPDx CUSTOMER x
x x x
xxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxxx~xxx

xPDx BORROW/LOANS x
xLDx x
xxxxxxxxxxxxxxxxxxxx

x
x

xxxxxxxxxxxxxxx
xPDx PAYMENTS x
x x x
xxxxxxxxxxxxxxx

GHU 'LOANS'
, CUST/CUS'IOMER' S'IA'IUS= 'RfJ:5'

DLET S'IA 'IUS = 'RfJ:5 '

The bidirectional virtual rule for
the physical paren~, is equal to
virtual for the logical parent.

When the last logical child is
logically deleted, the physical
~arent is physically deleted.

The logical child (as a dependent of
the physical parent) is physically
deleted.

All Fhysical dependents of the
physical parent are ~hysically
deleted; ACCCUNTS (not shown),
BORROW and PAYMENTS.

Data Base Design Considerations 4. 101

A physically deleted segment remains accessible under the following
circumstances:

1. A physical dependent cf the deleted ~egrrent is a lcgical parent
~hich is acce~sible frow its logical children.

2. A physical dependent of ~he deleted seguent is a logical child
which is accessible from its logical parent.

3. A physical parent of the deleted segment i~ a logical child
which is accessible from its logical parent. The deleted segment
is this case is variable intersection data cf a bidirectional
logical relaticnshi~.

A logically deleted logical child cannot be accessed from its logical
parent.

Neither physical nor logical deletion prevents acc~ss to a segment
from its physical or logical children. Since logical relationships
provides for inversion of t.he physical structure, a segment may be
either physically or lcgically deleted or both and still be accessible
from a dependent segment, because of an active lcgical relaticnship.
A physically deleted roct segment can be accessed when it is, defined
as a dependent segment in a logical tBD. The logical eEt defines ~he
inversicn of the physical LEt.

4.102 IMS/vS System/Application Design Guide

1. E~AM~!!~ Q;[12!L·ETE~ §~<lM~Nl§ ~CCE§§l~l!!I'IX: When the physical
dependent of a deleted segment is a logical parent with logical
children not ~hysically deleted, ~he logical parent and its
physical parents are accessible frorr those logical children.

xxxxxxxxxxxx
x x SEG1 x
x x PP x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxx
x x SEG2 x
x x LC x*
xxxxxxxxxxxx *

xxxxxxxxxxxx
xPDx SEG3 x
x x pp x
xxxxxxxxxxxx

xxxxxxxxxxxx
*x x SEG? x

* *x x LP x
* * xxxxxxxxxxxx

* * v x
x * * v

xxxxxxxxxxxx* *
xPtx SEG4 x '"
x x LC x
xxxxxxxxxxxx

x
* x * xxxxxxxxxxxx

* xPDx SEG5 x

*
*
*
*

x x x
xxxxxxxxxxxx

x
x

* xxxxxxxxxxxx
*xPDx SEG6 x

x x LP x
xxxxxxxxxxxx

vvvvvvvvvvvv
v SEG8 v
v VLC v
vvvvvvvvvvvv

The above physical structures sho~ that SEG3, SEG4, SEG5, and SEG6
have been physically deleted. Probably by issuing a DLE'! call for
SEG3. This resulted in all of SEG3's dependents being physically
deleted. (SEG6's delete rule # PHYSICAL or a 'LX' status code would
be the result).

SEG3', SEG4, SEG5, and SEG6 remain accessible frcIl' SEG2, the logical
child of SEG6, because SEG2 is not ~hysically deleted.

Ho~ver, physical dependen~s of SEG6 cannot be accessible, and their
DASD space is released unless an active logical relationship ~rohibits
such release.

Cata Base Design Consideraticns 4. 103

2 • EX~M:fI:!E Q!: ~!1!T EJ; §EqM~~l§ ~~.Q];§'§1~1!!11!: Wh en the phys i cal
dependent of a deleted segment is a logical child whose logical
~ar-==nt is not ~hysically dele ted, the logical child, its physical
parents and its physical dependents are accessible frorr- the
logical :Farent.

xxxxxxxxxxxx
x x SEG1 x
x x PP x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxx
x x SEG2 x
x x LC x·
xxxxxxxxxxxx *

xxxxxxxxxxxx
xPCx SEG3 x
x x FP x
xxxxxxxxxxxx

xxxxxxxxxxxx
*x x SEG7 x

* *x x I.P x
• * xxxxxxxxxxxx

* * v x
x • * v xxxxxxxxxxxx· *

xPI:x SEG4 x '"
x x LC x
xxxxxxxxxxxx

x
* x
* xxxxxxxxxxxx
* xPDx SEG5 x

* x x x
• xxxxxxxxxxxx
* x
* x

* xxxxxxxxxxxx
*xPDx SEG6 x

x x LP x
xxxxxxxxxxxx

vvvvvvvvvvvv
v SEGB v
v VI£ v
vvvvvvvvvvvv

The above physical structures sho~ that SEG3, SEG4, SEG5, and SEG6
have been physically deleted.

The logical child segment SEG4 remains accessible froK its logical
parer.t SEG7 (note that SEG7 is not physically deleted). Also accessible
are segments SEG5 and SEG6, which are variable intersection data. The
physical :Farent of the logical child (SEG3) is likewise accessible from
the logical child (SEG4).

4.104 IMS/vS systerr/A:F~licaticn Design Guide

3& E~AMPL~ QI ~~1~~~ §!~~I§ ~~Q~§§I~lbITX: A physically and
logically deleted lcgical child can be accessed from its physical
dep~ndents.

xxxxxxxxxxxx
x x SEG1 x
x x PP x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxx
x x SEG2 x
x x LC x*
xxxxxxxxxxxx *

*
*
* lie

lie

*
*

xxxxxxxxxxxx
xPDx SEG3 x
x x PP X
~JCX~xxxxxxxx

X

x *
xxxxxxxxxxxx* *
xPDx SEG4 x *
xLDx I.e x
Xl(XXXXXXxxxx

x
X

xxxxxxxxxxxx
xPI:x SEG5 x

x
xxxxxxxxxxxx

x
x

* xxxxxxxxxxxx
*xPDx SEG6 x

x x I.F x
xxxxxxxxxxxx

*
*

xxxxxxxxxxxx
*x x SEG7 x

* *x x LF x

* xxxxxxxxxxxx
v
v

vvvvvvvvvvvv
v SEG8 v
v VLC v
vvvvvvvvvvvv

The above physical structures show that the lcgical child SEG4 is
both physically and logically deleted.

From a previous example (number 1) we know that SEG6 (a logical
parent) is acces·sible from SEG2, if that segment (its logical child)
is not physically deleted. I.ikewise we know that once we have accessed
SEG6, its physical parents (SEG5, SEG4, SEG3) are accessable. It does
not matter tha't the lcgica 1 child is logicall y deleted (which is the
only difference in this example from example 1).

The third path cannot be blocked because a delete bit for this path
does not exist. Thus the lcgical child SEG4 is accessible from its
dependents regardless of its being physically and logically deleted.

Data Base Desigr. Consideraticns 4.105

4. EX~MPLE. QE ~!1!TE~ §~<J~~~1§ ~CCE'§§1~111.'!X: When a segment
accessed by its TEIRL path is deleted, it is physically deleted
in its physical data base, but remains accessible from its THIRD
path.

________ R~~ ________ _

xxxxxxxxxxxxx
x SEG1 x
xxxxxxxxxxxxx

x
xxxxxxxxxxxxx
x SEG2/SEG6 x
xxxxxxxxxxxxx

x
xxxxxxxxxxxxx
x SEG5 x
xxxxxxxxxxxxx

xxxxxxxxxxxx
x x SEG1 x
x x PP x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxx
x x SEG2 x
xLDx LC x*
xxxxxxxxxxxx *

lie

*

GHU 'SEG5 '
DI.ET

STATUS=')115'
E'IA 'IUS=' J5)1'

ACTION: SEG5 is ppysically deleted
by the action of the DI.ET call and
SEG6 is physically deleted by ~ro~
agation. SEG2/SEG6 unidirectional,
so SEG2 was considered logically
deleted ~rior to the LI.ET call
('Lt' bit only assuIred set).

xxxxxxxxxxxx
x x SEG3 x
x x PP x
xxxxxxxxxxxx

x
x

xxxJ!xxxxxxxx*
X x SEG4 x *
x x LC x
xxxxxxxxxxxx

x
x

*
* *
*

*
*

xxxxxxxxxxxx
*x x SEG7 x

* *x x LP x
* xxxxxxxxxxxx

v
v

v vvvvvvvvvvv
v SEG8 v
v vu:. v
vvvvvvvvvvvv

* xxxxxxxxxxxx
* xPDx SEG5 x
* x x x
*

'"
*

xxxxxxxxxxxx
x
x

* xxxxxxxxxxxx
*xPDx SEG6 x

x x LP x
xxxxxxxxxxxx

The results are interesting. SEG5 is unaccessible when accessed by
its physical parent path (from SEG4) unless SEG4 ~ere accessed by its
logical parent SEG7 (SEG5 & SEG6 are accessible as variable intersection
data). SEG5 is still accessible from its third path (frcm SEG6) because
SEG6 is still accessible from its logical child. 'Thus a segment can
be physically deleted by an application program and still be accessible
to that application program, using the saroe PCB used to delete the
segment.

4.106 IMS/VS Systerr/Ap~lication Design Guide

5.]Q1 AB~Q£MA1 TERMINA1!Q~ f9§~I~ILIIX If a logical ~arent is
physically and logically deleted, it's rAsr: space will be
released. For this to occur, all of its lcgical children must
be physically and logically d~leted. However, these logical
children may not be CASD space released because of physical
dependents with active logical relationships. Accessing such
a logical child from its physical dependents may result in an
801 abncrrral terreination if the LPCK is not stored in the logical
child or if the concatenation definition is data sensitive to
the logical parent.

xxxxxxxxxxxx
x x SEG1 x
x x PP x
xxxxxxxxxxxx

x
x

xxxxxxxxxxxx
x x SEG2 x
x x LC x*
xxxxxxxxxxxx *

* •

*
*
*
*
*

)(XX)(xxxxxxxx
xprx SEG3 x
x x PP x
xxxxxxxxxxxx *

x * *
x * *

XXX)!X)(X)(xxxx* *
xPI:x SEG4 x *
xLDx LC x
xxxxxxxxxxxx

x
X

)(X)!)(X)(XXXXXX
xPI::x SEG5 x
x x x
xxxxxxxxxxxx

x
x

* XXX)!xxxxxxxx
*xPDc SEG6 x

x x LP x
xxxxxxxxxxxx

*xPDx SEG7 x
* *xLDx LP x

*

The logical parent SEG7 has been physically and logically deleted
(the LD bit is never ~eally set, but only assumed set. It is shown
f.or the purpose of illustration). All of the logical children of the
logical parent have also been physically and logically deleted.
However, the logical par ent has had its segment sFace relea sed, wherea s
the logical child (SEG4) still exist due to an active logical
relationship that precludes ~eleasing its space.

If an application program accesses SEG4 frcrr its dependents (SEG1
to SEG2/SEG6 to SEG5) IMS must build the logical Farents concatenated
key if that key is not stored in the logical child. When IMS/VS
a ttempts to access the logical parent SEG7, the results will be an 801
abnorrral termination. 801 says that IMS/VS followed a pointer that
did not lead to the segment expected.

r:ata Base Design Considerations 4.107

AVOIDING POSSIBLE 801 ABNORMAL TERMINATION

We must avoid creating a physically deleted logical child which can
be accessed from below in the physical structure (its third path). A
logical child can be acce~sed from below if any of its physical
dependents are accessible through logical paths.

One solution is to require the logical paths to dependents to be
broken prior to physically deleting the logical child. This can be
done by using a PHYSICAL rule for the dependents as long as no physical
deletes are allow to propagate into the data base. Therefore no VIRTUAL
rules on logical children can be allowed at or above THE LOGICAL CHILD,
since wi~h the V rule a propagated logical delete causes a physical
dele~e without a P rule violation check (see DETECTION OF PHYSICAL
DELETE RULE VIOLATION). 'Ihe LOGICAL rule will also caus e propagation
if the PD bit is already, but the dependents PHYSICAL rule will prevent
that case. Similarly, no VIRTUAL rule can be allowed on any logical
parent above the logical child, since the logical delete condition
would cause the physical delete.

A second solution is tc break the logical path whenever the logical
child is physically deleted. This can be acccrrplished for subordinate
logical child ~egments with the VIRTUAL delete rule. Subordinate
logical parent segments need to have bidirectional logical children
with the VIRT~L rule (must be able to reach the logical children) or
physcially paired logical children with the VIRTUAL rule. This solution
\-Till not work with subordinate logical parent's pointed to by
unidirectional lcgical children.

4.108 IMS/VS System/Application Design Guide

DETECTION OF PHYSICAL CELETE RULE VIOLATION

The delete routine scans the ~hysical structure containing the
requested segment to be deleted to determine if any segment in the
physical structure has the physical delete rule and whether that rule
is violated.

xxxxxxxxxxxx
x x SEG1 x
x x x
xxxxxxxxxxxx

x
x RULE=L

xxxxxxxxxxxx
x x SEG2 x
x x LP x*
xxxxxxxxxxxx *

v * *
v *

vvvvvvvvvvvv *
v SEG3 v * v VLC v
vvvvvvvvvvvv

*
*
*

* *
* *
* *

*

______ J?~~ ____ _

XXXXXXXXXXXX
x x SEG4 x
x x x
xxxxxxxxxxxx

*
*
*

*

xxxxxxxxxxxx
x x SEG4 x
x x LP x*
xxxxxxxxxxxx * x RULE=I. * x
xxxxxxxxxxxx *
x x SEG5 x *
x x LC x*
xxxxxxxxxxxx

x RULE=V
x

xxxxxxxxxxxx
x x SEG6 x

*

xxxxxxxxxxxx
x x SEG8 x

*x x LF x

* xxxxxxxxxxxx

* RULE=L x
x

• xxxxxxxxxxxx
* x x SEG9 x

*x x Ie x
xxxxxxxxxxxx

RULE=V

x x PP x RULE=any
XXl(XXXXXXxxx

X

X

xxxxxxxxxxxx
*x x SEG7 x

x x LC x RULE=P
xxxxxxxxxxxx

GHU • SEG4'
DLET

STATUS='l!f!'.S'
S'IA 'IUS=' DX'

SEG7 (logical child of SEG3) has the physical delete rule and it
has not been logically deleted (the I.D bit has not been set) so the
physical rule is violated and a 'ex' status cede is returned to the
applicaticn program and no segments are deleted.

Cata Base Design Consideraticns 4.109

PHYSICAL DELETE RULE TREATEr AS LOGICAL

After the delete rcutir.e determines that neither the segment
sp9cified in the DLET call ncr any physical dependent of that segment
in the physical structure has the physical delete rule, any physical
rule encountered later (logical deletion propagated to logical child
or logical parent causing physical deletion ~ rule) in another data
base) is treated as LOGICAL.

xxxxxxxxxxxx
'X x SEG1 x
x x x
xxxxxxxxxxxx

x
x RULE=L

xxxxxxxxxxxx
x x SEG2 x
x x LP x*
xxxxxxxxxxxx *

v * *
v * *

vvvvvvvvvvvv * *
v SEG3 v * *
v VLC v * vvvvvvvvvvvv

xxxxxxxxxxxx
x x SEG8 x
x x x
xxxxxxxxxxxx

*
*

*
*
*

* *

*
*
*

xx:xx~xx~x~xx

x x SEG4 x
x x LP x*
xxxxxxxxxxxx *

x RULE=L *
x

xxxxxxxxxxxx *
xprx SEG5 x *
xLDx LC x*

xxxxxxxxxxxx
xFDc SEG8 x

*x x LP x
* xxxxxxxxxxxx

* RULE=L x
* x * xxxxxxxxxxxx

* xPDx SEG9 x
*xLDc LC x

xxxxxxxxxxxx xxxxxxxxxxxx
x RULE=V RULE=V
x

xxxxxxxxxxxx
xPDc SEG6 x
x x FP x RULE=any
xxxxxxxxxxxx

x
x

xxxxxxxxxxxx
*xPDc SEG7 x

x x LC x RULE=F
xxxxxxxxxxxx

GHU 'SEG8'
DLET

STATUS=' JHP
ST ATUS = , iUS'

SEG8 and SEG9 are both physically deleted, and SEG9 is logically
deleted (V rule). SEG5 is physically and logically deleted because it
is the physical pair to SEG9 (with physical pairing setting the LD bit
in one set the PD bit in the other and vice verse). Physically deleting
SEG5 causes propagation cf the physical delete to SEG5's physical
dependents, thus SEG6 and SEG7 qre physically deleted. Notice that
the physical delete of SEG7 is prevented if the physical deletion had
started by issuing a DLET call for SEG4. But the physical rule of SEG7
is treated as logical in this cas e.

INSERTING PHYSIC~~LY AND/OR LOGICALLY DELETEC SEGMENTS

When a segment is inserted, a replace operation will be performed
(i.e., space will be reused) and existing dependents of that segment
remain, provided:

• The segment to be inserted already exists (sarr·e segment type and
same key field value for both the physical and logical sequencing),
and

• The delete bit is set on for that segment along the path of
insertion.

Q.110 IMS/vS System/Ap~lication Design Guide

If the DB organization is HD, the logical twin chain will be
established as required, and existing dependents cf that segment will
remain.

If the DB organization is HISAM, and the root segment is physically
and logically deleted before the insert is attem~ted, then the first
LRECL for that rcot in primary and secondary DSGS is reused and
remaining LRECLs on any CS~M chain are dropped.

DELETE RULES SUMMARY

A DLET call issued against a concatenated segment (SOURCE=DATA/DATA,
DATA/KEY, KEY/DATA) is a DLET call against the logical child only.

A DLET call against a logical child Which has been accessed from
its logical parent is a request that the logical child be logica lly
deleted.

In all other cases a DLE'r call issued against a segment is a request
for that segment to be physically deleted.

~hxsicai Del~ti.Q!!

A physically deleted segment cannot be accessed from its physical
path with one exception -- if one of the physical ~arents of the
physically deleted segment is a logical child segment which can be
accessed from its logical parent, then the physically deleted segment
is accessible from that logical child since the physical dependents of
a logical child are "variable intersection data."

l&9:!£~i QeletioD

By definition, a logically deleted logical child cannot be accessed
from its logical parent •. Unidirectional logical child segments are
assumed to be logically deleted.

By definition, a logical. parent is consi.dered logically deleted when
physical deletion has occured for all of its logical children and for
all of its physical children which are part of a physically paired set.

~.££~.§.§ Pa th s

Neither physical nor logical deletion of a segment prevents access
to the segment frcm its physical or logical children, or from the
segment to its physical or logical parents. A physically deleted root
segment can be accessed only from its physical or logical children.

In bidirectional physical pi1rl.ng, physical deletion of one of the
pair of logical children causes logical deletion of its pair. Likewise,
logical deletion of one causes physical deletion of the other.

Physical deletion 'of a segment propagates logical deletion requests
to its bidirectional logical children and propagates physical deletion
requests to its ~hysical children and to any index pointer segments
for which it is the source segment.

Data Base Design Considerations 4. 111

DELETE RULES

Further delete operaticnE are governed by the following delete rules:

1. PHX~IC~~: If the segment is not already logically deleted, then
a DLET call against the segment or any of its physical parents
results in a 'DX' status code and no segments are deleted. If
a request is made against the segment as a result of propagation
across a logical relationship, then the rule acts like the
LOGICAL rule.

2. LogI£~: Either physical or logical deletion can cccur first
and neither causes the other.

3. VIEIU~: Either physical or logical deletion can cccur first.
If the segment becon:es logically deleted as the result of a DLET
call, then it will be physically deleted also.

1. PHYSIC~~L!PG~Q~tlY!B1Y~~: Meaningless.

2. BIDIB~CTIONA1 Y!Bl'UAt: Whenever all physical children which
are virtually paired logical children are logically deleted,
the physical parent segment is physically deleted.

1. PHYSIC~~: If the segment is not already logically deleted, then
a DLET call requesting physical deletion of the segment or any
of its physical parents results in a 'OX' status code and no
segments are deleted. If a delete request is made against the
segment as a result of propagation across a logical relationship,
or if the segment is one of a physically paired set, then the
rule acts like the LOGICAL rule.

2. LOGICA1: Either physical or logical deletion can occur first
and neither causes the other.

3. VIRTUA1: Either physical or logical deletion can occur first
and either causes the other. If this rule is used on only one
segment of a physically pai~d set, it acts like the LOGICAL
rule.

Depending on the data base organization, DASL space mayor may not
be reused when it is released. DASD space for a segment is released
when the following conditicns are met:

• Space has been released for all physical dependents of the
segme!lt.

• The segment is physically deleted.

• If the segment is a logical child or a logical parent, then it
must be physically and logically deleted.

4.112 IMS/VS System/Application Design Guide

• If the segment is a de~endent of a logical child (variable
intersection data) and the DLET call was issued against a
physical parent of the logical child, then the logical child
rrust be bcth ~hysically and logically deleted.

• If the segment is a primary index rointer segment, the space
must have been released for its target segrrent.

DEFINING A LOGICAL ~ATA EASE

To identify which segment types in one or more physical data bases
are used in a logical data base, the segment types in the physical data
bases are redefined in a logical data base througt DBDGEN using SEGM
statements& The NAME= o~erand of th~ SEGM statemen~ is used to specify
~he name used for the segment type in the logical data base, and the
SOURCE= o~erand is used tc identify which segment type or types in
physical data bases are represented by the narre s~ecified in the logical
dat.a base. On the SOURCE= o~rand, the user speci fies the name of the
segment type in a physical data base that is reI=resented in the logical
data base through the r.arre sI=ecified on the ~AME= operand. Also
specified on the SOURCE= operand is the name of the physical data base
that cor.tains the segment ty~e being defined in a logical data base.
When defining a concatenated segment type in a logical 1ata base, the
names of both segment types that comprise the ccncatenated segment
type, and the narre of the ~hysical data base that contains each segment
type to be concatenated are specified on the SOURCE= operand.

As in the definition of a physical data base, tte hierarchy of
segment types in a logical data base is defined through use of the
PARENT= operand of the SEGM statement, and through the order in which
SEGM statements are presented as input to DECGEN. The PARENT= operand
is us~d to specify the physical parent segment tyre of each dep~ndent
segment type defined in the logical data base, and the order in which
SEGM statements are arranged determines tte left tc right order of
physical child segment ty~es of each physical parent segment type.

A concatenated segment type is defined in a logical data base to
enable use of a logical relationship. When a ccncatenated segment type
is defined in a logical data base, the concatenated segment type enables
access to the destination parent in the logical relaticnship. In
addition, subject to rules for defining logical data bases, the
concatenated segment type enables crossing a lcgical relationship to
access segments that are in the hierarchic path of the destination
parent in the physical data base of the destination parent.

Before the rules for defining logical data bases can be understood,
crossing a logical relationship, and the first ar.c additional logical
relaticnships crossed in a hierarchic path of a logical data base must
be understood.

A logical relationshi~ is considened crossed when it is used in a
logical data base to access a segment that is a physical parent or a
physical dependent of a destination parent in the destination parents
physical data base. If a logical relationship is used in a logical
data base to access a destina tion par-ent only, the logical relationship
is considered not to be crossed. In Figure 4-34, DBDl and DBD2 are
two physical data bases with a logical relationship defined between
them. DBD3 through [Er6 are the four logical data bases that can be
defined as a result of the lcgical relationship between rEel and CBD2.
If the structure shown for rED3 is defined as a lcgical data base, no
logical relatior.shi~s are crossed since no physical parent or physical

~ata Base Design Considerations 4.113

dependent of a destinaticL rar~nt is included in the logical data base.
If DBD4 through DBD6 were defined as logical data bases, a logical
relationship is crossed in each case sincE each lcgical data base
contains a physical rarent or a physical dependent of the destination
paren t.

Physical Data Bases

DBDI DBD2

Logical Data Bases

DBD3 DBD4 DBD5 DBD6

No crossing

A logical relationship is crossed

Fiqure 4- 34. D~finition cf Crossing a Logical Pelationship

Multiple logical relationships can be crossed in a hierarchic path
of a logical data base. Figure 4-35 shows three physical data bases
(DBD1, DBD2 and rED3) in which logical relaticnshi~s have been defined.

Also in the figure are twc logical data bases (LEL4 and [EDS) that can
be defined as a result of the logical relationshirs defined in the
physical data bases. In DBD4, the two concatenated segment types (BF
and DI) that have been defined enable access to all segment types in
the hierarchic ~aths of their resrective destination parents. If either
logical relationship or both are crossed, each is considered to be the
first logical relationship crossed in the hierarchic path of logical
data base DBD4 since each ccncatenated segment type is reached by
following the physical hierarchy of segment ty~es in DBD1. In logical
data base DBD5, an additional concatenated segment type (GI) has been
defined that was not included in DBD4. The additional concatenated
segment type GI in DBD5 enables access to segments in the hierarchic
path of ~h~ destination parent if crossed. When the logical
relationship enabled by the concatenated segment GI is crossed, this
constitutes an additional logical relationshi~ crcssed in the hierarchic
path of the logical data base since, from the root of the logical data
base, the logical relationship enabled by the concatenated segment type
BF must be crossed to enable access to the concatenated segment type
GI ..

4.114 IMS/VS System/Application Design Guide

DBD4

Figure 4- 35.

Physical Data Bases

DBD! DBD2 DBD3

Logical Data Bases

DBDS

H

'Ihe First Logical Relationship Crossed in a Hierarchic
Path of a Logical Cata Base

When ~he first logical relationship is crossed in a hierarchic path
of a logical data base, access tc all segment types in the hierarchic
pa th of the destination parent is enabled as fcllcws~

• Parent segment ty~es of the destination parent are included in the
logical data base as de~endents of the destination parent in reverse
order as shown in Figure 4-36 •

• Dependent segment ty~es of the destination parent are included in
the loqical data base as dependents of the destination parent
without change in their order as shown in Figure 4-36.

Da ta Base 1:esign Considerations 4.115

Hierarchic path
of physical data
base

Figure 4- 36.

Resulting order in
the hierarchic
path of a logical data base

Logical Data Base Hierarchy Enabled by crossing the
First Logical Relationship

When an additional logical relationshiF is crcssed in a hierarchic
path of a logical data base, access to all segments in the hierarchic
path of the destination parent is enabled as in tte first crcssing.

1. The roo~ segment tYFe of a logical data base must be the root
segment type of a physical data base.

2. A logical data base rrust be supported by or.e or mere phySical
data bases. A logical data base must use only those segment
types, and physical and/or logical relatier.ship Faths that are
defined in tr:e Fhysical DED generation(s) referenced by the
logical CEC generation.

3. The Fath used to ccnnect two segments in a logical data base
(i.e., a parent and a child) must have been defined as a physical
relationship path or a logical relaticnshiF path in the physical
DED generation(s) referenced by the logical CBD generation.

4. Physical relationshiF Faths and logical relationship paths may
be intermixed in a hierarchical segment patb of a logical data
base.

5. After a logical relationshiF has been crossed in a hierarchic
path of a logical data base, aaditional Fhysical relatienship
y;aths and/or logica I rela tionship paths may be included by
proceeding in an upward and/or downward directicn from the
destinaticn parent. When proceeding downwards along a physical
relationship path from the destinaticn Farent, direction may
not be ctanged exceFt by crossing a logical relationship. when
proceeding upwards along a physical relaticnshiF Fath from the
destinaticn y;arent, direction may be changed.

6. Dependents in a logical data base rrust aFFear in the same
relative order as they appear under their Farent in their

4.116 IMS/VS Systero/Application Design Guide

Key:

physical data base. If a segmen~ in a lcgical data base is a
concatenated segment (i.e., a logical child concatenated with
either its physical or logical parent), tbe physical children
of each of the concatenated segments may not be intermixed. The
r~lative order of the children of each of the concatenated
segments rrust remain unchanged.

7. Different variations of a concatena~ed segment type can be
defined as physical child segment types cf a physical ~arent
s~gment type, but cr.ly one var{ation can have dependent segment
types. Figure 4-37 shows the four variaticns of a concatenated
segment type that can be defined in a logical data base. when
mul tiple variations are defined under a single physical pa rent
segment type. the variation of ~he concatenated. segment type
u~der the physical parent that has depender.ts must be the left
wost variaticn of the concatenated segment type. A PCE for the
l0gical data base can l:e sensit.ive ~o cr:.ly cne variaticn of the
concatenated segment type.

LC-Logical child segment type
DP-Destination pm;ent segment type

K-KEY sensitivity specified for the segment type
D-DATA sensitivity specified for the segment type

Figure 4- 37. Variaticns cf a Concatenated Segment Type Enabled by
Specification of KEY and DATA Sensitivity

Data Base Besign OOnsiderations 4.117

When or.ly one logical relationshi~ is crossed in a hierarchic segment
pa~h of a logical data ba~e to reach a destination parent:

a. All s~gment types on which the destination parent is dependent
in its physical data base can be ir.cluded in the logical data
ba~e as depender.t~ cf the destination parent in inverted order.

b. All segment ty~es that are 'dependent on the destination parent
in its physical data base can be included in the logical data
base as de~endents of the destination parent without change in
their order.

c. All segment tYFes that are dependent on any of the inverted
order segwent types defined in (a) can be included without change
in their order.

4.118 IMS/VS Systerr/Ap~licaticn Design Guide

Physical Data Base Logical Data Base can include

LO GICAL
Z CH ILD B

A

A C D

I
(DESTINATION

LOGICAL PARENT)
E CHILD Z E

B

1 I
I J

C D F G F C

Example 1.

Data Base Lesign Considerations 4. 119

Secondary indexes are used to Establish alternate entries to physical
or logical data bases for aFplication programs. Following are
definitions of the terms used for secondary indexing:

• Secondary Index

A secondary index i~ corrFrised of an index pointer segment type
defined in a secondary index data base ttat Frcvides an alternate
entry into a physical cr logical data base.

• Index Pointer Segment ~ype

A segment type defined in a seoondary index data base that contains
the data and pointers used to index an "index target segment type"
in a physical or logical data base (s€e Figure 4-38) •

• Index Target Segment Type

A segment type defined in a physical or logical data base that is
pointed to by an index Fainter segment type (see Figure 4-38).

• Index Source Segment ~ype

A segment type that is the source from which a secondary index is
created (see Figure 4-38).

• secondary Processing Sequence

The sequential order in which occurrences of an index target segment
type are accessed through a secondary index.

• secondary Da ta structure

The hierarchic order of segment types in a physical or logical data
base that results automatically when a data rase is accessed through
a secondary index.

PHYSICAL OR LOGICAL DATA BASE

Can be root
or dependent
segment type.

Can be the
same segment --+----1
type as index
target segment
type, or as
shown, a dep-
endent of the
index target
segment type.

INDEX
TARGET

SEGMENT TYPE

INDEX SOURCE
SEGMENT TYPE

SECONDARY
INDEX DATA BASE

INDEX
POINTER

SEGMENT TYPE

The content of a specified
field or fields in each index
source segment is duplic
ated in the respective index
pointer segment generated
from each index source segment.

Figure 4-38. segmer.t Types Associated with a Secondary Index

4.120 IMS/VS Systerr/Application Design Guide

INDEXED DATA BASE

CITY

NAME is index target
segment type

NAME
ADAMS

NAME
I JONES
I
I
I

:~~~~urce Qal g:
. BLUE

RED YELLOW

/
I

I Automobile Segment Type used as
source for secondary index

for secondary
index

NAME
SMITH

r----i......I~

INDEX DATA BASE

BLACK BLUE RED RED

Unless suppressed. one index pointer
segment is generated from each index
source segment.

YELLOW

Figure 4- 39. Indexing to N~~E Segments Eased on the Colcr Field of
a DeJ:endent

An index target segment type can be the rect cr a dependent of a
physical er logical data base, and an index source segment type can be
either the index target segment type itself or any physical dependent
of the index target segment type. A secondary index contains one index
pointer segment for each occurrence of the index scurce segment type
in a physical or logical data base. If the same segment type in a data
base is used as both the index target and index scurce segment types,
the secondary index ccr.tains ene index pointer segment that points to
each index target segment.. If a dependent of an index target segment
type is used as the source segment type for a secondary index, the
secondary index contains one index J:ointer segrrent that J:oints to an
index target segment fer each source segment that is a dependent of
that index target segment as shown in Figure 4-39.

The user specifies through DEDGEN what data witr.in the index source
segment tYJ:e is to be used tc index occurrences of the index target
segment type. From one to five fields, that can be non-contiguous,
within the index source segrrent type can be specified for use as search
data in a secondary index. When specified, the ccntent of each field
specified is cOJ:ied in the search field of the respective index pointer
segment generated from each source segment.

Data Base resign Considerations 4. 121

SECCNDAFY PROCESSING SEQUENCE

Er.try to a data base through a secondary index enables access to
the index target segment ty~e and all segment types in the hierarchic
pa~h of the index target segment type. Thrcugh the secondary index,
~he order in which index targe~ segments are accessed is called their
secondary processing sequence. The seccndary precessing sequence of
index target segroents is determined by the search field values placed
in index pointer segments.

SECCNDAFY DATA STRUCTURE

The order in which segment ty~es in the hierarchic path of an index
~arget segment type are accessed is called their secondary data
structure. The hierarchic arrangement of segment ty~es for the
secondary data structure is created automatically by IMS/VS. To enable
use of the secondary data structure, the user rrust define sensitivity
to the segment types in the seccndary data structure through PSBGEN.

Figure 4-40 shows a physical data base hierarchy in which a dependent
segment type is indexed through a secondary index. Also shown is the
secondary data structure for the segment types in the hierarchic path
of the index target segment ty~e.

4.122 IMS/vS Systerr/Ap~lication Design Guide

PHYSICAL DATA BASE HIERARCHY

SECONDARY DATA
STRUCTURE HIERARCHY

Figure 4- 40.

'INDEX ON SEGMENT TYPE G

Seconda ry Da ta structure

Data Base Cesign OOnsiderations 4. 123

The secondary data structure for segment ty~es in a data base is
de~errrined as follows:

1. ThE index target segment type is the root.

2~ Parent segment ty~es of the index target segment type in a data
base become the left most dependents of the index target segment
ty~e in reverse crder.

3. All dependents of the index target segment type are included in
the secondary data structure without change in their order except
when a parent of the ir.dex target segment type is included in
the secondary data structure as stated in item 2. In this case,
dependents of the index target segment type are displaced one
posi~ion to the right in the secondary data structure.

4. Only those segment types in the hierarchic path of the index
target segment type are included in the secondary data structure.

5. When the root segment type of a data base is indexed through a
secondary index, the hierarchy of the data base is unchanged
for the seccndary data structure.

A secondary index can te defined using:

• Fields in the ir.dex source segment type that contain unique or
non-unique data for the search field of the secondary index.

• Up to 5 non-contiguous fields in the index source segment type as
the search field of a secondary index.

To enable processing a secondary index as a data base itself:

• The user can specify that data in fields of index source segments
is to be duplicated in the index pointer segrr-ent generated from
each index source segment.

• Index pointer segments can contain any additional user data desired.

A secondary index can be used:

• To index selectively or sparsely by using an crtion and/or exit
provided to enable su~~ressing the creation of index entries for
desired index source segments.

• To access segwent tYFes in a single hierarchic path of a data base
using the index target segment type as the root for all segment
types in that path.

• To selectively access a given segment, through data contained in
that segment or a de~endent of that segment.

• To access a given dependent in an HDAM or HIrAM data base in less
time than is normally required through the prirrary addressing
method.

Following are the rules that must be observed in secondary indexing:

1. In a physical data base, a logical child, cr a de~endent of a
logical child cannot be an index target segment type.

4.124 IMS/vS System/Application Design Guide

2~ You cannot declare a secondary processing sequence on an index
if the target is a concatenated segment tyre or a dependent of
a concatena~ed segrrent ty~e in a logical data base.

3~ When using a secondary processing sequence, you cannot ins~rt
or delete an index target segment, or any segment cn which an
index target segmer.t is dependent in a physical data base.

4~ Data in any fields of segments can be changed except for data
in sequence fields. If data in fields cf an index scurce segment
is changed and -thcse fields are used in the search or 'subsequence
fields of an index pointer segment, the index rointer segment
is deleted from the rosition det~rmined by its old key, and
reins~rted into the position determined by its new key.

5. If a variable length segment type is used as an index source
s~groent and an attem~t is made to insert an occurrence of the
segment typ~ whose len~h does not ir.clude any fields cr portions
of any fields s~ecified for use in the search, subsequence or
duplicate data fields of an index pointer segment, cne of the
following acticns cccur:

a ~ If the miss ing index source segment data is used in the
search field of an index ~ointer segment, generaticn of the
index ~ointer segment for tha t source segment is suppress'ed.

b. If the missing index source segment data is us~d in the
subsequ~nce or duplicate data fields cf an index ~ointer
segment, -the ir.dex rointer segment field will contain one
of the three following representaticns cf zerc for the
missing data (P='OOOF', X=X'OO', or e='0'). The
representation used will be the tyre srecified on the FIELD
statement that defined that index source segment field.

6. When symb,clic pointing only is used to point to ir.dex target
s~gments from index pointer segments, unique sequence fields
rrust be defined in the index target segmer.t type and all segment
types on which the index target segment tyre is derendent in
it's physical data base.

7. DL/I do~s not assume responsibility for the order of index
pointer se~ents that contain non-unique keys after a
reorganizaticn of the secondary index.

8. A logical child segment type cannot be used as an index source
segment type. However, a dependent of a lcgical child can be
used as an index scurce segment type.

9. In a logical data base, no qualification on indexed fields is
allowed in the SSA for a concatenated seg~ent. However, an SSA
for any de~endent cf a concatenated segment can be qualified on
an indexed field.

10. The insert rule of FIRST is always fOllowe d when entrie s are
added to seccndary indexes for data base maintenance.

A secondary index is stored using a VSAM key sequenced dat a set only
if index pointer segment keys are all unique. If nct unique, the index
is stored in a key sequenced and an entry sequenced data set pair. ~he
key sequenced data set is used to store tte first cccurrence of an
index pointer segment with a given key, and the entry sequenced data
set is used to store additional index pointer seg~ents that ccntain

~ata Base Design Consideraticns 4. 125

the same key. Within both data sets, one lcgical record is used to
store each index ~cinter segment. When mUltiple index pointer" segments
with the same key are stored in the secondary index data base, a ~ointer
is placed at the beginning cf the logical record that contains each to
chain them together. In the chain, the key sequenced data set logical
record always ccntains the first index segment with a given key, and
it points to one of the duplicates in the entry sequenced data set.
The sequence in which logical records that contain duplicates are
chained in the entry sequenced data set is deterroined by the insert
rule of FIRST.

lng~~ foin!~ §~~~D1 FO~IDE~

Figur~ 4-41 shows the structure of an index ~ointer segment within
a VSAM logical record. In a logical record, the optional non-unique
pOinter is used to chain logical records that cer.tain index ~ointer
segments with du~licate keys. The remaining portion of each logical
record contains an index pointer segment.

\

4 __ ---------------- VSAM logical record ------------------I:~I
~14-----PREFIX---~·~1~4~-----------DATA----------~-~.

Pointer to an Direct
Index address
,Pointer Delete index Constant Search
~egment flag target (Optional) field
with a segment
non-unique pointer**
key *

* Not present if a unique sequence field is defined in the index pointer segment type.

**Not present when symbolic pointing to the index target segment type is specified

*** Present when symbolic pointing to the index target segment type is specified, and the
concatenated key is not present in the subsequence or duplicate data fields.

Duplicate Concatenated Subsequence
field data field key of index
(Optional) (Optional) target segment

Figure 4 -41. VSAM Logical Recore and Index Pointer Segment Formats

An index pointer segment is a fixed length segment that contains a
prefix and a data pcrtion. The prefix contains a one byte delete flag
and a four byte pointer field when the index uses direct address
pointers to point to an index target segment. If symbolic pointing is
designated in the index data base, the pointer field is emitted from
the prefix. The delete flag is used to mark an index pointer segment
as being deleted when the respective index source segment from which
an index ~cinter segIrent wa s crea ted is deleted. For HDAM and HIDAM
data bases, the pointer field contains a direct address ~ointer that
is used in secondary indexes to point to the occurrence of the index
target segment type that is indexed by an index ~cinter segment.
Symbolic pointers may also b~ specified for HLAM and HIDAM data bases
if the user desires. In a secondary index for a HISAM data base, the
concatenated key of the index target segment rrust be stored in the data
portion of the index ~cinter segment to point to the index target
segment. The user can specify its position withir. the data ~ortion by
defining the concatenated key as a system related field. When not
defined as a system related field, IMS/vS autcrratically places the
concatenated key in a predetermined position in the index pointer
segment as shown in Figure 4-41.

4.126 IMS/vS Systerr/Ap~lication Design Guide

The data portion of an index ~ointer segment contains up to four
classes of system maintained data: constant, search, subsequence, and
duplicate data. Of the four, only search data is required for index
pointer segments. Constant, subsequence, and du}.:licate data are
optional.

~hree fields and a constant can be defined in an index pointer
segment type through an xrFLD statement. The fields defined through
an XDFLD statement are called search, subsequence and duplicate data
(DDATA) fields. A search, subsequence or duplicate data field in an
index pointer segment tYI=€ is comprised of one to five fields that are
defined in the index source segment type through FIELD statements. For
each respec~ive field in the index ~ointer segment type, a list of
names of one to five fields defined in the index source segment type
can be specified for use as that index pointer segroent field. The
content of the index source segment fields specified are duplicated in
the respective index pointer segment field when each index ~cinter
segment is created. The sequence of field names in a list determines
the order in which the fields are stored in the index }.:ointer segment
field. Names of source segrrent fields can be specified in any desired
order.

In auxiliary storage, the key of an index pointer segment consists
of the values in the ccnstant, search field, and subsequence field wr.en
all three are specified on an XDFLD statement. Of the three, cnly the
search field is required in each index pointer segment. The constant
and subsequence field are optional. When only the search field is
specified for an index ~cinter segment type, the search field contains
the entire key of each index pointer segment. when a constant is
specified, the key of an index ~ointer segment consists of the constant
followed by the search field value. When a subsequence field is
specified, the subsequence field value is appended to the search field
val ue and it becomes a part of the key of the index J;ointer segment.
~he combined length of the constant, search and subsequence fields that
make up a key must not exceed 240 bytes.

The use of each field in an index pointer segment is as follows.

When specified, a one byte constant occuJ.:ies tte first byte of the
data portion of each cccurrence of the index pointer segment type. The
constant is used to identify all index pointer segrrents associated with
each secondary index wher. rrultiJ.:le secondary indexes.are defined in
the same index data base. The use of the shared index oJ.:tion is
described under the heading of "Shared Index rata Eases. It

The data in the search field of an index J.:ointer segment is a
collection of the data in from one to five index source segment fields.
In an index pointer segment, the search field is used as all or a part
of the key of that index segment. The search field contains the
value (s) in a field or fields of an index source segment en which an
index target segrrent is indexed. This means to the user, the presence
of the constant and/or sutsequence fields in the keys of index pointer
segments are transparent to calls. To process a specific index target
segment through a secondary index, the SSIl. cf a call is qualified on
the search field value only.

Data Base resign COnsiderations 4.127

The data in the subsequence field of an index ~ointer segment is a
collection of the data in from one to five index source segment fields.
The purpose of the subsequence field is to extend the key of index
segments to prevent storing index segments in an overflow data set in
cases where search field values are non-unique. Index segments in an
overflow data set can degrade performance. Cne example could be that
of indexing a personr.el data base segment type by birth data. If the
last name of the ir.dividual were specified as subsequence data then
all segments with identical birth date fields wculd be stored in
alphabetical order by la~t name in the primary storage data set. This
would not necessarily eliminate all synonyms, but rrost keys ~ould now
be unique. The extension ef the index pointer segment key by adding
the subsequence field is transparent to the caller since calls are
qualified on search field values only.

When ~he key of an index pointer segment type is comprised of search
field values only, index pcinter segments with the same search field
value are stored in one key sequenced data set legical record, plus
the required number of entry sequenced data set logical records. By
specifying a subsequence field, the key of index ~cinter segments is
extended& When subsequence field values are unique, multiple
occurrences of the ir.dex pointer segment type with the same search
field value are stored ir. ccnsecutive logical records in the key
sequenced data set. Increased performance results since no searches
among the duplicates in the entry sequenced data set are required.

Da ta in the r:r:ATA field of an index pointer segrrent is a collection
of the data in ene to five index source segment fields. When specified,
space for its contents is alloted adjacent to the subsequence or search
field value in an index pcinter segment. The LLATA field is defined
to prompt the system to duplicate data contained in index source
segments in index pointer segments to enable using that data when a
secondary index is processed as a data base itself.

The user can include any additional data desired in index pointer
segments by specifying a length for the index pointer segment type that
is sufficient te include the additional data. When included, the
additional data is available to the user when precessing the secondary
index as a data base itself. The user should note however, that initial
loading of additional data, and maintenance of the additional data when
reorganizing an indexed data base maintenance is his responsibility.
During reorganization of an indexed data base, the secondary index(s)
for that data base are recreated. When each secondary index is
recreated, any additier.al user data that existed in the original
secondary index is lost.

System related fields are defined in index source segment types for
use in secendary indexing. They are defined using FIELD statements,
and can only be defined for index source segment types. Two types of
system related fields car. be defined for use in seccndary indexing.

The first tYFe of system related field consists of defining a portion
or all of the concatenated key of an index source segment as a field
withir. the index source segroent. ~e name of this field can be up to

4.128 IMS/VS systerr/Application Design Guide

eight characters long, and its name must begin with the three characters
LCR. It may appear in the field list for either subsequence or BDATA
fields defined by the XDFLD statement.

The name of tbe seccnd type of system related field begins with the
three characters t§~. A /SX field is a four byte field that contains
an IMS/VS generated value that uniquely identifies a source segment.
It may appear only in the subsequence field of an index pointer segment,
and may only appear if the index source segment is in an HDAM or HIDAM
data base.

System related fields are defined in the index source segment type,
but do not physically exist as fields within that segment type. system
related fields are defined in the source segment type for use in the
subsequence or I:I:ATA fields of index pointer segments. 'Ihe subsequence
and DDATA fields of the ir.dex pointer segment type are defined through
an XDFLD statement. In defining each, ·the narres cf up to five fields
defined in the index source segment type can be specified for each on
the XDFLD statement.

The /CR or ISX fields are used in the sutsequence field of index
pOiriter-Segments-to rrake their keys more unique •. In addition, a !CK
field can be used to store portions of the concatenated keys of
occurrences of the index source segment type in their res~ective index
pointer segments. This may reduce space requirements where pointing
is symbolic and part of the concatenated key is tc be used as
subsequence data. In a seccndary index for a HISAM data base, the
concatenated key of each index target segment rrust be included in its'
respective index pointer segment for use as a symbolic pointer. When
not included in the subsequence or DDATA fields of the index pointer
segment type us.ed for a HISAM data base, IMS/VS automatically appends
the concatenated key of each index target segment to any data in the
subsequence or DI:ATA fields of the respective index pointer segment.

~YQQ~~§sion Q! Inde~ ~D~Iie§

TWo operands, that can be specified during DEDGEN, can be used to
suppress the creation of index pointer segments. The two are the
NULLVAL=, and the EXTRTN= operands on the XDFLD statement.

In the NULLVAL= operand, a one byte self-defining term, or the words
BLANR or ZERO can be specified. If the NULLVAL c~erand is specified,
all fields in an index scurce segment that comprise the search field
in the' index pointer segment are checked to see if each byte within
the field(s} contains the specified value. When the field or fields
in the index source segment are filled with the specified character,
an index pointer segment is not czeated.

The EX'lR'lN= operand is used to specify the name of an index
maintenance exit routine that is supplied by the user to suppress the
creation of selected index entries.

lnd~ Maintenanc~ ~~i~ EQutine

secondary indexing allows specification of a user supplied index
maintenance exit routine which can selectively suppress the creation
of index segments. The routine enables the user to control the density
of a secondary index. One exit routine is allowed for every secondary
index or a generalized routine may be written to serve several indexes.
For~detailed infcrmation on index exit maintenance routines, see the
IMSLY§ §yst~ ~~Qsg~ing .EefY~n~ ~ill!Sl!..

Data Base Design Considerations 4.129

The name given to the load module used fcr ccntrolling index
maintenance must be the value of the EXTRTN= operand on the XEFLD
statement in the DEC generation for the indexed data base.

When an index source segment is inserted, deleted, or re~laced in
a data base, DL/I index rraintenance keeps the index synchronized with
the contents of the data base. The action taken de~ends on the
operaticn being perforwed: insert, delete, or replace.

When a source segment is inserted, a copy of the proposed indexing
segment is constructed during index maintenance. 'Ihe NULLVAL test and
exit routine test are perfcrmedcn the copy to determine the suppression
status of the indexing segment. If no su~pression status is indicated,
the indexing segment is inserted into the index.

When a source segment is deleted, a copy of the alleged existing
indexing segment is constructed during index maintenance. 'I'he NULLVAL
and exit routine tests are ~erformed to determine the suppression status
of the indexing segment. If no suppression status is indicated, the
matching segment is found in the index and deleted. .

,If suppression status is indicated for an insert or delete, no
further processing is required for that entry.

When a source segment is replaced, an index entry may cr may not be
affected. The indexing segment may be replaced or it may be deleted
and a new indexing segment inserted. It is also ~ossible that no action
is required. The acticn taken is determined by comparing the
constructed copies of the old and new indexing segments. The following
describes the acticn tc be taken:

• If no suppression is indicated for either segment and:

there is no change to indexing segment, nc action is taken.

only the data in the indexing segment is changed, the indexing
segment is re~laced.

the key in the indexing segment is changed, the old segment is
deleted and a new segment is inserted •

• If suppressicn is indicated :

for the old indexing segment but not the new, the new indexing
segment is inserted.

for the new indexing segment but not the old, the old indexing
segment is deleted.

for both the old and new indexing segment, nc action is taken.

The question asked by the DL/I index maintenance routine when it
invokes the user index exit rcutine is, "will this index pointer segment
appear in the index?" The exit routine answers the question through a
return code.

suppression of indexing by the exit routine must be consistent. Th'e
same index pointer segment cannot be examined at two different times
and have suppressicn indicated only once. Also, user data cannot be
used to evaluate suppression, since the actual index pointer segment
is only seen by the exit rcutine just before insertion of the new one.
In the cases of replace and delete, only a prctcty~e is passed which

4.130 IMS/VS System/Application Design Guide

contains the constant, search data, subsequence data, and source data,
plus any symbolic pointer which may have been added.

,Multiple secondary indexes can be placed in a single shared index
data base. A shared index data base is created, accessed, and
maintained in the same manner as a data base cor.taining cnly one
secondary index. To be eligible for combining, all indexes must be
comprised of segments of equal length, with key fields of equal length,
and with equal key offset ~ositions. A maximum of 16 indexes can share
a single shared index data base. Each secondary index in a shared
index data base must have a constant specified which uniquely identifies
that index. The advantage cf a shared index data base is a reduction
in the number of control blocks for VSAM and DL/I.

A secondary index can be processed as a data base by providing a
PCB which references the £Et of the secondary index. The pur~ose of
processing a seccndary index as a data base could be to scan the
subsequence or duplicate data fields, to perform logical comparisons
or data reduction between two or more indexes, or to add to or change
the user maintained data area. Whatever the pur~cse of processing a
secondary index separately, the following guidelines and restrictions
apply:

• NO changes to system-maintained data fields in the index pointer
segment will be allowed unless ACCESS=("NOPRCT) is specified in
the index OED. _ Attempts to change system rraintained data without
the NOPROT o~tion specified will result in an AM status code.
• Inserts will not be permitted to any data base in which
ACCESS=INDEX is specified

• Any changes to systerr-maintained data in an index may render the
index as unuseable and unmaintainable.

• Deletion of index entries by the user when the associated index
source segments exist will result in NE status codes if the user
makes updates to the index source segment which will result in
index maintenance.

• Qualification on the key of index pointer segments in SSA's must
supply a value which includes not only the search portion of the
key, but also the constant and subsequence data if supplied. This
is the only case in secondary indexing that tte user is aware of
the constant and subsequence data in the key.

• In processing a secondary index which is a member of a shared index
data base, the secondary index is regarded as a separate index data
base. A series of GN calls will not violate the boundaries of the
secondary index for which they are intended. Each secondary index
in the shared index data base has its unique tE£ name and root
segment name.

SSAs of calls for index target segments can be qualified on the
search field of one or more secondary indexes when accessing index
target segments through their primary or secondary processing sequence.
This is accomplished by using indexed fields defined within the index
target segment type to qualify SSAs. An indexed field is defined in

Data Base Design COnsiderations 4.131

name only for an index target segment type. During £BDGEN, one indexed
field is defined in the index target segment ty~e for each seccndary
index that points to that segment type. The name specified for the
indexed field actually represents the search field of the associated
secondary index. Since the name specified for the indexed field of an
index target segment type represents the search field of a secondary
index, when an SSA is qualified on the indexed field of an index target
segment, the search field of the associated seccndary index is searched
to satisfy the call.

When a secondary index is searched to see if an index pointer segment
satisfies a call, the call is satisfied when an index pointer segment
contains the specified search field value and points to the index target
segment under consideration.

In cases where index source segments are several levels below index
target segments, qualifying calls on the search field of a secondary
index can prove to be an efficient means of selecting index target
segments based on data in index source segments. In no case should
this use be made of a secondary index when the index target segments
and index source segments are the same segment type, and the indexed
data base is being processed through its primary ~rocessing sequence.
Even where the index target and index source segment types are
different, the following guideline should be used. The method should
be chosen which causes the fewest accesses to the data base or index.

IMS/vS system/Ap~lication Design Guide

In using secondary indexing, consideration sheuld be given to the
following:

• When an index source ~egment is inserted into or deleted from a
data base, a respective index pointer segment is inserted into or
delet.ed frorr the resfecti ve secondary index. This maintenance
occurs in all cases, regardless of whether or not the Bfplication
program doing the updating actually uses the secondary index.

• When replacing data in a source segment that is used in the search,
subsequence or ddata fields of an index, the index is updated by
IMS/vS to reflect the change. When data used in the ddata field
of an index pointer segment is replaced in a source segment, the
index pointer segment is upda ted wi th the new data. When dai:a used
in the search or subsequence fields. of an index fointer segment is
replaced in a source segment, the index pointer segment is updated
with the new data, and in addition, the positien of the index
pointer segment within the secondary index is changed. The pO$ition
is changed since a change to the content of the search or
subsequence field of an index pointer segment changes the key of
that segment. The secondary index is updated by deleting the
segrrent froIT the J;csiticn determined by the old key and re-inserting
the index pointer segment in the positior. determined by the new
key.

• The use of secondary indexes will increase storage requirements of
all steps which include within the PSB: 1) a PCB for the indexed
data base, and 2) the J;rccessing option which allows the index
source segment to be updated. The additior.al storage requirements
for each index data base will range from 6K to 10K. A percentage.
of this additional storage will be fixed in real memory by VSAM.
For additional information on storage requirerrents, refer to the
topic "IMS/VS Data Base Buffer Pools" the storage estimates chapter
of the IMS/VS System Programming Reference Manual.

• The use of a secondary index must be considered relative to
alternate means of achieving the same function. As an example, it
may be desired to produce a report frcU' an EDAM data base in root
key sequence. A secendary index will conveniently provide this
capability. However, the access of each sequer.tial rcot will, in
most cases, be a random operation. It would be a very time
consuming operation to fully scan a large data base where each root
access is random. It rray be more efficient to scan the data base
in physical sequence (GET NEXT not using a secendary index), and
then sort the results by root key so that the final report can be
produced in root key sequence.

• A secondary index uses a key sequenced data set cnly if all index
pointer segment keys are unique, and a key sequenced and entry
sequenced data set when index pointer segment keys are non-unique.
Whenever possible, the data used for keys should be unique to
eliminate the need for the entry sequenced data set, ~hich in turn,
elirrinates tte additional I/C operations required to search the
entry sequenced data set.

• When calls for an index target segment type are qualified on the
search field of a secenda ry index, additional I/O operations are
required since the index must be accessed each time an occurrence
of the index target segment type is inspected to see if that
occurrence satisfies the call. Since tte data contained in the
search field of a seccnda ry index is a duplication of data in a
source segment, the user should determine whether or not an

Data Base r:esign Considerations 4.133

inspection of source segments in their data base might yield the
sarre result faster.

variable length segments enable the user tc vary the arrcunt of
storage s~ace used to stcre different occurrences of the same segment
~ypec They are intended for use by applicaticn ~rograrrs that ~rocess
variable length text or descri~tive data. In addition in some cases,
~hey can be used to enhance utilization of secondary storage. Variable
lengtb segments enable the user to vaLY the s~ace used for each
occurrence of a segment ty~e bet~een a minimum and maximum number of
bytes through a two byte size field loaded ~ith each occurrence.

variable length segments can be used in HISAM, HDAM and HIDAM data
bases when VSAM is s~ecified as the access method for the data base.
~o use variable length segments, a segment type rrust be defined as
va~iacle in length when defining the segment type through the CBDGEN
utility. The variable length of a segment ty~e is s~ecified using the
BYTES= keyword of a SEGM statement as shown in Figure 4-42. MAXBY~ES
specifies the maximum length used for the data ~crtion of .cccurrences
of a segment ty~e and MINEYTES s~ecifies tte rrinirrurr length used. In
addition, the user must include a two byte size field in the first two
bytes of the data portion of each occurrence of that segment type when
,loading it into the data base. ~he size field is loaded with each
segment to tell IMS/VS the length of data in that segment. Since the
size field is in the data ~ortion of a segment, the data length placed
in the size field must include the length of the size field itself.
In addition, if a sequence field is defined in the segment type, the
minimum length specified in the size field rrust ir.clude at least the
size field and all data tc the end of the sequence field.

when initially loading occurrences of a variable length segment
type, the space used to store the data ~orticn cf an occurrence is the
length specified in MINBY~ES or the length specified in the size field,
whicr.ever, is greater. when MINEY~ES is greater than the length
specified in the size field cf an occurrence, mere s~ace is allocated
for the segment ~han is requiIBd for the segment. The additional space
allocated is free space that can be used when existing data in the
segment is replaced with data that is greater in length.

4.134 IMS/VS systero/AF~lication Design Guide

SEGM NAME=SEGNAME, BYTES=(MAXBYTES, MINBYTES)

SPACE ALLOCATED FOR SEGMENT CAN
VARY FROM MINBYTES TO MAX BYTES

DATA LENGTH INCLUDES
LENGTH OF SIZE FI ELD

I:
SIZE
FIELD

MINBYTES*

MAX BYTES

SEQUENCE
FIELD

"'-

--*-........ --____ '--___ .-.. _____ ..J

-- CONCATENATED SEGMENT

LOGICAL CHILD SEGMENT

I I I LOGICAL I
SIZE

LOGICAL J
PARENT I PHYSICAL I

TWIN SEQ. I TWIN I
'FIELD CONCATENATElD IFIELD I

ISEQUEI'JCE

'* KEY FIELD I
I

I~ MINBYTES -\

LOGICAL CHILD SEGMENT IN PHYSICAL DATA BASE

*MINBYTES MUST BE ~ 4 BYTES AND MUST INCLUDE:
1. PHYSICAL TWIN SEQUENCE FIELD, IF PRESENT,

AND KEY COMPRESSION IS NOT ENABLED BY A
SEGMENT EDIT/COMPRESSION ROUTINE.

2. LOGICAL PARENT CONCATENATED KEY.
3. LOGICAL TWIN SEQUENCE FIELD, IF PRESENT.

Figure 4- 42. Variable Length segments

l LOGICAL PARENT
SEGMENT

I I
SIZE ISEQ. I
FIELD IFIELD I

I I

~MINBYTES---.I

Cata Base Design Considerations 4.135

Variable length segment formats are shown in Figure 4-43. Fixed
length and variable length segment formats are the same except for a
size field placed in the data portion of a variable length segment.
In addition for H~AM and HIEAM data bases, when tte prefix and data
porticns of a segment are separated in storage due to update activitiy,
the first four bytes of space following the ~refix are used for a direct
address pointer to the se~arated data portion of the segment.

The user can load segments initially with a given number of bytes
of data, and then either increase or decreasE the length cf data in
each by replacing the data. When the length of data in an existing
segment in a HISAM data base is increased, the lcgical record containing
the segment is rewritten to acquire the additional space required. Any
segments displaced through the increased data length are placed in
overflow storage. when the length of data in an existing segment in
a HISAM data base is decreased, the logical record is rewritten to make
all segments contigucus ~ithin the logical record. When the data in
an existing segment in an HCAM or HIDAM data base is replaced with data
that is greater in length and the space allocated for the existing
segment is not sufficient for the new data, tte prefix and data portions
of the segment are separated in storage to obtain sufficient space for
~~e new data. When separated, a pointer is placed in the first four
bytes of space fcllowing the prefix, Which remains in its original
position, to point to the new data portion of the segment. When
separated and existing data is replaced with data that fits into the
original space allocated for the data portion of the segment, the new
data portion is placed in the original space allccated overlaying the
data pointer. ~ten the prefix and data portions of a segment are not
separated, and data in an existing segment in an HDAM or HIDAM data
base is replaced with data that is shorter in length, the new data
followed by free space occupies the position cf tte original data.

4.136 IMS/vS Syste~/Application Design Guide

HISAM, OR HDAM AND HIDAM WHEN PREFIX AND DATA ARE NOT SEPARATED

PREFIX DATA I
SEGMENT DE LETE POINTE R ~I-N-D-C-O-U-N-T-E-R-T-S-IZ-E--r---V-A-R-I-A-B: LENGTH I
CODE BYTE AREA FIELD DATA
~ ___ ~ ________ ~1~ ______ ~ ____ ~ ____ ~

I

HDAM AND HIDAM WHEN PREFIX AND DATA ARE SEPARATED

SEGMENT DELETE
CODE BYTE

PREFIX

POINTER AND COUNTER
AREA

PREFIX

SEGMENT DELETE SIZE
CODE BYTE FIELD

DATA
POINTER

DATA

FREE SPACE

VARIABLE LENGTH
DATA

Figure 4- 43. Variable Length segment Formats

CON S IDERA TION S

For HISAM data bases, replacing existing data in segments ~ith data
that is greater in length can affect performance since this may require
displacing segments to overflow logical records. Replacing data in an
existing segment in a HISAM data tase with data that is shorter in
length has no affect en ~erformance. The additional overhead required
to use variable length segments in a HISAM data base consists only of
th~ two byte size field leaded with each occurrence.

Additional storage requirements in HDAM and HIrAM data bases when
variable length segments are initially loaded consists of the two byte
size field in the data ~crticn. In addition when the prefix and data
portions of a segment are separated in storage, a one byte segment code
and one byte delete byte are stored ~th the data portion of the
segment. Performance can be affected when tt.e ~refix and data portions
of segments are separated and stored in different blocks in a data set.

CONVERSION OONSIDERA~IONS

When a segment type has been defined as variable in length, before
initially leading or inserting any occurrence of that segment type into
its data base, a size field rrust be present. To convert an existing
da":a bas~ from fixed length to variable length segrrents, a size field
must be added to each segment before it can be loaded or inserted into
a data base as a variable length segment.

Da ta Base Design Consideraticns 4.137

The user must sU~Fly his cwn routine to convert an existing data
base from fixed leng~h to variable length segments. For the new data
base, a new DBD must b~ created that identifies the variable length
segm~n~ ~ypes. The routine could then sequentially retrieve segments
from the existing data base, add the size field to variable length
segments, and then insert the segments into the new data base.

A second method of converting from fixec lengtt to variable length
segments enables use of the IMS/VS Unload/Peload utilities; however,
this method requires that an interim DBD be created. The interim DBD
is required to enable a user routine 'to place a size field in fixed
length s~gments before they can be loaded into a cata base as variable
lengtb segITents.

For the interim DBD, the user specifies a fixed length for the
segmen~ ~ype tha~ is being converted to variable length. In addition,
the user specifies use of the segment edit/compression exit for that
segment type. Using the reload utility, each tirre an occurrence of
~he segment type is presented to an IMS/VS action module for loading,
the segment edit/compression exit enables a user rcutine to gain control
to add a size field tc the segment. After the size field is added,
the user routine passes control tack to the acticr. module which then
loads the segment into the data base. After the data base is reloaded
by the reload utility, the user then creates a new DBD to define the
variable length of the segment types converted.

The segment edit/corrpression exit facility of IMS/VS enables the
user to supply a routine to edit a segment during its movement between
the aFplication ~rograrr ir.Fut/output area and the data base buffer
pool. The facility offers the user the ability tc encode data for
security Furpos€s, to forrrat data to be used by application programs,
and to compress a segment to eliminate redundant characters. The
edi~/corrpression routine should be transparent to the application
programs.

The routine to be used for edit/compression is r.amed by the operand
COMPRTN= routine-name on the SEGM statement in the £EDGEN operation
for the data base. A segment work area is constructed by IMS/VS at
initializat.ion time, and the edit routine is loaded when the data base
is opened. As a segment from that data base is requested by the user,
its location in the buffer ~ool is obtained. If an edit routine has
been specified, the address of the data portien of the segment, and
the start of the segment wcrk a rea is sUFplied and the routine is given
control. On a retrieve operation, the edit rcutine is responsible for
moving the data from the buffer Fool to the segment work area. IMS/VS
will move it from the segment work area to the a~Flicaticn Frogram I/O
area. For load, insert, cr replace operations, data is moved from the
application program I/O area to the segment work area by the edit
routine, then to the buffer pool by IMS/VS. See Figure 4-44 for a
visual exrlanaticn of segment edit/compression.

4.138 IMS/VS Systerr/Aprlication Design Guide

RETRIEVE

INPUT __ . i"SiZE
AREA ---... Lf~!:Q~r-U_S_E_R_D_A_T_A __

IMS

I
SEGMENT WORK
AREA

~iiIZE~-U-S-ER--D-A-T-A--~
~~D~ __________ _

USER
ROUTINE

BUFFER POOL

EDIT
ROUTINE

SOURCE

EDITED
USER DATA

(!)
o
a:
0-

2
o
t=
<{
U
...J
0-
0-
<{

ci
o
a:
0-
...J
o
a:
I-
2
o
U

Figure 4-44. Segwent Edit/Com~ression

LOAD!I NSE RT!R EPLACE

USER DATA
OUTPU~iZE-1
AREA I FIELD.
(SOURCE) - --.,..------

USER--

ROUTINE

SEGMENT WORK
AREA

BUFFER POOL

EDIT
ROUTINE

IMS

EDITED
USER DATA

To assist the user in ~roviding parameters to his edit/compression
routine, the DBC control block has a table a~~ended to it in the form
of asserrbly language contrel sections. One control section is developed
for each segment type to be edited or com~ressed. 'Ihese control
sections ccntain infcrrraticn such as the edit/compression routine name,
the name of the segment, and the total lengtt of that control section.
Each control section rray be extended by the user to contain any desired
data or algorithm information.

Although the segments nay be defined as fixed or variable length to
the application ~rcgrarr, the segments to be processed by the
edit/compression routine must be variable length in the data base. The
data length is centained in a size field in the first two bytes of the
segment. If the segment is defined as fixed length to the ap~lication
program, the size field must be stripped off by the edit/compression
routine before the segment is presented to the a~I=licaticn ~rcgram.
In addition, if the segment wa s compressed, it must be expanded by the
edit routine to the fixed length expected by the a~~ication program.
In reverse, if the application program presents a fixed length segment,
the edit/compression rcuti~e must append the size field prior to the
segm~nt being written to the data base. If the edit/comI=ression routine
compresses the segment, the size field must be updated to reflect the
correct length.

Data Base Design Consideraticns 4.139

To convert existinq data bases to use this facility, the following
st9ps must be performed:

1. Unload the current data base using the reerganization/unload
utility and using the current DBD.

2~ ~fine a new DBD which specifies VSAM as the access method and
specifies a COMFRTN for those segments which are te be converted.
Reload the data with the reorganization/reload utility.

3. The named OOMPRTN provided during reload should encode, compress
or edit the segment (as determined by the ir.stallation's
requirements) and add the two byte size field.

There are two types of segment manipulatien ~ossible through the
DL/I edi~/compressio~ facility:

Da!s £QIDpre§§~Qn - rrovement or compression of data within a
segment in a manner that does not alter the content er ~osition
of the key field. Ty~ically, this type involves compression or
encoding of data from the end of the key field to the end of
the segment. ~his is the only time tpat the location of the
fields may be altered. The segment size field of a variable
length segment car.net be compressed.

K9Y com}:~..§io.D - rrcvement or compression of any data within a
segment in a manner that can change the relative ~csition, value,
or length of the sequence field as well as any other fields.

Any segment ty~e in a ~hysical data base can be specified during
DBDGEN as being compressible with either tbe KEY cr DATA c~tien, with
the following exce~tions:

• Any segment type which is defined as a logical child may not be
specified

• segments residing in an INDEX data base nay r.ot be s~ecified

• segroents defined as rect segments of a HISAM data base may be
specified for ~TA com~ression only

Although the contents of the sequence field or the data may be
modified by the edit/ccrnrression routine, the segment's position in
the data base is determined by the original sequence field value. An
exarrple may hel~ te exrlain this. If the defined sequence of a
particular segment type is rased on last narres, and the data base
contains segments for people named SMITH, JONES, and BRO~N, the segments
are maintained in alphabetical sequence -- EFCWN, JONES, SMITH. Assume
that an edit routine encodes these names as fellcws:

BROWN--------)29665

JONES--------)16552

SMITH--------)24938

The encoded value is placed in the sequence field. The segments
will be maintained in the criginal sequence (BROt\N, JONES, SMI'IH) rather
than in the numerical sequence implied by the encoded values (16552,
24938, 29665). The records are maintained in the originally defined
sequence so that if the ap~licaticn program issues a GET NEXT request,
the correct segment is retrieved.

4.140 IMS/VS Systerr/Aprlication Design Guide

CONSIDERATIONS

General considerations which apply to using the segment
edit/corrpression exit facility are:

• Any segment specified to be edited must reside in a VSAM data set

• All segment editing takes place on segments described in a physical
data base only

• If the user routine is designed to edit more than one segment type,
in one or more physical data tases, t~e rcutine must be link-edited
as reentrant

• Adequate storage for the edit routine(s) rrust be provided for both
batch and online systems

• since this rrodule becoroes a part of the IMS/VS region,. any abnormal
termination cn its ~art terminates the entire IMS/VS region

• The user routine cannot employ such Operating System macros as SPIE
and STAE

The segment edit/ccrr~re~Eion exit provides the user with a valuable
tool. However, several additional considerations are worth noting.
Edit/compression processing of each segment cn its way to or from an
application prograrr involves add~d CFU time. In addition, the search
time required to locate the requested segment rray be increased,
depending upon the options selected. In the case of full segment
compression, using the KEY compression opticn, every segment type that
is a candidate tc satisfy either a fully qualified key or data field
request must· be expanded or decoded to allow exarrination of the
appropriate field by the IMS/VS retrieve module. For key field
qualification, only those fields from the start cf the segment through
the sequence field are ex~anded during the search. For data field
qualification, the total segment is expanded. In the case of data
compression and a key field request, little more processing is required
to locate the segment than that of ncn-corr~ressed segments, since only
the segrrent sequence field is used to determine if this segment
occurrence satisfies the qualification.

Other 'considerations can im~act total systerr ~erformance, especially
in an online tele~roceEsir.g environment. For example, being able to
LOAD an algorithm table into memory will give t~e compression routine
a large amount of flexibility. However, this action can place the
entire IMS control region into a wait state until the requested member
is present in main storage. It is suggested that all alternatives be
explored to lessen the iropact of situations such as this.

HIERARCHICAL SEQUENTIA~ DESIGN CONSIDERATIONS

This section discusses the various data base design considerations
with which programming personnel should be farriliar to get the best
use frorr the ca~abilities of the IMS/vS Hierarchic sequential data base
organization and in particular the HISAM data base access method.

PROCESSING TIME

Before perforrring I/O o~erations, IMS/VS uses information within
its internal data base tables and data base buffers in an attempt at

Data Base Design COnsiderations 4.141

satisfying segment requests. If no infcrrnaticr. is found in main
storage, the index and the nc:cessary primary data set record are read
troIT auxiliary storage. In accessing a segment of information, a VSAM
or ISAM index is used to obtain the root segment cf the s~ecified
record. De~endent segments of that root are reached in a sequential
manne r. If the in form at ion is net found in a ~rinary da ta set record,
a pointer in the primary da ta set logical record causes a read to be
performed on an ovc:rflow record.

, ,
17;

A

17

181

VSAM or I SAM INDEX

B
loq

B

121

F

193

C i
I

32 :
lRECl

D

61
l

E

51
LRECl

B

108

E

42

G

26

POINTER
ott

POlrHER

: I
10 1

I :
I ,
I ,

*

Primary Data Set
Logical Record

Overflow Data Set
Logical Records

Overflow Data Set
Logical Records

* The pointer is at the beginning of VSAM logical records

Figure 4-45. HISAM Data Base Record in Auxiliary Storage

The first soluticn to reduce the number of direct access references
(and hence processing tirre) is to increase the size of the primary data
set logical record length, thus eliminating the nEed for overflo~
records.

4.142 IMS/VS systen/Ap~lication Design Guide

ISAM INDEX

B C B D E
108 41 121 61 42

F F E G
0 Primary Data Set

"181 193 51 26 Logical Record

(NO OVERFLOW RECORD REQUIRED)

Figure 4- 46. HIs\M Data Base Record -- Larger Primary rata Set Logical
Record

The segment which is logically farthest fron the root in the to~ to
botton, left to right, hierarchy, is also physically farther from the
root ~en the segment is stored. This indicates that the logical
structure may be manipulated to reduce the number of direct access
references required to obtain a particular segment.

Bata Base Design Ccnsideraticns 4.143

F
193

181

A

17

F

193

C

32

* The pointer is

61

E 51

D

61

E

51

B

108

C 41
G 32

26

E I
I

!~2 I

G

26
OSAH LRECL

r
\,

41
OSAr1 LRE.CL

F

181

B

104

B

121

at the beginning of VSAM

?O!N1ER
*

FCINTER
*

0

logical

Primary Data Set
Logical Record

Overflow Data Set
Logical Records

Overflow Data Set
Logical Records

records

Figure 4-47. storage sequence of segments in HISAM Data Ease Record

Ano~her soluticn is the use of multiple data set groups. ~his allows
second-level segments and their dependent segments to be accessed
through an index with no need to access the roct cr intervening
segme!!ts. The rraxirrurr !!urrber of da ta set group~ for a data base is
ten. See Figure 4-48.

4.144 IMS/VS Systerr/Arrlicaticn Design Guide

TWO DATA SET GROUPS:
1. PRIMARY DATA SET GROUP

A, B, C SEGMENTS
2. SECONDARY DATA SET GROUP

D, E, F, G SEGMENTS

Primary Data Set

~
. Primary Data
\ _ Set Group
\ I........... . ,

\
\ --\

\ ,

t=A=1 B I C I B I~~~
Primary Data Set

eJ Secondary
; " Set Group

/ '
'" ' / '

/ ""
/ "

/ " "

E G

.........
...

\
\

)c __ C ---I.T_B_-_'___ I~}DJ
Overflow Data Set

Data

I , , , ,
I

,
I
I ,

* The pointer is at the beginning of VSAM logical records

Figure 4 -48. HISAM -- Multiple ~ata set Grou~s

As can be seen, segments in the sEcondary data set grcu~ can be
retrieved without reference to the primary data set grcu~.

Figure 4-48 Ehows tha t segment E D, E, F, and G are pI aced into a
secondary data set group. Figure 4-49 shows that, because no references
to the primary data set group are necessary, tr.e nurrber of references
needed to obtain Segment F ~ith key 181 has been reduced. Note that
the index in both data set groups contains the key value of the root
segment.

Data Base Design Consideraticns 4.145

PRIMARY DATA SET GROUP

A

17

VSAM or I SAM Index

8

104
Primary LRECL

C

32

B

108
POINTER

*

~ __ ~! ___ ~_1 __ ~1 __ 0 __ 1 ________________ __
Overflow LRECL

SECONDARY DATA SET GROUP

'I 117 !
YSAM or I SAM INDEX

\171
D E F F

61 42 181 193

Primary LRECL

E G
I
I
I

26
I 0

51 I
I

Overflow LRECL

* The pointer is at the beginning of VSAM logical records

Figure 4 -49. HIS~M Segment Storage -- Multiple Data set Groups

with multiple data set groups, we may also elect to expand the size
of the logical record cf the seccndary data set group as shown in Figure
4-50. In this case, no overflow logical reccrd wculd be required.
Logical record sizes of data set groups representing a single data base
may varyc In addition, the logical record length of each primary data
set and of its associated cverflo~ data set in the same data set group
may be equal, or the overflow logical record length may be greater than
the prirrary logical record length.

4.146 IMS/VS System/Application Design Guide

SECONDARY DATA SET GROUP

Figure 4 -50.

In summary:

HISAM Secondary Cata Set Group with a Larger Primary
Data Set Lcgical Record Length

• Logical record size can be expand~d to accommodate more segments,
thus eliminating or minimizing the need for cverflcw records.

• The logical structure can be manipulated to bring the most active
segrr.ent types hierarchically closer to the root.

• Multiple data set groups can be used to aveid accessing a root
segment and intervening dependent segments when accessing a
particular segment ty~e.

• The logical record length of primary and overflow da~a sets across
data set groups may vary. The logical record length cf an overflow
data set must be equal to or greater than the primary logical record
length in the same data set group.

DIRECT ACCESS STORAGE SPACE UTIL IZATION

The percentage of utilization of direct access storage device space
by an IMS/VS data base at load time is a function of the relationship
between the logical record lengths and the size cf the actual data base
records being leaded. Data base records ~ithin a data base usually
vary in size, but, since IMS/vS uses fixed-length logical records, the
choice of a logical record length to contain the largest data base
record results in unused space for the smaller data base records.
Choice of a logical record length to hold the smaller data base records
results in better space utilization in the ~rirrary data set, but ~rts
of larger data base records are forced to the overflow data set on
initial loading.

The choice of a legical record length rrust be rrade with a~~ro~riate
consideration for the ty~e cf processing to be accomplished against
the data base. For example, if new de~endent segrrents are being created
with great frequency, it rray be a good idea to assign an oversized
logical record length. This logical record length allows many dependent
segments to be ~laced in the ~rimary data set. Figure 4-51 shows what
happens if a small logical record length is chosen for two records -
Record 1 and Record 2. Twc cverflow records are required, and there
is very little slack srace.

Data Base Cesign OOnsiderations 4.147

DATA BASE RECORDS

flCORD 1 ROOT 081 DE PI DEP2 DEP3 DEpq

flCORD 2 ROOT IJ DEPI

14- LREC"L BLK~IZE--RE-CL--· :1 I+- --·.-i<IIIII14t---L _.

Primary

Overflow

Overflow

Figure 4- 51. HISAM -- Small Logical Record Length

Figure 4-52 shows the same records with a large primary data set
logical record length. There is no requirement fcr overflo~ records,
but there may be a large arrcunt of slack space in primary data set "
logical records. All unused space in the prirrary data set is tied to
specific rcots.

4.148 IMS/VS System/Application Design Guide

DATA BASE RECORDS

RECORD 1 ROOT osl DEPl DEP2 DEP3 DEPq

RECORD 2 ROOT 111 D£~

I_ LRECL ~I

RECORD l.
1 ROOT 2s1 DEP! DEP2 DEP3 D£P~ I
I_ LRECL ~I

RECORD 2 I ROOT 111 DEP! I- SLACK -I
NO OVERFLOW REQUIRED FOR THESE TWO RECORDS

Figure 4 -52. HIS AM -- Large Logical Record Length

The slack space in Figure 4-53 can only be usee by de~endent segments
of Poot 24. New de!=endent segments of Root 18 would have to be put
into overflow, even though the slack space related to Root 24 is not
being used and is ir. the sarre physical block •

•• ----lRECl-----..· ... 4t----lRECl---••

i
ROOT DE?l DEP2 DEP3 : ROOT I+--SLACK ,
18 : 211

Primary Data Set Block

Figure 4-53. HISAM -- Utilizing Slack Space

Segmentation also influences utilization of direct access storage
device space. See Figure 4-54. ~he minimum logical record length
which can be assigned for a data base must be large enough to hold the
largest segment defined fcr the data base. The following describes
~wo diff~rent methods of segmenting for a 2COO-byte record: Case A,
where the ROOT and DEP1 segments are combined into one 1500-byte
segment, yields a minimum logical record of 1500 bytes and froduces
1000 bytes of slack in a OSAM record. This slack is only available
for dependent segments which relate to a particular root. The logical
record sizes for overflow must be at least as large as the frimary
logical records. The different method of segmenting the same record
in Case B, where the ROOT and ~EP1 segments are separate segments,
yields a reinimurr logical record size of 1000 bytes, with no excess in
the overflow record.

Data Base Design Considerations 4.149

ASSU~E: DATA BASE RECORDS OF 2000 BYTES

SEGMENTATION:
1 11:;'-'1')

~oJv 2000

I I DEP2
,

CASE A ROO TD EPI j

1 lOOn 15QO 2eQQ

CASE B I ROOT I DEPI i DEP2

FOR CASE A THE MINHiUf" LRECL IS 1500 BYTES

1 l~O

~I _R_OO_T_DE_P_l ________________ . ______ ~1 PRIMARY

1 ~o l~O

I DEP2 I~~----SLACK --------3~ OVERFLOW

FOR CASE B THE MINI~lUI1 lRECl IS 1000 BYTES

1 1000 I ROOT I PRIr-1ARY

1 500 1000

I DE?l I DE?2 I OVERFLOW

Figure 4-54. ~ata Ease Record segmentation Opticns

Since the sizes of logical records in data set groups ~il1 ~robably
be different, multiple data set groups can also be used for better
utilization of r:~s~ space. Figure 4-55 shews a data base record for
a single data set group. Again, since the logical record length must
accommodate the largest segment, the minirrurr size of a logical record
is 500 bytes. Nc slack rerrains in the overflow record. However, this
choice leaves 275 byt es 0 f slack in the prirrary record.

IMS/VS System/Application Design Guide

ROOT SO BYTES

1
I I

100 BYlES DEP1 DEP3 SOD BYTES

I
15 BYTES DEP2

SINGLE DATA SET GROUP -- LRECL.500 BYTES

14 LRECL SOO BYTES -+1
PRIMARY I ROOT I DE PI DEP2 SLACK I

1+-50 ~I. 100-.1+--75----..1+-215 ---+1

~~ LRECL SOD BYTES ~I
OVERFLOW I DEP3 I

I~ SOD ·1

Figure 4-55. HISAM Single Da"':.a set Group Se grre nt a ti on

Figure 4-56 shows the same record as Figure 4-55, except that
mul tiple data set groups are used. The primary data set grout: has a
logical record size of 225 bytes. The secondary data set group has a
logical record size of 500 bytes. There is ne slack space, and no
overflew records in the. overflo\t.i da ta set are used. Note that 225 is
nQ~ the minimum for the t:rirnary data set group; the minimum is 100,
but this results in less efficient use of space.

Data Base ~esign OOnsiderations 4.151

I
100 BYTES DEPl

I
75 BYTES DEP2

MULTIPLE DATA SET GROUP

PRlr~RY DSG -- LRECL 225

ROOT 50 BYTES

I
I

DEP3 500 BYTES

1+4----LRECL 225 ---~~I

PRII-1ARY I ROOT DEPI I DEP2

1+-50

SECONDARY DSG -- LRECL 500

141.----LRECl SOD ---"'~I

PRII-1ARY l ______ D_E_P3 ______ _

(NO OVERFLOW RECORD REQUIRED)

Figure 4- 56. HISAM Multi~le Data set Group Segmentation

The reader shculd remember that the logical record length of the
overflow data set within a data set group rrust be equal tc or greater
~han the logical record length cf the primary data set. Both logical
record lengths must accommodate the largest segment in the data set
qroup.

Both primary and overflew logical records can be blocked one or
multiple logical records to a physical blcck.

4.152 IMS/VS Systerr/A~~lication Design Guide

DESIGN TRADEOFFS

A review of the logical and physical structures supported by IMS/VS
is recommended.

The IMS/VS Hierarchical sequential organization supports the
Hierarchical Sequential and the Hierarchical Indexed sequential Access
Methods (HSAM and HISAM). HSAM is based on BSAM and QSAM; HISAM, on
VSAM or I~M with an EXCP extension named CSAM (Cverflow sequential
Access Method). The following discussion is based on HISAM.

In Figure 4-57, each block represents a segwent type, with the block
at the to~ referred to as the reot segment (A). The other segments,
B, C, and D, are dependent segments. Root segment A is also level one,
segments Band Care level.two, and segment ~ is level three.

1-255 SEGMENT TYPES

1-15 LEVELS

1 ROOT SEGMENT PER DATA BASE RECORD

o TO N DEPENDENT SEGMENTS PER PARENT

1 TO N SEGMENTS PER DATA BASE RECORD

1 TO N DATA BASE RECORDS PER DATA BASE

Figure 4-57. ~ata Ease Structure Rules

The principal reason for the existence of de~endent segments is that
they give the user the ability (by variable-length records and dependent
segments) to take care of-information which it wculd otherwise be
necessary to repeat from 0 to n times.

Figure 4-58 shows the physical order of storage -- top to bottom
and left to right. As shown, this data base record begins in the
primary data set and requires two additional logical records in the
overflow data set. The two overflow records can be blocked within one
overflow physical bleck. The teChnique of pointing from one record to
another allows data base records within a data base to vary ccnsiderably
in length, -but fer all practical purposes their size is unlimited.

Data Base Design Consideratiens 4.153

PRIMARY

Ej
I

I

I

~ ~
G

OVERFLOW

/ I
I I

I I
I I

I ,
I I

I /

~~~~~~~--~~ / 
*/ 

I 
~~==~~-~~--~7/ , 

I , 

[l~l Il~31 :1 I ;51 0 1 
*The pointer is at the beginning of VSAM logical records 

Figure 4-58. HISAM Physical Storage -- ISAM, OSAM, or VSAM 

Primary and overflow data set logical records are always blocked 
one or more for each physical block (see Figure 4-59). A data base 
record may be ccntained in cne ~rimary data set logical record, or it 
may consist of one primary data set logical record and one or more 
overflow logical records. ~he overflow logical records must be at 
least as large as the primary logical record. Overflow logical records 
may be unblocked or blocked. The number of overflew logical records 
within a physical block rray be equal or not equal to the number of 
primary logical records within a physical blcck. 

4.154 IMS/VS system/Application Design Guide 



lRECL LRECl 

Primary or Overflow 
(BLOCKED) 

LRECl. LRECL LRECL 

... 14----BLKSIZE----+ .. I+---BLKSIZE---~ .. 1 

TRACK OF DASD 

LRECL II LRECL 

Primary or Overflow 

<UNBLOCKED) 

IIlR£CL II LP£CL .11 LRECL II LRECL 

J+-slKSIZE-+-HLKSIZE-+J.BLKSIZE+l+-BlJ(SIZE+BLKSIZE·I~-BlJ(SIZE-+1 

TRACK OF DASD 

Figure 4- 59. HI~M Physical storage Blocked One or Multiple 

VIABILITY OF DA~A BASE DESIGN 

In the design of a dat.a 1:ase, the designer rrust consider the 
viability of that design. Bo~ can he anticipate, at least in some 
measure, changes such as the additions of new data, new applications 
for new data, new applications for existing data, discontinuance of 
existing data, in short, the change in the level of activity against 
the data? 

In .adding new data segment types, the siFplest a~~roach is to extend 
the data base to the right (see Figure 4-60). Ey the addition of new 
segment types in this manner, segments to the left and a~~lications 
dealing with those segments need not be modified. An additional benefit 
for HISAM data bases, or B~AM and BIDAM data bases that use hierarchic 
pointers is that only the data base descriptions ne~d to be regenerated. 
It is not necessary to unload and reload the data base. For HDAM and 
HIDAM data bases where the segment type being added will be pointed to 
by physical child pointers, it is necessary to unload and reload the 
data base to add physical child pointers to the prefix of the physical 
parent of the segment ty~e being add~d. 

Data Base Design COnsiderations 4. 155 



r---~-----r----------------~ 

Figure 4- 60. 

, 
I 

Data Structure Change -- New Segment Type Defined at 
End of Eierarchy 

In Figure 4-61, the new data, "Production Centrel" and "work 
station," could be added to the data ba~ at a different position. A 
disadvantage of adding new segment types in this way is that the 
physical code of each segment type changes. The order of segment 
insertion being top to bottom, left to right, such a change would 
require a reload of the file. Again, there would be no reprogramming 
required for existing application programs. On,e reason for this 
arrangement could be that the majority of the processing activity is 
to be against the Production Control inforrr.ation. 

Figure 4-61. Data Structure Change -- New Segment Type Defined within 
Existing Hierarchy 

4.156 IMS/VS System/Application Design Guide 



Figure 4-62 shews ar. arrangement that will alrncst certainly impact 
existing applicatien prcgrarrs, by making it necessary to regenerate 
th~ PSB for any prograrr which is sensitive to "Standard Inforrr-ation." 
The degree of mcdificaticn to the application program will, of course, 
be a function of the type of calls made against the data base and the 
use made of the concatenated key feedback information. Assuming that 
no use is rnad~ oJ the concatenated key, the series cf calls a t the left 
would function properly without modification, after the·FSB is made 
sen si ti ve to "Product ion Control" and "Work staticn." 

i 
I 
CTION PRODU 

CONTR OL 

WOR 

STA 

I 
I 
; 
K 

TION . 

STANDARD 
I NFORf,1J\ T I ON 

PART 

NUr/IBER 

I 

GU PART NUlmER 

I 
INVENTORY 

STATUS 

I 
I I 

PHYSICAL BACK 
COUNT ORDER 

GN STANDARD INFORMATlON 
GU PART NUMBER 
Gr~ 

Figure 4- 6 2. Data structure Change -- New Segment Type Defined within 
a Leg of the Existing Hierarchy 

It is Evident that the series of calls on the right side of Figure 
4-62 would not function properly. The unqualified GET NEXT call would 
obtain the "Producticn Ccntrol" segment instead of the "standard 
Information" segment. 

In user applications ~ith existing data, if the activity becomes 
weighted to the right it may be desirable to move certain segment types, 
logically and physically, nearer the root. This ~culd ensure that they 
were located in the record containing the root segment. In the data 
base of Figure 4-63, an increase in activity against the Production 
Control segment cculd make a ne~ data base design more desirable. 

Data Base resign considerations 4.157 



Figure 4- 63. Data Ease Structure -- Hierarchic Leg Inde~endence 

One solution, moving the segments logically and physically to the 
left, is shown in Figure 4-64. It is possible tc t:lan for the freedcrr 
to move the legs of the data base around in this manner without 
affecting the functioning of application prcgraros. If the data base 
and a~plications are designed in such a manner that each application 

.program relates to the root and to only one leg cf the data base, it 
is possible to rranirulate the legs without impacting applications. 

Figure 4- 64. Restructured Data Base 

Another soluticn tc an increase in activity against certain segment 
types is to· move those segment types to a seccndary data set group. 
In this instance, however, the tradeoff against increased core buffer 
requirements would have to be considered. 

When segmentE representing a particular segwent type cease to exist, 
there is no mandatory adjustrrent nece~sary to the data base design nor 
is there any measurable penalty for not doing so. Eliminating segment 
types, however, requires a new data base description generation. If 
there are no occurrences of the segment type in the data base and the 
segment types are farthest away from the root in the top to bottom, 
left to right fashion, there is no need to unload and reload the data 
base. In Figure 4-65, "Frcducticn Control" and "Work station" could 
be dropped. 

4.158 IMS/VS systerr-/Ap~lication Design Guide 



----------~ 

Figure 4-65. Data Base Structure -- Absence of Segment Types 

Eliminating segment ty~es which are not logically last requires that 
the data base be reloaded. Program specification blocks which were 
sensitive to the segrrent ty~es being deleted would be regenerated. 
Sinc~ the segment types are deleted because the a~~licaticns and data 
no lcnger exist, there is nc need to modify the majority of remaining 
application programs. The extent of the modification would in all 
probability be cr.ly a change in some call parameters to Cata Language/I. 

Expanding the size of a segment can cause a change in the program 
(see Figur~ 4-66). On an individual application basis, this change 
can be avoided by using oversized work areas in the application program. 
As an example, a Data Language/I I/O area of 150 bytes cculd be defined 
when in reality the 8ize of the segment to be operated on need only be 
100 bytes. With this technique, the size of the segment could be 
expanded without affecting the application ~rcgran. It should be noted 
that the size of the a~plicaticn program will be increased, but this 
add~d overhead is usually mere desirable than the fossible reprogramming 
effo~t. 

Data Base cesign Considerations 4.159 



SE6PENT A 

APPLICATION PROGRM 

Dl.I I 110 AfO 

OOlHJl:D SEGr£NT A 

1+--150 BYTES----.t 1+---150 BYTES--... I 

Figure 4-66. Afplicaticn Program 1/0 Work Area Size considerations 

HIERARCHICAL DIRECT DESIGN CONSIDERATIONS 

The Hierarchical Direct organization is composed of two data base 
access m~thods: HeAM and BIrAM. The HIDAM acc~ss method uses two 
physically distinct data bases for access and storage of the data. ~he 
INDEX da7a base is used to determine the sequence in which data is 
pr~sented ~o an afflicaticn frogram, but does not actually contain any 
of the data in the BreAM data base. The BleAM data base contains all 
the actual data and is fhysically distinct from the index. The HLAM 
access m~thod uses one data base and a randorrizing algorithm for 
accessing data. 

The INDEX data base contains index segments which perfcrm indexing. 
The content of tr.e index segment is equivalent to the sequence field 
key in the root segment of a BIDAM data base. The INDEX data base used 
for HIDAM is cornfosed of a single data set group which is similar to 
the HISAM organization. 

Since the INLEX data base is basically a HISAM data base ccntaining 
only index segments, the majority of the design considerations from 
the HISAM section apply equally well to the index. Of ccurse, both 
the prirr:ary or frimary and overflow data sets should have relatively 
high blocking factors. For example, a quarter track of a 2314 for 
block size would be affrcfriate. The HISAM unload and reload 
reorganization program should be run fairly frequently against an INDEX 
data base to reduce long OSAM chains when ISAM/OSAM are the access 
methods. This frocedure shculd nct require an excessive amount of 
time, since the INDEX data base is much srraller than the HIDAM data 
base it references. 

Considerations for the design of the data portion of the HleAM data 
base involve the tradeoff between direct access sface and access time. 
The most efficient crganization for access time, when application 
programs do not access every segment in any data base record, is to 
choose the physical twin/fhysical child manner of relating segments of 
a data base record. If this option is chosen, any fath through the 

4.160 IMS/VS System/Application Design Guide 



data base may be fcllewed ~ithout looking at eegments net on the path. 
The negative aspect of this choice is that more storage is needed than 
if the user elects the hierarchical pointer a~prcach to relate segments. 

The hierarchical pointer option reduces prefix size by stringing 
together all segments of a data base, record, but IMS/VS must process 
it in much the same manner that it processes HISAM. That is, the 
segment on the right of the structure is at the end of the hierarchical 
pointer chain. All segments to the left of a desired segment ha ve to 
be scanned to get to the desired segment. Therefore, this option should 
be used for those portions of a data base record that are normally 
accessed sequentially. 

If root segments are often accessed sequentially, the user should 
probably select the bidirectional physical twin ~cinter c~tion for root 
segments. If this option is chosen, ahd the user issues a data base 
call Which references either implicitly or explicitly the next data 
base record, the index data base is not used to satisfy the request. 

The two major considerations in designing an HLAM addressing or 
randomizing algorithm are access time versus storage and reorganization 
considerations. Ideally, an addressing or randomizing algorithm spaces 
root segments across the root segment addressable area of a data base 
in such a manner that little storage is wasted and yet synonym chains 
are very short. Long synonym chains negate the savings made by not 
having to access an index. On the other hand, a sparse storage of root 
segments may waste direct access space that could be used if the 
organization were' HIDAM. 

If a 'data'base is increasing in size, some thought should be given 
to reducing the problems when it must be reorganized. SOIre randomizing 
routines yield radically different results for the same set of keys 
when the size of the 'root segment addressable area is increased or 
decreased. If this is the case, the user is faced with the choice of 
loading randomly, which may be very slow, or doing an offline sort 
prior to reloading. Randcmizing routines can be constructed that will 
not seriously alter the sequence of data when the size of the root 
segment addressable area is changed. An example of this is the binary 
halving routine illustrated in the lMSLY§ §y~t~m ~~gg~smming Re!~~n~~ 
!1g,IlYg,!.· 

The user may wish to take advantage of the bytes parameter of the 
RMNAME= operand en the DBD statements for a DEL generation. The use 
of this parameter reduces the inefficiency caused by dependent segments 
of a very large data base record taking excessive space in the root 
segment addressable area. If excessive space is used for dependent 
segments, other root segments are forced out of their prime blocks in 
the root segment addressable area and into overflow. 

The use of bidirectional root segment physical twin chains is not 
recommended in HDAM, since roots are chained only off' a root anchor 
point and thus do not tie the whole data base together as in HIDAM. 
Bidirectional pointers may cause additional processing time at insert 
time, since the NEXT root on the synonym chain muet be updated to point 
back to the root being inserted. 

HDAM -- HIDAM CONSIDERATIONS FOR DEPENDENT SEGMENTS 

The user may wish to give some thought to the use of additional data 
set groups in a HDAM or BlLAM data base to save access time and make 
better use of disk space. For example, a data base may contain a 

Data Base Besign COnsiderations 4.161 



segment-type which is quite bulky and infrequently accessed. This 
segment-type can be placed in a separate data set group, thus reducing 
access tine among the rrore frequently used segment-types. 

Another form of separating segments into data set groups the user 
may wish to investigate is separation by segmert size. The Hierarchical 
Direct crganizaticn bit naps, which describe free space existing on 
blocks within the data base, contain inforrraticn based on the maximum 
segment size within the data set group. If segments of ~bout the same 
size are contained within each data set group, better space utilization 
may result. ' 

Proper direct access data set block size is another factor to be 
considered in system performance. The larger the block size, the more 
da~a that is obtained with a single input/output operation. If the 
majority of the data is used, then larger block sizes have a good 
payoff. However, if the data is accessed randomly within a data base 
record and only small portions of any particular block are used, then 
~he user has paid a penalty in terms of system channel time and core 
storage buffer space to access large blocks. 

The IMS roodules concerned wi th management of r:VI dat a bas es make 
use of the as BISAM and QISAM access methods. 'Ihese access methods 
are used to acce~s data stcred in as ISAM data sets. as ISAM data sets 
are used by IMS/vS to store data for HISAM data bases and for the index 
data base to a HIDAM data base. BISAM and QISAM are used by IMS' under 
the following conditicns: 

1. BI~M is always used to manage an ISAM data set that is accessed 
from an IMS/VS CTL region (i.e., in a ~essage processing 
environment) • 

2. The following rules apply to a batch processing environment 
only: 

4.162 

a. QISAM is used te manage an ISAM data set of a HIDAM data 
base when the rcct ~egment of the HIEAM data base is 
referenced by one PCB only, and when tte processing option 
for the rect segment ie retrieve or load only. In all other 
cases, EISAM is used to manage the lSAM data set of an index 
data base. 

b. EISAM is used to manage the ISAM data set of a HISAM data 
set group when (1) a PCE is sensitive to a logical parent 
that exists in the data set group, or (2) multiple PCBs are 
sensitive to segments within the data set group. Other data 
set groups will use QISAM. Note, therefore, that for a 
HI~M data base, BISAM may be used for some data set groups, 
while QISAM may be used for other data set groups. 

c. If use of both EISAM and QISAM is indicated for an ISAM data 
set by the rules presented above, use of EISAM takes 
precedence. 

d. If a user desires, for performance reasons, to cause IMS/VS 
to use BISAM to manage a particular ISAM data set, he can 
do so by ensuring the presence of cne cf the ccnditions 
outlined above that will cause use of EISAM. A user can 
cause IMS/VS to use QISAM for an ISAM data set only by 
ensuring the absence of any of the conditions that would 
cause IMS/VS to use EISAM. 

IMS/vS System/Application Design Guide 



e. Note that, because of the rules described above, both BISAM 
and QISAM roay be used during executicn cf a particular 
applicaticn ~rogram. 

I/O buffers for data sets using BISAM are always obtained fzoro the 
IMS/VS data base buffer pool. I/O buffers for data sets using QISAM 
are always obtained by QISAM. If QISAM, use QISAM for read and writes; 
if BISAM, use ISAM or OS~~ for read, OSAM for write. 

The IMS/vS user who intends to incorporate the Interactive Query 
Facility (IQF) feature into his system can optilTize future query 
performance by taking the time to understand the requirements of IQF 
before attempting to design new data bases. ~he user shculd, for 
instance, be aware cf the fcllowing. 

1. IQF provides two indexes, each capaple of relating the values 
of fields to be indexed to the inforroaticn necessary to locate 
the segment containing those values. The firs~ index is provided 
for small indexed fields, and supports all indexed fields whose 
size is less than or equal to the size defined for the first 
index. The second index is provided fcr larger indexed fields, 
and supports all inde~d fields Whose size is less than or equal 
to the size defined for the second but larger than that specified 
for the slTall index. (The reader is referred to Chapter 4 of 
this manual for additional information on IQF's indexing 
capability. ) 

2. IQF permits naming of PCBS, and aSSigning synonyms to field 
names to distinguish fields in separate segments which have been 
defined in a physica I DBD to have the same name. (See the 
"Interactive Query Facility" chapter in the IM.§/V.§ Yti!iti~2. 
Referen£~ MgnY~l.) 

A number of restrictions apply to data base design for IQF. Of 
particular importance are the following facts: 

2. 

3. 

4. 

5. 

6. 

An IQF query can a ccess only one hierarchic path; that is, for 
any two segments used in the query, one lTust be an immediate or 
lower level dependent of the other as defined in the physical 
or logical LEL referenced by the PCB used fcr the query. 

The parent of the lowest segment involved in a query path must 
be identified by a unique concatenated key within the data base 
used to process the query. One methcd that can be used to ensure 
cOF-pliance with this rule is to define a unique sequence field 
for every segment involved in a query path, except for the 
lowest. Root key values must be unique. 

If a logical child is involved in a query path, the concatenated 
key of its destination parent must be unique. One method that 
can be used to ensure compliance with this rule is to define a 
unique sequence field for every segment whcse sequence field is 
a component of the destination parent's concatenated key. 

A field that is indexed by IQF can be no greater than 250 bytes 
in length. 

scattered sequence fields are not supported by IQF. 

If KEY sensitivity is specified for a segment, the SEQUENCE 
field of that segment must not be used as an IQF field. 

Data Base Design COnsiderations 4.163 



7. If a bidirectional logical relationship is implemented ~ using 
virtual pairing, and if the virtual logical child is defined, 
the user must reference the virtual logical child (via the SOURCE 
operand) when: (1) a segment is being defined in a logical 
DBDGEN, and (2) the segment consists of the concatenation of 
the virtual logica 1 child and the physical parent of the real 
logical child. 

8. All fields of a virtual logical child that are to be used in an 
IQF query must be defined by FIELD or *FIELD macro statements 
that refer to the data of the virtual logical child. (IQF does 
not automatically refer to field definitions provided for a real 
logical child and duplicate them under the virtual logical child 
at the at:t:ropriate offsets as does IMS/VS). 

9. When a virtual logical child is defined, and when the user 
provides the virtual logical child in the input data stream 
provided to the IQF Utility before the corresponding definition 
of the real logical Child, the user roust provide a FIELD or 
*FIELD macro statement for the virtual logical child such that 
the last byte of the virtual logical child data is included 
within the range of da ta defined by the FIE!.1: or *FIELD macro 
statement (s). 

DATA BASE RECOVERY 

IMS/VS supplies a number of utility programs designed to provide a 
rapid recovery of a data base data set rendered unusable because of 
read/write errors. Although these programs will be used infrequently, 
judicious preplanning will enhance data base availability in the event 
of failure. 

The data base recovery utility program set includes: 

1. A program to create an image copy or dump of a data base. 

2. A program to restore an image copy or dump of the data base. 

3. Logging routines in the IMS/VS batch and centrol regions to 
record on system log tapes any changes rrade to a data base. 

4. A program to accurrulate information from system log tapes about 
the latest changes to a specific data base. 

5. A program to rebuild the data base using, ~) a previously created 
data base image copy, b) accumulated data base changes obtained 
frcm log tapes, and c) input from log tapes which have not been 
processed by the accumulation change prograrr. 

The initial consideration in the use of these programs should be 
the frequency of data base image creations. The amount of data base 
activity and size of data base will determine the intervals between 
data set image copy creations. since image copy input to the Data Base 
Recovery Utility provides the most rapid means of recovery, the shortest 
interval possible between irrage copy time and data base recovery is 
desirable. 

The second consideration should be the frequency of accumulation 
change creations. The accumulation change input provides a sorted, 
combined record of data base changes to be merged with the image copy. 
Since the sorted input is by physical block number within the data 

4.164 IMS/vS System/Application Design Guide 



"base, th~ application of the accumulation change input can be 
accomplished almost as rapidly as an image co~y cr.ly. In addition, 
the accumulation change utility operates independently of IMS/VS, 
allowing the log changes to be accumulated ~ithcut im~acting data base 
availabili ty. 

since log change input is processed chronologically, random access 
to the data base being reconstructed is quite ~rctable. ~he same 
physical record may be accessed multiple times in a single recovery. 
It becomes readily apparent that the accuroulaticn of data base changes 
from log tapes with the accumulation program will greatly enhance 
performance of the data base recovery. 

See the IMS/VS utilities Reference Manual for additional information 
regarding the-oata-B~se-Reccvery-~rogr~;-set. 

DATA BASE REORGANIZA~ION 

Data base reorganization utility ~rograrns ~rcvide a convenient means 
for achieving physical and logical r~organi2ation of IMS/VS data bases. 
Use of these facilities allows: 

• Recovery of direct access space occupied by deleted segments in a 
HISAM data base 

• Reorganizaticn cf a data base when the physical sequence of its 
segments has become different from its logical sequence because of 
insertion and/or deletion of segments. 

• Physical and logical restructuring of a data base to better meet 
the requirements of IMS/VS application programs. Examples of 
restructuring.of a data base include changing a data base access 
method and organizaticn from HISAM to HItAM, changing the physical 
placement of a segment type from one data set grou~ tc ancther, 
addition of.segrrent-types, and addition or deletion of physical 
and/or logical intersegment relationshi~s. 

The details of data base reorganization are provided in the i~§/V§ 
Yijli1i~ E~fer~U£~ M~nY~!· 

Data bases may be reorganized separately, or several may be 
reorganized concurrently. If nonreorganized data bases are logically 
related with direct addresses to those being reorganized, then these 
must be scanned for all logical children whose lcgical ~arents are in 
one of the reorganized data bases. Frograms are supplied to scan the 
nonreorgani zed data bases, and where necessary u~date their direct 
address relationshi~s tc a reorganized data base. 

UTILITY CONTROL FACILI~Y 

IMS/VS also supplies the utility Control Facility (UCF). The UCF 
directs the data base initial load, reorganizaticn, recovery, and change 
accumulation utilities, and ~rovides for restart processing after a 
utility failure or a user request tc end processir.g. 

The UCF provides a rrethcc of performing rrost data base utility 
operations and maintenance in preparation for recovery and 
reorganization under the control of one job, cne ste~, and in one 
scheduling. It handles the data base recovery and data base data 
manipulations in reorganization, the combining of data base data changes 
into composite change records in change accumulation, ~~d backup copy 
proce~ssing. Restart processing is invoked by an EXEC parameter or a 

Data Base resign considerations 4.165 



control statement, and normal processing is directed by ccntrel 
statement ~. 

See the IMS/Y§ ~~iliti~~ B~f~±~n~~ ManY~l for a full description of 
th,= UCF. 

The IMS/VS statistics prcgrams provide data that can help systems 
operation personnel determine whether a data base should be reorganized. 
Deterrrination of an a~~rcpriate interval at which a data base is to be 
SCheduled for reorganization depends, to a large extent, cn systems 
op~ration persor.nel's knewledge of the overall activity on the data 
base (that is, the number of segment additions and deletions) , of the 
physical organization cf the data base, of the relationship of the data 
base to other data bas es, and of the installaticn' s planned use of the 
data base in the future. 

Most data base reorganizations are done to recover space occupied 
by deleted segments and/or to physically resequence segments in their 
logical order. ~he nurrber of segment insertions and deletions can be 
determined from data provided by the application accounting report, 
and the distributicn cf transaction response times as shown in the 
transaction response report. When segment chains become long, and when 
they involve segments that are in different areas of a storage device, 
response times tend to increase. Growing respcnse times can indicate 
a need for data base reorganization. 

Frequency of reorganization should be considerably less for HDAM 
and HIDA~ than for HISAM data bases. HDAM and HIDAM both reuse space 
freed by deleted segments and both attempt to place inserted segments 
physically near their logically related segments (that is, near segments 
to which they are chained by physical child, physical twin forward, or 
hierarchical forward pointers). 

Three methods can be used to reorganize HISAM data bases. A 
sp~cially written user program can be provided, the IMS/VS-provided 
HISAM reorganization utilities can be used, or the IMS/Vs-provided HD 
reorganization utilities can be used. 

The first method must be used when you want to accomplish data base 
structural changes that cannot be accomplished thrcugh the use of the 
HD reorganizaticn utilities. The special program involves use of GE~ 
NEXT calls to retrieve segments from a data base, use of special user 
routines to accorrplish the desired changes to the data base, and use 
of INSERT calls to relcad the data base. Care ![Just be taken in writing 
a special reorganization program so that concatenated key pointers, 
used for logical relationships, are properly maintained. 

The second method uses the HISAM reorganization utilities and should 
be used whenever a EISAM data base is to be reorganized with no changes. 
The HISAM reorganizaticn is accomplished by a rapid unload/reload 
program that references data on a physical data base block level. The 
utilities drop deleted segrrents and then restore segments to the data 
base so that their physical sequence is the same as their logical 
sequence., External pcinters that reference segments within the HISAM 
data base are unaffected, since ttey must be concatenated key pointers. 
Pointers within the HI~M data base that reference segments in other 
data bases are affected only if the other data bases are reorganized 
and if the pointers a re direct pointers. Pointers cont ained in segments 

4.166 IMS/VS Systerr/Application Design Guide 



stored in the HISAM data base can be updated as described in the ~~§~Y§ 
Jltili ties B~f.er~!l£~ M~~!. 

If structural changes are required, the third method should be used. 
This is described under Reorganization of HDAM and HIDAM Data Bases, 
following. 

Two methods can be used to reorganize HeAM and HleAM data bases. 
The first method involves use of GET NEXT and INSERT calls with a 
user-written ap~licaticn ~rcgram as described above. 

The second method is to use the IMS/VS-provided HD reorganization 
unload and reload utilities. These utilities use unqualified GET NEXT 
calls tc sequentially unlcad segments from the data base to be 
reorganized. Data is appended to each segment tc resolve logical 
relationships after doing the reload. After unload is completed, the 
segments are reloaded using INSERT calls. At relcad time, a check is 
made to determine if a segment is involved in logical relationships. 
If so, data describing the logical relationshi~s is written tc work 
tapes for later use in u~ating the logical relationship pointers. 
Note that the He unload and ,reload utilities can be used to reorganize 
HISAM data bases, but that perfcrmance does not equal that of the rapid 
unload/reload utility. However, if structural changes are required, 
the HD reorganization utili±ies-must be used.---

If the data base has logical relationships, the ED reorganization 
utility must be used to reorganize the data base. 

The reload utility alsc ~rovides statistical data that can be used 
as described in the IMS/Y§ Utili1i§2 B~f~~n~~ Man~~!. 

When direct access storage is required for a data base, the amount 
of space needed and the device ty~e must be spec~fied. IMS/VS follows 
the same approach as OS/VS. 

The amount of space required can be specified in terms of b19Cks, 
tracks, or cylinders. If it is desired to maintain device-independence 
across direct access types, space requirements shculd be specified in 
terms of blocks. Otherwise, if the request is in t~rms of tracks or 
cylinders, such items as their capacity must be ccnsidered. ISAM data 
sets must be allccated by cylinder. The amount of space is supplied 
in the CD statement for the data set. 

Allocating the space for an IMS/vS data base that uses ISAM and OSAM 
(HISAM and INDEX) is similar to allocating space for an operating system 
indexed sequential data set; similar because an c~erating system data 
set can be divided intc three areas, prime, index, and overflow. The 
three areas of an IMS/VS data basE are index, ~rirre, and overflow. 
Each data set grcu~ of a HISAM data base requires a ~rimary and overflow 
data set to be allccated. 

Allocating the space for an IMS/VS data set that uses only OSAM 
(HDAM and HIDAM) is similar to allocating s~ace fcr an o~erating system 
direct (BDAM) data set. Each data set group of an HeAM or HI~AM data 
base requires one OSAM data set to be allocated. 

DBD generaticn computes, from the user's definition of 'segment 
frequency, the logical record length and/or block size of a data base. 

Data Base Design Consideraticns 4.167 



It considers the device and rounds to the next higher one-fourth track, 
one-third track, one-half track, or full track. 

DBD g~neration also computes from the user's definition of segment 
frequency the srace allccatic~ requirements for a HSAM, HISAM, or INDEX 
data base. 

For use by Systerrs Oreration personnel, IMS/VS has twc rarameters 
that can be inserted when a DBD genera tion is performed. These provide 
an additional means of specifying the LRECL or RECORD and blocking 
factor (BLOCK) ter a data set with a data base. Instead of DED 
generation specifying the LRECL, it can be overridden by srecifying 
the RECORD and the BLOCK {:arame te rs in the I:ATASET control card. Refer 
to the IMSLY~ Y~lli~i~§ Fef~ren£~ M~nY~l for details. 

ALLOCATION CONSI[ERATIONS 

Space allocation should be considered with regard to the data base 
structure, the application programs that will access that structure, 
and the tools of IMS/VS rEI: generation. ~he following discussion deals 
with an IBM 2314 Direct Access Storage Facility. 

When an IMS/VS data base is load9d on an IEM 2314 Direct Access 
Storage Facility, it is necessary to allocate space for that data base 
wi~h JCL data definition statements. The creation of a HISAM or INDEX 
data base may require up to three DD statements, one each for the index, 
prime, and OSAM overflow areas. This discussion should {:rovide 
assistance in initially determining the amount of space to allocate to 
these areas for any specific application. 

600 -

500 -

1100 -

300 -

200 -

100 -
------------------------------------

501 "101 901 1001 

Figure 4- 67. Logical Record Length Distribution 

The graph in Figure 4-67 indicates that 50~ of the logical records 
are 150 bytes or less in length, 70% of the logical records are 200 
bytes or less in length, and 100% of the logical records are 600 bytes 
or less in length. 

4. 168 IMS/vS System/Application cesign Guide 



with fixed-length ISAM, it is necessary to establish a fixed value 
for LRECL in the prime area. If a value of 600 bytes is selected for 
LPECL, all logical records can fit in the prirre area. Hcwever, 90% of 
the records then have at least 100 bytes of slack or wasted space; 701 
of the logical records have at least 400 bytes cf unused space. 

In this example, if a value less than 600 bytes is selected for the 
LRECL value, the ISAM ~rirre area is not capable of holding all the 
logical data base records. These dependent segment occurrences that 
do not fit in an ISAM prime logical record are housed in OSAM overflo~ 
records. Therefore, the determination of an ISAM prime logical record 
length must consider the tradeoff between storage in the ISAM ~rime 
area and in the OSAM cverflcw a rea. 

To determine a best balance between ISAM ~rime and OSAM overflow, 
the following points must be considered: 

1. Access tc data that is wholly contained in the prime area is 
more rapid than access to data contained in the two areas. 
Access is even slower to those logical data base records that 
require more thar. one overflow record. 

2. Disk space allocated to OSAM overflow can be used to hold segment 
occurrences that overflow froIT any logical data base record. 
unused space in the ~rirne area is tied to specific roots. 

3. Records may be blocked in the prime area and in the OSAM overflow 
area. The logical record length in the OSAM block must be equal 
to or greater than the ISAM logical record length in the same 
data set group. 

4. The· nature of the accesses to the large logical data base records 
also has an imrortant effect. If the large logical data base 
records are highly used, the value of the rrime LRECL should be 
increased to conpletely house more logical records, and the 
total size of overflow should be reduced. If the large logical 
data base records are infrequently accessed, an opposite shift 
should be made to increase the use of OSAM overflow. 

Considering trese relevar.t factors for a specific data base, a 
percentage balance must be established between the ISAM prime and the 
OSAM overflow. For example, it may be best, in the context of 
optimizing space and tirre utilization, that 90~ of the logical data 
base records completely fit in the prime area and 10% require some OS AM 
overflow storage. After this percentage is selected, the frequency of 
dependent segment occurrences is developed for the 90% percentile of 
the parent segments. The 90% is an estimated value for this specific 
data base. 

When space is allocated for a data base which uses only OSAM (HDAM 
or HIDAM) for data segment storage, rBD generaticn selects the 
appropriate physical block size for storage. Since space within 
physical blocks can be shared by segments frcrr different data base 
records, logical record definition is not utilized. 

The nurrber of physical blocks, tracks, and/or cylinders which should 
be defined in the JCL statements for any 1MS/VS data base allocation 
can be estimated in the following manner: 

• Calculate the average data base record length (sum of segment 
lengths times frequency) • 

• Calculate the number of logical records and physical blocks ~ISAM 
or INDEX) Or physical blccks (HDAM or HIDAM) required to store a 
data base record. 

rata Base Design Considerations 4.169 



• Multiply ~he number of physical blocks per data base record times 
the nurober cf data base records. 

• The result should provide an estimate for minimum space allocation. 
In addition to this value, space must be Frovided for additions to 
the data base after initial load. 

• If distributed free space was specified in the tBD, then mUltiply 
~he minimum spacE allocation by: 

x 

where: 

2 ~ fbff ~ 100 or fbff = 0 and 0 ~ fspf < 100 

See "Dataset Staten-ent" in the lM§LY§ !J~11i1igg Bg!g~~n£g M~n1!El 
for more information on fbff and fspf. 

The IQF (Interactive Query Facility), available as a feature for 
IMS/VS users, includes its own utility that provides the following 
funct ions. 

• Alloca~ion and data generation for the IQF system data base. 

• Allocation and initialization for the IQF Fhrase data base. 

• Allocation and/or data generation for either cr both,of the IQF 
index (QINDEX) data bases. 

• Generation of PSBs (which describe the IQF and user data bases 
accessible through a given transaction cede or set of codes) and 
the DEDs for tbe IQF data bases. 

The IQF utility is used for three basic types of jobs -- System 
Creation, Index Creation, and Index Modificatien. 

In a system creatior. run, the IQF system data base is allocated and 
loaded with data fron- the ueer's DBD and FSE decks, augmented with 
additional IQF input. The IQF phrase data base as well as the IQF 
index data bases are allocated during this run. The index data bases 
can also be loaded at this time. 

An index creatior. run exarrines all occurrences of specified user 
data base fields, and loads the corresponding indexes with references 
to all occurrences of each value. For large indexes, the user should 
consider breaking the index load into separate runs; this is desirable 
to avoid a complete rerun if any failure occurs. 

During an index modification run, previously allocated index data 
bases can be selectively uFdated by examining the user's data bases 
and recording the appropriate index values. At the same time, the 
capability to index specified user data base fields can be added or 
deleted. 

Additional infermation er. the IQF Utility is ~rcvided in the IMS/Y§ 
~1iliti~E B~fe~~n£g M~DY~l. 

4.170 IMS/VS System/Application Design Guide 



SPACE AI.LOCATION GUICELINES FOR IQF PROCESSOR DATA BASES 

The direct access storage requirements for the IQF prccessor data 
bases vary with each installaticn. Guidelines for estimating size are 
provided below. 

1. The system data ba~ (scmetimes referred to as the Field File) is 
a. HISAM data ba se. 

The formula for the HISAM data portion is: 

(PSB * 12) + (PCE * 320) + (FLD * 86) + (SYN * 36) + 12 = number 
of bytes 
required 

The formula for the INDEX portion is: 

(PCE * 54) + 12 = number of bytes required 

where: 

PSB is the number of FSBs defined tc IMS/VS fer IQF. 

PCB is the number of PCBs sensitive to IQF (*QPCB 
sta terrents in IMS PSBGEN). 

FLD for physical DBDs, the total number of EIELC and 
*FIELC statements in each segrrent referred to by a 
SENSEG sta tement in all FCEs sensitive to IQF. For 
logical eECs, the total number of FIELD and *FIELC 
statements, determined by tbe r.urrber of FIELD and 
*FIELD sta tements in the corresponding physical 
segments. 

SYN is the actual number of synonyms defined in *QFIEID 
staterrents. 

The formula for calculating the space requirerrents for the IQF 
systerr data base creation utility prograrr work data sets are listed 
below. The IQFFC ~rocedure may require revision of the space 
allocation for the following DD statements: 

• UTDBD 

• SSYNIN 

• SSYNOUT 

• SPCBIN 

• SPCBOUT 

FLD x 96 bytes 

SYN x 52 bytes 

SYN x 52 bytes 

SENSEG x 44 bytes 

SENSEG x 44 bytes 

Data Base Desigr. ConsideIations 4. 171 



• SWFKIN 

• SWRKOUT 

• UTSPL 

PCEFLr x 96 bytes 

PCBFLD x 96 bytes 

1 0 x 32K rr.a ximum 

PCBFLD is the largest sum of FIELD and *F1ELr: statements 
defined by each SENSEG withir. cne PCB. 

SENSEG is the number of segments sensitive to IQF. 

Sort work sFace allocations for SSYN, SFCE and SWRK should be 
increased accordingly. Check the OS/VS docurrentation on sort/merge 
for allocaticn algcrithrrs. 

2. The phrase data base is a HIDAM data base. 

The 0 SAf\1 portion is determined by: 

Estimated number of phrases to be defined x 201 = number of 
bytes required 

The INDEX portion is determined by: 

Estimated number of phrases to be defined x 20 = number of bytes 
required 

3. In the IQFIU utility Frocedure, space allocation for temporary data 
sets HOLDS and HCLrL in step IU1, and SHR~OU~ and LONGOUT in steF 
1U2,_ is based on a volurre of 1000 records of 50 bytes each. An 
installatior. which will be index ing a voluIre ef records in excess 
of this should use the following formulas to calculate the size 
(in bytes) of the temporary data sets required to held the records 
being indexed. 

HOLDS and SHRTOU~ 
(Fonnula 1) 

B = (M + S + 6) • F * N 

HCLDL and LONGOUT 
(Formula 2) 

E = (M + L + ~) • F • N 

wher~: 

B is the number of bytes required. 

M is the maximum root key length (MAXRI'KEY). 

S is the maximum length of the short index value (1NKEYLEN, 
value2) • 

F is the frequency of the root in the IMS/VS dat a bas e. 

N is the number of fields being indexed. 

L is the maximum length of the long index value (INKEYLEN, 
value3). 

• The result of these calculations should be translated to tracks 
or cylinders. (~~~ CSLYE &gtg M~ngg~t ~~rvi£~~, GC26-3783.) 

4.172 1MS/VS System/Application Design Guide 



• In additien, ccrre~Fcnding adjustments rray be neceEsary to the 
OORT work data sets SHRTWK01 - 03 and LONGWK01 - 03 used for 
intermediate storage. If more SORT interrrediate storage is 
needed, the user ha s the op.tion of increasing the space par ameter 
of the existing work data sets, allocating up to three rrore work 
data sets £or beth SHRT and LCNG, or a combination of the two. 
(see Os/vs sort/merge documentation for details en calculating 
intermediate stcrage space requirements.) 

The IQF index data bases are HISAM files. Space requirements for 
these data bases depend on several factors. These factors include the 
logical record size, ncrrral quantity of records in the indexes, 
frequency of updating, and frequency of file reorganizaticn. For 
example, if the data base is updated several times before being 
reorganized, the space required is greater than if a reorganization 
were run follcwing each update. To determine the minimum size (in 
bytes) of the short index data bases, use Forrrula 1 for the short index 
and Fcrwula 2 for the long. N, in this case, should represent the 
normal number of indexed fields to be contained in the index dat a bas es. 
Guidelines for determining the cylinders er tracks needed for the ISA~ 
and OSAM portione required by the IQF index data tases are provided 
earlier in this chapter (see discussion of "IMS/VS Data Base Space 
Allocation" ) • 

Cata Base Design Consideraticns 4.173 



This chapter describes the Multiple Systems Coupling (MSC) feature 
and contains design considerations for its use. Farriliarity ~ith the 
precedi~g charter~ cf this rranual is assumed. 

T~e MSC feature provides the ability to connect geographically 
dispersed IMS/VS systems in such a way as to allcw rrograrrs and 
operators of one systerr acce~~ to programs and operators of the 
connected systems. Communication between two cr rrcre (ur to 255) IMS/vS 
systerrs rurning cn any ccmbination of as/VS1 and as/VS2 MvS systems in 
one or more System/370 CPLS is permitted. 

The MSC feature also provides a way to extend tte thrcughput of an 
IMS/VS system beycnd the caracity of a single System/370 Model 168MP. 
This is possible if the IMS/vS applications can be partitioned among 
systems such that either: 

• Application~ execute in more than one system with data base contents 
split between systems (horizcntal partitioning) • 

• AFplication~ execute in one system with the ccrrplete data base, 
that they reference, attached to that system (vertical 
partitioning); the transactions can originate in any ~ystem. 

In addit.ion to the cor.siderations for a single rE/DC system described 
in the previous chapter, major design consideraticns for MSC are: 
de"terrrining how to distribute functions among systems and obtain 
acc~ptable performance, defining valid connections between the systems, 
and irrplementing oreratirg ~rocedures for maintaining consistent 
connections. 

The flow of a transacticn through processing ir. a multisystem 
environment requires a few ~ters in addition to those required in a 
single system environment. The additional steps can be identified by 
comparing Figures 5-1 and 5-2. 

MFS 
t 
IMS/VS Device Support 
t 

Figure 5-1. 

IMS/vS Scheduling 
t 
Application Programming 
t 
DL/l 

Terminal 

Single rp/rc System Transacticn Flew 

I MS/VS Device Support 
t 
MFS 
t 

resign Considerations for the MSC Feature 5. 1 



Processing 
System 

Terminal 
System 

MFS 
t 

Message 
Queue 

MSC Support 
t 
Access Method 

IMS/vS Device Support ..... __ .. 
t 
Access Method 

Access Method 
t 
MSC Support 

Message 
Queue 

I MS/vS Scheduling 
~ 
Application Program 
~ 

DU1 

Terminal 

Access Method 
t 
MSC Support 

Message 
Queue 

MSC Support 
t 
Access Method 

I MS/vS Device Support 
~ 

Message 
Queue 

t-----4.-, MFS 
~ 
Access Method 

Figure 5-2. Multiple rE/CC systems Transacticr. Flow 

5.2 IMS/VS System/Application resign Guide 



This section presents a general description cf the MSC feature and 
introduces MSC terminclcgy. To do this, an example is used of a 
mul-l::isys~em 9nvironment consisting of three systerrs -- System A, System 
B, and System C. Figure 5-3 shows the sample environment. 

A 

IMSA 

B c 

IMS B IMS C 

Figure 5 -3. A Sample Configuration of Three Systems 

In a multisystem environment, the term 1£££1 §yst~ID is used to 
identify a specific system within the multiple cCLfiguration. All 
other systems are cor.sidered ~~ID2~~ §Y~teID§. For example, if we were 
considering the activities required by system B wten it receives a 
message, System B is the local system and Systems .A and C are remote 
systems. 

When -I::he multisysterr environment is defined, the items defined for 
each local systerr include: 

• All transactions received by and/or processed by that system 

• All logical terminals attached to this systerr and all logical 
terminals in remcte systems that are referenced by transactions 
processed in this system or by terminal operators 

• Th~ physical and logical connections between this system and the 
remote systems that share in the processing of the specified 
transactions 

LINKS 

The connection between two systems is called a 1in~. All links must 
be defined during the IMS/VS system definitions for each IMS/VS system. 
There are two ty~es cf lir.ks, ~hY§i£ai 1in~ and !Qgic~! lin~. A 
physical link is the actual hard~are connection. A logical link is 
the mechanism through which a physical link is related to the 
transactions and terminals that Irake use of that ~hysical link. The 
assignment of a logical lir.k to a physical link can be specified during 
system definition, or made ~namically during system execution. 

Design Considerations for the MSC Feature 5.3 



A physical link is defined by +~e MSFL1NR macro ins~ruction. Three 
types of physical links are allowed by the MSC feature: 

• Binary synchronous ccrrrrunication (BSC) line 
• Channel-to-channel (CTC) ada~ter 
• Main storage-to-rnain storage (MTM) 

Only the ESC line and ere adapter represent actual hardware links. ~he 
MTM link is a scftware link between IMS/VS systems running in the same 
System/370, and is intended prirrarily for backu~ and testing Fur~oses. 
physical link buffer sizes rrust be equal and if ESC is chosen for the 
physical link, CONTFOL=YES must be specified fcr ene"physical link and 
CONTRCL=NO must be specified for the other physical link. Figure 5-4 
summarizes very sirrply the three types of physical links. 

A 

IMSA 

B C 

IMS B IMSC 

IIMS I ~T"~" IIMS l 
"C1 " C2 

Figure 5-4. Summary of Physical Link Ty~es 

One Systern/370 CPU may be linked to another CPU by ene or ~ere of 
each physical link ty~e, as shcwn in Figure 5-5. ~he MTM link is 
recommended when two or more 1MS/VS system reside in one System/370. 

A 

BSC Line 

Figure 5-5. Multiple Physical Links in er.e Syste~/370 CPU 

5.4 1MS/VS System/A~~lication Design Guide 



Or, mUltiple links may exist between CFUs. See Figure 5-6. 

A 

·Fig ure 5 -6. Multiple Physical Links in Multiple System/370 CPUs 

A logical lirk i~ defined by the MSLINK macro-instruction. A logical 
link relates a physical link to the transacticns and terwinals that 
can use that phy~ical link. Each system in a multisystem configuration 
has one or more defined logical links. Two IMS/VS systems defined to 
communicate with each other, each through a specific logical link, are 
called ~art~~~. To establish connection between two IMS/VS systems, 
each partner mus~ have a logical link definiticn. The two logical link 
definitions must specify the same partner identifications and be 
assigned to the same physical link. IMS/VS systerr definition assigns 
a number to each defined lcgical link. Logical link numbers are 
assigned sequentially, beginning with 1, in the crder in which the 
links are defined. A logica~ link can be reassigned to a different 
physical link but the two systems must always connunicate through a 
logical link partnership. 

IMS/VS system definition does not require that a physical link be 
specified for each logical link. The assignment cf the physical link 
to the logical link can alternatively be made online using the IMS/VS 
/MSASSIGN command. ~here can be no communication between partners 
until the assignnent is rrade. 

A logical link definition must include one or more logical link 
paths. Logical link paths are described in this chapter under the 
heading "Logica I Link Pa th." 

If any logical terminals in a remote systerr are referenced by 
messages originating in the local system, the lcgical lir.k definition 
must also include NAME macrcs to identify those ~emQ~~ 199ical 
tennins.ls • 

Figure 5-7 surrmarizes the relationships cf one physical link te one 
logical link to rrultiple lcgical link paths. Although more than one 
logical link can be defined with each physical lirk, only one logical 
link to physical link relationship can be assigned at anyone time. 

Besign considerations fer tbe MSC Feature 5.5 



Logical 
Link 
Path 

Logical 
Link 
Path 

Logical 
Link 
Path 

Logical 
Link 

Hardware 
,-------, or 

Software 
Physical Connection Physical 
Link Link 

II (relationship can be assigned dynamically) 

Logical 
Link 

Logical 
Link 
Path 

Logical 
Link 
Path 

Logical 
Link 
Path 

Figure 5-7. RelationshiF of Physical Link to logical Link to Logical 
link Path 

MESSAGE ROUTING 

The message reuting function of the MSC feature supports transaction 
processing by more than one system, transaction processing by more than 
one application program in the same or different systems (by 
program-to-prograro switches) , and message switches between terminals 
in the same or different systems. Conversaticnal Frocessing is 
available to any systerr ir. a multisystem configuration to the same 
extent as in a single systerr. 

The route through which n~s/vs passes a message frem its origination 
through prece~~ing is· called a ~Q~!inq £~!b. One or more systems may 
be included in a routing path. Tr.e routing path defined depends on 
the mUltisystem configuraticn and the functions assigned to each system. 

The path between any two systems is called a !Qgi£~! liD~ Q~th. One 
or more logical link Faths must be defined for each logical link. A 
logical link path is defined in the MSNAME rracre and specifies a £Y2~§ID 
~~~n~ific£tion for the system where messages using this path are to be 
processed and specifies a system identifieaticn fer the systerr being
defir.ed.

Each syst~m in a mUltisystem configuratior. has cne or more unique
system identifications (SYSID) ranging frorr 1 te 255. SYSID assignments
are irrplicit based or. the logical link paths defined by MSNAME macros.
For example, here are two MSNAME definitions:

• MSNAME SYSIC= (2,1)

• MSNAME SYSID=(3,1)

The first definitien abeve says that messages using this logical
link path are processed in the remote systerr whese lecal SYSID is 2.
The second definitien above says that messages using this logical link
pa+~ are processed in the remote system whose lccal SYSID is 3. By
way of these definitien~, IMS/VS system definition a~signs SYSID 1 to
the system being defined and recognizes two remote systems with SYSIDs

5.6 IMS/vS Systerr/Applicaticn Design Guide

of 2 and 3. If a third path were defined with SYSIC=(5,4), IMS/VS
would also assign SYSIL 4 to the local syste~.

Each system rrainta ins a SYSID table containing all logica I link
paths defined in that systero. The size of this table is determined by
the high~st SYSIL defined and it will contain ga~s for SYSIDS that are
no"':. defined.

Transactions are assigned to logical link Faths in the APPLCTN macro
defini"':.ion. COnsider the following application definitions, each with
one transaction code defined:

APPLCTN
TRANSACT

APPLCTN
TRANSACT

APPLCTN
TRANSACT

PSB=A
COLE=A
PSB=B,SYSID= (2 ,1)
COLE=E
PSB=C ,SYSID= (3 ,1)
COLE=C

The SYSID keyword identifies the logical link path to be used for
the transactions associated with the applicaticn. ~ransaction A is
considered a lc£~! tr~nsEctjQn since the absence of the SYSIL keyword
indicates transaction A is totally processed by tte systen being
defined. Transactions E and C are I~mQ~~ 1~sn§g£1iQn~. Relating the
application definitions to the previous MSN~~E definitions, IMS/VS
would return via SYSID 1, resFonses from transactions E and C to the
system being defined unless the application progran specified an
alternate destinaticn for the response.

Since inconsistencies a~ong SYSID definitions may exist between
various system definitions, IMS/VS provides offline ard online methods
of verifying SYSID assignrrents. ~he Multiple Systems Verification
utility is provided for offline execution tc verify the consistency of
definitions prior to attenpting online system execution. Using this
offline utility, consistencies among all systens in the nultisystem
configuration can be verified in One execution. You should use this
utility to verify the MSC configuration each tirre an individual system
is redefined. ~he /MSVERIFY command is available for online use to
identify and display inconsistencies between twc systems.

Message routing is acccrrplished by lQgi£~! g~§1in~~iQn§, as it is
in a single system environment. A destination is either a logical
terminal cr a transaction code. It is considered a local destination
if it resides in the local system and a ~~£1~ g~§tinatiQn-if-It-resIdes
in a remote syste~. In a multisystem enviro~ent, each system knows
(by way of system definition) all local destinaticr.s and all remote
destinations that may be referenced in this system. IMS/VS system
definition requires that all local and referenced remote destinations
be defined with unique narres.

MessagE routing is autcrratic according to the defined scheme unless
IQutin~ ~~i1 roytill~2 are errployed for dynamic routing control. Routing
exit routines are described later in this secticr..

To introduce the terms used to describe message routing, let's look
again at the sample configuration. Assume a nessage with a transaction
destination is entered intc Terminal X attached to System A. The
"':.ransaction is defined to be processed by Systerr B with its reply to
be returned to the criginating terminal.

Design Considerations for the MSC Feature 5.7

Refer to Figure 5-8. On input, System A is considered the inQ~t
§Y§!~m because the iUQut 1~rmin~1 (~erminal X) is attached. System B
is considered the Q~£~jn~!ifn 2Y2!~ID. The message is considered a
2xima~ X~gY§~! until processed. If the applicaticn program inserts
a message with a transacticn code destination during processing, this
message is considered a 2ecQng~~y ~~gg~2i. A rressage sent to the input
terminal by an applicaticn ~rogram is called a ~§§QQn~~.

~,-------,A 1 .1,-------, B

Terminal

Figure 5- 8.

Input
System

Destination
System

Input Terminal and Input System or. Input

Refer to Figure 5-9. On cutput, System A is considered the
~~§!in£tiQrr §Y~1§ID and Terminal X is considered the 9~§!iD~!i£n
1 ermi.m!l·

Terminal Destination
System

Figure 5-9. Destination 7erminal and Destination System on output

Refer to Figure 5-10. Assume the transaction were defined to
originate in system A but be processed by system B with its output
being sent to 7errrinal Y attached to System E. In terms of message
routing, this example is the same as the previous cne for input. For
output, however, systerr B is considered the destination system and
Terminal Y is considered the destination ter~inal.

1v-1~A _I ·I~
8
------J~n

Terminal

Figure 5- 10.

Input
System

Destination
System

Terminal

Input from and Output to Different Terminals

Another term related to message routing is iL!§~m~gia1§ ~£t§ID.
Four systems linked as shown in Figure 5-11 illustrate an intermediate
system.

5.8 I~S/VS Systerr/Application Cesign Guide

Input ~
Terminal~

Input
System

A

l
D

I ntermed iate
System

Intermediate
System

B

l
C

Destination
System

I

Figure 5-11. ~n InterITIediate System

Assume that a message originating in Systerr A is defined to be
processed and reJ;lied to in Sy~tem C. To reach System C(destination
system) from System A (input system), the message rrust be routed through
either System B cr Systerr D as defined by system definition. In this
instance, either system E or System D is considered the intermediate
systewc By referencing the SYSID table, the intermediate system routes
the message to tr.e next link toward the destination system. Whenever
there is no direct link between the input and destination systems,
there is always at lea8t cne intermediate system. If the configuration
had just three systems but the link between Systerrs A and C was
unavailable, a me~sage cculd be rcuted through System E as the
intermediate system by reassigning the apprCFriate links.

The definition of each transaction code identifies the prierity used
to send the transacticn tc the precessing system and the response back
to the input system. Eased on the specified priorities, three priority
groups are considered during Frocessing:

• High priority is assigned to primary requests in the input system
whose specified priority is 8 through 14.

• Mediurr priority i~ a~~igned to secondary requests, resFonses and
prirrary requests in ar. intermediate system~ and primary requests
in the input system, whose specified Friority is 7.

• Lew priority i~ as~igned to any requests in tte input system whose
specified priority is 0 through 6.

In each priority group, message priority is based on the current
transaction priority specified in the input systerr. fer primary requests
and in the most recent prece~sing system for secondary requests and
responses.

If a destinaticn tran~action code is stopped for queueing, the action
~aken by the destinatio~ system varies based on tte tYFe of request:

• For a primary request that is not conversaticnal or that starts a
conversation, IMS/VS sends an error message to the input terminal
and cancels the message.

resign considerations fer the MSC Feature 5.9

• For a primary request that continues a ccnversatien or a secondary
request, IMS/vS queues the message. If the request is the first
one received for that stepped transaction, IMS/vS also sends a
message to the master terminal at that transaction's local system.

Message routing is autcroatic according to the defined scheme unless
a routing exit routine is provided by the user. ~he routing exit
routine is called before the message destination is verified. There
are two types of routing exit routines: terminal routing and ~rogram
routing.

The 1~~IDin£1 ~~ting ~~i1 ~Qytin~ executes in the input system and
is called on terminal input. This routine can ins~ect the destination
specified and, if desired, change it to any local or remote destination.
This routine may examine the first segment of the rressage to determine
what the destinatien cf the message should be. If this routine does
not change the destination, the originally s~ecified destination is
used for routing. IMS/vS will not call a terminal routing exit routine
for commands, for any message received froIT a terrrinal in preset
destinaticn mode, or frorr,a terminal that is continuing a conversation.

In a configuration with horizontally-partitioned applications, the
terminal routing exit routine could be used tc screen all input messages
and route them to the a~~ropriate processing system based on information
in the first segment of the input message. If transactions and links
are a~propriately defined, this rcutine might also be used to compare
the load on the link associated with the specified transaction with
other links. ~he message cculd be routed to a less-busy link.

The ~Qg~ID ~Qyting ~~it ~Q~tin~ is called when an application
program issues a change call while processing a transaction that
originated in a remote system. ~his routine can request that an output
message be returned to the input system for destir.ation verification.
This allows the a~plicatien ~rogram to reply to a remote logical
terminal without requiring the processing systeIT te know the logical
terminal name, tr.ereby winirrizing the number of remote logical terminal
definitions per system. If two systems use the sarre logical terminal
names for the master terrrinal, the program routing exit routine can
also be used to send a message to the master terrrir.al of either the
local system or the in~ut system. It should not be used for
program-to-program switches since the routing for transaction processing
is specified during IMS/VS system definition. If the program routing
exit routine is not used, the destination s~ecifi€d in the change call
must be defined in the precessing system. Conversational programs
cannot use the program routing exit routine.

To maintain system integrity and ~revent errenecus operatien, an
IMS/VS system in a ITultisystem configuration verifies all specified
destinations. Remote destination verification eccurs en in~ut from a
terminal or upon receipt ef an application program reply if a remote
destination is specified for the rressage. ~he reuting exit routine,
if available, has cerrpleted.

5.10 IMS/VS System/Application Design Guide

Destination verification occurs as follows:

Logical terminal

Transaction

•

•

Destinaticn ty~e: The original
destination must have been a logical
terminal.

Destination type: The original
destination must have been a
transact ion.

• Transaction attributes: The
following attributes must be
consister:t in the transaction
definitions in the input and
destination systems:

inquiry/noninquiry
single segrnent/multi~le segment
~ecoverable/nenrecoverable
conversational/nonconversational

Conversatienal transactions must
have fixed-length SPAs; SPA size
must be the sarre for all transactions
that participate in a conversation.

When an invalid destination is recognized, IMS/VS cancels the
message, sends an error rref:sage to tte input terrr:inal and to the rna ster
~erminal of the local sYf:tem, and logs an invalid request. If the
message is conversational, the conversation abnornal termination exit
routin~ is called in the in~ut system and the conversation is
termina tede

When an applicaticn program abnormally termiantes, and the abnormal
termination is not the result of a deadlock situation, a DFS554 message
is sent to the master terrrir.al of the system where the abnormal
termination occurred. If the input message is still available, an
error message that includes the first portion of the input message is
sent to the input terminal. When the error rressage to the input
~erminal is sent, the DFS554 mef:sage includes the logical terminal name
of the input terminal.

CONVERSATIONAL P~OCESSING

Conversational ~rocef:f:ing is available to terminals attached to any
system in a multisystem configuration to the same extent as in a single
system. All transactions used in a conversation rrust be defined as
conversational in each system of the multisystem environment. The
input system controls the conversational resources for the duration of
th~ conversation. When the input system receives a conversational
transaction, it inserts the scratchpad area (SPA) as the first message
segment and routes the mesf:age to the destination application program.

Each conversation ste~ can be ~rocessed by any system of the
multisystem configuration. Program-to-program switches can be routed
frow. system to system. SPAs used in multisystem conversations must be
defined as fixed-length to allow IMS/vS to avoid SPA data set updates
from a r~rrote system fer ~rogram-to-program switches. The SPA size

resign considerations for the MSC Feature 5.11

specification must be the sarre fcr all transactions that participate
in the conversation.

For the most part, multisystem conversations are trans~arent to
terrr,inal operators and a~~licatien programs. Cne exception is if a
conversational program inserts a message to a resrense alternate PCB
in a remote system. By irr~lication, this destination is in the input
system and will, therefore, be verified by the inrut system.
Destination verification in this instance includes assuring that the
specified logical terminal is still assigned to the in~utting ~hysical
terminal. If the logica 1 terminal has been reassigned, the input system
invokes the conversation abnormal terminaticn exit routine and
terminates the ccnversation. No status code is returned to the
~QQ~i~tiQn ~rog~~m. -- ------ ---- -- -------- -- ---

The other exception is if an application program that does not
e~cute in the input system uses the SPA to s~ecify a transaction code
and thereby pass conversation ccntrol to another program. If the
specified transaction code is invalid, the in~ut system invokes the
conversation abr.ermal terrrinatien exit routine and terminates the
conversation. NQ §,taiY2 ££g~ i.§ !~:t~!:neQ. :!;Q th~ .s~1?li££1iQn12~graID.

A terminal routing exit rcutine may be used for the input message
that starts a conversation. It is not applicable at any ether
conversational step since the ap~lication program, not the input
terminal, provides the destination for continuatien of the ccnversation.

A ~rqJ ram routing· exit routine cannot be used during cenverS3. tions.

Destination verification for program-to-prograrr switches occurs in
the system where the ~regrarrrequesting the switch executes. If valid,
that system sends the SPA and the message directly to the destination
transaction. If invalid, that system returns a status code to the
application program.

Destination verification for a message to the ir.~t terminal is
performed by the inFut system. 7he logical terminal specified must
still be assigned to the inputting physical terrrir.al. The in~ut system
also verifies the next transaction specified in the SPA. If the
destination is invalid, the input system invokes the conversation
abnormal terminaticn exit routine and terminates the conversation. tlQ
§.i.s1Y.§ £Qgg i.§ !:~turn~g !Q 1b~ ~1?~li£~iiQn ~~Q9~gg.

A conversation can be terminated by either the application rrogram
or by the terminal eperator. An application program normally terminates
a conversation by inserting a message to the input terminal with a SPA
that contains either nc transaction code or the transaction code of a
non-conversational transaction. '!he terminal operator terminates a
conversation by entering either the /EXIT or /SlARl LINE command.

The /EXIT camIrand can be used any time during the conversation but
the conversation is net terminated until the current conversational
step has replied to the input terminal. This rrear.s that all data base
processing for the current step is accomplished before a conversation
ends.

5.12 IMS/VS System/Application Design Guide

If th~ inpu~ system is shut down and subsequeT-tly cold started, all
~h~ conv~rsation~ that it centrals are lost. It canc~ls any
conv~rsational rr.essage~ it receives for input terminals previously
involved in active or held cenversations.

As in a single system environment, if the in~ut system is shut do~n
and subsequently warm started, all the conversations that it controls
are lost if /STAFT LINE is used ~o start tr.e cororrunication lines. The
/RSTART LINE mu~t be used to retain the previously active or held
conversations.

If a remote system i~ shut down when a conversational step is
processing or i~ queued in it, and is subsequently cold started, all
references to the conversation are lost. A cenversatien lest in this
way must be specifically canceled in the input system by the /EXIT
command.

A conversation is abnormally terminated if any cne of the following
occurs:

• The conversational program abnormally terminates.

• An invalid destination in the SPA, or for a cCT-versational resronse,
is recognized in the ir.~ut system.

• A conversational message is inserted to a terminal whose conversation
was terminated.

• Destination verification fails for a conversational message.

• No eutFut was generated in the application prcgram.

The conversa tion' s SPA is Fa ssed to the conversation abnormal
termination exit routine in the input systerr aleng with an indication
of the cause of the terrrination. MU1TISXS~~M QE!EAT!QB§

Each system in a rr~ltisystem configuration is operationally an
independent unit. It exclusively owns its ewn ccrrrrunicaticn resources,
which are contrclled by its o~n master terminal.

MULTISYSTEM COMML~ICATION INITIAIIZATICN

communication between two IMS/VS systems dces r.et begin until the
/RSTART LINK corrrrand i~ issued in each system. The normal Frocedure
would be fer the master terrrinal operator to issue this command when
a system is started up. This procedure does T-ct require cocrdination
between master terminal c~erators. Communication is allowed only if
the characteristics of the specified links are cerr~atible. If a
required link is not ~ucce~sfully started, messages will wait until
the links have been reassigped.

If a system that. has mes sages queued in it is ccld started, the se
messages are lest. Since the messages that were lost can be from or
to terminals and programs in other systems, the inract of a cold start
is not lirri ted tc the cold started system.

MULTISYSTEM COMMUNICATION TER~INATION

A /PSTCP LINK command from either of two linked systerrs terrrinates
transrrission on the ~~ecified link. When transrrission is terminated

resign Considerations for tte MSC Feature 5.13

on one side, it~ partner ir. the other systerr terrrinates its own
transrrission and notifies the master terminal operator.

LOGICAL LINK ASSIGNMEN~S

Initial logical link assignments (logical link to physical link)
are ncrrrally made during IMS/VS system definition. ~he IMSASSIGN
command can be used to dynarrically make or change a logical link
assignment. This approach is used primarily fcr unscheduled
reassignments resulting frcm failing physical connections or systems.

since a logical link rrust al~~Y2 communicate with its ~artn~r, the
master terminal cperatcrs of the two systems must coordinate their
assignments to a corresponding physical link. Any type of physical
link rray be replaced by any other type of physical link.

If a restart is pending on a logical link due to physical link
failure, both systems should use the following ~rccedure to re~stablish
communication through an alternate physical link:

• Reassign the logical link to the alternate physical link •

• Use IRSTART LINK to st art the logical link.

SECUPITY

security maintenance in a multisystem environment is performed
ind~pendently for each system. Password security is verified on
terminal input after execution of the terminal routing exit routine.
Terminal security is verified on terminal input, and after an
applicaticn program change call if the call is issued in the input
system.

When a destination system receives a message tc ~rocess, it verifies
security bas~d on the input terminal's association with the logical
link path. This prevents transactions sent by unauthorized systems
frorr being processed.

RECOVERY

Each system in the multisystem configuration uses the full recovery
capabilities of IMS/VS. These capabilities a~sure that rressages are
never lost or du~licated ~ithin the single system as long as no cold
start or emergency restart EUILDQ from an earlier checkpcint is
performed, or nc log records are lost.

In addition, the MSC feature assures that messages are never lost
or duplicated across a multisysterr link as long as no system in the
configuration is cold started or no log records are los~. This is
accomplished by logging information about a transnission in bcth the
sending and receiving systeITs. This information is restored during
restart and exchanged between the systems once tte link is started.
The sending system can then dequeue a message that was received by the
receiving system but for which the acknowledgment was lost due tola
link cr system failure. The sending system can also res end a message
that was sent but never enqueued ty the receiving system due to a
failure in the receiving system. If a system in the mUltisystem
configuration fails to recover, the messages for which it has recovery
responsibility are lost.

since IMS/VS provides corr-mands to dynamically change link
assignments, an inoperable System/370 can be backed up by an alternate

5.14 IMS/VS System/Application Design Guide

Systeml370. The IMS/VS system. that resides in the inoperable CPU can
be executed in tte alternate CPU once all involved links are properly
reassig~~d by the master terminal operators.

IMS/VS system definition has been expanded tc include new rracros
for wultisystem facilities. Current terminal and transaction
definitions can be used for remote destination definitions since macro
operands that do net a~ply tc remote destinations are ignored in remote
definitions. The use of Message Format Service (MFS) is the same in
a multisystem envirenment as in a single system environment. If a
message is created in one system for a terminal attached to anether
system, ~he required rre~sage and format de~criptions must be available
to the system to which the terminal is attached, and definitions with
the same name must be defined identically in each system.

The design and tuning recommendations that apply to a single IMS/VS
systerr are applicable to each IMS/VS system in a ~SC environment. There
are, however, additional considerations, related te resource consumption
and demand, that must be taken into account when defining systems that
are part of a MSC configuration.

For IMS/VS transactions that are processed in a local system, the
transactien uses essentially the same hardward and software resources
that it would in a non-MSC enviror~ent. For transactions that are
processed in a remote systerr, additional resources are required. These
resources are used to transmit the transaction over physical links to
the remo~e CPU and te receive the response back from the remote cpu.
Performanc~ considerations are directly related tc rrinimizing the
resources consumed by rerrete processing and balancing the resource
demand b~tween several CPUs in a MSC configuraticn.

MINIMIZING RESOURCE CONSUMFTION

To minimize resource censurr~tion, you should:

• Design the envirenrrent so that as many transactions as possible
are processed locally.

• provide physical links that go directly frorr lccal to remote
systerrs; no intermediate systems should be involved in the
transaction routing process. Transactions that must be routed
through intermediate systems require additional CPU activity,
message queue activi~y, and logging activity.

• Design the Message Queue Euffer Pool in each CPU to elirrinate
unnecessary Me~sage Queue I/C activity.

• Use CTC links, if possible, rather than BSC lirks; the CPU
requirements to support a CTC link are lower ~er message than those
for BSC· links.

• Define the physical link buffer sizes laIge enough to hold the
message prefix plus all the segments ef rrest rressages.

resign considerations fer tte MSC Feature 5. 15

BALANCING RESOURCE ~EMANL

In a MSC ~nvironment with two or more CPUs, you should distribute
the worklcad in a way that avoids ~xcessively high utilization of any
one cpu. You do this by distributing IMS/VS a~~licationE and their
associated transaction~ and terminals between the available CPUS in a
way that, dependent, on the complexity of thE a~~lication and the
capability of the CPU, avcids overloading each cPU.

If the current design of the data bases is such that the data tasEs
and their associated applications cannot be distributed across the
available CPUs (vertical ~a rti tioning) <, you can:

• Duplicate or share inquiry-only data bases; this allows the data
to be referenced by morE than onE systerr.

• Split th~ data bases into several component data basEs (horizontal
partitioning). ~he ccrr~onent data bases must be completely
independent for distribution among the available CPUs. For Exam~le,
it may be po~sible tc divide a data base by key range intervals.
The new data bases and their associatEd a~~lications could then be
distributed among the existing I~S/VS systems and the Terminal
Pouting Exit could be used to route incoming transactions to the
correct IMS/VS systerr. Another possibility is to divide the data
base by geographic area. Each IMS/vS systerr cculd process the
transactions that refer to the data bases for its own geographic
area and route transactions that refer tc a reITcte geogra~hic area.

In addition to balancing the workload across CPUs, you may also have
to balance the worklcad cn ~hysical links. This occurs when a physical
link between two systems is of t.he BSC ty~e and rrultiple ~hysical links
have been installed. You can balance the workload on physical links
by:

• Specifying, during IMS/VS system definiticn, ~ro~er logical link
paths and logical links for each remote application.

• Using a user-written Terminal Routing Exit to examine the load on
each ot the alterr.ative ~hysical links and choose the least busy
link for routing.

MSC EXAMPI.ES

Figures 5-12 and 5-13 illustrate, respectively, horizontal and
vertical partitioning.

5.16 IMS/VS system/Application Design Guide

y

X

IMS/vS System
(San Francisco)

Bse
Link

IMSNS System
(Los Angeles)

Figure 5- 12. Hcrizcntial Partitioning

resign considerations for the MSC Feature 5.17

X y
I MSIVS System CTC Link IMSIVS System

Figure 5- 13. Vertical Partitioning

5.18 IMS/VS System/Application Lesign Guide

This chapter describe~ the Fast Path feature a~d contains design
consideraticns for its use.

The Fast Path feature provides im~roved ~erformance for applications
that require large transaction rates and use cnly sirrple data
structures.

The Fast Path feature shares the IMS/VS Lata Communication network.
Th~ functions of the Lata Ease system and the Da.ta COIr.munication feature
are not reduced when the Fast Path feature is installed. The Fast Path
feature complements the existing system and dces net replace it. A
system with the Multiple Systems Coupling (MSC) feature installed can
also have the Fast Path feature installed; however, the Fast Path
feature cannot use the MSC intersystem links.

The Fast Path feature uses two new data bases: Main Storage Data
Base (MSDB) and Data Entry Da ta Ba se (DEDB).

The Fast Path data bases are simple in structure and can only be
processed by Fast Path transactions; Fast Path transactions cannot
proce ss non - Fast Path dat a bas es.

MAIN STCRAGE DATA EASE (MSrE)

An MSDE is designed for efficient processing of the most frequently
used data in an installaticn. The MSDB resides in main storage, which
reduces I/O activity.

The amount of data that the MsrBs can hold is lirrited by the amount
of available stcrage.

An MSDE is a root-only data base; it has no de~endent segments.
Only fixed-length segments are allowed in ar. MSDB.

There are two types of MSCBs: terminal-related and
nontennin al-r elated.

Terminal-related MSCBs are either fixed or dyr.arric. Inserts and
deletions are not allowed in a fixed terminal-related MSDB but are
allowed in a dynamic terrrinal-rela ted MSCE. Eoth dynamic and fixed
terminal-related MSLES havE the following characteristics:

• Each record in the MsrE is assigned to and owned by an LTERM.

• The name of the LTERM that cwns a record is the key of the record.
The key doesn't reside in the record. Because Fast Path does not
allow more than one message to be processed at a time from a logical
terrrinal, there is nc ~ossibility of update conflicts occurring
for a segment of a terminal-related MSDB.

• The record can cnly be updated by messages issued frcro the LTERM
that owns the reccrd. However, the record can be read as a result
of messages from LTERMs other than the cwner's.

Design Ccnsidera tions for the Fast Path Feature 6.1

Although an MSDB segment can be owned by one logical terminal, a
given logical terminal can own multiple MSDB segrrents, in a single MSDB
or in several MSDBs.

A typical use for a fixed terminal-related MSIE would be in a banking
application where each segment is associated ~ith a teller. ~he segment
would hcld inforrra ticn such a s the teller's cash balance. In this type
of application it would be possible for a batch a~~licaticn to read
~he segro9nt (possibly for general reporting purposes), but update would
be impossible.

A dynamic terrrinal-related MSDE might be used as a 'scratch pad' to
contain errOr information er.ccuntered by a transaction while processing
data from another MSDE. Once the error has teen ncted and handled,
the dynamic MSDB segrrent can be deleted.

Nonterminal-related MSDBs have the following characteristics:

• There is n~ ownership of records in a ncnterrrinal-related MSDB.

• No insert, delete, or replace calls are allowed against a
nonterminal-related MSDB. Ho~ver, fields in MSDB records can be
modified with a new IL/I call (FLD) described in a subsequent
section.

• The key of nonterminal-related MSDB records can be an LTERM name
or a field in the record. If the key is an ~!ERM narne, it doesn't
reside in the record, as with a terminal-related MSCE. If the key
isn't an LTEFM name, it does reside in the sequence field of the
record. If the key resides in the record, the records must be
loaded in key sequence because, when a qualified SSA is issued on
+.he key field, a binary sea rch is ini tiated.

A nonterminal-related MSDB with terminal-related keys might be used
. in a banking teller cash counter application that includes a supervisory

function for the transfer of ca sh betwe.en tellers and the updating of
their cash records. In this application, tr.e individual tellers no
longer own their cwn records, but these can only be updated by using
the ~TEFM name associated with each MSDB segment.

The nonterminal-related MSDB ~ithout terminal-related keys would be
used in any a~plication where a large number of people need access to
and update capability for data in a high transacticn rate sitUation,
for example, a real time inventcry control application, where reduction
of inventory could be noted from «any cash registers.

An MSDB is defined with tECGEN in the sarre way as any cther IMS/VS
data base. The data base is specified as an MSDB by coding ACCESS=MSDB
in the DBD staterrent. The REI. keyword in the DATA SEI' statement is
uS'=d to specify whether the data base is terrrinal-rela ted or
nonterminal-related. The definition of an MSCE data base is covered
fully in the IM2/V~ Y!ili~ig§ B§ierenc~ M~n~£l.

All DL/I calls, except those that specify "within parent," are valid
with one or more types of MSDBs. Because an MSDB is a rcot-only data
base, a "within ~rent" call is meaningless. Additionally, there is
a DLII call, FLD, specifically applicable to MSDBs. The FLD call allows

6.2 IMS/VS System/Application Design Guide

an application program to check and modify a single field within an
MSDB record.

The following shows which DL/I calls can be issued against the
different MSDE types.

C AI. I. MSCE TYPE

non- terrrinal- terminal-
terminal- related related
related fixed dynamic

GU X X X

GN X X X

GHU X X

REPL X X

18PT X

DI.ET X

FLD X X X

The FLD DL/I call is unique to Fast Path. It allows for the
operaticn on a record field rather than on an entire segment.
Additionally, it allows conditional operation cn a field.

Modification is done with the CHANGE forre of tte FLO call. The
value of a field can be tested wi th the VE1<IFY form of the FLI: call.
These forms of the call allow the applicaticn ~rcgram to test a field
value before doing the precessing to make a change. If a VERIFY fails,
all CHA~~E requests in the same FLO call are denied. ~his call is
described fully in the !~§lY§ ~~~li£g!i2n F~Qg~gmming B~!~~~D£~ M~nYE1.

Fast Path data base buffers are allocated when a call to update an
MSDB is issued by an application program. The buffers hold the update
information until a synchronizaticn point is reached. The maximum
number of buffers that the application program can use is dependent on
the number of normal page-fixed buffers ~BA) and the number of
additional page-fixed buffers (OBA) specified in the EXEC PARM field.

DATA EN'TRY DATA BASE (OEDB)

A DEDB is an HD-ty~e data base containing a maximum of two segment
types, a root and, optionally, one dependent segment type as shown in
Figure 6-1. The inforrraticn in the dependent segments should be looked
at as a history file. The dependent segment inserts are ke~t in
time-of-entry seguence tc ~rovide a chronological history of
transactions against the data base.

Design 'Considerations for the Fast Path Feature 6.3

Root
Segment

Sequential l-
I-

Dependent
Segments

I
I

Root
Segment

I

Root
Segment

Sequential
Dependent
Segments

I

~ -

Figure 6-1. DEDB Structure

Root segments in a DEDB have a single key field. They can be
accessed directly by this key. The dependent segrrents can have scan
fields by which they can be identified in a sequential scan. Scan
fields do not have to be unique. Eecause the de~endent segments are
stored in a time-of-entry sequence, there is no guarantee that they
will be maintained in scan field sequence.

Both segments in a tEtE are variable in length. Although the lengths
ar~ variable, ttey cannct be changed after the initial insert.

Access to a DEDB is by a subset of DL/I calls that are compatible
wi~h the standard IMS/VS rL/I calls. Get, re~lacE, delete, and insert
calls are provided fer rcct segments. Get and insert are the only
calls allowed against a dependent segment.

A DEDB can be sto~ped by an o~erator ~ith the S~OP Data Base command.
This command does net affect ~rograms that are currently scheduled
against the DEDE but does prevent the scheduling cf any new ~rograms
needing access to the da ta ba se in que stion.

The characteristics of a DEDB are:

• The dependent segments are stored in chrcnolcgical order, regardless
of the root en which tbey are dependent.

• A da~a entry data base can be divided into areas. An area is a
data set, except that an area holds entire data base records as
shown in Figure 6-2. A data set group in IMS/VS holds a ~rt of
the logical structure. Each area w~thin a tIrE data base oontains
root and dependent segments.

• Areas are further divided into units-of-work. Resource allocation
is done on the basis of units-of-work rather than on physical
records as in IMS/VS.

6.4 IMS/VS System/Application Design Guide

DEDB

r'--------------------------------A'-----------------------------~,

Area 1 Area 2 Area 3

A DEDB may contain a maximum of 10 Areas

Figure 6 -2. LEI:E Areas

A DEDB area is divided into three parts: the rcot addressable part,
~he independent overflew ~art, and the sequential dependent part.
Figure 6-3 shows how a DELE area is divided.

Root Independent Sequential
Addressable Overflow Dependent
Part Part Part

DEDB Area

Figure 6- 3. DEDB Area Division

Each area in a DEDB is a VSAM ICIF (improved control interval
processing) data set. An area is opened by tbe first call to it from
a program that is eligible to access it. A single area in a DEDB can
be stopped by the operator with the STCF Area command. Likewise, a
single area will be stopped when.' a write error is detected in the area.
An application pregraw accessing an area can encounter errors when the
area is filled. Eoth the root addressable part and the sequential
dependen~ part are subject to out-of-space conditions.

The root addressable part of an area is the or:ly part that is
ac~ually divided into units-of-work, as sr.own in Figure 6-4. A
unit-of-work consists cf a user-specified number of contiguous control
in~ervals. At any moment, a unit-of-work can cnly belong to a single
processing program. Each unit-of-work is further divided into a base
section and an overflow section. The base secticn contains centrel
in~ervals that are addressed by a randomizing routine. The overflow
section contains logical extensions of any cor.trcl interval in the
uni t- of-work. .

Design Censidera tions for the Fast Path Feature 6.5

Base
Section

Dependent {
Overflow

Units of Work

Independent
Overflow
Part

Sequential
Dependent
Part

L-~-----~~------~----_-_-_~_~~~_-_-_-_-_-_~_-_-_-_-_-~-7/~------------~--------~ '------------------v-
Root Addressable Part

~~------------------------------~v,...------------------------------~I
DEDB Area

Figure 6 -4. rErB Units-of-Work

The independent overflow part contains errpty ccntrcl intervals that
can be used by any ur.it-cf-work in the area. Once a unit-of-work
ob~ains a control interval from the independent overflow ~art, the
control interval can cnly be used by that unit-of-work. A control
interval in the independent overflow part- can be considered an extension
of the cverflow section ir. the root addressable part as soon as it is
allocated to a unit-of-work.

The sequential dependent part holds dependent segments frcrr roots
in all uni~s-of-work in the area (see Figure 6-5). The dependent
segments are stored in chronological order withcut regard to the root
or unit-of-work that contains the root. When the sequential dependent
part is full, it is reused from the beginning. Hcwever, before the
sequential dependent part can be reused, the user must use the DECB
utility DEFUMDLO to delete a contiguous porticn cr all of the dependent
segments in the sequential dependent part.

6.6 IMS/VS System/Application Design Guide

Unit of Work

Base
Section

Dependent
Overflow

Anchor
Point

Figure 6 -5.
Sequential Dependent Part

storage of :CEDE Dependent Segments in an Area

You can specify the size of the unit-of-work, the base section, the
overflow section, and the number of units-of-work in the root
addressable part and in the independent overflow part. This gives
flexibility in controlling resource and space management.

Each area in a DE:CE data base has its own space rranagement
parameters. These may be chosen according to the message volume that
can vary from area to area. Initialization, recrganizaticn, and
recovery are done on an area basis.

The physical update of a DEDB root is held in abeyance until a
synchronization point has been reached and synchrcnization processing
is corrpleted successfully. This sequence eliminates the need for
backout processing in case of a user program failure. DEDBs are
physically updated after the associated log records are written.

DEDB dependent segments are gathered at synchronization processing
time but are not written into the physical data base until a control
interval is filled. Logging takes place during synchronization
processing, and changes are discarded if a failure occurs.

Two resource allocations are necessary befcre a DEDB can be
processed. First, tbe unit-cf-work is allocated when a program requests
a segment. After the unit-of-work' is obtained, buffers are allocated
to the program. A common buffer pool is used for all programs and data
bases. The allocated buffers and units-of-work, are made available
following synchrcnizaticn pcint processing.

The maximum number of buffers an application can use depends on the
number of normal page-fixed buffers (NBA) and the number cf additional
page-fixed buffers (OBA) s~ecified in the EXEC FARM field. When the
limit is reached, any buffers that are allocated but have not been
changed will be reused.

Design Ccnsiderations for the Fast Path Feature 6.7

DEDB dependents are stcred in the d9pendent part of an area in the
order of entry. tE~E root segments are stored as Frescribed by the
randorrizing routine, chained in order of ascending key from each anchor
point. Each control interval in the base secticn of a unit-of-work
wi~hin an area has a single anchcr point. These methods of storage
are not well suited to sequential processing.

There is no easy way tc Frocess DEDB root segroer.ts in key order
unless your randcmizing routine assigns units-of-work and areas by
ascending key. If you are willing to process the root segments in a
somewhat arbitrary sequence, you can use Get Next calls. In this case,
you will process the roots in order of:

1. ascending area nurober

2. ascending units-cf-work

3. ascending key ~ithin each anchor point chain

Dependents chained from different roots within an area are intermixed
in the sequential part of an area without regard tc which roots are
their parents. Usually there is no way to process them efficiently
online in any sequential order. If all the sequential deFendents were
chained from a single root segment, processing with Get Next within
Parent calls would result in a backward sequential crder. (Some
applications may be able tc use this method.) Normally, dependent
segments are processed sequentially only by using the sequential
dependent scan utility which is described in the lM~/V~ ~tili~i~E
B§.ttlen£~ M.gJ}~s.!·

A DEDB is defined through the tEDGEN process as are all other 1MS
data bases. To specify that a data base is to be a ~E~E, ACCESS=DEDB
is specified in the tEt statement. Further infornaticn cn generating
a DEDB is contained in the IMQLYQ Uti!iti~§ E§.feren£~ MaDys.l.

with the Fast Path feature installed, all input messages from Fast
Path eligible terminals are directed to a Fast Path routine, with a
user exit routine, that determines if the message is for Fast Path or
IMS/VS.

Messages froIT: a non-Fast Path eligible terminal are routed directly
to IMS processing without resorting to the user exit routine. Messages
that meet the Fast Path criteria defined by the user exit rcutine are
routed to the Fast Path message handling routines.

Fast Path input and output messages can only be a single segment
and must not exceed a fixed maximum length.

The Fast Path online application programs operate in a wait-far-input
mode, and must be prescheduled before a transaction can be entered
through Fast Path terminals. Parallel scheduling is sUFFcrted through
!MS/VS system definiticn.

6.8 1MS/VS system/Application ~esign Guide

INPUT MES SAGE S

Every Fast Path transaction is defined to the system as a Fast Path
potential or Fast Path exclusive transaction. Potential transactions
can be execu~ed under IMS/VS processing or Fast Path processing. A
user-written exit is required to analyze the input message to determine
if it should be routed to IMS/VS or Fast Path.

A Fast Path exclusive transaction can only be ~rocessed by a Fast
Pa~h applicatien ~regram.

All input messages that are to be processed under Fast Path must be
issued from a Fast Path eligible terminal. A Fast Path ~ctential
transaction that is to be ~rocessed by normal IMS/VS facilities can be
issued from a terminal that is not Fast Patr. eligible.

OUTPUT MESSAGES

Fast Path output messages are limited to a single segment. Only
on~. insert call can be issued against the PCE. The out~ut segment
cannot exceed a ~respecifie6 segment length defir.ed at system
generation.

The output message and the input message are not logged until a Get
Unique is issued to the peE to ottain the next in~ut message. If a
failure occurs before this synchronization point is reached, both the
input and output message are lost. This prevents the necessity of
backing out of a transaction that did not complete because of a failure.

Fast Path executes in Fast Path IFF region. 'Il:e IFPs are handled
differently de~ending en the ty~e of program that is running in the
region. There are three uses for the regior.s in which Fast Path
processing is dcne:

• Applications for processing Fast Path messages

• Applications for processing input external te Fast Path

• Utilities initiated against the data bases

Regions executing rressage-ini tiated appl icaticns opera te in a
wait-far-input mode like I~S/VS MFPs. These are waiting-for-input
messages from Fast Path terminals. Prograrrs o~erating in a
message-driven region rray cnly use DEDB or ~SBE data bases.

Regions executing applications are used in a manner similar to an
IMS/VS EMP. This type of region can access and u~date DEDB and MSDB
data bases and can alse access OS/VS data sets through OS/VS data
management. This region type might be used to u~date a checking account
data base with input froIT a sequential file of processed checks.

Regions executing online data base utilities execute concurrently
with Fast Path processing. This region ty~e is sirrilar to a
nonmessage-driven aFplicaticn program but no user-written application
program is needed.

Message-driven applicaticn programs cannot terrrinate norrrally unless
a QC status code is posted in the I/O FCB. Nonmessage-driven
application programs car.not terminate normally without releasing the
buffers. A SYNC or ROLE call must be issued to release the buffers.

Design censidera tions for the Fast Path Feature 6.9

Synchronizaticn ~oint precessing is performed after a message get
unique call or a SYNC call from an application ~rcgram. The philosophy
of Fast Path prcceseing is tc hold all application program updates in
main storage until a synchronization point is reached. All logging on
th~ IMS/VS log tape is performed during synchronizaticn ~cint ~rocessing
but before the a~plicaticr. of data base updates.

If the application program uses the verify function in MSDE calls,
it will be re-executed during synchronizaticn point processing. If
~he conditions are met, the synchronization point processing completes
as expected. If the conditions are not met, the synchronization point
processing purges all update information and gives the same input
message to the application for reprocessing.

6.10 IMS/VS System/Application Design Guide

abnormal termination, application
prograrr 2.25

abnormal terminatio~, 801 4.109
cause cf, po~~ible

example of q.108
solutions 4.109

absence of s~gment types q.158
ACB (se~ application control blocks)
ACBGEN procedure 1.9
access authorization, data 2.70
access rrethod (Gs\M)

generalized sequential 1.6
overflow 1. 5

access to data, limiting 2.70
alogrithm, message scheduling 2.11
alternate PCB 3.17

modifiable 3. 18
response 3.19

anchor point area, ErAM data base 4.q7
application cla~s 2.42
application control blocks (ACE)

creation and rrainter.ance
methods of 1.9
required, when 1.9
utility, use of 1.9

use of 1. 11
application progra.m abr.crrral termina tion

effects on message scheduling of 2.25
effects or. sy~terr perforrrance 2.25
program .isolation, operation of 2.25

deadlock situaticn, decision
table for 2.27

application program design,
teleprocessing 3. 12

application program I/O work area size
considerations 4. 159

applicaticn program, batch
design considerations 3.2

checkpoint/restart 3.4
conventions, establishing 3.5
conventions, r.arring 3.5
conversion to teleprocessing 3.3
COpy or INCLUDE, u~e cf 3.6
DUI call function, I:E batch
proce~sing 3.11

DUI call function, I:E/I:C ccntrol
prcqram 3.10

DUI call, using the correct 3.7
DL/I calls and I/O c~eration~,
relationship between 3.9

DL/I statistics 3.11
performance considerations 3.11
prograrr language 3.3
storage allocation 3.12
testing 3.5
written i~ PL/I 3.12

D1./1 :'r:~erface
symbclic data de~cri~tion 3.6

applicatio~ program, teleprocessing
d~sign con~ideraticns 3.12

ba~ch message processing program
(BMP), use of 3.25

bufferinq 3. 26
ccnversa~icnal ~rcce~sing 3.23
conversion, batch to

teleprocessing 3.19
device class control 3.<20
device independence, ~rogramming
for 3.20

input calls 3.16
inpUt/output interface 3.12
out~ut call~ 3.17
output to al~ernate
desti~aticns 3.17

paging, 2260 and 2265 3.2q
PCBS 3.15
program design 3. 13
SYSOU~ devices, use cf 3.22
terminal, program's view of 3.14

environment 3.13
messaqe segment

description 3.15
format 3. 15

teleprocessing prograrr ccrrmunication
block (TPPCE) 3. 14

applicaticn programs, useful techniques
for 3.26

full file searches, IQF
desirability of 3.27
executing 3.27
forcing 3.27

information pa~sing, ~rcgram to program
methods 3. 27

intermediate data bas es
exarrple 3.26
use of 3. 26

messaqe editing
purpose 3. 26

output masks 3.27
application program, user's

ir.terfaces, DB system 1.2
language interfaces

compatibility 1.16
how to make 2.3
irrprove throughput, tc 2.3
LINKPACK/ RAM, in 2. 3
purpose 1.16
REGION/PARTITION, in 2.3

permanently resident in virtual
storage 2. 3

area, DEDB 6.5
ask type station, system/3,

system/7 2.57
auto delete, paging feature 3.24
available length field (AL) q.47

Index I.1

backward poi~ters, use of 4.19
ba tch ani ~,el eproc~ss ing applicat ions,
differenc~s b~t~een 3.3

illustration 3.4
batch checkpoint facility 2.28
batch ch~ckpoint/resta~t facility

batch backout utility ~rcgram
use of 3.4

CHKP call, use of
procedures for 3.4

functicns previded
WTO message 3.5

batch check~oint/r~start, DB/DC
system 2.28

batch-message p~ograms, for
message-driven -2.29
not m~ssage-diive~ 2.29

rressage processing ~regrarns, for
us'?r written, requiremen":s for 2.30

batch checkpoint/restart, DB system 1.19
batch backout utility program

irrplemented, how 1.20
use of 1.20

CHKP call to DL/I
DE system action, resulting 1.19
use of 1. 19

user responsibilities 1.19
XFST call'to DL/I 1.19

DE system action, resultinq 1.19
batch data base systerr initializing
step one 1. 13
step two 1.15

batch-message proc~ssing (EMF)
defir:ition 2.2
description 2.2

batch message precessing ~regram (EMP)
checkpoint table 3.25
teleprocessing system, in a

buffering 3.26
emergency restart 3.25
starting 3. 25
uses of 3.25

batch processing
defir.i tion 2. 1

batch scheduling, definitier. 1.2
BISAM/QISAM, IMS/VS use of 4.161
bit map, HD~~ or HIDAM data base 4.48
block identifier 2.54
BMP (batch-message precessing) region 2.2
B~P (seg batch wessage precessing

program)
buffer allocation, MSDB 6.3
buffer pool

concept, explanation ef 1.17
statistics, location of 1.17
statistics, retrieval ef 1.17
'system performance, eff~ct.s of siz e

on 1. 17

calls, DL/I
backward movement 4.14
data base 4.14
delete, use of 4.15
fo~ard movewent 4.14

I.2 IMS/VS system/Application Cesign Guide

function code 4.14
get calls, hold form 4. 14
get next withir: ~arent, use of 4.14
get n'?xt, use of 4.14
get unique, use of 4.14
insert, use of 4. 14

FThST 4.15
HEFE 4.15
LAST 4. 15

purpese 4.14
qualified 4. 14
replace, use cf 4.15
segment search argument 4.14
segment search argurrer:t (SSA) 4.16
unqualified 4. 14

CENPROCS, OS/VS rracre 2.5
checkpoint frequency, selection of 2.9
checkpoint ID table 2.29
check~oint/restart routines, user written

requirements 1. 20
rules for 1.20

cheek~oint/restart routines, writing 2.31
checkpointing batch-rressage processing

prog rams 2. 30
class profile ,systerr 2.68
COBOL BEAD/WRITE logic 3.7
command functions, ~rotecticn against

unauthorized use of 2.68
communications network, Switched 2.45
concatenated keys 4.5
concatenated segments, deletien of 4.86
contentio~ for resources, message

scheduling effects ef 2.28
control block buffer pools, message

scheduling effects of
excessive loading of, effects on

systerr perforrrance of 2.28
si ze requirements 2. 28

control block ~cols 2.28
control region, IMS/VS 2.8

virtual (V=V) envirenment, in a
structure 2.8

control sequence flow, DE system 1.16
conventions and ~rocedures, establishing

usef ul 3.5
conventions, namir:g 3.5
conversational attribute

effects on system perforrrance 2.19
. performance, enhancing 2.19

scratch pad areas, residency of 2.19
c onve rsational process ir-g

advantages 3.23
defini tion 3.22
description cf 3.22
example 3.23
interactive query facility, with 3.22

SPAS, effect on 3.22
scratch pad areas (SPAS)

use of 3.22
system definition of 3.22
teroporarily suspending cerrmands

used 3.24
terminated, hew 3.24

co~verting fram batch to teleprocessing
illustration 3.20
procedur~ 3.19

COPY, use of 3.6
copy function, printer selection for

3270 2.52
crossing 4.114
crossing a logical relationship 4.115
CTRLPROG, OS/VS macro 2.5

DASD space release, conditions for 4.89
dat". a l:ase

content
fields 4.1
segments 4.1

defining 4.1
design considerations

processing time 4.140
design, viability of 4.154
HDAM, using 4.38
HDAM and HIDA~ 4.37
logical (~~~ logical data base)
physical (§~~ physical data base)
segment~ 4. 1
simple HISAM 4.37
space allocation, IMS/VS 4.166
structure rules 4.152

absence of segment types 4.158
hierarchic l~g inde~endence 4.157
new segment type defined at end of

hierarchy 4.155
new segm~nt type i~ leg of existing

hierarchy 4.15
new segrn~nt type within existing

hierarchy 4.155
restructured data base 4.157

types of 4.1
data base access methods

relationships 1.12
when used 1. 12

data base buffering 1.17
data base/data communications (CE/CC)

systero 2.1
configuring 2.2

OS/VS options, selectien of 2.2
reccJT!m~nded 2.4
required 2.4

design and centrol ef 2.1
IMS/VS features

batch check~cint/restart 2.28
checkpoint frequer.cy, selection

of 2.9
console support, system 2.48
control of th~ DB/DC system 2.67
control region, virtual 2.8
da~a bases 2.28
I/O requests, active, specification

of 2.9
immediate checkpoint 2.9
intelligent rerrete station
support 2.54

master terrrinal 2.48

message scheduling 2.10
physical terreir.al net~ork
design 2.38

physical terminals 2.35
processing regions 2.8
program isclation 2.10
security and privacy 2.67
system queue s~ace 2.9
violation control 2.70
3270 support, IME/VS 2.49

processing, organizat~on of 2.1
relationship to DB systerr

differences 2.1
da~a base descripticn (DBD) generation

definition of 1.6
execution of 1.7
results of 1.6

data base description bleck (CEC)
purpose of 1. 11
requirem~nts, definition of 1.11

data tase input/output interface 1.2
data language I (CVI), using 1.3
format, symbolic 1.3

data bas~ integrity, restoring
procedure 1. 18

data base logging capability 1.1
data logged, type of 1. 18
modifications, data base 1.3
power failure protection 1.21
power failure, closing after a 1.21
purpose 1.1
recovery, use in 1.18

data base organization
auxiliary storage, in 4.12
main storage, in 4.9

data base processing inter.t, message
scheduling

conflicting actior., defined control
of 2.20

intent levels 2.20
int"?nt list' 2. 20
scheduling algorithrr, irr~act upon 2.21

data base record
conterlts 4.10
data base r~cord, HSAM 4.23

data base record segmer.taticn
options 4. 149

data base structure rules 4.152
data base system 1. 1

access wethods 1.12
application program design 1.10
application ~rograrr interfaces 1.2
batch checkpoint facility 1. 19

advantages of 1.20
batch processing execution 1.13
control sequence flcw 1.15
~ssen~ial program elements 1.10

ACB 1. 11
application program 1.11
DBD 1.11
IMS/VS system modules, list of 1.12
PSB 1.11

execution 1. 13
execution and control 1.10
facilities provided 1. 1

Index 1.3

GSAM 1.6
IMS/VS library data ~ets, u~ed with

definitions, list of 1.4
initializaticn proce~s 1.13
job cor:trol language (JeL)
ccnsideraticns 1.15

logging 1.18
logging capability 1. 1
monitor, 1MS/VS 1.21
opera~ing environment, batch
scheduling 1.2

OS/VS options, differences 1.4
OSAM 1.5
phased installation 1.2
power warning feature, System/370 1.21
STAE/ESTAE, use of

applicaticn prograrr, rules for use
of 1. 21

purpose 1.21
system defini~ion, IMS/VS 1.4
utility programs 1.1

da~a-base system execution 1.13
data base buffering 1.17
execu~ion sequence 1.14
initializa ticn 1.13

data base system flow 1. 16
da~a bases, DB/DC 2.28
data entry data base 6.3

defining 6.8
resource management 6.7
sequential prccessing 6.8
synchronization processing 6.7

Da~- a Language/I (DL/I) 1.3
call request, functions performed 1.17
calls, physical I/O operations
generated by 3.10

data base system, with 1.3
DL/I calls, prograrrs that cannot
issue 1. 21

inrut calls 3.16
language interface

purFose 1.16
output calls 3. 17

da~ a se~ groups
creating, rules for 4.21
defining 4.21

data structure change 4.155
data structure, seccndary ir.dexes 4.123
data transmission block 2.54
da~a, limiting access to 2.67
DA~AMGT, OS/VS rracro 2.5
DB moni to r 1 • 2 1

(£~~ ~lgQ monitor, DB)
DBD (§~~ data baEe de~cripticn block)
DC moni tor 2.71

(£~ £l~Q monitor, DC)
deactivation, conversational

processing 3.24
DEDB 6.3

defining 6.8
resource management 6.7
sequential precessing 6.8
synchronization processing 6.7

defining data baEe sequence fields 4.67
defining physical data bases, options

1.4 IMS/vS systerr/Applicatien Design Guide

defining physical data bases, options
available

HDAM or HIDAM, for 4.52
HISAM, for 4.52
HSAM, for 4.52

delete byte
definition 4.88
delete call 4.88

DASD space release 4.89
status codes 4.89

format of 4.88
logical delete bit 4.88
physical delete bit 4.88

delete call 4.88
delete rules 4.85

additional operations
logical child 4.113
logical parent 4. 113
physical parent of a virtually
paired logical child 4.113

space release 4.113
deleted segments, accessibility

of 4.103
example 1, logical parent Q.104
exarrple 2, logical child 4.105
example 3, physical

dependents 4.106
example 4, third path 4. 107
example 5, 801 abncrrral termination
possibility 4. 108

exarrples 4.90
logical child logical delet e,

of 4.91,4.92
logical child physical delete,

of 4.91
logical child physical/logical

delete, of 4.93
logical child -- virtual delete,

of 4.94,4.95
logical parent logical delete,

of 4.98,4.99
logical parent physical delete,

of 4.96,4.97
logical parent virtual delete,

of 4.100,4.101
physical parent -- bidirectional
virtual delete, of 4.102

in trod uction
requirements 4.85
selection 4.85

logical child
logical 4.90
physical 4.90
virtual 4.90

logical parent
logical 4.89
physical 4.89
virtual 4.90

physical parent
bidirectional virtual 4.90
physical/logical/virtual 4.90

summary
access paths 4.112
D~ET call 4.112
loqical 4.112

physical 4.112
propagation of 4.112

delete (DLET) 4. 15
call 4.88
Dr.ET call 4.85,4.112
examples of 4.90
logical child, for 4.90
logical parent, for 4.89
physical parent, for 4.90
rul~s 4.89
status codes 4.89
use of 4.15

deleted segments 4.103,4.111
accessibility of 4.103
exarr~les of 4.104

logical child 4.105
logical parent 4.104
physical dependents 4. 106
third path 4.107

inserting physically and/or
logically 4.111

deleted segmen~s, accessibility of 4.103
exarrples of Q.104-4.108

deletes, HDAM or HIBAM data base 4.49
dele"t.ioIJ 4.86

access paths
acce~sibility 4.87
full-duplex 4.87
illustration 4.87
logical parent, from 4.87
physical de~endencie~, from
physical parent, from 4.87
prevention 4.87,

concatenated segments
illustration 4.86

logical
child 4.86
parent

physical
4. 86

exception 4.86

4.87

dependen~ segment insertion, HISAM data
base 4.32

illustration 4.33
dependent segments, considerations for

HDAM, HIDAM 4. 160
design oonsiderations, batch application

program 3. 1
design consideration~, data base 4.140
design considerations, MSC 5.15-5.17
design deciSions, DB systerr
generation 1.4

design tradeoffs 4.152
device class control considerations 3.20
device class sensitive terrrinal I/O,
separating 2.42

device independence logical terminal
provided 2. 39

device independence, ~rograrrming for 3.20
device input format (BIF) 2.50
device output format (DOF) 2.50
devices suppCrted, list of 2.36
DFSUACBO 1.9
direct access storage s~ace
utilization 4. 146

direct address ~cinters 4.17

display bypass feature 2.69
distributed free space, EBAM or BIDAM

data base 4.51
DL/I call

(~~~ £lsQ calls, DL/l)
function

DB batch ~rocessi~g 3.11
DE/DC control program 3.10

1/0 operation~, relaticnEhi~ to 3.9
using the correct 3.7

DL/l data base, use cf 3.6
DL/l fUI'ction codes

definition of 3.7
segment retrieval

function codes, list of 3.7
functicn codes, us'e of 3.8

DIll interface 3.6
DL/l statistics 3.11
DLET call (se~ delete (DLE'!»

EDITOR, as/vs macro 2.5
emergency restart, queue repOSitioning

durinq 2.35
end -of -da ta (EO:C) 2. 14
end-of-rressage (EOM)

detection, IMS/VS
treaning 2.14

'?nd -of -segmen t (EOS) 2. 14
detection, IME/VS

IMS/VS action resulting from 2.15
EOD (end- of-da tal 2.14
EOM (end-of-message) 2. 14
EOS (end- of- segment) 2. 14

facilities provided, IMS/VS data base
system 1.1

Fast Path feature 6.1
fie Id call 6. 2
fields, data base segment

contents of 4.4
defining 4.4
key field

pur~ose of 4.4
rna ximum number of 4. 4
sequence field

limitation 4.5
ncn-unique 4.5
unique 4.5

symbolic pointer
definition of 4.4
illustration 4.6

types of 4.4
file description entry 3.7
first logical relationship crossed,

logical data base 4.116
FLD call 6.2
format control blocks, types of 2.50
formatting 3270 messages 2.49
free space anchor ~oint, OSAM
da ta set 4. 47

free space chain pointer field (CF) 4.47
full file searches, 1QF 3.27

Index 1.5

generalized sequential acce~~ method
(GSAM), res"':.rictio~s with IMS/VS 1.6

GE", NEXT (GN) 3.7
function of 3.8
us e of 4. 14

ge~ next within parent (GNP)
use of 4.14

GE~ UNICUE (GU) 3.7
execu~ion tiro2 of 3.P
functicn of 3.8
recommended use 3.11
use of 4.14

GSAM (2g~ generalized sequential acce~s
method)

HDAM and HIDAM data se~ format 4.44
HDAM da~a base 4.38

anchor point area 4.47
inserts 4.48

bi t map 4.48
bit uap block 4.48
dependen~ segments, considerations

f cr 4. 160
design consideraticr.s fcr 4.160
format of data sets used 4.44
in auxiliary storage 4.39
i r, s'? rt sand del et es 4. 48
loading 4.40
options available 4.52
root. addressable area, size cf

f ormu1 a 4. 40
using 4.38

HIDAM da~a base 4.41
anchor pcint area 4.47

inserts 4.48
bit rrap 4.48
data portion, design considerations

for 4.159
depend~nt segments, considerations

for 4.160
forma~ of data sets used 4.44
free space anchor pcint 4.47
free space element

available length field (AL) 4.47
free space chain pOinter field

(CP) 4.47
task ID field (ID) 4.47

index data base 4.41
index, design considerations for 4.159
i~serts and deletes 4.48
loading 4.41

after initiallcad 4.43
ISAM/OSAM, using 4.41
VSAM, using 4.41

options available 4.52
root segment type pci~ter cptions 4.44

hierarchic forward ar.d backward
pointing 4.18

hierarchic forward pointing 4.18
hierarchic leg independer.ce 4.157
hierarchic structure, physical data ~ase

ex alflple 4.11
HISAM and HIDAM key segments 4.51

1.6 IMS/vS systeu/Ap1=lica tion De sign Guide

HISAf-!1 data base
as one data se~ group 4.24

illustration 4.25
defin::tion 4.24
dependent segment insertion 4.32

in~o a HISAM data ba~e with one
data set group 4.33-4.35

description 4.24
HISAM data base 4.24
loading of 4.26
logical record lengths 4.27
logical records, structures of 4.27

illustration 4.26
options available 4.52
root segment insertion 4.28
. insertion sequence 4.31

in~o key sequenced data set control
interval 4.29

sequence of 4.31
when lSAM/OSAM are HISAM access

methods 4. 30
secondary data set groups 4.36

multiple data set group 4.37
segment deleticn 4.36
simple HISAM 4.37
stcrage organization 4.24

HISAM physical storage -- lSAM, OSAM or
VSAM 4. 153

HISAP single data set grcup 4.25
HSAM data base 4.22

data base reccrd, stcring 4.23
data base record on tape 4.23
definition 4.22
DL/I calls, restriction 4.24
opticns available 4.52
processing 4.24
search sequence 4.23
sirople HSAM 4.24
storage organizaticr. 4.22

1/0 requests, specification of active
recommendations 2.9

1/0 work area size considerations 4.159
lAM command (IMS/VS) 2.47
identifier, block 2.54
identifier, terminal 2.54
IFP region 6.9
immediate checkpcint 2.9
IMS/VS in an OS/VS systero

suppcrted configuraticns 2.4
IMS/VS program module preload function,

DB system 2.2
IMSVS.ACBLIB

definition 1.5
IMSVS.DEDLIB

definition 1.4
IMSVS. MACLIB

definition 1.5
I MSVS. PGMI.IB

definition 1.4
I MSVS. PRoeL.! E

definition 1.5
I MSVS. PSBLI B

definition 1.4

IMSVS.RESLIB
definition 1.4

INCLUDE
use of 3.6

index pointer segreent, seccndary
index 4.126

additional data in 4.128
fields

constant, use of 4.127
duplicate data 4. 128
search, use of 4.127
subsequence, use of 4.128

format 4. 126
indexes, IQF (2§~ interactive query
facility)

indexes, secondary 4.121
additional I/C operations 4. 132
alternatives te 4.132
data structure 4. 123

determining 4.124
defini tion 4. 121
fields, index Fointer segment

constant 4. 127
duplicate data 4.128
search 4. 127
subsequence 4.128
system related 4.128

index Fointer segment 4.127
additional data in 4.128
fi~lds, us~ of 4. 127
format 4.126
insertion of 4.131

key sequenced data set, use of 4.132
maintenance processing 4.130

maintenance exit reutine 4.129
options and rules for 4. 124
oroanization cf in auxiliary
. storage 4. 125
precessing as a data base 4.130
processing sequence 4.123
segment search argurrents 4.131
segment types 4.121
shared index data bases 4.130
storage requirement, increase of 4.132
sUFpression of entries 4.129
terms used for

index Fointer segment type 4.121
index source segment type 4.121
index target segrrent tYFe 4.121
s~condary data structure 4.121
seccndary Frocessing sequence 4.121

updated, when 4.132
use of 4.121

individual user profile 2.68
information passing, rrograrr to
prog ram 3. 27

input call, DL/I
examples 3. 16
format 3.16

input/output interface, teleprocessing
applicatien prcgrare 3.12

inquiry logical terminal 2.45

insert (ISFT) 4. 14
FIRST 4.15
HERE 4.15
insert call 4.79

status code 4.80
LAST 4.15
logical child inser~ion 4.79
rules

logical insert 4.79
physical insert 4.79
virtual insert 4.79

use of 4.14
insert call, the 4.79
inserts and deletes, HDAM and HIDAM data
ba ses 4.48

inserts, HDAM or HIDAM data base 4.48
intelligent remote station support 2.54

considerations System/3
ask-type station 2.65
EBCDIC transparency 2.65
line discipline, control of 2.65
locally attached terrrinals,
with 2.65

multiline rrultipcint (MLMP)
feature 2.65

transmissicn block, IMS/VS
processing of 2.66

using MLMP, design rec~mendations
for 2.65

considerations Syst~re/7
line types 2.62
output buffer size, effects on 2.62
polled line, choices 2.62
process control 2.62
transmissicn block, IMS/VS
processing of 2.64

transmissicn code rrcdes 2.62
conversational processing 2.54
destinations, presetting of 2.54
interface, purpose 2.54
operating modes, Systerr/3,

System/7 2.58
ask-type operating rrcde 2.59,2.61
basic operating mode 2.58
combining wodes 2.58
non-ask-type operating mode 2.60

system definition 2.56
AS!{ reessage 2.57
aSk-type station, defining 2.57
operating rrodes, definition of 2.57
output transmission code modes,

System/1 2.57
postpone output flag 2.57
postpone type staticn,
defining 2.57

transmissicn lireit, defining 2.57
unlimited transmission,

indicating 2.57
system messages, IMS/VS

message nurrber, use of 2.56
system/3, system/7 requirements 2.55

Index 1.7

transmission blocks
block identifier 2.54
data type, description of 2.54
messag~ identifier 2.54
synchronization type, description

of 2.54
terminal identifier 2.54

transmi~sion centrol
error messag~s, remote station 2.56
input mode 2.56
logical deactivation, cause of 2.56
ou~put me~sage, rerrcte station
r~sponse to 2.56

out~ut mode 2.56
synchronization block, use of 2.56

intent ~ro~agaticn 2.22
delete option 2.24
get option 2.23
implications of 2.23
insert option 2.23
replace option 2.23

in~eractive query facility
full file search

desirability of 3.27
ex~cuting 3. 27
forcing 3.27

ind~xing parameters, choosing
choice of fields 3.28
data bases required, number of 3.29
field size 3.29
frequency of updates 3.29
res~onse time, effects on 3.28
to consider 3.28

predefined ~hrases
ov~rus~, effects on performance

of 3.29
use of 3. 29

security control in 3.28
interactive query facility (IQF)

design consideraticr.s 4.162
space allocation 4.169

guidelines for 4. 170
intermediate data bases, using

exarr~le 3.26
IODEVICE, OS/VS macro 2.5

JCL considerations, data ba se system 1.15

key segments, HlSAM and HIDAM 4.51

leased line, design considerations 2.38
limiting access to data 2.70
1 inegrcu ~s, terrrina 1 2.38
line type s, System/7 2.62
LIN EGRP macro

use of 2. 37
load balancing, rre~sage ~cheduling 2.12
loading in HDAM data base 4.40
local transactien, MSC 5.7
logical child -- logical delete, example
of 4.91,4.92

logical child -- physical delete, of 4.91

I.8 IMSIVS System/Application Design Guide

logical child -- physical/logical delete,
exam~le of 4.93

logical child -- virtual delete, exawple
of 5.94,5.95

logical child insertion 4.79
logical child/logical twin Fointers 4.67
logical child segment 4.60
logical child segment, access ~aths 4.87
logical Child, delete rules for 4.90
logical Child, rules for defining 4.68
logical data base 4.1,4.114

defining 4.114
illustration 4. 118
rules for 4.117

definition 4.114
logical relationshiFs, cro~sing 4.114

example 4. 119
first and additional crossed 4.115
illustration 4.115-4.117

loqical destinations, MSC 5.8
logical insert rule 4.79

example of 4.82
logical link, MSC 5. 5-5.6
logical parent -- logical delete, example

of 5.98,5.99
logical parent -- physical delete,

example of 5.96,5.97
logical parent -- virtual delete, example

of 5. 10 0 , 5. 1 0 1
logical parent ~cinter 4.66
logical parent segment counter 4.67
logical parent, delete rules for 4.89
logical parent, rules for defining 4.68
logical/physical relationshi~s,
changing 2.44

logical record forrrats, HISAM data
base 4. 26

logical record length distribution 4.167
logical record lengths, HISAM data

base 4.27
logical records, HISAM structure of 4.25
logical relationshi~ ~aths 4.59
logical relationships 4.53

defined in, ~cssible data sets 4.65
defining data base sequence

fields 4.67
de scri ption of 4.53
logical child segment 4.60
pointers and the counter used in 4.65

counter 4.67
logical child/logical twin
~ointers 4.67

logical parent pointer 4.66
physical parent ~ointers 4.67

rela tionship paths 4.59
segment types, relating through a
logical child 4.54

method one 4.56
method two 4.56

terms used to describe 4.54

ty~es o~
physically paired

bidirectional 4.54
unidirectional 4.54
virtually ~aired bidirectienal 4.54

use, reason for 4.53
logical replace rule 4.73

example 4.75
logical terminal class 2.42
logical terminal/physical terminal
relationship

diagram 2.44
multiple users 2.44
nonswitched network 2.44
one user 2.44
swi~ched network

diagram 2.45
lAM command (IMS/VS) 2.47
inquiry logical terminal, the 2.45
logical ~e~inal sub~ools 2.46
sign on 2.45

system definition, IMS/VS 2.44
logical terminal pool 2.46
logical terminal subFeel 2.46

use of 2.47
logical terminals

concept~ definition of 2.39
IMS/VS logical terrrinal

attributes of 2.40
device class sensitive terminal
I/O, separatir-g 2.42

input/output 2.40
physical terminals, input
relationshi~ te 2.41

physi cal. tennin als, output
relationshi~ to 2.40

network design 2.41
application cIa ss 2. 42
logical terminal class 2.42
security censideratiens 2.41

I.PALIB, OS/VS macro 2.6

MACLIB, OS/VS macro 2.5
main storage data base 6.1

defining 6.2
DI./I calls 6.2

maintenance exit routine, secondary
index 4.129

maintenance processing, secendary
indexes 4.130

masks, output 3.27
mass storage system (MSS) 2.72
master terminal

devices allowed as 2.48
inoperable, backup when 2.49
operator, defining security for 2.70
physical location 2.48
3270 2.53.

message 2.54
definition of 2.14

message class 2.11
message-driven EMP 2.29

message editing
edit reutine, locatie~ ef 3.26

cor-trol region 3.26
control region, IMS/VS 3.26
link pack 3. 26
message precessing region 3.26

purpose 3.26
message editor 2.50
message format service 3.50
messag-= handling, Fast Pa th 6.8
message i denti fier 2.54
message input descriptor (MIC) 2.50
message output descriFtor (~CD) 2.50
message processing region

initiating 3.2
performance for modules preloaaed

message queues
emerg~ncy restart repositioning

MULT mode processing, when in
SNGI. mode processiLg, when in

logical terminal, fer 2.34
operation of 2.34

system failure, ~ith 2.34
queue data sets

block size 2.33
destroyed, if 2.34
preformatted 2.34
relationship between 2.33

queue recoverability 2.34
queue storage 2.34
reuse of 2.35
structure of 2.32
transaction code, for 2.32

message routing, ~BC 5.6
message scheduling

algori thm 2. 11
application ~rograrr abncrrral
termination 2.25

deadlock situatiens 2.26
effects on system performance
program isclatien, eFeration
of 2. 25

synchronizatien point, program
isolation 2.25

contention fer reseurces 2.28
control block buffer pools

excessive leading, system
performance effects of 2.28

size requirements 2.28
conversational attribute

2.4

2.35
2.35

2.25

effects on systerr performance 2.19
performance, enhancing 2.19

data base processir.g intent 2.20
intent levels 2.20
intent list 2.20

load balancing
definition of 2.12

me ssage class and region class,
by 2.11

conflict resolution 2.12
message selectier. Frccess 2.11
scheduling options 2.11

Index 1.9

multiple/single segrrent rre~sages
end-of-data (EOD) 2.14
end-of-me~sage (EO~) 2. 14
end-of-segment (EOS) 2.14
ex 3. rrp Ie 2. 14
prirrary ccncern~ wher.

selecting 2. 15
non-update transacticn precessing

definition of 2.18
outpu": limits, applica ticr: program

results of 2.14
use of 2.14

processing in~ent specifications 2.21
exclusive 2.23
intent types 2.22
optionf: 2.22
read only 2.22
update 2.22

processing limits
limit count, cse of 2.13

rsspons<:! and non-response messages
recommendation 2.18

scheduling concurrency, factors
effecting 2.23

delete option 2.24
ge-:' option 2.23
insert option 2.23
replace option 2.23

s~lpction priorities
explanaticn of 2.13
limit priority 2. 13
norrral priority 2.13
zero priority, assigning 2.13

terminal respcn~e rrode
definition 2.17
line performance, effects en 2.17
op-:'ions 2.17

message scheduling algerithrr
definition of 2.10
influences on, design 2.10

message scheduling, definition 2.11
message segment forrrat 3.15
message segments

definition of 2.14
modifications, data base

logging of 1.3
monitor, IMS/VS CE

activation/deactivaticr. cf 1.21
description of 1. 21
functien of 1.21
recommendations for use

collecting data, for 1.21
testing application, for 1.22
tuning systerr, fer 1.22

moni +,or, IMS/VS r;c'
description of 2.71
function of 2.71
recorrmendations for use

1.10

collecting data 2.71
integrating applicaticns, effects
of 2.72

testing applications 2.72
tuning system 2.72

1MS/VS System/Application Design Guide

MSC feature (see rru ltiple systems coupling
(MSC) feature)

MSDB 6.1
defining 6. 2
DL/I calls 6.2

MSS 2.72
multiline multipcint (MIMP) feature,

System/3 2.65
multiple data set group segmentation,

HISAM 4. 151
multiple data set greup, HISAM data

base u.37
multi~le data set groups, HISAM 4.144
multiple systems coupling (MSC)

feature 5.1
communication initialization,

mUltisystem 5.14
communication termination,

multisystem 5.14
compatibility 5.15
conversation terwinaticn 5.13

abnormal 5. 13
norrral 5.13

conversational processing 5.12
descripticn of 5.12
scratchpad areas (SPAs) 5.12

description cf 5.1,5.3
design considerations 5.15-5.17

overhead, ninimizing 5.16
werkload, balancing 5.16-5.17

destination system 5.8
destinaticn terreinal 5.8-5.9
stopped transactions 5.10

destination verificaticn 5.11-5.12
examples 5.17-5.18
horizontal partitiening 5.16
input system 5.8

input terrrinal 5.8
intermediate system 5.9
links 5.3

logical link 5.5-5.6
assignrrents 5.14
partners 5.5-5.6
remote logical terrrinals 5.6

physical link 5.4
types of 5.4

local destination 5.8
local system 5.3
local transaction 5.7
logical destinations 5.8

local 5.8
remote 5.8

logical length path 5.7
message routing 5.6
mUltiple systems verification
utili ty 5.7

overhead, minimizing 5.16
physical link 5.4
recovery capabilities 5. 15
reroote destinatien 5.8
remote logical terminals 5.6
remote systerrs 5.3
remote transactions 5.7

priorities 5.10
routing exit routines 5.10-5.11

~rogram routing 5. 11
terminal rcuting 5.10

routing path 5.6
security maintenance 5.14
system identification 5.7

examples of 5.7
vertical partitior:inq 5.16
workload, balancing - 5. 16

multiple systems verificaticn utility 5.7
multipoint line, definition 2.36
multisegment and single segrrent messages
message sch~duling 3.15

names, logical terminal 2.49
naming conventicns

advantages of 3.5
dictionary, responsibili ty for
requiremen~s, IMS/VS 3.5

ne~work desiqn 2.41
network design, physical terminal

line groups 2.38
polled terminals

types of polling 2.38
switched network 2.38

non-message driven BMP 2.29
non-update transaction processing,

message scheduling for 2.18
nonswitched communication lines,

definition of 2.36
nonswi tched network 2.44
nonterminal-related MSDB 6.1

3.5

operating modes, Systerr/3, System/7 2.58
operating rela~ionships, program

description 1.2
illustration 1.3

options and rules for seccndary
indexes 4.124

options, reco~mended OS/VS 2.4
options, required OS/VS 2.4
organiz a~ions, physica I da ta ba se 4.16
OS/VS data files, use of 3.6
OS/VS cp~ions 2.4

recommended
CTRLPROG 2.5

required 2. 4
CENPROG S 2.5
DATAMGT 2.5
EDI'IOP 2.5
IODEVICE 2. 5

special access method (OSAM) 2.7
allocation of data sets 2.7
pre-allocation restrictions 2.7
use of 2.7

superviscr call rcutines
TYPE1 2.6
TYPE2 2.6
TYPE4 2.6

OSAM (§~ overflow sequential access
method)

OSAM data sets, allocation of 2.7
OSAM, DB system use of 2.7

output call, DLII
example 3.17
format 3. 17

output device, control characters
carriage return characters 3.20
drum address characters 3.21
new line symbols 3.21
purge call, DLII 3.21

output limi ts, message scheduling 2.14
output masks 3.27
output message, remcte station response

to 2.56
output to alternate destinaticns

alternate PCE 3. 18
illustration 3.8
modifiable alternate PCE

advantages of 3.18
definition 3. 18
modifying, exarrple cf 3.18
use of 3.19
use, limitaticn cf 3.19

response alternate FCE
purpose of 3.19
use of 3. 19

sending 3.17
output transmission code modes,

System/7 2.56
overflow data set 4.36
overflow sequential access rrethcd

advantages to IMS/VS ~E system
functions with IMS/VS DB system
re quiremen ts, DB syst em 1.5

(OSAM)
1.5

1.5

paging feature, 2260 and 2265 3.24
auto delete, operation' with 3.24
function of 3.24
page-request indicator 3.24
using 3.24

PARTITNS, OS/VS macro 2.5
passwcrd and/or terrrinal security,
defining 2.70

passwords, design of 2.68
PCB, alternate 3. 17
performance considerations, batch
application program 3.11

bu ff er ing 3. 26
conversational processing 3.22
conversion, batch to
teleprocessing 3.19

device class control 3.20
device independence, prcgramming
for 3.20

input calls 3.16
input/output interface 3.12
output calls 3.17
output to al tern at e dest inat ions 3. 17
paging, 2260 and 2265 3.24
storage allocation 3. 12
tuning, using statistics for 3.11

performance considerations, modules
preloaded in MPPs 2.4

physical child
definition 4.10

physical child last pointer 4.21

Index I.11

physical child/physical twin pointers
benefits of 4.19
rules 4.19
use of 4.20

physical data base
concepts of 4.1

calls 4.14
fit:?lds 4.4
segments 4.1
structure 4.7

defining oI=tions
HDAM or H1CAM, for 4.52
H1SAM, for 4.52
HSAM, for 4.52

definition 4.1
HDAM and H1DAM

advantages 4.37
organization in storage 4.16

data set groups 4.21
HDAM 4.38
H1DAM 4.41
H1SAM 4. 24
HSAM 4.22
methods of 4. 16
pOinters 4.16

organization of 4. 16
rules for defining logical
relationships in

logical child 4.68
logical parent 4.68
physical I=arent 4.69

physical data base hierarchy,
defining 4.10

physical delete rule 4.110
logical, treated as 4.111
violation, detection of 4.110

physical insert rule 4.79
example of 4.81

physical insert rule, exarrFle of 4.81
physical link, MSC 5.4
physical/logical terwinal

relationships 2.43
physical parent

definition 4.10
physical parent -- bidirectional virtual

delete, exawple of 4.102
physical paren~ pointers, data base 4.67
physical parent, delete rules for 4.90
physical parent, rules for defining 4.69
physical replace rule 4.73

example 4.74
physical terminal network design 2.38
physical terminals 2.35

defini tion 2. 35
input/output assignrrents 2.43
LINEGRP macro 2.37
logical terminals, relaticnship
to 2.44

types of, sUFForted 2.36
physical terminals, input relationship
to 2.41

physical terminals, output relationship
to 2.40

1.12 IMS/VS Systerr/Application Design Guide

physical twin
definition 4.11
illustration 4. 13

physically paired bidirecticnal logical
rela tionship

use of 4.62
pointers, data base

direct address 4.16
ill ustration 4. 17
types of 4.16

hierarchic 4.18
illustration 4.19
op":.ions 4. 18

physical child/I=hysical t~in 4.19
backward pointers 4.21
benefits of 4.19
illustration 4.21
rules 4. 19
use of 4.20

pointing, hierarchic fcrward 4.18
pointing, hierarchic fcrward and

backward 4. 18
polled t~rminals 2.38
pool, logical terminal 2.46
pool manager, MFS 2.50
pools, control block 2.28
postpone type statior., System/3,

System/7 2.57
pre-allocation, O~M data set

re strictions 2.7
priorities, message scheduling 2.13
proct:?ss control System/7 2.62
processing intent specifications,

message scheduling 2.21
int~nt types

EXCLUSIVE 2.23
HEAD ONLY 2.22
UFDATE 2. 22

scheduling options 2.22
processing limits, message
scheduling 2.13

processing regions, defining rraximum 2.8
processing secondary ir.dex as a data base

guidelines and rest~ictions 4.130
processing sequence, seccndary
indexes 4.123

processing, batch (~~ batch processing)
program ccmmunication block (PCB) 3.6

defini tion 3.6
program controller, CE system t:?nvironrnent

functions 1.14
program isolation 2. 10

application Frograrr abncrmal
~ermination 2.25

synchronizaticn point, definition
of 2.26

call function (ROLL) 2.26
definition 2.10
dynamic log, maintenance of 2.25
operation of 2.25
uses for 2. 10

program s~cification block (PSE) 1.8
description cf 1.11
gen~ration of 1.8
purpose of 1. 8
segment sensitivity

data inde~Endence, fcr 1.11
levels of 1.11

program s~ecificatior. block (PSB)
. gene ra tion

illustration 1.8
PSBGEN procedure 1.8
r e su 1 t s of 1 • 8
use of 1. 11

program types, Fast Path 6.9
programming language, choice of 3.3
programs, testing 3.22
PSB (£~~ program specification block)
purge call, DLII 3.21 .

illustration 3.21
output termination, to cause 3.21

que ue data sets
block size 2.33
relationships 2.33

queues
message 2.32
operation of 2.34
preformattep 2.34
recoverability of 2.34

recovery capabilities, MSC 5. 15
region class 2.11
regions, types of 2. 1
remote station, intelligent 2.54
remote transactions, MSC 5.7
r eorganiz ation, data ba se 4.164

HDAM and HIDA~ data basEs 4. 166
HISAM data bases 4.165
reorganization interval 4.165

replace (REPL) 4.15
introduction 4.70
rules 4.73

coding 4.72
illustration 4.78
logical 4.73
physical 4.73
virtual 4.73

status code 4.73
use of 4.15

replace call, the 4.73
RESMODS, OS/VS macro 2.6
restructured data base 4.157
root segment.

defini tion 4. 10
insertion, HISAM data base 4.28

insertion sequence 4.31
root segment ty~e ~ointer c~tions, HIDAM
data base 4.44

routing exit routines, MSC 5.10-5.11

scra~ch pad areas (SPAs)
definition of 2.19

secondary data set groups, EISA~ data
1::; 3.S es

description and use 4. 36
overflow data set 4.36
when used 4.36

secondary indexing (£§§ indexes,
secor.dary)

security and privacy, CE/CC system 2.67
command functions, ~rctection against
unau~horized use of

class profile system 2.68
individual user ~rcfile2.68
passwords 2.68

design considerations 2.67
display bypass feature 2.69
lirriting access to data

authorized actions 2.70
Interactive Query Facility

(IQF) 2.70
log tape, using 2.70
securi ty maintenance program,

IMS/vS 2.67
securi ty violation attempts, recording
of 2.70

switched terminal security, 3270 2.71
terminal comrrands, authcrizing use

of 2.67
transaction codes, restricting entry

of
security rrainter.ance ~rogram 2.69

security con~rol, IQF 3.28
security rraintenance, MSC 5.7
security maintenance program, IMS/vS 2.67
security violaticn attem~ts, recording

of 2.70
security, design considerations for

system 2.68
SEGM statement, use of

PARENT= operand 4.11
segment deletion, HISAM da ta ba se

ISAM/OSAM 4. 36
VSAM 4.36

segment edi tlcompression 4. 137
considerations for use 4.140
conversion to use

steps for 4.138
data compression

definition and use 4.139
description of 4. 137-4. 140
exit 4.137
illustration 4.138
key corrpressicn

definition and use 4.139
segment types, ccm~ressible 4.140
use of 4. 137

Index 1.13

segment formats, data base
data pcrtion 4.2
dl'? let~ byte 4. 3

delete byte, illustraticn 4.4
use of Ll. 3

illustration 4. 3
prefix 4.2
related, how 4.3
segment code

use of 4.3
typ'3S 4.3

fixed length 4. 2
variable length 4.2

segment oriented p:!:ogram 3.7
segment search arguroents (8SAs) 3.7

definition of 4.16
illustration 3.9

definition of 3.7
parts of 4. 16
qualified 3.7
unquali fiEd

definition of 3.7
segment sEarch argurrents, seccndary

inde X'3 s 4. 131
segment types, relating thrcugh a logical
child 4.54

segments, data base 4.1
, da ta portion 4. 2

defining 4.2
defini tion 4. 1
fields 4,,4
formats 4.2

del€~e byte 4.3
delete byte, illustration 4.4
illustraticn 4.3
segment code 4.3

length 4,,2
limitation of 4.2
prefix 4" 2
SEGM statement 4.2
types 4.2

segments, variable length
advantages of 4.133
conversion to 4.136
formats 4.136
illustration 4.134
10 a din g 4. 1 3 3
performance, effects on 4.136
storage requirements fcr,
additional 4.13~

uses 4.133
shared index data bases, seccndary

i nd e xe s 4. 1 30
sign on, switched netwcrk

lAM command (lMS/VS)' 2.47
naIT€s, logical terITinal 2.48

simple HISAM data base 4.37
single data set group segmentation,

HISAM 4.150
size of root addressable area, formula
for 4.40

space allocation, IMS/VS 4.166
space allocation, IQF 4.169

I.14 IMS/VS System/Application Design Guide

spac~ search algorithm, HL 4.48
space utilizaticn, direct access

storage 4. 146
SSA 4 .. 16
status code, ins'3rt call 4.80
status code, re~lace code 4.73
storage sequence of segments, HISAM data

base record 4.143
structure, physical data base 4.7

data base record
contents 4.10

data base structure in storage 4.9
defininq 4.7
developing, exarr~le 4.7
hierarchy of segment types 4.8

creating 4.7
hierarchy, defining 4.10

hierarchic structure 4.11
physical child 4.10
physical ~arent 4. 10
physical relationships 4.10
root segment 4. 10
SEGM statement, use of Ll.11

level
order of dependence 4.10

subpool, logical terminal 2.46
suppression of entries, seccndary
indexes 4. 129

SVCLlE, OS/VS wacro 2.6
SVCs, OS/VS 2. 6
SVCTABLE, OS/VS rracro 2.6
switched communication lines, definition
of 2.36

switched network 2.45
design consideraticns 2.38

switched terminal security, 3270 2.71
synchronization block, use cf 2.56
synchronization transmission block 2.54
SYSOUT devices, use of

prog ram testing 3. 22
specl option 3.22

system console, CS/VS
functions available 2.48
primary purpose 2.48

system definition, IMS/VS 2.44
system definition, System/3,

SysteIl'/7 2.56
system execution, data base 1. 13
systerr generaticn design decisicns,

DB 1.4
system queue space, requirements for 2.9
system r'3lated fields, secondary indexes

defining 4.129
type s of 4. 128

/CK 4.128
/SX 4.129

systeIT identification, MSC 5.7
Systero/3, design consideraticns unique
to 2.65

System/3, Systerr/7 requirements 2.55
System/7, design considerations unique
to 2.62

task 1D field (1r:) 4.47
teleprocessing a~plicaticn ~rogram
design 3.12

(~€e £12Q ap~licaticn rregram,
teleprocessing)

terminal commands, authorizing use
of 2c 67

terminal configurations sUFForted 2.37
terminal identifier 2.55
terminal-related MSDB 6.1

fixed 6.1
dynarr.ic 6.1

terminal response mode
definition 2.17
line performance, effects on 2.17
options 2.17

terminal security, des ign
considerations 2.41

terminal types, selection of 2.38
t~rminal, master 2.48
terminals, polled 2.38
testing, application

requirements for 3.5
trad~offs 4.152
transaction codee, restricting entry

of 2.68
transactions

application programs, relation to 2.10
attributes, defining 2.10

~ransmission block System/3, 1MS/VS
processing of 2.66

transmission block System/7, 1MS/VS
processing of 2.64

transrr.ission blccks 2.54
transmission control 2.56
transrrission lirrit, Systerr/3, System/7
defininq 2.57

unbuffered/buffered terminals,
considerations 2.38

unidirectional logical relationship
use of 4.61

unit-of-work, DELE 6.6
utilities

data base recovery 4. 163
data base reorganizaticn 4.164

HDAM and H1CAM dat a bas es 4. 166
H1SAM data baees 4.165
reorganization interval 4. 165

utility contrel facility 4.164
utility, MFS 2.50 '
utilizing slack space, HISAM 4.148

virtual ccntrol regior.
design considerations 2.8

virtual control region, IMS/VS 2.8
virtual insert rul e . 4.79

example of 4.83
virtual replace rule 4.73

ex ampl e 4 • 7 6
virtually paire d bidirect ional logical
relaticnship 4.63

defining fields in logical child
segment types 4.65

di scussion of 4. 64
use cf 4.63

3270 information display system 2.49
copy function 2.52

candidate ~rinters 2.52
example 2.53
out~ut, forrrat of 2.52
printer, selection of 2.52
pur~ose 2.52
requested by 2.52

master terminal sU~Fort
comprised of 2.54

message format service (MFS) 2.49
format con~rol blocks, types

of 2.50
major components 2.49
major operaticne, overview 2.51
message editor 2.50
pool manager, ~~S 2.50
pool manager, MFTEST 2.50
utility, MFS 2.50

overview of 2.49
3284 model 3 Frinter

message transmission to,
cutput 2.53

3284-3 prir.ter 2.53
3850 MSS 2.72

Index: I.15

Q)

o z

IMS/VS Version 1
System/Application Design Guide
SH20-902S-S

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, in any
form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

Fold on two lines, tape, and mail. No postage necess'ary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

SH20-9025-5

Reader's Comment Form

Fold and Tape
,' .. .

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

IBM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

First Class Permit
Number 6090
San Jose, California

...
Fold and Tape

----- -- --®

~~~R 
International Business Machines Corporation 
Dat~ Processing Division 
1133 Westchester Avenue, White Plains, N.Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.V., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Cerporation 
360 Hamilton Avenue, White Plains, N. V., U.S.A. 10601 

s: 
CJ) -< 
CJ) 

< 
CD 

'"" Ul o· 
:::J 

CJ) 
<: 
Ul 
r+ 
CD 

3 
); 
"0 
"E.. o· 
Q) 
r+ o· 
:::J 

o 
CD 
Ul 

cC· 
:::J 

G> 
c 
c: 
CD 



SH20-902S-S 

~ ® 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N.Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plain~, N.Y., U.S.A. 10601 

s: 
en -< en 
< 
CD ., 
en o· 
::J 

!f 
~ 
CD 

3 -» 
"0 
""2-
0' 
0) .... o· 
::J 

o 
CD 
en 

cC' 
::J 
G) 
c: 
c: 
CD 

\J 
::!. 
::J .... 
CD 
Q. 

::J 

C 
en 
~ 
en 
:c 
I\) 
o 
cb 
o 
I\) 
0"1 
cJ, 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	017
	018
	1.01
	1.02
	1.03
	1.04
	1.05
	1.06
	1.07
	1.08
	1.09
	1.10
	1.11
	1.12
	1.13
	1.14
	1.15
	1.16
	1.17
	1.18
	1.19
	1.20
	1.21
	1.22
	2.01
	2.02
	2.03
	2.04
	2.05
	2.06
	2.07
	2.08
	2.09
	2.10
	2.11
	2.12
	2.13
	2.14
	2.15
	2.16
	2.17
	2.18
	2.19
	2.20
	2.21
	2.22
	2.23
	2.24
	2.25
	2.26
	2.27
	2.28
	2.29
	2.30
	2.31
	2.32
	2.33
	2.34
	2.35
	2.36
	2.37
	2.38
	2.39
	2.40
	2.41
	2.42
	2.43
	2.44
	2.45
	2.46
	2.47
	2.48
	2.49
	2.50
	2.51
	2.52
	2.53
	2.54
	2.55
	2.56
	2.57
	2.58
	2.59
	2.60
	2.61
	2.62
	2.63
	2.64
	2.65
	2.66
	2.67
	2.68
	2.69
	2.70
	2.71
	2.72
	2.73
	2.74
	2.75
	2.76
	2.77
	2.78
	2.79
	2.80
	2.81
	2.82
	2.83
	2.84
	3.01
	3.02
	3.03
	3.04
	3.05
	3.06
	3.07
	3.08
	3.09
	3.10
	3.11
	3.12
	3.13
	3.14
	3.15
	3.16
	3.17
	3.18
	3.19
	3.20
	3.21
	3.22
	3.23
	3.24
	3.25
	3.26
	3.27
	3.28
	3.29
	4.001
	4.002
	4.003
	4.004
	4.005
	4.006
	4.007
	4.008
	4.009
	4.010
	4.011
	4.012
	4.013
	4.014
	4.015
	4.016
	4.017
	4.018
	4.019
	4.020
	4.021
	4.022
	4.023
	4.024
	4.025
	4.026
	4.027
	4.028
	4.029
	4.030
	4.031
	4.032
	4.033
	4.034
	4.035
	4.036
	4.037
	4.038
	4.039
	4.040
	4.041
	4.042
	4.043
	4.044
	4.045
	4.046
	4.047
	4.048
	4.049
	4.050
	4.051
	4.052
	4.053
	4.054
	4.055
	4.056
	4.057
	4.058
	4.059
	4.060
	4.061
	4.062
	4.063
	4.064
	4.065
	4.066
	4.067
	4.068
	4.069
	4.070
	4.071
	4.072
	4.073
	4.074
	4.075
	4.076
	4.077
	4.078
	4.079
	4.080
	4.081
	4.082
	4.083
	4.084
	4.085
	4.086
	4.087
	4.088
	4.089
	4.090
	4.091
	4.092
	4.093
	4.094
	4.095
	4.096
	4.097
	4.098
	4.099
	4.100
	4.101
	4.102
	4.103
	4.104
	4.105
	4.106
	4.107
	4.108
	4.109
	4.110
	4.111
	4.112
	4.113
	4.114
	4.115
	4.116
	4.117
	4.118
	4.119
	4.120
	4.121
	4.122
	4.123
	4.124
	4.125
	4.126
	4.127
	4.128
	4.129
	4.130
	4.131
	4.132
	4.133
	4.134
	4.135
	4.136
	4.137
	4.138
	4.139
	4.140
	4.141
	4.142
	4.143
	4.144
	4.145
	4.146
	4.147
	4.148
	4.149
	4.150
	4.151
	4.152
	4.153
	4.154
	4.155
	4.156
	4.157
	4.158
	4.159
	4.160
	4.161
	4.162
	4.163
	4.164
	4.165
	4.166
	4.167
	4.168
	4.169
	4.170
	4.171
	4.172
	4.173
	5.01
	5.02
	5.03
	5.04
	5.05
	5.06
	5.07
	5.08
	5.09
	5.10
	5.11
	5.12
	5.13
	5.14
	5.15
	5.16
	5.17
	5.18
	6.01
	6.02
	6.03
	6.04
	6.05
	6.06
	6.07
	6.08
	6.09
	6.10
	I.01
	I.02
	I.03
	I.04
	I.05
	I.06
	I.07
	I.08
	I.09
	I.10
	I.11
	I.12
	I.13
	I.14
	I.15
	replyA
	replyB
	xBack

