
--------- - ---- - -- - ---- - - ----------- ·-
MVS/ESA
JES2 Logic

MVS/System Product:
JES2 Version 3

" Restricted Materials of IBM "
Licensed Materials - Property of IBM
L Y28-1006-2 © Copyright IBM Corp. 1988, 1990

L Y28-1 006-2

--------- ----- - -- - ---- --------- ----·-
(

(

MVS/ESA
JES2 Logic

MVS/System Product:
JES2 Version 3

"Restricted Materials of IBM"
Licensed Materials - Property of IBM
L Y28-1006-2 © Copyright IBM Corp. 1988, 1990

L Y28-1006-2

I Production of This Book

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

I This book was prepared and formatted using the IBM BookMaster document markup language.

KeepyourBooks ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--.

Do not replace your existing documentation until you install the JES2 component of MVS/SP Version 3
Release 1.3 on ALL members of your multi-access spool system.

Third Edition (February, 1990)

This is a major revision of L Y28-1006-1. See the Summary of Changes for a summary of changes made to
this manual. Technical changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

This edition applies to Version 3 Release 1.3 of MVS/System Product -- JES2 5685-001, and to all
subsequent releases until otherwise indicated in new editions or Technical Newsletters. The previous
edition still applies to Version 3 Release 1.0 of MVS/System Product-JES2 and may be ordered using
temporary order number LT00-3539. Changes are made periodically to the information herein; before using

/ '

\ /

this publication in connection with the operation of IBM systems, consult the System/370 Bibliography, f,

GC20-0001, for the editions that are applicable and current. ,

References in this publication to IBM products or services do not imply that IBM intends to make these
available in all countries in which IBM operates. References to IBM products in this document do not imply
that functionally equivalent products may be used. The security certification of the trusted computing base
that includes the products discussed herein covers certain IBM products. Please contact the manufacturer
of any product you may consider to be functionally equivalent for information on that product's security
classification. This statement does not expressly or implicitly waive any intellectual property right IBM
may hold in any product mentioned herein.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Department D58, Building
921-2, PO Box 950, Poughkeepsie, N.Y. 12602. IBM may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1988, 1990. All rights reserved.
Note to US Government Users - Documentation related to restricted rights - Use, duplication or disclosure
is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

(

(~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PROGRAMMING INTERFACES -------------------.

This book consists entirely of diagnostic Information. Such Information should
never be used as programming interface Information.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 iii

Iv JES2 Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LY28-1006-2 ©Copyright IBM Corp.1988, 1990

- ;;/

(

(_

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Contents

Chapter 1. Introduction 1-1
Configuration 1-2
Environment 1-4
JES2 Structure 1-6
Subsystem Interface 1-17
JES2 Initialization 1-21
Functional Subsystem Concepts 1-23
JES2 Job Processing 1-39
JES2 Communications 1-42
Remote Job Entry Support 1-44
JES2 Features 1-45

Chapter 2. Method of Operation 2-1
Legend 2-1
Job Processing Overview 2-2
Input Processor 2-4
JCL Conversion Processor 2-6
JCL Conversion Processor Subtask 2-8
Conversion Subtask Internal Text Edit 2-10
Time Excess Processor 2-20
Output Processor 2-22
Print/Punch Processor 2-24
UCS/FCB Image Loader Subtask 2-26
Purge Processor 2-28
Priority Aging Processor 2-30
Checkpoint Processor 2-32
Buffer Services 2-38
110 Services 2-40
Timer Services 2-42
Subsystem Support Modules 2-44
HASPAM 2-54
Subsystem Support Modules 2-58
SNA RJE Overview 2-62
HASP RT AM 2-64
HASPSNA 2-68
HASPNET 2-76

Chapter 3. Program Organization 3-1
HASPDOC: JES2 Control Areas Listing 3-3
HASPTABS: JES2 Tables 3-3
HASPSTAB: $SCAN Tables 3-4
HASPMSG: $SCAN Tables and Message Display Routines 3-4
HASPINIT: JES2 Initialization Load Module 3-4
HASPSCAN: $SCAN Facility 3-29
HASPSXIT: Pre-scan and Post-scan Exits 3-33
HASPNUC: The JES2 Nucleus 3-36
HASPDYN: Dynamic Control Block Build
HASPSUBS: Generalized Subtask 3-65
HASPJOS: Job Output Services 3-66
HASPTERM: JES2 Termination Services
HASPNPM: The Network Path Manager

3-62

3-77
3-86

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 v

vi JES2 Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

HASPNET: The Networking Support Module 3-99
HASPSSSM: Subsystem Support Modules 3-116
HASPAM: HASP Access Method (HAM) 3-130
HASPCON: Console Support Services 3-140
HASPTRAK: Track Management 3-145
HASPCOMM: Command Processor 3-150
HASPSERV: Command Services 3-195
HASPSSRV: JES2 Subtask Services 3-200
HASPRDR: Input Service Processor 3-205
HASPCNVT: JCL Conversion Processor 3-220
HASPCNVS: JCL Conversion Processor Subtask 3-223
HASPXEQ: Execution Services 3-225
HASPSTAC: Cancel/Status Processor 3-230
HASPPSO: Process-SYSOUT Processor 3-232
HASPPRPU: Data Output Functions 3-237
HASPHOPE: Output Processor 3-257
HASPFSSP: JES2 - Functional Subsystem Service Processor 3-260
HASPFSSM: JES2 - Functional Subsystem Support Module 3-265
HASPRTAM: Remote Terminal Services 3-277
HASPBSC: BSC Service Routines 3-285
HASPSNA: SNA Service Routines 3-303
HASPCKPT: Checkpoint Processor 3-357
HASPCKDS: Checkpoint Support Routines 3-378
HASPWARM: Warm Start Processor 3-382
HASPMISC: Miscellaneous Services 3-388
HASPEVTL: Event Trace Log Processor 3-392
HASPSPOL: Spool Manager Services 3-399
HASPSTAM: Spool Transfer Access Method 3-407
HASPRAS: Error Service Routines 3-416

Chapter 4. Directory 4-1

Chapter 5. Diagnostic Aids 5-1
Introduction 5-1
Problem Reporting 5-6
The Structure and Processing of JES2 5-8
Control Block Overviews 5-11
Save Area Linkage Conventions 5-21
Remote Job Entry and Networking Problems 5-24
JES2 Error Services 5-25
Miscellaneous Hints on JES2 5-27
Using Dumps, Traps, and Traces 5-28
$TRACE 10=20 5-58
Diagnosing Routines Without Source 5-60

Appendix A. Multileaving A-1
Multileaving Philosophy A-1
Multi leaving Protocol for JES2 NJE A-3
Multileaving in BSC/RJE A-9
Multileaving Protocol for SNA NJE A-10

Appendix B. External Writer 8-1
IASXSD81 B-3
IASXSD82 B-3
!ASXWROO B-4

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

(/

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IEFSD087
IEFSD088
IEFSD089
IEFSD094
IEFSD095
IEFSDTTE
IEFSDXXX

B-4
8-4
B-4
B-5
B-5
B-5
B-5

Appendix C. SSVT, $HCCT, and $CADDR C-1
Function Support Routine Entry Addresses C-1
Communication Control Fields C-2
$$POST Elements C-2
Job Service Queue Heads C-3
Miscellaneous Queue Heads C-3

Appendix D. JES2 Acronyms D-1

X-1

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Contents Vii

viii JES2 Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figures

1-1. JES2Configurations 1-3
1-2. JES2 Environment 1-5
1-3. JES2 Structure 1-7
1-4. HASPSSSM Source Modules 1-8
1-5. JES2 Function Routine Addressing 1-9
1-6. HASPINIT Source Modules 1-10
1-7. HASJES20 Source Modules and Task Structure 1-11
1-8. JES2 Processor Control Element Relationships 1-14
1-9. JES2 Event Control and Module Directory 1-16

1-10. Subsystem Interface Control Blocks 1-17
1-11. Using the Subsystem Interface 1-20
1-12. JES2 Initialization 1-22
1-13. JES2 Functional Subsystems 1-25
1-14. Functional Subsystem Initialization 1-28
1-15. Order Processing 1-33
1-16. Order Summary 1-34
1-17. Relationship of Order and Response Outstanding Bits 1-35
1-18. JES2-Level Control Block Structure 1-36
1-19. FSIREQ Control Block Structure 1-38
1-20. JES2 Job Processing 1-40
2-1. JES2 Job Processing Overview 2-2
3-1. JES2 Modules 3-1
3-2. Relationships Between Job Queue Structures 3-48
3-3. Relationship Between HASCLINK Modules 3-117
3-4. Control Blocks Structure Related to HASPSSSM Processing 3-118
3-5. JES2 Command/Console Authorization 3-162
3-6. JES2 Security Authorization 3-163
3-7. Remote Terminal CCW Sequences 3-290
3-8. MVRSTATE Decision Table 3-331
3-9. Stream Control Record IDs and Functions 3-337

3-10. Format of Checkpoint Data Set Track 1 Data Records 3-363
3-11. Checkpoint Data Set Format 3-364
3-12. Channel Program for Read 1 3-366
3-13. Channel Program for Intermediate, Final, and Primary Writes 3-367
3-14. Channel Program for Read 2 3-368
3-15. Standard Format-Write CCW Packet 3-369
3-16. Processing flow for HASPWARM 3-384

4-1. JES2 Directory Information 4-1
5-1. JES2 Processor Control Element Relationships 5-9
5-2. Example Dump of JES2 Processor Queue Chains 5-10
5-3. Pointers Between Major JES2 Control Blocks 5-17
5-4. RJE/NJE-Related Control Blocks 5-18
5-5. PCE-level Save Area in the PCE 5-21
5-6. Save Area Chain for First-Level Subroutine 5-22
5-7. Save Area Chain for Successive Levels of Subroutine 5-23
5-8. Checkpoint Format 5-38
5-9. Trace Functions 5-41

5-10. TRACE ID=O 5-42
5-11. $SAVE/$RETU RN Traces 5-43
5-12. BSC Buffer Trace 5-45
5-13. An FSPORDER Trace When an FSA Is Not Active 5-47

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 ix

X JES2 Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

5-14.
5-15.
5-16.
5-17.
5-18.
5-19.

An FSPORDER Trace When an FSA Is Active 5-48
An FSPORCMS Trace 5-48
An FRSPORDR Trace from the RELDS Response Routine
An FRSPORDR Trace When an FSA Is Not Active 5-48
An FRSPORDR Trace When an FSA Is Active 5-49
An FSISEND Trace 5-49

5-20. An FSICKPT Trace 5-49
5-21. A GETDS, RELDS, SEND FSI Request Trace Before Data Set

Allocation 5-49
5-22. A GETDS, RELDS, SEND FSI Request Trace After Data Set

Allocation 5-50
5-23. GETREC/FREEREC Trace 5-51
5-24.
5-25.
A-1.
8-1.

CONNECT/DISCONNECT Trace 5-51
Hexadecimal Dump in the Detail Edit Report
SNA Transmission Unit A-11
Load Module Map of External Writer B-2

5-61

5-48

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990

"-·. /

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

(About This Book

Who This Book Is For

Trademarks

Anyone interested in determining sources of errors within JES2 should read this
publication. Readers must be familiar with programming techniques and the
operating principles of MVS.

This manual describes the logic of JES2 as it applies MVS/ESA systems. Use of this
manual does not replace use of the program listings; the manual supplements the
listings and makes the information in them more accessible.

This publication uses several terms to describe various aspects of JES2 function.
These terms include:

• JES2 - describes the basic functions of JES2 where no specific reference to
network job entry capabilities is required.

• NJE - describes the network job entry capabilities of JES2. This term is used
where no differentiation needs to be made between binary synchronous
communications (BSC) networking capabilities and Systems Network
Architecture (SNA) networking capabilities.

• SNA NJE - describes the network job entry capabilities specifically when using
Systems Network Architecture (SNA) protocols.

The following are trademarks of International Business Machines Corporation:

• MVS/ESATM
• MVS/XA™
• MVS/37QTM
• BookMaster®

How This Book Is Organized
The organization and content of each chapter are:

• "Chapter 1. Introduction", describes the general characteristics of JES2.

• "Chapter 2. Method of Operation", contains HIPO (hierarchy plus
input-process-output) diagrams that describe the operation of JES2. The
diagrams are high-level and are intended to guide the reader to a particular
area of the program listing or to more detailed descriptions contained in
Chapter 3 of this manual.

• "Chapter 3. Program Organization'', describes the general program
organization of JES2 and its modules. It includes detailed descriptions of the
routines and subroutines that comprise the modules.

• "Chapter 4. Directory", lists main entry points in JES2 modules and provides a
brief description of each.

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 xi

"Restricted Materials of IBM"
Uc·ensed Materials - Property of IBM

• "Chapter 5. Diagnostic Aids", provides error analysis techniques, descrjbes
JES2 structure and processfng from a diagnostic perspective, and presents
details about control block usage.

The appendixes contain the following additional information:

• "Appendix A. Multileaving", describes the basic principles of multileaving.

• "Appendix B. External Writer", describes the external writer program used to
produce SYSOUT data sets on magnetic tape or direct-access devices.

• "Appendix C. Subsystem Vector Table", lists the various subsystem vector table
(SSVT) fields and describes their use.

• "Appendix D. JES2 Acronyms", lists the various acronyms used throughout this
manual and gives their individual meanings.

The following information to aid you in understanding and trouble-shooting JES2 is
available on microfiche:

MVS/ESA Microfiche
Information Order Number

Data Areas LYBS-1850

Where to Find More Information

xii JES2 Logic

This book references other publications for further details about specific topics. The
following table lists these publications, the abbreviated forms of their titles used
throughout this book, and their order numbers.

Short Title Used in This Book Title Order Number

JES2 Commands MVSIESA Operations: JES2 Commands SC28-1039

JES2 Initialization and Tuning MVSIESA System Programming Library: SC28-1038
JES2 Initialization and Tuning

JES2 Customization MVSIESA System Programming Library: LY28-1010
JES2 Customization

JES2 Messages MVSIESA Message Library: JES2 SC28-1040
Messages

System Management Facilities MVSIESA System Programming Library: GC28-1819
(SMF) System Management Facilities

VSAM Programmer's Guide MVSIESA VSAM Programmer's Guide GC26-4015

Assembler Reference Disk System Basic Assembler Reference SC21-7509
Manual

IBM 3800 Printer Guide IBM 3800 Printing Subsystem GC26-3846
Programmer's Guide

Remote Workstation Generation MVS/ESA Remote Workstation Generation GC28-1842

System Messages MVSIESA Message Library: System GC28-1812 and
Messages Volume 1 and 2 GC28-1813

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

/

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

(Do You Have Problems, Comments, or Suggestions?
Your suggestions and ideas can contribute to the quality and the usability of this
book. If you have problems using this book, or suggestions for improving it,
complete and mail the Reader's Comment Form found at the back of this book.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 About This Book Xiii

xiv JES2 Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

/

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

(Summary of Changes

(

Summary of Changes
for L Y28-1006-2

A JES2 multi-access spool complex must install this release
of JES2 on all members of the complex if it is
installed on any member. All prior releases of MVS/System
Product JES2 Version 1 (MVS/370), Version 2 (MVS/XA),
and MVS/System Product Version 3 (MVS/ESA)
are incompatible with MVS/System Product JES2 Version 3
Release 1.3 in a multi-access spool environment.

This major revision, which supports MVS/System Product Version 3 Release 1.3 -
JES2 (5685-001), reflects the following product enhancements:

• Protection for, and auditing of, access to SYSIN and SYSOUT data sets provided
by security authorization facility (SAF) calls.

• User verification and authority checking for jobs, commands, and SYSOUT
received from other nodes or remote workstations.

• Security information about users and data sets passed to the print services
facility (PSF).

• Security information added to network records and/or security information
created for jobs/data sets entering a node.

• Command acceptance, rejection, and access control; auditing of these events.

• User validation processing is changed from the scheduler call to a SAF
RACROUTE call.

• Spool access is protected by new SAF calls in JES2 and by security level
assignments restricting the use of TSO commands that permit spool access.

• Subtask environment enhancements, such as the added general subtasking
facility.

• Macro and control block changes.

• Printer FCB selection processing enhancements.

Note: The data area DCT.DCTDFCB in the JES2 $DCT control block is renamed
to DCT.DCTNIFCB (for the non-impact printer default FCB value). A new data
area, DCT.DCTDDFCB, exists for the device default FCB value.

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 xv

xvi JES2 Logic

Summary of Changes
for LY28-1006·1

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

This major revision, which supports MVS/System Product Version 3 Release 1.1 -
JES2 (5685-001), reflects the following product enhancements:

• Restructure of HASPSSSM

• Support for up to 32,767 jobs in the system

• Support for SWA for JES2-managed data to reside above 16 megabytes in virtual
storage

• Support for continuous system operation

• Changes in warm start processing

• Support for reusable spin IOTs

• Diagnosis support for routines shipped without source code

• Tracing enhancements

• All information relating to remote workstation generation is now contained in
Remote Workstation Generation (GC28-1842).

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 1. Introduction

The job entry subsystem 2 (JES2) serves as the entry point for jobs in MVS. JES2 is
responsible for reading jobs into the system, scheduling the jobs, executing them,
and handling their output from the system.

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 1-1

Configuration

1-2 JES2 Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

JES2 performs its functions within the following environments, as illustrated in
Figure 1-1.

1. A single JES2 configuration consists of one MVS/JES2 system supporting an
installation's jobs that are located on the spool.

2. A multi-access spool configuration (also called shared spool) consists of from
2-7 MVS/JES2 systems supporting an installation's jobs that are located on the
shared spool.

3. A network job entry (NJE} configuration consists of from 2-1000 single-access or
multi-access spool configurations (called nodes) joined together via
communications lines. All MVS/JES2 nodes transmit among themselves jobs,
messages, and SYSOUT data sets.

The JES2 program logic that is described in this manual covers all the functional
capability of the NJE configuration, which is a superset of the functions in the other
two configurations.

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

I]

MVS/JES2 Spool

MVS/JES2

MVS/JES2

--------------------r;-------------------,
NODE A I NODE B I

I I
I I
I I
I I
I I
I I

MVS/JES2 I I Spool I
I I
I I

~OD;;------------ -----rNODE;- --------------1
I I I
I I I
I MVS/JES2 MVS/JES2 I

Spool
I I
I Spool. I

l I
I I ~~~ I
I I I
I I I
--------------------~-------------------~

Spool

MVS/JES2

MVS/JES2

Figure 1-1. JES2 Configurations

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 1. Introduction 1 ·3

Environment

1-4 JES2 Logic

"Restricted Materials of IBM"
licensed Materials - Property of IBM

The MVS/JES2 system, isolated in Figure 1-2, consists of the following pieces:

• JES2 - that set of program services that perform JES2 functions and belong to
the JES2 component. These programs read jobs into the system, place them on
the spool, supply them to MVS for execution, and process their output following
execution.

• MVS - that set of program services that perform supervisory functions and
belong to the MVS control program. Examples of these programs are the
interrupt handlers, initiators, contents supervisor, paging supervisor, and
others.

• SSI - the subsystem interface (SSI) through which JES2 and MVS communicate.
The SSI consists of service routines that run in common storage. Users running
in other address spaces use the IEFSSREQ macro to invoke these SSI service
routines to ultimately communicate with JES2.

• Spool - that collection of direct access volumes that contain the jobs that JES2
processes and the various job-related control blocks, such as the job control
table (JCT) and input/output table (IOT).

• Checkpoint data set - that data set that contains information to allow
communication among the processors of a multi-access spool complex; this
data set is also used to restart JES2.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

MVS/JES2

MVS/JES2 MVS/JES2

Figure 1-2. JES2 Environment

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

MVS

CJOD
~ /_

Spool

SSI JES2

MVS/JES2
Checkpoint
Data Set

Chapter 1. Introduction 1-5

JES2 Structure

1-6 JES2 Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

JES2 operates in its own address space within the system. The JES2 address space
is created when the system is initialized and JES2 is started. The four JES2 load
modules are HASPSSSM, HASPINIT, HASPFSSM and HASJES20. HASPSSSM may
reside either in the link pack area (LPA) or be directly loaded into common storage.
HASJES20 resides in the private area of the JES2 address space. The HASPINIT
load module is loaded into the JES2 private area during initialization and deleted at
the end of the JES2 initialization process. Figure 1-3 illustrates the placement of
JES2 code and control blocks in storage for a typical MVS/JES2 system after it has
been initialized.

1. MVS modules that require the support of JES2 use a subsystem option block
(SSOB) and a subsystem identification block (SSIB) to request a particular
function of JES2 and then issue the IEFSSREQ macro instruction.

2. MVS SSI support routines get control as a result of the IEFSSREQ macro and
index into the subsystem vector table (SSVT) for the entry point into HASPSSSM
that performs the requested function. HASPSSSM then gets control at that entry
point; the SSVT is created when JES2 is initialized and is located in subpool 228
of the common service area (CSA).

3. HASPSSSM performs the requested function, if necessary communicating with
HASJES20 via a cross memory post to complete the requested function.
HASJES20 completes its processing utilizing various JES2 control blocks and
then cross memory posts HASPSSSM. HASPSSSM then returns to the issuer of
IEFSSREQ.

4. HASPFSSM is loaded into the functional subsystem (FSS) address space.
HASJES20 communicates with HASPFSSM in support of the functional
subsystem interface (FSI). The FSI exists between JES2 and the FSS to provide
control of and data set services for the FSS.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

ommon c
s to rage

m
Cross Memory~
Post

Master Scheduler
Address Space

i ~

SQA

PLPA
HASPSSSM

CSA

I SSVT

\ Use<Reg;oo

HASJES20

*

Nucleus

Figure 1-3. JES2 Structure

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

i....
~

t---

I

* JES2 Address Space
** FSS Address Space

SSI m
Support

i--
Routines

User Address Space
• STC
• TSU
• Batch

1
l

l
rJ * *

HASPFSSM

D
r-'

t-

II
MVS Module

•
•
•
•
•
Build SSOB
•
•
•
•
•
IEFSSREQ

L-+ •
•
•
•
•

Chapter 1. Introduction 1-7

HASPSSSM

1-8 JES2 Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

MVS interfaces directly with HASPSSSM through the SSI to provide job scheduling,
data management (SYSIN and SYSOUT), functional subsystem connect and
disconnect, and other subsystem functions and operator communication functions.
(See the Subsystem Interface section of this chapter for more information.) These
functions are incorporated into HASPSSSM as function routines that are invoked
through the use of addresses in the SSVT as shown in Figure 1-5.

1. The SSI support routines get control after MVS issues the IEFSSREQ macro
instruction. The SSOB is passed as input. In the SSOB is a function code that
identifies the function of JES2 that MVS wants to execute. The SSI support
routines subtract one from the function code and add to the result the address of
the function code matrix in the SSVT (label SSVTFCOD, mapped by the MVS
macro, IEFJSSVT). The result of this addition is a specific byte address in the
function code matrix.

2. The specific byte (or index) contains a zero or a nonzero value. If the value is
zero, the function requested is not supported by JES2. A nonzero value in this
byte indicates that the function requested is supported by JES2. In this case, the
SSI support routines subtract one from this byte value, multiply the result by 4,
and add the result of the multiplication to the address of the JES2 SSVT pointer
area (label SSVTFRTN, mapped by the MVS macro, IEFJSSVT.) The resulting
address points to a fullword, containing the address of the function routine in
HASPSSSM that is to get control to support the requested JES2 function.
(Appendix C lists the specific contents of the SSVT, identifying the various
function routines in HASPSSSM that can get control.)

Note that JES2 maps the function code matrix with the $SVTC macro and the
function routine section with the $SENTRYS macro.

The HASPSSSM load module is made up of the source modules listed in Figure 1-4.

Figure 1-4. HASPSSSM Source Modules

HASPSSSM Source Modules

Source Module Function
HASCDSAL Data set allocation/unallocation services
HASCDSOC Data set open/close services
HASCDSS Data space services
HASCJBST Job select/termination services
HASCJBTR Job end-of-task/end-of-memory services
HASCLINK Nucleus of the common storage routines
HASCSRIC Services and control subroutines
HASCSIRQ Miscellaneous SSI routines
HASCSRDS Data-set-related subroutines
HASCSRJB Job-related subroutines
HASP AM Spool data set access method

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

/

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

SSOB

Function Code

SSVT
Address of
SSVTFCOD SSVTFCOD ,__ _________ _,

Matrix Function
Code Value

SSVTFRTN 1--------------i

Address of
SSVTFRTN

Figure 1-5. JES2 Function Routine Addressing

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

+ Function Routine

Matrix
Function
Codes

HASPSSSM

Chapter 1. Introduction 1-9

HAS PIN IT

HASJES20

HASPFSSM

1-10 JES2 Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The HASPINIT load module is made up of the source modules illustrated in
Figure 1-6. HASPINIT resides in the JES2 private area during JES2 initialization.
The initialization routine administrator (HASPIRA) is entered first, performs some
preliminary initialization and invokes the other JES2 initialization modules. When
the other JES2 initialization modules (HASPIRMA, HASPIRPL, HASPIRDA, and
HASPIRRE) have been called, HASPIRA completes the initialization.

Figure 1-6. HASP/NIT Source Modules

HASPINIT Source Modules

Source Module Description
HASP IRA Initialization routine administrator
HASPIRDA DASO (checkpoint/spool) initialization
HASPIRMA Miscellaneous allocations and initializations
HASPIRPL Parameter initialization
HASPIRRE RJE/NJE initialization

The HASJES20 module is made up of the source modules illustrated in Figure 1-7.
These modules perform JES2 main task and subtask processing. The JES2 main
task provides the basic functions of reading and spooling job input, converting JCL,
selecting jobs for execution from the JES2 job queue, spooling and writing job
output, and purging jobs - all accomplished with a set of programs called
processors. These processors use numerous subroutines called control service
routines. The JES2 main task controls the activation and deactivation of these ./'
processors through a dispatcher. Figure 1-7 also illustrates that HASJES20 is made
up of subtasks. These subtasks provide services to the JES2 main task; these
services may involve MVS waits, and as such, are performed in subtasks, because
the JES2 main task is not permitted to enter an MVS wait state until all currently
outstanding JES2 functions are completed.

The HASP communication table (HCT), which is found in HASPNUC, is the global
directory for HASJES20. The HCT contains the address of the JES2 module map
($HASPMAP which resides in HASPTABS), which is initialized with a symbolic name
and address for each of the JES2 modules that make up HASJES20 and HASPSSSM.
(Figure 1-9 illustrates an initialized HCT residing in HASPNUC and HASPINIT.)

HASPFSSM is made up of a single source module. It is loaded into the private area
of the functional subsystem (FSS) address space during FSS connect processing.
HASPFSSM contains service routines that support the functional subsystem
interface (FSI).

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

\ /

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figure 1-7 (Page 1 of 3). HASJES20 Source Modules and Task Structure

Source Module and Function:!:

HASPNUC (Main Task)
•HGT
• MODCHECK
• Dispatcher
• 1/0 Supervisor
• Service Routines
• Dynamic Allocation/

Deallocation Subtask

HASPSTAB
• Scan Tables
HASPSCAN
* $SCAN Facility
HASPSXIT
* $SCAN Facility Table Exits
HASP MSG
• Message Building Routines
HASPTABS
• JES2 Tables
HASP RAS
• Error Service Routines
HASPTERM
• Recovery/Termination Services
HASPNPM
• Network Path Manager
• Network Services
HASPNET
• Job Transmiller Processor
• SYSOUT Receiver Processor
• SYSOUT Transmitter Processor
HASPCON
• Service Routines
• Communication Subtask

HASPDYN
* DCT, DTE, PCE build
HASPTRAK
• Spool Track Management
HASPCOMM
• Command Processor
HASPSERV
• Command Services and Work

Selection Modify Service
• $L Support
HASPRDR
• Input Service Processor
HASPCNVT
• Conversion Processor
HASPCNVS
• Conversion Subtask

Subtask

HOSALLOC

HASPWTO

HOSCNVT

Subtask Description

Dynamic Allocation/Deallocation
subtask (HOSALLOC) - uses SVC
99 to dynamically allocate a device
to JES2 or to dynamically
deallocate a JES2 device.

Communications subtask
(HASPWTO) - issues SVC 34 and
SVC 35 for the main task when
operator communications take
place.

Conversion subtask (HOSCNVT) -
links to the MVS converter to
convert a job's JCL to

. tAlCt

:t: Unless otherwise indicated as a subtask, the functions itemized in this column are performed as
part of the JES2 main task.

• The JES2 dispatcher schedules and dispatches various processors under the single TCB of the
JES2 main task. Because the processing that runs under the JES main task is not permitted to enter
a wait state, such processing is isolated as subtasks under the JES2 main task.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter1. Introduction 1-11

1-12 JES2 Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figure 1-7 (Page 2 of 3). HASJE$20 Source Modules and Task Structure

Source Module and Function:j:

HASPXEQ
* Execution Processor

HASPPSO
* Process SYSOUT Processor
HASPPRPU
• Print/Punch Processor
• Image Loading Subtask

HASPSTAC
*STATUS/CANCEL Processor
HASPSSRV
* Subtask Services
HASPSUBS
• General Subtask

• ESTAE routines for General
Subtask
HAS PHO PE
• Output Processor
HASPFSSP
• Functional Subsystem

Service Processor
HASPJOS
* Job Output Services
HASPRTAM
* Line Manager Processor

(BSC and SNA)
* Remote Console Processor
HASPBSC
* BSC Service Routine
HASPSNA
• SNA Service Routines
• VTAM Subtask

(ACB OPEN, CLOSE)

* API Routines
HASPCKPT
* Checkpoint Processor
HASPCKDS
• Checkpoint Dialog and

Service Routines

HASPWARM
• Warm Start Processor
HASPMISC
• Resource Management

Processor
• Priority Aging Processor
• SMF Accounting Subtask

Subtask

HAS Pl MAG

HA$PSUBS

HASPVTAM

HASPCKAP

HASPACCT

Subtask Description

Image loader subtask (HASPIMAG)
- loads the universal character
set (UCS) and forms control buffer
(FCB) images for processing job
output.

Initialize subtask; remove and
process work from $STWORK.

SNA subtask (HASPVTAM) -
initializes JES2's use of the VT AM
and OPEN ACB interface.
OPEN/CLOSE processing.

The HASP checkpoint application
subtask provides for a third copy
of the checkpoint so that
authorized application programs
(such as SDSF) can use it.

System management facility (SMF)
subtask (HASPACCT) - issues
SVC 83 to write accounting
rAr.nrrh• fnr thA m'lin_ tA,.k

:j: Unless otherwise indicated as a subtask, the functions itemized in this column are performed as
part of the JES2 main task.

• The JES2 dispatcher schedules and dispatches various processors under the single TCB of the
JES2 main task. Because the processing that runs under the JES main task is not permitted to enter
a wait state, such processing is isolated as subtasks under the JES2 main task.

LY~8-1006-2 ©Copyright IBM Corp. 1988, 1990

/

(,

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figure 1-7 (Page 3 of 3).

Source Module and Func:tlon:i:

* Network Accounting Routines
*Time Excess Processor
HASPEVTL
• Event Trace Log Processor
HASPSPOL
• Spool Manager Processor
• Dynamic Spool Allocation

Subtask

HASPSTAM
• Spool Offload Processor
• Spool Offload 1/0 Manager

Subtask

HASJES20 Source Modules and Task Structure

Subtask Subtask Description

HOSPOOL Dynamic spool allocation subtask
(HOSPOOL) - initializes JES2's
spool data sets (SYS1.HASPACE)
used throughout JES2 processing.

HAS POFF Spool offload 1/0 manager subtask
(HASPOFF) - performs allocation,
open and close, and deallocation
services for the spool offload data
set.

:i: Unless otherwise indicated as a subtask, the functions itemized in this column are performed as
part of the JES2 main task.

• The JES2 dispatcher schedules and dispatches various processors under the single TCB of the
JES2 main task. Because the processing that runs under the JES main task is not permitted to enter
a wait state, such processing is isolated as subtasks under the JES2 main task.

The JES2 dispatcher uses a queue of processor control. elements (PCEs) to control
the dispatching of processors. When a processor is eligible for dispatching, its PCE
is on a dispatcher queue called the $READY queue. The dispatcher dispatches
processors from this queue in FIFO order. The $READY queue can be in the
following states, as illustrated in Figure 1-8:

1. Active Processor PCE: The currently active processor's PCE (PCE2) is
addressed by the $CURPCE field of the HCT in the JES2 address space.

2. Empty $READY Queue: No PCEs are ready to be dispatched and the $READY
queue is empty.

3. Waiting Processing PCE: When a processor is waiting on an event, it is
ineligible for dispatching; its PCE is on one of several wait queues depending on
what the processor is waiting for. If the processor is waiting for a resource, its
PCE is chained to the designated resource wait queue; if the processor is
waiting for a specific event, its PCE is queued to itself.

In addition to waiting for a JES2 event or resource, a processor might be waiting for
an MVS post of an event control block (ECB). The address of this PCE and the
address of the specific PCE are contained in the extended ECB (XECB). Posted
XECBs are stacked off the $EXTECBQ queue. A processor is dispatched when the
ECB is posted or when the event or resource is released.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 1. Introduction 1-13

D
Active
Processor
PCE

fa
Empty
$READY
Queue

El
Waiting
Processor
PCE

HGT

Specific PCE

T f
·------~-------~
I •..._
I PGE 0 I : ... I

i---

Queue Head

HGT

i ______________ .,.. __

: PGE 0
I

Empty Queue

HGT

Specific PGE

T f
·--------------~ I :
I

: PGE 0 I
I

t---

1---1

Queue Head

.......
- ...

,___I

PCE not on Queue

PGE 1

PCE 1

Figure 1-8. JES2 Processor Control Element Relationships

1-14 JES2 Logic

...
i--

..._ ...

!-----'

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

1~ .
PGE 2 ..._-

,_

.1~-
PGE 2 I-

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

t'

'~

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The dispatcher, running under the JES2 main task, is responsible for giving control
to individual JES2 processors. When a JES2 processor gets control it runs,
performing its function, until it relinquishes control via the $WAIT macro. The $WAIT
macro causes control to be passed to the dispatcher, which gives control to the next
available and ready JES2 processor.

Processors become ready when they are posted. This post can be a specific post,
signaling the completion of an event, or a general resource post, indicating that a
resource is available. Posting occurs within the JES2 main task (via $POST) or from
a JES2 subtask or other address space (via $$POST). JES2 subtasks and programs
(running in other user address spaces) use the $$POST macro to inform JES2 of
particular events. The $$POST macro causes a HASPSSSM interface routine to
cross memory post the JES2 main task. The $$POST promulgation routine
(HASPSPEC), which receives control when the resource posting routine runs out of
work, propagates event posts from the CCTECF field of the $HCCT (used by
HASPSSSM interface routines) to the HCT master event control field ($HASPECF)
used by HASJES20. The resource posting routine marks the corresponding
HASJES20 processors eligible for dispatching. Figure 1-9 illustrates the HCT and
the control information JES2 uses during its processing.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 1. Introduction 1-15

HCCT (CSA)

CCT ECF $$POST Event Control Field

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

......_ ____ ___.
} $$POST Elements for HASJES20 Processors

HCT

r-- $HASPMAP

$CURPCE

$HASPECF

$EWQABIT

$READY

HASPNUC

} PCE Addresses for JES2 Processors

...... Current PCE Address

...... Master Event Control Field

} Wait Queue Header Address

...... Q Header for PCEs Awaiting Any Post

...... Q Header for PCEs Eligible for Dispatching

HASPTABS

~Dh

e e e HASPXEQ

HASPCNVT

HASPCKPT

HASPBSC

JES2 Modules

Figure 1-9. JES2 Event Control and Module Directory

1-16 JES2 Logic LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

/

\"'- /

(

(_

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Subsystem Interface

I] r--

The subsystem interface (SSI) and the specific control blocks used by the SSI
support routines are shown in Figure 1-10.

1. The module using the SSI builds a subsystem options block (SSOB), requesting
a particular function of JES2 and sets register 1 to point to a word that points to
the SSOB.

2. The module issues the IEFSSREQ macro instruction. SSI support routines get
control and validate the subsystem request, initialize a subsystem information
block (SSIB), and index into the SSVT for the entry point in HASPSSSM that
processes the requested function. The SSI support routines then pass control to
HASPSSSM at this entry point.

3. HASPSSSM performs the requested function, if necessary communicating with
HASJES20 via a cross memory post to complete the requested function.
HASPSSSM then returns to the issuer of the IEFSSREQ macro.

User Module Save Area
R13 __. --Build SSOB Pointer -+ Make Req. R1 --

:
I
I

IEFSSREQ _! .ssoB
R1 --

Validate Header p Set SSIB SSCT
Enter SSYS. RO Extension

p

I
I
I
I J SSIB I

HCCT_{
,,

I HASB ...i
-.i

I
I ~ ... 1-
I

p

I
HASPSSSM+ SSVT t

R11 -
Perform SJB ,,
Function --Return

..... --

SJXB ,,

Figure 1-10. Subsystem Interface Control Blocks

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 1. Introduction 1-17

1-18 JES2 Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

JES2 subsystem support routines are invoked, using the SSI, for the following
reasons:

• Scheduling and controlling jobs

Job selection
Job termination
Requeuejob
Request job identification
Return job identification
End of address space
End of task
Checkpoint/Restart

• Accessing SYSIN/SYSOUT and process SYSOUT data sets

Allocation
Open
Restart
Close
Unallocation

• Communicating with interactive programs and external writers

Process SYSOUT
User id validity checks
CANCEL
STATUS

• Communicating with the operator

- Command processing (SVC 34)
- Write to operator (SVC 35)

• Communicating with functional subsystems

- Connect and disconnect processing

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

,_,,_ -,/

(,

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figure 1-11 illustrates a common example of SSI usage in processing a job. In this
figure, various programs invoke the SSI to process the job.

1. MVS device allocation uses the SSI to get JES2 to allocate directly or
dynamically the SYSIN and SYSOUT data sets specified by the JCL in the job.

2. After the job is attached as a task to the initiator, the job contends with other
jobs in the system for a chance to execute. When the job is finally dispatched,
the job runs, opens the input data set and output data set via the SSI and
performs its 110 operations (reading input data from the input data set and
writing output data to the output data set). The job eventually closes its SYSIN
and SYSOUT data sets (via the SSI). HASPSSSM then either spins the SYSOUT
data sets for immediate output processing or allows the SYSOUT data sets to be
eventually deallocated when the job terminates. (Ultimately, JES2 makes the
SYSOUT data sets available for output processing.)

3. The data sets allocated to the job for SYSIN and SYSOUT are deallocated. MVS
deallocation uses the SSI to unallocate the job's SYSIN and SYSOUT data sets.
Output processing for non-spun data sets are processed by JES2 after job
termination.

4. When the job terminates, the MVS program that processes a terminating job
uses the SSI to let JES2 terminate the job from its execution queue and place
output from the job on the output queue.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 1. Introduction 1-19

GET/PUT
SYSIN and
SYSOUT

Job
Selection

Allocation

Program
Problem
Task

Step
Termination

(]

SYSOUT
Spin-Off

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Select
Job

Allocation
SYSIN and
SYSOUT

Dynamically
l4--4! Allocate

SYSOUT

OPEN/CLOSE
,., _ _., SYSIN and

SYSOUT

Unallocate
SYSOUT

,.,_~~~l ... ~_E_n_d_o_f~~ . Task

Unallocation i.------------....i
Unallocate
non-spun
SYSIN and
SYSOUT

Job
Termination

Figure 1-11. Using the Subsystem Interface

1-20 JES2 Logic

, ... _...-Job
Termination

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

(JES2 Initialization

(

Initialization is the means by which JES2 readies itself to process work. As
illustrated in Figure 1-12, JES2 initialization is the process that takes place between
the START JES2 command and the processing of jobs.

The initialization process obtains and processes JES2 initialization options and
parameters. Using these parameters and options, the JES2 initialization process
initializes various control blocks and data areas, defines the JES2 spool
environment (for both SYS1.HASPACE and SYS1.HASPCKPT), and initializes the unit
record and remote environments, as well as attaching the JES2 subtasks.
Throughout the initialization process, JES2 records the progress of initialization and
the communication that takes place with the operator.

When the START JES2 command is issued, JES2 receives control at the initial entry
point at the symbol HASP in the source module, HASPNUC.

HASP ensures that JES2 is running in supervisor state and key 1, and switches to
AMODE 31. It determines if HASPINIT is part of the HASJES20 load module; if it is
not, HASP loads HASPINIT. HASP invokes the initialization routine administrator
(HASPIRA) to perform the JES2 initialization. HASPIRA establishes the JES2 ESTAE
to handle any JES2 main task abends that might occur. After HASPIRA has called
all initialization routines or when an initialization routine indicates that JES2 is to
terminate, HASPIRA returns to HASP.

When HASPIRA returns, HASP deletes HASPINIT (if HASP loaded it) and dispatches
JES2 to process jobs provided that the initialization was successful. If HASPINIT
indicates that an initialization error occurred, HASP terminates JES2.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 1. Introduction 1-21

S JES2

Options
and
Parameters

->

Control
Blocks

Figure 1-12. JES2 Initialization

1-22 JES2 Logic

DASO

JES2
Initialization
Process

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

> Process

--------- Work

0 0

0 0

0 Record 0

o of o

0 Process 0

0 0

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Functional Subsystem Concepts
JES2 uses a functional subsystem (FSS) to provide certain functions that it normally
provides in its own address space (for example, device-dependent functions related
to printers that print page-mode data, such as the 3800 Printing Subsystem Model 3);
these functions operate in their own address space.

As an extension to JES2 processing, functional subsystem (FSS) processing takes
place in an individual address space separate from the JES2 address space.
Specific functional processing (for example, device processing) that JES2 would
normally perform within its own address space can be accomplished by the FSS or
a number of FSSs; the FSS address space isolates this processing from JES2. JES::
communicates directly (using orders) with the functional subsystem (that is, the
programs in the FSS address space) to perform the specific functional processing.
JES2 is thus insulated from the specifics and the possible problems related to the
processing associated with the functional subsystem (for example, the channel
programs that drive a particular printer).

The functional subsystem relies on JES2 for its system image. That is:

• The installation specifies functional subsystem initialization as part of JES2
initialization.

• JES2 manages operator communication.

• JES2 controls its own resources, such as devices and the spool, even though
they are used by the functional subsystem.

• JES2 controls input and output scheduling.

• JES2 coordinates the termination and restart of itself and the functional
subsystem.

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 Chapter 1. Introduction 1-23

1-24 JES2 Logic

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The implementation structure for the JES2 functional subsystem is illustrated in
Figure 1-13.

1. A separate functional subsystem address space is associated with each FSS,
and is under control of the MVS dispatching structure. More than one functional
subsystem address space can be defined in the system, and JES2
communicates with each one of them.

2. JES2 and each functional subsystem communicate with each other through the
functional subsystem interface (FSI). The FSI consists of a collection of service
routines that JES2 and the functional subsystem employ. To effect operator
control over the FSS, JES2 issues orders to the FSS for appropriate actions. To
acquire or dispose of spool data sets for printing, the FSS issues get or release
data set requests, respectively to JES2. Both JES2 and the FSS use the FSIREQ
macro to invoke particular FSI service routines. HASPFSSP in HASJES20 and
HASPFSSM in the functional subsystem address space coordinate this
communication.

3. Programs reside within the FSS that perform the processing for a single system
entity (such as a device); this entity is managed by the FSS. The programs in
the functional subsystem address space that perform the function-specific
processing and communicate with JES2 are collectively called the FSA; the FSA
communicates with JES2 via the FSI; there may be multiple FSAs per FSS.

To summarize, the FSS comprises the FSS address space and its contents, the
functional subsystem application(s) (FSA or FSAs), and HASPFSSM. HASPFSSP is
the JES2 module that communicates with the FSS.

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990

/
I

/

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

SQA

PLPA

I
HASPSSSM

I

CSA

JES2 Address Space

HASJES20

r--

H
A
s
p
F
s
s
p

'---

Nucleus

f1
F
s
I

Figure 1-13. JES2 Functional Subsystems

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

l

I
FSA

,------,

H
A
s
p FSA
F
s

El s
M

~

Functional
I] Subsystem

Address Spaces

L
I

\
\

'

!---'

Chapter 1. Introduction 1-25

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Connect/Disconnect Services

FSI Services

1-26 JES2 Logic

For JES2 to communicate with the functional subsystem, JES2 must know that the
functional subsystem exists and is active, that the functional subsystem application
is ready to perform the functional-specific processing, and that the FSI is initialized
for use. JES2 becomes aware of an active functional subsystem and an active FSA
through the connect process.

The connect process is always initiated by the functional subsystem in response to a
JES2-generated START command or order. The connect process occurs at two
levels.

1. Functional subsystem connect

This connect process informs JES2 that a functional subsystem has been
initialized and is ready to be acknowledged as usable by JES2. This process
occurs as a response to the JES2-generated START command.

2. FSA connect

This connect process informs JES2 that the FSA itself is ready to process work.
This process occurs in response to JES2 issuing a start FSA order.

The disconnect process is generally the reverse of each of the forms of the connect
process. The FSA disconnect indicates to JES2 that the FSA is not ready to receive
requests to process work. The FSS disconnect indicates to JES2 that the functional
subsystem address space is terminating and that use of the FSI for that functional
subsystem is not permitted.

The connect and disconnect services are part of a collection of FSI services.

JES2 and the functional subsystem communicate with each other through the
functional subsystem interface (FSI), which consists of a collection of services that
allow, for example, the FSA to access spool data sets and their contents. These FSI
services consist of the following:

• Communication services (SEND, ORDER)

JES2 uses the FSI ORDER communication service to communicate orders to the
FSA, for example, when JES2 determines that an operator command is directed
to a device under control of the FSA. The FSA in the functional subsystem
performs the required processing to satisfy the operator command and uses the
SEND communication service to communicate responses to JES2 concerning
the outcome.

• Status services (QUERY)

JES2 uses the QUERY status service to request status information concerning
entities managed by the functional subsystem.

• Data Set Access services (GETDS, RELDS, GETREC, FREEREC, CHKPT)

The FSA can obtain access to an existing JES2 SYSOUT data set and its
characteristics (using GETDS). In this case, the FSA communicates the need to
JES2 to process.a SYSOUT data set, which resides on the spool; this is similar
to allocating and opening the data set.

The FSA can release a previously obtained data set (via RELDS). This is similar
to closing and unallocating the data set

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The FSA, after obtaining access to a data set, can get and free records (using
GETREC and FREEREC) of that data set; this is similar to performing 1/0 against
the data set using an access method.

• Control services (POST)

FSI services that require a large amount of processing may need to wait for
extended periods of time. To prevent the wasting of resources during the period
of waiting, JES2 signals the completion of these FSI services asynchronously,
using the POST control service.

Functional Subsystem Initialization
The installation defines a functional subsystem to JES2 during JES2 initialization.
The installation uses the FSSDEF initialization statement to define the functional
subsystem and uses the PRTnnnn initialization statement to associate a device (for
example, the 3800 Printing Subsystem Model 3) with the functional subsystem being
defined in the FSSDEF statement. After JES2 is initialized and after the functional
subsystem is started, the functional subsystem application (FSA) becomes
associated with the device specified by the PRTnnnn statement. Figure 1-14
illustrates the specific processing that occurs when a functional subsystem is
initialized to support a printer defined by the PRT2 initialization statement. The
descriptions following Figure 1-14 summarize the specific steps in the process.

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 1. Introduction 1-27

ll .-.
Printer 2 ... , FSS = XYZ

Mode= FSS
Unit= OOE

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

SYS 1. PROCLI B ----------------------•~rt
I
I
I
I
I
I
I
I

+ 5J $S PRT2

SVC34

+ JES2 Address Space

HASPCOMM

• Mark the OCT
as starting

• $POST HASPFSSP

HASPFSSP

• Create the internal
start command

• Issue the MGCR
macro

• Wait for FSS
connect

• Issue the start
FSA order

..._

• Wait for the FSA
connect

I

FSSDEF (XYZ) +
PROC = FSSPROC•- - - - - - - - - - ~ ... ~--_./---.
HASPFSSM = HASPFSSM fd I-

Master Scheduler Address Space

Address Space
Create

----~· • Create the func
tional subsystem
address space

• Access PROCLIB

• Load the FSS
address space

• Invoke the FSS
address space

FSS Address Space

,~ FSS

• Initialize the
FSS

• Connect the
FSS

• Wait for the start
FSA order

.......
-..... Connect the

FSA

HASPFSSM

• Initialize the
FSI and cross
memory
environment

.....

--
• Cross memory post

the JES2 main
task (HASPFSSP)

f'... _____ /

j<;r----------

Common Storage

....... -.... SSI
Routing
Routines

HASPSSSM ,,

Connect/Disconnect
SSI Routine

• Load HASPFSSM

l----~· • Invoke
HASPFSSM

Figure 1-14. Functional Subsystem Initialization

1-28 JES2 Logic LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

1. The FSSDEF subscripted initialization statement and the PRT2 initialization
statement keyword, FSS, associate a functional subsystem (FSS) with a device.
During JES2 initialization, HASPIRMA allocates and initializes functional
subsystem control blocks (FSSCBs) in CSA for each unique FSSDEF
initialization statement. FSSCBs contain information about the functional
subsystems that are defined in the system.

2. The PROC = keyword on the FSSDEF initialization statement identifies what
"start" procedure in SYS1 .PROCLIB is to be used to start the functional
subsystem. This procedure identifies the program, the functional subsystem
application (FSA), that is to be loaded into the functional subsystem address
space and run as part of the FSS.

3. After JES2 initialization completes, the functional subsystem is either started
automatically or started when the operator issues the $S PRT2 command.

Automatic Start of the Functional Subsystem

Specifying the PRT2 initialization statement with the START operand
automatically starts the printer. JES2 places the PCE associated with the
printer on the $READY queue. At the end of JES2 initialization, all JES2
processors on the $READY queue are dispatched to process work.

Operator Start of the Functional Subsystem

When the operator issues the $S PRT2 command to start a printer, a functional
subsystem is initially started if it hasn't already been started by another printer
defined to that address space. HASPCOMM in the JES2 address space receives
control to process the $S command. HASPCOMM turns on the DCTSTART flag
in the OCT (ensuring that the DCTDRAIN bit is off); then HASPCOMM $POSTs
the functional subsystem service processor (HASPFSSP) so that HASPFSSP's
PCE is placed on the $READY queue. After HASPCOMM returns to the JES2
dispatcher, HASPFSSP is eventually dispatched and, similar to the automatic
start, HASPFSSP begins the start processing for the functional subsystem.

4. During the initial start processing for the functional subsystem, HASPFSSP
creates an internal start command (START PROCNAME.FSSNAME,,,(SSNAME,
FSID),SUB = (JES2NAME)) and issues the MGCR macro to invoke MVS address
space creation; this results in an SVC 34. (JES2NAME is the name of the
subsystem that issues the internal start command.) The master scheduler
address space receives control and the address space creation routine
executes.

The address space creation routine creates a new address space for the
functional subsystem and accesses SYS1.PROCLIB to obtain the start procedure
for this new address space. From the start procedure, the address space
creation routine locates the name of the program that is to be loaded into the
new address space. This program is a functional subsystem application part of
the functional subsystem. The address space creation routine then loads this
program and invokes it. (For a printer device such as the 3800 model 3, the
program is the Print Services Facility.)

The master scheduler address space requests for SYSLOG to be started when
JES comes up. Then, through the MVS WRITELOG command, the operator can
request for it to be spun off and printed. The security token of the master
scheduler address space is extracted during the SSI "request jobid" routine.
This is the security token that is associated with the SYSLOG job and which will
be passed to RACF on the early verify routine.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 1. Introduction 1-29

1-30 JES2 Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

5. The functional subsystem (FSS) executes in its own address space, initializes
itself, and issues a CONNECT request via the FSIREQ macro; this CONNECT
request is at the FSS-level and indicates to JES2 that the functional subsystem
is ready to communicate with JES2.

6. The FSS-level CONNECT request issued by the FSS causes the subsystem
interface (SSI) to be invoked with a function code of 53 (decimal) in the SSOB.

7. The SSI service routines in common storage process the function code (53
decimal) and ultimately pass control to HASPSSSM at entry point SSIFSCNT.

SSIFSCNT recognizes the FSS-level connect request, locates the module
specified on the FSSDEF initialization statement for the HASPFSSM = keyword
(the default is HASPFSSM and is used in Figure 1-14, loads HASPFSSM, and
invokes it to complete the processing of the connect.

8. HASPFSSM completes the connect processing. HASPFSSM initializes itself,
initializes a cross-memory environment between the JES2 address space and
the functional subsystem address space, and initializes the functional
subsystem interface (FSI).

• Initializing the FSI

HASPFSSM initializes the FSI by acquiring and initializing the functional
subsystem vector table (FSVT), the functional subsystem control tables
(FSCTs), and the functional subsystem extension block (FSSXB).

An FSVT, anchored in the ASXB, exists for each connected functional
subsystem. For each FSVT there exist two FSCTs: one for the functional
subsystem and one for JES2. These FSCTs contain the addresses of the
individual routines comprising the FSI functions that JES2 and the functional
subsystem can invoke.

• Initializing the Cross-Memory Environment

HASPFSSM initializes a cross-memory environment between the functional
subsystem and JES2. This initialization allows JES2 to PC to the FSS, the
FSS to PR back to JES2, and the JES2 main task to SSAR to the FSS
address space. This allows cross memory movement of FSI parameter list
information to occur in access register mode.

HASPFSSM acquires an extension to the FSSCB (FSSXB). The FSSXB contains
the FSI order parameter list and the parameter list JES2 and the functional
subsystem use when issuing and responding to FSS-level orders.

HASPFSSM performs initialization of quick cell pools and associated free cell
stacks, cross memory posts the JES2 main task (using HASPFSSP's XECB) and
returns to HASPSSSM. When the JES2 main task gets dispatched, the JES2
dispatcher recognizes the XECB post from HASPFSSM by searching a chain of
XECBs anchored from the the HCT; the JES2 dispatcher then $POSTs
HASPFSSP so that HASPFSSP can continue FSS start up processing.

Note: JES2 considers the FSS connect as a successful response to the ST ART
FSS command.

9. HASPFSSP, in preparation for the start of a functional subsystem application
(FSA), acquires a functional subsystem access control block (FSACB) to
represent the started FSA. The FSACB is chained from the functional
subsystem control block (FSSCB). HASPFSSP issues the start FSA order to the
functional subsystem to start the FSA. When the response to the start order
(that is, a successful FSA connect) is received by HASPFSSP, HASPFSSP marks

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

the FSA as active by setting the FSACTIVE bit on in the FSAFLAG2 byte of the
FSACB. HASPFSSP then issues a $POST FSS to indicate to itself and other
functional subsystem service processors that requests to other FSAs under this
FSS may be issued. HASPFSSP next issues the start device FSI order, waits for
a response to the order, marks the device as started, and waits either for work
($WAIT on JOT) to be processed or for commands to be issued against the
device.

JES2 - Functional Subsystem Processing
When the functional subsystem (FSS) and functional subsystem application (FSA)
are connected and the FSA is started, JES2's functional subsystem service
processor (HASPFSSP) handles all interactions with the functional subsystem.

Issuing Orders to the FSS/FSA
HASPFSSP can issue the following orders to the FSS:

• Start FSA
• Stop FSA
• Stop FSS

HASPFSSP can issue the following orders to the FSA:

• Start device
• Stop device
• Query device ($N)
• Set device ($T)
• Operator intervention
• Synch ($8, $F, $E, $C, $1, $Z, $T, ($CJ,P))

HASPSERV issues the query order ($DU).

HASPFSSP issues these orders to the FSA to affect how the FSA interacts with the
device associated with it. Figure 1-15 summarizes the order processing that takes
place for this device:

1. For each unique order, HASPFSSP has a routine that processes the order
(Figure 1-16 lists the various orders that HASPFSSP can issue and identifies the
routine within it that processes the order.) Each of these routines eventually
issues a $CALL FSPORCMS to invoke the routine in HASPFSSP that handles the
interaction between HASPFSSP (running in the JES2 address space) and
HASPFSSM (running in the functional subsystem address space).

2. After FSPORCMS is invoked, FSPORCMS gets the PC number for the
HASPFSSM order routine and issues a PC to that routine, which is the
FSMORDER entry point in HASPFSSM.

Note: When FSPORCMS regains control, it returns to its caller, which is the
routine in HASPFSSP that initiated the order.

3. Entry point FSMORDER in HASPFSSM receives control and issues a PCLINK
macro to save linkage information. The save area with the order parameter list
FSMORDER uses is either in the functional subsystem application extension
block (FSAXB) for a FSA order or the functional subsystem extension block
(FSSXB) for a FSS order. FSMORDER then issues the FSIREQ
REQUEST= FSIORDER macro to invoke the FSA to service the order.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 1. Introduction 1-31

1-32 JES2 Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

4. When the FSA gets control, it services the order. For the 3800 model 3, where
the FSA is the Print Services Facility, the Print Services Facility interacts with
the device in response to the specific order. For example, the Print Services
Facility stops the device (for a stop device order) or starts the device (for a start
device order). The FSA then returns to HASPFSSM.

5. HASPFSSM restores the caller's linkage registers, reestablishes the cross
memory environment and issues the PR instruction to return to HASPFSSP at
the instruction immediately following the PC.

6. Processing of the order can be performed immediately by the FSA (for example,
the query order) or can be performed asynchronously (for example, the synch
order). For the asynchronous case, the response to the order is communicated
via the FSI send function (FSIREQ TYPE=SEND, REQUEST=FSISEND).

7. The FSI send function, identified by label FSMSEND in HASPFSSM, cross
memory posts the JES2 main task, running in the JES2 address space. This
post activates the JES2 main task response processing function.

8. The JES2 main task response processing function is located at label FRSFORDR
in HASPFSSP. FRSFORDR processes each response and initiates appropriate
actions.

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990

/

f

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

JES2 Address Space

HASPFSSP

•
•

I] [cm FSPORCMS

FSlRCMS'
•
•
•
•
•
•

m PC
•
•

m FRSPORDR:
Process the
response

Figure 1-15. Order Processing

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

Functional Subsystem Address Space

HASPFSSM FSA

FSMORDER:
•
•
•
•
•

FSIREQ D
REQUEST= Queue the

FSIORDER order for
PT service

•
•
•

m •
FSIREQ

FSMSEND: TYPE=SEND
Post the JES2 REQUEST=
main task FSISEND

Chapter 1. Introduction 1-33

Figure 1-16. Order Summary

Order Type

Start FSA FSS

Stop FSA FSS

Stop FSS FSS

Start Device FSA

Stop Device FSA

Query ($N) FSA

Set FSA

Operator FSA

Synch

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Activating Initiating Routine
Condition

Successful FSS FSPSTFSA
connect and/or $S
PAT command

Successful stop FSPSPFSA
device order

$P JES2 FSPSPFSS

Successful start FSPSTDVC
FSA

$P PRT or FSPSPDVC
successful quiesce
of data set
processing

$N PRT FSPRPTDV

$T PRT NPRO= FSPSETDV

Setup detected by FSPOIRDV
HASPFSSM FSA CB

$B FSPBKFDS
$F
$E FSPRSTRD
$C FSPCANCL
$1 FSPINTRP
$Z FSPHALTD
$CJ,P FSPCANJB
$T FSPCANJB

FSA Request Handling

t-34 JES2 Logic

HASPFSSP waits for requests from the FSA for work to process. Requests from the
FSA are made through the functional subsystem interface (FSI) to JES2. These
requests include the following:

• GETDS

GETDS processing handles requests for SYSOUT data sets. These requests
originate in the functional subsystem address space and are immediately
processed by HASPFSSM (if possible). JES2 satisfies a GETDS request by
selecting data sets (from a JOE) that have characteristics matching the current
device setup.

• RELDS

RELDS terminates the processing the FSA does for output data sets that were
originally obtained via GETDS. The FSA issues the FSIREQ macro to request
the RELDS, indicating one of the following actions:

JES2 can purge the data set because it has been successfully processed.

JES2 is to requeue the data set for processing, because the data set has
been only partially processed or could not be processed due to an error
condition.

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990

(

(_

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• SEND

SEND is invoked when the FSA issues a FSIREQ REQUEST= SEND macro. The
FSA uses SEND to respond asynchronously to orders JES2 issues. After the
FSA issues the FSIREQ macro, HASPFSSM gets control at FSMSEND and turns
off the appropriate response outstanding bit. (This bit is associated with an
order that is issued by JES2. FSSRSOUT applies to functional subsystem
orders; FSARSOUT applies to FSA orders.) Depending on the settings of these
bits and the order outstanding bits (FSSOROUT for FSS orders and FSAOROUT
for FSA orders), JES2 through HASPFSSP completes the processing of the
order; Figure 1-17 shows the relationships between the order and response
outstanding bits.

The FSA can also request termination with a SEND request. JES2 responds by
stopping the device, then disconnecting the FSA.

• CHKPT

The FSA uses CHKPT processing to periodically save on the spool restart
information (the position of the last physical data processed for the data set)
about the output data set that is currently being printed. The FSA issues the
FSIREQ REQUEST=CHKPT macro to invoke this processing.

• POST

When the FSA issues a GETDS request, the request may not be satisfied
immediately; JES2 indicates to the FSA that the GETDS is to be satisfied
asynchronously. The FSPPOST routine in HASPFSSP eventually gets control
when a JOE is found with the correct characteristics to match the GETDS
request. FSPPOST uses cross memory services to invoke FSMPOST in
HASPFSSM which ultimately informs the FSA (via the FSIREQ
FUNCTION= POST macro) that its GETDS request is satisfied.

Response

Outstanding Bit

(FSSRSOUT
or FSARSOUT)

ON

OFF

Order Outstanding Bit
(FSSOROUT or FSAOROUT)

ON OFF

Waiting for SEND from FSA Not Possible

Response Received. No order is presently
Action Required by JES2 being processed

Figure 1-17. Relationship of Order and Response Outstanding Bits

Certain FSA requests do not cause JES2 to communicate with the FSA (that is,
communication between HASPFSSM and HASPFSSP via the FSI does not occur);
these requests are:

• GETREC

The FSA issues the FSIREQ REQUEST=GETREC macro to invoke HASPFSSM to
obtain records from the output data set it is processing. HASPFSSM uses the
HASP access method (HAM) to obtain the records from this output data set.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 1. Introduction 1-35

• FREEREC

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The FSA issues the FSIREQ REQUEST= FREEREC macro to invoke HASPFSSM \
to release the storage occupied by the records that were obtained via GETREC
requests.

JES2 - Functional Subsystem Control Block Structure

CSA

$HCCT

CCTFSSCB

FSAC~ {

Figure 1-18 and Figure 1-19 illustrate the control block structure that is used to
support the communication between JES2 and the functional subsystem. Two parts
make up this control block structure:

• A part that represents a JES2-level of control (that is, those control blocks that
both JES2 and HASPFSSM use to determine the status of requests or orders that
are being processed).

• A part that specifically supports the use of the FSIREQ macro that the FSA and
JES2 use in their communication. This support of the FSIREQ macro is part of
the FSI.

JES2-Level Control Block Structure

Figure 1-18 illustrates the JES2-level control block structure used to control the
communication between JES2 and HASPFSSM.

FSS Private

FSSCB FSSXB

* - l

} FSAXBs

*one FSSCB per FSSDEF Statement.

Figure 1-18. JES2-Level Control Block Structure

1-36 JES2 Logic LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

--.- __ ./

/

(

(_

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

For each FSSDEF statement that JES2 processes during initialization, JES2
allocates a functional subsystem control block (FSSCB); the FSSCB describes a
functional subsystem that is defined in the system. Functional subsystems can also
be dynamically added with the $ADD command.

During the connect process for a functional subsystem, the functional subsystem
extension block (FSSXB) is allocated in the functional subsystem address space
private area and pointed to by the FSSCB. The FSSXB contains the order response
area that JES2 uses to examine the status of orders (at the FSS level) that it has
sent to the functional subsystem.

During the connect process for a functional subsystem application (FSA), the
functional subsystem application control block (FSACB) and its extension (FSAXB)
are allocated; the FSACB is in CSA; the FSAXB is in the functional subsystem
address space private area; the FSACB points to the FSAXB. The FSAXB contains
the order response area for orders and the parameter list that HASPFSSM uses to
invoke the FSI ORDER and POST functions.

FSIREQ Control Block Structure

As a result of the connect process for a functional subsystem, a functional
subsystem address space is created and the functional subsystem interface (FSI) is
initialized. During the creation of the functional subsystem address space, an ASCB
is created in SQA for use by the system. The ASCB points to the ASXB, which is
initialized to point to the functional subsystem vector table (FSVT). The ASXB is
located in the private area of the functional subsystem's address space. The FSVT
(also in the FSS address space's private area) contains paired pointers to functional
subsystem control tables (FSCTs).

Figure 1-19 illustrates the FSIREQ control block structure that supports the use of
the functional subsystem interface (FSI), and the numbered steps of text that follow
the figure give a corresponding description of this structure.

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 Chapter 1. Introduction 1-37

I

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

SQA FSS Private Area

ASCB ASXB m FSCT -
~.· 'FSCT' ID

reserved

0

0

,~ FSVT
t GET DS routine

'FSVT' ID tRELDS routine

FSS JES t FSCT tsEND routine
D

FSS FSS j FSCT tCHKPT routine

FSA JES t FSCT t GETREC routine

FSA FSS t FSCT

~m
tFREEREC routine

-

-

- FSCT

'FSCT' ID
~ ~

reserved

T J 0

0

tORDER routine

tPOST routine

Figure 1-19. FSIREQ Control Block Structure

1-38 JES2 Logic LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

,
;

,(
'(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

1. Functional subsystem vector table (FSVT)

Each entry in the FSVT contains a pointer to a FSCT. The FSCT pointers in the
FSVT are organized in pairs: one pointer is the address of the FSCT that
supports FSI functions that are called when the FSIREQ TARGET= JES macro is
issued; the other pointer is the address of the FSCT that supports FSI functions
that are called when the FSIREQ TARGET= FSS macro is issued.

Each pair of FSCT addresses also is defined either for FSS level functions or
FSA level functions. Specifically, the first two pointers in the FSVT are for
FSS-level functions and the rest of the pairs in the FSVT are for FSA-level
functions; each FSA pair of pointers is associated with each FSA that is active in
the functional subsystem.

2. FSCT for FSIREQ TARGET= JES

This FSCT contains the addresses of routines in HASPFSSP that process
requests (GETDS, RELDS, SEND, GETREC, FREEREC, and CHKPT) made by the
FSA via the FSIREQ macro. When these requests are made, this FSCT is used
to give control to the proper HASPFSSM routine that processes the request.

3. FSCT for FSIREQ TARGET= FSS

This FSCT contains the address of the post routine that posts JES2 concerning
the completion of FSA requests and the address of the order routine that
invokes the FSA to process orders issued by JES2. When HASPFSSM issues
either the FSIREQ FUNCTION= FSIORDER,TARGET = FSS macro or the FSIREQ
FUNCTION=FSIPOST,TARGET=FSS macro, this FSCT is used to give control to
the proper FSA routine that processes the request.

JES2 Job Processing
JES2 processes a job stream in an ordered way that comprises the following stages
as illustrated in Figure 1-20:

1. Input
2. Conversion
3. Execution
4. Output
5. print/Punch
6. Purge

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 Chapter 1. Introduction 1-39

Remote
Terminals Input

1

JCT, IOT, JCL, and Input Data

Read JCL
Write Internal Text -

, j
/"'" -.....,
['_ _./

JCT, IOT, Internal Text, and Input Data
--ri

Spool
Message and Output Data

~

"-...

JCT and IOTs _. --.-

l JOT ~
IOTs Ouput Data

JOE_., -

l
[5;J l Remote

J 1 t Output

j

~ r Punch
Output NJE

Output

Terminals

Figure 1-20. JES2 Job Processing

1-40 JES2 Logic

Internal
Reader

l T_ __y

Input

Conversion

Execution

Output

Print/Punch

Purge

To Another
System

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

JES2
System

NJE C Ca<d Input Input

J J

f--1 Input
Queue

H

_! l
Conver- Trans-

H sion mission
Queue Queue

1 1
H Execution

Queue To Another
System

1
H Output

Queue

~
NJE

Hardcopy Output
~ Queue from Another

System

l
I+- Purge

Queue

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Conversion

Execution

Output

Print/Punch

JES2 reads a job into the system (see Figure 1-20) from the incoming job stream
that consists of jobs from a variety of sources: remote terminals connected directly
to the JES2 system, the MVS internal reader (for a TSO LOGON, a TSO-submitted
job, a system task, or a job presented to the internal reader from other sources),
another JES2 system through an NJE line, another networking system, and the card
reader. Each job that is read in is placed on the input queue and a SAF call is made
to verify that the job can be submitted. If the job is to be processed on this JES2
system, JES2 places it on the conversion queue to await processing by the next
stage. JES2 also writes the job's JCL and input data to the spool. If the job is not to
be processed by this JES2 system, JES2 places the job on a job transmission queue
for eventual transmission to another node for processing.

JES2 invokes the MVS converter to scan each job's JCL for syntax errors (see
Figure 1-20). The MVS converter converts the JCL to internal text, which JES2
writes to the spool. JES2 queues a job with correct JCL to the execution queue by
its priority. For a job with JCL errors, JES2 bypasses the execution stage and
queues the JCL together with appropriate diagnostic messages to the output queue
for direct use by the output stage.

An eligible initiator uses the SSI to request a job from JES2 so that the job can be
run. JES2 selects a job for execution from the execution queue (see Figure 1-20) by
priority within its class. JES2 reads input from spool and writes output to it during
the execution of the processing program. When the job completes execution, the
job termination portion of MVS informs JES2 (via the SSI). JES2 then places the job
in an output queue to await processing of its output.

JES2 takes a particular job, after it completes execution, and processes all of its
SYSOUT data sets by creating work elements and placing them in the job output
table (JOT) (see Figure 1-20); JES2 builds these work elements based on the output
characteristics of the SYSOUT data sets for the job.

JES2 selects output work elements for processing from the JOT according to the
work selection specified for the device (see Figure 1-20). A SAF call is made during
selection time to verify that the data can print on, or be transmitted to, the selecting
device. The selected output can be in a number of states; output from the job to be
processed locally; output from the job to be processed at a remote location; the job
output itself may be passing through this JES2 system and must be transmitted to
another JES2 system in an NJE network; output from the job to be processed by a
functional subsystem (FSS). (For FSS-selection, a SAF call is made to verify that the
user requesting the printing has sufficient authority to select the data.) JES2
handles each of these situations in differing ways:

• Job Output Transmission: Job output passing through to another JES2 node
resides on the transmission queue. JES2 selects a job's output from the JOT
transmission queue for transmission to another node based upon the priority
and the desirability of reaching the execution node over the available
transmission line. When the job's output is transmitted, the receiving system
requeues the output to its output processing stage or queues it for transmission
to yet another networking system. When transmission of the job's output is

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 1. Introduction 1-41

Purge

"Restricted Materials oflBM"
Licensed Materials - Property of IBM

completed, the transmitting JES2 node releases the resources that it used to
represent the output, but only after the receiving node signals that it has
accepted total respohsibility for the output.

• Local Output: When output is to be processed at a local or remotely-attached
output device, JES2 uses these local and remotely-attached output devices to
produce the job's output. JES2 queues a job's print and punch data sets on the
hardcopy queue for the local and remote output devices that are, when active,
directly reachable either through a local attachment, via a remote job entry
(RJE) connection, or through an FSS.

After processing the output for a particular job, JES2 puts the job on the purge
queue.

When all processing for a job has been completed, JES2 performs purge processing
(see Figure 1-20). For each job on the purge queue, JES2 releases the
direct-access space acquired for the job, all control information associated with the
job, and any other resources owned by the job.

JES2 Communications

1-42 JES2 Logic

JES2 subsystems can be connected, and thus can communicate with each other, in
various ways:

• A multi-access spool configuration allows up to seven JES2 systems to be
connected via a shared-spool device upon which common queue and checkpoint
information resides. This allows individual participating JES2 systems
(members) to select jobs for execution and output regardless of which system
processed the jobs as input.

When a multi-access spool configuration is part of a network job entry (NJE)
configuration, the multi-access spool configuration is considered to be one node
in the network. For further information about these capabilities, refer to JES2
Initialization and Tuning.

• A network job entry (NJE) configuration allows single JES2 systems and
multi-access spool configurations to be connected together via network job
entry lines and channel-to-channel adapters acting as communication lines.
The NJE communication lines can be either binary synchronous communication
(BSC) lines, or (in the case of SNA NJE) synchronous data link control (SDLC)
communication lines using Systems Network Architecture (SNA) protocols
communicating through ACF/VTAM. Note that BSC lines used for network job
entry must be capable of transmitting and receiving the transparent-text mode.
For further information about these capabilities, refer to JES2 Initialization and
Tuning.

J_ES2 supports physical and logical communication lines and allows job entry nodes
to be connected by one SDLC line and one or more BSC lines or CTC adapters.
Both SDLC and BSC lines can be used concurrently, and the same SDLC line can be
shared simultaneously for SNA communications between JES2 nodes as well as for
other applications.

LY:.>8-1006-2 ©Copyright IBM Corp. 1988, 1990

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Use of the VTAM SNA application-to-application session feature in SNA NJE allows
one JES2 node to directly communicate with another JES2 or other networking
node, without incurring store-and-forward overhead on any intermediate nodes.
Alternatively, two nodes can communicate with each other through an intermediate
node by each establishing a session with the intermediate node and thereby
incurring store-and-forward overhead at the intermediate node.

For ease of communication, the following terms have been defined to describe the
various network job entry environments:

• Node: All of the JES2 systems sharing JES2 checkpoint information and spool
space or any non-JES2 node capable of supporting the networking architecture.

• Single-system node: A node in which only one JES2 system has access to the
JES2 checkpoint information and spool space.

• Multi-system node: A JES2 multi-access spool configuration in which more than
one system shares the JES2 checkpoint information and spool space.

• All-systems cold start: A cold start on behalf of all of the JES2 systems
comprising a node. All spool and checkpoint information is lost.

• All-systems warm start: A warm start on behalf of the only system in a JES2
complex or the first system in a MAS after an MVS IPL, or a clean shutdown of
JES2. The shared spool data set and checkpoint data set and the track group
map are rebuilt. All jobs in MAS are processed.

• Single-system warm start: A warm start on behalf of the processor that is not
the first one in a MAS after a JES2 ABEND and an MVS IPL. Only the jobs active
on this system are processed.

• Hot Start: A single-system warm start, or a warm start of a single system node,
without an intervening IPL. Only jobs active on this system are processed.

• Quick Start: A warm start where the job queue and job output table (JOT) need
not be updated. Use this type of start when you are adding a new member to a
MAS after a clean shutdown of JES2 while other systems are still active.

• Restart: Occurs after the issue of the $E,SYS, sysid command. Only jobs active
on this system are restarted.

For more information about the types of JES2 starts, see JES2 Initialization and
Tuning.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 1. Introduction 1-43

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Remote Job Entry Support

Multileaving

Work Stations

1-44 JES2 Logic

The job input and output services provided for local peripheral devices, along with a
subset of the JES2 operator commands, are optionally extended to remote work
stations, including both processor and non-processor terminals.

The remote terminal access method (RTAM) provides an interface between the JES2
processor and the remote work station. RTAM provides blocking/deblocking,
compression/decompression, and synchronization in such a way that the processor
need not be concerned with the characteristics of the remote work station with
which it is communicating.

Multileaving, a computer-to-computer communication technique, enables
synchronized, pseudo-simultaneous, and bidirectional transmission of a variable
number of data streams between computers utilizing binary synchronous
transmission facilities. This technique substantially increases the amount of data
that can be transmitted over a BSC line in half-duplex mode. Multileaving is used
by JES2 to communicate with all of the JES2 remote work stations and JES2 nodes
not using SNA communications.

JES2 supports remote work stations running the remote terminal processing (RTP)
work station packages when EML 1102 is installed. Jobs may be submitted to be
processed at a central computer. Print or punch output can be made available to a
selected remote work station. Data is transmitted across telephone lines.

Work station RTP programs for System/360 Model 20 and higher (BSC only),
System/370 and 1130 Computing System (BSC only) are generated as extensions to
the central system and operate in the work station on a stand-alone basis. The JES2
RJE implementation for BSC processor work stations is based on HASP
multileaving, which provides the capability for concurrent operations to support
terminal job input, output, and console devices.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

JES2 Features
JES2 has the following features:

• JES2 RJE supports up to 9999 remote work stations communicating over leased
(point-to-point) or dial Ii nes.

• JES2 BSC RJE provides for concurrent operations of lines assigned to unique
communication line adapter addresses of the following types: SDA Type II on a
2701 Data Adapter Unit for BSC, synchronous base on a 2703 Transmission
Control for BSC, and 3704 or 3705 Communications Controller providing 270X
emulation.

JES2 SNA RJE provides for the operation (concurrent with any of the above
operations) of LUTYPE1 SNA remote work stations using synchronous data link
control (SDLC) lines. JES2 uses a logical line interface to VTAM and the 370X
network control program (NCP).

• Output routing control provides for print and punch output to be directed to the
devices attached to the host system or remote work stations as designated by
JES2 initialization parameters or remote networking systems, control
statements submitted with the job, or an operator command.

• The remote operator control feature provides a subset of the JES2 operator
commands for display of information and control of jobs and devices associated
with the remote work station.

• The operator message output feature provides for the immediate transmission
of messages and responses to remote operators with online multileaving and
SNA work stations with consoles. The operator message output feature also
provides for optional spooling of messages for all other remote work stations
and offline work stations with consoles until they are online and have primary
printers available.

• Terminal support on the host system provides for communication with: 2770
Data Transmission Terminal (BSC); 2780 Data Transmission Terminal (BSC);
3780 Data Communications Terminal (BSC); System/360 Models 20, 25, 30, 40,
50, 65, 65MP, 67 (in 65 mode), 75, 85, and 195 (multileaving); 1130 Computing
System (multileaving); and System/32 (SDLC as a 3770). System/370s are
supported as remote job entry work stations when operated in a dedicated basis
control mode. With the HRTPB360 work station package, the 3777 Model 2
running the model 20 RTP multi leaving package is also supported. None of the
special System/370 features are used.

In addition, the host system provides for communication with certain remote
work stations which function as network addressable units in an SNA network.
These work stations are the IBM 3770 and 3790 family of devices and System/32,
in their SDLC versions. These work stations are referred to as type 1 logical
units (LUTYPE1).

• JES2 support of BSC RJE includes use of the sign-on card and LINEnnnn
initialization statement to represent a physical communication link.

• JES2 support of SNA RJE terminals includes the use of the LOGON command
and the use of the LINEnnnn initialization parameter to represent a logical line.

• The sign-on feature provides for remote identification and offers optional line
authorization capability.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 1. Introduction 1-45

1-46 JES2 Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• Remote characteristic support utilizes the unique features on each remote work
station: full text transparency (required for object decks), text compression,
print line width, buffer size, and blocking capabilities. Multi-point or multi-drop
line features are prohibited for SSC; they may be defined to VT AM for SNA
devices, but that definition must be transparent to JES2.

• Remote job priority adjustment provides for favoring or limiting the JES2
scheduling priority of jobs submitted from each remote work station.

• Line restart provides for warm starting of print output after remote work station
or line failures.

• Line error recovery provides for a continuous retry until transmission is
successful. (This feature does not apply to logical lines for which other recovery
techniques -- such as VTAM error recovery procedures -- are provided.)

• JES2 support of the 3800 printer (and 3211) provides special allocation,
despooling, and channel program management facilities. At the user's option,
space may be allocated in terms of track cells (sets of blocked spool records
allocated in definite order). With track cell allocation in effect, records
optionally may be read from the spool volume (despooled) in track cell units
through a single 1/0 operation. When printer data set records are written to the
printer, program control interrupts are used each time a new channel program
is constructed to append, if possible, the new channel program to one already in
progress. This reduces the number of EXCPs required to write an output data
set.

• JES2 support of devices includes use of functional subsystems (FSSs) where
device support code exists in a functional subsystem address space.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 2. Method of Operation

Legend

The following HIPO (hierarchy plus input-process-output) diagrams illustrate the
high-level, functional flow of logic through the JES2 components. These diagrams
are intended to guide you to a particular area of the program listing or a more
detailed discussion of the component within this manual.

The following symbols are used in the HIPO diagrams.

t NAME contains pointer to NAME

________ __,_.~ pointer

--------· data reference

----------i> data movement

-.._,,,,,. input/output data flow

•••••···-· control

8 action performed

0 conditional action performed

---·-~8 branch to step 0

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 2-1

J b p 0
•-t

rocess1n_g_ 0
RJE/NJE

verv1ew

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

~ Internal Cards
__[J_ J_]"' [Service: RTA"' Service: BSC Service: SNI

I • TP lines • BSC SEXTP e SNA SEXTP
• Remote console e VTAM API

-c::-_ I ProvnM 1npu1 RDA

JOOS serv.ce for

J
local and

network !Obi

I
.I l _f

Proce11 NJE NET ~ET Transmit NET
control rKCWdl rce1wd JObtD

[
SYSOUT another NJE nodt

7

Canqnion

r"--" CNVT
Get iob to
t:.conV9f'ted

Attshcon..,.,.
Sion subtmk

Edit internal

Euaition

l 1
Provide tob

..
PT-ovide .cc..

IXEQ XEQ XEQ
scheduling llt'vicft methodservlCft

TI-
spinihotd SYSQUT exce•.on
dataltH Job •lection Allocate

.,._
l • Bv numblr Open

I • Bvcla• Get
XBM job •tction Put

I Jobtarmuwtion Close
End of memory Una I locate

I c.=.

.___ 1
Output l

0U1P'lt PRPU IASXWROO ··- Exwm•-"•'J
BuildJOEs subtllk
and add t0

NJE Oucput

Tr1mmit NET 1
-NJE BSC OUQ)Ut tO

~-lftdRJE SNA 1-- anather Prepare dlta PRPU NJEnodO •tforout·
put on dtvtee

\

I.Dad FCB/

H J
,... RTAMOuuwt UCSimagt Punch

L
output

L J

7
""""

F ...

Purg1 com- TRAK
Plltlld 1ob
fromsylt9m
and tree
l'ftOUrces
uNd by 1ob

Figure 2-1 (Part 1 of 2). JES2 Job Processing Overview

2-2 JES2 Logic LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

/

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Servic91 Provided by JES2
Processors and Service Routines

Access to

checkpoint

'ecords

Increase

1ob priority

bast!d on 11me

1n JOb queue

Warm

start

processing

Spooring
services

Command
services

Job
OUtPUt

service'

Functional
Subsystem
Services

CKPT

MISC

WARM

SPOL

SEAV

JCS

FSSP

Tomer and
buffer 1/0

Event

109

Termma11on

Scanning

services

Command
Servoces

Spoo1
oliload

N'JC

EVTL

TERM

SCAN

COMM

STAM

Figure 2-1 (Part 2 of 2). JES2 Job Processing Overview

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 2. Method of Operation 2-3

N JES2 Input Processor I .. Input
(,,,.
m en

r t= N
Job r- Stream 0

(Q
c;· Rl3

rl I
PCE

RDCT

... OCT

I
OCT HAGS ---

DCTPRINT ---
OCT PUNCH

DCTPRINC ---
DCTPRLIM ---
DCTMCLAS

DCTJCLAS

DCTINDC
r--

r-
-<
N
()I)

HCT I
0
0 $DATAKEY O>
I

N

@ SDATAKEY } (')
0

"C
'< ...
<Ci" JNT

a-

~l a;
s::::
(')
0

"?
U>
()I)

SI'
~

U>
U>
0

//

"

Process

_.{ ..,
0

0
8
0
~

0

0
0

Acquire input. Command outstanding +0 EOF ~.

Determine input type. CTLCDS+0· DATA~·

HEADER~

Anolyze JCL cord. JOB +©. DO* or DO DATA +0·
Add imoge to JESZ JCL file +0. ~ ~'~
Terminale JES2 input proceHing for previou5 job, if any. ~'-'"-"-''-'-'.'-''~

Build new JQE, JCT, IOT ond initialize JESZ JCL for new job +0.
Record file delimiter characters, odd OD• or DD DATA to JCL file,

build PDDB~+G• inltiolize a JES2 dota file +0·

If file delimiter +®.

Output

~"""''''~
Add image lo JES2 data file +0 . I .. ,,,,,,, ;.,,,

I e Terminate JES2 data file +0· --]
If/* OUTPUT +0.

JOBQUE

SYSI .HASPACE

JCL

JCT

IOT

OCT

Doto File

• • •

Data File

~~~ ,.. 
~I 

I 1'V--. 
'I 

0 
@ 
0 

I 
I 
I 
I 
I 
I 
I 
I 

••-• ••·-~ "' "''°"'"''a' +0. '''''-'''tt:J-+l I I 
Move header information into JCT ~ ....... ~~ ~ jjl! 

~ I h.'-''''''''"'''''''''''''''"""" 
10 Build OCR Image and odd lo OCT 1t.-.©+0 I 
0 ~•m<•;<K•"· "" +('.). ·1 

r-
0" 
CD 
~ 
CD 
0. 

s:::: ::D 

~ !! ...... p;· c;· 
- -m CD 
I o. 

s:::: 
"tl I» ... -0 CD 

a: i· 
::l. -'< m 
o a ---'- CD 
CD !!:: 
!!:: 



!< 
I\) 
CXI 
I ..... 

0 
0 
'?' 
I\) 

@ 
(") 
0 

"O 
'< 
::::!. 
cc 
=r--iii 
s:: 
(") 
0 .... 
"? 
..... 
co 
CXI 

_<XI 

..... 
co 
~ 

(") 
=r
ill 

"O 
<ii .... 
!" 

s:: 
CD 
~ 
0 a. 
2. 
0 

"O 
CD .... 
a c;· 
::I 

~ 
en 

~ 

ASSLMBL Y ASSEMBLY 
I !STING LISTING 
NAM~ LABEL 

HASPHUH ANXTCRD 0 
flASPROH HASPRCCS . 0 
HASP ROH RJCLCARO 0 
HASPHOH HASPRJCS 0 
HASPHDH HASPADDS 8 
HASP ROH RFLHST 0 

~~1" 

0 Ternunate JES2 mput proce!l~llllJ lu1 current julJ, queue 1ul.I for p11111111!J. 

skip lur 1ob C••d ~ 

0 $WAIT (l/O) 

® Terminate JES2 input ,.noc1:!1:,111y fur current 1ob. 

ASSEMBLY A~Sl MUL Y 
NARRATIVE LISTING l.ISTIN<.i 

NAME I AUE:.I 

Input 1s dcquued from a lucdl Cdrti reader, 1l1e internal redder, HASPRDH HJliPC•\HlJ 
remote work station, or the network job receiver 

The table of control words at RCCT AB is searched for the various HASPADR HNJUiUI R 
JES2 control cards. Exit points RXITCCA. AXITCCB, 
RXITCCC (for exit 4) is used for a JECL card. 

E<ot points, AXIT JBCD and AXIT JBCC, (for exit 2) HASPRDR ROlPCARD 

is used for a JOB card. Exit point (for exit 3) is used 
for the.AXITACC. 

HASPRDR HDCKCOM 

The 1olJ 4ueue management service routine SQAOD 1s used to 
update the JES2 job queue. f-tA:::,flHDR REX IT A 

A PODB is Uu1lt to indicate the track address of where the data HASPRDR AWAIT 

will Ue written. 

HASPRDR 

If flush switch 1s not on µut data record in JES2 data file. 

~_.+,.t;h ~. 

NARRATIVE 

0 Information 1s extracted from lht: contwl t:drll!. dfld pldt.cd 111 
JCT and/or JOE . 

0) The JOIJ header records received from the network dre s1urcd 111 
the network header area of the JCT. 

0 The output control record 1s added to the ou1pul c.umrol ldhle 

0 The OCT FLAGS bits are tested for $C or $Z. 

G Define exit point for exit 20. 

0 
0 

c ::0 
o CD 
CD f/I 
::I -(/) :::!. 
CD 0 
a. <ii 
s:: a. 
a s:: 
CD Ill .... --· CD Ill .... 
iii iii" 

iii 
"O 2. 
.... -
0 Ill 
~ s:: 
~ 
2. 
iii 
s:: 



~ 
'-

~ 
r 
0 
cc 
c:;· 

~ c:p .... 
0 

~ 
N 

@ 
() 
0 

~ .., 
ce· 
~ 
OJ 
s::: 
() 
0 .., 
'? .... 
~ .... 
~ 
0 

JES2 JC L Conversion Processor 

Input 
Jt)~ 

DISPATCHER 

JES2 
DISPATCHER 

Rl3 

CCl 
bJJ Pl 

JES2 ._____, 
JPCESiAT DISPATCmR 

JPCEIOT 

JPCENEL ~ 

JES2 
DISPATCHER 

/-

Process 

J .. 0 
.N ~ ... 

0 
0 

....... .. 0 
© 

lJ-... ~ I" 

© 
~ kV ... 

® 
*® 

® 
@ 

__. 

--.. @ 

0 
G 

0 

Obtain pennonent buffer storage +0 . 
If buffer storage page - released ~ • 

Page - release permanent buffer storage. 

SWAIT for job. 

Select job. If none +0 . 
Read job's JCT. It..'''''''''''''''''''''''''" 
If conver.ion subtask attached ~ • 

Attach conversion subtask (HOSCNVT). Wait for subtask to 
complete initialization. 

Read job's IOT(s). ........................................................................................ 

Initialize output PDDBs. 

Initialize variable NEL fields. 

Post conversion subtask. 

$WAIT for work. 

Output 

JES2 
DISPATCHER _., 

.... 

:"II: ~ ......................................... 

JE52 
DISPATCHER _.. 

-..-
~ Ii-''''''''"' 

JES2 
DISPATCHER ... 

-.... 

if 
I 
I 
~ 

~ .... ..I 

Input JCT 

IOT 

IOT 

Output JCT 

~ll! 

I 
I 
~ i!! 
~i 
I 
I 
I 
I 
I I 

~ ........................................................................ ~ Write IOTs and JCT, "'''''''''''''''''''''~ ~"i ~ ................................... 

Determine next job queue. If $XEQ-.@. 

Queue job for output+0. '-''''''''''''''''"i~ ~ .................... , 
~''"J~ Queue job for execution -+0 ........................................................... ,., 

JES2 Job 
Queue 

r c:;· 
CD 
::I 
ID 

~ 
s::: :D 
Ill CD 
- ID CD -.., .., 
iii" O" - -ID CD 
I a. 

s::: 
"'C Ill 
o iD 
"O ~-
CD Ill .., -
~ID 
0 Q. --- OJ 
OJ s::: 
s::: 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

ASSEMBLY ASSEMBLY 
LISTING l.ISTING NARRATIVE 
NAME LABEL 

HASPCNVT HASPCNVT 0 Initial entry point. Obtain permanent storage, via GETMAIN, 
for use as buffers for JCT and IOT. 

HASPCNVT XCJGET 0 Attempt to get a job from JES2 job queue u>ing SQGET. 

HASPCNVT XCPOST @ Post JCL convenion subtask, HOSCNVT. Subtask is dispatched 
by MYS dispatcher. 

HASPCNVT none @ Control re~umes here following SWAIT. The $WAIT is satisfied 
when JES2 is SSPOSTEO by the conversion subtask at the 
conclusion of JCL conversion. 

HASPCNVT XCREQJOB ~ The queue in which the job is to be placed is determined 
according to job type, job run options and the results of JCL 
conversion. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 2. Method of Operation 2-7 



N 
I m 

c... 
m en 
N 
r-
0 

IC 
c;· 

~ 
cio .... 
~ 
r{, 

@ 
(') 
0 
-0 
'< 
"' ce· 
3: 
a; 
s::: 
(') 
0 
"' "'!=' .... 
ig 
.m .... 
~ 

JES2 JCL Conversion Processor Subtask 
Input Process 

RB 

JPCENEL 

JPCUCL 

JPCEJCLI 

JPCEMSG 

JPCETXT 

JPCEXBNM 

JPCEPROC 

A13 rr=-H J 

DTE 

DTEWECB 

DTEIXECB 

f 

MVS 
DISPATC1£R 

MVS 
DISPATCHER 

MVS 
JCL 
CONVERTER 

:::::=::>0 

/ 

Establish an 1 ESTAE. 

Initialize Fixed NEL fields. 

Initialize converter subsystem data set ACBs and DE8s. 

load MVS JCL converter. 

SSPOST JES2 task. 

Wait ta be pasted by HASPCNVT. 

If not execution batch manilar ~-

Supply XBM Job/Procedure name. 

'Fake Open' converter subsystem data sets. 

If correct PROCLIB open •@ 
Open PROCLIB. 

Call MVS JCL converter. 

Free storuge obtained by MVS converter. 

'fake Close' subsystem data sets. 

$POST JES2 sub-task~· 

MVS 
DISPATCHER 

IEFVHI 

Output 

( \ 

r-
~-
:J 

"' (1) 
a. 
s::: :D 
ID t1> 
Ci)!!?. 
"' "' p;· c;· 
iii ~ 
I S::: 

"ti ID 
0 (jj 
-0 ~
(1) ID 
"' -~"' 
0 9. .... --m ms:: s::: • 



~ ..... 
0 
0 
Ol 
I 

N 

@ 

0 
0 
'O 
'< 
:::!. 
cc 
~ 
iii 
s:: 
0 
0 ... 
"!:I 
..... 
co 
co 
CCI 

...... 
co 
co 
0 

0 
:::T 
Ill 
'O 
Cii ... 
!" 

s:: 
!2. 
:::T 
0 
c. 
9. 
0 
'O 
CD .., 
!!!. ,,. 
:J 

N 
I co 

~" 

ASSEMllL Y 
LISTING 
NAME 

HASPCNVT 

HASPCNVT 

HASPCNVT 

HASPCNVT 

...(fi<!'-~~ 

ASSEMBLY 
LISTING NARRATIVE 
LABEL 

HOSCNVT 8 ln1t1al entry point to subtask. PCE address provided in R 1 is 
saved m RS. 

8 MVS JCL eonverter (entry point IEFVHl) loaded into 
stor<:1ye. II will be deleted by STAE routine or JES2 shutdown. 

0 Subtask will wcut here until posted by lhe JES2 JCL convernon 
processor 

XCNVFOPN 0 Co11trol L>locks assOC1dled with the Hllf:flldl texl, JCL, JCL 
imdlJCS, dlld system messages data sets are m1tiahzed by the 
'fake open' routine in HA.SPSSSM. 

-_.£,::.;~ '· .---.i 

r • 
ASSEMBLY ASSEMBLY 
LISTING LISTING NARRATIVE 
NAME LABEL 

HASPCNVT none 0 The OONAME of the PROCLIB required to process this 1ob 1s 
checked againSl that of the currently opened PROCLIB. 

HASPCNVT XCNVCNV 0 Control is paued to the MVS JCL converter. The converter 
meryes JCL from the input stream with JCL from PROCLIB. 
producing an internal text record for each resulting JCL r~ord. 
The mh!rnal text records are processed as each 1s createil by 
tht! 1ou1me IJeyinnmg at XTXTEXIT in =-ssembly HASPXEO 
When all JCL has been processed. the converter returl"s. 
Exit point XCSTMUEE (for exit 6) 1s used after 
conve1s1on 1s complete. Exit point XCSTCUET (for exit 
6) 1s used after conversion is complete and JES2 has made 
its final changes. 

-· :Il 
0 CD 
CD 111 
:J .... 
en~-
~g 

CD s:: c. 
as::: 
CD II> .., --· CD Ill .., 
iii iii" 

iii 
i:J 9. ... 
0 Ill 
al s::: .., 
~ 
0 -

HASPCNVT XCNVPOST G The $$POST routine is used to post the converter subtask 
XECB. 

iii 
s::: 



N 
I ..... 

0 

('... 

m en 
F\) 

r 
0 

<C 
c;· 

r 
~ 
Cf' ..... 
g 
Ol 
I 

F\) 

@ 

0 
0 
-0 
'< 
:!. 

<C 
;?; 
Qj 
s:: 
0 
0 .... 
"!' 
..... 
<O 
CD 
!» 
..... 
<O 
<O 
0 

JES2 Conversion Subtask Converter/Interpreter Text Edit 

Input Process 

Rl 

C/I 
Text 
Record 

RI l 

-
HCT 

CCATABll 

CAT 

CATPERFM 

MVS JCL 
CONVERTER 

0 If 'EXEC PGM=' +<S> . 
0 If 'DD .. or 'DD DATA' +(V. 
0 If 'DD SYSOUT'' +0 ; Else 

0 Remove •/DATA PARM f..,., text record. 

0 Add SYSIN count to text record +0. 

0 If not 'SYSOUT= .. or 'SYSOUT-S' +©· 
0 Replace••' or'$' with JCTMCLAS.· 

0 Add JES2 DSNAME to text record. 

If CATPERFM= '000'. 

If 1PERFORM:=. 1 on 'EXEC' card 

Add 'PERFORM"-'' text to text reconL 

Output 

C/I 
Text 
Record 

r c;· 
(I> 
::J 
rJl 
(1) 
c. 
s:: :D am 
(I> ...+ .... .., 
iii" Ci" 
Cii CD 
I c. s:: 

-c Ill 
.... ...+ 
0 (1) 
"O :::!. 
(1) Ill .... -
~ rJl 

0 Q. 
:: Qj 
OJ s:: s:: : 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

ASSEMBLY ASSEMBLY 
'LISTING LISTING NARRATIVE 
NAME LABEL 

HASPCNVT XDSKEY 0 The DD number, which becomes part of 1he DSNAME, is 
obtained from lhe f'DOB for SYStN dara sets. For SYSOUT 
dala sets a number starting with 101 is incremented. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 2. Method of Operation 2-11 



N 
I .... 

N 

c.. 
m en 
I\) 

b 
IC c;· 

~ 
~ 
0 
0 cp 
I\) 

@ 
(') 
0 

~ ... 
i0· 
~ -
CD 
s:: 
(') 
0 ... 
~ 
..... 
~ 
!X' 
..... 
~ 
0 

JES2 Execution Processor 
(Job Selection by Job Number) 
Input 

LOGON OR 
Process 

>Ken ~ 
1 HASPSSSM J 

..... f0 Queue SJB to CCT JPNUM. 
Rl 1 \.:_) 

C 0 $$POST JES2 task to dispatch execution p•ocesso•. MVS 

DISPATCHER .._ 
KT (:;\ --. 0 Wait on SJBECB until posted by execution processor. ....... 

.----I SJOBQPTR 

1 J Jffi 
.---I $HCCT HASPXEQ DISPATCHER _.. 

J ES2 (4\ SWAIT lo• job o• wo•k. 
DISPATCHER .._ V ...... 

.._HCCT ""' 0 lfnomo•eworl< to do~· ,.. 

Output 

CCTJPNUM ~ lfSJBqueuedtoCCTJPNUM +0· JQE ~ 
0 SeNice othe• '"quest -+0. ,.... 

-::> 
~ w 

JES2 I" 8 If job not awaiting execution~. 
Job ~ SJB 
Oueue 0 --------

9 Mark JOE in use and checkpoint it.'---------------~~----' 
SJBJQE 1---e Update SJB and re-queue to CCTJXNUM. -> SJBJCTRK 

~ SJBECB 

/"".. MVS G Post task waiting on SJBECB ~ • '------------~-~--' 
f'..-SYSl.HASPACE/ DISPATCHER __. 

.............. ~~~~~~~~~l-C:~HA~S~PS~S~SM~=Jr-~~~~~~~---i 

f'..- -4 ...... ,,.. .............................. ~1.;r@ Read and validate JCT and IOTs. 

I----. JCT _...-/ jl!! 
f'..- ~ ...... ~ 0 Initialize certain subsystem data set control blocks. 

I'-- Input IOT _./ @ 
~ 14 Invoke SWA create. 

t---._ IOT ~ RETURN TO 
CALLER .._ 0 Return. ...,.. 

I 

r c;· 
(!) 
;;J 
Ill 
:g_ 
s:: :D 
ei m 
(!) -...... 
iii" c;· 
- -Ill (!) 

Q. 

I S:: 
"1J S» o <D 

"C· ~. 
(!) S» 
:I. -'< Ill 

0 9. 
:: iii 
CD S:: s:: 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

ASSEMBLY ASSEMBLY 
LISTING LISTING NARRATIVE 
NAME LABEL 

HASCJBST SSIJSEL 8 The job number of the job being requested 
was provided to the caller by the subsystem 
earlier. For further details refer to JES2 
input service processor. 

HASPXEQ XQSEARCH 0 The $$POST issued in HASCJBST causes the 
JES2 dispatcher to $POST the execution 
processor, which then searches all of its work 
queues beginning at XOSEARCH. HASPXEO 
searches the cancel/status queues for a job and 
uses exit points ZTCSEXIT and YTCSEXIT 
(for exit 22) to aid in job selection. 

HASPXEQ XPOSTSJB @ The task waiting in HASCJBST is posted to 
complete processing of the request for a 
specific job. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 2. Method of Operation 2-13 



~ JES2 Execution Processor 
;: (Job Selection by Job Class) 
c... 
m en 
I\) 

r 
0 
cc 
(')" 

r 
-< 
I\) 

Cf' ..... 
0 
0 
m 
I 
I\) 

@ 
(') 
0 

~ ... 
ii" 
'::t" -iii s:: 
(') 
0 ... 
"? 
..... 
co 
~ 
..... 
:8 
0 

Input 

.. 
R11 

c,CT 
~HCCT 

PITABLE 

iHCCT 

~· 
CCTJXCLS 

_.. SJB ... 

JES2 
JOB 
QUEUE 

MVS 
INITIATOR 

JES2 
DISPATCHER 

.. 
--.. 

...... 

Process 

[.,., 

fl" 

1 HASCJBST· J 
© Queue SJB to CCTJPCLS. 

DISPATCHER 0 1$POS..... ... 11 ... 
© Walt to be posted by JES2 execution processor.' a 

1 HASPXEQ ~ 

© $WAIT for job or work. 

~If no more work t~ do -.@. 
9 lfSJBqueuedtoCCTJPCLS .+0• 
0 Service other request ~-
0 If not partially-selected SJB .~· 
0 If checkpoint write not complete ~. 
@ Reset SJB token and partially-selected bit. 

@ Requeue SJB to SVTJXCLS. 

@ Post task wailing on SJBECB; ~ • 

JES2 
.DISPATCHER ....... 

-..-. 

J ~lfnojobforanyavailablePIT ~-

Output 

~ ~ If no job with duplicate name executing ~-
@ Holdjob ~-I 11 9 ~~~2 I ~ ~ II QUEUE 

~If not execution batching job ~. 

\. 

,, 

r 
(')" 
ID 

ii! 
ID 
0. 

s:: :0 
Ill ID 
- UI ID -...... 
iii"(')" 
- -UI ID 
I o. s:: 

"ti Ill ... -0 ID 
'O ~
ID Ill ... -
~ UI 

0 Q. 

= iii CD S:: s:: = 



~ 
I\) 
0) 
I ...... 

0 
0 
Cf> 
I\) 

@ 
() 
0 
-0 
'< 
~
tO 

~ 

to 
s:: 
() 
0 
..... 
::i 
...... 
<O 
0) 
0) 

...... 
<O 

·~ 

(") 
::T 
I» 
-0 
<ii ..... 
I\) 

s:: 
CD 
~ 
0 
a. 
8. 
0 
-0 
CD ..... 
2l. 
5· 
::::J 

I\) 
I ..... 

UI 

~. 

ASSEMBLY 
LISTING 
NAME 

HASCJBST 

HASPXEQ 

HASPXEO 

ASSEMBLY 
LISTING 
LABEL 

SSIJSEL 

XJBWAIT 

~ If not class of batch monitor ~-
® Prepare to process batch monitor job selection ~

If another PIT can handle job -.@. 
Terminate execution batch monitor ~-

@ Force checkpoint of JQE. 

@ Update Pl1 

MVS 

DISPATCHER .... 
® Update SJB ~· 

0 

© 

""Jll"'j ® 
@ 

I HASCJBST I 
Read JCT and IOT(S> 

Open certain subsystem data sets. 

@ 
@ 

Invoke SWA create. 

Return, 

NARRATIVE 
... 

Request for job received from MVS initiator. 

An SJB is initialized to represent the request. 
It will later represent the job provided by 
HASPXEQ. The SJB is queued to CCTJPCLS. 

The execution processor $WAITS here until 

$POSTed for job or work. 

ASSEMBLY 

LISTING 
NAME 

HASPXEQ 

HASPXEO 

ASSEMBLY 

LISTING 
LABEL 

XPIT116 

XPBYCLS 

XQSEARCH 0 All of the queues serviced by the execution 
processor are searched beginning with the 

Spin/Hold queue and continuing until attempts 
have been made to satisfy all requests. HASPXEO XALTRNIT 

HASPXEQ searches the cancel/status queues 
for a job and uses exit points ZTCSEXIT and 
YTCSEXIT (for exit 22) to aid in job selection. 

HASCJBST JBFQUND 

@ 

~ 

~ 

@ 

MVS 

INITIATOR _a,,. 

........ 

~ . 

NARRATIVE 

JES2 
PIT 

The MVS initiator was placed in the WAIT 

state (see Step 3) pending selection of a job. 
The job select routine in HASCJBST is now 
posted to complete the job select request 
processing. 

The first available PIT containing a class for 
which a job awaiting execution is queued is 

selected. If no such PIT exists, the execution 
processor looks for other work to do. 

In order to mini.mize the number of times an 

execution batch monitor is terminated, when a 
different class batch monitor job or a non-batch 
monitor job is selected for a batch monitor PIT, 
an attempt is made to find another PIT to 
process the job. 

Using information provided by HASPXEO, 
HASCJBST now reads and validates the job's 
JCT and IOT(S). 

......... 

c ::0 
0 CD 
CD !J) 
::::J ..... 
en ~-
CD o a. ..... 

CD s:: a. 
2l. s:: 
CD I» .......... 
-· CD 
I» ..... 
r;; iii" 

r;; 
"O 8. 
..... -
0 to 
a1 s:: 
;::::. 
'< 

8. 
ro 
s:: 



I\) 
I .... 
0) 

c:... 
m 
(/) 

"' r 
0 
cc 
c;· 

r 
i::3 
'P 
...;. 

0 
0 
en 
i{, 

@ 
(') 
0 

"O 
'< ..... 
cCi" 
:::; -
CD 
s:: 
(') 
0 

-a 
.... 
c.o 
00 
00 
...;. 

c.o c.o 
0 

J ES2 Execution Processor 
(Execution Batch Monitor Job Selection) 
Input Process .. 

R11 -. G) $WAIT for job or work. JES2 

CCT 

DISPATCHER 

0 If no more work to do ...c!). 
..., >0 If SJB queued to CCTPXBM ~ ..---i $HCCT 

© Service other request ~-
_., HCCT 

0 If not partially-selected SJB ~-.. i> If checkpoint write not complete ~-
CCTJPXBM ..---i 0 Reset SJB token and partially-selected bit. 

© Aequeue SJB to CCT JXCLS. 

_..SJB .. ® Post task waiting on SJBECB ~-

SJBJOBID 1----1 

.-----! SJBPIT A 10 If not awaiting batch monitor JCL conversion ~-
If job in or awaiting JCL conversion processing -+0-1 

[ I .._PIT +© . ...., 2 If job awaiting execution 

PITFLAGS 

PITSTAT 
~ @ Clean up the PIN and re-queue SJB to CCT JPCLS -+0. 

PITCLASS I--, ~ If PIT not drained and PIT class valid ~ 
JES2 

@ Terminate the batch monitor '-+0. JOB 
QUEUE 

Tf ~16 If no job awaiting batch monitor job selection ~-
' @ Update the PIT and SJB +0-

# If no other job that can be processed by PIT -+0. 
~ II another PIT can process the job ~;else -.@). 

Output 

..... 
JES2 

~T 

DISPATCHER 

R11 

CCT 
"'1 

....---1 $HCCT 

_., HCCT .. 
-1> CCTJXCLS .... 

SJB 

SJBECB 

.----I SJBPIT 

J 
._PIT ...., 

-')l 

t--

...... ,. 

r c;· 
(I) 
;;:) 
(/) 
(I) 
a. 
s: ::0 
Ill CD ..... (/) 

CD -......... 
Di" c;· 
w m 
I a. s:: 

"U Ill 
..... -O CD 

"O ~
CD Ill ..... --:< (/) 
0 9. - -- CD 
CD S:: 
s:: = 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

ASSEMBLY ASSEMBLY 
LISTING LISTING NARRATIVE 
NAME LABEL 

HASPXEQ XJQSRCH 0 The SJB for an execution batching job is 
re-queued to CCT JPXBM during termination 
processing of that job. 

HASPXEQ XPXBM <S> When an execution batching job is selected 
during job select by class processing and no 
batch monitor is available to process the job, 
the job is re-queued for JCL conversion pro-
cessing. 

HASPXEQ XNOJCL @ If a batch monitor job gets a non-zero return 
code from the MVS JCL converter it will not 
be re-queued for execution. 

HASPXEQ XKILLXBM G To Kl LL a batch monitor, the SJB is re.queued 
to CCTJXCLS leaving the SJB1 XBWT bit on 
and the task waiting in HASPSSSM is posted. 

HASPXEQ XALTRNIT ~ A batch monitor can be automatically 
terminated if a job is selected for another class 
in its Pl TC LASS field. However, an attempt is 
first made to find another available PIT with 
the same class in its PITCLASS field. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 2. Lethod of Operation 2-17 



N 
I ...... 
co 

c... 
m en 
I\) 

r 
0 
cc 
c:;· 

r 
-< 
I\) 

'f' ...... 
0 

~ 
@ 

a 
0 
-0 
'< ... «:i. 
3:" 
OJ 
s:: 
a 
0 ... 
-0 

...... 
~ 
5» 
...... 
co co 
0 

JES2 Execution Processor (Spin Support) 

Input Process 

Ill 
JES2 
DISPATCHER 

.-----~~~~~~~~-~ 

CCT 

- ·-· -

1r C0 SWAIT for job or work. 

0 If no more work to do, -+0· ... 
~ $HCCT ~~ If IOT queued to CCTSPIOT. ~. 

0 Service other request ~· 
.. HCCT 

~ -..., 
Dequeue cha;n ol IOTs +©. 

~ CCTSPIOT 

CCTFIFOQ 

© FIFO queue IOTs to CCTFIFOQ. 
CCTHOLDQ 

,,;x 7 If data set to be held, -+@). 
_ .. 10T 

0 -@ " ... 
If .JESNEWS data set exists, process it 

IOTPDDB 0 Create JOEs in PCEWORK. 

@ Add JOEs to JOT using S'ADD. 

0 If S' ADD successful, +®· 
@ Mark I.OT as unspun . 

® Increment JOE count ~. 

@ Set PDDB to indicate held data set. 

@ Increment HOLD count ~· 

@ Free IOT us;ng FREEMAIN. 

@ Dechain IOT from SVTFIFOQ . 

~ lfanotherlOTqueuedtoCCTFIFOQ,~ ;else -.0· 

JES2 
DISPATCHER 

JES2 

---

DISPATCHER llo.. 

... 

01:1tput 

Ill 

I 
~ JES2 
... L JCT 

HCT 

$JO TABLE 

.--- $HCCT 

.. HCCT 
-..., 

CCTSPIOT 

CCTFIFOQ 

i 

/ 

r c:;· 
CD 
:J 
CJ) 

CD a. 
s:: :D 
Ill CD 
- CJ) 
CD -...... 
;· c:;· 
en co a. 

s:: 
"ti Ill ... -0 CD 
-g ~-... -
.:<"CJ) 

0 !a. --- OJ 
OJ 3: s:: • 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

ASSEMBLY ASSEMBLY 
LISTING LISTING NARRATIVE 
NAME LABEL 

HASPXEQ XJBWAIT 8 $WAIT for job to be $POSTed or for someone 
to $$POST the Execution Processor. 

HASPXEQ XQSEARCH 0 HASCDSAL queues an IOT to CCTSPIOT and 
$$POSTs the Execution Processor during data 
set unallocation if the data set is to be imme-
diately spun. 

HASPXEQ XSPNHLD © The chain of IOTs that had been queued to 
CCTSPIOT is reordered in FIFO sequence and 
queued to CCTFIFOQ. 

HASPXEQ e The IOT is written to SPOOL at the head of the 
queue pointed to by $UNSPUNQ using a com-
pare and swap type logic. 

HASPXEQ XSPINBAD ® HASPXEQ posts the output processor. The 
output processor writes the spin IOT to spool 
for processing later by the output processor. 

HASPXEQ XSPFRIOT @ The IOT was originally obtained by 
HASCDSAL from common storage. Because 
HASCDSAL no longer needs the IOT and does 
not WAIT for the request to be satisfied, the 
IOT is now freed. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 2. Method of Operation 2-19 



~ JES2 Execution Processor 
~ (Job Termination) 

'm en 
I\) 

r 
0 
(Q 

o· 

~ _. 

8 
~ 
@ 
(") 
0 

~ ... us· 
;a-
ffi s:: 
(") 
0 ... 

"'!=' _. 

~ 
!¥' _. 
<D :g 

Input Process Output 
MVS INITll'TOR OR 

..c: 
L HASCJBST J --. 0 If execution batch. monitor terminating•©. 

0 Checkpoint JCT, IOTs and dato buffers. 

0 Cleon up subsystem control blocks. 

Rll 0 QueueSJBtoCCTJTERM. 

C 0 SSPOST JES2 task to dispatch execution processor. MVS 

DISPATCHER _.. 

HCT (&\ Wait on SJBECB until posted by execution processor 0 

-."] JES2 ~ j P"' 
DISPATCHER ..II 

.----1 $HCCT L HASPHEQ J J ES2 
-., (:;'\ DISPATCHER _.. 

0 SWAIT for job or work. ... 
~ HCCT 0 If no more work to do ... 0. 

r--- CCTJTERM # lfSJBqueuedtoCCTJTERM•0· 

G Service other request •0· 
..... 
.,. SJB F # If LOGON orstanedtasl<•®· 

(.:;\ Mart. PIT avoiloble. ...._ JES2 J \:J -v PIT 

'---------~~· '~ If execution batching job+@. 

@ Cleon up the PIT. 

~------~ ... -;,...-X,15 If noomal job terminating+@. 

~ '----------'~.,· '~ If normal botch monitor te1111ination •@· 

I 

r o· 
<D 

iil 
<D 
Q. 

s:: ::rJ 
Ill <D 
- en 
<D -... ... 
i». o· 
iii lD 
I c. 

"'C ~ 
0 lD 
-g ~-.... -
~en 
o a ---m m S:: s:: : 



r 
~ 
Cf .... 
0 
0 
CJ) 
I 
I\) 

@ 
(") 
0 

~ 
:::!. 
co 
:::; .... 
CD 
:s:: 
(") 
0 ..... 

"'C 

.... 
::il 
SS' .... 
co 
co 
0 

(") 
:::; 
I» 

"'C 

iii ..... 
I\) 

:s:: 
Cl> :;: 
0 a. 
s. 
0 

"'C 
Cl> ... 
!!?. a· 
::J 

I\) 
I 
I\) 
..a. 

~. 

MVS 
DISPATCHER .. 

... 

ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL 

HASCJBST SSIJTERM 

HASPXEO XKILLXBM 

~\ /;<· .. ~~ 

(0 Post task waiting on SJBECB and .. 0 
re-queue job causing botch monitor termination· 8 • 

10 Post task waiting on SJBECB •0· 
® Re-queue SJB to CCT JPXBM. 

@ Cancel real-time clock. 

~ 

~ If execution botching job•@· .... 
® Post task waiting on SJBECB. 

@ Re~ueue job for output or execution. 

" If LOGON o• started tosk •0 • 24 -,.. 

@ Release any jobs held because of duplicate job name .. 0. 
L HASPAM -r 

@ Complete termination processing for XBM. 

0 Select next joblet. 

~ Return to caller. 

ASSEMBLY 
NARRATIVE LISTING 

NAME 

0 HASCJBST termination processing may be 
entered from HASCJBST job selection toter· 

HASPXEO 

minate an idle execution batch· monitor. 
Otherwise termination is for a LOGON, started 
task, or normal batch job • 

~ Execution processor select job by class 
processing may have caused a batch monitor 
to be terminated in order to run a normal job 
or another batch monitor. 

c'-;<*i':t~ ~ 

c: ::D 
0 Cl> 
CD fl) 

::J -en ::!. 
Cl> 0 
a. -Cl> s:: a. 

I 

!!?. :s:: 
Cl> I» ... --·Cl> 
II> ..... 
'iii iii" 

'iii 
"ti s. .... -o CD 
~ :s:: 
::l. 
'< 
s. 
iD 
:s:: 

JES2 

J Job 
- ... 

Oueue 

HASCJBSS 
JOB SELECT ..... 

...... 
RETURN TO CALLER _., 

... 

ASSEMBLY 
LISTING NARRATIVE 

LABEL 

XREOSJB @ Normal execution batching job termination 
is transformed into a request for another execu 
tion batching job. 



N 
I 

N 
N 

c:... 
m rn 
I\) 

b 
IC 
0 

ij 
.... 

~ 
@ 
() 
0 

~ ... 
<C" 
=3" -to 
s::: 
() 
0 

-? .... 
~ 
SD .... 
~ 
0 

JES2 Time Excess Proces~r 
Input 

Rll 

rl 
-• HCI ...... 

r-- $HCCT 
JES2 
DISPATCHER 

_._ HCCT ., 
;--1 CCTJXCLS 

_._ SJB --... 

SJBSTOE 

r- ~.IBJCT 

_.JCT ., 
JClfTIME I 

;--- \ 

Process 

.J.. 

• 0 
0 

... 0 
0 

..N 
5 

J 
6 ... 

0 
0 

4G 

1 HASCJBST J 
Conclude job selection by class activities. 

REfURN TO 
REQUESTER .... 

SSPOST JES2 task for time excess ion processor. ... 
L J JtS2 HASPMISC 

DISPATCHER ...... 
SWAIT for work. ... 
II no more jobs to be serviced .CV . 
If job beginning execution ~ • 

Issue 'Time Exceeded by nnn Minute(s)' message. 

Reset time interval to next message using 
E$TIME INT=VALUE. 

Issue SSTIMER for new time interval -0. 
Set initial tlme interval using JCTEllME ...cv. '------' 

Output 

Rll 

c.c. ..., 

.--- $HCCT 

..a... HCCT· ... 
r-- CCTJXCLS 

..a... SJB ... 
..r-... 
"V SJr.ST"E 

1 
L 

t-
1--i 

/' 

" 

r-
~-
::J 
(/) 
CD c. 
s::: :n 
II> CD 
CD !. ...... 
iii" c;· 
1ii iii 
I c. 

s::: 
""C I» 
0 (jj 
"C ::!. 
CD I» 
~ 1ii 

2. 
2. -..;.. to 
to s::: 
s::: : 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

ASSEMBLY ASSEMBLY 
LISTING LISTING NARRATIVE 
NAME LABEL 

HASCJBST HJS570 0 After the execution processor selects a job by 
class and posts the waiting task, HASCJBST 
concludes job select processing prior to 
returning to the originator of the job select 
request. 

HASPMISC HASPTIME 0 The queue of SJBS representing jobs in 
execution by class is searched for an SJB 
whose timer queue element has been posted or 
whose timer interval indicates a job beginning 
execution. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 2. Method of Operation 2-23 



~ 
~ 
c... 
m 
CJ) 
I\) 

r 
0 
(Q 
c;· 

~ 
co 
I ..... 

0 
0 
CJ) 
I 

I\) 

@ 

0 
0 

"O 
'< 
::::!. 
(Q 

;::?; 

ffi 
s:: 
0 
0 ... 
"P 
..... 
CD 

~ 
..... 
CD 

~ 

JES2 Output Processor 
Input 

Job Oueue 

JOE 

Q 
r::SYSI .HASPACE/ 

I'-- ___.... 

!'---- JCT __..,, 

I'-- / 

!'----- IOT •~l ---1 
\......_ 

IOI 

PDDB 

JtlL 
DISPATCHER _..,, 

... 

r------

I- -
___ _J 

.--1 
.--

J 

Process 

J 
~ 1 Process unspun data sets and select a job queued for output. 

1 2 
Read JCT and IOT(s). 

Select PDDB from IOT. At end•©· +0 
j 4 

Build work JOE and characteristics JOE. 1o.'-'-'-'-'-'-'-'-'-'-'-'-'-'-"'1 --.. 

© Add JOh to JOT. lo.'-'-'-'-'-'-'-'-'-'-'--._'-'-'-'-'-'-'-'-'-'-'-'111: 

© Assign group name and ID to PDDB(sl with matching •0· characteri!.tics. 

0 Update JCT with time and dote job was in output processor. 

0 Place job on $HAADCPY queue and release the job lock. 

0 SWAIT for work. 

\ 

I'"''''., 
I ,,,,,, 
~ I ..... 

::...'''''''"" 

JES2 
DISPATCHER .... 

.... 

Output 

pCE 

Work JOE 

Char JOE 

... ~ 
~ .. ~~,Q 

\ 

r c;· 
(I) 
:J 
C1I 
(I) 
a. 
s:: = 
Ill ::0 
- (I) 
(I) !!l. ...... 
iii" c;· 
iii lD 
I a. s:: 

"ti Ill 
0 lD 
"O ... 
(I) iii" 
~ iii 
0 g, --- Ill 
Ill 3!:: s:: = 



r 
-< 
I\) 
00 
I ..... 

0 
0 
O> 
I 
I\) 

@ 
() 
0 

"'O 
'< 
:::::!. 
cc a: 
ai 
s:: 
() 
0 .., 
"? 
..... 
<O 
00 
CX> -..... 
<O 
<O 
0 

() 
::::r 
Ill 

"'O 
co .., 
I\) 

s:: 
CD s-
o 
Q. 

9. 
0 

"'O 
CD .., 
a a· 
:I 

N 
I 

N en 

.~ 

ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL 

0 HASPPRPU OPINIT 
OPQGET 

0 HASPPAPU OP JOB 
OPNEXIT 

HASPPRPU OPPOBIOT 0 
HASPPRPU OPPOBJOE 0 
HASPPAPU OPJOTAOD © 

~""" 
(<'.cc~ ~ 

NARRATIVE 

ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL NAAAATIVE 

c: ::0 
0 CD 
CD UI 
:I -C/J ~-
CD o 
Q. -

Unspun data sets are proceHed before a job is selected. When 
1t is time to select a job $QGET is used. If the $QGET routine 
cannot obtain a job queued for the output processor HASPPRPU 
issues a SWAIT. 

HASPPAPU OP013NEXT © Each PDDB is marked as HOLD=YES (if applicable); the proces-
sor sets the appropriate PRMOOE and checks if the PDDB can 
be added to the JOE. If the PODB can be added, the PDDB is 
updated with the group name and JOE id. If demand setup is 
not allowed, then only those PDDBs with matching SYSOUT 
class. destinations, PR MODE, group ids, writer names. 

CD :s:: Q. 

a s:: 
CD Ill 
.., --· CD Ill .., 
Ui ji;" 

The JOB lock 1s obtained and the DASO address of the first FORMS, FCB, and UCS can be gathered into the same job. Ui 
IOT is obtained from the JCT and all IOT(s) are read into 
storage. The TSO notification message is built to notify the TSO 
user of output processing tor the job. A JES2 installation exit is 
invoked at label OPNEXIT Hor Exit 16) 10 allow installation 
modification of the notiticat1on message. When the exit routine 

HASPPRPU OPQPUT 0 The sign-on and sign-off time and date fields are updated, and 
the JCT is wr-itten back to the SPOOL volume and the job lock 
is released. 

"'C 9. .., -
0 III -g s:: .., -returns, the not1f1ca11on message is sent to the TSO user (via 

$WTOI. 

The first PODB whose null bit is not on is selected. 

HASPPRPU OPNOJCT 0 If the job is marked for purging the job is placed on the 
SPURGE queue. The $HARDCPY queue is designed to hold 
jobs while their SYSOUT records are being converted to 
hardcopy. 

'< 
9. 
ai 
s:: 

A Work.JOE and a Characteristics.JOE are built in the PCE 
using the information in the selected PDDB. 

If insufficient space exists in the JOT to add the new JOE, the 

processor $WAI Ts for a free JOE. The processor tries again to 
add the new JOE to the JOT until 1t is successful. The number 
of 1ob copies requested is the number of duplicate work JOEs 
placed in the JOT. 



N 
I 

N en 

c... 
m 
(J) 
I\) 

r 
0 

<O 
c;· 

r 
-< 
I\) 
00 
I _.. 

0 
0 
Ol 
I 

I\) 

@ 
() 
0 
-0 
'< 
:!. 

<O 
3:" 
ro s:: 
() 
0 

-a 
...... 
co 
00 
00 

..... 
co 
co 
0 

JES2 Print/Punch Processor 
Input 

JDL 
DISPATCHER 

JOT 

JOE 

C"sYSl ,HASPACf/ 
Q 

.---- -----1 
I'---- JCT -----1 

.-I I'---- ___.-' 
rl 

I'--- IOI ___./ IOI 

PDDB 

!'----- ------1 1----

Q !'----- Doto block ---1 
I-

Process 

J" 
-. 0 

~ 8 
,.._ 

5 ,,, 

0 

Jrf , 
© 

9 -...-

40 
0 
0) 

0 

Get OCT for either printer or punch, local or remote. 

Obtain JOE from JOT using subroutine $1GET. (SPOST checkpoint processor). 

Read JCT ond extract information for PCE. "''"-"-"-"-"-''''''''II ~'II 

Verify device set-up and if required notify operator; forms, FCB, and UCS, 

Read IOI from chain. At end of chain+@. 

Select PDDB from IOT which matches the characteristics JOE. 

At end of IOI •0· At end of PUD~ +@. 

Reod block from JES2 doto •et chain. At end of chain +0, 
Produce HARDCOPY from JES2 data set. 

At end of block +0, 

Reod IOI contoining cunent PDDB +0. 

Clean up print/punch processing and build on SMF 
record and queue for output. 

Update production accounting fields and write JCT. 

Remove work JOE from JOT u1s ing subroutine $#REM. 
($POST checkpoint proces~or). 

$WAIT for JOT. 

J 

Output 

PCE 

~'{] 

............ ,. 

-"> -v ~ or ( PUNCH 1-

~:HA~ 

~ I'--- .....--1 
I'---- JCT ---1 
.......... 

JOT 

JOE 

'"'-, CJ -...,? 

JES2 
DISPATCHER ... 

.... 

r c;· 
(1) 
::J 
<J) 
(1) 
a. 
s:: ::0 
Ill <D 
- <J) 
(1) -.... .... 
ii)" c;· 
'Cii CD a. 
I S:: 

""Cl Ill 
.... -0 (1) 

"O ~
(1) Ill ... -
- <J) 
'< 0 
0 -
:: ffi 
ro S:: s:: = 



f""' 
-< 
l\J 
00 
I ..... 

0 
0 
Ol 
N 
@ 
(') 
0 

"O 
'< 
::!. 
(0 

;:?; 
(ii 
s:: 
(') 
0 ... 
"? 
..... 
co 
00 
co -..... 
CD 
co 
0 

(') 
::::r 
Sil 

"O 
co ... 
l\J 

s:: 
CD ::r 
0 c. 
a 
0 

"O 
CD ... 
~ 
0 
::l 

N 
I 

N ...... 

~ 

ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL 

HASPPRPU HASPPll 
PGOTUNIT 

HASPPAPU PG ET JOB 

HASPPRPU PJCTAEAD 

HASPPAPU PCLDSTAT 

HASPPAPU I PEND I NIT 

HASPPRPU I PPP OB 

,..,;;;;:~, 

NARRATIVE 

0 If a requested OCT is not available the Print/Punch processor 
$WAITS. For a local l)l"inter or punch, the print/punch processor 
issues a $WAIT for UNIT. For a remote terminal, the print/ 
punch processor issu~ a SWAIT for WORK (if the remote ter-
minal is not signed onl; otherwise, a SWAIT for JOT is issued. 
When the printer or punch becomes available, the print/punch 
processor prepares to use it. 

0 The $POST of the checkpoint processor is performed within the 
S#GET subroutine. If no work 1s available the prmt/punch 
processor $WAI Ts for JOT. 

0 The S#JCT macro is used so that multiple processors may share 
the JCT for a job. The print/punch processor attaches the image 
loading subtask for non-impact printers and waits ($WAIT 
IMAG) for the subtask to initialize itself. 

0 If the device requires set up the processor info11ns the operator 
and $WAITs for 1/0 which will be $POSTed by the command 
processor when the operator responds with $START device. 

0 I A job may have a chain of JOTs. Each IOT in the chain is 
processed until the chain pointer is zero. 

© I Each PDDB represents a chain of HASP data records which 
contain related SYSOUT data. the field named POBMTTR 
conveys the starting MTTR tor each set. Use exit point 
PPEXIT (for exit 15) to optionally alter the number of copies 
of the data set that is to be printed. Use exit point PCEXIT 
(for exit 15) to optionally create a data set separator page. 

/~·::-":S!~_ ~ 

f""' 
ASSEMBLY ASSEMBLY 

-· :D o CD 
LISTING LISTING CD en 

::l ....+ 
NAME LABEL NARRATIVE en ... 

CD -· 
c. n. 

© s:: ~ HASPPAPU PNXTCCW A multi-command channel program is built 1:-· the PCE and 
executed to produce hardcopy. Use exit pair .. PEXITSC !!l. s:: 
(for exit 1) to create or modify the exiting hea1 1er page. Use CD Sil 
exit point PEXITTR Hor exit 1) to create or m0"""'ifv the :::!. Ci) 
existing trailer page. ~ ... 

en ii)" 

0 I Vi 
HASPPRPU PPIOTCK The IOT containing the PDDB just proce$Sed is reod to restart 

"C Q. the PDDB search/match sequence. ... 
0 (ii 

@ "O s:: CD 
HASPPAPU PPABOAT Save area clean up 1s performed, the recovery environment is ... 

canceled (via $ESTAEI, and the type 6 SMF record is generated. -:< 
A Type..S SMF record is built representing the amount of work 

~ 
p~rformed m behalf of the related 1ob. 

For a 3800 pr1nter, the SMF record 1s not written for the 3800 (ii 
printer output until the output has completely reached the s:: 
38000 stacker. 

@ HASPPAPU PPJOEI02 The 1ob will be placed on the $PURGE queue if its number of 
work JOEs on the JOT equals zero. 

For a 3800 prmter, the work JOE for the output is not removed 
until all output for the JOE has reached the 3800 stacker. 

@ HASPPAPU PNOJOB If another work·JOE cannot be obtained from the JOT the 
proce&&or $WAITs for JOT. 



N 
I 

N 
CIQ 

c... 
m 
~ 
b co c;· 

~ 
N 
qo 
...... 
0 

~ 
@ 
(') 
0 

"O 
'< ... ce· 
;:r 
iii 
s:: 
(') 
0 ... 
"? 
...... 

-~ 
...... 

~ 

JES2 UCS/FCB Image Loader Subtask 

Input Process 
MVS 

~TCHER _.r 

• 0 Open SYSl .IMAGELIB. 

ltCI 
MVS 0 SSPOST JES2 main task. 

DISPATCHER _., 

0 WAIT for POST from Jl 52 muiu 1u.k. _l 
,--- ~ II past code is not zero .. 0· r---· SIMAGECB 

l'"I 

0 CLOSE SYSI .IMAGELIB. 

0 Return to MVS. 

Jl52 Buller 

~ ~ BLDL using image name or issue SETPRT .. @· 
BLDL 0 llmemberfaund•0· Poromeler list 

0 Set buffer ECB code to X'41 1 • 

r- -....., e $$POST JES2 for IMAG facility of pdnt/punch pracessa<. 

r'---. __..., 
_N 

.---I --- _./ 11 LOAD image Fram SYSl.IMAGELIB. 
--..... 

NYSI .IMAGELI~ 

0 If image is UCS • ®. '-
fCB Image 

1® Copy FCB image to the JES2 buffer. 

Supply index byte if omitted+@. @ 
lJCB l111oge _,..! 

L-=>I. - 15 Copy UCS image to the JES2 buffer. ... 

e DELETE the LOADed image. 

0 Set buffer ECB code to X17F'. 

@ $$POST JES2 for IMAG facility of print/punch processor .. 0· 

/ \ 

Output 

MVS 

.1 DISPATCHER ..... 
.... 

MIS 
DISPATCHER ..... 

T ... 

JES2~ 

BUFECBCC 

-') -v Requested 
Image 

~ 

j 

I 
0-
<D 
::J 
Ill 
(I> 
a. 
s:: ::0 
Ill Cl> 
- UI 
(I> -...... 
iii" c;· 
- -Ill (I> 

I a. s:: 
"ti Ill ... -0 (I> 

"'C :'!. 
(I> Ill ... -
~ UI 

0 9. --- CD 
CD S:: s:: : 



~ 
Cf' _.. 
0 

~ 
~ 
@ 
() 
0 
"'O 
'< 
::::!. 
co 
;:?; 

m 
~ 
() 
0 .... 
"'O 
_.. 
co 
CX> 
!JO 
_.. 
co co 
0 

() 
::::T 
Ill 

"'O 
iii .... 
!" 

~ 
(!) 

:T-
o a. 
9. 
0 
"'O 
(!) .... 
~ 
0 
:J 

N 
I 

N co 

~ 

ASSEMBLY 
LISTING 
NAME 

HASPPRPU 

HASPPRPU 

HASPPRPU 

ASSEMBLY 
LISTING 
NAME 

HASPIMAG 

IMGWAIT 

IMGBLDL 

0 

0 
0 
0 
0 
0 

0 
@ 

~ 

NARRATIVE 

Initial entry point of subtask. The EST AE macro is issued to 
establish a recovery environment for the image loader subtask. 
The image name is verified for the printer using SETPRT. The 
MVS macro IMGLIB is used to acquire a OCB address for 
SYS1 .IMAGE LIB. 

Using $$POST, signal the JES2 main task that the subtask is 
initialized and active. 

WAIT to be posted by JES2 main task (post code is zero or a 
buffer address). 

The EST AE macro is issued to cancel the recovery environment 
for the image loader subtask. MVS macro IMGLIB is used to 
close SYS1 .IMAGELIB if post code is zero. 

Subtask terminates with a completion code of zero. 

BLDL is issued to determine if the reque5ted image is a valid 
member of SYS1 .IMAGE LIB. For a 3800 printer a SETPRT is 
issued ISVC 81) instead of a 8 LDL to initialize for the 3800. For 
lhe 3800, control goes to step 18;olherwise, control goes to step B. 
tostep8. 

For the 4245 printer, a SETPAT is issued (SVC 81) instead 
of a BLDL to initialize. For this printer, control goes to 
step 18; otherwise. control goes to label RMGVCSVF to 
verify the image name. 

If the requested image is not found. an error post code is placed 
in the JES2 buffer. 

$$POST is used to activate the JES2 main task and signal the 
error. 

~" ~ 

ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME NAME NARRATIVE 

c :0 
0 (!) 
CD U1 
:J -en ~-
(!) 0 
a. -

HASPPRPU IMGLDAD @ The requ~ted image member is LOADed frum SYSl .IMAGE LIB. 

<8> Ba.ed on the''"' cha<acte> of the ;mage name, .,the• FCB O• 

UCS processing is selected. 

s: ~ 
!!!. ~ 
(!) Ill 
.... --· (!) Ill .... 
Ui iii" 

HASPPAPU IMGFCB @ Image 1s copied from the LOAOed member to a JES2 bi..ffer. 

If the first data byte of the image is not a print pos1t1on mdex, a 

Ui 
"'C 9. .... -
0 Ill 
~~ 

@ 
default of X'Bl' is supphed. 

IMGUCSVF The X'81' is not used 1f the device is a 3800 printer; for this 
printer. the 3800 FCB image is copied to the JES2 main task's 

~ 
9. 

buffer. m 
HASPPAPU IMGUCSCP e Image 1s copied from the LOADed member to a JES2 buffer. 

~ 

HASPPAPU IMGDELET @ DELETE the LOADed image member. 

© The buffer post code 1s set to X'JF'. 

@ $$POST used to alert the JES2 task of successful image loadinq. 



N 
I 

CA> 
C) 

c... 
m 
(/) 
I\) 

r 
a 
(Q 
c:;· 

r 
-< 
1') 
00 
..'.... 
0 
0 
<fl 
1') 

@ 

() 
a 
-0 
'< ... 
<O' 
::J" -Cii 
:s::: 
() 
0 

-? 
...... 
co 
00 
!» 
...... 
co co 
0 

JES2 Purge Processor 
Input 

>YSI ,llASPAC[ 

JES2 
DISPATCHER 

JES2 
DISPATCHER 

Process 

llFio 
0 
0 
0 

~0 

Output 

Obtain permanent buffer storage -0. 

If buffer storage page - released -.©. 
Page - release permanent buffer storage. 

JI 
JES2 
DISPATCHER 

-SWAIT for job. 

Select job. If none ~. 

JCT 
"'-'-'-'-'-'''-'''''''''~ Read JU, save job flags. 

0 Remove job from sy•tem. I ~ ~ > 
101 

'>PIN 101 

i''''''-'''''l~ Read IOT• and purge track•. 

~ Ti":-' 0 Build SMF record(•). ~-------------------'---&------------'"' 

l---SP-;;:;-;~ ® Queue SMF record(•) for writing. 

® l55ue 'Job Purged' me55age -0• 

JE52 
Job 
Oueue 

SMF 
Record 

r c:;· 
CD 
::J 
Ill 
CD a. 
:s::: ::D 
et m 
CD -...... 
iii' c:;· 
- -(J) CD 
I a. 

:s::: 
"ti Ill ... -0 CD 
~ ~-
CD Ill 

~ iii 
9. 9. 

- CJ 
CJ :s::: 
:s::: = 



( 

(_ 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

ASSEMBLY ASSEMBLY 
LISTING LISTING NARRATIVE 
NAME LABEL 

HASPTRAK HASPVPRG 8 Use temporary GETMAINed storage for use as 
buffers for JCT and IOT. Storage is returned 
when processor goes inactive. 

HASPTRAK VGET JOB 0 Attempt to get a job from JES2 job queue 
using SQGET. 

HASPTRAK VREMJOB 0 Remove job from system using SOR EM. 

HASPTRAK VIOTSPCL 0 The local subroutine VIOTPRG is used to read 
the job's SPIN, IOTs and purge, using PURGE, 
the tracks indicated in their track group maps. 

HASPTRAK VSMFPRG 0 If EXT = yes was specified as an SM F 
parameter to OS, two SMF buffers (Type 26 
record and JMR) are build. Else just a 
Type 26 record is built. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 2. Method of Operation 2-31 



N 
I w 

N 

c... m 
~ 
r 
8 ;::;· 

r 
-< 
f\.) 
00 
I ..... 

0 
0 
a> 
r(;i 

@ 

0 
0 

"O 
'< ... 
<O" 
;?; 

05 
s:: 
0 
0 ... 

"? 
..... 
co co 
sP 
..... 
co 
~ 

JES2 Priority Aging Processor 

Input 
JES2 
DISPATCHER 

Process 

__.[ 

$JOHE ADS 4~ -fn\ I I 1 Select firsl active JOE; if no active JOE ~ 

GPRINI : ~ Set aging time interval. I I 
0 $WAIT far time interval ta expire {work). 

JES2 
DISPATCHER 111 

.... 
SJOENI 

JQEPRIO ---:R:l~H-----,. 

JOENEX I r_J 
I h SPRILOW 

0 c r---
11 I I 

© 
JOE '------·~ 

.---l JOEJOE 

::-rr ~ "°'"°"" I ____________ -IJ-0 
JOEPRIO 

I I I I ® 

Select active JOE; ii end of GUeue chain -+<:). 
End of queues ~. 

If job on $HARDCPY queue +0 . 

If job prior;ty less than lower l1m;t or greater than upper l1m1t. ~. 

Increment job's priority. 

Select next active JOE +0 . 
Get t;rst JOE, 1f none +0. 
Increment JOE priority 

Get next JOE, . ~. 
None +0· V 

SWAIT for job. 

JES2 
DISPATCHER _.. 

JES2 
DISPATCHER 

....... 

_ .. 
... 

Output 

JOE 

I 1. "~"'° 
s 

JOE 

~ JOERRIO 

h-
r o· 
(1) 
::J 
(J) 
(1) 
0. 

s:: :D 
Pl (1) 
.... (J) 
(1) ..... ... ... 
iii' (i" 
w© 
I o. s:: 

"'tJ Pl 
0 at 

"'O ~
(1) Pl ... -
~ (J) 

0 9. 
:: ijj 
lll s:: s:: 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

ASSEMBLY ASSEMBLY 
LISTING LISTING NARRATIVE 
NAME LABEL 

HASPMISC GPRSTART 0 The priority aging processor is conditionally 
assembled depending on the value of 
PRTYRATE. If PRTYRATE is zero the 
priority aging processor is not included in 
HASPMISC. 

HASPMISC GRPTIME 0 The agi.ng interval is determined by the JES2 
generation variable PRTYRATE. 

HASPMISC GPRLCLOP The highest priority to be considered for aging 0 is determined by the JES2 initialization variable 
PRTYHIGH. The lowest priority to be con-
sidered for aging is determined by the JES2 
in.itialization variable PRTYLOW. 

HASPMISC GPRJOEA ~ Priority age all JOES off the JQE. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 2. Method of Operation 2~33 



N 
I 

c..> 
.i:i. 

c.. 
m 
(/) 
I\) 

r 
0 
co 
o· 

r 
-< 
I\) 

'f ...... 
0 
0 
a> 
I 

I\) 

@ 
(") 
0 
-0 
'< 
::::!. 
co 
3: 
iii 
s:: 
(") 
0 .... 
-0 
...... 
co 
~ 
...... 
co co 
0 

· JES2 Checkpoint Processor 

Input· 

JES2 DISPATCHER 

Process Output 
$CKPWORK 

,l, rt. 

CKPSTOE 

0 Initialization. ...._..._.._.._.._.,...._..._..._.,..._.~~~.i CKPMITOE I 

... @ 

0 $CALL KREAD1. 

0 If invalid alteration of queues. 
K01 

0 If error while obtaining lock or reading track 1 . 

~ If 1/0 error. 

0 $CALL KREAD2. 

· 0 If 1/0 error. 

0 Detect new or deleted MAS members for Network Path 
Manager. 

1 
,KXX 

$CKW 

~ CKWKSTQE I 
$HGT . 

• ~ 
..... 
-,.. 

$QSONDA BIT OFF 

JES2 CATASTROPHIC ERROR ROUTINE __., 
,... 

JES2 CATASTROPHIC ERROR ROUTINE 

... 
-.-

ENTER CKPT DIALOG 

... .. 
ENTER CKPT DIALOG · 

$HGT 

® Make shared queues available and $POST $0SUSE waiters . ._....._~* $0SONDA TURNED OFF 

$HASPECF 

~..l,. 

r o· 
CD 
:I 
(/) 
CD 
0. 

s:: :D 
Pl CD .... (/) 
CD ,... ........ 
iii" o· 
oo CD 

0. 
I S:: 

"tJ Pl ........ 
O CD 

"C ~-
CD Pl .... --<" (/) 
0 s. - -- OJ 
OJ s:: s:: 



r 
-< 
"' 0) 
I ..... 

0 

~ 
"' 
@ 

0 
0 
"O 
'< ... 
cE" 
3: 
OJ 
s: 
0 
0 

-? 
..... 
co 
0) 

-°' ...... 
co 
co 
0 

0 
::J" 
Ill 
"O 
co ... 
"' 
s: 
<D -::J" 0 a. 
9. 
0 
"O 
<D 

a o· 
::I 

N 
I w 

Cll 

~ 

Input 

JES2 DISPATCHER 

~ t°'"'"''< _,;;.,-~ 

Process Output 

0 Propagate $POSTS from other systems. ..._. .... .._..._.~ 
L $HCT 

~-@ 
$CKPWORK 

@ Start minimum hold interval and maximum internal timers. .. .......... -.-..: CKPSTQE. 

@ ~CALL KPRIMW. 

@ If minhold expired ICKPSTQE), the maximum time to wait before 
doing a CKPT write expired (CKPMITQEI. a CKPT write was 
requested, or a JES2 processor or other address space is 
waiting for tracks, then $POST CKPTW. 

@ $WAIT on CKPTW. 

e 
@ 

Move CKPT resource PCE queue to CKPT Post Queue. 

$CALL KBLOB. 
(Track group block allocation routine). 

CKPMITQE. 

$HCT .. _._.__@"~ 

JES2 DISPATCHER 

$HCT 

) : ::::>@ Time Stamp HCT and this system's QSE ... .._..._..,.._...,..._.~ 

I~·'"""~ 
~ 

~ 

c: ;x:J 
(') <D 
<D en 
::I -
"' :::'!. <D (') 

~~ 
2?. s: 
<D Ill ...... 
-· <D Ill ... 
'iii iii" 

'iii 
.,, 9. ... -
0 OJ 
~ s: 
~ 
9. 
iii 
s: 



N 
I 

I 
c... 
m 
CfJ 
I\) 

I 
0 
«l c;· 

r 
-< 
I\) 
CX> 
I ..... 

0 
0 m 
I 

I\) 

@ 
() 
0 

"'O 
'< .., 
ii" 
;::!: 

Ill 
:!i: 
() 
0 .., 
"'O 

..... 
<O 
CX> 
~ 
..... 
<O 
<O 
0 

Input 

$CALONE 

$CHLOG 

L! r-

Process 
I" '1 

~ 
t--y-i-

.., ,.. 

·@ 

@ 
@ 

~ 

~ 
@ 

@ 

@ 

4Y 

<& 

® 
<& 

$CALL.KSLOCHLG. . 
If dual mode then, 

............................. : 
$CALL KSETPAKS to setup CCW packets. 

$CALL KWRITE to start the write. 

If BLOB was replenished, then $POST JES2 PCEs or other 

address spaces waiting for tracks. ($XMPOST) 

If minhold expired, set final write bit on, else, intermediate 

write bit will be on. 

$CALL KWRITE to wait for write to complete. 

$POST JES2 PCEs waiting for CKPT write to complete . 

$CALL KPRIMW. 

If this is a nodal warm start, 

-+@ 

........ 

If not a final write, then reset CKPMITQE, .................. 
-+@ 
$CALL KTRK 110. 

K22 

If bad parm list or 1/0 was already active, 

Output 

l..o 
$HCT 

-§ 
$CKPWORK 

-~ 
$HCT 

1 

..... I $HASPECF I 

$CKPWORK I c;· 
CD 
::i 
(/) 
CD a. 

-~ O<eM''°' l 
:!i: ::IJ 
Ill CD 
- C/J CD ...+ .., .., 
ii)" c;· 
iii ro a. 

:!i: 
"IJ Ill .., -0 CD 
i::J ~-
CD Ill 

JES2 CATASTROPHIC ERROR ROUTINE 
.., -

-:2" (/) 
0 9. ..... -
- CD 
CD :!i: 
:!i: 



~ cp ..... 
8 
m 
I 

N 

@ 
(") 
0 

"C 
'< ... 
ii" 
~ 
iii 
s:: 
(") 
0 ... 
"? 
..... 
co 
~ 
..... 

~ 

() 
::::1" 
II> 
"C 
!D ... 
!" 

s:: 
CD 
:T 
8. 
Q. 
0 

"C 
CD e o· 
::I 

II.) 

w ...... 

~ 

JES2 DISPATCHER 

JES2 DISPATCHER 

~~ 

Process 
'l' ')' 

...... ~ 

~ 
® 

If 1/0 error. retry; and if still 1/0 error. 

Release CKPT reserve. 
Clear change log. 

~ If $PJES2 in progress, $WAIT forever. 

@ 

@) 

Cancel max interval timer 
Start timer for minimum dormant interval. $WAIT for timer 

to expire . 

If any PCEs, are waiting for CKPT, any PCEs, or address 
spaces are waiting for tracks, line manager requested a CKPT, 
or RMT console PCE is waiting for work . 

.... 0 
@ Reset timer for remaining dormant interval and $WAIT. ~.._..._.,.,.' 

@ Stoptimer. 

... 0 

Output 

ENTER CKPT DIALOG 

JES2 DISPATCHER 

CKPMITQE 

CKPSTQE 

JES2 DISPATCHER 

$CKPWORK 

-~ 
JES2 DISPATCHER 

ffe*"' ~ 

c: :IJ 
0 CD 
CD Ill 
::I -m ~
CD O 

~[ 
!!?. s:: 
CD II> ... --· CD II> ... 
Ui iii" 

Ui 
-0 Q. ... -o CD 
"C s:: 
~ = 

.:<" 
Q. 
iii s:: 



.. 
ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL 

HASPCKPT HA$PCKPT 

KREAD 

KRDPOXEO 

KRDEND 

KWCYCLE 

KWRPWAl1 

KDOWNLVL 

KRSETLOK 

NARRATIVE 

0 Initialization .executed only once. 

• Get addressability to $CKW ICKPT secondary work area) and 
to the $CKB of the CKPT data set to be written to. 

• Copy 4-K records to 110 area . 

• Initialize minhold timer (CKPSTQEI, max interval timer 
(CKPMITQE), and timer in CKW (CKWKSTQE). 

• $GETMAIN Page Pointer List . 

• Initialize cross system $#POST Table . 

• Start minhold timer (from CKPTDEF HOLD value) . 

• Indicate queues are in-storage ($QSONDA bit off) . 

G) Steps 3-5 occur within routine KREADl. 

0 Step 6 occurs within routine KREAD2. 

(!). The specific $POSTs from other systems include: 
1 I MAS resource $POSTs of XEO 
2) Spool offload for sysout transmitter 
3) JOT Post 
41 External writers 

GY The call to KPRIMW here is actually to do a primary write. 

@ The checlts for minhold time left and tracks will not be done if 
it is a nodal warm start. 

@ This call to KWRITE is to initiate the write. 

@ This call to KWRITE is to wait for the write. 

@ This call to KPRIMW will only result in a primary write being 
done if 1 l A RD2 was just done, 21 the sy~tem is shutting clown, 

or 31 it is just after an intermediate write anct the primary write 

count is down to zero. 

@ This call to KTRK 110 will reset the CKPT lock and DASO reserve. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Note: For a more detailed description of the individual $CALLed routmes. see the docurnr.ntation of 
HASPCKPT in Chapter 3. 

2 .. 3e JES2 Logic LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 



r 
-< 
l\J 

Cf' .... 
0 

~ 
I 

l\J 

@ 
() 
0 
"'O 
'< .., 
ie· 
::!: 
jjj 
s:: 
() 
0 .., 

"'O 

.... 
~ s» .... 
ID 
ID 
0 

() 
::::T 
Ill 
"'O 
co .., 
l\J 

s:: 
CD 
S"-
0 a. 
9. 
0 

"'O 
CD .., 
a a· 
::J 

!\) 
I w co 

~ 

JES2 - Buffer Services 
Input 

SBUFPOOL 

SGETBUF 

BUFCHAIN 

STPBPOOL 

SGETPBUF 

BUFCHAIN 

Rl 

~ 

"'"''"'\ 

Process 

j 0 Remove first burfer from the chain and...e.ass 
address to caller. -. 

0 Return to caller • 

0 Place buffer on the free chain. 

0 SPOST JES2 for available buffer. 

© Return to caller. 

.{.........., 

Output 

c: :D 
o CD 
CD m 
::J -(/) .., 
~~ 
s:: a. 

SBUFPOOL 
.... ] 

r 
-V'L 

.... STPBPOOL 

] 

r 
""V 

Rl 
~ l -,... 

a s:: 
CD 111 .., --· CD Ill .., 
iii iii" 

iii 
"'tJ 9. .., -
0 Ill 
~ s:: .., 
-< 

BAL ..... 9. 
jjj 

....... s:: 

SBUFPOOL 
...... ] 

f 
,... 

STPBPOOL 

l -,... 

~ ... 
--.. 



ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL 

HASPNUC $GETBUFR 

HASPNUC $FREEBFR 

2-40 JES2 Logic 

0 
0 
0 

NARRATIVE 

A buffer is taken either lrom SBUFPOOL or STPBPOOL 
depending on the request and the chain Is updated. 

The appropriate buffer pool is used to chain the freed 
buffer. The buff en are placed in the queue in ascending 
order. 

JES2 is SPOSTed for buffers. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 



r-
~ 
Cf' ..... 

! 
@ 
C') 
0 

"O 
'< .... 
cCi" 
=r -iii 
s::: 
C') 
0 .... 
"? 
..... 
co 
00 
00 

..... 
l8 
0 

C') 
=r 
Ill 
"O 
<D .... 
l\J 

s::: 
CD 
g 
0 c. 
2. 
0 

"O 
CD a a· 
:J 

N 
.L. .... 

~ 

JES2 - I/ 0 Services 
Input 

RI 

CCT 
--ri 

DCHWF 
I-

DCHHVTP 

DCJIOTYP 

OCT SUK 

R2 

culler ... 
108 --------

SASYNCQ 

,......~. 

Process 
SEXCP J: 

8 
v ~ 

0 
0 

CHANNEL END 0 
APPENDAGE • 

:J!l["~6 
I1 0 

0 
JES2 DISPATCHER • 

C~., .. ------- -- -- f0 
lJ 

"),( 10 ... 
@ BUfCflAIN 

.--i BllFDCT 

BUI ECBCC r-----
BlJFEWI I--- --1 

I 
I 

G _..DCI I 
-ri I 

t----
L _____ 

I~ K0 .-----I DCIPCE 

I 

...G~r, .<-·~l ..-... 

Output 

OCT 

- "'""'o~• ~""' '"'°'~'"" •o '"''"·'"'"'"""""""1' ..... ~ ~ 
DCTBUFAD 

If not a direct occeH request -.©. 
Buffer 

Validate extent; build channel prog1om and convert MTTR to MBBCCHHR. • ... ~ ~ ................ ,,,,,,,,,,,~ 108 

G>'-+ BUFEWF 
Coll IOS to perform 1/0 request. iEXCP) 

BAL .... 
Return to caller • .... 

SASYNCQ 

I ~ 
Place buffer (108) on queue for SASYNC proces.or ... '-'''-'-''-'-'-'11..,1.L.,.'-'-'-''-'-'-'-'-'-'-'-'-"1 

i! Buffer 

SSPOST work for SASYNC proc"''°'- L.+j 
!OS ...... 

Return to IOS. -.,... 

O.eue empty -+G. 11 
SASYNCQ 

Update chain • 
~ 

] 
SEXCPCT 

Decrement master 1/0 count. 
v 

OCT 

Decrement OCT buffer count. -0 DCTBUFCT 

No action or $POST the PCE for 1/0 -+G 

I 

c: :IJ 
C'> CD 
CD f/J 
:J -IA::!. 
CD C'> 

~~ 
!!?. s::: 
CD II> 
.... --· CD 
Ill .... 
iii iii" 

iii 
"tJ 2. 
.... -
0 CJ 
~ s:: 
~ 
2. 
iii 
s::: 



N 
J:., 
N 

c... 
m 
(/) 
I\) 

r 
0 
cc 
;,:;· 

~ 
cp ..... 
0 
0 
O> 
I 

I\) 

@ 
(") 
0 

~ 
::::!. 
cc 
a: 
aJ 
~ 
(") 
0 ., 

"'!? 
..... 
co 
00 
.co 
..... 
co co 
0 

__., PCE 
, .. 

PC.EBASE2 

I I 

ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL 

HASPNUC SEXCP 

HASPNUC ESENDIT 

HASPNUC ECHANEND 

HASPNUC $ASYNC 

HASPNUC ANOK 

il -" k0 $POST processor for 1/0 then go to 0 
~ 

0 Check for 1/0 error - none -G . 
G Issue $10ERROR message. 

e FREE buffer +0 

® SWAIT for work. 

G T ronsfer control to JES2 dispatcher. 

NARRATIVE 

8 The synchronous activity to be performed at 
1/0 completion is established. 

8 The channel program is executed using a 
standard OS EXCP macro. 

8 The ASYNC processor operates under control 
of the JES2 task and performs functions related 
to the completed 1/0. 

0 The queue of 1/0 completed buffers is tested 
for any elements. If none, $ASYNC processor 
$WA1Ts for work. 

e The chain is updated by use of the CS 
instruction to prevent interference from the 
channel end appendage. 

\, \ 

SHASPECF 

r,:=>[ 
PCE 

~ -v PCEEWF 

PCE 

') PCEEWF 
~ 

JES2 DISPATCHER_ ... 

JI"' 

ASSEMBLY ASSEMBLY 
LISTING LISTING NARRATIVE 
NAME LABEL 

AFREE 0 If an 1/0 error is detected, the JES2 macro 
$10ERROR is issued to log the condition on 
the operator console. 

AFREE1 e The buffer is freed via $FREEBUF services. 

/' 

r 
O" 
CD 
:J 
Ill 
CD a. 
~ Jl 
Ill CD 
- Ill 
CD -., ., 
iii';,:;· 
- -111 CD a. 
I~ 

.,, Ill 

0 CD 
"O ::::!. 
CD Ill 

~ iii 
0 g, = ffi 
aJ ~ 
~ = 



r 
-< 
N 
co 
..'... 
8 
m 
I 

N 

@ 
() 
0 

"C 
'< .... 

'° ;:?; 

CD 
s:: 
() 
0 .... 

"C 

.... 
co co co 
.... 
IO 
co 
0 

() 
::J" 
I» 
"C 
CD .... 
N 

s:: 
<D -::J" 0 
Q. 

g, 
0 

"C 
<D .... 
~ 
0 
::J 

I\) 
I 

.1:1> w 

~ 

JES2 Timer Services 

Input 

Time-of-Day Clod 

STOl 

TOETIME 

$HCT 

noeoue 

Time-of-Day Clock 

$TOE 

TOECHAIN 

TOETIME 

TOE POST 

SS TIMER 

MVS TIMER Exit 

JES2 
DISPATCHER 

,....,iJ:I!,, 

Process 

0 
© 

0 
0 
© 

~l'.l r.~~ .. -*~~ 

Convert reque•t to hundredth• of •econds • .,._ ................................................ ...:!r:., ................................ , 
'""-~'"'no'~""''"""'""-"""""'· ,__ ... " ,. ........................ 1 l 
Merge new $TQE onto chain by magnitude of requested interval. .................. ~ .... ~ .................... 'J! ilJ! 

Set MVS TIMER lo the interval of the STQE on chain. 

BR 

Return to caller. 

$POST work for STIMER proceS>or. 

Post JES2 task. 

ii.!! I I ii.!! 
I I I ii.!! 
ii.!! I I ii.!! I 1....,~ 
~, ............ ~ 

RETURN 

Return to MVS. ······························~ 
Locote timer ~ueue element; end of chain+®. 

,....,,,. 

Output 
RI 

$TOE . I 

TQETIME I 

$HCT 

~ STQE 

h 
TQETIME 

$HCT 

TQEOUE 

STQE 

Compensate $TOE for time expired in current interval. ............................................ ,.,. .... , ............ , ................ ~ 
ITIME 

If time not expired •0· 
SPOST PCE requesting timer service. 

Update $TOE chain + 0. 
Set MVS timer to the interval of the first STQE on chain. 

0 SWAIT far work. 

JES2 DISPATCHER 

--------- - ·-··------- -- -, 

r c;· :::0 
<D <D 
::J (/) 
(/) ~ 
<D -· 
Q. u 
s::~ 
el. s:: 
~I» 
iii. CD - .... 
(/) -· I» 
I Ci) 

~a 
0 -

"C CD 
<D s:: 
~ 
g, 

iii 
s:: 



N 
I 

t 
c:... 
m 
CJ) 
N 
r-
0 

CQ 
0 

~ 
co 
I ...... 
g 
cp 
N 

@ 
() 
0 

~ .... ce· 
::r 
ijj 
s::: 

~ .... 
"'!' 
...... 
(0 
co 
SI' 
...... 
(0 

~ 

Time-of-Day Clock 

RI 

$TOE 

TOECHAIN 

ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL 

HASPNUC $STIMER 

HASPNUC IADJUST 

HASPNUC INEXT 

HASPNUC ISETINT 

HASPNUC I RETURN 

\. 

$JTIMER 

8 

0 

0 
© 
0 

Compensate all STOE(s) for time expired in current interval. 

$POST any PCE(s) whose time interval has expired. 

Locate $TOE related to request. 

0 If CANCEL is requested, remove $TOE for request from chain. 

® Set MVS timer to interval for first $TOE on chain. 

@ Calculate interval remaining for requesti.og $TOE. 

@ Return to caller. 

ASSEMBLY 
NARRATIVE LISTING 

NAME 

The parameter value passed is converted to HASPNUC 
hundredths of seconds (see $STIMER macro 
description). 

HASPNUC 
The PCE for any $TOE whose time has expired 
is $POSTed for work and the $TOE chain is 
updated. HASPNUC 

The new interval is set using the MVS macro HASPNUC 
STIMER. 

HASPNUC 
The return is to the register link. 

'·· "· 

a"''J $HCT 

$TOEOUE 
~ ............................ 1 

I l ........ w 
$TOE 

TOEOUE 

RO 

BR 

-'-"-
ASSEMBLY 
LISTING ·NARRATIVE 
LABEL 

ITIMEUP 0 This is the asynchronous exit for the STIMER 
macro. 

$TIMER 0 The subroutine IADJUST is used to perform 
steps 9 through 13. 

@ The subroutine ISETINT is used to set the MVS 
time interval for the first $TOE by executing 
the macro STIMER. 

$TTIMER @ Entry here is from the JES2 macro $TTIMER. 

IRET1 G Same as 14 above. 

./ ., 

re;· 
CD 
::::s 

i 
s::: ::D 
; !! ........ 
iii' c;· 
iii iii c. 
I :S:: 

"ti Ill 
.... -0 CD 

"C ~. 
CD Ill .... -
~Ill 
oa --- to 
to :s:: 
:s:: = 



r 
-< 
I\) 

'?' .... 
0 
0 
O') 
I 

I\) 

@ 
(") 
0 

"'O 
'< 
~co 
~ 
CD 
~ 
(") 
0 .... 

"'O 

.... 
co 
(X) 
(X) 

.... 
co 
<O 
0 

0 
:::T 
$1) 

"'O ro .... 
I\) 

~ 
(I) 

5' 
0 
0. 

9. 
0 

"'O 
(I) .... 
~ 
0 
::I 

I\) 
I 

.a::a. 
UI 

~ 

JES2 - HASCJBST Job Select 

Input 

c",. ,.. 

1--------
[ • SSCTSVS2 

$HCCT 
- .. 

JB FOUND 

I-
I---

(Batch Monitor 
Cont inunt ion) 

RI 

CS SOB .. 
.--- t SSIB 

....._ SSIB .. 
JOBID 

[>JB 

t SUSE 

...... 

I--

MVSJOB 
SELECT REQUEST 
Process 

_J .r 
, __ 0 Create SJB if required. 

.>0 Stop initiator if required. 

0 Await job selection by HASPXEQ. 

0 Stop initiator if required. 

_. 
G Read in JES2 control blocks for job --. JCT, IOTs, OCTs. 

NOT BATCH MONITOR CONTINUATION 

0 If request-job-id, return to function. 

0 Perform OPEN for required data sefs -. Internal Text . Job Journal 

• System Messages 

• JES2 Job Log 

0 LINK to SWA-creote, IEFIB600. 

G) If return code zero from IEFIB600, or if job was selected 
by job-id, make sure Job Journal is open for 
output and return to initiator. 

e If non-zero return from IEFIB600 and job 
selected not by id, terminate job. 

BATCH MONITOR CONTINUATION 

0 Re-open each batch monitor output data set. 

@ Re-open the batch monitor input data set and prime it, 

@ Return ~o complete proceHlng of 
batch monitor's GET request • 

1 

~ 

Output 

c: ::IJ 
0 (I) 
CD en 
::I ..... 
en ~-
(I) 0 
0. ..... 

(I) 
~ 0. 

SSOB 

""> v 

!!l. ~ 
(I) $1) 

""' ..... -·(I) 

~ ~-
en ~ 

INITIATOR ....... • SSIB t--
en 

"'O 9. 
Ill"' 

.- + SSJS 

.... -o CD 
"'O ~ 
~ 
~ 

INITIATOR __.. SSIB ....... 9. 
..... 05 .. ~ 

t SUSE r---i 

....._ SSJS ... 

t MACB 

,....---- + JACB 

,--- • TACB 

SJB ~ , .... 

t JCT 

+ IDT 

t SPIN I OT t---

t OCT r-
INITIATOR ... 

SJXB 
Ill"' ...... System ... 

Messages 
HJEJBSL ... ACB 

.__ r-. Job 
Journal Ill"' 
ACB 

4 Internal 
Text 
ACB 

JCT ....... 
_I' 

JOTs .... 
I'. .. 

SVCXBM ... IOTs 
~ r. .. -..-

OCTs .... r . . . 



N 

~ 
c.. 
m 
Ci> 
l\J 

r 
0 

CCI 
Ci" 

r 
-< 
l\J 

If .... 
0 
0 
O> 
Kl 
@ 
(') 
0 

"'O 
'< .... 
i0· 
~ 
iii 
s:: 
(') 
0 .... 

"!=' .... 
<O 
CD 
51' .... 
~ 
0 

ASSEMBLY 

LISTING 
NAME 

HASCJBST 

!~ 

ASSEMBLY 
LISTING 

LABEL 

SSIJSEL 8 

JSBLDSJB 0 

HJS150 0 

JSERCY 0 

JBFOUND 0 

JBFXBMC 

HJS320 0 

NARRATIVE 

A new SJB is needed if pointer SSI BSUSE is 
zero. This occurs for every selection by job id 
and for the first request from each initiator 
for a job to run. 

The initiator-stop flag, SJB2PNIT, may have 
been set later on in this routine if common 
storage resources are insufficient to run a job. 

The SJB is now on either of two job communi-

cation queues - CCTPCLS or $CCTPNUM. 
The pending-by-class queue means that 
HASPXEO is free to select for this initiator, 
according to its own criteria, any job not read 
in through one of the two special internal, 
readers. The pending-by-number queue means 
that HASPXEO must select the job whose 
number. or job id, appears in field SJBJOBID. 
Such a job was read in through either 
STCINRDR (for started tasks) or TSOINRDR 
(for TSO logons) and received its JES2-assigned 
job id by issuing the ENDREO operation to 
its internal reader. 

The initiator-stop flag, SJB2PNIT, may have 
been set from the JES2 memory in response to 
the operator command $PIN. 

It should be noted that job selection by 
HASPXEO is entirely on in-core process. From 
the end of conversion to tbe beginning of 
breakdown for output, the only reading and 
writing of HASP control blocks is done in 
HASPSSSM (except for spun and held data 

sets' IOTs). 

HASPXEQ stores in the SJB the MTTR of the 
job's JCT. The JCT in turn contains MTTRs 
that begin chains of input and output IOTs and 
OCTs. 

For execution batch monitor continuation 
(XBMC), IOTs must be read in differently, 
for the preserved in-core output IOTs of a 
batch monitor cannot be overlaid. Such IOTs 
contain PDDBs created by allocation of 
subsystem data sets when the batch monitor 
was first started. 

The request-job-id subsystem service sets up a 
job environment so that a system component 
can allocate and create subsystem data sets. 
The MVS system log uses this service. 

ASSEMBLY ASSEMBLY 

LISTING LISTING 
NAME LABEL 

HASCTBST HJS352 0 

HJS582 0 

HJS595 0 

HJS840 G 

HJS630 G 

0) 

@) 

NARRATIVE 

Subroutines within HASCJBST are used, rather 
than SVC 19, to "fake-open" these data sets. 
The ACBs (and, for the JES2 job log, an RPL) 
are a part of the SJXB. The System Messages 
and JES2 job log data sets are here re-opened 
for continuation; they were originally opened 
for JCL conversion and continuation MTIRs 
were saved in the JCT. 

Call IEFIB600 to create the Scheduler Work 

Area. For a new job, it constructs in-core 
control blocks from the internal text data set. 
For an old job (warm-starting or restarting), it 
requires the Job Journal be present and open 
for input. Many JCL errors that were not 
detected by the converter are detected here in 
the interpreter function, the function which 
creates in-core scheduler, control blocks. 

If the Job Journal was open for input, SWA 
create will have issued POINT as its last 
operation to both the Journal and the System 
Messages data sets. Without disturbing the 
result of the POINT, code here converts the 
Journal to an output data set. 

If an error code is returned from IEFIB600 
for a job rejected by job id, the job must 
nevertheless be passed to the initiator, our 
original caller, which was started specifically to 
run the job. 

The job-termination subsystem function 
serves in addition as a subroutine here of job 
select. 

Each batch mo·nitor output data set retains 
intact its SDB and buffers. It must be assigned 
a new starting track from the output IOT 
whose track group map has been replaced (at 5, 
abov.e) with the user job's track group map. 

The previous user job running under this batch 
monitor was terminated by a GET at 
data to this data set. 

Completion of this GET request starts the new 
user job in execution. 

r 
O" 
(I) 
::I 

"' (I) 
0. 

s:: :0 
Ill (I) -"' (I) -........ 
iii" c;· 
'iii ii 
I o. s:: 

"ti Ill 

.g ~ 
(I) Ill .... -
-:< "' 
o a .... -
- CJ 
CJ s:: s:: 



~ 
Cf' ..... 
0 
0 
m 
~ 
@ 
(") 
0 
"'O 
'< ... ce· 
=r -
OJ 
s::: 
(") 
0 ... 
"? 
..... 
co 
~ 
..... 
co co 
0 

(") 
=r 
Ill 
"S 
<D ... 
N 

s::: 
<D s: 
0 
0. 

9. 
0 

"'O 
<D ... a c;· 
::I 

N 
Ji. ..... 

~-

JES2 - HASPSSSM Job Terminate 
Input 

~'"" --.. 

,-- t SSCTSVS2 

__... $HCCT .... 
t---
t----

RI 

CSSOB .. 
.---i t-- t SSIB 

_._ SSIB 
-.. 

I-· 

[SJB 

t SUSE 

-.. 
t----

~ .... ~~' /-:_.._._~w.1\ 

Process 

_J 
1 Write appropriate message. [ 

0 Purge PSO control block II present, 

0 Close sul»ystem data sets if required~ 

0 Free all 50Bs if required. 

0 Perform track group map purges if requ ire::d. 

0 Checkpoint IOTs, JCT if required. 

0 Free storage occupied by 101 s if required. 

0 Free storage occupied by OCT s. 

0 Cause HASPXEQ to terminate or re-enqueue the job., 

G Free the HASP JCT if required, 

Output 

:>;>VD 

-.? 

.....- t SSIB 

__... SSIB .. 

[SJB 

t SUSE 

-..i 

t JCT 

t IOT. 

t OCh 

t SDBs 

t SJXB 

,......., 

c :ti 
0 <D 
<D Ill 
::I -g: ~· 

~~ 
as::: 
<D Ill ... --· <D Ill ... 
iii iii" 

iii 
'ti 9. ... -
0 OJ -g s::: 
::I. 
'< 
9. 
OJ 
s::: 



N 
I 

t 
c... 
m 
CJ) 
l\) 

r 
0 co c;· 

r 
~ 
cp .... 
0 
0 
rt> 
N 

@ 
(') 
0 

~ .... us· 
;r 
OJ 
s::: 
(') 
0 .... 
1' .... 
~ .... 
co 
i:g 

ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL 

HASCJBST HJEOOO 8 

HJC110 0 
HJEAOO 0 
HJE800 0 
HJEDOO 0 

HJECKPT 0 
HJEGOO 0 

ASSEMBLY 
NARRATIVE LISTING 

NAME 

The appropriate message, as well as other HASCJBST 
required processing throughout this module, 
is determined from flags set by the HJEOOO 
caller. 

Purge outstanding PSO requests, if necessary. 

No closes are performed for a batch monitor 
ending without a user job. 

SDBs are preserved if entry is for XBM con-
tinuation. 

If a job is terminating, all of its input track 
groups are purged here. If a job is to be rerun 
by JES2 (not an MVS restart), all of its output 
track groups are purged except those it had 
when it began execution. Otherwise, there is 
no purge . 

. 
No checkpointing is permitted for a batch 
monitor ending without a user job. 

IOTs must be preserved if entry is from 
HJEXBM - user job ending normally. Output 
IOTs contain PDDBs to be used when running 
the next user job . 

ASSEMBLY 
LISTING NARRATIVE 
LABEL 

HJEG90 0 Output control table space is unconditionally 
freed. 

HJEXEQ G) The SJB is queued on one of queued 
CCT JTERM and CCT JRENQ. When 
HASPXEQ completes processing, it cross-
memory posts this processor, which continues. 

HJE100 @ For batch monitor continuation. 

r c;· 
CD 
::I en 
CD a. 
s::: :D 
~ !! ........ 
iii" c;· 
iii <D 
I a. 

s::: 
"ti Ill 
.... -0 CD 
"O ::::!. 
CD Ill .... -.:<' C/l 

0 Q. 

= iii CD S::: s::: : 



~ 
I\:) 
00 
I __.. 
g 
Ol 
I 

I\:) 

@ 
() 
0 
u 
'< 
~co 
;?; 

CD 
s:: 
() 
0 .... 

""? 
__.. 
<O 
00 
00 
__.. 
<O 
<O 
0 

() 
;j" 
Ill 
u 
<D .... 
!" 

s:: 
!B. 
;j" 
0 c. 
9. 
0 
u 
CD .... 
~ 
0 
::J 

I\) 
I 

ol:lo 
co 

~ ·-~~ 

JES2 - HASPSSSM End-of-Memory 

Input 

RO 

CCTJLOCK 

CCTJPCLS 

CCTJPXBM 
SSCTSUS2 

CCTJPNUM 

CCTJXCLS 

CCTJXNUM 

CCTJTERM 

CCTJRENQ 

$HCCT 

CCTJxxxx 

CCTRORS 

CCTHAVT 

RI I , •• 'HAVT' 

t ASID l 

t ASID 2 

t ASID 3 

SSEN I I L.l ASID 4 

HASB ,;,q ~ 
t QUEUE 

I I 
ASCB 

Process 

0 Pu•ge job communkaHon queues lock. 

Purge internal reader DCTs owned by memory. 

Purge subsystem job blocks owned by memory according to job 

communication queue type -

• No queue - free the SJB. 
• CCTJPCLS - free the SJB and start another initiator using SVC 34. 
e CCT JPN UM - Notify HASPXEQ. Then free the SJB. 

• CCTJPNUM - Notify HASPXEO. Then free the SJB. 
• CCTXCLS or CCTJXNUM - Notify HASPXEO. Then free the SJB. 
e CCTJTERM or CCTIRENQ- Notify HASPXEQ. Then free the SJB. 

Output 

~ 

$HCCT 

CCTJxxxx 

CCTIRORS 

CCTHAVT 

INTRDR DCT 

'HAVT' 

INTRDR DCT 

t OCT 

INTRDR DCT 

t OCT 

FLAGS 

r 
-· :Il 
0 CD 
CD rn 
::J ..+ 
(/) .... 
CD -· 
c. ~ 
s:: ~ 
~ s:: 
~- ei 
Ill CD - .... 
(/) -· 
I 
~ 
(/) 

'tl 9. 
0 -

I 
u CD 

I CD S:: .... 
< 
9. 
[jj 
s:: 



ASSEMBLY ASSEMBLY 
LISTING LISTI.NG 
NAME LABEL 

HASCJBTR HEN100 8 

HEN200 0 

HEN300 0 

2-50 JES2 Logic 

NARRATIVE 

The job communication queues (JCQ) lock is 
a private, JES2 version of the MVS cross-
memory-services (CMS) lock. In an end-of-
memory situation, it is invalid for the JCQ 
lock to be held by the ending memory. 

Each allocated internal reader OCT contains the 
address of the ASCB it is associated with, for 
cross-memory posting purposes. If that address 
matches the terminating ASCBs address, the 
OCT is unallocated and any wait elements 
created by internal-reader allocation are cross-
memory posted. 

The HASP address-space vector table (HAVT) is 
analogous to the MVSASVT. Each word of the 
HAVT contains a pointer to the $HASB control 
blocks associated with the particular address 
space. The $HASB, in turn, points to common 
storage control blocks, which are freed by 
end-of-memory processing. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 



~ 
I\) 

'f' ...... 
0 
0 
Cf' 
I\) 

@ 

0 
0 
-0 
'< ..... 
tO 
;?; 

OJ 
s:: 
0 
0 ..... 
-0 

...... 
co 
00 
00 

...... 
co 
co 
0 

0 
::::; 
Ill 
-0 
Ci) 
..... 
I\) 

s:: 
(I) 

:;: 
0 
c. 
2. 
0 
-0 
(I) ..... 
~ 
0 
::J 

N 
I 

Ut 
~ 

~\ 

JES2 - HASCDSAL Allocate 

Input 
RI 5518 

CS08 

. 
--. .-- + 5J8 

I-
t 5518 1---J 

P50 

~ t SSAI 

5)/\1 ... 

_..,_ SJB 
I--

.---- t JI CB 
-j 

t PSOP 
L.._ 

r- + INIOT 
__..,II CB ..... 

I + JCT 

t OCT 

RO 

SSCVI ... 
SSCTSUS2 

~ $HCCT 
~IOT 

- t INIRDR 

t IOI 

.--- + IRWT PDDBs 

OCT 
INTRDR 

_...Wait ~ lernent OCR 

OCR . . 
• 

_.. INTRDR DCT 
JCT 

..... 

t INTRDR 
MCLA5 

' 

~ 

µ 

f--

t--i y 

.,. 

... 

Process 

0 Validity - check or create DSNAME. 

0 SYSIN allocation. 

• Find correct PDOB. 

• Construct SOB • 

0 SYSOUT allocation (non·l~HRDR). 

• Access output statements using the SJB . 

• Use SJF services to resolve output refefences. 

• Retrieve keywords from the SWB chain . 

• Construct PDOB (or 1f a PDDB already ex1~ts, as 
in restart, use it). 

e For multiple dest1n,Jt1ons, construct addt1on;.1I PDOB~ 

• Construct i.l SOB. 

0 SYSOUT ollocotion (INlRDR) 

• Find and m!>iun an INTRDR OCT. 

J-i 
5 PROCE55-SYSOUT allocation. '1 . Construct SOB • 

0 Checkpoint and return lo caller .. . Checkpoint flogged IOTs Im 5Y50UT non-INTRDR • . Retum to caller .. 

_......_ 

Output 
RI 

( 
_.5508 

Retum Code 
.....! 

RETN 

[ JssAL 

_.. 55AL . 

Nome of 
Subi;ystem t 55CM 
to OPEN .. 55NM 

INTRDR DCT 

SDB 

r-- AIOI 

r- PIOT 

PDD8 

.__ 
ilOT . 

or 

TGMAP 

PDD8s 

__.IOT . 
TGMAP 

I 

I--

~ 
1- 0, 

... 
1-

t--

14--

c :D 
0 (I) 
(I) en 
::J ..+ 

"' :::!. (I) 0 a. ..+ 

s:: ig_ 
2l. 3: 
(I) Ill 
..... ..+ 
-·(I) 
Ill ..... 
'fj; iii" 

'fj; 

"O 9. 
0 [ii 
~ s:: 
;:::. 
'< 

2. 
[ii 
s:: 



N 
. I 
(n 
.!\) 

5; 
en 
N 
r-
0 cc 
c;· 

r
-< 
N 
<;:> 

8 
~ 
@ 
() 
0 

"O 
'< .... 
cCi" 
::::T -m 
31:: 
h 
0 .... 
"!=' ... 
ID 

~ .... 
ID 

~ 

ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL 

HASCDSAL SSIALOC 8 

HALI 0 

HAL015 0 

-

,/,.--

NARRATIVE 

Data set name is xxxx.JJJJJJJJ.TNNNNNNN 
where xxxx - subsystem name 

J - eight character jobid 
T - I for Sy5in 

0 fqr Sysout 
P for Process Sysout 

N - Dataset number 

If flag SSALASNM in SSALFLG1 is set, sub-
routine HALCRDSN creates a data set name 
using x x x x from CCTSSNM, JJJJJJJJ from 
SJBJOBID, and n n n n computed from 
JCTPDDBK. 

Given the address of the first IOT, $PDBFIND 
scans to find a PDDB whose PDBDSKEY 
watches the binary equivalent of nnnnnnnn in 
the dsname in the JFCB. 

After testing to see if the allocation IDT is 
pointed to by the SJB, check SSALASNM to 
see if the data set is dynamically allocated; if 
so, JES2 has already assigned a name to it; go 
build the SDB. 

If the data set is not dynamically allocated, get 
the next PDDB slot (using $PDBBLD) and use 
SJF services to resolve any references from the 
OUTPUT=parameter to OUTPUT statement. 
Use HASJFREQ to examine the SWB chain 
and retrieve the keyword associated with the 
OUTPUT= parameter. Merge into the JFCB 
the final characteristics of the PDDB and create 
additional PDDBs in the normal IOT for multi-
pie destinations. Finally construct the SDB. ___ ., ... -

ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL 

HASCDSAL HALR 0 

HALP 0 

HALD NORM 0 

NARRATIVE 

Internal reader allocation is caused by u,se of 
the reserved user writer name 'INlHDR' with 
the SYSOUT keyword. The $HCCT points at 
CCTIRDRS to a chain of INTRD.R DCTs built 
by HASPIRMA in common storage. This chain· 
is scanned with the CMS lock held to find an ' 
available DCT. For control of internal-reader· 
subsystem data sets, this DCT is used instead 
of an SDB. 

The PSO control block created during the 
previous process-sysout subsystem request, 
and pointed to by SJBPSOP, contains the 
dsname and PDDB for a PS-type request. 

Subroutine HCBCK is used to checkpoint 
flagged direct-access-resident control blocks 
(JCT, regular IOTs) for the case of 
non-INTRDR SYSOUT allocation. 

On return to the caller, SSALSSNM contains 
a pointer to the name of the subsystem to be 
used to open this data set, and SSALSSCM 
contains a pointer to the SDB created (or to 
the DCT, for internal reader). Typically, 
the caller saves these fields in the DSAB at 
DSABSSNM and DSABSSCM for OPEN. 
The pointer stored at SSALSSCM reappears 
on an OPEN, subsystem request in the SSDA 
at SSDASSCM. 

'\ 

\. / 

r-g· 
:J 
UI 
(I) 
Q. 

31:: :D 
Ill (I) 

CD ~ ........ 
p;· c;· 
en Cii 
I a. 
. 31:: 
'."O Ill 
.... -0 (I) 

~ ~l .... -'< UI 

0 g, --- CD 
CD 31:: 
31:: = 



!:( 
~ ..... 
0 
0 
'?' 
I'\) 

@ 

0 
0 

~ 
::!. 

IC 

~ 
iii 
s: 
0 
0 ., 
::i 
...... 
co 
CX> 
!" 
..... 
co co 
0 

0 
=s-
II> 
"C -CD ., 
!" 
s: 
CD -=s-
0 
0. 

2. 
0 
"C 
CD ., 
a 
<>" 
:J 

N 
I en w 

'~ 

J ES2 - HASCDSOC Open 

Input 

Rl Restart Buffer 

~ 
"'?! 

..... 

JfCB 

......... ~ 

r--
1 1----, I 

I r-
1 I I 
I I I t SSDA 

~ SSDA 
"'?! 

t BUfk 

1--t JILB 

! IJlB 

..... I I 1-r-- -l_J I 

I : : 
1---, 1--T -

DSNAME 

t SSCM DlB ~_:..._ __ _ 
.----1 t DCB 

~ ACB ..... 

SOB 

O< 

I t PIOT I--
t PDDB 

I I PDDB's IOT 
I 1• 

141 P008 t--

L--+.DCT 

I i--

I I I 
I I r-t-
1 I I I 

IL+' I -I T 
L_-+ -+-

L f-
I I 
I I 
I I 
I I 
I I 
I I 
l-t--
1 I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

Ji -- I 

I 
I 
I 
I 

___ _J 

Process 

-~ 
I 
t-~ 
I 
-~ 

J 
~ rl 
f-~ 
f-

+© 

0 

~;;;,..\ ....... 

Output 
Rl 

~ Validity-check DSNAME. 
SSOB 

~ 

Special INTRDR (STCINRDR, TSOINRDR) -
find cor<ect INTRDR OCT. 

!: ::D 
o CD 
CD fll 
:J -m ~~ 
CD O 
0. iii 
s: 0. 

a s:: 
CD II> ., --· CD 
II> ... 
'iii iii" 

'iii 

t SSDA 

:J All INTRDRs -
Set fields DE BAPPAD, ACBINRTN, ACBJWA SSDA 
and return. 

(;) 
.... 

SYSIN data sets -. Get prott:"Ctt:"d and unprotected buffers. t DEB t---• If checkpoint restart, position data set and rt:"tum. 

"O 2. ., -
0 IIJ 
~ s: 
::l. 
'< 
2. 
iii 
s: 

• Otherwise prime data set and Nturn. t :J SSCM 

SDB 
SYSOUT (non-INTRDR) - ...-• lncrem+mt OPEN counter. 

• If OPEN counter was non-zero, return • 

• For new Jato set {PDBINULL set to )). c: t IRBAD - Provide unprotected buffer. 
- Provide initial data set track. t DCBAD t---i - Merge JfCB Fields into PDDBh). 

t • For previously-opened data set, r-v' APPAD - Pro\l'ide unprotected buffer. 
- If chec~point restart, position data set.~ 

AC8 .... 
Process-sysout doto sets - I"" 

• Provide protected and unprotected buffers. 

~ • P05ition data set. INRTN 

Retum to caller with fields 
DEBAPPAD, ACBINRTN, and DEBIRBAD >et. A 

SOB ..... .... 

~ U8f 
-y"'1 

PBF 

PDDB t--

PDDB .... 
I""" 

~ MTTR 



N 
I 

Cl1 
.i:=. 

c... 
m en 
I\) 

r 
0 
IQ 
('i' 

r 
-< 
I\) 
()) 
I .... 

0 
0 
cJ) 
I 

I\) 

@ 
() 
0 
'O 
'< .., 
ii' 
3: 
OJ 
s:: 
() 
0 .., 
'O 

.... 
<O 
()) 
()) 

.... 
<O 
<O 
Cl 

ASSEMBLY 
LISTING 
NAME 

HASCOSOC 

ASSEMBLY 
LISTING 
LABEL 

SSIAOPN 8 

HOC560 0 

osoooo 

ffi 

OS0110 8 

NARRATIVE 

The data set type (IOP) is validated. Message 
HASP352 will eventually be issued if an error 
is detected. 

For performance reasons, the special internal 
readers are not allocated nor unallocated but 
merely opened and closed. IEFJSWT maintains 
serialization and is the only user of these data 
sets. 

OEBAPPAO points to HASPAM for subsystem 
data sets. It is used by SVC 111 to reference 
HASPAM+4, which contains the address of 
SVCHAM. ACBINRTN points to HASPAM 
and is used by the expansion of a VSAM request 
macro-instruction. The first byte of this full-
word has bit X'04' set if the data set is an 
internal reader. OEBIRBAO points to the SOB if 
it is not an internal reader. Else ACBJWA points 
to the internal reader OCT. 

Subroutine HOO LO I NP provides buffers for an 
input data set. 

The RESTART subsystem request processor uses 

HOJOPEN to position a data set for an auto-
matic or deferred checkpoint restart. The argu-
ment list (SSOA) is the same for RESTART as 
for OPEN (and CLOSE and CHECKPOINT), 
with flags SSOAAUTO and SSOAOEFR to dis-
tinguish from normal OPEN. For automatic 
checkpoint restart the RBA saved in the check-
point record by SSI OACKP is valid and 
positioning is rapid. For deferred checkpoint 
restart the RBA is invalid and a logical record 
counter, saved in the checkpoint record by 
SSI OACKP, must be used to count through the 
data set; positioning is slow. 

ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL 

HASCOSOC OS0200 0 

0$0110 0 

NARRATIVE 

An output data set may be open to more than 
one user at the same time. It is the user's respon-
sibility to synchronize use of the data set. 

Subroutine HONEWOUT supplies an unprotected 
buffer and a starting track for a new output data 
set. On return, fields LRECL, RECFM, UCS, 
FCB, and FUNC are merged into the POOB to 
cover the case of user JFCB modification before 
OPEN. 

Subroutine HOO LO OUT supplies an unprotected 
buffer for an old output data set. 

Positioning is necessary only for automatic 
checkpoint restart. Two cases arise - the data 
set was open at checkpoint or closed at check-
point. For the former case, the checkpoint 
record contains a positioning RBA. For the 
latter case, the data set is positioned to 
file. 

Subroutine HOOLOINP provides unprotected 
and protected buffers. 

r 
2· 
:i 
(/) 

CD a. 
s:: :Il 
Ill CD - (/) 
CD -.., .., 
iii" ('i' 
Vi <» a. 

s:: 
-0 Ill .., .... 
0 (ii 

"'C ~-
CD Ill .., --:< (/) 
0 2. - -- OJ 
OJ s:: 
s:: = 



r 
i\'3 
CD 
I ..... 

0 
0 
O> 
I 

l\J 

@ 
(') 
0 

"O 
'< ..... 
c2i" 
::J" -
CD 
s:: 
(') 
0 ..... 

"? 
..... 
co 
CD _ CD 

..... 
co 
co 
0 

(') 
::J" 
I» 
"O 
CD ..... 
l\J 

s:: 
CD -::J" 0 c. 
9. 
0 

"O 
CD ..... 
!2. 
i5" 
::J 

N 
I 

(II 
(II 

~ 

JES2 - HASPAM Get 
Input 

RO 

[ func.tion Code 0 J 
RI 

I I 
RPL 

-."] 
I-~ 

r--i t DACB 

t AREA t-~ 
t BUfl I-

_.. ACB ... 
t lXLST t--

r--i t DEB 

fXIT LIST 

~ I 
_..DEB .... ~ 

.--- • SDB 

_..sos ... 
---1 

HCI, FLG2 t-_.gt 

,.--- t UBf 

t PBf 

SVC HAM 

IOS 

t ECB I- -+00 

I 
I 
I 

~ .. . \ 

Process 

J" 
-. 1,8 

0-~·1 
0--+0 

I 0--+0 
I 0--+8 
l .. 

-. ~ 
0- ... 1 

0--+0 
l 

• 
7 

~ 
k 
I 
~+@ 

I +0 
I +@ 
I 

l~ ,.{;.,~ ~ 

Output 

1=J (HAMGET) Data available - move data to user 
and return. Jr- RPL 

HRPLEXIT __.. 
~ 

Dato set at end-of-data - TT __!"": t DACB 
....._ 

Return to user with code RPLEODER • 

~ I T t1RPI fXIT _ ... 
J 

FDBK .... 
1/0 error - 1 .... 

t AREA Return to user with code RPLRDERD. 

:I HRPLEXIT __.. 
~ RLEN 

Issue HAMSVC (function HSVCEOBG) to reod next block or, if ... RBAR 

SDBllOA, WAIT on BfECB in UBf, Resume at 1. above. 

c :Il 
0 CD 
CD C/l 
::J -en :::!. 
CD o 
c. CD 
s:: c. 
e s:: 
CD I» 
..... --· CD I» ..... 
'iii p;· 

'iii 
"'C a ..... 
o CD 
~ s:: 
~ 
9. 
iii 
s:: 

ACB .. _ .... 

t DEB t---
(SVCGET) -Test 1/0 completion, move contents of PBF to UBF 
and re-initialize UBF values. 

DEB ..._ 
Issue EXCP to read next block and retorn. SVC lXIT ....... f"'" 

.... t SDB t---

(HCEGET) If flag IBEJEOB if off, return to IOS at ..0 • 
SDB ...._ 

f"'" 

Test 1/0 completion and move contents of PBF to UBF. 
Re-initialize UBF values. t UBf t---

If end-of-data-set, return to IOS ot 1 O. 
UBF ...._ 

f"' 

Convert next track address to 105 format. ~ BFLOC 

BfRBA 

Branch-enter POST to post BF ECB in unprotected buffer. 

Return to IOS at offset 8 to restart the channel program. IOS ....... 
..... 



N 
I 
(II 
0) 

c.. 
m 
UJ 
I\) 

b 
(Q c;--

r 
~ 
00 
..'... 
0 
0 
O> 
~ 
@ 
(') 
0 

~ ., 
ce· 
::; -iii 
s:: 
(') 
0 ., 
"? ... 
co 
g: 
... 
co 
~ 

UBF 

~~~ Bffll 

BFECB

BFIO

.. .,
I BPBF I

c=::t_ I
~'1 :...~

ASSEMBLY ASSEMBLY
LISllNG LISTING NARRATIVE
NAME I.ABEL

HASP AM HAM GET 0 Subroutine HGMOVE moves dota to the user area (pointer from
RPLAREA) Ynless end-of-b..ffer is fOYnd. On retyrn,
HGMOVE 1s return cod~ dictates whether to move RBA to
RPLRBAR and return or to continue at HG SPEC.

HGSOJO ffi HG SPEC analyzes end-of-b..ffer conditions. These may be 1/0
error or normal end-of- data set. The user is notified, except
that end-of-data on a botch input data set causes normal
termination via SVCXBM of a batch job.

ffi If the user is reading from this subsystem data set so slowly that
the channel end appendage is entered for the next block before

HGSPEC subroutine HGMOVE has set flag UBFIEOB, it is necessary to
use SVCGET to move the next block of data to the unprotected
buffer. But if the user is reading so fast that 1/0 is not yet
complete, the UBF's BFECB is ysed for WAIT. Appendage
HCEGET always posts this ECB after refilling the UBF.

SVC GET

IB
SVCGET and HCEGET use common sybr®tine HENDREAD to
validate the block iust read (1/0 complete without error, job

HCEGET and data set keys correct, next track address valid). They use
common sybroutine HMOVEPU to refill the unprotected ooffer
and to update UBF values and cu"ent and next track addresses
and record count.

ASSEMBLY ASSEMBLY
LISTING LISTING
NAME LABEL

HASPAM HCRSPEC 0
HCGU20 G

HCRETURN G

I
@

NARRATIVE

The end-of-data set flag, SD82EOO is set by subroutine
HENOREAD above, as well as the 1/0 error flog, SD8210E.

The JES2 track address, contained in bytes 1-4 of the JES2 RBA,
is of the format MTTR. For all subsystem data seh processed by
HAM, subroutine HCNVFOAD converts this address, in word
SDBMTTR, to the OS format, MB&CCHHR, placing the valYe
directly in the SDB's IOB.

Subroutine HPOSTECB is used to post BFECB. Since the
appendage receives control in the user's memory, this
subroutine attempts a quick (compare-and-swap) post before
deciding to use MVS POST at branch entry I EAPT1.

Thus t~e· channel-end appendage tries to increase performance
by avoiding the overhead of on EXCP for each data block ..

,,.
\

"

r c;·
<D
::J
(/)
<D a.
s:: :JJ
Ill <D (/)
<D, .,
iii" c;·
- -(/) <D
I a.

s::
"tJ Ill ., -0 <D

"'O :::!.
<D Ill
~ iii
0 9. ---m m s:: s:: =

~
N
00
I
8
0)
I

N

@
()
0

"'C
'<
~

IQ

~
iii
s:
()
0 ...

"?
CD
00
!?'
CD

~

()
':1"
Ill

"'C
(ij ...
N

s:
<D
:;t
0 c.
9.
0

"'C
<D

e a·
::::J

N
ln

~

JES2 - HASPAM Put
Input

RO

C!~nction cod~-::-;---]

Rl

I I
RPL

.----1 t DACB

t AREA

t RLEN

......_ ACB ..
t EXLST t-

.----1 t DEB

lXI ST

~""'-

Process
HA SPAM ..,[... ,

0--i+0

0--i +0

k 0--
l

SVCHAM _.
pf© 0-- 4

I

F --.00
0--~
0--i+©

...._ lJIB
,....---, t SDB

_..>DB ..
~

I
@--i +0

··G k 0-- 8

l
105 •

fLGI, FLG2 I-

.-- t lJBF
t---

t PUfX I-

t PBF t-

t f BF I-

.- t AIOI

t CCW4 r·

-0
~

~

-. ·1
0-~+©

I
~ 0-~-+e I 0--i-+@

~~ ..,.;,,_,.,_~' .--.. .

Output
RI

c ::Il
0 <D
<D UI
::::J -CD ~-
<D 0
c. -

CPL (HAMPUT) Space available -

• Move record to UBF
• Check OUTLIM= and perform IEF USO procening.

If appropriate, ABEND 722. .,r,> t FDBK • Return to user.
HRPLEXIT t DACB t--

<D =: c.
!? s:
<D Ill
~.CD
~ ~-
UI 111

iii
"'C 9.

1/0 error detected -
... . Return error code RPLWTERD. IL-

HRPL EXIT

... -
0 OJ
~ s: ...
~
9.

.... iii
Mol;s~~a~~~SVge~u~ction HSVCEOBP) to write and refresh .> t RBAR s:

UBF. Resume at 1, above.
ACB

~
p

t DEB t--
(SVCPUT) Get a track oddren for use on next SVC PUT col I.

Get a protected buffer (PBF} and move contents of UBF .1' DEB_
into it. R ~ v

Chain PBF onto SDBPBF X (LIFO). Issue EXCP ii JLO
t SOB r---,

h not active. 5
v

If appropriate, invoke exit 9 write message HASP375 -

~'"'
....._

{CARD} ~
ESTIMATED LINES EXCEEDED [BY nnnnnn) and, if

appropriate, ABEND 722.

SVC lXIT ... t UBF
Return from SVC. t PBFX I---.....

R "(' ::: t AIOT :J (HCEPUT) Move'PBFs on chain SDBPBFX to chain -"
SDBPBF in revened order. T v IOT
Dechain lint PBF from chain SDBPBF and....e!!! on chain SDBFBF

~ (unless 1/0 operation was for IOT). u -v

I 105 t8 I IF IOT needs writing, return to IOS -t8 to Y'rite IOT. I
I

N
I c.n

CD

c...
m en
I\)

r
0
co c;·

!:<
I\)
CX>
I

0
0
'fl
I\)

@
()
0

~ ...
U5"
:J" -iD
:s::
()
0 ...
"?
.....
ID
CX> s»
.....
ID
ID
0

--.
FLAG!

TGMAP

lJBF

BFLOC

BFLEN

ASSEMBLY ASSEMBLY
LISTING LISTING

NAME LABEL

HASPAM HAMPUT

SVCPUT

---0 0- If SDBPBF is not zero, return to IOS +8 to write PBF.

-~ 0- Return to JOS i-0 to p<»t SDBECB

.,-.Q
_J

ASSEMBLY ASSEMBLY
NARRATIVE LISTING LISTING

NAME LABEL

8 Subroutine HPMOVE moves data from the user
area to the data set's unprotected buffer (UBF)

HASP AM SVCP20 0
and the record's assigned RBA to the user's
RPL. On return. HAMPUT updates field
BFRBA for the next PUT and checks that the
total record count is not greater than specified
by the OUTLIM= keyword. If the output
limit is exceeded, HAMPUT uses SVC function
HSVCOUTL to call IEFUSO. IEFUSO decides
whether to increase the limit or to abend the
user's task with code 722 and a dump.

0 1/0 error flag SDB21 OE is set whenever the
abnormal channel end appendage is entered. SVCP60 0

0 More space may be required because the UBF
had sufficient space to write a non-spanned
record (a record less than 255 bytes long) or
because HPMOVE successfully created the first

SVCP100 0
or a middle segment of a spanned record.

G) Unless flag SDB1 CLOS is set, SVCPUT uses
subroutine $STRAK to allocate a track address.
This track address will be placed in field
BFNXT of the PBF to be created on this call

HCEPUT 0
to SVCPUT. Data will not be written to this
track address until the next call of SVCPUT.
In its call to $STRAK, SVCPUT determines
whether the track group has changed; if so,
it sets flag IOTICKPT in the allocation IOT so
that HCEPUT will write it.

. .r~

IOS •8

IOS •O

NARRATIVE

One or more protected buffers may have been

chained onto SDBFBF by HCEPUT. SVCPUT
uses subroutine HSPFBFRE to free all but the
most recently chained of these and re-uses
that one. But if no buffer is found this way,
SVCPUT calls GETMAIN if the count of pro-
tected buffers is not at a maximum. If the
count is at a maximum or the conditional
GETMAIN fails. SVCPUT WAITs on the first
word of the SOB having set a flag to cause
HCEPUT to POST this ECB when next it
releases a buffer.

Of necessity the SDBPBFX chain must be
LIFO because of its use by mutually asyn-
chronous routines SVCPUT and HCEPUT.

Estimates of print lines and punched cards
occur on the JES2 job card. Exit point
SVCOUTX (for exit 9) is taken to allow an
installation exit routine to process the excess
output condition.

HCEPUT dechains (using CS) the entire chain
SDBPBFX and puts it on chain SBDPBF
f i rst-i n-fi rst-out.

if.!
I
I
I

PBF

BFIO I t'"'
I I

118 1 r~
~ ~ Spool

UBF

BFLEN

BFLOC

BFRBA

BFJO

\,

~
I
I
I
I
I
I
i!

i!
I
I i!

..... ..J

-,,

r c;·
<D
::l

~
:s:: :0
Ill <D (/)

<D -...... p;· c;·
iii iD
I a.

:s::
"O Ill
0 co
~ ~·
~ iii
0 Q. -- co co s:: :s:: •

r
-<
I\)

Cf'
0
0
Cl
I

I\)

@
(')
0
u
'<
:::!.

(Q

;?;

CD
~
(')
0 ...,
u
.
<.O
CX>
CX>

......
<.O
<.O
0

(')
:::T
Ill
u
<D ...,
I\)

~
(!)

~
0
a.
2.
0
u
(!) ...,
~
0
::J

N
I

U'I co

'~

JES2 - HASCDSOC Close

Input Process

RI

I
sso~ --.

[t SSDA

SSDA

I--+ JFCB

1---o-·
r- t SSCM

JfC~

DSNAME

__.. INTRDR DCT
01

.. SDB
--.

TR~

t lJBF

t l;Bf

t HBF

t PBFX

t PRF

t FBF

I I ,-------t-~
I

I---

i4"
1---

1--

,-----

_J

__ _J

r--
1
I
~----
1
I
I
1-----

1--
___ _J

--+0

k
k
~~

0

;lllllillit.,..

Output
RI

CSOB Validity-check DSNAME. ...

c: ::0
0 (!)

(!) "'
::J -
CJ) ~.
(!) 0
a. ro
~ a.
!!?. ~
(!) Ill
..., --· (!) Ill ...,
ii) ~·

Internal reader -
Write ;~ EOF record to internal reader
(/~DEL if task is abending).

CSSDA

t SSDA

SYSIN data set -. Wait for 1/0 completion. . Free all buffers. I ..

I I I
SYSOUT data set (except INTRDR) -

• Truncate and write buffer.

• Write emp7c buffer to terminate data set •

• Wait for I 0 completion • . Decrement OPEN count; if zero, free all bufft:n.

"'
iJ 2. ..., -o CD
~ ~
~
2.
tii
$'.

CSDB

t SSCM

Process-sysout data sei -. Wait for 1/0 completion • . ~ave current position of data set in PSORBA (Lero if dotu --
set at end-of-file). . Free all buffers • TRK

Return to caller•
t UBF

t GBF

-".,,, t HBF v

t PBFX

t PBF

t FBF

ASSEMBLY ASSEMBLY
LISTING LISTING
NAME LABEL

HASCDSOC SSIDACLO 8 HOCSETUP

DACIR10 0

HASCDSOC DACSO 8

HC100 0 DACPOSI

2-60 JES2 Logic

NARRATIVE

Only the subsystem-name portion of the
dsname is checked for validity. Further
checking is done as the data set type is
examined (IOS); if the data set type is none of
these, message HASP353 is written.

SSIDACLO uses HAM subroutine
HINTRDR to write records to an internal
reader. Register 2 contains the record's
address, and register 0 contains the close
flag BFD1 ICLS and register 3 contains its
length.

The end-of-buffer marker LRCBFEND is put at
the next available byte of the unprotected
buffer and section SVCPUT of SVCHAM is
invoked to transfer the data to a protected
buffer and write it. The written buffer contains
a non-zero chaining track. Then the now-
empty unprotected buffer is marked end-of-
buffer and SVCPUT is again invalid, this time
with flag SDB1 CLOS set to cause SVCPUT
to write the final record with a zero chaining
track. If the data set is again opened, this
final record will be overwritten (at the next
CLOSE or earlier) with a record containing a
non-zero chaining track.

More than one user can be OPEN at the same
time to the same SYSOUT data set. If other
users are still OPEN to the data set being
CLOSEd, no buffers are freed.

Data set buffers are never freed for execution
batch monitor OPENs and CLOSEs.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

I

'

LY':!8-1006-2 ©Copyright IBM Corp. 1988, 1990

'_ _ /'

r-
i\'3
co
I
8 m

I
I\)

@
(')
0

~
~
(0

;r-
ili
:!::
()
0
::i
IC> co
!?"
.....
IC>

215

()
::;
II>
"9.
CD
!"
:!::
CD
g
0 a.
Q.
0
u
CD
II> -o·
:::J

N
I

0)
..a.

~ ~

JES2 - HASCDSAL Unallocate

Input
HI

SSOB

t SSIB

t SSAL

+ s 18

PSOP ---

_j OUIOT

--
IOI

PDDB,

RO
r-

I .. SSCVI

I SSCTSUS2

I HCCT

~ T

Process

SSAL

t JFCB

t SSCM

JFCB

DSNAME

SDB

DCI

PSO

r-

' I
I
I
I
I _ _J

r
I
L
I
I
I
I
I

---~
I
I
I ---L1-

1 I
I I
IL
I

----1 I
Li_

SPIN/HOLD IOT

INTRDR
Wait Element

__ _J

~
~
kv

~

~
k
l

,c ..• ~'*·· . .-..

Output

c :r.J
(') CD
CD rn
:::J -en ::!.
CD (')
a. -

RO
CD

:!:: a.

Cscvr Validity - check DSNAME. 1 SSCTSUS2 A

SYSIN unollocation -

ti=
SPIN/HOLD IOI_ . Free the SOB •

-.-
SYSOUT unallocotion lnon-INTRDR) -. Doto set deletion -

- Set PDBINSOT in the PDDB.
- Free the SOB. CCTSPIOT . Data set SPIN/HOLD - v
- If th is is a new request for

spin/hold, transfer the PDDB

~ to a newly-built IOT. CCTIRWT
- Remove the PDDB's IOT from chain DCI

a :!::
CD II>
.... --· CD II>
(ii ~

rn
"tJ Q.

iD 0

al ~
~
Q.
iD
~

SJBSPIOT and add it LIFO to chain CCTIRDRS -.-
CCTSPIOT for processin~ by
HASPXEO.

- Free the SOB. DCT 1---i . All other non-INTRDR SYSOUT
- Free the SOB.

~ SYSOUT unallocation (INTRDR) - DCT . Re•et flag RIDALLOC. ~

~ RIDFLAGS
PROCESS-SYSOUT unollocation -

• If SSALDELT. set flag PDB1NSOT RI

• Free the SDB • dsoa
Checkpoint and return to caller. -..-

+ SSIB
SSIB -..-

t SSAL

SJB t USER

_..IOI ·+ OUIOT
.----I t JCT

t IOT

Q -
IOT

I""

~ v PDDB

N
0,
N

c...
m en
I\)

r
0
co
(')"

~
,\)
00
..'....
0
0
0)
I

I\)

@
(')
0

"O
'<
::::!.
co
~
[lJ

s:
()
0

-?
co
00
00

....
co co
0

ASSEMBLY

LISTING
NAME

HASCDSAL

ASSEMBLY

LISTING NARRATIVE

LABEL

SS I ALU NA 0 Subroutine $SDBFREE cleans up and frees
SDBs constructed by $SDBI NIT, and dechains
them from the SJB (header SJBSDB).

HUAO 0 Flags SSALDEL T, SSALHOLD, and
SSALSPIN, as well as the state upon allocation

of the data set and its IOT (IOT1SPIN,
PDB1 SPIN, PDB1 HOLD, PDB1 PSO) determine
processing. A data set which has the HOLD or

SPIN characteristic becomes available for
printing immediately on unallocation rather
than at end-of-job. The IOT containing the
single PDDB which represents this data set is
given to JES2 (IOTs reside in common storage)
for HASPXEQ to process and free.

ASSEMBLY ASSEMBLY
LISTING LISTING
NAME LABEL

HASCDSAL HUAR 8

HUAP 0

HUA900 0

IOT
SPIOT

NARRATIVE

Flag RIDALLOC is reset with the CMS lock
held to unallocate an internal reader. A chain

of internal-reader-allocation wait elements may
exist at CCTRWT; for each element, either the
ECB is cross-memory posted (memory not
ending) or the wait element is freed. The end-

of-memory subsystem request processor
performs similar actions.

A process-sysout data set, like a sysin data set,
is an input data set. But the user of the data set

may request its deletion. If SSALDELT is
on, PDBI NSOT is set in the PDDB in the PSO

control block.

For non-INTRDR SYSOUT unallocation, all

modified direct-access-resident control blocks
are checkpointed.

r
C:i"
([)
:l en
CD
a.
s: :D
Ill CD .-. en CD ,.... ...,
iii' c;·
en CD
I c. s:

-u Ill
..., -0 ([)

"t:J ::::!.
([) Ill
..... -
~ en
0 2. - -- [lJ
[lJ s: s:: ~

~
00
I _..

0

~
@
(")
0

~ ..,
tE"
~
(ii
s:
(")
0 ..,

"O
_..
co
00
_co
_..
co
co
0

(")
:::;
Ill
"O
m ..,
l\J

s:
(1)

~
0 a.
9.
0

"O
(1) ..,
~ o·
::i

N
I
en w

~ ~t1

SNA RJE Overview

Input

SE XTP Re4ues1s

P<:tldtnetcr list

Event 111thc.111on

APL
Resµonse or
CompleteJ rt:quesl

Remote ms~ queues

emote console
messages

from JES2 processors
Process

0
0

0

,4';~,

Convert data and control information to
SNA equivalenlS and JES2 work elemenu.

Line Manager: Scan queues, process work [=-============:::::::======::;-, ~lements; initiate sending and receiving.

~

Output
Line mgr. queues

Work elements

Send/Rev qoeues

RPL/bullen

~!~~::1: s.md subsequent requests and,-~-~----------~~~-------. ~====:c======:::::J

VTAM API: Receive responses. completed
requests. and event mdtcations; place
corresponding work elements on line
manager queues.

Monitor results and manage internal states;
wait for work when all available work + --- - - - - - - - -
elements processed.

Remote Console Processor: Scan inbound
and outbound remote message queues and

Line manager queues

Work elements

$EXTP requests

process like data sets. '----------'

(O JES2 processors

c: ::0
(') (1)
(1) Ill
::i -en ::!.
(1) (')

~~
a s:
(1) Ill
::!. at
Ill ..,
iii iii"
I iii

"O 9. .., -
0 CJ
~~
~
9.
(ii
s:

ASSEMBLY ASSEMBLY
LISTING LISTING
NAME LABEL

HASPSNA HASPSNAA

HASPRTAM HASPMLLM

HA$PSNA HASPSPRO

HASP5NA

HASPSNA VMLMPOST

2-64 JES2 Logic

8
0
0

0

©

NARRATIVE

Work elements include DCTs, represen1ing lhe JES2/VTAM interlace (logon
OCT~ or remote devices; ICEs, representing sessions; a~ VT AM RPls,
u,presenting SNA· request uliits to be sent or received. See SEXTP services.

The line manager scans OCT, ICE, and buffer queues at each dispatch to
ctetermine the next action to be taken. See line manager.

The request completion exit routine of JES2's VT AM application program
interface invokes VTAM's ACB interface routine to cause actual transmission
10 continue, once begun by the line manager. See VTAM API Exit Routines.

The VTAM API routines are entered asynchronously by VTAM when requests
or resp.onses have been completed by VTAM, when responses for JES2 are
received, or when events such as a logon or the termination of VTAM occur.
See VTAM API exit routines.

Both 1he line manager and JES2 are po5ted when a VTAM API exit rou1ine i5
~ntered by VTAM wilh new work. See line manager.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

!<
N
00
I

0
0
a>
I

N

@

0
0

"O
'< ...
<Ci"
2:
CD
s:
0
0
~
......
co
00
00

.....
co co
0

0
;:y
Ill

"O
Cii ...
!"

s:
(I)
g.
0
c.
2.
0

"O
(I) ... a
5·
;j

I\)
I

CD
U'I

~' ~

HASPRTAM Line Manager

Input Process

-J une Mandgers t'Lt.

r
~8

MSCANREO -..0 r----
MEVNTREO I

I
I
I
I

MDISTIME
I I

'
I

I I
I I

MC LOCK ' I ----- -i- - - --
I
I

' I >0 MSTOI
I

i=:: :.-:_-_-;
'
I

MHASPECF
I
I
I
I

I I
I

~ 0 MBSCACT I

·1t I
I
I

I
MLOGOUE I

I
I

I I
I

MICE QUE I -t0 L----- - - - -

0
$BSCACT

$SNASLOG

$SNASLNE

$SNASJDL

$BSCBUNT

$BSCSLNE

$SNASSAL

$SNASACB

$SNASJCE

$SNASRAT

HCT

$RATABLE [

llCT

$AJECllEQ

. -<~·.

Output

!:: ::D
0 (I)
(I) en
;j -en ~-
(I) 0
c. -(I) s: c.

Set SCdil .;md event ind11.:ators to
indicate scans requested and

Jl
events since last dispdtch

f j Show BSC ;:md SNA line scan

->
MSCANIND

required if timer intt-rval or d1s1.:unnec1
interval has expired MEVNTINO

r----
I

a s:
(I) Ill
-·(I)
Ill ...
iii iii"

iii
,, 2.

iii 0

al s:
I
I

:::::.
'<

I
I 2.
I iii
I s:
I

Scan the indicated OCTs and !Cb and ..----------~ -----..!
process those requiring service .

Process any butters ready for
transmission or for completion prut:t!~smg

Restart 1 ·second timer. if required

Wait ($WAIT WORK) ford spcc1f1c
post of the line manager's PCE

10 JES2 CJ1sµ.stc..:hc1

ASSEMBLY ASSEMBLY
LISTING LISTING
NAME LABEL

HASPRTAM HASPMLLM

HASPRTAM MSEARCH 0
0

HASPRTAM MSCNEXT 0 HASPBSC HASPBACT
HASPSNA HASPS LOG
HASPS NA HASPSLNE
HASPSNA HASPSIDL
HASPSNA HASPSUNT
HASPBSC HASPBUNT
HASPSNA HASPSACB

HASPSNA HASPSICE
HASPS NA HASPSRAT

HASPRTAM MBUFSRCH 0
HASPRTAM MTIMSRCH 0
HASPRTAM MLLMWAIT 0

2-66 JES2 Logic

NARRATIVE

The line manager is queue-driven. Queues and indicators processed by the line
manager are updated asynchronously by the command processor, the VTAM
API exit routines, the BSC channel end appendage, RTAM subroutines, the
open/close ACB subtask, or the occurrence of a timer interrupt or $POST JOT.

At each dispatch, scan requests and event indications registered by other
routines are moved into private line manager fields.

The 1 ·second timer is used to permit inbound jobs to be started; to check on
disconnect interval expiration, and to trigger a scan for available devices (OCTs)
for which output is available. The 1-second timer is the mechanism through
which the delay requested through the $WAITIME initialization parameter is
effected.

The order of scan is:

e Active BSC lines
e Active logons
• Active SNA lines
e Idle SNA lines
• Inactive SNA lines or logons
• Inactive BSC lines
e LOGON DCT and ACB

completion scan
• ICE exit service scan
• Remote autologon scan

Depending upon type, buffers are processed at MBSCPROC or MSNAPROC
lsee listing).

lf the timer had expired and timing isrequested, $STIMER is issued to restan it.

When a specific post occurs go to MSEARCH to continue processing.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

r
-<
I\)
00

I
0
0
Cl
I
I\)

@
()
0
"O
'< ... ce·
~
iii
s::
()
0 ...
"?
.....
<O
00
51'
.....
co
<O
0

()
J
Ill
-s.
CD ...
I\)

s::
CD -J
0
a.
s.
0
"O
CD ... a o·
:::J

N
I

~

~.

HASPSNA VT AM API Exit Routine

Input
from VTAM

......

SICETRAY

I t Free ICE I
VT AM parameter list

[t ACB.&svmbolic l
name. RU length

VT AM µc11 ameter list

[Reason code

APL/buffer

rl
ICE

~ t Nexr send buffer [

Jl Logon OCT

Ltiii{ t Ne-xt receive buffer

. ..-...

Process Output

c :::0
0 CD
CD Ill
:::J -
"' ::!. CD o
a. -CD s:: a.

0 Select information required by
line manager:

a s::
CD Ill ... --· CD
Ill ...
iii iii"

iii

'"
LOGON: Acquire free ICE and start
initialization using information
passed by VTAM.

"'O s. ... -
0 CJ
~ s::

line manager's PCE ~
MLOGOUE or MICEOUE s. 'lli"'"} ., .. ~- "' - J TPEND OCT and/or ICE

~ 1') SCIP ICE or togon OCT
AELAEO •Pass action code (with

Action code + J NSEXIT reason code, if any) to
reason code line manager .

iii
s::

Request IRPLI Completion

$RJECHEO

" t Completed RPL J ;:> • Queue buffer just sen1 or received
to line manager's channel ,_..
end queue.

'") • Attempt to receive or send
next ready RPL/buffer.

SHASPECB

0 Post line manager and JES2, J and return.

·~
.,,.,

M

ASSEMBLY ASSEMBLY
LISTING LISTING
NAME LABEL

8
HASPSNA VEXITLGN

HASPSNA VEXITLST

HASPSNA VEXITSCP

HASPSNA VEXITRLR

HASPSNA VEXITNS

2-68 JES2 Logic

NARRATIVE

TheJES2 VTAM API rou1inesareenllred from VTAM when the corresponding
event occurs. Each routine returos control lo VT AM immediately if the ACB is
no longer open.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LOGON: The logon is rejected if the maximum number of •ssions already exists.
Otherwise, the ICE is placed on MICEQUE and session allocation is continued by
the line man11ger at MSNALOGN.

LOSTERM: The reason code is placed in the ICE, which is placed on MICEQUE.
The line manager (at MICELOSTJ closes or aborts Iha sesoion.

TPEND: The reason code is placed in lhe OCT, which is placed on MLDGQUE.
The line manager (al MLOGTPNDI drains, terminates, or abons the JES2/
VTAM in,terface.

SCIP: Control returns to VTAM except for request recovery (RQR) requests.
In lhal case, lhe ICE is placed on MICEQUE and the sesoion is aborted (at
MICEABRTJ by the line manager.

RELREO: If the symbolic name specified cannot be ~hed with a logged-on
terminal, control returns to VTAM. Otherwise, the ICels placed on MICEOUE
and the line manager fat MICETRAPt subsequently closes the session at the end
of the then-current bracket.

Request (RPLl Completion: This exit is entered as each send or receive request
is processed by VTAM. The exit routine attempts to stav within the exit
routine, cycling through the VT AM ACB interface routine. until all available
requests have been completed.

NSEXIT: This routine is scheduled with a network services procedure RU
(ignored by JES21 or a CLEANUP RU. For a CLEANUP RU, lhe ICE is
placed on the MICEQUE queue, and the line manager (at MICENSI
schedules the freeing of all resources used by the session.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

/
I

~
'f
8 cp
I\)

@
(')
0

~
::!.
ID

~
CJ
s::
(')
0
~

"?
.....
ig
_a:J

.....
co co
0

(')
:J"
Ill

¥
~

!'J

s::
(I)

:f
0 c.
2.
0
"'O
(I)
~ a o·
::J

N

m

~' ~~ /C:$~} ,.....,.

HASPSNA $EXTP Services

Input Process Output
Remote device OCT trom J~:Sl processor

I DCTPSNA ~ - -- --, ,...
I

· Entry po ml list I
I
I

I • .I Register 15

[t BSC routine] L- - - - - - - - - - - 10 Get entry point of SSC or SNA ___r.... SEXTP service routinel

[t . J ..)>\.:._} routine for specified service. -V
SNA routine - 1

0 Perform specified $EXTP service:

APL

...... J !---------------- .,. NJE stream control
SNA OPEN: NJE; Send NJE stream control record. -,,....

RJE: Send begin data se1 FM header. ,... J
I-.._-------------,_..-..- RJEBDSrequesl

_ "'J NJE stream control I
SNA CLOSE: NJE: Send NJE stredm control record. J v1

RJE: Send end data set FM header.

'----------------::>! RJE EDS request I
VTAM RPL/butfer(s, Processor's buffer

[
....... SNA GET: Convert data lrorn transmission " l

trdnsm1tted data J > to user format, into processor's user data , r ~~ v

Processor's buffer SNA PUT: Convert data and device control ,.... VTAM RPUbuffer(s)

user data J)> information into SNA format and transmittable data 1--,
Processor's PUT CCW

V load into one or more VTAM RPLs. '"" .. ,.,....-------'J j

device controls l (':;'_ 0 Return to calling processor. ...
~ ,

to JES2 processof

r •
-· :D 0 (I)
CD Ill
::J -CA ::!.
CD O

~~
a s::
CD Ill
~ --· CD Ill ~
iii iii"
I iii
~ 2.
~ -
0 CJ
j s::
~
2.
iii
s::

ASSEMBLY ASSEMBLY
LISTING LISTING
NAME LABEL

HASPNUC HASPEXTP 8
HASPSNA SNAOPEN 0

HASPSNA SN A CLOSE

HASPSNA SNAG ET

HASPSNA SNAPUT

2-70 JES2 Logic

NARRATIVE

Return lo 1he caller is immediate if the specified device is aborting I OCT ABORT
on), or - except for SEXTP CLOSE the device is being flushed IDCTF LUSH
on). Otherwise, registers are stored in the calling processor's PCE and are
reinitialized tor RTAM.

SNA OPEN for RJE: The BOS header is sent only for 'outbound open' for a
print or punch processor.

SNA OPEN for NJE: If called by a network receiver device, a 'permission to
allocate granted' stream control record is sent. If called by a network transmuter
device, a 'request permission to allocate' stream control record is sent.

SNA CLOSE for RJE: The data set may be ended IEDSl or aborted IADS),
depending upon whether the remote device is being flushed.

SNA CLOSE for NJE: If called by a network receiver device, an 'acknowledge
end·of ·mmsm1ssion' stream control record is sent if a SEXTP CLOSE macro
instruction was issu~; a 'receiver cancei' stream control record is sent if a
SEXTP NC LOSE macro instruction was issued. If called by a network
transmmer device. and 'end·of·iransmission' data record is sent if a SEXTP
CLOSE macro mstruct1on was issued; a 'transmitter cancel' data record 1s
sent if a SEXTP NCLOSE macro insuuction was issued.

SNA GET. Data is decompressed, translated. or treated as 1ransparent as
applicable. The contents of successive request units (each contained in a VT AM
RPL) are processed until the processor buffer ts full.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

SNA PUT: Data is compressed, translated, or treated as transparent as applicable.
Device control information is converted into standard character string control
sequences. Successive request units are filled and the corresponding VTAM
RPLs are scheduled for transmission.

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990

/

~
co
I

0
0
m
r(,

@
(')
0

"'O
'< ..,
ce·
':::t' -(jj
s::
(')
0 ..,

"'O

.....
co
_&:
.....
co
co
0

(')
':::t'
I»

"'O
CD' ..,
N

~
CD
:;:
8.
2.
0

"'O
CD a o·
::I

N
I

~ ...---. r"•-, ~-~'!

HASP RT AM Remote Console Processor (Part 1 of 3)

lnput

SNPMMSG

Oueueol NPM
records to go
across the shared
spool

JES2 Dispatcher

~-----

$BUSYAO I

Oueut: of CMBs
tor remote 1erni111als .
NJE nodes, and
01her members of
shared spool

I _____ _J

Process

0

0
0
0

JES2 Dispatcher

Wait for work.

If no NPM buffers on SNPMMSG queue

-.©
Spool out NPM buffers. ===================::!:::!:=======::::-1
Examine SBUSYRO queue for work.

If no CMBs on SB US Y RO queue

-+@
remote work station

If for an active multi I~

remote work station ~

Spool message to remote message ----------------~~-------

sp;,.,l hie -+8
Send message to remote w~

viaATAMISEXTPPUTI ~

~~~B.::+0other NJE 

Spool message/command to other -----------------'--'---------' 

member-+Q 

'"""' 

Output 

,....._...._ _ _.._,} SYSl.HASPACE 

Spool 
buffers 

Remote 
work 
station 

c: :0 
0 CD 
CD f/I 
::I -UJ ::!. 

~~ 
CD s:: Q. 

e s:: 
CD I» 
~- CD 
I» .., 
Ui ;· 

Ui 
"ti 2. .., -
0 CJ 
~ s:: 
~ 
2. 
CJ 
s:: 



A-ly Auembly 
lilting listing 
Name label 

HASPRTAM MCSX 

HASPRTAM MCS 

HASPRTAM MCOSPDOL 

HASPRTAM MCSTRL 

HASPRTAM MCSSO 

JES2 Logic 

0 
0 
0 
0 
0 
0 

Narrative 

Check $NPMMSG queue for input Cnetworl< path manager rllCO<ds going 
across the spool). 

Invoke MCSPUTX subroutine to write to spool. 

Dequoue console message buffer CCMBI from $NPMMSG queue and invoke 
the appropriate RCP output function. 

If the CMS is for a remote work station which is non-multileaving or 
is currently inactive, it is spooled out to the message spool file where later 
it is picked up for printing by the remote print/punch prGCeSlf>r. 

If the CMS is for an active multileaving remote work station, transmit 
the message to the remote work station via the SEXTP PUT interface. 

If the CMB is for another member of a shated spool complex. invoke the 
spool output routine to output the CMS to the appropriilte member. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



~ cp ..... 
8 
'/> 
I\) 

@ 
(') 
0 

"'C 
'< ... 
rCi" 
;?; 

m 
s::: 
(') 
0 ... 

"!=' 
..... 
ID 
00 
!1J 
..... 
ID 

~ 

(') 
'::T 
Ill 

¥ ... 
!':> 
s::: 
~ 
'::T 
0 
a. 
a 
0 
"'C 
CD ... 
a 
5· 
:J 

9') 

t:t 

~ ~ ~I ~$_:.~•i·~h) ~ 

HASP RT AM Remote Console Processor (Part 2 of 3) 

Input 

SMCONMSG 

Queue of TP buffers 
containing CMB~ 
received lrom remote 
work sto:1W>n (over 
RJE lme) or lrom 
other node (over 
NJE lme) 

A Process 

0 

0 

Output 

If node is+0 currently 

14 . reachable 

Make command CMB a 'path lost"================='.::=:'.:::==========~ message CMB and queue it to the I 

SBUSYRQ queue.CV. 

If node is reachable across the 

spool-+@. 
Build nodal message record and send ----------------'-.J. __________ _,...,_ 
it to the other node via RTAM 

CSEXTPPUTl...cv. 

Spool the CMB for other-------------------......--.-------------,. 

member...cv. 

Examine SMCONMSG queue for 
incoming CMBs. 

If no incoming CMBs~. 
Gel CMB from buffer via RT AM 
($EXTP GETI. 

SBUSYRQ 

NJE line 

to other node 

r 
-· :II 0 CD 
CD Ill 
:J -Ill ... 
CD -· a. !l. 
s::: ~ 
!!?. s: 
CD Ill ... --· CD !!?. ... 
Ill-· 

Ill 
iii 

"tl a 
0 iij 
~ s::: ... . 
~ 
0 -m 
s: 



Assembly As~mbly 

Listing Listing 
Name Label 

HASPRTAM MCSNNTUP 

HASPRTAM MCSNOX 
MCSSOA 

HASPHTAM MCSNOP 
MCSNOPA 

HASPRTAM MCINSI 

HASPATAM MCI NG ET 
MCINR 

2-74 JES2 Logic 

0 

G 
e 
0 
0 

Narrative 

If the CMB cont~ms a command destined tor another NJE node which is 
currently unreachable, the CMB 1s converted into a 'path losl' message 
destined for the originator of the command ;:md requeued to the 
$8USYRQ queue. 

If the CMB is destined for another NJE node which is reachable via 
another member of the shared spool, invoke the spool output routine 
to outpu1 the CMB to the appropriate member. 

If the CMB contains a command or a message for another NJE node 
reachable via an NJE line, build a nodal message record (NMRJ and 
transmit to the next node via the $EXTP PUT interface with RTAM. 

Check for incoming TP buffers on the $MCONMSG queue. Buffers have 
been queued by the multi leaving line manager after being received 
over an RJE or NJE line. 

Get a CMB from the buffer via a $EXTP GET interface with Al AM. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



r 
-< 
I\) 

c:p 
-' 
0 
0 

"' I\) 

@ 

0 
0 
u 
'< ... ce· 
2: 
OJ 
s:: 
0 
0 ... 
u 
-' 
(!) 
CXl 
.CXl 

-' 
(!) 
(!) 
0 

0 
:::; 
Pl 
u 
<D ... 
!" 

s:: 
CD 
:T 
0 
a. 
2. 
0 
u 
CD ... 
~ 
0 
:J 

N 
I ..... 

U'I 

,....,, 

HASPRTAM Remote Console Processor (Part 3 of 3) 

Input 

SYS1 .HASPACE 

Spool 

buffers 

,-
1 

I 
I 
I 
I 
I 

_J 

Process 

0 
/"-20a 

8 

e 

0 
~ 
e 

0 
G 
@ 

If in special input spooling 

mode~ 
If not command from another 

node~ 
Initiate SAF request 

for node -.e 
Queue CMB to appropriate 

---i..f::\ queue~ 

. CMB to special Spool incoming -.e 
17 input spool file ~ 

ool records 28 l f no input sp 

Get incoming CMB from spool file. 

If network path manager 

record ~ 
If not command from 

another node ~ 

Initiate SAF request 

fornode --0 
Queue CMB to appropriate queue 

--0 
Call network path manager to process 

control record --0 
If no posted SWELs 

~ 
Get posted SWEL 

Queue associated commands 

~ 

Output 

$SVCOMMQ 

Queue of command 

CMBs for JES2 
command processor 

$8USYQUE 

Queue of message 

CMBs for JES2 WTO 
subtask 

$BUSYRQ 

Queue of CMBs 
for remote console 
processor 

~ .. 

SYS1 .HASPACE 

r 
-· ::D 
0 CD 
CD Ill 
:J -(/) ... 
CD -· 
a. n. 
s:: ~ 
el. s:: 
CD Pl 

i· co - ... 
(/) -· Pl 

'Cii 
"'[J 2. a -
u CD 
CD S:: ... 
-< 
2. 
iii 
s:: 



Assembly Assembly 
Lasting Lis tiny 
Name Label 

HASPRTAM MCINP 0 

HASPRTAM MCINSP 0 
HASPRTAM MCfSI ~ 
HASPRTAM MCISIRA 0 
HASPRTAM MCISIG @ 
HASPRTAM MCI SIOK @ 

2-76 JES2 Logic 

Narrative 

If not currently in special input spooling mode. queue the CMB tu the 
appropriate CMS queue for further processing: 

• If for a remote, another node, or another shared spool member. 
queue the 'CMB 10 SBUSYQUE for RCP output processing. 

• If for the locol system, queue the CMB to $BUSYQUE for a 
write· to operator and additionally to the SSVCOMMQ Iii the CMB 
cont ams a command I for the command processor. 

ti in special input spooling mode (out of CMBs or currenlly receiving/ 
spooling a multiple line write· to-operator), invoke the spool output 
function to spool the CMB to special input spool file. 

Check for incoming records on the spool (from other members or CMBs 
spooled while in special input spooling mode). 

Invoke spooling-in function to get a record from spool. 

If CMB, perform CMB queuing logic as described in 0 
If NPM record, invoke the HASPNET routine (HASPNBUFJ to proces5 the 
record. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



r 
-< 
I\.) 

cp 
-' 
0 
0 
O'l 

I 
I\.) 

@ 

() 
0 

"O 
'< 
~
cc 
~ 
Ill 
:s:: 
() 
0 
-0 
..... 
co 
°" °" 
-' 
co co 
0 

() 
::T 
Pl 

"O 
CD .., 
I\.) 

:s:: 
(1) 

:T 
0 
a. 
2. 
0 

"O 
(1) .., 
~ 
0 
::I 

N 
I 
~ 
~ 

~ ......... 

JES2 HASPNPM Network Path Manager Processor (Part 1 of 3) 

Input Process Output 

$NPMINO 

$NPMVINO 

$NPMPCE 

$NIT ABLE 

BSC mput buffer 

Network connection 
control records 

SN.4 RPL 
1 I I •I Network connection 

control records 

JES2 Dispatcher 

__ J- --- - --1-- - -
_________ __J 

Path manager PCE work area r- - - - - _J 
I 
I 
I 

NPMNAT I I 
I 

NPMFLAG 
__ _, 

NPMRESPO 

Nulle 1nforma11on t<.1t)le 

r------
1 
I 
I 
I 

.-----
,.. - - - --4 
I I ____ J 
I I 

Node'.> dtla1.;hed lahh: 

I 
I 'GfS·-----------~ 

Input buffer 

Network connection 
control records 

1---
1 
I 
I 
I 
I_ __ 

0 

0 
0 

Wait for work. 

Examine input queue. 

If no buffer queued.~ 

If buffer contains valid s1gnon or resµonse 

stynon.~. 
el~+<§> 
Aeledse buffer •• r::=J 

Check for more tnpul. ~ 

Build TAT element. 

Using TAT, seem for matchmy NAT 

Construct NAT and add 11tol<.1ble11 

no matching NAT found 111 ~ 

Temporary nudes df!Jd1etl 

tdble elemen1 

Uµdaled nodes 
attached tol>le 

Else, move existing NAT element 10 ; ; I I Pdlh ~dndger PCE 
active or held section of NAT I ~ : . :w:.:o:..:r•:...•::;'.::e•:;_ ___ _ 

Schedule response 1f ne?cesSdry_ I I.,:: 

G-+G 
If buffer COnldtns valod resel ur concurrence ~ 

0 Else, mue d•dynos11c ~ 

c ::IJ 
0 (1) 
(1) C/J 
::I...+ 
Ch ~-
(1) 0 
a. CD 
:s:: a. 
a :s:: 
(1) Pl 
.., ...+ 
-· (1) 
~ ~-
C/J Pl 

'(ii 

"O 2. .., -
0 Ill 

~ :s:: 
-< 
2. 
iii 
:s:: 



I\) 

.:... 
C» 

c.... 
m 
(/) 
N 

b 
(Q 
c;· 

r 
-< 
N 
00 
l ..... 

0 
0 
O> 
K:> 
@ 
(') 
0 

"O 
'< ... 
IQ" 
::r -iD 
s:: 
(') 
0 ... 
"? 
..... 
<O 
00 
!!-> 
..... 
<O 
<O 
0 

ASSEMBLY 
LISTING 
NAME 

HASPNPM 

HASPNPM 

HASPNPM 

HASPNPM 

HASPNPM 

(,. ''\ 

ASSEMBLY 
LISTING 
LABEL 

NPL 0 
0 

NPBINR 0 
NPRI 0 NPRR 
NPRE 
NPRC 0 NPRA 
NPRS 

NPRINDL 0 
NPRIQD 0 

ASSEMBLY ASSEMBLY 
NARRATIVE LISTING LISTING NARRATIVE 

NAME LABEL 

Check SNPMINQ for input. NPRINATE 0 Create NAT element from TAT element if none exists and insert 
NPRINATA it in held section of NAT. 

Invoke service routine to handle network connection control 
record in input buffer as follows: 

For o SNA RPL, NPBINR branches to NPVBINR to 
dechain the RPL from $NPMVINQ. 

HASPNPM NPRINATF ® If the NAT is found in the active section of the table, this 
NPRIACT connection represents a parallel trunk and the OCT is placed on 
NPRIUNC the multitrunk queue. If the NAT fou.nd is in the unconnected 

section of the table, it is placed in the ~eld seclion pending 
further processing. 

• ln1t1,;sl s19non 
• Response to signon 
~ Reset s1gnon 
• Concur signon 

HASPNPM NPDDMSG G The address of a message poinler and/or node name ts supplied 
toNPDDMSG. 

• Add connection 
• Subtract connection 

lnlormation from the NCC record m the input buffer is used to 
build a temporary nodes attached table element ITAT). 

The nodes attached table 1s scanned to determine whether an 
entry representing the connection already exists. 

r 
O" 
Cl> 
::I 

"' ~ 
s:: ::Il 
Ill Cl> - "' Cl> ... 
..., :!. 
-· 0 Ill ... 
iii ~ 
I s:: 

"ti Ill 
0 1D 

"O ::!. 
Cl> Ill ... -... "' '< 0 
0 -= iii OJ s:: s:: = 

\ ) 



r 
-< 
f\) 
co 
I ..... 

0 
0 
CJ) 

rZl 
© 
() 
0 

"'O 
'< 
::!. 
cc 
~ 
CJ 
s::: 
() 
0 .., 
::i 
..... 
'° co co 
..... 
'° '° 0 

() 
:::; 
Ill 
"9. 
(1) .., 
f\) 

s::: 
(1) 

s-
o 
a. 
8. 
0 
"'O 
(1) .., 
~ 
Ci" 
:::i 

I\) 
I ..... 
co 

~1 
~ 

JES2 HASPNPM Network Path Manager Processor (Part 2 of 3) 

Input Process 

lnpul buffer 

Ne1work connection 
control records 

All 
0 

HCT I,--~ 
$NPMINO 

$NPMVINO 

$NPMPCE 

$NITABLE 

Path manaqer PCE work area 

NPMFLAG 

NPMNAT 

NPMAESPQ ---~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 

NPMACTL I I 
I 

Node information table I 
I ~-----------__! 

Network ac11ve queue - - - - _.w::\ 

~ ~~ 

Response s1gnon queue 

~ 
Nodes attached table 

1------
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

_-:.:.-:~--; 

Node information table ·: :.~ _j 
~-------~----------

® 
® 

0 
G 
G 
0 
0 

Complete updating of NIT and NAT -.0-L..--------~~---~ 

If buffer contains add or subtract record, update 

NIT and NAT to reflect addition or loss of 

connection -.0 
Scan response queue; if none to send ~. 

Get connection event sequence ICES) if this 

end is low end •• r==I· 
Wait ($WAIT) awhile if CES ahead of time of day ITODI ~-

Output 

Updated nodes attached table 

Get a buffer and allocate space in it • •O >Al 

Build response in buffer. c==================::!:::!=======:::;l 
Queue buffer for transmission 

Finish processing responses 

. ·~
~0-

If path information still accurate -.<§> . 
Negate current path information in NIT elements. .,,,,,-

TP buffer 

Response signon record 

Node information table 

c: :0 
0 (1) 
ro en 
:::i ..... 
"' ::::!. (1) 0 a. ..... 

(1) s::: a. 
es::: 
(1) Ill .., --· (1) Ill .., 
iii~ 

en 
'"C 8. .., 

tij 0 

~ s::: 
~ 
8. 
tij 
s::: 



ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL 

HASPNPM NPRC 
NPRE 
NPRCPI 
NPRICONC 

HASPNPM NPRL 

HASPNPM NPNGBF 

HASPNPM NPRL 

HASPNPM NPNR 

2·80 JES2 Logic 

® 

® 
@ 

@ 

0 

NARRATIVE 

Verify the e;onnection event sequence ICES). Place OCT on network 
active queue; if necessary, update NIT and NAT as required. 

Low end is determined based on a comparison of EBCDIC node 
names. 

For SNA, NPNGBUF branches to NPNGVBF to get and 
initialize an SNA APL. 

for predefined connections, the OCT is queued to NPMACTL and 
thus made active before more requests are processed. 

The full-path routine is entered any time activity on the network has 
been such that information in the node information table (NIT) and 
nodes attached table (NAT) might no longer be valid. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



~ cp 
..... 
8 
0) 
I 

I\.) 

@ 

0 
0 

~ 
:::!. 
cc 
::r -
CD 
s::: 
0 
0 ... 
"? 
..... 
co 
00 
00 

..... 
co co 
0 

0 
::r 
Ill 

"C 
Cii ... 
!" 

s::: 
CD 
:f 
0 
Q. 

a 
0 
"C 
CD ... e 
()" 
:::i 

N 
I co .... 

~ ~""' I~~. .~~ ·; ~ 

JES2 HASPNPM Network Path Manager Processor (Part 3 of 3) 

Input Process Output 

R11 Updoted nodes ati.:hed table 

@ Consolidate direct connections in NAT. L--------------.--.-----------V'" 

HCT 

SNIT ABLE 

SNPMPCE 

~-J~ 
$MCONPCE 

$NPMMSGO 

Path manager PCE work area 

NPMFLAG 

NPMACTL 

NPMNAT 

Nodes auached lc11Jle 

---~ 
Network active queue - - - - - - - --- --

tion table -~ Node1nforma ~---~ 
~L_ __ 

§ ___ ~ 

@ 
® 
@ 

~ 
~ 
® 
@ 

® 

e 
0 
® 

@ 

e 

Scan active NAT elements to determine 
best paths. 

Update NIT with new path information. ~--------------'-L,-----------' 

Pass palh information to line DCTs . .----------------.L--L----------..r.._ 

II no no1iticauons are required -+0· 
II muliiaccess spool connection .... ®. 
Allocale space in • • ~ 
oo• . ' 

Build appropriate notify record.c================:::::=:==========::::: 
Queue b~llor for d • !NffiWiITl 
transmission • • L__J· 

Updated node information table 

R3 

~ M 

Rl 

JES2 oofler 
1---------1 

Notification 

Then~. 

~ !! Rl 

..-.-J~c:::::::=========~:~=======~~ I Get spool buffer slot 

Build notify record . .---------------------~~----------•-...... 

Queue spool buffer to remote 
console processor for transmission 

Then -+0· . ·~· 
Post transmission processors, if required. 

Issue diagnostic if error ~-------------------~~----------~' 
was detected. 

Then -•0:) 

Spool butler 

r = -· :D 0 CD 
CD Ill 
:::i -Ill ... 
CD -· 
Q. !l 
s::: ig_ 
es::: 
CD. Ill 
::!. m 
~ ... 
Ill iii" 

"iii 
-c a ... 
0 -

"C CD 
CD S::: ... . -'< 
q 
ffi 
s::: 



ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL 

· HASPNPM NPATHP 

HASPNPM NPNPUT 

HASPNPM NPNDCTL 
NPNNE 
NPNOTL 

HASPNPM NPND 

HASPNPM NPNENO 

2·82 JES2 Logic 

® 
@ 
@ 

e 
@ 

NARRATIVE 

Whelhar or not tranlllliuions are to be •I- - 1 given 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

lirw ii -mined by lho Htting ol 1 mask field IMDCTNODSI. 

For an SNA RPL, NPNPUT branches to Nf'NVPUT to 
1Hoc.te space in the SNA buffer. 

Build reset record. 
Build concurrence record. 
Build add/subtract connoction racord. 

Build notify lor attached shatad spool member. 

Post JOB and SYSOUT transmitters ii 
any new paths were 
made available. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



~ 
I\) 
00 
~ 
0 
0 cp 
I\) 

@ 
() 
0 

"O 
'< 
~co 
;:!:" 

CD 
s::: 
() 
0 ... 

"O 

..... 
<O 
00 
00 

..... 
<O 
<O 
0 

() 
:;J" 

Pl 
"O 
iii ... 
I\) 

s::: 
CD s: 
0 a. 
g, 
0 

"O 
CD ... 
!!!. c;· 
::l 

I\) 
I 

C» w 

~ ~""" 

JES2 HASPNET - SYSOUT Transmission Process<?r (Part 1 of 2) 

Input Process 

Lme 
OCT 

JES2 ---------------------. 
DISPATCHER 11111 

0 SWAIT for work. 

~----•-< 0 $GET unit. 

~~s_pRuT ~ II unit unavailable ~ 
OCT V ---rv 

JOT 

I ~ I ! J 0 ~., .. ,,,, ·~ -+0 
I 1 L___JJ : : 0 ""'" ~,·~·-'"""' 

SYSl HASPACE 

-----JCT 

IOT 

Data block 

I 
_.....) ---

IOT 

POOB 

----

0 
0 
0 
0 

~e 
0 
@ 
@ 

II I 11' iJ@ II @ 
G 

fT 

II qualilying JOE found -..(!) 
d free the HASP534 message) an 

$WTOl$ ~-
unit. ~ 

h for another JOE for Se arc ~ 
this job; if none ~ 

Cham . JOE to previous JOE. ~ 

Read JCT. 

$WTO lHASP530 msgl. 

$EXTP OPEN; ii invalid ~ 
Send job header. I 

Read IDT; at end ol chain ~ 

Select SYSOUT PDDB & scan JOEs . 

for match; ii match ~ 
At end of PODBs -.e 

....... 

r 
-· :Il o CD 
CD Ill 
::l -I/) ... 
CD -· a. n. 

JES2 s:: ~ 
DISPATCHER~ !!!. s::: 

CD Pl ... --· CD e!. ... 
I/) iii" 

iii 
1J g, .., -
o CD 
~ s::: 
~ 
g, 
iii 
s::: 

JOT 

~ Q 



~· 
I 

CCI ..... 
c... 
m 
CJ) 
I\), 

r o·· 
co 
c;· 

r 
-< I\) 
co 
I .... 

0 
0 
Ol 
I 

I\) 

@ 
() 
0 

"'O 
'< .., 
ce· 
~ 
ffi 
s::: 
() 
0 .., 

"? .... 
ID co 
51' .... 
ID 
ID 
0 

ASSEMBLY 
LISTING 
NAME 

HASPNET 

HASPNET 

liASPNET 

HASPNET 

HASP NET 

flASPNE T 

\, 

ASSEMBLY 
LISTING NARRATIVE 
LABEL 

NSTSWAIT 0 Wait for initial go ahead. 

NSTSUNIT 0 Wili be unallle to yet unit if SYSOUT XMTR has been drained. 

0 The $POST of the checkpoint processor 1s performed within the 
$#GET subroutine. 

0 The JOE quail hes 1f the destination node is one of the nodes 
specified in MDCTNOOS. 

NST$MSG 0 Issue the 'Ln. STn inactive' message. 

NSTuOTJB 0 Take cun1rol of dOV other JOEs tor the same job which can be 
transmitted on this NJE line. 

ASSEMBLY ASSEMBLY 
LISTING LISTING NARRATIVE 
NAME LABEL 

HASPNET NSTENDQ @ The $#JCT metcro 1s used so that multiple processors may share the 
JCT for a 1ob 

HASPNET G Issue messaye to 1dent1ly job for which SYSOUT transm1ss1on 1s 
aboul 10 begin. 

HASPNET @ Request µerm1~1on to transmit through RTAM; if yranted, the 
receivmy end is µrepared to accept transmission. 

HASPNET NSTHXMIT @ The NJE 1ob header was stored in the JCT when the fob entered lhe 
system. 

HASPNET NSTIOTRD @ Redt.l Uuth regular and sµm IOTs. 

HASPNET NSTNEXTJ G POOB and JOE must ma1ch on DEST and CLASS, PODS must dlM> 
match chdrdctenstics - JOE. 

r c;· 
CD 
:J 
(/j 

~ 
s::: ::0 
et m 
CD -.., ::::!. 
-· 0 
Ill -- CD 
(/j Q. 

I s::: 
"ti Ill o co 

"'O ::::!. 
CD !!!.. 
;::i. (/j 

'< 0 
o-= a; 
~·=; 

/ 

." 



r 
-< 
I\) 
CX> 
I .... 

0 
0 
CD 
N 
@ 

0 
0 

"'C 
'< 
~
(0 

;:r 
CJ 
s: 
0 
0 ..... 

"'C 

...... 
CD 
CX> 
CX> 

.... 
CD 
CD 
0 

0 
::r 
Ill 
"O 
ct .... 
I\) 

s: 
CD 
~ 
0 a. 
g, 
0 

"O 
CD .... 
!!l. er 
::J 

N 
I 

CD en 

.~ 
~-

JES2 HASPNET - SYSOUT Transmission Processor (Part 2 of 2t 

Input 

SYS 1.HASPACE 

JCT 

IOT 

Da1a block 

JUI 

JOE 

C]JJ 

Process 

@ 
0 

11 ;:::r® 
G 
@ 

<S> 

Output 

Send data set header(s). 

Read block from JES2 dala st!I; 

al end ol block chain ~ 
Send data; 1f job is to be ~-...;;; ______________ _.__.._ ___ _. 

aborted --.®;else~ 
Send job trniler, send 

EOF l$EXTP CLOSE I. 

$WAIT for ACK/NAK of EOF 

llNAK~ 
~1 _;:ine~I 

JOT 
Remove JOEs ($#REM) from .-~@ 

c=JJJ @ 

JOT; $POST checkpoint, 

SF REE unil; then -+0) 
Send negative CLOSE. 

::>1 

I ~~@ 

... 

Restore all JOEs acquired 

by XMT A to mnwork JOE 

queue l$ffPUTI 

(.;;\ ~., oo-i l:'Y """ 00 ... ------v ~ 

ISYSOUT 
l~XMTR 

OCT 

r 
-· :0 
0 CD 
CD rn 
::J ...+ rn .... 
CD -· 
a. n. 
s:: ~ 
!!l. s: 
CD Ill 
.... ...+ 
-· CD !!!.. .... 
rn -· Ill 

Vi 
-0 2. 
a Ci 
~ s: .... 
~ 

2. 
Ci 
s: 



ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL 

HASPNET NSTDSHDR 

HASPNET NSTCKOPR 

HASP NET NSTENJOB 

HASPNET NSTNCLOS 

HASPNET NSTUNFLG 

2-86 JES2 Logic 

@ 

@ 
@ 
@ 
@ 
@ 

NARRATIVE 

Build datd sel he.tlter tor ~l lrom file 1l 1ob lfid nol e~~ulc locally) 
Mav have multtµle he.aders 1f 111ull1µle Oldlchmg POOBs with tfllfc1e111 
deslmdlions. 

While reall1ny data set and sendmg, conlmue to ch«:k. u.ansnutle.- OCT 
for $C and SE command entered l.iy operator 

Job lr<nler WdS slOred in the JCT when lhe 101J enh:red the syste111 

Free the JOEs ..ic4u1r.~d edrher; wrue network. SYSOUT Odnsn11ss1on 
SMF record; reledse resourctl's ac4uiredfo1 JOB 

Transm1s:>1on error or 101J flushed IJy 1ece1vmy nude, Cdll RTAM 10 
µer form "neycthve CLOSE." 

Pul JOEts) hdt:k. 111 .tcllwe queue ($tt"PUTI, checkpo1111 JOE, IS!:iUC JQl:I 
RESTARTED messaye 1$HASP5321 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



~ 
~ 
0 
0 
CJ) 
I 

l\J 

@ 
(") 
0 

"C 
'< 
~cc 
~ -jjj 
:s::: 
(") 
0 .., 

"? 
....... 
co 
CIO 
.?> 
....... 
co 
co 
0 

(") 
~ 
Ill 

"C 
CD .., 
l\J 

:s::: 
CD 
g 
0 c. 
g_ 
0 

"C 
CD .., 
a o· 
:::J 

N 
I 
co ..... 

.~ ~ ~" 

JES2 HASPNET - Job Transmission Processor (Part 1 of 2) 

Input 

Line 
DCT 

_C 

SYS 1 HASPACE 

JCT 

IDT 

Job 4ueue 

JOE 

~t-

~ .........., 

Process 
JES2 
DISPATCHER • 

--... 18 
>0 
0 

?© 
0 
0 
~ 

0 
0 
G 
~ 

:>( 12 ) 

G 
0 

$GET unit; if available -+0 
$WAIT for work. 

SOS USE; check OCT, if not ready 

to transmit job ... 0 
$0GET; if job available -+8 
$WTO l$HASP524 messaqe). 

$f REE unit; $WAIT for job, 

when $POSTED ~ 

· Read JCT. 

$WTO 1$HASP520 messagel. 

$EXTP OPEN; if invalid ~ 
Send job header. 

Read 101 and locate JCL 
data set. 

Read JCL data set record from 

spool; at EOF -+® 
If spool control record (SCA) -.G 
Send JC L data set record; if job 

to be aborted -.0 
Else-+® 

,.......-+ .. ~ 

Output 

JES2 
DISPATCHER .Ji1.. 

... 
Job queue 

JOE 

=> y 

_[ 
l 

~' 

~ 
~ 

c :D 
0 CD 
CD en 
:::J -en ::!. 
CD o 
c. CD 
==:: c. 
a :s::: 
CD Ill .., --· CD Ill .., 
iii" !!!: 

en 
"ti g_ .., -
o III 
~ :s::: 
~ 
9. 
jjj 
:s::: 



fl,) 
I co co 

c.. 
m 
(/) 
I\) 

r 
0 
IC c;· 

r 
-< 
I\) 
CX> 
I .... 

0 
0 
a> 
I 

I\) 

@ 

0 
0 

"O 
'< ., 
1a· 
:::r -m 
s: 
0 
0 ., 
"? 
..... 
CD 
CX> 
!» 
..... 
CD 
CD 
0 

ASSEMBLY 
LISTING 
NAME 

HASP NET 

HASPNET 

HASPNET 

HASP NET 

HASP NET 

HASPNET 

HASP NET 

HASPNET 

HASPNET 

ASSEMBLY 
LISTING 
LABEL 

JXMTINIT 8 
0 

JGOTUNIT 0 
0 
0 

JXMTWAIT 0 
JGOTJOB 0 
JGOTJCTI 0 

0 

ASSEMBLY ASSEMBLY 
NARRATIVE LISTING LISTING NARRATIVE 

NAME LABEL 

Will be unable to get unit if JOB XMTR has been drained. HASPNET JXMTHOR @ The NJE job header was stored in the JCT when the job entered 1he 
system. 

Wait for device to be made available. 
HASPNET 0 A pointer to the job's JCL data set is contained in the first IOT. 

Issue SOSUSE to get control of shared queues. 

$QGET routine scans the $XMIT job queue for a job destined for 

HASPNET JNEXTREC @) The JCL stream contains a spool control record at each point where 
• SYSIN dald·se1 should be. The SCR p<>ints 10 the SYSIN data set 
on the sp0ol. 

a node flagged in MDCTNODS. 

Issue "Ln.JTn inactive" message. 
HASPNET JPUTREC e Send data over NJE line via SEXTP PUT. Continue to check 

flags in OCT in case job is to be aborted ($C or SE by operator). 

Wait for a job to be added to the job queue. 

If the·read is unsuccessful, a disastrous error message is issued and 
the job 1s aborted. 

Issue message to identify job and line. 

Request permission to transmit; if granted. the receiving end is 
prepared to accept transmission. 

!: 
0 
(D 
:::> rn 
CD 
Q. 

s: :II 
I» CD 
- rn CD ~ ., -· -· 0 
I» -- CD rn a. 
I S: 

" e a!!? 
"O -· 
CD !!_ ., rn 
~o 
0 ----m m s: s: .. : 

'· 



~ 
I\) 

cp .... 
8 
C> 

I 
I\) 

@ 
() 
0 

~ ... ce· 
3: 
CJ 
s:: 
() 
0 ... 
"? .... 
~ 
5%' .... 
<O 

~ 

() 
;J 
II> 
"C 
CD ... 
!\) 

s:: 
<I> 
:f 
0 
Q. 

!:a. 
0 
"C 
<I> 

~ 
0 
:J 

~ 
C» co 

~ ~ 

JES2 HASPNET - Job Transmission Processor (Part 2 of 2) 

Input Process 

~ ::>@) Build and send OS header. f 

.....--- t--.. -- ,,>< 16 
Read SYSIN data record from 

.---
t- JCT - spool; at EOF -+@ 
f-- - ® Send SYSIN data record. 
i--- IDT -1 

then -+@ I--
~ t- Data Block --1 

~ Send job trailer; SEXTP CLOSE. 

\ ...._ _... 
® SWAIT for ACK/NAK of EOF; 

ilNAK -+@) 

~ 11 job submitled by local TSO 
user, NOTIFY user. 

B Update JCT and write to spool. r 

@ Oueue job for purge. [ 

0 If outstanding SYSOUT, 
queue job lo! HAROCOPY. 

® $FREE unit. -+0 
@ Send negative CLOSE. 

® SWTO ($HASP522 or $HASP5231 

@ Restore JOE 10 XMIT queue 
ISCPUTI. 

® $FREE unit. -+0 

~\ ~'*" 

Output 

~ NJE l ___;____. 

i<:::: SY51.HASPACD 

I-- -.::> t- JCT -
__.; 

Job queue 

~ 
JOE 

1 r 
..._ 

..._ 

~ 

c: ::Il 
(') <I> 
<I> UI 
:J -UI ~. 
<I> (') 
a. CD 
;:: Q. 

a s:: 
<I> II> ... --·<I> II> .., 
'iii iii" 

'iii 
"ti !:a. ... -
0 CJ 
j s:: 
~ 
!:a. 
CJ 
s:: 



II.) 
I co 

0 

c.. 
m 

"' I\) 

r 
0 co 
c;· 

r 
-< 
I\) 
OD 
I ..... 

0 
0 
Ol 
I 
I\) 

@ 
() 
0 
'O 
'< .., 
ce· 
;?; 

CJ 
:s::: 
() 
0 .., 

"!=' 
..... 
co 
OD 
!"' 
..... 
co co 
0 

ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL 

HASPNET JCNTLREC @ 
HASPNET JXMTHDR 0 
HASPNET JNOTIFY 0 
HASPNET JUPOTJCT 0 
HASPNET JXMTQPUT <e> 
HASPNET JABTERM 0 

ASSEMBLY ASSEMBLY 
NARRATIVE LISTING LISTING NARRATIVE 

NAME LABEL 

OS header is built from information in spool control record. HASPNET B Issue JOB RESTARTED or JOB DELETED nll!'u.1~tL· ulcnt1l>t11~11~at1 
dlld hne 

Job trailer was stored in the JCT when the job entered the system. 

Send mt:ssaye to TSO user via SWTO to notify user that job is 

HASPNET C0 Put JOE UJd. un XMIT lfUCUl' ul 11Jb IS 10 l't: ft!~IJI h•ll 

leaving this node. 

Update JCT with the job transm1ner·s enchny rime and accounhny 
information. 

Job 1s 4ueued tor HARDCOPY ii there is cmy ou1standiny SYSOUT 
dat1;1 s~t itctivity (1.e., JOEJOECT or JOEHLOCT are non·zero). 
Otherwise it 1s queued for µurge. 

Transm1ss1on error or job flushed by rece1viny node; call RTAM lo 
perform "negative CLOSE." 

r c;· 
CD 
::J 
UI 
CD c. . 
:s::: ::IJ 
Ill CD 
- UI CD ... 
.., ::::!. 
-· 0 
Ill -- CD 
UI C. 

I :s::: 
,, Ill 

0 a> 
'"C ::::!. 
CD Ill 
;::i. iii 
'< 0 
0 -=m 
CJ :s::: 
:s::: : 

/" 



~ 
~ .... 
~ 
i{, 

@ 
(') 
0 

~ ... ce· 
3: 
to 
3: 
(') 
0 ... 
"? .... 
~ 
.ai .... 
co 
~ 

(') 
J 
Ill 

"O -<D ... 
!" 

s: 
<D -J 
0 
0. 

2. 
0 

"O 
<D ... a 
5· 
::I 

N 
I co .... 

~. ~""' 
A.-,,..~~J'1-. 

JES2 HASPNET -SYSOUT Receiver Processor 

Input Process 

line OCT 

J C0 
SYSOUT Receiver OCT : :}f:\ 

I ~ 

Jobht:<ider 

0 
8 
0 
0 

it0 
0 

0 
0 
@ 
@ 

I I® 

SWAIT for work. 

$GET unit. If available ~ 

$EXTP NCLOSE !send NAKI -.(0 
$EXTP OPEN hend ACKI 

Set .. expecting job header" flag 
INSR$JHI in PCE. 

It job to be aborted -.@ 

If abnormal ed 29 
SEXTP GET !yet a reco-.@rd) 

end or 
record not expect 

Check record type: 

lljobheader ~ 

If data set header --.@ 
lldatarecord ~ 

If job trailer -.@ 
llEOF-.@ ~ 

Get spool buffers for JCT and IOT. 

Build JCT and allocation IOT. 

Build JQE and add to $RECEIVE 
job queue ISOAODI 

Assign JOBIO 

Write JCT and IOT to spool. L-----------------~-~-

sw;o ISHASP540 message) 

Set NSRSDSH + NSR$JT flags in PCE. -..0 

Output 

Job queue 

JOE 

r1 
,--

J 
J 

---

~. 

c :Jl 
0 <D 
<D (/) 
::I -g: ~-
0. -
3: ~ 
a s: 
<D Ill ... --· <D 
Ill ... 
Ui iii" 

Ui 
""tJ 2. ... -
0 CJ 
~ 3: 
~ 
2. 
to 
:!!: 



N 
~ 
N 

c... 
m en 
N 
r 
0 
(Q 
c;· 

r 
-< 
N 
OD 
I ...... 

0 
0 
O> 
~ 
@ 
(") 
0 

"'O 
'< ... 
i0· 
=r -iii 
s::: 
(") 
0 ... 
'? 
...... 
co 
OD 
s» 
...... 
co co 
0 

ASSEMBLY 
LISTING 
NAME 

HASPNET 

HASPNET 

HASPNET 

HASPNET 

HASPNET 

HASPNET 

HASPNET 

ASSEMBLY 
LISTING 
LABEL 

NSR$WAIT 8 
NSR$UNIT 0 
NSR$NCL 0 
NSRSETH 0 
NSR$GET 0 
NSRSG 0 
NSRJOBH e 

ASSEMBLY ASSEMBLY 
NARRATIVE LISTING LISTING NARRATIVE 

NAME LABEL 

$POSTICI by HASPBSC or HASPSNA when SYSOUT trommitter 
on the other end of line requests permiuion 10 tr•mmit. 

HASPNET 0 Job Recetver auempls to a111yn 5itfne number onymttlly t1Hy~ 1u 
1ob when n 1:n1ered the NJE network. 

Will be unavailable if operator hes drained the receivei'. HASPNET NJOUPDC @ Use STRACK to obtam spool SflKe for JCT •nd IOT 

Causes HASPBSC or HASPSNA to sand negotiw acknowledgement 
to transmitter. 

HASPNET e Issue nu~swye to 1denufy 1ob bemg rece1wd. 

Positive acknowledgement sent lo aransmitter. HASPNET 0 lmh~dl~ lhdl the receiver 1s now ex1>ee1mg either d ddtil ~• hcdlh·r m 
d 1ut1 Ud1l1:tr. 

Check DCT and JOE flags to see 1i any operator commands ISE, SC, 
SP) ha~e been issued against the receiver's device or job. 

$EXTP GET macro is issued to get the next logical record. The 
returned record's sub~record control byte CSRCB) indif:ltes the type 
of record received. 

The JCT is butlt from information m the job heitder record. 

r 
0 
(1) 
::J 
Ill 
(1) 
0. . 
s::: JJ 
Ill (1) 

- Ill 
(1) -.., :!. 
-· 0 
!!?. it 
Ill 0. 
I s::: 

-o a 
... (1) 
0 ... 

"'O -· 
(1) Ill ... -
- Ill '< 0 
0 ---- Cl 
aJ s::: s::: : 

/ 



r 
-< 
I\.) 

Cf' .... 
0 
0 
a> 
I 

I\.) 

@ 
() 
0 
-0 
'< .... 
<Ci" 
;::?; 

Ill 
s:: 
() 
0 ... 
-0 

.... 
(0 
CXl 
CXl 

.... 
(0 
(0 
0 

() 
:::T 
Ill 
-0 
Cii ... 
!" 
s:: 
CD 
g. 
0 
a. 
~ 
0 
-0 
CD ... 
~ 
0 
::i 

N 
I 

U) 
Co) 

~- 1···'"" /..;:.~'~, ~ 

JES2 HASPNET - SYSOUT Receiver Processor 

Input Process Output 
c: ::JJ 
0 CD 
<D en 
::i ... 
en ::!. 
CD O a. ... 

(!) s:: a. 
~ If previous record was not 

V adala record -.0) 
0 Terminal• previous dala ,. .. 

!!!. s:: 
CD Ill ... --· (!) 
~ :::! . 
en ~ 

en 

t::\ Get spool buffers for OS header IOT V and data set records. 

"ti ~ ... -
0 Ill a: s:: 

[ D•rn"" h•ader 19 Build PDDB in job's IOT tor DS headers -> PDDB 
... 
-< 

r:;;;-. Se! NSR$DATA, NSR$DSH. •nd N5R$JT 

V flagsinPCE ~ 

~ 
iii 
s:: 

l 0.1, 10.:ord ~0 Add da!a record 10 spool butler 

~ ltbutlernottull ~ v r:::: ~ 
@ Wrote butler to spool and 1 1-- ..--1 

get ano1her ~ > D· bl k --rv V t--. ata oc --1 

~\ T ermioate last data set block <imJ 
\J write to spool. ~ ..---j 

Q Vt--. ~ -
[ Joh lrJiler 1------------L..r'J, ~) Update IOT and JCT and rewrite t-- __.. 

(.;;;\ ~ .>I IOT V Set NSRSEOF flag on PCE ~ ~ ----

Q $WAIT for ;di disk 1/0 w wmplete. \J Job queue 

~ Move JOE from $RECEIVE lo .J'-...... I JOE V $OUTPUT queue !SOMODI ~ 
,-, 0 $EXTP CLOSE; $FREE umt ~ r--

Q Abort job 1$0PUT tor $PURGE. 

V $EXTP NCLOSE; $WTO $HASP543 J 
msg; $FREE uni!) ~ 

~rl lone OCT 

I ...r SYSOUT J 
~ receiver OCT 



ASSEMBLY ASSEMBLY 
LISTING LISTING 
NAME LABEL 

HASPNET NSRLASTB @ 

HASPNET NSRNIOT 0 
HASPNET ® 
HASPNET NSRJOBT @ 
HASPNET NSRCKFL G 
HASPNET NS RC LOSE ® 
HASPNET ® 

2-94 JES2 Logic 

NARRATIVE 

Wnte out the previous data set's last spool buffer with a zero chain 
field tn HDBNXTRK and the EOB indicator set after the last record 
in the block 

When IOT full, obtain space tor new IOT. chain to preceding one. and 
write out previous one. 

Indicate that the receiver is now expecting data record. data set 
header, or job trailer. 

The JCT is updated with information from the job trailer. 

The receiver is now expecting EOF only. 

Use SEXTP CLOSE to send positive acknowledgement to job trans· 
miner on other end of line. 

Job 1s aborted by writing out its JCT and IOT, issuing SEXTP NCLOSE 
to indicate abnormal termination to the job transmitter, and issuing 
message to inform the operator. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Chapter 3. Program Organization 

This section describes JES2 modules, their functions, basic methods of operation, 
and relationships to MVS and to other elements of JES2. The following table 
references the page on which each module description starts. 

Figure 3-1 (Page 1 of 2). JES2 Modules 

Module Function Description Page 

HASP DOC Describes the values and control blocks used throughout the executable 3-3 
JES2 modules. 

HASPTABS Contains various tables used by JES2. 3-3 

HASPSTAB Contains scan tables used by the $SCAN facility. 3-4 

HASPMSG Contains the scan tables and display routine for the JES2 message 3-4 
builder. 

HASPINIT Contains HASPIRA, HASPIRDA, HASPIRMA, HASPIRPL, and HASPIRRE, 3-4 
(load module) which initialize the subsystem and its interfaces. 

HASPSCAN Provides support for the $SCAN facility. 3-29 

HASPSXIT Contains all pre- and post-scan exits for the $SCAN facility. 3-33 

HASPNUC Provides central service subroutines to JES2. 3-36 

HASPDYN Dynamically builds PCEs, DCTs, and DTEs. 3-62 

HASPS UBS Initializes subtasks; removes and processes work requests from 3-65 
$STWORK; provides for generalized subtasking of calls to a specified 
routine. 

HASPJOS Provides job output services. 3-66 

HASPTERM Provides recovery and termination services. 3-77 

HASPNPM Manages network paths and provides network services. 3-86 

HASPNET Processes job and SYSOUT transmissions and SYSOUT receptions. 3-99 

HASPSSSM Provides the interface between JES2 and MVS; contains HASCDSAL, 3-116 
(load module) HASCDSOC, HASCJBST, HASCJBTR, HASCLINK, HASCSIRQ, 

HASCSRDS, HASCRIC, HASCSRJB, HASCDSS, and HASPAM. 

HASP AM Provides the access method for processing subsystem data sets. 3-130 

HASPCON Provides the console support services for JES2. 3-140 

HASPTRAK Prq__Y.ides track management and purge processing. 3-145 

HASPCOMM Receives and processes all JES2 commands from local and remote 3-150 
JES2 input sources. 

HASPSERV Provides command processing scanning services for use by 3-195 
HASPCOMM; provides work selection/modification services. 

HASPSSRV Provides various JES2 subtask services. 3-200 

HASPRDR Provides the functions of the input service processor. 3-205 

HASPCNVT Provides JCL conversion processing. 3-220 

HASPCNVS Provides a security environment for the jobs being converted and 3-223 
contains the entry to the converter subtask. 

HASPXEQ Provides execution services for jobs managed by JES2. 3-225 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 3-1 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Figure 3-1 (Page 2 of 2). JES2 Modules 

Module Function Description Page 

HASPSTAC Provides queue search and processing functions for the conversational 3-230 
job status and cancel requests. 

HASPPSO Process SYSOUT processor. 3-232 

HASPPRPU Determines the characteristics of a job's output data set and groups, 3-237 
performs the output operations, and loads the FCB and UCS images 
from SYS1 .IMAGELIB. 

HASPHOPE Output processor. 3-257 

HASPFSSP Resides in the JES2 address space and provides the JES2 processor 3-260 
with routines to communicate with a functional subsystem. 

HASPFSSM Resides in the functioflal subsystem address space and supports the 3-265 
FSI functions used to interact between JES2 and a functional 
subsystem. 

HASPRTAM Provides major functions through which JES2 communicates with 3-277 
remote terminals and other nodes in a JES2 network. 

HASPBSC Provides remote terminal and network functions for BSC devices. 3-285 

HASPS NA Provides remote terminal and network functions for SNA devices. 3-303 

HASPCKPT Provides checkpoint processing services. 3-357 

HASPCKDS Provides checkpoint service routines and contains the checkpoint 3-378 
dialog routines. 

HASPWARM Provides warm start processing of the JES2 queues. 3-382 

HASPMISC Provides miscellaneous JES2 services: priority aging, SMF subtask 3-388 
support, and network accounting. 

HASPEVTL Provides for the tracing and logging of JES2 events. 3-392 

HASPS POL Provides JES2 spool volume support. 3-399 

HASPSTAM Provides JES2 spool offload functions. 3-407 

HASP RAS Provides recovery routines, error, abend, and dump services. 3-416 

3-2 JES2 Logic LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPDOC: JES2 Control Areas Listing 

HASPTABS-HASPMSG 

HASPDOC is a non-executable module describing values and control blocks used 
throughout the executable JES2 modules. After assembly, HASPDOC contains the 
assembled DSECT of MVS and JES2 control blocks referenced during the assembly 
of JES2 source code. (Ordinarily, printing is suppressed at the point in each 
executable JES2 module where DSECTs are invoked; therefore, HASPDOC usually 
provides the only visual record of DSECT composition.) 

In addition to depicting control blocks, HASPDOC includes equated values basic to 
JES2, such as absolute and symbolic register definitions, extended mnemonic 
equates, flag definitions, and default initialization limits. 

The control block definitions contained in HASPDOC are available on microfiche 
(see the Preface of this manual for the microfiche order number). Since JES2 
programming fixes distributed by IBM sometimes include updates to HASPDOC, a 
current listing of HASPDOC should be checked if there are questions about a value 
or field definition. 

HASPTABS: JES2 Tables 
HASPTABS contains JES2 tables that are used via the $GETABLE table-pair service 
or in conjunction with the $SCAN facility, table access routines, the master control 
table (MCT), the JES2 module map (MODMAP), and other JES2 tables. 

The tables contained in HASPTABS are available on microfiche; see the Preface of 
this manual for the microfiche order number. 

The HASP PCE table (HASPPCET) defines PCE names, descriptions, ids, lengths, 
and other processor characteristics. The PCE tables are accessed using the 
$GET ABLE facility. Each entry in the table is created with the $PCETAB macro. The 
HASPPCER routine in this module is used to access the HASP PCE table. This 
routine is entered via the $GET ABLE macro with TABLE= PCE specified. 

The HASP event trace ID table (HASPTIDT) contains an entry for all HASP-defined 
trace ids. The tables are used during JES2 initialization and by the trace log 
processor (HASPEVTL) for formatting entries in the JES2 trace tables. The 
HASPTABR routine is used to access the trace id table. This routine is entered via 
the $GETABLE macro with TABLE = TID specified. 

The initialization options table (HASPOPTT) is used to define the options specified 
on the OS parameter field or the $HASP426/$HASP427 WTOR replies. This table is 
accessed via the $SCAN facility. 

The HASP parameter statement table (HASPMPST) contains an entry for each JES2 
defined main parameter statement. Another table USERMPST, can be used to 
define user entries for main parameter statement processing. The MCT fields 
MCTMPSTH and MCTMPSTU point to these tables. The tables are accessed via the 
JES2 $SCAN facility. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-3 



HASPINIT "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPST AB: $SCAN Tables 
HASPSTAB contains tables that are used by the $SCAN facility. The $SCAN facility 
scans initialization statements, some commands, and parameters. For a list of 
initialization statements and the tables that contain them, see the HASPSTAB entry 
in Figure 4-1 on page 4-1. 

HASPMSG: $SCAN Tables and Message Display Routines 
This module contains entry points $MSGDISR and HASPMGST. $MSGDISR supports 
the message building function of $SCAN and is called from HASPSCAN. Its function 
is to construct the list forms (MF= L) and execute forms (MF= E) of the WTO, WTOR, 
or MLWTO macros. HASPMGST contains $SCANTAB entries for certain messages 
and their pre- and post-scan routines. 

HASPINIT: JES2 Initialization Load Module 

HASP 

HASPINIT contains the source modules HASPIRA, HASPIRDA, HASPIRMA, 
HASPIRPL and HASPIRRE. HASPINIT initializes the subsystem and its interfaces 
and gives control to the JES2 $ASYNC processor. 

The HASP routine is the first routine that gets control when JES2 is started. HASP 
loads HASPINIT, locates HASPINIT's MIT table (MITETBL), and passes control to 
HASPIRA. The HASP routine will use $MODLOAD to load HASPINIT if it is not link 
edited with HASJES20. HASP then locates MIT to pass control to HASPIRA. If JES2 
initialization is successful, HASP deletes ($MODELETE) HASPINIT if it was loaded. 
If JES2 initialization is unsuccessful, $HASP428 is issued, meaning that a return 
code of 8 or 16 was returned by HASPINIT. 

Finally, HASP exits to the ASYNCH processor; this allows control to eventually be 
given to the HASP warm start processor (HASPWARM), which concludes the 
preliminary initialization of JES2. 

HASPIRA: Initialization Routine Administrator 

3-4 JES2 Logic 

The initialization routine administration is responsible for managing the 
initialization process. Upon initial entry, a work area is formatted like a processor 
control element. This work area is mapped by the $CIRWORK macro. Register 13 
will point to the "initialization PCE" throughout the initialization process. 

MODESET ma~ro instructions are executed to ensure that JES2 is operating in 
supervisor state with the HASP protection key. The ESTAE is established for the 
JES2 main task. 

At this point each initialization routine is called by the administrator. The 
initialization routines are called in the following order: 

1. IRMODCHK - Checks that the SP release level of this JES2 is compatible with 
the release level of MVS installed on this system. 

2. IROPTS - Processing of JES2 initialization options and the JES2 initialization 
exit point (for exit 0), producing initialized JES2 option flags. 

LY28-1006-2 ©Copyright IBM Corp.1988, 1990 



(-

( 

( 

( 

(_ 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPINIT 

3. IRSSI - Processing for JES2 SSl-related setup initialization, producing or 
validating a $HCCT and SSVT. 

4. IRSETUP - Processing to allocate and initialize various temporary and 
permanent JES2 control blocks before initialization parameter processing. 

5. IRPL - Processes the HASPPARM data sets. 

6. IRPOSTPL - Post-parameter library processing. 

7. IRDCTDCB - Allocates and formats most permanent DCTs. 

8. IRDA - Allocates and initializes the checkpoint and spool DASO devices that 
JES2 uses during its processing. 

9. IRCSA - Processing tor JES2 control blocks - related allocations and 
initialization. 

10. IRURDEV - Processing tor JES2 unit record device initialization. 

11. IRNJE - Performs NJE initialization. 

12. IRRJE - Performs RJE initialization. 

13. IRMVS - Processing tor various JES2 functions that require using MVS system 
services and various MVS/JES2 interfaces. 

14. IRDCTCP - completes all miscellaneous OCT initialization. 

15. IRPCE - builds the non-dynamic PCEs. 

16. IRFINAL - Processing to complete initialization before warm start processing. 

On return from each initialization routine (IR) the return code (in register 15) is 
checked for an error. If an error occurs, HASPIRA returns to HASP in HASPNUC 
indicating an error situation. 

If the return code from a given initialization routine is zero, HASPIRA continues 
looping and calling the next initialization routine until they all have been called. The 
HASPIRA takes the post initialization exit point (for exit 24) to allow installation exit 
routines to create their own installation-dependent control blocks or to alter JES2 
control blocks. When the installation exit routine returns, HASPIRA continues 
initialization processing (return codes 0 or 4) or issues (via $WTO) the $HASP864 
error message to the operator; then HASPIRA processes the error, returning to 
HASP in HASPNUC with an error indication. 

If $TRACE and ID= 6 are active, initialization options are traced. Initialization 
module map entries are zeroed only if HASPINIT was $MODLOADed, and HASPIRA 
returns to HASP in HASPNUC. 

HASPIRA: Initialization Support Routines 
The following routines are used by the various JES2 initialization routines 
throughout their processing. At IRERROR, HASPIRA processes any errors from 
initialization routines or from exit 24. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-5 



HASP I NIT "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

NBFBUILD: Buffer Pool Generation Routine 
The NBFBUILD routine is used to generate buffer pools for JES2 data and control 
blocks and for general, print/punch, page, and teleprocessing buffers. A buffer pool 
occupies an integral number of pages. The first buffer in the pool contains a buffer 
pool map, defined by the $BPM macro expansion. This map contains a bit map, 
each bit of which relates to a buffer in the pool. 

NSSSM: HASPSSSM Module Location Routine 
NSSSM issues $MODLOAD to load and $MODCHK to validate HASPSSSM. If the 
load is unsuccessful, NSSSM sets R1 to point to diagnostic message, $HASP875. 

If the $MODLOAD is successful, NSSSM initializes the MODMAP entries for the 
module, issues the DELETE macro to delete the COE associated with the module 
and returns to the caller. 

NQUERY: Operator WTOR Routine 
NQUERY receives a zero or one in R1. Zero means that NQUERY issues the 
$HASP441 message to query the operator to see if initialization is to continue or 
termination is to continue. One in R1 means that NQUERY issues the $HASP872 
message to query the operator to see if initialization is to continue, termination is to 
continue, or retry is to take place. 

NRDCTINT: Remote Device OCT Initialization Routine 
NRDCTINIT initializes remote device DCTs. On input, RO contains the RWL entry 
and R1 contains remote device OCT address. NRDCTINIT uses the RWL to initialize 
the DCT with information that includes the device id, standard reader LRECL, 
execution class, message class, and work selection definitions. NRDCTINIT then 
returns to the caller. 

HASPIRMA: HASP Miscellaneous Allocations and Initialization 

3-6 JES2 Logic 

HASPIRMA performs miscellaneous allocations and initialization on behalf of JES2. 
It: 

• Checks the compatibility between the JES2 SP release level and the release 
level of MVS on this system 

• Processes JES2 initialization options 

• Verifies and/or allocates the SSVT and SSCT 

• Processes PARMLIB setup 

• Allocates and initializes various JES2-specific tables (such as the PIT, RAT, NIT, 
XIT, LMT, and the CPT) 

• Builds the PCE and DCT 

• Initializes the SWB $KEYLIST table 

• Establishes the cross memory authorization index (AX) 

• Attaches the image loader, allocation, and VTAM subtasks 

• Completes the event trace CSA control blocks 

• Processes the SMF subtask, exits, and subsystem initialization record (SMF type 
43} 

• Creates the console message buffers (CMBs) 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IRMODCHK: Verify Compatibility 

HASP I NIT 

IRMODCHK ensures that the SP release level of this JES2 is compatible with the 
release level of MVS installed on this system. The system 370 version of JES2 is 
compatible with both the system 370 and the extended architecture versions of MVS, 
but the extended architecture version of JES2 is compatible only with the extended 
architecture of MVS. IRMODCHK also ensures that each JES2 load module and user 
exit routine have been assembled at the same level as the JES2 nucleus. 

IROPTS: Process JES2 Options Routine 
IROPTS scans the options specified on the EXEC card in the "Start JES2" procedure 
and uses $HASP426 (via WTOR) to request options from the operator if none are 
specified. IROPTS then prepares to establish exit 0. A temporary XIT is established 
in the CIR PCE work area and a temporary maximum length XRT is obtained for use 
by the $EXIT macro and exit effector. IROPTS attempts to load HASPXITO. It issues 
the $MODLOAD macro to load and $MODCHK to verify the module. If the load fails, 
exit 0 is marked as disabled. If the load is successful, IROPTS loops through the 
MIT entry table (MITETBL) and builds XRT entries for the exit routines in HASPXIT). 

After exit 0 and its routines are established, IROPTS copies the exec card 
parameters field to the CIR PCE work area. IROPTS then takes exit point NEXITO 
(for exit 0) passing control to the exit effector. The exit routines can return with a 
return code that requests that normal processing continue, the IROPTS processing 
is to end without scanning the JES2 options (assume options flags are set), that 
JES2 initialization is to terminate. 

If normal IROPTS processing is to continue, IROPTS scans the JES2 options via the 
$SCAN macro. If the scan fails, NQUERY is called to request initialization 
parameters from the operator. If the scan is successful, the setup for exit is 
removed. IROPTS checks to see if a $PJES2 was issued. If it was IROPTS 
immediately returns to the system via SVC 3; otherwise XIT/XRT storage is freed 
and return is made to the IR administrator with an indication that IROPTS was 
successful. 

IRSSI: Verify and/or Allocate the SSVT and SSCT Routine 
IRSSI locates the subsystem CVT (SSCT). If it cannot be found, initialization is 
terminated; otherwise, the SSCT is used to locate the corresponding SSVT and 
$HCCT. The $HCCT is analyzed to see if JES2 can be initialized. If JES2 has 
terminated already, is already up and active, or is restarting with conflicting options, 
$HASP425 is issued. 

If JES2 is not restarting and a hot start is not allowed, IRSSI issues $HASP490; if the 
hot start is allowed, but JES2 cannot be started yet, IRSSI issues $HASP425. 
Otherwise, JES2 can be initialized. IRSSI calls NSSSM to load HASPSSSM. If the 
subsystem has not yet been initialized, IRSSI obtains fixed global storage for the 
JES2 wait ECB, the MVS SSVT, and the $HCCT, and returns to the IR administrator. 

IRSETUP: PARMLIB Setup Processing Routine 
IRSETUP page fixes the HCT and other HASPNUC routines, obtains and initializes 
various fixed-length tables (such as, the priority table, the ACT, and the CAT). 
IRSETUP extracts the JES2 security token through a RACROUTE request. IRSETUP 
obtains and initializes storage for default remote and networking DCTs, initializes 
the temporary event trace id table, and obtains storage and initializes the PIT, RAT, 
CPT, NIT, and APW. Finally, IRSETUP obtains XITs and LMTs and initializes them, 
zeroes all exit routine addresses and the XRT (if this is a hot start), propagates the 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-7 



HASPINIT "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

defined exit parts within HASJES20 to the XIT, allocates an LMT and places an entry 
in it for HASPXITO, allocates and initializes the PRMODE table and allocates and 
initializes the functional subsystem control blocks (FSSCBs), and returns to the IR 
administrator. 

After IRSETUP, HASPIRMA obtains subpool 0 storage for fixed length permanent 
tables above the 16 megabyte address, the checkpoint work area (CKW) and the 
HASP file allocation map (HFAM). The tables are initialized. 

IRDCTDCB: OCT Formatting Routine 
This routine allocates and formats most DCTs. First it sets the default maximum 
CCW counts if they are not provided. It computes the variable OCT storage, and 
then obtains it. It sets the RTAM work area address. Then it formats the DCTs. The 
routine computes ACE and SMF buffers storage and constructs the automatic 
command element chain. Finally, it initializes the SMF buffer pool, gets storage for 
a direct access DCB and a maximum size DEB, and initializes the direct access 
DEB. 

IRCSA: CSA Control Block Initialization 

3-8 JES2 Logic 

IRCSA completes the initialization of various CSA control blocks. First, the console 
message buffers are obtained out of subpool 231 and initialized. Parameter library 
commands are then queued for later command processing. 

As part of IRSCA processing, the data space blocks for the internal reader protected 
buffers are established. On a hot start, JES2 first obtains access to the data space 
that contains the internal reader protected buffers. 

The following routines are used to initialize the $HCCT: 

IBLDHCCT 
The IBLDHCCT routine initializes the JES2 $HCCT. If JES2 is being restarted, the 
$HCCT already exists and minimum initialization is required. The previous 
$HCCT is tested, however, to ensure that the options in effect during the 
previous JES2 initialization are compatible with the current options. If not, the 
$HASP430 error message is issued and JES2 is quiesced. 

If JES2 is not being restarted, IBLDHCCT fills in various entries in the $HCCT 
from JES2 parameter defaults, initialization parameters, and system tables. 

ISVTINIT 
Unless JES2 is restarting, the final phase of initialization begins with the 
copying of the direct access DCBs and data extent block (DEB) into the $HCCT. 
The direct access storage control blocks (DAS) are copied into subpool 241 
storage and their pointers in the $HCCT are initialized. The TGBE entries are 
initialized. Then $HCCT pointers are initialized to point to the first TGBE, the last 
TGBE to be used during checkpoint processing, and the first TGBE that routines 
$STRAK and $TRACK will use to begin their search for a TGB. Various other 
control parameters are moved to the $HCCT. 

I CS AP ITS 
Storage for the partition information (PIT) tables is obtained and the PITs are 
initialized. 

NTRC 
NTRC determines valid trace ids and updates the $HCCT to reflect them. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

\ .... __ ,/ 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IRURDEV: Unit-Record Device Allocation 

HASPINIT 

IRUROEV locates and allocates eligible and specified unit-record devices and 
remote job entry lines. First, it locates the system attention table and stores the 
address of the JES2 attention appendage in the appropriate entry in this table. 

IRUROEV then searches the unit control blocks {UCBs) using the $GETUCBS routine 
and identifies readers, printers, punches, and physical remote job entry lines. When 
a unit has been identified, the status of the unit is determined from flags in the UCB 
and from the response to an EXCP of a NOP channel command word {CCW). 

IRUROEV searches the device control tables (OCTs) for a specific device request. If 
a parameter library statement has designated a specific unit address for a particular 
device, that unit address is in the OCTBUFAD field for that device's OCT. If a match 
is found between the OCTBUFAD field and the UCBNAME field, that device is 
allocated as described below and the OCT search continues for the other OCTs that 
may specify this unit. (Note that in OCTs representing logical lines, OCTBUFAD is 
set to ones by the OCT initialization routine. This ensures that no match between a 
UCBNAME field and a logical line OCT, and therefore no device allocation, can 
occur.) If the unit has been designated by at least one device, or if the device status 
shows that the device is not physically attached to the system, then when the end of 
the OCT chain is encountered, control is returned to examine the next UCB. 

Otherwise, IRUROEV searches the OCTs again for an unspecified device of the type 
{reader, printer, punch, or line) that corresponds with the device type of the current 
UCB. If no available OCT is found and if the condition has not already occurred on a 
device of this type, the $HASP412 message is issued to the operator to indicate that 
at least one available device is not being assigned, and processing continues. If an 
available OCT is found, it is allocated as described below, and control is returned to 
examine the next UCB. 

To allocate a device, IRUROEV stores the address of the UCB into the OCT 
{OCTUCB) to be allocated. If the device is an RJE line, the OCT is drained and 
certain fields are modified according to the adapter type. For other devices, the 
status of the OCT is examined {OCTSTAT) and if the device has been drained (using 
the parameter library), no further action is taken. A count of the number of IBM 3800 
Printing Subsystems allocated by JES2 is kept for later use in buffer pool 
generation. For impact printers, if forms control buffer {FCB) and universal 
character set {UCS) were not specified on the PRTnnnn statement, the default 
values of FCB and/or UCS on the PRINTOEF statement are stored in the OCT. For 
non-impact printers (the IBM 3800), the default values stored are NIFCB and NIUCS 
on the PRINTOEF statement; the NI FLASH parameter of the PRINTOEF statement 
contains the default values for flash. 

Note: The OEVFCB = parameter can be coded on the PRTnnnn and Rm.PRn 
initialization statements to indicate the device default FCB {OOFCB), which is the 
sole FCB value to be used in the event that the output element has not explicitiy 
declared FCB = on the JCL. If DEVFCB = is not coded, or is set to null using the $T 
command, the default value is stored in the OCT as described above. 

In addition, the content of the OCTFCB field, once initialized, are moved to field 
PRFCB in the print/punch processor control element {PCE) work area extension. If 
the device has not been drained, the status of the device itself is examined, and, if it 
is not ready, it is forced into a drain status. Otherwise, an attempt is made to 
allocate the device to JES2 using dynamic allocation. If the allocation is not 
successful, the device is drained. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-9 



HASPINIT "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Finally, IRURDEV scans all DCTs once more and drains all DCTs that have not had 
units assigned to them. Control is then returned to the IR administrator. 

IRMVS: MYS Service Initialization 

3-10 JES2 Logic 

IRMVS identifies the JES2 POST exit routines to the operating system via branch 
entry post, using entry point IEAOPTOE. The post exits are in effect while the JES2 
address space exists. 

Next, IRMVS initializes the scheduler work block (SWB) $KEYLIST table in subpool 
241. A check is first made to determine if the scheduler JCL facility (SJF) is 
initialized. If the SJF is initialized the SWB text unit keys are obtained via a SJFREQ 
REQUEST= JDTEXTRACT. If an SJF extract error occurs IRMVS issues message 
$HASP855, "JCL PROCESSING LIMITED DUE TO ERROR IN SYSTEM JOT". The 
operator is then queried as to whether JES2 initialization should continue. If the 
operator replies no (N), then JES2 initialization finishes and a $SDUMP a $SDUMP 
macro is issued. If the operator replies yes (Y), then all future SJF services are 
bypassed, the $KEYLIST table is freed and JES2 initialization continues. IRMVS 
issues SJFREQ REQUEST=TERMINATE to free SJF local storage and cancel the 
scheduler ESTAE. 

The $KEYLIST table is used to hold the SWB text unit keys for the following 
characteristics; burst, destination, copies, class, chars, FCB, flash, forms, modify, 
UCS, writer name, and LINECT. This table is used later to build SWBs that can be 
sent to the functional subsystem. The functional subsystem application (FSA) uses 
the SWBs to print the SYSOUT data sets with the correct output characteristics. 

IRMVS then initializes the authorization index for the JES2 address space and for 
the functional subsystem address spaces; these authorization indexes allow JES2 to 
set secondary address space (SSAR) to the functional subsystem address spaces. 
IRMVS then invokes the MVS assignable device initialization service specifying that 
all assignable devices should be processed. The command processor extended 
area is initialized. Then, SMF is initialized. 

Any JES2 module that writes SMF records invokes $SMF. $SMF maps record types 
52-58. $SMF calls IAFSMFR to map all other JES2 SMF records (types 6, 24, 26, 43, 
45, 47, 48, 49). 

The NWRAPUP routine obtains storage from the JES2 region and initializes the 
command processor's extended area. The location of the multiple console support 
(MCS) response target area verification module, IEE7603D, is determined through a 
LOAD macro instruction (with subsequent DELETE macro instruction), and its 
address is stored in this area. The write-to-operator subtask ($HASPWTO) is then 
identified, attached, and verified. 

A loop, initiated with the $GETABLE macro, through all the DTETAB entries attaches 
HASPACCT (the SMF subtask), HASPIMAG (the image loader subtask), and 
HASPVTAM (the VTAM subtask) if they are defined to be automatically started, that 
is, specified as GEN= YES on the $DTETAB macro. 

SMF processing is initialized with a LOAD macro instruction that finds the location 
of the IEFUSO and IEFUJP exits. If they are found, IRMVS replaces the default 
values in the $HCCT with the addresses of these routines. The first SMF record 
(type 43) is then generated using the standard SMF facilities in HASPNUC. If an 
application copy of the checkpoint is to be used, the HASPCKAP subtask is attached. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HAS Pl NIT 

Next, IRMVS attaches the requested number of general purpose subtasks indicated 
on the GSUBNUM parameter of the SUBTDEF initialization statement. If all (or any) 
of the attaches fail, the $HASP475 message is issued to display the number of 
available subtasks. If no subtasks are available, required JES2 functions are 
performed with severe performance degradation. 

If some attaches fail, but at least one subtask was successfully attached, some 
performance degradation may be apparent. (The $HASP872 message is issued for 
each attach failure.) The operator will then be prompted by the $HASP872 message 
to continue, terminate, or retry. If processing is to continue, IRMVS then exits to the 
IR administrator. 

IRDCTCP: Miscellaneous DCT Initialization 
This routine completes all miscellaneous DCT initialization. When this routine 
completes, the JES2 DCTs are complete and chained together. It does this by 
validating and initializing modify fields in the DCT for system affinity and route code 
for offload job receivers and modify fields for route code tor SYSOUT receivers. It 
also verifies that remotes number less than $MAXROUT or is equal to X'FFFF'. It 
validates system affinity values specified on the OFFn.JT or OFFn.JR initialization 
parameters. 

On a hot start, IRDCTCP re-initializes internal reader DCTs and reestablishes 
access to the internal reader protected buffer data space. If JES2 is cold or warm 
starting, this routine builds new internal reader DCTs in CSA and creates the 
internal reader protected buffer data space. 

The routine then creates request-jobid DCTs (for the execution and trace log 
processors, among others) and properly connects the DCTs to FSACBs (hot start) or 
FSIDs and finalizes the FSSCBs in CSA. 

IRPCE: PCE Generation 
This routine generates the PCEs required for JES2 to execute and the PCEs for 
those devices that need to start immediately or cannot be added later. The routine 
builds the "primary" (non-device) PCEs required. The dynamic PCE service will 
mark the new PCEs as $WAITing for work or on hold; it will ready them immediately 
as required. The routine then builds the device-related PCEs. It will mark these 
PCEs the same way as the non-device related PCEs. The routine at this point also 
connects the DCTs and PCEs. It uses the $PCEDYN OCT-chain service routine, 
which allocates PCEs for DCTs that require them, connects DCTs to existing PCEs, 
or bypass DCTs that do not have related PCEs, or for which PCEs are later 
allocated. The routine also initializes the network path manager. 

IRFINAL: Complete All Miscellaneous Initialization 
IRFINAL initializes the internal reader device control tables (DCTs). The internal 
reader DCT address in the $HCCT is tested and if there are no DCTs from a previous 
start of JES2, storage is obtained from subpool 241 in the common storage area. 
The DCTs are constructed in this area from a temporary internal reader DCT. One 
OCT is built for each internal reader specified by the RDINUM parameter plus two 
for started task control (STC) and time-sharing user (TSU) processing. If the DCTs 
already exist, no new DCTs are built, but the in-use flag (DCTINUSE) is reset in each 
of the existing internal reader DCTs. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-1'1 



HASPINIT "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The appropriate processor control element (PCE) address is moved into the 
DCTPCE field of each OCT. The remote terminal DCTs, if any, are removed from the 
chain of DCTs to which $DCTPOOL points. The JES2 processor $WAIT queues are 
initialized, and the started task control (STC) and time-sharing user (TSU) task class 
attribute table (CAT) entries are updated. 

Finally, all PCEs except for those for the asynchronous 110, warm start, console, 
checkpoint, timer, and network job routing receiver and transmitter are placed in 
$WAIT state, and control is passed to the next section. 

Buffer Pool Generation for Standard JES2 Buffers Routine 
The default value buffer count is calculated if no value for BUFDEF has been 
provided. The value is calculated to limit the possibility of buffer lockout in a 
situation where the maximum number of devices is active. NBUFBLD calculates the 
value as the sum of the following: 

20 For various concurrent subsystem processes 

N1*N2*TGSIZE The number of track-cell-despooling (TRKCELL=YES) local printers 
times their buffering option times the track cell size 

where: 

N1 is the number of (local) printers defined with the TRKCELL =YES keyword. 

N2 is 2 if DBLBUFR(on PRINTDEF statement)= YES, 1 if NO 
N3 is 2 if DBLBUFR(on PUNCHDEF statement)=YES, 1 if NO 
N4 is 2 if RDBLBUFR(on PRINTDEF statement)= YES, 1 if NO 
N5 is 2 if RDBLBUFR(on PUNCHDEF statement)= YES, 1 if NO 

The upper limit on BUFNUM is 2000; if the calculated value exceeds this, 2000 is 
used. 

Next, the buffer pool generation routine is invoked to construct the buffer pool in 
subpool 0 storage obtained with the $GETMAIN macro, and the returned address of 
the JES2 general buffer pool map is stored in the HASP communications table (HCT) 
at $BFRMAP. The actual number of buffers generated is stored in $NUMBUF; this 
may be greater than the requested number because the MVS GETMAIN service 
routine provides an integral number of storage pages and JES2 creates buffers to fill 
all of the pages obtained. 

NBBLDPP: Buffer Pool Generation for Print/Punch Buffer Routine 

3.;12 JES2 Logic 

JES2 printer/punch processor buffers are used in channel program creation for 
three processes: local printer output, local punch output, and input of track cells 
from a spool device. 

For output operations, each print/punch buffer must be large enough to contain a 
JES2 input/output buffer (108), two channel command word (CCW) areas, a 
program-controlled interruption element (PCIE), and a checkpoint job output 
element (JOE). Each of the CCW areas must be large enough to contain the number 
of CCWs specified for the CCWNUM parameters on the PRINTDEF and PUNCHDEF 
statements. 

For input operations, the print/punch buffer must be large enough to contain a JES2 
108, a 9-byte entry for each record in a track cell, a set sector CCW, and the CCWs 
required to provide a search/TIC/read sequence for each record in a track cell. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASP IN IT 

Therefore, the print/punch buffer size is calculated as the size of a JES2 IOB plus 
2*M, where M is the greatest of: 

CCWNUM*8 + PCIESIZE + ((JOESIZE + 7)/8)*8 

or 

((TGSIZE*4) - 3)*4 

The number of print/punch buffers required equals the number of local punches, 
plus the number of local printers defined with the the TRKCELL=YES keyword, plus 
the number of impact printers. 

The NBBLDPP routine invokes the buffer pool generation subroutine (NBFBUILD) to 
construct the print/punch buffer pool in subpool 0. The address of the print/punch 
buffer pool map is then stored in the HCT at $PPBFMAP. 

NBBLDPG: Buffer Pool Generation for JES2 Page Buffers Routine 
A JES2 page buffer equals an MVS page (4096 bytes). Page buffers are used to 
construct output channel programs for non-impact printers, such as the IBM 3800 
Printing Subsystem. Page buffers are broken into areas as described above for 
print/punch buffers. The number of buffers required equals the number of 
non-impact printers defined at initialization. 

If at least one non-impact printer has been defined, this routine calls the buffer pool 
generation subroutine (NBFBUILD) to construct the page buffer pool in subpool 0. 
On return, the address of the page buffer pool map is stored in the HCT at 
$PGBFMAP. 

End of Basic Initialization 
The subsystem vector table (SSVT) and $HCCT are connected to the subsystem 
communication vector table (SSCT). Control is returned to the IR administrator. 

HASPIRPL: JES2 Parameter Library Initialization 
The label IRPL in HASPIRPL processes the SYS1 .PARM LIB (HASPPARM) data set 
that contains the JES2 initialization statements and initializes JES2 in accordance 
with these initialization statements. IRPOSTPL in HASPIRPL post-processes the 
parameters that were initialized by HASPIRPL. 

IRPL begins parameter processing by first opening the SYS1.PARMLIB 
(HASPPARM) data set using the DDNAME in the DCB pointed to by CIRHPDCB field 
of the CIR PCE work area. IRPL issues an OPEN macro instruction for this 
DDNAME. If the open is unsuccessful, IRPL issues a $$WTO for the $HASP450 
message and calls the NQUERY routine to request operator response. If the error 
can't be bypassed, IRPL issues a CLOSE macro for the DDNAME, dynamically 
deallocates the SYS1.PARMLIB (HASPPARM) data set, frees any existing buffer 
pools, and returns to the caller. 

If IRPL successfully opens SYS1.PARMLIB (HASPPARM) using the supplied 
DDNAME, initialization processing continues at label NPLSTART. At NPLSTART, 
IRPL issues a GETMAIN macro for 4K of storage that is to be used as the parameter 
statement work area. Then IRPL begins a loop at NPLLOOP to process each 
initialization statement. IRPL invokes NPLGET to obtain an initialization statement. 
If an error occurs in trying to obtain an initialization statement, IRPL propagates the 
return code to the IR administrator after first performing cleanup processing similar 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-13 



HASP IN IT "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

to that it performs for a bad open of the SYS1 .PARMLIB (HASPPARM) data set. If 
the initialization statement is successfully obtained, exit point NPLEXIT (for exit 19) 
is taken to allow an installation exit routine to delete the initialization statement, 
change it, or terminate JES2 initialization. When the installation exit routine returns, 
IRPL issues a $STMTLOG macro instruction to log the initialization statement as 
changed or modified by the exit routine. If an initialization statement was inserted 
by the exit routine, IRPL issues another $STMTLOG macro instruction to log this 
inserted statement. The exit routine itself may issue $STMTLOG calls, placing 
commands, warnings, or diagnostics into the log with, if desired, their own message 
IDs. 

Normal initialization processing continues if the return code from the exit routine is 
0 or 4. If the return code is 8, IRPL bypasses processing this initialization statement 
and gets the next one at NPLLOOP. If the return code is 12, HASPIRPL issues a 
$STMTLOG macro instruction to log "TERMINATION REQUESTED BY THE USER 
EXIT", and issues a $$WTO message to the operator telling of the exit routine's 
action. Then IRPL cleans up resources and returns to the caller. 

Processing of the initialization statement continues at NPLSCAN. Here IRPL uses 
the scanning facility ($SCAN) to scan the various parameters in the statement, 
initializing the scan work area with the information contained in the statement. If 
the initialization statement is a "display" statement, IRPL issues a $SCAN macro 
instruction to display the parameters on the statement. If this statement was not 
processed by the scanning facility, IRPL then processes the initialization statement 
if it has a PTENT entry, issues a warning message if needed, logs the statement, 
and returns to the caller. 

Processing of initialization statements continues in this way, in a loop, until all 
initialization statements have been processed (that is, an end-of-file is reached on 
the SYS1 .PARMLIB(HASPPARM) data set). 

NPLCLOSE: Parameter Library Processing Termination Subroutine 
NPLEND receives control when the end-of-data is detected on the parameter library 
input file. The list file is closed with the FREE option to cause deallocation of the 
devices or data sets. The input file is closed and the DYNALLOC macro instruction 
causes deallocation of the input devices or data sets. A FREEPOOL macro 
instruction is issued to free the buffers associated with parameter library 
processing. The CIRF1FER flag is then tested to determine whether an error has 
been detected on the parameter library. If so, the $HASP451 error message is 
issued, and the $HASP441 message is issued, allowing the operator to decide 
whether to allow initialization to proceed. If the reply is N, JES2 issues message 
$HASP428 and is terminated. Otherwise, control is returned to the IR administrator 
successfully. 

IRPL Support Routines 

3~14 JES2 Logic 

IRPL provides the following routines to support the processing of initialization 
statements. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 

/ 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

NPLDCBOE: HASPPARM/HASPLIST Exit Routine 

HASPINIT 

When an end-of-file occurs while reading the SYS1 .PARMLIB(HASPPARM) data set 
or when the open fails for this data set, NPLDCBOE gets control. For an open 
failure, NPLDCBOE sets the block size and the unlike data set concatenation in the 
DCB and returns to data management. For an end-of-file on 
SYS1 .PARMLIB(HASPPARM), NPLDCBOE indicates an end-of-file in the initialization 
PCE work area and returns to data management. 

NPLDISP: Display Subroutine 
NPLDISP displays the WTO message (either through a DISPLAY id or a diagnostic 
message) that $SCAN has set up (via $$WTO) and returns to the caller. If this 
routine is called to issue a diagnostic (based on the return code passed by $SCAN), 
it checks to see if the keyword in error is a PTENT entry. If not, this routine issued 
the diagnostic message and returns to $SCAN. If the keyword is in a PTENT entry, 
the PTENT subroutine is called to process it, not issue the diagnostic. Then 
NPLDISP returns control to $SCAN. 

a 
'~, NPLGET: Initialization Statement Get Routine 

( 

NPLGET initializes the CIR PCE work area with the address and length of the next 
initialization statement; the next statement is received from 
SYS1 .PARMLIB(HASPPARM) or from the operator console. This routine will piece 
together the initialization statements (dependent on "," and comments). 

NGETCON: DCB and Output Work Area Setup Subroutine 
NGETCON loops, invoking NGETCARD for an input card and determining the starting 
address and length of the input. NGETCON accumulates, in the loop, a variable 
length parameter statement. 

NGETCARD: Get Input Card Subroutine 
NGETCARD issues a GET macro instruction to obtain an initialization statement 
from SYS1.PARMLIB(HASPPARM) and returns to the caller if the read is successful. 

NGETLEN: Determine Input Length Subroutine 
NGETLEN determines the input length of the parameter part of an initialization 
statement. The actual length is returned to the caller in R2. 

NGETCNT: Determine Continuation Subroutine 
NGETCNT determines if the input is continued. 

NPLLOG: Log/List/WTO Diagnostic Subroutine 
For each initialization statement, NPLLOG is called to either log the statement, list 
the statement to hard copy, or issue a diagnostic message (if the statement is in 
error). 

A $$WTO macro instruction issues message HASP467, which displays the entire 
initialization statement that is in error. Diagnostic messages are logged to the 
console and listed in the HASPLIST data set. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-15 



HASPINIT "Restricted Materials of IBM" 
Licensed Materials - .Property of IBM 

NLOGHLST: Write HASPLIST Subroutine 
If operator options indicate that the HASPLIST data set should be written, 
NLOGHLST is called. NLOGHLST issues the PUT macro instruction to write 
HASPLIST records that are printed later. 

REP Facility Processing Subroutine 
These routines process the BASE, the VERIFY (VER), the REPLACE (REP), the 
NAME, and the ENDZAP statements. 

NPLCOMND: Command Processing Subroutine 
The NPLCOMND routine records statements beginning with a dollar sign ($) (other 
than $$x statements). No processing is performed at this time. The command is 
saved in an area obtained via a $GETMAIN and placed at the end of the chain of 
commands pointed to by NCOMMTAB. 

IRPOSTPL: Parameter Post Processing Routine 

3-16 JES2 Logic 

IRPOSTPL checks for a valid HASPSSSM name in LPA. If it is found, initialization 
continues; otherwise, $HASP869 is issued, a return code of 8 is set in R15, and 
control is returned to the caller. 

IRPOSTPL continues initialization by supplying class conversion defaults, where 
needed, to the initialization parameters. IRPOSTPL initializes the class attribute 
table entries for started task control, logon TSU, and batch jobs. 

IRPOSTPL then performs the following initialization: 

NSETJWEL: The JOE/WRITER exclude table and the address space vector table are 
obtained and initialized. These tables are used to indicate when a device or 
address space access of a JOE has failed authority verification. This eliminates the 
performance overhead of additional RACROUTE calls each time the address space 
or device attempts to select a JOE. 

NCKBSP: The console backspace character in $BSPACE is compared to the 
console command character in $CCOMCHR. If equal, $BSPACE is set to X'OO', and 
the warning message $HASP448 is issued. 

NBSPOK: The value of $0WNNODE is compared with NODENUM on the NJEDEF 
statement to ensure that this system node falls within the range of valid node 
numbers. If the test fails, the $HASP437 message is issued, and JES2 terminates. 

NSMFTEST: If fewer than two SMF buffers are requested, the SMF buffer count is 
set to 0, and instructions are modified in the SMF buffer get and queue routines 
($GETSMFB and $QUESMFB) in HASPNUC so that those subroutines return control 
to the caller immediately upon being entered. 

NINRTEST: If JES2 is restarting, the number of internal readers indicated may 
require adjustment. The subsystem vector table (SSVT) is examined; if no internal 
readers exist, further testing is bypassed. If an internal reader device control table 
(DCT) exists but inspection shows that it is invalid, its pointer, SVTIRDRS in SSVT is 
set to 0, and no further testing is performed. If SVTIRDRS points to a valid internal 
reader DCT and a cold start is in progress, no change occurs; however, if a JES2 
warm start is in progress, the number of internal readers ($NUMINRS) is reduced by 
two to account for an internal reader for started tasks and by one for time-sharing 
option (TSO) sessions. 

LY28-1006-2 ©Copyright IBM Corp.1988, 1990 

( \ 



(~ 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPINIT 

NCMCTEST: This routine begins initialization for remote job entry. The maximum 
console message count $MAXCMCT (unless already set as a result of the RMTMSG 
parameter on a TPDEF initialization statement in the parameter library) is set to the 
value of CMBNUM on the CONDEF statement or 255, whichever is less. 

NRJETEST: $NUMRJE and $NUMTPBF are examined. $NUMRJE is set to the 
highest RMT(nnnn) value found in the temporary remote attribute table (RAT). If 
$NUMLNES is zero, $NUMRJE is set to zero. $NUMTPBF is set to twice $NUMLNES, 
if $NUMTPBF is zero. NRJETEST then determines the number of lines specified as 
logical lines by scanning the chain of all line DCTs and increasing a counter for 
each table representing a logical line; the counter value is stored in NLOGLINE. 

NPLXFINL: This routine performs final exit facility initialization. If JES2 is not being 
hot started, this routine computes the size of the final combined exit routines table 
(XRT) and then obtains the required storage from subpool 241. If a JES2 hot start is 
in progress, the XRT is not changed. This routine scans the exit information table 
(XIT) for each entry that has a temporary XRT associated with the user exit routine. 
NPLXFINL ensures that: 

• The exit point is defined. If it is not defined message $HASP857 is issued. 
• All specified exit routines were found. If not, message $HASP858 is issued. 

If any errors have been detected when the scan of the XIT is completed, message 
$HASP441 is issued. This allows the operator to terminate or continue initialization. 
Finally, the LMT is obtained and all temporary storage is freed. 

A call to routine TRGETTB initializes the trace tables if JES is not hot starting. 
TRGETTB is located in HASPEVTL. After completing this processing IRPOSTPL sets 
a return code and returns to the IR administrator. 

HASPIRDA: DASO (Checkpoint/Spool) Initialization 
IRDA in HASPIRDA allocates and initializes the checkpoint and spool DASO devices 
that JES2 uses during its processing. HASPIRDA processing includes the following 
functions: 

• check and set the IOTPDDB offset by computing the number of track group 
allocation entries (TGAEs) 

• set print/punch-related parameter defaults 

• calculate the number of checkpoint pages 

• acquire storage for the master checkpoint record and its 110 area 

• clear and page-fix the master checkpoint record 

• acquire and clear checkpoint pages 

• fill in the KIT 

• acquire a checkpoint buffer table 

• locate spool volumes 

• update spool volume allocation table 

• if warm-starting, read in the checkpoint 

• process forwarded data sets 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-17 



HASPINIT 

• process changes to SID(s) and QSE(s) 

• locate and flag the last-defined QSE. 

"Restricted Materials of tBM" 
Licensed Materials - Property of IBM 

The following routines support HASPIRDA processing. 

Set IOTPDDB: Master Checkpoint Record Allocate/Format Routine 
The size of the track group map is calculated based on $NUMTG and stored at 
$CYLMAPL in the HCT. 

The size and number of fields in the IOT are then calculated. The IOT will contain 
the fixed area, at least 50 TGAEs, and as many PDDBs as will fit. The exact number 
of TGAEs is determined by first fitting as many PDDBs as possible with 50 TGAEs 
and then filling in any extra space with TGAEs. The number of TGAEs is stored at 
$TGAENUM in the HCT and the total size of the TGAE area in the IOT is stored at 
$TGAELEN in the HCT. The offset in the IOT of the first PDDB is stored at $10TPDDB 
in the HCT. 

The length of the spool volume prefix ($SPOOL in the HCT) is determined. The value 
is stored as length-1 (for execute instructions) at $SPLLEN in the HCT. 

Create Volume Allocation Table Routine 
The temporary volume allocation table (CIRVOLTB) is obtained during IRDA to 
contain the entries that represent each spool volume. The UCBs for all DASD 
volumes are scanned (using the $GETUCBS macro) for any volumes with the spool 
volume prefix. When a match is found, a check is made to ensure that there is only 
one UCB for the volume. If there is more than one, IRDA issues the $HASP422 
message and exits with an error. Once it is known there is only one UCB, an entry 
is made in the volume allocation table for the volume using the data from the UCB. 

Build the KITs from the CTENTs 
After updating the spool volume allocation table, routine KBLDKIT is called to build 
temporary checkpoint information tables (KITs) based on the checkpoint information 
entries (CTENTs). There are NCTETENT number of CTENT entries in the checkpoint 
data set. KBLDKIT $GETMAINs NCTETENT number of KITs and fills each KIT with 
information obtained from the HCT and the CTENT for that table. 

Build and Initialize Checkpoint Control Blocks 

3-18 JES2 Logic 

IRDA determines the number of checkpoint pages by looking at each KIT and adding 
up the size of each table. If the size of the change log was not specified, a default 
size is determined. 

The size of the master record is determined and stored in the HCT ($MASTERL). 
Storage for the master checkpoint record and its 1/0 area is obtained by a 
$GETMAIN from subpool 0. The address of the master record area and its 1/0 area 
are stored in $MASTER and $MASTERI in the HCT. Pointers to the significant data 
areas in the master record and its 1/0 area are saved in the HCT. The temporary 
KITS are copied into the master record and the temporary KITs are $FREMAINed. 

KBLDCB is called to build the remainder of the checkpoint control blocks. They are 
4-K checkpoint pages (both in-storage and 1/0 copies), an extra copy of the control 
bytes (for the HASPCKAP subtask), a fixed list byte table for the 4-K pages (each 
byte in this table is used to determine if a 4-K page in the checkpoint is fixed or not), 
the initial CAL (used by $CKPT), and a page service list (PSL). One PSL entry is 
needed for each 4-K record to be serviced. The 4-K checkpoint entries and the 4-K 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 



( 

( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPINIT 

change log entries both use the PSL, but not at the same time. Storage is calculated 
based on larger of the two 4-K record numbers. The routine then $GETMAINs a 
temporary track one table (TOT) and initializes the track one records (TOR). Finally, 
KBLDCB $GETMAINs the checkpoint trace work area (CTW), and returns to IRDA. 

Verify Initialization Options 
If RECONFIG =YES was specified on the CKPTDEF statement or if the RECONFIG 
option was specified, the RECONFIG bit is set in $0PTSTAT (this is the same bit set 
by the RECONFIG option). It is this field that is checked during initialization to 
determine if RECONFIG was specified. 

If this is a COLD or a HOT start, then a check is made to see if CKPTn or RECONFIG 
was specified. If so, the $HASP487 message is issued and initialization is 
terminated. If RECONFIG and CKPTn were not specified and this is a hot start, the 
CKPT specifications in the HCCT replace those specified in the initialization deck. 

The specifications for CKPTDEF are then saved in the INIT work area for later use. 

Call Dialog Routine 
A check is now made to see if RECONFIG was specified. If so the dialog is called to 
obtain the correct values for CKPTDEF. If the operator replies "CANCEL" to the 
dialog, initialization will terminate. 

Verify CKPTn valid when RECONFIG specified 
If the RECONFIG and CKPTn initialization options are both specified, a check is 
made to ensure that CKPT1 is INUSE =YES if PARM"" CKPT1 was specified, and 
CKPT2 is INUSE=YES if PARM=CKPT2 is specified. If CKPTn is INUSE=NO, the 
$HASP481 message is issued and initialization is terminated. 

Get CKPT Environment From Data Sets 

NGWARM: 

The current mode this system is running in (DUAL/DUPLEX) is set to match the 
initialization deck. The change log length from the initialization stream is saved. If 
this is a cold start, the suppress 1/0 error indicator is set. 

The GETCKENV routine is then called. This routine is passed the current checkpoint 
data set allocation and the specifications the installation wants this system to start 
with. It adjusts the allocation as needed, acquires (or bypasses) the lock, reads in 
track one of the data set, and determines if JES2 should come up. It handles all 
cases of data set forwarding, INUSE = parameter differences, and error on the data 
sets. The return code will indicate whether or not JES2 should come up. 

If JES2 is to come up, 1/0 error messages are again enabled, and control is 
transferred to either cold start or warm start processing. 

Warm Start Processing 
First, the system parameter table is analyzed by the routine NGCIRCHK. If a 
problem is found, message $HASP435 is issued and JES2 terminates. The routine 
NGCQWARM is then called to add, change, or delete a system ID. Continuation or 
termination of JES2 depends on operator replies to the messages issued during this 
processing. The $HASP493 message is issued indicating the type of start in 
progress. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-19 



HASP IN IT 

3-20 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property oflBM 

If a multi-access spool configuration is indicated, the system being initialized must 
be inactive and dormant. Otherwise, the operator is informed of the system's status 
via message $HASP470. The operator has the opportunity to continue by replying to 
message $HASP471; if the reply is N, processing terminates. 

When the CKPTn or RECONFIG initialization option is specified and prior validations 
indicate that the system cannot perform a multi-access spool all-system warm start, 
the operator is notified with message $HASP487 and initialization is terminated. 

NFSYSPRM: Checkpoint Record Verification Routine: NFSYSPRM compares the 
portion of the HASP communications table (HCT) containing information that must 
remain the same across a warm start with the copy contained in the first record of 
the checkpoint data set read (either the current data set or the data set specified in 
the CKPTn initialization option). If the information does not agree, message 
$HASP442 is issued, denying the warm start. Message $HASP496 is then issued for 
each initialization statement in error. 

Read the Entire Checkpoint Data Set: Before reading in the data set, the size of the 
change log is adjusted to match that of the data set (by calling CKALADJ). The 
updates portion of the master record is saved and the check, master, and change 
log records are read from track 1 (by KTRK110). The HFAM is then updated from 
the check record (only the first half is copied if RECONFIG was specified). The 
control bytes are set to read all the records in the checkpoint and KREAD2 is called 
to read them in. 

If there is an 1/0 error in either 110, the dialog is entered (reason= INIT) to 
determine where the checkpoint is (it is assumed that this is the wrong data set). If 
the operator replies "CANCEL", initialization terminates. Otherwise control will be 
returned to early in IRDA, to set up and call GETCKENV. 

If KREAD2 encounters an invalid change log entry, the installation is given the 
option of bypassing the change log (if this is an all-systems warm start). If the 
installation elects to do this, the length of the used portion of the change log is set to 
zero and KREAD2 is again called. 

Once the reads have completed, the mode that the system will be running in is set. 
If RECONFIG was specified, MODE will match what the initialization stream said. If 
RECONFIG was not specified, MODE will be set to match that of the data set. 

Allocation of Spool Volumes: The direct access spool control blocks (DAS) are 
used to determine the current spooling environment. The checkpoint data set 
contains SPOOLNUM DAS control blocks, one for each possible spool volume 
(SPOOLNUM can equal 1 to 253). Flags in each DAS control block define its current 
status. On a warm start, JES2 will attempt to return the spooling configuration to its 
previous status. JES2 will ensure that all volumes available during the last point of 
processing are now mounted on the proper devices and that each has the same 
extent limits as before. 

If this restart is to make a previously shared spool volume non-shared, all work from 
the spool volume is purged, held or terminated -- unless SHARED= NOCHECK is 
coded on the MASDEF initialization parameter. If SHARED= NOCHECK is coded, 
this volume is automatically made active. Note: It is accessible, however, only to 
the member to which it is attached. All previously available spool volumes can be 
found on the $DASTRKQ. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 

\ 
~- ,/ 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPINIT 

The spool volumes characteristics will be obtained by attaching the HOSPOOL 
subtask in HASPSPOL. HASPSPOL will also allocate the spool volume. 

If a previously mounted spool volume is determined not to be formatted, the 
$HASP421 message will be issued. If the extent limits do not match, the $HASP401 
message will be issued. Both of these errors will cause JES2 to terminate. 

No new spool volumes will be added during a warm start. The only time a volume 
can be removed during a restart, is during a configuration wide warm start. In that 
case, the $HASP424 message is issued. This message is followed by the $HASP853 
message asking the operator what action should be taken. At this point three 
options are available: 

• purge all work on the volume and continue processing 
• hold all work on the volume and continue processing 
• terminate initialization 

If all of the volumes are valid, JES2 will continue processing and return the volume 
to its previous status. At this point, the bad track group map processing is 
performed. Control is then given to NGDONE. 

NGCOLD: Cold and Format Start Processing Routine 
If the initialization options specified a cold start and/or a format start, the NGCOLD 
routine receives control. First, the entire track group map is zeroed and the bad 
track group map is initialized with ones. The system parameter table is analyzed by 
the routine NGCIRCHK. If a problem is found, message $HASP435 is issued and 
JES2 terminates. The routine NGCQCOLD is then called to initialize the QSEs. A 
"COLD START IN PROGRESS" message is issued. NGCOLD sets the mode to 
match the initialization stream and initializes DAS extent numbers and the 
DASMASK. Then, each mounted spool volume is processed. 

The volumes processed are those represented in the volume allocation table. For 
each volume in the table, the subtask HOSPOOL is attached to obtain 
SYS1.HASPACE characteristics, allocate and format the volume accordingly. 

If the MASDEF parameter specifies SHARED= CHECK, NGCOLD ignores volumes 
that cannot be shared. If SHARED= NOCHECK is cbded, however, HOSPOOL will 
automatically allocate all spool volumes. When all table entries have been 
processed, the subtask completions are waited for, one at a time, by waiting for the 
first subtask to complete. Any error detected by HOSPOOL results in the volume not 
being allocated. 

As processing for each volume is completed, the $DAXTNTA routine in HASPSPOL 
will be called to initialize the DAS. The master track group map is updated via a call 
to the $DATGMA routine in HASPSPOL, making available all track groups in the first 
extent of SYS1.HASPACE on the volume. 

If the maximum number of spool volumes is exceeded the $HASP411 message will 
be issued and the operator is given a choice with message $HASP441 whether or 
not to terminate JES2. If the extent of a spool volume is larger than the space 
remaining in the TGM, the operator is informed of the reduced size extent and then 
the operator is given three options: 

1. Use this volume, but with smaller extent limits. 
2. Terminate JES2. 
3. Continue, but do not use this spool volume. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-21 



HASPINIT "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

When processing of all volumes is completed, the cold start time stamp is saved in 
the HFAM, and the job queue and the job output table (JOT) are formatted. Control 
is then given to NGDONE. 

NGDONE: Final Checkpoint Adjustments 

3..:22 JES2 Logic 

At this point, one last check is made to ensure the system is allocated as it should 
be. If RECONFIG was specified, the change log size is adjusted to match that 
specified in the initialization stream. The temporary TOT is $FREMAINed. 

The value of TGBPERVL is then verified. If not specified during initialization, it is set 
to the largest number of entries that will fit (up to 5). If it was set in initialization, a 
check is made to ensure the BLOB is large enough to accommodate the number of 
allocated spool times the TGBPERVL. If the BLOB is too small, TGBPERVL is 
adjusted to the maximum possible with this configuration and the $HASP834 
message is issued. 

The BADTRACK initialization statement information from the NBADTRAK table is 
used to set the appropriate bits off (0) in the permanent and temporary badtrack 
group maps. If a hot start is being performed, this routine goes to the NGBTGFRE 
routine and frees the storage in use by the NBADTRAK table via the $FREMAIN 
macro. If an all-systems warm or cold start is being performed, the storage 
required for the temporary bad track group map is obtained via the $GETMAIN 
macro and this map is initialized to ones. 

At this point if no BADTRACK statements exist, NGDONE issues the $FREMAIN 
macro to release the NBADTRAK table storage and control is returned to the caller. 

If there are BADTRACK statements, NGDONE continues processing. The DAS 
control blocks are searched to find the correct entry. If none is found, the $HASP861 
message is issued. After NGDONE finds the proper DAS control block for the spool 
volume, the cylinder and head location (CCHH) tor the first address is converted to a 
relative track address (MTTR). NGDONE uses the $TGMSET macro to mark the 
track bad (indicated by a bit value of zero) in both the permanent and temporary 
.track group map. If a non-zero return code was returned from the first $TGMSET 
macro, NGDONE issues message $HASP861 to indicate a bad address, then 
processes the next statement. 

If the first address is the same as the last address, the bit has already been set off 
and processing for the next statement is started. Otherwise, the same processing 
occurs for the last address as has just been completed for the first address. If the 
first address is valid and the second address is invalid, the first track group is still 
marked bad. 

After the first and the last bits are marked, all the bits in between are then marked 
bad in both maps. This is done by first marking any remaining bits in the byte that 
contained the first address (stopping at the bit of the last address, if it's in that byte). 
Then, any entire bytes in the maps are marked bad. Finally, all bits until the one 
representing the last address are marked bad in the last byte. A test is then made 
to see if there are any more statements. If not, the NBADTRAI< table is freed via the 
$FREMAIN macro, and control is returned to the caller. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

NGQANAL: Job Queue Analysis Routine 

HASP I NIT 

A test is made to determine if a multi-access spool all-systems warm start is being 
performed. If not, processing continues with routine NGCKPT. Otherwise, 
processing continues with routine NGOANAL. 

NGQANAL analyzes each element in the JES2 job queue and zeroes out the job 
queue index (JIX). Then, as each JOE is analyzed, the relative job offset (RJO) of 
the JOE is placed in the appropriate JIX entry. This analysis detects a JOE that is 
not on the correct chain, a JOE with an invalid queue type, and a chain that loops 
upon itself. If an error is detected, control passes to routine NGBLDJBO. 
Otherwise, control passes to NGBLDJOT, which calls $#JOTCHK in HASPJOS. 

NGBLDJBQ: Rebuild JES2 Job Queue Routine 
The NGBLDJBQ routine first sets the $CKPERRO flag in the checkpoint information 
byte $CKPTFLG. This byte, later copied to the checkpoint record, contains a record 
of special processing performed on behalf of JES2 checkpointing and the JES2 
checkpoint data sets. This record is kept until the next JES2 cold start. NGBLDJBO 
queries the operator with message $HASP483 to determine if a job queue rebuild 
should be performed. If the operator replies no (N), message $HASP441 is issued to 
ask the operator if JES2 initialization should continue. If the reply to $HASP441 is N, 
JES2 is terminated. Otherwise, processing continues at NGBLDJOT, where 
$#JOTCHK in HASPJOS is called. 

If the reply to $HASP483 is yes (Y), the $CKPBLDQ bit is set in $CKPTFLG, the JES2 
"REQ" initialization option is forced and the job queue is rebuilt. 

To rebuild the job queue, the free queue and each type or class queue is rebuilt, one 
element at a time. The JOEs are analyzed in address sequence to eliminate 
dependencies on JOE chains. 

Only validated JQEs are returned to the class or type queues. Free JOEs and any 
invalidated JQEs are put on the free queue. 

The class and type queues are rebuilt in order of job number within priority 
sequence. This logic is different from that used to queue the JOEs originally. The 
reason for using the job numbers for queue ordering is to increase the likelihood 
that the JOEs will end up in the FIFO queue sequence that existed prior to the 
rebuild. The job queue index (JIX) entry for each JOE is then filled in. 

When the job queue rebuild is complete, control passes to NGBLDJOT. 

NGBLDJOT: Rebuild JES2 Job Output Table Routine 
At label NGBLDJOT, the $#JOTCHK routine in HASPJOS is called to verify the JOT. 
Note that this verification (and rebuild, if necessary) is done only at initialization 
during a multi-access spool all-systems warm start. If a rebuild was necessary and 
failed, initialization terminates. 

When the JOT rebuild is complete, control passes to NGCKPT. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3~23 



HASPINIT "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

NGCKPT: Final Initialization Checkpoint Routines 
When NGCKPT is entered, checkpoint information in storage has already been built 
and/or validated. The systems bit and the duplex bit (if this system is duplexing) are 
reset in all the CTLBs. The to-be-written-to data set is set for HASPCKPT. The 
$QSE bit is set to indicate how many data sets this system is allocated to. 
KFORMAT is called for the down-level data set (if there are two data sets), and then 
the current data set. If there is an 110 error on either format, the dialog is called 
(reason= IOERR,K15). The DASO RESERVE and JES2 checkpoint locks will not be 
released by NGCKPT. Once the formats are done (or the dialog completes), IRDA 
page releases the master record 110 area and returns to the caller. 

IRDA Support Routines 

3-24 JES2 Logic 

These subroutines are used in the allocation and initialization of direct-access 
device space. They use the $DTEDYN macro to attach and detach HOSPOOL to 
dynamically allocate and, optionally, format a spool or checkpoint volume. 

GETCKENV: A check is made to ensure that at least one checkpoint data set is in 
use. If not, the $HASP472 message is issued, and dialog processing is entered. 
(Dialog processing in GETCKENV involves calling KDIALOG (reason= INIT). If the 
operator does not cancel the dialog, GETCKENV is called recursively. Otherwise, 
JES2 is terminated). CKALCADJ is then called to adjust the checkpoint data set 
allocations so that they match the specifications in the HFAM. If there is a problem 
allocating the data sets, dialog processing is entered. If either data set is locked, 
KTRK110 is called to release the lock on that data set. If the reserve is held on a 
data set, KRELEASE is called to release that reserve. 

The reserve is now obtained on CKPT1, if it is allocated (otherwise CKPT2), by 
calling KRESERVE and then calling KNOP. This prevents other systems in a 
multi-access spool configuration from updating the checkpoint records during 
initialization. If an 110 error is encountered attempting to get the reserve, 
KIOERROR is called and dialog processing is entered. GETCKENV attempts to 
acquire the checkpoint lock record by calling KTRK110. The parameter list passed 
to KTRK110 specifies to attempt to lock a specific data set if that data set is 
allocated, and the data set has not had an 110 error on it, and if RECONFIG and 
CKPTn (where n is the other data set) was not specified. If KTRK110 reports an 110 
error on one of the data sets, a check is made to see if there are any data sets left 
that are eligible to have 110 done to them. If not, GETCKENV branches to issue the 
$HASP479 message. If there is a data set eligible for 110, the data set that had the 
110 error is made non-eligible for further processing. 

If there is at least one eligible data set, a check is made to see if the lock was 
obtained. If the lock could not be obtained on any data set, a check is made to see 
who owns the lock. If this is a hot start and the data set is locked by this system, it 
is assumed that the lock was obtained. Whether or not the lock was obtained, a 
check is made to see if the data set read is a checkpoint data set. If not, an 110 error 
is simulated on the data set and GETCKENV branches to the code that handles an 
110 error from KTRK110. If there are two eligible checkpoint data sets and this is not 
a cold start, a check is made to ensure both data sets are from the same cold start 
date. If not, the $HASP482 message is issued and initialization is terminated. 
CHCKSPEC is then called to ensure that the checkpoint specifications that are 
currently being used are allowed (based on the data set). CHCKSPEC will indicate 
the current specifications are correct, process a different specification, or encounter 
an error that causes initialization to terminate. If the current specifications are not 
correct, GETCKENV will return to its caller with an appropriate return code. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPINIT 

If the current specifications are correct, a check is made to see if any data set 
forwarding was done. If so, VERIFYCK is called to verify the current specifications. 
If the the operator indicated the current specifications are not correct, the dialog 
process is entered. 

If the lock was not obtained, message $HASP488 is issued and the system attempts 
to retry the operation at 1-second intervals for up to 30 seconds. If attempts to retry 
the operation fail to acquire the checkpoint lock, or there was an 110 error on all 
eligible data sets, message $HASP479 is issued, allowing the operator the option of 
continuing initialization without the lock protection. Note that the locking operation 
is a backup mechanism intended to protect the checkpoint from failures of the 
RESERVE/RELEASE function. When functioning properly, the RESERVE mechanism 
protects the checkpoint from simultaneous updating. 

If this is a cold start, the $HASP436 message is issued to confirm the checkpoint 
data sets and spool volumes being cold started. 

The appropriate checkpoint data set (either the highest level data set, the locked 
data set, or the data set specified by the initialization options CKPTn) is read by 
calling KTRK110 to determine the system environment. If the CKPTn initialization 
option was specified and the data set is not allocated, the $HASP481 message is 
issued and initialization is terminated. The $HASP478 message is issued to inform 
the operator of the data set read from. If an error is encountered on that data set 
and this is not a cold start, dialog processing is entered. The beginning of the 
master record and the write-check-value record are transferred to storage. 
GETCKENV then verifies the format of the master record. The value of the 
write-verification check record (CKBCKVAL) and the value in the master record 
$WCHECK are compared to ensure checkpoint integrity. If this comparison 
indicates checkpoint damage, message $HASP486 is issued and the operator is 
asked for permission to continue initialization with the damaged checkpoint data. 

If the checkpoint data set can be read, GETCKENV attempts to determine the status 
of any other systems in the multi-access spool configuration. The current TOD is 
reduced by the number of seconds specified by the SYNCTOL on the MASDEF 
initialization statement. The resultant value is compared to the TOD recorded when 
each active system in the multi-access spool configuration last wrote a checkpoint 
record. If a system is found whose checkpoint data is more recent than the 
computed value, that system is assumed to be running. Therefore, the system being 
initialized is down and must perform a single-system warm start. 

If one or more systems in the node are apparently active but not running, the 
operator must confirm the status of these systems before a cold, format, or 
all-systems warm start can be accomplished. 

If a cold or format start has been requested and a multi-access spool configuration 
has been defined in at least one system is apparently active, the operator is 
informed of the status of the complex with message $HASP470. The operator then 
has the opportunity to continue by replying to message $HASP471; if the reply is N, 
initialization processing terminates. 

CKALCADJ: This routine is passed 2 sets of HFAMs, one describing which data sets 
should be allocated and the other describing what is currently allocated. If they do 
not match, CKPTUNAL is called to unallocate any data sets that need to be 
unallocated (freeing any control blocks relating to those data sets) and CKPTALOC 
is called to allocate the data sets that need to be allocated. CKBINIT and KBLD4KP 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-25 



HASP I NIT 

3.·26 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

are called as needed to build the necessary control blocks tor any data sets 
allocated. In addition, a new change log size can be specified when calling 
CKALCADJ. If the new size will tit in the data sets, the old control blocks relating to 
the data sets are treed and new ones are built reflecting the new change log size. If 
any errors are encountered allocating the data sets, an appropriate return code is 
passed back to the caller. 

CHCKSPEC: This routine compares the in-storage HFAM to the HFAMs in any data 
sets that were read. It they indicate a different checkpoint configuration existed the 
last time this system came down and this is not a cold start nor was RECONFIG 
specified, the new specifications are processed. If the data set name or volume 
serial of a data set was changed (the data set was forwarded), the $HASP438 
message is issued to ask if forwarding is to be done. If the reply is 'N', the dialog is 
entered. If the reply is 'Y', then the $HASP458 message is issued for each data set 
that was forwarded. Then, GETCKENV is called to process the new specifications. 
The $HASP438 message is issued every eighth time through CHCKSPEC. 

If the data set's INUSE indicators are the only things that are different, GETCKENV is 
called (without any messages). 

If the specifications changed and this is a cold start or if RECONFIG was specified, 
the $HASP438 message is issued, telling the operator that a forwarded data set was 
found, but no forwarding is done. If this is a warm start, NQUERY is called to 
confirm that the operator wishes to continue. 

If the specifications all match, control is returned to the caller with a return code of 
zero. 

VERIFYCK: This routine issues the $HASP416 and $HASP417 messages to request 
verification of the checkpoint data set specification. It will issue the long form of the 
$HASP416 message if the current checkpoint specifications are different from that 
specified in the initialization deck, and the short form it they are the same. 

NGWAIT: This subroutine waits tor the return from HOSPOOL. At that time, it 
checks for any errors detected by HOSPOOL and, if there are any, issues the 
$HASP443 message. 

NGCIRCHK: This routine ensures that the system parameter table does not contain 
duplicate entries and ensures that this system's id is in the table. If this system's id 
is not present, NGCIRCHK puts it there. This routine also ensures that a duplicate 
system id does not exist. 

NGCQWARM: This routine checks to see if a member is to be added, changed, or 
deleted from the MAS. The $HASP865 message is issued to inform the operator of 
this system's conclusions based on the status of the system parameter tables. 
Then, the $HASP870 message is issued to verify this system's conclusions. If this 
system determines that the requested action is not possible, the $HASP876 message 
is issued telling of the problem and asking whether initialization should continue. 

This routine also locates this system's ID in the parameter table and initializes the 
$HCT field tor this system. It determines if the remote console PCE is required; if 
so, it ensures the count for that PCE is set to one. 

NGWTOR1: This subroutine calls the NQUERY routine in HASPIRA to obtain the 
operator response to a request. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPIRRE: NJE/RJE Initialization 

HASPINIT 

HASPIRRE contains the IRNJE and IRRJE JES2 initialization routines. These 
routines perform the major portion of the initialization required for NJE and RJE 
post-parameters. 

IRNJE: Network Job Entry Initialization Routine 
IRNJE completes NJE initialization, including the following functions: 

NEXTNIT1: The NEXTNIT1 routine scans all entries in the temporary node 
information table to ensure that no two nodes have the same name and that a 
default name of Nnnnn (where nnnn is the node number) is assigned if no name was 
supplied in the initialization parameter statements. If duplicate names are found, a 
$HASP445 message is issued, and JES2 terminates. 

APWNIT: This routine verifies information in the APW against information in the 
node information table (NIT) examining each element. If NITFLAGV is set to 1 
(indicating that SNA was specified on the Nnnnn statement), a branch is taken to 
APWAPSCN where APW elements are used to build the NJE/SNA application table 
(APT). 

This routine performs various checks on each APW element. If an APW element is 
found for a BSC node, message $HASP473 is issued. If an APW element is found for 
a node outside the $NUMNODE range, message $HASP474 is issued. If no 
application is defined for the local node, message $HASP475 is issued. If duplicate 
applications are defined, message $HASP477 is issued. If any of the above errors 
are found, JES2 initialization terminates. 

NNITMOVE: This routine determines the final value of NATNUM on the NJEDEF 
statement by forcing its value to be the greatest of the following: 

• the value specified in the NATNUM parameter statement 
• 1 
• 1 less than NODENUM (on the NJEDEF statement). 

The size of the permanent node information table (NIT), nodes attached table (NAT), 
and associated NAT stack area are calculated and storage is obtained from subpool 
0. The size of the NIT is a function of the value of the NODENUM and PATH 
parameters, while the size of the NAT and stack are dependent upon the final value 
of NATNUM. The final values of $NITABLE (address of NIT) and $NATABLE (address 
of NAT) are set, and the permanent NIT is set using values from the temporary NIT. 
Path elements within the NIT are set to indicate that no nodes are connected at this 
time. 

NNATL: The NAT is initialized to reflect the results of the predefined connections 
described by the CONNECT parameter statement. As each table element is created, 
the storage for the NAT temporary queue element (NTQ) representing the 
connection is freed. If the size of the NAT is exceeded during the creation of 
elements, message $HASP446 is issued and JES2 terminates. 

NNATE: The NNATE routine initializes the network path manager processor control 
element (PCE) so that the path manager can take over management of the NIT and 
NAT elements. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-27 



HASPINIT "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

NACC1160: The network account table initialization routine is given control. This 
routine builds the two NETACCT lookup tables from the chains built by NPLN,A.CT. It 
computes the amount of virtual storage necessary to hold the completed tables 
obtains the necessary space by issuing the $GETMAIN macro. The amount of space 
required for each table is computed and divided by 4096; the remainders are then 
added together. If the sum is less than or equal to 4096, one $GETMAIN macro is 
issued for enough space to hold both tables, with alignment forced to a page 
boundary. If the sum of the remainders is more than 4096, a separate $GETMAIN 
macro (with alignment forced to a page boundary) is issued for each table. This 
process minimizes the number of virtual storage pages occupied by each table and, 
thus, reduces the paging caused by the lookup routines in HASPACCT. 

After space for the tables is obtained, each table is built by moving information from 
the chains of entries built by NPLNACT into consecutive entries in the table. When 
both tables have been constructed, the entire virtual storage subpool occupied by 
the chains of NETACCT entries is deleted by $FREMAIN; this subpool contains only 
the NETACCT chains. Pointers to the start of each table are placed in fields in the 
HCT. 

NJESBLD: NJESBLO initializes the header of the JES2-to-NET account table and 
moves entries into the table. 

NNETBLD: NNETBLO initializes the header of the NET-to-JES2 account table and 
moves entries into the table. 

IRRJE: Remote Job Entry Initialization 

3·28. JES2 Logic 

IRRJE completes final RJE initialization by storing remote OCT addresses and line 
OCTs into the RAT and initializes the RAT with RJE information, such as the number 
of printers, the number of readers, and the node id. 

IRRJE then invokes NCRMTOCT three times for each remote terminal. NCRMTOCT 
invokes NROCTINT, which initializes default values in the OCT; NCRMTOCT then 
completes the OCT initialization for remote readers and remote printers and 
punches. NCRMTOCT completes the initialization of the remote destination tables 
(ROT) and checks for conflicts between the node information table (NIT) and the 
ROT. 

IRRJE then invokes the NBFBUILO subroutine to build the RJE buffers and obtains 
permanent storage for the CPT and initializes it. Permanent storage for the RAT 
and RRT is then obtained and the correct OCT RAT addresses are initialized. IRRJE 
also obtains and initializes storage for ICEs. IRRJE completes its processing by 
freeing temporary storage for remote device OCTs, RATs, PITs, CPTs, NITs, and 
APWs, then returns to the IR administrator. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



!f 
·~ 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSCAN: $SCAN Facility 

HASPSCAN 

The $SCAN facility parses input character strings, initializes control block fields 
based on the input string, or optionally displays the initialized control block fields. 
JES2 uses this $SCAN facility to analyze JES2 initialization statements. 

The input string must follow a set of syntax rules (pre-scan and post-scan exits exist 
in HASPSCAN to allow for processing of a non-standard syntax). Two tables, 
generated by the $SCANTAB macro, are used to define the actions HASPSCAN is to 
take in setting or displaying parameters, initialized control blocks, or the pre-scan 
or post-scan exit routines. For JES2 parameter processing, HASPSTAB contains the 
scan tables used to process the keywords in the input. HASPTABS contains the 
$MCT, which points to the correct $SCAN table in HASPSTAB. 

The $SCAN facility can recursively call itself; this allows various levels of 
sub-scanning to occur. At each level of scan, HASPSCAN processes a $SCAN 
internal work area (SCWA), which it uses to hold the scanned information. 

$SCAN is the entry point for $SCAN processing. The main loop consists of the 
following steps. First $SCAN establishes a $ESTAE. Then it finds the beginning of 
the keyword and calls PRKEYWRD to process the keyword. It loops to find the 
beginning of the next keyword. When no more keywords can be found, the routine 
cancels the $ESTAE and returns. If an error occurs, the routine issues a diagnostic 
message, restores the values that may have been changed, and returns to the 
caller. 

PRKEYWRD calls FINDTAB to isolate the keyword and find the table entry. For each 
subscript found, PRKEYWRD calls PRTABENT to process the keyword based on 
table controls and issues a display if this is a display request. 

The register conventions throughout $SCAN are: 

RO - parameter passing the registers 

R1 - parameter passing and, on return, the diagnostic pointer 

R2 - address of current location in the input 

R6 - increment register (1) 

R7 - address of last character of $SCAN input 

R8 - address of the SCANTAB for the keyword $SCAN is currently 
processing 

R10 - address of $SCAN's work area (SCWA) 

R 11 - address of the $HCT 

R 12 - base register 

R13 - address of the PCE 

R14 and R15 - linkage registers 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-29 



HASP SCAN "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSCAN Support Subroutines 
The following subroutines are used by HASPSCAN throughout the scanning process. 

$SCANCOM: Find a Comment 
This routine, which can be called from anywhere in the main task with the 
$SCANCOM macro, finds valid comments in input character strings and returns in 
register 1 a pointer to where the input string resumes. Return codes and their 
meanings are: 

0 - a non-blank character and no comments were found; register 1 contains the 
address of the character 

4 - a valid comment was encountered and a non-blank character was found; 
register 1 contains the address of the character 

8 - an end-of-statement was encountered 

12 - an invalid comment was encountered 

FINDTAB: Find $SCANTAB Entry 
FINDTAB analyzes the next segment of the parameter statement and locates the 
required $SCANTAB entry. FINDTAB isolates positional values, or vectors keyword 
values and bypasses blanks. After the specific parameter is isolated, FINDTAB 
searches the $SCAN tables for a match to the parameter. If a match is found, 
FINDTAB initializes the SCWA, sets a zero return code, and returns to the caller. If 
a match is not found, the following return codes indicate the reason: 

RC=4 
RC=8 
RC=12 
RC=16 
RC=20 

An obsolete parameter is used 
A subscript error exists in the parameter 
An unsupported parameter is used 
An invalid parameter is used 
A vector error exists 

FINDTAB also recognizes whether or not a SET-DISPLAY request is being 
processed and issues a $SCANB call passing the STABNAME to be saved in the 
backup area. STABNAME is the keyword displayed in this case. 

FINDTAB then returns to the caller. 

FTABFIND: $SCANTAB Table Search Subroutine 
FTABFIND searches a $SCANTAB table for an entry that matches the current 
parameter keyword. When the match is found, FTABFIND validates the caller's id. 

FINDCB: Find Control Block Subroutine 

3-30 JES2 Logic 

FINDCB locates the address of the control block associated with a particular scan 
table entry. If indicated by the scan table entry, FINDCB allocates a temporary 
control block (using $GETMAIN). Once the control block is located, FINDCB 
performs any subscript indexing that may be required. 

During initialization for scan 'set' requests, if the control block is a DCT, FINDCB 
calls $DCTDYN. If the DCT has already been built, the address is returned in 
register 1. If not, a DCT is constructed. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPS CAN 

FINDVALE: Input Value Compare Subroutine 
FINDVALE compares an input value against the set of value elements in a scan table 
entry to see if the value is valid. If the value is valid, a return code of 0 is returned 
to the caller. If the value is invalid a return code of 4 is returned to the caller. 

DISPLAY: Display Current Values Subroutine 
DISPLAY displays the current values for control block fields that are associated with 
the keyword that is indicated in the SCWASTAS field. 

On entry, DISPLAY issues a $SCAND call to place the passed keyword and any 
subscript into the display SCWA. If a subscan is necessary, DISPLAY issues a 
$SCAN call. Then DISPLAY issues $SCAND to place the delimiter and the value to 
be displayed in the display SCWA. Values displayed are characters, flag setting 
keywords, text strings or numerical values. DISPLAY displays the value and returns 
a return code of 0 to the caller. If the value is not displayable, DISPLAY issues the 
following return codes: 

RC=4 
RC=8 

value not displayable 
not enough room to display the value 

DISPLAY then returns to the caller. 

DISPARSE: Segment Message Subroutine 
DISPARSE gains control after the building of a message for a first level parameter 
statement request and after appropriate post-scan routines have processed the text. 
This routine parses the message into segments that fit within the specified message 

tf area and then calls the specified display routine to display the segments until the 
'l entire message is displayed. 

$SCANB: Scan Backup Subroutine 

$SCA ND 

$SCANS is used to backup the control block field that is to be changed by a scan 
setting. The $SCANS macro is used to call $SCANS. The backup is provided by 
using additional scan work areas by obtaining (using $GETMAIN) additional storage 
to hold the information of a parameter that is too large to fit in one of the 
pre-allocated storage areas. $SCANS copies the field to be backed up into the 
backup area, changes the SCWA to point to the backup area, sets a bit to indicate to 
RESTORE what it is looking at, and returns to the caller. 

$SCAND is called with a $SCAND macro instruction issued by $SCAN, or a $SCAN 
pre- or post-scan routine, to place a specified text string into a display SCWA. 

RESTORE: Restore Control Block Fields Subroutine 
RESTORE restores control block fields that have already been set by previous 
scanning if an error was found. RESTORE distinguishes between normal backup 
areas, SET-DISPLAY, and diagnostic trace backup areas. RESTORE scans SCWAs 
and returns their storage. 

RESTDISP: Search Backup Areas Subl".outine 
This is a $SCAN facility routine that searches the backup areas for keywords to 
display when a SET completes successfully. The routine is called only for a 

( SETDISP (set-display) call to $SCAN to complete the display portion of the 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-31 

·~~----------------- ---



HASP SCAN "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

command. It searches the backup areas, starting at the top and working its way to 
the bottom, looking for keywords. When one is found, this routine issues a $SCAN 
call to process the display. In the process of looping through the SCWAs, these 
areas are returned. 

SCANDIAG: Diagnostic Subroutine 

3-32 JES2 Logic 

If there is a keyword in error, this routine isolates the keyword in error, builds the 
diagnostic message and calls the $SCAN caller's message routine to issue the 
diagnostic. The routine scans the backup areas looking for diagnostic trace entries. 
These entries contain the keyword and information that describes at what level of 
$SCAN the keyword was. The last keyword for each level is displayed in the trace. 
The last keyword displayed in the trace is the keyword that was in error. For 
example, for the statement: 

PRTl CLASS=A,CKPTLINE=l,CKPTPAAGE=l 

the SCWA would have: 

Keyword 

PRT1 
CLASS 

Level 

1 -- $SCAN, end of scan 
2 -- subscan 

CKPTLINE 2 -- subscan 
CKPTPAAGE 2 -- subscan, keyword in error 

and the trace would be: 

RC=(xx), PRTl CHKPTPAAGE 

Here is a second example: 

If the statement is: 

OFFl.JR CLASS=A,MOD=(CLASSS=A) 

the SCWA would have: 

Keyword Level 

1 -- $SCAN, end of scan 
2 -- 1st subscan 

OFF1.JR 
CLASS 
MOD 
CLASSS 

2 -- 1st subscan, end of 1st subscan 
3 -- 2nd subscan, keyword in error 

and the trace would be: 

RC=(xx), OFFn.JR MOD CLASSS 

LY?.8-1006-2 ©Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSXIT: Pre-scan and Post-scan Exits 

HASPSXIT 

HASPSXIT contains all pre- and post-scan exits for the $SCAN facility. The following 
text describes some of the important exits. See Chapter 4, "Directory" for a list of 
all the exits and the statements they process. 

$SCAN Facility Post-Scanning Exit Routines 
These routines process application-specific parameter statements unique to the 
installation. 

PSTAPPL: PSTAPPL validates and processes the APPL parameter statements. To 
do this, PSTAPPL verifies that the required operands are specified; the node 
number and application id must be specified. Then PSTAPPL updates APW slots 
and chains the new APW element in collating order. To do the chaining, PSTAPPL 
calls a chaining subroutine whose address is in the CIRAPPCH field of the CIR PCE 
work area. 

PSTBADTR: When a BADTRACK statement is being processed, PSTBADTR 
validates the volume associated with the bad track and validates the specified 
address range. After this validation, PSTAPPL adds the bad track group (BTG) 
element to the initialization queue. 

PSTCAT: PSTCAT post-scans the STCCLASS and TSUCLASS initialization 
statements. It ensures that the STC and TSU CAT entries indicate no journaling and 
no restart for these jobs, and that accounting information and programmer name are 
not required. 

PSTCHARS: For the CHARS sub-operand of the COMPACT statement, PSTCHARS 
validates the amount of input supplied and processes the master and non-master 
character that is supplied. 

PSTCKPT: This routine verifies that the parameters passed on the CKPTDEF 
statement are valid. If valid, and RECONFIG =YES was specified, the checkpoint 
processor is $POSTed. 

PSTCKPTN: This routine ensures that, if a devname is present, this is also a volser, 
and, if inuse=YES, DSN and VOLSER are non-blank. 

PSTCOMP: PSTCOMP processes the COMPACT statement. 

PSTCONCT: PSTCONCT validates and processes the CONNECT parameter 
statements. PSTCONCT validates that the required operands (NODEA, MEMBA, 
NODES, MEMBB) have been specified and queues a temporary nodes attach_ed 
table (NAT) element (NTQ) for processing later. 

PSTDEST: PSTDEST validates and processes the DESTID parameter statements. 

PSTEXRTN: PSTEXRTN validates and processes the ROUTINE sub-operand of the 
EXITnnn parameter statement. PSTEXRTN invokes PSTEXLOC. PSTEXLOC locates 
the entry point for a given exit routine name by searching all module information 
tables (MITS) that are available via $REPTABL and $LMT. PSTEXLOC invokes 
PSTEXFND. PSTEXFND searches a given MIT for the entry point associated with a 
given exit routine name. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-33 



HASPSXIT 

3-34 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

PSTFSSDF: PSTFSSDF validates the FSSDEF statement for the required operands. 
Default values are supplied as needed and these values are added to the functional 
subsystem control blocks (FSSCBs). 

PSTHOLD: PSTHOLD processes the HOLD parameter on the MASDEF statement. 
When called because of operator command processing, the checkpoint processor is 
posted that the HOLD value changed. When called from initialization or command 
processing, PSTHOLD sets the maximum interval to wait before initiating a 
checkpoint write. This value is based on the HOLD parameter. 

PST JRNG: PST JRNG validates the RANGE parameter on the JOB DEF initialization 
statement. 

PSTLIMIT: PSTLIMIT verifies that the LIMIT and PLIM sub-operands of the output 
device initialization statements are valid. 

PSTLINE: PSTLINE processes the UNIT= SNA initialization specification. 

PSTLOAD: PSTLOAD loads an installation exit routine that is specified via the 
LOAD initialization statement. It calls MODCHECK to verify the modules. 

PSTNODE: PSTNODE processes the Nnnnn (node) initialization statement. 
PSTNODE determines if a node name is specified, and if so, determines if the node 
name is valid and whether a temporary destination queue element (NDQ) has 
already been allocated for that node name. If the node name is not specified, 
PSTNODE returns to the caller with a return code of 0. If the node name is invalid, a 
return code of 4 is returned. 

PSTNETAC: PSTNETAC validates and processes the NET ACCT initialization 
statement. PSTNETAC checks for the required operands (JACCT, NACCT) and 
checks whether the JTHRU and NTHRU operands are specified and valid. 
PSTNETAC then queues the temporary NET ACCT element on the JES2 network 
chains. 

PSTNRT: PSTNRT validates the number of network receivers and transmitters that 
are set via the SRNUM, the JRNUM, and the STNUM parameters on the NJEDEF 
initialization statement. 

PSTPRMD: PSTPRMD validates and processes the PRMODE sub-operand of the 
local and remote printer/punch initialization statements and the offload SYSOUT 
transmitter. PSTPRM updates the system PRMODE table and the OCT PRMODE 
indices, decreases by 1 the counts for each of the PRMODEs indicated in the old 
DCT index list, and processes each PRMODE by adding it to the system PRMODE 
table (if it's new) and increasing its use count by 1. An error occurs if a new 
PRMODE is specified and the system PRMODE table is full. 

PSTRDR: PSTRDR validates and processes the RDR(nn) initialization statement. 

PSTRMT: PSTRMT validates and processes the RMT(nnnn) initialization statement. 
it also sets the current time in the remote attributes table (RAT) for any remote 
being set to autologon mode. 

PSTRC: PSTRC validates and processes the ROUTECDE sub-operand of the 
PRT(nnnn) and PUN(nn) initialization statements and the OFFn.JT, OFFn.ST, 
OFFn.JR, and OFFn.SR statements. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSXIT 

PSTSAF: PSTSAF post-scans the system-affinity sub-operand on the OFFn.JT and 
OFFn.JR statements. It moves the affinities into storage so that later during 
initialization they can be validated by a routine in HASPSERV. For commands, 
PSTAF also post-scans the system-affinity sub-operand. Then, if the system affinity 
is not valid, PSTAF issues an error message. 

PSTSELCT: PSTSELCT validates and processes the SELECT sub-operand of the 
RnnnnPRn and RnnnnPUn initialization statements and the OFFn.JT, OFFn.ST, 
OFFn.JR, and OFFn.SR statements. 

PSTSPL: PSTSPL processes the SPOOLNUM parameter on the SPOOLDEF 
statement. Whatever value the installation specifies for SPOOLNUM, $SCAN rounds 
it up to a multiple of 32. Although the limit is 253, for any specified value equal or 
greater than 225, $SCAN rounds it up to 256. This value ($SPOLNUM) is compared 
to $MAXDA and, if it is greater, is set to $MAXDA. This routine ensures that the size 
specified for TGBPERVL is big enough to accommodate all spool volumes. If not, 
the size will be altered by this routine. Flag bits will be set to indicate the BLOB 
needs to be totally replenished and a new ending address has to be set. If the 
routine is entered for a command set call, no further processing is done. 

PSTTHRS: PSTTHRS calculates the threshold value for a given initialization 
parameter. 

$SCAN Facility Pre-Scanning Exit Routines 
These routines provides processing of initialization statements prior to scanning 
facility processing. See Chapter 4, "Directories" for a list of all the exits and the 
statements they process. 

PRECKPT: PRECKPT ensures that this is not a command set call and RECONFIG 
processing is not active. 

PRERNG: PRERNG pre-scans the RANGE sub-operand of the OFFn.JT, OFFn.ST, 
OFFn.JR, and OFFn.SR statements and the local and remote printer and punch 
statements. 

PRETRCID: PRETRCID process the id sub-operand for the TRACE initialization 
statement. PRETRCID uses the PTIDCNVT subroutine to convert the id to a binary 
value, and PRETRCID uses the PTIDACTD subroutine to verify the id and activates 
or deactivates the id. 

PREWS: PREWS pre-scans the WS sub-operand of the OFFn.JT, OFFn.ST, OFFn.JR, 
and OFFn.SR statements and the local and remote printer and punch statements. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3•35 



HASPNUC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNUC: The JES2 Nucleus 

$MODLOAD 

$SUB DEST 

$MODCHK 

3-36 JES2 Logic 

HASPNUC provides central service subroutines to the JES2 system. 

$MODLOAD is a module load routine called through the $MODLOAD macro 
interface. It performs the following three types of loads: 

• Normal load - The search order for the normal load is: 

1. JOBLIB or STEPLIB 
2. link pack area (LPA) 
3. LINKLIB. 

• Directed load - When the DCB parameter and the directory entry (DE) is coded 
on the MVS load instruction, the module is loaded from the specified library. 

• Load of LPA - When the macro call is made with subpool = LPA and the module 
is also in the STEPLIB, this load call is made with the STEPLIB directory entry 
changed to look like the link list. In this case the load searches the LPA first. 

A return code of zero indicates that the module was loaded properly. A return code 
of 4 indicates that the load was not done because the module was already loaded. If 
the return code is 8, the load failed. In this case, register 1 points to the diagnostic 
message. 

This routine performs all processing necessary (setup and cleanup) to subtask a call 
to the $DESTCHK destination authorization routine. $SUBDEST issues a 
$GETWORK macro to obtain an SOD, then issues a $SUBIT to subtask the call. A 
return code of O indicates successful security authorization processing and a binary 
route code is returned to the caller in register 1. $SUBDEST sets a return code of 4 
to indicate unsuccessful processing (an SOD could not be obtained, a subtask failure 
occurred, or authorization failure). In the event of a subtask failure, HASPNUC 
issues the $HASP077 message indicating an access request is denied. 

$MODCHK is a module verification routine called through the $MODCHK macro 
interface. It provides: 

1. Validation for its callers, including tests for load module residency, version 
equivalence to that of the JES2 HASPNUC, equivalence of MIT and module 
names, and exit points establishment 

2. Measures to ensure that the load module is large enough for a module 
information table (MIT) 

3. That MITENTAD (a pointer in the MIT to the MIT entry table, which is an index to 
the names and addresses of the module's entry points) points to a field within 
the addressing range of the module 

4. That the MITNAME is the same as the name of the CSECT. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNUC 

$MODELET 

Dispatcher 

$MODCHK gains control when a $MODCHK macro is issued (calls are possible from 
IRMODCHK in HASPIRMA, IROPTS in HASPIMA, NSSSM in HASPIRA, and the 
$SCAN post-scan exit routine for the LOADmod(jxxxxxxx) initialization statement) 
indicating the name of the module to be checked, which tests are to be performed, 
and whether or not to issue a HASP875 message for a failed test. It is able to verify 
that: 

• The module resides below 16 megabytes in virtual storage by comparing the 
module's ending address to 2 raised to the 24th power. 

• The module resides in common storage (CSA) by using equates for starting and 
ending addresses of common storage. 

• The module is large enough for a MIT and $MITABLE points to an addressable 
field. To ensure that the data at the entry point is a MIT, the MIT contains a 
4-byte identifier field. Addressability is checked by comparing the address of 
the MIT entry table to the starting and ending addresses of the load module and 
ensuring that it falls within that range. 

• The version of the module in question is the same as that of the nucleus, 
including the level of the macro libraries being used, by checking the $VERSION 
field in the HCT against the MITVRSN field of the module's MIT, and the 
$MACVERS in the HCT against the MITMVRSN of the module's MIT (for the 
MACLIB check). 

• The name of the module by comparing the MITNAME field in the MIT with the 
NAME= keyword used in the $MODCHK call. 

The module also propagates the defined exit points bit map in the module's module 
information table (MIT) to the HASP exit information table (XIT) entries. It also 
resolves the addresses of exit routines in the XIT. 

A return code of 0 indicates all tests were successful. A return code of 4 indicates a 
verification failure. If the return code is 8, register 1 points to a diagnostic message. 
If MESSAGE= YES is coded on the macro, this message is used as the reason text 
with the $HASP875 message. 

$MODELET is a module deletion routine called through the $MODELET macro 
interface. It deletes the specified JES2 load module. If the module was directly 
loaded, the storage is freed. 

$MODELET gains control when a $MODELET macro is issued. $MODELET is 
entered by issuing the $CALL macro. 

A return code of zero indicates that the module was deleted properly. A return code 
of 4 indicates that the module was not found. 

The JES2 dispatcher allocates processor time to the JES2 main task processors. It 
performs its function by manipulating the JES2 processor control elements (PCE) on 
the dispatcher's ready and resource wait queues. A processor is considered able to 
use processor time if its PCE is on the $READY queue. Conversely, a processor 
with its PCE either queued to itself or on a resource wait queue is not able to use 
the CPU. The PCE of the currently active processor Is on the $READY queue and Is 
addressed by the $CURPCE field of the HASP communications table (HCT). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-37 



HASPNUC 

Queuing Structure 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The dispatcher's queues are double-threaded; each PCE within the queue points to 
the next PCE as well as the previous PCE. The queue head points to the first and 
last PCE in the queue. Conversely, the first and last PCE in the queue point back to 
the queue head (offset so that the queue head appears to be a PCE itself). The 
queue head is referred to as PCE zero. If the queue is empty, the queue head points 
to PCE zero. 

Event Wait and Control Fields 
Each processor control element in JES2 contains an event wait field, PCEEWF. 
When the processor executes a $WAIT macro, a $POST inhibit flag is normally set in 
the PCEEWF field. If the wait is for a resource, the $EWFPOST flag is set on; 
otherwise, the flag representing the specific awaited event is set. For example, if a 
processor waits for 110, the $EWFIO flag is set on. A flag set in the PCEEWF 
prevents the execution of a $POST macro instruction from actually scheduling the 
processor unless the $POST macro instruction specifies the corresponding inhibitor. 
A $POST directed to a specific PCE with a resource specification is ignored even 
though both $WAIT and $POST specify the same resource. If, however, the $WAIT 
macro instruction includes the INHIBIT= NO operand, the first byte of the PCEEWF 
field is set to 0, and any $POST macro instruction directed to the PCE schedules the 
processor on the $READY queue. 

In the event a PCE is individually queued to the $READY queue, the $EWFPOST bit 
is set to prevent the overhead of requeuing the PCE on the issuance of succeeding 
$POSTs when not required. 

There are three event control fields within JES2. Two of these, $HASPECF and 
MHASPECF, are contained in the HASP communications table (HCT). The 
$HASPECF field contains flags that represent whether a $POST for resource macro 
instruction has been executed and the requeuing process is still pending. If a flag 
bit is on, no action is required for the resource; conversely, if a flag bit is off, the 
corresponding resource is to be posted. The MHASPECF field contains the single 
flag indicator $EWFJOT and is used by the line manager to inform processors using 
the RTAM facilities about posted resources. The third field, CCTECF, is contained in 
the HCCT and represents whether a resource post has been requested by a source 
outside the synchronous routines of the JES2 main task. If the flag is on, the 
resource is to be posted; otherwise, the resource is not to be posted. The meaning 
of the flag bits in the CCTECF field is exactly the reverse of the meaning of the flags 
in the $HASPECF field. 

$WAIT: Wait Routine 

3-38 JES2 Logic 

The dispatcher receives control when the currently active processor executes a 
$WAIT macro instruction. Control is received at entry $WAIT. The code at $WAIT 
can also be entered as a result of the $XECBSRV macro being invoked with 
FUNCTION= SETUP. In this case, the processing is the same as for a $WAIT with 
the XECB option except that after processing the XECB, control is returned to the 
macro caller. 

If the wait is with the XECB option, a check is made to determine if the $XECB is on 
a dispatcher-maintained chain. If it is on the chain and has been initialized, control 
is transferred to normal $WAIT processing. If it has not been initialized, then it is 
removed from the chain. Once removed, if the ECB was posted, control is given to 
HASPGOP to dispatch the PCE. If it has not been posted, processing is the same as '-, 
when it was not on the chain. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNUC 

If the $XECB is found to be invaildy chained (non-zero chain pointer not on the 
chain) or if it is being used by multiple PCEs at one time (on the chain with a 
different PCE address), the a DP1 $ERROR is issued and the PCE that issued the 
$WAIT may become disabled. 

If the $XECB is not on the $XECB chain (or if it was removed from the chain), it is 
placed on the front of the dispatcher $XECB chain. This chain is used later by the 
dispatcher to determine which $XECBs need to be converted to MVS extended 
ECBs. If the ECB has been posted, the $XECB is not placed on the chain; control is 
passed to HASPGOP to dispatch the PCE. 

After $XECB processing is complete, a check is made to determine if the wait is for 
a specific event or a general resource. If the wait is for a specific event, the PCE is 
queued to itself. If the wait is for a general resource, the PCE is queued to the end 
of the designated resource wait queue. Control is then passed to the PCE dispatch 
routine. 

HASPDISP: PCE Dispatch Routine 
The dispatcher passes control to the first eligible PCE on the $READY queue. A 
PCE is eligible to be dispatched if either the non-dispatchability count is zero or it is 
exempt from non-dispatchability. On encountering the first dispatchable PCE, the 
dispatcher loads its registers and the processor corresponding to that PCE is given 
control. The processor maintains control of the JES2 main task CPU time until it 
executes a $WAIT macro instruction that gives control to the dispatcher's wait 
routine. When all eligible PCEs on the $READY queue have been dispatched, 
control is passed to the resource posting routine. 

HASPLOOK: Resource Posting Routine 
The dispatcher looks for any accumulated resource post requests as indicated by a 
1 reset in one or more resource flag bits in the $HASPECF field. If resource posting 
is indicated, the PCEs, queued to each resource queue corresponding to a 1 flag bit, 
are moved from the resource wait queue and placed on the end of the $READY 
queue. A check is made to see if the line manager is waiting for any posted 
resources. If it is required, the line manager is then posted. Control returns to the 
PCE dispatch routine. If no resource post requests were accumulated, control is 
passed to the $$POST promulgation routine. 

HASPSPEC: $$POST Promulgation Routine 
The JES2 main task gets its work assignments from subtasks in the JES2 address 
space, tasks calling upon JES2 functions in other address spaces, or asynchronous 
exit routines. In the case of task requests and the timer asynchronous exit, the 
$$POST routine within the HASCSRIC module is executed to inform the JES2 
dispatcher of the occurrence of an event; other exit routines perform the same basic 
logic in a manner consistent with the system facilities available to the exit routine. 
Because the exact sequence of events is extremely important for the correct 
operation of the system, the logic of both sides of the interface is described. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-39 



HASPNUC 

3-40 JES2 Logic 

The $$POST function operates as follows: 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

1. If a resource is to be posted, the CCTECF field contained in the HCCT is 
combined with the designated resource flag using the logical OR instruction, 
and the result is set back into the CCTECF field using the compare and swap 
instruction. 

2. The $$POST work indicator is set to all ones. (The $$POST work indicator is 
offset from the HASP post element, pointed to by field CCTHECBA in the HCCT, 
by the symbolic displacement CCTPOSTW.) 

3. The event control block (ECB) pointed to by field CCTHECBA in the HCCT is 
posted, either through MVS POST facilities or directly, through a compare and 
swap instruction. The $$POST function is completed, and the routine continues 
with other functions. 

4. If the $$POST routine is entered with a specific PCE post request, the high-order 
byte of the designated HCCT post element is set to ones and the actions 
described in steps 2 and 3 are performed. If a JES2 asynchronous routine such 
as an 110 supervisor appendage is simulating a $$POST for the JES2 ASYNCH 
processor, the high-order byte of the $PCEASYN field in the HCT is set to ones. 
This applies only for simulation. Normal $$POSTs for the ASYNCH processor 
use the procedure described above. 

The promulgation function operates as follows: 

1. The dispatcher sets the high-order byte of the ECB to O; the address of the 
high-order byte is found at $HASPECB in the HCT. 

2. If there is no work required, control is passed to the wait for work routine; 
otherwise, a check is made to determine if there are any XECBs on the XECB 
stack. If there are XECBs on the stack, each XECB is "popped" off the stack, 
and the PCE associated with each XECB is marked as being dispatchable. 
When the stack is empty, step 3 is performed. 

3. The CCTECF field is copied and reset to 0 by a compare and swap double 
instruction. The copy of the flags is set into the $HASPECF field for 
promulgation by the resource posting routine. 

4. Requests for the ASYNCH processor from the $$POST routine and JES2 
asynchronous routines are combined; if the ASYNCH processor is posted, 
CCTASYNC is set to ones and $PCEPOST is reset. requesth individual PCE post 
element contained within the HCCT is examined. If the high-order byte of the 
element is X'FF', the associated PCE is posted using the $POST macro 
instruction for WORK, and the byte is set toX'80'. The X'80' setting indicates 
that the processor has not completed the work given to it. Associated 
processors are expected to reset this byte to 0 when appropriate. 

5. The internal reader 110 complete post element is examined. If the high-order 
byte of the element is X'FF', all internal reader PCEs are posted for work using 
$POST macro instruction and this byte is set to X'OO'. 

6. Processors waiting for the ABIT resource are moved to the $READY queue, and 
control is passed to the dispatcher $XECB routine. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 



c 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HPNEXT: $XECB lnitiaization Routine 

HASPNUC 

The $XECBs that are placed on the $XECB chain have not been initialized as MVS 
extended ECBs. This processing is done after all $$POSTs have been propagated 
and before JES2 is MVS WAITed. Normally, if HASPSPEC has found work to do, that 
work is done before the XECBs are initialized. However, because this could delay 
$XECB posts from being propagated to the PCEs, pacing code ensures that the 
$XECB initialization code gets control periodically. 

The $XECB initialization code scans the chain of $XECBs looking for initialized MVS 
extended ECBs. If the XECB has been posted, the $XECB is removed from the chain 
and the appropriate PCE is placed on the ready queue. If the $XECB has not been 
posted, it is initialized as an MVS extended ECB. Once initialized, the JES2 posting 
exit (HASPPXIT) gets control when the ECB is posted. 

If the $XECB is initialized, then the scan is stopped. Once the scan stops, if there is 
any work to do, control is passed to the PCE dispatch routine. Otherwise, control is 
passed to HNOSPEC. 

HNOSPEC: Wait for Work Routine 
If the dispatcher determines that no operator-controlled work is in process (except 
initiator activity) and the ALL AVAILABLE FUNCTIONS COMPLETE message has not 
been displayed since the last activity, the message is issued and control is returned 
to the resource posting routine. Otherwise the MVS WAIT service routine is called, 
and the dispatcher waits for new work as indicated by the $$POST function 
described previously. When the HASP ECB ($HASPECB) is posted, control is 
passed to the $$POST promulgation routine to let JES2 know what to post. 

$POST and $POSTR: Post Routines 
When the currently active processor executes a $POST macro instruction, the 
dispatcher receives control at entry point $POST, if a specific event has occurred, or 
at $POSTR, if a general resource has been posted as available. For a specific event 
$POST, the PCE specified by the issuer of the macro instruction is removed from the 
chain in which it is waiting and is placed at the end of the $READY queue. For a 
general resource $POST, the routine places all PCEs waiting for that resource at the 
end of the $READY queue. 

HASPPXIT: Extended ECB POST Exit Routine 
HASPPXIT receives control between the time when an extended ECB is marked as 
complete and the completed execution of the post routine. HASPPXIT processing 
provides a notification of additional work, and queues the work for further 
processing. 

JES2 processors define an XECB and issue a $WAIT for the MVS posting of the ECB 
within the XECB. HASPPXIT queues the XECB, associated with a PCE, onto a stack 
of XECBs pointed to by the HCT. HASPPXIT then posts the JES2 main task; thP. JES2 
dispatcher $POSTs the associated PCE. Only one PCE is dispatched per MVS POST 
of the ECB in the XECB. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-41 



HASPNUC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Work Area Management 
Work area management routines maintain pools of work areas of various sizes. All 
of the work areas in a given pool are the same size. The number of pools and size 
of work areas in each is determined by the information in the table at symbol 
GTWKTABL, which is used to initialize the work area table that has been obtained 
via the $GETMAIN macro. 

Work area management routines support up to 255 pools. The maximum size work 
area supported is 2K bytes minus the size of a prefix area (less than 20 bytes) 
required by the work area management routines. 

The $GETWORK and $RETWORK macros provide linkage to routines named 
$GETWORK and $RETWORK that acquire and release work areas, respectively. 
$GETWORK and $RETWORK keep track of each processor's current and outstanding 
work area requests. 

$GETWORK: Get Work Area Routine 

3-42 JES2 Logic 

This routine provides the smallest available work area that satisfies the size 
requirements of the request. If the $GETWORK macro specifies the LOG= BELOW 
keyword, the $GETWORK routine selects storage from below 16 megabytes in 
virtual storage. If the LOC=ANY keyword is specified, storage can be obtained 
either from below or above 16 MB. If the requested storage size is within 10 percent 
of one of the available pool cells, it is allocated from that pool. Otherwise, 
$GETWORK obtains storage with a $GETMAIN, either above or below 16MB, 
depending on the LOC = specification. Requests for checkpoint buffers, because 
they involve 1/0, will be made below 16 megabytes in virtual storage. $GETWORK 
sets the first 4 bytes of the area returned to the EBCDIC control block name 
specified via the USE= operand of the $GETWORK macro. The remainder of the 
area is set to hexadecimal zeros. 

$GETWORK issues a catastrophic error $GW1 if the size of the current request is 
larger than the largest supported size (2K minus the prefix). $GETWORK issues 
catastrophic error $GW4 if a GETMAIN fails and the $GETWORK request is not 
conditional. 

$GETWORK searches GTWKTABL for the pool of work areas that best fits the size 
requested (best fit means the closest to, without being less than, the requested 
size). A pool is used if its size does not exceed the request by more than 10 
percent. If the pool contains one or more work areas, the first is used to satisfy the 
request. Otherwise, 4K bytes of storage is obtained with a $GETMAIN and divided 
into as many work areas of the appropriate size as possible. Any storage left over 
is allocated to pools of smaller work areas. If no pool of appropriate size for the 
request is found, the requested storage is obtained with a $GETMAIN. 

Storage obtained when no appropriately sized pool is found, is released with a 
$FREMAIN by $RETWORK. All other storage obtained by $GETWORK is not 
released until JES2 terminates. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$RETWORK: Return Work Area Routine 

HASPNUC 

This routine releases a work area obtained by $GETWORK. If the work area is from 
one of the valid pools, the storage is returned to that pool. If the work area is not 
from any pool (that is, the area was obtained using a $GETMAIN), the storage is 
released with a $FREMAIN. Catastrophic error $GW2 is issued if any of several 
validation checks fail: 

• There is an invalid pool id in the prefix of the work area. 
• The pool id is inconsistent with the size of the work area being returned. 

Additionally, if $DEBUG=YES, and any part of the work area beyond that requested 
has been used, $RETWORK issues catastrophic error $GW3. 

$EXCP: Input/Output Supervisor 
The JES2 input/output supervisor ($EXCP) provides the $EXCP and $EXCPVR 
service routines necessary to interface between all JES2 main task input/output 
requests and the MVS input/output supervisor. Through the use of $EXCP, the JES2 
processors can achieve a certain degree of device independence for direct access 
devices through the track and sector conversion functions contained in the $EXCP 
routine. $EXCP also provides all 110 appendages required by the IOS and provides 
for the posting of 1/0 completions to each processor. 

The interface between the JES2 input/output service routine and the processors that 
use it is the device control table (OCT), which is passed to the routine using the 
$EXCP macro when 1/0 is requested. Upon entry to $EXCP, the address of the 
buffer to be used is obtained from the OCT, and the input/output buffer (108) 
(appended to the front of every buffer) is initialized. The user's event wait field 
address is moved from the OCT to the buffer, and a pointer to the OCT is placed in 
the buffer. If the OCT is a direct-access type, the coded track address from the OCT 
is used to compute MBBCCHHR. 

Note: In processing direct-access requests, the $EXCP routine tests first the track 
extent information in the processor control element, (PCE), then the extent 
information in the corresponding direct access control block (DAS). If the specified 
extent is invalid, the routine passes information to the 1/0 supervisor that causes the 
request to be suppressed, with the completion code in the event control block (ECB) 
set to X'42': direct-access extent address violation. 

With the 108 complete, the routine either issues the MVS EXCP or EXCPVR macro to 
schedule the 1/0 request for execution. If WAIT= NO was specified, the routine 
immediately returns control to the caller. 

For a WAIT=YES request, the routine issues a $WAIT for 110. If the operation 
completed successfully, the routine returns control to the caller. If completion was 
unsuccessful, the routine executes a $10ERROR macro, which logs the error and 
returns control to the caller. In any case, the condition code is set by a 
test-under-mask instruction with mask X'7F' compared with field BUFECBCC. 

Each 1/0 request issued by JES2 specifies an 1/0 appendage list that causes the 
JES2 appendages to be entered at various stages of 1/0 processing. Abnormal and 
normal channel-end-appendages are provided to signal the end of the 1/0 operation. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-43 



HASPNUC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

A program-controlled interrupt appendage is provided to signal the progress of the 
1/0 operation. Because these appendages are entered asynchronously with JES2 
operation, the buffer associated with the completed 1/0 is scheduled for 
synchronous JES2 processing by the asynchronous input/output processor. The 
JES2 task is posted, and immediate return is made to 105. (The post function may 
be performed by 105 via requests by the channel-end appendages.) 

$EXTP Service Routine 
HASPEXTP invokes terminal 1/0 services. It is entered in response to a $EXTP 
macro issued by one of the JES2 processors. If the $EXTP macro was issued by a 
network job routing receiver or transmitter, HASPEXTP passes control to the entry 
routine (HASPROUT) in HASPRTAM. If the device is aborting, HASPEXTP sets the 
condition code to zero and returns control to the caller. Otherwise, the DCTTYPE 
field is tested for either a BSC or SNA remote device. A branch is taken, depending 
on the test results, to the service routine entry point in either HASPBSC or 
HASPSNA. 

Data Set Services 

$DSOPEN 

$DSPUT 

3·44 JES2 Logic 

The JES2 main task uses data set services to write additional records to a specified 
data set. 

$DSOPEN receives control when the JES2 main task issues the $DSOPEN macro. 
This routine "fake" opens the JES2 job log so additional records can be written to it 
via $DSPUT. 

On entry, $DSOPEN obtains the address of the $DSSCB work area and then 
initializes it with the following information: the job key from the JCT, the data set 
key from the job log's PDDB, and the allocation IOT address. When the record is 
complete, $DSOPEN initializes two HASP buffers using $BFRBLD. $EXCP in 
$DSPUT uses these buffers to write new records to the spool. Control is then 
returned to the calling routine. 

If $DSOPEN encounters an error, a flag is set causing any further calls to data set 
services to be rejected. In addition, any resources acquired by $DSOPEN are freed 
at the end of $DSOPEN processing. 

$DSPUT receives control when the JES2 main task issues the $DSPUT macro. If 
$DSOPEN completes successfully, $DSPUT writes additional records to the JES2 job 
log. 

On entry, the $DSSCB work area is passed to $DSPUT. $DSPUT then moves the 
record stored in the work area to the active buffer. 

When the active buffer is full, $DSPUT issues a $TRACK instruction to add a new 
buffer to the chain. The current full buffer is written to spool. $DSPUT fills the new 
active buffer with the next series of records. Control is then returned to the calling 
routine. 

If $DSPUT encounters an error, a flag is set indicating the error. This flag prevents 
any further writing to the JES2 job log. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNUC 

$DSCLOSE 
$DSCLOSE receives control when the JES2 main task issues the $DSCLOSE macro. 
$DSCLOSE "fake" closes the JES2 job log, previously manipulated in $DSPUT and 
$DSOPEN. 

On entry, $DSCLOSE chains the original buffer chain to the new buffer chain created 
in $DSPUT. The last $DSPUT buffer is then written to spool. $DSCLOSE also 
updates JES2 job log's PDDB with the new record and byte counts. The job log is 
then closed and control is returned to the calling routine. 

If an error occurs during either $DSOPEN or $DSPUT, $DSCLOSE is notified of this 
error and exits to the calling routine with an error return code indicating that no 
changes were made. 

Job Queue Manager 
Jobs being processed or awaiting processing by a JES2 phase are represented in 
an ordered queue by job queue elements (JQEs). The job queue management 
routines are used by the JES2 processors to insert, alter, locate, and remove job 
queue elements. The queue elements are maintained in priority order at all times 
with the highest priority element at the top of the active chain. The queue element 
routines are called by issuing the following macros: $QADD, $QGET, $QPUT, 
$QREM, $QLOC, $QJIX, and $QMOD. 

The JQEs are arranged in 50 chains. One chain contains all the queue elements 
which are not in use; 36 of the chains contain the jobs that are in or awaiting 
execution in the 36 supported job classes. Two chains contain the started task 
(STC) and LOGON time-sharing user (TSU) jobs in or awaiting execution. Eight 
chains contain the jobs in processing stages: $INPUT, $XMIT, $XEQ (JCL 
conversion), $DUMP, $RECEIVE, $OUTPUT, $HARDCPY, and $PURGE. The 
remaining two queue types, $SETUP and $DUMMY, are not currently supported. 

All job queue management routines use the $QSUSE macro to ensure access to the 
checkpoint data, which includes the shared job queue. 

$QADD Service Routine 
The $QADD routine is entered whenever a queue element is to be added to an 
active queue. The $JQFREE queue is tested for the presence of a free job queue 
element (JQE). If there are none free, control is returned with the condition code 
and register 1 set to 0. (Return is through a segment of common code in the $QGET 
service routine.) Otherwise, a free JQE is removed from the queue, the count of 
free JQEs ($JQEFREC) is updated. The information provided by the caller is placed 
in the JQE and the JQE address is stored in the PCE. $QADD checks for various job 
attributes (such as a job having held output, a job waiting for spin data sets, a job 
cancelled, a job queued or requeued for transmission, and a job's output requeued 
for transmission) in order to determine the appropriate active queue to which to add 
the job. The appropriate active queue is scanned, and the new element is chained 
in front of the first JQE currently on the queue with lower priority or at the end of the 
chain. A checkpoint is scheduled for the newly created JQE, the previous JQE in the 
chain, and the queue head elements. Modified JQEs are scheduled for 
checkpointing, the appropriate processors waiting for a user-submitted job (JOB) 
are posted ($POST), and control is returned to the caller with register 1 pointing to 
the JQE and a non-zero condition code. $QADD issues catastrophic error $002 if 
the new queue does not exist. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-45 



HASPNUC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$QJIX Service Routine 
All updates to the JIX are made by this routine. It is invoked by the $QJIX macro, 
which specifies to allocate or to deallocate a job number, to swap job numbers, to 
format the JIX, or to verify job numbers. 

To allocate a job number for the JQE, the routine first checks to see if the job has an 
original job number and attempts to reassign the original job number. If the number 
is in use, this routine then searches the JIX within the assignable job number range 
for a job number that has not yet been used. If one is found, the routine places the 
number in the JQEJOBNO field of the JQE, and the free count of job numbers is 
decremented. If no job number within the range is available and a $WAIT is 
requested by the caller, a $WAIT is issued. If the caller did not request a $WAIT, a 
return code of 4 is returned, indicating that no job number is available. 

To deallocate, the routine frees the job number of the JQE, increments the free job 
number count if the number is within the assignable job range, and if any JES2 
processors are waiting for a job number, posts that the job number is available. 

To swap, the JIX entry for the new JQE is cleared. Then, the job number of the old 
JQE is moved to the new JQE and the related JIX entry for the job is updated. 

Formatting of the JIX is done only at initialization. If an entry is made after 
initialization, a return code of 8 is returned. If the start is a cold start, the job 
number table (JNT) is initialized and the job number range is set from CIRWORK. 
(The JNT contains all of the information related to JES2 job numbers, and it is 
shared among all members of the MAS and restored on any JES2 warm start.) The 
total number of assignable numbers is calculated. On a single-system warm start, 
the job number range is set and the free count is adjusted. This is because the job 
number range can be changed in a single system start. On an all-systems warm 
start, the range is set and the JIX is cleared. 

The verify routine ensures that the number is not used. If it is, a return code of 4 is 
set. If it is not, the JIX entry is set with the relative job offset, and the free count of 
job numbers is decremented. After the requested function is completed, the JIX and 
JNT are checkpointed as needed. 

$QGET Service Routine 

3-46 JES2 Logic 

The $QGET routine is entered to acquire control of a job queue element (JQE) in the 
active queue. 

It also calls work selection services to select JQEs to be processed by the offload 
job transmitter. If the JQE is found, control is returned with a zero return code. If 
not, a return code of 4 is returned. If the system is not draining, exit point QVALID 
(for exit 14) is taken to allow an installation exit routine to select a JQE. When the 
installation exit routine returns, normal queue scanning for a JQE continues or is 
bypassed because the installation exit routine found a JQE or because no JQEs 
were found. When no JQE is found, control is returned to the caller. If the 
installation exit found a JQE, normal queue scanning is bypassed and the returned 
JQE is processed. If normal queue scanning is to continue, the appropriate queue is 
scanned for an element that: is not held, is not already acquired by a previous 
request to the job queue service routines, has system affinity to the selecting 
system, has all it's spools online and has independent mode set in agreement with 
the current mode of the selecting system. If $XMIT is the requested queue, affinity 
is ignored, and the line device control table (OCT) is checked to ensure the 
execution node is reachable via the connection. A NODETBL address of zero 

L Y28- i006-2 © Copyright IBM Corp. 1988, 1990 



( 

( 

(, 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNUC 

indicates that a request has been made by the network job route transmitter for a 
/*XMIT job, which has been rerouted for local execution. If an entry is found, the 
element is flagged busy with the coded system ID of the selecting system, and 
control is returned to the caller with register 1 pointing to a parameter list 
containing the JOE and other information. If no element is found, control is returned 
with a return code of 4 and a condition code of 0. If the operator has entered a $P or 
$PJES2 command without a succeeding $S command, the scan will not find a JOE. 

Note: The above description is true for every device issuing a OGET except offload 
transmitters. 

$QPUT Service Routine 
The $0PUT routine is entered to release control of an acquired job queue element 
(JOE). If the queue type is unchanged and the job is not being cancelled or purged, 
then the busy bits in the element are turned off, a checkpoint is scheduled for the 
JOE, the appropriate processors waiting for a user-submitted job are posted 
($POST), and control is returned to the caller with register 1 pointing to the JOE. 
Otherwise, the JOE is removed from its current chain, and a checkpoint request is 
made for any modified element. Then the busy bits are turned off and the JOE is 
priority-chained to its new queue, after which processing continues as above. The 
removal and queuing process is performed if the queue type is $XMIT and the 
execution node is equal to the value of $0WNNODE. In this case, the queue type is 
forced to $XEO. 

If the JOE is not found on the proper queue, the routine exits to the catastrophic 
error routine with code $001. An error exit with code $002 is taken if the new queue 
type does not exist. 

If the operator or time-sharing user has successfully flagged a JOE for cancellation, 
the job queue manager alters the queue type for the $0ADD, $0PUT, and $0MOD 
functions as follows: 

• If the job is being queued for execution or conversion, the queue type is altered 
to $OUTPUT. 

• If the job is flagged for $PURGE, the queue type is altered to $HARDCPY if job 
output elements or held data sets exist, or to $PURGE if no job output elements 
or held data sets exist. 

$QREM Service Routine 
The $OREM routine is entered to remove a job queue element (JOE) from its active 
queue and place it on the free queue. $OREM sets to 0 the relative pointer in the 
job queue index (JIX) and schedules a checkpoint of the JIX entry. Then it scans the 
appropriate queue to verify that the JOE, pointed to by register 1, is on the active 
queue. If the JOE's queue type is invalid, $OREM issues a $002 catastrophic error 
code. If the JOE queue type is valid but the JOE was not on the queue, $OREM 
issues a $001 catastrophic error. The JOE is removed from the chain, modified, and 
is scheduled for checkpointing. The JOE is chained to the $JOFREE queue in order 
of ascending JOE addresses, and the free JOE count ($JOEFREC) is updated. A 
checkpoint is scheduled for the queue heads, the JOE, and the JOE behind which 
the element was queued. If the free queue is empty, all processors waiting for a 
user-submitted job (JOB) are posted ($POST). Control is returned to the caller. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-47 



HASPNUC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$QLOC Service Routine 

JOB 5 

0 

2 

4 

6 

8 

10 

12 

14 

The $QLOC routine obtains the JQE address when the job number is known. If the 
JQE is found, control is returned with register 1 pointing to the JQE and with a 
non-zero condition code; otherwise, register 1 and the condition code are set to 0. 

An entry is now located directly through the job queue index (JIX). This routine 
looks at the JIX entry for the job number passed and if the entry is zero the job 
number is not in use. 

The JIX is used for accessing any specific JQE quickly by using its associated job 
number. The JIX is a table of 2-byte entries, each containing an offset that is used 
as an index into the job queue and other structures. This index relates a job's 
position to other jobs in the job queue (see Figure 3-2). 

Job Queue Index 
(JIX) 

• 
$.JOBQPTR .,, 

Job Queue 
(JQEs) 

1 
_J_ JQELENG 

T 

..I. 
• 

T 

_L 

RJO 
T 

..J. 

i, ,.1.J 

$.JOBQPTR + 
(RJO* JQELENG) 

,JJ 

J 

~ 

RJO - Relative job offset 

Figure 3-2. Relationships Between Job Queue Structures 

$QMOD Service Routine 

3-48 JES2 Logic 

The $QMOD routine is entered to modify the position and/or priority of a job queue 
element (JQE) on the active queue. If access has not been reserved for checkpoint 
data on the primary spool volume or if the JQE is not on the active queue, the 
routine exits to the catastrophic error routine with code $003. (The caller of this 
routine must have issued a $QSUSE macro instruction and have had no intervening 1"' 

$WAIT before modifying the JQE and entering this routine.) The current queue is , / 
scanned to locate the JQE, the JQE is removed from the queue, and the JQE 
preceding the removed JQE is scheduled for checkpointing. If the new queue type is 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNUC 

$XEO and the execution node does not equal the value of $0WNNODE, the queue 
type is set to $XMIT and the hold for duplicate job name is reset. The $0ADD 
routine is entered to add the removed JOE back into the queue. The entry into 
$0ADD scans the new queue, inserting the JOE and checkpointing the modified JOE 
entries or queue heads. 

$QACT Service Routine 
The $0ACT routine is called to mark active and checkpoint a JOE. If the JOE is 
being scheduled for execution or conversion, an extension area is obtained to keep 
information that is referenced frequently during execution (such as the number of 
track groups a job is using). The extension area is returned by a subroutine call to 
$0DACT. 

$CKPT Service Routine 
The $CKPT macro, and this service routine, are used to notify the JES2 checkpoint 
processor of changes in control blocks in the JES2 checkpoint area. The POST 
operand of the macro specifies whether or not to post the checkpoint processor. If 
the processor is posted, a write is initiated. If there is no post, the write is not done 
until there is another request for checkpoint processing or the checkpoint ownership 
period is over. The default on the macro is not to request a post of the processor. 
This way, checkpoint requests can be processed in batches, rather than one by one. 

To ensure that the checkpoint processor is posted enough times, this routine 
specifically posts the processor through a timer queue element (TOE) in the 
checkpoint PCE work area. 

The $CKPT routine is entered when a processor has altered a field of a checkpoint 
element. A $0SUSE macro must be in effect when $CKPT is entered. The 
checkpoint of the field is scheduled, and control is returned to the caller. 

A $0SUSE macro with TYPE=TEST specified is issued to ensure that the caller has 
control of the checkpoint data set. If the caller does not have control of the 
checkpoint data set, $CKPT issues a $003 catastrophic error. 

The checkpoint information table (KIT) contains all information that is needed to 
schedule a queue element for checkpointing. $CKPT locates the KIT by using the 
offset passed in register 0. 

$CKPT then checks the element address for validity. The element must be 
contained within the contiguous storage of the table. If the element does not meet 
these validity checks, $CKPT issues a $004 ($ERROR) catastrophic error. If an 
address of zero is passed, only the header record of the table is checkpointed. 

If change log support is not in effect, this routine marks the control bytes (CTLBs 
and CTLBXs) for the page of the changed element. For change log support, this 
routine builds a list (CAL) containing the address, length, and CTENT ID of each 
element. If there is no space left in the $CAL, subsequent $CALs will be 
$GETMAINed. If a $GETMAIN fails, the control bytes for the elements are marked. 

This routine returns to the caller with the token for the next checkpoint write in 
register 0. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-49 



HASPNUC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$CHECK Service Routine 
This service routine checks for completion of a checkpoint write using the 
checkpoint token parameter to determine whether to $WAIT for a checkpoint which 
has been scheduled but not yet completed, $WAIT for a checkpoint not yet 
scheduled, or return control immediately to the caller because the checkpoint is 
complete. 

$PGSRVC Service Routine 
This routine switches to key 0, and issues the correct form of the MVS PGSER macro 
based on flag bits set by the $PGSRVC macro. If the $PGSRVC macro was issued 
with a PSL specified instead of a length, the address passed points to a page 
service list (PSL); otherwise, the address passed is the address of the storage to be 
serviced. 

$QSUSE Service Routine 
The $QSUSE service routine is used by all of the job queue management routines 
(and by other routines and processors) to control access to the shared job queues. 
It is entered from a $QSUSE macro when the macro determines that the shared 
queues are not currently owned. 

The routine issues $POST to post the checkpoint processor. Then specific $POSTs 
are inhibited for the processor control element {PCE) for which there is access to 
the job queue. The routine issues the $WAIT macro instruction to wait for the 
checkpoint resource. When that resource is available, the service routine returns 
control to the caller. 

Unit Allocation and Deallocation Service Routines 
The following service routines are used to allocate and deallocate devices. 

$GETUNIT: Unit Allocation Service Routine 
The unit allocation service routine tests the status field (DCTSTAT) of the device 
control table (OCT) representing the device to be allocated. If the table is marked as 
in use, or if a drain, hold, or pause is in effect for the device, the device is 
unavailable for allocation. The routine returns to the caller with the condition code 
set to 0, indicating that allocation did not occur. If a device is available, $GETUNIT 
issues a $DCBDYN macro to attach a DCB/DEB. If the return code from $DCBDYN is 
4, a GETMAIN error has occurred and $DCBDYN has issued message $HASP184. 
$GETUNIT sets a zero condition code, indicating the device is not available. If there 
is no error, the routine marks the OCT as in use and returns to the caller with a 
non-zero condition code and the address of the OCT in register 1. 

$FREUNIT: Unit Deallocation Service Routine 

3-50 JES2 Logic 

The unit deallocation service routine waits for buffers ($WAIT BUF) until the count of 
outstanding buffers associated with the specified OCT is O; this ensures that all 
outstanding 110 has completed. The routine then turns off the DCTINUSE indicator 
and (for RJE and NJE devices only) ensures that the DCTEOF, DCTPOST, and 
DCTABORT indicators are also off. If the DCTDRAIN indicator is off, indicating that 
a stop device ($P) command is not being processed for the device, deal lo.cation is 
completed and the routine returns to the caller. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 



( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNUC 

If a stop command has been received for the device, the routine issues $DCBDYN 
macro to detach any DCB/DEBs. Then, if the device is not an FSS device, it issues a 
$ALLOC to unallocate the device. The routine calls the $DYN service routine, 
dynamically deallocating the unit control block (UCB) representing the device, and 
on return issues $WTO to schedule message $HASP097 (devname IS DRAINED) 
before returning to the caller. 

Interval Timer Manager 
The interval timer manager provides an interface between the JES2 main task 
processors and the standard MVS timer facilities. It notifies the processor of the 
completion of intervals and the time remaining with optional cancellation. It allows 
multiple processor intervals to be active concurrently while maintaining only one 
MVS timer element through the STIMER macro. 

The user of the JES2 interval timer manager must provide a unique requestueue 
element (TOE) for each interval that is to be simultaneously active. To begin an 
interval, the user processor executes a $STIMER macro using the TOE as a 
parameter. During the interval, the TOE is chained to other active TOEs and the 
interval values are adjusted by the interval timer manager. When the interval 
expires, the TOE is removed from the active queue and the processor is posted 
($POST WORK). When an active interval is to be terminated or the remaining time 
is desired, the user processor executes a $TTIMER macro. If the interval is 
terminated by $TTIMER, the TOE is removed from the active queue. 

$STIMER: Set Interval Timer Routine 
When a $STIMER macro is executed, the interval timer manager first ensures that 
the user's TOE is removed from the active chain. It then ensures that the user's 
TOE time interval is in units of 10 milliseconds. The IADJUST subroutine is called to 

, adjust currently active TOEs for the change in time from the last adjustment, 
dequeuing expired TOEs and posting ($POST) associated processors for work. The 
new TOE is then inserted into the queue in front of TOEs with longer remaining 
intervals. The ISETINT subroutine is called to conditionally issue the MVS STIMER 
macro instruction. The STIMER macro is executed if the first TOE is not the TOE 
currently represented by the previously executed STIMER macro, or if there is no 
MVS timer currently active for the JES2 main task. Control is returned to the user. 

ITIMEUP: Asynchronous Timer Exit Routine 
When MVS recognizes the end of a JES2 main task time interval, control is given to 
the asynchronous timer exit routine. This routine records the fact that a timer 
interval is not active and executes the $$POST macro to activate the time processor. 

When activated by the asynchronous timer exit routine, the timer processor calls the 
IADJUST subroutine to adjust currently active timer queue elements (TOEs) for the 
change in time from the last adjustment, dequeuing expired TOEs and posting 
($$POST) associated processors for work. The ISETINT subroutine is executed to 
conditionally execute the MVS STIMER macro, and the processor waits for work. 

$TTIMER: Test Interval Timer Routine 
When a $TTIMER macro is executed, the interval timer manager uses the IADJUST 
subroutine to adjust currently active TOEs for the change in time from the last 
adjustment, dequeuing expired TOEs and posting ($POST) associated processors for 
work. The active queue is scanned to ensure that the TOE is on the queue and to 
locate the previous TOE. If the TOE is not found, control is returned to the user with 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chaple< 3. Prng<am O'ganlzatlo\ 3-51 



HASPNUC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

register 0 equal to 0. The remaining time is recorded and if the request is to cancel 
the interval, the TOE is removed from the active queue. The ISETINT subroutine is 
called to conditionally issue the MVS STIMER macro. 

The recorded time is converted and rounded to the nearest second, and control is 
returned to the user. 

$TIMER Processor 

$STCK 

This processor resets the MVS interval timer after a timer interruption has occurred. 
This processor calls the IADJUST and ISETINT subroutines in the $STIMER/$TIIMER 
interval timer supervisor, which causes the expired TOEs to be posted and the time 
interval specified in the first TOE in the TOE chain to be set in the MVS interval 
timer. The processor then waits for another timer interruption to occur. When the 
next timer interruption is processed, the asynchronous exit routine posts this 
processor, and the above procedure is repeated. 

$STCK services the $STCK macro instruction to obtain the TOD clock setting. If the 
correct TOD is not obtained, $STCK attempts to get the TOD with an MVS TIME 
macro instruction. If it cannot, $ERROR is called to issue catastrophic error 
message, "$C01 UNABLE TO OBTAIN VALID CLOCK TIME", and to terminate JES2. 

DATECONV: HASP Day-to-date Conversion Routine 
The MVS TIME macro returns the Julian date in packed decimal format in register 1. 
This routine takes a date in this form and converts it to numerical month, day, and 
year, and returns it in packed decimal format in register 1. 

SMF Buffer Queue Manager 
The JES2 SMF service routines obtain JES2 SMF buffers from a free queue, place 
allocated JES2 SMF buffers on a busy queue, and post the JES2 subtask. 

$GETSMFB: Get SMF Buffer Service Routine 
$GETSMFB is used to obtain a JES2 SMF buffer from the $SMFFREE cell in the 
HASP communications table (HCT). If no buffers are available and WAIT= NO was 
specified, the routine returns control to the caller. If no buffers are available and 
WAIT= YES was specified, the routine waits ($WAIT) for SMF and then loops back to 
try to obtain a buffer again. Once a buffer is obtained, the count of free SMF buffers 
is updated. The address of the newly-obtained SMF buffers is placed in register 1, 
the buffer contents is cleared to zero, and control is returned to the caller. 

$QUESMFB: Queue SMF Buffer Service Routine 

3-52 JES2 Logic 

Prior to queueing the SMF buffer, exit point SMFEXIT (for exit 21) is taken to allow 
an installation exit routine to finalize the contents of the SMF buffer that is to be 
queued. When the exit routine returns, the buffer is queued or queueing is 
bypassed, depending on the return code from the exit routine. If queueing is 
bypassed, the buffer is freed. Control is then returned to the caller. 

The $0UESMFB routine places a JES2 SMF buffer on the queue of busy JES2 SMF 
buffers. The $SMFBUSY cell in the HCT points to the busy queue. The JES2 subtask 
is then posted for work, and control is returned to the caller. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ > ' 

""··. / 



( 

(~ 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Save Area Management Routines 

HASPNUC 

The save area management routines obtain save areas for the caller's registers, 
return save areas, restore registers and return the current save area, and convert 
symbolic destinations to binary route codes. 

$GETSAVE: Get Save Area and Save Registers Service Routine 
The $GETSAVE service routine, called through the $SAVE macro instruction, obtains 
a save area and saves in it the caller's registers. If the save area in the processor 
control element (PCE) is not in use, it is claimed as the save area. Otherwise, a 
save area is dequeued last-in-first-out (LIFO) from a pool of JES2-managed save 
areas headed by the HASP communications table (HCT) field $SAVAREA and added 
to the end of the PCE save area chain. If a free save area does not exist, a 
GETMAIN macro is issued to obtain a 4K block of storage in subpool 0. This storage 
block is cleared and formatted into save areas chained together via the save area 
($PCE mapping macro) field PCESVNXT, and added to the queue of free save areas 
($SAVAREA). A GETMAIN failure causes the JES2 catastrophic error code $S01 to 
be issued. Should such an abend occur, one or more of the JES2 buffer pools 
should be reduced in size to allow for additional GETMAIN storage in the JES2 
address space. 

$RETSAVE: Return JES2 Save Area Service Routine 
The $RETSAVE service routine, called via the $RETSAVE macro instruction, returns 
the most recently obtained JES2 save area associated with the caller's PCE. If the 
most recent save area is located in the PCE, it is marked available. Otherwise, the 
save area is unchained from the PCE save area chain and is made available to the 
pool of free save areas headed by the HCT field $SAVAREA. Prior to freeing the 
save area, a $EST AE macro with CANCEL specified is issued to free any PRE 
associated with it. If the save area chain is invalid, $RETSAVE issues a $S02 
catastrophic error. 

$RETURN: Return to Caller Service Routine 
The $RETURN service routine, called via the $RETURN macro instruction, restores 
the registers in the current save area (that is, the most recently obtained save area 
for the caller's PCE), returns the current save area to the save area pool via 
$RETSAVE, and returns to the location indicated in restored register 14. The return 
address is augmented by the return code, if any, in register 15 on entry to this 
routine. Note that the condition code is preserved throughout the execution of this 
routine. 

$PGRLSER/$PGFREER/$PGFIXR: Virtual Page Service Routines 
The $PGRLSER, $PGFREER, and $PGFIXR routines provide the page-release, 
page-free, and page-fix services respectively. The service routines use a common 
page services routine (label PGRTN). The routine obtains the address of the MVS 
page services routine from the communications vector table (CVT) and uses a 
branch entry to that routine, using the MODESET and SETLOCK macro instructions 
to set and reset the protection key and local lock as required. $PGFIXR additionally 
ensures that the page has been fixed by actually referencing the page before 
returning to the $PGSRVC caller. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-53 



HASPNUC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Buffer Pool Management 

3-54 JES2 Logic 

The buffer management routines allocate the JES2 dynamic storage area (buffer 
pool). Fixed-size buffers in this area are allocated and deallocated to JES2 
processors and routines using the $GET8UF and $FREE8UF macros. 

The $GET8UF macro permits the caller to specify one of five buffer types. 
According to the buffer type specified, a buffer is obtained from one of tour subpools 
within the JES2 buffer pool, and its 8UFTYPE field is initialized to indicate the 
buffer's characteristics. The structure of the 8UFTYPE field is: 

R F IPM D NN 

where: 

R is 1 if the buffer is to be used for the transfer of data between JES2 and a 
remote terminal, or 0 if the buffer is for local use 

F is 1 if the buffer is to be page-fixed (FIX= YES specified) 

IPM is 100 if the buffer prefix (which begins with the first byte of the buffer) is to 
be an input/output buffer, (108), or 010 if the prefix is to contain a request 
parameter list (RPL), or 001 if this buffer is part of a chain of buffers 
(MULTIPLE was specified in the $GET8UF macro); multiple buffers are 
chained through the 8UFCHAIN field 

D is 1 if the prefix is to contain a data event control block (DEC8) 

NN is an index value, used to access the buffer pool map with which this buffer 
is associated 

At location $8PMTA8L in the HASP communications table (HCT), there is a series of 
four pointers, one corresponding to each of the JES2 buffer types. (The six buffer 
types that can be specified require only four types of buffer pool map because both 
8SC and SNA buffers come from the common teleprocessing pool, and both SPXFR 
and PAGE buffers come from the PAGE pool.) The index value in the 8UFTYPE 
field, when added to the origin address $8PMTA8L, points to one of a series of four 
pointers in the HCT. The HCT pointer, in turn, points to the actual buffer pool map. 

The correspondence between the buffer type specified by the issuer of $GET8UF 
and the 8UFTYPE field contained in the buffer obtained (ignoring the page-fix and 
multiple-buffer specification) is: 

TYPE=HASP 

TYPE=BSC 

TYPE=VTAM 

TYPE=PAGE 

TYPE=PP 

TYPE=SPXFR 

The buffer is for local use and its prefix is an 108. The buffer 
pool map is BPMTHASP. 

The buffer is for remote use ad its prefix is an 108. The buffer 
pool map is BPMTTP. 

The buffer is for remote use and its prefix is an RPL. The buffer 
pool map is BPMTTP. 

The buffer is for local use and its prefix is an 108. The buffer 
pool map is BPMTPAGE. 

The buffer is for local use and its prefix is an 108. The buffer 
pool map is BPMTPP. 

The buffer is for local use and its prefix is a DECB. The buffer 
pool map is BPMTPAGE. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$GETBUFR: $GETBUF Service Routine 

HASPNUC 

The $GET8UF service routine selects one or more buffers from the buffer pool, 
causes the buffers to be initialized, and allocates the buffers to the calling processor 
or routine. The buffer pool is described by a bit map that is subdivided into a 
separate map for each kind of buffer: regular JES2 buffers, TP buffers, page buffers, 
and print/punch buffers. 

The service routine selects the appropriate map based on the buffer type specified 
by the caller, and determines whether enough buffers are available to satisfy the 
request. (If the buffer count, 8PM8UFCT, indicates that a buffer is available but the 
bit map does not indicate availability of a specific buffer, $ERROR is issued with 
catastrophic error code $802.) If buffers are available, the routine allocates the 
buffers to the caller. $GETBUFR updates BPMBUFCT depending on whether the 
request is to teleprocessing buffers or local buffers. $GET8UFR issues the 
$8FR8LD macro for each buffer to cause the buffer to be initialized; the bit in the bit 
map representing the buffer is turned off, to show that the buffer is allocated. If the 
caller requested that the buffers be page-fixed, the routine also issues the $PGSRVC 
macro to fix each buffer in main storage. When all required buffers have been 
allocated, initialized, and (if necessary) page-fixed, the routirnl sets a non-zero 
condition code and returns to the caller with the address of the first allocated buffer 
in register 1. 

If enough buffers are not available and the caller has specified WAIT=YES, the 
service routine waits ($WAIT BUF, a wait for the availability of a buffer as general 
resource). At each subsequent buffer resource post, the routine regains control and 
branches to the beginning of the service routine; this process continues until the 
$GETBUF request can be satisfied. 

If the buffer request cannot be satisfied immediately and the caller did not elect to 
wait, the routine sets the condition code to 0, sets register 1 to 0 indicating that no 
buffer was allocated, and returns to the caller. 

$FREEBFR: $FREEBUF Service Routine 
The $FREE8UF routine first ensures that the buffer address is valid. (If not, $ERROR 
is issued with catastrophic error code $801.) The JES2 dispatcher's event control 
field is posted to show that a buffer is available. Then the corresponding bit in the 
appropriate buffer pool bit map is set on. If the buffer being freed was previously 
page-fixed, $PGSRVC is issued to free the buffer. It MULTIPLE was specified, the 
process is repeated (from the point of buffer address validity checking) until all 
buffers in the chain have been processed. The buffer count (8PM8UFCT) is updated 
for each buffer returned. Whether or not MULTIPLE is specified, if all buffers in the 
page in which the buffer exists are free, that page is released, and control is 
returned to the caller. 

$BFRBLDR: Buffer Build Routine 
The buffer build routine is invoked by the $BFR8LD macro instruction. Based upon 
buffer type specified by the caller, this routine builds an 108, a request parameter 
list (RPL), or a data event control block (DEC8) at the beginning of the buffer. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-55 



HASPNUC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

GETMAIN/FREEMAIN Services 
To speed JES2 initialization, MVS GETMAIN and FREEMAIN macros are not used by 
the HASPINIT module. The $GFMAIN routine provides a branch-entry interface to 
GETMAIN/FREEMAIN services. 

$GFMAIN: Branch Entry GETMAIN/FREEMAIN Service Routine 
When a $GETMAIN macro and subsequently a $FREMAIN macro are issued, the 
$GFMAIN routine is entered. It processes GETMAIN/FREEMAIN requests in the 
same way that MVS does. The only difference is that corresponding SVCs need not 
be issued; $GFMAIN branches directly to the MVS service routine. The JES2 main 
task need not wait for an SVC. 

The $GFMAIN routine obtains storage above or below 16 megabytes in virtual 
storage depending on whether the $GETMAIN macro specified LOC =BELOW or 
LOC =ANY. LOC =BELOW restricts obtaining storage to below 16 megabytes. 
LOG= ANY means storage can be obtained either above or below 16 megabytes in 
virtual storage. 

$GETLOKR, $FRELOKR, $GET JLOK and $FREJLOK: Lock Control Services 
Four subroutines located in HASPNUC provide an interface for JES2 main task 
processors to obtain and release the operating system's cross memory services 
(CMS) lock or the JES2 job lock. The $GETLOK and $FRELOK macros obtain access 
to these routines and perform the following functions: 

• The $GETLOKR routine saves registers in the $CSAVREG area of the HASP 
communications table, (HCT), sets the program status word (PSW) key to 0, 
obtains the LOCAL and CMS locks, resets the PSW key to 1, restores registers, 
and returns. 

• The $FRELOKR routine saves registers in the $CSAVREG area of the HGT, sets 
the PSW key to 0, releases the CMS and LOCAL locks, resets the PSW key to 1, 
restores registers, and returns. 

• The $GETJLOK routine obtains access to the job JOE, marks the lock held, and 
then returns to the calling routine. The $GETJLOK routine issues a $WAIT 
macro for the lock. 

• The $FREJLOK routine obtains access to the jobs JQE, marks the lock free and 
then returns to the calling routine. The $FREJLOK routine issues a $POST 
macro to indicate that the lock is available. 

HASPATTN: Unsolicited Device End Interrupt Handler 
HASPATTN runs as an SRB; the SRB is scheduled when an unsolicited device end 
interrupt occurs on a JES2-owned unit record device. HASPATTN resets the 
DCTHOLD and DCTPAUSE bits in the DCT associated with the unit record device 
and simulates a $$POST for the unit so that processing for the device can continue. 

1/0 Supervisor Appendages 

3-56 JES2 Logic 

Abnormal and channel-end appendages, as well as a program-controlled 
interruption (PCI) appendage, are provided to record the 1/0 interruption associated 
with a particular $EXCP operation and to trigger further processing in response to 
those interruptions. (1/0 appendages for $EXTP requests are provided in HASPBSC 
and HASPSNA.) When an interruption occurs, the address of the associated JES2 
110 buffer is placed in one of two queues: $ASYNCQ for channel-end interruptions, 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNUC 

EABCHEND: 

or $ASYPCIQ for program-controlled interruptions. The asynchronous event 
processor $ASYNC, processes those queues, directing each queued buffer for 
further processing to the JES2 processor that initiated the corresponding $EXCP 
operation. 

Abnormal-end Appendage Routine 
The EABCHEND routine first determines whether abnormal-end processing is 
required by testing the bypass appendage indicator in IOBFLAG1 and testing the 
event completion code in IOBECBCC for a non-error indication. If no error has 
occurred or if the bypass indicator is on, control is returned to the input/output 
supervisor (IOS). Otherwise, error indications in the input/output buffer (108) and 
data control block (DCB) are reset and control passes to the common channel-end 
processing routine, EABCONT, if the device is other than an IBM 3211 Printer or 
3800 Printing Subsystem. 

When a paper jam has occurred on a 3800, the fuser page ID from UCBPGID is set in 
DCTLDPID, and the DCTCKJAM indicator is set for later processing by the 
print/punch processor. 

If the device is a 3800 and the operation completed with the unit-exception and 
cancel-key indicators set, a forward-space data set command is simulated in the 
DCT and control passes to EABCONT. 

If the device is a 3800 printer and an intervention required condition has occurred, 
the resume CSW is modified so that the channel program will immediately terminate 
upon restart. This is to allow processing of any commands issued during the 
intervention required condition. 

ECHANEND: Normal-End Appendage Routine 
The ECHANEND routine determines whether the indicators in IOBFLAG1 are set for 
a bypass appendage or an error routine in control; it returns control to IOS if either 
is on. If the device is a local printer or punch, the PCIBUSY indicator in the 
print/punch processor's current program-controlled interruption element (PCIE) is 
reset to show that a break in the channel program has occurred. 

EABCONT: Common Channel-End Processing Routine 

EPCI: 

The EABCONT routine is used by both the abnormal-end appendage and the 
normal-end appendage to post the JES2 main task to recognize the interruption. 
First, the 110 buffer is queued onto $ASYNCQ (using BUFCHAIN as the chain field) 
and a $$POST of the $ASYNC processor and the JES2 dispatcher is simulated by 
setting to X'FF' the 1-byte CCTPOSTW work indicator and setting the ASYNC post 
indicator. Next, if JES2 is in a wait state, JES2 is posted by IOS. If JES2 is not in a 
wait state, JES2 is notified through direct modification of the ECB via a compare and 
swap instruction. 

Program-Controlled Interruption Appendage 
EPCI signals the progress of an ongoing 1/0 operation. The address of the 
program-controlled interruption element (PCIE) associated with the interruption is 
found at PPBPCIE in the 110 buffer. The PCIBUSY indicator in field PCISGNAL is 
reset to show that the channel command word (CCW) chain up to and including this 
PCIE has already executed and is no longer part of the executing channel program. 
However, if this indicator was already off at entry to EPCI (possibly because of 
multiple entries), control is returned immediately to IOS. Next, the PCIBUFAD field 
is set to the address of the 1/0 buffer, and the PCIE is queued to $ASYPCIQ (using 
the PCICHAIN field as the chain field). If the command-chaining indicator is set in 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-57 



HASPNUC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

the PCIE, indicating that the channel program is not yet complete, then IOBSTART is 
set to the address of the next section of the CCW chain (found at PPBCCWNX), and 
the PCI indication is reset in the new chain to prevent multiple entries to the EPCI 
because of CCW retries (such as intervention required). The channel program 
progress indicator in the unit control block (UCB) is reset to notify the MVS missing 
interrupt handler that the channel program has progressed despite the fact that no 
channel-end interruption has occurred. Finally, the JES2 main task is notified that 
the interruption has occurred, by a method similar to that used by the channel-end 
appendage routines, with the exception that, if necessary, a cross-memory post is 
used to post JES2. 

$POSTEX: Spool Offload Buffer Completion Routine 
The post exit ($POSTEX) routine is given control by MVS each time a spool offload 
110 operation is marked complete. 

$POSTEX queues the completed buffer to the $XFRBEND queue by using compare 
and swap logic. Finally, $POSTEX simulates a post of the spool transfer 1/0 
manager. 

$ASVNC: Asynchronous Input/Output Processor 

3-58 JES2 Logic 

Because the status of all JES2 1/0 operations are signalled asynchronously with 
JES2 operation through the input/output supervisor (IOS) channel-end appendages 
and a program-controlled interruption (PCI) appendage, these interruptions must be 
queued by the appendage until all JES2 main task processors can be synchronized 
to receive the notification. The primary purpose of the asynchronous input/output 
processor is to notify all other processors of their 1/0 completions or 
program-controlled interruptions that were indicated by the MVS 1/0 supervisor 
when the interruption occurred. The buffer (and respective input/output buffers) 
associated with the interrupts are chained by the JES2 1/0 appendages for later 
processing by $ASYNC. In addition to the post of the JES2 task by IOS and any 1/0 
completion, the appendages also simulate posting ($$POST) of the asynchronous 
input/output processor to initiate its processing when the JES2 main task receives 
control. 

The processor also provides a miscellaneous service that should be run under 
control of a JES2 main task processor but not be associated with any other 
processor. This service is: 

• Dequeuing console message buffers (CMBs) from the $DOMQUEA queue and 
either queuing the CMB to the $DOMQUE or issuing an operating system delete 
operator message (DOM) SVC to delete the message display and free the CMB 
using the $FRECMB macro instruction. 

If a CMB is on the $DOMQUEA queue, the $HASPWTO task routine has queued a 
CMB originally scheduled with the $DOMACT flag on; $ASYNC removes the CMB 
from the queue. If the $DOMACT flag is still on, the CMD is queued to the 
$DOMQUE in order of ascending DOM identification numbers which were set in the 
CMB by the $HASPWTO routine upon return from the WTO macro instruction 
execution. If the $DOMACT flag is not on, another processor has executed the 
$DOM macro instruction earlier than expected; therefore, $ASYNC frees the CMB 
and deletes the message using the $FRECMB and DOM macro instructions. 
Processing continues with the next function. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNUC 

If a program-controlled interruption element (PCIE) is queued to $ASYPCIQ, it was 
placed there by the JES2 program-controlled interruption (PCI) appendage, routine 
EPCI in HASPNUC, as a result of an interrupt for the associated $EXCP operator. 
The buffer address is extracted from the PCIBUFAD field of the PCIE, and the 
processor associated with the interrupt (as indicated by BUFEWF) is posted ($POST 
10). 

If a buffer is queued to $ASYNCQ, it was placed there by the JES2 task channel-end 
appendage routine as a result of 1/0 completion for the associated $EXCP operator. 
The buffer is removed from the queue and the JES2 master 1/0 count is reduced by 
1. If the count becomes negative, control is passed to the catastrophic error routine 
with code $E01. If RJE lines have been generated, the buffer could be a 
teleprocessing buffer; if it is, the buffer is placed on the $RJECHEQ queue, and the 
line manager is posted for work. For normal buffers, the associated device control 
table (DCT) active count is reduced by 1. If the count becomes negative, control is 
passed to the catastrophic error routine with code $A01. Depending on the value in 
the BUFEWF field, $ASYNC proceeds as follows: 

• BUFEWF=O 

If the completion is in error, issue message using the $10ERROR macro 
instruction; free the buffer using the $FREEBUF macro instruction. 

• BUFEWF>O 

Post ($POST) for 110 the processor addressed by the BUFEWF field. 

• BUFEWF<O 

Control is given to the processor exit routine by a branch and link instruction. 
Registers are set are as follows: 

R1 = buffer address 
R13 = processor control element (PCE) address of the processor 
R14 = return to $ASYNC 
R15 = entry point address 

The exit routine uses a $SAVE macro on entry and returns to $SASYNC via a 
$RETURN macro. 

After taking the appropriate action, the processor goes to the beginning for more 
work. 

If on an examination of the $ASYNCQ queue it is determined that there are no 
buffers to process, the processor waits ($WAIT WORK) for work and, when posted, 
goes to the beginning of the routine for work. 

$JCTIOR: Job Control Table 1/0 Routine 
This routine provides the JCT 1/0 installation exit point, JCTEXIT (for exit 7), after a 
successful read of a JCT from spool or before the write of a JCT to spool. This 
routine issues the $EXCP macro that performs the read or write of the JCT. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-59 



HASPNUC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SDYN: Dynamic Device Allocation/Deallocation Routine 
The $DYN routine uses SVC 99 to dynamically allocate a device to JES2 or to 
dynamically deallocate a JES2 device. The DCTUNAL indicator in field DCTSTAT is 
used by $DYN to determine whether the function is to allocate or deallocate. Upon 
entry to $DYN, register 1 points to a device control table (DCT). The DCTUNAL bit is 
changed if $DYN successfully allocates/deallocates a device, and the condition code 
is set to 1 for a normal return. If the dynamic allocation/deallocation is unsuccessful 
or if the DEBSUCBB field is 0 and the request is to deallocate, the DCTUNAL bit is 
not changed, and the condition code is set to 0 when control is returned to the 
caller. After allocating/deallocating a device successfully, $DYN checks the 
DCTATTN indicator to determine whether to set or reset the unit control block (UCB) 
attention index field and, if the device is an IBM 3211 Printer or IBM 3800 Printing 
Subsystem, determines whether to issue a GETMAIN/FREEMAIN request for a unit 
control block (UCB) log area before returning to the caller. 

$JESEFF: JES2 Main Task Exit Effector 

3-60 JES2 Logic 

This is the exit effector for the JES2 main task. It is called when the $EXIT macro 
specifies (or defaults to) ENVIRON =JES2. $JESEFF passes control to the user exit 
routines based on the exit id. 

This routine executes in 31-bit addressing mode. If the caller executes in 24-bit 
mode, the exit effector returns control in 24-bit mode. 

Tracing of pre-exit calls produces a trace record made up of the exit number, exit 
name, system environment (that is: the indication that this trace is prior to the call 
of the first installation-exit routine), and calling register 0-15. 

The exit information table (XIT) is found based on the exit id and the address of the 
installation-exit routine in the exit routine table (XRT). 

The user exit routine is then called based upon information in the XIT. On return, 
the return code is saved and checked to see if either there are more installation-exit 
routines to call from this exit or if the processing is complete. 

If there are more installation-exit routines, they are called until either an 
installation-exit routine returns a non-zero return code or until there are no more 
installation exit routines to call. Then the post-exit tracing is complete. Post-exit 
tracing produces a trace record made up of the exit number, exit name, system 
environment (that is, the indication that a trace is following return from the last 
routine), the calling registers 15, 0, and 1, and the name of last routine called. 

A catastrophic error condition of $U01 results when the return code from the user 
exit routine is greater than the setting of MAXRC on the $EXIT macro. 

LY28-1006-2 © CopyrightlBM Corp. 1988, 1990 



,-

( 

"Restricted Materials of IBM" 
licensed Materials - Property of IBM 

HASPNUC 

UCB Services 
The following routines process the UCB chain. 

$GETUCBS: Obtain a UCB Address 
The $GETUCBS routine uses the IOS UCB scan routine (whose address is in the 
CVT, CVTUCBSC) to obtain a UCB associated with an input device class. The UCB 
address is obtained in the UPLUCBAD field of the UCB parameter list supplied by 
the caller as input. A catastrophic error $U03 is issued if $GETUCBS cannot 
acquire storage (via MVS GETMAIN) for the UCB parameter list. 

$FREUCBS: Free Storage for the UCB Parameter List 
The $FREUCBS routine issues a MVS FREE MAIN to free the storage used for the 
UCB parameter list (that was acquired by the $GETUCBS routine). 

$SUBIT: General Purpose Subtask Work Queueing Service Routine 
$SUBIT issues a $ESTAE to establish its recovery environment. If no general 
purpose subtasks were attached during initialization, processing continues only if 
the $SUBIT request was issued unconditionally. In this case, required parameters 
are set and the routine to be subtasked is $CALLed directly. When control returns, 
the contents of registers 0 and 1 are saved in the SQD. The fact that the call was 
made directly is also recorded in the SQD. $SUBIT marks the ECB as posted and 
returns to its caller. 

If at least one general purpose subtask was attached during initialization, the 
SQDXECB field is cleared and the SQD is queued to one of the three priority queues 
(low, reg, high) based on the request. If a non-recoverable queue error is detected, 
$SUBIT issues the $ERROR GS1 macro ($HASP095 message) and JES2 terminates. 
If necessary, the XECB is $WAITed on. 

Once the SQD is successfully queued, the first available subtask is removed from 
the subtask work queue and posted. 

$SEAS: Security Authorization Service 
The $SEAS routine performs the setup and cleanup necessary to subtask a 
$RACROUT call. An SQD is obtained and initialized, then a $SUBIT call is issued. If 
the caller did not want to $WAIT for the request to complete, the $SEAS routine 
returns to the caller. Otherwise, $SEAS $WAITs for a subtask post. 

If a subtask failure occurs, $SEASMSG issues the $HASP077 message and the 
$SEAS routine retries. If no subtask failure occurs (or if there is a second failure), 
control returns to the caller. 

Dynamic Allocation Subtask (HOSALLOC) 
This subtask resides in HASPNUC with entry point, HOSALLOC. When this subtask 
is dispatched, it issues an ESTAE macro to establish recovery, initializes it and 
waits for work, after first posting the routine that attached it. When the HOSALLOC 
subtask is subsequently posted, it performs dynamic allocation or deallocation as 
requested. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-61 



HASPDYN "Restricted Materials oUBM" 
Licensed Materials - Property of IBM 

HASPDYN: Dynamic Control Block Build 

$PCEDYN 

$PCEDYDC 

$DTEDYN 

$DTEDYNA 

3-62 JES2 Logic 

HASPDYN contains routines that dynamically build the major non-spool, 
non-checkpoint control blocks (PCE, DCT, DTE). Daughter task elements (DTEs) 
provide a centralized point of communication between subtasks and the main task. 

This routine dynamically adds (ATTACH) and deletes (DETACH) PCEs. It uses the 
PCE tables that defines the PCE types and their attributes. 

For an ATTACH, the routine allocates ($GETWORK) the storage required, formats 
the PCE, chains it, and either marks it ready to be dispatched or marks it as having 
to wait ($WAIT), as required. For a detach, it tests if it can be detached now, later, 
or never. This test indicates whether the PCE has any allocated outstanding save 
areas. If the PCE can be detached, this routine dechains the PCE and frees the 
storage ($RETWORK) it used after all resources are freed. On an attach, the routine 
connects the associated DCT for PCEs that have a one-to-one PCE/DCT relationship. 
Errors in the parameters passed or in the tables result in the $HASP095 catastrophic 
abend message with a system completion code of 02D and an appropriate abend 
code. 

This routine contains exit 27, which is entered when a PCE has been attached or is 
about to be detached. It can be used to obtain and free resources associated with 
the PCE, or it it can be used to deny the attach of a PCE. 

This routine dynamically attaches and detaches PCEs for all the DCTs in a chain and 
connects or disconnects the DCTs from their associated PCE. 

$DTEDYN is a generalized get/free DTE service routine that handles DTE 
management and subtask attaches and detaches for the JES2 main task. It is called 
by the $DTEDYN macro instruction. 

This routine obtains and initializes a daughter task element (DTE) for subtask 
management. DTEs provide a centralized point of communication between subtasks 
and the main task. $DTEDYNA uses the $GET ABLE service to access the DTE 
tables (built by $DTETAB in HAPSTABS) that define DTEs and their subtask 
characteristics. $DTEDYNA uses MVS ATTACH to attach the subtask to the JES2 
main task. 

For an $DTEDYN ATTACH, the caller supplies the subtask identifier, DTESTID. Then 
$DTEDYNA issues an IDENTIFY macro for the entry point name specified in the 
$DTETAB entry for this subtask. $DTEDYN obtains storage, sets up DTE 
identification and chains the DTE onto the $DTEORG and $DTELAST queues, 
anchored in the HCT. $DTEDYNA then issues an MVS ATTACH for the subtask. 

LY~8-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPDYN 

$DTEDYND 

$DCTDYN 

$DCBDYN 

This routine is used to dechain and release a DTE. It issues an MVS DETACH. It is 
called with $DTEDYN, which has "DETACH" as its first operand. 

For $DTEDYN DETACH, the caller supplies the address of the DTE to free. 
$DTEDYND then issues an MVS DETACH for the subtask, dechains the DTE from the 
queue and releases the DTE storage. The processor that requested the services of 
the subtask must ensure that it has terminated (DTETECB is posted) before calling 
$DTEDYN to free the task. 

This routine services requests to find, chain, or build DCTs. It uses the OCT tables 
in HASPTABS (built by $DCTTAB) to define various attributes for the type of OCT, 
and to get the chaining and subchaining fields. During PARMLIB processing, when 
an initialization statement is encountered that requires a value to be set in a specific 
OCT, this routine is called to locate the OCT, and if one cannot be found, build and 
initialize it. It is entered with a $DCTDYN macro, which passes to this routine the 
name of the OCT and the subscript, and whether this is a "find" or "attach" request, 
that is, a request to locate the OCT or generate a new one. It scans the OCT tables, 
using $GETABLE services, until it finds a matching OCT entry. If the OCT is not 
located for a find request, the caller of this routine gets a return code of 8. If the 
OCT is not located for a chaining request, this routine builds a default OCT and 
insert it into the chain of DCTs and into the subchain if this OCT belongs within the 
subchain. It uses subroutines DDYNCVT, DDYNATT, DDYNWLST to do its work. 
DDYNCVT converts the subscript to EBCDIC, DDYNATT builds and chains new 
DCTs, and DDYNWLST sets the default work selection list in the OCT, calling 
SRVWSCAN in HASPSERV. 

This routine supports only local devices. It is also used to locate just the OCT and 
return its address in response to a $T device command (but only those $T 
commands that use the $SCAN facility). HASPDYN also contains initialization exit 
routines for devices that require them, that is, the DCTs for local readers, local 
printers, local punches, the offload device, and its job transmitters/receivers, and 
SYSOUT transmitters/receivers, remote and network line DCTs and the SNA LOGON 
OCT. 

This routine services $DCBDYN macro instructions to create or delete (attach or 
detach) a DCB and a DEB for a OCT. If, for an attach request, the OCT does not need 
a DCB or if a DCB is already attached, this routine returns immediately to its caller. 
If, for a detach request, the DCB is not attached or a BSAM DCB is required, this 
routine immediately returns to the caller. 

When the request is for an attach of a BSAM DCB rather than an EXCP DCB, no 
initialization is done and a JES2-created DEB is not needed. For an EXCP DCB, 
however, storage is obtained for the DCB and DEB (if required), and chained off 
DCTDCB. If the GETMAIN for storage is unsuccessful, message HASP184 is issued 
and a return code of 4 is returned in register 15. 

For a detach, DCTDCB is zeroed when the DCB and DEB are freed with a 
$FREMAIN. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-63 



HASPDYN 

$DESTDYN 

3-64 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

This routine services $DESTDYN macro instructions to dynamically add JES2 
destination IDs to a network. If the destination value that is passed is non-binary, it 
is converted to binary format. The destination name is verified (not a valid route 
value). If the destination name is a node name, the routine searches tor the 
previous destination table (RDT) entry for that particular node. It then looks for an 
existing matching RDT entry. The RDTs are chained in alphabetical order. If a 
duplicate entry is found, it cannot be altered unless the destination value in the RDT 
already matches the destination value that was passed, but the RDT type flags are 
altered. If a duplicate entry is not found, one is allocated. 

L Y?.8-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSUBS: Generalized Subtask 

HASPS UBS 

HASPSUBS is the generalized subtask attached by the $DTEDYN routine in 
HASPDYN. It initializes a subtask and provides for generalized subtasking of calls 
to a specified routine by removing and processing work requests from the available 
work queue. HASPSUBS also contains the subtask ESTAE recovery routines. 

A recovery environment is established during subtask initialization. If recovery is 
required before initialization completes, HASPSUBS sets the initialization error bit 
in the DTE and posts $DTEDYN. If a failure occurs after initialization has been 
completed, the recovery routine (SUBRTRY) is called from the $STABEND routine in 
HASPRAS when the subtask abends. The SUBRTRY routine attempts to retry at the 
point of failure. If unsuccessful, it sets an error return code in the SOD and posts 
the caller's ECB if the SOD address is available. HASPSUBS waits for work. 

Note: SUBRTRY also detects recursive abends. If this occurs (or if the subtask 
abends three times while processing the same request), the subtask terminates -
unless it is the last one attached. 

After establishing the recovery environment, HASPSUBS $GETMAINs a save area 
for use by the routine to be called and posts $DTEDYN when initialization is 
complete. Once attached, HASPSUBS waits for work on the LIFO subtask ready 
queue. When posted, it calls the routine specified in its parameter list, saves the 
routine's return codes in the SOD, and posts its caller. 

Note: The $DTE and $SOD addresses are not available to the routine called from 
the subtask. 

HASPSUBS then checks the available work queue using the $STWORK field in the 
HCT (which points to the $STWORK control block, which, itself, points to the three 
priority queues -- low, reg, high). If no work is to be done, HASPSUBS returns to the 
subtask ready queue and waits for work. 

On exit, HASPSUBS places one of the following return codes in register 15: 

• 0 - Processing successful 
• 4 - The routine address was not valid; the routine was not called. 
• 8 - An abend occurred in the called routine. 
• 12 - A subtask error occurred before the routine could be called. 
• 16 - A subtask error occurred after the routine was called. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3~65 



HASPJOS "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPJOS: Job Output Services 

Job Output Table Services 

3-66 JES2 Logic 

The job output table (JOT) is built by HASPIRDA in dynamically acquired storage, 
with its address stored at location $JOTABLE in the HASP communications table 
(HCT). The JOT contains several queues of job output elements (JOEs), which 
describe current system output requirements. The network queue and the 72 local 
and remote class queues that contain work JOEs, the queue of characteristics JOEs, 
and the queue of free JOEs, are at the beginning of the table with other maintenance 
data. The bulk of the JOT is then composed of JOEs that are in one of these queues 
and whose number is controlled by the JOENUM operand on the OUTDEF statement. 

Each JOE in the job output table can serve one of the following functions: 

• Work JOEs are chained in the network queue or class queues and are the 
primary representatives of output processing work. The JOE counter in the job 
queue element (JQE) counts the number of work JOEs for the job it represents. 

• Characteristics JOEs are chained in the characteristics queue and are pointed 
to by a field in the work JOE. The setup of a device before it can process a 
given work JOE is described by a characteristics JOE. Because many work 
JOEs require the same setup, a characteristics JOE is used or pointed to by 
more than one work JOE. 

JOEs not currently in use to represent output work are chained in the free queue. 

Because the data in the JOT is necessary for a warm start of the JES2 subsystem, a 
checkpoint is requested each time a change is made. During warm start, a 
subroutine in the initialization processor ensures that all work JOE busy flags are 
reset. 

JES2 provides internal macro instructions for access to job output services: 

• $#BLD: Builds work and characteristics JOEs from peripheral data definition 
blocks (PDDBs). $#BLD also tests for whether the user has authority to specify 
the JOE priority. 

• $#ADD: Adds a JOE to the class queues. 

• $#EXIT: Common exit point that deletes all of a JOE's work elements when the 
JOE is modified. 

• $#GET: Selects JOE(s) for processing by a print/punch processor or a network 
or offload SYSOUT transmitter. One JOE is selected for processing by a 
print/punch processor. One JOE or a chain of JOEs can be selected for 
processing by a network or offload SYSOUT transmitter. 

• $#PUT: Releases a selected JOE for subsequent processing. 

• $#MOD: Modifies a work JOE's routing of a SYSOUT class. 

• $#REM: Removes a JOE from the class queues. 

• $#CAN: Removes all unselected JOEs for a specific job from the class queues. 

• $#PDBCAN: Marks all ol a JOE's non-held data sets as non-printable. 

• $#POST: Posts specific processors for output 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• $#CHK: Performs 1/0 for the output checkpoint control block. 

HASPJOS 

• $#ALCHK: Allocates a spool record for use in output checkpoint processing. 

• $#NEWS: Provides support of the JESNEWS data set active in output service. 

• $#JOTBLD: Rebuilds the JOT on a cold start. 

• $#JOTCHK: Verifies/corrects the JOT on an all-systems warm start. 

To ensure the integrity of the job queue and the job output table, each subroutine 
issues the $QSUSE macro prior to any change or reference to either table. 
Subroutines that require allocation of JOEs from those available in the JOT 
determine that the free queue is large enough to ensure completion of the request. 
If the free queue is too small, a return code indicating no process is set, and return 
is made to the macro caller. 

$#BLD Service Routine 
The $#BLD routine builds work and characteristics JOEs, using data contained in a 
peripheral data definition block (PDDB). 

Fields built in a characteristics JOE include: 

• Forms ID 
• Forms control buffer (FCB) id 
• Universal character set (UCS) id 
• External writer id 
• Flash frame id 
• Burster flag 
• Process mode 

Fields built in a work JOE include: 

• JOE address 
• JOE name 
• JOE id 
• Security id 
• SYSOUT class 
• Routing codes 
• Total record count 
• Track cell flag 
• Demand-setup flag 

$#ADD Service Routine 
The $#ADD service routine first ensures that there are enough JOEs available to 
service this request. If there are not enough JOEs, the routine sets a return code of 
4 and returns to the caller, indicating that the request could not be satisfied. If 
sufficient JOEs are available, the class of the prototype JOE (JOECURCL) is checked 
to see if it is valid. If not, a $J07 abend occurs indicating an invalid SYSOUT class. 
Otherwise, the routine scans the queue of characteristics JOEs to determine 
whether a JOE matching the prototype characteristics JOE being added already 
exists. If no match exists, a JOE is acquired from the free queue (through the 
GET JOE subroutine), and the setup data from the prototype characteristics JOE is 
copied into it. The position of the new JOE in the queue of characteristics JOEs is 
determined by the collating sequence of the setup data contained in the JOE, such 
as forms id and FCB id. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-67 



HASPJOS "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Having either found a match or built a new characteristics JOE, the routine adds 1 to 
the use count in the JOE to record the number of concurrent users of the block and 
issues the $CKPT macro instruction to checkpoint the JOE. 

A free JOE is then acquired from the free queue, through the GET JOE subroutine, 
and the data from the prototype work JOE is copied into it. At this point a search of 
the work JOEs is made to ensure that the combination JOENAME and JOEID are 
unique within this job. The priority of the work JOE is computed, using the SVTXPRI 
table based upon the JOE record count, and stored in the JOE. This routine queues 
the work JOE to its characteristics JOE, JQE and class queue using the CHAINWRK, 
CHAINJQE and CHAINCHR subroutines. Next, at $#EXIT, all eligible processors are 
posted ($#POST) to alert them that work is available (provided the job lock is not 
held). Otherwise, the routine sets return code 0 to indicate successful completion 
and returns to the caller. 

$#GET Service Routine 

3-68 JES2 Logic 

There are two types of calls to the $#GET routine: network and work selection calls 
(specified, respectively, as NET and WS on the macro). If the call indicates NET, this 
means that the caller is a network SYSOUT transmitter, and the network queue is 
scanned for eligible JOEs as follows: 

1. The proper queue is obtained with a $#JOE 

2. GTSCREEN is called to screen the JOE(s) 

3. If GTSCREEN returns with a return code of 4, it means that a JOE is selectable. 
This JOE and all other JOEs for this job that meet the requirements of 
GTSCREEN are chained to the network transmitter chain. The address of the 
last JOE on the chain and the JQE address are returned to the caller with a 
return code of zero, which indicates that work is available. 

A check is made for each of the JOEs to be chained to the network transmitter 
chain to determine if they are authorized to be sent to the destination node. 
This checking ensures that all of the chained JOEs have the same USERID and 
SECLABEL field values. 

4. When GTSCREEN returns a return code of 0, the next JOE on the network queue 
is screened. This process continues until GTSCREEN finds a selectable JOE, in 
which case the processing described in step 3 is performed, or until the end of 
the queue is reached, in which case $#GET sends a return code of 4 to the caller 
indicating that no more work is available. 

Note that, for network SYSOUT transmitters, GTSCREEN does not use work 
selection to select JOEs and does not call work selection services, but checks the 
following output and job conditions: 

• Is the JOE busy? 
• Is the JOE not selectable? 
• Are the job's spool volumes available? 
• Is the job held? 
• Is the node available? 

For a WS call for a print/punch device, a work selection setup routine is called with 
the $WSSETUP macro to initialize the work selection work area. Then, the 
appropriate class queues are scanned for a JOE that best fits the work selection 
criteria specified in the device work selection list. If CLASS is in the work selection 
list, only those class queues defined for the device are scanned for JOEs. 
Otherwise, every class queue is scanned. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



,-

( 

f 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPJOS 

GTSCREEN is called for every JOE that is to be screened. GTSCREEN then calls the 
work selection service routine (WSSERV) to determine if this JOE is selectable by 
the device. A non-zero return code from WSSERV indicates that the JOE is 
selectable. A zero return code indicates that the JOE is to be rejected. 

GTSCREEN also checks for an entry for the JOE in the JWEL table. If there is no 
entry, then the JOE is selectable. Otherwise, the JOE is rejected. 

If the JOE is selectable, GTSCREEN returns a return code of 4 to $#GET. $#GET 
then determines if this JOE is the "best" JOE for the device (meaning that no other 
JOE can better match the work selection criteria). When a best JOE is found, a SAF 
call is made to see if the writer is authorized to access the data being selected. If 
permitted, the JOE address is returned to the caller along with the JOE address and 
a return code of zero (indicating work is available). 

If it is not the best JOE, $#GET determines if the previous JOE is better than the 
current JOE screened by GTSCREEN. If this is the first JOE screened, it is saved as 
the previous JOE, and the other JOEs are scanned for comparison. If there is a 
previous JOE, the current JOE is compared to the previous. The better of the two is 
saved as the previous and other JOEs are scanned and compared, and the better of 
each comparison saved as the previous JOE. This continues until no more JOEs are 
available. Then the best JOE (the previous JOE) is returned to the caller with the 
JOE address and a return code of zero. If there is no best (previous) JOE, a return 
code of 4 is returned indicating that no work is available for the device. 

Note that GTSCREEN will check the following conditions before calling work 
selection services: 

• Is the JOE busy? 
• Is the JOE selectable? 
• Are there available spool volumes for the job? 
• Is the job held? 

For a WS call by an offload SYSOUT transmitter, the work selection setup routine is 
called as it is for print/punch devices. If the offload SYSOUT transmitter is set up to 
select held output (DS =HELD or ANY), the hardcopy queue is scanned for a JOE 
with held output. GTSCREEN is called to screen the JOE(s) with held output to 
determine if it meets the job-level criteria specified in the work selection list. 
Job-level criteria are HOLD, JOBNAME, RANGE, and VOLUME. 

If no job is found and DS =HELD, a return code of 4 is returned to the caller to 
indicate that no work was found. If DS=ANY, the class queues are scanned for 
non-held output. This processing is the same as for print/punch processing. When a 
best JOE is found, however, $#GET continues to find all job-related JOEs (as is done 
for networking) that meet the work selection criteria, and chains them to the network 
transmitter queue. (Note that when a "best" JOE is found for a SYSOUT transmitter, 
the criteria after the slash are ignored when processing all other JOEs for the job.) 
The JOE address and the address of the last JOE on the chain are returned to the 
caller along with a return code of zero to indicate that only non-held output was 
found. 

If a job with held output is found and DS =HELD, a return code of 8 is returned to the 
caller along with the JOE address. IF OS= ANY, $#GET determines if this job has 
any non-held output that matches the work selection criteria. If not, the JOE address 
is returned to the caller along with a return code of 8. If the job does have non-held 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-69 



HASPJOS "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

output that matches the criteria, these JOEs are chained onto the network 
transmitter chain and the JQE address, the address of the last JOE on the chain, and 
a return code of 12 (indicating both held and non-held output was found) are 
returned to the caller. 

If the offload SYSOUT transmitter is not set up to select held output 
(OS= NONHELD), class queues are scanned as described for a WS call by a 
print/punch device and the JOEs are placed on the transmitter chain. 

JES2 orders remote queues by priority within destination on each of the 36 class 
queues. When searching the remote queues for output and $#GET detects that there 
is no more eligible work (when we have passed all work for any route codes the 
device is set up to select) on a queue it is searching, it advances to the next class 
queue. 

$#PUT Service Routine 
The $#PUT service routine decreases the active device use counter in the 
associated characteristics JOE; when that count becomes 0, it indicates that device 
processing involving that set of characteristics is not in progress. This count is used 
during $#GET processing to determine whether any devices are currently 
processing given setup data. After decreasing the count, the $#PUT routine issues 
the $CKPT macro instruction to cause a checkpoint of the altered JOE. 

If the caller supplies an output checkpoint record (CHK), as occurs when a $1 device 
command is received during print/punch processing, the call to the $#PUT routine 
can be with an indication as to whether the CHK is valid, invalid, or not to be 
updated. If the CHK is valid, $#PUT updates the line, page, and data set counts. If 
the CHK is invalid, then $#PUT resets the line, page, and data set counts with the 
original totals. If the CHK is not to be updated, then $#PUT does not change the 
counts. $#PUT writes the CHK to spool. If the address of the CHK is not supplied, 
the checkpoint valid flag ($JOECKV) in the work JOE is reset. 

$#MOD Service Routine 
The $#MOD service routine is called whenever the routing or SYSOUT class of a 
JOE has been changed. The designated work JOE is removed from whatever queue 
it is currently on and then placed on the proper queue, depending on routing class 
or offload status. If the JOE's new routing is for another node, the JOE is placed on 
the network queue. If the new routing is for the local node, the JOE is placed on a 
class queue as determined by its new SYSOUT class. If the JOE is flagged for 
off-loading, it is placed on the SYSOUT dump queue. $POST is used to invoke a 
checkpoint of the altered JOT. The subroutines REMCHR, REMWRK, and REMJQE 
are called to remove the work JOE from the characteristics JOE and JQE JOE 
chains. The work JOE is requeued using the CHAINWRK, CHAINJQE and 
CHAINCHR subroutines. $#MOD posts (via $#POST) waiting processors of work (if 
the job lock is not held) and returns to the caller. If the job lock is held $#MOD just 
returns to the caller without performing the $#POST. 

$#REM Service Routine 

3-70 JES2 Logic 

The $#REM service routine first locates the address of the work JOE preceding the 
one to be removed by scanning the entire class queue associated with the JOE. 
When the JOE preceding the one to be removed is found, the routine calls 
subroutine REMWORK to remove the work JOE along with the corresponding 
checkpoint and characteristics JOEs from the class queue, characteristic JOE chain, 
and from the job JOE chain. If a checkpoint is required for the JOT, the $#REM 
routine passes control to REMWORK. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPJOS 

On return from REMWORK, $#REM checks to see if a post for JOE is required and if 
so issues a $POST before returning to the caller. This post wakes up processors 
waiting for JOEs. Otherwise $REM just returns to the caller. 

If the JOE points to an unspun IOT, the JOE is removed. An unspun IOT occurs 
because of a previous JOT full condition, or because the execution processor 
marked the IOT unspun when it found a JOE busy. 

If the JOE to be removed is a spin JOE, $#REM determines if multiple JOEs share 
the same allocation IOT. If so, only this one JOE is purged. If not, $#REM checks if 
PURGE= YES was specified on the macro. If so, it checks if it was passed the IOT. 
If not, the IOT is read in and passed to the $PURGER routine to free the spool space. 
If PURGE= NO was specified on the macro, the spool space is not returned. On 
return, $#REM removes the JOE. 

$#POST Service Routine 
$#POST posts specific processors that are waiting for output work so that they can 
select output work to process. The following types of posts are processed: 

• Work JOE post 
• JQE post 
• SYSOUT transmitter post 
• Spooled message post 

$#POST uses PSTSUBJ, JOE post subroutine, to process this post request. $#POST 
checks to see if the JOE to be posted is associated with this node or a special local 
device. If so, $#POST scans the $WAIT JOT queue and posts ($POST) processors 
that are eligible to select this JOE. Otherwise, the JOE is destined for another node 
and $#POST posts the eligible SYSOUT transmitters. 

When an output element is available to be processed, $#POST checks if there are 
any RJE devices in autologon mode. If so, it calls $GTSCREEN for each to 
determine whether they are eligible to select the work. If so, an indication is set in 
the remote attributes table (RAT), so that the line manager knows that work exists 
for this remote and can automatically log it on. An indicator is also set in the DCT, 
so that the line manager can post the device directly. 

For a JQE post, all JOEs for this JOE are screened to determine if they can be 
selected by any processor waiting for work, that is, output. If no JOEs exists for this 
job, the following occurs: 

• If there are any spool offload PCEs waiting for work, the JQE is checked to 
determine if there are any held data sets. If not, no processors will be posted. 
If there are held data sets for this job, and the spool offload device is set up to 
pick up held data sets (no device is posted if the spool offload device is not set 
up for held data sets) the job level criteria defined for the job (HOLD, VOLUME, 
RANGE, JOBNAME) are compared to the job-level criteria defined for the 
device. If the job can be selected by the spool offload device, the device will be 
posted. Otherwise, no device is posted. 

• Any other PCE waiting for work will not be posted if no JOEs exist for the job. 

For spool offload, if JOEs do exist for the job but none of them can be selected by 
the spool offload device, the JQE associated with this job will be checked to 
determine if held data sets exist, and the same processing as described above for 
held data sets will occur. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization· 3-71 



HASPJOS "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

For other devices, if JOEs exist but cannot be selected by the devices, no device is 
posted. 

$#POST calls the transmitter subroutine PSTSUBX to post networking SYSOUT 
transmitters. PSTSUBX posts (via $POST) all waiting ($WAIT) SYSOUT transmitters 
and all idle SYSOUT transmitters for this line. 

$#POST calls the post spooled message subroutine, PSTMSG. PSTMSG loops 
through the line DCTs and flags the line DCT to indicate the output post. 

$#POST issues an abend, catastrophic error $J06, when it is entered without the 
checkpoint being held. After successful processing, $#POST returns to the caller. 

$#CHK Service Routine 
This routine reads or writes output checkpoint records to spool. $#CHK doesn't 
check for 1/0 completion if reading is performed. If writing is performed with the 
WAIT= NO option $#CHK returns immediately to the caller with a return code of 0 
even if the 1/0 doesn't complete. If writing is performed with the WAIT=YES option 
$#CHK waits for the 1/0 to complete before issuing the next $EXCP. If $#CHK 
experiences a permanent 1/0 error for either read or write, $#CHK issues a 
$DISTERR macro, checkpoints the work JOE, and exits to the caller with a return 
code of 4. 

$#ALCHK Service Routine 
This routine allocates a spool record so that job output can be checkpointed. 
$#ALCHK issues a $GETBUF to obtain JCT and/or IOT buffer space if the JCT and 
110 buffers were not passed on input. The $#ALCHK obtains the job lock if required 
and reads into the JCT buffer the JCT (via $JCTIO) and into the IOT buffer the IOT 
(via $EXCP). Then $#ALCHK issues a $TRACK to obtain a checkpoint spool record, 
writes out to spool the IOT and JCT if requested by the caller, frees the job lock and 
the buffers and returns to the caller. 

If a buffer had to be created for a secondary allocation IOT, $#ALCHK also frees that 
buffer. If an 1/0 error occurs while reading or writing, $#ALCHK issues a $DISTERR 
macro, checkpoints the work JOE and returns to the caller with a return code of 4. 
Otherwise, $#ALCHK returns to the caller with a return code of 0. 

$#CAN Service Routine 
The $#CAN service routine scans the network queue and each of the 36 class 
queues for work JOEs that belong to the job supplied in the parameter list. For each 
non-busy work JOE found in the scan, a call to REMWORK is made to return the 
work JOE to the free queue and to remove the JOE from the job JOE chain. 

If a $POST of the JOE is required, on return from REMWORK a $#CAN issues a 
$POST before returning to the caller. ' 

$#PDBCAN Service Routine 

3-72 JES2 Logic 

This routine marks all of a JOE's non-held data sets as non-printable so that, when 
data is released by the PSO processor, the data sets can be gathered together 
under the original JOE name. This service routine is entered via the $#PDBCAN 
macro. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPJOS 

$#JOTBLD 

$#JOTCHK 

$#JOTBLD builds the JES2 job output table (JOT) during cold start initialization. It 
places all JOEs on the free JOE queue: 

$#JOTCHK verifies the JOT on an all-system warm start. JOTVERIF verifies, and if 
necessary, corrects errors found during verification. JOTVERIF validate the free 
JOE queue, the characteristics JOE queue, and the work JOE queues. It also 
validates the chains of work JOEs from the characteristics JOEs, and the chains of 
work JOEs from the JOEs. 

Message $HASP440 is issued when JOT verification is complete. If an 
uncorrectable error is found during the verification process, message $HASP498 is 
issued to ask the operator if the JOT should be rebuilt or to terminate JES2. 
JOTREBLD rebuilds the JOT if the operator requests it. $HASP499 message is 
issued if all rebuilding of the JOT has failed. Initialization terminates. 

To verify the free JOE queues, the routine passes through the JOT starting at the 
end of the JOT. For each free JOE found, its free JOE chain field will be verified or 
corrected. A flag is set in the JOT verification work area (JVWA) for each JOE when 
it has been successfully processed. The next free JOE on the chain will be verified 
as follows: (1) it is a valid offset in the JOT, (2) it has already been processed, (3) 
this free JOE was the last one processed. If there is an error, message $HASP497 is 
issued, indicating that error correction is in progress. 

To verify the characteristics JOE queue, each JOE on the chain will be verified as 
follows: (1) a valid offset in the JOT, (2) it is sorted within the chain by setup 
characteristics, (3) the next characteristics JOE is a valid offset and it has not been 
processed. Message $HASP497 is issued if an error is found. The JOE in error is 
detached from the chain. A second pass through the work area (JVWA) picks up the 
unprocessed characteristics JOE and inserts it correctly into the chain. 

Validating the work JOE queues is done by scanning the work JOE chain. Each JOE 
is verified as follows: 

• Is it a valid offset in the JOT? 
• Is it on the correct output queue? 
• Is it sorted in the chain by priority order within destination? 
• Is the next work JOE a valid offset of a work JOE yet to be processed? 
• Is the SYSOUT class valid for this class queue? 
• Is the offset of the JOE in this work JOE valid, and is the JOE not on the free or 

purge queue? 
• Is the offset of the characteristics JOE valid? 
• Is the backwards work JOE chain pointer correct? 

The validation of the chains of work JOEs from the characteristics JOEs im;ludes 
checking to see if the JOE is a valid work JOE and if it points back to the same 
characteristics JOE. The validation of the chains of work JOEs from the JOEs 
includes one pass through all the JOEs, and for each non-free JOE, the chain of 
work JOEs are verified to see that it is a valid work JOE and that the work JOE 
points back to the same JOE. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-73 



HASPJOS "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

If an uncorrectable error is found, a $ERROR routine is issued with a reason code of 
$JOB. A return code of 4 indicates an uncorrectable error was found during the 
verification/correction process. A return code of 8 indicates that an uncorrectable 
error was found during the total rebuild. 

Job Output Table Services - Common Routines 
The job output table (JOT) service routines described in the following paragraphs 
call the JOT services common routines, which provide common services to all JOT 
service routines without duplication of code. 

REMWORK: Removing a Work JOE from the JOT 
The REMWORK service routine entered with register 6 containing the address of the 
JOE to be purged. Next, the active device counter in the associated characteristics 
JOE is decreased if the work JOE is currently active on a local device. The count of 
elements associated with the characteristics JOE is decreased and if the count goes 
to 0, REMJOE is called to remove the characteristics JOE. Then REMCHR removes 
the work JOE from the characteristics JOE chain, and REMWRK removes the work 
JOE from the JOT class queue. REMWORK then frees the work JOE and unchains it 
from the work JOE chain. If the job has no more JOEs and JQEHLDCT is 0, the job 
is requeued for $PURGE. 

GET JOE: Obtaining a JOE from the Free Queue 
The GET JOE service routine decreases the number of free JOEs remaining in the 
JOT (JOTFREC) and compares this count with the JOE utilization threshold value 
($JOETHRS). If JOTFREC has fallen to equal or go below $JOETHRS, GET JOE turns 
on the $JOEMSG bit in the $RESHORT flag to indicate a JOE shortage. GET JOE 
issues the $CKPT macro instruction to checkpoint both the new JOE and the table 
header to reflect the new head of the free queue (JOTFREQ). The subroutine 
returns the address of the new JOE in register 1. 

REMWRK/REMJOE: Remove a JOE from the Current JOT Header Queue 
To remove the work JOE, REMWRK gets the address of the JOT queue head from 
the JOE. REMWRK examines the JOEROUT field to determine if the JOE is on the 
network queue. If the JOE is not located on the network queue, JOECURCL is used 
to determine the proper JOT output queue. If the JOE is on the network queue, that 
queue is used. 

After locating the JOE, the REMJOE routine removes the JOE from the SYSOUT 
queue. The JOE is removed by placing its chain field (JOENEXT) in the preceding 
JOE. This results in chaining the queue head if the JOE is the first in the queue. A 
$CKPT macro is issued to checkpoint the previous JOE. 

REMCHR: Remove Work JOE from its Characteristics JOE Chain 
This routine unchains a work JOE from its characteristics JOE and issues a $CKPT 
macro to schedule the checkpoint of the preceding JOE in the characteristics JOE 
chain. 

REMJQE: Remove Work JOE from its JQE-JOE Chain 

3 .. 74 JES2 Logic 

This routine unchains a work JOE from its JQE and issues a $CKPT macro to 
schedule a checkpoint of the preceding element in the JQE-JOE chain. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

\ . ...._, 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

FREEJOE: Returning a JOE to the Free Queue 

HASPJOS 

FREEJOE returns a JOE to the free queue. Register 2 contains the offset of the JOE 
to be added. 

The free JOE count (JOTFREC) is increased and compared to the JOE utilization 
threshold value ($JOETHRS). If JOTPREC is not at or below $JOETHRS, FREEJOE 
turns off the $JOEMSG bit in the $RESHORT flag to indicate no shortage. Both the 
new JOE and the header are flagged for checkpoint. The new JOE is added to the 
free queue. Finally, the JOE preceding the JOE just returned is checkpointed and 
control returns to the caller. If the resulting free-JOE count indicates that there are 
processors waiting for a free JOE and that another scan of the JOT is required, 
FREEJOE sets register 4 to nonzero. 

CHAINCHR: Chain Work JOE to Characteristics JOE 
CHAINCHR is called to chain the work JOE from its characteristics JOE. The 
characteristics JOE is pointed to from the work JOE. The work JOE is chained by 
priority within the SYSOUT class. 

CHAINJQE: Chain a Work JOE to its JQE 
CHAINJOE is called to chain the work JOE from its job queue element (JQE). The 
JQE is pointed to from the work JOE. The work JOE is chained from the JQE by 
class. 

CHAINWRK: Chain a Work JOE to SYSOUT Queue 
CHAINWRK is called to chain the work JOE to its SYSOUT queue in the job output 
table (JOT) by priority within its destination. The JOE is chained off a SYSOUT class 
queue, network queue, or dump queue. 

NEWSADJ: Adjust Responsibility Count 
NEWSADJ adjusts the responsibility count in the JESNEWS job structure and clears 
work JOE fields. 

$#NEWS: Create or Modify the JESNEWS Data Set 
Called by the $#NEWS macro, this routine modifies or creates the JESNEWS data 
set. It is called when there is a JESNEWS spin IOT that a job created. The routine 
first marks the spin IOT as a non-allocation IOT (so the spool space will not be 
purged when the job that created it is purged) and is written to spool. A call is then 
made to HASPSSRV to create a JESNEWS job. The JESNEWS PDDB is then moved 
from the spin IOT to the job's IOT. Also, the spool space is consolidated in the job's 
IOT, if there is enough space for it. Otherwise, the spin IOT is made to look like a 
secondary allocation IOT to the job's IOT. Then the checkpoint fields of the 
JESNEWS job are updated, and the JESNEWS job is put on the hardcopy queue. 
Finally the old job is purged. If the JESNEWS data set in the spin IOT is null, the 
current JESNEWS data set will be deleted. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-75 



HASPJOS "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

JESNEWS Security: To prevent the writing of data from a user with a high security 
classification to users with a lower security classification, JES2 carries with the data ', / 
the security token of the user entering data for JESNEWS. When selecting the 
JESNEWS data for printing for a job, JES2 calls SAF to verify that the security 
classification for the job is equal to (or higher than) the classification of data in 
JESNEWS. If it isn't, JESNEWS will not be printed for the job. If the data set can be 
printed with the job, the security token of the job to be printed (not the token of the 
JESNEWS data set) is passed to the Print Services Facility or to the HASPPRPU 
module, as appropriate. This results in the JESNEWS data being printed with the 
same security labels as the other data sets being printed for the job. 

XWTRPOST Service Routine 

3-76 JES2 Logic 

The XWTRPOST service routine is called from the $#POST routine to invoke an 
external writer that is waiting on JOT services. The $#WTR routine scans the 
subsystem job block (SJB) queue and uses the $XMPOST macro instruction to 
selectively post each waiting external writer that is waiting for this type of output. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPTERM 

( HASPTERM: JES2 Termination Services 

( 

( 

HASPTERM comprises the services that JES2 uses to process catastrophic errors 
and system abends, abend recovery, and both normal and abnormal termination. 

The following functions are contained in HASPTERM: 

HASPTRCA: 

$ABEND: 

$RETRY: 

$HEXIT: 

(HEXTINIT) 

(HEXIT) 

HEXESTAE: 

OTHERS: 

the central termination/recovery control block, assembled into 
HASPTERM 

the JES2 main task ESTAE routine 

the routine that $ABEND indicates RTM should enter if JES2 
recovery will be performed, and related routines in support of the 
$ESTAE facility 

the routine entered to process JES2 termination due to operator 

direction ($HEXIT), initialization failure (HEXTINIT), 

or abend (HEXIT) 

the ESTAE routine established for $HEXIT to ensure an SVC dump is 
requested in JES2 termination abends 

various subroutines required for the routines above 

$ABEND: JES2 ESTAE Routine 
The $ABEND routine provides standardized procedures for processing of MVS or 
JES2 errors. During initialization, JES2 issues an MVS ESTAE macro instruction so 
that MVS will give control to the $ABEND routine wfien an error occurs. $ABEND is 
entered as a result of an MVS detected error (for example, a program check or SVC 
detected error such as an S400) or a logic error detected by JES2 resulting in 
invocation of the $ERROR macro; the $ERROR macro issues the ABEND macro, 
which invokes the $ABEND routine. 

The $ABEND routine also supports CALLRTMs issued by the SCV34 exit routine in 
HASCSIRQ and CALLRTMs issued by the subtask ESTAE routine, $STABEND. 

When invoked, $ABEND informs the operator of the error, provides diagnostic 
logging, determines whether the environment in which the error occurred is 
appropriate for processor recovery and determines whether an eligible processor 
recovery environment exists. 

If recovery can take place, $ABEND determines the rate at which errors are 
occurring. If that rate equals or exceeds an installation determined rate (specified 
via the RECVOPTS initialization parameter), the operator must authorize recovery. 
(The default error rate is 2 errors in a 24 hour period.) Finally, if recovery can 
occur, $ABEND uses the SETRP macro to establish $RETRY as the retry routine and 
to cause LOGREC recording. $ABEND then returns to the MVS recovery termination 
manager (RTM). RTM causes the JES2 main task execution to resume at $RETRY. 

If recovery cannot occur, $ABEND branches to JES2 termination processing at label 
HEXIT. 

An error recovery work area (ERA), built upon entry to $ABEND, and the central 
termination recovery control area (TRCA) provide all work areas and 
communication fields required by $ABEND, $RETRY, and the HASPTERM 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-77 



HASPTERM 

3-78 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

subroutines. The ERA is created by $ABEND and contains information relating to a 
specific abend. It is kept in storage by JES2 until all JES2 error and recovery 
processing for the abend is complete. The TRCA is assembled in HASPTERM at 
label HASPTRCA, and is mapped by the DSECT generated by the $TRCA macro. 

$ABEND is entered in key 0 and in supervisor state running under on ESTAE SVRB. 
Immediately after establishing addressability, it changes to the JES2 protect key. 
$ABEND then establishes a PCE format save area (appropriate for $SAVE and 
$RETURN macros) and sets TRCAOREC to 1 in the TRCA so that recovery is 
authorized. If either of two recursion bits is on, $ABEND sets bit TRCATERM to 1 
indicating that recovery is not possible. (The two recursion bits are TRCAABND and 
TRCARTRY indicating that either $ABEND or $RETRY was in control.) The 
TRCAABND bit is then set to 1 to avoid contention over multiple abend recoveries. 
Because $ABEND is not its own ESTAE routine, it cannot be entered on a recursive 
basis. If the TRCAABND bit is on when $ABEND is entered, it indicates that the 
error occurred after $ABEND returned to RTM (before $RETRY turned TRCAABND 
off) and is therefore an unrecoverable type of error. 

Next, $ABEND sets up an error recovery area (ERA). If the GETMAIN macro that 
was issued to acquire the ERA fails, $ABEND uses an emergency ERA (in the 
TRCA). If the emergency ERA is already in use, it is overlayed and the TRCATERM 
bit is set on to cause JES2 termination. 

The ERA and the control blocks to which it points represent the environment in 
which the error occurred. The ERA and the control blocks are also used by the 
processor recovery routines in communicating with $RETRY. $ABEND initializes the 
ERA fields required for its processing; if recovery is attempted, $RETRY will 
initialize the fields unique to recovery processing. If a system diagnostic work area 
(SOWA) was provided to $ABEND, the registers associated with the HASJES20 
request block (from label SDWASRSV) are moved to the ERA. Then, if the error was 
a JES2 catastrophic error (signaled by the $ERROR macro), the values in registers 
15, 0, and 1 are set to the values those registers contained immediately prior to 
execution of the $ERROR macro. Because $RETRY and other recovery processing 
can change these register fields in the ERA, a second copy of the registers is made 
in the ERA. 

Next, if $ABEND was entered as a result of $ERROR macro invocation and if the 
nature of the error is such that a system IPL must be performed before JES2 can be 
successfully initialized (RIPL=YES specified as an operand of the $ERROR macro), 
then the value in counter TRCARIPL is increased. If recovery for this error 
succeeds, then the value in the counter is decreased. Should JES2 terminate for 
any reason while TRCARIPL is nonzero, bit CCTSTRPL in HCCT field CCTSTUS is 
set on to prevent subsequent JES2 initialization without an intervening system IPL. 
At this point $ABEND issues message $HASP095 to inform the operator of the error. 
$HASP095 is issued as an action message for which a DOM macro is issued to 
release the console message buffer and delete the MVS copy of the message when 
recovery of this error has succeeded. The DOM is issued in subroutine RTRYERAF. 

$A~END now calls ABNDERRL to analyze where the error occurred and save the 
results of the analysis in the ERA. ABNDERRL saves the failing instruction address 
and then determ.ines whether the failing instruction address is in another address 
space or in JES2's address space. ABNDERRL uses the ERMODULE subroutine to 
search the job pack area (JPA), link pack area (LPA), and COE extent lists for a 
module associated with the failing instruction address. When the module is found, 
ABNDERRL copies its name into the ERA. On return from ERMODULE, ABNDERRL 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ ·---.., 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPTERM 

copies the module map information into the ERA. If the failing address is in a JES2 
load module, ABNDERRL then invokes the ERMODMAP subroutine to locate the 
entry in the JES2 module map for the address. 

$ABEND now calls subroutine ABNDCKRP to determine whether a JES2 processor 
was in control at the time of the error. If a JES2 processor was not in control, bit 
TRCANOPC is turned on. ABNDCKRP also determines whether JES2 can recover 
from the error. If error recovery is not possible bit TRCATERM is turned on. 

If a PCE was in control at the time of the error, bit TRCATERM is set to 1 unless an 
eligible recovery environment exists. This is represented by an inactive PRE with a 
nonzero recovery routine address. 

If, at this point, recovery is possible (TRCATERM off) and the rate at which errors 
are occurring has reached or exceeded the installation's specified threshold 
(RECVOPTS initialization parameter), $ABEND issues message $HASP070 requiring 
the operator to authorize the recovery attempt and permit suppression of the 
automatic dump. (Error rate calculation is performed by subroutine ABNDRATE; 
$HASP070 operator communication is handled by subroutine ABNDH070.) 

$ABEND then calls subroutine ABNDTVRA to set up SOWA serviceability information 
for LOGREC recording. ABNDTVRA formats the system diagnostic data 
area-variable recording area (SWDA-VRA) mapped by the MVS IHASDWA macro 
and JES2 macro $LGRR. 

Unless suppressed by the operator (via a NODUMP response to $HASP070), 
$ABEND calls ABNDDUMP if recovery is to be attempted. ABNDDUMP invokes 
$SDUMP, using the default header. If the operator suppressed the dump or the 
dump was not successful, bit LGRP1ND in field LGRPFLG1 of the JES2 LOGREC 
record (LGRR) is turned on to indicate that there is no dump corresponding to this 
error. 

If processor recovery cannot occur (TRCATERM is on) or if the operator denied 
authorization to attempt recovery (replied "TERMINATE" to message $HASP070), 
$ABEND provides an indicative dump and enters termination processing at label 
HEXIT. In this case, $ABEND issues a SETRP macro requesting RECORD= YES just 
prior to completion of termination processing. 

If processor recovery can occur, $ABEND still issues an indicative snap dump to the 
hard copy log and then issues a SETRP macro to establish $RETRY at JES2's retry 
routine. The SETRP also indicates to not free the SOWA (it is freed when the 
associated ERA is freed in RTRYERAF) but to cause LOGREC recording of the error. 
$ABEND then returns to RTM and JES2 execution resumes at label $RETRY. 

$RETRY: JES2 Retry Routine 
RTM calls $RETRY when $ABEND (the JES2 ESTAE routine) determines that 
processor recovery should occur. $RETRY manages all JES2 processor recovery. 
$RETRY is divided into front-end processing and back-end processing. Front-end 
processing consists of passing control to a processor recovery routine via the 
$SETRP macro. Back-end processing receives control upon return from a processor 
recovery routine and effects resumption, termination, or percolation (as specified by 
the processor recovery routine) via the $SETRP macro. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-79 



HASPTERM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$RETRY Front-end Processing 

3-80 JES2 Logic 

On receiving control from RTM (in the JES2 protect key), $RETRY establishes 
addressability and sets a recursion flag (TRCARTRY). When this flag is on, $ABEND 
knows that the error that caused $ABEND to be entered occurred in $RETRY 
processing. $RETRY then turns off the $ABEND recursion flag (TRCAABND), and 
sets up a PCE format save area to enable $RETRY to issue $SAVE and $RETURN 
macros when required. 

If no other JES2 processor is in recovery, message $HASP072 is issued to inform 
the operator that recovery is in progress. The message is an action message, which 
will be deleted via a $DOM macro when all processors in recovery have 
successfully recovered. 

When ERA initialization is completed, $RETRY sets the ERAPRECT field to zero . 
. The value in this field is increased each time a processor recovery routine receives 

control to attempt recovery from an error. (The value of ERAPRECT exceeds 1 only 
in cases of percolation.) $RETRY then sets ERAPSVAD to indicate the current save 
area level. 

If the error occurred during error recovery, the current ERA is displaced by the error 
and becomes the current error again when recovery for the latest error has 
succeeded. This occurs when a processor recovery routine issues a $ESTAE macro 
to provide a recovery routine for its processing. $RETRY does not receive control if 
an error occurs when the newest (or topmost) PRE is active. 

If the processor was not already in error recovery, it is set to be temporarily exempt 
from non-dispatchability, the non-dispatchability counts of all PCEs are increased, 
and the number of processors in recovery ($RECVCNT) is increased. 

At this point, the RTRYGORE recovery routine receives control. RTRYGORE is also 
invoked by percolation processing when a higher-level recovery environment exists 
and is eligible for use and inactive. 

RTRYGORE marks the PRE active and associates the PRE and ERA with each other 
via pointers ERAPRE and PREERA. This association is necessary because the ERA 
contains the recovery routine attributes used by the PRE. 

$RETRY modifies the register area in the ERA (ERAREGS), if necessary, so that 
register values are the same as when the recovery routine was established (that is 
when the $ESTAE routine is invoked and builds the PRE). If the error occurred at 
the same save area level at which the recovery environment was established (that 
is, no $SAVE macro was issued between the time the $ESTAE macro was issued 
and the error occurred) no modification of the register values already in the ERA is 
necessary. If a $SAVE macro was issued between the time the $ESTAE macro was 
issued and the error occurred, $RETRY changes the register area (ERAREGS) in the 
ERA to reflect the values in the registers prior to the issuing of the $SAVE macro. If 
no $SAVE was issued between the time of the error and the issuing of the $ESTAE 
macro, no register values need to be modified. Otherwise, the register area is 
initialized using the processor save area (PSV) created by the first $SAVE following 
the $ESTAE macro that provided the recovery routine. 

Finally, the values of all registers except 1, 11, 13, 14 and 15, are set from the 
ERAREGS register area and the recovery routine is entered. (Register 1 is set to 
the address of the ERA; register 11 is set to the HCT address; register 13 is set to 
the PCE address; register 14 is set to the address of back-end processing 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

(~ 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPTERM 

(RTRYBACK); and register 15 is set to the address of the recovery routine, which it 
gets from PRERECAD.) 

$RETRY Back-end Processing 
A processor recovery routine returns control to RTRYBACK upon completion of its 
processing (the processor recovery routine was passed the address of RTRYBACK 
in register 14). 

RTRYBACK reestablishes addressability (ensuring that register 11 points to the HGT 
and register 10 points to the TRCA), turns on a recursion flag (TRCARTRY in 
TRCAFLAG) for inspection by $ABEND and performs validation of essential control 
blocks. Should any validation fail, RTRYBACK issues catastrophic error $ER5. A 
temporary PCE is established for use throughout most of the processing. The 
recursive flag is turned on to prevent looping through the recovery process if an 
error reoccurs. 

If the processor recovery routine specified that termination processing should occur 
(the $SETRP macro specified TERMINATE), then message $HASP074 is issued near 
label RTRYI074 to inform the operator that the recovery attempt failed; termination 
processing is then entered at label HEXIT. 

If the processor recovery routine specified that percolation should occur (the 
$SETRP macro specified PERCOLATE), the most recently created, eligible, and 
inactive PRE recovery routine is given control. If the recovery routine address is 
zero, which indicates no recovery routine is available, a branch is taken to label 
RTRYI074 where message $HASP074 is issued to inform the operator that the 
recovery attempt failed. Termination processing is then entered at label HEXIT. 
Similarly, if no eligible PRE is found, a branch is taken to RTRYI074, and the 
processing previously described takes place. 

If the recovery routine's address is not zero, RTRYBACK removes each active PRE 
from the PCE's PRE stack and, for debugging purposes, stores its address in the 
PREPREPC field of the previous (next older) PRE. The PRE is removed altering the 
chaining. Note that an active PRE (other than the most recently created) exists on 
the PCE's PRE stack only when a processor recovery routine has issued an $ESTAE; 
that $ESTAE established recovery routine which in turn received control as the 
result of an error during processor recovery. 

When the active PREs are being removed, RTRYBACK updates the PCEERA field. 
This makes it appear to the percolated-to recovery routine that it is processing the 
original error. 

When an eligible and inactive PRE with a nonzero recovery routine address 
becomes the most recent PRE, $RETRY branches to RTRYGORE, to pass control to 
the PRE's recovery routine. 

If the processor recovery routine specifies termination or percolation and (at 
RTRYCKRE resumption) the $SETRP RESUME= macro is not specified, a 
catastrophic error $ER5 is issued indicating that an invalid option was specified. If 
RESUME= YES is specified, all PSVs up to, but not including, the PSV associated 
with the active PPE are purged. 

Each PRE on the active PRE's percolation stack (PREPREPC) is then freed. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-81 



HASPTERM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

At this point RTRYBACK marks the PRE inactive and moves resumption register 
values from the ERA to the TRCA. Any previous ERA is made the current ERA. The 
RTRYERAF subroutine is then called to perform any housekeeping functions for the 
ERA. 

If there was no previous ERA, the processor is no longer in recovery and it 
temporarily can be dispatched. The PCEDSPXT flag is turned off and the 
non-dispatchability counts of all PCEs are reduced by one. At this point the number 
of processors in recovery (in field $RECVCNT) is reduced by one. If no other 
processors are in recovery ($RECVCNT is equal to zero), message $HASP072 
("RECOVERY IN PROGRESS") is deleted via a $DOM macro and $RETRY issues 
message $HASP073 RECOVERY SUCCESSFUL. 

For every processor in recovery, register values for resuming are established, and 
the recovery routine turns off the recursion flag (TRCARTRY). This flag setting 
indicates that the next error did not occur while the recovery routine was in control, 
but instead is a new error. Finally a BR R15 is executed to branch to the specified 
resumption point in the processor. 

$HEXIT: JES2 Common Exit Routine 

3-82 JES2 Logic 

HASPCOMM invokes $HEXIT when a $P JES2 command is accepted. HASPNUC 
enters HEXTINIT if JES2 initialization has determined that there has been an error 
and requires termination. $ABEND and $RETRY enter $HEXIT to invoke abnormal 
JES2 termination after abend or retry processing has failed. All three of these 
routines set a TRCA flag to indicate they were entered and then enter common 
code. 

$HEXIT issues a ESTAE to provide at least a dump if $HEXIT should abend. Then 
$HEXIT checks for the presence of the $HCCT. If the $HCCT is present, $HEXIT frees 
authorization indexes for the JES2 address space; this is necessary for the orderly 
shutdown of JES2. If no $HCCT is present, the freeing of authorization indexes is 
not necessary. $HEXIT then stores the value $SYSEXIT in the $STATUS field of the 
HCT to indicate that JES2 is terminating and then proceeds with JES2 termination by 
halting JES2 devices and asking the operator for specific termination options. 

Before $HEXIT scans the options table, user exit 26 can be invoked. This exit gives 
the installation the chance to free resources or to customize JES2 termination. If the 
reason for the termination is a $PJES2 command or an initialization exit, JES2 does 
not ask for termination options. If the reason for the termination is not a $PJES2 
command or an initialization exit, the exit point is processed after the operator 
replies to message $HASP098. 

When the operator responds, $HEXIT scans the response. The following are the 
abend options for JES2 termination: 

DUMP 

EXIT 
PURG 
SNAP 

provides a system dump and request more termination options at 
HEXTDUMP 
provides a quick JES2 termination at HEXQUICK 
provides some clean up then enter JES2 termination at HEXITGO 
provides a SNAP dump to the console and ask for more termination options 
at HEXTSNAP 

For DUMP and SNAP, $HEXIT issues the dump and then asks again (via $$WTOR) \~ 
for more termination options from the operator. When the operator supplies either 
EXIT or PURGE, $HEXIT continues JES2 termination. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPTERM 

If the primary subsystem is terminating, $HEXIT (at HEXITGO) deletes action 
messages $HASP050 and $HASP601 if they are outstanding and accesses the UCB 
lookup table through the communication vector table (CVT) and, in protection key 0 
(via MODESET), scans each UCB. UCBs representing JES2 input and output 
devices contain attention indexes that cause the JES2 attention exit to receive 
control if an attention signal is received from the device. For each such UCB, the 
routine issues IOSGEN to reset the JES2 attention index. 

When all UCBs have been processed, MODESET is issued to reset to the HASP 
protection key. 

For non-3800 printers (for example, the 3211, 3203, 4245, and the 4248) the log area 
is freed. For IBM 3800 printers, if an MOR buffer exists, the log area is freed. For 
non-3800 printers, the log area pointer is cleared. 

Next, $HEXIT scans: 

• The status/cancel queue (pointed to by the HCTTSCS field in $HCCT) 
• The process-SYSOUT queue (pointed to by the HCTPSOQ field in $HCCT) 
• The ST AC-pending queue (pointed to by the CCTPSPND field in $HCCT). 

$HEXIT removes each subsystem job block (SJB) from the queue, and posts the SJB 
to indicate that the corresponding job abnormally terminated. $HEXIT (at 
HEXQUICK) frees the JES2 trace tables in CSA. If SMF is supported by the 
subsystem, a type 45 SMF record is written, indicating that JES2 is terminating. 
Finally, each active JES2 subtask is posted complete, then detached, if normal 
termination, and the JES2 CSA control blocks are freed. 

ERRORRET: Termination Completion Routine 
This routine is entered either after JES2 termination processing is complete or 
directly if termination processing was bypassed because the operator specified 
termination option EXIT in response to message $HASP098. The CCTSTUST 
indicator in HCCT field CCTSTUS is set to show that termination is complete. 
$HEXIT checks the TRCA to determine if it was entered from $ABEND as an ESTAE 
routine. If so, it returns to ATM after first issuing the JES2 termination message. If 
$HEXIT was not entered by $ABEND, it issues the JES2 termination message, 
zeroes register 15, and exits (via SVC 3). 

$HEXIT EST AE Routine 
HEXESTAE is an ESTAE routine established on entry to $HEXIT. It's purpose is to 
ensure that, if JES2 termination fails, an SVC dump is issued. HEXESTAE issues 
message $HASP087 and uses the $SDUMP macro to request an SVC dump. The title 
used is the default $SDUMP title with "(HASP ESTAE ABENDED)" appended. 

Recovery/Termination Subroutines 
The ABNDDUMP subroutine invokes the JES2 $SDUMP macro to cause a system 
dump of JES2 to be written to a SYS1.DUMP data set. If no title was provided, one is 
constructed from the subsystem id (first 4 bytes of the job name field in the TIOT), 
module name (normally HASJES20), JES2 version, and error code. The $SDUMP 
macro is used to request the option indicating that the operator should be prompted 
if the dump should fail. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-83 



HASPTERM 

3-84 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The ABNDSNAP subroutine produces the JES2 indicative dump (to the hardcopy log 
if register 1 equals 0 on entry, otherwise to the console). The indicative dump 
consists of the following: "'- / 

• JES2 product version (FMID) 
• Current level-set PTF applied 
• Subsystem id (4 bytes of the job name field in the TIOT) 
• Module name (normally HASJES20) 
• JES2 version 
• Current date and time 
• Abend or catastrophic error code (with description if available) 
• Address at which the error occurred 
• CSECT in which the error occurred 
• Offset within the CSECT at which the error occurred 
• Subroutine calling sequence - as determined by the PSV chain (the subroutine 

must have used the $SAVE macro to be included in this trace) 
• Failing instruction (if within the JES2 address space) 
• PSW 
• Instruction length code and interrupt code 
• The cross memory environment (the home ASID, the primary ASID, and the 

secondary ASIDs) 
• PCE name and address 
• Related job name and job number, if any 
• RB-level register contents at the time of error 

The ERMODULE subroutine finds the name of the load module containing the 
address that it is passed and the offset within the load module of that address. It 
can be used in a subtask environment. 

The ERMODMAP subroutine finds the name of the assembly module (if known to 
JES2) containing the address that it is passed and the offset, within the module, of 
that address. (ERMODMAP gets the address of the assembly module using the 
$MODMAP table in HASPTABS.) It can be used in a subtask environment. 

The ERBASOFF subroutine formats the assembly module name, its address and 
offset within the module, at which the error occurred for ABNDSNAP. 

The ABNDH070 subroutine handles the $HASP070 message (SPECIFY RECOVERY 
OPTIONS) dialogue with the operator. A reply of SNAP causes ABNDSNAP to 
produce an indicative dump followed by the reissue of $HASP070. A response of 
TERMINATE turns off bit TRCAOREC while a response of RECOVER does not alter 
bit TRCAOREC. If NODUMP was specified with either TERMINATE or RECOVER, bit 
TRCAODMP is turned off to indicate that no dump is to be issued. Any invalid reply 
to $HASP070 results in the operator being notified via the $HASP071 message, and 
message $HASP070 being reissued. 

The ABNDTVRA subroutine formats SOWA fields and formats the SDWAVRA 
according to the JES2 $LGRR DSECT (with the exception of bit LGRP1 ND). 
SDWAMODN is set to the name of the main JES2 load module (HASJES20). The 
ABVRESTA routine is an ESTAE that gets control if ABNDTVRA abends during the 
formatting of the VRA. ABVRESTA retries ABNDTVRA so that the LGRP1ABD bit 
remains set to 1. 

The ABNDERRL subroutine determines details concerning the failing storage 
location, such as, the module that failed, the $MODMAP entry for the module, the 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPTERM 

failing address, and the failing address space (the failing address space might be a 
functional subsystem address space, which contains HASPFSSM). ABNDTWRA 
uses this information that'ABNDERRL places in the ERA. 

The ABNDT095 subroutine formats the $HASP095 message. 

The ABNDCKRP subroutine determines whether a JES2 processor was actually in 
control at the time of the error and whether recovery is possible (recovery is not 
possible if a PCE was not actually in control). 

If termination is occurring because of a $P JES2, then both bits TRCANOPC and 
TRCATERM are set to 1 to indicate that a PCE was not in control. If a PCE was in 
control, ABNDCKRP makes the following checks to determine if the error 
circumstances preclude recovery: 

• Determining if another address space was in control at the time of the error. 
• Determining whether the error is a machine check, restart key, translation error, 

paging 1/0 error, etc. 

If these error circumstances exist, ABNDCKRP sets TRCATERM to 1 to cause 
termination. 

The ABNDRATE subroutine monitors the rate at which JES2 main task errors are 
occurring and returns an indicator when the installation specified threshold is 
reached or exceeded. It can be used in a subtask environment 

The RTRYERAF subroutine performs error recovery area (ERA) housekeeping and 
returns an indication of whether the ERA was freed. ERAPRECT (the number of 
PREs associated with the ERA) is decreased and if the result is not zero then the 
subroutine simply returns to its caller indicating that the ERA was not freed. (It is 
not freed because there are no outstanding PREs.) 

If ERAPRECT reaches zero, 

• All resources associated with the ERA are released. 
• TRCARIPL is decreased if the error represented by this ERA caused it to be 

increased. 
• The $HASP095 message, which was issued when the error occurred, is deleted 

via the DOM macro. 
• The SOWA is freed if it exits. 
• The ERA is freed if it was acquired via GETMAIN. 

If the emergency ERA is being used (used when the GETMAIN for an ERA fails) bit 
TRCAEEIU is turned off to indicate that the emergency ERA is now available for use. 
The subroutine then returns to its caller indicating that the ERA was released. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-85 



HASPNPM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNPM: The Network Path Manager 
The network path manager establishes direct connections and reacts to 
disconnections among the various members of a network job entry (NJE) network. 
Additionally, the network path manager ensures that all directly-connected 
members have a complete and consistent view of the network by distributing 
connection/disconnection information. The network path manager also provides 
other sub-components of JES2 with path information. The network path manager 
sets the address of desirable line device control tables (DCTs) (or dummy DCTs for 
paths across the multi-access spool connections), which may be used to reach a 
particular NJE member node, into the path information area of the node information 
table element used to represent the node within JES2. Along with this address the 
network path manager sets the path resistance, which is used to determine 
desirability of transmitting via the path. Correspondingly, each NJE line OCT 
contains a matrix that is used to indicate to transmission processors the desirability 
of reaching a given node via the line. Each node in the network is represented by 
an unique bit in the line matrix. If a node is to be reached via the line, the bit 
corresponding to the node is 1; otherwise, the bit is 0. 

Network Path Manager Connection Control Protocols 

3-86 JES2 Logic 

The protocol for directly connecting two job entry subsystems depends upon the 
capabilities of the two network path managers in the subsystems, the number and 
relative speed of lines between the two systems, and the installation-supplied 
names .of the nodes. Each protocol is described in the following paragraphs. 

A unique connection in an NJE network has four basic parts: 

1. The identification of the system with the low EBCDIC name. 
2. The identification of the system with the high EBCDIC name. 
3. The connection event sequence (CES). 
4. The resistance of the connection. 

The CES is a binary value that increases each time the low end system initiates or 
allows a connection. Because the value is ever increasing, network path managers 
can decide what information is the most recent and discard any old connection 
information. When CES values are assigned, the network path manager ensures 
that the sequence does not go above the current time-of-day (TOD) clock value; 
therefore, the value could possibly overflow in 143 years from the base TOD clock 
time (same as TOD clock overflow). Because the low end determines the CES, 
protocols vary depending upon which end initiates a connection. It should be noted 
that even though a line may be leased, no assumption is made that a particular 
node is at the other end until it identifies itself via the connection protocol. 

The following transmissions are required when the low end initiates the connection. 
Note that this sequence will occur only for connections via a BSC line or via a 
channel-to-channel adapter supported as a BSC line. Connections via SNA sessions 
are always initiated by the high end. After RTAM at the low end sends SOH-ENQ 
and RTAM at the high end responds with ACKO, the following records are sent by 
the two path managers involved in the connection: 

1. Low end sends initiai sign-on. 
2. High end sends response sign-on (CES 0). 
3. Low end sends reset sign-on (CES set). 
4. High end sends concurrence sign-on. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNPM 

Note that the low end cannot concur with a primary connection (the connection with 
the least resistance); that is the responsibility of the high end. 

The high end initiated connection permits a slightly abbreviated protocol. After an 
SNA session is established by RTAM through VTAM (for an NJE connection via an 
SDLC line) or after RTAM at the high end sends SOH-ENQ and RTAM at the low end 
responds with ACKO (BSC conn~ction), the following path manager records are sent: 

1. High end sends initial sign-on. 
2. Low end sends response sign-on (CES set). 
3. High end sends concurrence sign-on. 

A secondary trunk is a line directly connecting 2 systems already directly connected 
when the secondary connection is made; the new line resistance is not less than the 
original. Because this does not represent a new connection, no CES is assigned 
and no distinction is made between low or high end. 

RTAM protocol for BSC: 

1. Initiating end sends SOH-ENQ. 
2. Response end sends ACKO. 

For connection via an SDLC line, RTAM must establish an SNA 
application-to-application session through VTAM. 

The network path manager records sent for a secondary trunk connection are: 

1. Initiating end sends initial sign-on. 
2. Response end sends response sign-on. 
3. Initiating end sends concurrence sign-on. 

If the low end of a connection determines that the primary trunk of a multi-trunk 
connection is no longer valid, a reset connection protocol is initiated. The trunk 
over which the reset control record is transmitted is usually the new primary trunk. 
The CES value is set to indicate primary or secondary. Other conditions may cause 
a reset to be initiated from either end; however, the high end must never require the 
low end to answer the reset. 

The following lists the transmissions required to perform the reset protocol: 

1. Low end sends reset sign-on. 
2. High end sends concurrence sign-on. 

Predefined connections allow a connection to be known only (private) to the systems 
connected unless the other members of the network also define the connection. If 
one of the two directly connected JES2 systems predefines the connection, the other 
must also. 

RT AM protocol for BSC: 

1. Initiating end sends SOH-ENQ. 
2. Response end sends ACKO. 

For connection via an SDLC line, RTAM must establish an SNA 
application-to-application session through VTAM. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3·87 



HASPNPM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The following lists the path manager transmissions required to complete a 
predefined protocol: 

1. Initiating end sends initial sign-on. 
2. Response end sends response sign-on (CES=X'FFFFFFFF'). 

Whenever a dynamic connection is agreed upon, each network path manager 
involved sends an add connection control record to systems not involved in the 
connection over all other NJE lines. The add connection control record is used by 
receiving network path managers to determine acceptable paths to nodes within the 
network. Each network path manager forwards the add connection control records. 
If a connection is already known (CES indicates the new control record received is 
not new), the record is ignored. 

Disconnections are promulgated to the members of the network using a subtract 
connection control record. Disconnections may cause nodes formerly reachable via 
the disconnected line to be no longer available to the system. In this case, 
dependent connections are automatically determined by each system experiencing 
the disconnection or receiving the resulting subtraction control records. 

Add and subtract connection control records may be blocked in the transmission 
buffer with reset and concurrence control records. This is quite common when a 
new trunk is established and complete pictures of the network are traded by the 
systems involved, or when a disconnect is received by a job entry subsystem and a 
reaffirm connection notification group is transmitted. 

\ 
'---· 

Nodes Attached Table 

3-88 JES2 Logic 

The nodes attached table (NAT) contains elements representing members of the 
network that are or were at one time attached directly via an NJE connection, that is, 
by the NAT elements. Address pointers to the various sections of the NAT 
discussed below are maintained in the processor control element (PCE) for the 
network path manager (NPMPCE). At the beginning of the table (located by 
NPMNAT address pointer), NAT elements representing currently attached members 
and predefined connections are represented (the last element is located by 
NPMNATA address pointer). Following the active elements are NAT elements 
representing unattached or unconnected members that were formerly connected 
(the last element is located by NPMNATU). Unconnected NAT elements are 
followed by NAT elements representing connections in process and are held 
pending full connection or disconnection. NAT elements have a primary (NATPRI) 
and secondary (NATSEC) member identifier which uniquely identifies the JES2 job 
entry subsystems involved in the connection. These identifiers, along with a 
connection event sequences (CES) supplied by the system involved in the 
connection with the lowest EBCDIC node name, uniquely represent the occurrence 
of a connection or disconnection, that is, each new connection will have a higher 
CES value than the previous connections, and corresponding disconnections will 
have the same CES value as the connection. One exception to this rule is 
predefined connections, which always have a CES of X'FFFFFFFF' and are never 
promulgated across the network. NAT elements also contain a resistance value that 
roughly represents the degree of difficulty the two subsystems have in transmitting 
NJE data sets. 

Other fields within the NAT element are used to control the notification of other JES2 
job entry subsystems about connections and disconnections and to locate the device ·"-. / 
control table (OCT) that should be used to communicate with a directly connected 
NJE member. NAT elements thaf represent direct connections differ from other 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNPM 

NATs in that the secondary member identification identifies the JES2 subsystem's 
own node and multi-access spool member, and the primary identifier identifies the 
member at the other end of the connection. 

Network Path Manager Organization 
The network path manager is made up of a JES2 processor controlled by the 
processor control element (PCE) dispatching techniques and several service 
subroutines called by other processor sub-components. The following paragraphs 
describe the routines used by the network path manager processor. 

NPL: Examine Input from an NJE Line Routine 
The network path manager processor begins processing by examining the $NPMINQ 
queue for a BSC buffer. Any such buffer has uncompressed images of network 
connection control (NCC) records. The current logical record is located, and the 
appropriate service routine to process the record is entered. If there are no BSC 
buffers in the $NPMINQ queue, the network path manager examines the $NPMVINQ 
queue at label NPLSNA for an SNA buffer. If none is found, a branch is taken to 
NPNI. If an SNA buffer is on the $NPMVINQ queue, a pointer to the line device 
control table (DCT) is obtained from the request parameter list (RPL) and a pointer 
to the data portion of the request unit (RU) is loaded into register 1. A branch is 
then taken to NPLNGRSP. 

NPRL: Respond to Sign-on Routine 
The response to sign-on routine begins by examining the NPMRESPQ queue head in 
the PCE to determine if responses are needed. (Line DCTs are queued to the 
NPMRESPQ when initial sign-on network connection control (NCC) records are 
received over the line and responses are required.) If the queue is empty, an exit is 
taken to the full path routine (NPNR). 

If this JES2 is a member of a node with an EBCDIC name lower than the connected 
member's node name, the line is to be the primary trunk (preferred line), and the 
connection is not predefined, a new connection event sequence (CES) is obtained to 
represent the connection. The CES is an incremental value added to the high order 
word of a reference time-of-day (TOD) clock value, which is not allowed to go higher 
than the current clock value. If the CES attempts to go higher than the leftmost work 
of the TOD clock, the processor waits ($WAIT ABIT) and loops to the top of the 
processor; otherwise, the value is saved in the line DCT. 

The NPNGBF subroutine is called to get a spare transmission buffer and allocate 
space for the response sign-on NCC record. The record is filled out using values 
from the subsystem's own node information table (NIT) element, line DCT, and 
system parameters. The buffer size to be used for transmission between the two 
NJE members is set in the NCC record. It is the size of this member's transmission 
buffer or the size of the connected subsystem's transmission buffer, whichever is 
smaller. 

The line DCT is removed from the NPMRESPQ queue, and the NPNWRT subroutine 
is entered to queue the buffer for transmission. If the connection is not a prefixed 
connection, the sign-on routine is reentered at label NPRL to process more 
requests; otherwise, the DCT is queued to the end of the NPMACTL queue, 
indicating the line is an active NJE line and may receive all NCC records. Control is 
returned at label NPL, where processing continues. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-89 



HASPNPM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

NPNR: Full Path Routine 

3-90 JES2 Logic 

The full path routine begins processing by testing the full path request flag 
(NPMFLAGP) in the PCE. If the flag is off, no full path determinations are required, 
and the send notifications routine (NPNP) is entered. Otherwise, at label NPATHL, 
all NIT elements and line DCTs are set to reflect that no nodes are connected. 

At label NPATHENX, the nodes attached table (NAT) control pointers are examined 
to determine if any connections are currently active. If not, the NPMFLAGP flag is 
reset, the rest of the full path process is skipped, and the send notifications routine 
is entered at the NPNP routine. 

At label NPATHLL, all active NAT elements representing direct connections are 
collected at the beginning of the NAT table and corresponding OCT addresses and 
resistances are set into the primary path fields of the corresponding NIT entries. 
The last direct-connection a NAT element location is saved in NPMNATA so that 
path determination can be stopped when all lines have been serviced. 

At label NPATHML, all direct-connection NAT elements beginning with the first are 
scanned to determine multiple-tree structures representing members of the NJE 
network that are connected by a desirable path via the line upon which the direct 
NJE connection is made. 

At label NPATHNMA, the processing for a given direct-connection on NAT element 
begins by placing its address in a temporary stack (NPMSTACK). Using the NATPRI 
field as the base of the search for the next NAT element, attached NAT elements are 
scanned until a NAT element meeting both of the following criteria is found: 

• The NATPRI or NATSEC identification in the NAT element matches the 
identification used as the base of the search. 

• A pointer to the NAT element has not been placed in the temporary stack. 

The path resistance is incremented by the value in the matching NAT element. If the 
resulting resistance value exceeds the value of RESTMAX (on the NJEDEF 
statement), the end of the path is assumed. Otherwise, an attempt is made to place 
the line address in the NIT element for the outboard node - the subsystem 
represented by the NAT element identifier not matching the base of the search. 

At label NPATHN, the outboard subsystem's identifier is made the new search base 
and its NIT element is located. If the current resistance is less than the first path 
element resistance within the NIT element or not greater than the path resistance 
plus the tolerance specified by the value of RESTTOL, the line and resistance are 
inserted in the path elements in ascending order of resistance, unless insufficient 
path elements are provided in the NIT element. If the same line is encountered with 
a path resistance not greater than the current resistance during the attempt to insert 
the current line as a possible path, the attempt is aborted. If the same line is 
encountered with resistance greater than the current resistance, the old entry for 
the line is removed. If the line becomes the best path (has smallest resistance and 
is placed in the first path element of the NIT element), any path elements with a 
resistance above the allowed tolerance are removed. If no modification to the NIT 
element paths is made, the end of path is assumed because the connections have 
already been processed for another limb of the tree. If a modification is made, the 
address of the NAT element is placed in the temporary stack, and the search for 
more NAT elements continues. '" ,; 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNPM 

If the NAT element represents a multi-access spool connection (that is, if the 
NATPRI and NATSEC identifiers represent members of the same node), the NIT 
element update is assumed, the NAT element address is stacked without an update 
attempt, and processing continues as though the update occurred. 

At label NPATHNM during the stacking of NAT elements, the NAT element is moved 
to a position in the table adjacent to direct-connection NAT elements or elements 
representing previously verified attached connections. NAT elements with 
connection matches not used to update the NIT path elements are also moved to the 
verified section. 

When an end of path is encountered at label NPATHNX, the resistance is reduced by 
the resistance value in the last encountered NAT element, and the subsystem 
identifier used to find the element is reinstated. The search continues with the NAT 
element following the rejected element. When the end of all attached NAT elements 
is encountered, the last stacked NAT element is unstacked. The search continues 
for the NAT element following the unstacked element, using the reinstated base of 
the previously stacked NAT element. In performing the unstack, the 
direct-connection NAT element is unstacked and processing for the line is complete. 
Succeeding direct-connection NAT elements are processed until all have been 
processed. 

At label NPATHRL, (when all paths have been determined), any NAT elements 
remaining within the attached connection area of the NAT that have been verified 
and that are not predefined connections are removed from the attached portion of 
the table and placed in the unattached (or unconnected) portion. These removed 
NAT elements represent connections between network members, which may still be 
valid for the systems involved but, because other connections were broken, neither 
NJE member is now reachable. The CES values for these NAT elements are set to 
0. When that portion of the network is again reachable, the notification records 
received over the network can be recorded. The notification of connection or 
disconnection is suppressed because the status of the connection is unknown. 

At label NPATHP, the desirable path information in the NIT elements is promulgated 
to all affected line DCTs so that transmitters can select jobs and data sets for 
transmission. The NPMFLAGP flag is reset at label NPATHX. 

NPNP: Send Notifications Routine 
The send notifications routine begins processing by testing the NPMFLAG flag in the 
PCE. If the flag is off, no notifications are required, and the end of processing 
routine (NPNN) is entered. If the flag is set to one, the NPNP routine locates the line 
DCT zero, which is the location of the queue head minus the distance between the 
DCT origin and the active queue chain field. 

If there are more active NJE line DCTs, the next DCT is made the current OCT for 
processing at label NPNDCTL; otherwise, the NPMFLAG flag is reset and the end of 
processing routine (NPNN) is entered. 

If the current DCT is a dummy DCT, the connection represents a connection across 
the multi-access spool job queue, and the routine gives control to the processing at 
label NPND. 

If the current DCT flags are set to indicate that a reset sign-on NCC record is to be 
transmitted over the line, the NPNPUT subroutine is used to obtain space in a 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-91 



HASPNPM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

teleprocessing buffer; a reset sign-on NCC record is created and the network flag in 
the OCT (MOCTNFL) is set to indicate that a concurrence record is expected. 

If the current OCT flags are set to indicate a concurrence sign-on NCC record is to 
be transmitted over the line, the NPNNE routine calls the NPNPUT subroutine to 
obtain space in a teleprocessing buffer; a concurrence sign-on NCC record is 
created and MOCTNFL is reset to indicate that no further activity is required. Reset 
and concurrence sign-ons are not sent over the same line for the same pass through 
the NPNP routine. 

At label NPNOT, all connected and unconnected nodes attached table (NAT) 
elements are scanned. For each element encountered, a test is made to determine 
if the line is the next line requiring notification of the connection or disconnection. If 
it is, the NPNPUT subroutine is used to obtain space in a teleprocessing buffer, an 
add or subtract connection NCC record is created, and the NAT element is updated 
to indicate that no notification has been transmitted over the line. When all NAT 
elements have been processed, the NPNWRT subroutine is called to cause queuing 
of the last partially filled buffer (if any), and control is passed to label NPNDCTL. 

If the current OCT flags are set to indicate that a reset sign-on NCC record is to be 
transmitted over the multi-access spool connection, the processing at label NPNO 
uses the NPNOG subroutine to obtain space in a spool buffer; an abbreviated 
internal form of the reset sign-on NCC record is created (actually a portion of the 
NAT element), and the flag (MOCTNFL) is set to indicate that no further activity is 
required. 

All connected and unconnected NAT elements are scanned. For each element 
encountered, a test is made to determine if the multi-access spool connection is the 
next line requiring notification of the connection or disconnection. If it is, the 
NPNOG subroutine is used to obtain space in a spool buffer, and portions of the NAT 
element are moved into the buffer. If the buffer is filled for a given NAT element, the 
NPNOQ subroutine queues the buffer to the remote console processor for eventual 
spooling with the message data that indicates the appropriate member of the node. 
The NAT element is updated to indicate that the member has been notified. 

When all NAT elements have been processed, a test is made to determine if a spool 
buffer is partially filled. If it is not, control is passed to the NPNN routine; otherwise, 
the NPNOQ subroutine is used to queue the buffer for writing, and control is passed 
to the NPNN routine. 

The end of processing routine issues a $#POST TYPE=XMIT if any network path 
manager routine has determined that a new path has been made available for 
transmission of jobs or SYSOUT data sets to any node currently in the network. The 
processor waits ($WAIT) for work and when posted ($POST), control is passed to the 
beginning of the NPL routine. 

Network Path Manager Processor Input Record Handlers 

3~92 JES2 Logic 

The following describes the routines used by the input record handlers of the 
network path manager processor. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 

j 
I 

' '"' / 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

NPRl/NPRR: Receive Initial and Response Sign-on Routine 

HASPNPM 

When the network path manager processor receives an initial or response sign-on 
network connection control (NCC) record, the receive initial sign-on routine (NPRI) 
or receive response sign-on routine (NPRR) is entered. (NPRI and NPRR define the 
same location.) The addresses of the current line device control table (OCT) and 
buffer are given to the routine by selection processing performed at the beginning of 
the processor. 

If NJE activity has already begun on the current line, the record is ignored, the 
NPBINR subroutine is used to release the input teleprocessing buffer, and control is 
passed to the NPL routine. 

If certain error conditions are detected, sign-on is rejected, a diagnostic is displayed 
on the operator's console, flags are set to cause line restart, and the NPBINR 
subroutine is used to release the input teleprocessing buffer. Control is passed to 
the NPL routine. The error conditions and associated diagnostic messages that 
result in this execution sequence are: 

• The current line is not transparent ($HASP500). 
• No NJE function control DCTs are available ($HASP501). 
• The required passwords do not match ($HASP502 or $HASP504 denoting invalid 

line and node passwords, respectively). 
• The node names are incorrect ($HASP503). 

At level NPRINDL, a temporary nodes attached table (TAT) element is created 
representing the connection, and various fields in the current OCT are set: 

• TATSEC is set to this system's internal NJE identifier $SYSID. 
• TATPRIN is set to the remote system's node number. 
• TATPRIQ is set to the remote system's node qualifier (member number). 
• TA TREST is set to the total node-to-node resistance. 
• TATALINE is set to address the current line. 
• TATNLINE is set to indicate that the last modified line was the active line OCT 

zero, which is the address of the queue head minus the difference between the 
beginning of the OCT and the chain field. 

• MDCTNCES is set to the connection event sequence number received. 
• MDCTRAT is set to address the associated node information table (NIT) 

element. 
• MDCTBFSZ is set to the maximum buffer space available in the teleprocessing 

buffer for normal compressed records, determined by the smaller of this 
system's buffer size or the remote system's buffer size. 

• MDCTNFLL bit is set to indicate that this system is responsible for the 
connection if it is determined by a compare logical character (CLC) instruction 
that the EBCDIC name of this system is lower than the EBCDIC name of the 
remote system. 

The NPBINR subroutine is used to release the buffer. 

If the NCC record is a response sign-on, the current line OCT is placed on the NJE 
active queue, a concurrence is tentatively scheduled, and notifications are 
requested (NPMFLAGN is set). 

If the NCC record is an initial sign-on, processing at label NPRISES places the 
current line OCT on the NPMRESPQ queue as input to the receive response sign-on 
routine, NPRR, and sets the MDCTNFLI bit. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-93 



HASPNPM ·~Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

At label NPRIQD, the nodes attached table (NAT) is scanned for an element that 
matches the TAT element. If there is no match, a new NAT element is added to the 
table, and the line is designated as the primary trunk of the connection. If the 
remote end has indicated a connection event sequence (CES) of X'FFFFFFFF' 
(predefined connection) and no NAT element is found, the systems are using 
incompatible connection protocols. A diagnostic message ($HASP506) is displayed, 
the current line is restarted, and control is passed to the beginning of the processor 
(NPL). If the NAT is not large enough to accommodate a new NAT element, a 
diagnostic message ($HASP507) is displayed, the current line is restarted, and 
control is passed to the beginning of the processor (NPL). If a NAT element is found 
by the NAT scan, control is passed to the processing at label NPRINATF. 

If the concurrence is not required at this point in the processing, required 
processing of other routines is needed; therefore, control is passed to the beginning 
of the processor. Otherwise, the TATEVNT field is set to the current CES. 

At label NPRIESET, the JES2 responsible for the connection forces the scheduling of 
a reset sign-on if the trunk is the primary one. If multiple trunks are involved and 
the current resistance is better than the previous primary line resistance, the new 
line is made primary. Control is passed to the beginning of the processor. The 
JES2 not responsible for the connection passes control to the beginning of the 
processor if the remote system indicates that the current line is not to be a primary 
trunk (CES 0 received in the NCC). Otherwise, the line is made the primary trunk. 

At label NPRICONC, the NAT element representing the connection is replaced by the 
TAT element and moved to the actively attached portion of the NAT. Notifications 
and installation-submitted job (JOB) and JOT posting are requested. 

At label NPRINOT, the primary path of the affected node information table (NIT) 
element is examined. If no paths are currently set in the NIT element, the element 
and current OCT are set to allow transmission of work across the line and the line is 
posted (via $#POST); otherwise, the full path process is requested (NPMFLAGP is 
set). Control is passed to the beginning of the processor. 

Processing at label NPRINATF determines the status of the connection provided that 
a NAT element is found at label NPRIQD. If the NAT element is not in the active 
portion of the NAT and the system at the other end of the line indicated the 
connection is predefined, a diagnostic message ($HASP506) is issued, the line is 
restarted, and control is passed to the beginning of the processor. If the NAT 
element is in the unconnected portion of the NAT, it is moved to the held portion, 
and control is passed to the processing at label NPRINATA. Line DCTs with NATs 
that do not meet these criteria are placed on the multi-trunk queue as secondary 
trunks and the line is posted (via $#POST). If the connection is not predefined, 
control is passed to the processing at label NPRINATA; otherwise, the sign-on 
process is complete (the response sign-on NCC is currently scheduled for 
transmission). Control is passed to the beginning of the processor (NPL). 

NPRC/NPRE: Receive Concurrence and Reset Sign-on Routines 

3-94 JES2 Logic 

When the path manager processor receives a concurrence or reset sign-on network 
connection control (NCC) record, the receive concurrence routine (NPRC) and reset 
sign-on routine (NPRE) are entered. The current line status is checked to ensure 
that acceptable initial or response sign-on records were received. If such records 
were not received, a diagnostic message ($HASP506) is issued, the line is restarted, \< ··· 

and control is returned to the beginning of the processor (NPL routine). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

(~ 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNPM 

At label NPLA, if the record is determined to be a concurrence sign-on with a 
connection event sequence (CES) mismatch, the record is ignored, and control is 
returned to the beginning of the processor (NPL routine). 

For reset sign-on records, the line is restarted if the resistance totals are invalid; a 
diagnostic message ($HASP505) is issued in this case. The record is ignored when 
the CES is less than the previously recorded CES and a concurrence sign-on is 
requested. 

At label NPRCPI, current line OCT and temporary nodes attached table (TAT) 
elements are initialized. If required, the current line OCT is placed on the active 
NJE line queue (if not already on the queue), the line is posted (via $#POST), and 
the initial and response sign-on routine is entered to schedule concurrence or reset 
sign-on responses. 

NPRA/NPRS: Add and Subtract Connection Routines 
When the path manager processor receives an add or subtract connection network 
connection control (NCC) record, the add and subtract connection routines 
(NPRA/NPRS) are entered. The connection record information is converted to 
internal form and set into a temporary nodes attached table (TAT) element. If an 
error occurs during the conversion, a diagnostic message ($HASP503) is issued and 
the record ignored. 

The TAT element is used to locate a nodes attached table (NAT) element. If no NAT 
element is found, the NAT is expanded, and the TAT element is used to create the 
NAT element in the connected or unconnected portion of the NAT. If the new NAT 
element is placed in the unconnected portion of the NAT, a request for notification 
and full path is made. Control then passes to the beginning of the processor. If the 
new NAT element is placed in the active portion, either an attempt to update the 
outboard NIT element (at label NPRAQIK) is made, or a full path is requested. A full 
path will be requested when the outboard node is involved with predefined 
connections, when a full path was already requested, or when other paths to the 
node exist. Control then passes to the beginning of the processor. 

Network Path Manager Processor Subroutines 
The following describes the major subroutines used by the network path manager 
processor. 

Send Network Connection Control (NCC) Record Subroutines: These are a 
collection of interrelated subroutines used to get teleprocessing buffers, obtain 
space for NCC records, and queue buffers to the line for transmission. Functions 
performed for SSC-type buffers are as follows: 

• NPNPUT: This routine is used to obtain space for an NCC record in the buffer. If 
necessary, buffers are queued for transmission via the $EXTP WRITE macro, 
and buffers are obtained using the $GETBUF macro instruction. 

• NPNWRT: This routine is used to queue a buffer for transmission; optionally it is 
used to get a new buffer and allocate space for an NCC record. 

• NPNGBF: This routine is used to get a new buffer; optionally it is used to 
allocate space tor an NCC record. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-95 



HASPNPM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Functions performed for SNA-type buffers are as follows: 

• NPNVPUT: This routine is invoked when the LINE OCT is specified by 
MDCTTYPE = SNA. If a request parameter list (RPL) is not available, a branch is 
taken to NPNGVBF to obtain a RPL. If a RPL is available, this routine picks up 
the current count and points to the data area. At label NPNVPUTA, the routine 
adjusts the count to include the length of the string control byte (SCB) and count 
requested by the caller. NPNVPUT branches to NPNWRT if the buffer is full; 
otherwise, it saves the adjusted count in RPLRLEN, updates the pointer to the 
next logical record, and stores the pointer in RPLAREA. This routine sets up an 
SCB in the first byte of the current record, sets the pointer to the current logical 
record plus one in register 1, and returns to the caller. 

• NPNGVBF: This routine is called to get an RPL. It gets a VTAM-type buffer via 
$GETBUF; if no RPL is available, it waits ($WAIT) and tries to process more 
input via the NPL routine. When an RPL is available, it copies the RPL into 
register 4, initializes the RPL clear count register, branches to label NPNVPUTA, 
and continues processing. 

Input Teleprocessing Buffer Handling Subroutines 

3-96 JES2 Logic 

These are a collection of interrelated subroutines used to step through an input 
buffer containing network connection control (NCC) records and release the buffer 
for more input. Functions performed are as follows: 

NPGET Routine: This routine is used to step through a buffer of NCC records. If 
this is an SNA NJE buffer, this routine branches to NPVGET, which provides the 
comparable function for an SNA buffer; otherwise, if the end of the BSC buffer is 
reached, the NPBINR subroutine is entered to release the buffer. 

NPBINR Routine: This routine is used to remove the BSC buffer from the $NPMINQ 
queue and release the BSC buffer via the $EXTP READ macro. If this is an SNA NJE 
buffer, this routine branches to the NPVBINR subroutine, which removes the SNA 
buffer from $NPMVINQ before issuing the $EXTP READ macro. 

NPNDG Subroutine: NPNDG is used to obtain a spool buffer and initialize it for later 
queuing and transmission across the multi-access spool connection. If the buffer is 
not obtainable, the processor waits for the buffer, and control is passed to the 
beginning of the processor. 

NPNDQ Subroutine: NPNDQ is used to queue a spool buffer to the remote console 
processor for transmission across the multi-access spool connection and to post 
($POST) the remote console processor. 

NPFPAN Subroutine: NPFPAN is used to scan the multi-trunk queue for a given NJE 
line device control table (OCT) and to locate the primary trunk OCT. In addition, 
NPFPAN locates the nodes attached table (NAT) element that represents the 
connection to the system at the opposite end of the line. 

NPEVENT Subroutine: NPEVENT is used to obtain the next connection event 
sequence (CES). If the sequence gets ahead of the last time-of-day (TOD) clock 
value (leftmost word) recorded, a new TOD clock value is obtained. If the value is 
still ahead, an error exit is taken so that the caller can wait for the TOD clock to 
catch up. The initial value of the CES and the TOD clock is set by JES2 initialization. \" 
For the system to get ahead of the TOD clock, an operator would have to initiate 
connections faster than one per second for a considerable period of time. 

LY?.8-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNPM 

Network Path Manager Services to Other Processors 
The path manager provides service routines for other processors. These routines 
are discussed in the following paragraphs. 

HASPNDCN: Line Disconnection Processing Routine 
The HASPNOCN routine is entered when an NJE line has been disconnected. When 
entered, it clears the information concerning reachable nodes from the device 
control table (OCT) of the disconnecting line. If the OCT is in the path manager 
processor's NPMRESPQ queue, it is removed (label NPOISRL). If the OCT is on the 
active NJE line OCT queue, it is removed. 

HASPNOCN scans the nodes attached table (NAT). If any NAT element indicates 
that the disconnecting line was the last line notified, the NAT element's notification 
reference is backed up to indicate the previous line on the active NJE line queue. If 
any element indicates that the disconnecting line is the line upon which notifications 
were received, the NAT element's active queue head address (OCT zero) is set into 
the line ownership field. New primary trunks are assigned if required. 

At label NPOISC, the disconnecting OCT is removed from the multi-trunk queue, and 
the path manager processor is posted ($POST). Control is passed to the remote 
console processor line disconnect routine (HASPMOCN). 

HASPNMUP: Locate DCT and Create NAT Routine 

HASPNMDN: 

The HASPNMUP routine is entered when the checkpoint processor determines that 
another member of the node is now ready for NJE messages and control record 
communications. When entered, the routine locates the dummy NJE line OCT 
corresponding to the member indicated. If the OCT is already active, the request is 
ignored and control is returned to the caller. 

The OCT is set up to resemble a primary trunk line OCT. A NAT element is created 
if required and placed in the held portion of the NAT. If the connection is to a higher 
numbered member of the configuration, the OCT is placed on line OCT queue and 
set to require a reset sign-on network connection control (NCC) record. 
Notifications are requested and the path manager processor is posted ($POST). 
Control is returned to the caller at normal return. 

If the NAT is not large enough for a new NAT element, which may be required, 
control is returned to the checkpoint processor, which issues a diagnostic message 
($HASP262). 

Node Inactive Processing Routine 
The HASPNMON routine is entered when either the checkpoint processor or remote 
console processor determines that the designated member of the node is no longer 
active for NJE. When entered, the routine locates the dummy line OCT 
corresponding to the designated member. If the OCT is not active, the request is 
ignored and control is returned to the caller. The process of line disconnection is 
simulated (see HASPNOCN routine above) and control is returned to the caller. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-97 



HASPNPM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNBUF: Simulate Reading of Add/Subtract NCC Records 
The HASPNBUF routine is entered when the remote console processor reads a 
spool buffer containing abbreviated network connection control (NCC) records from 
another member of the node. This routine simulates the reading of add and subtract 
connection NCC records. (See "NPRA/NPRS: Add and Subtract Connection 
Routine'', earlier in this section.) A full path is always required when records are 
found that have meaning. The path manager processor is posted ($POST) and 
control is returned to the caller. If the NAT overflows during processing, an error 
return is taken. If the line is not flagged as up, the buffer is ignored. If the 
connection received is between sender and receiver, a NAT element is made active. 

HASPNSNR: Examine Line and System Conditions 

3-98 JES2 Logic 

The HASPNSNR routine is entered by the command processor when the operator 
enters an acceptable $SN command to start NJE communications on an already 
active BSC line. For SNA sessions, this routine is entered from the MNJENPMC 
routine in HASPSNA after the SNA session has been successfully established. Also 
for SNA sessions, the call is always made at the node that has a node name higher, 
in the collating sequence, than that of its session partner. 

When entered, HASPNSNR obtains a buffer and queues it for transmission via the 
$EXTP WRITE macro. If this is a BSC line, specific editing is performed, a 
resistance value is determined, a $GETBUF TYPE= BSC macro is issued to obtain a 
BSC buffer, and processing continues. If this is an SNA line, a $GETBUF 
TYPE=VTAM macro is issued to obtain a VTAM buffer. If the requested buffer type 
is not available, an exit is taken with a return offset of 12. 

If the requested buffer type is available, an initial sign-on record is built. If a VTAM 
buffer is being processed, the request parameter list (RPL) information is set up and 
RTAM is called via $EXTP WRITE to transmit the buffer. If a BSC buffer is being 
processed, a BSC buffer is initialized and RTAM is called via the $EXTP WRITE 
macro to transmit the buffer. If RTAM returns with an error, a $FREEBUF macro is 
issued and the routine returns to the caller at offset +8. 

The return codes upon exit from HASPNSNR are as follows: 

Exit Command 

+O Successful completion 

+4 $S required 

+8 Remote or node is already assigned to line 

+ 12 No device control tables (DCTs} or buffers are available or the connection 
event sequence (CES) is ahead of the time-of-day (TOD) clock 

+ 16 Line not transparent 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



' '\. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNET: The Networking Support Module 

HASPNET 

HASPNET handles network SYSOUT reception, SYSOUT transmission, job 
transmission, and the associated authority checking. 

SVSOUT Reception Processor 
The NJE SYSOUT receiver is responsible for receiving a job's generated system 
output (SYSOUT) data sets, writing it to the spool file, and preparing the received 
job for local output or further NJE transmission to other nodes. The SYSOUT 
receiver, through HASPRTAM, reads the records that are transmitted by the NJE 
SYSOUT transmitter. 

Each line that is currently being used for NJE has associated with it one (or more, 
depending on the SRNUMR initialization parameter) SYSOUT receiver device 
control table (OCT). There is one SYSOUT processor control element (PCE) receiver 
for each of the device DCTs; thus each receiver PCE is associated with one and only 
one device OCT. For each SYSOUT receiver, there is a corresponding SYSOUT 
transmitter at the node on the other end of the NJE line. 

HASPNSR (SVSOUT Receiver Main Entry Point): HASPNSR performs authorization 
checking during data set header processing and PODS initialization. A token spool 
control record (SCR) is placed at the beginning of each data set buffer to contain 
data set header SCRs. The SCR is initialized and the token copied into it when a 
receivable data set header is found and again when a new buffer is needed. 

Note: A token is copied into the SCR only if one was received. 

When the security section is located, HASPNSR calls NSRAUTH to obtain a token for 
the data set, verify authority, and build a data set name. NSRAUTH passes a return 
code of 0, 4, or 8 back to HASPNSR, which processes as follows: 

• 0 - continue data set initialization. 
• 4 - call exit 39 to determine whether to continue initialization or delete the data 

set (default). 
• 8 - call NSRTERM to purge the job (due to subtask failure). The receiver is shut 

down and the line drained. 

If any data sets are to be purged (or received) locally, NSRNOTFY issues the 
$HASP546 message during EOF processing. At NSREOF, all of the data sets have 
been processed and the job trailer read. If any of the data set headers were 
selected, NSRAUTH is called to get a token to protect the job. (No data set 
build/create authorization is necessary.) If NSRAUTH returns 4 or 8, the job is 
purged. 

NSR$WAIT: When the SYSOUT receiver is initially entered, it waits ($WAIT) for 
work. It will be posted ($POST) by HASPBSC or HASPSNA when the transmitter on 
the other end of its line requests permission to transmit. 

NSR$UNIT: When this request occurs, the SYSOUT receiver issues the $GETUNIT 
macro to obtain control of its device OCT. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chai- • 3. Program Organization 3~99 



HASPNET 

3-100 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

NSR$NCL: If the $GETUNIT is unsuccessful (for example, if the operator has drained 
the device), the SYSOUT receiver denies the transmitter's request. It does this by 
issuing a $EXTP NCLOSE (negative close) macro to cause a negative 
acknowledgment to be sent to the transmitter. The SYSOUT receiver then returns to 
wait ($WAIT) for work. 

NSRSETH: If the $GETUNIT is successful, the SYSOUT receiver prepares to receive 
SYSOUT data for a job. It uses the $QADD macro to add a dummy (empty) job 
queue entry (JQE) to the $RECEIVE queue to ensure that a JOE is available for the 
job that is to be received. If no JQE can be added (the job queue is full), the 
operator is informed via message $HASP547, and a negative acknowledgment is 
sent to the transmitter via $EXTP NCLOSE. If the JOE is successfully added, a 
positive acknowledgment is sent to the transmitter via $EXTP OPEN, and the 
receiver branches to its main GET loop. 

NSR$GET (Main GET Loop): The SYSOUT receiver first checks flags in the DCT and 
JQE to see if any operator commands have been issued against the receiver's 
device or job. If any have been issued, they are handled immediately. If no 
commands have been issued, the receiver issues a $EXTP GET macro to obtain the 
next logical record. If the GET ends abnormally, the receiver branches to abort its 
job. 

If an invalid record is received in the middle of processing an input buffer for the 
spool offload facility, and a new job (header) is expected, a skip bit is set in 
XDCTSKIP). When NSR$GET issues the next $EXTP GET, the current buffer is 
discarded, and a new buffer is read. Buffers will be discarded until the next job is 
received. If the GET does not end abnormally, the GET completion code and the 
record's subrecord control byte (SRCB, returned by $EXTP GET) are checked to 
determine what type of record was received (job header, job trailer, data set 
header, data record, end-of-file). The received record type is checked against flag 
settings that indicate which types of record the SYSOUT receiver expected to 
receive. If the received record was not expected, the receiver branches to abort its 
job. Otherwise, the receiver uses a branch table (NSRBRTAB) to branch to a routine 
that handles the type of record that was received. 

NSRJOBH: An NJE job header is only expected once per job and must be the first 
record to be transmitted for the job. 

Verification checking is done here both when reading in the job header and at job 
termination with the job trailer. The time and date are compared with the time and 
date in the offload OCT (taken from the record descriptor). If there is a match, 
processing continues. If there is a difference, the job in error is purged, the load 
operation terminated, and the offload device drained. If a job or SYSOUT have been 
dumped from a previous release of JES2, there is no verification stamp. SYSOUT 
receivers detect this condition and pad the header with binary zeroes so that the 
header and the record descriptor match and processing continues. When a job 
header is received, the receiver prepares for receiving the job's data sets. Two 
spool buffers are obtained, one for the job's job control table (JCT) and one for the 
allocation input/output table (IOT). The JCT is constructed from information in the 
job header record, and the a!!ocation !OT is initialized. The allocation IOT is used 
as a parameter for the $TRACK macro to obtain spool space for the JCT and IOT, 
and the two blocks are written to the spool file. The receiver fills in the job queue 
element (JOE) for the job (obtained earlier) and checkpoints the updated JOE. 

LY2B-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNET 

The job header record contains the job ID (a halfword binary number) that was 
originally assigned to the job when it entered the NJE network. The SYSOUT 
receiver calls the $0JIX routine in HASPNUC to assign a job number and add the 
JOE to the JIX. 

NSRFIND2: JES2 requires that each job's NJE job header contain a JES2 subsystem 
section so that the JCT can be properly initialized. If the incoming job does not have 
a JES2 section then JES2 will build a default JES2 section. The receiver stores the 
job header in the job's JCT for subsequent use by the SYSOUT transmitter. 

To save system affinity information across spool offload operations, this information 
is moved between the JOE and the job header, depending on the operation. 

When the receiver has completed initialization for the job, it issues message 
$HASP540 to inform the operator that the job is being received. It then sets flags to 
indicate that the next record to be read must be either a data set header or a job 
trailer and branches back to the main GET loop. 

NSRDSH: When a data set header is received, the SYSOUT receiver performs the 
initialization required before receiving a data set. If the record received before the 
data set header was a data record, the receiver terminates the previous data set by 
writing out to spool its last spool buffer with a zero chain field in HDBNXTRK and 
sets the end-of-block indicator after the last record in the block. 

The SYSOUT receiver then obtains spool buffers to hold the data set header and the 
data set records themselves. The SYSOUT transmitter may send more than one 
data set header before sending the data records. In this case, each data set header 
indicates a different destination for the same data set or copies of the data set are to 
be produced with different output processing requirements (JCL OUTPUT 
statement). The receiver stores all data set headers for the data set on the spool 
file for subsequent use by the SYSOUT transmitter. The data set headers are stored 
in spool blocks separate from the data set itself; the first record of the first block of 
the data set is a spool control record (SCR) which contains pointers to the spool 
blocks containing the data set headers. The SCR appears to be a print record that is 
marked both null on input and null on output. It is ignored if the data set is either 
printed/punched by HASPPRPU, by a printer under a functional subsystem, or by a 
installation-written writer or displayed by TSO. 

After the data set header is read in, a call is made to work selection services if this 
is an offload SYSOUT receiver. If NSRDSH receives a return code of 4 from work 
selection services, a PDDB is created and the spool offload modification routine 
SRVMOD is HASPSERV is called for this dataset. If the return code is not 4, a PDDB 
is not created, and the next data set header is checked. 

NSRNIOT: If the IOT becomes full, the receiver obtains space for a new IOT, chains 
it to the preceding one, and writes out the preceding IOT. The first (allocation) IOT 
is always kept in storage so that its track group map is available for the $TRACK 
routine. If more than one data set header is received for a data set, more than one 
PDDB is built in the IOT. Each PDDB points to the same data set on the spool. 

Multiple data set headers, and hence multiple PDDBs, can be created if the output 
processing options for the data set are specified via the JCL OUTPUT card or the 
/*OUTPUT card. In this case, the output characteristics are passed through the 
network in the data set header. The data set header consists of a general section 
and a page-mode section. Optionally, the data set header can also contain a 3800 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-101 



HASPNET 

3-102 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

section as well as installation-generated user sections. The page-mode section 
contains all of the output characteristics for the data set that were specified on the 
JCL OUTPUT statement. In addition, if the data set being transmitted contains 
page-mode data, then the page-mode section contains the page counts for the data 
set. The 3800 section is created only when the data set represented by the data set 
header contains SYSOUT characteristics that are applicable to a 3800, such as 
CHARS or FLASH. A buffer is then obtained to move the output characteristics from 
the header to the spool. A control block called the SWB information table (SWBIT) is 
used to place the characteristics section on the spool and a call is made to 
NSRAUTH to perform authorization checking. 

For each PDDB, the SYSOUT receiver on the target node checks for an incoming file 
that has been sent by the TSO TRANSMIT command. Such a file has an external 
writer name identical to the target TSO userid; if the target userid identifies a valid 
user, the SYSOUT receiver on the target node saves the target system id for later 
use, ensures that exit 13 is enabled, and, at exit point NSRNMXIT (exit 13) of 
HASPNSR, calls the exit routine. When the exit routine returns, its return code is 
checked. If a return code of 8 is received, a message is sent to the receiver of the 
data set. No message is sent to the receiver for a return code of 0 or 4; however a 
notify message is sent to the originator. Processing continues at label NSRNMEND. 

Note: If data is re-routed, the new receiver must issue a TSO RECEIVE command 
and have the resulting authorization checks performed before being permitted to 
view the information. 

The user exit routine returns a return code of 0, 4, or 8 in register 15 and can alter 
the PDB1NSOT bit in the PDBFLAG1 byte of the PDDB and the PDBWTRID field in 
the PDDB to affect subsequent JES2 processing. The PDBWTRID field identifies the 
userid that is to receive the incoming file from the Interactive Data Transmission 
Facility. The exit routine can change this id from the original one set by the sender 
to a different one at the receiving node. Also, the exit routine may set the 
PDB1NSOT bit to either retain or delete the incoming file. The following table 
summarizes the JES2 processing following the exit routine's return to the SYSOUT 
receiver: 

Return PDB1 NSOT Subsequent JES2 Processing Code Bit 

0 or4 off 

0, 4, or 8 on 

8 off 

SYSOUT receiver processing continues. The userid set in 
PDBWTRID receives the incoming file. 

SYSOUT receiver issues the $HASP548 message to the user 
identified by the userid in PDBWTRID. Although the incoming file is 
still spooled, the message text indicates to the user that the incoming 
file will eventually be deleted either because of an invalid userid or 
some other reason. · 

SYSOUT receiver issues the $HASP549 message to the user 
identified by the userid in PDBWTRID. 

For. all of the above cases, the SYSOUT receiver always issues the $HASP546 
message to the sender of the file. 

After all data set headers for a data set have been read and processed, the SYSOUT 
receiver releases the spool buffers it acquired for processing the headers and 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNET 

prepares to receive the data records themselves. The receiver then branches to 
NSRDATA to process the data set's first real data record. 

NSRDATA: When a data record is received, the SYSOUT receiver checks to see if it 
is a regular data record or a spanned data record. NSRDATA handles regular 
records, and NSRSPAN handles spanned records. NSRDATA checks whether 
enough room remains in the current data set spool buffer to hold the received 
record. If not, the current block is terminated with an end-of-block flag, a new track 
address is obtained (via $TRACK) for the new data block, and the full block is 
written to spool with HDBNXTRK pointing to the new block. After the newly received 
data record is added and data pointers are updated, the receiver branches back to 
the main GET loop. 

NSRSPAN: The spanned record receive routine has more processing to do. The 
effective record length (LRECL) of a spanned record can be up to 32,767 bytes. 
Thus, a spanned record not only can be longer than an RT AM logical record, it can 
be longer than an entire spool buffer. The spanned record is stored in segments, 
each segment containing some control bytes and being no longer than a spool 
buffer. The SYSOUT transmitter breaks each segment up into pieces of no more 
than 256 bytes and sends each piece as an RT AM logical record. The SYSOUT 
receiver reconstructs the record from the pieces without regard to the original 
segment boundaries on the transmitting system. The SYSOUT receiver makes 
maximum use of spool space by constructing spanned segments that fit the spool 
buffer size of the receiving system. A record that requires multiple spool buffers on 
the transmitting system may require only one on the receiving system if the 
receiving system's buffer size is large enough. If so, the received record would be 
stored as only one segment. The receiver processes each piece (RTAM logical 
record) of a spanned record, writes out and obtains spool buffers if necessary, sets 
flags and pointers to indicate that a spanned record has not been completely 
received, and branches back to the main GET loop to read the next part of the 
record. When the last part of the record has been processed, the flags and pointers 
are set to show that the spanned record processing is complete. 

NSRJOBT: After all data sets have been transmitted, the SYSOUT transmitter sends 
the job trailer. 

Verification checking is done here both when reading in the job header and at job 
termination with the job trailer. The time and date are compared with the time and 
date in the offload DCT (taken from the record descriptor). If there is a match, 
processing continues. If there is a difference, the job in error is purged, the load 
operation terminated, and the offload device drained. If a job or SYSOUT have been 
dumped from a previous release of JES2, there is no verification stamp. SYSOUT 
receivers detect this condition and pad the header with binary zeroes so that the 
header and the record descriptor match and processing continues. When the 
SYSOUT receiver receives the job trailer, it performs termination processing for the 
job. The last data set is terminated by setting the end-of-block flag after the last 
record is written to the spool. The IOT is updated and rewritten, and the JCT is 
updated with information from the job trailer and rewritten. The receiver sets flags 
to indicate that the next record to be received should be end-of-file and branches to 
the main GET loop. 

NSREOF: When end-of-file is received, NSRAUTH is called to obtain a job token and 
NSRNOTFY issues the $HASP546 message for any data sets to be purged locally. 
The SYSOUT receiver waits ($WAIT) for all of its disk 1/0 to complete, then checks to 
see if any spin or held data sets were received. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-103 



HASPNET 

3-104 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

NSRDIOT: If any spin or held data sets were received, the data set's IOT is read. 
For held data sets, space for a held queue record (HOR) is allocated in the job's 
held queue table (HOT), and the held IOT is updated and rewritten. 

NSRSPIN: For both spin and held data sets, the IOT is passed to HASPXEO for 
processing via the SVTSPIOT queue in the subsystem vector table (SSVT). A 
GETMAIN macro is issued for space in the common storage area, the IOT is copied 
into the space, and the moved IOT is placed on the SVTSPIOT queue via a compare 
and swap instruction. A simulated $$POST is then issued to notify HASPXEO that a 
spin or hold data set requires processing. 

NSRNOTIF: The SYSOUT receiver next checks to see if any of the data sets it has 
received are destined to be printed or punched on this node. If so, and if the job 
header contains a user ID, message $HASP546 is issued from the subroutine 
NSRNOTFY (as is the $HASP589 message) via an NJE $WTO directed to the 
specified user ID on the job's input node. The JCT is then written out for the last 
time, and the job is added to the output queue ($OUTPUT) via the $0MOD macro. 

If the SYSOUT is loaded from an offload data set, message $HASP589 is issued. If 
this is not the input node or the job number is not the original job number, the 
message will include the name of the input node and the original job number. 

NSRCLOSE: The SYSOUT receiver sends a positive acknowledgement to the 
SYSOUT transmitter by issuing an $EXTP CLOSE macro, releases control of its 
device DCT via the $FREUNIT macro, and branches back to its initial $WAIT to wait 
for work. 

When the job is queued for output, it looks just as if it had completed execution on 
the receiver's system. The JES2 output processor (HASPHOPE) reads the job's 
IOTs and creates one or more job output elements (JOEs) to represent the job's data 
sets on the output queue. The data sets can then be available either for printing by 
HASPPRPU, XWTR, or for further transmission by the SYSOUT transmitter. 

NSRTERM: If at any time the SYSOUT receiver receives an error return from 
HASPRTAM indicating that the communication line has broken or that the 
transmitter issued a negative close (NCLOSE), the receiver branches to abort its 
job. The job is also aborted if an error is detected in any of the received NJE 
headers or trailers, if records are received out of sequence (an unexpected record 
is received), if a normal data record is received when a continuation of a spanned 
record should have been received, or if the operator enters a cancel or restart 
command. 

If the 110 error flag is set on in the receiver DCT, and the data flag indicates some 
va!id data has been received, a message is added at the end of the data buffer 
indicating some data may have been lost. If the job trailer is not received before the 
110 error occurred, this routine builds a default trailer. If no data has been received 
before the error, the job is purged. This routine issues message $HASP545 in either 
case. 

The job is aborted by writing out its JCT and IOT, issuing a $QPUT macro to add the 
job to the queue of jobs to be purged ($PURGE), and issuing a $EXTP NCLOSE 
macro to indicate abnormal termination to the SYSOUT transmitter. In addition, 

/ 

message $HASP543 is issued to inform the operator. The SYSOUT receiver then ,~ / 
releases control of its device DCT via the $FREUNIT macro and branches back to its 
initial $WAIT to wait for work. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SYSOUT Receiver Subroutines 
The following subroutines support the SYSOUT reception processor. 

HASP NET 

NSRAUTH: SAF Subtasking Subroutine: NSRAUTH is called from HASPNSR to 
subtask a call to SYSOVFY for security authorization. NSRAUTH initializes the 
$SAFINFO parameter list and passes it to the SYSOVFY routine in HASPSSRV. 
NSRAUTH issues the $SUBIT macro to subtask the call and process the return 
codes. SYSOVFY gets a security token to represent the data set, builds the data set 
name, and issues the data set create call to SAF. 

If subtask processing fails, $SEASMSG is called to issue the $HASP077 message 
and a return code of 8 is set. If authorization is denied, a return code of 4 is set. 
Successful processing sets a 0 return code. Control returns to HASPNSR. 

NSRHRCV: NJE Header/Trailer Receive Subroutine: Because there is no 
restriction on the length of an NJE header or trailer, a header or trailer may require 
more than one RTAM logical record for transmission. This subroutine is called 
whenever the first (or only) piece of a header or trailer has been received. It moves 
the first piece to the desired location (in the job control table for job header or 
trailer, in a spool buffer for data set header), and checks to see if the header or 
trailer occupies more than one RTAM logical record. If so, it issues $EXTP GET for 
each of the subsequent pieces and reconstructs the entire original header or trailer. 
As each piece is received, the sequence number of the piece is verified. If an error 
of any type is encountered, condition code 0 is returned; otherwise, a nonzero 
condition code is returned. 

NSREXPND: Header/Trailer Section Expansion Subroutine: This subroutine is 
called from the main line of the SYSOUT receiver when a desired section in a 
header or trailer has been located. The routine checks the indicated section against 
the required minimum length for this type of section. If the section is too short, the 
routine expands it to the required length by moving down any data following the 
section (via the $VFL MVC macro) and padding the section on the end with binary 
zeros. If the section is expanded, both the section length and the overall header or 
trailer length are updated. 

NSRWHDB1: Data Set Header Buffer Manager Subroutine: This subroutine handles 
the buffering of received data set headers. As data set headers are received, they 
are moved to a spool buffer. When a buffer becomes full, this routine is called to 
write out the filled buffer and obtain a new one for additional data set headers. 

NSRNEWB: Buffer End Subroutine: This subroutine is called when a data record 
has been received and not enough space remains in the current data buffer to hold 
the record. It is also called at the end of a data set when no more records remain to 
be received. The current buffer (if any) is terminated by placing an end-of-block 
indicator (X'FF') after the last data record. If a new block is desired (reception of 
this data set is not complete), the $TRACK macro is issued to obtain a disk address 
for the next block, and this address is placed in the HDBNXTRK field of the current 
block. The current block is then written to spool via the $EXCP macro. Then, if a 
new block is desired, the $GETBUF macro is issued to obtain a buffer for the new 
block, and the buffer is initialized. 

NSREAD/NSRWRITE/NSRCHECK: Spool Read/Write Subroutine for Control Blocks: 
This subroutine has two entry points, one for reading a control block (such as an 
input/output table) and one for writing a control block. The routine sets PCEDEVTP 
to either read or write and issues $EXCP to perform the read or write. If a write was 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-105 



HASPNET 

3-106 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

requested, the routine returns. If a read was requested, NSRCHECK waits ($WAIT) 
until the read is complete, and checks the 1/0 completion code. If a read error 
occurs the $10ERROR macro is issued and return is made with return code 4 (error). 
If no read error occurs, return is made with a return code of zero. 

NSRQUJET: /JO Quiesce Subroutine: This subroutine is called when the receiver 
waits ($WAIT) for all its outstanding disk 1/0 to complete. It checks PCEBUFCT for 
active 1/0 and returns if no 1/0 is active. If PCEBUFCT is nonzero, the routine waits 
($WAIT BUF). The processor is posted ($POST) when a buffer is freed, (that is, when 
one of the receiver's disk writes is completed and the written-out buffer is released 
by the $ASYNCH processor). After the $WAIT macro, the routine branches back to 
test PCEBUFCT. 

NSRTRACK: Next MTTR Subroutine: This subroutine is called whenever the 
SYSOUT receiver wants to allocate a new track address. It uses the master track 
allocation block (master TAB) in the job's allocation input/output table (IOT) as a 
parameter list for the $TRACK macro. On return from $TRACK, the routine checks 
to see if the new MTTR required the allocation of a new track group; if not, the 
routine returns to its caller. If a new track group was allocated, the bit map in the 
allocation IOT has been updated. The routine will checkpoint the allocation IOT via 
$EXCP and then return to its caller. 

NSRENCOD: Route Code Conversion Subroutine: This subroutine converts an 
8-byte node name and an 8-byte remote name (present in a job header or data set 
header) to a 4-byte internal JES2 route code. 

When supporting a spool offload processor, this routine also uses the address of an 
8-byte field containing the special local routing attribute in EBCDIC form and uses it 
to properly build the 4-byte internal JES2 route code. This 8-byte EBCDIC field 
generally appears in either the JES2 section of the job header or the general section 
of the data set header. The default node number for the destination is found in the 
node information table (NIT). If the remote name is present in the NIT, the 
USERDEST routine in HASPSSSM is called to convert the name to a binary route 
code, using the node number from the first part as the default node number for the 
user destination. If the remote work station name is not recognizable as a JES2 
remote work station, the 8-byte EBCDIC remote work station name is saved for 
retransmission. 

NSRNOTFY: TSO Notify Subroutine: This subroutine formats and issues either the 
$HASP546 or $HASP589 message and sends it to the TSO user (see NSRNOTIF). 

NSRSPCL: Purge Job Subroutine: This routine terminates a job that has been 
rejected by work selection services. It purges JCT, IOT, and data set header buffers 
and places the JQE on the purge queue. 

NSRMFR: SMF Record Formatting Subroutine: This routine formats the type 24 
SMF record. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SYSOUT Transmission Processor 

HASPNET 

When a job completes execution, it may have generated SYSOUT data sets that 
have to be printed or punched on another node (or nodes) in the NJE network. The 
SYSOUT transmitter is responsible for transmitting these data sets over the network 
lines to the destination nodes for printing or punching. 

Each line that is currently being used for NJE has associated with it one (or more, 
depending on the STNUM initialization parameter) SYSOUT transmitter device 
control table (OCT). There is one SYSOUT transmitter processor control element 
(PCE) for each of the device DCTs; thus each transmitter PCE is associated with one 
and only one device OCT. For each SYSOUT transmitter, there is a corresponding 
SYSOUT receiver at the node on the other end of the NJE line. 

When performing spool offload, the SYSOUT transmitter also writes a type 24 SMF 
record for each data set header transmitted. 

HASPNST: SYSOUT Transmitter Main Entry Point 
The following paragraphs describe the operation of HASPNST and associated 
functions performed within the code. 

Authority Checking If the data set token was sent to this node, or the data set to be 
transmitted was created locally, the token and the data set name are moved into the 
header. NSTXDSN is called to extract the DSNAME field from PDBDSNAM. 

The token SCR is skipped when scanning the data set header control record. 

NST$WAIT: When the SYSOUT transmitter is initially entered, it waits ($WAIT) for 
work. It is posted ($POST) when its device control table (OCT) is available for use, 
that is, when NJE sign-on has been completed on the associated line. 

NST$UNIT: After the $WAIT macro, the SYSOUT transmitter issues the $GETUNIT 
macro to obtain control of its unit (its device OCT). 

For spool offload, no $GETUNIT is issued if the device has been halted. Instead the 
transmitter waits to be posted when the device is restarted with a $S OFFLOAD 
command. If the $GETUNIT is unsuccessful (that is, indicating that the device is 
drained), the transmitter returns to the $WAIT to wait for work. Otherwise, the 
transmitter issues the $QSUSE macro to obtain control of the shared job queue and 
checks to see if there is anything for it to send. 

Work for the SYSOUT transmitters is indicated by job output elements (JOEs) on the 
network JOE queue in the job output table (JOT). The JOEs represent collections of 
data sets which are to be sent to other nodes in the NJE network. All JOEs for 
nodes other than the local node are queued on the single network queue; queuing is 
done so that subsequent selection will be by first-in-first-out by priority. A particular 
SYSOUT transmitter might be only eligible to send to a few of the nodes in the 
network; eligibility is determined by the network path manager (HASPNPM), which 
determines the best path to reach any given node. If the network path manager 
considers the line associated with a SYSOUT transmitter's device OCT to be a 
desirable path to a particular node, it turns on a flag byte corresponding to that node 
in the line OCT (in the MDCTNODS flag). Thus, an NJE line OCT will have a series of 
flag bytes turned on in MDCTNODS indicating to which nodes the transmitter can 
send. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-107 



HASP NET 

3-108 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

NST$MSG: If the $#GET indicates that there is no work for the transmitter, message 
$HASP534 is issued to inform the operator that the transmitter is inactive, the device 
OCT is released via the $FREUNIT macro, and the SYSOUT transmitter waits 
($WAIT) for something to be added to the JOT. When the JOT is posted ($POST), 
and the SYSOUT transmitter is eligible to process the new work added to the JOT, 
the transmitter is $#POSTed and branches back to the initial $GETUNIT macro 
(NST$UNIT). 

The transmitter issues the $#GET macro to obtain a JOE from the network JOE 
queue. The macro invokes the $#GET service routine. This service routine scans 
the network JOE queue for the oldest highest priority JOE that is routed to one of the 
nodes to which the SYSOUT transmitter can send (as indicated by MOCTNOOS). If 
such a JOE is found, the $#GET service routine marks it busy, sets the transmitter's 
device id in the JOE, and returns the address of the JOE to the transmitter. 

When $#GET has selected work for the spool offload function, this routine checks a 
return code to see if $#GET found held output. If it did, a bit indicating this is set in 
the PCE work area for this transmitter. The count of held data sets is also placed in 
the PCE. The transmitter then marks the JOE busy, checkpoints it, and sets the JOE 
offset in the LCK corresponding to the offload device dumping these data sets. If no 
JOE is found, $#GET sets a nonzero return code and returns to the transmitter. 

NSTGOT JB: If the $#GET macro returns the address of a JOE, the SYSOUT 
transmitter prepares to transmit a collection of data sets for a job. Before 
relinquishing control of the shared queues, the transmitter scans the entire network 
JOE queue, searching for more JOEs for the same job. (JOEs that are routed to any 
of the nodes to which the transmitter is eligible to send). If any more are found, they 
are also marked busy and flagged with the SYSOUT transmitter's device id. Then 
they are chained to the original JOE via the JOENETCH field. At the end of the scan, 
the SYSOUT transmitter has collected as many JOEs as possible for transmission as 
a single unit. 

NSTENDQ: After scanning the network JOE queue, the SYSOUT transmitter is ready 
to begin transmission. The job's job control table (JCT) is read and message 
$HASP530 is issued to inform the operator that SYSOUT transmission for the job is 
beginning. If the JCT read was in error, the transmitter branches to its abort job 
routine (NSTNCL01); otherwise, a request tor permission to transmit is generated 
via a $EXTP OPEN macro. 

If permission is granted (the receiving end is prepared to accept transmission), 
SYSOUT transmission continues. If the transmitter is a network transmitter, rather 
than a spool-offload or route transmitter, the authorization fields in the job header 
are cleared to zero. If the transmitter is a spool offload transmitter, the spool 
offload section of theNJE job header is initialized to contain job information from 
the JOE and the time and date stamp from the OCT. The SYSOUT transmitter then 
sends the job's NJE job header, which was stored in the JCT when the job entered 
the system. If permission is not granted, the transmitter branches to NSTNCLOS to 
abort the transmission. 

NSTIOTRD: If any of the JOEs acquired by the transmitter were regular (that is, not 
spin) JOEs, the transmitter scans the job's chain of regular input/output tables 
(IOTs). Each SYSOUT peripheral data definition block (PDOB) in each IOT is 
checked against the transmitter's chain of work JOEs and the characteristics JOEs 
associated with them. If a match is found, the transmitter branches to NSTDSHDR to 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNET 

send the PDDB's data set header. After the data set header has been transmitted, 
the data set is sent. Once the data set has been sent, the PDDB scan is resumed. 

Each PDDB is also checked for held status. If output is to be held, and held output is 
to be dumped, then the JOE chain will not be checked. And the data set and its 
header are immediately transmitted. 

Note: Multiple data set headers can be sent for the same data set, created from the 
JECL /*OUTPUT statement or JCL OUTPUT statement. 

NSTCKSPN: At the end of the regular PDDB scan, or if there were no regular JOEs, 
the transmitter checks to see if any of the acquired JOEs were for spin data sets. If 
so, the SYSOUT transmitter's JOE chain is scanned, and for each spin JOE, the 
transmitter reads the corresponding spin IOT and branches to send the data set 
header(s) and the data set. 

NSTENJOB: After all possible data sets have been transmitted, the SYSOUT 
transmitter sends the job's NJE job trailer, which was stored with the job header in 
the JCT when the job entered the system. It then sends an end-of-file indication to 
the receiver via a $EXTP CLOSE macro. The transmitter then waits ($WAIT) for 
acknowledgment of the end-of-file. If positive acknowledgment is received, the 
responsibility for the transmitted data sets has been accepted by the receiver, and 
the transmitter removes all of its JOEs from the network JOE queue via the $#REM 
macro. If these JOEs represent the last work for the job, the job is queued for 
purging. The transmitter then releases control of its device OCT and tries to 
reacquire the device and look for more work. 

NSTRJOES: For NJE or spool offload jobs specified as DISP =DELETE the JOEs for 
the job must be freed. For held datasets, the PDDBs must be freed. If the PDDBs 
for a job's held data sets are not deleted (even though the DISP =DELETE was 
specified), a message tells the operator that the held data set(s) for the job is/are 
not deleted. These data sets are processed as if DISP= KEEP had been specified. 

NSTNCLOS: If the SYSOUT transmitter receives a negative acknowledgment to the 
end-of-file or to any preceding record, it aborts the job. This is done by sending a 
negative close via a $EXTP NCLOSE macro. All the JOEs acquired by the 
transmitter are restored to the network JOE queue via the $#PUT macro; the job is 
requeued for transmission. Any subsequent transmission will start over again from 
the beginning. No checkpoint/restart is attempted in the middle of a data set. After 
the negative close, the transmitter releases its device OCT and branches back to the 
start as for a normal end of transmission. 

NSTDSHDR: When the transmitter determines that a data set is to be transmitted, it 
must first send one or more NJE data set headers before sending the data records 
themselves. If the job being transmitted did not execute on the local node, but was 
itself received from another node by the SYSOUT receiver, all the required data set 
headers have already been stored on the spool file. The first record of the data set 
is a spool control record (SCR), which contains disk addresses and offsets that point 
to one or more data set headers. If a data set has multiple destinations or the job 
had multiple JCL output statements, there will be one data set header for each 
destination or one data set header for each output card. When a data set is to be 
sent, the SYSOUT transmitter checks to see if the first record of the data set is an 
SCR; if so, the appropriate data set header is read from spool and transmitted. The 
accuracy of the data set header is ensured even if the operator modified the JOE. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-109 



HASP NET "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

NSTDSHDB: If the first record is not an SCR, then the job was executed on the local 
node and no data set header yet exists. 

In this case, the transmitter builds a header from information in the work JOE, the 
characteristics JOE, and the PDDB; if the data set has output processing 
characteristics that are defined only tor the 3800, then the transmitter sends the 3800 
section of the NJE data set header. If the data set used the JCL OUTPUT statement 
to specify output characteristics, then scheduler work blocks (SWBs) are created. 
The SWBs are stored and sent as part of the page-mode section of the data set 
header. If the data set contained page-mode records, then this information is also 
carried in the page-mode section of the data set header. 

NSTDSHDP: After sending the data set header, the SYSOUT transmitter checks the 
data set's PDDB for multiple destinations. If there are none, the data set itself is 
transmitted; if there are multiple destinations, the transmitter scans the rest of the 
data set's PDDBs tor a match with any of the transmitter's JOEs. If a match is found, 
the appropriate data set header tor this PDDB/JOE combination is retrieved or 
constructed and then sent immediately after the preceding header. Thus more than 
one data set header may be transmitted with no intervening data set records. The 
SYSOUT receiver recognizes this condition as indicating that the data set to follow 
has multiple destinations or the data set is to be printed with different output 
characters. The data set itself is transmitted as few times as possible. 

NSTCKOPR: As the data set is sent, a check is made after each record is 
transmitted tor operator commands ($C, $E). Any such commands are handled 
immediately. Otherwise, the records making up the data set are sent one by one via 
the $EXTP PUT macro. 

NSTSPAN: Spanned data records are broken up and sent in pieces so that no single 
record passed to RTAM is more than 256 bytes long. The spanned records are 
reconstructed by the receiver. At the end of the data set (when HDBNXTRK 
becomes null), the PDDB scan (tor regular data sets) or the JOE scan (for spin data 
sets) is resumed. 

SVSOUT Transmitter Subroutines 

3-110 JES2 Logic 

The following subroutines support the SYSOUT transmission processor. 

NSTHXMIT: Transmit Header or Trailer Record Subroutine: This subroutine is 
called with a pointer to a job header, a data set header, or a job trailer. The first 2 
bytes of the header or trailer contain the total length of the header or trailer. The 
NSTHXMIT subroutine analyzes the total length and sends the header or trailer in 
pieces of no more than 256 bytes each, setting the sequence counter and 
continuation indicator in each piece that it sends. If any error is returned from 
$EXTP PUT, transmission of the header or trailer is terminated, and this error 
indication is passed back to the caller of NSTHXMIT. 

NSTRDBUF: Direct-Access Read Subroutine: This subroutine is passed a buffer 
address in register SBUF (register 2) and an MTIR tor PCESEEK; it issues a $EXCP 
macro to read a spool block into the buffer and waits ($WAIT) for completion. The 
success or failure of the read is reflected to the caller in the condition code: 3 if 
successful, 1 if failed. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASP NET 

NSTDECOD: Route Code Converter Subroutine: This subroutine converts a 4-byte 
internal JES2 route code, as it exists in a PDDB, JOE, or JQE into two 8-byte 
EBCDIC names. 

When supporting a spool offload processor, this routine also converts the special 
local routing attribute found in the JES2 section of the job header and stores)t in an 
8-byte field provided by the caller. The first 2 bytes of the route code is the node 
number; this number is used as an index into the node information table (NIT) in 
order to extract the first 8-byte EBCDIC name - the name of the node. If the node 
number is 0 (indicating special local routing), $0WNNODE is used instead. 

The last 2 bytes of the route code represents the remote number. If this number is 
0, the second 8-byte EBCDIC name is left at binary zeros; this indicates local 
routing. If the remote number is nonzero, it is converted to decimal, preceded by 
the letter Rand padded with trailing blanks to make up the second 8-byte EBCDIC 
name; thus, hex X'23' becomes R35. 

NSTNEWS: Update Record Count: This subroutine updates the header record 
count to include the record count from the JESNEWS data set, if transmitted. 

NSTAUTH: Security Authorization: A $SEAS call is issued to audit the fact that the 
SYSOUT is being transmitted. 

Job Transmission Processor 
When a job enters a JES2 system, it may be destined for execution on another node 
in the NJE network. The job transmitter is responsible for transmitting an image. of 
the job's job control language (JCL) and its in-stream (SYSIN) data sets to the 
destination node for execution. 

Each line currently being used for NJE has associated with it one (or more than one, 
depending on the JTNUM initialization parameter) job transmitter device control 
table (DCT). There is one job transmitter processor control element (PCE) for each 
of the device DCTs. For each job transmitter, there is a corresponding job receiver 
at the node on the other end of the NJE line. 

Job transmission processor routines are also used by the network job route 
transmitter. The QUEXMIT flag in the JQE indicates that this job was entered using 
a /*XMIT statement or was received by a network job receiver and will not be 
executed at this node. If a /*XMIT job is rerouted for execution at this node 
($0WNNODE), the network job route transmitter resubmits the job through normal 
JES2 input processing. A corresponding network job route receiver accepts the 
rerouted job. There is one job route receiver and one transmitter PCE. The job 
transmission processor writes a type 24 SMF record. 

Writer class RACROUTE authority checks are performed for held spool offload 
facility data sets (only) by NSTSAFCK. NSTXDSN takes the DSNAME (last) qualifier 
of the data set name from the PDDB and copies it into the NDHGNAME field in the 
data set header. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-111 



HASPNET "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNJT: Job Transmitter Main Entry Point 

3-112 JES2 Logic 

The following describes the operation of HASPNJT and its associated functions. 

JXMTINIT: When the job transmitter is initially entered, it issues the $GETUNIT 
macro to obtain control of its unit (its device OCT). 

No $GETUNIT is issued if the device has been halted. Instead the transmitter waits 
to be posted when the device is restarted with a $S OFFLOAD command. If the 
$GETUNIT is unsuccessful (for example, the device is drained), the transmitter waits 
($WAIT) for work. Otherwise, it issues the $QSUSE macro to obtain control of the 
shared job queue and checks the status of its OCT to see if transmission should be 
attempted. If transmission should not be attempted, it returns to its $WAIT to wait 
for work. It also returns to the $WAIT if the node information table (NIT) entry for its 
line indicates that job transmitters should be drained. 

JGOTUNIT: If this is the network job route transmitter, control is passed to 
JNRTINIT. If transmission should be attempted, the transmitter issues the $QGET 
macro to get a job from the $XMIT queue. The $QGET service routine scans the 
$XMIT queue for a job that the job transmitter can send. A particular job transmitter 
may be eligible to send jobs to only a few of the nodes in the network; eligibility is 
determined by the network path manager (HASPNPM), which determines the best 
path to reach any given node. If the network path manager considers the line 
associated with a job transmitter's device OCT to be a desirable path to a particular 
node, it turns on a flag bit corresponding to that node in the line OCT (in the 
MOCTNODS flags). Thus an NJE line OCT will have a series of flag bytes turned on 
in MOCTNOOS to indicate to which nodes the job transmitter can send. When 
$QGET scans the $XMIT job queue, it selects the oldest-highest priority job that is 
routed to one of the nodes to which the job transmitter can send. 

JXMTWAIT: If the $QGET routine returns to the job transmitter without selecting a 
job, the transmitter issues $FREUNIT to release control of its device OCT and waits 
($WAIT) for something to be added to the job queue. If message $HASP524 has not 
been issued, it is issued now to inform the operator that the job transmitter is 
inactive. When the transmitter is posted ($POST) for a job queue element (JOE), it 
branches back to reacquire its device OCT via $GETUNIT. 

JNRTINIT: The network job route transmitter issues the $QGET macro instruction to 
obtain a job (from the $XMIT queue) that is destined for execution at this node 
($0WNNOOE). The transmitter waits if no jobs have been rerouted. 

JGOTJOB: If a job was selected by $QGET, the job transmitter prepares for 
transmission. The $TIME macro is issued to obtain the job transmitter's starting 
time, a spool buffer is acquired, and the job's job control table (JCT) is read. If the 
read of the JCT is unsuccessful, processing continues at JCTERR1 where a 
disastrous error message is issued and the job is aborted. Otherwise, message 
$HASP520 is issued to inform the operator that job transmission is beginning. A 
request for permission to transmit is generated through HASPRTAM via a $EXTP 
OPEN macro. 

If permission is granted (the receiving end is prepared to accept transmission), job 
transmission continues. If the transmitter is a network transmitter, rather than a 
spool-offload or route transmitter, the authorization fields in the job header are 
cleared to zero. If the transmitter is a spool offload transmitter, the spool offload 
section of the NJE job header is initialized to contain job information from the JOE 
and the time and date stamp from the OCT. Before the job transmitter sends the 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNET 

job's NJE job header (which was stored in the JCT when the job entered the 
system), checks are made to see if the passwords in the job header need to be 
encrypted and to determine if the target node can accept encrypted passwords. The 
passwords are encrypted only if the job originated at this node and the target node 
can accept encrypted passwords. 

Before a 'held' job is transmitted, the 'hold' attribute is set with the time and date 
stamp in the spool offload section of the header. This allows a network held job to 
be dumped to the offload data set, and be reset as 'hold' in its JOE after being 
reloaded. The system affinity of the job is also stored in the spool offload section. If 
permission is not granted, the transmitter branches to JABTERMD to abort the 
transmission. 

JGOTIOT: After sending the job header, the transmitter reads the job's first 
input/output table (IOT) and locates the JCL data set. The JCL data set is read from 
spool, and each card image is sent, one at a time, via $EXTP PUT. 

JCNTLREC: At each point in the JCL stream where an in-stream (SYSIN) data set 
should be, HASPRDR inserted a spool control record (SCR) which contains the 
SYSIN data set's characteristics (RECFM, LRECL, BLKSIZE) and location on the 
spool file. When the job transmitter encounters an SCR, it builds and transmits a 
data set header, which gives the characteristics of the data set. The job transmitter 
then retrieves each SYSIN data record from the spool file and sends it via the $EXTP 
PUT macro. 

JXMTEOB: After all of the data records for the SYSIN data set have been sent, the 
transmitter resumes sending the JCL data set immediately after the SCR. When the 
entire JCL data set has been sent, the transmitter reads the JCT again and sends 
the job trailer, that was stored when the job entered the system. In this way, the job 
transmitter sends an image of the job as it was originally submitted. 

JGOT JCT2: After the job trailer has been sent, the job transmitter sends an 
end-of-file indication to the receiver by issuing the $EXTP CLOSE macro. A positive 
acknowledgment to the end-of-file indicates that the job receiver on the other node 
has accepted responsibility for the job. The job transmitter then queues the job for 
purging. A negative acknowledgment results in the job transmitter requeuing the 
job for transmission. 

JNOTIFY: After a successful transmission, the job transmitter checks the job's JCT 
to see if the job contains a /*NOTIFY control card or if the submitter of the job 
specified NOTIFY= use rid on the job statement. If either condition exists, and if the 
local node is the originating node for the job, message $HASP526 is sent (via $WTO) 
to the specified node and user ID in order to indicate that the job has been 
transmitted for execution and is no longer present on the local node. 

If supporting a spool offload processor, message $HASP526 is not issued. Instead 
(if notification messages are not suppressed), message $HASP588 is issued. 

JU PDT JCT: When transmission is complete, the job transmitter updates the job's 
JCT with the transmitter's starting and ending times and accounting information, 
rewrites the JCT, and releases the job's spool buffer. The job transmitter then 
issues $FREUNIT macro to release control of its device DCT and branches back to 
the initial $GETUNIT. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-113 



HASPNET "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

JXMTEND: If at any point the job transmitter determines that the job is to be 
aborted, it informs the receiver by issuing the $EXTP NCLOSE (negative close) 
macro. A $WTO is issued to inform the operator that the job has either been 
restarted (message $HASP522) or deleted (message $HASP523). The job is deleted 
if the operator has entered a cancel ($C) command or if an error was encountered 
while reading the job's JCT or IOT. Otherwise, the job is restarted (requeued for 
transmission). The job transmitter then proceeds as if for a normal termination. 

Job Transmitter Subroutines 

3-114 JES2 Logic 

The following subroutines support the job transmitter. 

JXMT/O: Disk 110 Subroutine: This subroutine stores the MTTR, passed on input, 
into the processor control element (PCE), and issues the $EXCP macro to read or 
write the desired spool block. It waits ($WAIT) for completion of the 1/0 and checks 
the resulting condition code. If an error occurs, it returns to the link address passed 
by the caller. If no error occurs, it returns to the link address plus 4. 

JJCTCHEK: JCT Validation Subroutine: This subroutine ensures that the record 
that has just been read is a valid job control table (JCT) record. The JCT is 
considered valid if: it contains a JCT in the JCTID field, its job queue element (JQE) 
offset matches the JQE obtained by the transmitter, and its job name matches the 
job name in the transmitter's JQE. On return to the caller, this subroutine sets a 
condition code 0 to indicate a valid JCT; a nonzero condition code indicates an 
invalid JCT. 

JXMTPUT: Network Output Subroutine: This subroutine issues all $EXTP PUT 
macros for the job transmitter. After each $EXTP PUT is issued, the subroutine 
checks for an error return and checks flags in the device control table (DCT) and 
JQE for any operator commands that might affect the job transmitter. If a $EXTP 
PUT fails, this subroutine branches to JABTERMR. If the DCTDELET or DCTRSTRT 
bits are set, this subroutine branches to JABTERM. If the operator has cancelled 
the job, this subroutine branches to JABTERMC. If none of the above has occurred, 
this subroutine returns to the caller. 

JXMTHDR: Transmit Job Header or Job Trailer Subroutine: This subroutine is 
called when a job header or job trailer is to be transmitted. The first 2 bytes of the 
header or trailer contain the total length of the header or trailer. The JXMTHDR 
subroutine analyzes the total length and sends the header or trailer in pieces of no 
more than 256 bytes each, setting the sequence counter and continuation indicator 
in each piece that it sends. If any error is returned from the $EXTP PUT macro, 
transmission of the header or trailer is terminated, and the same error indication is 
passed back to the caller of JXMTHDR. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNET 

JDECODE: Route Code Converter Subroutine: This subroutine converts a 4-byte 
internal JES2 route code, as it exits in a PDDB, JOE, or JOE, into two 8-byte EBCDIC 
names. 

When supporting a spool offload processor, it also converts the special local routing 
attribute found in the JES2 section of the job header and stores it in an 8-byte field 
provided by the caller. The first 2 bytes of the route code contain the node number. 
This number is used as an index into the node information table (NIT) to extract the 
first 8-byte EBCDIC name, which is the name of the node. If the node number is 0 
(indicating special local routing), $0WNNODE is used instead. 

The second 2 bytes of the route code represent the remote number. If this number 
is 0, the second 8-byte EBCDIC name is left at binary zeros, indicating that no 
remote was specified (that is, local or not defined with a RMT initialization 
statement). If the remote number is not zero, it is converted to decimal, preceded 
by the letter R and padded with trailing blanks to make up the second 8-byte 
EBCDIC name; thus, X'23' becomes R35. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-115 



HASPSSSM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSSSM: Subsystem Support Modules 

3~116 JES2 Logic 

HASPSSSM, resident in either LPA or CSA, communicates directly with the 
operating system to provide job scheduling, data management (SYSIN and 
SYSOUT), operator communications, and other tasks associated with the operating 
system. The HASPSSSM load module contains function routines that are invoked 
through the use of addresses in the subsystem vector table (SSVT). The operating 
system uses these addresses to invoke functions defined by the IEFSSOB macro. 
Modules in HASJES20 (the private area of the JES2 address space) use addresses 
in the $CADDR to communicate with the HASPSSSM modules. HASPSSSM, 
therefore, serves as the communication vehicle between the user address space 
and the JES2 address space. 

HASPSSSM contains the HASCDSS module, which provides data space services. 
When invoked by the $DSPSERV macro, it creates a data space in the current 
address space, the JES2 address space, or the master address space (if invoked to 
create a data space), or deletes an address space (if invoked to delete a data 
space). 

HASPSSSM also includes the following source modules: 

• HASCDSAL -- data set allocation/unallocation 
• HASCDSOC -- data set open/close services 
• HASCJBST -- job select/termination services 
• HASCJBTR -- job end-of-task/end-of-memory services 
• HASCLINK -- nucleus of the common storage routines 
• HASCSRIC -- services and control subroutines 
• HASCSIRQ -- miscellaneous SSI routines 
• HASCSRDS -- subroutines related to data sets 
• HASCSRJB -- subroutines related to jobs 

Figure 3-3 on page 3-117 shows the relationship between these modules. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

t 

Subsystem Interface (SSI) 

HASCLINK 

HASCSIRQ HASCJBST HASCJBTR HASCDSOC HASCDSAL 

L l!ASCSRJB J L l!ASCSRDS J 
~-------->- HAlRJC ~ ... -"-~---------~J 

Figure 3-3. Relationship Between HASCLINK Modules 

HASPSSSM 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-117 



HASPSSSM 

HASCLINK 

3-118 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Figure 3-4 shows the major control blocks related to HASPSSSM processing. See 
chapter 5 for a table summarizing these control blocks. 

ECSA 

,_...~ HASB 

CSA 

~~ 
HCCT 

EPRIVATE 

0 .... 

PRIVATE 

'---T_R_E~---'r--1 TRE 

SAVE 
AREA 
POOL 

Figure 3-4. Control Blocks Structure Related to HASPSSSM Processing 

SJB 

HASCLINK is the base service module for the LPA/CSA-resident JES2 modules. 
(These modules can be referred to as either the user environment or HASC* 
modules.) HASCLINK contains: 

• The common storage routine address ($CADDR) table, which contains the 
addresses of routines used in conjunction with the $CALL macro to provide 
linkage within the HASC* modules. 

• The $SENTRYS table, which is JES2's version of the MVS SSVT, and which is 
copied to the SSVT during JES2 initialization and provides addresses of SSI 
routines. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSSSM 

HASCLINK provides services mainly to the other HASC modules, but some of the 
routines are called out of all environments, whether the JES2 main task, the 
subtasks, user address spaces, or FSS address spaces. HASCLINK contains the 
following routines: 

• HGFMAIN is invoked when a $GETMAIN or $FREEMAIN is issued in the user or 
FSS environment. It is also invoked when a user issues a $GETBUF or 
$FREEBUF. The routine protects the callers key and lock structure. 

• $CPOOL obtains a cell of storage in the private area using the MVS CPOOL 
established via a $SSIBEGN call. The cell is taken from the TCB recovery 
element (TRE) pool (the cell pool ID is HXBTREID). This cellpool differs from 
$GETCEL services because those services manage CSA pools. 

• $MLTBUF is called with a $FREEBUF TYPE= MULT in the user environment to 
free a chain of buffers. 

0 $CSAVE obtains a save area for a caller using CPOOL services. Register 13 
returns the address of the save area. If tracing is active, $CSA VE issues a 
$TRACE for ID= 11 (for a specific PCE/TRE) or ID= 18 (for all $SAVES issued 
through this routine.) 

• $CRETRN traces $RETURNS when tracing is active, and issues a call to 
$CRETSAV to free the current save area. $CRETSAV returns the save area to 
the save area pool if the FRETRE = operand was specified. It frees all save 
areas associated with the specified TRE and frees the TRE for reuse. $CRETRN 
then loads the registers from the previous save area and returns to the caller's 
caller. 

• GETTRE gets a TCB recovery element (TRE) for the caller. Its address is 
returned in register 1. If there is no available TRE, a CPOOL is issued to get 
storage for one, and it is initialized. 

• $GETCEL is used to obtain a CSA cell of the specified size. This routine scans 
the chain of cell control elements (CCEs) anchored from CCTCSACH in the 
HCCT looking for a cell with a length that matches the caller's request. If none 
is found, a cell of greater length is used. If none is found, a CCE with no 
associated cell is located and a $GETMAIN is issued. If no CCE is found, then 
10 CCEs and a cell are $GETMAINed. The routine remembers the most eligible 
CCE, so that multiple scans are not necessary. 

• $FRECEL frees a CSA cell when it is provided with a cell address, or frees any 
cells associated with a key1/key2. CCEs are not freed, only cells. $FREMAINs 
will be issued only if the cell utilization falls below 50% and the total CSA 
allocation for cells exceeds BK bytes. The CCE of an unfreed cell will indicate 
that it can be reused. 

• SSIFINE performs the first part of SSI environment termination. This routine 
frees the SJB lock if the SSI function did not do it and saves the return code it 
receives. If the return code is positive, it is placed in the SSOBRTRN field. If 
the return code is negative, it is made positive and left in register 15. The 
routine also issues a $TRACE ID= 12 for tracing of specific PCE/TREs 
$RETURNs. If there is no tracing to be done for specific PCE/TREs, $TRACE 
ID= 19 is issued to trace all $RETURNs. 

• SSISETUP establishes an ESTAE routine called RECOVERY and establishes the 
fist available save area. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-119 



HASPSSSM 

HASCDSAL 

3·120 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• $SSIBEGN services the $SSIBEGN macro issued in the user environment, and is 
responsible for ensuring that a HASB, HASXB, and two MVS CPOOL exists for 
any address space that issues a subsystem call to JES2. If no HASB/HASXB 
exists for the address space, they are $GETMAINed. The HASB storage is 
obtained in CSA. The HASXB storage is obtained in expanded private under the 
highest TCB in the address space, which means that MVS cannot free it until all 
TCBs have finished. There are three kinds of HASB/HASXBs: 

1. Permanent HASB/HASXBs are those created for address spaces started by 
JES2 itself, such as an FSS address space, which are expected to make 
many SSI calls. 

2. System HASB/HASXBs are those created for an address space that JES2 
did not start but from which many SSI calls are nevertheless expected, such 
as SYSLOG. 

3. Temporary HASB/HASXB are those created for an address space JES2 did 
not start and from which few SSI calls are expected. 

The routine then creates two cell pools, one for save areas and one for TREs. 
The newly acquired control blocks are initialized and chained from the HASB. 
The HASB itself is chained from the HAVT. This routine then returns to the 
$SSIBEGN macro expansion with a negative return code indication that the SSI 
call should continue. A positive return call of 16 indicates that a disastrous 
subsystem error occurred. No other positive return code is possible. 

• $SSIEND provides support for the $SSIEND macro in the user environment. It 
cleans up temporary HASB/HASXBs and the MVS CPOOLs. The $SSIEND 
macro is issued just after the SSIFINE routine has stored the SSI function's 
return code and cleaned up any resources the function did not clean up. 

• RECOVERY is the SSI generalized recovery routine. If a $ERROR is issued in 
the user environment, an abend is generated and this routine gets control. This 
routine recovers from abends and attempts to retry at one of the addresses in 
the $SSIBEGN parameter list, which is built at assembly time and points to 
different locations within the $SSIEND macro expansion. These addresses point 
to cleanup routines. A successful retry result in a return to the SSI caller with 
an error indicator in register 15. The $SSIBEGN parameter list is accessed 
through the TCB recovery element (TRE) which is passed to this routine from 
RTM (ESTAE PARAM =TRE). RECOVERY may attempt to retry at the instruction 
after $ERROR, if that macro specified this in its parameters. RECOVERY is not 
invoked for user exits. 

This module provides the support for subsystem data set allocation and 
deallocation. Routine SSIALOC is invoked to begin the process of allocation. It 
creates a data set name, if needed. It sets the subsystem name in the data set 
name and $CALLs the appropriate data set allocation routine for the kind of data set 
being allocated: HALI for SYSIN data sets, HALO for SYSOUT data sets, and HALP 
for process-SYSOUT data sets. User exit 31 allows the alteration of SYSOUT 
characteristics. 

HALO calls HALR to allocate internal reader data sets. It also calls HALSSALP and 
HALOCRP for multiple-destination PDDBs to perform destination validity checks. 
HALSSALP merges values from the SSOB into a PDDB passed to it and verifies the 
destination (via $DESTCHK). HALOCRP merges OCR values into a passed PDDB 
and verifies access authority. If the verification is successful, the destination 
(including remote) is set in PDBDEST; otherwise the allocation is failed. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

( 

(, 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSSSM 

HASCDSOC 

The other routines called by HASCDSAL include HALOPDBI, which completes the 
filling in of the PDDB for SYSOUT allocation; HALJMERG, which merges PDDB fields 
into the JFCB; HAOUTSCN scans the OUTPUT= references on a DD statement and 
updates the SJFREQ call parameter list with the PROC step label needed to retrieve 
the statement. The routine also updates the pointer to the next output reference. 
$PDBBLD builds a new PDDB and IOT, if necessary. 

For unallocation, HASCDSAL contains SSIALUNA, which sets up the unallocation 
environment and then calls HALUNAL, which does the actual unallocation and 
performs some destination validity checking. Calling $SDBFREE unallocates SYSIN 
and PSO data sets by freeing the SDB. If a PSO data set is marked for deletion, the 
PDDB is marked as such for later JES2 purge processing. If the data set is to be 
deleted, the PDDB is marked, $SDBFREE is called, and records like the JCT and 
IOTs are written. If the data set is not to be deleted, its SDB is freed. Spin data sets 
are also processed. Routine HALDCIOT is called to dechain the spin IOT, and 
HIOTSPIN passes a spin IOT to HASPXEQ. For internal readers, the internal reader 
OCT whose address was passed in the SSOB extension is freed for reuse, and any 
wait elements waiting for an internal reader are posted. These wait elements 
represent tasks waiting in SSIALOC to allocate an internal reader. User exit 34 is 
the unallocation exit, and can be used to undo any processing (the alteration of 
SYSOUT characteristics with user exit 31) done at allocation. 

Note: When a data set is deleted at purge time, JES2 issues a RACROUTE 
REQUEST=AUTH SAF call in the JES2 address space to determine if the requester 
has alter authority to delete the data set. The security tokens are passed for 
comparison. 

This module provides the basic support for opening and closing of subsystem data 
sets. Routine SSIAOPN accepts a problem program request to open a data set or an 
internal reader. It is entered through the subsystem interface. 

When an internal reader is opened, the current task's security token is extracted, 
mapped with a user id and group, and pointed to by $DCT. This token is used as the 
submittor's token on later authority verification. 

When a SYSIN data set is opened, JES2 issues a RACROUTE REQUEST=AUTH SAF 
call to verify authority to read the data set. (For SYSOUT data sets, the SAF call 
verifies update authority. For process-SYSOUT (PSO) data sets, JES2 adds the 
RECVR keyword to the RACROUTE request to ensure the receiver has sufficient 
authority to the data set.) This occurs in the caller's address space under the task 
that performs the OPEN. 

The SSIAOPN routine issues a $SSIBEGN macro to invoke the $SSIBEGN routine in 
HASCLINK to initialize the subsystem function. Then it $CALLs the DSOPEN routine, 
which actually opens SYSOUT, SYSIN, PSO, or INTRDR data sets. On return, 
SSIAOPN issues the $SSIEND request to terminate the SSI function request. Exit 30 
gains control after the data set has been opened (or restarted) and can be used to 
fail the open. 

Routine SSIDACLO closes data sets and internal readers. It calls $SSIBEGN to 
initialize the subsystem interface request, and issues $SSIEND to end the subsystem 
request. User exit 33 gains control before the close. Routine SSIDARES restarts 
data sets. It uses the SSOB extension to get the address of the restart buffer and 
sets the SSOB to point to the SOB. Routine SSVOPNC is called from HASPCNVT to 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-121 



HASPSSSM 

HASCJBST 

3-122 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

open data sets required for the converter. It calls HFOPSUB to obtain an SDB in the 
case of a JCL image data set, the job log data set, and internal text data set. 
SSVCLSC provides a fake close for converter data sets. Routine SSIDACKP is 
invoked when a $CKPT macro is issued for a subsystem data set. If the data set is 
SYSOUT, the current buffer is written out. If this is SYSIN data, the record number of 
the next record to be read (or an indication of end-of-data) is returned in the 
checkpoint buffer. 

This module provides the support for job selection and job termination. When a 
subsystem interface request for a job is issued, SSIJSEL either locates or creates an 
SSIB level SJB and gets its lock, calling $SJBFIND, SJBINIT, and $SJBLOCK. It then 
calls JBSELECT to select and process a job. It returns to the caller with the return 
code in SSOBRETN. The JBSELECT routine queues the SJB either onto the 
select-by-class or select-by-id queues, and posts HASPXEQ to select a job. When 
HASPXEQ has selected a job, JBFOUND is called before returning to the caller. 
JBFOUND completes the setup of information necessary for the job to run. 
JBFOUND processing includes reading in disk-resident control blocks, opening 
system data sets, linking to the scheduler's SWA create routine, and so forth. It 
does processing for batch jobs (select-by-class), STC/TSU jobs (select-by-id), and 
execution batch monitor jobs. 

Exit 32 can be used in HASCJBST to allocate user control blocks, read or write spool 
resident control blocks or data, issue user-supplied start messages, or terminate 
jobs or initiators. 

JSOPSSDS opens subsystem data sets for non-execution batch monitor continuation 
jobs. It opens the internal text data set, the job journal data set, the system 
messages data set, and the joblog data set. JSREOPEN does open processing for 
subsystem data sets (messages, JCL images, JOBLOG data sets) on a warm start, 
or if the job is to be rerun. If the data set is the JCL image data set, the routine is 
exited. For the other possible data sets, the routine repositions the data set. This 
means that the data set is opened for input, and the existing data set is read in. The 
routine then changes the input data set to output, and writes to the data set what 
was read in. The write is not done if the data set was empty or the job deleted or 
cancelled, or if an 1/0 error occurred while reading the data set. 

A SAF call is made to extract the SYSLOG (request job id) token. SSIRRREQ 
provides a system-requested job with a valid JES2 job id. This is subsystem request 
SSIBRQST. SSIRRRET returns a JES2 job id. This is subsystem request 
SSOBRTRN. To requeue a job (subsystem request SSOBRENQ), SSIRQRNQ is 
invoked. Job termination is done by SSIJTERM (subsystem function number 12). 
SSIJTERM cleans up the job's associated control blocks when a batch job, an 
execution batch monitor job, a started task (STC), or a time sharing user (TSU) job is 
to be terminated. User exit 28 can be used to suppress messages issued to the job 
log. Other routines include MRGSWBS, which merges new output characteristics 
(retrieved from the JESDS keyword on the OUTPUT JCL statement) into the existing 
PDDB for the data set; HJMAKSL, which creates a slot in an IOT for a system PDDB 
so that the system PDDBs can remain contiguous for fake closes; HFJOBLOG, which 
places the header line and early messages from the JCT into the JOBLOG; and 
JCTSTATS, which updates JCTPAGES, JCTBYTES, JCTXOUT, and either JCTLINES 
or JCTPUNCH in the JCT to be the sum of the corresponding fields from the PDDB 
for the job log, JCL images, and system messages data sets. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSSSM 

HASCJBTR 

HASCSRIC 

HASCSIRQ 

This module terminates subsystem jobs, providing processing for end-of-task and 
end-of-memory subsystem requests. SSIETEOT processes end-of-task requests. If 
it is an FSS-related task, the FSS and its associated FSAs are disconnected (routine 
EOTFDCON issues a FSIREQ disconnect request). If it is not an FSS-related task, 
the SJS lock is obtained and all tasks in this address space are marked 
non-dispatchable. It frees all the cells associated with this SJS/TCS pair, and all 
TREs and save areas. Then, it restarts any pending 1/0, waits for it to complete, 
resets other TCSs to dispatchable, releases the SJS lock, and returns to the caller 
of the subsystem interface. User exit 35 is given control just after the lock is 
obtained. It allows the freeing of CSA storage chained from the HASS or the SJSs. 

The end-of-memory routine, SSIENEOM, is invoked by the subsystem interface as 
part of end-of-memory processing. If the JES2 address space itself is terminating, 
flags are set in the HCCT to indicate this, and the PSO queue is purged. If it is an 
FSS address space, this routine $$POSTs the resource queue of FSS and cleans up 
FSSCS pointers. For all address spaces, the job communications queue lock, and 
the STC and/or TSU locks are freed. Then, the internal readers are cleaned up and 
the SJS is cleaned up and requeued. User exit 29 gets control just before freeing 
the SJSs for an address space to allow the freeing of any CSA storage chained from 
the HASS or the SJSs. 

This module contains locking routines. $SVJLOK and $SVJUNLK get and release 
the job communication queue locks; TSETLOCK and TSFRELOK get and release the 
local and CMS locks using the MVS SETLOCK macro. HASCRIC also contains the 
following routines: 

• $TRACER and $TRAREL, which obtain and release a JES2 trace table entry. 
• $$POST, which issues a cross-memory post to the JES2 main task indicating 

which processor or resource to $POST. 
• $STRAK, which allocates spool in the user environment. 
• $RACROUT, which issues calls to provide authority verification. The 

$RACROUT routine contains exits 36 and 37, which permit an installation to 
accept or fail a security request just prior to or immediately following the 
request, respectively. 

• PRTAUTH, which is called by HASPPRPU or during FSS processing to verify that 
a job has sufficient authority to print a data set. 

• Various other routines, which provide such services as freeing SJF storage and 
checking for successful 1/0. 

This module provides the support for the following SSI functions: command 
processing (SSICMD, the SVC 34 exit routine), WTO processing (SSIWTA, the SVC 35 
exit routine), process SYSOUT requests (SSISOUT), TSO cancel (SSICSCAN), TSO 
status (SSICSTAT), destination verification (SSIUSUSE), FSS connect/disconnect 
processing (SSIFSCNT). Additional service functions are: TSCNVJS, which 
converts a job id to a binary job number; TSQUEUE, which queues an SJS to the 
HASP work queue; USERDEST, which verifies a destination and converts it to a 
binary route code; USERSUS, which is the user/subtask exit effector; and 
$DESTCHK, which performs destination authority verification. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-123 



HASPSSSM 

HASCSRDS 

HASCSRJB 

3-124 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

This module contains the following service routines related to data set processing: 

• $SDBINIT creates and initializes subsystem data blocks (SDBs), which contain 
information about each allocated data set. 

• $DSDBFREE is called to free an SDB. 
• $10TBLD creates and chains a secondary allocation, spin, or PDDB IOT. 
• $FNDRRIOT is called to locate a reusable spin IOT, which is an IOT whose spin 

data set has been processed and purged and is ready to be reused. 
• $PDBFIND searches a job's in-storage IOT chain starting with the passed IOT for 

a specified PDDB (indicated with a data set key). 
• HONEWOUT does open processing for a new output data set. It gets an 

unprotected buffer, sets the starting track address, puts the PROC and step/job 
names in the PDDB, flags the IOT to be checkpointed, and indicates that the data 
set is open. 

• HOOLDOUT handles open processing for old output data sets. 
• HOOLDINP does open processing for an old input data set. 
• HALCLASS checks the MSGCLASS for hold status by checking the SCAT. 
• HALDEST is used to determine the ultimate destination of a held data set, 

whether it is this node (RC= 0) or another node (RC= 4). 
• $CBIO provides an 1/0 interface to JES2 control blocks out of the user 

environment. Exit 8 gives control prior to a write and just after a read to verify 
the control block. 

• The HCBCK routine using $CBIO to checkpoint the JCT and the chain of regular 
and spin IOTs pointed to be the SJB. 

• HCBGM $GETMAINs storage for a HASP control block and returns the address 
of the buffer in register 1. A $GETBUF TYPE= CB invokes it. 

• HCBFM is invoked by a $FREEBUF TYPE= CB and frees the storage of a HASP 
control block. 

• The HJSRETAB routine rebuilds the SDB track allocation block, using the 
REINCR value in the HCCT. 

• $VERIFY is a routine called to verify control blocks after they are read from 
spool. 

HASCSRDS also contains MTTRVAL, which is used to validate track addresses, and 
HFCLSUB, which does fake closes for input and output data sets. 

This module contains job-related services. It includes SJBINIT, which gets storage 
for and initializes an SJB, and SJXB, and and SJF work area. It is called from "job 
select" and "request job id" to obtain the SJB for a job, a started task, or an 
initiator. It is also called from HASCDSOC for fake opens of subsystem data sets by 
the converter. $SJBFIND searches for an SJB requested by the caller. The type of 
SJB requested can be a TYPE= LOJ, in which case the LOJ-SSIB SJB will be 
returned. It can also be TYPE= FIRST or TYPE= LAST, in which case either the first 
or the last SJB chained off the HASB for this address space will be returned. 

If TYPE=SSIB, the SJB pointer is obtained from the caller's SSIB. Routine 
SJBFREE releases the SJB, the SJXB, and the SJF work area storage and removes 
the SJB from the HASB SJB chain. $SJBLOCK and $SJBUNLK get and release the 
SJB lock for a particular SJB. The $SJBRQ routine moves the SJB from a current 
job service queue to one specified by the caller. It places the new queue header 
address in field SJBQUEUE in the HCCT, and chains the SJB on the new queue. 
Other routines include TSHABDQ, which, if JES2 abends, dequeues the TSO queued 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSSSM 

HASCDSS 

SJB. HETSOUT ensures that it a task currently processing SYSOUT or processing 
CANCEL/STATUS commands takes an interruption, it returns to the caller. Finally, 
$JBIDBLD generates an 8-character EBCDIC job id. 

The HASCDSS module provides data space services. When invoked by the 
$DSPSERV macro, it creates a data space in the current address space, the JES2 
address space, or the master address space (it invoked to create a data space), or 
deletes an address space (it invoked to delete a data space). The DSPSERV routine 
is the common entry point tor HASCDSS and routes a request to create or delete a 
data space to the appropriate routine. 

HASCDSS issues the $HASP477 message with a return code it an error occurs 
during processing. It also supplies the following SDWAVRA debugging information 
in SYS1 .LOG REC: 

• Component description 
• Data CSECT name and partial data area ($DSWA) 
• The DSPSERV parameter list. 

"Chapter 4. Directory" describes the HASCDSS entry points, the "Diagnosing 
Routines Without Source" section of chapter 5 provides additional diagnostic 
information, and JES2 Messages lists the HASCDSS return codes under the 
description tor the $HASP477 message. 

JES2 Event Trace Facility 
The JES2 event trace facility is designed to provide a mechanism tor tracing the flow 
of logic throughout JES2, with a minimum amount of overhead. By means of control 
tables, individual activities are traced under operator control. These activities can 
be altered at any time. Trace activity reports are produced at any time tor a 
hardcopy log of the trace table entries (TTEs). 

This facility is comprised of two major components: 

• $TRACE routine (HASCRIC): Interfaces to individual trace points via the 
$TRACE macro instruction. 

• Event Trace Log Processor (HASPEVTL): This processor formats TIEs to 
produce a output log of the trace activity and maintains the JES2 trace tables. 

Each trace table consists of a prefix section and multiple TTEs, both mapped in the 
$TTE. JES2 trace tables are obtained via a $GETMAIN macro instruction from a 
fixed subpool (231) in the expanded common storage area so that tracing may be 
done from any routine in either the JES2 address space, FSS address space, or any 
other address space. 

$TRACER: The Event Trace Service Routine 
The $TRACER routine (in HASCSRIC) services the $TRACE macro instruction. The 
address of $TRACER is in the CADDR table. The routine can be called from all JES2 
assembly environments. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-125 



HASPSSSM 

3 .. 126 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The function of the $TRACER routine is to allocate a trace table entry from a JES2 
trace table and to return its address to the caller. When the current trace table is 
filled, $TRACER locates the next empty trace table. If there is no empty trace 
table, the routine updates the trace discarding statistics. There are four types of 
calls: 

1. When the caller is a TRACE ID=O caller, the current table is truncated (that is, 
allow the trace log processor (HASPEVTL) to process the table so it can be spun 
at specified time intervals when trace activity is light). TYPE=TRUNC and 
TYPE= SPIN are the only trace calls allowed with TRACE ID= 0. 

2. When the caller passes information to be placed in the trace record (using the 
DATA= and LEN= parameters), $TRACER places the information in the trace 
table for the caller, and returns. 

3. When the caller does not pass information to be placed in a trace table (LEN= 
is specified, but not DATA=), $TRACER obtains an area of the trace table to put 
the information of the given length into and returns to the caller holding an ENO 
on the table. When the caller has finished putting the information in the table, 
the caller issues a DEO to release the table. 

4. If the caller is part of the JES2 main task, no ENO/DEO serialization is 
necessary. Because the trace log processor (HASPEVTL) is always managing 
the tables in the JES2 main task, other PCEs do not need $TRACER to ENO on 
the current table to ensure serialization. 

If $TRACER is unable to obtain a trace table entry, it means that discarding is in 
effect (there is no available table to put data into). In this case, discarding statistics 
are generated and a return code of 4 is passed back to the caller. If a table is 
available and data was passed, $TRACER issues an ENO on the table, places the 
data into it, and then issues a DEO on the table, and returns to the caller. If the 
caller did not pass data: 

• $TRACER returns to the caller with an ENO on the table (if the caller is not the 
main task) 

• Register 1 contains the entry of the table in which to put the data 
• Register 0 containing the address of the trace table page so that callers (other 

than out of the main task) can issue a $TRACE macro with the RELEASE option 
to call $TRAREL to release the table. 

Trace tables are threaded in a circular queue. When data is not logged as fast as 
data is put into the tables, trace data is discarded. Pointers in the $HCCT keep track 
of table addresses. The CCTTRLGG pointer, or "log pointer", points to the trace 
table which is currently being logged. The CCTTRTBL pointer, or "curr pointer", 
points to the trace table which is available for data additions. The CCTTRPLG 
pointer, or "prvlog pointer", points to the table that precedes the "log" table. Only 
when JES2 is attempting to decrease the number of trace tables will this pointer be 
non-zero. If "log" has been set equal to "curr", it means that there are no tables 
available to put data into. (See the description of HASPEVTL for an explanation of 
table management and logging.) 

If the data that is passed will not fit into the entry, the subroutine TRCKDATA is 
called, which issues the $HASP381 message indicating that this is an invalid trace 
entry. 

Dynamic addition and deletion of trace tables can be done with operator commands. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

USERSUB: JES2 User/Subtask Exit Effector 

HASPSSSM 

USERSUB is the exit effector routine used by JES2 to pass control to user exit 
routines that are called from a JES2 subtask, the user address space (the HASC* 
modules), or the FSS address space. USERSUB receives control when the 
ENVIRON= operand of the $EXIT macro specifies either USER, SUBTASK, or FSS. 

If tracing was specified via the AUTOTR = operand of the $EXIT macro, USERSUB 
creates a pre-exit trace record containing: 

• The exit number 
• The exit name 
• The trace environment description (as determined by the setting of the 

ENVIRON= parameter on the $EXIT macro) 
• An indication that this trace precedes the user exit routine call 
• The contents of registers 0 through 15 

USERSUB uses the exit point number as an index into the exit information table 
(XIT) which, in turn, points to the exit routine's address in the exit routine table 
(XRT). Once the user exit routine address is found, USERSUB calls it. 

When control returns to USERSUB from the user exit routine, USERSUB saves and 
checks the return code to see if additional user exit routines are to be called. If 
there are more to be called and the last exit routine set a return code of 0, 
USERSUB calls the next user exit routine. This process continues (assuming there 
are no errors) until all user exit routines have been called, or until a user exit 
routine sets a non-zero return code. When finished, USERSUB creates a trace 
record containing: 

• The exit number 
• The exit name 
• The trace environment description (as determined by the setting of the 

ENVIRON= parameter on the $EXIT macro) 
• An indication that this trace follows the execution of the user exit routines 
• The contents of registers 15, 0, and 1 
• The name of the last user exit routine called 

If the return code from the user exit routine is greater than the value of MAXRC 
specified on the $EXIT macro for this exit, USERSUB issues a 02B abend using the 
ABEND macro instruction. 

$STRAK Service Subroutine 
The purpose of the $STRAK subroutine (contained in HASCRIC) is to return to the 
caller a track address (MTTR) tor spool volume 1/0. The caller supplies to $STRAK 
the address of a track allocation block (TAB). There are three types of TABs: 

• A major TAB is the control block associated with a track-celled data set. It 
contains the address of an allocation input/output table (IOT), the MTTR of the 
last buffer allocated from the track cell, the number of buffers left in the track 
cell, and the major TAB indication, TAB MAJOR. 

• A minor TAB is the control block associated with a non-track-celled data set, 
such as a punch data set. The minor TAB consists simply of the address of an 
allocation IOT and the minor TAB indication, TABMINOR. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-127 



HASPSSSM 

3-128 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• The master TAB is a special case of the major TAB, identified by the 
TABMAJOR indicator. It is associated with all data sets in a job that belongs to 
a non-track-celled SYSOUT class and with the JES2 control blocks that reside on 
spool volumes in space allocated by track cell. Individual records are written 
and read and not just track cells. 

The major and minor TABs are located in the subsystem data block (SOB) 
associated with the output data set. The master TAB is located in an allocation IOT, 
an IOT that contains a list of the track groups assigned to this job (if this is a job IOT) 
or dataset (if this is a spin IOT). 

Each TAB contains a sub-permutation number P that is used in assigning the next 
buffer from a track group, the TTR of the last buffer in the currently active track 
group, and the number of buffers left in the cell. An algorithm is used to calculate 
the placement of buffers in the physical records of the track in such a way that the 
effect of rotational delay in spool device 1/0 is minimized. This allows the time 
required for rotation past interceding records to be used by the central processor for 
the processing associated with spool operations. 

On entry, the TABFLAG field is examined. If the TABMINOR indicator is set to 1, the 
address of the master TAB is obtained from the allocation IOT pointed to by the 
TABAIOT field of the TAB. If the TABMAJOR or TABMASTR indicator is on, the 
address passed to $STRAK is used. In any case, the address of the track group map 
is obtained from the selected major or master TAB. Next, the TABUFCNT field is 
examined to determine whether there are any spool buffers left in this track cell. If 
so, the sub-permutation algorithm is used to calculate the MTTR of the next record 
to be used, and control is retuned to the caller with the new MTIR; the count of 
available buffers is decreased by 1. 

If no buffers are left in this track cell, the routine determines whether there is room 
for another cell on this track. If there is, the new track cell is allocated to the 
caller's TAB, the MTTR is calculated, and control is returned with the MTTR of the 
first buffer in the newly allocated track cell. However, if the request was 
accompanied by a major TAB, indicating that the buffer is to be part of a track-celled 
data set, a check is made to determine whether the size of the new track cell is 
below the minimum size specified in the TTCM field of the track extent data table 
(DAS). If the remaining track cell is too small, the routine steps to the next track and 
attempts allocation. 

If there are no tracks left in the current track group, $STRAK must allocate a new 
track group. At each checkpoint cycle, the KBLOB subroutine in the checkpoint 
processor allocates a fixed number of track groups. These track groups are 
represented in the track group blocks (TGBs), which are pointed to by a field in the 
$HCCT. Therefore, when $STRAK allocates a new tracl< group, it must scan the 
TGBs for an unused track group that is on a spool volume that the job is eligible to 
use. If $STRAK finds no eligible track groups by checking the TGBs, it looks at the 
bit map in CCTMTSPL to find out if there are any track groups available on a volume 
that is eligible for the job's use. (Though the TBGs indicated that there were no 
eligible track groups, there may actually be some. If so, they would be indicated in 
CCTMTSPL.) 

If the check of CCTMTSPL indicates that there are track groups available, $STRAK 
posts ($$POST) the checkpoint processor so that the checkpoint processor can try to 
allocate the track group after the next checkpoint cycle completes. 

LYW-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSSSM 

If there are no free track groups on any of the job's eligible volumes, $STRAK calls 
the $STRAK installation spool allocation JES2 exit (exit 12). If this JES2 exit point 
($STRAKX) is disabled, has no installation exit routines associated with it or if the 
last installation exit routine that was invoked returned a 0 or 4 in register 15, 
$STRAK gets the first available track group from the BLOB, indicates that this spool 
volume may be allocated, and continues processing. JES2 accomplishes limited 
spool partitioning in this way. 

If a return code of 8 is passed back, register 1 contains the address of a three-word 
parameter list containing the address of the IOT and the JCT (or 0, if a JCT is not 
available, which is true in the case of spooled remote messages, multi-access spool 
messages, and when acquiring a record for the JESNEWS data set), and the address 
of a 32-byte bit mask indicating the volumes from which the job can allocate space. 

When an acceptable track group has been found, the MTT of that track group is 
placed in a track group allocation entry (TGAE) in the job's primary allocation IOT. 
If there is no space in the primary allocation IOT, the MTT will be placed in a 
secondary allocation IOT, if it exists. If there is no space in the secondary allocation 
IOT or if a secondary allocation IOT does not exist, a secondary allocation IOT is 
created. The very last TGAE in the most recently created IOT is saved and replaced 
with the MTT of the track group just obtained. If the last created IOT is a secondary 
allocation IOT, the IOT is written to spool. $STRAK will then clear the buffer for the 
secondary IOT, copy the IOT prefix from the primary allocation IOT to the secondary, 
place the saved TGAE as the first TGAE in this buffer, write the new secondary in 
the first buffer of the newly obtained track group. Finally, the primary allocation IOT 
is written to spool. 

On exit from the $STRAK routine, the track allocation blocks associated with the 
request are updated to reflect the current status of the track cell. In the case of a 
major TAB, the buffer count field, TABUFCNT, indicates the number of buffers left in 
the current track cell. The TABMTTR field contains the track address of the 
just-allocated buffer, and the TABSPN and TABMAXR fields reflect the current track 
status. For a minor TAB, the same fields are updated; in addition, the associated 
master TAB is updated to reflect the current status of the shared track cell. 

In addition to TAB updating, the track group map is always updated to reflect the 
current status of the track group and the track address (in TCMCELL) of the next 
available track cell. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-129 



HASPAM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPAM: HASP Access Method (HAM) 
The HASP access method (HAM) is used by all subsystem data set users other than 
JES2 itself to create and read subsystem data sets. 

HAM is VSAM-based; that is, it uses the access control block (ACS) and request 
parameter list (RPL) rather than the data control block (DCB) to access a data set. 
(For users of DCBs, a sequential access methods subsystem interface of SAMSI 
converts each DCB request to an ACB request.) 

All GET and PUT requests to HASPAM are treated as requests for sequential 
access, synchronous processing, and move mode. Chained RPLs are not 
supported. For some types of subsystem data sets, POINT requests and 
update-form GET and PUT requests are supported. CHECK and ERASE requests 
are accepted and treated as no-ops. ENDREQ causes HASPAM buffer truncation on 
output data sets and no operation on input data sets. 

HAM Basic Structure 
HAM consists of three logically distinct sections: HASPAMI, SVCHAM, and 
HAMCEA. 

HASPAMI, which operates in user key and state, is branch-entered by the ACB user. 
HASPAMI attempts to satisfy the user's requirements by moving data into or out of a 
HAM buffer unprotected from the user. If that buffer becomes full (or empty), 
HASPAMI issues SVC 111 to invoke SVCHAM. 

SVCHAM moves data between the unprotected buffer (UBF) and a HAM buffer 
protected from the user (PBF) and can initiate 1/0 via the EXCP macro to write out 
the PBF (output) or to read into it the next physical record of data (input). SVCHAM 
works in coordination with HAMCEA. 

HAMCEA, the channel-end appendage, does further processing in an attempt to 
return to EXCP with an indication to restart the channel program. This increases 
performance by reducing the number of actual EXCPs required to process a data 
set. 

HAM Control Areas 

3-130 JES2 Logic 

In addition to the RPL and ACB associated with a user request, HAM uses the 
subsystem data block (SOB), which is the major control area associated with each 
data set. In addition to other information, the SOB contains: 

• Data set status information 
• HAM buffer pointers 
• A pointer to the input/output table (IOT) which contains the track group map 

from which direct-access space is to be allocated for this data set 
• An input/output buffer (108) for EXCP purposes 

(The data extent block (DEB) and data control block (DCB) associated with the SOB 
and IOB are different from the user's; they reside in the subsystem job block and 
are common to all SOB IOBs). 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 



( 

(_. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPAMI Structure 

HASPAM 

HASPAMI is that portion of HASPAM that operates in user key and user state; 
HASPAMl's address is set in the ACBINRTN field at open time. 

HASPAMI consists of three sections. The first section validates arguments and sets 
up registers; the second section processes user data; and the final section returns a 
completion code to the user. The final section also invokes exit LERAD and SYNAD, 
if appropriate. If control block validation fails, the final section of HASPAMI issues 
an ABEND macro instruction with a system code of 02A and the DUMP option. 

On entry, HASPAMI saves registers in the standard user-provided save area. It 
validates the ACB and the RPL function code and stores the function code in field 
RPLREQ. HASPAMI continues by entering the appropriate HAM function routine via 
a vector table. Registers are set up as follows: 

Register Usage 

6 
7 
8 

Unprotected buffer (unless INTRDR) 
RPL 
ACB 

10 Subsystem data block (SOB) (device control table (OCT) if INTRDR) 
11 Subsystem vector table 
12 HASPAMI base 
13 User-supplied save area 

On completion, the HAM function routine branches to label HRPLEXIT with a return 
code in register 0. HRPLEXIT, which is the final portion of HASPAMI, saves the code 
in the RPLFDBK field and simulates a post by setting to X'40' the first byte of the 
event control block (ECB) in (or pointed to by) the RPL. The return code is then 
analyzed. If either a logical or a physical error is indicated and the user has 
supplied a valid exit list containing an active entry for the indicated error, the exit 
routine is entered. (If it is not in the address space, it is loaded first, and the exit list 
entry modified appropriately.) On entry, registers 1 to 13 are as they were when the 
user called HASPAMI. The user may return on register 14 to HASPAMI, whereupon 
registers 14-12 are restored, and HASPAMI returns to the user on register 14. 

SVCHAM Structure (SVC111) 
SVCHAM is that portion of HAM that operates in supervisor state and key zero in 
support of a supervisor request by HASPAMI. The request is typically to perform an 
1/0 operation, but it can perform other authorized functions, such as SYSOUT 
excession processing. 

SVCHAM consists of three sections: the initial SVC entry point, link-edited with the 
nucleus and common to both JES2 and JES3; an initialization section, branched to 
from the initial entry point; and the main section. 

At open time, DSOPEN stores the address of HASPAMI into DEBAPPAD. At an 
offset of 4 from this address is the address of SVCHAM. When the nucleus portion of 
SVC 111 gains control, register 1 contains either an RPL address or the complement 
of an ACB address. Using register 1, SVC 111 points to the data extent block (DEB) 
with register 2. If the SVC issuer was in problem state with a protection key of 8 or 
greater, the local lock is obtained and the MVS subroutine DEBCHK is used to 
validate the DEB. If the DEB is valid, SVC 111 releases the local lock and branches 
to SVCHAM; if the DEB is invalid, SVC 111 issues an ABEND macro instruction with 
system code 36F and the DUMP option. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-131 



HASPAM 

HAMCEA Structure 

GET Processing 

3-132 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SVCHAM is entered in AMODE 31, because IGC111, the SVC 111 interface routine, 
uses pointer defined linkage, that is, IGC111 sets the addressing mode of the routine 
to be called based on the state of the high order bit of the address of the subsystem 
routine. On entry to SVCHAM, an initialization portion sets up registers and (except 
for INTRDR data sets) uses register 0 to branch to the appropriate section of 
SVCHAM to process the request. Registers are set up as follows: 

Register Usage 

2 DEB 
3 ACB 
7 RPL 
10 Subsystem data block or IRDCT 
11 Subsystem vector table 
12 SVCHAM base 

On completion, SVCHAM sets a completion code in register 15 and returns. To 
return, it points register 14 to the common SVC exit routine using pointer 
CVTEXPRO in the control vector table (CVT) and branches on register 14. 

HAMCEA, a portion of HASPAM, operates in supervisor state and key zero under 
control of a service request block (SRB) provided by the input/ output supervisor 
(IOS). It processes channel ends resulting from EXCPs issued typically by SVCHAM. 

An initialization section saves registers in the !OS-provided save area, points 
register 10 to the subsystem data block (SDB) and register 11 to the $HCCT, and 
enters the appropriate section of HAMCEA based on an index byte in SDBCHEND in 
the SOB. 

When a HAMCEA concludes, it restores registers and returns to the IOS at an offset 
from the address contained in register 14. The offset is 0, when the IOS is to post 
the 110 operation complete; it is 8 when the IOS is to restart the 110 operation. 

Open processing in SSIAOPN in HASCDSOC for an input data set provides an 
unprotected buffer (UBF) and a protected buffer (PBF) and initiates 1/0. Therefore, 
at its first use, an input data set has a full UBF of data for the user and a full PBF of 
data to be moved into the UBF when that becomes empty. 

When a user issues a GET macro instruction, HAMGET uses the HGMOVE 
subroutine to satisfy the request. That subroutine returns one of tour condition 
codes: 

• 0, 1, or 2: The request is satisfied. 
• 3: The request could not be satisfied. 

If HGMOVE could not satisfy the request, HAMGET calls subroutine HGSPEC, the 
special-case handler, which will find one of the following situations: 

• The data set is at end-of-data. (HGSPEC returns logical error code RPLEODER.) 
• The data set had a permanent 110 error. 
• The UBF needs to be refilled. 

HGSPEC returns logical error code RPLEODER for end-of-data except for an 
execution batch monitor operation, for which end-of-data means that the monitor's 
current user job is complete and should be ended. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

\'-..,.- / 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPAM 

PUT Processing 

To end an execution batch monitor user job, HGSPEC uses SVC 111 to invoke 
SVCXBM. SVCXBM locks the subsystem job block (SJB) pointed to by the batch 
input data set's subsystem data block (SDB); then it $CALLs HJEOOO. HJEOOO closes 
the open subsystem data sets of the user job, writes HASP job control blocks, and 
invokes cross-memory HASPXEQ. After terminating the current user job, SVCXBM 
$CALLs JBFOUND to get the next joblet. 

If the subsystem data set has an 110 error, HGSPEC returns to the user the physical 
error code RPLRDERD. The error can be an actual 1/0 error or a failure of a 
physical record's job key and data set key to match SDBKEY. 

Flag BF1EOB indicates that the data set's UBF needs refilling. The channel-end 
appendage, operating asynchronously with user requests, automatically refills the 
buffer if BF1 EOB is set; therefore, if 1/0 is active, there is no need to issue an SVC to 
refill a UBF. In this case, HGSPEC issues a WAIT macro on an event control block 
(ECB) in the UBF and, when posted by the channel-end appendage (HCEGET), 
retries the user GET request. 

If 1/0 was inactive, HGSPEC uses SVC 111 to invoke SVCGET, which either sets an 
1/0 error condition (in subroutine HENDREAD) or moves the PBF to the UBF 
(subroutine HMOVEPU) and initiates a read for the PBF (unless HENDREAD had set 
flag SDB2EOD). SVCGET then returns to HGSPEC to retry the user GET request. 

Operating asynchronously from HAMGET and SVCGET, channel-end appendage 
HCEGET completes each 1/0 request and, if possible, starts another request. At 
channel-end time, if the UBF is not yet empty, HCEGET merely resets flag SDB210A 
and returns normally to the 1/0 supervisor (IOS). If flag BF1 EOB is set, HCEGET 
uses HENDREAD to check completion of the 1/0. It uses subroutine HMOVEPU to 
move the PBF to the UBF (unless HENDREAD set flag SDB210E) and either returns 
to IOS to start another read operation or (if HENDREAD set flag SDB2EOD) resets 
flag SDB210A and returns normally to IOS. If it refilled the UBF, HCEGET has reset 
flag BF1EOB (in subroutine HMOVEPU) and used subroutine HPOSTECB to post 
BFECB either by a compare and swap instruction or by branch entry to the POST 
macro. 

If the condition code returned to HAMGET from HGMOVE was 0, 1, or 2, indicating 
that the user's request was satisfied, HAMGET returns in RPLRBAR the relative byte 
address (RBA) of the record it just gave the user, increases by one the contents of 
field BFRBA for the next user call, and returns normally to the user. 

Open processing in SSIDAOPN provides an unprotected buffer (UBF) for the data 
set. When a user issues a PUT macro, HAMPUT uses subroutine HPMOVE to 
truncate trailing blanks from the user data and move the remaining user data into 
the UBF. HPMOVE returns either of two condition codes: 

• 0: The request is satisfied. 
• 2: More space in the UBF is required to satisfy the request. 

If HPMOVE satisfied the user request, HAMPUT increases by 1 the count of user 
requests against this UBF and adds the new count to the total count of requests 
against previous UBFs. This total count is compared against the user-specified 
output limit (specified on the DD statement with keyword OUTLIM = ). If the output 
limit is exceeded, HAMPUT uses SVC 111 to invoke SVCUSO, which, in turn, calls 
the installation's SYSOUT excession routine, IEFUSO. Based on the return code 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-133 



HASPAM 

3-134 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

from IEFUSO, SVCUSO either issues an abend with a system code of 722 and the 
DUMP option (for return code not equal to 4), or it increases by 1 the user limit in the 
returned contents of register 1 and returns to HAMPUT. 

Before returning normally to the user, HAMPUT increases by 1 the value of BFRBA 
(its old value had been moved to RPLRBAR by subroutine HPMOVE) and calculates 
the new length remaining in the UBF. 

If HPMOVE was unable to satisfy completely the user's request, HAMPUT uses SVC 
111 to invoke SVCPUT. SVCPUT acquires a protected buffer (PBF), moves the UBF 
into it, initiates 1/0, reinitializes the UBF, and returns to HAMPUT. HAMPUT again 
calls HPMOVE to continue the user request. 

SVCPUT performs the following functions: 

• Gets a chaining track 
• Frees PBFs for which channel end has occurred 
• Gets a PBF 
• Waits for 1/0 to complete if no PBF is available 
• Moves the UBF contents to the PBF 
• Counts records, pages, and bytes contained in the buffer 
• Initiates 110 
• Tests for output exceeding user estimates 
• Reinitializes the UBF and returns 

In every JES2 data set, each physical record contains the track address of the next 
sequential physical record belonging to the data set; the track address contained in 
the ending physical record is 0. SVCPUT gets a chaining track by invoking 
subroutine $STRAK, which assigns a new direct-access physical record address; but 
if the data set is closed (flag SDB1CLOS), SVCPUT merely uses zeros. The new 
record address, or 0 is saved in register 8 for later use. 

Next, SVCPUT uses subroutine HSPFBFRE to free buffers chained by channel-end 
appendage HCEPUT on chain word SDBFBF. HSPFBFRE removes the chain of 
buffers from SDBFBF and frees all but one of them. If there were no buffers, it 
returns register 1 as O; otherwise, register 1 points to the buffer it did not free. 

If subroutine HSPFBFRE found no buffers, SVCPUT gets a buffer by branch entry to 
the main storage supervisor. As a safety mechanism, SVCPUT first checks the 
count of all buffers queued to SDBPBFX, SDBPBF, and SDBFBF; if that count has 
reached a maximum, or if the main storage supervisor could not get a buffer, 
SVCPUT waits until HCEPUT has removed a buffer from chain SDBPBF and put it on 
chain SDBFBF. When posted, SBCPUT starts over by calling HSPFBFRE again. 

After obtaining a protected buffer (PBF), SVCPUT initializes (or reinitializes) it and 
moves into it the contents of the UBF. It uses the compare and swap instruction to 
chain the PBF last-in-first-out (LIFO) on header SDBPBFX, thus making it available 
to channel-end appendage HCEPUT for channel program restarting. If at this point 
110 is active (SDB210A) for the data set, SVCPUT bypasses 1/0 initiation. But if 1/0 is 
inactive, HCEPUT may have found and processed the newly chained subsystem data 
block (SDB); if it has, it sets the PBF flag BF1 IOC. If this flag is off, SVCPUT initiates 
1/0. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

_/ 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPAM 

Exit 9 is invoked by subroutine HEXTCALL. Finally the UBF is reinitiated and control 
returns to HAMPUT, which again uses subroutine HPMOVE in an attempt to 
complete the user's request. 

The PUT channel-end appendage, HCEPUT, operates asynchronously from HAMPUT 
and SVCPUT. It performs the following processing: 

• Moves buffers from SDBPBFX to SDBPBF 
• Dechains the first buffer (for which 1/0 has ended) from SDBPBF and chains it 

on SDBFBF 
• Shows 110 complete by setting BF110C in the buffer 
• Honors an early post request from SVCPUT 
• Restarts 110 on the buffer pointed to by SDBPBF 

The buffers queued on SDBPBFX by SVCPUT for 1/0 initiation by HCEPUT are 
queued last-in-first-out; that is, they are queued in the reverse of the order in which 
they should be written. Using a compare and swap instruction, HCEPUT removes 
the entire chain from SDBPBFX and chains each buffer, again in reverse order, onto 
the end of chain SDBPBF. (For output data sets, SDBPBF is used only by HCEPUT.) 
Now SDBPBF is a chain of one or more PBFs in correct writing order. 

The first buffer now on chain SDBPBF is the one to which this channel-end condition 
applies. HCEPUT removes this buffer from SDBPBF and puts it on chain SDBFBF 
(LIFO, using a compare and swap instruction) to be freed when SVCPUT is again 
called. But SVCPUT must not free the buffer until HCEPUT has returned to the 
input/output supervisor and the supervisor (IOS) has freed the buffer; for this 
reason, subroutine HSPFBFRE frees all but the most recently queued buffer. 

HCEPUT shows 1/0 complete on this PBF by setting flag BF1 ICC. Also, if SVCPUT is 
waiting for HCEPUT to release a buffer, HCEPUT uses a branch entry to the post 
word, SDBSAVE, and resets the early post flag. 

Having completed its cleanup phase, HCEPUT again checks SDBPBF. If that chain 
header is not 0, HCEPUT restarts the channel program. It does this by converting 
the JES2 track address MTTR to the MVS format (using subroutine HCNVFDAD) and 
returning to IOS at an offset of 8. But if SDBPBF is 0, it returns at an offset of 0 to 
cause IOS to post SDBECB. The common return point for all channel-end 
appendages resets the 110 active flag, SDB210A, if it is to return at an offset of 0. 

HCEPUT performs the auxiliary function of checkpointing the output data set's 
allocation input/output table (IOT) if the data set (or any other data set using the 
same allocation IOT) was allocated a new track group. SVCPUT has detected a 
track group change upon return from direct-access allocation routine $STRAK and 
sets flag IOTICKPT. HCEPUT inspects this flag and writes the allocation IOT in 
preference to an output buffer. 

GET-Update Processing 
JES2 allows the MVS converter the user of GET-update and PUT-update when 
processing the internal text data set. 

If HAMGET detects that flag RPLUPD is set in byte RPLOPT2, it branches to label 
HG100 instead of using the normal path for GET processing. HG100 attempts to 
satisfy the request with data currently in the data set's UBF, thus avoiding 1/0. If the 
request cannot be satisfied, HG100 truncates and writes the UBF and then uses SVC 
111 to invoke SVCGUP. SVCGUP attempts to read the physical record or records 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-135 



HASPAM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

containing the logical record requested. It returns to HG100, which uses subroutine 
HG MOVE to move the record to the caller's area. On entry SVCGUP first ensures 
that 1/0 for the data set is complete; it frees buffers that HCEPUT has placed on the 
chain SDBFBF. Then it acquires a protected buffer, to be used for 110, and an 
unprotected buffer, to be used upon return to HG100. The identifiers assigned these 
buffers are GBF and HBF respectively; a pointer to each is stored in SDBGBF and 
SDBHBF. Thus the buffers used for GET-update and PUT-update are independent 
from those used for GET and PUT processing. 

The user passed to HAM in word RPLARG a pointer to an 8-byte relative byte 
address (RBA) previously returned in doubleword RPLRBAR by HAMPUT. SVCGUP 
moves these 8 bytes to SDBUPRBA, extracts the track address, and converts it to 
MVS format. Then the routine modifies the channel program to read data, modifies 
the channel-end appendage index to cause HCEGUP to be used, issues an EXCP 
macro, and issues a WAIT macro. 

Processing initiated by SVCGUP is continued by HCEGUP. At channel-end time, 
HCEGUP uses SDBGBF to point to the correct protected buffer, validity-checks the 
job and data set keys of the data just read, moves the protected buffer to its 
unprotected buffer, and uses subroutine HFINDRBA to find the start of the requested 
record in the protected buffer. It saves the address of that record in the unprotected 
buffer at word BFLOC. 

The converter is allowed to create very long records of internal text, ar:id the record 
it updates may also be very long. If the record HCEGUP found is spanned and not 
complete in this physical record, it continues processing by getting and formatting 
another GBF and HBF and chaining them first-in-first-out on SDBGBF and SDBHBF. 
It then restarts the channel to the new GBF, converting and using as a track address 
the value in field BFNXT of the previous GBF, which has been moved into field 
BFTRK of the current GBF. 

Finally, when all reading is complete, HCEGUP causes the input/output supervisor 
(IOS) to post the event control block (ECB) for which SVCGUP was waiting. SVCGUP 
regains control and restores the channel program and channel-end appendage 
index it had modified; it returns to HG100, which moves the requested record to the 
user as above. 

PUT-Update Processing 

3-136 JES2 Logic 

JES2 allows the MVS converter the use of GET-update and PUT-update when 
processing the internal text data set. 

If HAMPUT detects flag RPLUPD set in byte RPLOPT2, it branches to HP100 to 
process the request. As with GET-update, PUT-update first tries the current 
unprntected buffer (UBF). If the specified RBA is found there, HP100 avoids 
unnecessary 1/0 by using subroutine HPMOVE to move the updated record from the 
user's area into the UBF; then it returns to the user. 

But if the UBF does not contain the correct RBA, the content of the user's area is 
moved into the HBF's area provided by GET-update, using subroutine HPMOVE. 
HP100 uses SVC 111 to invoke SVCPUP. 

SVCPUP moves each unprotected buffer (HBF) to its corresponding protected buffer 
(GBF) and frees the HBF. Then it moves the entire chain of GBFs from header 
SDBGBF to SDBPBF and initiates 1/0, letting HCEPUT, the normal output 
channel-end appendage, complete processing. When 1/0 is complete, SVCPUP 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPAM 

POINT Processing 

restores the channel program and channel-end appendage index to be sure they are 
correct. It returns to HP100, which returns to the user. 

JES2 offers the capability of using the VSAM POINT macro instruction for the job 
journal as an input data set and the system messages data set. In addition, some 
subsystem interface routines take advantage of parts of the HAMPOINT service to 
reposition data sets. 

The user issues POINT with RPLARG pointing to an 8-byte search argument. 
HAMPOINT upon entry tests that argument; if it is 0, HAMPOINT resets it to the RBA 
of the first record of the data set. 

HAMPOINT uses SVC 111 to invoke SVCPNT, which ends the processing. SVCPNT 
finds the argument RSA in field BFRBA of the UBF. SVCPNT points correctly for 
both input and output data sets. On entry, if the data set is open for output, SVCPNT 
truncates and writes the contents of the unprotected buffer; in any case, it then waits 
until 1/0 is complete for the data set. 

SVCPNT then sets up an output data set so that it looks like an input data set, getting 
a PBF, altering the channel program, and setting the channel-end appendage index 
so that HCEPNT is used. 

SVCPNT initiates 1/0 starting with the track address contained in the RSA provided 
by the user. Then it waits for channel-end appendage HCEPNT to search to the 
desired logical record. 

The HAM format of RBA is as follows: 

Byte Usage 

Byte 0 
Byte 1 
Bytes 2-3 
Byte 4 
Bytes 5-7 

Reserved 
M (extent) 
TT (absolute track address) 
R (physical record) 
LLL (logical record) 

This format allows a given logical record to have more than one RSA. For example, 
the principal RSA of a logical record is the MTTR of the physical record within which 
it resides, followed by LLL with a value of 1, plus the number of logical records 
preceding it in that physical record. But for pointing purposes, another valid RSA 
would be the MTTR of the preceding physical record with an LLL value greater by 
the number of logical records in the preceding physical record. 

HCEPNT gains control at the end of the 1/0 started by SVCPNT. Using subroutine 
HFINDRBA, it scans the PBF just read for the target record. If the record was 110t 

found by HFINDRBA, HCEPNT returns to the input/ output supervisor (IOS) at offset 8 
to initiate a read for the data set's next physical record. But if the record was the 
last physical record, HCEPNT returns to IOS at offset 0, having stored at SDBSAVE a 
code which causes HAMPOINT to return logical error RPLEODER to the user. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-137 



HASPAM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

If subroutine HFINDRBA found the desired logical record, HCEPNT moves the PBF to 
the UBF, sets the address of the found record and the remaining length in the UBF, 
and returns to IOS at offset 0 to post (POST) SDBECB. SVCPNT passes back to 
HAMPOINT the address of a completion code routine (or 0), and HAMPOINT returns 
to the user as described above. 

Internal Reader Processing 

3-138 JES2 Logic 

Control structure and processing are different for internal reader data sets from 
those for normal subsystem data sets. Instead of a subsystem data block (SOB), an 
internal reader device control table (IRDCT) controls processing. (IRDCTs are 
constructed in the common storage area or CSA by module HASPIRMA.) Actual 1/0 
is performed not in the user memory but by JES2 in its memory (module HASPRDR). 
Of the two buffers used during internal reader operation, the unprotected buffer is 
obtained and maintained by HAM, but the protected buffer resides in a 
JES2-managed data space. 

HAM supports the PUT and ENDREQ operations to an internal reader. PUT is used 
to supply to an internal reader with a card image of a JCL stream, an input stream 
data set, or one of two special control statements (/*EOF, which requests immediate 
queuing of the preceding job, or /*DEL, which requests immediate deletion of the 
preceding job). ENDREQ is used to request that the preceding job be immediately 
queued and that the subsystem-assigned job identifier of 8 bytes be returned in the 
request parameter list (RPL) at RPLRBAR. ENDREQ is used by module IEFJSWT; 
the job identifier obtained by IEFJSWT is placed by MVS in the subsystem interface 
block (SSIB) at SSIBJBID. It is used by the job select subsystem interface (SSIJSEL) 
when called by a master-scheduler-started initiator to select a started task (for 
example, a MOUNT command or a TSO logon). 

ENDREQ adds the card image of /*EOF to the internal reader data set, but so does a 
CLOSE request, unless ENDREQ had immediately preceded the CLOSE. The /*EOF 
and /*DEL statements are recognized and removed by HASPRDR. 

HAM recognizes internal reader processing because a flag (bit 5) has been set in 
the high-order byte of ACBINRDR by SSIDAOPN HAM branches to HPIRDR or to 
HENDI for PUT or ENDREQ requests. Both of these routines, as well as SSIDACLO 
(the close subsystem interface), use the common subroutine HINTRDR to perform 
most of their work. 

HPIRDR examines the card image for a /*EOF or /*DEL statement and sets 
appropriate flags in register 2 and sets the address and length of the statement in 
registers 2 and 3. HENDI sets in registers 2 and 3 the ENDREQ flag (HOSCLOS sets 
the CLOSE flag) and the address and length (5 bytes) of a /*EOF statement. 

HINTRDR recognizes five processing cases: 

• Normal PUT 
• PUT of the /*EOF statement 
• PUT of the /*DEL statement 
• ENDREQ 
• CLOSE 

In all cases but CLOSE, if no unprotected buffer exists, HINTRDR uses SVC 111 to 
invoke SVCIRD to get a buffer and store its address at RIDUBF in the IRDCT. (For 
CLOSE, no action need be performed; HINTRDR returns.) If there was a buffer, or 
on successful return from SVCIRD, HINTRDR verifies that the UBF contains sufficient 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPAM 

space for the card image. If there is insufficient space, it invokes SVCIRD to move 
the UBF contents to the PBF and to reinitialize the UBF; to SVCIRD the call appears 
to be for a normal PUT. 

HINTRDR moves the new card image into the UBF, updates the UBF pointer and 
remaining length, and for a normal PUT returns to the caller, who returns normally 
to the issuer of PUT. But if the operation is not a normal PUT, HINTRDR invokes 
SVCIRD, specifying the control flags it received. NOTE that in these cases the last 
statement in the UBF is always /*EOF or /*DEL. Finally, upon return from SVCIRD, 
HINTRDR either returns to its caller, who returns normally to the issuer of PUT or 
supplies the job identifier from RIDJOBID and returns to the issuer of ENDREQ; or 
returns normally to the caller of the CLOSE subsystem interface. 

SVCIRD, a portion of the internal reader logic within HASPSSSM, operates in zero 
protect key and supervisor state. SVCIRD performs either of two functions: 
initialization or normal processing. It uses the contents of RIDUBF to select 
between these functions. 

If no unprotected buffer is present (RIDUBF = 0), SVCIRD performs initialization and 
returns. To initialize an internal reader, SVCIRD obtains and initializes an 
unprotected buffer, stores the pointer to the buffer at RIDUBF, resets flags 
DCTHOLD, DCTDRAIN, and RIDEND in the IRDCT, and informs JES2 via a 
cross-memory post (&XMPOST) that an internal reader has become ready. The post 
starts JES2 processing in HASPRDR, which asynchronously performs its share of 
internal reader initialization and waits for data. Meanwhile, SVCIRD has returned to 
HINTRDR, which continues processing in user key and state. 

If no entry RIDUBF is nonzero, SVCIRD performs normal processing. First, it waits 
until HASPRDR has posted to indicate that it is ready to receive data or that an error 
condition exists. Then, after checking for errors, SVCIRD moves the contents of the 
UBF and reinitializes the UBF; it posts ($XMPOST) HASPRDR, causing that routine 
to begin processing data asynchronously. Finally, for all PUT requests, SVCIRD 
returns normally to HINTRDR. 

For ENDREQ and CLOSE requests, SVCIRD processes further before returning. It 
first waits until HASPRDR has finished its processing and stored the job identifier of 
the preceding job in RIDJOBID; then it performs conclusion processing. It frees the 
unprotected buffer, sets flag DCTHOLD for JES2 control service routine $GETUNIT, 
sets flag RIDEND to cause HASPRDR to perform its share of conclusion processing, 
does a final post ($XMPOST), and returns. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-139 



HASPCON "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCON: Console Support Services 
Console support services consist of console support routines and a communication 
task routine. The functional descriptions of these routines follow. Console support 
routines are described first. 

$WTOR: Write To Operator Routine 

3-140 JES2 Logic 

The $WTOR routine receives control when a JES2 processor executes the $WTO 
macro. The routine filters out console routines with a low importance level, and 
gets a console message buffer (CMS) from the CCTCMSFQ or $WCOMRES queue, 
copies the user's parameter list and message into the CMS (performing any 
required job information editing in the process), and queues the CMB to the 
$BUSYQUE for local unit control module ID (UCMID) and logical console routed 
messages. For messages directed to other systems and remote work stations, the 
routine time stamps the CMS and queues it to the $SUSYRQ rather than the 
$BUSYQUE. 

Upon entry, the WSCREEN subroutine is called to expand short form $WTO macro 
calls to extended form and to determine which console routines are to receive the 
message. 

The $WTOR routine attempts to get a CMB and if successful, adjusts the CCTCOMCT 
counter. The resource manager (HASPRESM) in HASPMISC issues message 
$HASP050 if the count of free CMBs falls below the specified threshold. If the 
request is for a multi line write-to-operator (MLWTO) response and the owner of the 
MLWTO is not the current processor control element (PCE), the $WTO request is 
rejected as though no CMBs were present. MLWTO ownership is obtained for the 
PCE (if required) and an attempt to get a CMB from the $WCOMRES or CCTCMBFQ 
queues is made. If both queues are empty, the attempt fails. Otherwise, processing 
continues with the MLWTO ownership being relinquished when the message is the 
end line for the MLWTO. 

If the request is for other than an MLWTO response and there is a MLWTO owner, an 
attempt to get a CMB from the CCTCMBFQ queue is made; if there is no MLWTO 
owner, the attempt includes the $WCOMRES queue as above. If the request is for 
an action message, (CLASS= $DOMACT), CCTCOMCT is decreased by 1. If the 
attempt to get a CMB or if CCTCOMCT goes below a specified minimum value, the 
CMB (if any) is returned to the CCTCMBFQ and the attempt fails. 

If the attempt to get a CMB fails, $WTOR either issues a $WAIT macro for the calling 
processor (WAIT= YES was specified in the $WTO macro) or returns with the 
condition code set to 0 (WAIT= NO was specified in the $WTO macro). 

The WBLDCMB routine is used to format the fields within the CMB. Fields that are 
formatted are the time stamps for messages to remote work stations, control flags, 
console ID, and routing fields. In addition, the job name and job ID fields associated 
with the message are set, if required. If the job ID is not set, the CMBJOBID field is 
set to blanks. 

The message ID is edited and inserted into the CMB and, if the job ID is contained 
within the caller's message, the CMBJOBID field is set from the caller's message 
area. The message text is inserted into the CMB along with the total length. If the 
message is a request for action, the register save area for register 1 is set to 
indicate the CMB address. The CMB is placed on the $BUSYQUE, and the 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCON 

$HASPWTO routine is posted if remote routing is not specified. If remote routing is 
specified, the CMB is queued in first-in-first-out order within priority on the 
$BUSYRQ, and the remote console processor ($MCONPCE) is posted ($POST). Note 
that remote routing is associated with either an RJE work station or an NJE member 
of the network. 

The routine returns control to the caller after restoring registers and setting a 
nonzero condition code. 

$WTO JES2 Exit Point 
The WTOEXIT JES2 exit point allows the installation (through installation exit 
routines) to alter, delete, or reroute a message. If the user deletes the message 
(indicated by a return code of 8), the HASPWQUE routine is bypassed and the CMB 
is freed via the $FRECMB macro. 

This exit is entered before the CMB, containing the message, is put on the queue by 
routine HASPWQUE. 

The return codes from this exit are: 

0 - Continue normal processing 
4 - Continue normal processing 
8 - Free CMB and discard message 

HASPWQUE: Special Purpose CMB Queueing Routine 
The HASPWQUE routine is entered from console service processors or from $WTO 
service routine ($WTOR). The purpose of the HASPWQUE routine is to queue CMBs 
to either local destination queue ($BUSYQUE) or remote destination queue 
($BUSYRO). 

CMBs for remote destinations are queued on $BUSYRQ in priority order, and the 
remote console processor is posted ($POST WORK). CMBs for local destinations 
are placed on $8USYQUE last-in-first-out, and $WTOECB is posted. $WTOECB is 
posted either directly by using the compare and swap instruction or via an MVS 
POST macro. ($WTOECB is the event control block (ECB) through which the JES2 
communications task, $HASPWTO, waits for work.) Because CMBs are removed 
from $BUSYQUE asynchronously by the JES2 communications task, they are placed 
on the queue using compare-and-swap logic to ensure synchronization when adding 
or deleting them. 

$WTOCR: WTO With User-provided CMB 
The $WTOCR routine receives control when a JES2 processor issues the $WTO 
macro with CMB =YES specified. The function of the routine is to filter out console 
routings of low importance and then enter the $WTOR service routine for functions 
common with $WTO service. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-141 



HASP CON "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

On entry, the routine uses the WSCREEN subroutine to expand the short form $WTQ 
macro calls to extended format and determine the console routings of the message. 
If the request is for a multi line write-to-operator (MLWTO) response, an attempt is 
made to own the MLWTO function unless it is already controlled by the calling 
processor control element (PCE). If it is owned by another PCE, control is returned 
with the condition code set to 0. {The user may wait for the CMB and try again when 
posted or perform other functions). Control is passed to the WBLDCMB routine 
contained within the $WTOR routine. 

$GETCMBR: $GETCMB Service Routine 
The $GETCMBR routine receives control whenever a $GETCMB macro is executed 
by a JES2 processor. The routine reduces the contents of the CCTCOMCT field by a 
specified amount, dequeues a console message buffer (CMB) from the CCTCMBFQ 
queue, and returns to the user with register 1 pointing to the first of a queue of 
CMBs. Message $HASP050 (resource shortage) is issued if the count of free CMBs 
falls below the specified threshold. If all of the required CMBs could not be 
obtained, $GETCMBR returns to the caller if WAIT=NO was specified; otherwise, 
$GETCMBR waits ($WAIT) until sufficient CMBs are available. 

JES2 processors use the $GETCMBR routine when a CMB is required to hold a 
command to be queued or a message to be displayed later by a $WTO CMB =YES 
macro instruction and when the processor is to honor the action without risk of later 
having to wait. If the content of the caller's register 0 is not 0, the absolute value in 
register 0 is subtracted from CCTCOMCT and compared against 0 (if the contents of 
register 0 are positive) or 2 (if the contents of register 0 are negative). If the result 
of the subtraction indicates that the new CMB count is low, and if WAIT=NO was 
specified, control is returned after setting register 1 and the condition code to O; this 
means that no CMBs were obtained. If the result of the subtraction is positive 
(indicating that CMBs are available), the new CCTCOMCT is set, and an attempt is 
made to remove the required number of CMBs from the CCTCMBFQ queue. If 
$GETCMBR is unable to to get all of the CMBs, the ones that were obtained are 
returned, the CCTCOMCT is increased by the amount that it was originally reduced 
by, and, if WAIT= NO was specified, control is returned indicating no CMBs were 
obtained. If all CMBs were obtained, control is returned after setting condition 
codes to nonzero; register 1 points to the first of a chain of CMBs obtained for the 
caller. 

$DOMR: $DOM Service Routine 

3-142 JES2 Logic 

The $DOMR service routine receives control when a JES2 processor executes the 
$DOM macro. The routine turns off the action flag in the console message buffer 
(CMB), scans the $DOMQUE for the CMB and, if the CMB is found to be on that 
queue, issues a DOM macro for the message and frees the CMB through a call to 
the WFREE subroutine. 

The $DOMR routine is entered by a JES2 processor that has previously executed a 
$WTO CLASS= $DOMACT macro instruction. Register 1 contains the address of the 
CMB that contained the message returned to the processor by the $WTOR or 
$WTOCR routine that handled the $WTO. $DOMR sets to 0 the action indicator in the 
CMB, increases CCTCOMCT by 1, and posts processors for the CMB. An attempt is 
made to locate the CMB in the $DOMQUE. If the CMB is found, it is freed via the 
WFREE subroutine and a DOM macro is executed using the identification saved in 
the CMB by the $HASPWTO subtask. Control is then returned to the caller. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

'- / 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$FRECMBR: $FRECMB Service Routine 

HASP CON 

The $FRECMBR routine receives control when a JES2 processor executes the 
$FRECMB macro to release a console message buffer (CMB) that is no longer 
required. $FRECMBR calls the WFREE subroutine to free the CMB, updates the free 
count, posts the processor ($POST CMB), and returns control to the caller. 

WFREE: Free CM B Subroutine 
The WFREE subroutine is used by the $FRECMBR routine, the $DOMR routine, and 
the $HASPWTO subtask. If the $WCOMRES queue is empty, the console message 
buffer (CMB) is placed on that queue and control returns to the caller. 

If the $WCOMRES queue is not empty but the SVTCMBRQ queue is empty, the CMB 
is placed on the SVTCMBRQ queue; otherwise, the CMB is placed on the 
CCTCMBFQ queue. (The SVTCMBRQ is used by the SVC 34 exit routine when 
attempting to process a JES2 command when the CCTCMBFQ queue is empty.) 
Control is then returned to the caller. 

$HASPWTO: Communication Task Routine 
The $HASPWTO routine processes operator messages queued by JES2 for display 
on operating system consoles. The routine removes the message from the queue, 
converts the message into the WTO parameter list format expected by the operating 
system, and displays the message. SVC 35 is used to display all messages other 
than operator commands to MVS. SVC 34 is used for MVS operator commands and 
messages to TSO users in order to pair the command or message to MVS. 
$HASPWTO is attached as a subtask to allow SVCs 34 and 35 to be issued without 
requiring the JES2 main task to wait until the requested service is complete. 

All JES2 $WTO messages directed to operating system consoles are queued to 
$BUSYQUE and are serviced by the JES2 communications subtask. When a console 
message buffer (CMB) is placed in the $BUSYQUE, the main task posts ($POST) the 
subtask. The communications routine is entered and removes all CMBs from the 
$BUSYQUE, requeuing those CMBs to the $CONWKQ queue in priority order. The 
routine then examines $CONWKQ. (If no eligible CMBs are found on the queue, the 
routine waits for new CMBs and, on regaining control, repeats the $BUSYQUE 
scan.) If the routine has been entered to continue a multiline write-to-operator 
(MLWTO) response, all other requests are ignored until the last line of the MLWTO 
has been processed. 

For normal WTO messages, the contents of the CMB are formatted into a list-form 
OS WTO. If the CMB includes a UCMID, indicating that the message is for a specific 
console, the WTO is altered accordingly. Out-of-line areas are detected and result 
in MLWTO formatting of the message. 

The message text is copied from the CMB to the WTO field. Control fields are 
shifted to complete the WTO parameter list for normal logical console and for 
UCMID WTOs. If the message is for a TSO user, a TSO SEND command is created 
and sent via SVC 34. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-143 



HASPCON 

3-144 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

If a UCMID request indicates that a command is present, the multiple console 
support (MCS) flags are set to 0 and SVC 34 is issued; if the UCMID indicates X'FF', 
the command contains a start initiator command, and on successful execution of the 
command, the routine sets the appropriate partition information table (PIT) flags to 
indicate that the start was accepted. The CMB is freed, and $HASPWTO returns to 
its initial entry point to repeat the $BUSYQUE scan. If the CMB contains a message 
for a logical console and the $DOMACT flag is on, the WTO parameter list is altered 
to indicate that immediate action is required. The WTO SVC is issued, and the DOM 
identification is saved in the CMB. The CMB is queued to the $DOMQUE queue, the 
asynchronous 1/0 processor is posted ($$POST), and the routine reenters its 
$BUSYQUE scan. 

When all CMBs have been processed, the routine calls the WFREE subroutine to 
free each CMB and posts the main JES2 task ($$POST CMB). 

Finally, the WTO macro is executed. If the request is for an MLWTO, the connect ID 
is saved and an MLWTO in process flag is set or reset, depending upon whether the 
endline indicator appears in the WTO after formatting. $HASPWTO then returns to 
its $BUSYQUE scan to await more CMBs to process. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

' 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPTRAK: Track Management 
HASPTRAK manages spool track space. It consists of: 

$TRACK 
$TGMSET 
$BLDTGB 
$PURGER 
HASPVPRG 

Direct-Access Space Allocation 

HASPTRAK 

Direct-access (spool) space allocation is based on a technique of mapping bits in a 
table to groups of tracks on physical devices. A master map ($TGMAP) is defined 
that represents the available number of track groups across all spool volumes. 
Each bit in the map defines a contiguous set of tracks (and records) for a particular 
volume. If a bit is on (1), it indicates the availability of a particular track group. If a 
bit is off (0), it indicates that the particular track group has been allocated. The 
recording of the allocated track group is through a map (table) supplied by the user 
that is the inverse of the master map. A bit that is on indicates that the 
corresponding track group is allocated to the owner of the map. A bit that is off 
shows no allocation. 

The master map is constructed at JES2 initialization. The size of the master track 
group bit map is determined from the TGNUM initialization parameter on the 
SPOOLDEF statement. The number of bits in the map, which represents a particular 
spool extent, will vary according to the size of the SYS1 .HASPACE data set. Spool 
volume extents can be added to the master track group map until space in the map 
is exhausted. The characteristics of a spool volume are recorded in a direct access 
control blocks (DAS) (one for each volume), which is also constructed at JES2 
initialization or at dynamic addition of a volume. Included in the DAS are: number 
of tracks per cylinder, data extent block (DEB) extent number, number of records 
per physical track, number of track groups, number of tracks per group, offset from 
the beginning of the master map to the first byte of the master map representing the 
extent defined by the DAS, number of bytes in the map for the extent, the relative 
track address of the beginning of the SYS1.HASPACE data set, and the address of 
the rotation position sensing (RPS) table for the mode of direct access. 

Track groups are supplied to users through the track group block located in common 
storage as part of the subsystem vector table (SSVT). Each entry in the track group 
block (TGB) represents a track group as allocated from the master map. An entry 
consists of an MTTR (M = module or extent number, TT = relative track number, R 
= record number), offset of the byte in the master map containing the bit 
representing the track group, an offset to the JQE, and a byte that contains the bit 
representing the track group. 

Removal (allocation) of a track group from the TGB is accomplished by two 
subroutines: $TRACK, described below, and $STRAK, in module HASCSRIC. The 
replenishment of the TGB is performed by the JES2 checkpoint processor, which 
calls a local subroutine (KBLOB), defined along with the checkpoint processor, in 
the HASPCKPT module of JES2. 

To meet the performance requirements of the IBM 3800 Printing Subsystem, a 
second level of direct-access spool space allocation exists. Each spool track is 
logically divided into track cells, each containing two or more buffers. Track cells, 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-145 



HASPTRAK "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

rather than individual buffers, are allocated to data sets, and each output record that 
is produced is placed in a track cell allocated to the data set being created. When 
the data set is to be retrieved from the spool volume being written to the output 
device, channel programs read track cells rather than individual output records in a 
single 1/0 operation. (For additional information on the use of track cells, refer to 
the descriptions of the $STRAK subroutine in HASCSRIC, the $TRACK subroutine 
described below, and the discussion of HASPPRPU in this section.) 

$TRACK Service Subroutine 
This subroutine provides track group allocation to JES2 processors being executed 
in the JES2 address space. The general operation of $TRACK is identical to the 
HASCSRIC $STRAK subroutine, which provides track group allocation to users of 
JES2 services operating outside the JES2 address space. There are three major 
differences between $TRACK and $STRAK: (1) $TRACK operates on behalf of JES2 
processors and uses $WAIT logic to force the caller into a JES2 wait when the track 
group block (TGB) needs replenishing. (2) When control is returned to the caller, 
the condition code is set to indicate the status of the TGB entry allocation. Condition 
code 0 is set if a new track group has been allocated for this call of $TRACK. and a 
track group allocation entry (TGAE) containing the MTT of the allocated track has 
been created. If no more available TGAEs exist in the allocation input/output table 
(IOT), $TRACK allocates a secondary allocation IOT. A non-zero condition code is 
set if an old track group has been used in the allocation of the return MTTR. (3) The 
mask for spools used, in the JQE, is updated if a new track group is obtained. 

Like $STRAK, $TRACK incorporates a JES2 exit point. However, $TRACK uses exit 
points TBLOBANJ and $TRACKX (for exit 11) for installation spool partitioning 
purposes. 

$TGMSET: Set Bit in a Track Group Map 
This routine is passed a track group map address in register 0, and a MTTR value in 
register 1. A parameter list, which is pointed to by register 15, specifies whether the 
bit is to be turned on or off in the track group map. The parameter list also specifies 
whether or not $TGMSET should issue a $QSUSE macro. 

This routine is also passed a parameter flag indicating that error checking is to be 
performed. If the bit to be set off is already off, or if the spool space to be marked 
does not belong to this job, error messages are issued. If the bit to be set is set on 
in the bad track group map, the bit will not be set off in the master track group map 
and the MTT is passed to $BLDTGB. $TGMSET exits with the address of the byte 
affected in the map in register 1 and the bit number in register 0. 

$BLDTGB: Build a Track Group Block 

3-146 JES2 Logic 

This routine builds a track group block (TGB) for any bits that are set on in the 
provided track group map pointed to by register 1. The TGB is then queued to the 
$SPOOLQ, for later processing by the HASPSPOL processor. The $BLDTGB routine 
then posts ($POST) the HASPSPOL processor. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$PURGER: Direct Access Space Purge Routine 

HASPTRAK 

The $PURGER service routine is entered upon execution of a $PURGE macro 
instruction. Following a SAF call, the routine issues the $QSUSE macro to access 
the required checkpoint data, finds the master track group map, and frees that 
portion of the master that represents the track groups assigned to the user whose 
task is being purged. 

The $PURGER service routine then marks any track groups in the bad TGM as being 
allocated in the master track group map (TGM). It then queues any new bad track 
groups to the HASPSPOL processor, via the $BLDTGB service routine and clears the 
users track group map. The routine then posts (via a $POST macro) the checkpoint 
processor, causing a JES2 checkpoint to be taken to reflect the new track group 
assignment. 

During this purge processing, track groups that are allocated to the job or data set 
are normally returned to the master TGM. Any track groups that are defective will 
not be returned to the master TGM. However, the master TGM will indicate that 
these track groups are allocated; the only track group map that reflects that they are 
bad track groups is the bad TGM. 

The bad track group map ($TGBAD) reflects the condition of the track groups in the 
master TGM. When an 1/0 error is encountered for a job or data set, the associated 
track group is immediately flagged "bad" in $TGBAD; the track group will remain 
allocated to the job. 

When the job or data set is purged, $PURGER returns the track groups allocated to 
this job or data set by passing the $TGMSET routine the TGAE values for the track 
groups. $TGMSET then sets the bits in the master map to reflect the changes. If the 
bit to be changed is set on in the bad track group map, the bit is not turned off in the 
master track group map and the MTT is passed to $BLDTGB. 

An attempt is made to recover bad track groups from the job or data set being 
purged. These track groups are determined by logically 'ORing' the IOT TGM with 
the bad TGM and then exclusively 'ORing' the results (which are in the IOT TGM) 
with the track group map. 

If $PURGER finds a spin IOT, it marks it as reusable so that HASP allocation support 
can reuse the spool block for a new spin data set for the same job. 

HASPVPRG: Purge Processor 
HASPVPRG frees all tracks acquired for a job, queues an SMF type 26 purge record 
for output (and a JMR buffer if an exit is found), and notifies the operator that the job 
is purged. When a data set is deleted, a SAF call is issued to audit the deletion. (A 
SAF call is not made for the purging of any jobs marked non-selectable due to 
invalid work selection criteria.) 

HASPVPRG: When the purge processor is first entered, it issues a $GETBUF macro 
instruction to acquire storage for two buffers: one to contain a job control table 
(JCT), and one to contain an input/output table (IOT). 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-147 



HASPTRAK 

3-148 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

VGETJOB: At this label, a $0GET macro instruction is issued to obtain a job to be 
purged from the $PURGE queue. If the queue is empty, VGET JOB releases its 
buffers with a $FREBUF, if not already released, and waits ($WAIT PURGE) for a job 
to be queued. When the wait is satisfied, VGET JOB is entered again to determine 
whether there is a job to be purged. 

When the purge queue does contain a job to be purged, VGETJOB issues a 
$GETBUF for the JCT/IOT, if necessary, and then issues a $ACTIVE macro 
instruction to indicate that a processor is active. VGET JOB then prepares for 1/0. 

VGETJCT: VGETJCT prepares for JCT read processing by setting the track and 
buffer address for the eventual $EXCP. VGET JCT checks the JOEFLAG3 to see if 
the JOE is associated with a system data set. If the JOE is associated with a system 
data set, then no JCT exists for it; reading a JCT is bypassed. If the JOE is not 
associated with a system data set, VGET JCT checks JOEFLAG4 to see if a force 
purge of the job is required; if it is then if the volume on which the JCT resides is 
unavailable reading of the JCT is bypassed. Otherwise, VGET JCT invokes the 
$JCTIO routine to read the JCT. Calls are made to VIOTPRG to purge tracks. 

After $JCTIO finishes processing or as a result of bypassing the read of JCT. 
VGETJCT issues a $WTO macro instruction to schedule message $HASP250, 
indicating to the operator that the job has been purged except if JOEFLAG4 
indicates that this JOE is a copy of a moved job. After this $WTO, VGET JCT deletes 
the job from the purge queue ($OREM) and waits for the checkpoint to complete 
($WAIT CKPT). 

When the checkpoint is complete, a check is made for a JCT; if it doesn't exist, 
VIOTSPCL purges the IOT. If a JCT exists, a check is made if the JCT was read 
without an error; if it was, VNOERROR is invoked. If there was a read error, the 
$DISTERR macro instructions are issued to indicate the error and then a 
$DORMANT is issued to indicate that job processing is complete for this JES2 
processor. VGETJCT a branch is made to the beginning of the main processing loop 
at VGET JOB to wait for the next job to be entered on the purge queue. 

VNOERROR: If the correct JCT was read successfully, VNOERROR returns the job's 
tracks through calls to VIOTPRG. First, the spin IOTs, pointed to by JCTSPIOT, are 
read and the tracks represented in their track group maps are returned. Then the 
tracks represented in the track group map of the first regular IOT are returned and a 
branch is taken to VIOTPRG. 

Before the tracks are purged, however, the allocation IOT is checked to see if the "in 
purge" bit is on. If it is, only the JOE is removed. 

VIOSPCL: VIOSPCL purges the IOT belonging to a special system data set JOE 
(where JOETRAK = IOT track address) or handles the case when no JCT is available 
for a job. When purging the IOT, VIOSPCL invokes VIOTPRG to perform the 1/0 and 
purging. When no JCT is available for a job, VIOSPCL issues a $DORMANT macro 
instruction to indicate to the JES2 dispatcher that a JES2 processor has completed 
processing of a job and is going into a dormant state. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

(-

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPTRAK 

VIOTPRG: VIOTPRG performs the actual IOT purge requested by the main 
processing loop; it issues a $EXCP macro instruction to read the specified IOT, 
verifies that the correct IOT has been read, and determines that an allocation IOT 
has been read. (Other IOTs are ignored; VIOTPRG returns to its caller, unless an 
unrecoverable error occurs as the IOT is being read.) If a valid allocation IOT has 
been successfully read, VIOTPRG issues a $PURGE macro instruction to free the 
allocated tracks and returns to the caller. 

If an 110 error occurs in reading the IOT, VIOTPRG issues a $DISTERR macro 
instruction to enter the disastrous error routine, indicating VDSTER as the label at 
which the error was detected. 

VSMFPRG: When all of the job's direct-access tracks have been freed, a $GETSMFB 
macro instruction is issued to obtain a buffer; the macro is issued a second time if a 
user exit is to be taken. The common exit parameter area and the job management 
record (JMR) portion of the JCT are preserved in one buffer, and a type 26 SMF 
record is created and saved in a second buffer. A $QUESMFB macro instruction is 
issued to add the SMF buffer to the queue of busy SMF buffers and to post the SMF 
buffer management subtask. If the user exit is to be taken, the JMR and SMF buffers 
are chained together before the $QUESMFB macro instruction is issued. Otherwise, 
the buffers are not chained together, and the JMR buffer is ignored. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-149 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCOMM: Command Processor 
The JES2 command processor receives all JES2 commands entered from 
acceptable local or remote JES2 input sources. The processor is responsible for 
decoding each command and performing the processing necessary to cause 
appropriate action for the operator's request. 

Command Authority Checking 

3-150 JES2 Logic 

SAF calls are made during JES2 command processing to perform the RACROUTE 
REQUEST= AUTH security function for all JES2 operator commands. JES2 issues 
the $SEAS macro which issues the SAF call. IEECB920 sends the following return 
codes back to JES2 indicating how to proceed with command processing: 

• Accept - Process the command; bypass normal JES2 console authority 
checking. 

• Reject - Do not process the command. 
• No decision - Either the security package (RACF) or command authority 

checking was not active. No audit record is written by RACF and JES2 performs 
the default console authority checking. RACF returns a reason and return code 
indicating the reason for "no decision". 

JES2 commands can be entered into the system from many different sources. 
Following is a list of ways and any special considerations regarding command 
auditing. 

Commands from MCS consoles 
JES2 receives its operator commands from MCS on the SVC 34 SSI call. This 
call includes the security token of the operator logged on to the console from 
which the command was entered. The token (passed in the SSOB extension) is 
included with the other command data passed to the JES2 address space for 
command processing. 

Commands from readers 
JES2 accepts commands imbedded in input streams from readers. If the 
commands are JES2 commands, JES2 processes them internally. In this case, 
JES2 passes to $SEAS the security token that was associated with the reader 
when it was last started. If the reader is started by an operator, the reader's 
security token contains some information from the operator's token. If the 
reader was started from initialization options, the reader's token contains the 
JES2 security information. 

If the commands are MVS commands, JES2 does not process them. They will 
be recognized by the converter and passed to MCS command processing via a 
MGCR. JES2 will issue a RACROUTE REQUEST=VERIFYX ENVIR=CREATE 
call for the user who submitted the job before invoking the converter/interpreter 
{C/I). This allows the SAF call made by MGCR processing when it receives a 
command to check against the security level of the user who submitted the job 
containing the command. Upon return from the C/I, the RACROUTE call is 
issued again specifying ENVIR =DELETE. 

Commands issued from SVC 34 
A program {for example, SDSF) may send a command to JES2 by issuing an 
SVC 34. JES2 uses the security token passed across the SSI for these 
commands. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Commands from other nodes 

HASPCOMM 

The remote console processor (HASPRT AM) issues a SAF VERIFYX call to 
obtain a security token for the connected node and queues the command to 
HASPCOMM. Whenever a command is received from another node, 
HASPCOMM calls $SEAS passing it the security token associated with the 
transmitting node. If the $SEAS return code is 4, JES2 validates the source. 

Commands from RJE devices 
A RACROUTE call is issued for each RJE device in the system when the device 
signs on to create its security token. Whenever a command is received from the 
RJE device, HASPCOMM calls $SEAS passing it the security token associated 
with that RJE device. If the $SEAS return code is 4, JES2 validates the source. 

Commands from internal readers 
Commands from internal readers use the token associated with the user 
allocated to the internal reader. 

Internally-generated commands 
JES2 sometimes generates MVS or JES2 commands as part of its processing. 
These commands are not passed to an operator. They go through the normal 
command processing path, including the call to the MCS common command 
authorization routine. 

However, the user security environment used for the check is the JES2 address 
space, not that of an operator. The installation must ensure that JES2 is running 
with a "trusted" security classification so that commands required by JES2 will 
not be rejected. If a command is rejected, a message is sent to the consoles 
receiving security route code messages and the command will not be 
processed. This will result in erroneous system operation because JES2 
expected the command to complete. 

Commands from the JES2 initialization stream 
.JES2 allows commands to be entered from within the initialization stream. The 
SAF call is made using the security token associated with the JES2 address 
space. 

$VS commands 
The JES2 $VS command, used to enter an MVS system command, is disallowed 
from an MCS console because the console operator can issue MVS commands 
directly without going through JES2. 

The $VS command is permitted from readers, the initialization stream and from 
within automatic commands. When $VS is issued from a card reader, the 
security token of the reader is associated with the $VS command. When issued 
from the initialization stream, the token associated with the automatic command 
is JES2's security token. When issued from within an automatic command, the 
token associated with the automatic command is associated with the $VS 
command. 

Display authority is the default command authority for card readers and internal 
readers. Therefore, the $VS command (in addition to other system commands) 
is not allowed from the devices unless the installation specifically allows it. 

Automatic commands 
Commands that manage automatic commands are audited like any other 
commands from a console. Commands entered as a result of automatic 
command initiation are also audited, but the security token used on these audits 
is the one for the last operator to enter a $TA command that changes the 
automatic command. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-151 



HASPCOMM 

Multiple commands on an input line 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

JES2 separates multiple commands on an input line and processes them with 
separate calls to the MCS command authorization routine for each command. 

Display and list commands 
All JES2 display and list commands have read-level authority (except for $L 
SYS, which requires control-level authority). 

Command text 
JES2 calls the MCS command authorization routine during command processing 
to audit command text following exit 5 invocation, which allows modification of 
text finish processing. 

Exit 36, invoked prior to command auditing, can provide a return code indicating 
that JES2 is to bypass the MCS command authorization routine and/or not 
process the command. In this case, it is the exit's responsibility to issue the 
SAF call or write an audit record. 

Exit 37, invoked after command auditing, can provide a return code indicating 
that JES2 is to ignore authorization routine's return code. 

HASPCOMM Processing 
The command processor is initially entered at the beginning of control section 
HA$PCOMM. The initial entry activates the last phase of start initiator command 
processing. This phase schedules the queueing of console message buffers (CMBs) 
containing commands to the operating system to start desired initiators. 
Subsequent entries are returned from the various command sub-processors with 
optional requests to display the OK message or other messages contained in the 
command area (COMMAND) of the processor control element (PCE). After any 
requested replies have been displayed, the JES2 console message buffer queue 
$COM MOUE is examined for the presence of the next command to process. If 
$COMMQUE is empty, the CCTCOMMQ is examined, and any CMBs queued to that 
queue are removed and requeued to the $COMMQUE in reverse order. If 
CCTCOMMQ is empty, $COMMQTP is examined and any CMBs are handled in the 
same manner. If $COMMQTP is also empty, the automatic command queue is 
examined for an expired automatic command element (ACE). If an element exists, 
the commands contained in the ACE are placed in a CMB, the CMB is queued to the 
$COM MOUE, and the ACE is freed (if no interval exists for the element} or placed 
back into the active queue with a new expiration time (if an interval does exist). If 
attempts to obtain new commands are unsuccessful, the processor waits ($WAIT 
WORK) and repeats its dequeuing efforts when it is posted. When a CMB is 
successfully obtained, the command edit routine is entered. 

HASPCOME: Command Edit Routine 
The following text describes the function of the HASPCOME routine and its role in 
the overall command processor function. 

Command Edit and Break Out 

3-152 JES2 Logic 

Selected control fields are moved from the console message buffer (CMB) into a list 
form of the $WTO macro contained within the processor control element (PCE) work 
area of the command processor. Command authority information is extracted, and 
the $WTO list is set up for responses to the command contained in the CMB. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCOMM 

The command area (COMMAND) of the command processor's PCE is cleared to 
blanks. If the CMB is flagged as containing a formatted global networking command 
(CMBTYPE=CMBTYPEF), command editing is bypassed, and HASPCOME issues a 
$FRECMB for this CMB and enters exit point, COMMEXIT, (for exit 5) where control 
is passed to the installation exit routine (if it exists and is enabled). The installation 
exit routine can preprocess the command before HASPCOMM does. When the 
installation exit routine returns, normal HASPCOME processing continues; an OK 
message is issued (via $CRET) for the command or an alternate message is issued 
(via $CRET) then HASPCOME returns, cancelling any existing ESTAE prior to 
returning. If command editing is not bypassed, the CMB buffer scan continues. The 
command is moved into that area from the CMS and edited as it is moved: single 
quotation marks replace double quotation marks, blanks and comments are 
eliminated, and all alphabetic characters are changed to uppercase. (Blank 
elimination and alphabetic character alteration are applied only to character strings 
not enclosed within quotation marks.) 

As each comma outside paired quotation marks is encountered, an entry of the next 
available character position is made in the COMPNTER area of the PCE. (The first 
entry is the address of the character after the verb; the second is the address of the 
second operand, and so forth.) When the COMPNTER area is full, recording is 
discontinued. If a semicolon is encountered outside paired quotation marks, it is 
assumed to be a delimiter between multiple commands. If it is the first semicolon, 
the remaining portion of the CMB is moved to the beginning of the buffer, and the 
length field in the CMS is adjusted to reflect the new length of the content of the 
CMS. 

The scan of the CMB is resumed. If another semicolon is found, a check is made to 
determine if it precedes the specification of a global L = cca operand. If not, that 
portion of the CMB that was moved to the PCE area COMMAND following the first 
command is cleared from the COMMAND area and scanning of the CMB is 
resumed. If a global L=cca operand is found, it is moved to the COMMAND area to 
become the operand for the current command (also contained in COMMAND). 

If multiple commands are present, the CMB is requeued for subsequent scanning. If 
there are no multiple commands, the CMS is released, and the count in $COMMCT 
is increased by 1 (posting for CMB if necessary). 

If the response to the command now contained in the COMMAND area is to be sent 
to an operating system console selected according to console identification, the text 
is examined for the presence of one of the following redirected response 
specifications: 

Specification 

$command, L=cca 
$command; L=cca 
$command, L=cca;L=cca 
$command, L=a;L=cca 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

Meaning 

Individual 
Global 
Both (individual overrides global) 
Both (individual area overrides global area) 

Chapter 3. Program Organization 3-153 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Although a semicolon is shown, a comma is inserted as the global separator by the 
edit routine. The specification, if entered correctly, is converted; the console 
identification in the COMUCM field is replaced by the cc specification, and the 
content of the COMUCMA field is replaced by the area specification (a). Appropriate 
flags are then set to indicate what fields were set by the L = cca specification. If a 
specification is found to be invalid, it is passed to the command sub-processors 
unless an invalid global specification is accompanied by an acceptable individual 
specification. The last operand pointer field plus 4 in the PCE is set to the address 
of the second character beyond the last solid character (null operand). Operand 
control registers are set as follows: 

Register Content 

R3 Address of the first operand pointer in the COMPNTER field 
R6 4 
R7 Address of the last operand pointer in the COMPNTER field 

Selecting the Command Sub-processor 

3-154 JES2 Logic 

While performing the command edit and breakout function, the HASPCOME routine 
examines the command to determine if it was an NJE send command; if so, the 
appropriate flag is set at that time. If the command has been so flagged 
(COMML;CO), and there is an available path to the desired command destination, a 
console message buffer (CMB) is obtained, and all data following the semicolon is 
copied into the message portion of the CMB. The CMB is updated with the 
destination information supplied by the NJE send command. Finally, the 
HASPWQUE routine in HASPCON is called to queue the CMB for transmission by the 
remote console processor. The edit routine then returns to the main processor with 
the OK message in the COMMAND area for display. 

If it is not an NJE send command, two command selection tables are used to 
determine the sub-processor to be entered, as follows: 

COMFASTR: This table consists of an entry for each letter of the alphabet that is 
valid as the first letter of a command. Each entry consists of the letter, followed by 
the address of the second-level table that is to be used in identifying the rest of the 
command. The command processor compares the first character of a command 
with the first character of each entry and, unless the command character is invalid 
and does not appear in this table, loads the address of the corresponding 
second-level table for further processing. 

COMTAB: This is the label identifying the beginning of the second-level tables. A 
second-level entry contains (among other fields) a variable-length command verb 
with a maximum length of 7, and the address of the group processor needed to 
process the command. A complete second-level table contains one entry for each 
command verb beginning with the same first character. The command processor 
selects a group processor address from this table when the comparison for 
acceptable verb is successful. 

If the end of the entries for that verb or the end of the table is encountered, the 
command is considered invalid, and the edit routine returns to the main processor 
with the "INVALID COMMAND" message in the COMMAND area so that the 
command will be displayed. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Validating the Source and Entering the Group Processor 

HASPCOMM 

HASPCOMM issues the $SEAS macro to validate the source of the command using 
RACF (or other installed security product). If the command source is determined to 
be invalid, the following COMTAB restrictions are bypassed. If no security product 
is installed, or if the $SEAS call returns a "no decision" return code, then the 
following (default) COMTAB restriction checking takes place. 

Each entry of the second-level selection table beginning at COMTAB may have 
restriction indicators as follows: 

• COMR = 1: Reject remote sources and consoles which are restricted from 
entering network commands. 

• COMS = 1: Reject consoles that are restricted from entering system commands. 

• COMO= 1: Reject consoles that are restricted from entering device commands. 

• COMJ = 1: Reject consoles that are restricted from entering job commands. 

The selection indicators correspond to the restriction indicators that appear in the 
COMAUTH field. The COMAUTH indicator is previously set from the CMBFLAG field 
of the JES2 console message buffer, which in turn is set by other JES2 processors 
as follows: 

• CMBFLAG, when set by the remote console processor or remote reader 
processors, contains the remote indicator. This indicator corresponds to the 
COMR bit in the selection table. 

• CMBFLAG, when set by the MVS console interface is the MVS authority 
indicator inverted with the exclusive OR immediate (XI) instruction. 

The restriction indicators are used as the second operand of a test under mask (TM) 
instruction. If any restriction indicator in the COMAUTH field corresponds to any 
restriction indicator in the selection table entry, the command is rejected as invalid. 
If the operand L=cc has not been accepted and the source is an operating system 
console, the selection table entry is examined for the presence of an automatic 
redirection index. If the offset exists, the COMUCM field is adjusted with a new cc 
value, unless an L=cc specification has been previously accepted from the 
command text. The area ID portion of the COMCLASS field is also set with a new 
"a" value unless an L=cc or L=a specification has been previously accepted from 
the command text. If the resulting area specifies an out-of-line console area, the 
operating system console verification routine IEE7603D is called to verify the 
console and area. If IEE7603D does not accept the specifications, the area is set to 
binary zeros and the command is rejected; otherwise, register 1 is set with the value 
in the selection table entry COMTOFF field, and control is passed to the group 
processor indicated by the selection table entry element. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-155 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HA$PCOMM Command Preprocessing JES2 Exit Point 
This exit point, COMMEXIT, allows the user (through user exit routines) to alter, 
delete, or reroute the response to a command. 

The register values upon entry and exit are: 

Register Entry Value Exit Value 
RO-R4 N/A Unchanged 
R5 Address of current operand Unchanged 
R6 Increment value of 4 Unchanged 
R7 Address of last operand Unchanged 
R8-R10 N/A Unchanged 
R11 HCT address Unchanged 
R12 NIA Unchanged 
R13 PCE address Unchanged 
R14 Return address Unchanged 
R15 Entry address Return code 

The valid return codes for this exit are: 

0 - Continue normal processing. 
4 - Continue normal processing. 
8 - Take normal $CRET return (deletes command). 
12 - Issue $CRET OK message. 
16 - Issue $CRET message (message text must be in the COMMAND area and the 

message length must be in RO). 

Nole: For return codes of 0 and 4, a RACROUTE call is issued to perform security 
checking; for return codes 8, 12, and 16, no call is made. 

COMMRCVR Command Processor Recovery Routine 

3-156 JES2 logic 

COMMRCVR is called by the $RETRY routine to perform error recovery for the 
HASP command processor. $RETRY invokes COMMRCVR based on the setting of 
the RECADDR = parameter in the $ESTAE macro that was issued prior to a system 
abend condition or catastrophic error; COMMRCVR attempts recovery only from 
program check errors. 

Upon entry, COMMRCVR issues a $SAVE macro to save the caller's registers. Then 
it sets addressability to the ERA, PRE, and SOWA using registers R5, R3, and R4 
respectively. Next, it checks the SDWAERRA field in the SOWA. If the flag 
SDWAPCHK is on, then the abend was caused by a program check. If it is off, 
COMMRCVR branches to issue a $SETRP macro with the PERCOLATE option, and 
returns to $RETRY. 

To recover from an abend caused by a program check, COMMRCVR discards the 
command that was being processed when the program check occurred. This action 
is based upon the probability that the command was the cause of the program 
check. This is done by setting the resumption address via the $SETRP macro using 
the RESUME= CONEXT parameter, and then returning control to the $RETRY 
routine via $RETURN. The operator is informed of the recovery action prior to 
returning ($HASP691). 

Before the command is discarded, COMMRCVR checks for a multiple-line WTO 
(MLWTO) in progress by testing two fields in the PCE, COMFLAG and COMUCMA. If 
COMFLAGU is on in the COMFLAG field and COMUCMA is not equal to zero, then a 
MLWTO is in progress. To terminate the MLWTO, COMMRCVR issues a null line 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCOMM 

WTO and zeros the COMUCMA field to prevent the message being issued by 
COMMRCVR from being considered part of the MLWTO. Then COMMRCVR moves 
the $HASP691 message into the command area of the PCE along with the partial 
command in the PRE (PRETRACK) and issues the message to the operator. 
COMMRCVR then uses the $SETRP macro to set the resumption address and the 
$RETURN macro to restore the caller's registers and return to the $RETRY routine. 
Note that the $ESTAE is in effect only while the command is being processed by its 
group processor. 

If COMMRCVR is entered for any reason other than a program check, there is no 
recovery; the PERCOLATE option of the $SETRP macro is set and control is returned 
to $RETRY. The command terminated message ($HASP691) is sent to the master 
console as well as to the console issuing the command that abnormally terminated. 
If the master console issued the command, that console receives the message 
twice. 

The following are the register settings upon entry to COMMRCVR: 

Register Entry Value 

RO Same as at time of abend 
R1 Pointer to ERA 
R2-R10 Same as at time of abend 
R11 HCT address 
R12 Same as at time of abend 
R13 PCE address 
R14 Return address 
R15 Entry address 

Command Group Processor Control Sections 
On entry, the checkpoint data (including the job queue and job output table) has 
been stabilized (that is, no checkpoint read is in progress). The $CWTO routine, if 
forced to wait ($WAIT) for a console message buffer (CMB), reestablishes stability. 
It is the sub-processor's responsibility, in a multi-access spool environment, to 
reestablish stability following any other $WAIT. 

If applicable, the entry routine of each command group processor control section 
uses the offset value in register 1 (set by the edit routine} to determine the entry 
point for the designated sub-processor. Normally, the sub-processor is entered 
directly by a branch on register 1. However, some control routines preprocess the 
operands of the command prior to entering the sub-processor. Each sub-processor 
performs the desired functions and returns to the main command processor for the 
next command. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-157 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Command Processor Organization 
The JES2 command processor is created by a single assembly with two control 
sections (CSECTs). The main CSECT, HA$PCOMM, contains the main entry point, 
console message buffer (CMB) queueing, and R12 service routines. The other 
CSECT, HASPCOMA, contains the edit processor (symbol HASPCOME), the 
command processor recovery routine (symbol COMMRCVR), and all of the 
command sub-processors. HASPCOMA is not addressable; however, the edit and 
each command sub-processor use the RB service routine to provide addressability 
for their respective functions. The edit routine loads RB with the address of the 
command sub-processors as well as initializes register 1 with the offset entry to the 
verb processor within a command sub-processor group. The logical organization of 
the command sub-processors follows: 

1. Scan command request sub-processor (HASPCSCN) 
2. Job queue commands (HASPCJB1, HASPCJ1A) 
3. Job list commands (HASPCJB2) 
4. Miscellaneous job commands (HASPCJB3, HASPCJ3A, HAPSCJB4) 
5. Device list commands (HASPCDV1) 
6. $T device commands (HASPCDV2) 
7. Spool data set commands (HASPCDV4) 
B. PCE commands (HASPCPCE) 
9. System commands (HASPCSY1) 

10. Console commands (HASPCSY3) 
11. Automatic operator commands (HASPCAOC) 
12. Miscellaneous display commands (HASPCMS1) 
13. Network job entry commands (HASPCNT1} 
14. Global networking commands (HASPCSSI, HASPCFCP) 
15. Exit commands (HASPCXIT} 
16. Remote job entry commands (HASPCRM1) 

Command Processor Work Area 

3-158 JES2 Logic 

The processor control element (PCE) work area of the JES2 command processor is 
the primary work area for the processor. Its fields are described in the following 
paragraphs. 

Standard fields are set by the command edit routine HASPCOME and are used to 
locate the beginning of each of the specified operands in the command currently 
being processed. Operand pointers (1 through n) are left-adjusted in COMPNTER. 
A dummy operand pointer locating the second character after the last operand is 
placed in the first unused COMPNTER (or COMNULOP) field. Command 
sub-processors use these areas for additional work space after the operand pointers 
are no longer needed. Examples of other uses are: 

• Job queue commands $0 N and $0 Q place queue scanning control elements in 
the COMPNTER area. 

• Job list commands place the job range number (j-jj) in the corresponding 
operand pointer element area. 

• Exit commands $TEXIT and $DEXIT place the exit range number (nnn-mmm) in 
the corresponding operand pointer element area. 

COMFLAG to COMOUT: These fields contain a list form of the $WTO macro. The 
$WTO is referenced by the single-execution form of the $WTO (located within the 
HA$PCOMM CSECT of the command processor), which is used for operator 
messages generated by routines within the processor. The control fields of the 

LY?.8-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

:(· 
" 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCOMM 

console message buffer (CMS) for each command are used to construct the list form 
of the $WTO and provide correct route codes for replies. 

COMSQD: This field contains the address of the SOD to be used for reroute 
processing that was obtained via the $GETWORK macro during HASPCOMM 
initialization. 

COMINCON: This field is used to record the input console identifier. 

COMAUTH: This field contains a copy of the console authority restriction flags 
contained in the input console message buffer CMBFLAG field. The edit routine as 
well as sub-processors refer to this field to determine acceptability of commands 
and operands entered through the input console. 

COMACEID: This field is used to identify to the operator the automatic command 
element (ACE) when an automatic command response location is rejected by the 
operating system console verification routine IEE7603D. 

COMJROUT: This field is used to identify the input source of the command and the 
destination of the command response. In the case of a networking command 
entered locally, it identifies the destination of the command itself. 

COMEWORK: This field is used as a work area by function routines as follows: 

Routine 

COFCVE 
COFDCTL 
COFJDCT 
COFJMSG 
COFRTC 

Contents Upon Exit from Routine 

Last character is blank 
First 4 characters of requested device name 
Address of job queue element for requested job 
Same as COFCVE 
Same as register 1 

COMDWORK: This field is used as a doubleword work area for convert to binary 
(CVS) and convert to decimal (CVD) instructions. It is also used to save the contents 
of registers. This field, aligned on a doubleword boundary, is used by function 
routines identified by the macros as follows: 

Routine 

COFCVE 
COFDCTL 
COFJMSG 
COFRTRC 

Contents Upon Exit from Routine 

5-character number in EBCDIC with leading blanks 
Last 4-characters of requested device name 
Same as $CFCVE 
Numerical conversion 

COMWREGS: This field is 2 doublewords and is used as a register save area by 
several of the command sub-processors ($L, $C, and $T). 

COMFWORK: This field is a three-byte area used for addressing by the command 
processor as well as by the command sub-processors $TEXIT and $DEXIT. 

COMLCCA: This field is a halfword save area for the global L=cca operand used in 
the JES2 command edit routine. 

COMCONNO: This field is a halfword save area that contains the number of MVS 
consoles; it is set in the HASPCOMM PCE by HASPINIT. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-159 



HASPCOMM 

3-160 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

COMEXTEN: This field contains a pointer to a dynamically obtained work area that 
contains routing and area specifications for local consoles. This information is used 
in order to redirect command responses as specified by the $T M command. 

COMMID: This field is a 2-byte area used for the JES2 message identifying number. 

COMMAND: This field is a 410-byte area containing the compressed form of the 
operator command. The command is overlaid by responses to the command built 
by the individual command sub-processors. Some command sub-processors use 
the area as a scratch area, and in some cases, sub-processors use the right end of 
storage to hold critical information while message replies are generated in the left 
end of the area. 

COMVERB: This field is a symbol used to point to the second character of the 
compressed command (that is, COMMAND+ 1). This is the verb of the command. 

COMOPRND: This field is a symbol used to point to the third character of the 
compressed command (that is, COMMAND+2). This is the first character of the first 
possible operand. 

COMJNAME: This field is an 8-byte area used primarily to hold the job name for the 
job name commands. It is also used as a work area by some of the command 
sub-processors. 

COMPNTER: This field is a 20-word area that contains the address of the operands 
of a command. The last used word may be used instead of COMNULOP as the null 
operand pointer. 

COMNULOP: This field is a fullword area that contains a pointer to a null location 
after the last operand of command when insufficient space is available in 
COMPNTER. It is used as a stop value for the command sub-processors when 
scanning operands. 

COMPINDX: 20-byte field used for COMPNTER and CDUTABLE index bytes. 

COMREGSV: This field is a 60-word area used to save registers and hold an 
argument list for HASPLIST ($L command) as well as scratch space for other 
sub-processors. 

COMRWORK: This is a 10-byte field used as an input area for the $DEST interface 
to the USERDEST destination verification/conversion routine. 

COMJQHDS: This field is used as a save area for job queue offsets. 

COMFCMDA: This is a 36-byte area (with its origin at COMREGSV) which is used by 
HASPCSSI as an area in which to build a global formatted command. 

COSIWORK: This is a 54-byte work area (with its origin at COMPNTER) which is 
used by HASPCFCP and contains a 36-byte subarea (COSICMDA) used to copy the 
global command from the console message buffer (CMB). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Command Processor Coding Conventions 

HASPCOMM 

The symbols within the command processor conform to the following conventions: 

• All main processor, edit routine, and processor control element (PCE) work area 
symbols start with the characters CO. 

• All function macro-generated symbols start with COF. 

• All command sub-processors have entry point symbols of the following form: 

Form Example Command Comments 

Cvvvvvvv CDN $D N v = the verb of the command (maximum length of 7) 

Cvxx CD7D $D 'jobname' Apostrophe is hexadecimal 7D 

• All symbols created for the support of the command start with characters that 
identify the entry point (CDNxxxx identifies a location originally written for the 
$0 N command). Commands with no unique operand character symbol have the 
character X as the third character. (CBXxxxx identifies a location originally 
written for the $B device command.) These conventions may be altered in 
cases where the command identification characters are redefined after original 
development. 

• The main processor CSECT is HA$PCOMM. The secondary CSECT, 
HASPCOMA, contains the command edit routine, command recovery routine, 
and the command sub-processors. Each group of sub-processors is identified 
by the symbol field of the $COMGRUP macro specified, starting with the 
characters HASPC. 

Command Processor Register Conventions 
The command edit routine passes control to the appropriate command 
sub-processor by a branch instruction. When the command group entry routine 
receives control, the registers contain the following: 

Register Contents 

Unpredictable RO 
R1 
R2 
R3 
R4 
R5 
R6 

Entry of individual command sub-processor 
Unpredictable 
Unpredictable 
Unpredictable 
First operand pointer (0 if no operand) 
4 

R7 Last operand pointer 
RS Base for command sub-processor groups 
R9 Never used (unpredictable) 
R10 Unpredictable 
R11 HASP communications table (HCT) address 
R12 Beginning of main command processor (HA$PCOMM) 
R13 Processor control element (PCE) address 
R14 Unpredictable 
R15 Unpredictable 

If more than one command sub-processor appears within the group, register 1 is set 
by the edit routine so that an unconditional branch on register 1 enters the 
command sub-processor. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-161 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Command Authority Checking 
JES2 command authority checking exists on two levels: 

1. Command/console level (default). 
2. Security product (RACF) level (supersedes default). 

The $COMTAB macro (described in the "Organizational Macros" section) defines 
command elements. Keywords on the $COMTAB macro define the authority 
required to issue a command. 

Command/Console Level 
JES2 command authority is based on the console from which it is issued. 
Additionally, each JES2 command has an associated authority. A command is 
allowed to be issued if the authority level of the console is higher or matches the 
JES2 authority associated with the command. Figure 3-5 shows the correlation 
between JES2 command authority and console authorities: 

Figure 3-5. JES2 Command/Console Authorization 

Command Level Console Level 

System Master, Console 
Job, Device SYS, 1/0 
Display Info 

This command/console authority checking is performed .if no security product is 
active or if the security product has insufficient information to perform authority 
checking. 

Security Product (RACF) Level 

3;.162 JES2 Logic 

During the command edit routine's processing, a SAF call is issued to determine if 
the command is permitted. The following information is passed to the security 
product to make the determination: 

• A security token representing the issuer of the command. 
• The resource name of the command. 
• The access level required to issue the command. 

A security token is created to represent each command source. Consoles and card 
readers receive a token associated with the operator starting the device; internal 
readers receive a token associated with the TSO user or job; the JES2 token 
represents the INIT deck and card readers started from the deck. 

Each command has an associated resource name of the format 
subsystem.verb.qualifier where: 

subsystem 
is the subsystem name where the command is being processed. 

verb 
is the JES2 command verb that describes the command action (such as Start or 
Display). 

qualifier 
is the general name for the receiver of the action (such as devices, jobs, or 
SYSOUT). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

\_ I 

/ 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCOMM 

The JES2 command authorities are associated with security access levels, as shown 
in Figure 3-6 on page 3-163. 

Figure 3-6. JES2 Security Authorization 

Command Level Security Access Level 

System Control 
Job, Device Update 
Display Read 

The return codes from the SAF call indicate that the issuer of the command is 
permitted, not permitted, or that the default command/console checking is to be 
performed instead. 

Command Processor Macro Instructions 
To provide for flexibility in the development and possible modification of the 
command processor, a macro package is included in the assembler source deck. 
This supplements the JES2 command processor source listings obtained from the 
JES2 generation and assembler process and aids the user in understanding the 
generated code used in JES2. 

Each JES2 command processor macro may depend on the definitions contained in 
the command processor source code as well as other members of the JES2 source 
library. These macros are categorized as follows: 

• Organizational: Macros that provide basic definitions and are closely 
associated with the organization of the processor. 

• R12-Based Services: Macros that call upon the main command processor to 
perform a service (display a reply). 

• General Service Functions: Macros that perform the function inline or link to a 
routine that performs the desired function. 

• Data Conversion Service Routines: Routines used for conversion of data from 
one form to another. 

• Miscellaneous Service Routines: Routines used for performing miscellaneous 
functions. 

The following conventions are used in specifying parameter requirements: 

Convention 

parameter=** 
parameter= text 

parameter 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 

Requirement 

The keyword parameter is required. 
If this parameter is not specified, a default value indicated by 
"text" is used. 
The parameter is an optional or a required positional 
parameter. 

Chapter 3. Program Organization 3-163 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Command Processor Macro Summary 
Operation Code Definition 

Organizational: 
$COMGRUP 
$COMTAB 

R 12-based Services: 
$CRET 
JES2 macro 

Define group of command sub-processors 
Define command table element 

Return to main command processor 
(macro not in HASPCOMM) - code in HASPCOMM 

General Service Functions: 
$CFCVB Convert to binary 
JES2 macro (macro not in HASPCOMM) - code in HASPCOMM 
JES2 macro code in HASPSERV 
$CFDCTL Device control table locate 
$CFINVC Reply invalid command 
$CFINVO Reply invalid operand 
$CFJDCT Find job's device control table (OCT) identifier 
$CFJMSG Display job information message (conditional) 
$CFJSCAN Assist job queue scanning 
$CFSEL Select routine based on character 
$CFVQE Verify console control over job 

Organizational Macros 
The following is a description of macros that provide basic definitions and are 
closely associated with the organization of the processor. 

$COMGRUP: Define Group of Command Sub-processors Macro 

3-164 JE82 Logic 

The $COMGRUP macro provides an entry point for the group of command 
sub-processors. It also allows definition of a common processing routine for all 
commands of that group. 

n posltlonals: Each positional specifies the command identification characters for 
the corresponding command sub-processor located within the group. For example: 

Specification Command Sub-processor Entry Point Name 
AA $AA CAA 
DA $DA CDA 
B $8 device CB 
c $C device cc 

P40 $P CP40 
840 $8 C840 
D7D $D 'jobname' CD7D 

DELAY== NO: The verb sub-processor is entered by an unconditional branch on 
register 1. If YES is specified, register 1 contains the entry address for the selected 
verb processor, and control is given to the statement following the macro. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$COMTAB: Define Command Table Element Macro 

HASPCOMM 

The $COMTAB macro defines an element in the command selection table, which is 
used by the command edit routine HASPCOME for identifying legal commands, 
eliminating unauthorized input sources, and entering the correct command group 
CSECT. 

Verb: A verb is required to identify the command. No two $COMTAB macro 
statements may specify the same verb character string. All macro statements 
creating entries tor command verbs with the same first character appear in 
consecutive statements with the statement that specifies a single identification 
character verb last. Within each $COMTAB macro, the command verbs must be 
listed in descending character length within alphabetical order. The alphabetical 
order requirement takes only the first character of the verb into account. 

Group: A group is required to identify the exact characters used in the specification 
in the symbol field of the appropriate $COMGRUP macro statement. 

LABEL: The LABEL= parameter is optional. The parameter specifies the name of 
the sub-processor that is to get control after the command group processor. If no 
name is specified, $COMTAB generates a sub-processor name according to 
command processor coding conventions. 

REJECT: The REJECT parameter is the command source rejection mask. One or 
more of the following symbols may be specified: 

Symbol Meaning 

COMR Reject the command if entered from a remote work station or NJE system 
unauthorized for networking control. 

COMS Reject the command if entered from a console not authorized for system 
control. 

COMO Reject the command it entered from a console not authorized for device 
control. 

COMJ Reject the command if entered from a console not authorized for job 
control. 

Rejection of either a remote work station or a console not authorized for system 
control appears as follows: 

REJECT=COMR+COMS 

The following keywords may also be specified on the $COMTAB macro: 

CALLER: CALLER=O indicates that HASPCOMM will process the command. 
CALLER not equal to 0 indicates that the command is to be processed by the scan 
facility. 

COMENT: COMENT=qualifier(s) specifies the second and/or third qualifiers of the 
resource name. 

DELAY: DELAY= NO indicates that authorization checking should be done by the 
COMEDIT routine. DELAY=YES indicates that authorization checking should be 
delayed until the sub-processor gains control. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-165 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

REDIR: REDIR = 0 indicates that responses to commands entered through the 
operating system console are not to be automatically redirected. If the entry 
console is an operating system console and values 1-15 are specified, the 
appropriate entry in the redirect response table for the apparent source console is 
used to redirect responses. 

Selection Table Element 

Symbol 

COMTFL 

COMTGRP 
COM TO FF 
COMTVBLN 
COMTVB 
COMTFLGS 

Offset 

0 

5 
7 
8 
15 

The following shows the organization of the selection table element. 

Length 

0000 xxxx 
nnnn 

xxxx 1 ... 

xxxx.1.. 
xxxx .. 1. 

xxxx ... 1 

4 
2 
1 
7 

Description 

Redirection index and restriction flags 
No automatic redirection response 
xxxxn = 1-15 index in the redirect response table for the console 
of apparent entry 
COMR; reject command if from remote work station or if source 
is not authorized for network control 
COMJ; reject command unless source authorized for job control 
COMO; reject command unless source authorized for device 
control 
COMS; reject command unless source authorized for system 
control 
Address of group processor 
Offset for sub-processor 
Length of the command verb minus one 
Command verb 
Flags for future use 

Note: Although the edit routine allows entry to the command sub-processor, each 
command sub-processor may reject the command due to restricted operands. 

R12-based Services 
The following is a description of macros used to call upon the main processor to 
perform a service. 

$CRET: Return to Main Command Processor Macro 

3-166 JES2 Logic 

The $CRET macro causes a return to the main command processor. $CRET issue 
$WTO and $WAIT as directed by caller. 

Registers Used: 

RO= 
R1 = 

R15 = 

length of message if response requested 
message address - (COMMAND) 
Return code 

CORTNORM - no message. 
CORTOK-OK 
CORTMSG - general message. 

MSG=: This operand can be set equal to: 

• The address of the message to be moved to the processor control element 
(PCE) area COMMAND for display (L =operand if a non-register form is 
required) 

• A literal surrounded by quotation marks of the message to be moved to the 
COMMAND area for display (L= operand not used) 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCOMM 

• The characters OK to indicate that the response OK will be moved into the 
COMMAND area and displayed (L=operand not used) 

L =: This value represents the length of the message that is to be moved or has 
al ready been moved. 

INFO= NO: skips block comment describing $CRET 
YES: displays block comment describing $CRET 

MSGID =: Specifies the message identifier to be assigned to the message issued. 

JOB= YES/NO: Specifies whether or not a job number and job name should be 
issued with the message. 

$CWTO: Write to Operator Macro 
The $CWTO macro causes a write to operator and then returns control to the code 
issuing the $CWTO. 

Registers Used: RO,R1,R14,R15 

RO= 
R1 = 

R14 = 
R15 = 

length of the message 
message address 
return address 
routine address: 

CWTO - if TRUNC =NO 
CWTOT - if TRUNC =YES 

MSG=: This is identical to MSG as used in $CRET processing, except that 
MSG= OK should not be used (use MSG= 'OK'). 

L =: This is identical to L =as used in $CRET processing except that register format 
is also accepted. 

TRUNC =NO: The multiple line WTO is not truncated. If it is set to YES, the multiple 
line WTO is truncated, and additional $CWTO or $CRET macro executions specifying 
messages result in issuance of an SVC 34 which uses the message text as the 
command to the operating system. 

MSGID =: Specifies the message identifier to be assigned to the message issued. 

JOB= YES/NO: Specifies whether or not a job number and job name should be 
is$ued with the message. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-167 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

General Service Functions 
The following macros perform the indicated function inline or link to a routine that \. 
performs the desired function. 

$CFCVB: Convert to Binary Macros 
The $CFCVB macro converts the numeric portion of a command operand to one or 
two numeric values. It allows job numbers up to 32,767. 

Registers Used: RO,R1 ,R14,R15 

RO = last number converted 

R1 = next-to-last number converted (last number if the only one or if the last is 
smaller than the previous) 

R14 = link register 

R15 = upon return, address of the character that stopped the conversion 

TYPE= CALL: generates a calling sequence for COFCVB 
RES: generates the source code for the branch and link entry 

Note: 

• TYPE= RES should only be coded once to generate the source of the macro. 

• TYPE= CALL is the default and should be used to invoke the macro for actual 
use. 

Pointer=(R1): This is the address of the COMPNTER field that addresses the 
operand containing one or more numerical values separated by a hyphen(-). 

NUM = 2: a set of numbers is to be converted (i.e. J2-200) 
;;t2: only one number is to be converted 

INFO: YES/NO displays/skips block comment describing $CFCVB 

NOK = **: This is the address of the error exit routine if the operand does not 
contain a number or if the number is larger than 9999. 

MAX=: 9999 (default) maximum number to be converted. 

$CFCVE: Convert to EBCDIC Macro 

3• 168 JES2 Logic 

The $CFCVE macro converts the number in register 0 to printable EBCDIC and sets 
the resulting digits in the first 5 characters of the PCE area COMDWORK. 

Raghiters Used: RO, R14 

Work Areas Used: COMEWORK and COMDWORK are used to convert numbers to 
EBCDIC values. 

Value= (RO): This is the positive binary halfword value used to convert to EBCDIC. 
If the register form is not used, the value is contained in the addressed halfword. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

(( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$CFDCTD: Display Device Control Table Macro 

HASPCOMM 

The $CFDCTD macro displays the device name as known to JES2, the unit address, 
and the activity status of the device control table (OCT) requested. Optionally, an 
extended display may be requested that details the complete status of the OCT 
(format varies with the device). For example, an extended display of a printer OCT 
includes the name, unit address, and activity status plus such information as the 
current forms, carriage, train, job name and number (if active), separator option, 
and pausing option. 

Registers Used: RO, R1, LINK, R15 

Work Areas Used: COMMAND is used as an output area, and COMJNAME is used 
as an output area extension. 

OCT= (R1}: This is the address of the OCT to be displayed. 

EXT= NO: This indicates whether extended display of the OCT is desired. When set 
to YES, extended status is displayed. 

$CFDCTL: Locate Device Control Table Macro 
The $CFDCTL macro information converts the abbreviated or long form of the device 
name to the device control table (OCT) address. If the device is remote, the OCT 
address is searched in the remote attribute table (RAT) chain. If the device is an 
NJE device, the OCT address is searched in the $LNEDCT chain. If the device is a 
local unit, the OCT address is searched in the $DCTPOOL chain. If the requested 
device is an internal reader, the address of the first internal reader OCT is always 
returned. 

Registers Used: RO, R1, R14, R15 

Work Areas Used: COMEWORK and COMDWORK are used to hold the long form of 
the device name and also serve as intermediate work areas. On return, register 1 
contains one of the following: 

• The address of the OCT 

• A 0 indicating the requested device's OCT was not found 

• A negative value indicating that the address is the two's complement of the RAT 
entry for the remote work station. 

POINTER= R1: This is the address of the COMPNTER field which addresses the 
operand containing the device name. 

TYPE= CALL: generates a calling sequence for COFDCTL RES: generates 
the source code for a branch and link entry 

INFO= NO: Skips block comment describing $CFDCTL YES: displays block 
comment describing $CFDCTL 

Note: 

TYPE= RES: should only be coded once to generate the source of the macro. 

TYPE= CALL: is the default and should be used to invoke the macro for actual use. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-169 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$CFINVC: Reply Invalid Command Macro 
The $CFINVC macro returns to the main command processor and causes the display 
of the INVALID COMMAND message. 

TYPE= CALL: generates a calling sequence for COFDCTL 

RES: generates the source code for a branch and link entry 

INFO= NO: skips block comment describing $CFDCTL 

YES: displays block comment describing $CFDCTL 

Note: 

TYPE= RES: should only be coded once to generate the source of the macro. 

TYPE= CALL: is the default and should be used to invoke the macro for actual use. 

$CFINVO: Reply Invalid Operand Macro 
The $CFINVO macro moves 9 characters, starting with the first character of the 
current operand, to the COMMAND area and returns to the main command 
processor, causing the display of the operand INVALID OPERAND message. 

OPERAND= (R1): This is the address of the operand to display. 

TYPE= CALL: generates a calling sequence for COFDCTL RES: generates 
the source code for a branch and link entry 

INFO= NO: Skips block comment describing $CFDCTL YES: displays block 
comment describing $CFDCTL 

Note: 

TYPE= RES: should only be coded once to generate the source of the macro. 

TYPE= CALL: is the default and should be used to invoke the macro for actual use. 

$CFJDCT: Find Job's Device Control Table Identifier Macro 

3-170 JES2 Logic 

The $CFJDCT macro finds JES2-controlled device identifiers on which the requested 
job is active. This macro searches the active job output elements (JOEs) looking for 
a JOE belonging to the requested job. If the JOE is found, the JOE contains a 
halfword field which designates the unit record device on which the job is busy. If 
the requested job is on a reader, SYSOUT receiver queue, or a job transmit queue, 
the job's job queue element (JQE) contains the device descriptor field. These fields 
are moved to a work area and the address of the first field is returned in register 1. 
If the requested job is not active on a JES2-controlled device, control is returned to 
the instruction immediately following the macro call; otherwise, control is returned 
to the above location plus 4. 

Registers Used: R1, R14, R15 

Work Area Used: COMREGSV is used to save halfword device descriptor fields for a 
job active on a device. 

JOBQE = (R1): JQE address 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

.:( 
'( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$CFJMSG: Display Job Information Message Macro 

HASPCOMM 

The $CFJMSG macro moves a display of the requested job into the processor 
control element (PCE) COMMAND area and displays it. Because a job may be 
active in more than one JES2 phase simultaneously, more than one message may 
appear for the requested job. Return after the macro call is to the instruction plus 4 
if the job is displayed; otherwise, return is to the next sequential instruction 
following the macro call. 

Work Area Used: COMDWORK is used as a scratch area, and COMMAND is used as 
a display area and flags area. 

TYPE= CALL: Generates the calling sequence for COFJMSG. 

TYPE= RES: Generates the source code of the macro for the branch and link entry. 

JOBQE=(R1}: This is the address of the JES2 job queue element for the desired 
job. 

AFF =: This field is used to indicate the active system for which the display is 
requested. (COFAFF field) Default: X'7F' - all systems. 

OPT= COFU: This flag is used to indicate which jobs are to be displayed and must 
be set to one of the following symbols: 

Symbol 

COFN 
COFS 
COFT 
COFJ 
COFX 
COFD 
COFA 
COFI 
COFO 
COFP 
COFQ 
COFU 
SET 

Meaning 

Display batch jobs 
Display system control tasks 
Display time-sharing users 
Display all of the above (COFN + COFS + COFT) 
Display all jobs in execution 
Display all jobs on devices 
Display all active jobs (COFJ + COFX + COFD) 
Display pre-execution queued jobs 
Display jobs queued for output processing 
Display jobs queued for print/punch processing 
Display all queued jobs (COFJ + COFI + COFO + COFP) 
Display jobs unconditionally (COFJ + COFA + COFQ) 
The OPT= parameter was set prior to this macro call 

OPT2: (sets COFOPT2). Default: X'OO' - no setting. Indicates if the display should 
include a list of the spools used by the jobs (COFSPLAG). The default indicates that 
the spools should not be included in the message. 

VOL= $ALLFFS (sets COMSPMSK field). Default: Job display does not depend on 
which volume job resides on. 

If COMSPMSK is other than $ALLFFS - only those jobs that reside on the volumes 
represented will be displayed. Volumes are represented by a bit mask 
corresponding to DASMASK. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-171 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$CFJSCAN: Job Queue Scan Macro 
The $CFJSCAN macro assists in scanning the job queue. As each entry is located, 
the user's PROCESS routine is entered. The user examines the entry, performs the 
function desired on the entry, and returns to the symbol specified by the 
NEXT= operand. When the end of the queue is encountered, control is given to the 
instruction following the macro. An optional feature of the macro is to allow the 
PROCESS routine an IGNORE entry to the generated code to indicate that the 
current job entry is not acceptable to the PROCESS routine. If the IGNORE= option 
is specified, the corresponding EMPTY= option is required. Register 1 is the scan 
register and is assumed to be unaltered by the user's PROCESS routine. 

Registers Used: R1, R12 

R1 = Scan registers 
R12 = Found/not found switch (in addition to processor base) 

PROCESS=: This is the address of the caller's job queue element processing 
routine. Register form is prohibited. 

EMPTY=: This is the name of the caller's exit routine to be entered when the job 
queue is found empty of jobs of the desired type. Register form is prohibited. 

IGNORE=: This symbol is used to define the entry where the scan continues when 
the current job entry is not of the desired type. 

NEXT=**: This symbol is used to define the entry where scan continues when the 
current job entry is of the desired type. 

QUEUE=**: This symbol specifies the queue to be scanned. If not specified, all 
queues will be scanned. 

$CFSEL: Select Routine Based on Character Macro 
The $CFSEL macro generates a table of sub-parameter arguments and then passes 
control to the COFSEL service routine. The positional character sub-parameter can 
be up to 256 characters long. 

Registers Used: R1, R14, R15 

R15 = upon return, the length of the keyword sub-parameter 

n Positionals of Form (character, address): Each positional character 
sub-parameter specifies an argument. The corresponding address is the address of 
the routine to be entered, if the input character matches the character argument. 
Register form is prohibited. 

OPERAND= (R1 ): This is the address of the designated input character to be 
examined. 

$CFVQE: Verify Console Control Over Job Macro 

3-172 JES2 Logic 

The $CFVQE macro tests the COMAUTH field of the processor control element (PCE) 
to determine if the input source is a remote work station or an NJE node without 
network authority. If the source is a remote work station, the NOT OK routine is 
entered unless either the print or punch route codes for the indicated job match the 
route code contained in the corresponding remote attribute table (RAT) element. If 
the source is another node, the NOT OK routine ls entered unless either the print or 
punch route codes for the job match the COMJROUT field (if entered from a remote 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCOMM 

work station), or unless the node in either the print or punch route code or 
originating node of the job match the node specified in the COMTONOD field (if 
entered at an OS console). Otherwise, the OK routine is entered. 

Registers Used: RO, R1, R14, R15 

JOBQE = (R1): This is the address of the job queue element for the desired job. 

OK= (,8): This is the address of the routine to be entered if the console has control 
over the job. The address may be a symbolic register specified as OK= (register,8). 

NOK = (,B): This is the address of the routine to be entered if the console does not 
have control over the job. The address may be a symbolic specified as 
NOK = (register,B). 

Note: Either OK= or NOK = parameters must be specified. 

TYPE= CALL/RES: This operand indicates whether or not an EJECT is generated 
before the block comment. TYPE= RES does not generate an EJECT before the 
informational block comment prior to generating the macro: TYPE= CALL, which is 
the default, generates the $CDFJMSG macro call. If INFO= NO is specified, TYPE= 
has no meaning for the EJECT. TYPE= RES generates the source code for the 
branch and link entry. 

INFO= NO: Skips block comment describing $CFVQE. 
comment describing $CFVQE. 

Data Conversion Service Routines 

YES: Displays block 

The following routines are used for conversion of data from one form to another. 

COFCVB: Convert Value to Binary 
COFCVB converts a numeric to a binary value. 

COFCVE: Convert Value to EBCDIC 
COFCVE converts a halfword binary number to EBCDIC. 

COFEDTR: Convert Value to EBCDIC 
COFEDTR converts a fullword value in RO to EBCDIC and places the result in R2. 

COFLIM: Converts limits to Binary 
COFLIM converts, to binary, a set of limits. The limits are specified in the form: 

LIM=m-n Im-* 

where m is the lower limit, n is the upper limit and * represents the JES2 default 
value of X'FFFFFFFF'. COFLIM checks the values for validity. If a validity error 
occurs, such as M > N, a message ($HASP650) is generated which indicates that the 
operand is invalid. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-173 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

COFRTC: Convert Route Code to EBCDIC for Display Subroutine 
COFRTC converts a given 4-byte internal remote code into EBCDIC form for display. 
The output text is up to 10 characters, starting in byte 2 of a 12-byte work area. 
Unfilled bytes of the area are set to blanks. 

COFRTD: Convert to Default Route Range Routine 
COFRTD examines the source console information in field COMJROUT of the 
processor control element (PCE). If the source is a remote work station, registers 0 
and 1 are set to the route code assigned to that station; otherwise, register 0 is set 
to the system default routing (0-$MAXROUT), and register 1 is set to LOCAL routing. 

COFRTR and COFRTRA: Convert Destination Ranges to Route Ranges 
The COFRTR subroutine uses USERDEST to convert each destination into a binary 
route code. This routine scans the current operand of a command for either a single 
destination or a destination range separated by a dash (-). Entering the routine at 
the COFRTR entry point causes the destination range to be converted directly to a 
binary route code; entry at the COFRTRA entry point causes the first 2 operand 
bytes to be skipped over and the remainder to be converted to a binary route code. 
(The destination code is assumed to be of the form "R = ... " .) The routine sets the 
condition code on return to indicate the validity of the input. 

Acceptable input to this routine is as follows: 

NnnnnRnnnn {-Rmmmm), 
Nnnnn.Rnnnn (-Rmmmm), 
or 
Name.Rnnnn (-Rmmmm) 
Nnnnn (-Nmmmm) 
Unnnn (-Ummmm) 
Rnnnn (-Rmmmm) 
Name1 (-Name2) 

LOCAL 

Range of remotes at a given node ("Name" is an 
8-byte EBCDIC representation for a node from a 
DESTID or Nnnnn card) 

Range of all remotes/units at given nodes 
Range of units at the local node only 
Range of remotes at the local node only 
Range of names that are symbolic representations of 
the above-mentioned ranges (from the DESTID or 
Nnnnn initialization parameters). (The names must 
be in ascending order based upon the internal JES2 
representation of the name.) 
All local destination 

COFR$DSC: Parse Given Destination to a Binary Code 
COFR$DSC parses the given destination and returns a binary route code. 

Miscellaneous Service Routines 

COFDCTL: Device Control Table Locate 
COFDCTL locates the OCT of the device pointed to by register 1. 

COFINVC: Reply Invalid Command 
COFINVC generates a $HASP649 message. 

COFINVO: Reply Invalid Operand 
COFINVO generates a $HASP650 message. 

3·174 JES2 Logic L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

COFJDCT: Find Active Devices 
COFJDCT finds devices that are active for a specific job. 

COFSEL: Select a Routine Based on Key Input Character 

HASPCOMM 

COFSEL matches the designated input characters against the list of arguments 
provided by the $CFSEL macro. When a match is found, control is passed to the 
routine designated by the corresponding address found with the matching character. 
If no match is found, processing continues with the next sequential instruction. 

COFVQE: Verify Console Control 
COFVQE tests for a restricted console. 

COFJID: Job ID Message Information 
COFJID inserts standard job information into a message area. 

COFJMSG: Generate Job Information Output 
COFJMSG generates job information output. 

CFJOEDS: JOE Display Routine 
CFJOEDS finishes formatting the $HASP688 message. 

CFJOESET: OUTGRP Set Routine 
CFJOESET gathers JOE information for the $C, $TO, $L OUTGRP command. 

CFJOEMOD: Set JOE Modification Parameters 
CFJOEMOD sets the JOE modification parameters for the $TO command. 

COFM630: Issue $HASP630 Message 
COFM630 uses $CWTO to issue the $HASP630 message. 

COFM646: Issue $HASP646 Message 
COFM646 uses $CFCVE to convert information to printable text and uses $CWTO to 
issue the $HASP646 message. 

Command Processing 
The following identifies the group processors for each set of command 
sub-processors (for example, job queue commands, job list commands, job name 
commands) and describes the commands processed by each command 
sub-processor. 

HASPCSCN: Process DISPLAY and SET Requests 
This command sub-processor processes display and set requests that will be 
processed by the $SCAN facility. This routine makes the $SCAN call and then 
displays any error messages returned by $SCAN. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-175 

I. ' 

' 

' 

:,, 
I 
i 
I· 
i~ 
!J 
il 

j 
!I 
Ii 
I 

I 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCJB1: Job Queue Commands Group Processor 

$AA 

$AQ 

$DA 

$0 N 

$DQ 

$HA 

$HQ 

3-176 JES2 Logic 

The following is a description of the individual job queue commands processed by 
the HASPCJB1 group processor. 

This command releases all jobs in the job queue that were previously held by a $H 
A command. The resident job queues are scanned for jobs that were held by the $H 
A command. If there are any, the jobs' system affinity is compared with the 
requested system affinity. The jobs are released if the requested system affinity is 
included in the jobs' system affinity. The jobs are released by turning off the 
QUEHOLDA bit and posting JES2 for a job. 

This command releases an execution queue. The CAT (class attribute table) is 
searched for the classes specified; the appropriate bit indicating that the classes 
were held is turned off. JES2 is posted for a job. 

This command is used to display active jobs. The resident job queue elements 
(JQEs) are scanned for any jobs, and if a job is found, it is displayed via the 
$CFJMSG macro instruction. The job's status is displayed by $CFJMSG, depending 
on the position of the job in the queue and the operand used for the command. 

This routine is also aware that a JOE marked busy on the hardcopy queue, with a 
JQE offset in a LCK element, represents a job being processed by a SYSOUT 
transmitter dumping held data sets. Appropriate messages are issued. 

This command is used to display information on queued jobs. The operands are 
examined and internal flags and addresses are set for the specified options. The 
job queue is scanned, and when a job is found meeting the specified criteria, it is 
displayed via the $CFJMSG macro instruction. 

This command is used to display the count of queued jobs. The processing is 
combined with $D N. The number of jobs for a particular queue are counted and 
displayed, instead of displaying information on each particular job as is done with 
$D N. 

This command is used to hold all jobs currently in the job queue. Jobs can only be 
released by a subsequent $A A command. The job queues are scanned and each 
job whose system affinity includes the specified operand is held by turning on the 
QUEHOLDA bit in the job queue element. 

This command is used to hold an execution queue. This processor shares the logic 
with $A Q, described previously, except that the class or classes are held instead of 
released. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCOMM 

HASPCJ1 A: Additional Job Queue Commands Group Processor 

$0 F 

The following is a description of job queue commands processed by the HASPCJ1A 
group processor. 

This command is used to display the forms output queue. After the operands are 
inspected and converted to appropriate values, the job output elements (JOEs) are 
scanned. A characteristic JOE is found and saved, then the work JOEs are scanned 
by class for a JOE that meets the operand criteria. When all such work JOEs of 
each class are accounted for, a response is displayed showing DEST, forms, FCB, 
UCS, writer, flash, burst, class, and PRMODE. 

The process is repeated for each remaining characteristic JOE. 

$0 Q, $0 J, $0 S, $0 T 

$P Q 

This command is used to release or cancel held data sets. The operands are 
extracted and saved for later use. The job queues are scanned, and when a job 
queue element (JQE) indicates that there are held data sets (JQEHLDCT is nonzero), 
a process-SYSOUT element is built and command processing issues a $GETWORK 
for a job disposition request (JDR) element. The command operands are mapped 
into the JDR and it is queued to the $JDRQUE. The JDR processor is then $POSTed 
for work. 

This command is used to cancel output data sets. The operands are extracted and 
saved for later use. The job output element (JOE) queue is examined for any JOEs 
of the type specified. If any are found, they are removed from the JOE queue using 
the $#REM macro facilities. The process is continued, always scanning from the top 
of the JOE queue, until all requested JOEs have been deleted. 

HASPCJB2: Job List Commands Group Processor 

$A J, $AS, $AT 

$C J, $C S, $C T 

This group processor is declared with the DELAY=YES keyword of the $COMGRUP 
macro instruction. This is done to allow the job numbers or range of job numbers to 
be extracted. A loop is then set up in which the job queue is scanned for the first 
desired job. When found, the particular verb processor is entered (see $COMGRUP 
macro). If no jobs are found in the specified ranges, a NO JOB(s) FOUND message 
is issued. 

These commands are used to release user-submitted jobs (JOB), started-task 
control (STC), or time-sharing user (TSU), jobs previously held by the corresponding 
$H J, $H S, $H T, or $H A command. A test is made to see if the jobs are really held. 
If so, the bits QUEHOLDA and QUEHOLD1 in the job queue element (JOE) are turned 
off, and JES2 is posted ($POST) for jobs. 

These commands are used to cancel JOB, STC, or TSU jobs. 

If the request is to cancel a TSU or STC, a check is made to see if it is prior to 
execution, in execution, or on a reader. If so, the TSU or STC is displayed by 
branching to the $0 Sor $0 T routine. If the request is to cancel a JOB, STC, or TSU 
job and the PURGE operand has been used, the spin and held data sets as well as 
the job output elements (JOEs) are cancelled. If the job is in the output or 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-177 



HASPCOMM 

$0 J, $0 S, $0 T 

$HJ, $HS, $HT 

$P J, $P S, $P T 

3-178 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

print/punch phase and the PURGE operand has been omitted, the JOB, STC, or TSU 
job is only displayed by branching to the $0 J, $0 S, or $0 T routine. 

If the request is to cancel a batch job that is in execution, the partition information 
tables (PITs) are searched for the requested job. If the job cannot be found, it is 
executing on another system and the command must be entered from that system. 

If the job is found, and this system is an MVS/370 system, the command scheduling 
control block (CSCB) in the job's subsystem job block (SJB) is posted with either an 
X'122' (if the job was cancelled with a dump) or X'222' completion code. 

When this MVS is MVS/XA, control passes to label CCJCACT, where an MVS cancel 
is built and passed to MVS with a type= 34 $WTO. This allows reviews of the 
command by other subsystems, such as IMS, to clean up before the cancel is 
executed. If the JOB, STC, or TSU job is on a device and the PURGE operand has 
been supplied, the QUEOPCAN and QUEPURGE bits in QUEFLAGS (in the job queue 
element) are set so that the current data set on the device will be cancelled by the 
device processor. 

These commands are used to display jobs, started tasks, or TSO sessions. The item 
is displayed unconditionally via the $CFJMSG services. This routine is also aware 
that a JOE marked busy on the hardcopy queue, with a JQE offset in a LCK element, 
represents a job being processed by a SYSOUT transmitter dumping held data sets. 
Appropriate messages are issued. 

These commands are used to hold a JOB, STC, or TSU job. The QUEHOLD1 bit is 
turned on for the job and displayed via a branch to the $0 J, $0 S, or $0 T routine. 

These commands are used to stop a JOB, STC, or TSU job when the current activity 
has completed, or cancel JOB, STC, or TSU non-busy output data sets (JOEs). 

This routine shares the same logic with the $CJ, $CS, and $CT routines. The main 
difference is that the $P J, $PS, and $PT logic allows the job to finish its current 
activity before purging it. 

• If the job is a TSU or STC and is in or awaiting execution, the STC or TSU is 
displayed by branching to the respective $0 Sor $0 T routine. 

• If the batch job, STC, or TSU is in execution, it is flagged for purge and 
displayed as explained above. 

• If the JOB, STC, or TSU is currently active on an output device, that activity is 
allowed to complete, but all other JOEs are cancelled. 

• If the Q = operand is supplied, the job deletion functions are omitted and the 
output data sets (JOEs) for that job are cancelled using the $#REM macro 
facilities. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



r( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCOMM 

$E J 

$TOJ, $TOS, $TOT 

SL J, $LS, $LT 

This command is used to restart a job currently in execution. This command is not 
supported for STC or TSU jobs. The job's job queue element (JOE) is tested to see if 
the job is in execution. If it is not in execution, a diagnostic message is issued 
stating that the job is not restartable. If the job is eligible for restart, the partition 
information tables (PITs) are scanned for active jobs. If a PIT has an active job, the 
subsystem job block (SJB) using that PIT is tested to see if it belongs to the 
requested restartable job. If so, the appropriate flag is set in the SJB to indicate 
restart, and the job is displayed via a branch entry into the $DJ routine. 

This command sets or changes the characteristics of the specified output group 
identified by its output group name and, optionally, its JOE identifier. 

Two paths exist in $TO processing, depending upon whether the characteristics JOE 
is to be modified or not. If not, the JOE is modified directly in the JOT. Otherwise, 
the characteristics and work JOEs are copied to a work area and modified there. 
This is done because other work JOEs may be using the characteristics JOE. 

In both paths, if a new DEST is specified, a $REROUTE call is made to validate 
authority to acces the new destination. $REROUTE may change fields in the PDDBs, 
IOTs, JCT, and JOE if the output is rerouted to the local node and local SAF 
information (a security token} is needed. 

If the $REROUTE call fails, the DEST (and anyother fields) are left unchanged. If the 
$REROUTE is successful (or if not performed), the output group is either $#M0Ded 
or $#REMed/$#ADDed, depending on whether the changes were made directly in 
the JOT or to copies of the JOEs in the work area. 

These commands list the output for a job (JOB), started-task control (STC), or a 
time-sharing user (TSU) job. If the HOLD operand is not used, the job output 
element (JOE) work queue is examined for JOEs belonging to the specified job. If 
any non-held JOEs belonging to the job are found, they are listed or counted, 
depending upon the operands specified. If the request is to list the held data sets 
belonging to the job (HOLD operand was used), an argument list is constructed, and 
HASPLIST is entered via $LINK services. HASPLIST returns with a count of held 
data sets, which are then listed. 

HASPCJB3: Job Name Commands Group Processor 
The purpose of this group processor is to accept job commands using the job name 
format instead of the job number format. If the specified job is located, control is 
transferred to the corresponding job list sub-processor. 

$A,$C,$D,$E,$H,$L,$0,$P,$T,$TO 
These commands accept job commands using the job name format and transfer 
control to the corresponding job list sub-processor. All have a common entry point 
in the group processor. 

The job name is extracted from the command area. The resident job queue 
elements (JQEs) are searched for a job with that name. If one is found, the search 
is continued, looking for multiple jobs with the same name. If the request is to 
display the requested job name, it is done via the $CFJMSG macro instruction. If 
the request is for any of the other services in the commands and there are multiple 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-179 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

jobs of the same name, a diagnostic message is formatted and sent to the operator. 
If there is only one job of the requested name, control is transferred to the particular 
sub-processor for the command. 

HASPCJ3A: Set Base Numbers Group Processor 

$T J, $T S, $T T 

$TNUM 

This group processor is used to set submitted job (JOB), started-task control (STC), 
or time-sharing user (TSU) job base numbers or to change the JOB, STC, or TSU 
class, priority, or system affinity. 

This sub-processor changes the JOB, STC, or TSU class, priority, or system affinity. 
If the command contains operands other than the JOB, STC, or TSU number, they 
are extracted and validated. The job queues are then searched, and when a job is 
found that is in the range of the command, it is changed in accordance with the 
operands. The following changes are valid: 

• Class Change: Only to jobs awaiting execution. 

• Priority Change: Only if the job, started task, or TSO session is not currently 
active in some JES2 phase. 

• System Affinity Change: Only for STCs and TSUs that are not awaiting 
conversion or execution. All jobs can have their system affinity changed at any 
time. 

Note: Changing the system affinity of any job that is queued for print/punch 
processing is meaningless because all printers and punches controlled by JES2 are 
able to select work independent of system affinity. 

This command sets the base job number to the new base number indicated in the 
command. If the number indicated in the command is being used, the base job 
number is set to the next highest available number. 

HASPCJB4: Release/Cancel Held Data Sets Group Processor 

$0 J, $0 S, $0 T 

This group processor releases or cancels held data sets belonging to the specified 
JOB, STC, or TSU job. 

The one command verb processor in this sub-processor releases or cancels th.e 
buffer queue elements (BQEs) of the specified job, STC, or TSU. The operands are 
extracted and saved for later references. A check is made to see if the designated 
job has any held data sets (JQEHLDCT is nonzero). If so, a process-SYSOUT 
element is constructed for the job and queued to $0QUEUE. Subsequently, 
$PSOPCE, the process-SYSOUT processor control element (PCE), is posted for 
work. 

HASPCDV1: Device List Commands Group Processor 

3-180 JES2 Logic 

This group processor is generated with the DELAY= YES keyword of the 
$COMGRUP macro instruction. In the routine executed before each individual verb 
processor is entered, the device control table (DCT) is located via the $CFDCTL 
macro instruction. If it is not found, a diagnostic is sent to the operator. If it is 
found, a test is made to see if it is a remote console DCT. If so, the group processor 
HASPCSY3 is entered for changes to a remote console. If the operand is a valid 
DCT, a test is made to see that the entering console is the owner of the requested 
device or is allowed to modify the requested device. If so, the verb processor is 
entered; otherwise, an error diagnostic is sent to the requesting console. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCOMM 

$8 

$C 

$E 

$F 

$1 

$N 

$P 

This command backspaces print or punch devi'ces by the specified number of pages 
(cards). The requested device is tested for the correct class (that is, print or punch). 
If it is the correct class, the parameters are scanned. The C parameter and a 
number of pages may be specified separately or in conjunction. If the 0 parameter 
is specified, no other parameters may be specified. The backspace count is 
converted to binary and saved in the requested device's processor control element 
(PCE). The device's PCE is then posted ($POST) for 110. 

i 

This command is used to cancel the current activity on a device. The class of the 
device is tested for a valid specification (that is, a reader, printer, or punch). If the 
class is valid, the appropriate bit is turned on in the device's OCT, and the device's 
PCE is posted ($POST) for 110. 

This command is used to restart the current function on the device. The class of the 
device is tested for validity. Only printers, punches, and RJE lines may be 
restarted. If this test is passed, the restart bit is turned on in the device's OCT, and 
the device's PCE is posted ($POST) for 110. 

This command is used to forward-space a print or punch device. This command 
verb processor shares logic with $8 (backspace); the only difference is that the 
value saved in the device's PCE indicates a forward-spacing operation, as opposed 
to a backspace. 

This command is used to interrupt the activity of a device. A test is made to see if 
the device is a printer or a punch. If it is neither, an error message is sent. 
Otherwise, the appropriate flags are turned on in the OCT to indicate an interrupt, 
and the device's PCE is posted ($POST) for 1/0. 

This command is used to repeat the current function (activity) on the requested 
device. A test made to see if the requested device is a printer or punch. If it is not, 
an error message is issued; otherwise, the repeat flag is turned on in the device's 
OCT, and the device's PCE is posted ($POST) for 110. 

This command is used to drain (deallocate) the requested device. The device is 
tested to see that it is not an internal reader. If it is, an error message is issued. 
Otherwise, the appropriate drain flag is turned on in the device's OCT. If the device 
is not active, the unit control block (UCB) for the device is deallocated via the 
$FREUNIT macro instruction. If the device is active, the deallocation will be done at 
that device's processor termination. If the device is under control of a functional 
subsystem, HASPFSSP is eventually used to complete the deallocation; otherwise 
HASPPRPU is posted to complete the deallocation. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-181 



HASPCOMM 

$S 

$Z 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

This command is used to start the requested device. If the device requested is an 
internal reader, an error message is issued to the requesting console. If the device 
is a local (that is, not a line or a remote) device, it is allocated to a unit control block 
(UCB) via the $ALLOC macro instruction. If the device is remote or line, the 
appropriate bits are turned off in the device's OCT, and HASPRTAM is posted 
($POST) for work. If the device is a dump or load device, the appropriate bits are 
turned off in the device's OCT, and HASPRTAM is posted ($POST) for work. 

If the device is an offload device and the device is available to start, the spool 
offload 1/0 manager is $POSTed to start the device, and its associated transmitter or 
receiver. For all devices, other bits are turned off in the device's OCT, SYSOUT 
transmitters are $#POSTed, and JES2 is posted ($POST) for unit, job, and the job 
output table (JOT). 

This command is used to halt a device. A check is made of the device's class. If the 
request is valid, the OCTSTOP bit in the OCT is turned on. 

HASPCDV2: $T Device Commands Group Processor 

$T 
This command is used to set a characteristic for a device. A check is made for any 
operands following the device name. If none are found, an error message is issued 
to the operator. If this test is passed, the device class is determined, and an 
appropriate routine is entered for each device class. Starting with the first operand, 
each operand is examined for validity, and the device control table (OCT) is updated 
to reflect the change. If the OCT indicates that the device is being controlled by a 
functional subsystem, the OCT is updated so that HASPFSSP issues FSI orders to 
make the appropriate changes indicated by the operand. This process is continued 
for each successive operand in order until all operand settings have been honored 
or an error is encountered. 

HASPCDV4: Spool Volume Command Group Processor 

$D SPOOL 

$P SPOOL 

3-182 JES2 Logic 

This group processor handles the spool volume commands $0 SPOOL, $P SPOOL, 
$S SPOOL, and $Z SPOOL. This group processor is generated using the 
DELAY= YES keyword of the $COMGRUP macro instruction. 

This command displays the status of the spool data sets. Operands are checked for 
correctness using $CFSEL. 

This command causes the designated spool data set to be drained. Operands are 
checked for correctness using $CFSEL. 

A $QSUSE is issued to acquire access to the job queues, the operands are selected 
for processing, and a $SVOLOC is issued for the designated volser of the spool data 
set to obtain its DAS. 

$P SPOOL processing according to spool volume state -- CANCEL not specified: 

• Active - The spool data set will be deallocated and drained. The DASFLAG2 flag 
is set to indicate $PSPL and HASPOOL is $POSTed. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCOMM 

$S SPOOL 

• Starting - Message $HASP650 is issued because a STARTING volume cannot be 
drained. 

• Halting - Message $HASP650 is issued because a HAL TING volume cannot be 
drained. 

• Draining - The spool data set is checked to see if it can drain. If it can, draining 
continues. If all necessary spool volumes are not all available to drain the 
volser, the operator is notified via $HASP825. Because the volume is already in 
a draining state, draining continues and the operator is notified via $HASP630. 

• Inactive - Message $HASP650 is issued because an INACTIVE volume cannot be 
drained. 

$P SPOOL proces:.:ng according to spool volume state -- CANCEL specified: 

• Active - The spool data set will be deallocated, drained, and all jobs cancelled. 
The spool data set is checked to see if it can drain. If it can, draining continues. 
If spool volumes are not all available to drain, the operator is notified via 
$HASP825. 

• Starting - Message $HASP699 is issued because of conflicting parameters. A 
STARTING volume cannot be cancelled. 

• Halting - Message $HASP699 is issued because of conflicting parameters. A 
HALTING volume cannot be cancelled. 

• Draining - Message $HASP699 is issued because of conflicting parameters. A 
DRAINING volume cannot be cancelled. 

• Inactive - A forced cancel of all jobs on the spool volume is initiated. 

This command causes the designated spool data set to be started. Operands are 
checked for correctness, using $CFSEL. Processing is dependent on the current 
state of the spool volume (active, starting, halting, draining, inactive, or a new 
volume) and how the command was specified. $SVOLOC is issued to obtain the 
DAS. For a new volume, a return code is saved so that a DAS can be assigned to 
the new volser. The following table indicates the subsequent processing performed. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-183 



HASPCOMM 

Volume Status 
SPPL Operands 

V =Vo Iser, Format 

V=Volser, P,Cancel 

V=Volser, P, 

V=Volser, Z 

V=Volser 

$Z SPOOL 

3-184 JES2 Logic 

Active Starting Halting 

Issue Issue Issue 
$HASP699 $HASP699 $HASP699 
Issue Process at Process at 
$HASP699 SSPSTART SSPSTART 
Issue Process at Process at 
$HASP699 SSPSTART SSPSTART 
Issue Process at Issue 
$HASP699 SSPSTART $HASP630 
Issue Process at Process at 
$HASP630 SSPSTART SSPSTART 

SSPVNEW: Start a New Volume 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Draining Inactive New 
Volume 

Issue Issue Process at 
$HASP699 $HASP699 SSPVNEW 
Process at Process at Process at 
SSPSTART SSPSTART $HASP699 
Process at Process at Process at 
SSPSTART SSPSTART $HASP699 
Process at Issue Process at 
SSPSTART $HASP630 SSPVNEW 
Process at Process at Process at 
SSPSTART SSPSTART SSPVNEW 

An available DAS is obtained for the new volume and $HASP411 MAXIMUM OF nnn 
SPOOL VOLUMES EXCEEDED is issued if a DAS is not available. Once a DAS is 
found, it is initialized and control is passed to SSPSTART. 

SSPSTART: Start the Volume 

The DASFLAG2 is updated to reflect the specific options specified on the $S SPOOL 
command and HASPOOL is $POSTed to start the volume. 

This command halts a spool data set from being used any further in JES2 
processing. The operand is checked for correctness. A $QSUSE is issued to 
acquire access to the job queues, $CFSEL is invoked to select the operand, and a 
$SVOLOC is issued for the designated volser of the spool volume in code to obtain 
its DAS. The command is processed to handle the following spool data set states: 

• Active, Starting, Draining 

The DASFLAG2 is set appropriately to allow deallocation of the spool volume, 
then HASPOOL is $POSTed to halt the volume. 

• Halting, Inactive 

Message $HASP630 is issued to display the volumes status. 

CVLCANCL Routine 

The CVLCANCL routine purges all jobs associated with a spool volume. The routine 
is called as a result of the CANCEL operand on a $P SPOOL or $S SPOOL command. 
Jobs can be cancelled on an available or inactive volume depending on the 
command. 

Upon entry, the callers registers are saved (via $SAVE). If the jobs should go 
through normal or forced purge processing and the volume is inactive, forced purge 
processing is invoked; some track groups may be lost until the next all-systems 
warm start. 

A normal purge cancels a job if any part of the job resides on the volume being 
cancelled and all other volumes shared by the job are available. Any job that 
should be moved (QUEMVRQ) will be ignored. Jobs in input processing or STC/TSU 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCOMM 

type jobs are not cancellable and are also ignored. The $JCAN service routine 
performs the cancels. 

A forced purge is invoked if CANCEL is specified for an inactive volume. If any part 
of the job is resident on the volume, it is cancelled. The hold count is zeroed, all 
hold flags are reset, and the unspun flag is turned off. $#CAN is issued to purge the 
job's output, and $QMOD issued to put the job on the purge queue, indicating the job 
should be forced off (QUE4CAN). 

CVLDRAIN Routine 

CVLDRAIN informs the operator of the volumes that are needed in order to drain the 
volume requested on the $P SPOOL or $S SPOOL command. The draining process 
cannot complete unless all necessary volumes are available. Necessary volumes 
are those used by any job residing on the volume being drained. Message 
$HASP825 is issued containing all the necessary volumes. 

Upon entry, the callers registers are saved (via $SAVE) and a "volumes needed" 
mask is initialized. The job queue is searched and the spools used by each job on 
the draining volume are ORed into the "volume needed" mask. Then a mask is 
created that contains the volumes that cannot have work selected, but are needed 
by jobs on the draining volume (i.e. inactive and halting volumes). This mask is 
created by exclusive ORing $SPLEXST with $SPLSLCT and then ANDing the result 
with the "volumes needed" mask. If the result is zero, no message is issued. A 
non-zero mask results in message $HASP825 VOLUME volser REQUIRES 
volid,volid, ... TO PROCESS. 

HASPCPCE: PCE Commands Group Processor 

$T PCE, $D PCE 

The following is a description of the individual PCE commands processed by the 
HASPCPCE group processor. 

These commands set and display the tracing status for special processors. They 
both have a common entry point in HASPCPCE. 

The specified processor's PCE is located via the special PCE table (PCETAB) and 
the $GETABLE macro instruction. If the address for the PCE is zero, there is no PCE 
for the processor and the $HASP698 message is issued and processing continues 
with any remaining operands. If the address is nonzero and a display was 
requested, the $HASP653 message is issued to display the processor's current 
tracing status; any remaining operands are then processed. If a display was not 
requested, the PCE's trace flag (PCETRACE) is turned on or off according to the 
setting of the trace operand (TR= P - processor trace, TR= N - no trace). After the 
trace flag has been set, the $HASP653 message is issued displaying the processor's 
new tracing status. 

If no operands are specified on the $0 PCE command, the $HASP653 message is 
displayed for each special processor. (A special processor is one that does no 110. 
Because they do no 110, special processors have only one PCE associated with 
them. Table NPCETBL in HASPINIT contains a list of special processors.) 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-185 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCSY1: System-oriented Commands Group Processor 
This group processor is generated using the DELAY=YES keyword of the 
$COMGRUP macro instruction. In this routine, executed before control is 
transferred to the verb processor, a check is made to see if the command is an 
initiator command. If not, the verb processor is entered via a branch on register 1. 
If the command is for initiators, the initiator identifier or range of identifiers is 
extracted for later use. Control is then passed to the specified initiator command. 

$D I, $P I, $S I, $T I, $Z I 

$P 

$S 

$P JES2 

3-186 JES2 Logic 

These commands are used to display, drain, start, halt, or set new execution 
classes tor an initiator, a range of initiators, or all initiators. 

Upon entry to the initiator routines, an index value is set based upon the request 
(command verb type). This is later used for entering the appropriate service 
routine. The processor determines whether the request was for all initiators or for a 
single initiator. If the request was for all initiators, a subroutine is entered in which 
the specified action is done to all initiators. 

Note that when an initiator is stopped (drained) or halted using the ALL operand 
(that is, no identifiers were supplied), the appropriate ALL bits in the partition 
information table (PIT) are turned on. When an initiator is stopped (drained) or 
halted using an identifier operand, the appropriate single bit is turned on. Although 
a start initiator identifier turns off both sets of bits, a "start all initiators" only turns 
off the ALL bits. 

If the request is to start an initiator, a check is made to see if the corresponding PIT 
has a system initiator. If not, an SVC 34 to start the initiator is issued. In either 
case, JES2 is posted for a job. 

If the request is to set new execution classes tor the initiator, the class string is 
validity-checked. If valid, the string is moved into the PIT. JES2 is then posted 
($POST) tor a job. 

This command is used to stop (drain) the system. The $DRAINED bit in $STATUS 
(located in the HASP communications table) is turned on, and a response is issued. 

This command is used to start the system. The drain flags in $STATUS (located in 
the HASP communications table) are turned off, and each PCE is posted ($POST). 
JES2 is posted ($POST) for the job output table. 

This command is used to withdraw JES2 from the system. This command verb 
processor is not entered from the sub-processor group to which it belongs. The 
entering console is tested to see if it is authorized to withdraw JES2. If so, the 
system drain flag is turned on. The status of the system is then tested, and if it is 
currently inactive, a status bit is set in the subsystem vector table (SSVT), and the 
exit routine is entered via a branch instruction. If there are active functional 
subsystems (FSSs), the FSSDRAIN flag for each functional subsystem is set to 
indicate that the functional subsystem application (FSA) in each functional 
subsystem address space is to withdraw processing support for the FSS. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



(-

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCOMM 

$VS 

$ESYS 

$LSYS 

$TALL 

$TSYS 

This command is used to enter an MVS system command in a job stream or as an 
automatic JES2 command. The current multiple line write-to-operator (MLWTO) is 
truncated in preparation for an SVC 34. The operand is checked for the proper 
format (that is, surrounded by quotes), and the command is then sent to MVS after 
removing the quotes. 

This command is used to restart a system's work that is not currently active. The 
system, whose system identifier is the operand, is verified as being inactive. It if is 
inactive, the address of the system queue elements (QSEs) is stored in $ESYSQSE 
and $WARMPCE is posted ($POST) for work. 

This command is used to list status of each system in the JES2 complex. The 
system queue elements (QSEs) are scanned, displaying a message that signifies the 
status of each system in the JES2 complex. 

This command is used to change the system affinity or independent mode status of 
all jobs belonging to the designated system. The operands are extracted and saved 
for later reference. The job queues are scanned and all eligible jobs belonging to 
the designated system are changed in accordance with the other operand. If any 
jobs' system affinity is changed, JES2 is posted ($POST) for the job. 

This command is used to place a system in or remove a system from the 
independent mode of operation. If the system is to be placed in independent mode, 
the $1NDMODE bit in $STATUS is turned on and JES2 is posted ($POST) for a job. If 
the system is to be removed from independent mode, the $1NDMODE bit is turned 
off, and JES2 is posted ($POST) for a job. 

HASPCSY3: Console Command Group Processor 

$TM 

This sub-processor group processor is used to process console commands. 

This command is used to set the message routing of a console. The cca operand is 
extracted and examined for a valid value. If the cca operand is not present, the 
current message routings for the entering console are displayed. If the cca value is 
valid, the next operand is examined. If no more exist, the current message routings 
for the entering console are displayed. If a list of display groups have been 
supplied, they are extracted by matching the input value with an internal table. The 
table value is then inserted into the entering console's redirected response area. 

The areas are chained to the HASPCOMM processor control element (PCE) work 
area and are dynamically created during initialization of JES2. One area is built for 
each console unit control module (UCM) found in the MVS system. Finally, the 
entering console's revised message routing is displayed. 

Note: If the L=cca operand is included with this command, the apparent entry 
console may be altered, thus causing the named console default display area to be 
altered. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-187 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCAOC: Automatic Commands Group Processor 

$CA 

$SA 

$TA 

$ZA 

This sub-processor group processor processes automatic commands. 

This command is used to cancel any automatic commands that have been 
previously set. The current timer value for any automatically generated commands 
is cancelled, and all active automatic command elements (ACEs) are freed. 

This command is used to start automatic commands that were previously halted. 
The flag in the automatic command element (ACE) table that indicated halted 
automatic commands is turned off. Then, the HALTED ACE queue is examined for 
any entries. All halted ACEs are chained into the active queue. 

The $TA command is used to: 

• Display the automatic commands currently in effect. 
• Specify a new command or series of commands for processing. The maximum 

length of an automatic command entry is 80 characters. 
• Modify an existing command entry. 

In processing the command, the ID for the ACE is extracted. If there is no ACE, and 
the request is to create a new ACE, a generated ID is prepared. If the request is to 
change a previous ACE, the ID must be supplied. 

If a new ACE is required, one is taken off the free queue and prepared for addition to 
the chain. If the request is to change a previous ACE, that ACE is removed from the 
queue (either active or halted queue). The operands are then extracted from the 
command. If any operands are invalid or missing, an 'INVALID OPERAND' message 
is issued and processing for the command is terminated. If the operands are valid, 
appropriate fields of the ACE are set, and the ACE is added to the active or halted 
queue. Finally, the ACE is displayed and the command processor is exited. 

This command is used to halt automatic commands. The halted flag in the 
automatic command element (ACE) table is turned on, and each active ACE is 
rechained to the halted queue. 

HASPCMS1: Miscellaneous Display Commands Sub-processor 

$0 u 

3-188 JES2 Logic 

This sub-processor group processes miscellaneous display commands not covered 
by the other sub-processors. 

This command is used to display the status of units (JES2-controlled devices). All 
operands are scanned before any display is initiated, and an internal table, built 
from the operand pointer area at label COMPNTER, is initialized with an entry for 
each operand. There are four forms of table entry: 

• For each specific device operand (RDR1, for example), the table entry contains 
the address of the device control table (OCT) representing that device. 

• For each class name operand (such as PUNS or LNES), the table entry contains 
the address of the first DCT in the group of DCTs representing the class. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

! '" ! 
', 

',, ,; 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCOMM 

• For each remote work station (RMTn) or range of remote work stations 
(RMTn-nn), the table entry contains the numerical value of the beginning and 
end of the range; if a specific work station was indicated, the beginning and end 
values are the same (as though RMT2-2, for example, had been specified). 

• For any unrecognizable operand, the table entry is set to 0. 

In addition, an index byte is maintained in the COMREGSV work area for each 
operand processed. The index bytes in COMREGSV correspond one-to-one with the 
above entries in the internal table. The index byte contains the offset into a second 
table (CDUTABLE). CDUTABLE contains instructions on how to process the 
corresponding operand. 

Each display routine returns control to the main display unit loop, which processes 
each entry in the table that was constructed when the $D U operands were scanned. 
When all operands have been processed, the display unit routine returns control to 
the HASPCOMM main entry point, indicating that the INVALID OPERAND(S) 
DETECTED message is to be issued, if at least one invalid operand was found. 

HASPCNT1: Network Job Entry Commands Group Processor 

$SN 

$T NODE 

$Nn[Mn], $Mn, $N 

This group processor processes network job entry commands. 

This command is used to start network communication on a line. If this is 
establishing a BSC connection, an attempt is made (via HASPNSNR) to sign on to 
whatever system is at the other end of the specified line. If this is establishing an 
SNA connection, the application name is validated, and control is passed to the $S N 
exit routine (HASPSNET) in HASPSNA to initiate the session. 

This command is used to set and display nodes. The appropriate network 
information table (NIT) entry is located and updated (if any update parameters are 
supplied). A display of the NIT entry is output. 

This command is used to send a command to another member in a MAS 
configuration or to a specific node off the target member. If the command was 
entered locally and the destination is valid and reachable, the command text 
following the semicolon is sent via the remote console processor (HASPMCON) to 
the indicated node or node member. Command editing and text compression are 
bypassed. 

HASPCSSI: Global Networking Commands Group Processor 
This group processor processes global commands entered on the system where this 
group processor resides. The group processor is generated using the DELAY=YES 
keyword of the $COMGRUP macro instruction. This initializes register 15 to 1 before 
branching to the appropriate entry point (via a branch to register 1). This results in 
register 15 being updated by the number necessary to produce the command option 
code identifying the command operand in the $G command (the character following 
the G). 

If the command was not entered at this node, an immediate error exit is taken. 
Otherwise, the receiving node operand (not required of the $G D command) is 
validated and, if necessary, converted to an internal node number. If this is a $GR 
command, a check is made for the OUT or XEQ option, one of which must be 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-189 



HASPCOMM 

$GD 

$GC 

$G H 

$GA 

3-190 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

present. Next, the job name operand (a required operand) is validated and moved 
to the formatted command area being built in the PCE (COMFCMDA). 

The remaining operands (if any) are examined one at a time, using the operand 
pointer area (COMPNTER) to access each operand and branching to the appropriate 
subroutine to validate that operand and update the formatted command area. 

If the command successfully passes all operand validation tests, a console message 
buffer (CMB) is acquired and initialized, the formatted command area is moved to 
the CMB, the CMB is flagged as containing a global networking command 
(CMBTYPE=CMBTYPEF), and HASPWQUE is called to queue the CMB for console 
services processing where it will be transmitted to the receiving node. Note that if 
the command is a global locate ($G D command with no receiving node operand), a 
CMB is acquired, built, and queued for each mode currently marked as reachable in 
the node information table (NIT). 

The following is an explanation of the individual command requirements for the 
commands handled by this group processor. 

This command is used to display job information for a job at another node. The 
operands are validated, and the formatted command area is constructed 
(COMFCMDA). If no validation errors are encountered, a CMB is acquired, the 
formatted command is moved to the CMB, and the CMB is queued for transmission 
to the receiving node. (Note that if the receiving node operand was not specified, a 
CMB is queued for transmission to each reachable node.) 

This command is used to cancel a job at another node. The operands are validated 
and the formatted command area is constructed (COMFCMDA). If the D or P 
operand is present (not both), the appropriate flag is set in COMFFLG. If no 
validation errors are encountered, a console message buffer (CMB) is acquired, the 
formatted command is moved to the CMB, and the CMB is queued for transmission 
to the receiving node. 

This command is used to hold a job at another node. The operands are validated, 
and the formatted command area is constructed (COMFCMDA). If no validation 
errors are encountered, a console message buffer (CMB) is acquired, the formatted 
command is moved to the CMB, and the CMB is queued for transmission to the 
receiving node. 

This command is used to release a job held at another node. The operands are 
validated, and the formatted command area is constructed (COMFCMDA). If no 
validation errors are encountered, a console message buffer (CMB) is acquired, the 
formatted command is moved to the CMB, and the CMB is queued for transmission 
to the receiving node. 

L Y~8-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCOMM 

$GR 
This command is used to request another node to reroute job output or reroute a job 
for execution. The operands are validated and the formatted command area is 
constructed (COMFCMDA). If no validation errors are encountered, a console 
message buffer (CMB) is acquired, the formatted command is moved to the CMB, 
and the CMB is queued for transmission to the receiving node. 

HASPCFCP: Received Global Formatted Commands Group Processor 
This group processor processes global commands sent by another node and 
received at the node on which this group processor is resident. This group 
processor is branched to (before any editing) by the command edit routine 
(HASPCOME) when it discovers that the console message buffer (CMB) contains a 
global formatted command (CMBTYPE = CMBTYPEF). This group processor is 
reached via a special COMTAB entry, COMTBLFC. Since the CMB contains a 
formatted command that was built by the job entry subsystem at the sending node, 
command editing is bypassed. Instead, the formatted command area is copied into 
the processor control element (PCE) work area (COSICMDA), and HASPCFCP is 
called to process the command. 

The formatted command area contains the following fields: 

• Command option code (COSIOP): Identifies the command type (delete, cancel, 
release, hold, or route). 

• Flag byte (COSIFLG): Set to indicate the presence of certain optional operands 
on the cancel ($G C) or route ($G R) command. 

• Job name (COSIJNAM): EBCDIC name of the job the command is to act upon. 

• Job id (COSIJID): Binary job number assigned to the job by the originating node 
(optional). 

• Originating node name (COSIORGN): The 8-byte EBCDIC name of the node 
which originated the job. 

• Destination node name (COSIO): The 8-byte EBCDIC destination name which 
should equate at the system of entry to a node number (and possibly a remote 
number); this field is meaningful only for a route ($GR) command. 

• Destination remote name (COSIR): The 8-byte EBCDIC destination name which 
should equate at the system of entry to a remote number (optional); this field is 
meaningful only for route ($G R) command with the OUT option. 

Upon receiving control, HASPCFCP searches the node information table (NIT) for an 
entry which matches the originating node name in the formatted command area 
(COSIORGN). If none is found, an immediate error exit is taken. Otherwise, the 
binary node number is extracted from the NIT and saved for the job queue search. 

The job queues are then searched, via the $CFJSCAN macro, for a job queue 
element (JOE) with a job name, originating node number, and originating job ID 
matching those from the formatted command. (Job IDs are not compared if none 
was supplied with the formatted command; that is, COSIJID=O.) If no match is 
found, an error exit is taken. If a match is found, the resulting processing differs, 
depending on whether this is a display ($GD) command. 

If this is a display command, the $CFJMSG macro is invoked to output job 
information for display. If an originating job ID was supplied with the formatted 
command, this is considered to be a unique occurrence, and a return is made to the 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-191 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

main command processor (HA$PCOMM). If an originating job ID was not supplied, "' " 
the job scan is completed, searching for and displaying all jobs which have a job / 
name and originating node matching those in the formatted command. After each 
display is complete, $CFJSCAN is used in an attempt to retrace the job queue path 
back to the same JOE. If it is not found or if it is now on another job queue, a return 
is made to HA$PCOMM, and the LIST INCOMPLETE message is displayed. 

If this is not a display command an originating job ID was not specified, the job scan 
is continued, searching for a job with a matching job name and originating node 
number. If one is found, an error message (MULTIPLE JOBS FOUND) is output via 
the $CWTO macro, the formatted command type is changed to display ($G D), and 
the job scan is restarted and results in a display of job information for all of the 
matching jobs. If an originating job ID was supplied, or if no duplicates were found 
during the job scan, a branch is made to the appropriate entry point in the job list 
group processor (HASPCJB2) if this is a cancel ($G C), release ($G A), or hold ($G 
H) command, or to the remote job entry group processor (HASPCRM1) if this is a 
route ($G R) command. 

HASPCXIT: Exit Commands Group Processor 
HASPCXIT processes the $T EXIT command, which is used to set or display the 
status of exit points regardless of whether they are supplied by JES2 or by the 
installation. The exit range(s) are extracted from the command area of the PCE. 
Then, each exit's corresponding entry in the exit information table (XIT) is located. 

HASPCRM1: Remote Job Entry Commands Group Processor 

$DM 

$R 

3-192 JES2 Logic 

This group processor processes remote job entry commands. 

This command is used to display a message at another node, at another member of 
a MAS configuration, at a remote work station (attached to this node or another 
node), or on the JES2 job log on an executing job. 

If the first operand begins with R, N, M, or D, the destination is determined, and the 
message is shipped for display via the $CWTO macro. If a job ID or job name is 
supplied, the subsystem job block (SJB) for the executing job is located, and the 
message is queued to the SJB in the same manner as are operator responses to 
WTORs. 

This command is used to route output of a job or device to another device (local or 
remote) or to another node, or to route a job at another node for execution. 

The first operand is extracted and saved in the COMNULOP byte. The second and 
third operands are extracted, and the appropriate route code is saved. Finally, the 
optional fourth operand is examined and saved if present. 

If the J =operand is specified, the job is located, and if found, a check is made to 
see if the entering console is the owner of the job. If so, a check is made for a 
0 =operand. If this operand is present, all job output elements (JOEs) of the 
specified classes are changed to special routing. Otherwise, the job queue element 
(JOE) punch and/or print routing is changed to the new routing, and if the type 
operand specifies ALL, any specially routed JOEs are rerouted to the new 
destination. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCOMM 

If the R = operand specifies a destination change for a job or output, HASPCRM1 
processing issues a $REROUTE call to perform destination authority checking. The 
job lock is obtained prior to the call; if the job is not available, the $HASP695 JOB IS 
BUSY - RETRY LATER message is issued. 

The JOE will be locked (if it can be processed) in the case of rerouted SYSOUT. A 
check for local output routing is performed after a $REROUTE call to determine the 
whether a $#MOD or $#POST is needed. If the request is successful for the first 
PDDB in the JOE (except for requests to reroute locally, which must be successful 
for all PDDBs), processing continues. Local requests are requeued. For 
network-bound output, the JOE will be $CKPTed and a $#POST issued. If the 
reroute fails, the routing is not changed and processing continues. 

If the request is to change execution routing, a TYPE=JOB $REROUTE call is made. 
On successful calls, processing continues (as described in the following paragraph), 
the new JOEXEOND is set, the JOE checkpointed, and the job requeued if 
necessary. Otherwise, the next job will be processed. 

If the R = operand is specified, the job queue is examined for any JOEs that are 
owned by the R = destination. If the request is made with the 0 = operand, any 
special JOEs with the R = destination and of the requested classes are rerouted to 
the D = destination. Otherwise, any JOEs that have print and/or punch routing for 
the R = destination will have their routing changed to the D = destination and if the 
type was ALL, all specifically routed JOEs with the R = destination will be routed to 
the D= destination. 

(. $JCANR: Cancel Job Service Routine 

( 

( 

The $JCANR routine is entered by JES2 main task processors to schedule a job for 
cancellation. Upon entry, register 1 contains the address of the job queue element 
(JOE) for the job, and register 0 contains request information as described following. 

CCJRDUMP: If this symbolic flag is included and the job is cancelled out of 
execution, a dump results that is compatible with the operating system command C 
jobname, DUMP. 

CCJRPURG: If this symbolic flag is included, the CCJRDUMP flag may be included, 
and the routine attempts to schedule the job for purge, deleting its current activity. 

CCJRSTOP: If this symbolic flag is included, other request flags are not included; 
the routine attempts to schedule the job for purge but does not delete its current 
activity. 

If none of the above flags are included, or if only the CCJRDUMP flag is included, 
the routine attempts to schedule a job for output, deleting its current execution or 
pre-execution activity. 

If the request is for a started task control (STC) or time-sharing user (TSU) job that 
has not passed the execution phase, the request is rejected, and control is returned 
to the NOT JOB exit of the $JCAN macro instruction. 

The operating system command scheduling control block (CSCB) is interrogated to 
determine whether the job is cancellable. If not, the NOT JOB exit is given control. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-193 



HASPCOMM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

If neither the CCJRPURG nor the CCJRSTOP flag is on, the request is rejected if the 
job has passed the execution phase, and control is returned to the NOP exit of the 
$JCAN macro instruction. 

If either the CCJRPURG or the CCJRSTOP flag is on, the JOE is released from any 
hold status it may have, and flagged for cancellation and purging. 

If a cancelled job indicates held data sets, this routine obtains a job disposition 
request (JOR) element using $GETWORK and queues it to the $JOROUE. Then, 
$JCANR $POSTs the JOR processor for work. If the job has any job output 
elements, the $#CAN macro instruction is executed to cancel all job output elements 
(JOEs) for the job which are not currently busy. 

If the request is to cancel a job on a reader device, the appropriate reader device 
control table (OCT) is flagged for deletion. OCT stop flags are reset, and the owning 
processor is posted ($POST). If the request is to purge a job and there are JOEs 
which were not freed by the $#CAN macro instruction, the output device OCTs which 
are busy are located, and the activity is deleted as described above for readers. 

If the JOE is for a system dataset STC, it will not be cancelled if the JOENAME does 
notbegin with "RMT", or if the JOE is busy. 

If the JOE for the job is not owned, a $0PUT macro instruction for $OUTPUT is 
executed. ($0PUT assigns final queue type based upon the resulting JOE flags and 
queue counts.) If the JOE for the job is owned, a checkpoint write is scheduled for 
the JOE. 

If the JOE type indicates thatthe job is in execution and the request is not 
CCJRSTOP, an MVS cancel command is used to cancel the job either with or without 
a dump, depending upon· the CCJROUMP request flag setting. Control is returned to 
the OK exit of the $JCAN macro instruction. 

Upon exit, register 15 is set to appropriate exit offsets which match the offsets 
generated by the $JCAN macro expansion. 

$10TPUR: IOT Purge Service Routine 

3-194 JES2 Logic 

The $10TPUR service routine is entered from the $PJ command sub-processor to 
deallocate track space for purged spin data sets. 

On entry, register 1 contains the address of a job output element (JOE) for a spin 
data set to be purged. The $JOEBUSY flag is turned on to ensure that no other 
processor gains control of the JOE. An input/output table (IOT) buffer is acquired 
($GETBUF), and the spin data set IOT is read in ($EXCP). If the IOT is an allocation 
IOT, the spin data set tracks are purged ($PURGE IOTTGMAP), the POB1PSO flag is 
turned off in the POOB (to make this data set ineligible for warm start), and the 
updated IOT is written back to disk. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

___ _,.,/ 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSERV: Command Services 

HASPSERV 

Command services consists of routines that support processing of JES2 initialization 
and JES2 command processing. The functional description of these support 
routines follows and includes any macro interface descriptions that apply. 

SUBRRT: $REROUTE Subtasking Routine 
The SUBRRT routine subtasks the $REROUTE routine, which verifies authority to 
reroute jobs or output to a specified destination. SUBRRT is called from HASPCJB2 
and HASPCRM1 in HASPCOMM and is passed a JOE address, if destination 
checking is to be performed for SYSOUT; otherwise, HASPCOMM is passed a JOE 
address. 

SUBRRT acquires a reroute work area, $RRTWA, and initializes it with the JOE or 
JOE address, PCE address, and reroute flags. A SAFINFO parameter list is also 
initialized and $SUBIT is issued to set up the subtasking for the $REROUTE routine 
in HASPSSRV. 

If $REROUTE passes back new USERIDs and SECLABELs for the job or output, 
these are set in the JOE and/or JOE (after regaining control of the queues). 

A return code is passed back to the caller in register 15. If subtasking is successful 
and the destination is authorized, the return code is 0. If the subtasking fails, the 
$HASP077 message ACCESS REQUEST DENIED DURING REROUTE PROCESSING 
is issued and a return code of 4. A return code of 4 is also set if the destination is 
not valid or if access is not permitted. 

A $WAIT can occur during processing. This routine also requires access to the 
necessary queues on entry and just prior to returning to the caller. When 
processing a $TO command, the JQETMOD and JOETMOD flags must be set. 
JQE1BUSY must be set for all $R requests and JOE1BUSY must be set for $RALL, 
$R PRT, and $R PUN. (Setting JOE1BUSY requires the job lock also.) 

WSSERV: Work Selection Service Routine 
WSSERV manages work selection of both jobs and SYSOUT. It obtains the WSA, 
which is the work selection work area that is set up before each call to WSSERV, for 
information such as comparison and device control block addresses, the work 
selection table address, and the address of the work selection list. It first 
determines which criteria were specified for specific devices in the work selection 
list defined by the device and finds the entry corresponding to each of these criteria 
in the work selection table. Then the routines needed to process these criteria are 
called. These routines are specified in the work selection table. Refer to JES2 
Customization for information on the work selection tables ($WSTAB) and JES2 
Initialization and Tuning tor information about the WS operand on the printer/punch, 
OFFn.ST, OFFn.SR, OFFn.JR, OFFn.JT statements. 

Display Device Control Table {OCT} 
The $CFDCTD macro is issued to cause the OCT to be displayed. Expansion of the 
macro creates code that invokes the COFDCTD routine, which actually performs the 
display. 

The $CFDCTD macro displays the device name as known to JES2, the unit address, 
and the activity status of the device control table (OCT) requested. Optionally, an 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-195 



HASPSERV "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

extended display may be requested that details the complete status of the DCT ,, 
(format varies with the device). For example, an extended display of a printer OCT \, / 
includes the name, unit address, and activity status plus such information as the 
current forms, carriage, train, job name and number (if active), separator option, 
and pausing option. 

Registers Used: RO, R1, R14, R15 

Work Areas Used: COMMAND is used as an output area and COMJNAME is used 
as an output area extension. 

DCT = (R1): This is the address of the DCT to be displayed. 

EXT=NO: This indicates whether extended display of the OCT is desired. When set 
to YES, extended status is displayed. 

COFDCTD: Device Control Table Display Routine 

3-196 JES2 Logic 

HASPCOMM calls COFDCTD to create a status message ($HASP628) in an area 
labeled, COMMAND, and initiates an operator response. For the device associated 
with the input DCT, COFDCTD fills the COMMAND area with information that 
includes the following items: 

• Device address 

• Job number and job name if the device is active 

• Output-related information if the device is a printer or punch (such as forms, 
record, and page counts, FCB, UCS, page limits, output classes, and process 
mode). 

Note: For a printer that prints page-mode data, such as the 3800 model 3, this 
output-related information can include the name of an associated functional 
subsystem and related time, line, and page limits that were in effect when 
checkpoints were taken. 

• For a reader device, job and message classes, system affinities, default routings 

• RJE line disconnection state 

• OCT logging and password status 

• Remote attribute table (RAT) data 

COFDCTD provides for an extended OCT display and issues a $CWTO to write the 
final message before returning to the caller. 

If the device associated with the OCT display is a printer that prints page-mode data, 
such as the 3800 model 3, operating as a functional subsystem, COFOCTD invokes 
the internal subroutine SRVFSS to obtain information from the functional subsystem 
about the device. If the printer is halted by operator intervention, SRVFSS issues a 
cross memory move (MVCP) to get the address of the JIB that is currently being 
processed. The JIB is then checked for a CHK record. The CHK record contains 
current page and record counts. If there is no CHK record, the total counts from the 
copy of the JOE in the JIB are used to give page and record counts. If the printer is 
not halted, SRVFSS enters cross-memory mode and issues a query order to the FSA 
in the functional subsystem address space to supply the record and page counts in a 
response area. SRVFSS then exits from cross-memory mode and returns to 
COFDCTD. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 



( 

' I"-

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SRVM630: $HASP630 Message Formatting Routine 

HASPS ERV 

HASPCOMM calls SRVM630 to format the $HASP630 message; HASPCOMM 
supplies as input the DAS address and the address of the area where the $HASP630 
message is to be built. 

After first initializing the message area with the spool name, SRVM630 checks the 
status of the spool volume by examining the DAS, stores its status (active, starting, 
halting, or draining) in the message area, and returns to the caller. 

$SVOLOC: Scan the Direct Access Spool Control Blocks 
The $SVOLOC macro is used to scan the direct access spool (DAS) control blocks. 

Format Description 

[symbol] $SVOLOC [VOLSER=(Rl) laddrx] 
,ACTIVE=addrx 
,START=addrx 
,HALT=addrx 
,DRAIN=addrx 
,INACT=addrx 
,NOEXIST=addrx 
, INVALID=addrx 

VOLSER= 
Specifies the address of the EBCDIC volume serial number for the direct access 
spool. 

ACTIVE= 
Specifies the branch address to SRVOLOC when the volser is active. 

START= 
Specifies the branch address to SRVOLOC when the volser is starting. 

HALT= 
Specifies the branch address to SRVOLOC when the volser is halting. 

DRAIN= 
Specifies the branch address to SRVOLOC when the volser is draining. 

INACT= 
Specifies the branch address to SRVOLOC when the volser is inactive. 

NOEXIST= 
Specifies the branch address to SRVOLOC when the volser does not exit. 

INVALID= 
Specifies the branch address to SRVOLOC when the volser is invalid. 

SRVOLOC: DAS Scan Routine 
Using the volser passed on input, SRVOLOC finds the direct access control block 
(DAS) associated with the volser and passes back its address in R1. If the input 
volser does not exist, R1 is set to zero and a return code of 20 is returned to the 
caller. If the input volser is null, too long, or does not match $SPOOL, R1 is set to 
zero and a return code of 24 is returned to the caller. Along with the DAS address, 
SRVOLOC returns a return code indicating the status of the spool volume (active, 
starting, halting, draining or inactive). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-197 



HASPSERV "Restricted Materials of IBM" 
Licensed Materials --' Property of IBM 

$WSSCAN: Work Selection Scan Macro 
This macro generates code that calls the work selection scan routine SRVWSCAN; 
$WSSCAN loads R1 with the address of the WS parameter and RO with the output 
area in which SRVWSCAN puts the completed work selection list. 

Format Description 

$WSSCAN LIST=addrxl(RB), 
WS =addrx I (Rl) 
WSTADDR=label or register 
WSTLISTL=L I 

LIST 

ws 

Specifies the symbolic name of the area where the work selection list is to be 
built. 

Specifies the operand of the WS keyword either from the $T command or the 
output device initialization statement. 

WSTADDR 
Specifies the address of the device work selection table pair. This address will 
be loaded into register 15. 

WSTLISTL 
Specifies the length of the work selection list. It is passed to the routine via an 
inline parameter list. 

SRVWSCAN: W,ork Selection Scan Routine 
SRVWSCAN scans the WS operand supplied from the $WSSCAN macro and builds a 
work selection list in the area, whose address is also supplied on input. 

After the work selection list is built in the input area, SRVWSCAN returns to the 
caller with a return code that indicates one of the following results: 

• RC=O -The WS operand is valid. RO contains the address of the end of the WS 
operand. 

• RC=4 -The WS operand contained an illegal character, an unknown criterion, 
or contained information not valid for the specific device. 

SRVSETUP: Work Selection Setup Routine 
This routine is called by any device (with the $WSSETUP macro) requesting work 
selection before the call to work selection services. It clears the work selection work 
area fields and creates the device volumes mask if a volume was specified in the 
work selection list. 

WSROUT: Work Selection Route Code Routine 

3-198 JES2 Logic 

This routine determines if the output element's route code matches any of the 
device's route codes. If the output element's route code exceeds all of those of the 
device, the routine sets an indication in the $WS flag, so that $#GET can terminate 
the queue scan and advance to the next queue. 

LY28-1006-2 ©Copyright IBM Corp.1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$CFPRSCN: PRMODE Parameter Scan Macro 

HASPSERV 

JES2 initialization and HASPCOMM use this macro to generate a calling sequence 
to SRVPRSCN, supplying as input the address of the DCT/RWT index list and the 
address of the PRMODE operand that was supplied by the operator on the $T DEV 
command or supplied in a JES2 initialization statement. 

Format Description 

{symbol} $CFPRSCN LIST=addrxl(R0), 
PR =addrxl(Rl) 

LIST 
Specifies the address of the DCT/RWT index list. 

PR Specifies the address of the PR MODE operand. 

SRVPRSCN: PRMODE Operand Scan Routine 
JES2 initialization and HASPCOMM use the $CFPRSCN macro to call SRVPRSCN to 
determine the indices in the OCT that are represented by the values specified on the 
PRMODE operand. SRVPRSCN scans the PRMODE operand that was specified from 
either an initialization statement or in the $TDEVN command, and then builds a 
temporary PRMODE table and a temporary PRMODE index list in $GENWORK of the 
$HCT work area. 

If no errors occur during processing, SRVPRSCN updates the PRMODE table, 
returns in the output area (received on input) the updated OCT, and returns a zero 
return code. If errors occur during processing, SRVPRSCN makes no changes to the 
DCT table and PR MODE table and returns to the caller with an error return code. 

SRVROUT: Route Code Sub-parameter Conversion Routine 
This routine is used to verify the route code sub-operand on the local and remote 
printer/punch statements (initialization only) and the OFFn.ST, OFFn.JT, OFFn.SR, 
and OFFn.JR (initialization and commands). It converts a character route code to 
binary. The routine is called by post-scan routines in HASPSCAN before the DEST 
tables have been initialized. 

SRVSASCN: Verify System Affinity Routine 
$CFSAF calls SRVSASCN to verify one affinity or a list of system affinities. 
SRVSASCN receives the address of the affinity list to be validated and the device 
affinity mask from the calling routine via $CFSAF. If they are valid, this routine sets 
the mask to indicate the affinities specified on the initialization statements or $T 
command. 

SRVMODIF: Modify Routine 
This routine uses the information in $WSTAB to modify the characteristics of a job or 
data set when being loaded from an offload data set. For a job, CLASS, ROUTECDE, 
HOLD, and SYSAFF can be modified. For a data set, BURST, DSHOLD, FCB, FLASH, 
FORMS, HOLD, PRMODE, QUEUE, ROUTECDE, UCS, and WRITER can be modified. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-199 



HASP SS RV "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSSRV: JES2 Subtask Services 
This module contains various JES2 subtask services; subsequently, it is not invoked 
directly by the JES2 main task because MVS WAITs can occur during processing. 
HASPSSRV contains the following entry points: 

• DSFOPEN - Data set fake open routine. 
• DSFCLOSE - Closes the fake opened data set. 
• $LOGMSG - Puts message(s) into a job's SYSMSG data set and, optionally, 

performs a WTO. 
• PSAFSCAN - PDDB scan and SAF call subroutine. 
• NEWSCRE - Completes initialization of the JESNEWS PDDB and requests 

authority to create the JESNEWS data set. 

HASPSSRV also contains the following routines, which perform NJE authorization 
and destination validity checking: 

• JOBVALM - Performs job validation. 
• RPDBSEC - Performs system PDDB verification. 
• SYSOVFY- Performs SYSOUT validation. 
• $REROUTE- Authorizes the final destination for a job or data set reroute 

requested by a $R or $TO command. 

DSFOPEN: Data Set Fake Open Routine 
DSFOPEN performs a fake open of the system messages data set, allowing WRITEs 
to the data set. Upon entry, the routine validates the JCT and IOT and ensures that 
they have spool MTTR addresses. If either of these input parameters is incorrect, 
DSFOPEN sets a return code of 4 in register 15 and returns. 

Otherwise, DSFOPEN GETMAINs an SJB, and initializes its prefix area. (A 
GETMAIN failure terminates processing with a return code of 8.) SJBINIT is called 
to obtain an SJXB and initialize fields in both the SJB and SJXB. DSFOPEN then 
obtains the RPL address and performs the fake open for the job-related data set. It 
copies fields from the PDDB to the SOB and opens the data set for output. 

If the data set has been opened before, it is repositioned to the last spool record. 
DSFOPEN then sets a return code (0 for successful open, 4 for an internal error, 8 
for a storage problem, or 12 for an 1/0 error), frees control blocks if an error 
occurred, and returns to the caller. 

DSFCLOSE: Data Set Close Routine 
This routine closes a data set opened by DSFOPEN. It calculates the SJXB address 
(using the passed RPL address), obtains the addresses of other needed control 
blocks, fake closes the data set, and frees the SOB. DSFCLOSE calls $CBIO to write 
the primary allocation IOT, then frees the SJB and related control blocks, and 
returns. 

$LOGMSG: SYSMSG/WTO Routine 

3-200 JES2 Logic 

$LOGMSG places a job-related message into a job's SYSMSG data set and, 
optionally, issues a WTO to the operator's console. It is passed an inline parameter 
list defined in member $LG of $PARMLIST; on exit, register 15 contains a return 
code of 0 if there are no errors, or 4 if $LOG MSG is unable to open the data set 
requested. WTO and FREEMAIN processing for messages is still performed (if 
applicable) if the open for data set fails. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSSRV 

$LOGMSG calls DSFOPEN to open the data set. If successful, $LOGMSG loops 
through the messages, performing a PUT to the job's SYSMSG data set for each 
message and WTO/FREEMAIN processing, as indicated. When all messages have 
been processed, $LOGMSG $CALLs DSFCLOSE to close the data set if the open was 
successful, sets the return code, and returns. 

PSAFSCAN: PDDB Scan and SAF Call Subroutine 
PSAFSCAN scans each PDDB in an IOT to obtain the data set's name and token, 
which are needed to issue the MODIFY form of the RACROUTE macro. Following 
the RACROUTE invocation, PSAFSCAN issues the $SEAS macro to make the SAF 
call for each data set (if the CREATE call made previously for the data set was 
successful). 

Upon entry, PSAFSCAN is passed a parameter list containing: 

• A JCT address (if deletes are to be performed in behalf of a job) or the address 
of $JESTOKA (if deletes are for JES2). 

• An IOT address and the PDDB offset into the IOT. 
• The WAVE address. 

PSAFSCAN uses these addresses and those of the first and last PDDBs to determine 
if a deletion is to be performed on behalf of the job or JES2. If for a job, PSAFSCAN 
sets the job exit mask from the JCT for use with exits 36 and 37 and obtains the 
security token that represents the job. Otherwise, PSAFSCAN obtains the JES2 
security token. Next, the SAF parameter list located in the WAVE is initialized and a 
RACROUTE request is issued using the appropriate token. PSAFSCAN then issues 
the $SEAS macro to make a SAF call for deleting the data set. 

Processing continues (SAF parameter list initialization and subsequent RACROUTE 
and $SEAS invocation) for each PDDB until all have been processed, then 
PSAFSCAN returns control to its caller. 

NEWSCRE: JESNEWS Create Routine 
NEWSCRE completes the initialization of the PDDB for a new JESNEWS data set. 
The routine builds the token for the new JESNEWS data set and ensures the 
requestor has sufficient authority to delete the old data set and create the new data 
set. If either authorization fails, the job can not create the JESNEWS data set. 

NJE Authorization/Validation Routines 
The following describes the JOBVALM, RPDBSEC, SYSOVFY, and $REROUTE 
routines, which perform destination verification and authority checking of jobs and 
SYSOUT routed through a network. 

JOBVALM: Job Validation Routine 
JOBVALM performs processing to validate the destination and check the authority 
level of jobs transmitted through a network. It is subtasked by the RJOBVFY routine 
in HASPRDR (via $SUBIT). RJOBVFY initializes the SAFINFO parameter list with 
available information about the job and its associated security token, which contains 
destination and authorization data to be verified. The SFITOKEN field in the 
parameter list contains the token address and the SFl2STKN flag, which indicates 
whether the token represents the job submittor or the job itself. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-201 



HAS PSS RV "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

JOBVALM obtains the parameters needed to issue macros that actually perform the 
authority and destination checking from the SAFINFO parameter list. It also sets 
fields in the SAFINFO parameter list for use by the RJOBVFY routine when 
JOBVALM has completed its processing. 

JOBVALM issues a RACROUTE VERIFY request and sets a return code accordingly. 
If a default token is to be used for authority checking, then JOBVALM issues the 
$SEAS macro following the RACROUTE request. (A default token is used for 
network-bound jobs submitted from a source other than an internal reader.) 

If RACROUTE processing is successful, JOBVALM issues a $DESTCHK call to check 
the JCTXEQND, JCTPROUT, and JCTPUOUT fields. If an error is detected in any 
one of these fields, JOBVALM sets the SFIRESCD field in the SAFINFO parameter 
list to indicate to RJOBVFY that the job is to failed with a JCL error and a message 
written to the JCLIN data set. Based on the RACROUTE return code, JOBVALM also 
sets the JCTIOKEN field in the SAFINFO parameter list, indicating that the security 
token returned to RJOBVFY represents the job submittor, or sets the PDBTOKEN 
field, indicating that the token represents the job itself. 

JOBVALM sets one of the following return codes in register 15 and and performs 
further processing based on the result of the RACROUTE request: 

0 Processing was successful. (The destination is valid and the job has sufficient 
authority or RACROUTE had insufficient information to verify 
destination/authority.) 

4 RACROUTE determined that the job has insufficient authority or the destination 
is invalid. Any messages provided are issued by the $LOGMSG routine; 
RJOBVFY is to continue processing. 

8 A severe parameter error occurred. (The PCE, DCT, WAVE, or JCT address was 
unavailable.) RJOBVFY is to fail the job. 

RPDBSEC: System PDDB Initialization Routine 
RPDBSEC initializes system PDDBs with a token, security label, and system data set 
name. It is called via $SUBIT from RJOBVFY in HASPRDR and passed the SAFINFO 
parameter list. RPDBSEC invokes RACROUT and $SEAS to obtain security 
authorization information and passes back one of the following return codes: 

• 0 - Processing was successful. All required PDDBs have been initialized. 
• 4 - An authorization failure occurred. 
• 8 -The JESMSGLG data set could not be created. The job cannot be printed and 

will be purged. 

SYSOVFY: SYSOUT Validation Routine 

3-202 JES2 Logic 

SYSOVFY is subtasked by the NSRAUTH routine in HASPNET (via $SUBIT) and 
$CALLed by the $REROUTE routine in HASPSSRV to validate destination and 
authority for SYSOUT while on this JES2 node. It issues RACROUTE calls to obtain 
security tokens to represent SYSOUT, builds data set names, and issues SAF data 
set create authorization calls. It also issues a RACROUTE VERIFYX call to obtain a 
token to represent SYSOUT from a local job. 

The SYSOVFY routine obtains the addresses of the PDDB, JCT, PCE, and WAVE 
from the SAFINFO parameter list. If the JCT, PCE, or WAVE address is not 
available, SYSOVFY sets a return code of 8 (disastrous error) in register 15 and 
returns. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

- ' 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSSRV 

Otherwise, SYSOVFY issues a RACROUTE REQUEST=VERIFYX to obtain a security 
token. If the PDDB address (supplied to SYSOVFY in the SAFINFO parameter list) is 
zero, SYSOVFY places the token in the JCT to protect the job locally and then 
returns to its invoker. If non-zero, SYSOVFY builds a data set name and saves it 
(along with information extracted from the NJE header and security token) in the 
PDDB. 

SYSOVFY then issues a RACROUTE REQUEST= AUTH to determine if the job to 
which the SYSOUT belongs has sufficient authority to create a SYSOUT data set, 
sets a return code in register 15, and passes control back to its invoker. A return 
code of 0 is set (if the CREATE call, itself, returned less than 8) to indicate 
successful processing and access authority is permitted. A return code of 4 
indicates that a valid token was not returned by the RACROUTE VERIFYX request. 

Note: If the create fails after the VERIFYX was successful, SYSOVFY sets an 8 
return code (disastrous error); this should never occur. 

$REROUTE: Destination Authorization Routine 
The $REROUTE routine determines whether or not a job or SYSOUT data set 
rerouted by a $R or $TO command has sufficient authority to be transmitted to its 
final destination (including locally). When a new destination is specified, 
$REROUTE is subtasked by the SUBRRT routine in HASPSERV and passed a single 
parameter, the $REROUTE work area ($RRTWORK), which contains a JQE address 
(to process a job) or a JOE address (to reroute SYSOUT). 

During its processing, $REROUTE sets fields in the SAFINFO parameter list (passed 
to other routines for authorization checking) that contain: 

• The origin and execution user ids and nodes. 
• The PDDB address and JCT address. 

If this is the executing node and $REROUTE determines that the job/SYSOUT is 
permitted to be transmitted to the new destination, it replaces any necessary 
security information (only if this is a store-and-forward node and the job/SYSOUT is 
being forwarded to a local node). Upon completion, $REROUTE sets a return code 
in register 15 of 0 (the destination is valid and the job/SYSOUT may be transmitted) 
or 4 (the destination is not valid or authority is insufficient; transmission denied). 

Regardless of where SYSOUT is being rerouted, $DESTCHK is called only once. It 
is assumed that other PDDBs would succeed or fail based on the success/failure of 
the first PDDB. 

For rerouting to a non-local node (regardless of current routing), the checking ends 
here because a valid local or store-and-forward token has already been obtained. If 
the rerouting is to the local node and there is no local token (as indicated in the 
JOE), then SYSOVFY is called for each PDDB to obtain a local token for each. In 
addition, if there is no local token for a job, SYSOVFY is called once more to obtain 
a job token. 

The tokens used as input to SYSOVFY are the received data set tokens (if available) 
for the PDDBs and the received job token (if available) for the job. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-203 



HAS PSS RV 

3-204 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The following further describes $REROUTE processing for the four possible cases of / " 
job or SYSOUT rerouting to a new local or non-local destination. ,,~ J 

Job Rerouted to New Non-local Destination: 

For this case, the $REROUTE routine accesses the JCT to obtain the job's security 
token and passes the token (and a binary route code) to the $DESTCHK routine in 
HASCSIRQ to determine whether or not the job can be sent to the requested 
destination. If not, $REROUTE sets a return code of 4 in register 15 to indicate that 
the command should be failed. Control returns to $REROUTE's caller. 

Job Rerouted to New Local Destination: 

In the case where the new destination is local (and the old destination was NOT 
local), $REROUTE accesses the JCT to obtain the $DEST default node (in the 
JCTROUTE field) and token. The job is processed normally; RJOBVFY and 
JOBVALM replace the store-and-forward token in the JCT with a valid local token 
when the job is later sent to the reroute job transmitter/receiver. 

SYSOUT Rerouted to New Non-local Destination: 

For this case, all of the PDDBs in which the destination must be changed must be 
authorized for rerouting. The $REROUTE routine calls the $DESTCHK routine for 
each of these PDDBs, passing the information in the first PDDB's PDBTOKEN. If the 
$DESTCHK fails, the JOEROUT/JOEDEST field will not be changed. Because all of 
the PDDBs in the JOE have have the same user id and security label (and the same 
USERID and SECLABEL values in the token), only one check is necessary; it is 
assumed that subsequent checks would also fail. 

SYSOUT Rerouted to New Local Destination: 

In the case where the new destination is local (and the old destination was NOT 
local), $REROUTE accesses the token SCR and calls SYSOVFY to obtain a valid 
local security token. This new information is stored into the PDDB. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPRDR 

( HASPRDR: Input Service Processor 

'·· \' 

( 

The functions of the input service processor are to: 

• Read card images from an input device or from another node in the job entry 
network. 

• Detect and scan JOB statements, extracting parameters for job accounting, job 
control, authorization processing, and print and punch identification. 

• Detect and process other JES2 control statements such as COMMAND, 
NETACCT, PRIORITY, ROUTE, SETUP, MESSAGE, JOBPARM, OUTPUT, XEQ, 
DD*, and DD DATA. 

• Assign a unique JES2 identifier (job id) to each job. 

• Log jobs into the JES2 subsystem. 

• Assign job priority based upon the PRIORITY statement, JOB statement, or 
JOBPARM statement parameters. 

• Generate, from statements read, a JCL file and input data files, and record these 
files on direct-access storage device(s) for later use by the job execution states 
(spooling function). 

• Generate JES2 job control tables, input/output tables, job queue elements, and 
other JES2 control blocks required for later job processing. 

• Queue jobs for processing by the JCL conversion processor, for processing by 
the output processor, or for transmission to another node in the network. 

• Validate job information and perform security authorization processing. 

Each input source defined to JES2 -- that is, each local card reader, internal reader, 
and remote reader is represented by a device control table (OCT). Associated 
with each reader OCT is a processor control element (PCE), specifying what input 
service processor is to service the input device. When JES2 is started, the reader 
PCEs (among others) are queued on the $READY queue. As the JES2 dispatcher 
dispatches the ready PCEs, the input service processor receives control as each 
reader PCE is dispatched. (The input service processor is reentrant: all information 
specific to a particular PCE dispatch is maintained within the PCE. This permits the 
input service processor to process jobs concurrently for a number of input devices 
that have different characteristics.) 

Initial Entry Point: The processor receives control at entry point HA$PRDR, moves 
the command character specified at JES2 initialization into the control statement 
routing table, and proceeds to the processor initialization phase, $READ. 

$READ: Initialization Phase 
The input service processor initialization phase, label $READ, receives control (via 
entry point HASPRDR) upon the initial dispatch of each reader processor control 
element (PCE). During initialization, the RDW4JVFY, RDW4STKN, and RDW4SREQ 
flags are reset to perform security authorization checking for incoming jobs. 

RGETUNIT: The initialization routine attempts to acquire the input device 
associated with this PCE: a local card reader, internal reader, remote reader, or 
network job reader. If the device is not available, the processor waits ($WAIT UNIT) 
for the device. For a local device or internal reader, the routine waits for a post of 
the resource. For a remote device, the routine waits for a specific post indicating 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-205 



HASPRDR 

3-206 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

that the device is available. When the wait is satisfied, the routine branches to 
RGETUNIT to repeat the GETUNIT request; this cycle is repeated until the required 
device becomes available. 

RGOTUNIT: When the unit has been obtained, a $ESTAE macro is issued, which 
establishes the RDRRCVO routine as the recovery routine to receive control in case 
of an abend condition in the HASPRDR processor. RGOTUNIT issues the $ACTIVE 
macro instruction to indicate that a processor is active, then RGOTUNIT determines 
the type of device that has been acquired. If the input device is an internal reader 
and a buffer is not already available, main storage is obtained from subpool 231 
(fetch-protected storage in the common storage area) for the internal reader device, 
and RINRSTRT branches to RRETURN. 

RNOTINR1: If the input device is a network job receiver (NJR), fields in the job 
queue entry (JOE) are initialized. An attempt is made to reserve a JQE for the input 
processor and, if successful, a request (via ROPEN) is made to open the remote 
terminal. If the open attempt is unsuccessful, $HASP127 message ("*******INPUT 
NOT ACCEPTED -- JOB QUEUE FULL") is issued; the device is released (via 
$FREUNIT); the active count is decreased by one (via $DORMANT); and a branch is 
taken to RNJWAIT. 

RNJWAIT: RJNWAIT branches to RJEWAIT to wait for work if the processor is a 
route receiver or the device is an offloaded spool device. Otherwise, RNJWAIT 
places the device in a hold status, issues a negative close ($EXTP NCLOSE), and 
waits (via $WAIT) for work. 

ROPEN: If the input device is a remote terminal or a network job receiver (NJR), 
transmission is initiated by calling RTAM to open the remote terminal device control 
table ($EXTP OPEN). The device is placed in hold status to indicate that it is 
unavailable for use by another processor. RDRSW2 reader switches are zeroed, 
and the JCT pointer is cleared. 

RINBGET: If the device is a local reader, RINBGET issues the $GETBUF macro 
instruction to obtain an input buffer. A chain of channel command words (CCWs) is 
constructed in the input buffer, to be used in reading input records into the rest of 
the buffer; the CCWs are constructed such that successive input records are read 
into adjacent areas in the rest of the buffer until the buffer is full. With the CCW 
chain complete, the routine enters RRETURN. 

RRETURN: The RJFLUSH bit is set to 1 in RDRSW and RXITFLAG is set to zero. If 
the input device is not a network job reader, control is passed to the main processor 
to process the next input card. If the input device is a network job reader, the first 
statement is read into storage. If that statement is not a job header, control is 
transferred to SKIP50 to issue error message HASP121 ('ERROR READING JOB 
HEADER OR TRAILER'). If the input card is the job header, information received in 
the job header is converted and stored in the device control table (DCT) and the 
processor control element (PCE) work area. Control is then transferred to the main 
processor. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/,.-· ··--..,,_ 

I 

I 
"'-...- ,,/ 



( 

( 

( 

"Restricted Materials of IBM" 
licensed Materials - Property of IBM 

Main Processor Phase 

HASPRDR 

The main processor phase reads statements from the input device, scans each 
statement to detect JES2 control statements, and for all JES2 control statements and 
JCL statements (except JOB statements), invokes exit point 4. Exit 4 allows user 
exit routines to scan the control statements. Depending upon the return code from 
the user exit routine(s), either the job is aborted, control statement scanning is 
skipped, or control statements are processed as follows: 

• /*control statement: The control statement processing routine (HASPRCCS) is 
called to process the control statement and take any appropriate action. 

• JOB statement: The JOB statement scan routine (HASPRJCS) is called to 
terminate the previous job (if any), to scan the JOB statement, and to initiate the 
processing of the following job. If job submission is using an internal reader, 
HASPRJCS also propagates the authorization information from the job 
statement to the job header in the JCT. 

• DD* or DD DATA statement: The DD*/ and DD DATA statement scan routine 
(HASPRDDS) is called to scan the DD statement for a DLM parameter and to 
construct a peripheral data definition block (PDDB) reflecting the track address 
and physical characteristics of the input data set. 

If the device is a network job reader (NJR) and the current job is not destined for this 
node, then JES2 serves as a store-and-forward node. In this case, the entire job is 
written to spool without any JCL statement or JES2 control statement syntax file. If 
the delimiter specified on the /*XMIT statement is encountered, the job is 
terminated. 

When an end of file is detected on the input device, control is given to the 
termination phase. In the termination phase, exit point REXITA (for exit 20) is taken. 
Exit 20 allows installation exit routines to modify a job's priority, execution node, 
and system affinity. Finally, the $ESTAE macro is used to cancel the recovery 
environment established for this processor. 

HASPRTRM: Termination Phase 
The input service processor termination phase, entry point HASPRTRM, receives 
control from the main processing phase when an end of file is detected on the input 
device that is being processed. HASPRTRM calls the RJOBEND subroutine to 
terminate the last job, if any, then determines the type of input device that was being 
serviced. 

If the device is an NJR, termination ensures that the current record is a job trailer 
and moves the trailer into the job control table (JCT). If no job trailer is found or if 
the job had been restarted by the receiver, an error is sent to the job transmitter by 
issuing a negative close (NCLOSE) to RTAM. 

If the device is an internal reader, the routine clears the buffer pointers in the 
device's device control table (OCT) and for this device frees only any existing 
fetch-protected buffer before exiting to the common exit routine RUNFREE. 

RNOTINR2: If the device is a remote or network job reader, RNOTINR2 issues the 
$EXTP CLOSE macro instruction for the device and enters RUNFREE. 

If this is a spool offload device and the job has been rejected by work selection, the 
routine places the JQE on the purge queue. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-207 



HASPRDR "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RNOTRJE2: If the device is a local reader, RNOTRJE2 issues the $FREEBUF macro 
instruction to free the input buffer, sets the DCTHOLD indicator to mark the device 
unavailable, and enters RUNFREE. 

RUNFREE: The common exit routine issues the $FREUNIT macro instruction to 
release the input device; issues the $DORMANT macro instruction to decrease the 
active processor count in the HASP communications table (HCT); and returns to the 
main processor at the label $READ. The processor attempts to acquire (via 
$GETUNIT) the next input device requiring service or waits until an input device 
does require service. 

HASPRCCS: Control Statement Processing Routines 
HASPRCCS is called whenever the main processor phase reads an apparent JES2 
control statement. HASPRCCS uses a table lookup method to select the appropriate 
processing routine. 

RCOMCARD: JES2 Command Statement Processing Routine 
The RCOMCARD routine determines whether a job is being read and rejects the 
command (by branching to the illegal statement subroutine, RILLCCRD) if a JES2 
control statement is encountered within a job. Otherwise, RCOMCARD gets a 
console message buffer, waiting until a buffer is successfully obtained if necessary, 
then logs the command and displays it at the operator's console. Finally, the 
command is added to the head of the queue of commands to be processed by the 
command processor, the command processor is posted ($POST WORK}, and the 
routine exits to the main processor. Any commands received from a network job 
reader (NJR) are ignored. 

RPRICARD: PRIORITY Statement Processing Routine 
If the device is not an NJR, the previous job (if any} is terminated, the specified 
priority is converted to binary and saved, and control is returned to the main 
processor. If a JOB statement does not follow, the message "DEVICE SKIPPING 
FOR JOB CARD" is displayed at the operator's console, the effect of the PRIORITY 
statement is nullified, and the input stream is scanned for another PRIORITY or a 
JOB statement. A PRIORITY statement received from an NJR is ignored. 

ROUTCARD: ROUTE Statement Processing Routine 
The appropriate routing fields are set to the values associated with the indicated 
destination. If an invalid field is encountered, the $HASP111 message "INVALID I* 
ROUTE CARD" is placed in the output file and is displayed at the operator's 
console. Further processing for the job with that ROUTE statement is bypassed. 

RSETCARD: SETUP Statement Processing Routine 
If the job is currently routed to be run at this node, the volume to be mounted is 
listed on the operator's console, and the job is placed in hold status. Otherwise, the 
SETUP statement is ignored. 

RMSGCARD: MESSAGE Statement Processing Routine 

3-208 JES2 Logic 

If the job is currently routed to be run at this node, leading and trailing blanks are 
removed from the message contained on the MESSAGE statement, and the 
message is routed to operator's console. Otherwise, the MESSAGE statement is 
ignored. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



(-

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RJBPCARD: JOBPARM Statement Processing Routine 

HASPRDR 

If the job is currently routed to be run at this node, the RKEYSCAN subroutine is 
called to scan the parameters coded on the JOBPARM statement and set the 
appropriate values in the job control table (JCT). If the line count has been 
specified, it is merged into the job header. A line count of 0 is put into the header as 
X'FF', while no specification of line count is given a 0 default value. If the restart 
option has been specified, flags are set in the JCT to allow or disallow job restart as 
required. If system affinity has been specified, the indicated system names are 
converted to a binary value for insertion into the job queue element (JQE). If 
parameters on the JOBPARM statement are found to be in error, RJBPCARD issues 
the $HASP112 message ("--INVALID/* JOBPARM card"). The JOBPARM statement 
is ignored if the job is not currently routed to be run at this node. 

ROPTCARD: OUTPUT Statement Processing Routine 
If the /*OUTPUT statement is encountered before a JOB statement, control is 
immediately returned to the main processor with an indication that the RNOTCCRD 
routine should be executed. If a JCL file is not being read, the /*OUTPUT statement 
is considered to be the beginning of such a file; the JCL file indicator is set, and 
ROPTCARD again calls RPUT to terminate the output file that was being created. If 
the job is currently routed to be run at this node, ROPSCAN scans the /*OUTPUT 
statement for the forms code. A forms code of an asterisk (*) indicates a 
continuation of the preceding /*OUTPUT statement. The contents of the previous 
output control record (OCR) are read into the scan work area and the RKEYSCAN 
routine is called; values specified on the current /*OUTPUT statement replace (or, in 
the case of destination, continue) those specified or omitted on the previous 
/*OUTPUT statement. If a forms code of an asterisk is specified on the first output 
statement, the continuation is rejected and RILLOUPT is called to issue the HASP113 
message, "INVALID /*OUTPUT CARD". The job is then terminated and the output 
stream flushed. If the forms code is not an asterisk, the scan work area is cleared 
before RKEYSCAN is called to scan the remaining /*OUTPUT statement parameters. 

Provided that no specification errors are found by the scanning subroutine, 
ROPBURST sets the burst indicator to the appropriate value if BURST=Y or 
BURST=N was specified. Next, any specified right or left indexing value is 
converted to the appropriate binary code and moved into the job control table (JCT). 
Destination codes are scanned, converted to binary routing codes, and stored in the 
the JCT. Finally, ROPTCARD attempts to move the contents of the scan work area to 
the output control table (OCT) as an output control record. If not enough space to 
accommodate this OCR remains in the OCT, $EXCP is issued to write the OCT to a 
spool volume, $GETBUF WAIT= YES is issued to obtain another OCT buffer, and the 
current OCR is placed in the new OCT. 

When input processing for the current job is complete, RJOBTERM is entered. This 
routine issues the $EXCP macro instruction to write any current OCT to the spool 
volume. 

The /*OUTPUT statement is ignored if the job is not currently routed to be run at this 
node. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-209 



HASPRDR "Restricted Materials of IBM" 
licensed Materials - Property of IBM 

RXEQCARD: XEQ Statement Processing Routine 
If the device is not a network job reader, the execution routing byte is set to the 
node number associated with the destination specified. If the destination is invalid, 
an error message is issued to both the operator and the programmer, and further 
job processing is bypassed. The XEQ statement is ignored if this device is a 
network job reader. 

RXMTCARD: /*XMIT Control Statement Processing Routine 
RXMTCARD processes the /*XMIT JES2 control statement. First RXMTCARD sets 
the QUEXMIT flag on in the JQE to indicate that this is a /*XMIT job, and schedules a 
checkpoint. Then RXMTCARD sets the execution routing bit to 1 in the JCT 
according to the destination specified on the /*XMIT statement. RXMTCARD then 
calls HASPRDDS to process the delimiter specification (OLM=). If an invalid 
delimiter was specified, HASPRDDS sets the delimiter to/*. The /*XMIT statement 
is invalid if it is not immediately after a valid JOB statement or if the destination is 
OWNNODE. Only comment statements or /*NETACCT statements are permitted 
between the JOB and /*XMIT statements. For an invalid /*XMIT statement, 
RXMTCARD issues the message $HASP117, "--INVALID */XMIT CARD.". 

RNETACRD: NETACCT Control Statement Processing Routine 
The RNETACRD routine processes /*NETACCT control statements specified in a job 
that is read from a local device (local card reader, remote reader, or internal 
reader). /*NETACCT statements are ignored by the NJE job receiver; the job header 
specifies the network account number to be used for jobs read by the job receiver. 

The network account number specified on the /*NET ACCT statement is saved in the 
job header. At the end of job processing, HASPRDR checks both the JES2 account 
number in the job control table (JCT) and the network account number in the job 
header. If both are present or both are absent, processing continues. If only one is 
present, the conversion routines in HASPACCT are called to convert the supplied 
account number (JES2 or network) to the type of account number that was not 
supplied. Thus, only one account number need be specified on a job, assuming that 
the NETACCT conversion tables are set up properly. For an invalid /*NETACCT 
statement, RNETACRD issues message $HASP115, "--INVALID /*NET ACCT CARD." 

RNFYCARD: NOTIFY Control Statement Processing 
The user ID specified on the /*NOTIFY statement is placed in the JCT and in the NJE 
job header just as if the user ID had been specified on the job statement 
(NOTIFY= user ID). 

If the /*NOTIFY statement specified both a node name and a user ID, the specified 
node name is placed in the NJE job header as the origin node name. 

For an invalid /*NOTIFY statement, RNFYCARD issues message $HASP116, 
"--INVALID /*NOTIFY CARD." 

RROUTCNV: Route Code Conversion Routine 

3-210 JES2.Logic 

The RROUTCNV routine accepts a node remote number and a pointer to an output 
area that contains the remote name and number. If the remote name is not zero, 
RROUTCNV converts it to EBCDIC and stores it in the remote name portion of the 
output area. If the remote name is zero processing continues. Using the node 
number as an index into the node information table (NIT), RROUTCNV moves the 
node name for this node into the output area and returns to the caller. (If the node 
number is zero, $0WNNODE is stored in the node name portion of the output area.) 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 

/ ' 



( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPRDR Subroutines 
The following describes the subroutines used in HASPRDR. 

RDESTSCN: Convert Destination to Route Code Subroutine 

HASPRDR 

This subroutine is used by the ROUTE, OUTPUT, XEQ and the NOTIFY statement 
processing routines to prepare an EBCDIC destination to be converted to an 
equivalent binary code. Input destinations can be of the following forms: 

• LOCAL: General local device 

• RMTnnn,RMnnn,Rnnn: General remote work station at the local node 

• NnRn: Specific node and remote work station (*) 

• Un: Special local device (n is from 1 to 255) 

• Nn: Specific nodes general local device (*) 

• xxxxxxxx: Defined name of device as an 8-byte EBCDIC character 

• xxxxxxxx.yyyyyyyy: Two-part specification of both node and user ID.remote ID 

(*) - n is from 1 to 1000 

If the destination is not one of those listed above or if no match is found in the 
remote destination table (ROT), control is returned to the caller with a zero condition 
code. If a match is found (the destination is valid), control is returned with a 
non-zero condition code. 

RILLCCRD: Invalid Control Statement Placement Exit Subroutine 
RILLCCRD loads register 6 with the address of the RNOTCCRD routine and returns 
to the main processor, which always branches to the exit specified by register 6; this 
allows the statement to be a non-JECL statement. 

RILLCCRD is entered because a control statement is unrecognizable or is placed 
incorrectly with respect to the JOB statement. The subroutine is entered from the 
following routines under these circumstances: 

• HASPRCCS: Unrecognizable control statement that does not match an entry in 
the routing table 

• RCOMCARD: A JES2 COMMAND statement found within a job 

• RPRICARD: CONTROL statement is within a network job 

• ROUTCARD: ROUTE statement not within a job 

• RSETCARD: SETUP statement not within a job 

• RJBPCARD: JOBPARM statement not within a job 

• ROTPCARD: /*OUTPUT statement not within a job 

• RXEQCARD: XEQ statement not within a job 

• RXMTCARD: XMIT statement not with a job 

• RNETACRD: NETACCT statement not within a job 

• RNFYCARD: NOTIFY statement not within a job 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-211 



HASPRDR "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPRDDS: DD* and DD DATA Statement Scan Subroutine 
The HASPRDDS subroutine, is called whenever the main processor phase 
encounters a DD* or DD DATA statement. HASPRDDS is also called by RXMTCARD 
to process the OLM parameter on the /*XMIT statement. The statement is first 
scanned for a OLM parameter, and, if found, the value specified is saved in 
RDRDLM for later use by the main processor phase. If an error is encountered, the 
parameter is ignored, setting the delimiter to slash asterisk(/*). The error will be 
detected later by the MVS converter and appropriate error messages will be written 
to the system message file. When the entire DD statement has been scanned and 
written to the JCL file, a control record is generated containing the track address, 
record format, and logical record length; this control record is also added to the JCL 
file in such a way that it is not passed to the converter, but is available to the job 
transmitter for reference in reestablishing input data set characteristics. 

Next, the current input/output table (IOT) is located and a peripheral data definition 
block (PDDB) is built reflecting the location and characteristics of the input data set. 
If space is not available in the current IOT, a new IOT is created and added to the 
IOT chain. Finally, the input data set buffer is initialized and control is returned to 
the main processor phase. 

HASPRJCS: JOB Statement Scan Subroutine 

3-212 JES2 Logic 

The HASPRJCS subroutine is called whenever the main processor phase 
encounters a JOB statement or a job header record. The previous job (it any) is 
terminated by calling the RJOBEND subroutine. 

During the scan of the JOB statement, the scan routine examines the job's CLASS 
parameter. If the CLASS associated with the job is defined as an execution batch 
job (XBM = on JOBCLASS initialization statement), a SYSIN data set is opened and 
the JOB statement is placed into the SYSIN data set. Then, the procedure named on 
the XBM = parameter is found and placed in the SYSIN data set followed by the 
input stream that originally followed the JOB statement. 

Following each call to RJOBEND, HASPRJCS resets the RDW4JVFY, RDW4STKN, 
and RDW4SREQ flags. When an invalid JOB card is found, the RDW4SREQ flag is 
set and propagated to the $SAFINFO parameter list (in RJOBVFY) so that a 
submitter security token will be returned from JOBVALM. The JCTNUPAS field is 
cleared prior to calling RJOBVFY to prevent a password change; the RJOBVFY 
return code is not checked in this case. 

Following the RJOBEND call, a buffer is obtained for the job control table (JCT). 
Subroutine RNJEHDTR is called to fill in the job header section of the JCT with the 
actual job header, but only for a network job header; otherwise RNJEHDTR places 
default information in the job header section. Another buffer is obtained for the 1/0 
table (IOT). A job queue element is then created for this job and added to the JES2 
job queue in active input status. 

This subroutine then tests the bits in the header indicating whether a job was held 
prior to dumping to an offload data set and sets corresponding bits in the JQE if 
'hold' was specified. A check is also made for special local routing fields in the 
JES2 section of the header and, if they exist, to convert them to route codes that are 
also moved into the JQE. The JES2 job id is determined by calling $QJIX. Both the 
IOT and the beginning of the JCT are initialized and a pointer is set to the first free 
TGAE. If the job is not destined for this node, the routine returns immediately. 
Otherwise, exit point RXIT JBCD (exit 2) is invoked allowing user exit routine(s) to 
scan the JOB statement initially. Depending on the return code from the user exit 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



1f 
!'! 
'~-. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPRDR 

routine(s), either the job is aborted or the JOB statement is scanned normally and 
the first JCL block is initialized. Normal JOB statement scanning includes 
authorization checking and propagation, accounting field scanning, and keyword 
analysis. 

If this is an offload job, verification checking is done here both when reading in the 
job header and at job termination with the job trailer (routine HASPRTRM). The 
time and date are compared with the time and date in the offload OCT (taken from 
the record descriptor). If there is a match, processing continues. If there is a 
difference, the job in error is purged, the load operation terminated, and the offload 
device drained. If a job or SYSOUT have been dumped from a previous release of 
JES2, there is no verification stamp. ,SYSOUT receivers detect this condition and 
pad the header with binary zeroes so that the header and the record descriptor 
match and processing continues. 

For a user-submitted job where the JES2 initialization parameter &RJOBOPT 
indicates that an accounting field scan is to be performed and the JOB statement 
has been successfully scanned, exit point RXITACC (exit 3) is invoked allowing user 
exit routine(s) to scan the JOB statement accounting field and/or alter the JCT fields 
following the JOB statement scan. Depending on the return code from the user exit 
routine(s), the job is either aborted and HASPRJCS returns immediately, or control 
is passed to HASPRSCN for accounting field interpretation. If ACCTFLD on the 
JOBDEF statement indicates that the accounting field is not to be scanned, or the 
job is a started-task control (STC) or time-sharing user (TSU) job, control is returned 
to the main processor phase. 

If the JOB statement and its continuations require more than one buffer, the 
additional buffer must be obtained when the first buffer becomes full. Because JOB 
statement processing is not yet complete, the mask of eligible spool volumes might 
not yet be set. (When the mask is set depends on w~en the user exit routine sets it.) 
Therefore, the full buffer might not be written to the spool to which the user wants it 
written. The full buffer would only be written to the correct spool if the user exit 
routine set the eligible spool volumes mask prior to the full buffer being written to 
spool. 

After HASPRJCS completes the JOB statement processing, it calls RWRT JOB to 
obtain track addresses for the JCT, IOT, and first JCL block. RWRT JOB then writes 
the JCT and IOT to the spool. These actions are delayed until after JOB statement 
scanning so that the mask of eligible spool volumes can be set by a user exit routine 
at the JOB statement scan exit point 2 after it examines the JOB statement. 

RNXTSL T: Subroutine to Get Next Available PDDB Slot 
The RNXTSLT subroutine is used by HASPRJCS during JOB statement scan to 
acquire a new PDDB slot to be associated with the IOT initialized as a result of the 
JOB statement scan. After acquiring a PDDB slot and using subroutine RFMTIOT to 
get the next IOT, RNXTSL T returns to its caller. 

RJSCAN: Subroutine to Extract Fields from JOB Statement 
The RJSCAN subroutine scans the JOB statement and extracts fields for further 
processing. The fields may be split between several statements (in accordance with 
MVS JCL standards) and may be enclosed in either parentheses or quotation marks. 
This routine is used to scan the accounting field and the programmer name from the 
JOB statements, which are processed by the input service processor. Exit point 
RXITJBCD (exit 2) is invoked for each JOB continuation statement detected. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-213 



HASPRDR "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPRSCN: Accounting Field Subroutine 
The HASPRSCN subroutine is called whenever a user-submitted JOB statement is 
successfully processed to interpret any variables present in the JOB statement 
accounting field and to set the appropriate fields in JES2 control blocks representing 
those variables. The contents of the accounting field are scanned from the JOB 
statement by the HASPRJCS subroutine and left in the job control table (field 
JCTWORK) as input to this subroutine. This routine is not called for JOB statements 
associated with started task control (STC) or time-sharing user (TSU) jobs. 
Depending on the value of the JES2 initialization parameter ACCTFLD, HASPRSCN 
may or may not be called and may or may not enforce certain JES2 and/or MVS JOB 
statement standards during the scan. Upon completion of the scan, control is 
returned to the main processor phase via the $RETURN macro instruction. 

RCONTNUE: Subroutine to Read and Validate Continuation Statements 
The RCONTNUE subroutine reads and validates JCL continuation statements by 
ensuring that columns 1 and 2 have slashes and that column 3 is blank. RCONTNUE 
contains exit point RXITCCC (exit 4), which is invoked for each JCL continuation 
statement detected. The start of the continuation statement is located, and control is 
returned to the calling routine. If an invalid continuation statement is discovered, 
control is returned to the location specified by register 15. If no error is 
encountered, control is returned to 4 bytes beyond the location specified by register 
15. RCONTNUE contains exit point RXIT JBCC (for exit 2), which is used for each 
JOB statement continuation that is detected. 

RNJEHDTR: Move Header Information into JCL Subroutine 
The RNJEHDTR subroutine is called by the HASPRJCS subroutine and by the 
termination phase HASPRDRT. These callers are responsible for storing job header 
and job trailer records, respectively, in the job control table (JCT). RNJEHDTR 
determines what information needs to be in this area of the JCT and moves the 
information accordingly. 

If the job is being received from the network or offload processing, the header and 
trailer records are read in with the job and put in the JCT. Because a job received 
from a local or remote reader does not include a header or trailer, default records 
are stored in the JCT. 

RJOBEND: Subroutine to Complete Job Input Processing 

3-214 JES2 Logic 

The RJOBEND subroutine tests whether the input processor is currently processing 
a job and, if it is not, returns control immediately. 

If a job is being processed, RJOBEND calls RJCTTERM to complete processing of 
the job control table (JCT). If RJCTTERM provides a non-zero return code, the job is 
queued for either output or purge processing, depending on the contents of the 
RDW1ABRT flag set by RJOBVFY. Otherwise, processing continues for non-reload 
jobs with exit 20 and queueing for the next job phase. Because RJCTTERM does not 
call RJOBVFY for selective reload jobs, processing for these types of jobs continues 
as follows. 

RJOBEND calls $CFMOD to determine whether the job's execution node has been 
changed. RJOBEND then passes this information on a call to RJOBVFY (which 
passes it to JOBVALM). If RJOBVFY returns a value of 4 in register 15 (indicating 
the job is either uninitialized or unauthorized), the JQE will not be marked 
non-selectable, if determined non-selectable during subsequent WSSERV 
processing, to preserve auditability during purge processing. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

(" 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPRDR 

RJOBEND then invokes work selection (WSSERV) processing, which determines 
whether or not the JQE is selectable; if non-selectable, the JCT buffer is released. 
Otherwise, a sign-on message is issued, any new route codes are stored in the JCT 
and JQE, an SMF type 24 record is formatted, new information from the SPOF 
section of the header is obtained, and the JQE is checkpointed. 

RJOBEND then invokes exit 20. If the JQE cannot be selected by the offload 
receiver, it is marked non-selectable and checkpointed. ("Non-selectable" status 
prevents any further processing; no SAF call is made tor non-selectable jobs during 
purge processing.) The output buffer, OCT, JCT, and IOT are written and control is 
returned to the RJOBEND caller. 

RGET: Subroutine to Get Next Record 
The RGET subroutine returns the address of the next record to be processed by the 
input service processor in register R4. RGET also returns the length and 
characteristics of that record in the RCARDLRL and RINFLAG1 fields of the 
processor control element (PCE) work area of the input processor. 

If a user exit routine indicated (via flag byte RXITFLAG in the PCE) that it is 
supplying the next card image to be read as part of the input stream, the card image 
contained in the exit work area of the JCT (JCTXWRK) is moved to the input buffer 
overlaying the previous card image. RGET then returns. 

If the input device is a card reader and if there are unprocessed cards in the input 
buffer, the input register (R4) is set to the address of the next card and processing 
continues. If the input buffer is empty or if all the cards in the input buffer have been 
processed, a read ($EXCP) is issued to the input device to refill the input buffer, and 
the subroutine places the processor in a wait state ($WAIT) until the input buffer has 
been filled. The input register is then set to the address of the first card in the 
butter, and processing continues. If a permanent error is detected on the card 
reader, no action is taken until after the last card has been processed. Then, the job 
currently being processed is deleted with an appropriate message to the operator. 
Processing then continues by scanning the input stream for the next JOB statement. 

If the input device is an internal reader and there are unprocessed records in the 
internal reader buffer, the next record is expanded and processing continues. If all 
the records in the input buffer have been processed and the end-of-file indication 
has been set, control is returned to the caller. If the internal reader butter is empty 
and the address space that has the internal reader allocated is not in address space 
termination, RGET issues a $XMPOST to HASPAM. RINRW1 places the processor in 
a wait state ($WAIT) until the internal reader input buffer has been refilled. When 
the input butter has been refilled, JES2 is posted, the input service processor is 
posted, and the first record in the buffer is expanded. 

If the input device is a remote terminal or network job reader, the remote terminal 
access method (RTAM) is invoked (via $EXTPGET) to obtain the next card image. 
An unsuccessful return code from RTAM causes a network job to be purged and a 
negative close error indication to be sent to the originating node. For network jobs 
only where a successful non-end-of-file return occurs, RJEGNOCC determines if the 
record received is a data set header. Information from a data set header is stored 
in the current peripheral data definition block (PDDB) before the next record is 
retrieved. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-215 



HASPRDR "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The RGET subroutine also processes the operator commands $Z input device and 
$C input device by entering the wait state ($WAIT) for the stop command and calling 
the subroutine RJOBKILL to delete the job if the cancel command is received. If a 
network device is to be cancelled, the subroutine HASPRDRT places the job in the 
output queue and issues a normal close ($EXTP CLOSE) against the job. 

RPUT: Subroutine to Add Card to Output Buffer 
The RPUT subroutine accepts card images, removes trailing blanks, and blocks card 
images into standard HASP data blocks (HDBs). The length of the input card image 
is defined by the value in the RCARDLRL field of the processor control element 
(PCE) work area of the input processor. If the RINFLAG1 or RCARDLRL bytes 
indicate carriage control, the carriage control is added from the RDRCCTL field. If 
the current output buffer is full, it is truncated and scheduled for output. A new 
buffer is acquired and used as the next output buffer. If no output buffer exists upon 
entry, the processor is skipping for a JOB statement, and the subroutine returns 
without taking any action. 

RWRT JOB: Subroutine to Write the JCT and IOT to Spool 
The RWRT JOB subroutine is called by HASPRJCS to write the JCT and IOT to spool. 
RWRTJOB first obtains spool buffers for the JCT, IOT, and first JCL block. 
RWRT JOB then sets the JCT to point to the IOT, and the IOT to point to the first JCL 
block. Finally, RWRTJOB writes the JCT and IOT to spool. 

RKEYSCAN: Subroutine to Scan and Process Keyword Values 
The RKEYSCAN subroutine accepts a pointer to a parameter field and an address of 
a control statement scan table (keyword table). RKEYSCAN returns converted 
values in the caller-provided output table. If an error is encountered, control is 
returned to the location specified by register 15. If no error is encountered, control 
is returned to 4 bytes beyond the location specified in register 15. The control 
statement scan table specifies such characteristics as keyword name, keyword 
abbreviation, whether the value should be converted to binary, whether the value 
should be left-or-right adjusted in the field, whether the value should be filled with 
blanks or zeros, and the maximum number of values permitted. The RDESTSCN 
subroutine is called to interpret the destination specifications. RDESTSCN is used 
by both the JOBPARM and /*OUTPUT control statement routines to perform their 
respective scans. 

RJOBKILL: Subroutine to Delete Current Job 

3-216 JES2 Logic 

The RJOBKILL subroutine tests whether the input processor is currently processing 
a job and, if it is not, returns control immediately. If a job is being processed, the 
operator is notified that the job is being deleted; the RJCTTERM and RJOBTERM 
subroutines are called to terminate the input processing of the job. 

If a job has not been verified yet, then RJCTTERM invokes RJOBVFY, which, in turn, 
invokes JOBVALM. If JOBVALM returns an 8 return code (indicating a severe 
error), RJOBVFY sets the RDW1ABRT flag to indicate to RJOBKILL, following the 
call to RJCTTERM, that the job is to be queued for purge processing. 

If the job is a network job and it is being deleted because of a line error, the job is 
placed in the purge queue; otherwise, the job being deleted is placed in the output 
queue. Control is returned to the calling routine. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RJCTTERM: Subroutine to Terminate Job Control Table 

HASPRDR 

The RJCTTERM subroutine performs the final update of the job control (JCT) table. 
The time estimate is converted from minutes to seconds; the estimated line count is 
converted from thousands of lines to actual lines, estimated byte count from 
thousands of bytes to actual and the total output estimate is computed and set. 
RJCTTERM then moves in NJE fields for the SMF origin node and execution node. 
Once the security token, if any, is obtained from the job header, RJCTTERM calls 
RJOBVFY for non-spool offload devices (for reload devices, RJOBVFY is called after 
selective reload). RJOBVFY obtains a token (or verifies the one that was passed) to 
be used to protect jobs that will execute locally or that will be transmitted. 

RJOBVFY is not called if a job has already been validated locally. RJCTTERM 
checks the RDW4JVFY flag, set at the end of RJOBVFY processing, to determine this 
condition. Before returning to the calling routine, RJCTTERM sets the RDW4STKN 
flag (based on NJHTFOJB) to indicate whether the token obtained represents the job 
itself or the job's submittor. 

RJOBTERM: Subroutine to Terminate Job 
The RJOBTERM subroutine terminates the last input stream data set if it was not 
already terminated. A message, 'JOB DELETED BY JES2 OR CANCELLED BY THE 
OPERATOR BEFORE EXECUTION', is added to the end of the JCL file only if the job 
is cancelled before it is processed by the JCL conversion processor. The JCL file is 
then terminated, and the last buffer is scheduled for output. 

The peripheral data definition block (PDDB) for each of the four system data sets 
with a potential for output - JCL, JCL images, JOBLOG, and system messages - is 
updated with information such as job forms and SYSOUT classes. If the SYSOUT 
class is one that was specified with the TRKCEL attribute during JES2 initialization, 
the PDB2TCEL indicator in the PDDB is set for later processing by the JES2 access 
methods. 

If any /*OUTPUT statements were encountered during the processing of the job, the 
output control table (OCT) is written to disk. The job queue element (JOE) is 
updated to reflect any changes in routing that might have occurred during the 
processing of the job. 

For network jobs, the job control table (JCT) and the job header are merged and 
placed in the job header. A mapped version of the job's security token is also 
placed into the header for jobs originating or executing locally. The RDW4STKN flag 
(set by RJOBVFY) is checked to determine if the token represents the job itself or 
the job's submittor. If it is.the job's token, RJOBTERM sets the NJHTFOJB flag in the 
header as well. 

If TYPRUN = JCLHOLD was specified, the HOLD immediate indication is set. The 
JCT is updated to reflect end-of-file status. If the job is a TSO session and is 
transmitting data using the JSO TRANSMIT command, the JCT is updated with the 
transmitter's job name. 

If the job is an NJE job, message $HASP122 is issued. If the job is a spool offload 
job, message $HASP588 is issued. The JCT and all input/output tables (IOTs) are 
written to disk. Control is then returned to the calling program. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-217 



HASPRDR "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RJOBVFY: Job Verification Subtasking Routine 

3-218 JES2 Logic 

RJOBVFY sets up the SAFINFO parameter list and calls JOBVALM under a subtask \_ ~7 
(via $SUBIT) to perform job validation. It then processes the job based on the 
information returned from the SAF call and calls RPDBSEC to initialize the system 
PDDBs. 

RJOBVFY is called by: 

• HASPRJCS for request jobid and error processing 
• RJCTTERM and RJOBEND for spool reload processing 
• RJCTTERM for locally originating/executing jobs and network jobs. 

On exit, register 15 contains a return code of 0 (successful processing; a valid token 
was obtained) or 4 (a severe parameter error occurred; the token is undefined). 

If subtask processing fails, RJOBVFY issues the $HASP077 message and issues an 
unsubtasked RACROUTE SAF call requesting an undefined user token, which will 
allow the job to be sent to another node or printed locally. RJOBVFY then subtasks 
RPDBSEC to initialize the JESMSGLG PDDB. If this subtasking fails or if a PDDB 
initialization error occurs, RJOBVFY sets the RDW1ABRT flag (queue the job for 
purge processing), clears the RDW2PURG flag (don't queue the job for output 
processing), and sets a return code of 4 to indicate to its caller that the job should 
be failed. 

If JOBVALM subtasking is successful, RJOBVFY continues processing according to 
JOBVALM return code. Return values of 0 (successful) or 4 (validation error) allow 
the job to continue and RJOBVFY sets its own return code to 0. A return code of 8 
(severe parameter error) causes RJOBVFY to bypass the remainder of job 
initialization and issue a $ERROR IP2 to terminate in the main task. 

Notes: 

1. For the 0 and 4 return codes from JOBVALM, RJOBVFY subtasks RPDBSEC, as 
previously described. 

2. For return code 4, RJOBVFY checks the accompanying reason code (SFIRESCD 
field) as well. If the reason code is 4 or 8, the job is flushed with a JCL error 
and the appropriate message is placed in the JESJCL data set: 

• 4 - $HASP111 INVALID /*ROUTE CARD 
• 8 - $HASP114 INVALID EXECUTION NODE 

When the job is authorized (return code of O from JOBVALM), the USERID, 
GROUPID, and SECLABEL values are extracted from the token and saved in the JOE 
and JCT; the verified USERID and GROUPID are copied into the NJE header fields if 
the job has been verified (RJOBVFY checks the setting of the JCT2AVDP field). 
RJOBVFY sets a field to indicate the token type (submittor's or job's) for later setting 
in the NJHTFOJB field of the NJE header. The password will also be changed if a 
new password has been specified. RJOBVFY checkpoints the JOE and subtasks the 
call to RPDBSEC to initialize the system PDDBs. The return codes from RPDBSEC 
are processed as previously described. 

RJOBVFY sets its return code according to the higher of the return codes set by 
JOBVALM and RPDBSEC. Just prior to returning to its caller, RJOBVFY sets the 

/ 

RDW4JVFY field to indicate that validation processing has been performed. / ~, 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

(' 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RTRACK: Subroutine to Acquire a Track Address, 

HASPRDR 

The RTRACK subroutine acquires a JES2 track address and returns with the track 
address in register 1. The $TRACK routine is called, passing the address of the 
master track allocation block (TAB) in the job's allocation input/output table (IOT) as 
input. If the acquisition of the track address causes a new track group to be 
allocated (indicated by the condition code returned by the $TRACK routine), then the 
allocation IOT is written to disk in order to allow the track group to be recovered in 
the case of a subsequent system failure. 

I 
RFMTIOT: Subroutine to Format Secondary IOTs 

The RFMTIOT subroutine acquires buffers (via $GETBUF) for a new IOT and 
initializes the new IOT using the old IOT, the last IOT on the chain. RFMTIOT then 
ensures that the new IOT is the first one pointed to by the PDDB. RFMTIOT then 
returns to the caller. 

RTRTIME: Convert S/370 TOD Subroutine 
RTRTIME converts System/370 time-of-day (TOD), obtained from the STCK 
instruction, to TOD in 0.01 second units with the date. RTRTIME then returns to the 
caller. 

RGETBUF: Subroutine to Initialize Output Buffers 
The RGETBUF subroutine acquires a JES2 buffer for an output buffer, initializes this 
buffer with a chain track address, the job key, and the data set key, then returns with 
the address of the buffer in register 1. If no buffer is available, the processor is 
placed in a wait state ($WAIT). When a buffer becomes available, the processor is 
posted, and another attempt is made to acquire a buffer. This process continues 
until a buffer is available, whereupon it is initialized as described above. 

RDRRCVO: Processor Recovery Subroutine 
The RDRRCVO routine performs the error recovery processing for the HASPRDR 
module. The routine is invoked via the $ESTAE error recovery mechanism in the 
event of a system abend condition occurring in HASPRDR. The routine first checks 
the SDWA for the type of error that occurred. If the error is not a program check, 
recovery is ended (RDRRCVO issues the $SETRP PERCOLATE macro). If a program 
check error occurred, RDRRCVO attempts to retry the processor by deleting the job 
currently being read in and continuing with the next job in the input stream. 
RDRRCVO sets the DCTDELET flag on in the reader OCT and resumes processing in 
the RGET subroutine via the $SETRP macro. The $HASP128 message is issued to 
the operator indicating the recovery action. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-219 



HASPCNVT "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCNVT: JCL Conversion Processor 
When first dispatched after JES2 has been started, HASPCNVT performs some basic 
initialization, establishes an $ESTAE routine, and issues a $GETMAIN macro 
instruction to obtain permanent storage for two buffers: one to hold a job control 
table (JCT) and the other to hold an input/output table (IOT). After having obtained 
the required storage and stored the addresses of the two buffers in its processor 
control element (PCE), HASPCNVT branches to the XCJGET routine to process the 
first available job. 

The PCE work area resides above the 16 megabytes in virtual storage and is 
accessed by the conversion processor in 31-bit addressing mode. Information 
needed by routines executing in 24-bit mode is contained in the DTE work area, 
which resides below 16 megabytes in virtual storage. 

If the $GETMAIN macro is unsuccessful, the HASPCNVT issues a $ERROR for a 
catastrophic error message $X03; this results in an abend. 

Multiple converters are supported. Up to 10 conversion processors can be 
initialized. 

XCJWAIT: Main Job Wait Routine 
When HASPCNVT has finished processing and either the current job or no jobs 
remain to be processed, HASPCNVT waits ($WAIT CNVT) at XCJWAIT. 

XCJGET: Start Job Processing Routine 
This portion of the converter is entered at the completion of processor initialization, 
or whenever HASPCNVT is waiting and a job is posted to the queue. The $QGET 
macro instruction is issued to obtain a job that is ready for JCL conversion. If no 
such job is available, XCJGET issues the $PGSRVC macro instruction to release (but 
not free) the storage that had been set aside for the expected job's JCT and the IOT; 
XCJGET then indicates that the storage has been released and again waits for a job. 
(The page release step is bypassed if the storage has never been used.) 

If a job is available, HASPCNVT issues the $ACTIVE macro instruction and 
determines whether the storage required for job processing has been released. If 
so, XCJGET issues the $8FR8LD macro instruction twice, to create an input/output 
block (108) within the JCT buffer and an 108 within the IOT buffer. 

XCRDJCT: JCT Read Routine 

3-220 JES2 Logic 

After 108s have been created, if the buffers had not been released previously, the 
XCRDJCT routine initializes the necessary fields, then calls the $JCTIOR routine, 
which reads the job's JCT from a spool volume. If the JCT does not point back to 
the job queue element (JOE) through which it was obtained, XCRDJCT branches to 
the disastrous error routine, XCDISTR, to abort the job. Normally, however, 
XCRDJCT proceeds to update the job management record in the JCT. The TIME 
macro instruction is issued to obtain the current time and date, which are stored in 
the JCT along with the system identification. 

HASPCNVT then determines if the conversion subtask (the HOSCNVT routine in 
HASPCNVS) is attached. If not, it is first detached (if necessary) and then attached. 
HOSCNVT establishes a security environment for the job being converted and 
performs a link and call to the OS JCL converter. HASPCNVS also contains the 
Converter/Interpreter text. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCNVT 

Then, HASPCNVT waits (because of the WAIT parameter on the $DTEDYN issued in 
this routine) for the subtask to finish its initialization. That is, the subtask posts 
JES2 using the $$POST macro instruction, which causes the JES2 dispatcher to post 
($POST) the conversion processor. 

XCRDIOT: IOT Read/Create Routine 
Once HOSCNVT has been attached, HASPCNVT reads the first IOT into the buffer 
obtained during processor initialization. Any additional IOTs are then read into 
buffers obtained from the JES2 buffer pool. 

Next, new spool space for the IOT is allocated out of its track group map. Then, an 
interpreter entry list (NEL), partially created during HOSCNVT initialization, is 
completed using information in the JCT and job class-related information from the 
class attribute table (CAT). This completes pre-conversion preparations by 
HASPCNVT. 

XCPOST: During these preparations, the subtask HOSCNVT has been waiting on the 
event control block (ECB) located at $CNVECB in the HASP communications table 
(HCT). HASPCNVT now posts $CNVECB and then waits on OPER and the work ECB 
in the DTE (DTEWECB) When HOSCNVT has completed JCL conversion, it posts the 
JES2 task, causing HASPCNVT to be dispatched again. HOSCNVT then waits again 
on $CNVECB. 

If HOSCNVT is not successful in its initialization, it issues a $HASP305 message to 
alert the operator that it is awaiting storage. Then HASPCNVT sets a time interval 
(via $STIMER) and waits for the time interval to elapse. When the time interval is 
up, HASPCNVT again posts HOSCNVT to initialize itself for processing. This cycle of 
message $HASP305, set timer ($STIMER), and wait continues till HOSCNVT is 
initialized. 

XCCHKPT: Checkpoint Processing Routine 
When control returns to HASPCNVT after JES2 converts the JCL, HASPCNVT writes 
every IOT that is marked as needing checkpointing to spool. Using $TRACK, 
HASPCNVT acquires a new track for each changed IOT and stores the track address 
in each IOT. After all IOTs are processed, HASPCNVT gets a new track address on 
the spool for the output JCT. 

HASPCNVT then writes all the changed IOTs and the JCT to spool, waiting (via 
$WAIT) for the 110 to complete. When the 110 is complete HASPCNVT validates that 
the JCT and IOT writes were successful; if they were unsuccessful, HASPCNVT 
issues a $DISTERR macro to indicate a control block error, stores the error code in 
the JCT, frees the IOT buffers, and queues the job again according to the results of 
the conversion and the information in the JCT. 

If the converted job represents a time-sharing user (TSU) logon, a test is made to 
determine whether another logon job with the same job name is already queued for 
or in execution anywhere among the systems sharing the JES2 job queue. If the 
logon job name is not unique, the JCT is rewritten with this indication of not being 
unique. HASPCNVT then frees any IOT buffers obtained from the JES2 buffer pool 
and requeues the job according to the results of the conversion and the information 
in the JCT. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-221 



HASPCNVT "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

If the job specified TYPRUN=SCAN, the.nit is queued, at highest priority, for output ./ ' 
processing. If the job is a started task (STC) or a time-sharing user (TSU) logon, 
then the job is queued for execution processing, regardless of the results of JCL 
conversion. Otherwise, jobs that did not complete JCL conversion processing 
without error are queued, at highest priority, for output processing. JES2 assumes 
the job encountered an error in conversion processing if either the converter set a 
non-zero return code or a user exit routine associated with JES2 exit point 6 set a 
return code greater than 4. If TYPRUN =HOLD was specified or implied (via 
operator commands or initialization parameters) for the job, and the job converted 
normally, then the job is queued for execution and held, and message $HASP101 is 
issued. 

Once the job has been requeued, HASPCNVT tries to get another job. If it does not 
get another, the permanent buffers obtained during processor initialization are 
page-released. They are reformatted when another job is obtained. 

CVESTAE: JCL Conversion $ESTAE Routine 

3-222 JES2 Logic 

CVESTAE receives control when HASPCNVT abends. It analyzes if recovery is 
possible and, if so, causes JES2 to recover the main task conversion processor. If 
the processor is processing a job and if a resumption point is defined, CVESTAE 
issues a $SETRP macro to resume at that point. Otherwise, the $SETRP macro is 
issued indicating percolation. 

LY~8-1006-2 ©Copyright IBM Corp. 1988, 1990 

I 
/ 

j 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCNVS: JCL Conversion Processor Subtask 

HASPCNVS 

HASPCNVS contains a single entry point, HOSCNVT, which is subtasked by 
HASPCNVT to perform JCL conversion processing. HASPCNVS establishes a 
security environment for the job being converted and issues a link and call to the OS 
JCL converter. The module is reentrant and has RMODE 24, and AMODE 31 
attributes. 

HOSCNVT: JCL Conversion Processor Subtask 
When it is attached by HASPCNVT, HOSCNVT establishes $STABNDA as its ESTAE 
routine and initializes an interpreter entry list (NEL) that is located in the daughter 
task element (DTE). 

To begin JCL conversion, HOSCNVT completes the initialization processing by 
loading the MVS JCL converter (entry point IEFVH1), posting ($$POST) the JES2 
task, and waiting on $CNVECB. This is the WAIT macro instruction, located at 
XCNVWT, that HOSCNVT issues after each job's JCL has been converted. 

After being posted by HASPCNVT, HOSCNVT checks to see if JES2 is being 
terminated. If it is, HOSCNVT closes the SYS1.PROCUB, deletes (via DELETE) the 
MVS JCL converter, and exits (via SVC 3) to the system. If JES2 is not terminating, 
HOSCNVT gets the address of the JCT, the first IOT, and the PDDB for use in 
subsequent processing. 

The SSVOPNC routine in the subsystem support module is used to perform a pseudo 
open of the subsystem data sets required by the MVS JCL converter. The access 
method control blocks (ACBs) and data extent blocks (DEBs) for these data sets are 
located in the DTE. SSVOPNC creates the appropriate subsystem data blocks 
(SDBs), obtains buffers for the data blocks, and reads in the first JCL data block. 
Then, it returns to HOSCNVT. 

After the fake opening, HOSCNVT checks the DDNAME of the procedure library 
required for the job. If the DDNAME is not the same as for the procedure library 
currently open, HOSCNVT closes the current library and opens the one required for 
this job. If the opening is unsuccessful and the DDNAME was other than the default, 
PROCOO, the open is tried again using PROCOO. If the procedure library was opened 
successfully but its DCBLRECL field was not 80 or its DCBBLKSI field was not a 
multiple of 80, then a message is issued to the operator and a copy of the message 
is sent to the job's system message data set. 

Failure to open a procedure library with valid DCBLRECL and DCBBLKSI fields 
causes HOSCNVT to zero the address in the NEL pointing to the device control block 
(DCB) for the procedure library. 

HOSCNVT now establishes the security environment for the job currently converting 
so that, if any MVS commands are passed from the job stream to the converter, the 
correct authority will be associated with each. If the authority checking (performed 
by RACROUTE processing) fails, further conversion processing is bypassed and the 
job is failed. Otherwise, HOSCNVT calls the MVS converter. 

The MVS converter merges JCL statements from the JCL data set with JCL 
statements from the procedure library. The resulting statements are converted into 
internal text. As each internal text record is created, the converter calls the routine 
in HASPCNVS, located at XTXTEXIT. This exit routine modifies the internal text for 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-223 



HASPCNVS 

3-224 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

subsystem data set DD statements and for certain EXEC statements. This exit also / 
allows messages to be passed to the converter/interpreter from the first point of 
invocation only. 

For SYSIN and SYSOUT statements, a dsname keyword sequence is added. If the 
dsname keyword exists, it is appended to the dsname keyword sequence. 
Otherwise, a "?" is put at the end. (For SYSIN statements, a SAF call is made to 
audit the fact that the job owner is creating the SYSIN data set.) 

If the SYSOUT class is asterisk (*), the class is changed to the class used for system 
messages (JCTMCLAS). For DD* or DATA statements, the* or DATA sequence is 
removed, and keyword sequences are added for dsname and card count. For EXEC 
PGM = statements, if the class attribute table (CAT) entry for this job indicates a 
performance group of other than zero and if no performance group was specified on 
the EXEC statement, the keyword sequence for PERFORM is added using the value 
in the CAT. 

After modification of the internal text has taken place, XTXTEXIT invokes any 
enabled installation exit routines associated with JES2 exit point XCSTCUET (for exit 
6). If no installation exit routines are to be invoked (as determined by a $EXIT 
macro with TYPE=TEST specified), XTXTEXIT returns to the converter at label 
XCSTCEND. If any installation exit routines are to be invoked, then XTXTEXT 
produces the exit point trace records (id 13) with internal text rather than accepting 
the default trace records produced by the exit effector. The trace records produced 
are identical to those produced by the exit effectors except that they include the 
internal text. The post invocation record will not contain a valid last-routine-called 
field. 

On entry to an installation exit routine, register 1 contains the address of a 4-word 
parameter list. The first word is the address of a 4-word work area (DCNVUWA) in 
HOSCNVT's DTE); the second word is the address of the internal text; the third word 
is the DTE address; the fourth word is the JCT address. Register 0 contains a value 
of 0 to distinguish this instance of exit point 6 from that which occurs at the 
conclusion of conversion. 

On return from the last installation exit routine, the return code in register 15 is 
saved in field DCNVERC1 of the DTE if it is higher than any previously-returned 
return code. The return code does not otherwise affect subsequent processing, but 
is saved for later inspection by HASPCNVT at label XNOHOLD, where a value 
greater than 4 will cause the job to be queued for output instead of execution. At 
label XCSTCEND, XTXTEXIT returns to the converter. 

HOSCNVT invokes RACROUTE services again to delete the security environment 
created for the job. Should an error occur in RACROUTE processing, HASPCNVS 
issues the $HASP313 message and fails the job. Otherwise, processing continues at 
exit point XCSTMUEE, where exit 6 is invoked once again. 

This instance of exit 6 is distinguished from the internal text variation by a value of 4 
in register 0. Register 1 points to a two-word parameter list; the first word is the 
address of the same work area passed to internal text exit routines; the second 
word is the address of a full word containing the converter return code; the third 
word is the address of the DTE; the fourth word is the offset of the JCT address. The 
return code from the last in exit routine is saved in field DCNVERC2 in the DTE for 
later inspection by HASPCNVT at label XNOHOLD, where a value greater than 4 will 
cause the job to be queued for output instead of execution. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPXEQ: Execution Services 
The following describes the execution services provided by JES2. 

HASPEXEC: Execution Processor Description 

HASPXEQ 

The execution processor, HASPEXEC, provides job queuing and a variety of 
services related to the execution of a job. It is a queue-driven processor; that is, the 
presence of an element on a queue is the indicator to the processor that it has a 
function to perform. The following queues are serviced by the HASPEXEC: 

• Spin queue 
• Job-pending-execution-by-class queue 
• Jobs-pending-execution-by-number queue 
• Jobs-pending-requeue queue 
• Jobs-pending-termination queue 

Note: The HASPST AC module services the cancel/status queue. 

The headers of the queues serviced by HASPEXEC are located in the $HCCT. When 
all the queues have been emptied or when all attempts to empty them have been 
made, HASPEXEC waits ($WAIT) at location XJBWAIT. HASPEXEC is dispatched 
again to service the queues when another element is added to one of the queues, 
when a change is made to any entry in the JES2 job queue, or when the operator 
modifies a JES2 logical initiator. 

Spin Queue Support 
Spin queue support, beginning at location XSPNHLD in HASPEXEC, is entered when 
an element is added to the queue headed by CCTSPIOT. Each element in the queue 
is an input/output table (IOT) subsystem control block that resides in common 
storage. The IOT is put on the queue by HASCDSAL during subsystem data set 
unallocation. HASCDSAL, by this time, has finished its use of the IOT, including 
writing it, and does not wait for HASPEXEC to complete its spin support. Spinning a 
data set makes it immediately available for output processing; holding a data set 
makes it available to conversational terminal system users. 

The spin support first dequeues all of the IOTs queued to CCTSPIOT (that is, all 
pending spin requests) and requeues the IOTs in first-in-first-out (FIFO) sequence to 
CCTFIFOQ, a queue used exclusively by HASPEXEC's spin support. This reordering 
is done to facilitate processing in the proper sequence of any hold requests on the 
queue. CCTFIFOQ is then processed one IOT at a time. 

After requesting access to checkpoint data, HASPEXEC at XSPRQST processes the 
first spin request -- that is, the first IOT chained off of CCTFIFOQ. After 
checkpointing the JOE associated with the IOT and obtaining the job lock via 
$GETLOK, HASPEXEC processes the single peripheral data definition block (PDDB) 
contained in the IOT. If the PDB1 HOLD bit in the PDBFLAG1 field is 0, the data set is 
to be spun, provided that it contains information to be printed (PDB1NSOT in 
PDBFLAG1 is 0). If it contains information that isn't to be printed, HASPEXEC at 
XSPHPUR deletes the data set and frees its tracks. 

If the data set is to be spun and is not JESNEWS, HASPEXEC at XSPINJOE removes 
any JOEs pointing to the data set's spin IOT. (These JOEs would exist only in 
certain error conditions involving an ABEND and hot start of JES2.) They are not 
removed if marked "busy" and the job will be marked "unspun.". The output 
processor will remove the JOE later. HASPEXEC then creates work and 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-225 



HASPXEQ "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

characteristic JOEs, adds then to the job output table (JOT), allocates a spool record / ' 
for the JOEs, writes the JOEs, and checkpoints them. Then, HASPEXEC frees the 
job lock and IOT and gets the next request at XSPRQST. If there is no space in the 
JOT for the JOE, HASPEXEC at XSPINBAD turns on the unspun flags in the JOE and 
HCT and posts (via $POST) the output processor that work is available. 

If the data set is to be held, indicated by the PDB1HOLD flag set to 1 in the 
PDBFLAG1 field, HASPEXEC sets the creation date and status byte, initializes the 
remaining PDDB fields for the held data set, rewrites the IOT, frees the job lock and 
IOT buffer, and gets the next request at XSPRQST. 

General Description of Jobs-Pending Queues Support 
The routines described next support the jobs-pending queues. The queue element 
for each of these queues is the subsystem job block (SJB). An SJB is the primary 
control block used by HASPSSSM, the subsystem support load module residing in 
the pageable link pack area (PLPA) or CSA. HASPSSSM, executing under a 
subsystem service requester's task control block (TCB), queues and dequeues SJBs 
from the various jobs-pending queues. HASPEXEC, executing under the JES2 TCB, 
also queues and dequeues SJBs from these queues. To ensure queue and SJB 
integrity, a locking mechanism is used incorporating the compare double and swap 
(CDS) instruction. 

The SJB-queues lock protects critical SJB fields and all of the jobs-pending and the 
jobs-in-execution queues as a group. After the lock is obtained, the queues may be 
modified. The macro instruction $DEQSJB in HASPXEQ is used to obtain the lock 
and remove an element (SJB) from one of the queues through the local subroutines 
XSJBLOCK and XDEQSJB. The local subroutines XQUESJB and XSJBUNLK are 
used to requeue an SJB and release the lock. 

To ensure that use of the SJB-queues lock does not significantly degrade system 
performance, a rule has been established that no SVC be issued, directly or 
indirectly, by a routine holding the lock. Hence, in processing the queues of SJBs 
representing requests for jobs pending execution, an attempt is first made (often 
involving waits on 1/0) to satisfy the request. Only when the request is satisfied is 
the lock obtained, the SJB that is dequeued is updated and requeued, the waiting 
task (HASPSSSM) posted, and finally the lock is released. Similarly, routines that 
support job termination and requeue run the preceding sequence using the 
information extracted from the SJB while the lock was held; they complete the job 
processing without holding the SJB lock. 

Jobs-Pending-Execution-by-Class Queue Support 

3-226 JES2 Logic 

When an initiator is ready to process a new job, it makes a subsystem request for it 
using the macro instruction IEFSREQ. This request is first processed by HASCJBST. 
HASCJBST queues the SJB last-in-first-out (LIFO) off CCT JPCLS in the $HCCT 
removes the lock, causes the JES2 task to be posted, and then waits for the 
subsystem to provide a job. The routine used to post JES2, $$POST, also ensures 
that the execution processor is posted ($POST), causing the processor to be 
dispatched. The main functions and data areas used in job selection by class are 
documented in the HIPO "JES2 Execution Processor Job Selection by Job Class" in 
chapter 2. 

An SJB queued to CCT JPCLS causes the routine in HASPXEQ beginning at label 
XPBYCLS to be entered. Although activated by an SJB representing a job request 
by an initiator, the flow of this routine is governed by the status of the partition 
information table (PIT), pointed to by the HCT field, $PIT ABLE. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPXEQ 

The PIT is composed of elements that represent JES2 logical initiators. The system 
operator controls logical initiators when controlling the scheduling of jobs for 
execution. Normally there is an MVS initiator active for each non-drained PIT, even 
though an initiator is not associated with a particular PIT except when a job is being 
executed. 

Beginning at XPBYCLS, the CCT JPCLS queue of SJBs is scanned. Any 
partially-selected SJBs that were waiting for a checkpoint write that has already 
completed are dequeued and the waiting task is cross-memory posted. Also any 
SJB that represents a .first-time job select request will be matched-up with an 
available PIT entry. The PIT is then searched for an available entry, one that is not 
busy, stopped, or drained (an initiator exists for a stopped PIT, but not for a drained 
one). When an available PIT is found, the JES2 job queue is searched for a job that 
is awaiting execution and has a job class matching one of those in the PIT. This 
search is performed at label XGOTPIT using the $QGET macro instruction. If a job is 
found and no user job with the same job name is currently executing, the SJB is 
marked "partially-selected", and the PIT and SJB are updated. If no job is found for 
the PIT, the operator is sent an idle message (if one has not been already issued), 
and the scan of the PIT is resumed. 

Jobs-Pending-Execution-by-Number Queue Support 
START commands, issued by the system or by the system operator, and 
time-sharing user logons result in JCL being submitted to the subsystem via internal 
readers. Job selection by number is illustrated in the HIPO "JES2 Execution 
Processor Job Selection by Job Number" in Chapter 2. 

When the input processor (HASPRDR) has created an entry for the job in the JES2 
job queue, it returns the JES2 job id of the job to the submitter of the JCL. The 
submitter of the JCL then makes a subsystem request for this job by its number (job 
id). 

This request is first processed by HASCJBST, which handles the request similarly to 
the way it handles initiator requests for jobs (see "Jobs-Pending-Execution-by-Class 
Queue Support" preceding). It differs primarily in that HASCJBST queues the SJB 
to CCTJPNUM. Another way to queue an SJB to CCTJPNUM is through the request 
job ID subsystem function, which creates an entry in the JES2 job queue along with 
sufficient control blocks to represent an executing job. The request job ID function 
allows a MVS system component to dynamically allocate a SYSOUT data set and, 
through dynamic deallocation, to spin off that data set for processing by the JES2 
output processor. 

The presence of an SJB queued to CCT JPNUM causes the routine in HASPXEQ 
beginning at XPBYNUM to be entered. Control is passed to the routine beginning at 
XREQID if this is a request for job ID support. If the SJB is not queued to 
CCT JPNUM, the JES2 queue is searched for the particular job whose number was 
provided in the SJB. If the job requested is awaiting execution, the SJB is requeued 
to CCTJXNUM and the waiting task is posted. If the job is in or awaiting JCL 
conversion, then the execution processor looks for other work to do until JCL 
conversion is complete and the job is requeued for execution. 

Request job ID support invokes the HASPRDR job creation routine (HASPRJCS) to 
create an entry in the JES2 job queue. It then writes to disk the job control table 
(JCT) and input/output table (IOT), frees the buffers for these control blocks, 
requeues the job, requeues the SJB, and posts the waiting task. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-227 



HASPXEQ "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Jobs-Pending-Requeue Queue Support 
If a job that has terminated abnormally has been specified as restartable from a 
step or a checkpoint, then the SJB for that job is queued by HASCJBST to 
CCT JRENQ in the $HCCT. On recognizing this SJB, the execution processor enters 
the routine in HASPXEQ located at XPRENQ. After extracting pertinent data from 
the SJB, the waiting task is posted. Then the job is requeued in the JES2 job queue 
for execution. Note that the SJB was not requeued. Any jobs withheld from 
execution because of duplicate job names are then released. 

Jobs-Pending-Termination Queue Support 
Jobs that terminate normally or are not restartable result in a subsystem request for 
job termination. This request is first handled by HASCJBST, which requeues the 
job's SJB to CCT JTERM and then waits for the subsystem to complete its 
termination processing. Job termination processing is illustrated in the HIPO "JES2 
Execution Processor Job Termination" in chapter 2. 

The execution processor job termination support begins at XPTERM. After obtaining 
the SJB queue lock and dequeuing the SJB, the waiting task is posted without first 
requeuing the SJB, and the lock is then removed. A 'X04' catastrophic error can 
occur if there is no SJB to dequeue and process. The job is then requeued either for 
execution (if specified by the operator) or for output processing. In either case, if 
the job had been executing by class (user job), any jobs withheld from execution 
because of duplicate job names are then released. 

Execution Processor Subroutines 
The following subroutines support the execution processor. 

XQSUSE: Subroutine to Request Access to Checkpoint Data 
The XQSUSE subroutine issues a $QSUSE macro instruction to obtain access to the 
JES2 checkpoint data. 

XIO: Control Block Read/Write Subroutine 
The XIO subroutine initiates an 1/0 operation, using the $EXCP macro instruction, 
and then waits for the 1/0 operation to complete. It performs no error checking on 
the 110 operation. 

XSJBLOCK: Subroutine to Obtain SJB Queues Lock 
The XSJBLOCK subroutine uses a compare double and swap (CDS) instruction to 
obtain a lock on certain SJB queues. If necessary, the subroutine waits for any 
current lock holder to release the lock. Return is made only when the subroutine 
has obtained the lock. 

XSJBUNLK: Subroutine to Release SJB Queues Lock 
The XSJBUNLK subroutine removes the SJB queues lock and posts the waiting lock 
requester. 

XDEQSJB: Dequeue on SJB 

3-228 JES2 Logic 

The XDEQSJB subroutine is invoked by the local macro instruction, $DEQSJB (which 
is unique to XDEQSJB), after first obtaining the SJB queues lock. The appropriate 
SJB queue is searched for the given SJB. If it is found, the return is made with 
condition code O; otherwise, the SJB queues lock is released, and a non-zero 
condition code is returned. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

(_ 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

XQUESJB: Return SJB to SJB Queue 

HASPXEQ 

This subroutine adds passed SJBs to the head of the specified SJB queue. 

XPITMSG: Issues PIT Status Message 
The XPITMSG subroutine issues a message to the operator indicating that the PIT is 
inactive, halted, or drained. 

X$PHASP: Subroutine to Withdraw JES2 from the System 
After processing all the SJB queues, HASPXEQ checks to see if the system is being 
stopped (a $P JES2 command has been entered). If it is, and no FSSs are active, 
X$PHASP is invoked to ensure that all PITs are drained and inactive, and that the 
initiators and request-jobid tasks are stopped. If there is any system activity, this 
routine sets a flag to prevent a quickstart when JES2 is restarted. It then dequeues 
all starting tasks in the system, and finally communicates to HASPCOMM that its 
processing is complete and puts HASPXEQ into a permanent wait state. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-229 



HASPSTAC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSTAC: Cancel/Status Processor 

3-230 JES2 Logic 

The HASPSTAC processor removes requests (SJBs) from the cancel/status queue. 
The job queues are then scanned for any jobs to be processed. The success or 
failure of status/cancel processing is returned in the SJB, along with any additional 
information (for status) required by the caller. HASPSTAC is invoked by a $$POST 
of the STAC resource by the TSCAN routine in HASCSIRO and the HETSOUT routine 
in HASCSRJB. 

The cancel/status support routine, beginning at entry point HA$PSTAC, is entered 
when a subsystem job block (SJB) is queued, via its SJBTCHN chain field, to the 
CCTTSCS queue in the $HCCT by the cancel/status support routines in HASCSIRO 
and HASCSRJB. The routines wait for completion of processing, which proceeds in 
accordance with the requested function. 

If there is a cancel/status request HASPST AC dequeues the SJB from the CCTTSCS 
queue. HASPSTAC issues a $GETLOK, sets CCTTSLOK in the $HCCT to 0 and then 
does a $FRELOK and branches to SRCPTCS. 

At STCSTART, HASPSTAC requests access to the checkpoint data set and checks 
for a cancel request in the SJB. If a cancel request is indicated, exit point STCZEXIT 
(for exit 22) is taken, if enabled, so that an installation-defined exit routine can 
change/modify the selection criteria. 

Note: Because this exit allows installations to perform their own job queue 
searches as well as determine who has authority for TSO CANCEL and STATUS 
commands, it is the responsibility of this exit routine to ensure that, if any additional 
privilege is given (for example, to cancel another user's job), it performs the proper 
authorization and auditing. 

HASPSTAC uses the criteria to select a job to cancel. If a status request is 
indicated, HASPSTAC issues a $GETCEL to acquire cell storage for the status 
information. If storage is unavailable, a cross-memory post is issued (via 
$XMPOST) against SJBECBP to activate the caller's cancel/status support routine 
and HASPSTAC looks for more work at STCOSRCH. However, if storage is 
obtained, HASPSTAC takes the same exit point STCZEXIT (for exit 22). 

If the request is to cancel a job, HASPSTAC obtains a security token for the job and 
calls $JOBPROF to obtain a job profile name. It then issues the $SEAS macro to 
subtask a call to the RACROUTE authorization service. RACROUTE processing 
determines if the caller has authority to cancel the job and processing continues 
accordingly. 

The job queue is scanned to locate the one and only job queue element (JOE) that 
matches the requested job name and optional job number (job id). If a JOE is found, 
the $JCAN macro instruction is executed to cancel the job. $JCAN either cancels 
the job or returns to an error location. If the cancellation is rejected by $JCAN, the 
job was not uniquely identified, or the job was not found; an error return code is set 
into the SJBTRETR field. Otherwise, an acceptance return code is set. The 
SJBECBP ECB is posted via $XMPOST and the processor looks for more work. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSTAC 

If the request is tor status, a work area is obtained via the $GETCEL macro 
instruction, and the job queue is scanned in one of three modes: 

1. A search for job queue elements with job names equal to the user id plus one 
character 

2. A search for job queue elements with job names that exactly match the 
requested job name 

3. A search tor the single job queue element with a job name and job id that 
matches the requested job 

If the scan results indicate that no job queue elements are found or that too many 
found to tit the response information in the work area, a diagnostic return code is 
set in the SJBTRETR field, the SJBECBP ECB is posted, (via $XMPOST) and the 
processor returns the count of the number of jobs found and looks for more work. 
Otherwise, for each job found, a response element is constructed in the work area 
indicating the status of the job. During the job queue scan for a multiple status 
request, exit point STCSEXIT (for exit 22) is optionally taken to adjust the scan 
criteria. Also, exit point STCYEXIT (for exit 22) is taken when the work area is too 
small to hold the status information. 

When the installation exit routine returns, the job queue scan continues or ends 
depending on the return code. A return code of 8 causes the job queue search to 
end; a return code of 0 or 4 causes the job queue search to continue until the end of 
the job queue is ~ncountered. In either case, the SJBRETR code is set, the ECB is 
posted, and the processor looks for more work. If the work area is not large 
enough, the required size is calculated and returned. If the required size becomes 
greater than 32K or if the $GETCEL macro instruction is unable to obtain the storage 
required by the requester, the register 15 return code field in the subsystem job 
block (SJB) is left non-zero (indicating a logic error). 

Return codes in SJBTRETR for cancel are: 

Code Meaning 

SSCSNOJB (X'04') No job found 

SSCSBADI (X'08') Job name found but no matching job id 

SSCSOUTP (X'14') Job on $OUTPUT queue (user did not request output 
cancellation) 

SSCSRTOK (X'OO') Job set for cancel 

SSCSICAN (X'1C') Invalid request. User attempted to cancel execution of an STC 
or TSU job or user attempted to cancel individual output 

Return codes in SJBRETR for status are: 

Code 

SSCSNOJB (X'04') 
SSCSBADI (X'08') 
SSCSMALL (X'10') 
SSCSRTOK (X'OO') 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

Meaning 

No job found 
Job name found but no matching job id 
Area requested too small 
Area contains useful response 

Chapter 3. Program Organization 3-231 



HASPPSO "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPPSO: Process-SYSOUT Processor 

3-232 JES2 Logic 

This routine provides data set names and characteristics of subsystem data sets to 
conversational terminal systems and to external writers. It also provides the 
interface between the HASP command processor and the process-SYSOUT 
processor(s) for disposition processing of a job's held output. 

When the process-SYSOUT processor is first entered, it obtains permanent buffer 
storage (via a GETMAIN macro instruction) for an input/output table (IOT) and job 
control table (JCT). It issues a $GETBUF for the lOT/JCT input/output buffer and the 
OUTPUT CHK input/output buffer. (The buffers are released when there is no work 
on the SYSOUT queue.) HASPPSO abends with an error code of T01 if the buffer 
storage is not obtained. Otherwise, a pointer is established for the IOT/JCT buffer 
and the $BFRBLD macro is issued to build a buffer for checkpoint 1/0. Because the 
processor never needs more than one buffer at a time, this buffer is always used, 
ensuring that the processor never needs to wait for a buffer. When the processor 
must wait for more work, the buffer will, if necessary, be page-released using the 
$PGSRVC macro instruction. 

Requests for process-SYSOUT support are first processed by HASCSIRQ. The 
information passed to HASCSIRQ in the subsystem options block (SSOB) is 
transferred to a subsystem control block, located in common storage, called a 
process-SYSOUT work area (PSO). HASCSIRQ stores the address of the PSO in the 
requesting user's subsystem job block (SJB). The SJB is then chained, using the 
chaining field SJBTCHN, to the field CCTPSOQ in the $HCCT. 

HASPPSO checks the PSOUFLG field during group request data set disposition 
processing. If the flag indicates a data set routing change to a new destination, the 
$DESTCHK routine in HASCSIRQ will determine if the SYSOUT can be sent to the 
specified destination. If so, HASPPSO stores the PSOROUTE field in the PDBDEST 
and sets the route change flag (PDB2PSOR). Otherwise, the PDDB is skipped and 
the next one processed. 

After posting JES2, HASCSIRQ waits for the request to be processed by the JES2 
process-SYSOUT processor (HASPPSO). Because requests are queued to the 
CCTPSOQ in LIFO order, HASPPSO requeues these requests in FIFO order to the 
CCTPSOFF queue. If JES2 is down, these PSO requests are queued to the 
CCTPRGQ. 

When dispatched, HASPPSO at label TQSEARCH first looks for any requests on the 
CCTPRGQ. If there are none, it next searches for any operator-initiated requests on 
the $0QUEUE. If that queue is empty, HASPPSO processes requests from the 
CCTPSOFF queue, then from the CCTPSOQ. 

When processing the CCTPSOQ, the entire chain is requeued in FIFO order as the 
CCTPSOFF queue. HASPPSO is then ready to process the normal process-SYSOUT 
request. 

Operator commands can also result in requests for process-SYSOUT support. If 
held data sets are to be deleted or released for output processing because of $C or 
$0 commands, the JES2 command processor creates process-SYSOUT requests in 
the form of PSOs obtained from subpool 0 via GETMAIN. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPPSO 

These requests are queued to the HASP communications table (HCT) field, 
$0QUEUE. They appear to the process-SYSOUT processor as group requests 
affecting specific jobs. PSO requests are rejected for jobs whose spool volumes are 
not online. 

HASPPSO, when it is not processing a request, waits ($WAIT) at location T JBWAIT. 
When dispatched, it first processes any operator-initiated requests (that is, those 
queued to $0QUEUE). It is then ready to process the normal process-SYSOUT 
request queue, CCTPSOQ. 

To ensure the integrity of the process-SYSOUT request queue, a locking mechanism 
based upon the compare double and swap (CDS) instruction is employed. First, an 
SJB is dequeued from CCTPSOQ using CDS. Then the lock byte, CCTTSLOK, is 
tested. If CCTTSLOK is 0, the process-SYSOUT processor may proceed to use the 
SJB just dequeued. If it is non-zero, then the possibility exists that another task in 
HASCSIRQ is currently modifying the dequeued SJB. To ensure the integrity of the 
use of the SJB, HASPPSO must then issue the $GETLOK macro instruction. When 
control is returned, CCTTSLOK is zeroed and the $FRELOK macro instruction is 
issued. 

When the lock is available, and there is a request to process held data sets, this 
routine ensures that they are not dumped. 

Conversational Process-SYSOUT Requests 
Conversational requests (for example, those originating for TSO or for the external 
writer) seek access to the queue of held SYSOUT data sets. The job queue element 
(JQE) for a job contains a count of the data sets currently held for a job in the field 
JQEHDSCT. 

Each held data set in a job's hold queue is represented by a peripheral data 
definition block (PDDB) in a spool-resident IOT. The spool address of the first IOT is 
contained in the job control table (JCT) field, JCTIOT. Each contains a copy of the 
peripheral data definition block (PDDB), which describes the data set represented. 

Conversational requests allow for altering the characteristics of a data set and for 
checkpointing the processing of a data set. These functions force modifications to 
the PDDB. 

Having dequeued an SJB representing a conversational request, HASPPSO at 
TGOTSJB determines where to process the request. If so, information in the PSO 
(pointed to by the SJB) is used to update the PDDB representing the data set. If the 
PDDB is modified, then the IOT to which it belongs is rewritten to spool. 

If the data set alteration is not specifically requested, the PSYAUTH routine is called 
and issues a RACROUTE REQUEST=AUTH call indicating that only READ access to 
the data is required. Otherwise, UPDATE access is requested. PSYAUTH is not 
called during operator command processing. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-233 



HASPPSO "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

If a data set is to be cancelled, its PDDB is marked not held and the job's hold count / ' 
is decreased. If the data set is to be released, its PDDB is marked not held and the '"--- / 
process-SYSOUT (PSO) processor attempts to gather the held data set into the JOE 
assigned by the output processor (HASPHOPE). This is done at output processing 
according to the following rules: 

• Spun data sets are never recombined. 

• Released data sets cannot be combined into output groups for which a print 
request has been partially processed; this includes requests that are currently 
being printed or punched. 

• A released data set cannot combine with an output group for which there are 
multiple job output elements (JOEs). 

• A released data set can only combine with an output group it would normally 
have been a part of had it not been held. 

If the released data set is unable to fit into an existing pair of work and 
characteristics JOEs, JOEs are created in the PSO processor's processor control 
element (PCE) work area. An attempt is then made to add these JOEs to the job 
output table (JOT). If it is successful, the job's held data set count JQEHDLCT is 
decreased. HASPPSO waits ($WAIT) for an available JOE. 

An initial conversational request is indicated by the first byte of PSODSN being set 
to hexadecimal 0. In this case, the request is one of two types: an initial data set 
request, or a group request. In the latter case, all held data sets that satisfy the 
given search criteria are modified and disposed of one at a time. 

An initial data set request normally causes the hold queue to be searched (starting 
at the top) for the first data set that matches the search argument. 

The external writer initial request, recognized by its unique writer name in the 
parameter list, requires that only data sets with a data set identifier (DSID) be 
returned. 

External Writer Process-SYSOUT Requests 

3-234 JES2 Logic 

External writer requests are assumed to be on behalf of a program writing JES2 
SYSOUT data sets to high-speed devices. For this reason they are allowed to 
compete for JOEs on an equal basis with JES2 print/punch processors. 

Unlike the print/punch processors, HASPWTR allows any combination of the 
following search criteria: job name, job ID, SYSOUT class, destination, writer name, 
and forms number. A branch is taken to the JOE screen routine in HASPJOS, 
(pointed to by $JOESCRN in the HCT,) to check the CPU id and spool availability for 
the JOE. If the JOE fails this check, another JOE is obtained. Otherwise, HASPWTR 
continues to check the JOE against the selection criteria. If there are no JOEs 
available, HASPWTR XMPOSTs the writer to wait on the JOT. 

When processing an initial external writer data set request or when all of the data 
sets corresponding to a previously selected JOE have been processed, HASPPSO 
scans the entire JOT looking for a JOE that satisfies the specified search criteria. If 
more than one JOE satisfies the search criteria, the highest priority JOE is selected. 
A RACROUTE call is then issued to verify that the external writer device has 
authority to process the JOE. (An entry is placed in the JWEL table if authorization 
is denied.) 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPPSO 

Once a JOE has been selected and authority verified, the JOT is checkpointed, and 
system management facilities (SMF) data in the JCT is transferred to the PSO. Then 
the first regular IOT is read and its PDDBs are scanned (the PDDB routine must 
match that in the print/punch processor) for the first PDDB whose characteristics 
match those of the selected work and characteristics JOEs. Information from this 
PDDB is used to complete the PSO, and the waiting task is posted. 

When the PDDBs in the current IOT have been exhausted, the next IOT (if any) is 
read, and the scan is continued. When all IOTs have been searched, the JOEs are 
removed from the JOT using the $#REM macro instruction. Another JOE, which 
satisfies the PSO search criteria, is searched for. 

If no JOE is found, the external writer is made to wait until a change is made to the 
JOT. This is done by providing an event control block (ECB) address in PSOWTRC 
and return code 4 in PSORETN. When work becomes available, $#POST posts any 
external writers that are waiting for that type of work, causing the writers to repeat 
their process-SYSOUT requests. 

Job Disposition Processor 
The job disposition processor communicates between the HASPCOMM processor 
and the PSO processor(s) to handle held data sets. Processor work requests are 
indicated by JDR elements queued to the $JDRQUE anchored in the HCT. $0 
operator requests are mapped into JDR requests by the command processor. 

If no work is queued, the processor issues a $WAIT on work. 

If work is obtained, the processor increments the active count with $ACTIVE and 
establishes a $ESTAE environment. 

When the job disposition processor processes JDR elements, the job queue is 
searched for JQEs with held data sets that meet the criteria specified in the JDR 
element. The PSO element (contained within the processor PCE work area, 
$JDRWORK) is initialized from information in the JDR and the selected JQE, then 
queued to the $0QUEUE, and the PSO processor is $POSTed. For purge requests, 
each JQE represented in the JDR element is located and tested for the presence of 
the QUEPURGE flag. For each JQE that indicates QUEPURGE and held data sets, 
the PSO request is queued to the $0QUEUE to delete the held data sets, and the 
PSO processor is #POSTed. On completion, the job disposition processor issues 
operator messages based on information returned by the PSO element. When all 
jobs represented in the JDR have processed, the JDR is freed with a $RETWORK, 
the $ESTAE is cancelled, and the active count is decremented using $DORMANT. 

This routine also deletes data sets for cancelled jobs processed by the $JCAN 
service routine. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-235 



HASPPSO "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Process-SVSOUT Processor Subroutines 
The following subroutines are used in support of the process-SYSOUT processor. 

TCHKBUF: Subroutine to Get IOT/JCT Buffer and Checkpoint Buffer 
The TCHKBUF subroutine is called to get a IOT/JCT buffer and a checkpoint buffer 
for use in processing requests for held data sets. It issues a $GETBUF macro for the 
buffers, if they do not exist. 

TIOTWR: Subroutine to Write an IOT/JCT Buffer 
This subroutine issues a $EXCP macro to initiate the 1/0 event. It then waits until 
the 1/0 is complete and then returns without altering or inspecting the return code. 

TCBREAD: Subroutine to Read and Check an IOT/JCT buffer 
The TCBREAD subroutine issues a &EXCP macro to initiate an 110 event. It then 
waits until the 1/0 is complete and returns if the IOT contains a valid identifier key. 
Otherwise, it branches to an error routine. 

TEXCP: Subroutine to Read or Write an IOT Buffer 
The TEXCP subroutine issues a $EXCP macro to initiate the 1/0 event. It waits until 
the 1/0 is complete and then returns without altering or inspecting the return code. 

PSY AUTH: Process SVSOUT Authorization Routine 

3-236 JES2 Logic 

PSYAUTH performs RACROUTE authorization requests for access to PSO data sets. 
It is called by HASPPSO and HASPWTR to handle requests: 

" For the TSO RECEIVE command 
• To read a PSO data data set 
• To alter a PSO data set. 

PSYAUTH places one of the following return codes in register 15: 

• 0 - Processing was successful. Access to the data set is permitted. 
• 4 - Access is not permitted for a TSO user trying to receive data. Access may 

be possible if the user issues a RECEIVE command when logged on with 
another SECLABEL. 

• 8 - Access to the data is not permitted. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPPRPU 

( HASPPRPU: Data Output Functions 

( 

Module HASPPRPU provides two groups of routines: 

• The print/punch processor, entry point HASPPPl1, which performs the output 
operations that cause a data set to be written on the appropriate device 

• The HASP image loader, entry point HASPIMAG, which loads forms control 
buffer (FCB) and universal character set (UCS) images from SYS1 .IMAGELIB. 

Print/Punch Processor 
The print/punch processor, a re-enterable program, concurrently supports all of the 
local and remote printers and punches that have been identified to JES2. In 
addition, when the $SPOLMSG initialization parameter indicates that undeliverable 
remote console messages may be spooled, the print/punch processor transmits 
such messages to a remote printer. (Console messages directed to a remote work 
station may be undeliverable because the work station was not available when the 
message arose, or because the work station does not include a console.) 

At JES2 initialization, a processor control element (PCE) and a device control table 
(OCT) are constructed for each printer and punch in the system. Each execution of 
the print/punch processor represents the transmittal of one or more output data sets 
to a specific device. The PCE contains control flags and work space associated with 
the current use of the processor; the OCT describes the specific device. 

For the 3800 printer, JES2 initialization also acquires storage for the 3800 pending 
page queue. The 3800 pending page queue comprises a page queue header (POH) 
followed by page queue entries (POEs). 

The POH contains pending page queue status information. Each POE contains a 
3800 physical page id that links each POE with the physical 3800 output page that it 
represents. (Once the 3800 stacks a physical output page, JES2 deletes its 
associated POE.) Therefore, the pending page queue serves as a map of all data 
sent to the 3800 but not yet stacked. JES2 uses the pending page queue for 
checkpoint processing, operator command processing, paper jam processing and 
SMF processing. 

The print/punch processor error recovery consists of a $ESTAE environment 
created in the JES2 main print/punch loop. The start of the $ESTAE environment is 
at PGOTPOOB and the end is at POPOSEND. PRPURCVO attempts to recover only 
from program check errors; it simulates the $1 command to interrupt the 110 at the 
point of the error and to requeue the output to recover from the error. 

Message $HASP185 is issued if an error occurs during print processing of a data 
set. The possible errors are: a data set is not closed, an invalid track address, an 
1/0 read error, and invalid job key, an invalid data set key, or an obsolete JOE. 

HASPPPl1: Print/Punch Processor Initialization 
The following subroutines provide print/punch processor initialization logic. 

PRPUINIT: When initially dispatched, the processor sets up its base register and 
clears the fields in its work area. 

PGETUNIT: When initially dispatched, the processor issues the $GETUNIT macro 
instruction to attempt to acquire the output device on behalf of which the dispatch 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-237 



HASPPRPU 

3-238 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

occurred. If the device is unavailable, the initialization routine waits, then reissues 
the $GETUNIT request, repeating this cycle until the unit does become available. 
For the 3800 printer, if the device is unavailable, HASPPRPU calls the PPQMGR 
routine to process unstacked output not waiting on the 3800. For a local device, the 
routine waits for the device as a resource ($WAIT UNIT). For a remote printer or 
punch, the routine waits until the corresponding PCE is specifically posted ($WAIT 
WORK). Ordinarily, local output devices are available unless drained through an 
operator command or initialization parameter. Remote printers and punches are 
ordinarily not available when the processor is initially dispatched on their behalf. 
Remote devices are marked as unavailable until work is available in the JOT for 
them. 

PGOTUNIT: When the $GETUNIT request is successful, the routine marks the 
device's OCT in-use and issues the $ACTIVE macro instruction to alert the JES2 
dispatcher that the system is not dormant. If the device is a remote printer 
(Rn.PRn), and a remote message data set exists for this remote device, then the 
existing remote messages are despooled and transmitted to the remote printer. The 
address of the remote message data set JQE created by the remote console 
processor is obtained from the RAT and locked via $GETLOK. A buffer is acquired 
for despooling the remote message data set IOT and message records, and the 
remote message data set IOT is read. The track address of the first remote 
message record is obtained from the IOT and read. Various control values are set 
in the HASPPRPU PCE work area in order for the remote messages to be despooled 
and transmitted by main HASPPRPU processing code; that code is then entered at 
P1STBLK. The main print loop is used as a closed subroutine until all messages 
routed to the devices are printed. Finally, blank lines are sent to the remote printer, 
resources obtained previously are freed, the remote message JQE is removed from 
the JOB queue, track groups for the message records purged, the $DORMANT 
macro instruction is issued, and control returns to PRPUINIT. 

PGET JOB: When the $GETUNIT request has been successful for a device other than 
a remote printer, the initialization routine issues the $#GET macro instruction to 
scan the job output table (JOT) for work for the device. Unless the device's setup 
has been altered through operator commands or JES2 initialization options, the 
device (if local) is assumed to be in automatic mode with standard forms mounted; 
preference is thus given to jobs that require matching setups. 

If no work is available for this device, PGET JOB sets the DCTHOLD indicator, issues 
the $FREUNIT macro instruction to release the device, and issues the $DORMANT 
macro instruction to cancel its earlier active status. For the 3800 printer, 
HASPPRPU issues a CLEARPRINT CCW to force printing of any output in the 3800 
page buffer and to process any outstanding operator commands. If a remote device 
is being processed, control returns to PRPUINIT, which waits ($WAIT WORK) until 
work is available. Unless the local device has not been active since the message 
was last issued, the routine issues message $HASP160 to indicate that the device is 
inactive. After issuing the message, or if no message was required, the routine 
waits ($WAIT JOT) for work to be added to the JOT. On regaining control, PGETJOB 
waits again if a command is in progress; otherwise PGETJOB releases the OCT and 
checks for a 3800 device. If the device is not a 3800, PGET JOB returns to PR PUN IT; 
otherwise it checks to see if the 3800 is draining. It it's draining, PGET JOB calls the 
PALLOC subroutine to acquire buffers for the draining 3800 and then branches to 
PDRAINMC to finish the draining process (via an eventual $FREUNIT), PGET JOB 
then issues a $DORMANT and returns to PRPUNIT. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPPRPU 

Data Set Selection 

PGOTJOB: If work is available, the $#GET macro returns the addresses of the work 
job output element (JOE), the characteristics JOE, and the job queue element (JQE). 
The initialization routine stores these addresses in the PCE, together with the time 
of day (obtained through the TIME macro), then proceeds, depending upon whether 
a local or remote device is being serviced. 

For a remote device, the routine issues a $EXTP OPEN macro instruction for the 
device, then uses the $GETBUF macro instruction to obtain one or two buffers, 
depending upon the buffering option selected at JES2 initialization. After acquiring 
the required number of buffers, the routine branches to the common job control 
table (JCT) read routine, PJCTRD. 

For a local device the initialization routine determines whether the single buffer 
method or the track-cell method of despooling is to be used. Track cell despooling 
is the process by which a local print processor can input several spool records of a 
data set in a single EXCP, thereby reducing the number of accesses to the spool 
volume. If the print processor is eligible for this despooling method, and if the data 
set is of a SYSOUT class that was ordered into track cells when it was created {both 
determined by JES2 initialization options), then enough buffers are obtained to read 
all the spool records in a track cell. For a 3800, PGOT JOB then calls the PALLOC 
routine to acquire all necessary buffer resources. 

The JCT is read into into main storage; the JCT is found through the track address in 
the JQE. If an error is detected, the routine branches to PRPUEXIT to terminate 
initialization. If no error is detected, PGOT JOB attaches the HASPIMAG subtask, 
and waits for it to initialize. If the subtask is already active or the device is a punch, 
then no attach is necessary. PGOT JOB at PCLDSTRT then processes the 
print/punch header and the checkpoint data, depending on whether a cold or warm 
start took place. 

PCLDSTRT: PCLDSTRT calls the PHEADER subroutine to setup the printer and print 
an output separator, if necessary. On return from PHEADER, if the PPNEWS flag is 
set, control is passed to the main print loop at entry PNEWSGO. 

PCKPTNIT: The last part of processor initialization consists of initializing the 
print/punch processor work area checkpoint information. For cold starts, the 
checkpoint data is cleared to zeros, the MTTR of the input/output table (IOT) is set 
from the JCT (or, for spin data sets, from the WORKJOE), and the initial peripheral 
data definition block (PDDB) displacement into the IOT is set. For warm starts, the 
checkpoint data is set from the CHK read from the SPOOL. Finally, for both warm 
and cold starts, the physical page size for printers is set from the JCT. For punches, 
the physical page size and the logical page size are the same, and this value is set 
by the PGOTPDDB routine from the value of CKPTLINE used for the current data set. 

The following subroutines provide data set selection logic. 

PENDINIT: With initialization complete, the data set selection routine reads the first 
IOT associated with the current PCE. If the IOT is not read successfully from the 
spool volume, the routine issues $DISTERR to indicate that an error has been 
detected at label PIOTPRE in control section HASPRPU, and PPDONE is entered to 
abort the job. (The original error indication, an event control block completion code 
indicating an 1/0 error, is detected in PRDCHK, the 110 check subroutine.) The 
routine also checks to see if this is a spin IOT. If so, it ensures that it is still valid for 
this JOE. The spin IOT may be a reused IOT, and the JOE may be (because of an 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-239 



HASPPRPU 

3.;,240 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

intervening JES2 abend) the JOE associated with the IOT before it was reused. If it 
is ari old JOE, a $DISTERR is issued and message $HASP185 is issued. The routine 
then exits to PPDONE to abort the job. 

PDDBNEXT: If the initial IOT is read successfully, PDDBNEXT scans each PDDB 
associated with the' IOT, and on reaching the end of each PDDB chain moves into 
the PCE the pointer to the next IOT associated with this job. Then PDDBNEXT 
returns to PENDINIT. This cycle is repeated until all PDDBs have been examined. 
PDDBs are scanned to find those which match the work and characteristics JOEs. 
PDDBs that do not match the applicable JOEs are ignored. 

PGOTPDDB: For each selected PDDB, PGOTPDDB extracts and saves the device 
setup information. The device setup information consists of such items as forms, 
UCS, FCB, forms flash, writer id, and processing mode (PRMODE). PGOTPDDB 
initializes the characteristics JOE with this information. A SAF call is then issued to 
determine if the device is authorized to print the data. If so, PGOTPDDB invokes 
exit 15 at exit point PPEXIT. The installation exit routine can change the number of 
copies of this data set, up to a maximum of 255, or bypass this PDDB and request 
another PDDB. 

If the device is a 3800 printer, additional setup information is extracted; if a data set 
partially printed to a 3800 is being resumed, copy group and forms flashing counts 
are adjusted. 

All 3800 data sets and copies are offset-stacked if BURST=YES was specified by the 
programmer; this causes the 3800 printer to physically separate all data sets in the 
burster/trimmer sheet stacker. 

PSMFTST: The characteristics of the new PDDB are compared with those of the 
previously processed PDDB, and if they are found to be different, a type 6 SMF 
record is produced (through a call to the PPSMF6 routine) for all data sets printed or 
punched since the last type 6 record was written. Additionally, such events as 
buffer read errors, operator overrides of carriage control, or a JES2 warm start 
cause a new type 6 SMF record to be generated. 

PDDBFCHK: The device setup verification subroutine, PRPUDSV, is entered. On 
return, processing continues based on whether a data set warm start is in progress. 
(A data set warm start is the resumption of printing or punching for a data set for 
which output has been partially completed.) The PDDB for such a data set is the 
first one to be processed. Processing of the first data set (not warm start) causes 
the output checkpoint record (CHK) to be initialized and written to spool. The 
checkpoint-valid indicator in the work JOE ($JOECKV) is set, and the work JOE is 
checkpointed. 

PNXTCPY: This subroutine is the restart point for making copies of data sets. After 
establishing recovery (via $ESTAE) PNXTCPY establishes forced spacing between 
each copy of a data set and then at exit point PCEXIT (for exit 15) invokes an 
installation exit routine (if existing and enabled). The installation exit routine can 
place its own unique separator between the copies of the data set. When the 
installation exit routine returns control to PNXTCPY, a checkpoint area is initialized, 
if this is the first data set, and PNXTCPY writes the checkpoint area to spool. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 



( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPPRPU 

PFASTRT: The data set selection routine completes preparation for output by 
turning off the warm-start bit in the processor work area and, if necessary, 
initializing the backspace table. The data set selection routine calls the PQEDINIT 
subroutine to acquire and initialize a data set page queue element (POE). 

Main Processor (Main Print/Punch Loop) 
The following subroutines provide the main print/punch loop logic. 

PBSFSGO: This subroutine reads from a spool volume the output records that are to 
be printed or punched. PBSFSGO is the entry to main loop initialization for new or 
warm start data sets. For impact printers, it is the restart point for backspace ($B) 
or forward space ($F) processing. 

PBSFSGO calls the PRDTCEL subroutine to read the first data block or track cell 
from a spool volume. On regaining control, PBSFSGO tests to see if there has been 
an operator command for the data set or the output device requiring that processing 
for the data set should be suspended or terminated. If so, PBSFSGO branches to 
the data set termination subroutine, PPDSEND. Otherwise, PBSFSGO calls the input 
1/0 check routine, regaining control when input (despooling) 110 is complete. 

P1STBLK: The main print/punch loop, which begins at this label, steps from one 
record control block to the next throughout each buffer belonging to the data set, 
building a CCW for each output record. As each data buffer belonging to the 
selected data set is read, it is checked for validity. A failure of this validity check 
results in termination of that data set and selection of the next data set. Each CCW 
for a local output device is added to a printer or punch chain through a call to the 
PPPUT subroutine. CCWs for data sets intended for remote work stations are 
passed to the remote terminal access method (RTAM) by means of the $EXTP 
macro. 

PNXTCCW: This section of the print/punch loop is entered whenever a CCW is 
created that will cause an output line to be written. Before proceeding with 
preparation of the next output line, the routine determines whether another input 
area is available and, if so, calls the PRDTCNXT subroutine to read the next input 
block; this ensures that despooling will proceed, if possible, concurrently with output 
processing. 

Preparation of the next output CCW continues. For spanned records, only the first 
254 bytes are printed. For data sets using control characters, American National 
Standard codes are converted to machine codes and a single CCW is created for 
each record, the control information being merged with the previous CCW. 

PRINT: Printer CCWs are completed and tested for validity. Automatic page 
overflow is provided for data sets when the lines-per-page parameter on the JOB 
statement is not zero. This does not, however, prevent printing over the page 
perforation; because, the line counter is reset whenever a skip to any channel is 
encountered in the data set. 

If the end of the physical page is reached, either because the page is full or a 
channel skip is indicated, the data set page count is updated, a new entry is added 
to the backspace table (if applicable), and the PPCHKPT routine is entered. 

If not at the end of the physical page, PRINT branches to PPCKLNS to determine if 
the data set is at the end of a logical page. 

LY28-1006-2 ,©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-241 



HASPPRPU 

3•242 JES2 Logic 

"Restricted Materials of IBM" 
licensed Materials - Property of IBM 

PPCHKPT: PPCHKPT is entered at the end of each physical page: at every channel 
skip issued to a printer, or after the number of cards specified by CKPTLINE have 
been written to a punch. The SMF page count is updated and a branch is taken to 
the PPCKPGS routine. 

PPCKLNS: PPCKLINE is enter from PGOTPDDB to determine the end of a logical 
page for printers. If the CKPTLINE value used for the current data set is zero, the 
logical page is determined solely by channel skips and line count (that is, logical 
page size = physical page size). If this is the case, PPCKLNS branches to 
PRNOVFL. 

If CKPTLINE is not equal to zero, the CKPTLINE counter is decreased by the space 
count of the current CCW. If the adjusted CKPTLINE counter is less than or equal to 
zero, a logical page boundary has been reached and the PPCKPGS routine is 
entered. Otherwise, a branch is taken to the PRNOVFL routine. 

PPCKPGS: For printers, PPCKPGS is entered at the end for each logical page, at 
every channel skip, when the physical page is full, or when CKPTLINE lines have 
been written. For punches, PPCKPGS is entered when the number of cards 
specified by CKPTLINE have been punched. 

A check is made to determine if the number of pages specified by CKPTPAGE have 
been generated. If not, a branch to PRNOVFL is taken; otherwise, processing 
continues as follows. 

For remote devices, the checkpoint-required flag is set to cause a checkpoint after 
the current record has been printed or punched. 

For local devices, the checkpoint will be taken when the number of pages specified 
by CKPTPAGE is reached, but not necessarily each time it is reached. 

For the 3800 printer, PPCKPGS calls the PQECINIT and PPGIDIO subroutines to 
acquire and initialize a checkpoint POE. The checkpoint will be taken when the 
page associated with the checkpoint POE reaches the 3800 stacker. 

PRNOVFL: If requested, each print line not directed to a 3211, 3800, 1403, or 3203 
printer is translated to remove unprintable bit patterns, and to translate lowercase 
characters to uppercase. The translation table is compatible with PN and ON print 
chains; it should not be specified if TN or other special print chains are to be used. 

For a 3800 printer, if OPTCD = J was specified, and if a table reference character 
different from the last used is specified, the routine creates a special CCW to select 
the required translation table and calls the PPPUT subroutine to add the CCW to the 
chain. 

PRCHAIN: PRCHAIN calls the PPPUT subroutine to add the new print or punch 
command to the CCW chain. A check is made to determine if a checkpoint is 
required after the current CCW has been added to the chain. A branch is taken to 
PPPFUNCI if a checkpoint is not required. Otherwise, processing continues as 
follows. 

For remote devices, a buffer truncate command (CCW op code of X'FF') is sent to 
the remote terminal access method (RTAM) via a call to PPPUT. The truncate , 
command causes RTAM to send all output for this device to this device and does not 
return until the remote indicates it has received the output successfully. Once 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPPRPU 

RTAM returns to PPPUT, PPPCKPT is entered to take the checkpoint. Note that the 
checkpoint is not taken until the processor knows the output was successfully 
received by the remote. Finally, control returns to PRCHAIN, which in turn branches 
to PPPFUNCI. 

For local devices, PPWRITE is called to close out the current CCW area and 
schedule if for execution. Processing continues at PPPFUNCI. 

PPPFUNCI: PPPFUNCI determines whether special 3525 card punch processing is 
required. Special support for the 3525 punch is provided to supply interpreting on 
lines 1 and 3 of the punched card image if a print feature is installed and the DCB 
parameter FUNG= I was coded in the JCL. Using machine control characters, the 
user can mix print and punch operations to write any text on the punched card as 
desired, if the appropriate punch feature is installed. The subroutine adds one or (if 
the print line exceeds 64 characters) two CCWs to accommodate the print line. 

For print records, the current CCW is set to write, no space, and an indicator is set if 
the record contains an American National Standard carriage control character. The 
routine then returns to the main loop to continue control character processing. 

PRNOPRNT: If the device is a 3800 printer where the printer is being repositioned, 
PRNOPRNT calls the PMAPFCB subroutine to perform FCB mapping against the 
current CCW. 

PNXTRCB: The address of the next record control byte (RCB) is calculated. Unless 
the end of the data buffer has been reached, PNXTRCB reenters the main loop at 
PNXTCCW to process the record described by the new RCB. 

PCPEND: At the end of the input data buffer, if the end of the input data set has not 
been reached, PCPEND obtains the next buffer. If input data has been despooled by 
track cell and the next buffer is already in main storage, PCPEND branches to the 
PNXTBLK subroutine to process the new buffer. If despooling is by single buffer, or 
if all buffers of the last-despooled track cell have been processed, control passes to 
the PENDTCEL subroutine. For 3800 printers, if an end-of-data is reached 
prematurely while processing a $F command, PCPEND calls the PRECOMP 
subroutine to adjust the PQE page IDs. 

PENDTCEL: PENDTCEL is entered when CCWs have been built for all RCBs in the 
current single buffer or the last buffer of a track cell. If the processor is currently 
skipping buffers in the course of processing a forward-space ($F) command, the 
available buffer count is increased by 1 and the next read operation is scheduled. 

PSETFINL: An indicator is set in the new CCW area to indicate that the data buffer 
will become available when the CCWs have completed execution. (Subroutine 
PPCHECK subsequently will update the buffer count upon detecting this indicator.) 
A call to the PPWRITE subroutine is then made to schedule the new CCW area for 
execution. 

PCHREAD: A test is made to determine whether a despooling operation has already 
been started; if so, PCHREAD branches to the PCHKNBLK routine at the beginning 
of the main processor to check the 1/0 and to process the new data. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-243 



HASPPRPU "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

If a despooling operation is not in progress, a call to the PRDTCNXT subroutine is 
made to start one, using an available buffer. If no buffer is available, the PPCHECK 
subroutine is called (using the PCIWAIT entry point) until a buffer is made available. 

Finally, the main processor branches to the PCHKNBLK subroutine to wait for the 
despooling operation to complete and to process the new data. 

PPDSEND: Data Set Termination 
The PPDSEND routine is entered when the end of the current input data set is 
reached because of an end of file, buffer read error, or operator detection or 
suspension. If the device is a 3800 printer, PPDSEND calls the PQECINIT and 
PPGIDIO subroutines to create the last page PQE for the data set. PPDSEND forces 
execution of the channel commands in the CCW area currently being filled and 
reads the current IOT to prepare for selection of the next data set PDDB scan. If the 
processor is printing spooled remote messages, control returns to PRSMBEOB to 
process the remaining message buffers. Otherwise, message $HASP185 is issued if 
data set processing was terminated because of an 1/0 error or validity error. 
PPDSEND issues the $DISTERR macro instruction and aborts the job if an 1/0 error 
occurs when the IOT is read or if the IOT read does not match that for the current 
job. 

For impact printers for data sets suspended to permit a forward-space ($F) or 
backspace ($8) of the device or data set, PPDSEND performs the required spacing 
operation and uses message $HASP170 to indicate that the action is complete. 
Control then returns to the main processor at label PBSFSGO to continue printing. 

For the 3800 printer, the PPDSEND routine calls the P3800CMD routine to process 
any repositioning commands. On return, depending on the command, PPDSEND 
may: 

• Pass control to the PPDONE routine to terminate the job 
• Pass control to the PENDINIT routine to resume printing at a new location 
• Continue through the PPDSEND routine. 

If the data set just completed is the JES2 job log, PPDSEND prints the JES2 job 
statistics block, using data collected from the JCT. If the PDDB for the current job 
indicates that more than one copy of the output data set is to be produced, the same 
PDDB is selected until the required number of copies has been produced. For the 
3800 printer, copy group counts and the count of the number of remaining copies for 
which forms flashing is required are also updated, and if the 3800 is bursting the 
current data set, an end-of-data-set CCW is issued to cause the data set to be 
offset-stacked in the burster for easier separation from the next copy. Printing of 
data set copies commences at label PNXTCPY in data set selection. 

Print/Punch Processor Service Routines 
The following text describes the print/punch processor service routines. 

PRPUT: Print/Punch Separator Service Routine 

3-244 JES2 Logic 

PRPUT is entered via a call from any $PRPUT macro instruction coded in the user's 
exit routine that is called from the JES2 separator exit point. PRPUT constructs a 
CCW for each data record to be output. It calls PPUT to put the CCW into an output 
buffer. If the output device is a SNA remote device with spooling capabilities that 
are being used, the user exit routine must create and send a PDIR (peripheral data 
information record). To do this, the user exit routine can use a $SEPPDIR macro 
instruction to call the SEPPDIR remote setup header routine. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

PPPUT: Channel Command Processing Subroutine 

HASPPRPU 

The PPPUT subroutine is called by the main print/punch loop to build a channel 
program by adding a CCW to the chain of CCWs in a CCW area. If the channel 
program in the specified area is not already active and room for an additional CCW 
remains, PPPUT translates the data address field of each CCW passed to it from a 
virtual to a real address and appends the CCW to the channel program. 

The subroutine calls the PPWRITE subroutine to schedule the channel program for 
execution if the current CCW area is full. (The size of the CCW area is determined 
by the CCWNUM parameter on the PRINTDEF and PUNCHDEF initialization 
statements.) 

For remote devices, PPPUT issues a $EXTP PUT macro instruction to pass the 
output request CCW to HASPRTAM. PPPUT then calls to the PPCHECK subroutine 
to check for operator commands. If the $EXTP PUT was not successful, an indicator 
is set to prevent any more checkpoints of this data set. CCWs requesting an 
immediate skip to channel 1 are ignored if the printer is already positioned at 
channel 1. For local devices where an immediate control request is received and 
for which the preceding request was for a write no-space operation, PPPUT merges 
the two requests into a CCW requesting write with control. 

PPWRITE: Channel Program Processing 
To reduce the number of EXCPs required to write an output data set to a local 
printer or punch, JES2 uses program-controlled interrupts as an aid in scheduling 
channel programs for execution. 

Channel programs are constructed in a CCW area by the PPPUT subroutine The last 
two doublewords in each CCW area are a program-controlled interruption element 
(PCIE). The PCIE is a JES2 control block consisting of an NOP CCW followed by a 
transfer in channel (TIC) CCW; portions of each CCW, ignored by the channel, are 
used by JES2 to contain control information. 

PPWRITE: PPWRITE checks to determine whether the print/punch processor is 
operating on behalf of a remote device, or if the CCW area is empty. In either case, 
PPWRITE returns to its caller with no further action. Otherwise, PPWRITE initializes 
the PCIE at the end of the specified CCW area by turning on the PCIBUSY and 
PCIACTIV indicators in the PCISGNAL byte and by turning off the command chaining 
flag in the NOP CCW. The PCI flag is set in the first CCW in the new area. 

If the CCW area contains a channel program but is not full, PPWRITE skips over 
unused space by appending a TIC CCW to the channel program, with the real 
address of the PCIE as the transfer-in channel target. After adding the TIC CCW, or 
immediately if the CCW area was already full (in which case the last data CCW was 
already contiguous with the PCIE), PPWRITE reverses the pointers to the primary 
align and secondary CCW areas in the processor control element (PCE) and tests to 
determine whether a write operation is already in progress. If it is not, PPWRITE 
enters the PWEXCPVR subroutine to initiate a channel program. 

If a write operation is already being executed, PPWRITE attempts to chain the new 
channel program in the current CCW area to the one being executed. The NOP CCW 
in the current area's PCIE is converted to an NOP with the command chaining flag 
on. A compare and swap (CS) instruction is used to attempt to set the command 
chaining flag on in the NOP CCW of the channel program being executed. If that 
attempt is successful, the TIC is executed when reached in that channel program, 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-245 



HASPPRPU "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

causing channel program execution to continue with the first CCW in the new CCW 
area. 

The attempt to set the command chaining flag on is successful if: 

• The PCIE has not been executed by the channel. This is indicated by the 
PCl8USY flag being on. 

• The channel program has not been aborted to process a 3800 repositioning 
command. This is indicated by the PCIA80RT flag being off. 

When the first CCW in the CCW chain to which the TIC transfers is executed, the PCI 
appendage (routine EPIC in HASPNUC) resets the PCl8USY bit in the PCIE. 

If the attempt to set the chaining flag on is unsuccessful, the current channel 
program cannot be chained to the one already in execution and must be executed 
through a new EXCP. PPWRITE links to the PPCHECK subroutine to await 
completion of the active channel program, then enters the PWEXCPVR subroutine to 
have the current channel program initiated. 

PWEXCPVR: PWEXCPVR is entered only when it is necessary to initiate execution 
of a channel program. In addition to initializing the input/output buffer (108) as 
required by the input/output supervisor, PWEXCPVR establishes the link between 
the 108 and the applicable PCIE that permits the JES2 PCI appendage in HASPNUC 
to communicate with the PPWRITE subroutine in HASPPRPU. The address of the 
channel program's PCIE is placed in the 108. When the program-controlled 
interruption occurs, the PCI appendage uses the PCIE address in the 108 to access 
the correct PCISGNAL flag, turning the PCIBUSY flag off for inspection by the 
PPWRITE subroutine as described above. PWEXCPVR resets the PCI bit in the first 
CCW, issues a $EXCP (TYPE= VR) macro instruction to initiate channel program 
execution, turns on an indicator that a channel program has been scheduled, and 
returns to the caller. 

PPCHECK: Error Detection and Correction Subroutine 

3-246 JES2 Logic 

The following describes print/punch error detection and correction logic. 

PCIWAIT: This entry point in PPCHECK is used if it is necessary to wait for a 
program-controlled interruption to occur. A branch to PPCHECK is taken if no write 
operation has been scheduled or if the specified PCI has already occurred. 

PPPWAIT: Upon entry at this label, directly or from PCIWAIT, PPPWAIT waits 
($WAIT 10) for an 110 operation to complete before entering PPCHECK. The wait is 
satisfied when an 1/0 event occurs, such as a PCI or a channel end, or as a result of 
an operator command to interrupt or delete output. 

PPCHECK: The PPCHECK subroutine communicates with the JES2 command 
processor, that takes action in response to operator commands; the JES2 1/0 
supervisor appendages that recognize such conditions as printer or punch error 
recovery and program-controlled interruptions; and the JES2 checkpoint processor 
that maintains the current status of the processor for warm start situations. Support 
for the 3211 printer CANCEL kt:Jy is also provided that simulates a forward-space 
data set and effectively cancelling the data set in progress. 

PPCHECK initiates 3800 command processing on a channel-end basis. Channel ' 
ends can occur for an intervention required condition, which causes the 
abnormal-end appendage to abort the ghannel program. if a command is detected 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

,'{-

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPPRPU 

and no channel end has occurred, PPCHECK waits until the channel end is received 
before processing the command. PPCHECK calls PLOCATE to determine if the 
command is processable. If it is, a branch to PPDSEND is taken to process the 
command. If it is not, and an intervention required occurred, PPCHECK restarts the 
channel program at the CCW where the intervention occurred. 

Whenever a PCIE is executed for a 3800 printer, PQECOMP is called to complete 
any POE assignments and to process any PQEs that have reached the stacker. 

Track Cell Read Routine 
The following paragraphs describe the track cell read routines. 

PRDTCEL - Track Cell Read Routine: If track cell despooling is in effect for the 
current data set, the track address (MTTR) of each input buffer image in the track 
cell on the spool volume is determined, and the track addresses are sorted into 
ascending order. A channel program is then generated to read the entire track cell 
in a single rotation of the spool device, and a $EXCP macro instruction is issued. (A 
set sector CCW is included in the channel program if the spool device supports 
rotational position sensing.) Control then returns to the caller. 

PRDTCHK - Track Cell Read Analysis: PRDTCHK waits for the completion, and 
analyzes the success, of each track cell despooling operation. If a read error occurs 
when a buffer image is being read from the spool volume, the corresponding main 
storage buffer is flagged as being invalid, and the channel program is restarted at 
the next buffer image in the track cell. When all buffers in the track cell have .been 
read, control returns to the caller, who processes the buffers in buffer order as 
opposed to track order, up until the error buffer, if any. 

Single Buffer Read Routine 
The following paragraphs describe the single buffer read routines. 

PRDBUF - Single Buffer Read Routine: If single buffer despooling is in effect for the 
current data set, PRDBUF initializes a common channel program to access the 
required buffer image on the spool volume, then issues a $EXCP macro instruction 
to read the buffer image into main storage. The routine reduces by one the number 
of input buffers available to be filled and returns to the caller. 

PRDCHK - Single Buffer Read Analysis Subroutine: PRDCHK swaps the primary 
and secondary buffer pointers, then tests the current event control block (ECB) to 
determine whether the 1/0 operation has completed successfully. If not, the 
subroutine waits ($WAIT 10) for the operation to complete and then returns to the 
caller. If a read error occurs, the routine issues a $10ERROR macro instruction to 
log the error before returning to the caller. 

Print/Punch Processor Termination Routines 
The following routines close and deallocate data sets, free resources used by the 
print/punch processor, provide device setup support, and provide separator page 
support. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-247 



HASPPRPU "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

PPDONE: Print/Punch Processor Termination Routine 
If the termination is abnormal, messages are written both to the operator and to the 
output device (if a printer), giving the reason for termination. If system management 
facilities (SMF) data recording has been requested, a type 6 SMF record is built in 
an SMF buffer and the $GETSMFB and $0UESMFB macro instructions are issued to 
schedule the buffer to be written. 

For 3800 printers, PPDONE delays the $0UESMFB so that PPOMGR does not write 
the SMF record until all output associated with the SMF record has reached the 3800 
stacker. 

Punch processors punch a blank card to clear the last valid data set card record. 
Using data from the characteristics JOE as a setup descriptor, all processors call 
the device setup verification subroutine (PRPUDSV) in preparation for the trailer 
page on printers. Punch processors also follow this path to ensure correct device 
setup for the next $#GET request. Prior to the test for a separator page, the 
separator exit point allows the user to add to or replace the standard separator 
page via user exit routines. If the user exit routine returns a return code of 0 or 4, 
JES2 creates a separator page based on the setting of the flags in field DCTPPSWS. 
If the return code is 8, JES2 does not create a separator page. If the return code is 
12, JES2 unconditionally creates a separator page. 

For 3800 printers, a mark-forms CCW is optionally issued to mark the perforations of 
the trailer page. (The mark forms CCW is issued if the DCTNIMRK bit of the 
DCTPPSW2 flag byte is set on via the PRTnnnn initialization paramj:lter or the $T 
operator command.) An end-of-transmission CCW is issued by PPDONE causing 
offset stacking. The-end-of-JOE is indicated in the 3800 pending page queue. 

PRPUEXIT: PRPUEXIT issues a $EXTP CLOSE macro instruction for remote devices 
under normal circumstances. A $EXTP NCLOSE macro instruction (negative close) 
is issued in abort situations, such as when $C or $E commands are issued. If the 
$EXTP routines detect abnormal situations, such as a line drop or a remote device 
disconnected, they set the interrupt flag ($1) in the device control table (DCT). This 
prevents the print processor from discarding the work and checkpoint JOEs. 

For all devices, the JCT is released from the processor. For impact printers if a 
repeat ($N) command has been issued but could not be honored while printing or 
punching the data set because of a lack of JOEs, a $#PUT macro instruction is 
issued to place the work JOE back into the JOT for the requested copy. For impact 
printers, if an interrupt command ($1) has been issued (or simulated by HASPRTAM), 
a $#PUT macro instruction is issued to place the work JOE into the JOT. 

For non-3800 printers, if neither the $N or $1 commands have been issued, 
PRPUEXIT issues a $#REM macro instruction to remove the completed work JOE. 
For all devices, the PDEALLOC subroutine releases control blocks and and buffers 
required for processing. The print/punch processor issues a $DORMANT macro 
instruction and returns to its primary entry point to select a new job. 

PADDPQE: 3800 PQE Allocation Subroutine 

3-248 JES2 Logic 

PADDPOE allocates POEs. PADDPOE checks the POE free queue to see if it's 
empty. If it is, PADDPOE attempts to get the next POE extent, and if unsuccessful, 
PADDPOE gets the next POE in that extent and again checks for an empty queue. If 
no free POE is found in all the extents, PADDPOE issues the CLEAR PRINT CCW to 
print the page buffer and frees the associated POEs. Then PADDPOE again checks 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ ' 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPPRPU 

the POE free queue for a free POE. When found, PADDPOE initializes it and chains 
the POE to the POE active queue. PADDPOE then returns to the caller. 

PDELPQE: 3800 PQE Deallocation Subroutine 
PDELPOE deallocates POEs. On entry, register 1 contains the address of the first 
POE to free and register 0 contains the number of POEs to free. For the requested 
amount, PDELPOE unchains POEs from the POE active queue and returns them to 
the POE free queue. On exit, register 1 contains the address of the active POE 
previous to the first freed POE. 

PBLOCK: Block Letter Routine 

SEPPDIR: 

PBLOCK creates the block letter output on the header and trailer pages. PBLOCK is 
invoked by the $PBLOCK macro. (User exit routines can also use PBLOCK by 
invoking it via the $PBLOCK macro.) Up to eight characters can be specified in the 
$PBLOCK macro for output. PBLOCK scans the input field for the first blank 
character encountered. If there are no blanks, it takes the first eight characters. 
These characters can be slanted, straight, centered, or not centered depending 
upon how the $PBLOCK macro is coded. 

Remote Setup Header Routine 
SEPPDIR is invoked by the $SEPPDIR macro from a user exit routine to build a 
peripheral data information record (PDIR) for remote SNA devices requiring one 
(that is, remote SNA devices with spooling capabilities that are being used). 

PFRESMFB: Free SMF Buffer Subroutine 

PRPUDSV: 

PFRESMFB frees the SMF buffers. PFRESMFB, using compare and swap logic, 
chains the SMF buffer addressed by register 1 to the SMF buffer free queue. 
PFRESMFB then issues the $POST SMF macro instruction to notify JES2 that the 
resource is available. 

Device Setup Verification Subroutine 
PRPUDSV ensures that the device controlled by the print/punch processor is set up 
with the requested forms and, when appropriate, the forms control buffer (FCB) and 
universal character set (UCS) buffer. The FCB must also include the proper index 
byte if the device is a 3211 printer. 

A parameter list is supplied containing the required setup, which is compared with 
the OCT that specifies actual physical setup. If a mismatch requires operator 
intervention, message $HASP190 is issued and processing is halted until the 
operator indicates otherwise. 

Note: If the SETUP= NOHAL T parameter was specified on the device initialization 
statement or set by issuing a $T command for the device, JES2 will not issue the 
$HASP190 message when encountering a requested output control environment 
change for that device and will immediately proceed to transmit output to it. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-249 



HASPPRPU "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The most obvious response to the $HASP190 message is for the operator to perform 
the requested setup and then use the start ($S) command to continue processing. 
Optionally, the operator can override any of the setup requirements before issuing 
the start command or can suspend processing completely by using the cancel ($C), 
interrupt ($1), or restart ($E) commands. Next, the UCS is loaded, if supported by the 
device, and if at least one of the following is true: 

• This is the first use of the printer since JES2 was started (and the UCS image ID 
is not 0). 

• A change in UCS identification has occurred. 

• The operator has issued a $T command to this device with the operand "T=" 
since the last UCS loading. 

• The last attempt to load the UCS failed. 

If the requested UCS image is not in SYS1.IMAGELIB, message $HASP180 is issued, 
followed by a setup message, and the device is stopped to allow specification of a 
valid UCSB id. 

Because loading of UCS and FCB images from SYS1.IMAGELIB involves many 
embedded waits that the JES2 main task cannot allow, an image loader subtask is 
attached by HASPPRPU to perform the loading function. 

After UCS loading, an attempt is made to load the FCB and index value for 3211 
Printers if any of the following is true: 

• This is the first use of the 3211 Printer since JES2 was started. 

• A change in FCB identification or index value has occurred. 

• The operator has issued a $T command to the device with the operand "C =" 
since the last FCB loading. 

• The last attempt to load the FCB failed. 

• The last loading of the FCB was done with an index value different from that 
contained in the system copy of the FCB image. 

If the requested FCB image is not in the library, message $HASP180 is issued 
(followed by a setup message), and the device is stopped to allow specification of a '-- / 
valid FCB ID. Having completed the above task, PRPUDSV returns control to the 
calling point in the print/punch processor. 

P3800DSV: 3800 Printer Device Setup Verification Subroutine 

3-250 JES2 Logic 

P3800DSV uses a setup parameter list supplied by the caller to ensure the proper 
setup status of a 3800 printer allocated to the print processor. The caller-supplied 
parameters are compared with values in the OCT that specify the actual physical 
setup. If a mismatch requires operator intervention (a mismatch of forms, flash, or 
burster status), message $HASP190 is issued, and processing is halted until started 
or terminated by the operator. P3800DSV issues a display status code order to the 
3800. This causes the 3800 display panel to show F1, F2 or F8 and the printer to go 
into a not-ready status. 

Note: If the SETUP= NOHALT parameter was specified on the device initialization 
statement or set by issuing a $T command for the device, JES2 will not issue the 
$HASP190 message when encountering a requested output control environment 
change for that device and will immediately proceed to transmit output to it. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPPRPU 

Next, the status indicated by the OCT is compared with the status indicated by the 
unit control block (UCB) to determine whether SETPRT (SVC 81) is required. If so, 
the UCB/FCB image loader subtask, HASPIMAG, is used to call SETPRT with a 
parameter list specifying the necessary changes for the 3800 printer. 

If an error occurs during subtask processing, message $HASP151 is issued, 
identifying the image name and the type of failure that occurred. SETPRT writes the 
exact text of the $HASP151 message on the printer. JES2 follows this with a 
$HASP154 message on the printer identifying the device name, job name, job ID and 
room number. 

PQECINIT: 3800 PQEC Initialization 
POECINIT initializes the POE checkpoint (POEC). POECINIT first acquires a POE by 
calling the PADDPOE subroutine. POECINIT then initializes the POE as a checkpoint 
POE (POEC) by using information from the checkpoint area of the PCE. The POEC 
acts as a holding place for checkpoint data. This routine is called on an interval 
based on the CKPTPGS setting for this data set. 

PQEDINIT: 3800 PQED Initialization 
POEDINIT initializes the data set POE (POED). POEDINIT first acquires a POE by 
calling the PADDPQE subroutine. POEDINIT then initializes the PQE as a PQED 
using information from the checkpoint area of the PCE. The POED contains 
checkpoint information that remains constant through the printing of its associated 
data set. 

After initializing the POED, PQEDINIT calls the POECINIT subroutine to acquire the 
POEC representing the beginning of the data set. Then POEDINIT calls the PPGIDIO 
subroutine to obtain the 3800 page ID's associated with the PQEC. 

Finally, if the data set is being warm started, POEDINIT calls the PRECOMP and 
PADDPOE subroutines to initialize a PQEC representing the warm start location of 
the JOE. 

PPGIDIO: 3800 Page ID 1/0 Routine 
PPGIDIO, called by PQEDINIT, activates the 110 necessary to obtain the 3800 page ID 
and FCB line position associated with each POE. This allows JES2 to associate its 
spool information with the data transmitted to the 3800 but not yet stacked. This 1/0 
is activated by calling the PPPUT subroutine with the following CCWs: 

• Request-printer-information order of the execute-control CCW 
• TIC CCW 
• Sense intermediate buffer CCW 

The 3800 page ID and FCB line positions are read into four bytes of storage 
immediately following the TIC CCW. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-251 



HASPPRPU "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

PPQMGR: 3800 Pending Page Queue Management Routine 
PPQMGR manages 3800 pending page queues. On input, register 0 contains the 
3800 page ID of the page currently being stacked on the 3800 printer. The PPQMGR 
routine compares this stacker page ID against the PQE page IDs to determine which 
PQEs in the pending page queue have had their associated pages stacked. For 
these PQEs, the PPQMGR routine performs the following functions: 

• For an SMF type-6 POE (POES), PPQMGR issues the $0UESMFB macro to write 
the SMF type-6 record. 

• For a checkpoint POE (PQEC), PPQMGR saves the PQEC address for checkpoint 
processing. When all stacked PQECs have been processed, PPQMGR calls the 
PCKPTNI subroutine to issue a checkpoint against the latest stacked PQEC. 

• For an end-of-JOE indication, PPQMGR performs the following functions: 

Processes any deferred repositioning commands, by issuing the $#PUT and 
$#CHK macro instruction 

Issues the $#REM macro instruction to remove the JOE from the JOT 
(unless the $#PUT macro instruction has been issued for a deferred 
command against the JOE) 

• For all PQECs that are not needed for use as a backspace table, PPQMGR calls 
the PDELPQE subroutine to free the PQEC. PPOMGR maintains the following 
PQEs for use as a backspace table. 

PQED of the data set currently being stacked. 

PQEC representing the beginning of the data set. 

n number of most recently stacked PQECs at m page id intervals. Where n 
and mare the values contained in the $BSPNTE and $BSPGT fields of the 
HASP control table respectively. 

Before exiting, PPOMGR calls the PCKPTNI subroutine to issue a checkpoint 
for the most recently stacked PQEC. 

PCKPTNI: PPQMGR Checkpoint Subroutine 
PCKPTNI updates the checkpoint (CHK) with information from the PQEC and POED 
and returns to the caller. 

PLOCATE: Locate 3800 Transfer Station Routine 

3-252 JES2 Logic 

PLOCATE determines which physical page is at the 3800 transfer station or, if the 
paper is jammed, the 3800 fuser station. It does this by using the request printer 
information (BFWSENS) data in the buffer work area ($BFW). 

PLOCATE also determines whether a repositioning command can be processed 
(based upon whether the repositioning command falls within the job presently at the 
3800 transfer station). If so, the PP3800R bit is set and control is returned to the 
caller. If not, PLOCATE issues the $HASP152 message indicating that the command 
is rejected. 

PLOCATE also processes $N commands by either issuing the $#ADD macro 
instruction or by increasing the deferred command count in the 3800 pending page 
queue. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

P3800CMD: 3800 Command Processing 

HASPPRPU 

P3800CMD, called by PPDSEND, processes all 3800 repositioning commands. 
P3800CMD first issues the purge-page-buffer order of the execute-control CCW to 
purge any data currently in the 3800 page buffer. P3800CMD then determines the 
specific repositioning command being processed and passes control to one of the 
following routines. 

P3800CEI - 3800 $C, $E, $1 Routine: If the command is $C, P3800CEI indicates 
cancellation in the 3800 pending page queue and issues the $HASP170 message 
indicating that the printer was deleted. 

If the command is $E, the P3800CEI routine attempts to add the JOE to the JOT (via 
the $#ADD macro). If successful, the $HASP170 message is issued. If unsuccessful, 
the deferred command count in the 3800 pending page queue is increased and the 
$HASP170 message is issued. 

If the command is $1, P3800CEI indicates interruption of the JOE, increases the 
deferred command count in the 3800 pending page queue, and P3800CEI issues the 
$HASP170 message indicating that the printer was interrupted. 

PBSPACE - 3800 Backspace Routine: P8SPACE processes the $8 command and 
3800 paper jams. P8SPACE locates the PQEC previous to either the target page of 
a $8 command, or the fuser page for a paper jam. (All physical pages within a copy 
group are counted when copy grouping.) P8SPACE finally issues either the 
$HASP170 message for printer backspaced, or the HASP153 message for paper jam. 

PFSPACE - 3800 Forward Space Routine: PFSPACE processes the $F command and 
the 3800 cancel key. The 3800 cancel key is processed as a $F, D command. 
PFSPACE first determines the PQEC previous to the target page, and then issues 
the $HASP170 message indicating that the printer was forward spaced. 

All specific command routines exit by passing control to the 3800 reschedule routine 
(PGETMAPV). PGETMAPV first determines what, if any, FC8 mapping requirements 
exist. Then PGETMAPV calls the PRECOMP routine to adjust 3800 page IDs in the 
3800 pending page queue to reflect the repositioning. Next, the current JCT is freed. 
Then, all JOEs in the 3800 PPQ that have not been printed are rescheduled by 
issuing the $#PUT macro instruction. Finally, the reschedule routine passes control 
to the PJOSETUP routine. 

PJOSETUP initiates print resumption by causing the job's JCT to be read, by calling 
the PALLOC subroutine to allocate resources for the job, and finally by setting up 
the PCE checkpoint area from the target PQE. 

3800 command processing concludes with the 3800 PPQ truncation routine 
(following PRESETAL), which truncates the 3800 pending page queue to reflect 
repositioning. Control is returned to the caller. 

PALLOC: Local Device Buffer Allocation 
PALLOC allocates buffers for local devices. Local devices request, through 
$GET8UF, either one or two JES2 buffers depending upon options chosen during 
JES2 initialization. For processes that will despool track cells, each request is for a 
multiple JES2 buffer chain. Additionally, PALLOC requests a print/punch buffer to 
build printer or punch CCWs. For impact printers and punches, PALLOC uses this 
buffer to build two CCW chains of lengths determined by the CCWNUM parameter on 
the PRINTDEF or PUNCHDEF statements. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-253 



HASPPRPU "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

For a 3800 printer, PALLOC obtains a page buffer to build the two CCW chains. At 
the end of each 3800 CCW chain, PALLOC builds a NOP CCW, a request printer 
information order of the execute-control CCW, and a sense intermediate buffer CCW 
to obtain 3800 information needed for checkpoint determination. PALLOC then 
initializes and closes the buffer work area to retain the sensed 3800 information. 

PALLOC obtains one additional print/punch buffer for building the track-cell input 
CCWs, if needed. 

To facilitate the use of EXCPVR for local devices, PALLOC fixes in main storage all 
data buffers, and CCW buffers, and the data extent block (DEB) for the duration of 
the processing of the data sets described by the work JOE. 

PDEALLOC: Free Print/Punch Resources 
PDEALLOC frees the control blocks and buffers required for print/punch processing 
that were allocated by PALLOC. 

PRECOMP: Recompute 3800 Page ID 
PRECOMP adjusts the reposition page ID for all PQEs. This is done to show 
repositioning or gaps in spool data not reflected by the 3800 paper line on a warm 
started data set. 

PMAPFCB: 3800 Map FCB Routine 
PMAPFCB is called from the mainline print loop when 3800 repositioning is needed. 
Printer repositioning is accomplished by reading forward on the spool to the restart 
point. These logical pages, however, do not necessarily match the physical 3800 
pages. PMAPFCB matches each print line to the FCB of the data set to determine 
the actual repositioning. When a print line crosses the end of the FCB, the number 
of pages left to map is decreased. When this page count reaches zero, the 
repositioning is finished and printing resumes. 

PHEADER: Produce Job Header 

. 3-254 JES2 Logic 

For impact printers, PHEADER calls PJODMSG to issue the $HASP150 message for 
the job on the device. For 3800 printers $HASP150 is issued when the start of the 
job reaches the transfer station. 

PHEADER gets setup information from the characteristics JOE and invokes the 
device setup verification routine, PRPUDSV. (First, for a 3800 printer, forms flashing 
and copy modification are suppressed, and the character set for the 3800 is forced to 
the installation default. For a 3211 printer, the index value is forced to one.) On 
return from setup verification, the separator exit point PTESTSEP (for exit 1) allows 
the installation to add to or replace the standard separator page via installation exit 
routines. If the installation exit routine returns a return code of 0 or 4, JES2 creates 
a separator page based on the flag settings in field DCTPPSWS. If the return code is 
8, JES2 does not create a separator page. If the return code is 12, JES2 
unconditionally creates a separator page. Depending upon device type, PHEADER 
invokes either PUNCHSEP to produce a separator card, or PRINTSEP to produce a 
separator page . 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

\ J 
"'.- -- __ / 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPPRPU 

PJODMSG: Issue Print/Punch Job Sign-on Message 
PJODMSG issues message $HASP150 to provide the operator with the output job 
name, the output device name, and the number of lines, or pages, or cards about to 
be processed. For impact printers and punches, PJODMSG issues this message at 
job selection time. For 3800 printers, PJODMSG issues the message when the job 
first appears at the transfer station. 

PQECOMP: 3800 PQE Completion 

PRPURCVO: 

PQECOMP is called out of PPCHECK to complete any PQEs assigned during the 
building of a CCW area. At checkpoint intervals and at the beginning and 
end-of-data, PQECOMP completes PQEs in the pending page queue. Most of the 
data kept in the POE is often from existing JES2 control blocks. However, 
PQECOMP retrieves the FCB line index and channel page ID from the hardware. 
PPEIDIO places request printer information and sense intermediate buffer CCWs in 
the CCW area when the PQE is created. At channel end or program control 
interrupt (PCI), the information needed is in the CCW area and PQECOMP moves it 
to the PQE to complete initialization. 

PQECOMP also chains all PQEs for job start into the page queue header. If any 
PQEJs are at the transfer station, PQECOMP calls PJODMSG to issue the $HASP150 
message. Finally PQECOMP calls PPQMGR to process any stacked ids. 

Print/Punch Processor Recovery Routine 
This routine performs the error recovery processing for the print/punch processor. 
The $ESTAE environment is established (via a $ESTAE macro) at label PGOTPDDB 
and cancelled (via a $ESTAE macro) at label PESTCAN2. This routine attempts 
recovery from program checks. It simulates a $1 command to interrupt the 110 at the 
point of the error and requeues the output to recover from the error. This is done 
for the JOE being processed at the time of the error. PRPURCVO also marks the 
JOE SELECT= NO and returns the JOE to the JOT. 

For program check errors, PRPURCUO distinguishes between a non-3800 and 3800 
device. For a non-3800 device, the EST AE is cancelled at PESTCONT and output 
processing flushes the punch or terminates the printer listing. For a 3800, 
PESTCNZR is the resume address. At PESTCNZR, PRPURCVO continues recovery 
by calling a second level recovery routine at PESTREC. PESTREC simulates a $1 
(via $HASP197) and sets the corresponding JOE non-selectable. Processor 
termination continues. 

HASPIMAG: UCS/FCB Image Loader Subtask 
The image loader subtask is part of the HASPPRPU assembler module. Entry point 
HASPIMAG is identified to the operating system and attached by HASPINIT. It 
establishes $STABEND as its ESTAE routine. When attached, the image loader uses 
the IMGLIB system macro instruction to open SYS1 .IMAGELIB. It returns a 
successful completion code to HASPINIT and waits to be posted with a JES2 buffer 
address. When the image loader subtask is posted, the post code is assumed to be 
either 0 or a JES2 buffer address. A 0 implies a requested shutdown and causes the 
subtask to issue IMGLIB to close SYS1.IMAGELIB and to exit. If the post code is a 
buffer address, the address points to a JES2 buffer that contains a list suitable for 
use by a BLDL macro (issued by the subtask), which locates and verifies an image 
on SYS1.IMAGELIB. 

LY28-1006-2 ©Copyright IBM Corp.1988, 1990 Chapter 3. Program Organization 3-255 



HASPPRPU 

3-256 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

If the BLDL is not successful, an abnormal return is given to the posting JES2 
processor, and the image loader subtask waits for another post. If the BLDL is 
successful, the subtask uses the MVS LOAD macro instruction to cause the 
requested UCS or FCB image to be loaded into storage from SYS1.IMAGELIB. The 
requested image is copied from the loaded module into the JES2 buffer and then 
deleted from the load location through a DELETE macro. 

In the case of the 4245, the image name prefix passed in the buffer equals 'UCSS' or 
'UCSG'. The SETPRT macro is invoked to access and verify the image. The BLDL is 
not issued. 

A successful completion code is moved into the JES2 buffer, and the posting JES2 
processor is posted. The image loader subtask then waits for another post. 

Support is provided for the 3800 Printing Subsystem to communicate with the 
SETPRT (SVC 81) function of MVS. 

For 3800 repositioning, HASPIMAG loads the FCB image into the caller's buffer for 
FCB mapping purposes. 

The HASPIMAG ESTAE routine will close and reopen SYS1.IMAGELIB and retry the 
failing load. This is to handle the case for impact printers accessing images on 
extents added since SYS1 .IMAGELIB was originally opened. If errors persist, the 
ESTAE routine will issue a $$WTO macro instruction and post HASPPRPU with an 
error return code. 

Note: The DEVFCB = parameter on the PRTnnnn and Rm.PRn initialization 
statements (also $T-able) indicates the device default FCB value (DEVFCB), which is 
the sole FCB value to be used in the event that the output element has not explicitly 
declared "FCB=" on the JCL. 

L YW-1006-2 © Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPHOPE: Output Processor 

HASP HOPE 

System output consists of operator console messages, job statistics, messages from 
the operating system, and data sets written by the program. Operator console 
messages are saved in JES2-defined data sets by WTO/WTOR JES2 
communications. Job statistics are maintained and updated in the job control table 
(JCT) by various JES2 processors. Messages from the operating system are written 
directly on a spool volume just as any other data set. Data sets to be processed as 
output are placed on a JES2 spool volume by the HASCJBST module during job 
execution. 

There are 36 classes of system output permitted in the operating system. The JES2 
output processor maintains an output queue that corresponds to each class for local 
output and remote output, plus a single network output queue for all data that is 
routed to other nodes. The programmer defines a system output data set by using 
the DD statement or the JCL OUTPUT statement. The programmer specifies the 
class to which the system data set belongs in the parameter associated with the 
SYSOUT keyword or the CLASS= operand on the JCL OUTPUT statement. The 
HASCDSAL module assigns a peripheral data definition block (PDDB) to each 
SYSOUT data set, as well as one to the console messages and operating system 
messages pertaining to the job. At termination, the job is transferred from the 
execution queue to the output queue for analysis by the output processor. 

The task of the output processor is to analyze the PDDBs built for the job during 
execution and to build a set of job output elements (JOEs) that represent unique 
print/punch requirements. The JOEs are placed in the job output table (JOT), which 
contains all output requirements currently available to be processed by JES2 
print/punch processors and JES2 SYSOUT transmitters. 

To ensure that the integrity of the job queue and the JOT is maintained when 
multiple systems are active in a multi-access spool environment, the $QSUSE 
macro is issued prior to any change or reference to either table. 

HASPHOPE: Output Processor Main Entry Point 
At its entry point (OPIN!T). HASPHOPE acquires access to checkpoint data (via 
$QSUSE) and checks $FLAG1 in the HCT to see if any spun data sets still needs to 
be processed because of a full JOT ($UNSPUN in $FLAG1 is set to 1 or $PRUNSP in 
$FLAG1 is set to 1). If spun data sets still need to be processed, HASPHOPE invokes 
OPSPIN to process the work. If no unspun work exists, the $QGET macro is used to 
search the JES2 job queue for new work from the $OUTPUT queue. If no job is 
available, the $WAIT macro is used to release control until the status of some job in 
the queue is unchanged. If work exists, HASPHOPE invokes OPMAIN to process the 
work. 

OPSPIN: HASPHOPE activates itself via $ACTIVE and gets a buffer for a spun IOT if 
it is not already available. HASPHOPE then scans the JQEs checking for unspun 
IOTs. For each unspun IOT, HASPHOPE builds (via $#BLD) a prototype JOE pair 
from the PDDB in the spin IOT and adds (via $#ADD) the JOEs to the JOT. If the 
JOEs are successfully added to the JOT, HASPHOPE allocates a spool record (via 
$#ALCHK) and writes the IOT. Then HASPHOPE checkpoints the JOE. 

If the JOEs are not successfully added, HASPHOPE tries the process later. 
HASPHOPE processes some special cases. If HASPHOPE reads an IOT for a job 
that has been cancelled by the operator, the job is moved to the $PURGE queue. If 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-257 



HASP HOPE 

3-258 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

the job was in $HARDCPY and if the job has no more JOEs or held data sets, 
HASPHOPE continues the processing of unspun data sets until either the JOT 
becomes full or until the spun data sets have all been processed. 

When the JOT is full or no spun data sets exist, HASPHOPE frees the spin IOT buffer 
and attempts to get a job to process its output. 

OPMAIN: Having obtained a job, the output processor issues a $ACTIVE macro 
instruction to indicate to the dispatcher that JES2 is not dormant and a $TIME macro 
instruction to get a starting time and date for the output processor. 

The $QGET macro returns the address of the JOE if a job is available for output 
processing. All references to job data by the output processor are made through the 
JOE, which contains the track address (on a spool volume) of the job control table 
(JCT). The job lock is obtained via ($GETLOK). This routine issues the $JCTIO 
macro instruction to read the JCT from the spool volume into a JES2 buffer. 
($FREEBUF frees the buffer when no longer needed.) 

A check is made to ensure that the data read from the spool volume is a valid JCT 
and belongs to the job being processed; if not, the routine exits to the OPNOJCT 
routine for error processing. 

At the normal completion of JCT checks, the job level copy count, message class, 
and default job forms ID are copied from the JCT to the processor control element 
(PCE) used as a work area. The JCT contains the track address of the first 
input/output table (IOT) that contains the PDDBs. The IOTs are chained, each 
containing the track address of the next IOT in the chain. 

If the NOTIFY= userid keyword was specified on the JOB statement for a user on 
this node, an attempt is made to locate an active time-sharing user of the ID 
specified. If the user is found and is busy on another system within a multi-access 
spool configuration, the job's system affinity is altered to match the system on which 
the user is active, and the job is returned to the $OUTPUT queue. 

The TSO SEND command is used to display a job-ended message on the user 
terminal if the NOTIFY= userid is on this node. If the NOTIFY= userid is on another 
node, the JES2 remote console processor is used to send a job termination 
message back to the user on the originating node. Exit point OPNEXIT (for exit 16) 
is taken to allow an installation exit routine to modify the notification messages, 
replace them with different ones, or bypass issuing certain messages. 

If the userid is not active in the MAS, either the job system's affinity is altered to be 
that of the system the job originated on (OUTDEF BRODCAST =NO), or the NOTIFY 
is issued to the shared broadcast data set from this system (BRODCAST=YES). 

OPNOTX: Buffers are obtained and all IOTs for the job are read into buffers before 
the scan of PDDBs begins. When the amount of buffer storage is inadequate and 
attempts to get move are unsuccessful, a $DISTERR macro is issued to alert the 
operator to the problem (using the $HASP183 message). The IOTs read into the 
JES2 buffers are checked for validity. If the validity check for any IOT fails, a 
$DISTERR macro instruction is issued to alert the operator, and processing is 
continued if at least one IOT was valid. Absence of any valid IOTs results in the 
same processing path as was taken for an invalid JCT. The TGMSPMSK mask in 
the track group map (TGM) portion of the allocation IOT indicates which spools this 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

(_ 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASP HOPE 

job has space allocated on. This mask is logically ORed into the JOE spools-used 
mask so that the JOE has a record of the spools this job is using. 

After all valid IOTs have been read, JES2 checks for conditionally-purgeable output. 
If the job executed on this node and has completed normally, any PDDB that is 
destined to print on this node and has a conditionally-purgeable output class will be 
marked as not containing SYSOUT so that the data set will not be printed. Next, the 
job class is checked to see if it is a conditionally-purgeable job class. If it is, and the 
job has completed normally, and there are no non-empty, non-spin data sets other 
than system data sets, this job will be conditionally purged. 

OPSCAN: Two prototype JOEs are built tor the first PDDB that does not have the 
NULL flag set. The first JOE (work JOE) contains routing information and SYSOUT 
class, and the second JOE (characteristics JOE) describes the device setup such as 
forms, FCB, UCS flash frame, and external writer IDs, as well as the burst 
specification necessary to process this PDDB. The $#ADD macro instruction is used 
to add the work prototype JOE to the JOT in the SYSOUT class queue specified in 
the PDDB (if the JOE routing is tor the local node) or in the network queue (if the 
JOE routing is for another node). The $#ADD macro instruction also adds the 
SYSOUT characteristics JOE to the characteristics JOE queue. Each $#ADD macro 
instruction on behalf of the job is done "job copy" times to allow parallel processing 
by the print/punch processors. If the $#ADD macro indicates that the JOT currently 
has no available space tor insertion of JOEs, the routine waits ($WAIT JOE) until 
space becomes available. A spool record is allocated (for output checkpointing) via 
a call to the $#CHK service routine for each work JOE that is added to the JOT. 

Having added this processing requirement to the JOT, the routine sets the NULL flag 
in the PDDB along with the NULL flags in all subsequent PDDBs that represent the 
similar class, writer name, PRMODE, route, and setup characteristics. The first 
PDDB that does not meet the above test is used as a restart point tor the next 
prototype JOE built and $#ADD macro instruction. When all PDDBs have been set to 
NULL, the JCT for the job is updated on the spool volume by the addition of output 
processor start/stop times. 

OPJLOG: The output processor calls OPJLOG when processing the JES2 job log 
data set. If job statistics and messages are outstanding from earlier phases, 
OPJLOG adds these to the JES2 job log using data set services. 

PDBCRTHD: The output processor calls PDBCRTHD when processing a held data 
set. PDBCRTHD creates a held PDDB for the held data set. It also puts creation 
data (the time of creation and status of the held data set) for the held data set into 
the PDDB in the IOT buffer and increases the OPHLDCT held data set count field. 

OPWRTR: After all other output processing is done, OPWRTR (while under the job 
lock) writes to the spool the chain of IOTs created during output processing. Then it 
sets the hold count in the JOE (JOEHLDCT) to the number of held data sets. Once 
the write of the IOTs is completed, the JOE is checkpointed. 

OPNOJCT: As each JOE is added to the queue, it is also chained to the JOE. During 
processor termination, the job is placed in the $PURGE queue it the job has no JOEs 
and the hold counter is O; otherwise, the job is placed in the $HARDCPY queue while 
awaiting print/punch processing or SYSOUT transmission. Finally, a $FREEBUF 
macro instruction is issued to free each IOT buffer used during JOE creation, 
$DORMANT is issued to reduce the active processor count, and the routine 
branches OPINIT to await further work. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-259 



HASPFSSP "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPFSSP: JES2 - Functional Subsystem Service Processor 
The functional subsystem service processor: 

• Coordinates the initiation and termination of the functional subsystem (FSS). 

• Services requests for output groups (as made via GETDS and RELDS in 
HASPFSSM). 

• Processes operator commands directed to devices associated with the FSS. 

• Communicates orders to the FSS. 

Device PCEs associated with functional subsystem address spaces execute code in 
HASPFSSP. When a printer runs in FSS-mode, the entry point in the PCE points to 
HASPFSSP and the FSS-mode flag is set in the printer DCT. 

Initialization and Dispatching 
HASPFSSP initialization receives control at HA$PFSSP, on the first dispatch of a 
PCE associated with a FSS-mode printer device that is running in page-mode. Its 
other entry point, DYNFSS, receives control to look for an FSSCB matching the 
FSSNAME that was passed. 

HA$PFSSP - Initial Entry Point 

3-260 JES2 Logic 

HASPFSSP establishes global addr~ssability to the functional subsystem control 
block (FSSCB) and the functional subsystem application control block (FSACB) and 
establishes temporary addressability to the printer DCT, pointed to by the PCE. The 
PCE work area and the PCE's JOE indicator are set to zero. 

HASPFSSP next checks to see if an FSACB already exists; this indicates whether a 
hot start of JES2 occurred while a functional subsystem application (FSA) was 
running. If a JES2 hot start did occur, HASPFSSP determines if one of the following 
conditions exist: 

• An FSS-level order is outstanding. The FSSXB parameter list is checked to see 
if this PCE issued the order. If this PCE issued the order, HASPFSSP returns the 
contents of the FSWORDID field in the FSSXB parameter list of the PCE work 
area. 

• An FSA-level order is outstanding. The FSA order parameter list in the FSAXB 
is returned. 

• The device had been started. The current set up for the device is restored to the 
DCT using information from the FSAXB. 

If JOEs have not as yet been assigned to the FSA, HASPFSSP issues a $GETUNIT to 
assign the DCT to the FSA device and a $ACTIVE macro to indicate that the 
functional subsystem service processor PCE is active. If the FSA device was not 
started and a stop FSA order is not outstanding, HASPFSSP sets the DCTSTART bit 
on in the DCT to indicate that the device needs to be started. 

If a hot start of JES2 did not occur while an FSA was running (PCEFSACB = 0), then 
HASPFSSP checks whether the device is already in use, draining, in hold status, or 
is paused. If any of these conditions exists, HASPFSSP enters a $WAIT on UNIT 
loop until the device associated with the DCT is available. If none of the device 
conditions are present, HASPFSSP sets the DCTFLAGS byte to 0 and begins the 
device processing. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

(. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPFSSP 

FSPMAIN - Dispatching Loop: FSPMAIN identifies the beginning of a loop in 
HASPFSSP that controls the processing for the device. (FSPMAIN is also the retry 
point set up by the ESTAE for HASPFSSP. The sequence of processing in this loop 
is as follows: 

1. A test is made to determine if the system is draining; if it is, the DCTSTART bit 
is set off in the DCTFSSFL field to prevent device starts. If the system is not 
draining, a $CALL macro is issued to invoke FSPORDER, which processes 
commands and orders. 

2. On return from command or order processing performed by FSPORDER, a 
check is made to determine if the FSACB exists; if it does not exist, a $WAIT on 
FSS or FSSXECB is issued. When the wait is posted, processing starts at the 
beginning of the loop at FSPMAIN. If the FSACB exists but the device is not yet 
started, a $WAIT on JOT or FSAXECB is issued. When the wait is posted, 
processing again begins at the beginning of the loop at FSPMAIN. 

3. If the FSACB exists and the device is started, then a $CALL is issued to invoke 
FSPRELDS to process any pending FSA RELDS requests associated with the 
device. 

4. A check is made to determine if the device is draining; that is, if the FSAQUIES 
bit is on in FSAFLAG1. If the device is draining, a $CALL is issued to invoke 
FSPORDER to attempt to stop the device and a $WAIT on JOT or FSAXECB is 
issued. When the wait is posted, processing begins again at the beginning of 
the loop at FSPMAIN. 

5. If the device is not draining, then a $CALL is issued to invoke FSPGETDS to 
process FSA GETDS requests. Upon return from FSPGETDS, a $WAIT on JOT is 
issued. When the wait is posted, processing begins again at the beginning of 
the loop at FSPMAIN. 

FSPORDER - Command/Order Management: FSPORDER determines if any 
command processing is necessary on behalf of the functional subsystem. 
Processing is required if there exists a response to a previously issued order, if a 
command has been issued against a device that requires an order to be issued, or if 
the functional subsystem needs to be started. 

FSPORDRO, FSPORDR1 - Response Check Processing: At these labels, HASPFSSP 
checks whether there are any outstanding responses to FSS orders that need to be 
processed. At FSPERRCK, HASPFSSP checks whether the FSS/FSA abended or 
abnormally disconnected. 

Response processing takes place when functional subsystem orders have been 
issued and responses to them are outstanding. FSPORDER checks the FSSOROUT 
bit in FSSFLAG1 flag byte; if the bit is on, a response to an FSS-level order is 
outstanding. FSPORDER issues $CALL to invoke FRSPORDR to process the 
response. If the return code from FRSPORDR is 0, FSPORDER checks for more 
eligible orders to process; if the return code is not 0, FSPORDER stores register 6, 
containing the FSACB address, in the PCE current save area, restores the caller's 
registers, and returns to the caller. 

FSPSORDR - FSS Order Processing: If FSPSORDR determines that FSS-level 
orders are required, FSPSORDR passes control to the appropriate routine to issue 
the order. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-261 



HASPFSSP 

3-262 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

FSPAORDR - FSA Order Processing: If operator commands have been issued 
against the device, FSPAORDR determines if any FSA-level orders are required and 
passes control to the appropriate routine to issue the order. 

FSPSTFSS - Start FSS Processing: FSPSTFSS is invoked as a result of issuing the 
JES2 start command to start the device; if the FSS is not already active, the start 
command is prepared for the FSS and subtasked by the FSMGCR routine. The 
processor (HASPFSSP) is then marked as active. 

FSPSTFSA - Start FSA Processing: FSPSTFSA prepares the parameter list for the 
start FSA order and invokes FSPORCMS to issue the order. An appropriate form of 
the $HASP700 message is issued for errors in this start processing. 

FSPSTDVC - Start Device Processing: FSPSTDVC prepares a parameter list for the 
start device order and invokes FSPORCMS to issue the order If FSPORCMS 
processing was successful, FSPSTDVC initializes the current device defaults and 
device settings in the FSAXB. If FSPORCMS processing is not successful, 
FSPSTDVC indicates that the device is not started and processing is initiated to stop 
the FSA. An appropriate form of the $HASP700 message is issued for errors in this 
start processing. 

FSPSPDVC - Stop Device Processing: FSPSPDVC prepares a parameter list for the 
stop device order and invokes FSPORCMS to issue the order. HASPFSSP waits for 
all data sets for the current JOE to finish printing before the stop device order has 
its effect. HASPFSSM indicates that all the data sets have finished printing for a 
specific JOE in its GETDS routine. An appropriate form of the $HASP701 is issued 
for errors in this stop processing. 

FSPSPFSA - Stop FSA Processing: FSPSPFSA prepares a parameter list for the 
stop FSA order and invokes FSPORCMS to issue the order. If the order is 
successfully processed, FSPSPFSA issues a $STIMER to start the timer to ensure 
that the FSA disconnects in a certain amount of time. If the order is not successful 
or the timer expires, FSPSPFSA terminates stop processing. An appropriate form of 
the $HASP701 message is issued for errors in this stop processing. 

FSPSPFSS - Stop FSS Processing: FSPSPFSS prepares a parameter list for the 
stop FSS order and invokes FSPORCMS to issue the order. If the stop order is 
successful, FSPSPFSS issues a $STIMER to start the timer and ensure that the 
functional subsystem disconnects within a given interval of time. If the stop order 
fails or the timer expires, FSPSPFSS turns off the functional subsystem drain bit 
(FSSDRAIN) in the FSSCB and issues a diagnostic message. An appropriate form of 
the $HASP702 message is issued for errors in this stop processing. 

FSPRPTDV - Query Order Processing (for $N): FSPRPTDV prepares a parameter 
list for the query order and invokes FSPORCMS to issue the order. 

FSPSETDV - Set Order Processing (for $1): FSPSETDV prepares a parameter list 
for the set order and invokes FSPORCMS to issue the order. 

FSPOIRDV- Operator Intervention Order Processing: FSPOIRDV prepares a 
parameter list for the operator intervention order and invokes FSPORCMS to issue 
the order. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPFSSP 

FSPBKFDS - Backspace/Forward Space Synch Order Processing: FSPBKFDS 
prepares a parameter list for the synch order to backspace or forward space the 
FSA device and invokes FSPORCMS to issue the order. An appropriate form of the 
$HASP152 message is issued if an error occurs. 

FSPCEI - $C, $E, $1 Synch Order Processing: FSPCEI prepares a parameter list for 
the $C, $E, or $1 synch order and invokes FSPORCMS to issue the order. An 
appropriate form of the $HASP152 message is issued if an error occurs. 

FSPHALTD - Halt Device Synch Order Processing: FSPHAL TD prepares a 
parameter list for the synch order to halt the FSA device and invokes FSPORCMS to 
issue the order. The FSACB is marked to indicate that the device is halted; this 
causes any GETREC in HASPFSSM to enter a wait state. 

FSPCANJB - Purge Output Synch Order Processing: FSPCANJB prepares a 
parameter list for the synch order to purge output if a $CJ, P command was issued 
and output was returned in the most recent GETDS request. FSPCANJB invokes 
FSPORCMS to issue the order. 

FSPORCMS - FSIREQ Cross Memory Services: FSPORCMS invokes cross memory 
services for FSIREQ REQUEST=ORDER requests on behalf of the various order 
processing functions of HASPFSSP; by issuing the FSIREQ macro, FSPORCMS 
invokes (via cross memory services) a corresponding order processing routine that 
receives control in HASPFSSM. If the FSIREQ fails, then the $HASP703 message is 
issued to explain the error condition. 

FRSPORDR - Response Processing: FRSPORDR invokes the proper response 
processing routine to process responses that come in for outstanding orders. 
FRSPORDR uses the order id associated with the order to locate the response 
routines in a table of addresses. The following response routines are used: 

• FRSPPFSS - for a stop functional subsystem order 
• FRSPSFSA - for a start functional subsystem application 
• FRSPPFSA - for a stop functional subsystem application 
• FRSPSDEV - for a start device order 
• FRSPPDEV - for a stop device order 
• FRSPQERY - for a query order 
• FRSPSET - for a set order 
• FRSPSYNC - for a synch order 
• FRSPOPIN - for an operator intervention order 

FSPGETDS - Get Data Set (GETDS) Processing: FSPGETDS attempts to select a 
JOE from the JES2 JOT and pass it to the FSA via the JIB; FSPGETDS does this for 
each JIB on the FSA's request stack. After selecting a JOE, FSPGETDS marks the 
JOE as allocated to an FSA. 

FSPRELDS - Release Data Set (RELDS) Processing: FSPRELDS processes the JOE 
associated with each JIB on the FSA's return stack. FSPRELDS returns the JIB to 
the functional subsystem's free JIB stack. FSPRELDS purges the JOE if the JIB is 
complete or cancelled; otherwise, FSPRELDS releases the JOE in the JOT for use 
later (when processing starts from a point that is checkpointed by the FSA). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-263 



HASPFSSP 

DYNFSS 

3-264 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

FSPPOST - Post FSA Task Processing: FSPPOST allows a functional subsystem ./ , 
service processor, running in the JES2 address space to post the FSA task in "'- _/ 
HASPFSSM, running in the functional subsystem address space. If the FSS has 
abended, FSPPOST issues a $GETASCB macro to obtain the ASID of the functional 
subsystem address space and issues a $XMPOST macro to post the FSA task. 

Specifically, FSPPOST checks to determine if the FSA is active or if it has 
terminated. If the FSA is active, FSPPOST invokes cross memory services (PC) to 
invoke HASPFSSM. HASPFSSM issues the FSIREQ TYPE= POST macro. If the FSA 
has terminated, FSSPPOST performs a cross memory post pf the appropriate ECB to 
signal that disconnect processing in HASPFSSM should finish. (For more detail see 
FSMCONCT/FCNDISCN in HASPFSSM.) 

FSPFAILS - Start FSS Failed: FSPFAILS issues the $HASP700 error message 
indicating the nature of the failure. 

FSTOFAIL - Start FSA Failed: FSTOFAIL dechains the FSACB, frees the FSACB 
storage, and indicates that the device was not started; FSTOFAIL also issues 
$HASP700. 

FSTDFAIL - Start Device Failed: FSTDFAIL initiates processing to stop the FSA and 
issues the $HASP700 error message. 

FPAFAIL - Stop FSA Failed: FPAFAIL terminates stop processing and issues the 
$HASP701 and $HASP702 error messages. 

FPSFAIL - Stop FSS Failed: FPSFAIL turns off the FSS drain bit and issues the 
$HASP701 and $HASP702 error messages. 

DYNFSS looks for an FSSCB that matches the name of the FSS that was passed. If 
one is found, its address is returned to the caller. If one is not found and allocation 
of the new FSSCBs is allowed (it is not allowed on a hot start), a new FSSCB is 
allocated. The new FSSCB is formatted and inserted alphabetically into the FSSCB 
chain, and its address returned to the caller. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPFSSM: JES2 - Functional Subsystem Support Module 

HASPFSSM 

HASPFSSM includes support for the functional subsystem interface (FSI) routines. 
The following HASPFSSM routines support the FSI: 

• FSMCONCT/FCNDISCN - CONNECT/DISCONNECT 

Establishes and terminates the connection between the functional subsystem 
application (FSA) and JES2. 

• FSMGETDS - GETDS 

Handles requests for data sets made by the functional subsystem application 
(FSA). 

• FSMRELDS - RELDS 

Handles termination of processing of output data sets by the FSA. 
• FSMGETRC-GETREC 

Handles FSA retrieval requests for records from output data sets. 
• FSMFRERC-FREEREC 

Frees storage occupied for the records obtained via FSA GETREC requests. 
• FSMCHKPT - CHECKPOINT 

Handles FSI checkpoint requests. 
• FSMORDER - ORDER 

Processes operator commands that are directed to the FSA. 
• FSMPOST - POST 

Asynchronously informs the FSA that its GETDS request has been satisfied. 
• FSMSEND - SEND 

Handles communication between JES2 and the FSA and functional subsystem. 

HASPFSSM also includes the following resource management routines that are 
necessary to efficiently use resources that are used between JES2 and the 
functional subsystem: 

• Quick cell management (FSMGETQC, FSMFREQC, FSMBLDQC, FSMQCT, 
FSMGTBLK, FSMRTBLK) 

• Save area management (FSMSAVE, FSMRETRN) 

• 1/0 Services (FSMCBSET, FSMCBIO, FSMCBCK, FSMBTG) 

• Initializing and using 1/0 buffers for spool reads and writes (FSMCBSET, 
FSMCBIO) 

• Completing 1/0 when reading and writing to spool (FSMCBCK) 

• Handling bad track groups (FSMBTG) 

• Miscellaneous support that includes: 

Issuing catastrophic error messages and abends (FSMCATER) 

Accessing FSI control blocks (FSMFSLNK) 

Obtaining and freeing the MVS local and CMS locks (FSMGETLK, 
FSMFRELK) 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-265 



HASPFSSM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Issuing SJF termination request to free SJF storage and perform cleanup / ·" 
(FSMSJTER) \ / 

Issuing the $HASP150 message when the FSA indicates that the data set is 
apparent on the device (FSMSM150) 

FSMCONCT/FCNDISCN - CONNECT/DISCONNECT Service Routine 

3-266 JES2 Logic 

The connect service routine establishes the FSI between the functional subsystem 
address space and JES2. The FSA issues the FSIREQ REQUEST=FSICON macro to 
begin the connection process. The FSIREQ macro expands to an SSI call with a 
function code of 53 and is directed to the subsystem named in the function 
dependent area of the FSI parameter list. As a result, SSIFSCNT in HASCSIRQ 
receives control. SSIFSCNT loads HASPFSSM and branches to the connect service 
routine FSMCONCT, in HASPFSSM. FSMCONCT then checks whether the request is 
for a disconnect or a connect. 

For a connect and disconnect request, FSMCONCT acquires storage (via GETMAIN) 
for a save area and various parameter lists for use by disconnect processing. If the 
GETMAIN fails, an error return code is set in register 15 and return is made to 
HASCSIRQ. If the storage is acquired, FSMCONCT checks whether this is a connect 
request for a functional subsystem application (FSA) or for a functional subsystem 
(FSS). 

For a FSS connect, FSMCONCT acquires storage (subpool 230) for a functional 
subsystem vector table (FSVT), functional subsystem control tables (FSCTs), 
functional subsystem extension block (FSSXB), entry descriptor table (ETD), data 
control block (DCB), and data extent block (DEB); these control areas are then 
initialized. Then FSMCONCT initializes the exit information table (XIT) with entries 
corresponding to the defined exit points that exist within HASPFSSM and initializes 
the queue control tables (QCTs) and their associated free cell stacks. FSMCONCT 
then initializes the functional subsystem cross memory environment. 

When it initializes the cross memory environment for functional subsystem connect 
processing, HASPFSSM: 

• Builds an entry table (using ETCON) in the functional subsystem address space. 

• Reserves an authorization index (using AXRES) for the functional subsystem 
address, which JES2 uses to allow the the functional subsystem to program 
transfer (PT) to JES2. 

• Sets the functional subsystem authorization index (using AXSET). 

• Reserves a system level linkage index (using XRES) for the functional 
subsystem address space so that JES2 can program call (PC) to the functional 
subsystem address space. 

• Creates and initializes the entry table with JES2 PC routines (using ATSET). 

• Establishes authority to allow JES2 to SSAR to the functional subsystem 
address space. 

HASPFSSM then returns to HASCSIRQ, with the response pending bit off in 
FSSFLAG1. 

For an FSA connect, FSMCONCT searches the FSACB chain for the FSACB that has 
an FSAID equal to FSIFSAID. Register 6 will contain the address of the FSACB if 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPFSSM 

one is found or zero if no FSACB is found. Then, for both the FSA connect or FSS 
connect, FSMCONCT issues the $TRACE macro (id= 16) to trace this connect. 

FSA connect proceeds at FCNFSA. FCNFSVT is invoked to verify whether or not the 
FSA is connected. FCNFSVT issues a $GETASCB TYPE= HOME to acquire the 
address of the FSVT (register 10) and FSVT entry for this FSA (register 3). FCNFSA 
then acquires storage (via GETMAIN) from subpool 230 for the FSA's FSCT, the JES2 
FSCT and FSAXB, zeroes the acquired storage and 

• Initializes the FSA FSCT, copying FSI routine addresses supplied by the FSS 
• Initializes the JES2 FSCT, copying FSI routine addresses from the HFCT 
• Stores the address of the FSACB in the JES2 FSCT 
• Initializes the functional subsystem application extension control block (FSAXB) 
• Turns off the response pending bit in the FSSCB 

HASPFSSM then posts HASPFSSP (using FSSEDECB) and returns to the caller 
(HASCSIRQ). 

For a disconnect request, FSMCONCT acquires a disconnect parameter list and 
branches to FCNDISCN in HASPFSSM. FCNDISCN checks whether the request is to 
disconnect the FSS or FSA. For a FSS disconnect, FCNDISCN, using the disconnect 
parameter list, disconnects all FSAs (via FSIREQ TARGET=JES, 
REQUEST= FSIDCON) that are still connected to the FSS. Then FCNDISCN uses the 
extended ECB in the FSSCB (FSSXECB) and calls the post JES2 routine (FSMPSTJ2) 
to post JES2; (this ensures that HASPFSSP is re-dispatched if it is expecting the FSS 
disconnect.) If JES2 is not ready to receive the disconnect request (the FSSDCONX 
bit is off in the FSSFLAG3 byte of the FSSXECB), FCNDISCN issues a WAIT macro 
against the FSSEDECB to wait until JES2 is ready. 

When JES2 is ready to accept the disconnect request (FSSDCONX is on in 
FSSFLAG3), FCNDISCN proceeds at FCNERDC2 to terminate the cross-memory 
environment, destroying the entry table for the functional subsystem address space 
and freeing the authorization index and linkage index. Then, the quick cell pools 
and their QCTs are freed along with the FSVT, the FSCT for the functional 
subsystem, the FSCT for JES2, the FSSXB, and the ETD. Finally, the return code for 
the disconnect is set in SSOBRETN, the response pending bit is set off in FSSFLAG1 
to indicate a successful disconnect, and return is made to HASCSIRQ to free the 
HASPFSSM storage. 

FSMGETDS - GETDS 
GETDS processing handles requests for data sets that are made by the functional 
subsystem application (FSA) that is running in the functional subsystem address 
space. When the FSA issues the FSIREQ FUNCTION= GETDS, the GETDS routine at 
FSMGETDS in HASPFSSM receives control (via the $FSILINK entry service routine) 
to process the request. 

FSMGETDS issues a $GETLOCK to obtain the local lock to serialize the active queue 
between GETDS and RELDS and then scans the active JIB queue that is chained 
from the FSACB via the FSAACTQS field. FSMGETDS finds the JIB that exists just in 
front of a completed JIB or a cancelled JIB. FSMGETDS then issues $FRELOK to 
free the local lock; at this point, register 4 contains the address of the last processed 
or cancelled JIB (if any) and register 5 contains the address of the eligible JIB (if 
any). The eligible JIB is then processed. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-267 



HASPFSSM 

3-268 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

FSMGETDS checks the eligible JIB to see if it has been initialized. If the JIB has not 
been initialized, FSMGETDS further checks to see if the device being processed by 
the FSA is to be drained; if it is to be drained, the JIBs on the request queue are 
placed on the free queue via the use of a $RETBLK macro. The FSACB is marked to 
indicate that a stop device may be issued. If no JIB is already assigned to the FSS, 
the active JIB queue (FSAACTQS} is cleared by calling FSMJIBRT for each JIB, and 
the FSA is marked as drained by turning on the FSADRAIN bit in the FSAFLAG1 of 
the FSACB. (Otherwise, RELDS processing clears the active JIB queue.) 
FSMGETDS then cross memory posts the JES2 main task and the functional 
subsystem is told to wait for a return post from JES2, indicating that there is work to 
do. 

If the device is not draining and the JIB is not yet initialized, FSMGETDS initializes 
the JIB and the spool DEB. FSMGETDS issues a $BUFIO to read the JCT and JOT. 
The job name, the job ID, and the address of the JMR area from the JCT are set in 
the JIB. If the $JOECKV flag indicates that a valid checkpoint record exists for the 
JOE, another $BUFIO is issued to read the checkpoint record. FSMGETDS then 
prepares to invoke the JSPA modification exit (exit 23), to allow the installation to 
modify the JSPA. 

The exit point JSPAXIT for the JSPA modification exit (exit 23) is then taken. If JOE 
separator pages are required (as indicated by the return code from the installation 
exit) the FSAFJSPG flag is set to 1 in the FSAFLAG2 byte of the FSACB; the 
JESNEWS data set is not printed if a job separator page is not requested. 
FSMGETDS then issues a $CALL for FSMFINDP to find the first PDDB to assign from 
the JOE. 

Data set assignment occurs at label FGDS200 in FSMGETDS processing. 
FSMGETDS: 

• Merges data set characteristics from the characteristics JOE into the PDDB 
(Data set characteristics can be modified via the $TO command.) 

• Checks data set characteristics against the current device setup and determines 
if setup processing is required. 

• Allocates the selected data set, acquiring and initializing the GETREC related 
control blocks (GCB, ACB, DEB, an SOB) 

• Performs a "fake open" for the data set, and acquires and chains the required 
protected 1/0 buffers for despooling. 

• Reads the SWB chain for the data set and constructs a SWB list and chains it to 
the GETDS parameter list. 

Note: A catastrophic error X'F04' can occur during the updating of the SWB list, 
specifically during the building of a temporary keylist table when SJF extract 
services return an error return code. 

• Builds the APL chains and the GETREC index tables and issues a GET macro for 
data set input. 

• Locates the next PDDB (by invoking FSMFINDP) in anticipation of the next 
GETDS call. 

• Verifies the printer's authority to select the data set and saves security token 
information for later authority verification by PSF. (The PRTAUTH routine issues 
a SAF call using the data set token from the PDDB.) 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPFSSM 

• Fills in the GETDS parameter list with values that are to be returned to the FSA 
including a unique data set identifier. 

• Determines whether or not another JOE is to be requested of the JES2 main 
task. If a JOE is to be requested, FSMGETDS queues a JIB request to the FSA 
request queue (FSAREQQS). 

Finally, FSMGETDS returns to the caller, indicating whether a data set has been 
assigned. 

FSMRELDS - RELDS Service Routine 
FSMRELDS in HASPFSSM supports the FSI RELDS function as related to the 
functional subsystem. The basic function of FSMRELDS is to release storage 
resources that are associated with a data set that was previously assigned via the 
FSI GETDS function. FSMRELDS: 

• Locates the JIB and GCB control blocks corresponding to the data set that is to 
be released. 

• If the data set is being processed as an incomplete RELDS, resets the data set 
sequence number (JIBDSEQN) to the sequence number for this data set, 
provided that the sequence number is less than the current JIBDSEQN value; 
this is done so that FSMGETDS selects the appropriate data set on the next 
GETDS call. 

• Voids any outstanding GET requests for the data set. 

• Returns storage that is associated with RPL chains and index tables. 

• Issues a "fake close" to unchain and return the 1/0 buffers and mark the SDB as 
closed. 

• Issues an SJFREQ request to delete SWBs associated with this data set. 

• Unallocates the data set, unchaining and freeing (via $RETBLK) the 
GETREC-related control blocks (GCB, ACS, DEB, and SDB). 

• Decreases the data sets' assigned count in the JIB; if the count is zero and the 
JOE has been completely processed or cancelled, frees the storage associated 
with the JIB (that is, the JCT and IOT buffers) and places the JIB on the JIB 
return queue (FSARETQS). 

• Frees the checkpoint record resources that are associated with the JIB. 

• For a draining FSA device, returns all JIBs on the active JIB queue and marks 
the device as drained in the FSACB; that is, the FSADRAIN bit is set in 
FSAFLAG1 of the FSACB. 

FSMRELDS returns to the caller. 

FSMGETRC - GETREC Service Routine 
FSMGETRC supports the FSI GETREC function related to a functional subsystem. 
The basic function of FSMGETRC is to give the functional subsystem access to data 
records of a JES2 SYSOUT data set that was previously assigned to the functional 
subsystem via the FSI GETDS function. Processing overhead is minimized in 
accessing the data records because FSMGETRC returns only data record addresses 
to the caller and does not move data from the 110 buffers. Records are obtained 
through the GET (locate mode) HASP access method. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-269 



HASPFSSM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

On entry, FSMGETRC checks whether the FSA device is to be halted (that is via a $Z 
command). The FSAHAL T bit in the FSAFLAG1 of the FSACB is on when the device 
is to be halted. If the FSA device is to be halted, then FSMGETRC issues a WAIT 
macro to wait for the device to be restarted. If the FSA device is not to be halted, 
FSMGETRC accesses the GCB associated with the data set and validates it. For an 
invalid GCB, FSMGETRC indicates that no index is returned (the GLRNOI bit is 
turned on in GLRFLGS1), a return code of 4 is set in register 15, and returned to the 
caller. If the GCB is valid, FSMGETRC determines what kind of request is being 
made. The request can be a specific record request or a request to get the next 
record. If neither is indicated, then FSMGETRC assumes that this is a request for 
the next record. 

To process a request for the next data record, FSMGETRC first checks to see if an 
active RPL chain exists, and if so, ensures that the 1/0 has completed tor the RPL 
before assigning the associated records to the request. If an active RPL chain does 
not exist, FSMGETRC invokes the HASP access method (HAM) via a GET macro to 
fill an RPL chain before assigning the associated records to the request. 
FSMGETRC assigns records to the FSA by copying record pointers from the RPL 
chain to the IDX entries and marks the RPL chains in the GCB to indicate that the 
RPL is assigned to the FSA. 

To process a request for a specific data record, FSMGETRC issues a POINT macro 
to position the data set to the requested record, issues a CHECK macro to wait for 
the positioning to complete, then issues a GET macro to obtain the specific data 
record(s). FSMGETRC then assigns records as above. 

If an 1/0 error occurs during the processing of the GETREC request, FSMGETRC fills 
the index table (IAZIDX) with a pointer to the $HASP185 message and returns to the 
caller. 

FSMFRERC - FREEREC Service Routine 
The FSI FREEREC routine, FSMFRERC releases for reuse by GETREC processing 
the storage areas associated with data records that were previously assigned to the 
functional subsystem through the GETREC routine. These storage areas include the 
1/0 buffers; FSMFRERC marks the RPL chain as unassigned and issues the ENDREQ 
macro to release 1/0 buffers (via HAM). 

FSMCHKPT - Checkpoint Service Routine 

3-270 JES2 Logic 

FSMCHKPT in HASPFSSM supports the FSI CHECKPOINT routine. The basic 
function of FSMCHKPT is to write out the FSI checkpoint control blocks to the JES2 
spool data set. 

Upon entry, FSMCHKPT establishes JIB and GCB addressability for the data set that 
is being processed, and then checks whether a checkpoint buffer has already been 
acquired and formatted. If the JIB, GCB, or CHK record can't be validated, 
FSMCHKPT sets a return code of 4 and returns to the caller. If a checkpoint buffer is 
not available, FSMCHKPT acquires one through a $CALL to FSMCBSET. When a 
buffer is returned, FSMCHKPT zeroes the JES-dependent work area (CHKJESWK) 
and indicates in the JIB that a buffer is available (the JIBFCPB bit in the JIBFLG1 
byte is set on). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPFSSM 

If a checkpoint buffer is available, FSMCHKPT processes the 1/0 status and error 
conditions, if any, that are associated with it. If the status of the buffer indicates 
that: 

• A bad checkpoint spool record exits, FSMCHKPT sets a flag in the checkpoint 
parameter list, indicating a permanent 1/0 error and then sets a successful 
return code (register 15 = 0) and returns to the caller. 

• 1/0 is not yet complete for the buffer, FSMCHKPT sets a successful return code 
(register 15 = 0) and returns to the caller. If the checkpoint parameter indicates 
that a forced checkpoint write is to be performed, then FSMCHKPT waits for the 
completion of the 1/0 and then writes the checkpoint record. 

• 1/0 completed abnormally, FSHCHKPT sets a flag in the JIB to indicate that a 
bad checkpoint record exists and then calls FSMBTG to process the 110 error. 

After establishing addressability to the checkpoint buffer, FSMCHKPT updates the 
JES-dependent area of the buffer and issues a $BUFIO macro to write the 
checkpoint record to spool. If the write to spool was successful, FSMCHKPT returns 
to the caller with a return code of 0 in register 15. If the write to spool failed, 
FSMCHKPT sets error indication flags in the JIB, queues a TGB for bad track 
processing and issues the $HASP370 error message. FSMCHKPT then sets a return 
of 4 in register 15 and returns to the caller. 

FSMORDER - Order Service Routine 
The FSI order routine, FSMORDER is called from HASPFSSP via cross memory 
services. HASPFSSP invokes FSMORDER on behalf of JES2's processing of 
operator commands that are directed to FSA devices operating under the control of 
the functional subsystem. 

Upon entry, FSMORDER saves the cross memory environment of its caller (using a 
PCLINK) and then obtains a save area to be used by the order routine that is to 
process the order being received from JES2. This save area is in the FSSXB if the 
order is for the functional subsystem and in the FSAXB if the order is for the 
functional subsystem application (FSA). 

FSMORDER then prepares to issue the FSIREQ macro for either the FSS order or 
the FSA order. To determine the type of order, FSMORDER examines the FSID 
within the order parameter list. If the FSA portion of the FSID is zero, then 
FSMORDER issues the FSIREQ macro for the functional subsystem, using the 
FSSXB. Register 1 points to the functional subsystem parameter list and register 13 
points to a save area (addressable from the FSSXB). If the order is for an FSA, then 
FSMORDER issues the FSIREQ macro for the functional subsystem application, 
using the FSAXB. Register 1 points to the FSA parameter list and register 13 points 
to a save area the order routine can use when it gets control. 

Results of the FSIREQ macro call can be as follows: 

• The FSIREQ is successful and an immediate response is given. 

If the order is an FSS-level order, FSMORDER exits to the caller. If the order is 
an FSA-level order the response area is processed before returning to the 
caller. 

• The FSIREQ is successful and a response is to be given later. 

FSMORDER returns to the caller whether it's an FSA-level order or an FSS-level 
order. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-271 



HASPFSSM 

• The FSIREQ is unsuccessful. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

FSMORDER returns to the caller with register 15 containing a nonzero return 
code. 

FSMPOST- POST Service Routine 
The FSI post routine, FSMPOST, in HASPFSSM notifies the functional subsystem or 
the functional subsystem application of the completion of a request that was made 
via the FSIREQ REQUEST=FSIPOST macro call. 

Upon entry, FSMPOST saves the cross memory environment(using a PCLINK) and 
establishes addressability to the FSACB, FSSCB, the FSACB extension, and the FSI 
POST parameter list (in the FSAXB). FSMPOST then moves the reason for the post 
from the FSAXB to the FSI POST parameter list and issues the FSIREQ 
REQUEST=FSIPOST macro to initiate the post. After restoring the cross memory 
environment of the caller, FSMPOST returns to the caller via a program transfer 
(PT). 

FSMSEND - SEND Service Routine 
The SEND FSI routine, FSMSEND, receives control as a result of an FSIREQ 
REQUEST= FSISEND macro call. FSMSEND sends a response to an order that was 
processed asynchronously. To do this, FSMSEND first checks to see whether the 
response that is to be sent is a functional subsystem (FSS) response or a functional 
subsystem application (FSA) response. For a FSS response, FSMSEND stores in 
register 1 the address of the extended ECB that is to be posted (FSSXECB) and calls 
(via $CALL) FSMPST J2 in HASPFSSM to asynchronously post the processor PCE 
associated with the functional subsystem order. For a FSA response, FSMSEND 
first uses the FSMRESP subroutine to process the response area, stores in register 
1 the address of the extended ECB that is to be posted (FSAXECB), and calls (via 
$CALL) FSMPST J2 in HASPFSSM to asynchronously post the processor PCE 
associated with FSA order. 

If the request is for the termination of the FSA, bit SNDTYFIT in the SNDTYPE field of 
the FSI SEND request parameter list (IAZFSIP) is turned on. When FSMSEND finds 
this bit on, the quiesce bit, defined by FSAQUIES in $FSACB, is turned on in the flag 
byte FSAFLAG1 of the FSACB of the device. FSMSEND then cross-memory posts 
the FSA processor to terminate. 

Quick Cell Management 

3~272 JES2 Logic 

FSMGETQC - Get Quick Cell Routine: FSMGETQC is used to obtain one or more 
quick cells from a predefined pool of cells. If the cell pool has not been initially 
created or if the cell pool becomes exhausted, FSMGETQC builds or extends the cell 
pool according to the characteristics defined in the OCT for this quick cell type. 
FSMGETQC is invoked when the $GETQC macro is issued. 

FSMGETQC issues a catastrophic error code of X'FOO' when one of the following 
conditions exist: 

• The number of quick cells requested on the $GETQC macro is not in the valid 
range permitted. 

• A GETCELL request is made for the indicated quick cell and the GETCELL fails 
but not because the quick cell pool is exhausted. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPFSSM 

FSMGETOC manages the use of cells by chaining the quick cells together and 
placing each chain of quick cells on a push-down stack specified in the OCT. 
FSMGETOC then manipulates this stack and chain structure for each quick cell 
request. 

FSMFREQC - Free Quick Cell Routine: FSMFREOC is entered when the $FREOC 
macro is issued. FSMFREOC returns one or more quick cells to their proper cell 
pool, depending on the options indicated by the $FREOC macro issuer. FSMFREOC 
issues the FREECELL macro to free the cell. 

FSMFREOC issues catastrophic error code X'F01' if one of the following conditions 
should occur: 

• The requested number of cells that is to be freed is not within the valid limits. 
• The FREECELL macro invocation to free the quick cell fails. 

FSMBLDQC - Build Quick Cell Pool Routine: FSMBLDOC builds quick cell pools 
and their extensions. FSMBLDOC obtains the characteristics associated with the 
cell pools from the OCT for the quick cell type specified on the $BLDOC macro. 
FSMBLDOC runs under the local lock. 

Initially, FSMBLDOC issues a $GETASCB macro to obtain in register 7 the ASCB 
address of the address space that issued the $BLDOC macro. Using the OCT, 
whose address is in register 6, FSMBLDOC calculates the size of the quick cell pool, 
performs a MODESET to get in key 0 and issues a GETMAIN macro to obtain the 
storage from subpool 5, storage key 1. Then, switching back to the caller's key (via 
MODESET), FSMBLDOC issues a BLDCPOOL macro to build the quick cell pool, 
specifying the number of cells and each cell's size. After the quick cell pool is built, 
FSMBLDOC returns to the caller. 

FSMBLDOC issues the $ERROR macro with a catastrophic error code of X'F02' if 
one of the following conditions occurs: 

• The GETMAIN for the storage for the quick cell pool fails. 
• The BLDCPOOL macro to ultimately construct the quick cell pool fails. 

FSMQCT - Initial Setup of QCT Routine: FSMOCT sets up the quick cell control 
table (OCT) by acquiring storage for the OCTs, storing the address of the first OCT in 
the HFCT, and moving all OCTs into the acquired storage. FSMOCT issues a 
GETMAIN macro for subpool 230 storage and moves the OCTs defined at FSMOCT01 
into this acquired storage; FSMOCT01 in HASPFSSM defines contiguous OCTs via 
the $0CTGEN macro. FSMOCT then initializes the following OCT entries: 

• Save areas 
• 1/0 buffers 
• JIBs 
• RPLs 
• GETR control blocks 
• SJFP control blocks 

FSMOCT issues the $ERROR macro for a catastrophic error ofX'F03' when the 
GETMAIN for the OCT storage fails. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-273 



HASPFSSM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

FSMGTBLK - Get Storage Cell from a Free Pool Routine: FSMGTBLK obtains a 
specified number of predefined storage cells from one of the free pools of quick 
cells created by an FSI CONNECT; the FSI service routines use these storage cells 
for control blocks, buffers, and data areas. The type of cell to be obtained is passed 
to FSMGTBLK in a half-word parameter list generated by the $GETBLK macro, 
which is used to invoke FSMGTBLK. The type indicator in the parameter list 
indicates a particular quick cell control table (QCT) that defines the size, chaining 
offsets, and the free chain stack header for quick cells of that type. 

FSMGTBLK clears all storage cells before passing them to the caller. 

FSMRTBLK - Return Storage Cell to a Free Pool Routine: FSMRTBLK returns a 
number of predefined storage cells to one of the free pools of quick cells established 
by the FSI CONNECT; these pools of quick cells are used by FSI service routines for 
control blocks and buffers. FSMRTBLK is invoked when the $RETBLK macro is 
issued. The type of cell to be returned is passed to FSMRTBLK in a halfword 
parameter list. The type indicator in the parameter list indicates the particular quick 
cell control table (QCT); the OCT defines the size, chaining offsets, and the free 
chain stack header for the cells of that type. 

If the cell pointed to by register 1 is the first cell of a chain, then the entire chain is 
returned to its respective free queue. 

Save Area Management 
FSMSA VE - Acquire Save Area Routine: FSMSA VE processes save area and 
register linkage for FSI routines. FSMSAVE uses a stack of unused save areas in its 
processing and attempts to take one off the top of the stack for each save request. 
The stack header is called HFSAVSTK and it resides in the HFCT. If the stack of 
save areas is empty, FSMSAVE acquires more save area space by issuing the 
$GETQC TYPE=SAVE macro while holding the local lock. After obtaining a save 
area for the request, FSMSAVE checks to see if tracing is requested by the caller, 
and if so, issues the $TRACE macro for trace id 11 if the requester is a functional 
subsystem application (FSA) or 1 if the requester is other than the FSA. For the FSA 
requester, FSMSAVE completes the formatting of the trace table entry (TTE) prior to 
issuing a $TRACE RELEASE, releasing the allocated TTE for processing. 

FSMRETRN - Return Save Area Routine: FSMRETRN processes save area and 
register return linkage for FSI routines. FSMRETRN traces the return, if tracing is 
active, pushes the returned save area onto the save area stack, restores registers of 
the routine being returned to, and returns to the code that originally called the FSI 
routine. FSMRETRN uses the $TRACE ID= 12 macro for a return to an FSA and 
$TRACE 10=2 macro for a return to other than an FSA. For $TRACE ID= 12, 
FSMRETRN formats the allocated trace table entry (TTE) prior to issuing a $TRACE 
RELEASE to release the TTE for processing. 

Miscellaneous Support 

3-274 JES2 Logic 

FSMCATER - Catastrophic Error Message and ABEND Routine: FSMCATER 
formats and issues the $HASP750 message with the catastrophic error code, reason 
code, and text that was specified by the issuer of the $ERROR macro instruction. 
FSMCATER requests an SVC dump using the text of the $HASP750 message as a 
title. FSMCATER then issues the abend. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPFSSM 

FSMCBSET - 110 Buffer Setup for Spool Read/Write Routine: FSMCBSET issues a 
$GETBLK TYPE= BUF to acquire an 1/0 buffer and initialize an IOB in the buffer. 
The IOB is initialized with the ECB address passed on input in register 0, the 
addresses of the CCW templates, and the address of the DCB associated with the 
functional subsystem. FSMCBSET returns to the caller with the initialized buffer in 
register 1. 

FSMCBIO - HASP Control Block Read/Write Routine: FSMCBIO checks to see if the 
read or write option was specified by the caller (register 1 is zero for a read and 
contains the address of the 1/0 buffer for a write). For a read, FSMCBIO acquires an 
1/0 buffer (via $GETBUF) and calls FSMCBSET to format the 1/0 buffer. For both the 
read and write option, FSMCBIO then uses the buffer to initialize for the read or 
write 1/0. The MTTR track address supplied in register 2 is converted to a full disk 
address (MBBCCHHR), rotational position sensing (RPS) is set if available for the 
device and the channel program is activated by issuing the EXCP macro. 

FSMCBIO issues message $HASP363 if an invalid track address is detected. 

FSMCBCK - Check Read/Write Completion Routine: FSMCBCK issues a WAIT 
macro to wait for the completion of 1/0. The wait is issued for the ECB whose 
address is supplied in register 0. When the wait is posted, FSMCBCK checks to see 
if 1/0 did occur. If 1/0 did not occur, FSMCBCK issues message $HASP370. If 110 
did occur and the requested 1/0 operation was a write, FSMCBCK returns to the 
caller. For a read 1/0 operation, FSMCBCK validates the JCT, IOT, CHK, and SWB 
and issues $HASP364 if any one of these control blocks is invalid. If the validation is 
successful, FSMCBCK returns to the caller with a successful return code. 

FSMBTG: Bad Track Processing Routine: FSMBTG queues a TGB on the 1/0 error 
queue so that bad track processing can occur by the JES2 main task. To do this, 
FSMBTG issues a $GETMAIN to acquire storage for a TGB cell (subpool 241, key 1), 
queues the bad spool record address to the 1/0 error queue, and issues a $$POST 
(SVTSPOOL) to post the HASP spool manager in the JES2 main task to perform bad 
track processing. FSMBTG then returns to the caller with the $$POST return code in 
register 15. 

FSMFSLNK - Access FSI Control Block Routine: FSMFSLNK is invoked for each FSI 
service requested. FSMFSLNK accesses the control blocks that are required to 
process the request. 

After saving the caller's registers, FSMFSLNK validates the function id of the caller; 
if the function id is invalid, FSMFSLNK sets an error return code in register 4. If the 
function id is valid, FSMFSLNK establishes addressability to the FSCT and the 
FSACB and checks to see whether the FSA is connected; if the FSA is not 
connected, FSMFSLNK sets an error return code in register 4; otherwise, a 
successful return code is set in register 4. 

FSMFSLNK then uses the $TRACE ID= 14 macro or the $TRACE ID= 15 macro to 
trace the FSIREQ request. ID= 14 is used for low frequency or high importance 
FSIREQs, such as GETDS, RELDS, and SEND. ID= 15 is used for the other FSIREQs, 
such as ORDER, GETREC, and FREEREC. 

Finally, FSMFSLNK establishes the needed values for the specific FSIREQ routine 
that is to be invoked. The return code stored in register 4 is moved into register 15 
and return is made to the caller. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-275 



HASPFSSM 

3·276 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

FSMGETLK '- Acquire MVS Local and CMS Locks Subroutine: FSMGETLK issues a 
MODESET macro for key 0 and then issues a SETLOCK OBTAIN for the local or CMS 
locks. After the lock is successfully obtained, FSMGETLK issues a MODESET macro 
to reestablish the PSW key of the caller before returning to the caller. 

FSMFRELK - Free the MVS Local and CMS Locks Subroutine: FSMFRELK issues a 
MODESET macro for key 0 and then issues a SETLOCK RELEASE to release the 
local or CMS locks. After the lock is successfully released, FSMFRELK issues a 
MODESET macro to reestablish the PSW key of the caller before returning to the 
caller. 

FSMSJTER - SJF Terminate Subroutine: FSMSJTER issues the SJF terminate 
request (SJFREQ REQUEST=TERMINATE) to terminate SJF, free SJF local storage 
and perform needed SJF cleanup; FSMSJTER then returns to the caller. 

FSMSM150 - Job On Device Message Routine: FSMSM150 issues the $HASP150 
message for the first data set in a JIB that is assigned to the FSA. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPRTAM: Remote Terminal Services 

HASPRTAM 

Module HASPRTAM provides the following functions for JES2 remote and 
networking communications: 

• The line manager to control line use and allocation for binary synchronous 
communication (SSC) devices and to manage sessions and logical lines for 
Systems Network Architecture (SNA) devices 

• $EXTP service routines for the network job route receiver and transmitter 

• The remote console processor to provide for communication between JES2 and 
remote consoles 

HASPMLLM: HASP Line Manager 
The line manager is the central control routine for all remote job entry terminal 
support and network job entry support in JES2. It schedules all communication 
requests, handles communication error recovery, and interfaces with VTAM for 
synchronous data link control (SDLC) communication. The line manager is both 
work and time driven, and it contains several routines that process different kinds of 
work. 

MSEARCH: Mainline General Event Handler Routine 
The MSEARCH routine is the central control routine for the line manager and 
schedules all other routines within the line manager on a demand basis. The 
routine consists of two segments (MSCANEXT and MSUFSRCH) that schedule 
routines based on external events, time intervals, and queued work. External 
events are signaled to the line manager by flags (MLMSCANI/ MLMSCANR) from 
other processors and exit routines (for example, HASPCOMM, HASPVTAM, 
HASPSSC, and HASPSNA.) Timing events are internal to and maintained by the line 
manager. Some routines, notably buffer processing, are executed whenever work 
exists for them on an associated work queue. Additionally, the line manager may 
periodically execute certain scan routines by internally setting request flags. 

MSAFCHK: Security Authorization Routine 
MSAFCHK is called by SSC and SNA signon routines, SSC line start SNA autologon 
support, and the remote console processor to initiate SAF requests for RJE 
terminals and remote nodes. 

MSAFCHK obtains the storage necessary for the SAF call, issues one or modify form 
RACROUTE requests, and queues the request to a subtask by issuing the $SEAS 
macro. The $SEAS uses WAIT= NO to avoid placing the line manager or remote 
console processor in a wait state. 

The signon work element (SWEL) is added to the queue requested by the caller and 
the $XECSSRV service is called to request posting of the caller's PCE when the 
subtask completes. 

Upon exit, register 15 contains one of the following return codes: 

• 0 - $SEAS processing was successful. 
• 4 - $SEAS processing was successful and the SOD was posted. 
• 8 - A $GETWORK/$GETMAIN failure occurred or $SEAS could not obtain storage 

for the SOD. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-277 



HASPRTAM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

MSWELSCN: SWEL Scan Routine 
MSWELSCN scans SWELs for active $SEAS requests (for BSC dedicated line start 
and SNA autologon) to see if they have completed yet. This routine is called by 
MSCANEXT when there are elements on a queue of active $SEAS requests. The 
completion of a $SEAS request results in the dispatch of HASPMLLM, the line 
manager, which waits for the posted element. 

MSWELSCN removes SWELs with posted SQOs from the active queue and places 
them on a posted queue where they can be processed the next time the checkpoint 
is owned. MSWELSCN also requests ownership of the checkpoint if any elements 
are on the posted queues and the checkpoint is not already owned. 

MSCANEXT: Main Scan Driver Routine 

3-278 JES2 Logic 

The MSCANEXT routine is defined between the labels MSCANEXT and MSCANXIT. 
This routine schedules all of the non-buffer-related routines in the line manager. It 
is controlled primarily by a table (MSCANTBL), which contains entries for all such 
routines. The table specifies both the criteria for the execution of each routine and 
the necessary environment. The main scan driver, using the table, determines if a 
routine should be executed based on event flags and/or work queue contents, 
establishes required addressability and other register contents, and invokes the 
routines. The request flags, event indicators, and work queues referenced by the 
main scan routine are described below. 

The scan request flags, set in both MLMSCANR (set by processors of the line 
manager PCE external to RTAM) and MLMSCANI (set by the line manager) are: 

• MLMSSUNT: Scan inactive logon and SNA line device control tables (OCTs) 
• MLMSBUNT: Scan inactive BSC line device control tables (OCTs) 
• MLMSSLNE: Scan active systems network architecture (SNA) logical lines 
• MLMSSIOL: Scan idle (started but not connected) SNA line OCTs 
• MLMSBACT: Scan active binary synchronous control (BSC) lines 
• MLMSRAT: Scan the remote attribute table (RAT) for autologon remote work 

stations 
• MLMSSLOG: Scan active SNA logon OCTs 

The line manager event indicators, found in PCE flag byte MLMEVNTI, are: 

• MLMEPJOB: Job output table (JOT) post occurred 
• MLMETIME: One second time interval elapsed 
• MLMEDISC: 32-second (disconnect interval) time interval elapsed. 
• MLMECKPT: The shared queues are owned 
• MLMEALM: Remote is in autologon mode 
• MLMEMXSS: MAXSESS exceeded 

The line manager work queues in MLLM PCE work area: 

• MLMSNAIL: Idle SNA line OCT queue 
• MLMSNAAL: Active SNA line OCT queue 
• MLMBSCAL: Active BSC line OCT queue 
• MLMSNALG: Active SNA logon OCT queue 
• MLMICEQ: Line manager interface control element (ICE) exit queue 
• MLMLOGQ: Line manager logon OCT exit queue 
• $RJECHEQ: Common remote job entry (RJE) buffer queue 
• MLMASWLQ: Active SWEL queue 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 

/ 



( 

( 

( 

(~ 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• MLMPSWLQ: Two queues: 
MLMPSWLB: Posted SWELs for BSC dedicated line start 

- MLMPSWLS: Posted SWELs for SNA autologon 

MBUFSRCH: Mainline Buffer Processing Routine 

HASP RT AM 

MBUFSRCH is defined between the labels MBUFSRCH and MBUFPROC. 
MBUFSRCH schedules all buffer processing for the line manager. Buffers that 
require processing are queued to the line manager buffer queue ($RJECHEQ) by the 
EXCP channel end appendage and the VTAM request completion exit for SSC and 
SNA, respectively. After reordering this queue last-in-first-out to first-in-first-out 
(LIFO to FIFO), this routine examines each buffer to determines its type (BSC or 
SNA) and establishes the environment for and passes control to the appropriate 
buffer processing routine (HASPBPRO for BSC or HASPSPRO for SNA). 

If the buffer represents an active terminal-initiated signon (buffer points to a SWEL), 
the buffer processing routine is called only it the SWEL has been posted and it the 
checkpoint is owned. 

MTIMSRCH: Mainline Post-Processing and $WAIT Routine 
MTIMSRCH is defined between the labels MTIMSRCH and MLLMWAIT. After the 
line manager has completed all required scans and processed any queued buffers, 
it reinitializes its timer, it necessary, and waits ($WAIT) to be dispatched again. 
When it is dispatched, it returns to the mainline general event routine (MSEARCH). 

HASPRBUF: Buffer Queue Routine 
To avoid line manager waits, HASPRBUF is called when the shared queues are 
needed but not owned or when a SAF request has been initiated for a signon. 
HASPRBUF queues a buffer to the $RJECHEQ and posts (via $POST) the checkpoint 
processor. HASPRBUF then returns to line manager butter processing. 

HASPROUT: Network Job Route Routines 
These $EXTP service routines are used by the network job route receiver and 
transmitter to reroute a /*XMIT job tor local execution. A /*XMIT job can be created 
in two ways: 

1. By a job submitted using a /*XMIT JES2 control statement 

2. By JES2 receiving a network job that is not destined tor execution on this node 
(JES2 is serving as an intermediate node in a network) 

In either case, the /*XMIT job does not pass through normal input processing and is 
not syntax checked. This is desirable so that JES2 is a transparent node. If a 
/*XMIT job is rerouted for local execution, it must be resubmitted through input 
processing. 

The network job receiver (NJR) and transmitter provide the link tor re-submission. 
The network job transmitter retrieves the /*XMIT job from spool and builds the NJE 
records for transmission. Each record is passed to the corresponding receiver, 
which submits the job for input processing. The network job receiver and 
transmitter work similar to normal receivers and transmitters. One major exception 
is in the $EXTP interface. The NJR processor control elements (PCEs) use the 
common $EXTP interface in HASPNUC. If the device is a NJR device control table 
(DCT), control is then passed to HASPROUT. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-279 



HASPRTAM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Upon entry to HASPROUT, register 14 points to a halfword index into ROUTAB. This 
index indicates what service routine is desired: OPEN, GET, PUT, CLOSE or 
negative CLOSE. 

ROUTOPEN: Network Job Route OPEN Routine 
ROUTOPEN is called by HASPROUT to process OPEN requests. If the $EXTP OPEN 
is for a transmitter, the hold, drain, and EOF bits are turned off to indicate that the 
transmitter is ready for work. 

ROUTGET: Network Job Route GET Routine 
ROUTGET is called by HASPROUT to process GET requests for the NJR receiver. If 
the transmitter has indicated end-of-file, a negative condition code is returned 
through the ROUTXEX exit. Otherwise, the DCTRBFF bit indicates if data is 
available for the receiver. If DCTRBFF is off, the receiver waits ($WAIT) until posted 
($POST) by the NJR transmitter. 

If the data is available, the SRCB is stored in register 0, as required by the 
HASPRDR RGET routine. 

The DCTRBFF bit is reset to show that GET processing is complete. 

ROUTPUT: Network Job Route PUT Routine 
ROUTPUT is called by HASPROUT to process PUT requests for the network job 
transmitter. Upon entry to the ROUTPUT routine, the receiver DCTRBFF bit is 
checked. If it is on, the transmitter waits until GET processing is complete before 
sending another record. If DCTRBFF is off, the CCW is compared to a truncation 
CCW. The record is ignored if truncation is desired. 

Next the record is transferred from the transmitter PCE work area to the receiver 
PCE work area. The SRCB is stored in JTWRSCB and DCTRBFF is set. The network 
job receiver is posted ($POST) for work. 

ROUTCLOS and ROUTNCLO: Network Job Route CLOSE Routine 
ROUTCLOS and ROUTNCLO are called by HASPROUT to process CLOSE requests. 
If either routine is entered for a transmitter, DCTRBFF is checked and if necessary, 
the transmitter waits ($WAIT) until the receiver GET is complete. Then the 
end-of-file is set on and the network job receiver is posted ($POST) for work. 

For receiver CLOSE or negative CLOSE, the DCTHOLD flag is set on. 

HASPROUT Exit Routines 
ROUTXIT, ROUTXEX, and ROUTXAB are commonly used exits for all HASPROUT 
service routines. ROUTXIT returns with a positive return code and ROUTXEX with a 
negative return code, and ROUTXAB with a condition code of 0. 

HASPMCON: Remote Console Processor 

3·280 JES2 Logic 

The remote console processor processes all console messages, commands, and 
command responses to and from remote terminals, other members of a 
multi-access spool configuration, and other members of an NJE network. The 
routine optionally saves messages to remote SNA work stations and BSC terminals 
- other than sign-on multileaving terminals - for later printing on the terminal printer. 
Additionally, HASPMCON receives and sends network path manager connection 
information across the shared spool. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

{ 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPRTAM 

The remote console processor receives control when one of the following conditions 
occurs: 

• A network path manager buffer is placed on the $NPMMSG queue. 

• A console message buffer (CMB) is placed on the queue of CMBs for remote 
terminals, nodes, or shared-spool members ($BUSYRQ). 

• Commands or messages are received over the shared-spool. 

• A command is received from a remote work station. 

• A nodal message record (NMR) is received over an NJE line. 

Support for MLWTO message is provided as follows. Each job entry subsystem 
must receive a complete set of NMRs representing all lines of an MLWTO message 
before attempting to forward a message. When an MLWTO message transmission 
begins, no other command or message may interrupt its transmission. The 
receiving JES2 protects itself from console lockout due to incomplete MLWTO 
transmission by either truncating the MLWTO or restarting the transmission line 
when a length delay occurs or inconsistent transmissions are received. 

Whenever the remote console processor determines that a member of a 
multi-access spool configuration has failed, an exit to the network path manager 
(HASPNMON) is taken so that this change in the NJE network can be recorded. 

HASPMCON initializes itself for processing by acquiring a dedicated buffer pool and 
allocating it as follows: 

• IOT buffer - 4K (RCPIOT) 
• Special input (RCPININ) and output (RCPIOOUT) buffer - 4K 
• Reserved buffer (RCPRESV) - 4K 
• Shared queue output buffer (RCPSOOUT) - 4K 
• Shared queue input buffer (RCPSllN) - 4K 

HASPMCON acquires buffer storage for message spooling, initializes remote 
console OCT and PC15 fields, and creates (if non-existent) the shared 
communication queue data set JOE. 

MCL: Write Network Path Manager Buffers to Spool Routine 
MCL examines the $NPMMSG queue and invokes the spooling output function to 
process any network path manager buffers that have been queued. The buffers are 
written to the shared-spool and picked up by the remote console processor in the 
appropriate shared spool member. 

MCS: Handle Output CMB Traffic Routine 
MCS examines the $BUSYRQ queue and, upon encountering a message queued for 
a remote terminal connected to the local node, determines the current status of that 
terminal. If the terminal is an active BSC multileaving terminal connected to the 
local system and has an operator console, an attempt is made to write directly to 
the console. A device control table (OCT) representing that specific remote terminal 
is constructed, the OCT is chained to the other OCTs for the remote work station, 
and a $EXTP OPEN macro instruction is issued. All queued messages for this 
remote work station are then written to the terminal ($EXTP PUT), the OCT is closed 
through a $EXTP CLOSE macro instruction, and the temporary OCT is removed from 
the chain. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3.;281 



HASPRTAM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

MCS also determines whether or not message spooling is to take place, and, if so, 
prepares for MCOSPOOL. 

MCOSPOOL: Remote Console Message Spooling Routine 

~-282 JES2 Logic 

If message spooling is allowed ($SPOLMSG was not set to zero at JES2 
initialization), MCOSPOOL gets control. MCOSPOOL is invoked to spool messages 
tor the following reasons: 

• The remote is inactive. 

• The remote console is not operational or does not exist. 

• The remote is not a BSC multileaving work station. 

• The message count is at the limit (RMTMSG parameter on the TPDEF 
initialization statement). 

• The line DCT is inactive. 

• The line DCT is restarting. 

• The line is signing off. 

In these cases, the messages can not be transmitted to the remote console and 
must be spooled for transmission or for printing by HASPPRPU. 

MCOSPOOL writes messages to the remote message data set associated with the 
remote terminal. The remote message data set is structured as a special job so as 
to allow HASPOOL to move it if required; it has a JOE, IOT, and PDDB. 

The remote message JOE is created whenever messages must be written for a 
particular remote terminal; this JOE always exists on the $HARDCPY queue. If the 
remote message JOE has been previously created (RATRMJOEIO) or has been 
found by a job queue search, the JOE is reacquired via $GETLOK. 

Note: The MSGPRT= NO parameter on the RMTnnnn initialization statement 
causes JES2 to discard remote console messages if the message would normally 
have been spooled for later display on a remote printer. (The $T RMTnnnn 
command can also be used to set the MSGPRT= parameter.) 

MCOSPOOL writes messages to the remote message data set beginning with the 
last record existing on the spool. MCOSPOOL reads the IOT for the remote 
message data set and obtains the track address of the last message record written 
to spool from the (only) PDDB. This message record is read, and the message(s) to 
be spooled are added to it. The message buffer is rewritten to spool. Up to three 
message buffers may be filled and written before MCOSPOOL waits for the 1/0 
completion(s). If the number of allocated message records exceeds $SPOLMSG, the 
first message record is reread and the new messages placed into it, thus overlaying 
the oldest messages in the data set. 

The maximum number of allowed messages is 254, or the number of TGAEs. 
$SPOLMSG is initially set to 254. 

When all messages to be spooled have been written to the message data set, the 
IOT is rewritten, a $FRELOK is issued for the remote message JOE, and a $#POST 
is issued to post the remote printers. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ \ 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPRTAM 

MCSPATH: Output to Other Node - Determine Path Routine 
If the CMB represents a message or command destined for another node, the node 
information table (NIT) is examined to determine the path to the node. If the NIT 
indicates that the node is unreachable and the CMB is flagged as containing a 
command (messages for unreachable nodes are merely thrown away), the CMB 
command is converted into a path lost message ($HASP243) and queued (via 
$BUSYRQ) for delivery to the originator of the command. 

If the NIT indicates that the node is reachable, the path OCT address is extracted 
from the appropriate NIT entry. If the OCT is a dummy OCT, the node is reachable 
via the shared spool; control is passed to the spool output routine (see below). 
Otherwise, the command or message is to be transmitted over an NJE line to an 
adjacent node. A OCT representing a remote console is built and chained to the 
other NJE device OCTs for the NJE line, and a $EXTP OPEN macro instruction is 
issued. All queued CMBs destined for this node are converted into network 
message records (NMRs) and transmitted via remote terminal access method 
(RTAM) ($EXTP PUT) to the next member of the NJE network in the direction of the 
ultimate receiver. 

When all messages and commands have been successfully transmitted, the OCT is 
closed ($EXTP CLOSE) and removed from the NJE device OCT chain. 

MCSSO: Spool Output Routine 
If the path to another member of the network is through the shared-spool 
connection, or if the message or command is destined for another member of the 
shared spool, MCSSO is invoked. Qualifying CMBs are placed in a spool buffer, 
which is written to the shared spool. After the writing is completed, the remote 
console processor is responsible for updating the console queue sub-entry (which 
contains spool record pointers) corresponding to its member number in the 
destination member's shared queue element (QSE). 

When queuing commands issued at one member for execution on another member 
($M commands), the issuer's token is also written to spool for use by MCISI on the 
target member. 

MCISI: Spool Input Routine 
MCISI is invoked to read commands and messages from the shared spool. The 
records were written to the spool by the remote console processors in other 
members of the shared-spool configuration. Additionally, this remote console 
processor itself may have spooled incoming RJE and NJE commands and messages 
for later processing by the spool input function (see MCINSI). Spool records are 
read from disk. A pointer to the first record to read is obtained from the sending 
member's console queue sub-entry in the local member's QSE. If the spool record 
is identified as a network path manager buffer, an exit is made to the network path 
manager (HASPNBUF) for processing of the network control record. Otherwise, 
CMBs are removed from the spool record and, if destined for a remote, local, or 
system node, are chained to the $BUSYRQ queue for subsequent processing by the 
output CMB function (see "MCS: Handle Output CMB Traffic" preceding). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-283 



HASPRTAM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

If destined for the local system, the processing depends on whether the CMB / ", 
contains a command. If the CMB contains a command, the command authority of \. _; 
the originating console (COMAUTH) is combined with the command authority of the 
originating node as defined by the local node and contained in the NIT (NITFLAG). If 
the command comes from another node, a SAF VERIFYX call is initiated by calling 
MSAFCHK to get a token for the source node. Queuing of the command is 
performed later by MCINN. Commands from other sources are queued to the 
CCTCOMMQ queue after obtaining the token from either the spool record (for 
commands from other members of the same node) or from the OCT (for commands 
issued by remote terminals at this node). If the command is not a JES2 command, it 
is passed to MVS for processing (SVC 34) provided the command source has 
network and system authority; otherwise, it is rejected. Messages destined for the 
local system are queued for display on local consoles by the $WTO task 
($BUSYQUE). 

MCINN: Check Pending SAF Request Routine 
MCINN checks the queue of SAF requests for commands received from other nodes. 
SAF requests that have completed are removed from the queue and their associated 
CMBs are queued to the command processor's command queue. 

MCINSI: Receive Transmissions Routine 

3-284 JES2 Logic 

MCINSI is invoked to receive commands and messages over RJE and NJE lines. 
The RTAM $EXTP GET interface is used to obtain incoming records, which are 
moved into newly acquired CMBs for further processing. If no CMBs are available 
or if the interface is currently receiving or spooling a multiline write-to-operator 
(MLWTO) message, incoming records are moved to a spool buffer until the end of 
the MLWTO is received, or until CMBs become available. If the spool buffer is 
exhausted, it is written to the shared spool with the updated local member's console 
queue sub-entry in the local member's shared queue element (QSE). The spooled 
buffer is processed later by the spool input function (see "MCISI: Spool Input" 
earlier). 

If spooling of incoming RJE and NJE commands and messages is unnecessary, the 
resulting CMBs are queued for processing in the same manner described above for 
spool input. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPBSC: BSC Service Routines 

HASPBSC 

HASPBSC consists of the following routines for BSC remote terminal access method 
(RTAM) communications: 

• $EXTP service routines 
• $EXTP, SMF, and DCT initialization/termination subroutines 
• BSC line manager scan routines 
• Channel-end processing routine 

HASPBSCA: Entry Point for $EXTP Service Routines 
HASPBSCA is entered from the $EXTP routine in module HASPNUC and invokes 
requested $EXTP service routines. At entry, register 14 points to a halfword index 
value. This index is an offset into BSCTAB to indicate which $EXTP service is 
requested. HASPBSCA initializes common registers and enters the desired service 
routine. The following routines support BSC $EXTP services. 

BSCOPEN: BSC Remote Terminal Open Routine 
The $EXTP OPEN service routine converts the line from idling mode to transmit or 
receive mode. For a multi leaving device, the routine also generates the permission 
request to begin a new function. 

When an NJE transmitting function sub-component wants to begin transmitting a unit 
of work, BSCOPEN is entered by the $EXTP OPEN macro call. BSCOPEN prepares a 
request-to-initiate function control record and waits ($WAIT) for a response. The 
RTAM in the receiving JES2 attempts to locate resources to receive the unit of work. 
If reception is to be permitted, the receiving JES2 responds with the normal RJE 
permission-to-initiate function control record. Otherwise, the receiving JES2 
responds with negative permission. The line manager channel-end processor 
indicates acceptance or rejection of the request and posts ($POST) the requesting 
processor; it then gives control to BSCOPEN. BSCOPEN passes condition code 
indicators to the calling transmitter sub-component to indicate whether the OPEN 
was accepted. 

BSCGET: BSC Remote Terminal Get Routine 
The $EXTP GET service routine converts data received from the line into EBCDIC 
images suitable for processing by the JES2 processors. This conversion includes 
deblocking, decompression, and conversion from line code to EBCDIC. 

When receiving records, BSCGET is entered by the $EXTP GET macro call. 
BSCGET decompresses and passes logical records one at a time to the caller. 
When the buffers are emptied, reading of the next block is scheduled. When the 
processor must wait for incoming buffers, BSCGET issues a $WAIT macro 
instruction. The line manager channel-end processor posts ($POST) the processor 
when the data arrives. In an NJE environment, two types of end of file may be 
received at the end of data. Normal end-of-file is received when the transmitting 
system wishes the receiver to queue the unit of work on direct access for further 
processing. It is expected that the receiver processor respond with a $EXTP CLOSE 
macro call to indicate the work is safely stored. Abnormal end-of-file is received 
when the transmitting system wishes the receiver to discard all records received 
within the unit of work. It is expected that the receiver processor responds with 
either $EXTP CLOSE or $EXTP NCLOSE macro calls. The reception of data, normal 
end of file, or abnormal end of file is conveyed to the caller via condition'codes. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-285 



HASPBSC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

BSCPUT: BSC Remote Terminal Put Routine 
The $EXTP PUT service routine converts data from EBCDIC into the form required 
for transmission to the terminal. This conversion includes compression, blocking, 
and conversion from EBCDIC to line code. 

When transmitting records, BSCPUT is entered via the $EXTP PUT macro call. 
BSCPUT compresses logical records one at a time, and the results are placed in an 
output buffer. When a record does not fit into a buffer, the buffer is scheduled for 
transmission and the processor waits ($WAIT). The line manager channel-end 
processor posts ($POST) the processor when transmission is complete. The new 
buffer is obtained, and record compression continues. 

If the line manager channel-end processor receives a receiver-cancel control 
record, the MDCTSTAT DCTERMMR flag is set to indicate an error. BSCPUT, when 
posted ($POST), passes back the error (via condition codes) to the transmitter 
processor. 

BSCCLOSE/BSCNCLO: BSC Remote Terminal Close Routines 
The $EXTP CLOSE/$EXTP NCLOSE service routines convert the line from transmit 
or receive mode to idling mode. 

When transmission of a unit of work is complete, BSCCLOSE is entered via a $EXTP 
CLOSE macro call to indicate normal end of file, or BSCNCLO is entered via a 
$EXTP NCLOSE macro call to indicate an abnormal end of file. The close routine 
sets an abnormal indicator if NCLOSE is used, and the end-of-file record is 
appended to the end of the current buffer. In the case of NJE, a response is 
required; therefore, the processor waits ($WAIT). When posted ($POST) by the line 
manager, positive or negative acceptance is indicated to the caller via condition 
codes. 

When reception of a unit of work is complete, BSCCLOSE is entered via a $EXTP 
CLOSE macro call to indicate normal acceptance of an end of file, or BSCNCLO is 
entered via $EXTP NCLOSE to indicate rejection of an attempt to open transmission, 
a rejection of the current work, or a rejection for end of file. For NJE receivers, the 
close routine gets a buffer and queues an acknowledge-transmission-complete or 
receiver-cancel record. Control is returned to the caller. 

BSCWRITE: Path Manager Write Routine 

3-286 JES2 Logic 

RTAM allows the path manager to queue buffers via the BSCWRITE routine to a line 
for transmission. For a BSC line that is in the prepare for sign-on condition, the 
channel-end processor later changes its normal SETMODE, ENABLE, and READ 
sequence to a SETMODE, ENABLE, WRITE, and READ sequence, writing a 
SOH-ENQ control sequence. If RTAM is on the other end of the line, it aborts its 
current activity, which should also be the normal prepare sequence, and responds 
with ACKO. RTAM then transmits the buffer queued by the path manager. If the line 
is in normal multi leaving mode at the time a buffer is queued for transmission by the 
path manager, RTAM transmits the buffer on its next opportunity to transmit as a 
normal data transfer. 

L Y~B-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

BSCREAD: Path Manager Read Routine 

HASPBSC 

RTAM recognizes the receipt of network connection control records and queues 
them to the path manager for action. When the path manager is finished with the 
buffer, it frees the buffer for more input via the BSCREAD routine. For a BSC buffer, 
the teleprocessing buffer is marked empty and the MINITIO subroutine is invoked. 
BSCREAD attaches transmitter/receiver DCTs to the line as required. 

BSCSUB: BSC $EXTP Subroutines 
The following RTAM BSC subroutines (as distinguished from the device-dependent 
subroutines associated with each primary service routine) perform common 
services for the primary routines. Included are common exit subroutines, which 
return control and a condition code as follows: 

MBTAMXIT - normal return, positive condition code 
MBTAMXEX - exception return, negative condition code 
MBTAMXAB - abnormal return, zero condition code 
MBTAMXOV - overflow return, all ones condition code 
MBTAMREQ - HASPRBUF return, condition code not applicable 
MBTAMRQN - HASPRBUF return without checkpoint request (return and 
condition codes are not applicable). 

MDISCON: Remote Disconnect Subroutine 
When MDISCON is entered on behalf of an NJE member, an exit is taken to the path 
manager {HASPNDCN) so that path control information can be altered to reflect the 
loss of connection. If the connection is not an NJE connection, MDISCON 
checkpoints an indication that the remote is disconnected. MDISCON then issues a 
disconnect message and returns to the caller for an NJE connection. For a non-NJE 
connection, MDISCON establishes exit point MDSXITA (for exit 17) to allow an 
installation exit routine to perform further sign-off processing. After the exit routine 
returns, MDISCON writes a type 48 SMF record (via the $QUESMFB macro) and 
returns to the caller. 

MSIGNON: SIGNON Statement Processing Subroutine 
The MSIGNON subroutine receives the address of a /*SIGNON statement in register 
1 and a RACROUTE call is issued to determine if the remote terminal has sufficient 
authority to logon. If the line used to read the sign-on statement was defined as a 
dedicated line, the sign-on is ignored and the subroutine returns control to its caller 
without further processing. 

For non-dedicated lines (if SAF is controlling the sign-on), MSIGNON will be called 
at least twice: 

1. To start the sign-on process and initiate the SAF call. 
2. After the SAF call completes, to finish sign-on processing. 

Processing for the two calls is referred to "front-end" and "back-end" processing, 
respectively. (There may be additional calls if the checkpoint is not owned on the 
initial call.) 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-287 



·HASPBSC 

3-288 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

On the first call, the MABORT and MDISCON subroutines are called to disconnect '\ 
any other remote terminal that may have been attached to this line. Before any ) 
further sign-on processing takes place, exit point MSOXITA (for exit 17) is taken; an 
installation exit routine (if defined) then gets control to replace or modify the 
standard JES2 checking of the sign-on card. When control is returned from the exit 
routine a branch table is used based on the exit routine's return code. The following 
processing occurs based on the return code from the exit routine: 

• RC=O - continue with MSIGNON sign-on processing 

• RC=4 - continue with MSIGNON sign-on processing 

• RC=B - terminate sign-on processing and issue message $HASP202 indicating 
an invalid sign-on. MSIGNON then returns to its caller. 

• RC=12- bypass MSIGNON sign-on processing but perform password checking 

• RC= 16 - bypass MSIGNON sign-on processing and password checking 

For return codes 0 and 4, MSIGNON checks for a correct RAT entry and remote 
number to correspond to the remote device attempting to sign-on; if no 
corresponding RAT entry or remote number is found, MSIGNON issues $HASP202 to 
indicate an invalid sign-on and returns to its caller. 

For return codes 0, 4, and 12, MSIGNON calls MSAFCHK to initiate a SAF request, 
passing the remote name from the RAT (as a user ID) and the old (and possibly 
new) passwords. For return code 16, the SAF call is made, but a "bypass password 
checking" indicator is set. If the SAF call subtask is completed by the time 
MSAFCHK returns, MSIGNON continues with back-end processing. Normally, 
however, the SAF check will not be complete and MSIGNON will return indicating 
that a requeue of the buffer is needed. 

When the SAF check has completed (and the checkpoint is owned), MSIGNON will 
be called again to perform back-end processing. The $SEAS service is called to 
finish analysis of the SAF request. Based on the SAF return code, processing 
continues with one of the following: 

• 0 - Complete the sign-on. 
• 4 - Use JES2 RJE password checking. 
• 8 - Reject the sign-on request. 

If validation (JES2 or SAF) is successful, MSIGNON locates and examines the device 
control tables (DCTs) representing the remote terminal and line. If the specified 
terminal is already attached to another line, or if a OCT for the terminal cannot be 
found, MSIGNON issues the $HASP202 error message and returns control to its 
caller. Otherwise, MSIGNON attaches the designated terminal to the line. 

After sign-on processing is complete, exit point MSOXITB (for exit 17) is taken; an 
installation exit routine (if defined and enabled) then gets control to perform 
additional checking. When control is returned from the exit routine MSIGNON writes 
a SMF record to record the sign-on and issues a type 47 message to the local and 
remote operators confirming the remote sign-on. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

~.· 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

MINITIO: Multileaving Input/Output Interface 

HASPBSC 

MINITIO analyzes the status of a multileaving remote terminal and takes appropriate 
action to minimize degradation while ensuring maximum line throughput. Based on 
the status of output processors, the status of the remote terminal, and the status of 
input and output buffers queued within JES2, MINITIO either transmits ACKO to the 
terminal, transmits a text buffer to the terminal, or initiates a 1-second delay. 

MEXCP: Remote Terminal Input/Output Interface 
MEXCP interfaces with the remote terminal access method through the standard 
$EXCP input/output interface. In addition to initiating 1/0, MEXCP also provides the 
multileaving block control byte sequence count and the BSC 2770/2780/3780 parity 
check (ACKO-ACK1) conversion. 

MCCWINIT: Channel Command Word Sequence Setup Subroutine 
MCCWINIT is passed a sequence type in bits 24-27 of register 1. MCCWINIT 
constructs a channel command word (CCW) chain, based on that value, and returns. 
Figure 3-7 depicts the various CCW sequences that can be constructed by 
MCCWINIT. 

MSMFWRIT: Common SMF Write Routine 
MSMFWRIT is a common routine used to queue SMF records for recording. It 
completes all type 47 and 48 SMF records by adding the EBCDIC device/remote 
identifier. It calls the JES2 common SMF queue routine, which interfaces with the 
SMF writer SVC, by issuing a $QUESMFB macro instruction. 

OCT Initialization/Termination Subroutines 
These subroutines are used by the BSC scan routines and the channel-end 
processing routines to allocate, deallocate, initialize, and release DCTs. 

MBDCTGET: Line Allocation and Initialization Subroutine 
MBOCTGET allocates a line OCT to the line manager by issuing a $GETUNIT macro 
instruction. If the line is a dedicated line, MBOCTGET then calls MSAFCHK to 
initiate a VERIFYX for the remote associated with the line. No password checking is 
done. 

( If the line is not dedicated, MBDCTGET calls MBOCTCMP to complete OCT 
initialization. 

MBDCTCMP: Complete Line Initialization Subroutine 
This subroutine is called by MBOCTGET (for non-dedicated lines) and by HASPBSLN 
(for dedicated lines) to complete line initialization. MBOCTCMP uses the $GETBUF 
macro to allocate a page-fixed teleprocessing buffer, which remains fixed until the 
line is drained. Then MBOCTCMP initializes the OCT and writes a type 47 SMF 
record to indicate the line start. The PCE-active count is increased with a $ACTIVE 
macro instruction. 

The BSC CCW initialization routine (MCCWINIT) is used to establish the JES2 BSC 
prepare sequence CCWs in the line buffer. The prepare sequence is scheduled by 
calling the BSC common EXCP routine (MERREXCP). This enables (that is, 
ENABLECCW) the communication adapter and prepares the line to receive incoming 
data. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-289 



HASPBSC 

BSC Prepare Sequence (Code = C) 
BSC Prepare Sequence (Code = C) 

ccw Command D.ata Address Flags 

IOBCCW1 DISABLE 0 60 
IOBCCW2 SET MODE LCBMCB 60 
IOBCCW3 ENABLE 0 60 
IOBCCW4 NOP/WRITE MBSCSYN/MSOHENQ 60 
IOBCCWS NOP/WRITE MBSCENQ/MBSCEOT 60 
IOBCCW6 READ TPBUFST 20 

BSC Multileaving Terminal Sequence (Code = 9) 

ccw Command Data Address Flags 

IOBCCW1 ENABLE 0 60 
IOBCCW3 NOP MBSCSYN 60 
IOBCCW3 WRITE LCBRCB 60 
IOBCCW4 READ TPBUFST 20 
IOBCCWS NOP MBSCSYN 60 
IOBCCW& WRITE TPBUFST 60/AO 
IOBCCW7 WRITE METBSEQ 60 
IOBCCW8 READ TPBUFST 20 

BSC Hardware Terminal Write Sequence (Code = 8) 

ccw Command Data Address Flags 

IOBCCW1 ENABLE 0 60 
IOBCCW2 NOP MBSCSYN 60 
IOBCCW3 WRITE LCBRCB 60 
IOBCCW4 READ TPBUFST 20 

BSC Hardware Terminal Read Sequence (Code = S) 

ccw Command Data Address Flags 

IOBCCW1 ENABLE 0 60 
IOBCCW2 NOP MBSCSYN 60 
IOBCCW3 WRITE MBSCENQ 60 
IOBCCW4 READ LCBRCB 20 
IOBCCWS NOP MBSCSYN 60 
IOBCCW6 WRITE TFBUFST 60 
IOBCCW7 WRITE METBSEQ 60 
IOBCCW8 READ LCBRCB 20 

CTCA Prepare Sequence (Code = C) 

ccw Command Data Address Flags 

IOBCCW1 SENSE LCBMCB 60 
IOBCCW2 WRITE MNAKSEQ/MSOHENQ 60 
IOBCCW3 CONTROL 0 60 
IOBCCW4 READ TPBUFST 20 

CTCA Multileaving NJE Sequence (Code = 9) 

ccw Command Data Address Flags 

IOBCCW1 SENSE LCBMCB 60 
IOBCCW2 WRITE LCBRCB 60 
IOBCCW3 CONTROL 0 60 
IOBCCW4 READ TPBUFST 20 
IOBCCWS SENSE LCBMCB 60 
IOBCCW6 WRITE TPBUFST 60 
IOBCCW7 CONTROL 0 60 
IOBCCWS READ TPBUFST 60 

Figure 3-7. Remote Terminal CCW Sequences 

3-290 JES2 Logic 

Internal Code 

CO/DO 
C1 
C2 
CA 
CA 
C4 

Internal Code 

92 
99 
99 
94 
98 
98 
98 
84 

Internal Code 

82 
89 
89 
84 

Internal Code 

A2 
AA 
AA 
AS 
AS 
AS 
AS 
AS 

Internal Code 

C2/D2 
CA 
C7 
C4 

Internal Code 

92 
99 
97 
94 
92 
99 
97 
S4 

Byte Count 

4/2 
1 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

BUFSIZE on TPDEF 

Byte Count 

4 
2 
BUFSIZE on TPDEF 
4 

2 
BUFSIZE on TPDEF 

Byte Count 

4 
2 
BUFSIZE on TPDEF 

Byte Count 

4 
1 
2 
4 

-
2 
2 

Byte Count 

1 
2 
1 
BUFSIZE on TPDEF 

Byte Count 

1 
2 
1 
BUFSIZE on TPDEF 
1 

BUFSIZE on TPDEF 

L Y28-i006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPBSC 

MBDCTFRE: Line Deallocation Subroutine 
After the line is drained, MBDCTFRE frees the line device control table (DCT) by 
issuing a $FREUNIT macro instruction and decreasing the PCE-active count. 

HASPBACT: Active BSC Line DCT Scan Routine 
HASPBACT is called from the line manager scan routine (MSCANEXT) in 
HASPRTAM. HASPBACT is executed at 1-second intervals, or by external request 
(command processor) whenever there are active BSC line DCTs present on the line 
manager active BSC line queue (MBSCACT). It is used to perform two basic 
functions for active BSC lines. First, it services requests for a delayed wait-a-bit 
sequence (indicated by flag MDCTIMER) for any active multileaving terminals by 
setting up and executing (using MERREXCP) the appropriate CCW sequence. 
Second, it checks 1/0 activity on each line to perform the disconnect interval 
function. 

HASPBUNT: Inactive DCT Scan Routine 
HASPBUNT is responsible for acquiring all newly started ($S) BSC lines; it is 
executed only at command processor request. The common DCT chain (DCTCHAIN) 
is searched for available BSC line DCTs that are not yet allocated. If such a OCT is 
found, the line DCT initialization routine (MBDCTGET) is called to acquire and 
initialize the DCT. 

Note: For leased lines, initialization is completed by HASPBSLN. 

HASPBSLN: Post-$SEAS Processing for Dedicated Line Start 

HASP BP RO: 

For dedicated lines, HASPBSLN cannot complete initialization because a SAF call 
must be made. For these lines, the line manager calls HASPBSLN when the SA call 
is complete and the checkpoint is owned. 

For each completed SAF request, HASPBSLN calls $SEAS to analyze the SAF return 
code and continues accordingly: 

• 0 and 4 - Continues the line start. 
• 8 - Mark the line status as drained. 

If the line start is to continue, the remote's PCEs are obtained, the token address is 
placed in the RAT, reader DCTs are processed (for RC=O only), and MBDCTCMP is 
called to finish line start processing. 

BSC Buffer Processing Routine 
HASPBPRO maintains the BSC line protocols and controls error recovery; it runs 
under control of the line manager PCE which, in routine MBUFPROC in module 
HASPRTAM, has dequeued a buffer from its work queue, MBUFQUE, and called 
HASPBPRO. 

BSC buffers can be placed on the $RJECHEQ (they are transferred to MBUFQUE in 
MBUFPROC) in two ways: by the IOS channel-end appendage in HASPNUC at 1/0 
completion; and, in a multi-access spool configuration, by the line manager if a 
sign-on or disconnection is being processed and the shared queues are not owned. 

Throughout the description of HASPBPRO, 'multileaving remote' means either a 
work station running a remote terminal program (RTP) workstation package or a 
network job entry node (NJE, NJI). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-291 



HASPBSC 

3-292 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPBPRO handles the 1/0 interface to four general types of devices: 

• Hardware terminals (2770, 2780, 3780) using the BSC protocol 

• Multileaving terminals (programmable terminals running the remote terminal 
program (RTP) work station packages) using the multi leaving protocol 

• Block multiplexer channel-to-channel adapters (CTCs) connecting two NJE 
nodes and running the multileaving protocol with CTC line control 

• NJE nodes using the multileaving protocol 

HASPBPRO maintains two communications protocols: 

• BSC line protocol (for hardware terminals). Supported SSC responses and 
framing characters are: 

ENO EOT ACKO ACK1 NAK WAK 
STX ETX SOH ETB 

The transparent form of these characters is also supported. 

• Multileaving protocol. For discussion of the multi leaving protocol and framing, 
see Appendix A. 

HASPBSC supports two sets of channel command word {CCW) sequences: 

• Prepare sequence used for line initialization, transmission initialization and 
termination (OPEN and CLOSE processing), and some forms of error recovery. 

• Read/write sequence used for data transmission and reception. 

Each protocol has its own set of CCWs for prepare and read/write sequence 
processing. For a breakdown of the CCW chains, see "Remote Terminal CCW 
Sequences" earlier in the HASPBSC description. 

HASPBPRO is divided into three logical sections: prepare sequence processing, 
read/write sequence processing, and support routines. The prepare sequence 
processing section is divided into a general section - successful 1/0 completion 
handling - and error recovery. The read/write sequence processing section is 
divided into a general section - multileaving successful completion - hardware 
terminal successful completion, and error recovery. CTC processing is handled as 
a subset of the multileaving processing. 

Note that error recovery usually involves restarting the line or restarting or retrying 
an 1/0 operation. There are several routines in HASPBPRO that the line manager 
uses to effect error recovery. HASPBPRO restarts a line by branching to any of the 
following labels: MDRAINLN, MFORCERL, MRSTLINE. MRSTLINE, the main 
routine, aborts all active functions on the line (via subroutine MABORT} and 
disconnects the attached remote terminal (via MSFORCE). The line is put back in 
the initial prepare sequence, and if the line is a dial line, the phone is hung up. 

1/0 is retried by a call to MRETRYL (which logs an error first) or MRETRY. MRETRY 
retries the current 1/0 operation in the error recovery sequence (the CCW pointed to 
by IOBRSTRT). 1/0 is restarted by a call to MRESTART, which causes the 1/0 to be 
reissued starting with a read CCW. Both MRETRY and MRESTART call MNEWSTRT, 
which issues the actual EXCP. After the EXCP has been issued, control is returned 
to MBUFNEXT. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPBSC 

HASPBPRO uses the following register conventions: 

R2 last executed CCW 
R3 line DCT 
R4 BSC buffer address 
RS address of code table 
R6 work and return register 

Upon entry to HASPBPRO, common error and operator command checking is done 
and buffer tracing is activated. An $M01 catastrophic error occurs if the line 
manager determines that more channel ends have been received than EXCPs 
issued by JES2 (master 1/0 count, $EXCPCT), or by the line (active buffer count, 
DCTBUFCT). The line is drained if the CCW address in the channel status word 
(CSW) is found to be zeros or if an SIO condition code of busy has been returned. 

If the operator has issued a "$TLNE, e=y" (DCTLOGAL on) command, a $HASP094 
message is generated to log the channel-end information. The buffer contents are 
traced if the operator has issued a "$TLNE, tr= i" (DCTRACT on) command and has 
started event trace for 104. The line is restarted without processing the contents of 
the buffer if a disastrous error has occurred (for example, an interface control 
check), if the sense shows command reject, or if DCTRSTRT is on (set by $ELNE, 
$PLNE, $SLNE, or by internal line manager error recovery). 

MBSCPREP: BSC Prepare Sequence Processing 
MBSCPREP processes BSC buffers when the internal CCW code in the last executed 
CCW indicates a prepare sequence (MPREPSEQ). If the CCWs are in read/write 
sequence, control is passed to the BSC read/write sequence processing routines at 
MBCERDWR. 

The prepare sequence is used when a line or CTC is started, when a hardware 
terminal is idling, and during open and close processing for hardware terminals. 
The only BSC control characters valid are ENO and EOT (for hardware terminals), 
SOH-ENQ (for multileaving remotes and NJE terminals), ACKO, and NAK. 

If a CTC line is being started, the start line logic has issued a stand-alone CTC 
sense command. When the sense completes, the results are analyzed by 
HASPBPRO. If the sense is nonzero, it indicates the CTC at the other end had a 
CONTROL CCW outstanding. The stand-alone sense issued by this node has caused 
the CONTROL to complete and the other CTC now has a read outstanding. In this 
case, MBSCPROC causes a WRITE-CONTROL-READ-CCW chain to be issued. If the 
sense is zero, the CTC at the other end has not been started by JES2. HASPBPRO 
then issues a CONTROL-READ CCW string. The CONTROL remains outstanding 
until the other end is started and issues the stand-alone sense. This process is 
designed to ensure that the two CTCs will be synchronized with each other with 
sense completing control, and read complimenting write. For further detail on the 
CTC CCW sequences, refer to "Remote Terminal CCW Sequences" earlier in the 
HASPBSC description. 

If the last CCW is not a CTC sense command, a check is made to see if the line 
requires drain (DCTDRAIN) or sign-off (DCTSOFF) processing. If it does, the 
appropriate action is taken by the MDRAINED routine. If a unit exception occurred, 
control is passed to MBSCPRUE for unit exception processing. If the 1/0 completed 
on a disable or set mode command, the modem was not successfully enabled, and 
the operation is retried. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-293 



HASPBSC 

3-294 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The current TOD clock value is placed in MDCTIMOK on the first successful 1/0 
completion for a started line. This value is updated on every successful 1/0 
completion in the SSC read/write sequence and is used in conjunction with the RMT 
parameter DISCINTV to determine if communication with the other end has been 
lost. If a unit check has occurred, control is passed to the unit check processing 
routine, MBSCPRUC. 

MBSCPTUC - BSC Prepare Sequence Processing, CSW Status = OCOO: MBSCPTUC 
processes 1/0 completions with channel end and device end when a remote 
terminal or node is either connected to the line or is trying to become connected. 
The response from the attached device is analyzed, and appropriate action is taken. 

If an SOH-ENQ has been received, the line is attached to a multileaving work station 
or a network node, which is requesting permission to sign-on. All activity on the 
line is aborted, and an ACKO is sent. The remote is expected to respond with a 
sign-on card. 

If an SOH-ENQ was sent (indicated by MCPUSEQ set on), a check is made to see if 
an ACKO was responded. If so, a branch is taken to MBSCPUSA to set up and send 
the sign-on record. 

If the line is a CTC and a buffer containing a sign-on to be transmitted is queued to 
the OCT (MDCTOBUF), an SOH-ENQ sequence is set up to be transmitted after a 
2-second delay. 

An ENQ can be received from a hardware terminal only. It indicates two conditions; 
either the remote terminal is signing on, or a signed-on remote terminal has work to 
send and is bidding for the line. In either case, a branch is taken to MSTARTRD 
where sign-on processing is initiated (via a branch to MSONOPEN), or if the remote 
is already signed-on, the reader processor control element (PCE) is posted for work. 

ACKO or ACK1 can also be sent by hardware terminals in response to an ENQ sent 
by JES2 to initiate work for a remote printer or punch. A branch to MSTARTPP is 
taken to post the appropriate processor for work. 

If a NAK is received, several actions are possible. If the terminal is not signed-on, 
or is a multileaving remote terminal, the 1/0 is retried via a branch to MRETRY. If 
the remote terminal is a signed-on hardware terminal, processing continues at 
MBSCPTST as if a read timeout had occurred. A response other than SOH-ENQ, 
ENO, ACKO, ACK1, or NAK is invalid, and if one of these is received, an error is 
logged and the 1/0 is retried (MRETRYL). 

MBSCPRUE - BSC Prepare Sequence Unit Exception Processing, CSW Status = 

0000: A unit exception usually occurs because an EOT has been sent from the 
remote terminal, causing a unit exception to occur on a read command. A branch is 
taken to MRETRYL to log an error and retry the 1/0. A unit exception can also occur 
on a write command when JES2 writes to the line while the control unit is reading 
from the remote terminal (the remote and processor are out of synchronization), this 
causes the unit exception to occur on a write command. A branch is taken to 
MRESTART to read the data transmitted from the remote. 

MBSCPRUC - BSC Prepare Sequence Unit Check Processing, CSW Status = OEOO: 
In unit check processing, the resulting sense is interrogated, and appropriate error 
recovery initiated. The bulk of the processing is for a time-out. If the unit check 
occurred while JES2 was dialing the remote terminal, an error is logged, and the 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPBSC 

MBCERDWR: 

line restarted (by MFORCERL). The 110 is retried for a sense that indicates lost data 
(by MRETRY) without logging an error. If the sense shows intervention is required 
and the abortive disconnect option has been specified on the LINE initialization 
parameter, an error is logged, and the line restarted (by MFORCERL). If an abortive 
disconnect is not specified (OCTPNAOS is not on), the intervention required is 
processed as a time-out. If the sense does not indicate one of these errors, an error 
is logged and the 1/0 is retried. 

MBSCPRUC uses two routines to process time-outs: 

• MBSCPNAO: MBSCPNAO processes the error recovery for time-outs on lines 
attached to both hardware and multileaving remote terminals. If the line is a 
dial line and the modem line is not open, no communication has yet taken place 
between the remote and JES2. The 1/0 is retried (by MRETRY) if autodial is not 
selected. If JES2 is dialing the line, the dialing CCW sequence is reinitialized 
and retried (by MNEWSTRT). The 110 is also retried (by MRETRY) if the last 
CCW executed was not a read, if no remote terminal is signed-on the line, or if 
the signed-on remote terminal is a multileaving terminal or terminal of a 
network node. 

• MBSCPTST: MBSCPTST processes a read time-out, intervention required 
(without the abortive disconnect feature), or NAK received on a hardware 
terminal. If ENQ or EOT is being sent by JES2 (IOBCCW5's op code is a write), 
the ENQ/EOT is flip-flopped. (Thus, if an EQT was initially sent, JES2 sends 
ENO, and vice versa.) If EOT is now to be sent, it is transmitted immediately by 
branching to MRETRY. 

The possible work indicator (MOCT JOB) in the line OCT is interrogated to see if 
any global JOT posts have occurred since the last line manager scan. If no new 
output has been queued in the JOT, the 1/0 is retried (by MRETRY). 

The remaining processing in MBSCPNAO (starting at label MBSCPNOP) determines 
if work has been queued to this remote terminal (via $#GET HAVE= NO) and sends 
an ENO (via MRETRY) to the terminal if there is work in the JOT. First, a check is 
made of the interval elapsed since the last successful transmission (using 
MOCTIMOK and comparing the interval against $WAITIME) to see if JES2 is allowed 
to initiate output to the remote. If $WAITIME has not expired, the line must be left 
open for remote transmission; the 110 is retried (by MRETRY) leaving a read hung 
on the line. 

If $WAITIME has expired, the line manager checks for spooled messages queued for 
this remote terminal concerning print jobs and punch jobs. If no work is queued, 
MOCT JOB1 is reset in the line OCT; the write ENO (if any) is changed to a no-op, 
and a read is hung on the line (by MRETRY). If work is queued, an ENO is sent. 

BSC Read/Write Sequence Processing 
MBCEROWR transmits and receives data, notifies the input and output PCEs of 
successful data transmission and reception, and effects error recovery. If a unit 
exception or unit check for either multileaving or hardware terminals occurs, control 
is passed to MBSCRWUE (unit exception) or MBSCRWUC (unit check). If the 
channel end is for a hardware terminal, control is passed to MBCE27XO. 

MBCENSF - BSC Multileaving Read/Write Sequence Processing, CSW Status = 
OCOO: In the multileaving read/write sequence routines, the received information is 
interrogated and appropriate action taken. Valid multileaving control characters 
are: SOH-STX (non-transparent text), OLE-STX (transparent text), ACKO 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-295 



HASPBSC 

3-296 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

(transmission acknowledged or synchronized idle state), and NAK. ACK1 and WAK 
are not supported. 

If the 1/0 completed on a CCW other than a read, an error is logged and the line 
restarted (by MFORCERL). (Multileaving always issues CCWs in write/read pairs.) 
Control is passed to MBCETEXT for text processing if SOH-STX or OLE-STX is 
received. If an ACKO is received, control is passed to MBCEACKO. (The receipt of 
text in response to a block of text constitutes an implied ACKO.) 

MBCENSF uses the following routines for BSC multi leaving read/write sequence 
processing: 

• MBCENAKO: MBCENAKO processes responses that are not text or ACKO. If the 
response is a request to sign on (SOH-ENQ), control is passed to MBCPUST to 
abort all activity on the line and set up to read the sign-on record. If neither a 
NAK nor any of the above valid responses have been received, an error is 
logged, and a NAK written (by MCWRNAKL). 

If a NAK is received, JES2 must determine what information was lost. If the line 
is a CTC, there is no data recovery. An error is logged, and the line restarted 
(by MFORCERL). If JES2 last wrote a WAIT-A-BIT indicating that JES2's input 
resources were busy, or if the last write was an ACKO, a branch is taken to 
MBCENAK to initiate a line pause and to post output processors if work is 
available for them. If the last write type was text, JES2 retransmits the text. If 
JES2 last wrote a NAK to a network node, a branch is also taken to MBCENAK. 
If a NAK was written to a remote work station, JES2 resends the NAK (via 
MRETRY). 

• MBCETEXT: MBCETEXT maintains and validates the block sequence count 
fields (BCB), analyzes the control records (RCB), and posts the appropriate 
processor for work. For non-CTC lines, the last byte of the buffer is required to 
be an ETB; if it is not, an error is logged, and a NAK is written (by MCWRNAKL). 

In block sequence count verification there are four possible exception actions: 

1. The remote can request that the count be reset. 

2. While receiving a job, if the receive block sequence count shows a duplicate 
block received, the block is thrown away, and buffer processing continues. 

3. If the receive block sequence count is in error, a message is issued 
($HASP094), and the job is deleted (MRSTRD). 

4. During job transmtssion, if a block sequence error is detected by the remote 
terminal, JES2 issues a message, and the job is interrupted by simulating a 
$1 command to the remote device (via MRSTPP). 

• MBCENSCK, MBCEDATA, MBCEDISC: These routines dispatch the work in the 
buffer to the appropriate processors using MBCNTRLR and MBCNEXTR in the 
BSC common subroutines. The data records and console commands in one 
input buffer can be destined for different DCTs. Once the input OCT has been 
found for the first unit of work in the buffer, the buffer is allocated to that OCT 
(DCTBUFAD), and the device's processor control element (PCE) is posted for 
work. The line manager posts the output processors for completed work and 
searches for new work added to the JOT. The line manager has nothing more to 
do with the additional data records (after the first) in the buffer. When the " 
reader PCE is activated, $EXTP GET logic processes the text in the buffer that is 
destined for that OCT. If an RCB is found that does not match the input DCTs, 
MBCNTRLR and MBCNEXTR are called under control of the device PCE. The 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPBSC 

buffer is allocated to the new OCT, and its PCE is posted. This process is 
repeated until the buffer is empty. The line manager initiates a timed delay on 
1/0 for the line after the call to MBCNEXTR to allow time for the input PCEs to 
empty the buffer. 

If JES2 last sent a WAIT-A-BIT, the contents of the buffer are ignored, and 
processing continues at MBCEOISC. If a control record indicates a sign-on 
record, MSIGNON is called directly from MBCNTRLR. If a control record 
indicates disconnect, the OCTRSTRT bit is turned on in the line OCT, and the 
line is restarted (by MRSTLINE) at MBCEOISC. 

• MBCEACKO: MBCEACKO posts active output for successful text transmission; it 
is part of text processing (SOH-STX and OLE-STX) or is branched to directly if an 
ACKO is received. (Text received in response to text is an implied ACKO.) 

When JES2 sends text to a remote, the buffer contains data destined to only one 
remote. Multiple output processors can be active at the same time filling their 
own buffers. These filled buffers are queued to the line OCT for output at 
MOCTOBUF. 

At MBCEACKO a test is made to see if the last JES2 write to the line was text. If 
so, accounting is done to show that the time of successful text transmission (by 
MOCTIMOK), to indicate output was sent in the line OCT (by OCTPOST), and to 
show that 1/0 is complete in the remote OCT (pointed to from the buffer chained 
to MOCTOBUF). The chain of output buffers is processed to see if any console 
message buffers are queued; if not, the console message count in the line OCT 
(MOCTCMCT) is zeroed. The first buffer on the MOCTOBUF chain has been 
successfully sent and is freed (via $FREEBUF). 

• MBCENTXT: If the last JES2 write was not an ACKO response, text processing is 
rejoined at MBCENTXT to post the output processor for work. The output 
processor is posted under the following conditions: 

1. A WAIT-A-BIT has not been received. 
2. 1/0 for the device is complete (OCTPOST is on). 
3. The FCS allows work for that device to be transmitted. 

If any of these conditions are not met, processing continues at MBCENAK. If the 
PCE is posted, all output and 1/0 post indicators (OCTPBUF and OCTPOST in the 
line and remote OCTs) are reset. 

• MBCENAK: MBCENAK initiates the next 1/0 operation and dispatches output 
processors if a global JOT post has occurred. Control is passed here directly if: 

1. A NAK is received and the last write type was ACKO 

2. A NAK is received and the last write was NAK on a line connecting network 
nodes (to avoid a NAK-NAK loop) 

3. A WAIT-A-BIT is received 

MBCENAK is also part of text processing. 

If a WAIT-A-BIT was not received, subroutine MCCWINIT is called to reinitialize 
the CCWs for a multileaving read/write sequence. If a request for a line pause 
has occurred (MOCTIMER on), 110 is not initiated at this time. Otherwise, 
subroutine MINITIO is called to issue an EXCP. MINITIO sends the first buffer 
queued to MOCTOBUF or, if there is none, sends an ACKO. (If text was 
received, a line pause has been requested, and 110 is not initiated at this time.) 

Next MOCT JOB is tested to see if any work has been added to the JOT; if not, 
multileaving read/write processing for this buffer is complete, and control is 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-297 



HASPBSC 

3-298 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

returned to MBUFPROC in HASPRTAM. Processing is also complete if the line 
is connected to a network node, the line is draining (OCTORAIN), or the line is 
signing off (OCTSOFF). 

If a JOT post has occurred, the device PCEs are not posted if the device is a 
remote reader, is in use, or is drained. After all eligible output PCEs have been 
posted, control is returned to MBUFPROC in HASPRTAM. 

• MRSTRO, MRSTPP: These subroutines are called from the block sequence 
verification section (MBCETETB) if a block sequence error is detected. If the 
remote terminal detects an error, MRSTPP is called to simulate a $1 command 
to the remote terminal. This causes the remote terminal output PCE to back up 
to the previous checkpoint when it retransmits the job. If JES2 detects a block 
sequence error, MRSTRO is called, and the job is deleted. 

MBCE27XO - BSC Hardware Terminal Read/Write Sequence Processing, CSW Status 
= OCOO: Hardware terminal processing, unlike multileaving, has separate CCW 
sequences for data reception and data transmission. Some common error checking 
is performed before control is passed to the specific routines to handle transmission 
and reception. Valid BSC control characters are: ENO, EOT, STX, ETX, ACKO, 
ACK1, WAK, and transparent encodings of these control characters. 

If an SOH-ENQ (a multileaving sequence) is received, an error is logged, and the 
line restarted (MFORCERL). If JES2 is writing to the remote terminal, control is 
passed to MBCEHOWR at this time. 

Further error processing is done when JES2 receives input from a remote terminal. 
If an ENQ is received, the 110 is retried (by MRETRY). If an SOH is received, the 
attached header is skipped, and the next block read (by MBCENULL). If an invalid 
character is received, an error is logged, and a NAK written (by MWRNAKL). 

MBCE27XO uses the following routines for BSC hardware read/write sequence 
processing: 

• MBCEHORO - BSC Hardware Read Sequence Text Processing: This routine 
processes both transparent text (STX) sent from the terminal. If the last byte in 
the transmission is an ENO, the remote terminal has aborted transmission by 
sending a STX-data-ENQ sequence, a NAK is then written (MWRNAK). If the last 
byte received is an ETX, OCTETX is set in the line OCT. The ETX received 
indicator differentiates between an end of transmission and a request to 
suspend the output data stream when an EOT is received (see "MBSCRWUE -
BSC Read/Write Sequence Unit Exception Processing"). 

If data is present in the buffer, a branch is taken to MNORMAL to post the 
remote reader PCE for work. (MNORMAL is a common routine for both 
successful reception and transmission processing). If an SOH is received or if 
no data is present in the buffer, subroutine MEXCPNXT is called to process the 
next block in the buffer. Control is then returned to MBUFPROC in HASPRTAM. 

• MBCEHOWR - BSC Hardware Write Sequence Processing: This routine 
processes terminal responses to text sent by JES2. The responses can be 
either 1 or 2 bytes. The only response that causes the next block to be sent is a 
properly sequenced ACK. 

If the first byte is a OLE, valid responses are ACKO, ACK1, and WAK. If the 
expected ACK is received, control is passed to MNORMAL to prepare to send 
the next text block. If the response is WAK, indicating that the terminal has 
correctly received the text but is requesting that JES2 wait before continuing, 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPBSC 

JES2 delays by sending an ENQ (via MWRENQ). If JES2 has sent an ENQ and 
not received a response of ACK or WAK, an error is logged, and another ENQ is 
sent (by MWRENQL). If the block count is off or the wrong ACK is received, an 
error is logged, and the 1/0 retried. If any response but ACKO, ACK1, or WAK is 
received, it is invalid; an error is logged, and an ENQ written (by MWRENQL). 

If the first byte is not a DLE, the response is either a NAK or invalid. If NAK is 
received and a previous EOT has also been received, an ENQ is written (by 
MWRENQ). If the NAK is in response to an ENQ indicating that the terminal is 
denying JES2 control of the line, the ENQ is retransmitted (by MRETRY). 
Otherwise, an error is logged, and the last text retransmitted (by MRETRYL). If 
the response is not a NAK, it is invalid; an error is logged, and an ENQ written 
(by MWRENQL). 

MBSCRWUE - SSC Read/Write Sequence Unit Exception Processing, CSW Status = 
0000: A unit exception can occur if JES2 writes to the line while the remote terminal 
is writing. If this happens, the 1/0 is reinitiated, starting with a read command to 
clear the data in the control unit. A unit exception can also occur when an EOT is 
received by the control unit. If the terminal is a multileaving remote, an EOT is 
invalid; an error is logged, and a NAK written. 

For a hardware terminal, an EOT can be received in a transmit or receive sequence. 
If JES2 is transmitting (the EOT occurred on a read response), the terminal is 
indicating that the device is temporarily unavailable (for example, a paper jam has 
occurred). A check is made to see if the device suspend feature is allowed for the 
active remote terminal (DCTSUSPD is set on by specifying SUSPEND on the AMT.PR 
or AMT.PU initialization parameter). If the suspend feature is allowed, a $1 
command to the device is simulated. In both cases an ENQ is written (By 
MWRENQL). If the device is interrupted, it is possible that a new job of higher 
priority will be transmitted before the interrupted job is retransmitted. 

If JES2 is receiving from the terminal (the EOT occurred on a read data), the remote 
terminal is either ending transmission and relinquishing control of the line or is 
aborting the transmitted block of text. If an ETX was previously received (DCTETX 
on), the EOT indicates the end of transmission. A branch is taken to label 
MREADEOT (in MNORMAL) to post the input processor to close. If a previous ETX 
has not been received, the EOT indicates the terminal is temporarily unable to 
transmit. JES2 sets up to issue an ACKO response upon receipt of an ENQ from the 
terminal and branches to MRDTXT to read for the ENQ. 

MBSCRWUC - BSC Read/Write Sequence Unit Check Processing, CSW Status = 

OEOO: Read/write sequence unit check processing requires different recovery 
techniques for hardware terminals and multi leaving remote terminals. Some 
common checking is performed, and then processing is split. MCWRNAKL handles 
the multileaving interface and MBUCHDWR the hardware. 

If an "intervention required" is received, a check is made of DCTPNADS to see if the 
abortive disconnect option was selected for this line (ADISCON selected on the LINE 
initialization parameter). If this option was selected, an error is logged, and the line 
restarted (by MFORCERL); if it was not, a branch is taken to MBINTREQ where a 
NAK is sent. If the failing command is an enable, the enable is retried. 

MCWRNAKL processes unit checks for multi leaving remote terminals. An error is 
logged (by MCERRLOG), and if the line type is a CTC, the line restarted 
(MRSTLINE). Multi leaving requires no further analysis of the unit check sense. The 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-299 



HASPBSC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

CCWs are reinitialized (via MCCWINIT), and a NAK transmitted. If the buffer is not 
empty, the data is read in over IOBCCW7 and IOBCCW8 until the buffer is emptied. 
The NAK is then sent. 

MBUCHDWR processes unit checks for hardware terminals. The sense is analyzed, 
and error recovery is effected on the combination of command type and sense. The 
error recovery actions are reflected in the following table: 

Command Type Sense Action Routine 
Read LD/TO Read text MRDTXT 
Read BO/DC/OR Write NAK MWRNAKL 
Read response BO/DC/OR/LD/TO Write ENQ MWRENQL 
Read response to ENQ BO/DC/OR/LD/TO Write ENQ MWRENQL 
Write BO Write ENQ MWRENQL 
Write response BO Restart from read MRESTART 
Write ENQ BO Write ENQ MWRENQL 

Several important sequences should be noted. If JES2 is reading text and times-out, 
nothing is sent; the read text is reissued. If JES2 is sending text and times-out on 
the read response, an ENQ is sent. For the most part, error recovery consists of 
sending an ENQ. 

HASPBSC Common Service Routines 

3-300 JES2 Logic 

The common service routines are called by the read/write processing routines to 
effect error recovery and complete normal data transmission and reception. In most 
cases these routines use the restart/retry subroutines MNEWSTRT and MRETRY. 
Control is returned to MBUFPROC in HASPRTAM. 

MWRENQL is called from the hardware terminal unit check processing routine to log 
an error and write an ENO. The ENQ is written by MWRENQ, described later. 

MRDTXT is called from the hardware terminal unit check processing routine to log 
an error and reissue the 1/0 at a read text CCW. The routine calls MNEWSTRT to 
issue the EXCP. 

MBSCPUST is used by the multileaving read/write routines to read the sign-on card. 
All active functions on the line are aborted via a call to MABORT. The CCWs are 
initialized and executed via a branch to MRETRY. 

MRESTART is called to initiate 1/0 with the next read CCW. MNEWSTRT is called to 
issue the EXCP. 

MWRNAKL, MWRNAK, and MWRENQ are called by both the hardware and 
multi leaving routines to issue a NAK or ENQ (hardware terminals only). At 
MWRNAKL an error is logged. The 1/0 is initiated by call to MNEWSTRT. 

MBINTREQ is called from both hardware and multileaving read/write sequence unit 
check processing to handle an intervention required condition or a unit check on an 
enable command. The routine sets up to send a NAK and calls MNEWSTRT. 

MSTARTRD is called to start a hardware terminal reader when an ENO has been 
received. If the remote terminal is not signed on, a branch is taken to MSONOPEN 
to initiate sign-on processing. Otherwise, subroutine MSTUNIT is called to post the 
remote reader processor control element (PCE) for work. If the device is 
unavailable, an EQT is returned to the remote terminal. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

(_ 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPBSC 

MSTARTPP is called to start a hardware remote printer or punch from prepare 
sequence processing if an ACKO or ACK1 is received. If MDCTJOB is not on in the 
line DCT, no additional work has been added to the JOT, and an EOT is transmitted 
to the terminal. An EOT is also sent if the remote terminal is not signed on. 
MSTARTPP calls MSTARTPU to check for jobs queued for punching or printing. 
MSTUNIT is called to post the device PCE if separator pages are specified and 
messages are spooled for the remote terminal and if a punch or print job is waiting 
output ($#GET HAVE= NO). If no work is queued for this remote terminal, 
MDCTJOB is reset, and an EOT is written (by MRETRY). 

MSTARTPU issues a $#GET to locate available work for printer or punch DCTs. If 
the shared queues are owned, MSTUNIT is called to start the device. Otherwise, 
MSTUNIT is called by the hardware device start routine described above to post the 
associated PCE for work. If the device DCT indicates that it is either in use or 
drained (DCTINUSE or DCTDRAIN), control is returned to the caller so that an EOT 
can be sent. If the device is eligible, DCTHOLD is reset and the associated PCE 
posted for work. A line pause is requested for this line, and control is returned to 
MBUFPROC in HASPRTAM. 

MNORMAL (MREADEOT) is called by both hardware read and write processing to 
process successful text transmission and reception. MDCTIMOK is set to the 
current TOD clock value. A secondary entry point (MREADEOT) is entered from unit 
exception processing upon receipt of a valid EOT. The buffer is posted complete, 
and the line manager prepares to post the active PCE. If no device is active 
(DCTINUSE on), the remote terminal is attempting to sign on, and a branch to 
MSONGET is taken to read the sign-on card. If an active device is found, its 
processor control element (PCE) is posted, and control is returned to MBUFPROC in 
HASPRTAM. 

MRETRYL, MRETRY, MNEWSTRT are called to retry or restart an 1/0 operation. On 
entry to MRETRYL, an error is logged. If MRETRYL or MRETRY are called, the 1/0 
is issued starting at the CCW pointed to by IOBRSTR in MNEWSTRT. If MNEWSTRT 
is called directly, register 1 is loaded with the address of the CCW to be executed 
(usually a read CCW). After the 1/0 is issued, control is returned to MBUFPROC in 
HASPRTAM. 

MCOMMREJ, MDRAINLN, MFORCERL, MRSTLINE are the entries to the line restart 
and disconnection routine. MCOMMREJ handles a command reject by restarting 
the line or, if the error occurred on a disable command, by draining the line. 
MDRAINLN is entered if the line is to be drained. MFORCERL is called to log an 1/0 
error on the console. The line is restarted at MRSTLINE by aborting all active 
functions (MABORT) and disconnecting the remote terminal (MSFORCE). The line 
returns to the prepare sequence if it is not drained. If the line is a switched line, the 
phone is hung up. Control is returned to MBUFPROC in HASPRTAM. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-301 



HASPBSC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

MLLMRCVO: Multileaving Line Manager Processor Recovery Routine 
MLLMRCVO performs the error recovery processing for the line manager processor. 
MLLMRCVO is invoked via the $ESTAE recovery mechanism in the event of a system 
abend or JES2 catastrophic error occurring during line manager execution. 
MLLMRCVO attempts to recover only from $M01 catastrophic errors, which are too 
many channel ends on an RJE line. The DCTDRAIN and DCTRSTRT flags are set on 
in the line DCT simulating the $E LNEn command for the line in error. The 
processor is resumed at label MRSTLINE in the BSC channel end processing 

3-302 JES2 Logic 

routine MBSCPROC. The $HASP227 message is issued indicating the recovery 
action. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA: SNA Service Routines 

HASPSNA 

HASPSNA handles all SNA remote terminal access method (RTAM) communications 
using the following routines: 

• $EXTP service routines 
• $EXTP, SMF and session control subroutines 
• SNA line manager scan routines 
• Buffer processing routine 
• VTAM application program interface (API) 

HASPSNAA: Entry Point for $EXTP Service Routines 
The $EXTP routine in HASPNUC calls HASPSNA for the SNA portion of the remote 
terminal access method (RTAM). Register 14 points to a halfword index that is an 
offset into SNATAB. This offset indicates which $EXTP service routine is to be used. 
Common registers are initialized and the desired service routine is entered. 

The following routines support SNA $EXTP terminal operations. 

SNAOPEN: SNA Remote Terminal/SNA NJE OPEN Routine 
SNAOPEN is used to establish a session either between a JES2 NJE processor and 
a remote terminal or between two JES2 NJE processors. The direction of flow on a 
remote terminal session may be either outbound from a print/punch processor to a 
remote printer or punch, or inbound from a remote reader to a reader processor. 

The data flow indicator, DCTPOUTB in field MDCTSEL, is used to distinguish 
inbound from outbound $EXTP OPEN calls. At JES2 initialization, HASPINIT sets 
DCTPOUTB to 0 for DCTs representing readers, and to 1 for DCTs representing 
printers and punches. 

Opening for Inbound Data Stream: Opening for inbound flow occurs when a remote 
terminal receives (at a time when no outbound data flow is in progress) a BDS 
request: a request to begin a data set. The line manager initially handles that 
request, which is indicated in a function management header (FM header). When 
SNAOPEN is entered, the line manager has already established the necessary 
connections between the ICE, representing the session, and the DCT, representing 
the remote device. SNAOPEN first determines whether the buffer containing the 
BOS request is still present. If it is not, the attempt to allocate the reader was timed 
out by the line manager and the session is no longer available; the open call is 
terminated with condition code 0, indicating that the open request was unsuccessful. 
If the buffer is present, SNAOPEN need only determine whether the FM header 
through which the remote work station transmitted the BOS request was 
accompanied by data. Because the line manager has already removed the FM 
header from the request and adjusted the request length accordingly, the length is 0 
if no data was present; SNAOPEN exits to MVRELBUF, which releases the buffer 
that contained the BOS request, and returns to the caller of SNAOPEN. If data was 
present, it is retrieved and processed through subsequent $EXTP GET requests. In 
that case, SNAOPEN returns to its caller directly, without freeing the buffer. 

Opening for Outbound Data Stream: When a remote work station is ready to receive 
data, and a print/punch processor is waiting to send data to that remote work 
station, the processor is posted by the line manager and issues a $EXTP OPEN call. 
Before posting the processor, the line manager has committed the device to the 
session by storing a pointer to the ICE in the DCT; however, the session cannot be 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-303 



HASPS NA "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

committed to the device until a begin data set request has been sent to the remote 
work station and accepted, as indicated by a positive response. (Through remote 
operator action, a need to send a data set inbound might arise while JES2 is 
preparing to send a data set outbound. By convention, inbound data sets have 
precedence over outbound data sets up to the moment when a positive response to 
an outbound BDS request is received.) 

To open data flow outbound, the routine first determines whether the session is 
already allocated. If so, one of two things has occurred: 

1. If the current DCT is not the allocated DCT (which must therefore be a reader), 
an inbound request indicating begin bracket and begin data set has been 
received on this session in the time between the line manager's post of the 
print/punch processor and the processor's issuance of a $EXTP OPEN call. The 
open routine returns to its caller with condition code 0, indicating that the open 
request was not honored. 

2. If the current DCT is the allocated DCT, then the outbound stream being opened 
has interrupted another outbound stream. The suspending processor, not the 
line manager, has allocated and posted the current processor. the open routine 
continues as if the ICEALLOC indicator were off. 

If the ICEALLOC indicator is off, indicating that the session is still available, 
SNAOPEN gets an output buffer, links to the MVFMHBDS routine to cause a request 
including a BDS FM header or begin destination select FM header to be built and 
sent, and on regaining control (which occurs only when a positive response to the 
BDS request is received), returns to the calling processor. 

Opening for SNA NJE Data Stream: SNAOPEN processes a $EXTP OPEN call from a 
processor connected to an SNA NJE line. An immediate return is made if the caller 
is the remote console processor. Otherwise (if called by an NJE transmitter or 
receiver), a request parameter list (RPL) is acquired and initialized with pointers to 
the appropriate control blocks. If called by a receiver, the stream control send 
routine (MSCSEND) is invoked to send a permission-to-allocate-granted stream 
control record. If called by a transmitter, MSCSEND is invoked to send a 
request-to-allocate-job/SYSOUT-stream control record. The transmitter/receiver is 
placed in the $WAIT state until posted ($POST) with a response to the request or 
incoming data. When posted, the DCTERMNR flag in the receiver DCT is checked. 
If it is off, a normal return is made (MVTAMXIT); if it is on, an error return is made 
(MVT AMXAB). 

SNAGET: SNA GET Routine 

3-304 JES2 Logic 

SNAGET is entered as a result of a $EXTP GET macro instruction request issued by 
a reader, job receiver, SYSOUT receiver, or remote console processor. SNAGET 
transfers a data record from a buffer (together with an RPL) received by the line 
manager to a caller-supplied buffer. The data is decompressed, decompacted (if 
necessary), and translated from EBCDIC to ASCII, if required. SNA standard 
character string (SCS) control sequences (special bit strings indicating 
transparency, secure string reader data, interchange record separator, forms feed, 
or new line) are deleted from the data stream. Records that span request units (RJE 
only) are reassembled in the caller's buffer. 

Special SNA NJE GET Logic: For SNA NJE, each data record in the buffer is 
preceded by a 3-byte record identifier (RID) appended to the record prior to 
compression/compaction by the SNA NJE PUT routine at the transmitting node. The 
RID identifies the type of data found in the record, th~ appropriate job, SYSOUT, or 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

console stream, and contains the length of the decompressed/decompacted data 
record. 

Although the RID has undergone compression/compaction at the transmitting node, 
it must also go through decompression/decompaction at the receiving node. The 
sneak-a-peek routine, MNSKPEEK (discussed later with other SNA RTAM routines), 
is invoked to decompress/decompact an RID into a 3-byte work area (RPLRID) in the 
RPL associated with that buffer. MNSKPEEK is invoked from the RID analysis 
routine, MNSRANAL, the first time an incoming RPL buffer is examined. 
Subsequently, it is invoked by the SNAGET routine prior to returning a data record 
to a caller, in order to decompress/decompact the RID for the next record in the 
buffer. Thus, on entry to the SNAGET routine for SNA NJE, the RPLRID contains the 
decompressed/decompacted 3-byte RID associated with the next unprocessed 
record in the RPL buffer. 

The RPLRID field is examined to determine if the associated record is to be 
processed by the caller (that is, if the stream identifier in the RID matches that 
contained in the caller's MDCTRCB field). The caller continues to execute the 
$EXTP GET macro instructions until either the end-of-file is detected or the RID 
indicates that the next record is not for that caller. 

If the record can be processed by the caller, a check is made for a zero-length data 
record (end-of-transmission or transmitter-cancel); if the record is of zero-length, 
the appropriate end-of-file return is made to the caller but only after first calling 
MNSKPEEK to decompress/decompact the next RID (if the RPL buffer contains more 
data) and then calling MNSRANAL to analyze the RID and process the next record. 
If the record is a non-zero-length data record, the length of the record is obtained 
from the RPLRID field, and common NJE/RJE SNAGET logic is invoked (via a branch 
to the MVGMVE routine) to decompress/decompact the required number of bytes 
from the RPL buffer into the caller-supplied area. Before returning to the caller, 
SNAOPEN invokes MNSKPEEK to decompress/decompact the next RID into the 
RPLRID field. 

If the record cannot be processed by the caller (that is, if the stream identifier in the 
RID does not match that contained in the caller's MDCTRCB field), MNSRANAL is 
invoked to examine the RID and to take the appropriate action. Upon return from 
MNSRANAL, the caller is put into the $WAIT state (unless it is the remote console 
processor) until the next RID for that caller is processed. 

SNA RJE GET Logic: An inbound stream is initiated when the remote terminal 
sends in an FMH1 that indicates begin destination select (BDS) for the associated 
reader. The request header (RH) that accompanies this FMH1 should indicate only 
in chain (QC) function management data (FMD), definite response (DR1) and begin 
bracket (BB) ... RH= OB8080. After the response is received from JES2, the first 
inbound data record will be issued. This record will carry an RH that indicates 
first-in-chain (FIG) ... RH =029000. Get processing for a session is finished when an 
end. destination select (EDS) and an end-of-chain are indicated together, and when 
the last byte of data received in an input buffer has been placed in a reader buffer 
and returned to the reader processor. The GET routine is reentrant to permit 
simultaneous handling of data for several sessions. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-305 



HASPSNA "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Upon entry, the GET routine determines whether register MBUF contains an RPL 
address. If that register contains 0, the routine enters MVREQBUF to cause a buffer 
to be removed from the inbound queue for this session and its FM header (if any) to 
be decoded. If MBUF contains O on return from MVREQBUF, the job with which this 
data is associated is being purged. The GET routine links to MVFREPRG to release 
any further buffers queued to the DCT for processing and then returns to the caller. 

SNA NJE GET Logic: SNA NJE uses LUO protocol. LUO protocol is not 
architecturally-defined per SNA protocol. The two application programs that are the 
session partner end-users communicate using a form of BSC multileaving protocol. 
SNA NJE does not use bracket protocol as does SNA/RJE LU1. After initial session 
establishment, there are no function management headers (FMH) used, no brackets, 
no chains, and no definite response requests (DR1). All transmissions carry a 
request header in the form: RH =039000. To begin an inbound transmission to 
either the job or SYSOUT receiver, the sender sends RTIF; the receiver sends either 
PTIF or receiver cancel. If a PTIF is sent, the next transmission is always the 
network job header (NJH). Various NMR, NCC, and normal data records may be 
interspersed in the following transmissions. The actual data set or job transmission 
ends when the job trailer (NJT) and the EOT record is processed (RIDSRCB = 00). 

SNAPUT: SNA PUT Routine 
SNA PUT is invoked by the print/punch processors, remote console processors, and 
by JOB and SYSOUT transmitter processing through the JES2 macro $EXTP PUT. 
The SNAPUT routine converts channel command words (CCWs) into SNA request 
units (RUs) and calls RPL services to send those RUs to the designated receiver. 

SNA PUT is divided into two basic layers. The upper layer decodes the CCW, 
obtains and initializes buffers, calls the lower layer, passes finished RUs to RPL 
services, and handles exceptional conditions. The lower layer, also known as the 
RU composer, performs the actual transformation of channel commands into 
request units. This transformation includes the suppression of trailing blanks, 
conversion to SGS representation, compression and compaction (if permitted under 
the bind session parameters governing the session's operation). 

PUT Routine Upper Layer 

3-306 JES2 Logic 

SNAPUT: If this is an NJE session, SNAPUT branches to the MVPINSTR label and 
continues processing. If this is not an NJE session, SNAPUT tests the DCTPSUSP 
indicator in the OCT to determine whether the outgoing data stream has been 
suspended. (The data stream is suspended, for example, if a change of direction 
has occurred.) If the data stream is suspended, the routine branches to 
MVREQUME to wait until processing of the current data stream is resumed. 

Next, the ICEWTRSP indicator is tested to determine whether a change direction 
request (a reversal of the roles of sender and receiver) or some other request has 
been initiated on the processor's behalf by the line manager and whether the 
positive response to that request has been received. If a request sent by the line 
manager is still pending, SNAPUT branches to label MVREQRSP to wait until the 
response is received. 

Next the ICEINSTR indicator is tested. If it is on, the current PUT processing is part 
of an ongoing data stream; stream resumed processing is bypassed. If the indicator 
is off, the stream is now being resumed after a previous suspension. SNAPUT 
enters MVRPLGET to get a buffer and on return, turns on the ICEOCPND indicator 
and enters MVFMHBLD to cause a resume device selection function management 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

header to be built and transmitted. Because ICEOCPND is on, the header is sent 
immediately as an only-in chain request. 

MVPCPACT: The ICERCPTN and DCTACPTN indicators are compared to determine 
if a compaction table change is required. If a table change is needed, MVPCPACT 
branches to MVPUTCPA, ending the current chain by sending a compaction table 
function management header if one is needed, or just resetting the composer state if 
a header is not needed. 

MVPINSTR: To continue PUT processing, MVPINSTR tests the command type of the 
CCW passed to the PUT routine by the processor. Seven types of commands are 
recognized: NOP, truncate, send FM header, write, space immediate, skip 
immediate, and load forms control buffer (FCB). (Truncate and send FM header are 
special JES2 CCWs, using command codes X'FF' and X'FE' respectively. Both 
indicate that the current buffer is to be truncated and sent immediately; X'FF' passes 
no data, while X'FE' passes an FM header that is sent following the truncated 
buffer.) MVPINSTR branches to MVPNOPCC for a NOP CCW, to MVPRTUNC for a 
truncate or send FM header CCW, or continues processing if another type of CCW is 
received; another type of CCW exits when a buffer is available; if so, MVPINSTR 
branches to MVPUTBUF. 

MVPRPLGT: If no output buffer is available, SNAPUT enters the MVRPLGET routine 
to obtain a buffer, then sets DCT and internal indicators to reflect data stream 
characteristics. If the outgoing data stream is being translated to an alternate code, 
an indicator is set to eliminate checking by the PUT routine for transparent 
character strings in the data. If alternate code translation is not in effect, checking 
for transparent strings is allowed in punch data streams. Conversely, for printer 
data sets, an indicator is set to allow output records to span RU boundaries. 
Spanning is never allowed for punch data sets. Initial values in the RU composer 
work area are set for all data sets by calling MVPRPLAN. 

MVPUTBUF: MVPUTBUF checks for an NJE session; for an NJE session MVPUTBUF 
builds an RID (3 bytes, with byte 0 = the record control block from the transmitter 
DCT, byte 1 = the subrecord control byte from CCW, and byte 2 = the length from 
CCW minus 1), and moves the RID in front of the data string. The CCW data pointer 
points to the RID, and the data length is updated to reflect the addition of the RID. A 
branch is taken to MVPNIMNJ where the data string with the appended RID is 
passed to the RU composer for compression/compaction into the RPL buffer. 

If this is not an NJE session and an output buffer is available, MVPUTBUF prepares 
to invoke the RU composer. For a space immediate command, no further 
preliminary processing is required. For a skip immediate command, the preceding 
command is made immediate. If the result is an immediate skip to the same 
channel, the current command is redundant and is discarded; the routine branches 
to MVPNMORE to return to the caller without invoking the RU composer. For a load 
FCB command, MVPUTBUF branches to MVPUTFCB for special processing. For all 
other command types, including non-redundant skips, MVPUTBUF enters the 
MVPNIMED. (If the device is a card punch, MVPUTBUF first changes the command 
type to force an inter-record separator to be transmitted.) 

MVPNIMED: MVPNIMED compares the maximum record length acceptable by the 
remote device (the "device width"), previously extracted from the device control 
table (DCT), with the data length of the current command. If necessary, the data 
length field is changed to cause the maximum rather than the original amount of 
data to be transmitted. Note that the NJE processors enter this routine at 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-307 



HASPSNA 

3-308 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

MVPNIMNJ. The load of the data address and length from the CCW is bypassed as 
both values have been adjusted to allow for the RID which has been appended to the 
record. 

MVPUT: MVPUT represents the separation between the upper and lower layers of 
$EXTP PUT processing. All routines that require construction of an RU enter this 
routine, which invokes the lower-layer RU composer through a branch to label 
MVKOMPOZ. When MVPUT regains control, indicator SCWMORE is on in the 
composer's current RU, if the output record could not be completely contained after 
processing by the composer. (If SCWMORE is off, the current record has been fully 
processed, and MVPUT branches to MVPNMORE). If composer invocation did not 
cause the output record to be processed completely, the routine determines whether 
RU spanning is allowed for this data stream and if not, branches to MVRPLSND, first 
adjusting the line register so that MVRPLSND returns control to MVPRPLGT. The 
effect is to cause the current RU, without the partial current output record, to be 
sent. Reentry at MVPRPLGT causes MVPUT to obtain another output buffer and 
reprocess the current record, which will fit entirely in the RU. 

If RU spanning is allowed, MVPUT enters the MVRPLGET to obtain another output 
buffer, initializes the buffer, and enters MVRPLSND after adjusting the link register 
to return control to MVPUT. In this case, MVRPLSND transmits the current RU, 
including the composed portion of the current output record, and then returns 
control to MVPUT, which invokes the composer to place the remainder of the current 
record in the newly obtained buffer. 

MVPNOPCC: Entry at this label occurs when an NOP CCW is received by the PUT 
routine. MVPNOPCC enters MVPNMORE, first entering MVRPLGET to get an output 
buffer if none is available. 

MVPNMORE: MVPNMORE is entered when processing of the current output record 
is complete, or if the record was an NOP CCW requiring no processing. 
MVPNMORE checks whether this is an NJE session; if it is, MVPNMORE branches to 
MVPNMFUL and continues processing. If this is not an NJE session, processing 
continues as follows. 

If the ICEBREAK indicator is on, the remote operator has signalled the computer (for 
example, by pressing the 3774 ATTN key twice in succession) to indicate that a high 
priority interruption is requested. MVPNMORE branches to MVPENDCH to force an 
end-of-chain. If the ICEBREAK indicator is not on, a test is made to determine if the 
RU is full. If full, a branch to MVPUTRPL is taken to send the RU; otherwise, control 
is returned to the print/punch processor via a branch to MVTAMXIT. 

MVPNMFUL: When a logical page-end has not been reached (or if testing was 
bypassed), an indicator is tested to determine whether the current RU if full. If it is, 
MVPNMFUL branches to MVPUTRPI to cause the RU to be transmitted. Otherwise, 
MVTAMXIT is entered to return to the caller and solicit the next output record. 

MVPUTCPA: MVPUTCPA is entered when it is necessary to change the compaction 
table in effect. The compaction table change is handled before processing the 
current CCW. The routine first checks whether a previous attempt to change 
compaction tables failed. If so, the ICECPT field (the address of the table in effect 
for the session) is reset to point to the table in use before the change. 

A compaction table FM header is not needed if DCTACPTN indicates only that 
compaction should stop. This suppress request is indicated by DCTACPTN 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPS NA 

changing to 0 on this CCW where it was nonzero on the previous CCW. An FM 
header is also not needed if DCTACPTN indicates compaction is to resume with the 
table that was in effect before suppression was requested. This reactivate request 
is indicated by DCTACPTN being equal to the table number in the ICEACPTN field 
on this CCW, where on the previous CCW, OCT ACPTN was 0. 

If an FM header is not needed, MVPNMFUL branches to MVPUTCPR, setting 
ICERCPTN equal to DCTACPTN to show that the request has been handled, resetting 
the composer state in the buffer work area as needed. Control then returns to 
MVPNMFUL for CCW handling. If an FM header is needed, control is passed to 
MVPTRUNC, forcing an end of the current RU chain. ICERCPTN is left unequal to 
DCTACPTN to instruct MVPUTFMH (which gets control after response to an 
end-of-chain) that a table change is still pending and a type 3 FM header must be 
built and sent. 

MVPTRUNC: MVPTRUNC is entered when a CCW with the special truncate 
command code is received from the processor, or when a function management 
header must be sent. If this is an NJE session, control is returned to the processor 
via an immediate branch to MVTAMXIT; otherwise, the current chain is to be ended 
and transmitted. If an end of chain has already been sent and no new chain has 
been started, end-of-chain processing is bypassed by a branch to MVPUTFMH. 
Otherwise, MVPTRUNC enters MVPENDCH to end the current chain, first entering 
MVRPLGET to obtain an output buffer in which to build the end-of-chain request if an 
output buffer is not already available. 

MVPENDCH: The ICEINCHN indicator is tested. If it is on, indicating that a current 
RU chain exists, MVPUTEOC is entered, turning on ICEOCPND, the 
end-of-chain-pending indicator in the ICE. An end-of-chain is forced when 
MVPUTRPL causes the current RU to be sent. If ICEINCHN is off, the current RU's 
length is examined. If that RU (which would have been first-in-chain) contains data, 
MVPUTEOC is entered; the RU is sent as only-in-chain (a single RU chain). 

If no new RU chain has yet been started, or if the current RU is the first of a potential 
new chain but does not yet contain any data, MVFREOUT is entered, freeing the 
empty buffer. The linkage register ML is set such that MVFREOUT returns control to 
MVPUTFMH. 

MVPUTRPL: MVPUTRPL invokes MVRPLSND to cause the current RPL to be 
scheduled through VTAM. On return, the iCEINCHN indicator is tested to determine 
whether the RU just transmitted was one in a chain of RUs (and was not the last in 
that chain). If ICEINCHN is on, the routine branches to MVTAMXIT to return to its 
caller and solicit the next output record. Otherwise, MVPUTFMH is entered. 

MVPUTFMH: If this is an NJE session, control is returned to the processor; 
otherwise, MVPUTFMH is entered when either an RU chain has been ended or 
conditions exist that require sending of a function management header. First, 
ICERCPTN and DCTACPTN are compared; if they are unequal, control passes to 
MVPUTCPT to send a compaction table FM header. Next, the current CCW code is 
checked for the special value X'FE'; if it is present, the issuer of $EXTP PUT has 
built an FM header, and MVPUTFMH copies and ends it without modification. After 
sending or for CCW codes other than X'FE', control passes to MVPITRPT. 

MVPITRPT: The ICESIGNL, ICEBREAK, and ICEOUTBK indicators are tested to 
determine whether an interruption has been requested. If no interruption is 
outstanding, SNAPUT exits through a branch to MVTAMXIT. Otherwise, the current 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-309 



HASPSNA 

3-310 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

data stream must be suspended. MVPSUSPD is entered if an outbound stream is 
yielding to an inbound stream; MVPSUSP1 is entered if an inbound stream is 
yielding to an outbound stream. 

MVPSUSPD: MVPSUSPD is entered when the outbound data stream must be 
suspended to permit an inbound data stream to be processed. The change direction 
indicator (ICECHDIR) in the ICE is set on, because the receiver of the outbound data 
stream is now to become the sender and the ICESIGNL and ICEBREAK indicators 
are cleared. Control then passes to MVPSUSP1. 

MVPSUSP1: MVPSUSP1 is entered directly, bypassing MVPSUSPD when the 
outbound data stream must be suspended to permit another outbound stream to be 
processed. A buffer is obtained, and the end-of-chain indicator (ICEOCPND) is set 
on to ensure that the next request in the outbound chain is sent at once and as the 
end of the on-going chain. The routine then enters MVFMHBLD with register 1 
indicating that an FM header for suspend device selection is to be built. 
MVFMHBLD constructs and transmits a request containing the FM header, together 
with the end of chain and, if required, change direction indication. As a result, the 
current outbound data stream is suspended, and control is not returned to 
MVPSUSPD until that data stream is to be resumed. 

When MVPSUSPD regains control, transmission of the interrupted (suspended) 
outbound data stream is to be resumed. The routine turns on the ICEOCPND 
indicator to force immediate transmission, adjusts the link register so that return 
from the FM header build routine is to MVPITRPT, and calls MVFMHBLD to build and 
transmit a request indicating that device selection is to resume. 

MVPUTFCB: MVPUTFCB is entered when SNAPUT receives a load FCB CCW. 
MVPUTFCB determines whether transmission for this session is in alternate code or 
EBCDIC. If data is being transmitted in EBCDIC, no special processing is required. 
MVPUTFCB returns to MVPNIMED to continue PUT processing. (Return is by way of 
MVPUTFNA, which converts the RTAM simulated load FCB code X'61' to the true 
load FCB channel command code X'63' by turning on the immediate command bit.) 

If alternate code is in use, it is necessary to transmit any alternate code data 
already accumulated in the output buffer and enter EBCDIC mode temporarily. The 
load FCB function for a remote printer requires the transmission of a set vertical 
format (SVF) standard character string control sequence, for which there is no 
alternate code equivalent. Therefore, the routine determines the length of the 
current RU. If the length indicates that the RU contains no data, the alternate code 
indicator in the OCT is turned off, an internal indicator is set to indicate that no more 
data can be placed in the RU, and MVPUTFCB branches to MVPNIMED by way of 
MVPUTFNA to cause the request to be sent. If the current RU does contain data, the 
routine enters MVRPLSND to cause the RU to be sent and gets another buffer by 
calling MVRPLGET. The register that points to the CCW is reinitialized, the 
alternate code indicator in the OCT is turned off, and the internal indicator is set to 
ensure that no data is added to the RU containing the SVF request. (The alternate 
code indicator is turned on by the MVPRPLGT routine when the next output buffer is 
obtained.) The routine then returns to MVPNIMED through MVPUTFNA, changing 
the command as described above. 

MVPRPLAN: MVPRPLAN is called for each new buffer. It is also called when a 
change in the DCTACPTN field causes, within a single buffer, a switch from 
compaction to compression-only mode or vice versa. This routine stores the 
maximum-length-RU end address and the initial composer planner routine address 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 

/ 



(~ 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

into the buffer work area. The planner address stored corresponds to either 
compaction empty state (MVKQEY) or compression-only empty state (MVKPEY). 

MVPUTCPT: MVPUTCPT is entered when MVPUTFMH determines that a compaction 
table FM header must be sent. MVPUTCPT obtains a buffer and calls MVFMHCPA to 
compute the address of the desired table. If the table does not exist, control passes 
to MVPIVCPN, which suppresses compaction, displays a diagnostic error message 
($HASP211) containing the invalid compaction table number, discards the unused 
buffer, and returns to MVPINSTR to handle the original CCW. 

If the table does exist, MVPUTCPT stores its address in the ICECPT field and calls 
the MVFMHCPT routine to construct the type 3 FM header from the table. 
MVFMHCPT exits to MVRPLSND, which sends the header and waits for a positive 
response before returning. The new compaction table number is stored in the 
ICERCPTN and ICEACPTN fields, showing the table change was successful. The 
routine then returns to MVPINSTR to handle the original CCW. 

PUT Routine Lower Layer 
The RU composer is a set of routines that convert channel commands to SNA 
request units. Conversion is a two-step process, consisting of a feeder step and a 
buffer-fill step. In the feeder step, the channel command is represented as 1, 2, or 3 
character strings, depending upon the type of command: 

Command Type: 
Immediate CCWs 
Write CCWs (no transparency required) 

Write CCWs (transparency required) 

Character Strlng(s): 
SNA character string (SCS) control string 
Text string plus SNA character string (SCS) 
control string (not included for NJE) 
Transparency frame plus text string plus SNA 
character string (SCS) control string (not included 
for NJE) 

The feeder routine passes these source strings as they are generated to the 
buffer-fill sub-layer. In the buffer-fill step, the buffer-fill sub-layer transfers the 
source string data to the RU. If the entire string cannot fit in the current RU, 
composer processing is interrupted and control returns to the caller with the 
SCWMORE flag set. The caller obtains a new buffer, copies the composer work 
area into (preserving the values needed to process the remainder of the source 
string), sends the old buffer, and calls the composer again. Upon reentry, the 
composer recognizes this as a continuation call by the setting of the SCWMORE 
flag, and resumes processing in the buffer-fill sub-layer. RU overflow is then made 
transparent to the feeder step. 

If cross-RU spanning of logical records is not allowed for this device, the composer 
recognizes this from the setting of the SCWNSPAN flag to 1. In this case, the 
buffer-fill routine handles RU overflow by returning to the caller with SCWMORE set, 
but without changing the RU length from it original value at entry to the composer. 
The caller tests the SCWNSPAN flag, finds it on, sends the old buffer, and then 
reenters SNAPUT at the beginning, as in the case when no buffer is currently owned 
by the OCT. In short, RU overflow is prohibited when spanning. This causes any 
composition done for this CCW to be thrown away, and the entire CCW to be 
handled using a new buffer. 

When the feeder has completed passing the control string to the buffer-fill sub-layer, 
the SCWMORE flag is turned off, indicating that composing is complete. If the 
current RU is now full, the SCWFULL flag is turned on to cause the caller to send the 
buffer. The new RU length is stored in field RPLRLEN in the RPL. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-311 



HASPSNA 

3-312 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Interface with Upper Layer: The RU composer communicates with its caller through 
2 bytes in the composer work area: SCWFLAGS, which contains the composer flags, 
and SCWLCCC, which contains the channel command code; and through registers 
14 and 15 which contain, respectively, the address and length of the text pointed to 
by the CCW. Registers 14 and 15 are ignored for immediate channel commands. 
The RU composer also relies on: 

• ICERULEN: The ICE field that contains the maximum RU length acceptable on 
the current session. Logon processing sets ICERULEN to the value specified as 
BUFSIZE on the RMT nnn initialization statement by copying the RATBUFSZ 
field. 

• MDCTFMT: The OCT format indicator byte that contains the compression and 
compaction switches. For RJE, the MDCTFMT compression and compaction 
indicators are set by the SNA header services routine MVFMHBDS during open 
processing when it forms the FM header properties byte; the indicators are set 
depending upon the session bind image, which defines the mode of operation 
for the session. For NJE, the compression indicator (DCTPPRES) is always on 
and the compaction indicator (DCTPCPCT) is turned on at connection time if 
output compaction is to be performed on this session. 

• RPLAREA: A field that contains the address of the beginning of the RU. 
RPLAREA is initialized to the address of RPLBUFST by the $BFRBLD macro. 

• RPLRLEN: A field that contains the length of the current RU. This field is 
initialized to 0 by the $BFRBLD macro. 

• SCWRUEND: A field that contains the address of the rightmost byte of the 
maximum-length RU. MVPRPLAN sets this field to the sum of the values in 
RPLAREA and ICERULEN, less 1. 

• SCWPLAN: A field that contains the address of the planner routine 
corresponding to the present composer state. This field is used only if 
compression or compaction is active. MVPRPLAN initially sets this field to the 
empty state. 

Determining String Control Byte Usage: The above paragraphs have described the 
general design of the composer and apply whether or not string control bytes 
(SCBs) are being used. There are in fact two feeders and buffer-fill sub-layer 
combinations: one that generates compression and compaction SCBs, and one that 
does not. The routines that do not generate SCBs are identified by label beginning 
with MVKD (feeder) and MVKU (buffer-fill). The feeder routine for compression is 
identified by labels beginning with MVKF. 

The buffer-fill sub-layer for the SCB case is structured into four kinds of routines: 
emitter, planner, move, and send routines. There is only one emitter routine 
(MVKEMITR) and one send routine for compression and compaction (MVKZCNUE). 
The planner consists of as many regular routines as there are states in the 
compression strategy, plus an additional suspend routine for each state where it 
might be possible to add to an SCB with unused capacity created by a previous 
source string. The move routines perform the actual transfer of data from the 
source strings to the RU and handle the creation and updating of SCBs. 

The four kinds of routines interact in the following way. The emitter determines how 
many consecutive occurrences of the same character appear in the source string at 
this point. This information is passed in registers to the routine corresponding to 
the current planner state, which switches states and calls move routines according 
to the strategy implemented; in effect, planner routines determine the type of SCB to 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

(-

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

be formed and where it should be formed. Planner routines call the send routine 
when the RU becomes full. 

Planner routines tor compression are identified with labels beginning with MVKP. 
The planner routines for compression are: 

• MVKPEY: For the empty state in which there is no current SCB 

• MVKPNC: For the state in which source bytes are being accumulated under a 
non-compressed, non-duplicate SCB (an SCB representing a string of 
non-compressed, non-duplicate characters) 

• MVKPNCS: For the state in which a non-compressed SCB has been suspended 
at the end of a source string, although the SCB still has some unused capacity 

The move routines for compression are identified with labels beginning with MVKV. 
These move routines are: 

• MVKVPR: For prime duplicate SCBs 
• MVKVDU: For non-prime duplicate SCBs 
• MVKVNC: For non-compressed SCBs 

The planner routines for compaction are identified with MVKQ. The tour planner 
routines are: 

• MVKQEY: For the empty state in which there is no current SCB 

• MVKQNC: For the non-compressed state in which source bytes are being 
accumulated under a non-compressed, non-duplicate SCB 

• MVKQCA10: For the even compact state in which source bytes are being 
processed under a compaction SCB 

• MVKQCA 11: For the add compact state in which source bytes are being 
processed under a compaction SCB 

Odd compact state differs from even compact state in that an odd (unpaired) master 
character is left over awaiting possible pairing with another master character on the 
next emission. 

For states where a non-compressed SCB or a compaction SCB has been suspended 
at the end of a source string, though the SCB still has unused capacity, there are 
tour additional planner routines: 

• MVKQNCS: For suspending in non-compressed states 
• MVKQCAS: For suspending in compact even states 

Five mover routines for compaction are identified with labels beginning with MVKW: 

• MVKWPRO and MVKWDUO: Alternate entry points tor the compression mover 
routines MVKVPR and MVKVDU 

• MVKWNC: For storing non-compressed SCBs. 

• MVKWCT: For storing compaction SCBs 

• MVKWCA: For converting a string of already-stored duplicate, prime duplicate, 
and non-compressed SCBs into a compacted string 

Planner-End Exits: A planner-end exit and feeder-end extt are associated with each 
regular planner routine. A branch to the planner-end exit or to the feeder-end exit is 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-313 



HASPS NA 

3-314 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

located at the entry point of the planner routine, less 4 bytes (planner-end exit) or 8 
bytes (feeder-end exit). The function of the exits is to store an SCB with the proper 
count and cause source data accumulated under a planned SCB to be moved to the 
RU prematurely, that is, before the strategy actually requires it. This is necessary 
when the end of a source string is reached. For example, if an uncompressed SCB 
still has unused capacity at the end of a source string, the planner has not invoked 
the move routine yet. 

When the emitter detects the end of source string, it returns to the feeder level, 
which in turn either passes the next string (text or control) or returns to the original 
caller of the composer (PUT upper level). In any case, the storage occupied by the 
current source string may be altered and is sure to be discontinuous with the next 
source string to be passed. To ensure that all data has been moved out of the 
current source string before the next source string is passed, the feeder invokes 
either the planner end exit or the feeder-end exit. 

Common Subroutines Overview: Both SCB-generating and non-SCB-generating 
feeders make use of two common subroutines: MVKOTPCY and MVKOCCDE. 

MVKOTPCY determines whether it is necessary to generate a transparency frame 
and count sequence tor a write command and returns with a condition code 
indicating its result: 

• Minus: The CCW length was 0. The feeder routine is expected to bypass 
processing the text string entirely because it is null. 

• Zero: The CCW length was nonzero, but either the composer flag SCWPUTRN 
was off, indicating that transparency checking should not be performed, or the 
transparency check was performed but no values below X'40' were found in the 
text string. 

• Plus: The CCW length was nonzero. The transparency check found values in 
the text string below X'40'. The address and length of the text string in registers 
R14 and R15 have been saved in composer work area locations SCWINPT and 
SCWLINPT. R14 now contains the address of the transparency frame and count 
sequence in the composer work area and R15 contains the value 2. 

MVKOCCDE decodes the channel command and returns with registers RSRCE and 
RLSRCE set to the address (into the composer work area) and length of the SCS 
equivalent code string, respectively. 

Register Conventions: Certain key quantities are maintained in registers throughout 
composer processing. Register usage for the non-SCB-generating feeder and 
buffer-fill routine is confined to those registers in RTAM usually available: 14, 15, 0, 
1, 2, and 6. For the SCB-generating feeder and buffer-fill sub-layer, it is necessary 
to use additional registers, requiring the composer to use the refresh and restore 
subroutines (MVREBASE, MVRESTOR, and MVREFRSH) before returning to PUT 
upper layer code (for R3, R5, RB, R10, and R12). 

Command Registers 14-2 and 6: R1 contains the number of bytes left in the SNA 
request unit (RU) - (in the non-SCB case) - or the address of the last byte in the RU 
(in the SCB case). R2 contains the address of the next unused byte in the RU. R14 
and R15 contain the address and length of that part of the source string remaining to 
be processed. R6 is used by the feeder level to link to subroutines and to the 
buffer-fill sub-layer. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

Registers Used in Compression-Only: When SCBs are being generated, six 
additional registers are required. Of these, 8 and 9 (RCHAR and RLCHAR) are used 
by the emitter to execute the compare long instruction. Upon exit from the emitter, 
register 8 (RCHAR) points to an instance of the emission character, while register 11 
(RNUM) contains a copy of the length used in the compare long instruction. When 
the new length (in RLSRCE), changed by the compare long, is subtracted from the 
old length, the result is the emission duplication factor less 1. Register 0 (RSCBL) 
contains the current unused SCB capacity when in the non-compressed, 
non-duplicate SCB state. A branch on count (BCT) instruction is used to decrease 
the unused capacity by 1 and simultaneously test if the SCB is full. Register 12 
contains the address of the planner routine corresponding to the current planner 
state. 

Register Used in Compaction: Compaction uses the following registers along with 
the registers described in the previous paragraph: register 5 (RCPT) contains the 
address of the active compaction table; registers 0 and 10 (RCPZ and RCPA) are 
used as work registers while in the compaction SCB state; register 9 (RGO) is used 
in planner routines to perform six-way branches on the emission character attribute. 

SNACLOSE: SNA CLOSE Routine 
MVCNJE - SNA NJE CLOSE Routine: MVCNJE is called by an NJE processor to 
terminate an incoming or an outgoing NJE stream. If called by the remote console 
processor (RCP), a check is made to determine if the console is inbound or 
outbound. If outbound, a normal return to the RCP is made (via a branch to the 
MVTAMXIT routine) after first calling the RPL send routine (MVRPLSND) to send the 
last buffer if the remote device control table (DCT) currently points !o an RPL buffer. 
If this is an inbound console, either the buffer is empty or the next record in the 
buffer is not for the remote console processor (that is, it is not a all-system message 
record (NMR)). The RPL buffer is returned to the beginning of the interface control 
element (ICE) inbound queue and the allocated RCP indicator (ICERCON) is turned 
off to indicate that this session is no longer dedicated to the RCP. The RID analysis 
routine (MNSRANAL) is called to process the next record, either in this buffer or in 
the next buffer, if any. Upon return from MNSRANAL, a normal return to the RCP is 
made via a branch to MVTAMXIT. 

If it is called by an NJE transmitter and the DCTERMNR flag is on in the transmitter 
OCT, MVCNJE makes an abnormal return to the transmitter via a branch to 
MVTAMXAB. Otherwise, the stream control send routine (MSCSEND) is invoked to 
send the appropriate stream control or special (zero-length) data record, as follows: 

• RECEIVER CANCEL: If this is a receiver DCT and the DCTERMNR indicator is 
on 

• ACKNOWLEDGE EOT: If this is a receiver DCT and the DCTERMNR indicator is 
not on 

• TRANSMITIER CANCEL: If this is a transmitter OCT and the NCLOSE macro is 
issued (DCTADS indicator is on) 

• END-OF-TRANSMISSION: If this is a transmitter DCT and the CLOSE macro 
instruction is issued (DCTADS indicator is not on) 

Upon return from MSCSEND, an immediate return is made to the caller (via a 
branch to MVTAMXIT) if the caller is a receiver; if the caller is a transmitter, the 
caller is placed in the $WAIT state until posted ($POST) with the expected response, 
at which time control is returned to the caller. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-315 



HASPS NA 

3-316 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

MVCRJE - SNA Remote Terminal CLOSE Routine: The following paragraphs 
discuss the SNA remote terminal CLOSE routine. 

Closing an Inbound Data Set: At entry to MVCRJE, the DCTPOUTB indicator in the 
MDCTSEL field of the OCT is tested. If the indicator is off, the data set being closed 
is an inbound data set that has just been terminated with a request carrying the end 
device select (EDS) indication. In this case, the CLOSE routine need only release 
the inbound buffer used to transmit the EDS request. The link register is reset (at 
label MVCINBND) so that control returns to the caller of the CLOSE routine after the 
buffer is released, and MVRELBUF is called to release the buffer, completing 
inbound close processing. 

Closing an Outbound Data Set: If the DCTPOUTB indicator is on at entry to the 
CLOSE routine, an outgoing data set is to be closed. This requires that the current 
RU chain (if any) be ended and that the data stream be terminated through an EDS 
or equivalent request. 

The DCTPSUSP indicator is tested to determine whether the data stream now being 
closed was previously suspended (temporarily stopped). If DCTPSUSP is on, the 
routine waits at label MVREQUME until processing for the suspended data stream is 
to be resumed. 

Next, the ICEWTRSP indicator is tested to determine whether a change of direction 
(reversal of sender and receiver) or other request has been issued by the line 
manager and has not had a positive response yet. If the response to a request 
initiated by the line manager is still outstanding, the routine waits at label 
MVREQRSP until the line manager has received the positive response. 

Next, the ICEINSTR indicator is tested. If the data stream is already flowing on this 
session (the in-stream condition), flow need not be resumed; but if the in-stream 
indicator is off, a resume device select (RDS) indication must be sent. The routine 
enters MVRPLGET to get an output buffer, turns on the ICEOCPND indicator to cause 
the next request to be sent with the end-of-chain indication on, initializes a 
parameter register with the RDS action code, and enter MVFMHBLD to cause a 
request to be sent indicating end-of-chain and RDS. 

MVCINSTR: With the in-stream condition ensured, the CLOSE routine tests the 
DCTFLUSH indicator in the MDCTSTAT field of the OCT, branching to label 
MVCTRUNC if the indicator is off; this means that the data stream is not to be 
aborted. If the stream is to be aborted, stream termination is to occur through an 
abort device select (ADS) rather than an EDS indication. If no output buffer is 
available in which the ADS request can be built, MVCINSTR branches to label 
MVCENDBF to obtain a buffer and send the ADS indication. If two buffers are 
available, MVFREOUT is entered to free the first buffer, with the link register loaded 
so that MVFREOUT passes control to MVCENDDS. If only one buffer is available, 
MVCINSTR enters MVCENDDS directly. 

MVCTRUNC: MVCTRUNC is the continuation of close processing entered when an 
ongoing data stream exists and no request to abort the stream is outstanding. If an 
output buffer is available, MVCTRUNC branches to label MVCENDCH to attempt to 
end the current chain. If no buffer is available, one is obtained through entry to 
MVRPLGET, and on return the ICEINCHN indicator is tested. If no chain is currently 
being processed, MVCTRUNC enters MVCENDDS to terminate the current data set 
by sending an only-in-chain EDS request. If a chain is being processed, it must be 
ended before the stream can be terminated. MVCENDCH is then entered. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

MVCENDCH: MVCENDCH is entered to end the chain, if any, currently being 
processed for the data set being closed. If the ICEINCHN indicator is off, the current 
RU, which would have begun a new chain, is examined. If that RU does not yet 
contain any data, it is ignored; MVCENDDS is entered to terminate the data stream. 
If ICEINCHN is on, indicating that a chain is being processed, or is off but the current 
(new or first) RU contains data, the ICEOCPND indicator is set on and MVRPLSND is 
entered. The current output buffer is scheduled to be sent with the end of chain 
indicated. 

MVCENDBF: This entry point to MVCENDDS is used by MVCINSTR and MVCENDCH 
when EDS is to be sent but no output buffer is available. It consists of a call to 
MVRPLGET to obtain a buffer, followed by entry to MVCENDDS. 

MVCENDDS: The ICESDCT pointer is tested to determine whether a previous data 
stream flowing on this session has been suspended. If so, MVCENDDS branches to 
MVCNOTEB. If no suspended data stream exists, the primary protocol indicators 
(set to reflect session parameters when the session was created) are tested. If the 
protocol in effect permits JES2 to send the end bracket (EB) indication to the remote 
sender, the EB-pending indicator (ICEEBPND) is set on. If the EB indication must 
come from the remote work station, the change direction pending indicator 
(ICECHDIR) is set instead. In either case, MVCDSTRM is entered. 

MVCNOTEB: MVCNOTEB examines all DCTs on the suspended data stream queue. 
If a suspended outbound data stream is found, MVCNOTEB enters MVCDSTRM to 
send an EDS indicator without changing direction. Otherwise, MVCNOTEB branches 
to label MVCHGDIR to set the change direction indicator to allow an inbound stream 
to be resumed. 

MVCDSTRM: MVCDSTRM terminates transmission of the current data stream by 
causing an end device select (EDS) or abort device select (ADS) indication to be 
sent. At entry, the link register is loaded with the address of the normal exit routine 
MVTAMXIT, so that any path out of this routine ends with a return to the invoker of 
the CLOSE routine. Next, the parameter register is loaded with the EDS action code 
and the ICEOCPND indicator is set on to cause the next request to be transmitted to 
end the chain. MVCDSTRM branches to MVFMHBLD to cause a terminating request 
to be built and sent. Before MVFMHBLD is entered, however, the $EXTP index 
value in the halfword proceeding the return point is tested to determine the type of 
$EXTP call. If the request is not CLOSE, NCLOSE is assumed and this data stream 
is to be aborted. The EDS action code in the MVFMHBLD parameter register is 
replaced by the ADS action code. 

SNANCLO: SNA Negative CLOSE Routine 
For a SNA remote terminal, SNANCLO is entered via a $EXTP NCLOSE macro call. 
It sets the DCTADS bit and enters SNACLOSE. For SNA NJE, SNANCLO is entered 
when a $EXTP NCLOSE is issued by an NJE processor. If it is called by a 
transmitter, an immediate branch is taken to enter SNACLOSE at MVCNJE. 
Otherwise, for a receiver, the receiver cancel flag (DCTERMNR) is turned on and the 
DCTINUSE indicator in the DCTSTAT flag byte is tested. If not on, SNACLOSE is 
entered at label MVCNRCVR to perform receiver close logic. If the DCTINUSE 
indicator is on, the DCTEOF indicator is tested to see if an end-of-file was detected. 
If not, the NJE RID analysis routine (MNSRANAL) is invoked to examine the next RID 
and take the appropriate action for the record headed by that RID. If the DCTEOF 
indicator is on or if not on, upon return from MNSRANAL, a branch is taken to enter 
SNACLOSE at MVCNJE. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-317 



HASPS NA "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SNAREAD: Path Manager Read Routine / ' 
This routine is used by the network path manager to release SNA buffers (RPLs) via ,/ 
MUFREEIN. SNAREAO sets the compress flag (OCTPPRES) on in the transmitter 
OCT and attaches the transmitter and receiver OCTs to the line if necessary. 
SNAREAO then examines the interface control element (ICE) to determine whether 
compaction is to be performed on output data and sets the compact flag in the 
transmitter OCT accordingly. 

SNAWRITE: Path Manager Write Routine 
The network path manager uses SNAWRITE to pass RPLs to VTAM. SNAWRITE 
calls the RPL send routine (MVRPLSNO) to schedule the RPL for transmission. 

SNASUB: SNA $EXTP Common Exit Routines 
Exit routines exist for each condition under which RTAM processing completes. 
Each exit restores the caller's registers, turns off the OCTRTAM indicator to show 
that the processor is no longer within RTAM, sets the condition code, and returns to 
the caller. Exit labels and conditions code settings are: 

• MVT AMXIT: Normal exit; condition code positive (2) 
• MVTAMXEX: Exception exit; condition code negative (1) 
• MVTAMXAB: Abnormal exit; condition code zero (0) 
• MVTAMXOV: Overflow exit; condition code "ones" or "overflow" (3) 

MVRPLSND: RPL Send Routine 

$·318 JES2 Logic 

MVRPLSNO is called to schedule a teleprocessing (TP) buffer for VTAM execution. 
(ATP buffer includes a request parameter list (RPL), a work area also used as a 
register save area, and a data buffer.) The TP buffer containing the RPL to be 
scheduled for execution by VTAM is pointed to by R4 and the OCTBUFAO field of a 
OCT. The OCT in turn is pointed to by R3. The interface control element (ICE) 
representing the session is pointed to by R5. 

MVRPLSND: This is the primary entry point for the RPL send routine. Before the 
RPL can be scheduled for execution, several tests are required. To prevent JES2 
from using too many TP buffers for requests queued for scheduling, the number of 
buffers queued for outbound transmission (ICEOUTCT) is compared against a 
limiting value (ICEOUTLM). If the limit has been reached, MVRPLSND branches to 
the MVRPLWT entry point to wait ($WAIT) for the number of queued buffers to be 
reduced. Note that for an NJE session the buffer limit test is bypassed if currently 
running under the line manager or the remote console processor's PCE. Also, if no 
$WAIT is necessary, the ICEOCPNO indicator in the ICE send status flag (ICESNOST) 
is turned on, register 15 (MVRPLCHX table index) is loaded with the index value of 2 
(this causes the RPL to be flagged as only-in-chain and the ICEOCPND indicator to 
be turned off), and the RJE specific logic is bypassed with an immediate branch to 
MVRPLCHN. 

For an RJE session, if no $WAIT is necessary, the content of the buffer's RPLNEXT 
field is placed in DCTBUFAD, and MVRPLSND determines whether this RPL 
represents an RU that is part of a chain of RUs. 

If the current RPL represents an RU that is part of an RU chain and is not the first in 
the chain, a test of outstanding response limits need not be performed. Only one 
response is returned for an entire chain; the limit check is made when the first RU in 
the chain is processed. If ICEINCHN indicates that the current RPL's RU is part of a / 
chain, the routine branches to MVRPLHDR to continue scheduling. Otherwise, the 
response limit check is performed. 

LY~8-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

A count of outstanding requests requiring definite responses is kept in the ICE 
(ICERSPCT). The count is increased by the RPL send routine when a request 
requiring a definite response is scheduled; the count is decreased by the line 
manager when a definite response is received. Before adding to the outstanding 
response count, the routine compares the current value of the counter (ICERSPCT) 
with the maximum outstanding request value (MDCTCHLM), which is always 1. If 
there are already as many outstanding responses as are permitted for this session, 
MVRPLSND branches to the MVRPLWTR entry point to wait until the count has been 
reduced. In this case, the wait routine sets on the waiting for response indicator 
(ICEWTRSP) in the ICE, which informs the line manager that the associated 
processor is awaiting a response and that the line manager should post the 
processor when the next response is received. 

In addition, two secondary entry points are provided: MVRPLWTR and MVRPLWT. 

MVRPLWTR: This entry point is used when an RPL is to be scheduled only after a 
response has been received for the last RPL previously scheduled for this session. 
MVRPLWTR turns on the wait for response (ICEWTRSP) indicator in the session's 
ICE and enters the MVRPLWT entry point to wait for the response to be received. In 
addition, MVRPLWTR stores the contents of MBUF in DCTBUFAD. If MVRPLWTR is 
entered from MVRPLSND, DCTBUFAD points not to the current RPL, but to the RPL 
pointed to by the current RPLNEXT field. Storing MBUF in DCTBUFAD restores the 
pointer to the current RPL until the wait is satisfied. Finally, MVRPLWT is entered. 

MVRPLWT: This entry point is used when some specific event must occur before 
the current RPL can be scheduled. Examples of these events are a receipt of the 
response associated with a previously scheduled RPL, or a reduction of the number 
of outstanding responses below the limit. MVRPLWT waits for the specific event 
($WAIT WORK), then upon regaining control restores the access method registers 
using the MVREFRSH routine and tests the ICECNCEL indicator to see if a negative 
response for this session was received by the line manager during the wait. If so, 
the $EXTP call is aborted through a branch to MVREQCAN; otherwise, processing 
continues normally by entering the main routine at MVRPLSND. 

MVRPLOCH: When it has been determined that another outstanding response is 
permissible (or when this entry point is used by an SNA service subroutine), 
MVRPLOCH increases the count of outstanding responses by 1, and continues to 
process the RPL for scheduling. 

MVRPLHDR: MVRPLHED performs further RPL initialization to prepare the request 
for scheduling. First an index value of 4 is set in register 15. (The index value is 
used at label MVRPLCHN, as described below.) The ICEINCHN indicator is tested. 
If no chain is currently being processed, the index value is reset to 0, and label 
MVRPLFC1 is entered to test for actions that may be required after a chain has 
ended. 

MVRPLFC1: If a function management header is pending, the RPLFMHDR indicator 
is set on. If end bracket is pending, the RPLEB indicator is set on. 

MVRPLFC2: If the ICEINBRK indicator in the ICEFLAGS field is off, indicating that no 
bracket has begun on this session, the begin-bracket pending indicator (ICEBBPND) 
and outbound data stream indicator (ICEOUTBD) in the ICEFLAGS field are turned 
on along with the begin-bracket indicator (RPLBB) in the RPL. This ensures that 
when the RPL is scheduled, a begin-bracket indication is transmitted. If ICEINBRK 
is on, the session is already in bracket state, and MVRPLNFC is entered. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-319 



HASPSNA 

3-320 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

MVRPLNFC: The ICEOCPND indicator in the ICESNDST field is tested. If the ./ ·, 
indicator is off, the current chain is not ending and MVRPLNFC branches to \, / 
MVRPLNEC. If the indicator is on, a previously executed routine has determined 
that the chain should be ended with the current RU. The index value in register 15 
is increased by 2, and the RPLVTFL2 field of the RPL is marked to indicate that a 
definite response to the current request is required; that is, after the current RPL 
has been scheduled and the corresponding request has been transmitted, JES2 
must receive a specific indication (the definite response 1 indication) that the 
request was received successfully. MVRPLNFC next determines whether its caller 
was the line manager. If some other processor was the caller, that processor waits 
until the required definite response is received; the link register is adjusted so that 
return from MVRPLNFC is not to its caller, but to MVREQWT, the wait for response 
routine (which returns control to MVRPLNFL's caller after the wait has been 
satisfied). If the line manager is the caller, however, waiting is not permitted and 
the link register remains unchanged. In either case, MVRPLNFL turns on the 
RPLCMD indicator in the RPLRH3 field if the ICEFLAGS indicator ICECHDIR 
indicates that a change-direction operation is pending, then it enters MVRPLNEC. 

MVRPLNEC: If the DCTPALTC indicator in the MDCTFMT field is off, data to the 
current device is being transmitted in EBCDIC and MVRPLNEC branches to 
MVRPLCHN. If the indicator is on, translation to alternate code is necessary. The 
length of the current RU is tested and is reduced by the length of a function 
management header if one is included in this RU. If any data remains (that is, if the 
RU did not consist solely of an FM header), the data is translated into alternate code 
form before MVRPLCHN is entered. 

MVRPLCHN: The index value calculated in the preceding steps is used to set the 
RPL indicator that reflects the current RU's position in the chain and to set the ICE 
indicator that reflects the session's state. The effect of each possible value is: 

0 The RPL indicates that this RU is first-in-chain. The ICEINCHN indicator is 
turned on. 

2 The RPL indicates that this RU is only-in-chain. The end-of-chain pending 
indicator (ICEOCPND) is turned off. 

4 The RPL indicates that this RU is middle-of-chain (that is, other than first or 
last). The ICE indicators are not changed. 

6 The RPL indicates that this RU is last-in-chain. The ICEINCHN indicator and 
the ICEOCPND indicator are both turned off. 

MVRPLOCR: When an RU (possibly modified) is to be sent, the count of active 
outbound requests (ICEOUTCT) is increased by 1. 

MVRPLRQN: If the RPL containing the RU is to be queued to the outbound queue, 
the RPL is marked as a send request, and the send control sequence is stored in the 
RPLSEQTP field for later examination by the line manager. (This entry point to the 
RPL queueing routine is also used when successfully received incoming request is 
to be converted to a response and placed on the outbound queue.) 

MVRPLQOB: The RPL scheduler next determines whether the RPL may be 
scheduled at once or must be queued. The address of the line DCT, the address of 
the ICE, and the session's communication ID are stored in the RPL, then the 
ICEOUTBF and ICEOUTHD pointers are examined to determine whether an 
outbound transmission is already in progress on this session. If one is not, the 
current RPL can be scheduled at once and the routine branches to MVRPLXIN. If a 

·'" LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPS NA 

previous outbound APL for this session is still being processed, the current APL is 
added to the ICE's queue of outbound requests. 

MVRPLXIN: As a final check before actually passing the APL to VTAM, the routine 
tests the ICEABORT and ICECLOSE indicators and, if the session is terminating 
(abnormally or normally), branches to MVFREEOQ to release the buffers on the 
outbound queue. If both indicators are off, the address of the current buffer is stored 
in the ICEOUTBF field, indicating that an outbound transmission is in progress, and 
the RPLBRANC indicator in the RPLEXTDS field is turned on; this indicator causes a 
branch, or fast-path, entry to VTAM's APL processing routines. 

MVRPLXEC: MVRPLXEC initializes the APL and creates the register environment 
required for the interface with VTAM. 

The address of the APL exit routine, VEXITRPL, is stored in the RPLECB field. 
VEXITRPL is the routine to which VTAM returns control when the request 
represented by the APL has been completed. 

The address of the current processor control element (PCE) is stored in the APL, 
and register 1, a VT AM parameter register, is loaded with the address of the current 
APL. MBUF, the APL pointer, is loaded with the address contained in the current 
RPL's RPLNEXT field, which is the address of the next buffer in the buffer chain, or 
0 if there is none. 

The sequential access and asynchronous processing indicators are turned on. 

VTAM parameter register 0 is loaded with the request type that was stored in the 
RPLREQ field by the routine that submitted the APL to the APL scheduler. 
(MVRPLXEC is entered by any SNA routine that requires that an APL be scheduled. 
The request type field may contain any of the request types used by JES2, such as 
send, receive, reset-continue-specific, or close destination.) 

Register 13 is loaded with the address of a standard 18-word save area (also 
contained in the APL, at RPLSAVEA) for use by VTAM. Register 13, the PCE base 
register, is reloaded with the PCE address from the APL when HASPSNA is 
reentered. 

Finally, the access control block (ACB) is referenced, the address of the interface 
routine in VTAM contained in ACBINRTN is obtained, and VTAM is entered through 
a BALA instruction. 

When VTAM returns control to JES2, the RPL scheduler restores the PCE address to 
register 13. VTAM return code register 15 is tested. If the return code is 0, control 
is returned to the calling processor. If the return code is nonzero, the requested 
operation was not started successfully; MVRPLXEC determines whether a 
disastrous error has occurred or the request can be tried again. 

If the return code returned by VTAM is not X'04', lo~ i~x;-04' but the r~-~~~ery-
action return code returned in register 0 is not lower than X'14', an unrecoverable 
error (possibly a JES2 logic error) has occurred. The routine branches to $R01, at 
which point the $ERROR macro instruction is issued to cause the JES2 catastrophic 
error routine to be entered with JES2 error code $R01. If there is no error, a 
compare and swap instruction is used to add the buffer containing the APL to the 
line manager's $RJECHEQ queue in order to cause the APL to be rescheduled by 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-321 



--------- -~- -~--

HASPS NA "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

the line manager. The line manager is posted for work ($POST WORK), and the 
routine returns to the calling processor. 

MVRPLKOQ: Outbound Queue Restart Subroutine 
MVRPLKOQ is entered from the line manager's VTAM interface/request end 
processor, MSNAPROC, to determine whether the outbound queue needs to be 
restarted. The ICEOUTBF and ICEOUTHD fields are tested. If ICEOUTBF is 
nonzero, an outbound request is active in VTAM and no restart is required; control 
is returned to the request end routine. Similarly, control is returned if ICEOUTHD 
contains 0, indicating that no request is available to be scheduled. However, if no 
outbound request is being processed by VTAM and ICEOUTHD contains the address 
of a buffer ready for processing, the outbound queue is restarted (or purged if the 
session is aborting). 

The ICEABORT and ICECLOSE indicators in field ICESTAT are tested. If the session 
is being terminated, MVRPLKOQ branches to MVFREEOQ to release the buffers on 
the outbound queue. Otherwise, the first buffer on the queue is removed, the 
current contents of the MBUF register are stored in this buffer's RPLNEXT field, and 
MVRPLKPQ branches to MVRPLXIN to cause the RPL contained in that buffer to be 
scheduled. Because MVRPLXIN replaces the RPL address passed to it in MBUF 
with the contents of the RPLNEXT field, the net effect is that the contents of the 
MBUF are not changed by the call of MVRPLKOQ. When MVRPLKOQ is invoked 
from the line manager's request end routines at MSNAPSND, the initiation of the 
next send by MVRPLQOK does not destroy the address (in R4) of the just-completed 
send being handled at MSNAPSND. 

MVRPLGET: RPL Buffer Get Subroutine 

3-322 JES2 Logic 

MVRPLGET is entered when a SNA routine requires a VTAM RPL buffer, that is, a 
buffer in which a VTAM RPL is to be built and initialized. 

A get buffer request ($GETBUF TYPE= VTAM) is executed, with MVRPLNO specified 
as the address to which control is to be returned if no buffer is immediately 
available. MVRPLNO, if entered, waits until a buffer has been released by another 
processor ($WAIT BUF). The ICECNCEL indicator is then tested because an 
exception response for a previous transmittal may have been received by the 
calling outbound processor while that processor was waiting for buffers. If 
ICECNCEL is on, MVRPLGET branches to label MVREQCAN to abort the current 
$EXTP request. Otherwise, MVRPLGET is reentered to repeat the get-buffer 
request, attempting to acquire the just-released buffer; this cycle is repeated, if 
necessary, until a buffer is actually obtained. 

When a buffer has been obtained, the address of the access control block (ACB) is 
extracted from the logon DCT and stored in the RPL. Next, R4 is tested to determine 
whether a current buffer existed when MVRPLGET was entered. If so, the address 
of the new buffer is placed in the RPLNEXT field of the current buffer. If not, the 
address of the new buffer is placed in MBUF and in the DCTBUFAD field of the DCT. 
After the address of the new buffer has been stored, control is returned to 
MVRPLGET's caller. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

_/ 



( 

( 

f 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

MVFREEIQ: Free ICE Inbound Queue Subroutine 

HASPSNA 

MVFREEIQ is entered from the session abort subroutine to release the session 
buffers that are on the remote console processor queue (based on $MCONMSG), on 
the network path manager queue (based on $NPMVINQ), or on the interface control 
element (ICE) inbound queue. The first part of MVFREEIQ scans the remote console 
processor queue. Because BSC and SNA buffers are intermixed on the queue and 
do not use the same chain fields, the routine tests each buffer's type and loads the 
address of the next buffer from the appropriate chaining field for that type. If an 
SNA buffer belonging to the session being aborted is found (that is, a buffer whose 
RPLICE field contains the same value as RS), the buffer is removed from the queue. 
The contents of the R4 are stored in the buffer's chain field, and R4 is loaded with 
the address of the buffer. At exit from the scan of the remote console processor 
queue, MVFREEIQ begins the scan of the network path manager queue at label 
MVFRENPM. If a buffer belonging to the session being aborted is found, the buffer 
is removed from the queue. The contents of R4 are stored in the buffer's chain field, 
and R4 is loaded with the address of the buffer. At exit from the scan of the network 
path manager queue, R4 contains either the same value it did on entry to MVFREEIQ 
(assumed to be 0), or the address of the first of a chain of RPLs removed from the 
remote console processor queue and the network path manager queue. 

In the second part of MVFREEIQ, any RPLs pointed to by R4 are concatenated with 
the chain of RPLs on the ICE inbound queue. If the resulting chain is not empty, the 
number of buffers queued is determined, and the value in ICEINCT is reduced by 
that amount. (ICEINCT contains the count of the number of inbound data and 
synchronous data flow control requests queued on the ICE inbound queue or the line 
manager's work queue). 

Because ICEINCT is increased in the asynchronously scheduled RPL exit 
(VRPLAOK), ICEINCT is updated through compare and swap of the fullword whose 
rightmost halfword is ICEINCT. The leftmost halfword is the inbound activity limit 
field, ICEINLM; the compare and swap instruction operates on the label ICEINLM, 
although the value of this high-order halfword is not changed when the low-order 
halfword is decreased. 

Finally, MVFREEIQ clears the ICEINHD and ICEINTL fields, removing the buffers 
from the queue, and exits to MVFREPRG to release the dequeued buffers; 
MVFREPRG returns control to the MVFREEIQ caller. 

MVFREEOQ: Free ICE Outbound Queue Subroutine 
MVFREEOQ is entered from any RTAM routine that finds that the current session is 
being terminated. MVFREEOQ removes buffers from the ICE outbound queue and, if 
necessary, adjusts RTAM counters that were increased when those buffers were 
placed on the outbound queue. 

The outbound queue pointer, ICEOUTHD, is cleared, removing any existing buffers 
from the queue. Then, if that queue was empty and no current (not yet queued) 
buffers exist, control is returned to the invoking routine. If there is a current buffer 
or the outbound queue was not empty, a single buffer chain is formed, consisting of 
the current buffer and/or the contents of the outbound queue. Because the RPLs 
contained in these buffers are not to be scheduled for execution, each buffer is 
examined and these actions are taken: 

• If the RPL represents a response to a data flow control request that was 
received inbound, it is ignored. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-323 



HASPS NA "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• If the RPL represents the response to an inbound data RU, it is considered to 
have been sent, because the session is being terminated. The inbound request 
count, ICEINCT, is decreased by 1. 

• If the RPL represents an outbound request (rather than a response), the 
outbound queue length counter, ICEOUTCT, is decreased by 1 to reflect the fact 
that this request will not be sent. 

• If the outbound request was a data RU that was to be sent as last-in-chain or 
only-in-chain, in which case it carries a request for definite response, the count 
of outstanding requests requiring definite responses (ICERSPCT) is decreased 
by 1. 

When all buffers in the chain have been processed, MVFREEOQ exits to MVFREPRG 
to release the buffers; MVFREPRG returns control to the routine that invoked 
MVFREEOQ. 

MVFRELBF: Release Inbound Buffer Routine 

3-324 JES2 Logic 

MVFRELBF is used to release teleprocessing buffers and to generate responses for 
those requests for which a response is required. Upon entry, register MBUF and 
field DCTBUFAD contain the address of the buffer to be freed. The buffer is 
disassociated from the owning DCT; the buffer address field of the DCT (DCTBUFAD) 
is loaded with the address contained in RPLNEXT, the address of the second buffer 
on the DCT chain. When the passed buffer is the only buffer in the DCT chain, the 
DCTBUFAD is set to 0. Next, MVFRELBF sets to 0 the RPLNEXT field of the current 
buffer and enters MVFRESPD. 

MVFRESPD: This is a secondary entry point to MVFRELBF, used to release 
successfully processed input buffers. If a definite response is required, a positive 
response is sent; if only exception responses are desired, the buffer is simply freed. 
The exception-response-only indicator, RPLEX, is tested; if the indicator is on, 
further response testing is bypassed, and MVFRESPD branches to label MVFREEIN 
to release the buffer without sending a response. If RPLEX is off, entry is at label 
MVFRESPN. 

MVFRESPN: This secondary entry point to MVFRELBF (in addition to being entered 
from MVFRESPD when the RPLEX indicator is not on) is used to send the required 
form of positive response before releasing the buffer. The buffer passed to 
MVFRELBF has been used for a receive operation with a definite response 
requested. MVFRESPN changes the RPL type (RPLSRTYP) from a receive to a send 
response and tests the definite response type indicator, RPLVTFL2. If definite 
response 1 or 2 was requested, MVFRESPN branches to MVRPLRQN to schedule the 
response RPL for transmission. (JES2 does not support the no-response mode of 
operation. If neither response type has been requested, MVFRESPN enters 
MVFREEIN to release the buffer without sending a response. When MVFRESPN is 
entered, at least one form of definite response is always requested.) 

MVFRESPN is used to dispose of unsuccessfully-processed buffers, provided that 
the caller sets the RPLEX indicator. If a definite response is permitted, the correct 
type of exception response (type 1 or 2) is sent. 

MVFREEIN: First, the RPLDFASY indicator is tested. If it is on, this RPL represents 
an asynchronous request and a branch to MVFREPRG is taken. Otherwise, the RPL 
being released represents a data transmission or transmission of a synchronous , , 
data flow control request. MVFREEIN decreases by 1 the count of outstanding 
inbound data RPLs; that count was increased by 1 when the RPL now being 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

processed was placed on the line manager's work queue, $RJECHEQ, by the RPL 
exit. Next, the status of the ICERCVSP indicator is tested to determine whether the 
session has been set to receive-specific mode. (All sessions normally operate in 
receive-any mode. The RPL exit routine issues a RESETSR request to switch a 
session to receive-specific mode if the session's inbound queue becomes 
congested. Because JES2 never issues a receive-specific request to VTAM, placing 
a session in receive-specific mode has the effect of stopping JES2 from receiving 
further inbound data on that session until the number of inbound requests already 
outstanding has been reduced to an acceptable level.) If the session is in 
receive-any mode, MVFREEIN branches to MVFREPRG to release the buffer. 

If the session has been placed in receive-specific mode, MVFREELM determines 
whether receive-any mode can be reentered. Receive-any mode can be entered if 
the number of outstanding inbound data requests (ICEINCT) does not exceed 
one-half the session inbound limit (ICEINLM). If the inbound queue still exceeds 
one-half the session limit, MVFREEIN branches to MVFREPRG to free the buffer. If 
not, MVFREEIN converts the current buffer into a RESETSR (reset mode to 
receive-any) request and branches to MVRPLQOB to schedule the request; 
MVRPLQOB returns control to the caller of MVFREEIN. 

MVFREELM: Receive Any Level Check Subroutine 
MVFREELM is entered from HASPSPRO and MSNAPDMG. MVFREELM attempts to 
keep the number of receive-any RPLs available to VTAM at a maximum that is 
defined by the limit MDCTRALM. (VTAM can move data directly into a user data 
area without intermediate moves to and from VTAM's pageable buffer pool, 
provided that a receive RPL is active. It is desirable, therefore, that active receive 
RPLs always be available.) 

At entry, register MBUF is tested. If that register contains the address of a 
teleprocessing buffer, MVFREELM is functionally equivalent to MVFREPRG and 
branches to MVFREPR1 to purge the buffer. If MBUF contains 0, this call furnishes 
an early opportunity to get an additional receive-any RPL into the system if one is 
needed. MVFREELM accesses the logon device control table (DCT) and compares 
the total number of buffers currently active in VTAM as receive-any RPLs 
(MDCTRACT) with the limit MDCTRELM. If the limit has been reached, no additional 
buffers are assigned, and returns to its caller. 

If the limit has not been reached, MVFREELM attempts to get another buffer 
($GETBUF TYPE= VT AM), returning to the caller if the attempt is unsuccessful. If a 
buffer is obtained, however, MVFREELM stores the address of the access control 
block (ACB) in the buffer's RPL and branches to MVFRECQE. 

MVFREOUT: Free Outbound Buffer Subroutine 
MVFREOUT is entered from the SNA PUT or CLOSE routines when a buffer 
originally intended for outbound use is no longer required. The buffer is removed 
from the remote DCT's RPL chain, and its chain pointer (RPLNEXT) is cleared. 
MVFREOUT then enters MVFREPRG to release the buffer. 

MVFREPRG: Buffer Purge Routine 
MVFREPRG is the main entry point for buffer purging. MVFREEIN and MVFREOUT 
(and routines that enter those routines) dispose of a single buffer. MVFREPRG, 
however, can dispose of multiple buffers, depending upon the contents of MBUF (the 
first buffer in the chain, if any) and the RPLNEXT field of the RPL of each buffer in 
the chain (if any). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-325 



HASPSNA 

3-326 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

At entry, R4 is tested. If that register contains 0, the buffer chain has no members, 
and return to the caller is immediate. Otherwise, the register contains the address 
of a buffer to be released and MVFREPR1 is entered. 

MVFREPR1: MVFREPR1 is entered from MVFREPRG, or from any SNA routine that 
can bypass the null-chain test at MVFREPRG because it has already been 
determined that R4 points to at least one buffer to be released. The address of the 
logon OCT is obtained from the ACB. If the logon OCT is not active, MVFREPR1's 
function of making buffers available for receive-any use is not required; MVFREPR1 
branches to MVFREPR2 to free the buffer to which R4 points. If the logon OCT is 
active, MVFREPR1 performs the processing required for buffers in receive-any use. 

A buffer in receive-any use is always in the receive-any queue (the queue of buffers 
pointed to by field MDCTRABF of the logon OCT and chained together through RPL 
fields RPLFCHN and RPLBCHN). While a buffer is active (that is, while the RPL it 
contains is being processed by VTAM) the buffer appears only on the receive-any 
queue. After the buffer is returned to JES2 by VTAM and until it is freed, it also 
appears on an additional queue, chained through the RPL's RPLNEXT field. (The 
use of different chain pointers makes it possible for the same buffer to be a member 
of two different queues. The additional queue on which the buffer appears depends 
upon the stage of JES2 processing that has been reached, as follows: 

• When a receive-any buffer is returned to the RPL request completion exit 
(VEXITRPL) by VTAM, the exit routine places the buffer on the line manager's 
110 completion queue, $RJECHEQ. 

• When the line manager accepts the contents of $RJECHEQ for processing (at 
MBUFSRCH in the general event handler section at entry to the line manager), 
the buffer becomes a member of the line manager's work queue. This queue 
consists of the former contents of $RJECHEQ, reordered into first-in-first-out 
order; the queue header is MBUFQUE in the line manager processor control 
element (PCE) work area. 

• When JES2 processing of the buffer contents is complete, the buffer is placed on 
the receive-ahead queue, the queue of buffers available for receive-any use 
when required by VTAM. The queue head is field MDCTRQBF in the logon OCT. 

To perform receive-any buffer processing, MVFREPR1 compares the count of 
receive-any RPLs active in VTAM (MDCTRACT) with the limit for active receive-any 
RPLs (MDCTRALM). If the count of buffers in active use is lower than the limit, the 
buffer now being processed is retained, reinitialized as a receive-any buffer, added 
to the receive-any queue, and passed to VTAM. 

If the count of active RPLs is at its limit, the buffer is not required for immediate 
receive-any use but may be required for future (receive-ahead) use. The count of 
buffers designated for receive-ahead use, MDCTRQCT, is compared with the limit, 
MOCTRQLM. If the count is less than the limit, a branch to MVFRECQO occurs. 
Otherwise, both the active count and the count of receive-ahead RPLs are at their 
limits, and MVFREPR2 is entered. 

MVFREPR2: If the logon DCT is inactive, or enough buffers for future use have 
already been assigned, MVFREPR2 tests to see if a SWEL exists. (A SWEL exists 
when the buffer represents a logon in progress.) If a SWEL exists, a $SEAS is 
issued to analyze the completed SAF request and free resources. The return code 
is ignored; the SWEL, WAVE, and token area are freed. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

Following the SWEL processing (or if there is no SWEL), MVFREPR2 loads R4 with 
the contents of the RPLNEXT field of the current buffer, then issues a $FREEBUF 
macro instruction to release the current buffer. On regaining control, MVFREPR2 
branches to MVFREPRG to process the next buffer on the chain. (If the just-freed 
buffer was the last or only in the buffer chain, its RPLNEXT field contained 0. 
MVFREPRG is entered with R4 containing 0 and returns control to the caller.) 

MVFRECQE: If the buffer being processed is to be added to the active queue, the 
high-order byte of its address in R4 is modified, and processing continues at 
MVFRECQO. (The effect of this modification is described under "MVFRECQ1" in this 
section.) 

MVFRECQO: If the count of available buffers is at or below the lower limit, 
MVFRECQO does not release the current buffer but does modify its RPL. RPL 
options set are ANY (except inbound data from any source), and Q (wait for data if 
none is immediately available); the RPL is marked as available for synchronous 
(normal request), asynchronous (expedited request), or response use, and the 
address of the buffer's data area is placed in the RPL. The normal sequence 
indication is set for the line manager's use, the address of the logon OCT is stored 
in the RPL, and the RPLREQ (RPL type) field is set to receive. MVFRECQO then 
enters MVFRECQ1. 

MVFRECQ1: The current buffer is added to the head of the active queue pointed to 
by MDCTRABF, and the contents of R4 are examined. If the buffer just added to the 
active queue is for immediate use, the high-order byte of R4 will have been set to a 
nonzero value, as in the case where entry to this point in the routine is by way of 
MVFRECQE, described earlier. A branch to MVFRECVX occurs, leading to entry to 
MVRPLXEC and execution of a receive-any request. 

If an immediate receive-any is not required, the current buffer is added to the chain 
of buffers queued for future use-the queued ahead queue. MVFRECQ2 is entered. 

Note that a compare and swap instruction is used to update both the MDCTRABF 
and MDCTRQBF fields, because the RPL exit routine, which is scheduled 
asynchronously, may change the contents of either field. The RPL exit routine does 
not change the address portion of MDCTRABF, but may change the active 
receive-any count (MDCTRACT) in the high-order byte. The exit routine does, 
however, change both the address portion of MDCTRQBF and the count field 
(MDCTRQCT) when it removes an RPL from the receive-ahead queue and passes it 
to VTAM, making it active. 

MVFRECQ2: The buffer is added to the head of the queue pointed to by the 
MDCTRQBF field, and the count of buffers queued for future use is increased by 1. 
MVFREPRG is entered with the RPLNEXT contents of the current buffer in R4. The 
next buffer in the chain is added to the appropriate queue, or MVFREPRG returns to 
the caller if no further buffers remain to be processed. 

MVFRECVX: This entry point is used to cause a receive-any request to be presented 
to VTAM. If a single buffer is passed to this entry point, an immediate branch to 
MVRPLXBR occurs; the RPL is scheduled and control returned to the caller. If a 
chain of buffers is involved, MVFRECVX links to MVRPLXBR to schedule each RPL, 
then branches to MVFREPRG to handle the rest of the chain. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-327 



HASP SN A "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SNA $EXTP Subroutines / '" 
The SNA $EXTP subroutines are used to build, process, and analyze: function ,/ 
management headers, outbound requests, compaction headers, SNA NJE RIDs, and 
data streams. 

MVFMHBLD: Function Management Header Build Routine 

3-328 JES2 Logic 

The function management header (FM header) is a control area, defined by systems 
network architecture (SNA), that defines the logical device that is to receive a data 
stream and describes some of the characteristics of that data stream. The FM 
header is sent within a request unit, like data, and can be accompanied by data. 
JES2, however, never sends (but may receive) data in the same request unit that 
contains an FM header. 

For SNA remote job entry (RJE), every outbound data set transmitted by JES2 
begins and ends with an FM header. The beginning FM header contains a begin 
destination select (BOS), the selected device type (printer, punch, exchange 
diskette, basic exchange diskette, or console), and specifies the device's 
sub-address (for example, 0 for Rn.PR1). In addition, the FM header indicates the 
outbound data stream characteristics (compression, compaction) and for punch 
exchange and basic exchange devices, the logical record length of the data to 
follow. 

By architectural rules, the BB and EB indicators mark the beginning and end of a 
unit of work, where the sender and the receiver have a common interpretation of 
what constitutes a unit of work. JES2 defines that unit of work as a data set: a unit of 
job output that would usually be delimited by output separators. The architecture 
also defines BOS and end device select (EDS) as the delimiters for a data stream to 
be sent to a single device. JES2 further defines BOS and EDS as marking (like BB 
and EB) the beginning and end of a data set. 

EDS marks the normal end of a data stream, indicating that the complete data set 
has been transmitted. The suspend device select (SOS) indication marks the 
temporary end of a data stream, which will be resumed later; the resume device 
select (RDS) indication marks the resumption of a suspended data stream. Finally, 
abort device select (ADS) is the indication sent to terminate a data stream before 
that stream has been fully processed; this indication is given in such a way that 
transmission of that data stream cannot be resumed. 

MVFMHBDS: This entry point ot the FM header build routine is used by the SNA 
$EXTP OPEN service routine, SNAOPEN, when an outbound data set is opened. The 
BOS indicator is set, and the bind session image is examined. The compression 
indicator, DCTPPRES in field MDCTFMT of the device control table (OCT) of the 
remote device, is turned on if all of the following are true; alternate code (rather 
than EBCDIC) is not to be used, the bind session image indicates that JES2 may 
compress outgoing data, and the device OCT indicates that the device accepts 
compressed data. The address of the OCT is stored in the interface control element 
(ICE), and the ICEALLOC indicator is turned on, indicating that the session is in-use 
(allocated). MVFMHBLD is then entered. 

MVFMHBLD: This entry point is used by all SNA routines when an FM header is 
apparently required. The bind session image is examined, and if the common 
protocol section indicates that FM headers are not to be used, a branch to 
MVFMHNOP occurs, bypassing FM header construction. Otherwise, a prototype FM 
header is moved into the current RU. The prototype defines the FM header as type 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

1 (device selection or allocation) and defines its length as 6 bytes (fixed, for type 1). 
The reserved fields of the header are set to 0 by the prototype. 

The prototype is then initialized to form the specific header required. The data 
stream code (for example, BOS if MVFMHBLO was entered through MVFMHBOS) is 
stored in the properties field, FMHPROPS, of the FM header; this code is passed in 
register 1 to MVFMHBLO by the invoking routine. The data stream code is also 
placed in field ICESNOST, the send status field of the ICE, to indicate that 
transmission of an FM header is pending. MVFMHBLO examines the OCT and turns 
on the compression and compaction indicators in the FM header if the data sent to 
the device can be compressed or compacted. The contents of the MOCTSEL field, 
which indicates the remote device type and logical sub-address of the device, are 
placed in the header. For punch, exchange, and basic exchange devices the logical 
record length of the data to follow is placed in the BOS header. Finally, the length of 
the FM header is stored in field RPLRLEN of the RPL, and MVFMHNOP is entered. 

MVFMHNOP: The ICEOCPNO indicator is tested. If it is on, end-of-chain is pending 
and this FM header is to be sent; MVFMHNOP branches to MVRPLSNO, which sends 
the FM header and returns control to the caller of MVFMHNOP. Otherwise, the FM 
header has been constructed but is not to be sent at this time, and MVFMHNOP 
returns control to its caller. 

MVREQRSP: Wait for Response Subroutine 
MVREQRSP is entered when a SNA routine has sent a request outbound indicating 
that a definite response is required. MVREQRSP waits tor the required response 
and then determines whether the chain that included the request was processed 
successfully or unsuccessfully. 

MVREQRSP: This entry point is used by the $EXTP PUT and $EXTP CLOSE service 
routines, SNAPUT and SNACLOSE. It is invoked in two situations. 

In the first case, a processor has issued a PUT request, has regained control, and is 
waiting. HASPSNA receives and records an exception response to the current chain 
tor that processor. When the processor reenters HASPSNA through a PUT or 
CLOSE request, the corresponding service routine tests the ICECNCEL indicator for 
the session and finds that an exception response has been received. MVREQRST is 
entered to wait for the end-of-chain RU to be purged or tor the cancel request to be 
acknowledged. 

In the second case, the processor is waiting (not in HASPSNA and between chains) 
when a SIGNAL is received for this session by the line manager. The line manager 
sends a stand-alone change-direction request on the session's behalf, requiring a 
response. Before the response arrives, the processor is posted ($POST) and 
reenters HASPSNA. At entry, the PUT or CLOSE routine finds the ICEWTRSP 
indicator on, indicating that a response is outstanding. The service routine enh'lrs 
MVREQRSP to wait for the response before processing the PUT or CLOSE request. 
(In the case of change direction, receipt of a positive response leads to an implied 
suspension of the data stream, with a further wait for stream resumption.) 

At entry, MVREQRSP checks the ICECNCEL indicator, branching to MVREQRS1 if it 
is on. If it is off, MVREQCAN is entered. 

MVREQCAN: This entry point is used by other routines within HASPSNA that wait at 
points where an exception response might be received. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-329 



HASPS NA 

3-330 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

After such routines have been posted ($POST), they test the ICECNCEL indicator. If ( '\ 
it is on, the normal processing path for such a routine is abandoned and ·."' / 
MVREQCAN is entered. 

MVREQCAN transfers the calling routine's return address from R6 to R2 and links to 
MVFREPRG to discard any buffers queued to the DCT for the remote device. The 
DCTBUFAD field in the DCT is cleared, and the MVREQRS1 routine is entered. 

MVREQRS1: MVREQRS1 checks the ICEWTRSP indicator. If it is off, the chain is 
complete and MVREQRS1 branches to MVRSTATO to update the session status. If 
ICEWTRSP is on, the return address in R6 is saved in DCTEWF and MVREQWT is 
entered to wait for a response, which is the purging of the end-of-chain RU or 
acknowledgment of the CANCEL request. 

MVREQWT: This entry point is used by the RPL scheduler, MVRPLSND, which has 
already saved R6 in the DCT. The ICEWTRSP indicator in the session's send status 
field, ICESNDST, has already been turned on to show that a response is outstanding 
for this session. MVREQWT waits ($WAIT WORK) for the response to be received. 
The processor control element (PCE) representing the processor on whose behalf 
MVREQWT was entered is posted by the line manager when the response is 
received, and control is returned to MVREQWT. On regaining control, MVREQWT 
tests the ICEWTRSP indicator. If the indicator is still set, the event that caused the 
$POST was not the receipt of a response for which MVREQWT was waiting, and the 
wait is repeated until ICEWTRSP is turned off. 

MVRSTATO - Responses to Outbound Requests: Processing continues at this label, 
which is also used as an entry point by the request end processor. The ICECNCEL 
indicator in field ICESNDST is tested. If that indicator is on, the request was not 
accepted and a branch to MVRSTATC occurs. Otherwise, a branch to MVRSTATE is 
taken, with the following qualification. 

If the accepted outbound chain carried a begin-bracket, the ICERTRPD indicator 
representing the ready-to-receive-pending state is cleared. Once an outbound 
bracket has been successfully initiated, it no longer serves any purpose for the 
remote work station to send a RTR. 

MVRSTATI - Responses to Inbound Requests: This entry point is used by SNA 
routines to dispose of an inbound buffer by using that buffer to send an outbound 
response to the request. At entry to MVRSTATI, register 15 contains the address of 
the HASPSNA subroutine that disposes of the inbound buffer. This subroutine saves 
the return address of caller, enters the caller-designated buffer disposal routine, 
reloads the return register, and continues. MVRSTATI checks to see if this is an 
SNA NJE session; if it is, MVRSTATI branches to label MSNAXCLS to terminate the 
session. Otherwise, the receive-status field ICERCVST in the ICE is examined. If 
the ICECNCEL indicator is off, an incoming RU chain was received successfully and 
accepted, and processing continues at MVRSTATE. 

If the ICECNCEL indicator is on, the caller of MVRSTATI is in the process of 
cancelling a chain of RUs because an error has been detected or the sender has 
requested that the chain be cancelled. In this case, the ICEINCHN indicator is 
tested. If ICEINCHN is on, the chain has not yet ended, and MVRSTATI branches to 
MVREQBUF to look for the next buffer in the chain. The session remains in 
purging-chain state. If ICEINCHN is off, the chain is ended. Updating the session 
status to rescind the bad chain continues at MVRSTATC and MVRSTATE. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

I 
./ 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPS NA 

MVRSTATC: This provides an entry to MVRSTATE for chains that indicate that an 
exception response was received or sent. MVRSTATC replaces the address of the 
good chain transition table in register 14 with the address of the bad chain transition 
table. 

MVRSTATE: MVRSTATE is common to inbound and outbound request processing 
and to successful and unsuccessful completion. MVRSTATE stores a session state 
indicator in ICESNDST for outbound requests, or ICERCVST for inbound requests, 
and branches to the appropriate entry point for further processing. Figure 3-8 
summarizes, with respect to the contents of the RU that was sent or received, the 
session state that is indicated and the entry point at which processing resumes. 
These entry points are described on the following page. 

SUCCESSFUL UNSUCCESSFUL 

New Session Processing New Session Processing 
RU Contained' State• Continues at3 State• Continues at& 

RDS request ICEINSTR MVRSTIST ICENOFMH MVRSTSDS 
EDS request ICENOFMH MVRSTEND ICEINSTR MVRSTIST 
BDS request ICEINSTR MVRSTIST ICENOFMH MVRSTPAB 
ODS request ICENOFMH MVRSTEND ICENOFMH MVRSTPAB 
SDS request ICENOFMH MVRSTSDS ICEINSTR MVRSTIST 
ADS request ICENOFMH MVRSTADS ICEINSTR MVRSTIST 
CDS request ICEINSTR MVRSTIST ICEINSTR MVRSTIST 
Out-of-stream data ICENOFMH MVRSTNOP ICENOFMH MVRSTNOP 
In-stream data ICEINSTR MVRSTIST ICEINSTR MVRSTIST 

1 RU Contents 
RDS: Resume destination select 
EDS: End destination select (normal end) 
BDS: Begin destination select 

SDS: Suspend destination select 
ADS: Abort destination select (abend) 
CDS: Continue destination select 

ODS: One-chain destination select (BDS and EDS) 

• Out-of-stream data: Any data RU received or sent when no data stream is established; this is an 
implied beginning or resumption of a data stream. 

• In-stream data: Any data RU received or sent as part of an ongoing data stream (the normal case). 

2Session States 

• The ICEINSTR state exists when a data stream has been established on this session. BDS, CDS, or 
RDS has been sent and accepted; CDS, SDS, EDS, or ADS has not been sent or has been sent but 
rejected. 

• The ICENOFMH state exists when no data stream is currently established on this session. BDS or 
RDS has not been sent and accepted. No previous data stream existed, or a previous SDS, EDS, or 
ADS was sent and accepted. 

3FM-Header-Pending States 

The bit combinations B'OOOO', in the 4 left-most bits of field ICERCVST or ICESNDST, represent states 
where an FM header is pending (has been sent or received but not yet confirmed by a positive response) 
as follows: 

0000 - Resume destination select 
0001 - End destination select 
0010 - Begin destination select 

0011 - One-chain destination select 
0100 - Suspend destination select 
0101 - Abort destination select 
0110 - Continue destination select 

The FM-header-pending states for RDS and BDS resolve to in-stream after successful chain completion, 
or to out-of-stream after chain failure. The FM-header-pending states for EDS, ADS, and SDS resolve to 
out-of-stream after successful chain completion and to in-stream after chain failure. The 
FM-header-pending state for ODS resolves to out-of-stream regardless of the outcome. The FM header 
pending state for CDS resolves to in-stream regardless of the outcome. 

Figure 3-8. MVRSTATE Decision Table 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-331 



HASPS NA 

3-332 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

MVRSTPAB: The processor that issued the $EXTP request to cause this RU to be 
sent or received is to be aborted. The DCTABORT indicator is set, and processing 
resumes at label MVRSTEND. 

MVRSTADS: A request to abort a data stream has been processed successfully. 
MVRSTADS sets the DCTDELET indicator to cause the processor to delete the job 
that produced the current data set. MVRSTADS then branches to MVRSTEND. 

MVRSTIST: This entry point is reached either when acceptance of a good chain 
causes the in-stream state to be entered, or when rejection of a bad chain causes a 
reversion to the in-stream state. The state change set by the FM header has already 
been set by the MVRSTATE routine; MVRSTIST handles the implied stream state 
change represented by end-bracket or change-direction indicators: 

• For good chains, an end bracket is an implicit abort of the current stream; a 
change-direction is an implicit suspension of the current stream. (In this usage, 
explicit means with an FM header and implicit means without an FM header.) 

• For bad chains, an end-bracket carried on the CANCEL RU instruction is an 
implicit abort of the current stream; a change-direction carried on the CANCEL 
RU is an implicit suspension of the current stream. The bracket direction 
indicators carried on the failing chain itself are ignored. 

MVRSTIST tests the ICEEBPND and ICECHDIR indicators. If both are off, a branch to 
MVRSTNOP occurs. If either is on, suspension of the data stream is implied. The 
ICE is marked as out-of-stream with no FM header pending. 

MVRSTIMP: Register 0, which is stored in the ICESDCT field, is loaded with the 
implied suspend indication (ICESIMPL and ICESUSPD both on). MVRSTSDS is 
entered at a point past where MVRSTIMP reinitializes register 0. 

MVRSTSDS: If this entry point is entered directly, rather than from label 
MVRSTIMP, an explicit suspend is indicated. The suspend indication, ICESUSPD, is 
loaded into register 0. In either case, suspend indicator DCTSUSP in field 
MDCTSTAT is turned on, and the DCT for the remote device is pushed down onto 
the session's suspend queue. The address of the DCT is placed in field ICESDCT on 
the ICE, and the balance of the queue is chained from the DCT's MDCTSDCT field. 
The implicit or explicit suspend indication in register 0 is stored in leftmost byte of 
ICESDCT. Processing continues at MVRSTEND. 

MVRSTEND: The pointer to the ICE in the DCT is cleared, if entry is from other than 
label MVRSTSDS; this is because the remote device is no longer the user of this 
session. Regardless of the point of entry, the pointer to the DCT in the ICE is 
cleared. The allocated indication in the ICE, ICEALLOC, is turned off, and the 
ICENOFMH indicator is tested. If ICENOFMH is on, the suspension was caused by a 
request to start a different data stream in the same direction of flow, typically, a BDS 
request not preceded by an SDS request. If ICENOFMH is off, this is an explicit 
suspension, or an implicit suspension caused by receipt of an end-bracket or a 
change-direction request. A branch to label MVRSTNOP is then taken. 

MVRSTNOP: If ICECHDIR indicates that a change of direction is to be performed, 
the current setting of the ICEINBND, ICEOUTBD, and ICEREVFL indicators is 
reversed, changing the direction of flow. After the change of direction, or if no 
change was requested, the ICEBBPND and ICEEBPND indicators are tested. If both 
are on, a change or bracket state is being requested, and the setting of ICEINBRK is 
reversed. Next, any pending conditions (ICEBBPND, ICEEBPND, and ICECHDIR) are 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPS NA 

MVDECFMH: 

MVDTYPE1: 

cleared, and the ICECNCEL flag is tested. Processing continues at MVRSTRMO, if 
this chain is not being cancelled. 

If ICECNCEL is on, showing that the chain is being cancelled, it is cleared. The 
caller's base register, MBASE1, is then tested; if the high-order bit is on, the caller 
is a processor that issued a $EXTP CLOSE request or if the caller is the line 
manager's request end processor. A branch to label MVRSTRMC then occurs. The 
MDCTTYPE indicator, DCTPOUTB, is checked to positively identify the caller as a 
processor that has issued an $EXTP OPEN or $EXTP PUT request. If DCTPOUTB is 
off, the data stream is inbound, and the routine branches to label MVRSTRMC. 
Otherwise, the caller's return register is adjusted to point to the abnormal (condition 
code 0) exit routine, MVTAMXAB, to indicate to the calling processor that the OPEN 
or PUT request has failed. Finally, DCTFLAGS are tested to distinguish between 
status indication X'0811' (associated with the 3775 CANCEL key) X'0825' (associated 
with the 3775 STOP JOB key), and other error types. If either of the two specific 
status indications is found, the DCTFLUSH indicator in field MDCTSTAT is set to 
cause any further PUT processing (for instance a printer-deleted message and the 
trailer page) to be suppressed. 

MVRSTRMC: Processing of a cancelled chain is concluded by a branch to 
MVRSTRM1 to find the next data stream. If the session is still within the bracket, the 
processing of a cancelled chain is concluded by a branch to MVRSTRM1 to start the 
next data stream. If the failure was caused by an actual error rather than bracket 
contention, a branch to MICEREQZ is taken to send a null RU to end the chain. 

MVRSTRMO: Entry at this label normally occurs after successful chain completion. 
If the session is not within brackets, MVRSTRMO branches to MICEAEB to abort any 
suspended streams possibly cut short by a premature end bracket. 

MVRSTRM1: If the ICEINSTR indicator shows that a data stream is still established, 
control is returned to the caller. If no stream has been established, MVRSTRM1 
enters MVREQSTR to attempt to start a new stream. 

SNA Function Management Header Decode Routine 
MVDECFMH is entered when a FM header is received through normal SNA receive 
processing. Upon entry, the FM header is checked to ensure that it has arrived as a 
first-of-chain request unit and that the common bind protocols allow the use of FM 
headers. Next, the type of FM header is determined and the appropriate routine is 
invoked according to the following table. 

FMH type Routine 

0 Invalid 
MVDTYPE 1 

2 Invalid 
3 MVDTYPE 3 
4 MVDTYPE 4 

Type 1 FM Header Processing Routine 
MVDTYPE1 is entered when a type 1 FM header (data stream header) is received 
through the normal SNA receive processing. First, the specific type of FM header is 
determined. Valid type 1 FM headers are: 

RDS - Resume destination select 
EDS - End destination select 
BDS - Begin destination select 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-333 



HASP SN A 

3-334 JES2 Logic 

ODS 
sos 
ADS 
CDS 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

- One chain destination select (Begin and End) 
- Suspend destination select 
- Abort destination select 
- Continue destination select 

The receive session status indicator, ICERCVST, is updated to reflect the FM header 
pending state. (Refer to Figure 3-8 under "FM Header Pending States".) The FM 
headers are processed as follows. 

If the header is an RDS, the ICEALLOC indicator is tested to ensure that the session 
is not allocated. If the session is allocated, a 1008 negative response (invalid FM 
header) is returned. If the RDS is valid, the suspended remote OCT chain, pointed 
to by ICESDCT, is searched to find the remote OCT whose data stream is to be 
resumed. Once the remote OCT is found, it is allocated to the session by requeuing 
the OCT to the ICE at ICERDCT and turning on the ICEALLOC indicator. Next, the 
waiting processor is posted ($POST) to resume the inbound data flow for its device. 

If the FM header is a BOS or ODS, a new device will be allocated to the session. If 
an active destination already exists and the FM header is not for a console, the 
current destination is suspended (implied suspend). If the FM header is for a 
console and an active destination already exists, a 1008 negative response is 
returned. Once the FM header is validated, the remote OCT chain, pointed to by the 
line OCT, is searched to find an eligible remote OCT that can accept the incoming 
data stream. Once the remote DCT is found, the ICE and the remote DCT are 
chained to each other and the ICEALLOC indicator is turned on to indicate that the 
session is allocated. The corresponding processor is then posted ($POST) to start 
the inbound data flow for this device. 

If the FM header is a CDS, the data to follow is to be treated as a continuation of the 
current data stream. The CDS header must flow only in an in-chain state. If the FM 
header is a CDS header and is for console, it is rejected with a 1008 negative 
response returned. 

The RDS, BDS, ODS, and CDS FM headers contain the compression and compaction 
characteristics of the data to follow. If the common protocols section of the bind are 
compatible, these characteristics are reflected in the remote DCT. If they are not, a 
1008 negative response is returned. The BDS, ODS, and CDS FM headers also 
contain the logical record length of the data to follow. This is recorded in the 
remote DCT, at MDCTRECL. If the logical record length is zero, a default of 80 is 
used. 

If the FM header is an SDS, the ICEALLOC indicator is tested to ensure that the 
session is allocated. If the session is not allocated a 1008 negative response 
(invalid FM header) is returned. The receipt of this type of header eventually causes 
the remote DCT to be marked as suspended and to be placed on the ICE suspend 
queue pointed to by ICESDCT. The corresponding processor is caused to wait 
($WAIT) and eventually resumes processing upon receipt of a RDS for the data 
stream. 

If the FM headers are EDS or ADS, the ICEALLOC indicator is tested to ensure that 
the session is allocated. If not, a 1008 negative response (invalid FM header) is 
returned. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

"·- 7 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

Receipt of an EDS causes the associated remote processor to close normally and 
the job to become eligible for processing. Receipt of an ADS causes the associated 
remote processor to close abnormally and the job to be deleted. The session is 
deallocated. 

MVDTYPE4: NJE FM Header Receive Processing Routine 
MVDTYPE4 is entered when a type 4 FM header (NJE management header) is 
received through normal SNA receive processing. 

Upon entry, the FM header is checked for proper length and whether the header is 
the only type 4 header received for this session. Next, the RU buffer size is 
selected. The allowable range is 256 to $BFSZSNA. The value received in the 
header (FMHBFSIZ) is compared to the value specified locally ($BFSZSNA); the 
smaller of the two values is used. Finally, the feature (FMHFEAT) and the record 
identification format (FMHRIDFM) bytes are tested. The FMHOPTMZ and 
FMHNETOP flags must be on in the FMHFEAT flag byte. FMHRIDFM must have the 
FMHRID1 flag on. The feature byte is moved to the application table (APT) entry 
(APTFEAT). If the type 4 NJE header is followed by a concatenated type 3 
compaction header, MVDTYPE3 is entered to validate the header. 

After processing the type 4 header (and if necessary, the concatenated type 3 
header), MVFRESPD is invoked to send a positive response to the header, and 
MNJENPMC is invoked to check for a possible call of the network path manager 
initial sign-on routine (HASPNSNR). 

MVDTYPE3: NJE FM Compaction Header Processing Routine 

MNJENPMC: 

MVDTYPE3 is entered when a type 3 compaction header is received. The header is 
validated, and the compaction data is used to build a decompaction table in an 
acquired area whose address is saved in the ICE (ICEDCPT). 

After successfully validating a type 4 header, the ICEFMHR4 indicator is turned on to 
indicate successful receipt of the type 4 header. The ICEFMHRV indicator 
(successful receipt of all headers) is turned on at the same time if the FMHFEAT 
byte indicates that the other node does not support compaction (FHMCMPTN = 0), or 
if a type 3 header is ever received. However, only the type 4 header need be 
received to invoke the network path manager initial sign-on routine (HASPNSNR). 

Network Path Manager Call Subroutine 
MNJENPMC is called upon receiving and/or sending a positive response to an NJE 
FM header. Note that this routine is called from receive processing when an FM 
header 4 is received. For send processing, both FM header 4 and FM header 3 (if 
required) must have been sent and responded to before MNJENPMC is called. If 
this is the high node (the node with the alphabetically-higher node name), the path 
manager initial sign-on support routine (HASPNSNR) in the HASPNET module is 
called to send an NJE sign-on record to the other node. 

Return offsets are 0 for an error return (unable to initiate sign-on due to system 
resource shortage) and plus 4 for a normal return. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-335 



HASPS NA "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

MNSRANAL: SNA NJE RID Analysis Routine 
MNSRANAL examines an NJE record identifier (RID) that has been 
decompressed/decompacted into the RPLRID field by the sneak-a-peek routine 
(MNSKPEEK) and takes the appropriate action for the record headed by that RID. 
MNSRANAL is invoked by the SNA RECEIVE processing routine, the $EXTP GET 
routine, or the $EXTP CLOSE routine. 

MNSRANAL examines the RID of the current record. If the RPL has not been 
through the decompress/decompact processing, the sneak-a-peek routine is called 
to decompress/decompact the first RID into RPLRID. If the RID indicates that this is 
an NJE data record, another check is made for a all-system message record (NMR), 
which is used to send operator commands and messages. If it is an NMR, the RPL 
is removed from the ICE inbound queue, the allocated-to-remote-console-processor 
indicator (ICERCON) in the NJE flag byte (ICENJEF2) is turned on, and MVDCNSLN 
is invoked to queue the APL to the remote console processor (via $MCONMSG), to 
post ($POST) the processor PCE, and to return to the caller of MNSRANAL. 

If the RID indicates that this is an NJE data record for a job/SYSOUT receiver, the 
transmitter and receiver DCTs chained off the line OCT is searched to find the 
appropriate OCT; the RPL address is stored in the receiver OCT (DCTBUFAD); the 
receiver's PCE is posted ($POST); and control is returned to the invoking routine. If 
the DCTERMNR flag is on (cancelled by the receiver), the data record is skipped 
over (via a call to MNSKPREC), and the next RID (if any) is examined. 

If the RID indicates a control record, a check is made to determine whether it is an 
NJE network topology record. If it is, the RPL is removed from the ICE inbound 
queue and is queued immediately for the network path manager via $NPMVINQ; the 
network path manager's PCE is posted ($POST); and control is returned to the 
appropriate invoking function. 

If the RID indicates a stream control record, the NJE stream control record 
processor (MNSSCRP) is invoked to process the record. Upon return from 
MNSSCRP, the RPL is removed from the ICE inbound queue, released (stream 
control records are always the last logical records in an RU), and the next APL (if 
any) on the ICE inbound queue is processed. 

MNSSCRP: NJE Stream Control Record Processor 
MNSSCRP processes stream control records obtained by the NJE RID analysis 
routine (MNSRANAL). It performs the appropriate stream control function, 
depending upon the type of stream control record. See Figure 3-9 for these 
functions. MNSSCRP branches to the appropriate stream control processor routine 
depending on the stream control ID. 

MNSKPREC: SNA NJE Skip-a-Record Routine 

3-336 JES2 Logic 

MNSKPREC is called from the RID analysis routine (MNSRANAL) when the 
decompressed/decompacted record identifier (RID) indicates that the record is a job 
or SYSOUT data record and the matching receiver OCT has its DCTERMNR (receiver 
cancel) flag on. The record currently pointed to must be skipped over in the buffer. 
The buffer cannot be ignored because there may be records for other receivers past 
this record. 

MNSKPREC saves registers via a $SAVE macro instruction, loads the saved GET 
routine registers from the RPL work area (registers were saved after sneak-a-peek 
processing on the RID), initializes register RPC (processor buffer count) to the 
contents of the RIDLEN field plus 1 (length of record to be skipped), initializes 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 

/ 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

register RPP (the processor buffer pointer) to 0 (indicating that the record is to be 
skipped), turns on the SGWSKPRC flag and branches into the SNA GET routine at 
label MVGMVE to skip over the record. 

Figure 3-9. Stream Control Record IDs and Functions 

Stream Control 
ID 

X'80' 

X'90' 

X'AO' 

X'BO' 

X'CO' 

X'OO' 

Meaning Function Performed 

Hold stream Find matching transmitter OCT and turn on 
OCTHOLOS flag 

Request to allocate job or Find matching receiver OCT and post (SPOST) for 
SYSOUT stream $EXTP OPEN; if not found, queue RPL to path 

manager which sends X'BO' (permission denied) 
Permission to allocate granted Find matching transmitter OCT and post ($POST) 

transmitter PCE 
Permission to allocate denied, Find matching transmitter OCT, turn on 
or receiver cancel OCTERMNR flag, and post ($POST) transmitter 

PCE 
Acknowledge EOT Find matching transmitter OCT and post ($POST) 

transmitter PCE 
Release stream Find matching transmitter OCT and turn off 

OCTHOLOS flag 

Note: The logic at exit from the GET routine ensures a return to the caller of 
MNSKRPEC if the SGWSKPRC flag is on. 

MNSKPEEK: SNA NJE Sneak-a-Peek Routine 
MNSKPEEK is called from the RID analysis routine (MNSRANAL) the first time the 
RPL is examined and from the SNA $EXTP GET routine (RTAMVGET) after 
decompressing/decompacting (of skipping) a record prior to returning that record to 
the caller. MNSKPEEK checks to see if there is more data in the RPL; if there is, it 
invokes $EXTP GET logic to decompress/decompact the next 3 bytes of data into the 
RPL work area (RPLRID). 

MNSKPEEK saves registers via the $SAVE macro instruction and checks the 
SWGNJE flag to see if this RPL has ever been through $EXTP GET processing. If it 
has, it loads registers from the RPL GET work area to restore the GET processing 
status. 

MNSKPEEK loads register RPP (the processor buffer pointer) with the address of 
RPLRID (a 3-byte field in the RPL work area), and loads in register RPG (the 
processor buffer count) with a 3 (the length of RPLRID). It then turns on the 
sneak-a-peek flag and tests the SWGNJE flag. If the SWGNJE flag is on, MNSKPEEK 
branches to the $EXTP GET routine at label MVGMVE. If the flag is off, SWGNJE is 
turned on and MNSKPEEK branches to the $EXTP GET routine at label MVGSCN. 

Note: The GET routine exit logic ensures a return to the caller of MNSKPEEK if the 
SGWSNKPK flag is on. 

MSCSEND: SNA NJE Stream Control Send Routine 
MSCSEND is called by the SNA $EXTP OPEN routine (RTAMVOPE) and by the SNA 
$EXTP CLOSE routine (SNACLOSE) to send an NJE stream control record. 

On input, register 0 contains a 3-byte stream control RID (right-adjusted). R4 
contains the address of an RPL (if available) to which the stream control record is to 
be added. If R4 is 0, MSCESEND gets and initializes an RPL. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-337 



HASPSNA "Restricted Materials of I BM" 
Licensed Materials - Property of IBM 

MSCSEND adds a compression string control byte (SCB) to the front of the RID, adds 
the 4-byte record to the RPL buffer, invokes the RPL send routine which sends the 
data or queues it for output, and returns to the appropriate back level caller via R6. 

SNA Session Control Subroutines 
The SNA session control subroutines are used by the SNA $EXTP routines, scan 
routines, and buffer processing routine for controlling the activity of SNA sessions. 
They perform the basic session management functions associated with the interface 
control element (ICE), which shows the JES2 internal representation of SNA 
sessions. 

MICEREQU: Queue ICEs to the Line Manager Subroutine 
MICEREQU is defined between the labels MICEREQU and MICEUPDT. This is a 
multiple-entry subroutine (MICEREQU, MICEREQ1, MICEREQ2) that is called from 
the line manager and RTAM to queue ICEs to the line manager ICE exit queue 
(MICEQUE). 

MICEMEL T: Subroutine to Free ICEs 
MICEMELT is used after a session has been terminated (CLSDT completed) in order 
to return the ICE to the pool of free ICEs ($1CETRAY). For NJE, any storage acquired 
for a decompaction table is freed via a FREEMAIN macro instruction. Because 
requests may still be in VTAM, this routine examines the outstanding inbound and 
outbound request parameter list (RPL) counters in the ICE before freeing the ICE. If 
the counters indicate the RPLs are still outstanding, the ICE is queued to the line 
manager ICE exit queue (MICEQUE) by calling MICEREQ1. The ICE is then 
reexamined by MICEMEL Tat every line manager dispatch (at least once per 
second) and is freed when no more RPLs are outstanding. 

MICEGIBB: Delayed Request Subroutine 
MICEGIBB is defined between the labels MICEGIBB and MICEGPND. This is a 
multiple-entry subroutine (MICEGIBB, MICEGIEB, MICEGICD, MICEGSND), which is 
used by the line manager to issue certain requests (begin bracket, end bracket, 
change direction, CLSDST, TERMSESS, and null request unit) when no 
teleprocessing buffer is immediately available. MICEGIBB queues the ICE for the 
requesting session to the line manager ICE exit queue (MICEQUE) by calling 
MICEREQ2 until a buffer is available. The request is tried again by the line manager 
by calling MICEGIBB at each dispatch. 

MICETRAP: Session Abort/Abandon Routines 

3·338 JES2 Logic 

MICETRAP is defined between the labels MICETRAP and MICEAFRQ. MICETRAP, 
MICEABRT, MICEABDN, MICENET, and MICEAEB are used to terminate and clean 
up session usage and/or to disconnect (unbind) sessions. The line manager uses 
these routines primarily for error-recovery purposes, and most entries disconnect 
the session as well as terminate data flow. RTAM also uses these routines to 
terminate session data flow, particularly when an unexpected end bracket (EB) is 
received. 

Normally, all of these routines cause any RJE device DCTs that are still connected 
to the ICE (pointed to by ICERDCT or ICESDCT) and any network transmitter device 
to abort their data flows and purge any buffers they may own (pointed to by 
DCTBUFAD). Any buffers the ICE points to (inbound, outbound, and special 
sequence) are also purged. These routines, however, attempt to save one buffer to 
be used for CLSDT in the ICE indicators (ICEFLAGS). This buffer indicates that the 
session is to be unbound (ICEABORT, ICEDRAIN, or ICECLOSE). When processing 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

\.<;. _./ 

/ 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

for a remote or network device is completed, the processor control element (PCE) 
associated with the device is posted ($POST) for 1/0 and WORK as required. 
MICENETA is entered to reset the ICE status flags. Next, MICEADED is entered at 
label MICEAFRQ to determine the status of the session and to clear the inbound and 
outbound session queues as required. 

After this clean-up action, MICETRAP examines the indicators (ICEFLAGS) and, if 
necessary, schedules execution of the session disconnect routine, MICEDISC. 
Because MICEDISC can only be executed by the line manager, and because the 
MICEABRT is also used by the $EXTP routines, control cannot always be passed 
directly from MICEABRT to MICEDISC. If MICEABRT or MICEABDN has been called 
by RTAM, it uses MICEREQ2 to queue the ICE to the line manager exit queue 
(MICEQUE) before returning to the caller. The line manager then calls the 
disconnect routine for RTAM at its next dispatch. 

MICEDISC: Session Disconnect Routine 
MICEDISC is defined between the labels MICEDISC and MICEDREM. This routine is 
entered either directly from the session abort/abandon routines (MICEABRT and 
MICEABDN) or from the ICE exit scan routine of the line manager (MICEPROC). 
MICEDISC is used to disconnect the ICE from the line OCT and, if this is the last 
session active on the line, to disconnect the RJE device DCTs and network device 
DCTs from the line OCT. Before disconnecting the ICE from the line OCT, all 
statistical data collected in the ICE is added to the appropriate line OCT count fields, 
and message $HASP210 is issued to inform the operator that the session has been 
disconnected (logged off). MICERDSC resets all pointer connections between the 
device DCTs and the line DCTs. 

For a SNA NJE session, processing starts at label MICERDSC, which calls the path 
manager subroutine HASPNDCN to clean up the network control blocks. The 
transmitter/receiver DCTs, disconnected from the line, are returned to the pool of 
free network DCTs ($NETDCTS). The DCTPHASP flag is turned off, indicating that 
the line is no longer being used for an NJE connection. 

For RJE, the SAF token is freed, all pointers to the RJE device DCTs and the line 
OCT are reset in the RAT (unless the line is leased or shared), and the checkpoint 
record remote status bits (pointed to by $RMTSON) are reset. When the process of 
disconnecting the RJE and NJE sessions is complete, exit point MICEXIT (for exit 18) 
is taken (if enabled) giving control to an installation exit routine. The installation 
exit routine returns and the disconnect message $HASP203 is issued. Indicators in 
the line OCT and RJE device DCTs are then reset. If the line OCT command flags 
(DCTFLAGS) indicate that the line should be drained (DCTSPAT), $FREUNIT and 
$DORMANT macro instructions are executed; otherwise, the now idle line OCT is 
requeued to the line manager's idle SNA line OCT queue (MSNAIDL). If other 
sessions are still active on the line, the ICE is dequeued from the line OCT, and the 
line OCT active sessions count (MDCTSCNT) is decreased; the remote terminal is 
not disconnected. After the ICE is disconnected from the line OCT, MICECLOS is 
entered to actually disconnect (unbind) the session. 

MICECLOS: Session Close (CLSDST) Subroutine 
MICECLOS is defined between the labels MICECLOS and MICETERM. This is a 
two-entry subroutine (MICECLOS and MICEBLD) that is used to issue a CLSDST or a 
TERMSESS VTAM request to disconnect an SNA session. The primary entry, 
MICECLOS, checks flags in the ICE (ICESTAT) to determine if a CLSDST or a 
TERMSESS is required. For NJE sessions, MICECLOS determines whether the 
application is primary or secondary. Because the secondary application cannot 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-339 



HASP SN A "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

issue a CLSDST, an indication is set to show that a TERMSESS sequence is 
required. If a CLSDST or a TERMSESS is required and a buffer is available (usually 
preserved by MICEABDN or MICEABRT), the CLSDST or TERMSESS request is built 
in the buffer and passed to VTAM by calling the RPL scheduler (MVRPLXEC). If, 
however, no teleprocessing buff.er is available, MICEGBUF is called to obtain a 
buffer from the teleprocessing buffer pool (via $GETBUF) and reenter MICECLOS at 
its secondary entry (MICECBLD). If no buffers are available in the buffer pool, 
MICECLOS queues the ICE to the line manager ICE exit queue (MICEQUE). The line 
manager then tries the request again at its next dispatch. Eventually, the CLSDST is 
built by MICECBLD or the TERMSESS is built by MICETERM and scheduled by the 
RPL scheduler. 

MICESHUT: Send Request Shutdown Subroutine 
MICESHUT is called when the OCT for an NJE line shows a drain pending ($Pline 
issued), a sign-off pending in the absence of the restart flag ($T line, D = Q), or a 
request-shutdown data flow control received from the secondary logical unit (LU). 

On entry to MICESHUT, the ICENJEF1 flag is tested to determine whether the 
application is the primary or the secondary LU on the session. 

If the application is the secondary LU and a request for shutdown of data flow 
control has not been sent to the primary LU, MICESHUT branches to MICEGBUF to 
get an RPL. At label MICESHT4, MICESHUT builds the request for shutdown of data 
flow control RU in the RPL and branches to label MVRPLOCR to send the request. If 
a request for shutdown has been sent (ICEQUIET indicator present), control is 
returned to the caller. 

If the application is the primary LU, a check is made to determine whether any 
transmitters and receivers are connected to the line. If none are connected or if the 
devices that are connected are no longer in use, a branch is taken to MICESHUT2 
when the ICERSHUT flag is reset, the ICEDRAIN and ICECLOSE flags are set on 
(request for session closedown), and a branch is taken to label MICENETA. 

If any of the network devices are still in use, the line manager line scan request is 
set on, and control is returned to the caller. 

MICETIME: Session Delay Interval Subroutine 
MICETIME is defined between the labels MICETIME and MICEDLAY. This 
multiple-entry subroutine (MICETIME, MICEDLAY) is used to cause a session to 
remain idle (outbound allocation prohibited) for a specified interval. The main 
entry, MICETIME, always uses the interval specified by either the WAIT parameter 
on the TPDEF initialization statement, or the WAITTIME parameter of the RMTnnn 
JES2 initialization statement contained in the HASP communications table 
($WAITIME) or the remote attribute table (RATWTIME). The secondary entry, 
MICEDLAY, allows an interval to be passed to MICETIME in register 1. 

SMF Recording Subroutines 

3-340 JES2 Logic 

These subroutines are used exclusively by the line manager to produce SMF 
records for significant RJE events. The SMF records they produce are described in 
System Management Facilities (SMF). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ ' 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPS NA 

MSMFSTRT: SMF Line Start Record Subroutine 
MSMFSTRT is entered whenever any SNA line is started in order to write a type 47 
SMF record for the line start event. As with all the SMF recording subroutines, 
MSMFSTRT calls MSMFWRIT to actually write the SMF record. 

MSMFSTOP: SMF Line Stop Record Subroutine 
MSMFSTOP is called to record the line stop event any time a SNA line is stopped or 
restarted. It writes a type 48 SMF record that includes the statistical totals kept in 
the line DCT since it was first started. MSMFSTOP passes control to MSMFTERM to 
complete the record. 

MSMFTERM: Line Stop/Remote Disconnect SMF Record Routine 
MSMFTERM is entered either to write a type 48 remote disconnect event record or 
(from the SMF line stop subroutine, MSMFSTOP) to complete a type 48 line stop 
SMF record. MSMFTERM passes control to the common line manager SMF record 
write routine (MSMFWRIT) to queue the SMF record for recording. 

MSMFWRIT: Common SMF Write Routine 
MSMFWRIT is a common routine used by all SMF recording routines to queue SMF 
records for recording. MSMFWRIT completes all SMF records by adding the 
EBCDIC device/remote identifier; it calls the JES2 common SMF queue routine, 
which issues the JES2 $QUESMFB macro instruction to invoke the SMF writer. 

Common OCT Initialization/Termination Routines 

MLDCTGET: 

These routines are used by the SNA $EXTP routines, scan routines, and buffer 
processing routine to allocate, deallocate, initialize, and release DCTs. They 
provide common DCT initialization services and perform statistical totaling 
associated with SMF recording. 

line/logon OCT Common Allocation Routine 
MLDCTGET is used to allocate all SNA line and logon DCTs to the line manager; it 
allocates the DCTs by issuing a JES2 $GETUNIT macro instruction and then 
increases the PCE active count with a $ACTIVE macro instruction. After the DCT is 
allocated, its statistical counters are reset, and MLDCTGET exits to one of three 
routines that initialize either logon or line DCTs (MLOGSTRT or MSNASTRT 
respectively). 

MLDCTREL: Common OCT Free Routine 
MLDCTREL commonly is used to tree line and logon DCTs after they are drained by 
issuing a $FREUNIT macro instruction and decreasing the PCE active count. 
However, the code in the line manager does not only perform this function; the 
session abort/abandon routines (MICEABRT and MICEABDN) also issue $FREUNIT 
and $DORMANT when an SNA remote terminal is being disconnected from a line 
that was drained while the line was active. 

MSNASTRT: SNA Line OCT Initialization Routine 
MSNASTRT is entered by the common line/logon DCT allocation routine 
(MLDCTGET) whenever an SNA line DCT is allocated to the line manager. It places 
the newly allocated line OCT on the line manager idle SNA line queue (MSNAIDL) 
and calls the SMF start line subroutine (MSMFSTRT) to record the event with a type 
47 record. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-341 



HASPSNA "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

MLOGSTRT: SNA Logon DCT Initialization and Open Routine 
MLOGSTRT is entered from the common logon/line DCT allocation routine 
(MLDCTGET) after a new logon DCT has been acquired for the line manager. It 
initializes the DCT and causes the associated VTAM access control block (ACB) to 
be opened. MLOGSTRT initially acquires a teleprocessing buffer and, using 
MLOGPOST, signals the VTAM ACB subtask to open the ACB. The subtask uses the 
pre-allocated buffer to issue a SETLOGON OPTCD =START VT AM request after the 
ACB is open. 

MLOGPOST: VTAM ACB OPEN/CLOSE Subtask Interface Routine 
MLOGPOST is the primary interface routine for the VTAM ACB OPEN/CLOSE 
subtask. Whenever it is necessary for the subtask to OPEN or CLOSE a VTAM ACB 
associated with a logon DCT, MLOGPOST is called to place that logon DCT on a 
special HASP communications table (HGT) queue ($VLOGQUE) and post the ACB 
subtask. 

MLOGSTOP: SNA Logon OCT Termination and ACB CLOSE Routine 
MLOGSTOP is defined between the labels MLOGSTOP and MLOGSDEQ. 
MLOGSTOP is used whenever it is necessary to drain a logon DCT. All receive-any 
pre-queued buffers pointed to by the logon DCT (MDCTRQBF) are freed by placing 
them on the line manager buffer queue ($RJECHEQ) with a simulated VTAM 
RTNCD/FDBK2, indicating that they were purged by CLOSE processing. After the 
logon DCT has been removed from the line manager active logon DCT queue 
(MSNALOG), the VTAM ,ACB subtask interface routine (MLOGPOST) is called to 
signal the subtask to close the associated ACB. 

MSNASTOP: SNA Line OCT Termination Routine 
MSNASTOP is defined between the labels MSNASTOP and MSNASDSC. 
MSNASTOP is used to drain SNA line DCTs; it removes the line DCT (which must be 
idle) from the MSNAIDL queue and, using the common logon/line DCT free routine 
(MLDCTFRE), releases the DCT from the line manager use. A call is made to 
MSMFSTOP to write a type 48 SMF record that contains the statistical totals 
accumulated in the line DCT during operation. 

HASPSLOG: Active SNA Logon OCT Scan Routine 
Selected for execution by external trigger from the command processor 
(HASPCOMM), HASPSLOG is executed for each active SNA logon DCT. The primary 
purpose of this scan routine is to process the restart ($E) and drain ($P) commands 
for logon DCTs. When a restart command is detected for a logon DCT, the session 
abort routine (MICEABRT) is called to force all sessions associated with the 
specified application interface to disconnect immediately. Drained logon DCTs are 
processed by calling MLOGSTOP only if no session is currently associated with 
them (MDCTICE=O). 

HASPSLNE: Active SNA Line OCT Scan Routine 

3-342 JES2 Logic 

HASPSLNE is executed for all active SNA line OCTs at least once every second. 
Before checking idle sessions, the scan routine performs the disconnect interval 
check by comparing the noted time of last activity (MDCTIMOK) in the line OCT 
against the current time. Also, each line OCT is checked to see if operator restart 
($E) has occurred. Lines without recent activity (as determined by the 
OISCINTV =operand of the RMTnnn initialization statement) or that have been 
restarted by the operator, are disconnected using the session abort routine 
(MICEABRT) to terminate all of their associated sessions. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

tf 
''( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

It this is an NJE session, a check is made to see if an orderly shutdown is required. 
It the OCTORAIN or DCTSOFF flag in the line OCT is on, or it the ICERSHUT flag in 
the ICE is on, the orderly shutdown routine (MICESHUT) is invoked to initiate an 
orderly shutdown. Otherwise, the MOCTNJEH flag is checked to see it any NJE 
headers are to be sent and, it so, the NJE FM header send processing routine 
(MSLNENJH) is entered. Otherwise, a branch is taken to MSLNENXT to process the 
next line OCT. 

It this is an RJE session, HASPSLNE has several interrelated functions, but it is 
mainly concerned with allocating idle SNA sessions to outbound data flows 
whenever the job output table (JOT) posts a signal that output work or messages are 
queued tor transmission to the remote terminal. 

MSLNTOCT performs its main function of initiating outbound transmissions by 
examining all active SNA line OCTs that indicate possible work. Each idle session, 
represented by an ICE on the line OCT ICE chain (MOCTICE), is consideredtor 
allocation to outbound work. Some ICEs in the chain are not eligible because they 
are already allocated (ICEAVAIL), held (ICEHOLO), or waiting for the expiration of a 
time delay. ICEs in time delay are further checked to see if the delay interval has 
expired and they will be made available. For each eligible ICE in the chain, a 
subscan of all the RJE device OCTs is done. If MSLNTOCT determines that work 
exists, as indicated from $#POST, it $POSTs the device. It it cannot be determined 
whether work exists, this scan uses the $#GET service to determine if any outbound 
work is queued for the RJE device. This subscan uses the $#GET queue service 
macro instruction to determine it any outbound work is queued tor the RJE device. 
If so, the ICE is pre-allocated to the RJE device OCT, and the associated processor 
PCE is posted ($POST). If no work is found tor any RJE device associated with an 
active line, the possible work indicator is reset, and the scan continues with the next 
active SNA line OCT. 

The final processing performed by HASPSLNE is special outbound interrupt 
processing (MSLNTICE). If messages are queued for an LUTYPE1 terminal with the 
console feature, and no unallocated sessions are available to transmit these 
messages, HASPSLNE attempts to locate an active outbound session that can be 
interrupted for this high-priority transmission. 

MSLNENJH: NJE FM Header Send Processing Routine 
MSLNENJH is entered by the line manager when, while scanning the SNA line 
OCTs, it finds the MOCTNJEH flag in the line OCT set, indicating the need to send 
NJE FM headers. 

Upon entry, the pointer to an outbound compaction table (ICECPT) is checked; if the 
pointer is 0, MSLNENJH has been entered to build and send an NJE FM header (type 
4) and an immediate branch is taken to MNHGETR to get an RPL. Otherwise, 
MSENDCH is entered to send a compaction header (type 3). 

MSENDCH: The ICEFMHR4 indicator is checked to determine if a type 4 header has 
been successfully received from the other node. If a type 4 header has not been 
received, a branch is taken to MNHOELAY to request a timer interrupt line manager 
dispatch and continue active SNA line scanning with the next line OCT. It a type 4 
header has been received, the application table (APT) features byte (APTFEAT) is 
checked to see if the other NJE node supports compaction (FMHCMPTN indicator 
on). It the NJE node does not support compaction, the outbound compaction table 
pointer (ICECPT) is zeroed out, MNJENPMC is called to check tor a possible 
invoking of the path manager sign-on routine (this is done only ii a positive 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-343 



HASPSNA "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

response has been received for the type 4 header sent to the other node), the 
MDCTNJEH indicaJor is tyrned off, and the active SNA IIoescan continues with the 
next line OCT. If the NJE node supports compaction, a branch is taken to MNHGETR 
to get an RPL. 

MNHGETR: The $GETBUF macro instruction is executed to acquire an RPL. If 
successful, the RPL is linked to the appropriate control blocks and ICECPT is 
checked; if nonzero, a branch is taken to MNHBLDC to build a compaction header 
(type 3). Otherwise, a type 4 NJE header is built in the RPL. If a type 3 compaction 
header is needed, a pointer to the appropriate compaction table is stored in the ICE 
(ICECPT), before invoking MVRPLSNO to send the type 4 header, indicating that a 
type 3 header is to be sent. Upon return from MVRPLSND, ICECPT is checked to 
see if a type 3 header is to be sent, and if so, a branch is taken to the top of the NJE 
FM header send processing routine (MSENDCH). Otherwise, the routine exits to 
MSLNENXT to continue the line scan with the next OCT. 

MNHBLDC: MNHBLDC is entered from MNHGETR after getting an RPL when a 
compaction header is to be built. It invokes MVFMHCPT to build a type 3 
compaction header and to send it. Upon return from MVFMHCPT, the MDCTNJEH 
indicator is turned off and an exit is taken to label MSLNENXT to continue the active 
SNA line scan with the next line OCT. 

HASPSIDL: SNA Idle Line DCT Scan Routine 
HASPSIOL is executed only when requested by the command processor to process 
drain ($P) commands for idle SNA line OCTs. Drained idle line OCTs are terminated 
by calling MSNASTOP. 

HASPSUNT: Inactive DCT Scan Routine 
This is the line manager scan routine responsible for acquiring all newly started 
($S) SNA lines and logon OCTs. HASPSUNT examines all logon and line OCTs on 
the common OCT chain (DCTCHAIN) starting with the first logon OCT which is 
pointed to by the HCT ($LOGNDCT). If a line or logon OCT is located that is 
available but not yet allocated, HASPSUNT acquires and initializes it for the line 
manager by calling the common line manager OCT allocation routine (MLDCTGET). 
MLDCTGET passes control to the appropriate OCT initialization routine, which 
establishes OCT values and adds the DCT to a line manager active DCT queue. 

HASPSACB: Line Manager Logon DCT Exit and ACB Subtask Completion Scan Routine 
HASPSACB is used to service the line manager processing related to logon DCTs; it 
is executed by the common scan driver in HASPRTAM (MSCANEXT) whenever any 
logon OCT is present in its work queue (MLOGQUE). Work is entered into 

3-344 JES2 Logic 

MLOGQUE from two sources: the VTAM ACB subtask and the VTAM TPENO exit 
routine. HASPSACB determines the type of service a queued logon OCT requires by 
examining an exit code (MOCTXCOO) in the high-order byte of the logon OCT exit 
chain field (MDCTEXIT}. 

The ACB subtasks queue logon OCTs to the work queue (MLOGQUE) when they 
have completed OPEN or CLOSE processing. After successful OPEN processing, 
the logon OCT is added to the SNA active logon OCT queue (MSNALOG), and 
MSMFSTRT is called to write a type 47 SMF record. Unsuccessful OPEN processing 
causes message $HASP092 to be issued, and the logon OCT to be drained. 
Completed CLOSE processing uses MSMFSTOP to write a type 48 SMF record and 
may drain the logon OCT if necessary (CLOSE processing failure or DCTDRAIN set); 
otherwise, the logon OCT is rescheduled for OPEN processing by calling 
MLOGSTRT ($E LGNn processing). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

--

t 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

When a logon OCT is queued by the TPEND exit, a secondary exit code is used to 
determine what kind of TPEND action has occurred. The three possible types of 
TPEND are: orderly shutdown ('Z NET' VTAM operator command), quick shutdown 
('Z NET, QUICK' VTAM operator command) and VTAM abends. For quick and abend 
termination, JES2 immediately aborts all sessions associated with logon OCT by 
calling the session abort routine (MICEABRT) for all ICEs on the logon OCT active 
ICE queue (MDCTICE). Orderly shutdown causes all sessions immediately to be 
marked as draining (indicated by DCTDRAIN + DCTINUSE), which causes them to 
disconnect whenever data flow is finished (end bracket). 

HASPSICE: ICE Exit Scan Routine 
HASPSICE is responsible for processing several types of work, mainly session 
control associated with ICEs. The ICEs are queued to a common service queue 
(MICEQUE) from the sources listed below and are distinguished via an exit code 
(ICEXTCOD) in the high-order byte of the ICE exit chain field (ICEXTCHN). The main 
scan driver (MSCANEXT) selects the scan for execution whenever ICEs are queued 
to MICEQUE. 

Code Queued by Name 

1x Logon exit (VEXITLGN) 
2x Autologon RAT scan (MRATPROC) 
3x Delayed request routine (MICEGBUF) 
4x RELREQ exit (VEXITRLR) 
Sx SCIP exit (VEXITSCP) 
6x LOSTERM exit (VEXITLST) 
7x Disconnect routine (MICEMELT) 
Bx $SN exit (HASPSNET) 
9x SCIP exit (BIND) (VEXITSCP) 
Ax SCIP exit (UNBIND) (VEXITSCP) 
Bx NS exit (VEXITNS) 

The logon exit, the autologon RAT scan, and the $SN exit use the ICE exit function 
(codes 1, 2, and 8, respectively) to begin the logon cycle. ICEs queued for logon are 
processed by a routine within the ICE exit scan routine called MICELOGN. If 
MICELOGN is entered because of an RJE logon, it initiates the logon cycle by 
getting a teleprocessing buffer and initializing it with an INQUIRE VTAM request. 
This INQUIRE request is used to obtain the device characteristics of the terminal 
(session) that is to be connected. The completion of this INQUIRE request causes 
the SNA buffer processing routine (HASPSPRO) to continue the logon or autologon 
cycle. If MICELOGN is entered because of a start networking ($SN) command to 
establish an SNA session with another NJE node, MICELOGN gets a teleprocessing 
buffer and using a hard-coded BIND image, initializes the RPL for an OPNDST 
ACQUIRE request and branches to the VTAM interface to issue the OPNDST request. 

As previously described in "MICEGBUF: Delayed Request Routine, "when certain 
VTAM requests must be issued by the line manager and no teleprocessing buffer is 
available, the request must somehow be tried again after buffers are available. 
MICEGBUF performs this function by queueing the ICE passed to it by its caller to 
the ICE exit queue. The line manager then recalls MICEGBUF from the ICE exit 
scan at each dispatch until the request is complete and the ICE is removed from the 
queue. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-345 



Ii ASPS NA 

- -----~------

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

All three of the VTAM session-related exits (LOSTERM, RELREQ, and SCIP) as well 
as the-$SN.pse00.0 exit {ltASP~T}-1.1-Se the I-GE t00t flJASti-an-af-th&#A&fl'Hlfla§&I' t-a
perform the bulk of their JES2 processing. In this way, the amount of code executed 
outside the control of the JES2 main task is minimized. Because there are several 
LOSTERM conditions, the exit code for LOSTERM contains, in addition to the 
LOSTERM identifier (6x), the entry code that was passed to the LOSTERM exit by 
VTAM. This code is adjusted to fit into the low-order 4 bits of the exit code. Most 
LOSTERM conditions result in the termination of the session by calling the session 
abort routine (MICEABRT). The SCIP exit (scheduled by VTAM) is treated as an 
unconditional abort request because it is only scheduled by VTAM to indicate an 
interface programming error. The RELREQ service is used by applications outside 
of JES2 to request that JES2 release its use of a specific VTAM logical unit (LU.) 
The ICE exit routine responds to RELREQ conditions by calling a session control 
routine (MICETRAP) that causes the session to begin the disconnect process after 
any current activity (end bracket) is completed. 

Like the delayed request routine (MICEGBUF), the ICE free routine (MICEMEL T) 
must sometimes wait until VTAM buffers, which were cancelled by CLSDST, are 
purged from the network. By queuing the ICE to the line manager ICE exit queue 
(MICEQUE), MICEMELT reschedules its own execution at each line manager 
dispatch. Then, MICEMELT reexamines the ICE outstanding RPL counters when all 
requests are complete and frees the ICE. 

MICEBIND: SNA NJE OPNSEC Processing Routine 
MICEBIND, an ICE exit routine (invokable at an entry in the ICE exit routine branch 
table - MICEBTAB), handles a BIND request from another application and 
responds by issuing a VTAM OPENSEC request to establish an SNA 
application-to-application session. Input to MICEBIND is an ICE on the MICEQUE 
(obtained by the VTAM SCIP exit routine.) 

Upon receiving control, MICEBIND gets an RPL and searches the application table 
for a match against the application specified in the BIND request unit. If it is unable 
to find the application name, if it is already in session with this application, if the 
OPENSEC macro instruction has already been sent or is pending, or if the BIND 
parameters are unacceptable, MICEBIND issues a SESSIONC macro instruction to 
reject the BIND request. 

If MICEBIND determines that it can accept the BIND, it obtains an available line 
DCT, calls APPLDYN to find an application program table (APT) entry with the name 
in ICESYMB (or to find a node with that name and build a dynamic SPT), initializes 
the RPL for an OPNSEC request, and branches to the VTAM interface to issue the 
OPNSEC. 

MICEUBND/MICENS: SNA NJE Unbind and Cleanup RU Processing Routine 
The MICEUBND/MICENS ICE exit routines are invoked by HASPSICE when the exit 
code in the ICE indicates that UNBIND was received in the SCIP exit, or a CLEANUP 
RU was received in the $SN exit. HASPSICE uses a branch table (MICEBTAB) to 
locate the address of MICEUBND/MICENS. MICEUBND/MICENS checks the 
ICETERMS indicator to determine whether the application requested TERMSESS. If 
TERMSESS was not requested, MICEUBND/MICENS branches to MICEABDN to free 
any resources associated with the session. If TERMSESS was requested, the 
ICETSC indicator is checked to determine whether the TERMSESS request 
completed. If the TERMSESS request completed, a branch is taken to MICEABDN; 

3-346 JES2 Logic LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/~· 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

otherwise, the ICE is requeued via MICEREQ2, pending completion of the 
TERMSESS request. 

HASPSRAT: Autologon RAT Scan Routine 

HASPSNA 

HASPSRAT is primarily responsible for beginning automatic logon processing. A 
companion routine, HASPSSAL, completes the automatic logon initiation. The 
automatic logon feature of JES2 SNA RJE support makes JES2 capable of 
automatically contacting and connecting remote terminals for which output work or 
messages are queued. The scan is executed whenever an operator command 
enabling the autologon feature ($T RMTn or $S RMTn) is executed or the device has 
been set to autologon mode by the RMTnnnn initialization statement. The line 
manager also internally requests an autologon scan when certain RJE resources 
are freed or when output work is queued. However, because some significant 
events may take place externally (for example, through VTAM) and without any 
indication to the JES2 system or because messages have been queued for the 
remote, the scan is dispatched every 32 seconds, by default. An installation can 
specify the interval in a range between 10 and 600 seconds. When the scan is 
dispatched, it examines each entry in the remote attribute table (RAT) to determine 
if the corresponding remote terminal is eligible for automatic connection 
(autologon). 

Remote terminals that are eligible for autologon are currently disconnected SNA 
remote terminals for which a logical unit name (LUNAME = operand of the RMTnnn 
initialization statement) has been specified, and for which the operator has entered 
a $S RMTn or $T RMTn command or the device has been set to autologon mode by 
the RMTnnnn initialization statement. Remote terminals that are already connected 
can become eligible for autologon any time after they are disconnected. Once an 
eligible remote terminal is located, a test is performed to determine if the terminal 
should and can be connected. Remote terminals that have been started (via $S 
RMTn) have an autologon attempt made regardless of whether work exists for any 
of their RJE devices. However, those in autologon mode are connected only if 
output or messages are queued for transmission, as set by the $#POST routine. The 
RAT is first checked to see if output exists, and if it does exist the autologon attempt 
is made immediately. If no output exists, the scan looks for messages for the 
remote terminal and if they exist, the logon is attempted. If they do not exist, JES2 
decides whether a full queue scan is necessary. A full queue scan is only 
necessary the first time through autologon or after a disconnect. If no queue 
searches are required, JES gets the next RAT. If output is found on the queue 
searches, the autologon is attempted. 

The autologon attempt begins with a SAF call to determine if the remote terminal 
has sufficient authority to logon. If so, HASPSRAT then examines the availability of 
line DCTs, ICEs, and logon DCTs to establish the connection. If any resource is 
unavailable, the connection is not attempted at this time. Additionally, if the shared 
queue (used for MAS configurations only) remote status bits (pointed to by 
$RMTSON) indicate that the remote terminal is connected to another system in the 
configuration, it is not connected. Remote terminals that are eligible for connection, 
but for some reason are not connected, are reexamined for possible connection at a 
later dispatch of HASPSRAT. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-347 



HASPS NA "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

EXIT point MALGXIT is taken (for exit 18) to invoke the installation exit routine. If 
the return code from the exit routine is 8, the autologon terminates. Otherwise, 
HASPSRAT initiates a SAF VERIFYX call (without password checking), marks the 
remote "signed on" in $RMTSON and steps to the next RAT. Parameters passed to 
MSAFCHK indicate that the SWEL is to be queued to the active SWEL queue 
(MLMASWLQ). 

HASPSSAL: Post-$SEAS Processing for Autologon 
HASPSSAL is responsible for completing the initiation of autologons started by 
HASPSRAT. It is invoked when the $SEAS call issued by HASPSRAT has completed 
and the SWEL has been moved from the MLMASWLQ queue (active SWELs) to the 
MLMPSWLS queue (SNA-posted SWEL). 

HASPSSAL removes the posted SWELs from the queue and, for each, calls $SEAS to 
analyze the results of the SAF call. If the SAF return code is 8, the autologon is 
aborted, the RAT is marked "not autologon", the remote is marked "not signed-on" 
in $RMTSON, and the DCT is freed. Otherwise (SAF RC=O or 4), the PCEs are 
obtained, and the pre-connection of the RAT, DCT, and ICE (which was started by 
HASPSRAT) is completed. The ICE is then queued to the ICE exit queue to begin the 
logon cycle. 

HASPSPRO: SNA Buffer Processing Routines 

3-348 JES2 Logic 

Buffers containing request parameter lists (RPLs) (that is, SNA teleprocessing 
buffers) represent requests that have been completed or that have not been 
completed and are to be reissued. Further buffer processing is performed 
according to the state of the session, as indicated by the ICEINDEX field, which 
indicates the current state, and the RPLSEQTP field, which reflects the state of the 
session at the time the request was issued. 

Before the common register environment is set up for the request-end routines, 
receive-any requests are singled out by testing the RPLSEQTP field and removed 
from the receive-any queue. (The preceding and following RPLs on the "receive 
any" queue are located directly through the RPLBCHN and RPLFCHN pointers.) 
MVFRECHK is called at this time to check if another "receive-any" should be issued 
to maintain the number of simultaneously active receives at the prescribed limit. 

The registers commonly used throughout the request-end are then initialized. The 
VTAM return code is used as an index to a branch table to determine the following 
points where processing continues: 

• MSNAPAOK: The request was completed normally ( + 0). 

• MSNAXRSP: An exception response or request was received ( +4). 

• MSNAXTMP: A temporary storage shortage condition in VTAM was 
encountered ( + 8). 

• MSNAPDMG: A data integrity problem was encountered ( + 12). 

• MSNAPENV: An environment error, or an error that resulted in lost data 
integrity was reported ( + 16). 

• MSNAPBUF: A logic or timing error was encountered ( + 20). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

./ 



( 

,f-

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPS NA 

MSNAPAOK: Normal Request Completion 

MSNALPAR: 

Requests that completed normally are further divided into special sequence 
requests and normal sequence requests. Special sequence requests are those that 
do not occur during normal data transmission, such as OPNDST, CLSDST, and 
INQUIRE. These are detected by testing RPLSEQTP for a nonzero major code and 
passing control to MSNAPSPC, where another branch table identifies the specific 
routine for each request type. Normal sequence requests consist of SEND. 
RECEIVE, and RESETSR macros issued to control inbound pacing. In this case 
control passes to four subsequence entry points with the following labels: 

• MSNAPRCV: Receive complete 

• MSNAPSND: Send complete 

• MSNAPRCS: Receive complete and RESETSR CS (session reset to 
continue-specific mode) issued to hold pacing 

• MSNAPSCA: RESETSR CS (session reset to continue-any mode) issued to 
release pacing 

For special sequence requests, control passes to MSNALOGN for logon sequence 
requests and MSNACLOS for session closedown requests. MSNACLOS is an 
alternate name for MICEMELT which, after ensuring that all outstanding RPLs for 
the session have completed, disconnects an ICE from the logon OCT and frees it. 
MSNALOGN branches on the minor code portion of RPLSEQTP to pass control to 
five subsequence entry points with the following labels: 

• MSNALDEV: INQUIRE DEVCHAR (device characteristics) complete; issues 
INQUIRE SESSPARM 

• MSNALPAR: INQUIRE SESSPARM (session parameters) complete; issues 
OPNDST 

• MSNALOPD: OPNDST (open destination) ACCEPT processing complete; 
session now ready for normal sequence requests 

• MSNALODQ: OPNDST ACQUIRE (for SNA NJE application-to-application 
session) complete; session now ready for normal sequence 

• MSNALOPS: OPNSEC (open secondary) complete; session now ready for 
normal sequence 

Inquire Session Complete Routine 
MSNALPAR obtains control upon successful completion of the INQUIRE SESSION 
PARAMETERS request. MSNALPAR is normally entered twice for the logon of an 
RJE device. The first entry starts the logon and initiates a SAF call. Since the line 
manager PCE cannot $WAIT, the $SEAS call issued by MSAFCHK (which issues the 
prior SAF call) specifies WAIT= NO. The second entry occurs when the SAF call has 
completed. On this entry, the results of the SAF call are analyzed by $SEAS and the 
logon is completed. 

On the first entry, MSNALPAR locates the user logon data and invokes exit 18 to 
allow an installation exit routine to affect the logon parameters and subsequent 
processing. Based on the exit's return code, MSNALPAR will: 

• 0 or 4 - Continue with normal logon. 
• 8 - Terminate the logon. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-349 



HASPSNA "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• 12 - Continue with the logon using the exit-supplied remote (RAT) and the 
passwords provided by the remote user. 

• 16 - Continue with the logon using the exit-supplied remote (RAT) and no 
password checking. 

If the logon is to continue (RC is not 8), MSAFCHK is called to issue a SAF VERIFYX 
call with a user ID from the RAT supplied by the exit (RC= 12 or 16) or teh RAT 
corresponding to the remote name specified on the logon (RC= O or 4). If the exit 
return code is 16, SAF password checking is bypassed; otherwise, the old password 
(and new password, if present) is passed as well. Normally, the SAF call will not 
complete before MSAFCHK returns, so MSNALPAR returns requesting that the 
buffer be requeued. 

When the SAF cal' completes, MSNALPAR is entered for the second time. This time, 
MSNALPAR issues a $SEAS to analyze the completed SAF request. Based upon the 
SAF return code, MSNALPAR: 

• 0 - Completes the logon. 
• 4 - Falls back to non-SAF password checking, checking the password against the 

one in the RAT (if any). 
• 8 - Rejects the logon. 

After logon processing completes, exit point MSNALTXT2 (for exit 18) is taken to 
invoke an installation exit routine. The installation exit routine returns with a 
continue normal logon processing indication {return code 0 or 4). 

MSNALODQ/MSNALOPS: OPNDST/OPNSEC Completion Processing Routine 
MSNALOD/MSNALOPS obtains control upon successful completion of an OPNDST 
or OPNSEC macro instruction via an entry in the logon sequence branch table 
(MSNAL TAB). MSNALODQ/MSNALOPS updates control blocks to indicate that the 
SNA session has been established and turns on the appropriate indicator in the line 
OCT (MDCTNJEH) to trigger the transmission of the JES2 NJE FM headers. 

MSNAPRSP: SNA Positive Response Handling Routine 
MSNAPRSP checks for an NJE session and invokes MNJENPMC when all function 
management (FM) headers have been successfully sent and received. MNJENPMC 
checks for a possible call of the network path manager initial sign-on routine 
(HASPNSNR). 

HASPVTAM: Open/Close ACB Routine 

3-350 JES2 Logic 

HASPVTAM communicates with VTAM, performing functions equivalent to the OPEN 
ACB and CLOSE ACB macros. Because those functions require that the invoking 
routine wait, HASPVTAM executes as a subtask, attached by HASPINIT when JES2 
is started. HASPVTAM specifies $STABEND as its $ESTAE routine. $STABEND 
performs no recovery for HASPVTAM but does provide problem determination 
information and terminates the HASPVTAM subtask if a failure occurs. 

HASPVTAM: At initial entry (upon being attached by HASPINIT), HASPVTAM 
performs standard and RTAM initialization. It clears $SNAECB, the event control 
block (ECB) through which the line manager indicates to HASPVTAM that work is 
available, and posts $PSNAECB to indicate to HASPINIT that the subtask has been 
attached and is active. HASPVTAM then enters VACBWAIT to wait for work. 

VACBWAIT: VACBWAIT issues a WAIT macro instruction, specifying $SNAECB as 
the event control block. This is the point at which VACBWAIT waits for work after 

LYW-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

each processing cycle. $SNAECB is posted by the line manager when a $S LGN1 or 
$P LGN1 operator command has been received. Each time it receives control, 
VACBWAIT tests the $SYSEXIT indicator in the $STATUS field of the HASP 
communications table (HCT} to determine whether JES2 is terminating; if it is, 
VACBWAIT frees its save area and returns to its caller. Otherwise, VACBWORK is 
entered. 

VACBWORK: VACBWORK clears its ECB ($SNCECB) and determines whether the 
logon device control table (DCT) is on the $VLOGQUE. If it is not, VACBWORK 
branches to VACBWAIT to wait for work. If the logon DCT is on the queue, it is 
removed, and VACBPROC is entered. 

VACBPROC: The DCTSINON indicator in field MDCTSTAT of the logon DCT is 
tested. If that indicator is on, the ACB has already been opened and this is a close 
ACB request. VACBPROC branches to VACBCLOS. Otherwise, a register in 
initialized with the open ACB complete exit code, and open processing is 
performed. 

A GETMAIN macro instruction is issued to acquire storage, and an ACB is built and 
initialized. Among the information placed in the ACB is the password, (if any), 
which is stored in the logon DCT, and the address of VACBINVL (in this routine), to 
which VTAM is to return control if the ACB is found to be invalid. An OPEN macro 
instruction is issued; VACBPROC tests the ACB indicators to determine whether the 
OPEN processing was successful. If open processing was not successful, 
VACBFAIL is entered. Otherwise, the DCTSINON indicator in the logon DCT is 
turned on to show that the ACB has been opened; processing then continues. 

The logon DCT, the request parameter list (RPL) to which it points, and the ACB are 
interconnected. The RPL is initialized to indicate that SETLOGON is to be 
performed, and VACBPROC links to the VTAM interface. When control is returned, 
VACBPROC tests the completion code, branching to VACBPOST to post the line 
manager if the request completed successfully. If the request did not complete 
successfully, it is tried again, unless the error is such that it cannot be attempted. In 
that case, DCTABORT is set on. The completion code returned by the VTAM 
interface is combined with the SETLOGON action code in register 2, and VACBPOST 
is entered to post the line manager. 

VACBINVL: This entry point is used by VTAM when open processing is impossible 
because of an error in the ACB passed to the VTAM interface. A return code of X'20' 
is stored in register 15, indicating that the OPEN request failed, and control is 
returned to VTAM. 

VACBCLOS: This entry point is used for CLOSE processing. At entry, the DCTSOFF 
indicator in the logon DCT is tested. If that indicator is off, CLOSE processing is not 
required, and VACBCLOS branches to VACBWAIT to wait for more work. Otherwise, 
VACBCLOS stores the CLOSE ACB complete exit code conditionally in register 2 
and issues the CLOSE macro instruction. If the CLOSE processing is successful, 
VACBCLOS branches to VACBFREE to free the ACB; otherwise, VACBFAIL is 
entered. 

VACBFAIL: The completion code returned by VTAM is combined with the exit code 
in register 2, and the DCTABORT indicator in the logon DCT's MDCTSTAT field is 
turned on. VACBREE is entered. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-351 



HASPSNA "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

VACBFREE: The ACB is freed, through a FREEMAIN macro instruction, and the 
pointer to the ACB in the logon OCT is cleared. Processing continues at 
VACBPOST. 

VACBPOST: VACBPOST branches to VOCTPOST to post the line manager, then 
returns to VACBWAIT to await further work. 

VTAM API Routines 
The following text describes the processing of the application program interface 
(API) routines. 

VEXITLGN: Logon Exit Routine 

APPLDYN 

3"".352 JES2 Logic 

VEXITLGN is entered from the VTAM application program interface (API) when an 
SNA remote work station logs on to VTAM. 

VEXITLGN examines the logon device control table (OCT) and returns immediately 
to VTAM (in effect, ignoring the logon attempt) if the access control block (ACB) is 
available or if the OCTORAIN indicator is set, indicating that shutdown of the 
JES2/VTAM interface is in progress. Otherwise, the logon counter(field 
MOCTLOGN) is increased by 1, and the next available interface control element 
(ICE) is removed from the $1CETRAY. (If no ICE is available, a branch to VLOGFAIL 
occurs.) The ICE is cleared and then initialized with the address of the logon OCT 
and the information returned by VTAM (the address of the symbolic name of the 
remote work station, stored in ICESYMB). Finally, VEXITLGN sets the logon exit 
routine identifier in register 2 and exits to VICEPOST to post the line manager. 
VICEPOST returns control to the VTAM API. 

VLOGFAIL: If the logon is rejected because no ICE was available, contenti;; of OCT 
field MOCTNICE is increased by 1. A GETMAIN macro is issued, and the $BFRBLO 
macro instruction is issued to construct a request parameter list (RPL) in the space 
obtained. The RPL is initialized as a CLSOST request and passed to the VTAM API. 
If the CLSOST fails but the VTAM return code indicates that it should be reissued, 
the CLSOST request is reissued until it succeeds or fails permanently. If the 
CLSOST request is successful or is unsuccessful and cannot be tried again, the RPL 
is freed, and the logon exit returns control to VTAM. 

APPLOYN is called from MICEBINO and SNASNET to find an application program 
table (APT) entry matching the application name that is passed. If an application 
name is passed without a node number, the existing APTs are searched. APTs are 
chained, not contiguous. Return codes 12 or 16 are returned to the caller if a match 
is found but the node is invalid. If a match exists and the node is valid, the APT and 
the NIT are returned to the caller, with a return code of zero. If no matching APT 
exists, the NITs are searched; if the OWNNOOE NIT matches, return code 12 is 
returned. If another NIT matches, and APT is built, the APT and the NIT are returned 
with a return code of zero. If no NIT matches, the return code is 8. 

If a node number is also passed, along with the application name, the existing APTs 
are searched. If a matching APT is found, its node is reset and it is returned, even 
if its node value is invalid. The NIT address is also returned (even if it is invalid). If 
no matching APT exists, one is built and its node is set and returned (even if it is 
invalid). The NIT address is also returned (even if it is invalid). Return code 4 is set 
if a GETMAIN for an APT fails. 

LY~8-1006-2 ©Copyright IBM Corp. 1988, 1990 

\ .. __ ./ 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SNASNET: $SN Exit Routine 

HASPS NA 

When a start networking command ($SN A= applname) is issued to establish a SNA 
session with another NJE node, the NJE command sub-processor (HASPCNT1 in 
HASPCOMM) invokes SNASNET. 

SNASNET verifies that the VTAM interface is usable and the the DCT line is valid. If 
a line DCT is not supplied by the caller, this routine obtains one from the SNA idle 
queue. It calls APPLDYN to find or build an APT. Then an interface control element 
(ICE) is obtained from the queue of available ICEs ($1CETRAY), initialized, and 
updated with the appropriate $SN command information. The line specified by the 
operator (or any qualifying SNA line, if none was specified) is removed from the 
SNA idle queue (MSNAIDL) and added to the SNA active queue (MSNALNE). A 
pointer to the line device control table (DCT) is stored in the ICE (ICELDCT). Finally, 
SNASNET sets the $SN exit routine identifier in register 2 and enters VICEPOST. 
VICEPOST queues the ICE to the MICEQUE queue, posts ($POST) the line manager, 
and returns control to the HASPCOMM command sub-processor. 

VEXITLST: LOSTERM Exit Routine 
VEXITLST is entered from the VTAM API when a SNA work station becomes a lost 
terminal (that is, when the SNA work station is not available). In the NJE 
environment, the LOSTERM exit at the primary logical unit is scheduled when a 
TERMSESS is issued by the secondary logical unit. 

VEXITLST examines the logon DCT and returns immediately to VTAM if the ACB is 
unavailable. Otherwise, VEXITLST performs basic RTAM register initialization, 
loads register 2 with the LOSTERM exit routine identifier combined with the reason 
code passed by VTAM, and enters VICEPOST to post the line manager. VICEPOST 
returns control to the VTAM API. 

VEXITNS: Network Services Exit Routine 
VEXITNS is entered from the VTAM API and is scheduled for both primary and 
secondary applications when a session outage occurs or as a result of a VARY 
INACT command with the forced or reactive operand. 

VEXITNS examines the request parameter list (RPL) passed by VTAM. If the RPL is 
a cleanup request unit (RU), indicating that VTAM has terminated the session, the 
routine performs basic RTAM register initialization, loads register 2 with the $SN 
exit routine identifier, and enters VICEPOST to post the line manager. VICEPOST 
returns control to the VTAM API. 

If the RU passed by VTAM is a network services procedure error RU, VICEPOST 
returns to VTAM with registers 15 and 0 set to 0. 

If the RU received is not one of the expected types, VICEPOST returns to VTAM with 
register 0 set to 0 and register 15 set to 4. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-353 



HASPS NA 

The registers on entry are as follows: 

Register Contents 

1 Address of parameter list 
First word - Address of ACB 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Second word - Communications identifier (CID) of session 
Third word - User field/ICE address 
Fourth word - Reserved 
Fifth word - Address of read-only RPL (cleanup RU) 

2-13 Unpredictable 
14 Return address 
15 Entry address 

Return registers are as follows: 

Register Contents 

0 Zeros 
15 Return code 

0 - Good return 
4 - RU passed by VTAM not recognized by application 

VEXITTND: TPEND Exit Routine 
VEXITTND is entered from the VTAM API when VTAM is terminating either because 
the operator has requested a normal or a quick shutdown or because of abnormal 
termination. 

VEXITTND examines the logon DCT and returns immediately to VTAM if the ACB is 
unavailable. Otherwise, VEXITTND performs basic register initialization, loads 
register 2 with the TPEND exit routine identifier combined with the reason code 
passed by VTAM, and et'!ters VICEPOST to post the line manager. VICEPOST 
returns control to the VTAM API. 

VEXITSCP: SCIP Exit Routine 

3-354 JES2 Logic 

VEXITSCP is entered from the VTAM API when a session control request unit (RU) is 
received by VTAM for the JES2 application. 

VEXITSCP examines the logon DCT and returns immediately to VTAM if the 
application control block (ACB) is not available; otherwise, VEXITSCP performs 
standard register initialization and examines the request parameter list (RPL) 
passed to it by VTAM. This is a read-only RPL containing the session control RU 
received by VT AM for JES2. 

If the request is a request recovery (RQR), VEXITSCP sets the SCIP exit (RQR) 
identifier in register 2, enters VICEPOST to queue the ICE to the MICEQUE queue, 
and posts ($POST) the line manager. 

When VEXITSCP is entered due to the receipt of a BIND request unit (resulting from 
another application issuing an OPNDST ACQUIRE macro instruction), an ICE is 
obtained from the $1CETRA Y, initialized, and updated with the appropriate BIND 
information. 

VEXITSCP sets the SCIP exit (BIND) identifier in register 2, enters VICEPOST to 
queue the ICE to the MICEQUE queue, and posts ($POST) the line manager. If no 
ICE is available, the BIND is rejected via a SESSIONC request. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSNA 

If the SCIP exit routine is entered due to the receipt of an UNBIND request unit 
(received when the primary session issues a CLSDST macro instruction), VEXITSCP 
sets the SCIP exit (UNBIND) identifier in register 2 and enters VICEPOST; VICEPOST 
then returns control to the VTAM API. 

All other session control requests are ignored by VEXITSCP; control is returned to 
the VTAM API with no further action. 

VEXITRLR: RELREQ Exit Routine 
VEXITRLR is entered from the VTAM API when another application, possibly a 
diagnostic application, has requested ownership of a remote work station logged on 
to JES2 through VTAM. 

VEXITRLR examines the logon OCT and returns immediately to VTAM if the ACB is 
unavailable. Otherwise, MDCTSNCT, the count of active sessions, is obtained from 
the logon OCT. The address of the associated terminal's symbolic name, passed by 
VTAM, is compared with the symbolic name address in field ICESYMB of each 
active ICE. If no match is found, control is returned to VTAM. If a match is found, 
VEXITRLR places the RELREQ exit routine identifier in register 2 and enters 
VICEPOST to post the line manager; VICEPOST then returns control to the VTAM 
API. 

VEXITRPL: Request Completion Exit Routine 
VEXITRPL is entered from the VTAM API at the completion of any RPL request. The 
primary function of VEXITRPL is to respond to the completion of a send or a receive 
request by scheduling immediately the next applicable send or receive request. 
Because VEXITRPL executes under a service request block (SRB), causing each 
request completion to trigger the next initiation within the SRB, VEXITRPL 
significantly reduces dispatching and housekeeping overhead. 

In the course of processing, VEXITRPL queues every completed request on the line 
manager's channel end queue. $RJECHEQ (through a branch to VBUFPOST), 
continues processing. VEXITRPL takes only that action and returns control to VTAM 
in these cases: 

• If the request that completed was a special sequence request. (Special 
sequence requests are those that do not occur during normal data transmission, 
such as INQUIRE SESSPARM, or OPNDST. Normal sequence requests are send 
and receive requests, including RESETSR requests). 

• If a send or receive request completes, but the RPL return code indicates an 
error higher than X'04'. 

• If a receive request completes, and the queue of receive-ahead buffers is empty. 

• If a send request completes, and the queue of outbound requests for the session 
is empty. 

In all other cases, VEXITRPL links to VBUFPOST to cause the current buffer to be 
passed to the line manager for further disposition. VEXITRPL then starts a new 
send or receive operation. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-355 



HASPSNA 

3-356 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The principal difference between receive and send processing is that on completion 
of a receive request, any buffer on the receive-any queue, MDCTRQBF, can be 
passed to VTAM to cause the next receive operation to be started. On completion of 
a send request, only buffers on the outbound queue for the same session can be 
passed to VTAM. Also, receive-completion processing includes precautions against 
overloading any session's inbound queue. 

Whenever a receive operation (other than a response or an asynchronous data flow 
control) is completed, VEXITRPL increases the corresponding session's count of 
outstanding inbound requests, ICEINCT, and compares the count against its limit, 
ICEINLM. If the limit has not been reached, the next receive operation is started. If 
the limit has been reached, inbound flow to JES2 on this session must be 
temporarily halted. The RPL is reinitialized as a RESETSR request, indicating that 
the session be placed in continue-specific mode and is passed to VTAM. (Note that 
this RPL may still contain data transmitted by the remote sender. When the reset 
request completes, even if an error occurs, the buffer is placed on the line 
manager's $RJECHEQ and is processed as a received data buffer.) 

Resetting a session to continue-specific mode permits the count of outstanding 
inbound requests to fall to an acceptable level, because no receive-specific request 
is ever issued by JES2; thus, JES2 receives no more inbound traffic on the session 
until the receiving processor has handled the existing inbound requests. The 
remote sender may still transmit inbound data to VTAM, but VTAM does not pass 
that data to JES2 until the session is returned to continue-any mode. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCKPT 

( HASPCKPT: Checkpoint Processor 

( 

HASPCKPT manages access to all information in the JES2 checkpoint records: job 
queue, job output table, shared queue elements (QSEs), master track group map, 
remote message spooling queues, and other miscellaneous control information. 
Other processors use the $QSUSE macro instruction to request update access to 
these areas. HASPCKPT handles communications among the systems in a 
multi-access spool configuration, detects errors in the checkpoint data set, and 
performs recovery procedures for any errors found. 

HASPCKPT represents the major portion of code dealing with the JES2 checkpoint 
data set. The checkpoint PCE executes code in HASPCKPT to ensure that timely 
access is made to the JES2 checkpoint data set, and to ensure that other members 
of the multi-access spool complex are given the opportunity to access the job 
queues. 

JES2 can use either one or two checkpoint data sets, in either of two modes of 
operation. 

The first mode of operation, DUPLEX mode, uses the data set(s) as a primary data 
set with an optional backup, or alternate, data set. In this mode, most activity takes 
place on the primary data set -- updates made by other systems are read from this 
data set, updates made by this system are written to this data set. The backup data 
set is written occasionally to ensure that the second physical copy of the checkpoint 
data set is relatively up to date. In DUPLEX mode, all queue updates are read and 
written in 4K blocks, that is, entire 4K pages are read and written, even if only one 
control block on a given page was changed. 

The second mode of operation, DUAL mode, uses both data sets as primary data 
sets, that is, updates are read and written to both data sets. (Although DUAL mode 
can be used with only one data set, this configuration is recommended only as a 
temporary measure when a data set must be taken out of commission, for example, 
while a DASD volume or control unit undergoes maintenance.) In DUAL mode, the 
two data sets "flip-flop" control back and forth between them: 

• Updates are read from one data set, those updates and any updates made to the 
job queues by this system are written to the other data set. 

• The next system to gain control of the job queues reads from the other data set 
and writes its updates to the first data set. 

In DUAL mode, updates made by the previous system are read from, and updates 
made by this system are written to, the data set in the change log. The change log 
is used to compress changed control blocks together. Instead of changes being 
written in separate 4K pages, the changed control blocks are gathered together and 
written. In this way, a single 4K page containing, say, 30 control blocks, can be 
written where 10-20 pages would have had to be written before. 

Although DUAL mode uses two primary data sets, ownership of the queues is still 
given to one system at a time, that is, it is not possible for one system to own CKPT1 
while another system owns CKPT2. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-357 



HASPCKPT "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Any time HASPCKPT performs a checkpoint 1/0, if an 1/0 error occurs, the 
checkpoint reconfiguration dialog is called to resolve the problem. Also, each time 
a write occurs to a checkpoint data set, and each time a Read 1 is executed, the 
dialog will be called if the operator entered a $TCKPTDEF,RECONFIG =YES 
command. (See "KDIALOG" documentation in the section that describes 
HASPCKDS.) 

This section describes the following portions of HASPCKPT: 

• Checkpoint PCE Initialization 
• Main Loop 
• Major subroutines 
• KREAD1 
• KTRK110 
• KREAD2 
• KAFTRD2 
• KPRIMW 
• KWRITE 
• KBLDCHLG 
• KBLDCCWS 
• KFORMAT 
• KTRACE 
• KIOERROR 
• KBLOB 

Checkpoint PCE Initialization 

Main Loop 

3·358 JES2 Logic 

During checkpoint PCE initialization, timer queue elements (TQEs) are initialized for 
the various interval timers that are used, the 1/0 copy of the checkpoint is initialized, 
cross-system $#POST propagation is set up, the page pointer list (PPL) is 
GETMAINed (used by KBLDCHLG), and the main loop is entered to start this 
system's write cycle. 

When the PCE is initialized, the system has control of the checkpoint data set and an 
up-to-date copy of the queues is in memory. 

The main loop in HASPCKPT: 

• Gains control of and obtains the current copy of the checkpoint 

The KREAD1 and KREAD2 routines are called to RESERVE the CKPT1 volume, 
obtain the software lock, and read into storage any updates made by other 
systems. 

• Processes multi-access spool communication 

The SPOOL processor is $POSTed if there is work for it to do. The QSE control 
blocks (shared queue elements) are examined to determine if other systems are 
active or inactive. If another system has joined the complex, the network path 
manager is notified to add the new system to the network. If a system 
previously in the complex is no longer active, the network path manager is 
notified to delete the system from network processing. This code then informs 
the rest of this system that the job queues are available for processing, 
propagates $POSTs and $#POSTs from other members of the complex to this 
system, starts the minimum hold timer and a timer to force a checkpoint write if 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCKPT 

too much time elapses before a checkpoint write occurs. Finally, it calls 
KPRIMW to ensure that the down-level data set is brought up to date. 

• Makes updates to the data sets as long as this system is allowed. It $WAITs 
until one of the first three conditions is true and the fourth condition is also true: 

1. A checkpoint write is requested 

2. The timer goes off indicating a write must occur 

3. The timer goes off indicating this system must give up control of the 
checkpoint data set 

4. All other JES2 PCEs have completed all the work available to them and are 
$WAITing for events to occur (for example, for SPOOL 110). 

When these conditions are satisfied, the main loop calls KBLOB to replenish the 
track groups available to this system, calls KBLDCHLG to build the change log, 
and calls KWRITE to write all updates to the current data set. After the write is 
scheduled, any PCEs or other address spaces that are waiting for track groups 
are notified that spool space is again available. If the minimum hold interval 
has expired, the code indicates that the queues are no longer available to be 
updated. Finally, KWRITE is called again to $WAIT for the write to complete. 
When the write is complete, KPRIMW is called to ensure that the down-level 
data set is brought up to date, if necessary, and to ensure that the pages which 
were fixed for the 1/0 are freed. If the minimum hold interval did not expire, the 
code returns to wait until conditions are appropriate for another write. 

• Releases control of the data sets when the cycle is complete 

When the minimum hold interval has expired, KTRK110 is called to release the 
software lock on the up-to-date checkpoint data set, and the CKPT1 volume is 
RELEASEd. The change log is cleared, the page address lists (PALs) are 
FREEMAINed, and the page pointer list (PPL) is cleared. If JES2 is shutting 
down, the checkpoint PCE is shut down. 

• Waits to regain control of the queues 

The PCE $WAITs until the minimum amount of time ($MINDORM) has expired 
before checkpoint processing is again allowed to attempt to regain control of the 
queues. If no other PCEs require access to the checkpoint, the checkpoint PCE 
$WAITs until the maximum amount of time has expired before checkpoint 
processing must attempt to regain access to the queues. 

Major Subroutines 

KREAD1 
This section describes the processing associated with the READ 1 phase of the 
checkpoint cycle, that is, the initial read of the lock record, the contents of track 1, 
the change log, and the setting of the lock record. The processing described here is 
most often invoked during the normal checkpoint cycle by the checkpoint processor. 

READ 1 processing initiates two channel programs against two separate data sets 
in the dual data set configuration, and reads the change log portion from track 1 of 
the data set. Error processing handles the dual 1/0 completions and the extended 
reads. These functions are contained in the KTRK110 routine and in turn translated 
into the channel program built for the read of track 1. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-359 



HASPCKPT 

3-360 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The content of the lock record key is defined to allow indication of several states of 
the data set when operating in dual or duplex modes. The routine processing, data 
set format, and channel program structure are described in the following sections. 

Routine KREAD1: KREAD1 acquires the MVS reserve for the checkpoint data set, 
invokes KTRK110 to acquire the checkpoint lock and read the master a·nd change 
log records, determines the state of the checkpoint lock, and either retries the lock 
read or returns to its caller. If the lock is obtained, it is validated, and the HFAM 
(Hasp file allocation map) data checked for forwarded data set(s) or a change in 
data set status. If the lock is not obtained, KREAD1 informs the operator of the wait 
and retries the lock read operation once each second. The operator is re-informed 
of the wait every 32 seconds. If, during the retry processing, an $ESYS,RESET= 
command is issued, this processing will perform the lock reset operation. 

Routine KTRK110: The KTRK110 routine is a general routine which is used to 
perform 1/0 operations for the first track of the JES2 checkpoint. KTRK110 may be 
used to read or write either of the check and lock records, read the master and 
change log records, or to test and set the lock record. These operations may be 
done for one or more records in a single call to KTRK110, for example, test and set 
the lock record, read the check record, and read the master and change log records. 
The 1/0 operations may be done to a single checkpoint data set, or to both data sets 
simultaneously. 

The KTRK110 routine is usually invoked to acquire the checkpoint data set software 
lock, and, if successful, to read the master record and change log data from the 
to-be-read-from data set for a dual data set configuration and from the primary data 
set for a primary/duplex data set configuration. The DASO reserve must be 
obtained, if required, prior to the invocation of KTRK110. 

Input to the KTRK110 routine consists of pointers to the $CKGPAR control blocks 
(CKGs) for either or both of the checkpoint data set pointers to the comparand 
values for the lock record key, pointers to the to-be-written values for the lock 
record key, and a set of processing control flags. The various control flags passed 
on input are: 

Control Flag 

READ-CHECK 

WRITE-CHECK 

Meaning 

If set, read the check record from the data set(s). Otherwise, do 
not read the check record. 

If set, write the check record from the data set(s). Otherwise, do 
not write the check record. 

If both READ-CHECK and WRITE-CHECK flags are set, then the check record will be 
read. 

Control Flag 

TEST-LOCK 

Meaning 

If set, the lock record (key and data) will be compared to the 
given lock key comparand value, and, if matching, any further 110 
operations indicated will be performed. (If the key value does not 
match the given comparand, the lock record will be read only.) If 
this flag is not set, any further 1/0 operations are performed as 
indicated. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/.-



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCKPT 

Note that the following operations are performed conditionally if TEST-LOCK is 
specified. 

Control Flag Meaning 

READ-LOCK If set, the lock record record will be unconditionally read. 
Otherwise, the lock record is not read (except if TEST-LOCK is 
specified); this flag is ignored if TEST-LOCK is specified. 

READ-MASTER If set, read the master record (record 3) from the data set(s). If 
not set, do not read the master record. 

READ-LOG If set, read the change log data from the data set(s). If not set, do 
not read the change log. 

WRITE-LOCK If set, write the lock record key value passed as input to the lock 
record key and data area. If not set, do not write the lock record. 

MASTER-SU If set, suppress length errors reading the master record (record 
3) from the dataset(s). If not set, allow length errors to occur. 

The routine processes the 1/0 request by first setting the CKB IOBs and channel 
program packets to the structure indicated by the input control flags. The required 
l/O(s) are then initiated via native EXCPVR requests using the separate DCBs and 
DEBs OPENed for the data sets. The 110 for the data set referenced by the first CKG 
in the input parameter list is initiated first. 

ECBs for the 1/0 requests are established in the CKB and are directly waited on 
($WAIT XECB) after a timer is started. Upon completion of the 1/0 request(s) any 1/0 
errors detected by the abnormal channel end appendage(s) are recognized, and/or 
the status of the read completion(s) are determined. 

The final read completion status and an indication of the data set(s) read is returned 
to the caller via a return code and status flags. 

The possible return codes returned by KTRK110 are: 

Code Meaning 

RC=O 

RC=4 

RC=8 

RC=12 

The read request completed according to the input specified. The 
in-storage data set contains the data read from the checkpoint data 
set. 

110 error encountered. The type of error is indicated by further status 
flags (CKBFLAG3). See below. 

The CKG addresses passed were either both zero, or one of the CKBs 
pointed to was found to be invalid. This error is caused by a bad 
parameter list pointer and/or storage overlay. 

An 1/0 operation was found to be already outstanding on a ch::;..:;r..point 
data set. 

The possible 1/0 errors (RC=4) detected by KTRK110 are: 

Status 

CHECK-1/0-ERROR 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

Meaning 

An 1/0 error was encountered reading/writing the check 
record for the data set. No data was read/written. 

Chapter 3. Program Organization 3-361 



HASPCKPT 

3·362 JES2 Logic 

KEY-SEARCH-ERROR 

MASTER-READ-ERROR 

LOG-READ-ERROR 

LOCK-READ-ERROR 

LOCK-WRITE-ERROR 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

An 1/0 error was encountered searching for the lock 
record key of the data set. The key was not found on 
track 1. Any previous operations were successful. 

An 110 error was encountered reading the master 
record for the data set. No data could be read. Any 
previous operations were successful. 

An 1/0 error was encountered reading the change log 
for the data set. Some change log records may have 
been read. (A count of the number of change log read 
is set in the CKB.) The check and master records were 
read successfully. 

An 1/0 error was encountered reading the lock record 
for the data set. No data could be read. Any previous 
operations were successful. 

An 1/0 error was encountered writing the lock record for 
the data set. No data was written. Any previous 
operations were successful. 

Track 1 and change log format: Three distinct types of records occupy the first 
track of the data set (track 1). 

The check record is contains the data set name and volume serial of the active data 
set. (It may refer to the data set containing the check record or to a "forwarded" 
data set in the case of a checkpoint data set reconfiguration.) 

The lock record key contains an indication of several states associated with the 
configuration of the checkpoint data set in dual or duplex mode of operation. The 
lock record key is also used as a means of preventing data set access in the case of 
a DASO reserve failure, and as a means of determining whether or not to read the 
entire contents of track 1. 

The lock record data area is the same size as the check record, so that both records 
can be written in one locate record domain (in ECKD mode). 

New records which contain the change log data are formatted onto track 1 after the 
existing master record. 

Figure 3-10 depicts the records formatted onto the first track of a checkpoint data 
set in the order that they exist on the data set. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 

/ -, 
'\ 

' ', J 

/ 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCKPT 

Lock 

Check 

Master 

00000000 OOOOOOlv 00800000 OOOOOOlv SYSID 

Key Data 

lv = 00 indicates that this data set is to-be-read-from 
(or primary). 

lv = 01 indicates that this data set is to-be-written-to 
(or duplex). 

lv = 02 - indicates that the data set has been reallocated to the 
dsn and volume named in the Check record. 

dsn and volser (in HFAM format) level ck 

level = A four-byte binary integer indicating the current level of 
the checkpoint 4K page data area. 

ck = l-7F - incremental write verification sequence no. 

ck = 81 - indicates format write done. 

HCT checkpointed data •.. (mstr ck) (CTLBs) (etc.) 

Log Change log data (4K length} 

As many log records as will fit on track 1 are formatted. 

Figure 3-10. Format of Checkpoint Data Set Track 1 Data Records 

The format of the checkpoint data set is shown in Figure 3-11. (Also refer to the 
debugging section in Chapter 5 for a figure that shows the format in more detail.) 

l Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-363 



HASPCKPT 

Track 1: 

lock 

End of Track 1 
thru n: 

(Change Log) 

D [~_J ~I~ 
check master change log 

I I 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

change log 

I I 
change log change log change log change log change log change log 

Track n+l 

I I ] I 

Note Here, a single block is an unkeyed data record, a double block is a key record. 

Figure 3-11. Checkpoint Data Set Format 

3-364 JES2 Logic 

Channel Program Description: The channel program constructed to read the track 1 
data is built according to the input control flags passed to the KTRK110 routine. In 
the simpler cases, the channel program will be a sequence of chained single record 
reads/write CCW operations. For the TEST-LOCK operation, however, the channel 
program constructed is more complex. 

Basically, the TEST-LOCK channel program acts much like the 370 COMPARE AND 
SWAP CPU instruction. If the value of the lock key matches the comparand value 
given on input, the check, master and log records are read and the lock record 
written (set) to indicate ownership of the data set by the reading system, otherwise 
ONLY the check and lock records are read (and the lock is NOT altered). The 
master/log records are read only if indicated by the input parameters passed to the 
routine. 

The channel program is designed to perform the read of track 1 with minimum 1/0 
service time. The channel commands are chained to test the lock, read the check, 
master, and log records in sequence, and write the lock, in a single rotation of the 
DASO device if possible. 

The channel program itself is built from several common CCW "packets" (a set of 
CCWs command chained together that perform a single 1/0 operation - read, write, 
search key - for a single record of the data set). The CCW packets are formatted 
depending on the type of DASO device on which the data set resides. If the device 
supports CKD 1/0 commands only, the common CCW packets consist of the standard 
SEEK, SET SECTOR, and SRCH ID EQ CCWs preceding the operation CCW. If the 
device supports the Extended-CKD command set, then the LOCATE RECORD 
command is chained to operation CCW and its parameter list set to perform the 
SEEK, SET SECTOR, etc. orientation. Note that whole CCW packets are not always 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCKPT 

chained together beginning with the first CCW in the packet; any CCW within the 
packet may be the target of a TIC command from another packet. 

More precisely, the following standard CCW packets are formatted for the single 
record operations: 

Standard Single Record Read/Write Packet (SRW): 

1. IDAW List 
2. SEEK (CKD) or LOCATE RECORD (ECKD) 
3. TIC * + 8 (i.e., NOP if CKD) or TIC CCW7 (ECKD) 
4. SET SECTOR 
5. SRCH ID EQ 
6. TIC *-8 
7. READ or WRITE+ DATA or KEY+ DATA 
8. TIC (next packet) 

Standard Keyed Record Search Packet (KRS): (used only for lock record) 

1. (Unused) 
2. SET SECTOR or NOP 
3. TIC * + 8 (i.e., NOP) 
4. SRCH ID EQ R2 
5. TIC *-8 
6. SRCH KEY EQ (argument = XL8'0') 
7. TIC (if KEY .NE. arg) 
8. TIC (if KEY .EQ. arg) 

Standard Single Record Format Write Packet (SFW): 

1. IDAW List 
2. SEEK (CKD) or LOCATE RECORD (ECKD) 
3. TIC *+8 (i.e., NOP if CKD) or TIC CCW7 (ECKD) 
4. SRCH ID EQ 
5. TIC *-8 
6. WRITE COUNT+(KEY)+DATA 
7. WRITE + DATA 
8. TIC (next packet) 

The channel program to read track 1 via the TEST-LOCK operation is depicted in the 
following figure. It is constructed by linking (via the TIC commands) several of the 
standard CCW packets defined above. 

Note: The Read 1 channel program is considered a 'write' operation by a buffered 
DASO controller because of the final Write-Lock packet; therefore does not take 
advantage of buffered data for its read operations. 

Note: The channel program as depicted below will require, on the average, 
.5+1 +c number of disk revolutions to complete (where c is the partial revolution 
required to rewrite the lock record). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-365 



HASRCKPT 

IOBSTART 

Test-Lock CKRS) 

SET SECTOR 
SRCH ID EQ 
TIC •-8 
SRCH KEY EQ 
TIC 
TIC 

Read-Check CSRW) 

SEEK/LOCRCD 

SRCH ID EQ 
TIC •-8 
READ DATA 
TIC 

Read-Moster CSRW) 

SEEK/LOCRCD 
SET SECTOR 
SRCH ID EQ 
TIC •-8 
READ DATA 
{IC 

Note: The SET SECTOR cmd 
is pointed to if a 
synch. control unit 
CCKD) is used. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Note: !OS prefixes the channel program with a SEEK command. 
The initial LOCRCD is not used since it may cause a loss 
of revolution with non-synch. control units. 

Read-Check CSRW) 

SEEK/LOCRCD 
SET SECTOR 
SRCH ID EQ 
TIC •-8 
READ DATA 
TIC 

Read-Log CSRW) 

SEEK/LOCRCD 
SET SECTOR 

.-----:>1 SRCH ID EQ 
TIC *-8 
READ DATA 
TIC 

Write-Lock CSRW) 

~--- SEEK/LOCRCD 
SET SECTOR 
SRCH ID EQ 
TIC •-8 
WRITE K + D 
TIC 

Read-Lock CSRW) 

SEEK/LOCRCD 
SET SECTOR 
SRCH ID EQ Verify-Count 
TIC •-8 
READ DATA 
TIC READ COUNT 

Verify-Count 

READ COUNT 

Figure 3-12. Channel Program for Read 1 

3•366 JES2 Logic 

The channel program as depicted in Figure 3-12 will complete the read of the entire 
contents of track 1 and write the lock record if, and only if, the lock record key value 
is all zeros. Otherwise, only the check record data area and the lock record key and 
data areas are read. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 

\-... / 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCKPT 

The lock record key value as defined in Figure 3-10 is written with three possible 
values, each value a combination of settings of the "Iv" byte within the key. The 
four possible values and their meanings are defined as follows: 

LV Meaning 

00-00 Lock unheld, data set is to-be-read-from (or primary if CKPT1). 

00-01 Depends on lock value of other data set: 

If 00-00, lock unheld, data set is to-be-written-to (or duplex if CKPT2). 
If 00-01, lock just obtained, data set status must be determined from 
level numbers. 

00-02 Data set is forwarded. Forwarded data set must be read to determine lock 
and level status. 

The following figures show the channel programs for the Intermediate, Final and 
Primary Writes, and for Read 2 . 

.--I OB START Note· !OS prefixes the channe program 
with a SEEK command. 

Write Master (SRWJ Write-Log and 4-K Pages 

~I 

SEEK/LOCRCD 
SET SECTOR 11 SRCH ID EQ 
TIC •-8 
WRITE DATA 
TIC ----+---' 

SEEK/LOCRCD 
SET SECTOR 
SRCH ID EQ 
TIC •-8 
WRITE DATA 
TIC 

Write-Lock CSRWJ 

Note: The SET SECTOR cmd 
is pointed to if a 
synch. control unit 
(CKDJ is used. 

~I SEEK/LOCRCD 
SET SECTOR 
SRCH ID EQ 
TIC •-8 
WRITE DATA 
TIC 

~I 

Write-Check (SRWJ 

SEEK/LOCRCD 
SET SECTOR 
SRCH ID EQ 
TIC •-8 Verify-Count 

WRITE DATA j J 
TIC ----+----'~.i-l READ COUNT 

Figure 3-13. Channel Program for Intermediate, Final, and Primary Writes 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-367 



HASPCKPT 

------------------ - --- -- ------- --

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

r--IQBSTART Note: !OS prefixes the channel program 
with a SEEK command. 

Read-Log and 4-K Pages 

t---i 

SEEK/LOCRCD f--1 
SET SECTOR _,. 

r SRCH ID EQ 
TIC *-8 
READ DATA 
TIC 

l 
l 

l Verify-Count 

~ READ COUNT J -l 
Figure 3-14. Channel Program for Read 2 

CCW Packet Build Processing 

3-368 JES2 Logic 

Several routines process the building and setting of the CCW packets necessary to 
perform the various required 110 operations to the checkpoint data set. The 
required 110 operations on the checkpoint data set include read, write, and 
format-write. 

Separate CKBs containing only the Read 1 channel program CCW packets and all 
data areas are formatted, one for each checkpoint data set. A single set of CCW 
packets for the regular 4K records (and all track 1 and change log records) are built 
and formatted separately from the CKBs for the_ read 1 CCWs. 

In addition, the CKB contains storage for an ECB. The ECB is used to monitor 
checkpoint 1/0 completions and is separate from the normal $HASPECB used for 
checkpoint (and spool) 110. This separation of the checkpoint 1/0 related ECBs 
promotes improvement in the checkpoint processor's response to checkpoint 110 
completions. 

Routine KBLDCKB: The KBLDCKB routine is responsible for acquiring 
(GETMAINing), building (initial formatting), and page-fixing the CKB. It is invoked 
primarily from JES2 initialization, but may also be invoked from error recovery 
support when a new checkpoint data set is dynamically allocated. The CKB is 
anchored to the CKW. 

The size of the CKB depends on the size of the change log defined and the number 
of 4K records contained in the checkpoint data (this number depends on the sizes of 
the various JES2 checkpointed control block tables, the job queue (JOE), job output 
queue (JOT), etc.). 

The caller of KBLDCKB is responsible for ensuring that all 1/0 requests using the 
CKB are complete prior to the call. 

The routine initializes the CCW packets and the associated data packets in the 
checkpoint buffer (CKB). These packets are used for all 1/0 operations on both the 
primary and alternate checkpoint data sets. Each CCW packet is used for 1/0 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ \ 

/ 
/ 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCKPT 

operations on a specific record of either checkpoint data set. Each CCW packet is 
initialized as shown in Figure 3-15. 

CCW SEEK,*-*,CC,6 
CCW LOCRCD,*-*,CC,16 
CCW TIC,*-*,0,0 
CCW SRCH+ID+EQ,*-*,CC,5 
CCW TIC,*-8,0,0 
CCW TIC,*-*,DC,8 
CCW READ+DATA,*-*,CC,4096 
CCW TIC,*-*,0,0 

Figure 3-15. Standard Format-Write CCW Packet 

The type of the first and second CCWs in each packet is dependent on the device 
type of the alternate and primary checkpoint data sets, respectively. For count key 
data architecture (CKD) devices, a SEEK CCW is used. For extended CKD devices, 
a LOCATE RECORD CCW is used. The third CCW is a TIC either to the SEARCH ID 
CCW for CKD devices or to the WRITE CCW for extended CKD devices. The packets 
are initialized for either format-write or read operations during initialization. For 
format-write operations, the sixth CCW becomes a WRITE COUNT-KEY-DATA CCW 
that writes the count portion of the record and is data-chained to the next CCW that 
writes the data portion of the record. Later, the checkpoint processor (in module 
HASPCKPT) alters the packets for non-format 110 operations. 

Associated with each CCW packet is a data packet that contains the parameter lists 
for LOCATE RECORD, SEEK, SET SECTOR, and SEARCH ID. It contains the 
addresses (in CCHHR format) of the record on both the primary and alternate 
checkpoint data sets. Where CC is the cylinder ID, HH is the head ID, and R is the 
record. 

KBLDCKB uses special CCW packets (CKBLOCKV, CKBLOCKR, CKBLOCK, 
CKBFMT, CKBCHECK, and CKBVERP) in the CKB for locking, formatting, and 1/0 
verification. These special packets are initialized along with CCW packets used for 
reading and writing the master checkpoint record and all of the 4K checkpoint 
records. The special CCW packets are initially set up for both read and format-write 
operations. They are later altered by the checkpoint processor for other 110 
operations. 

Routine KSETTRK1: The KSETTRK1 routine is used to set the various elements of 
the CKB to proper values prior to the initiation of an the Read 1 1/0 operation. 

Both IOBs for the two checkpoint data sets are set, and the CCW packets for the 
Read 1 channel programs are set to required values, depending on the type of Read 
1 to be performed. (See "KREAD1" for the various types of READ 1 s that can be 
requested.) 

Routine KBLD4KP: The KBLD4KP routine is used to initialize the CCW packets for 
the 4K records prior to the initiation of a checkpoint data set. 

110 Appendages: 1/0 errors are detected after each main CCW packet, that is, after 
the reads of the check, lock, master, and change log records. Several attempts will 
be made to retry the 1/0 operation for any 110 error detected (beyond the retry 
attempts made by IOS). 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-369 



HASPCKPT 

KREAD2 

KAFTRD2 

3-370 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

If, after retrying, the 110 remains unsuccessful, the packet in error is recorded in the 
CKB and the 1/0 posted complete. For write errors, a determination is made (if 
possible) as to whether any data was actually transferred to the device. If no data 
was transferred, the error will be treated as a soft error tor purposes of recovery. 
That is, it will be recognized that the data set may still be read after such an error. 

The KREAD2 routine: 

• Reads all changed 4-K records into the 1/0 area, including changed change log 
records which do not reside on track 1 

• Checks the integrity of checkpoint 

• Moves all newly read job queue records to the actual queue area and updates 
them from the change log (using KAFTRD2) 

The KREAD2 routine invokes KSETPAKS to ensure that the CCW packets are set to 
the correct dataset, then calls KBLDCCWS to build a channel program which will 
read in the changed 4-K records. 

The Read 2 1/0 is then started (via EXCPVR). If an 1/0 error occurs, the 1/0 is retried 
a number of times. If the 1/0 completes normally, KIOVERFY is called to verify that 
the 1/0 ran to completion. If the checkpoint reconfiguration dialog was called 
because of an 1/0 error and control returns to this routine, it must be the case that 
the dialog lost control of the dataset. In this case, a special return code is returned 
to the caller (the main loop, generally), which must obtain control of the dataset 
again from the beginning. 

When the Read 2 1/0 completes successfully, various checks are made to ensure 
that the checkpoint dataset is still intact. 

Finally, KAFTRD2 is called to apply the change log which was read in to the 4K 
pages, and to page-free or release those pages which were read during Read 2 and 
which will not be written in the primary write. 

The KAFTRD2 subroutine: 

• Validates and applies the change log to the 4K pages 

• Copies the 4-K pages which were read in during Read 2 from the 1/0 area to the 
actual 4-K area 

• Page-frees or page-releases the pages that were read during Read 2 and which 
will not be written in the primary write. 

To make the update from the change log, the control block must be copied to the 4-K 
pages. At this stage of processing there are two sets of 4-K pages which may have 
valid data, namely the "actual" area and the 1/0 area. Note that it is inappropriate 
to first move the 4-K pages from the 1/0 area to the "actual" area and then to apply 
the updates from the change log, because the 1/0 pages that were read in will be 
used to perform the primary write. 

In order to reduce paging, when performing the updates, the only piece of the 
control block to be moved to the 1/0 copy of the dataset will be that piece contained 
in a page that has been read in (and is thus page-fixed). Similarly, the only piece of 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCKPT 

KPRIMW 

the control block to be moved to the actual copy of the dataset will be that piece that 
is not moved to the 1/0 copy. 

Later, the 1/0 copies of the read-in pages will be copied into the actual copy; any 
control blocks which were copied from the change log into the 1/0 copy will take 
their place in the actual copy at that time. 

There are thus four cases to consider: 

1. Control block entirely within a page that was read in read 2 
2. Control block has front part in a page that was read in read 2, but not back part 
3. Control block has back part in a page that was read in read 2, but not front part 
4. Control block is not at all within a page that was read in read 2 

In case 1, the entire control block will be moved to the 110 area. 

In case 2, the front part of the control block will be moved to the 1/0 area, the back 
part of the control block will be moved to the actual area. 

In case 3, the back part of the control block will be moved to the 1/0 area, the front 
part of the control block will be moved to the actual area. 

In case 4, the entire control block will be moved to the actual area. 

The KPRIMW routine: 

• Handles changes to CKPTDEF,DUPLEX= 
• Does a primary write, if required 
• Frees all pages that are fixed 

If the complex is in DUPLEX mode, the KPRIMW routine ensures that this system's 
data set allocation matches the allocation desired as specified by the, 
DUPLEX= YES/NO parameter on the CKPTDEF statement. 

In other words, if the mode is duplex and the operator requested a change to the 
duplexing status on this member (that is, requested that there be a change from 
duplexing on this member to not duplexing, or vice versa) then the following must 
be done: 

• If the change is from duplexing on this member to not duplexing on this 
member, this routine: 

1. Unallocates CKPT2 (if currently allocated) 

2. Indicates in the QSE that 1 data set is allocated 

3. Skips actual primary write 1/0 (no reason to do a primary write if only one 
data set is allocated in DUPLEX mode) 

• If the change is from not duplexing on this member to duplexing on this 
member, this routine : 

1. Ensures that both CKPT1 and CKPT2 are in use 
2. Allocates CKPT2 
3. Initializes the CKB for CKPT2 
4. Indicates in the QSE that 2 datasets are allocated 
5. Continues with the primary write 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-371 



HASPCKPT 

KW RITE 

KBLDCHLG 

3-372 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

A primary write is performed if any of the following are true: 

• The system is shutting down 
• A read 2 was just completed 
• An intermediate write was just completed, and the primary write counter has 

dropped to zero 

If a primary write is to be performed, then the KPRIMW routine: 

• Frees any pages that are fixed that will not be written in the primary write 
• Calls KBLDCHLG to update the change log 
• Calls KWRITE to perform the actual primary write 

Finally, after the primary write is complete, the KPRIMW routine page-frees any 
pages in the 1/0 copy of the checkpoint that are fixed. 

The KWRITE routine is responsible for writing all changed change log and 4K 
records to the checkpoint data set. The KWRITE routine updates the write buffers 
for the check and lock records, and calls KBLDCCWS to build the channel program 
that is invoked to perform the 110. The master record is then copied from the actual 
area to the 1/0 area, and the 1/0 is initiated via EXCPVR. 

After the 1/0 has been initiated, the KWRITE routine processes primary writes 
differently than intermediate and final writes. When a primary write is performed, 
this routine waits for the 1/0 to complete, and returns to the caller. When this 
routine is entered for the first time to perform an intermediate or final write, it 
initiates the 1/0 and immediately returns to the caller. When re-entered for an 
intermediate or final write, it waits for completion of the 1/0 and then proceeds as 
with primary writes. 

After the write is complete, the KWRITE routine $POSTs any PCEs waiting on the 
CKPT resource. The KIOVERFY routine is then called to ensure that the 1/0 ran to 
completion, and control returns to the caller. 

If an 1/0 error occurs during the write, the KFORMAT routine is called. If the 
KFORMAT routine indicates that the format write completed successfully, control 
proceeds as if the original write succeeded. 

The KBLDCHLG routine builds the change log and the $PPL/$PAL structure based 
on information found in the $CALs. The $CALs are used to identify which control 
blocks must be written to the checkpoint dataset in the next write. The $PPL/$PAL 
structure is used to quickly find a particular control block in the change log. They 
are used to eliminate duplicate entries for individual writes, and, in case of change 
log overflow, they are used to ensure control block integrity. The KBLDCHLG 
routine uses the following logic: 

If the complex is in DUPLEX mode, the $CKPT service routine should not have 
produced any CALEs. If there are any CALEs, KBLDCHLG will abend with a $K21 
error code. Otherwise, KBLDCHLG returns to the caller. 

If the complex is in DUAL mode, all of the updates to the checkpoint are in the 
$CALs unless the $CKPT routine ran out of storage for new $CALs. If this is the 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCKPT 

KBCMVBYX 

KBLDCCWS 

case, KBLDCHLG refreshes any existing change log entries if the page the control 
block came from was updated. In other words, if a page was updated (its CTLB was 
marked by $CKPT) and if there are entries in the change log for that page (its PPL 
entry is not zero), then each change log entry for that page is refreshed. 

For each entry in the CALs, KBLDCHLG does the following: 

• Validates the CALE (abend with a $K21 if invalid) 

• Marks the extra control bytes (CTLBX) for the page(s) corresponding to this 
control block 

• Adds an entry to the change log for this control block 

• Updates the PPL/PAL structure to indicate the control block is in the change log. 

The following conditions will alter this sequence of events for a given control block: 

1. If this control block is already in the portion of the change log that will be written 
out during the next write, then the existing control block in the change log is 
refreshed by the control block from the actual copy of the checkpoint, and a new 
change log entry is not created. 

2. If there is no more room in the change log, the following steps are taken: 

• The CTLBs for the pages this control block resides on will be marked with 
X'FF' indicating that they need to be written 

• Each control block in this control block's PALE chain will have its 
corresponding CTLBs marked with x'FF' 

• Each control block in the change log in this control block's PALE chain will 
be marked to be ignored by the next system 

• The PPL entry for this control block's page will be set to zero, indicating that 
this page has no valid entries in the change log. 

Notes: 

1. The excess $CALs are $FREMAINed by KBLDCHLG; the $PALs are 
$GETMAINed by KBLDCHLG as they are needed, and are $FREMAINed in the 
main loop after the checkpoint reserve is released upon completion of the final 
write. 

2. All control block copies are made by calling the KBCMVBYX routine. 

The KBCMVBYX subroutine copies a control block of variable size by executing an 
MVC instruction in a loop. 

The KBLDCCWS routine examines the CTLBs and CLCBs, and builds a channel 
program which will read/write each page whose control byte indicates that an 1/0 is 
required for that page. As the control bytes are examined and the channel program 
is built, a PSL is built containing an entry for each page to be written/read. 

The PSL is then used to page-fix the 1/0 area and to copy the actual 4-K pages to the 
1/0 area in preparation for the 1/0. The records to be read or written are determined 
by: 

• If Read 2, the $SIDAFF bit is looked for in the 1/0 area control bytes 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-373 



HASPCKPT "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• If intermediate or final write, the $SIDAFF bit is looked for in the actual control 
bytes 

• If this is the primary write, the high-bit (X'80') is looked for in the actual control 
bytes. 

All CCW chains terminate with the 110 verification packet. In addition, the 
lock-record write packet, and the check-record write packet precede the verification 
packet for intermediate, final and primary write chains. 

Note: Before KBLDCCWS is called, KSETPAKS must be invoked to ensure that the 
CCW packets used to perform the 1/0 point to the correct data areas. 

The Control Bytes (CTLBs) 

3-374 JES2 Logic 

The CTLB is a data area containing one byte for each page in the checkpoint data 
set. The bits within those bytes have the following meaning: 

• Bit X'80': 

This bit is used to control what pages are written during primary writes. This bit 
is set to 1 at the following times (both on this system and others): 

(DUAL mode): 

The page was updated by an entry in the change log during this 
system's KAFTRD2 routine 

The page was updated by an entry in the change log during the previous 
system's KAFTRD2 routine 

The page was marked by some system because the change log 
overflowed. 

(DUPLEX mode): 

The page was marked by some system because that system updated a 
control block within the page. 

If this bit is ever set to 1, the bits in this byte will be reset in the following 
manner: 

Case 1: The page was updated by an entry in the change log during this 
system's KAFTRD2 routine. 

- The KPRIMW routine on this system will call KBLDCCWS (which will 
reset the $SIDAFF bit and the affinity bit for the last system that wrote 
the checkpoint) and will write the page to the appropriate data set. (For 
example, if the byte was X'FF', this $SIDAFF bit is X'02', and the 
previous system's affinity bit is X'01 ',the byte will now be X'FC' .) In this 
way, if the next system to get control of the checkpoint is the system that 
last wrote it, that system won't read in any pages that were updated by 
its change log. 

- The KPRIMW routine on the next system will call KBLDCCWS (which 
will reset the primary write bit - X'80'), and write the page to the 
appropriate data set. (For example, if the byte was X'FC', the byte will 
now be X'7C' .) 

Case 2: The page was updated due to a change log overflow or (if in 
DUPLEX mode) a normal control block update. In both cases, the page was 
updated on the system that previously held the checkpoint. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

\ ... "-.. - // 



( 

( .. ·. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCKPT 

KCCWADJ 

KSETPAKS 

- The KPRIMW routine on this system will call KBLDCCWS (which will 
reset the primary write bit - X'80'), and write the page to the appropriate 
data set. (For example, if the byte was X'FC', the byte will now be 
X'7C'.) 

• The X'7F' bits: 

These bits control the reading and writing of pages on the various members of 
the multi-access spool complex. (JES2 supports up to 7 members, among other 
reasons, because there are 7 bits.) 

These bits are set to 1 for the following reasons: 

(DUAL mode): 

The page was updated by an entry in the change log during some 
system's KAFTRD2 routine 

The page was marked by some system because the change log 
overflowed. 

(DUPLEX mode): 

The page was marked by some system because that system updated a 
control block within the page. 

If these bits are ever set to 1, the bits in this byte will be reset in the following 
manner: 

Case 1: The page was updated by this system and this system is doing an 
intermediate/final write 

- The KWRITE routine on this system will call KBLOCCWS (which will 
reset the $SIDAFF bit only), and write the page to the appropriate data 
set. (For example, if the byte was X'FF', and the $SIDAFF bit is X'02', 
the byte will be X'FD' .) 

Case 2: The page was updated by another system and this system is doing 
a Read 2. 

- The KREAD2 routine on this system will call KBLDCCWS (which will 
reset this system's $SIDAFF bit), and read the page from the 
appropriate data set. (For example, if the byte was X'6E', and that 
system's $SIDAFF bit is X'02', the byte will now be X'6C' .) 

The KCCWADJ subroutine takes two standard 4-K read/write CCW packets and 
chains them together. The routine takes into account such things as a change in 
track, record addresses, etc., when chaining one packet to the other. 

The KSETPAKS routine ensures that the CKC CCW packets are set to the dataset 
whose CKB address is specified. If $CKBCRNT does not match the caller's CKB, it 
is assumed that the CKC is not set to the dataset requested, and the CCW packets 
are adjusted to: 

1. Reset the seek and search addresses 
2. Reset the packets for ECKD vs CKD devices 
3. Reset the data packet addresses 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-375 



HASPCKPT 

KFORMAT 

KTRACE 

KIOERROR 

KB LOB 

3-376 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The KFORMAT routine formats (or re-formats) a specified checkpoint data set. The 
format operation is accomplished by modifying the CCW packets in the $CKC area 
to a "format-write" sequence {using write count+ key+ data CCWs), issuing the 1/0, 
then resetting the packets back to the standard read/write sequence. The data set 
to be formatted is represented by the CKG passed as a parameter to KFORMAT by 
the caller. 

The KTRACE routine, if the checkpoint performance trace id is currently active, is 
responsible tor filling in appropriate fields in the checkpoint trace work area, based 
on the type of 1/0 just done, and issuing the $TRACE macro. 

Several other routines in HASPCKPT gather checkpoint performance data during the 
checkpoint cycle. For example, at the time of each 1/0, the time the 1/0 is initiated 
and the time the 1/0 completes is saved. Also, during each cycle, the time we know 
we can allow queue updates and the time we must disallow queue updates are 
saved. The KBLDCCWS, KAFTRD2, and KBLDCHLG routines all count and save 
such information as the number of pages transferred in each section of the 
checkpoint, and the number of control blocks in the change log which belong to each 
section of the checkpoint. 

The KIOERROR routine analyzes the 110 error detected, indicates the type of error 
in the CKBFLAG3 field, and reports the error to the operator by issuing the HASP291 
message. 

The BLOB is a CSA-resident data area containing a table of track group block 
entries {TGBEs) representing spool space. When a JES2 processor {PCE) or 
another address space needs spool space, the BLOB is examined, and a track 
group represented by a TGBE is allocated to the PCE {allocated by the $TRACK 
routine in HASPTRAK), or address space (allocated by the $STRAK routine in 
HASCSRIC) requesting space. 

Before each intermediate or final checkpoint write, routine KBLOB is called to 
replenish the BLOB. When replenishing the BLOB, the KBLOB routine checks the 
TGBEs so that only empty entries will be refilled. Those entries that were not 
removed by $STRAK or $TRACK will remain in the BLOB. 

The allocation is made in such a way that a "round-robin" effect will exist; that is, 
TGBEs in the BLOB are allocated from all volumes that have free space. In addition, 
all volumes must be allocated from equally. To do this, the CCTSRCH field in the 
$HCCT is used. The CCTSRCH field in the $HCCT contains the address of the TGBE 
that $STRAK and $TRACK use to begin their search for a TGB. Using 
compare-and-swap logic, these routines then update this field to point to the next 
entry. 

This puts a restriction on the size of the BLOB, the way the BLOB is filled, and on 
the way TGBEs are removed from the BLOB. Due to this restriction, the size of the 
BLOB is forced to always be at least as big as the number of allocated spool 
volumes. In addition, the BLOB will be partitioned. That is, there are a certain 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCKPT 

number of entries per volume in the BLOB and specific entries belong to specific 
volumes. Each volume has the same number of entries as every other volume. 

The BLOB is partitioned in such a way that each entry is associated with a particular 
spool volume. Each volume has $NUMTGBE (set from SPOOLDEF TGBPERVL) 
entries in the BLOB. The nth volume will use every $NUMTGBE entry starting from 
entry n. This is done (rather than grouping track groups for a given volume) to 
spread the allocated track groups equally across all volumes. 

Before the major loop in KBLOB is entered, checks are done to ensure that all the 
spool volumes in the BLOB still have space, the size of the BLOB hasn't changed, 
no volumes were added or deleted, and no volumes just became free after being in 
a full state. If all those checks are OK, then the main loop is entered. If any of those 
checks fail, then what is represented in the BLOB is not totally correct and some 
adjustments have to be made. 

There are two spool masks and two counts of spool volumes that are maintained by 
KBLOB processing. The CKPBLMSK is a mask of all spool volumes which have 
space in the BLOB. The CCTMTSPL mask is a mask of all spool volumes that have 
space in the BLOB and/or in the track group map. CKPCNT is a count of spools that 
are in the BLOB and $SPLCNT is a count of spools with space. 

When a volume becomes full, KBLOB turns off that volume's bit in the CCTMTSPL 
mask and decrements the $SPLCNT field. When a volume that has been full gets 
back some track groups, KBLOB turns on that volume's bit in the CCTMTSPL mask 
and increments the $SPLCNT field. When a volume is halted or deleted, the SPOL 
PCE turns off the bit in the CCTMTSPL mask and decrement $SPLCNT. When a 
volume is added, KBLOB turns on the CCTMTSPL bit and increments $SPLCNT. 

The size of the BLOB can be changed using an operator command, but it will always 
be a multiple of the number of allocated spool volumes because the command 
specifies entries per volume. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-377 



HASPCKDS "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCKDS: Checkpoint Support Routines 

Application Program Support 

HASPCKAP Subtask 

3-378 JES2 Logic 

HASPCKDS contains the HASPCKAP subtask. The HASPCKAP subtask (attached by 
IRMVS in HASPIRMA with a $DTEDYNA) optionally gets storage for and maintains a 
third copy of the checkpoint so that authorized application programs (such as SDSF) 
can use it. 

When attached, HASPCKAP determines if a $KAC is chained off the $SVT. (A $KAC 
is an extended-CSA control block that describes the copy of the checkpoint.) If not, 
storage for one is obtained and it is initialized. The subtask then gets storage for 
the copy of the checkpoint data (master record and 4-K pages). A page service list 
(PSL) is also GETMAINed. The application copy's bits in the control bytes 
($CTLBXs) are set to zero (see below), the initial move of the checkpoint data is 
done, and $DTEDYN is posted. The subtask then waits for work. 

The application copy of the checkpoint is updated under two conditions: 

• When JES2 releases the checkpoint data set lock. This is based on the MASDEF 
HOLD and DORMANCY parameters. 

• During intermediate writes, but not more than approximately once per second. 
(An intermediate write is scheduled when a checkpointed control block is 
altered by an operator command or when a JOE is altered by the execution 
processor.) A $STIMER interval schedules an intermediate write after a 
r.1aximum of 5 seconds. 

When posted, the subtask checks to see if the application wants JES2 to update the 
copy (the application may have specified a time later than the current time). If the 
update is not wanted, the subtask posts the JES2 main task and waits. If an update 
has been requested, the subtask indicates that an update is in progress and zeros 
the wait time field. It updates the level of the copy and saves the current checkpoint 
level number. The master record is then updated. A PSL is constructed to release 
any pages that were updated by the main task. If no pages were updated, then no 
pages are released and none is copied. All the pages in the copy that need to be 
updated are released and the updated information is copied in. 

When all the updates are made, the update-in-process indicator is turned off. If the 
DEBUG function is on, a CLCL is issued to ensure the new copy matches the real 
4-K pages. If the two do not match, an MVS ABEND (068, reason code, 100) is 
issued. Finally, the application copy's bits in the control bytes are cleared, and the 
JES2 main task is posted. 

Standard ESTAE support is used for recovery. If there is an abend while the subtask 
is initializing, the recovery routine turns on a failure-to-initialize indicator and posts 
$DTEDYN. If the abend is during normal processing, all of the application copy's 
bits in the the control bytes are set to 1, and the bad-copy-indicator is turned on. 
The next time the subtask is posted, it will attempt to recopy the entire checkpoint. 
The bad-copy-indicator is turned off, if the recopy is successful. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPCKDS 

$CTLBXs 
The $CTLBXs are a set of control bytes used by the HASPCKPT PCE to support trace 
id 17. They are also used to support the HASPCKAP subtask to keep track of the 
pages changed since the last time the copy was updated. If the page is not changed 
since the last update to the copy, they will be zero. If the last change was because 
of a HASPCKAP problem, the application copy's bits will be set to 1. All other ways 
of changing the page will have values equated in $HASPEQU, as follows: 

• In $CKPT (in HASPNUC), if a 4-K page is being marked as changed (this is 
DUPLEX mode or a CAL was not available), the equate is CKPCLCKP. 

• In KAFTERIO (in HASPCKPT), when the 1/0 CTLBs are marked as the change 
log is applied after a read, the equate is CKPCLRDC. Before a 4-K page is 
copied from the 1/0 area to the actual 4-K pages after a read, the equate is 
CKPCLRDP. 

• In KBLDCHLG (in HASPCKPT), as a change log entry is built and the pages that 
contain the control block is marked, the equate is CKPCLBCL. 

Determining the Version of JES2 
An eight-character version number is also available to authorized applications. To 
determine the level of the JES2 subsystem, the application finds the SSCVT for the 
JES2 subsystem. Then it loads the SSCTSUSE field. If this field is zero, this is a 
pre-2.2.0 system. If this field is non-zero, this is the address of an 8-byte character 
field containing "SP 2.2.0", referring to a JES2 Version 2, Release 2, system, or 
containing 8 characters that refer to a subsequent release of JES2. 

Other Routines in HASPCKDS 

CKBINIT 

CKPTALOC 

HASPCKDS also contains routines used to initialize a checkpoint data set (dynamic 
allocation and building of control blocks), suspend the use of a checkpoint data set. 
It also contains the checkpoint dialog routines, and the KRESERVE and KRELEASE 
routines. 

This routine sets up the internal control blocks to do 1/0 to the checkpoint data set. 
It checks the size of the variable control blocks (that is, the change log) and ensures 
the size of the in-storage copy matches the size specified in the master record. If 
the size of the control block has changed, the in-storage copy is $FREMA1Ned and a 
new one $GETMAINed. If the $GETMAIN fails, the old size is $GETMAINed and 
processing continues. 

If the original control block did not exist, no $FREMAIN is done. If the $GETMAIN 
fails for the new control block, control is returned to the caller and no other control 
blocks are are changed. 

A new CKB is built using the routine, KBLDCKB. 

This routine performs the dynamic allocation of a checkpoint data set. It performs 
tests to verify that the data set is usable for the checkpoint function. It performs the 
OPEN for the data set. First, it establishes an ESTAE. If CKPT ALOC a bends, 
KALEST AE gets control. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-379 

--- ~----~---~--~~---



HASPCKDS 

CKPTUNAL 

CKPALCLN 

KDIALOG 

3-380 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

This routine performs dynamic unallocation of a checkpoint data set. It first CLOSEs 
the data set, then $FREMAINs the DCB, CKB, TOT, and deallocates the data set. 

This routine cleans up after a failed CKPTALOC call. It $FREMAINs any storage that 
was obtained, using the checkpoint allocation work area (KAWA) to determine the 
processing CKPTALOC did. 

This routine attempts to satisfy the requirement for a checkpoint data set 
reconfiguration. This requirement results from one of three conditions: 

• A permanent 1/0 error has occurred on a checkpoint data set 

• JES2 initialization has determined that it needs help establishing the proper 
checkpoint reconfiguration 

• An operator has requested ($T CKPTDEF,RECONFIG =YES) that the checkpoint 
configuration be changed. An ESTAE environment is established and the code 
responds to various operator responses to messages. Code at KDLIOERR 
handles 1/0 error situations. Code at KDLINITC handles initialization 
reconfiguration. Code at KDLRECON handles the operator-initiated 
reconfiguration dialog. 

When control returns after reason-specific processing, all messages that may 
still be pending are DOMed. $QSONDA is turned off. If there is a residual 1/0 
error pending processing, the dialog is invoked again. 

KDIALOG service routines include: 

• KDLWTO, which sends messages to the operator using $BLDMSG 

• KDLWTOR, which sends a WTOR to the operator using $BLDMSG 

• KDLREPL Y, which processes operator responses to a WTOR 

• KNULLCHK, which determines if the HASP file allocation map entry (HFAME) 
describes a null file. If so, message HASP282 is issued. 

• KDSLOC, which prompts the operator for checkpoint data set specifications if 
the data set described by the HFAME cannot be found by CKPTALOC. 

• KDLESTAE, which handles abends occurring during processing of 1/0 error 
recovery or RECONFIG =YES support. 

The routine also contains: 

• KBLDCKB, which obtains a CKB control block, fixes it in central storage, and 
builds the CCW packets associated with track one for a particular data set. The 
CCW packets are formatted and filled in with data that remains constant through 
checkpoint 1/0 processing. 

• KBLD4KP, which obtains storage for the 4-K record CCW area, page-fixes the 
storage in central storage {for use by EXCPVR), and builds the CCW packets 
used for the 4-K record 110 for a particular data set. The CCW packets are 
formatted and filled in with data that remains constant through checkpoint 110 
processing. In KBLD4KP. the packets are built in a one-to-one correspondence 
with the CCW data packets built in KBLDCKB. ·"· 7 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

KRESERVE: Reserve the Shared Checkpoint Volume Service Routine 

HASPCKDS 

The KRESERVE routine saves the caller's registers and issues the MVS RESERVE 
macro instruction to reserve the data set whose CKB is in register 1. The MVS 
RESERVE sets a return code in register 15. If the return code is zero, indicating that 
the checkpoint is reserved, control is returned to the caller with register 15 set to 
zero. If the return code is not zero, indicating that the checkpoint is not reserved, 
the KRESERVE routine returns with register 15 set to 4 and the address of the XECB 
to $WAIT on in register 1. 

KRELEASE: Release the Shared Checkpoint Volume Service Routine 
The KRELEASE routine saves the caller's registers, issues the MVS DEQ macro 
instruction to release the reserve on the data set whose CKB is in register 1, and 
returns to the caller. 

KNOP: Issue a NOP CCW to Get the Hardware Reserve 
The KNOP routine saves the caller's registers and determines if the data set whose 
CKB was passed in register 1 is on a shared device. If not, control is returned to the 
caller with register 15 set to zero. If the data set is on a shared device, a NOP CCW 
is issued to the data set. Control is returned to the caller with register 15 set to 4 
and the address of the XECB to $WAIT on in register 1. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-381 



HASPWARM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPWARM: Warm Start Processor 

3•382 JES2 Logic 

A JES2 warm start can be invoked for a variety of reasons. It is performed 
automatically after the JES2 initialization. It can also be invoked as the result of a 
$E SYS command. In the first case, one of several environments may exist after 
JES2 initialization: 

• An initial program load (IPL) has been performed, and a JES2 cold start has 
been requested. 

• An IPL has been performed, and a JES2 warm start has been requested. 

• JES2 has been restarted, without an intervening IPL, following an orderly 
shutdown of JES2 via a $P JES2 command. 

• JES2 has been restarted, without an intervening IPL, following the abnormal 
termination of the JES2 subsystem. 

For restart following an orderly shutdown, the operator can request only a cold or 
warm start. If the operator requests a warm start, JES2 determines what kind of 
warm start to perform according to the state it was in when it went down and how it 
went down. Following an abnormal termination of JES2 and a subsequent restart 
with no intervening IPL, JES2 will restart with a hot start; all jobs, started tasks, and 
TSO logons, which had been executing at the time of the JES2 termination, continue 
to execute. Unless these jobs require additional JES2 services, such as for spool 
space after the existing track group block has been exhausted, the termination and 
restart of JES2 should be transparent to them. At worst, these jobs are forced to 
wait until the JES2 hot start or all-systems warm start is complete. 

In a multi-access spool environment, the $E SYS command can be used at one 
system to request the recovery of work in another system in the node. Normally, 
this would only be done when the warm-started system is not in a condition to have 
an IPL performed. This condition would exist, for example, if the failed system had 
experienced a hardware error, preventing the CPU from being IPLed. 

The logic of the warm start processor is based upon a shared-spool environment. 
When it performs a cold start, other systems in the node are assumed to be 
dormant. However, a warm start may have to proceed within a system that is itself 
operational (that is, as the result of a $E SYS command) or within a node in which 
one or more systems are operational. Such a warm start is referred to hereafter as 
a single-system warm start. If a warm start is performed following a $S JES2 
command and all other systems in the multi-access spool configuration are 
dormant, then such a warm start is referred to as a all-systems warm start. 

For an all-systems warm start where all spool volumes are online, the warm start 
processor reconstructs the track group bit map in order to recover track groups lost 
due to prior system failures. This reconstruction process involves freeing up any 
unused tracks as follows: 

• A temporary track group map is constructed with each existing track group 
marked free. 

• All IOTs are read one by one. 

• Any track group indicated as in use by an IOT is marked as allocated in the 
temporary map. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPWARM 

• After a successful completion of the warm start, if all spool volumes are online, 
the master track group map is updated from the temporary map. 

Lost tracks result from abnormal termination of JES2 at a time when jobs are being 
read in but before their control blocks have been checkpointed. For all other warm 
starts, the master track group map is left untouched. 

Warm start processing uses multiple PCEs. The main warm start PCE is attached 
during HASPIRMA initialization. On entry to HASPWARM, this PCE performs the 
non-110 bound warm start functions, such as the JOT warm start, first. For JOE 
processing, the main PCE dynamically attaches a number of other warm start PCEs 
of the same type, using the $PCEDYN macro (serviced by PCEDYN in HASPDYN). 
These are called clone PCEs. Both the main PCE and the clone PCEs process JOEs, 
using a common JOE index to run through the elements sequentially. 

After the job queue has been processed, the main warm start PCE waits on the 
RMWT queue until all the clone PCEs have been detached. After the job queue has 
been processed, a clone PCE issues the $PCETERM macro. The $PCETERM macro 
issues a $WAIT to the clone PCE on the PCETM queue and then issues a $POST to 
the resource manager. The resource manager will then detach and PCEs waiting on 
the PCETM queue. 

When all clones have been detached, the main PCE finishes performing the 
remaining HASPWARM functions. $HASP492 informs the operator that warm start 
processing is complete. 

Figure 3-16 on page 3-384 shows the processing flow of the major routines in 
HASPWARM. Text describing the flow follows. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-383 



HASPWARM 

ENTRY 

I 
ACTIVE 

I 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

CLONE? YES -- > NQJQEWRM 

I 
NO 

I 
NQRMTON 

I 
COLD OR QUICK START? YES--> NQCLNUP 

I 
NQPURUP 

I 
HOT START? NO-->NQJOTWRM 

I 
NQFSSHS 

I 
NQJOTWRM 

I 
HOT START? NO-->NQPREJQE 

I 
NQPSOQ 

I 
NQPSJB 

I 
NQPREJQE 

I 
NQJQEWRM 

I 
CLONE? YES--> PLACE ON TERMINATE QUEUE 

I 
NQSPOF 

I 
NQCLNUP 

I 
PROCESSOR 
CLEANUP 

I 
DORMANT 

I 
WAIT ESYS 

Figure 3-16. Processing flow for HASPWARM 

3-384 JES2 Logic 

The initial entry point of HASPWARM is HA$PWARM. The processor is marked 
active. It is then determined whether this is the main PCE (the warm start 
communication area (WCA) does not exist) or a clone PCE (the WCA does exist). 
The WCA keeps track of the latest JOE being processed and the number of JQEs left 
to process. It is obtained by $GETWORK just before job queue processing and 
released by $RETWORK just after job queue processing. The WCA is mapped by 
$WARMCA. If this is the main PCE, processing continues with normal warm start 
processing. If this is a clone PCE, control branches to do just job queue processing. 

NQRMTON -- Gets control on all starts: cold, quick, all-system, single-system, hot. If 
remote terminals are generated for the system, the warm start processor resets the 
remote sign-on table. If a single-system warm start or hot start is being performed, 
then only those system IDs in the table corresponding to terminals signed on to the 
warm-started system are reset. Otherwise, the entire sign-on table is reset. 

NQPURUP -- Gets control on all-system, single system, and hot starts. The QSEs 
are searched to check if any jobs failed while purging. See $PURGER. 

L Y28-1006-2 © Copyright I BM Corp. 1988, 1990 



{ 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPWARM 

NQFSSHS -- Gets control on hot starts. For a hot start, the warm start processor 
acquires storage for an SRB and determines if a functional subsystem address 
space was created and still exists (functional subsystem address spaces, if active, 
are waiting for the JES2 main task services or a post). The warm start processor 
schedules the SRB to those functional address spaces; the SRB reconnects the 
functional subsystem cross memory environment and resets its authority. If the 
reconnection process fails, the warm start processor terminates the functional 
subsystem with a '02C' abend and issues the $HASP413 message. If the 
reconnection is successful, the warm start processor checks for any FSAs for which 
no DCTs have been defined and terminates with a '02C' abend those FSAs that have 
no DCTs defined; the $HASP415 message is issued to indicate this. 

NQJOTWRM -- Gets control on all-systems, single system, and hot starts. 
NQJOTWRM scans the class queues for work JOEs representing active devices. For 
a single-system warm start or hot start, only JOEs representing activity on the 
warm-started system are processed. When a appropriate busy work JOE is found, it 
is tested for local, remote, or network job entry (NJE) transmission activity. If it is 
local, its active device count in its characteristic JOE is decreased by one. If it is 
local or remote, the JOE's priority is recomputed, the JOE is marked ready, and a 
message is issued to the operator that a job was printing/punching. If NJE SYSOUT 
transmission was in progress, the JOE and any other JOEs that the SYSOUT 
transmitter might have acquired are marked ready, and a message is issued to the 
operator that a job was on a SYSOUT transmitter. 

If the job was being dumped (HASPWARM checks the device id of every busy JOE 
on the class queues) a message is issued to the operator that the job was on the 
SYSOUT transmitter being dumped. Then these jobs are also returned to the JOT. 
If held data sets were being dumped (indicated by JQEs on the hardcopy queue that 
are marked busy and have an offset in the LCK), a message is also sent to the 
operator. HASPWARM then issues a QPUT to put the JQE back on the hardcopy 
queue, reset the busy bit, and zero the JQE offset in the LCK. 

NQPSOQ -- Gets control on a hot start. Any waiting requestors on the 
CANCEL/STATUS and PSO queues are posted and the request elements removed. 

NQPSJB -- Gets control on a hot start. The CCT JPCLS queue is searched for any 
partially-selected SJBs. If any are found, the SJB partially-selected bit is reset, the 
token field is cleared, and if the associated JQE is marked busy on this system, the 
JOE busy field is reset. 

NQPREJQE -- Gets control on all-systems, single-system, and hot starts. This 
subroutine gets the storage for the WCA and initializes it. This subroutine 
determines the number needed and attaches the clone PCEs. The number is based 
on the number of available spool volumes and 110 buffers. If an error occurs while 
trying to attach PCEs, warm start processing will continue with the number of PCEs 
already attached. There will be at least one. 

NQJQEWRM -- Gets control on all-systems, single-system, and hot starts. At this 
point, the warm start processors are ready to perform a warm start of the JES2 job 
queue. In general, this consists of removing any job hold queue locks or held data 
set use locks held by jobs which were active in the system being warm started and 
of requeuing, where required, jobs for the next or current phase of processing. The 
WCA is used as a serialization tool in this processing. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-385 



HASPWARM 

3-386 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The processing of jobs in the JES2 job queue differs according to the type of warm 
start being performed. The following lists possible considerations of the warm start 
processor for each job: 

1. Reallocate the spool space represented in the job's spin and normal 
input/output tables (IOTs). 

2. Ensure that the JOT is current with respect to the job's spin IOTs. 

3. Remove the job's hold data set in-use locks. 

4. Ensure that the held data set's queue for the job is current with respect to the 
spin IOTs and the name IOT. 

5. Requeue a job on the reader, job receiver, or SYSOUT receiver for purge 
processing. 

6. Requeue a job on the job transmitter for transmission. 

7. Requeue a normal job in JCL conversion for conversion processing. 

8. Requeue a started task or logon job that was awaiting execution or awaiting JCL 
conversion for purge processing. 

9. Requeue a job that was terminating execution for output processing. 

10. Requeue a job that was executing (but not terminating) for execution processing 
or for output processing. 

11. Release jobs held because of duplicate job name. 

12. Reestablish time-exceeded monitoring for a job in execution. 

13. Requeue a job that was in output processing for processing, removing any JOEs 
that were created for the job if its IOT had not been written yet. 

14. Requeue a job in purge processing for processing. 

For a single-system warm start following an IPL or resulting from a $E SYS 
command, all of the above considerations apply except for the first one and the last 
two. 

For a JES2 hot start, items 2-7 and the last three considerations apply. 

For an all-systems warm start, all considerations apply except for requeuing a job 
for purge processing. 

If any spool volumes for a given job are not online, the job's S!JOOI control blocks, 
JCT, and IOT might not be accessible. In this case, the JCT and IOT are not read 
and HASPWARM checks to see if all of this job's spool volumes still exist. If they 
do, HASPWARM marks the job not busy and requeues it. If any spools do not exist, 
HASPWARM purges the JQE and the tracks are recovered when the track group 
map is reconstructed. 

For an all-systems warm start, all jobs in the JES2 job queue are processed with the 
above considerations. In general, only those jobs active on the system being 
warm-started are examined for requeuing in a single-system warm start or hot start. 
However, items 2, 3, and 4 are considered for all jobs because they do not 
necessarily apply to jobs owned by one system. For example, PDDB in-use locks 
may be held by a system being warm-started, although the job is still in execution " ~/ 

on another system. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPWARM 

The shared communication queue messages are processed as part of job queue 
processing. If this is an all-systems warm start and the track group map is not being 
rebuilt, all messages queued to all QSEs are deleted. If this is a single-system 
warm start or a $E SYS start, only the warm starting system's queued messages and 
reset-spools-used mask are deleted. 

NQSPOF -- Gets control on all-systems, single-system, and hot starts. For those 
devices that are active, the DSN and the system id in the spool offload LCK table are 
cleared. For an all-systems warm start, the entire table is cleared. 

NQCLNUP -- Gets control on all starts: cold, quick, all-systems, single-system, and 
hot. When all jobs in the job queue have been processed or examined, the warm 
start processor proceeds with its termination processing. If a single-system warm 
start was performed as the result of a $E SYS command, a type 43 system 
management facilities (SMF) record can be produced. If a cold start or an 
all-systems warm start was performed, a calculation is made of the available track 
groups. HASPWARM queues any bad track groups not specified on the BADTRACK 
initialization parameter to the HASPSPOL processor (via the $BLDTGB macro) so 
that recovery can be attempted. HASPWARM then frees the storage (FREEMAIN) for 
the BADTGS temporary map, and marks any track groups marked as bad in the bad 
track group map as allocated. If JES2 is being started following an IPL as the 
primary system, the master scheduler is posted with post code= 0 to start up 
SYSLOG. If JES2 is being started as the primary subsystem and this is not a hot 
start, the master scheduler is posted with post code= 4 to restart SYSLOG. For a 
cold or quick start, or an all-systems warm start, the checkpoint device reserve 
count is decreased, allowing other systems in a MAS complex to access the job 
queue. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-387 



HASP MISC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPMISC: Miscellaneous Services 
The following describes the resource manager, the time excess processor, the 
priority aging processor, the SMF accounting subtask, and the network accounting 
conversion routines. 

HASPRESM: Resource Manager 
This processor handles resource threshold management. It gains control every 
eight seconds to check the state of these JES2 resources: console message buffers 
(CMBs), logical buffers (LBUFs), teleprocessing buffers (TPBFs), system 
management facility buffers (SMFBs), job queue elements (JQEs), job output 
elements (JOEs), spool space track groups (TGs), job numbers (JNUM) and trace 
tables (TTAB). The percentages are updated every eight seconds. If any shortage 
is detected, HASPRESM issues the $HASP050 action message. This message is 
updated every 32 seconds. HASPRESM also detaches PCEs on the PCE termination 
(PCETM) queue. This queue is checked every 8 seconds or when the resource 
manager is posted. The other resources are only checked every 8 seconds. 

HASPTIME: Time Excess Processor 

3-388 JES2 Logic 

This processor monitors a user job's real time (clock-on-the-wall) in execution and, 
when appropriate, issues a message to the system operator indicating that the job 
has exceeded its estimated real execution time. 

When the JES2 execution processor provides a user job to the HASCJBST job select 
routine, the select routine reads in the job-related subsystem control blocks and 
performs certain other functions before returning to the MVS initiator, which 
initiated the job select request. If the job select routine completes its job request 
processing normally, it stores the complement of the time estimate for the job, 
which is obtained from the JCT, in the SJBXSTIM field of the job's subsystem job 
block (SJB) to indicate that the job is beginning execution. The job select routine 
then posts ($$POST) the JES2 task, which causes the time excess processor to be 
dispatched. 

When dispatched, the time excess processor runs the chain of SJBs representing 
jobs in execution by class. The SJBSTQE and SJBXSTIM fields are used to monitor 
a job's real execution time. When SJBXSTIM is a negative binary value, the 
processor obtains the time estimate by re-complementing the value. This estimate 
is provided to the $STIMER routine in the SJBSTQE field. If the job is still in 
execution when the time estimate elapses, the time excess processor is posted 
($POST WORK) by the timer processor. Then the time excess processor issues a 
time-exceeded message to the operator. It then replaces the initial time estimate 
with the value in $ESTIME. This represents the installation-determined interval 
between time exceeded messages for a given job. This new value is provided to the 
$STIMER routine. If the job is still in execution when the message interval elapses, 
the time excess processor, dispatched following a post by the timer processor, 
issues another time-exceeded message and executes another $STIMER macro 
instruction with the same time interval. This sequence is repeated until the job 
terminates. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPGPRC: Priority Aging Processor 

HASP MISC 

The function of the priority aging processor is to regularly increase the priority of a 
job and output in such a way that its position in the JES2 job queue or output queue 
is enhanced with the passage of time. This is accomplished by regularly passing 
through the JES2 job queue and increasing the priority field of all job queue 
elements whose priorities fall between upper and lower limits. These limits, as well 
as the time interval, are installation variables. At this same time interval, a job's 
job output elements are also priority aged, up to a maximum of 255. In a 
multi-access spooling environment, only one system performs the function of 
priority aging. 

When HASPGPRC is dispatched, it first examines the JES2 job queue to determine if 
it is empty. If empty, HASPGPRC waits ($WAIT) for a job to be added to the queue 
before continuing processing. 

If the job queue is not empty, the shared queue elements (OSEs) are then scanned 
for active systems. If the first active system encountered in the OSEs is a different 
from the system on which this processor is operating, the priority aging process is 
bypassed to prevent multiple updating of the job queue. 

Next, HASPGPRC searches through the JES2 job queue for all jobs. The job queue 
element (JOE), whose priority field (JOEPRIO) is less than the JES2 initialization 
parameter PRTYHIGH and greater than PRTYLOW, will be priority aged. 
HASPGPRC stores the new priority in the JOE and issues a $CKPT to checkpoint the 
JOE. Any job output elements (JOEs) that are chained off a JOE will be priority 
aged. The new JOE priority is stored in the JOE and a $CKPT is issued to 
checkpoint the JOE. The interval timer is then reset, and HASPGPRC enters a 
$WAIT until the timer interval expires. 

Because the priority of the JOE is represented by the 4 leftmost bits of JOEPRIO, 
adding 1 to this field has no immediate effect on the priority. After this operation is 
repeated 16 times, however, the actual value of the priority is increased by 1. The 
value of the time interval is actually 1/16th of the interval implied by the JES2 
initialization parameter PRTYRATE. This effect tends to smooth out the process of 
priority aging by creating less impact when an interval expires. This also applies to 
the JOEPRID field for output. 

HASPACCT: SMF Subtask 
The function of the JES SMF writer (HASPACCT) is to check the $SMFBUSY queue, 
take buffers off the queue, call the IEFUJP exit if necessary, interface with the MVS 
system management facilities (SMF) writer, and place freed buffers on the 
$SMFFREE queue. HASPACCT runs as a subtask of the JES2 main task, even 
though it is a part of the HASJES20 load module. HASPACCT is identified and 
attached by HASPINIT and detached by HASPNUC if JES2 is stopped. The program 
is activated by a MVS POST macro when any JES2 main task routine is ready to 
write a JES2 SMF record. 

HASPACCT: Initial Entry Point 
HASPACCT performs standard register save area initialization, obtaining its own 
save area through a GETMAIN macro instruction. Then HASPACCT issues an 
ESTAE identifying $STABEND as Its recovery routine. If an error occurs during 
HASPACCT processing, ACCESTAE will get control and percolate the error, 
requesting recording. The address of an event control block (ECB) is passed to 
HASPACCT in register 1 by the caller. HASPACCT posts that ECB to Indicate to the 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-389 



HASP MISC "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

caller that HASPACCT has received control, then waits on its own ECB ($ACCTECB} 
in the HASP communications table (HCT} to be posted for work by the JES2 main 
task. Upon again receiving control, HASPACCT enters its main processing loop, in 
which it continues whenever dispatched until JES2 is terminated through a $P JES2 
command. 

AFREESMF: Main Processing Loop 

3-390 JES2 Logic 

At label ARECYCLE, the $SMFBUSY field in the HGT is tested. If that cell is 0, 
indicating that no SMF buffer is ready to be written, AFREESMF tests the $SYSEXIT 
indicator in the HCT $STATUS field to determine whether the $P JES2 command has 
been issued. If so, AFREESMF issues the RETURN macro instruction to return 
control to the caller with condition code 0. 

If $SMFBUSY is non-zero, AFREESMF obtains the address of the first buffer in the 
chain (the contents of $SMFBUSY} and steps through the chain until the last buffer is 
reached. Because HASPACCT operates asynchronously with respect to JES2 main 
task routines, which may alter the buffer chain, AFREESMF uses a 
compare-and-swap instruction to reset chain pointer $SMFBUSY to 0, indicating that 
all buffers have been removed from further processing by HASPACCT. If the 
compare-and-swap fails, one or more buffers have been added to the top of the 
chain while the chain was being processed. In this case, AFREESMF reenters the 
main processing loop at ARECYCLE and repeats the chain search. 

If the chain was successfully removed from the $SMFBUSY queue, AFREESMF 
examines the first buffer and, if the buffer contains an SMF record, branches to 
AWRITSMF immediately. If the buffer contains a copy of the common exit parameter 
area (the job management record section of a job control table}, however, a 
parameter list is prepared for the IEFUJP user exit. The parameter list, pointed to 
by register 1 when IEFUJP is called via the SMFEXIT macro, consists of two 
fullwords: the first word is the address of the common exit parameter area, and the 
second is the address of the SMF RDW of the type 26 purge record. If upon return 
from the IEFUJP routine, register 15 contains the value 4, the type 26 record is not 
written; write processing is bypassed through a branch to AUNQSMF. Otherwise, 
processing continues with SMF write processing at AWRITSMF. 

AWRITSMF: AWRITSMF tests a flag in the SMF buffer to determine whether the 
record should be suppressed. If the flag is on, writing is bypassed through a branch 
to AUNQSMF. If the flag is not set to 1, the routine determines if the SMF record is 
being written on behalf of a JES2 batch job, an STC, a TSU or a non-job related 
request. After write affinity for the SMF record has been determined, the routine 
issues the SMFEWTM macro instruction to cause the record to be written. 

AUNQSMF: AUNQSMF places the SMF buffer on the $SMFFREE queue after the 
record has been written, or if writing was bypassed. If there was a job management 
record (JMR} buffer in addition to the SMF record buffer, it is also freed. Then, if the 
$SMFFREE queue was empty, the JES2 main task is posted ($$POST TYPE= SMF}. 
After the post, or if the free queue was not empty, AUNQSMF returns to the main 
processing loop at AFREESMF. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPNACT: NETACCT Conversion Routines 

HASP MISC 

Two lookup routines are contained in the HASPMISC module in a single entry point 
called HASPNACT. The address of the common entry point to both routines is 
contained in the $NACT cell in the HCT. The calling sequence for both routines is 
the same; register 0 points to the location that contains (or will contain) the 8-byte 
network account number, and register 1 points to the location that contains (or will 
contain) the JES2 account number. The presence or absence of each of these 
parameters determines which lookup routine (JES2-to-net or net-to-JES2) in 
invoked. If the network account number is present (first byte is neither blank nor 
X'OO'), the net-to-JES2 routine is invoked; if a match is found for the network account 
number, the corresponding JES2 account number is placed in the location pointed to 
by register 1, overriding any existing JES2 account number. If the network account 
number is not present but the JES2 account number is, the JES2-to-net routine is 
invoked; if a match is found for the JES2 account number, the corresponding 
network account number is placed in the location pointed to by register 0. 

Each routine uses a binary search algorithm to search its appropriate lookup table. 
The values used to control the binary search loop were set in the header of each 
table by HASPIRRE when the table was built. After performing the search, control is 
returned to the caller with one of the following codes in register 15: 

Code Meaning 

0 Entry found; conversion performed as requested 
4 Necessary table not defined at initialization time 
8 Entry not found; no conversion performed 
12 Neither JES2 nor network account number supplied 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-391 



HASPEVTL "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPEVTL: Event Trace Log Processor 
HASPEVTL maintains the JES2 event trace log facility. It consists of: 

• HA$PEVTL -- which manages the trace tables 

• TRGETTB -- which gets more table storage if needed 

• LOGGER -- which creates the started task logging job 

• TTABFMT -- which calls the various formatting routines 

• TROPEN, TRCPUT, TREOB, TRCLOSE, TRCKPT, and T$TRACK -- which are the 
various data management routines. 

• TRCLGDIE -- which terminates the logging started task 

• TRCERR -- which is the recovery routine 

• Conversion routines -- which convert hexadecimal data to printable EBCDIC 
data. 

An initially-generated started task control (STC) job (job name $TRCLOG) is started 
and, based upon certain criteria, the trace log data set is spun off to that job multiple 
times during the course of running JES2. JES2's security token is associated with 
the $TRACE STC. This is the token that will be used when SAF is called for early 
verification and for printing the data set. 

The operator communicates with HASPEVTL via the $T TRACEDEF, $D TRACEDEF, 
$T TRACE(x) and $D TRACE(x) commands. The operator can control the trace 
logging on a dynamic basis with this command, which allows the changing of the 
SYSOUT class of the log data set, along with stopping the logging process or merely 
spinning off the current trace log, and the adding or deletion of trace tables. 
Through the TRACEDEF initialization statement, the system programmer specified 
the initial SYSOUT class; the size of the log data set in terms of lines of print so that, 
periodically, logs are spun off to the above SYSOUT class; whether or not the log 
process automatically starts after JES2 initialization; and the number of trace tables. 

HASPEVTL Initialization 

3-392 JES2 Logic 

The initial entry point of HASPEVTL is HA$PEVTL, which is the JES2 trace table 
manager. It is responsible for serializing (using ENQ/DEQ logic and a set of rules 
involving the table pointers) the use of extended common service area (ECSA) trace 
tables among the address spaces that are tracing. The ECSA tables form a 
single-threaded circular queue. The $HCCT points to the tables that are currently 
being logged and filled. CCTTRLGG points to the table that is full and ready to be 
logged or currently logging. CCTTRTBL points to the table that is available for data 
ad~:!!~ns. When a table becomes full and the next table pointed to is the log table 
(meaning all tables are full), trace entries are discarded. The CCTTRPLG field 
points to the table that precedes the log table. The only time this field is non-zero is 
when JES2 is attempting to decrease the number of trace tables. 

HA$PEVTL is dispatched just after warm start processing as part of JES2 
initialization. 

On entry, HA$PEVTL establishes TRCERR as the recovery routine. It tests to see if 
more tables are needed. If needed, HA$PEVTL gets and initializes more tables, 
calling TRGETTB. If not, control passes to label TRCENQQQ. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

. "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPEVTL 

TRCENQQQ tests to see if the current table (the one being written to) is equal to the 
logging table (the one being formatted and written out). If so, a $TRACE macro 
specifying TYPE =TRUNC is issued to advance the current trace table pointer so 
that this table can be formatted. If not, control passes to label TRCTRND, where the 
ENO is issued to exclusively enqueue on the table. If the ENO is not successful, the 
return code is checked: if it is 4, the routine waits to be posted. If the return code is 
unexpected, a $ERROR is issued. The routine abends with a system completion 
code of X '02D', and the return code is passed via the reason parameter on the 
ABEND. 

If the ENO is successful, but if logging is not supposed to be on, the logger routine 
(LOGGER) is not called, and the table is dequeued (DEQ) by the code at 
TRCDEQQQ. If logging at this point is supposed to be active, the routine waits for 
more work, and calls LOGGER when there is work. If logging is not supposed to be 
active, and a logging job has been started, TRCLGDIE is called to terminate logging. 
If the table should be freed (which the operator can request), the code at TBLFREE 
is entered, and a $FREMAIN is issued. 

TRGETTB: Obtain Table Storage Routine 
TRGETIB issues a $GETMAIN for the table storage. If the $GETMAIN is not 
successful, message $HASP652 is issued. If there are at least 3 existing tables, no 
attempt is made to get another table, and control returns to the caller. If there are 
fewer than 3 existing tables (which is below the minimum value), tracing and 
logging is turned off, and the tables are marked to be $FREMAINed before returning 
to the caller. 

If the $GETMAIN for more table storage is successful, the new table is initialized. If 
there are no current tables, in the queue, CCTIRLGG and CCTIRTBL are updated. 
If there are tables already on the queue, this new table is added in front of the 
current table. When no more tables need to be obtained, control passes to 
TRCENQQQ. 

LOGGER: Logging Routine 
LOGGER is responsible for creating the logger STC job by calling HASPRJCS in 
HASPRDR if an STC has not already been created. The job header and trailer are 
set up for the $TRCLOG job, and the job is queued to the in execution queue. The 
"JES2 EVENT TRACE LOG NOW ACTIVE" message is issued, and TROPEN is called 
to open the trace log data set. If an STC already exists, the routine checks to see if 
the timer interval has expired. If not, the unexpired timer is cancelled. If so, 
T$TIMER is entered to check if trace entries are being discarded. If not, check to 
see if message $HASP654 is outstanding. If not, the formatting routine is called. If it 
is outstanding, the routine checks to see if 30 seconds has expired. If not, the 
message is retained, and the formatter is called. If so, the message is $D0Med. If 
entries are being discarded, the latest time the message was issued is recorde.n, 
and if it is outstanding, it is not reissued and TIABFMT (the formatting routine) is 
called at label TRCNOMSG. Otherwise, it is issued and then the formatting routine 
is called. A timer is also set for 19 seconds so that logging will not have to wait for 
a page to fill before a trace table is formatted. 

The return code is tested on return from TIABFMT, and TRCTERM is called if the 
return code is an error return code. Then, routine TREOB is called, which writes a 
buffer to spool using a call to T$TRACK. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-393 



HASPEVTL "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

TTABFMT takes every trace table entry (TTE) and uses the appropriate formatting 
routine to format the trace information. Entries are written to the log data set until '" 
$TRLOGSZ is reached or until a $T TRACEDEF,SPIN command spins off the data set 
with a call to TRCLOSE, in which case a new data set is opened with a call to 
TROPEN so that logging may continue. A return is then made to HA$PEVTL. 

Trace Log Processor Format Subroutines 

3-394 JES2 Logic 

A set of subroutines is provided to format individual segments of the trace output. 
These formatting routines are pointed to by the TIO table pair entries. Each trace 
table entry (TTE) is formatted into a header line and, optionally, additional 
information lines that include blocks of data formatted into a standard dump format. 
The individual trace ID formatting routines call subroutines in this section to build 
the trace output. 

The formatting routines are: 

TROUTOOO: Format TRACE EVENTS DISCARDED information 

TROUT001: Format$SAVE invocations for trace IDs 1, 11, and 18 

TROUT002: Format $RETURN invocations for trace IDs 2, 12, and 19 

TROUT003: Format $DISTERR invocations for trace ID 3. 

TROUT004: Format BSC buffer trace at MBSCPROC for trace ID 4. 

TROUT005: Format RTAM SNA buffer trace at MSNAPROC for trace ID 5. 

TROUTOO&: Format JES2 initialization invocations for trace ID 6. 

TROUT007: Format JES2 termination invocation for trace ID 7. 

TROUT008: Format JES2 symbol trace for trace IDs 8, 9, and 10. 

TROUT013: Format JES2 $EXIT macro invocations for trace ID 13. 

TROUTFSI: Format $FSILINK macro invocations (ID 14), 

TROUT017: This routine formats and prints the following type of trace records for 
trace ID 17: 

• READ1 
• READ2 
• Primary write 
• Intermediate write 
• Final write. 

TROUT020: Format JES2 $#GET service call information. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

TRCHDR: Subroutine to Build the Standard Trace Header Segment 

HASPEVTL 

TRCHDR builds the standard trace header segment. This segment appears on 
every trace header line: 

HH.MM.SS.TH 
or 
HH.MM.SS.TH 

ID=*** - TIDNAME JOBNUMBER PCENAME 

ID=*** - TIDNAME ASID NUM PCENAMEX 

where ID is the identification from the trace table entry ID (TTEID) of the trace table 
element, and the 8-byte name is the name from the $TRIDTAB entry. 

The remaining subroutines and the text they create are as follows: 

Subroutine Text 

TRCAT AT symbol name 
TRCPCE PCE = pce-addr 
TRCREGS register 14, register 15, register 0, register 1 
TRCIN IN symbol name 

TRCREGS: TRCREGS builds the following line: 

R 14-R 1 = ******** ******** ******** ******** 

Register 3 points to the values used in the display line. 

TRCPHEX: TRCPHEX converts 4 bytes of hexadecimal data to printable EBCDIC. It 
is invoked by macro $TRBIN2X, which is an internal macro used only by the event 
trace processor. 

TRCPHEXB: TRCPHEXB converts any number of bytes of hexadecimal data to 
EBCDIC. The EBCDIC data is placed into the output record at the location pointed to 
by register TRCB. It is assumed that the result will not exceed the length of the 
output record. On return, register 3 (which on entry pointed to the bytes to be 
converted) has been increased to point past the bytes converted, and TRCB has 
been increased to point past the result in the output record. The value in register 3 
points to the next field to be looked at by the calling routine. (This may be another 
value to be converted to EBCDIC, in which case TRCPHEXB will again be called.) 
The value in register TRCB prevents previously converted EBCDIC data from being 
overlayed with the results of the next conversion. 

TRCDUMP: TRCDUMP formats a block of hexadecimal data to printable EBCDIC in 
standard dump format. 

TEBCDIC: EBCDIC Translate Table 
This translate table is used by TRCDUMP for formatting the EBCDIC portion of the 
dump lines. The table translates all characters to blanks except the following, which 
retain their own value: the letters A-Z; the numbers 0-9; and the special characters, 
left and right parenthesis ( ), plus sign +, minus sign-, ampersand &, dollar sign$, 
slash/, comma ,, period ., single quote', and the = sign. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-395 



HASPEVTL "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

TRVARFMT: Variable Format Fields Routine 
TRVARFMT provides table-driven formatting for any number of fields appended to a 
standard, fixed format, trace table entry. Any of the trace table entry formatting 
routines (TROUTnnn) can branch to this routine after having formatted the fixed 
portion of the entry. 

On entry, register 3 points past the fixed portion of the entry to TTEVFNUM, the 
number of items to be processed. 

TRVARFMT determines whether or not variable fields exist by checking bit 
TTE1VARF in TTEFLAG1. Only if this bit is on is any processing performed. The 
one-byte field TTEVFNUM indicates the number of items to be processed. All items 
are contiguous, the first item immediately follows TTEVFNUM. Each item has the 
following format: 

TTEVFLG1 
flags 
1 byte 

TTEVTABI 
table index 
1 byte 

TTEVDLEN 
length of data 
1 byte 

TTEVDATA 
data 

The TTEVTABI field value is used to index either a standard formatting table 
(TVFTBOOO) or a table associated with the trace entry id (TVFTBnnn). The standard 
table is used if bit TTEV1STD in TTEVFLG1 is on. The addresses of these tables are 
located in a vector (at TVFTBVEC) indexed by either 0 or the entry id. (This vector 
can have no missing entries up through the highest id for which a formatting table 
exists.) 

The formatting table entry consists of flags indicating how the data is to be 
formatted and an 8-byte label field which may be blank. Dump and character 
formatting are supported. Dump format output always begins on a new line. If the 
label field is non-blank, it is produced on a new line by itself and then the dump 
format output begins on the following line. 

Trace Log Data Management Subroutines 
The following text describes the subroutines that handle the data management of 
the trace log data set. 

TROPEN: Subroutine to Open the Trace Log Data Set 

3-396 JES2 Logic 

TROPEN initially obtains the storage for a spin IOT. It then creates a single 
peripheral data definition block (PDDB) within that IOT and sets the SYSOUT class, 
routing, and spin indication. 

TROPEN ensures that the size of the TGAE area is the largest possible while leaving 
enough space for one PDDB. Next, a data buffer is obtained and the initial track 
address of the data set is obtained, via the T$TRACK subroutine, and placed into 
field PDBMTTR. The data buffer is initialized with the job and data set keys 
assigned and with the trace table log title line. The new spin IOT and updated JCT 
are rewritten to the spool, and control returns to the caller. If any errors are 
detected during the open processing (for example, if no storage is available), the 
TRCFLAG1/TRC1ERR flag is set, and the condition code is set to non-zero. 

LY28-1006-2 ©Copyright IBM Corp.1988, 1990 

\"· /I 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

TRCPUT: Subroutine to Add a Record to the Trace Log Data Set 

HASPEVTL 

TRCPUT adds a record to the output data buffer. The length is passed in register 0. 
The left-most byte of register 0 contains the machine carriage control for the output 
record, and if it is not supplied, a write-space-1 control is assumed. For each 
record, a JES2 logical record control (LRC) block is built specifying the maximum 
logical record length (121), machine carriage control, the actual length of the data 
record, and the actual machine carriage control character. For each record added, 
the PDDB record count is increased by one. If this count exceeds the LOGSIZE 
specification from the TRACE initialization statement, the current data set is spun off 
via TRCLOSE and TROPEN. However, because the output for a particular trace ID 
can create multiple records, an attempt is made to keep all the output for a trace 
table entry together; therefore, the trace log data set temporarily remains open until 
the last line of the entry is processed (TRCFLAG1/TRCLASTL). 

When no room remains in the buffer for trace records, TREOB is called to write the 
current buffer to the spool, and the buffer is reinitialized for use. 

TREOB: Subroutine to Obtain Track Address for Buffer 
TREOB obtains a track address for the next data buffer via T$TRACK and places this 
address into HDBNXTRIC, the chain pointer in the current data buffer. However, if 
this request is for the final buffer of the data set (indicated by the leftmost bit of 
register 14 set to 0), the chain field is set to 0. 

The data buffer is written to the spool via $EXCP. To facilitate the reuse of this data 
buffer, register TRCB is reset to the first text area in the buffer, and control returns 
to the caller. 

TRCLOSE: Subroutine to Close Trace Log Data Set 
TRCLOSE performs the function of closing the current trace log data set and spins it 
to the current trace SYSOUT class. Provisions are made for held SYSOUT classes 
that are available for access by time-sharing users. 

If the data set was never opened (TRCFLAG1/TRC10PEN equal to 0), TRCLOSE exits 
immediately; otherwise, a check is made for an empty data set. If an empty data set 
is found, the spin IOT is freed from the common storage area via the FREE MAIN 
macro instruction, and control returns to the caller. 

The final output buffer is written to the spool via a call to TREOB specifying the 
termination option (BALR, instead of BAL). The current SYSOUT class is obtained 
from $TRCLASS in the HGT and inserted into the PDDB. The lines/cards count is 
updated by the contents of field PDBRECCT, as is the total output count for the job. 

If the SYSOUT class is a DUMMY class, all acquired spool space for the data set is 
purged ($PURGE), and control returns to the caller. The trace log data set is purged 
($PURGE), and control returns to the caller. The trace log data set is physically 
written to the spool as a track-celled data set; however, the track cell indicator in the 
PDDB is set only if the SYSOUT class is eligible. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-397 



HASPEVTL "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

If the SYSOUT class is a held class and if the data set is printed at the local node, 
the hold indicator is set in the PDDB, the hold count is increased by one in the JCT, 
and a track is obtained for a hold queue table (HQT), if one has not already been 
obtained by a previous trace log data set. If the SYSOUT data set is held and, in 
addition is printed at another node, the hold at-destination indicator is set 
(PDB2HDST), and normal spin processing continues. 

The spin IOT is placed onto the SVTSPIOT queue, and the JES2 execution processor 
is posted ($POST) to perform actual spin/hold processing. 

Finally, the $HASP801 message is issued to inform the operator that a trace log data 
set has been queued for output and, optionally, that it is held. The open indicator is 
reset, and control returns to the caller. 

TRCKPT: Subroutine to Interrogate Checkpoint Indicators 
TRCKPT interrogates the checkpoint indicators in both the JCT (JCT1CKPT) and the 
IOT (IOT1CKPT) and rewrites them to the spool, if they are set. The $DISTERR 
macro instruction is issued if an error occurs during the 1/0 operation, and the 
TRC1 ERR indicator is set. 

T$TRACK: Subroutine to Obtain Track Address 
T$TRACK obtains, via the $TRACK macro instruction, a new track address and 
returns it to the caller in register 1. If the $TRACK routine returns with condition 
code 0, a new track group was allocated and, therefore, the IOT is rewritten to the 
spool via TRCKPT to reflect the change in the track group map. 

TRCLGDIE: Trace Termination Routine 
TRCLGDIE is called to terminate the logging function. It $DOMs the outstanding 
$HASP654 message, calls TRCLOSE at label TRCTERM to spin off the current data 
set, terminates the logging job, and frees all acquired resources, and returns to 
HA$PEVTL. 

TRCERR: Trace Error Recovery Routine 

3-398 JES2 Logic 

TRCERR obtains control from HASPTERM after it has taken an SDUMP. The purpose 
of TRCERR is to disable the the trace facility and allow JES2 to continue to run 
without it. The trace facility can be restarted by an operator command. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

.·."~. I .. 
q, 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPS POL 

HASPSPOL: Spool Manager Services 

HASPSPOL: HASP Spool Manager Processor 

SMDEQSV: 

HASPSPOL supports the dynamic addition and deletion of spool data sets. 
HASPSPOL recovers or removes bad track groups on those spool volumes that have 
been found on the spool space. Bad track group isolation is an attempt to limit the 
effects of a single or small failure in the spool system. 

HASPSPOL isolates track groups in which an 1/0 error has occurred from those 
which are available for allocation. HASPSPOL isolates the track groups only until 
1/0 operations once again can be executed successfully. HASPSPOL attempts to 
return these track groups to availability as soon as the job that encountered the 
error, purges. If the tracks cannot be returned to the job at this point, they may be 
returned later during a warm or cold start. However recovery of bad track groups is 
attempted only when a job no longer owns them because the verification operation 
destroys all data currently contained in the records. To verify that the track in which 
the error occurred is now usable, HASPSPOL format writes the entire track and then 
rereads the records. If this verification operation is successful on all tracks in the 
track group, the track group is removed from the bad TGM and returned to the 
master TGM as available. HASPSPOL issues the $HASP251 message to inform the 
operator when the tracks are available, returned, or removed. Any track groups that 
fail this verification will remain in the bad TGM. 

HASPSPOL is posted ($$POST) by HASCSRIC when work is available on the 
CCTIOERR queue. This is a queue containing track groups that must be placed in 
the bad TGM. Work on this queue is processed at SMDEQSV. 

The processor is also posted ($POST) by the JES2 main task when work is available 
on the $SPOOLQ. The queue represents the bad track groups needing recovery. 
Work on this queue is processed at SMDEQSP. 

HASPSPOL is posted ($POST) by the checkpoint processor or the command 
processor when work is available on the $DASWRKQ queue. The queue represents 
spool extents that require processing to dynamically start, drain, or halt the extent 
in the JES2 complex. This queue is processed at SMCMND. 

SVTIOVERR Processing 
At label SMQUEUED, HASPSPOL checks for work that is queued on the CCTIOERR 
queue and the $SPOOLQ queue. IF HASPSPOL finds work on the CCTIOERR queue, 
it branches to label SMDEQSV. At label SMDEQSV, HOSPOOL dequeues a TGB 
from the CCTIOERR queue and calls the $TGMSET service routine to mark the bad 
track group as bad in the bad track group map. This is done by setting the bit to 0 
that represents the bad track group. HASPSPOL then frees the ($FREMAIN) the TGB 
and looks for more work at SMQUEUED. 

SMDEQSP: $SPOOLQ Processing 
If HASPSPOL finds work on the $SPOOLQ queue, it branches to label SMDEQSP. At 
label SMDEQSP, HASPSPOL dequeues a TGB from the $SPOOLQ queue. 
HASPSPOL then puts all necessary information into the SPL work area and posts 
(POST) the HOSPOOL subtask so that HOSPOOL can attempt to recover the bad 
track groups. HASPSPOL then waits ($WAIT) until it is posted (POST) by the 
HOS POOL subtask. When posted by HOSPOOL, HASPSPOL checks to see if the 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-399 



HASPSPOL "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

recovery attempt was successful. SMWAIT issues the $HASP251 message to 
indicate whether the recovery attempt was successful or unsuccessful. 

If the recovery attempt was successful, HASPSPOL removes the track group from 
the bad track group map and puts it in the good track group's map ($TGMAP) to 
make it available for allocation. It then frees ($FREMAIN) the TGB and looks for 
more work on the $SPOOLQ queue. 

If the recovery attempt was unsuccessful, HASPSPOL frees ($FREMAIN) the TGB 
and looks for more work on the $SPOOLQ queue; the bad track group remains in the 
bad track group map. 

SMCMND: Spool Command Entry 
If HASPSPOL finds work on the $DASWRKQ, processing of spool addition and 
deletion commands will occur at this label. At this label, ownership of the shared 
queues is acquired and preparations are made to loop through the $DASWRKQ. 
Processing then continues at SMCLOOP. $DASWRKQ contains volumes for which 
an addition or deletion command is being processed. 

SMCLOOP: The next DAS on the work queue is obtained. If the end of the queue 
has been reached, processing continues at SMQUEUED. If a DAS is obtained, the 
DADCKALL subroutine is called to determine the current command status (if any) 
and on return further checks are made to see if this is a new command, if an error 
during start processing has occurred (on this or other systems), or if final command 
processing for this volume should occur. If none of the above apply, the return code 
from DADCKALL is used to index into the branch table at SMCGO. The subroutines 
called from SMCLOOP (SMCFINAL, SMCWORK, SMCERR and SMCNEW) supply a 
return code that is used to index into this branch table. The return code for the table 
at SMCGO is as follows: 

RC=O All processing for this extent is complete. Use SMCFINAL to process 
completion messages and perform any other final processing. 

RC= 4 This JES2 system is to process the spool command at SMCWORK. 

RC= 8 Currently, there is no more that can or has to be performed on this 
system. Go to SMCLOOP to get another DAS from the $DASWRKQ and 
continue looking for work. 

RC= 12 An error has occurred in start processing on this or another system in the 
multi-access spool configuration. Go to SMCERR to deallocate the 
volume on this system (if necessary), issue an error message (if 
necessary), and return the volume to its previous status. 

SMCNEW: Process New Command 

3-400 JES2 Logic 

Processing occurs here when DASFLAG2 indicates there is a new command. If 
DASBUSY indicates another system is processing (allocating or deallocating) a 
previous command, the new command will be deferred by returning with a return 
code of 8. If processing can proceed, DASFLAG is marked to indicate the new 
command. DADAVAIL is called to recompute the allocated and total track groups 
for the extents that can have space allocated. DADCKALL is then called to 
determine the processing required. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSPOL 

SMCWORK: Command Processing Routine: SMCWORK checks the DASFLAG to 
see if the DASTART flag is set to 1. If it is, this indicates a start command, and 
SMCWORK invokes SMCSTART to begin processing. If DASTART is zero, then a 
deallocation is required. SMCWORK calls SMCDEL to perform the deallocation 
because the command is either DRAIN or HALT. 

SMCSTART: Start $DASWRKQ Processing Routine: SMCSTART allocates (and 
formats if necessary) the extent for the spool volume for every active system in the 
multi-access spool complex; the extent then becomes active (or begins to drain or 
halt depending on the type of start spool command). If a restart of a halted volume 
is taking place, all systems in the complex can attempt allocation at the same time 
because the extent information is already available and the volume will not be 
formatted. If the volume to be started is not previously known, one system in the 
complex must complete allocation of the volume before other systems can process 
start spool commands. This first system sets up extent information in the DAS and 
performs any necessary formatting. 

If the volume is previously known, allocation of the volume occurs at SMSTALOC. If 
this is the first time the extent is being allocated, DADGTUCB is called to find the 
UCB. If formatting was requested, the SPL is marked to indicate that formatting is 
required. DADWTCMD is called to post HOSPOOL. If the extent was allocated 
successfully, DADXTENT is called to set up the extent information in the DAS and 
find a slot in the TGM for this extent. On return, a check is made to determine if the 
extent fit in the TGM. If the extent fit, DADTGM is called to format the slot in the 
TGM and the bad TGM. 

If the extent size had to be reduced, the operator is given the option of using the 
volume with the reduced extent size or of not using the volume. If the operator 
replies to use the volume, processing continues at SMSTTGM. If the operator 
replies not to use the volume, processing continues at SMSTPRG where the SPL is 
set up, the volume is deallocated (by calling DADWTCMD), and the DAS is reset for 
reuse (by calling DADREMVE). 

SMSTALOC: Extent A/location Routine: SMSTALOC invokes DADGTUCB to find the 
UCB for the volume to be allocated. Then SMSTALOC calls DADWTCMD to post the 
HOSPOOL subtask to allocate the volume. SMSTALOC checks to see if the volume 
is formatted and if no errors have occurred thus far, indicates on the DAS that the 
volume is allocated. SMSTALOC then invokes DADDEB to store the extent that was 
allocated in the DEB. After the spool volume has been successfully allocated 
processing continues at SMSTEND. SMSTEND updates the CSA copy, and the JES2 
SJXB copy of the DEB to reflect this allocated extent processing continues at 
SMWKEND. 

SMCDEL: Deallocate Routine: SMCDEL determines if deallocation of a volume is 
ready to occur. Deallocation cannot occur on any system until all systems have 
re-BLOBed and no jobs on that volume are active for a halting volume or remain on 
that volume for a draining volume. If the re-BLOB processing on all systems hasn't 
yet occurred, processing is deferred by returning with a return code of 8. If any 
other systems in the multi-access spool configuration have started or completed 
deallocation, this system may begin the deallocation process by branching to 
SMDEALOC. Otherwise, processing continues at SMJOB to determine the job 
status. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-401 



HASPS POL "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SMJOB: Job Check Routine: SMJOB ensures that no jobs are active on a halting 
volume before any system begins deallocation for a halting volume or that no job 
remains on the draining volume before any system begins deallocation on a 
draining volume. When this routine begins processing, DASJOBNO contains the job 
number of the lowest numbered active job in the system (for a halt command) or the 
lowest numbered job in the system (for a drain command). 

SMJOB locates a job using $0LOC. If the job can't be located DASJOBNO is 
increased and processing continues. If a job is located, the JOESPOLS mask is 
used to determine if the job resides on the volume. If it does not, processing 
continues at SMNXTVOB. If it does, the JOE is checked to determine if the job 
should be moved to another volume. If the JESNEWS data set or spooled message 
STCs are on the volume, they are moved to another volume at this time by the 
DADMOVER routine. Because the scan of the job queue starts with the lowest job 
number, and because jobs to be moved may not have the lowest job number until 
jobs with lower numbers are processed, the move might not happen immediately 
after the drain command is issued. If a read error occurs during the move process, 
the job is removed via a $OREM. If a write error occurs, the move is attempted 
again. If no tracks are available, further processing is deferred by returning with a 
return code of 8 (to be attempted again later when SMJOB is entered again on this 
or another system). 

If the job does not have to be moved, processing continues at SMNOTMVE. If the 
volume is draining, further processing is resumed (and a retry later takes place, 
beginning with this job). If the volume is halting and the job or its JOEs are active, 
further processing is deferred. Otherwise, the job number is increased at 
SMNXTJOB and processing continues. When the entire job queue is completed (that 
is, for a halting volume, the job queue contains no active jobs on that volume, or, for 
a draining volume, the queue contains no more jobs associated with this volume 
because all jobs associated with this volume have either executed or have been 
moved), the volume is drained and the deallocation process can continue at 
SMDEALOC. 

SMDEALOC: Volume Deallocation Routine: If HASPSPOL determines that a spool 
volume is ready to be deallocated, SMDEALOC is invoked to perform the 
deallocation. DADGTUCB is called to get the UCB for the volume that is to be 
deallocated and DADWTCMD is invoked to post HOSPOOL, which performs the 
deallocation. Processing continues at SMWKEND. 

SMWKEND: Final SMC Work Processing: DADCKALL is called to determine if final 
processing should occur. Exit is made to SMCWORK. 

SMCFINAL: Final Spool Command Processing Routine 

3-402 JES2 Logic 

SMCFINAL performs final start, drain, halt, and re-BLOB spool processing. 

• Final Drain Processing 

At SMCFDRN, HASPSPOL calls DADREMVE to remove the volume from the DAS 
entries, issues the $HASP806 message, calls DADSPALE to log the track group 
usage, and calls DADKBYTE to recompute the byte available on the spool. 

• Final Halt Processing 

At SMCFHAL T, HASPSPOL calls DADREMWO to remove the DAS from the work 
queue and issues the $HASP630 message. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

:.f 
·\ 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• Final Start Processing 

HASPS POL 

At SMCFSTRT, HASPSPOL checks to see if this is just a start or a start with 
drain. 

• Final Re-BLOB Processing 

HASPSPOL indicates that a search through the job queue for a drain or halt 
command can begin. 

For a start with drain, HASPSPOL ensures that work gets selected for restart on the 
inactive volume by posting the JOE for jobs on the draining volume. Then, 
HASPSPOL posts the processors for these jobs. 

For just a start, HASPSPOL does not post any work to be started. Instead, 
HASPSPOL calls DADAVAIL to recompute total and allocated track groups on the 
volume, calls DADREMWO to remove the DAS from the work queue, calls 
DADSPACE to log the track group map space utilization, calls DADKBYTE to 
recompute the bytes on the spool, and issues the $HASP630 message. 

HASPSPOL Subroutines 
DADAVAIL computes the allocated and total track groups for the extent. 

DADCKALL determines whether processing for the current command has been 
completed. 

DADCKTGM checkpoints part or all of the TGM. It is passed an address which is 
within the TGM and a length which represents the amount of the TGM to be 
checkpointed. This routine issues a $CKPT for each portion of the passed segment 
of the TGM that is in its own page. 

DADDEB initializes the direct access DEB extent information. 

DADGTUCB finds the UCB for the volume id. 

DADKBYTE computes K bytes of space on defined spool volumes. 

DADMOVER is invoked to move a job that is affected by dynamic spool deletion 
commands. DAD MOVER copies all of the job's spooled data sets and JES2 control 
blocks (JCT, IOTs) to currently active spool volumes; it is assumed that the job has 
no JOEs built for it. 

The job lock of the job to be moved (the 'argument' JOE) is acquired via $GETLOK. 
A separate JOE is then built and added to the $INPUT job queue to serve as the 
anchor for the job copy. In case of an error in DADMOVER, this JOE (the "copy" 
JOE) is automatically purged by the warm start processor. The copy JOE is built to 
resemble the argument JOE except that its JOEJNAME is set to "$$$$MOVE". A 
new allocation IOT is created for use by $TRACK when allocating track addresses 
for the job copy. The argument JCT (if existing) is read, updated with new track 
addresses, and both the new IOT and JCT are written to spool. Both the regular and 
spin IOT chains are then copied via the DMVIOTC routine. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-403 



HASPSPOL "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

If the copy is successful, the argument job's IOT is processed by $PURGER and its 
JQE is removed by $QREM. The argument job's job number is contained in field 
JQEINJNO of the copy JQE. If the copy fails, the copy JQE is purged if the job 
numbers in the argument and copy JQE match. If they do not, an error message is 
issued. 

DADREMVE removes extents from the DAS and compresses the master track group 
map and the bad track group map. 

DADREMWO removes the DAS from the work queue. 

DADSPACE logs the space utilization of the track group map. 

DADSPLST resets the SPL control block for reuse. 

DADTGM adds the bit map for a new extent to the master track group map. 

DADWTCMD posts and waits on HOSPOOL. 

DADXTENT initializes JES2 and MVS data areas for each spool extent. 

HOSPOOL: Dynamic Spool Allocation Subtask 

Subtask Entry 

The dynamic spool allocation subtask, HOSPOOL, supports the dynamic allocation 
of the JES2 checkpoint volume, checkpoint data set, and spool volumes with their 
corresponding spool data sets. It provides information for the construction of 
control blocks used in controlling these data sets and provides the function of 
testing and/or formatting the spool volumes. By providing these capabilities in a 
subtask, the processing of newly mounted spool volumes is allowed to proceed in 
parallel. The subtask can also attempt recovery of track groups on which 1/0 errors 
have occurred. 

Information controlling the operation of the subtask is provided in a dynamic spool 
allocation work area (SPL), described by the $SPL macro expansion. 

This work area resides in the work area extension of the HOSPOOL DTE. 

On entry, HOSPOOL establishes $STABEND as its ESTAE routine in case of 
abnormal termination of the subtask. If HASPIRDA attached the subtask, a branch is 
taken to SPDYLIST, otherwise SPWAIT is given control. HOSPOOL sets a subtask 
flag byte, SPLFLG2, to indicate any failure to allocate the indicated volume and data 
set. 

SPWAIT: Wait for Work 

3-404 JES2 Logic 

HOSPOOL uses SPWAIT to wait for work when none is available to process. 
SPWAIT first posts the HOSPOOL processor and issues a WAIT macro instruction. 
After returning from the WAIT, SPWAIT tests to determine if HOSPOOL is to be 
detached, and, if so, branches to SPEXIT. It then determines if SPBADTRK 
processing is required and, if so, goes to SPBADTRK. Otherwise, control goes to 
SPDYLIST. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed ~aterials - Property of IBM 

HASPSPOL 

SPDYLIST: Volume Allocation 
HOSPOOL next constructs a dynamic allocation parameter list using information in 
the SPL. It SPL 1UNAL is on, control goes to SPUNALOC. It then issues a 
DYNALLOC macro instruction to allocate the volume and its data set 
(SYS1.HASPACE). Note that the data set name can be modified by the DSNAME 
parameter on the SPOOLDEF initialization statement. 

SPOBTAIN: Data Set Verification/Analysis 
An OBTAIN macro instruction is now issued to obtain information about the 
allocated data set. An OBTAIN error results in message $HASP414 being issued, 
followed by SPUNALOC. It a spool volume is being processed, a direct-access 
device control block (DCB) and data extent block (DEB) are constructed in the SPL. 

Information required for DAS entry construction is computed and saved in the SPL. 
If a checkpoint volume is being processed, control is passed to SPGXTENT to obtain 
the data extent information. Otherwise, the TGSIZE parameter value is used to 
determine the number of tracks per group tor the spool volume. 

SPDASVLS: DAS Value Acquiring 
HOSPOOL checks the data set type. If it's a checkpoint data set, the record size is 
set to 4K. It it's not a checkpoint data set, HOSPOOL checks the device type. It the 
device type is a cellular device, HOSPOOL computes the records per track. It the 
device is a count-key-data DASO device HOSPOOL computes its records per track. 
Finally, HOSPOOL computes the tracks per group for the spool volume. 

SPGXTENT: Data Set Statistics Gathering 
At SPGXTENT, data set extent information is obtained. Then, if a spool volume is 
being processed, a track group bit map for the volume is created in field SPLTGM. 

SPSETIOB: Direct-access 108 Construction 

SPFORMAT: 

A direct-access input/output block (IOB) is constructed and, if formatting is not 
demanded, the count portion of the first record on the last track of the first extent of 
SYS1.HASPACE is read. A read error results in a status bit being set in SPLFLG2. If 
formatting is not allowed, control is passed to SPGRDS. If formatting is demanded, 
an 1/0 error must have occurred on the read, or the length of the block read was not 
the same as the BUFSIZE specification; an attempt is made to format the volume. 

SYS1.HASPACE Formatting 
Formatting is preceded by message $HASP423. Space for a channel program is 
obtained via the SPSETCCW subroutine. A channel program is then constructed, 
providing tor format writing one track at a time. 

An error in formatting results in the message $HASP418 being issued, followed by 
SPUNALOC processing. 

SPUNALOC: Termination Processing 
If any processing errors have already occurred, the volume (for $Z or $P) is 
deallocated and the SPLFLG2 bit is set to 1 in the SPL2UNAL field. Otherwise, 
control goes to SPEXITCK. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-405 



HASPSPOL "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SPEXITCK: Exit from Subtask 
SPEXITCK restores the registers previously saved upon entry at the calling exit 
point. After restoring the registers, SPEXITCK returns control to JES2. 

SPBADTRK: Bad Track Processing 
SPBADTRACK formats the track group and rereads it to determine if the track group 
can be returned to service. If SPBADTRK encounters an 1/0 error, or if the data read 
is incorrect, it sets SPLFLG2 flag on. HOSPOOL branches to SPWAIT to wait for 
more work. 

HOSPOOL Subroutines 
SPEXCP initiates an 1/0 operation, waits for its completion, and returns. 

SPWTO issues a message to the operator and returns. 

SPBLDIOB constructs a direct access 108. 

SPFMTRK formats a track and checks for an 1/0 error. 

SPRDCNT builds CCWs to read a record. 

SPSETCCW sets up the format channel program. 

SPFREEWK frees work storage ($FREMAIN). 

SP EST AE handles subtask abends. 

3-406 JES2 Logic L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSTAM: Spool Transfer Access Method 

HASPSTAM 

HASPSTAM consists primarily of three sections: HASPSTAM $EXTP service 
routines, HASPXFRM spool transfer 1/0 manager, and the HASPOFF spool transfer 
subtask, The HASPSTAM $EXTP routines (HASPXFRA) are a set of $EXTP service 
routines (OPEN, CLOSE, GET, PUT, and NCLOSE) that are called as subroutines 
from the spool offload receivers and transmitters. These service routines perform 
the same logical functions, as the ones in HASPBSC and HASPSNA. The difference 
is that records are written to and read from a BSAM format spool offload data set 
instead of a TP line. 

The spool transfer 1/0 manager (HASPXFRM) runs as a JES2 processor and 
performs functions analogous to the HASPRTAM line manager. Among other things, 
it 

• Processes BSAM 1/0 completions 

• Passes input buffers to the appropriate receiver OCT 

• Posts ($POST) awaiting transmitters when their buffers have been completely 
written 

• Interacts with the spool transfer subtasks 

• Assists in starting and draining spool offload devices 

The spool transfer subtask (HASPOFF) is used to perform certain data management 
requests that could incur waits. These requests include: 

• Allocation/Deallocation 
• OPEN/CLOSE 
• BSAM CHECK processing. 

HASPST AM $EXTP Routines 
The HASPSTAM $EXTP service routines are called by the spool offload receivers 
and transmitters to perform 1/0 operations for spool offload using a BSAM format. 

HASPXFRA: HASPSTAM $EXTP Entry Point 
HASPXFRA is entered by the $EXTP service routine (HASPEXTP) in HASPNUC in 
response to a $EXTP request by a spool offload receiver or transmitter. Based on 
the service option in R14, the address of the specific $EXTP service 
(OPEN/CLOSE/GET/PUT/NCLOSE) is extracted from table XFRTAB. HASPXFRA 
then sets up addressability for the offload and receiver/transmitter DCTs (hereafter 
referred to as R/T OCT) and exits to the specified $EXTP service routine. 

HASPXOPE: $EXTP OPEN Service for Spool Offload 
HASPXOPE is used by the $EXTP service routines to provide OPEN service for spool 
offloading. HASPXOPE initializes the offload and R/T DCTs for subsequent GET/PUT 
processing. It increases the OPEN count (XDCTOPCT) in the offload OCT and marks 
the R/T OCT as being opened. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-407 



HASPSTAM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPXGET: $EXTP GET Service for Spool Offload 
HASPXGET examines the queue of input buffers at DCTBUFAD in the receiver OCT. 
If there are no input buffers waiting to be processed, HASPXGET issues a $WAIT 
macro instruction to wait for work. This wait will be satisfied by the HASPSTAM 110 
manager after an input buffer is read and SBUFPASS queues it for this OCT. 

If an 1/0 error occurs during a READ operation, the waiting processor is posted and 
a negative condition code is passed back to the receivers to indicate the error. 

If the skip flag is set (DCTSKIP) by the receivers on the next $EXTP GET call, 
HASPXGET calls SBUFPASS to free the buffer and issues another READ, passing a 
new buffer to the receiver. 

If either receiver detects a job verification error, it will set a bit in the offload OCT 
(XDCT1VER). On the next $EXTP GET call, HASPXGET calls SBUFPASS to free the 
buffer and signals the 1/0 manager to drain the device. 

After obtaining a new buffer, or if a buffer currently exists, HASPXGET examines the 
next logical record. If it is an EOB (end of buffer), HASPXGET calls SBUFPASS to 
free it and read another. If the record is for this receiver OCT, HASPXGET deblocks 
it and moves it into a return area. The record SRCB is stored for return in RO. 

If HASPXGET detects an EOF (end of job) while it is deblocking the record, the EOF 
type (normal/abnormal) is obtained. If this was the last record, the buffer is given to 
SBUFPASS to be freed. If a normal EOF was found, the HASPSTAM exception exit 
(STAMXEX) is taken to indicate end of file. Otherwise the HASPSTAM abnormal exit 
(STAMXAB) is taken. 

When the end of a job is encountered (EOF), HASPXGET halts the offload device if 
both receivers are now drained and, issues message $HASP582. 

HASPXPUT: HASP ST AM PUT Service for Spool Offload 
HASPXPUT examines the CCW pointed to by RO. It uses this CCW as a parameter 
list to $EXTP PUT to indicate the 1/0 operation, data length and data address. If the 
CCW op code is NOP, the HASPSTAM normal exit routine (STAMXIT) is immediately 
called. If the op code indicates a buffer truncation, the HASPSTAM normal exit 
routine (STAMXIT) is immediately taken. 

If a buffer doesn't exist, HASPXPUT obtains one for this transmitter OCT in which 
records will be put to write to the tape. 

At label STUFFBUF, the next record is put into the current buffer if it fits. STUFFBUF 
increases the record count and takes a normal HASPSTAM exit. 

SPUFLUSH: Terminate Buffer 

3-408 JES2 Logic 

SPUFLUSH writes the buffer to the offload data set. If 1/0 errors were detected on 
previous writes, the HASPSTAM abnormal exit (STAMXAB) is taken. Otherwise, 
SPFWRITE is called to initiate 1/0 for this buffer, and the current PUT request is 
retried. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSTAM 

HASPXNCL/HASPXCLO: $EXTP NCLOSE/CLOSE Service for Spool Offload 
HASPXNCL and HASPXCLO are used by the $EXTP service routines to close or 
NCLOSE open DCTs. 

At entry, a flag is set to indicate whether this is a normal or negative CLOSE. 

If the DCT was never opened, HASPXCLO takes a normal exit (STAMXIT). 
Otherwise, the R/T DCT is marked closed and the OPEN count in the offload DCT 
(XDCTOPCT) is decreased. 

For a receiver CLOSE, the queue of awaiting input buffers is examined. If it is 
empty, DCTHOLD is set on and the STAMXIT exit is taken. If a buffer has been 
attached to the receiver DCT, a check is made to see if the receiver is draining. If 
not, DCTHOLD is turned off to allow this buffer to be processed, and exit STAMXIT is 
taken. 

If the receiver is draining, SDRNRCV is called to check if the other receiver is 
drained. If not, the buffer is detached, and SBUFPASS is called to free the buffer; 
then another buffer is read. 

If the other receiver happens to be drained, then chain the buffer to the offload OCT 
and halt the offload device to stop the read operation. 

For a transmitter CLOSE, the EOF and EOB records are inserted into the buffer and 
SBFWRITE is called to write out the buffer. If this is a negative CLOSE, the EOF 
record indicates an abnormal termination. A $WAIT is then issued to wait for work. 
This wait is satisfied by the spool transfer 110 manager when a buffer write 
completes. If the queue of awaiting output buffers is empty, normal exit is taken. 
Otherwise the $WAIT macro instruction is reissued. When HASPXCLO exits, all data 
is secure on the offload data sets. 

HASPSTAM Exit Routines 
The three exit routines set positive, negative, or zero condition codes and invoke the 
$RETURN service. These routines are: 

• ST AMXIT - Normal exit and sets a positive condition code 

• STAMXEX - EOF (end of job) detected on GET, sets a negative condition code 

• ST AMXAB - Abnormal exit and sets a zero condition code 

SDRNRCV: Test Receivers Drained Status Subroutine 

SGETOBUF: 

SORNRCV checks the status of the two receivers. When the receiver being tested is 
detected as drained or draining, the routine checks the status of the other receiver. 
If the other receiver is drained, the offload device is halted. 

Obtain Output Buffer Subroutine 
HASPXPUT calls SGETOBUF to obtain an output buffer (via the $GETBUF macro 
instruction specifying TYPE= SPXFR) and chains it to the transmitter OCT. 
SGETOBUF examines the buffer count field in the offload OCT to see if it is below 
the buffer limit. If so, SGETOBUF gets a buffer and initializes it, and increases the 
buffer count (OCTBUFCT) in the offload DCT. If the buffer count is not too high, 
SGETOBUF waits ($WAIT) for work. This wait will be satisfied by the spool transfer 
110 manager (at HASPXFRM) when a previously obtained buffer is written out and 
freed. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-409 



HASPSTAM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SQUEBUF: Queue Buffer on DCT Queue Subroutine 
SQUEBUF is used by the HASPSTAM service routines to queue a buffer onto the end 
of a chain of buffers. The address of the head of the chain of buffers is located in 
the OCT. The OCT address and buffer head offset are passed to SQUEBUF so that 
this routine will queue buffers for both input and output operations. 

SDRANXFR: Drain offload and Associated R/T DCTs Subroutine 
SORANXFR is called by SBUFEMTY, SBUFPROC, SOCTSCAN, or STIMRCHK to 
drain the offload and its associated R/T OCTs. SORANXFR sets on the drain bits in 
the offload and all R/T OCTs to indicate that they are to be drained. If the open 
count in the offload OCT is non-zero, SORANXFR exits because there is still 
processing taking place. If this is an input operation, SORANXFR calls SFORCORN 
to purge any remaining input buffers. The offload subtask is posted for closing and 
termination. 

SORANXFER calls SSETLCK before it issues a CLOSE to indicate that the device is 
no longer in use. SORANXFR then posts the JOT and JOB resources to force the 
transmitters into their idle loop, and issues a $FREUNIT for any inactive transmitters 
or receivers so that message $HASP097 can be issued. 

SSETLCK: Set lock Subroutine 
When an offload device is drained, SSETLCK indicates this in the LCK so that 
another device can start, and checkpoints the LCK. 

SFORCDRN: Purge Remaining Input Buffer Subroutine 
SFORCORN is called by SORANXFR to purge remaining input buffers prior to 
draining the offload and its associated R/T OCTs. SFORCORN frees all waiting input 
buffers (via $FREEBUF) for all receiver OCTs associated with a given offload OCT. 

SBFWRITE: Initiate 1/0 for Output Buffer Subroutine 
SBFWRITE is called by SPUFLUSH to initiate 1/0 for an output buffer. SBFWRITE 
moves the buffer from the transmitter OCT to the end of the queue of buffers 
awaiting 1/0 in the offload OCT. SBFWRITE then issues the BSAM WRITE macro 
instruction to initiate 1/0 for the buffers. SBFWRITE calls SECBSET to initialize the 
ECB contained in the buffer. 

SINITRD: Initiate 1/0 for Input Buffer Subroutine 

3-410 JES2 Logic 

SINTRO is called by SBUFPASS and SUBTCOMP to initiate more input buffer 1/0. 
SINITRO checks to see if the number of buffers in use by this offload OCT is at its 
maximum or if an EOF has occurred on the offload data set. In either case, SINITRO 
immediately exits. If it's not an EOF or if the number of buffers used is not a 

. maximum, SINITRO obtains a buffer via a $GETBUF macro instruction specifying 
TYPE= SPXFR. SINITRO then increases by one the offload OCT buffer count 
(OCTBUFCT) and places the buffer at the end of the 1/0 pending queue (XOCTBUFQ) 
in the offload OCT. SINITRD then issues BSAM READ for the buffer and calls 
SECBSET to initialize the ECB contained in the buffer. The entire process is then 
repeated for each input buffer beginning at the initial check until there are no more 
input buffers to process. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SECBSET: Initialize Extended ECB Subroutine 

HASPSTAM 

SECBSET is called by SBFWRITE and SINITRD to initialize the ECB contained in the 
DECB for the spool offload device. This is an extended ECB specifying that post exit 
processing should take place. After this initialization, an exit routine in HASPNUC is 
given control when the ECB is posted by BSAM to indicate 1/0 completion. This exit 
routine queues the buffer for the spool transfer 1/0 manager. 

SECBSET operates in supervisor state key O and uses a local lock when accessing 
the ECB. If the ECB has already been posted, SECBSET queues the buffer to the 
$XFRBEND queue in the HGT using compare and swap. Otherwise, SECBSET 
initializes the ECB to indicate that post exit processing is to take place. The local 
lock is released, and the key is restored to the HASP key. 

SBUFPASS: Pass Buffer to Correct Receiver DCT or Free if Empty Subroutine 
SBUFPASS is called by HASPXGET and SBUFPROC to pass a buffer to the correct 
DCT or to free the buffer if it is empty or if EOF is encountered. If the read for this 
buffer resulted in an EOF, the EOF indicator (DCTEOF) in the offload DCT is set to 1. 
If EOF is encountered or the buffer is empty, or the maximum READ error count has 
been reached, the passed buffer is freed and the buffer count in the offload DCT 
(DCTBUFCT) is decreased by 1. 

Any open receivers must be $POSTed so that they can issue an $EXTP CLOSE to 
drain the devices. If the buffer count becomes zero (indicating 1/0 has quiesced and 
the end of file was encountered on the offload data set), SORANXFR is called to 
terminate operations. Otherwise, SINITRD is called to initiate the processing of 
more input. 

If SBUFPASS is called from HASPXGET by a receiver skipping buffers to the next 
job, the buffer is freed and SINITRD is called to read another. 

But if the device is halted, no new READ is issued until the device is restarted for 
receiving. 

If EOF is not encountered and the buffer is not empty, SBUFPASS scans the receiver 
DCTs for a OCT whose RCB matches the RCB of the next record in the buffer; this is 
done in order to determine which receiver is to process the buffer. If such a DCT is 
found, SBUFPASS queues the buffer to the DCT, resets the DCTHOLO bit and posts 
($POST) the OCT's associated PCE so that the receiver can process the buffer. If no 
matching DCT is found, a disastrous error (SBFRCBER) is issued and the offload 
device is drained. 

If SBUFFPASS is called from HASPXGET because of a job verification error, it 
issues message $HASP590 and $POSTs the open receivers with a negative return 
code so that they can be closed and the devices drained. 

Spool Transfer 1/0 Manager 
The HASP spool transfer 1/0 manager runs as a HASP processor under the standard 
sub-dispatching structure of the JES2 main task. It is responsible for completing 
processing of certain events, some of which occur outside the JES2 main task. This 
completion processing consists mainly of updating and manipulating control blocks 
and in some cases posting ($POST) other processors to notify them that these 
events have occurred. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-411 

i. 



HASPSTAM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

There are four events that cause this processor to take action. They are: 

1. BSAM has signaled 1/0 completion for a spool offload buffer. Completed buffers 
are queued to $XFRBEND in the HCT by a post exit routine in HASPNUC. A 
non-zero value in $XFRBEND indicates one or more of these events have 
occurred. 

2. The operator has issued a start, drain, or halt command for an offload OCT. A 
bit in the $STIMASK in the HCT indicates one or more of these events has 
occurred. 

3. The offload 1/0 subtask has finished its processing on behalf of a given OCT. 
When finished with processing, the subtask queues DCTs to the $XFRDEND 
queue in the HCT. A non-zero value in this field indicates one or more of these 
events has occurred. 

4. A 32-second timer has expired. This event is detected by examining this 
processor's TQE. 

HASPXFRM: Processor Initialization 
HASPXFRM establishes addressability, issues an IDENTIFY macro instruction for the 
offload 1/0 subtask (HASPOFF) and initializes the TOE. 

SEARCH: 1/0 Manager Scanner/Dispatcher 
SEARCH is entered at the end of processor initialization to detect events and 
dispatch the appropriate event processors. SEARCH is table driven; the scan table 
that it uses contains three elements per entry: 

1. A list of bits, which must be on, in the $STIMASK. 

2. An instruction which, when executed, must produce a non-zero condition code. 

3. The address of the event processor. 

If conditions 1 and 2 are met, the event processor is given control. 

Upon entry, SEARCH resets the $$POST element in the $HCCT to allow subsequent 
$$POSTs to be issued. If the TOE indicates that the 32-second timer has expired, 
SEARCH sets the timer scan bit on in a temporary copy of the $STIMASK. The other 
$STIMASK bits are merged into this copy and the $STIMASK is reset. 

SEARCH processes the scan table and calls the appropriate event processor. After 
completion of table processing, SEARCH tests to see if the timer has expired or if 
any $STIMASK bits have been set on. If either condition is true, SEARCH is again 
entered. 

If there are any active offload DCTs and the timer has expired, the timer is restarted 
and SEARCH waits ($WAIT) for work. This wait is satisfied by various components 
of JES2 when an event occurs requiring this processor's action. SEARCH is entered 
when the wait is satisfied. 

SBUFPROC: Buffer 1/0 Completion Event Processor 

3-412 JES2 Logic 

SBUFPROC is called by SEARCH to copy the queue of buffers at $XFRBEND and to 
reverse their order from LIFO to FIFO. The buffers are then processed one by one. 
If the buffer is an output buffer, SBUFPROC examines the associated R/T OCT to see 
if it is waiting. If it is waiting, $BUFPROC posts ($POST) its PCE. If this is not the 
first buffer on the offload OCT 1/0 pending queue, then SBUFPROC issues a 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

(_ 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSTAM 

catastrophic error $X01. If the 1/0 was successful, SBUFPROC dequeues and frees 
the buffer. 

If the buffer is an input buffer and the 1/0 is successful, it is given to SBUFPASS to 
be passed to the appropriate receiver. If this is not the first buffer on the offload 
OCT 1/0 pending queue, then $BUFPROC issues a catastrophic error $X01. 

If the 110 was not successful, (detected by a bit, SPBSYNAO, set on in the buffer by a 
SYNAO routine), the error count is incremented, and this routine sets an 1/0 error 
flag in each open receiver OCT. SBUFPROC calls SBUFPASS to process the error. 
To indicate the error, SBUFPROC issues error message $HASP587. The message 
will indicate if the limit of ten consecutive errors has occurred. If, before the limit is 
reached, an 1/0 attempt is successful, the count of errors is cleared to zero. 

SDCTSCAN: Complete Processing of Start or Drain Command 
SOCTSCAN is called by SEARCH to scan for all offload OCTs in starting or draining 
status. 

It also serializes the starting of devices among members of a MAS installation and 
verifies that data set names are unique. 

For a starting OCT, SOCTSCAN issues a $GETUNIT macro instruction to obtain the 
offload OCT, and chains the starting OCT to the $XFRACTV queue. 

Before attaching a spool transfer subtask, the 1/0 error count is reset. This is used 
to count the number of READ errors for a load operation. Then, SDCTSCAN 
attaches a spool transfer subtask for this OCT and signals the spool transfer subtask 
(by setting XOCTSUBR=SBTOPENR) to do allocate/open processing for the offload 
data set. If this initialization cannot take place, disastrous errors are issued and a 
$FREUNIT macro instruction is issued for the OCT. 

If the device is restarting after a $Z OFFn command (bit XOCTSTRT in the OCT is 
turned on), SOCTSCAN does not call the subtask to reallocate the data set. It just 
posts any startable receiver if the device was receiving or any startable transmitter 
if the device was transmitting. 

For a draining OCT, SOCTSCAN calls SORANXFR to drain the offload and its 
associated R/T OCTs. 

SUBTCOMP: Subtask Completion Processor 
SUBTCOMP is called by SEARCH to process the queue ($XFROEND) of completed 
offload OCTs. 

For a offload OCT that has just completed OPEN processing, SUBTCOMP checks to 
see if the OPEN was successful. If it was not successful, SUBTCOMP performs 
CLOSE completion processing. If the OPEN was successful and the OPEN was for 
input, SUBTCOMP calls SINITRD to initiate input 1/0 and then starts and posts 
($POST) those receivers that have bit DCTSTRT turned on in their OCTs. If the 
OPEN was successful and was for output, SUBTCOMP starts and posts ($POST) 
those transmitters that have bit OCTSTRT turned on in their OCTs. 

For a offload OCT that has just completed CLOSE processing, SUBTCOMP removes 
the OCT from the $XFRACTV active queue. The drain bit (OCTORAIN) is then set to 
1 in the offload OCT and a $FREUNIT macro instruction is issued for the offload OCT. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-413 



HASPSTAM "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

If there was an error during allocate/open processing, the device is not started. 
Instead, SSETLCK is called to clear the LCK and indicate the device is no longer in 
use. 

STIMRCHK: Timer Completion Processor 
STIMRCHK is called by SEARCH to scan the queue of active offload DCTs. For each 
OCT with the drain bit set on, STIMRCHK checks to see if any of its receivers or 
transmitters are active. If none of these receivers or transmitters are active, 
STIMRCHK calls SDRANXFR to drain the offload device 

Spool Transfer Subtask 
The spool transfer subtask is used to perform data management tasks that could 
incur waits (for example, allocation, deallocation, OPEN, CLOSE, BSAM check and 
EOV processing). 

HASPOFF: Spool Transfer Initial Entry Point 
HASPOFF is entered to store registers and establish initial addressability. The DTE 
work area is then initialized from the work area prototype contained in module 
HASPSTAM. HASPOFF then adjusts addressability so that the work area prototype 
actually forms the DSECT for the work area. Finally, HASPOFF issues an ESTAE to 
establish an abnormal end exit. 

SBTDISP: Subtask Dispatcher 
SBTDISP is entered by subtask initialization and SPTRCOK (after the wait for work is 
satisfied) to mark the DCT as being in subtask processing, examine the request 
code in the DCT, and dispatch the appropriate request handler. 

SBTRETC: Subtask Termination 
SBTRETC is called to terminate the subtask. SBTRETC calls SBTRETRN, which will 
return the DCT to the main task. SBTRETC frees the work area and issues the 
RETURN macro instruction to terminate the subtask. 

SBTOPEN: Allocate, Open and Ready Offload Data Set for Processing 
SBTOPEN is called to construct a dynamic allocation parameter list in order to 
allocate the offload data set with a disposition of DISP =(OLD), and to issue the 
DYNALLOC SVC. If this DYNALLOC fails with a locate error, but a unit name has 
been specified on the UNIT= parameter of the OFFLOADn initialization statement 
and the offload was started as a TYPE =TRANSMIT, then the dataset is allocated 
with a DISP = (NEW,CATLG). If the dynamic allocation fails, SBTOPEN calls 
DYNALERR to format the error message using the TSO DAIRFAIL routine. The 
subtask is then terminated. If the allocation is successful, SBTOPEN initializes the 
DCB with the proper DDNAME. 

SBTRCOK: Subtask Successfully Complete 

3-414 JES2 Logic 

SBTRCOK is entered from SBTOPEN when SBTOPEN has sw;cessfully read or 
written a descriptor record. SBTRCOK sets the OCT subtask return code field to 
zero and returns the OCT to the main task. The spool transfer subtask then waits for 
more work. This wait is satisfied by SDRANXFR and SBUFPROC. 

LY?.8-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPSTAM 

SBTCLOSE: Close and Deallocate Offload Data Sets 
SBTCLOSE is entered by the spool 110 manager to issue the CLOSE macro 
instruction, build a dynamic allocate parameter list, and issue a DYNALLOC macro 
instruction to deallocate the offload data set. Control then passes to SBTRETC. 

SBTCHECK: Perform Check for Spool Offload Buffer 
SBTCHECK is called by the spool 1/0 manager to issue the CHECK macro 
instruction for the first buffer on the 1/0 pending queue of the given DCT. If either 
the SPBSYNAD or SPBEODAD routines are entered, corresponding bits are set in 
the SPBFLAG1 flag in the buffer. SBTCHECK requeues the buffer to the $XFRBEND 
queue and control passes to SBTRCOK. 

SBTRETRN: Return OCT to JES2 Main Task 
SBTRETRN is called by SBTRETC and SBTRCOK to return a OCT to the main task. 
The passed return code is stored in the DCT subtask return code field (XDCTSUBC) 
and a bit (XDCTSUBT) is reset in the OCT to indicate that subtask processing is 
complete. The DCT is placed on the $XFRDEND queue using compare and swap 
logic. The spool transfer 1/0 manager is then posted by issuing a $$POST macro 
instruction. 

SBTESTAE: Subtask Abnormal and Exit Routine 
SBTESTAE is called by the recovery termination manager (RTM) when the spool 1/0 
manager discovers an abnormal exit condition. SBTEST AE issues the SETRP 
macro instruction to invoke the SBTRETRY retry routine if an SOWA was provided 
by the caller. If no SOWA was passed, SBTESTAE returns with return code 
information that causes SBTRETRY to be invoked. 

SBTRETRY: Abnormal End Retry Routine 

DYNALERR 

SBTRETRY is entered by the recovery termination manager (RTM). SBTRETRY 
reestablishes addressability and formats a message indicating the type of abnormal 
end. SBTRETRY then prints the message using the $$WTO macro instruction, sets 
the subtask return code to X'FF', and passes control to SBTRETC, where the subtask 
is terminated. 

This routine calls the TSO OAIRFAIL routine to format the error message if dynamic 
allocation fails. Parameters for the DAIRFAIL routine include the address of the 
SVC99 request block, the address of a field containing the SVC99 return code, a 
caller ID number, and the address of a buffer in which to return the formatted error 
message. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-415 



HASP RAS "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPRAS: Error Service Routines 
Contains service routines for error situations in the JES2 main task and its subtasks. 

$ESTAE Services 
The $ESTAE service routines maintain the processor recovery element (PRE) stack. 
A PRE represents a recovery routine and contains its entry point address. It also 
provides an area (PRETRACK) in which the processor can maintain serviceability 
data and/or status information required by the recovery routine. If the processor is 
maintaining serviceability data, it must set PRELOGLN (1 byte) to the number of 
bytes of PRETRACK to be written to SYS1.LOGREC. LOGREC recording is 
accomplished by setting RECORD=YES in the $SETRP macro in the JES2 ESTAE 
exit. $LGRR is the DSECT mapping macro that defines the LOGREC record format. 

The PRE stack has a LIFO organization. The topmost PRE represents the most 
recently established recovery environment and identifies the routine that is to 
receive control in event of an error. 

Each time an $ESTAE macro is issued with RECADDR= specified, it creates a PRE 
(this is the only way a PRE is created). Zero, 1, or more PREs can be created each 
time a $SAVE macro is issued. The PREs can be created before the processor has 
acquired a processor save area (PSV). PREs are associated with the save area 
level at which they are created; that is, the information contained in a PRE reflects 
the status of the environment at the time the last $SAVE macro was issued. PREs 
created within subroutine code that is logically bracketed by $SAVE and $RETURN 
macros are automatically cancelled in $RETURN processing (the $ESTAE macro 
with CANCEL specified is actually issued in $RETSAVE). 

$ESTAER: Establish $ESTAE Processor Recovery Element 
$ESTAER is called by a $ESTAE macro with RECADDR= specified to establish the 
processor's recovery element (PRE). $ESTAER acquires a PRE via a $GETWORK 
macro, initializes it, and adds it (LIFO) to the processor's PRE stack. 

$ESTACAN: Cancel $ESTAE Processor Recovery Element 
When $ESTAE macro with CANCEL is specified, this routine cancels the most 
recently established PRE. If the most recent PRE was not created by the last $SAVE 
macro that was encountered, catastrophic error $ER1 results. Otherwise, 
$ESTACAN removes the most recent PRE from the processor's PRE stack and frees 
it with a $RETWORK macro. 

$ESTAREP: Replace $ESTAE Processor Recovery Element 

3-416 JES2 Logic 

When $ESTAE macro with REPLACE, RECADDR= is specified, this routine replaces 
the address of the recovery routine in the most recently established PRE with the 
address specified by RECADDR =. If the most recent PRE was not created by the 
last $SAVE macro that was encountered, $ESTAREP issues catastrophic error $ER1. 
Otherwise, the address of the recovery routine in the most recent PRE is replaced 
with the address specified via the RECADDR = operand. 

LY~8-1006-2 ©Copyright IBM Corp. 1988, 1990 

\ ',./ 

/ 

/ 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASP RAS 

$STABEND: Common JES2 Subtask Estae Routine 

Error Routines 

Each subtask establishes $STABEND as its recovery routine and provides its DTE 
address with the ESTAE macro. It provides diagnostic information for problem 
determination (and ensures that diagnostic information is recorded in 
SYS1 .LOG REC) and attempts subtask recovery. A system dump can be obtained 
based on installation-defined recovery options (RECVOPTS). Each subtask DTE 
specifies its own retry, VRA formatting, and clean-up routines. These routines are 
called by $STABEND. If recovery is not possible, $STABEND terminates the JES2 
main task with a $ERROR Z03. 

The following routines handle error conditions that occur during JES2 processing. 

$DISTERR: Disastrous Error Routine 
When reading a job control table (JCT) or input/output table (IOT), this routine is 
entered from a processor whenever a physical 1/0 error is detected. The operator is 
notified of the error and processing continues, although JES2 should be quiesced 
and restarted as soon as practicable to recover any direct-access space that may 
have been lost as a result of the error. 

This routine also provides a dump (using the $SDUMP macro instruction) based on 
installation-specified recovery options. The dump title contains the subsystem 
name, the error symbol name, and error module name. 

When this routine is entered, the symbol name and module name are moved into 
the message from the $DISTERR macro expansion. A $WTO is then issued to notify 
the operator of the error and control is returned to the calling processor. The 
message to the operator is as follows: 

$HASP096 DISASTROUS ERROR AT SYMBOL symbol IN CSECT module 

This message also provides job information if JOB= YES was specified on the $WTO 
macro instruction. 

$10ERROR: Input/Output Error Logging Routine 
This routine is entered whenever an unrecoverable input/output error occurs on a 
JES2 spooling volume, or whenever a line error occurs that requires the attention of 
the operator. A message is generated describing the error, and this message is 
routed to the operator through the operator's console. The routine then returns 
without taking any further action. 

When this routine is entered, register 1 contains the address of the input/output 
block (IOB) that is associated with the failing input/output operation. The channel 
status, channel command code, sense information, track address, and line status 
are retrieved from the IOB and are formatted; the unit address and volume serial 
are obtained from the unit control block (UCB); the device name (if applicable) is 
acquired from the device control table (OCT); and the message is written to the 
operator's console. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 3. Program Organization 3-417 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

For all errors on a spool volume, this routine locates the track group that contains 
the failing record. When the defective track group has been located from 
information in the 108, the appropriate bit in the bad track group map is flagged off. 
Finally, the spool 110 error is queued to the HASPSPOL processor so that it can 
remove the bad track group from service. 

The format of the message generated is described in Syst.em Codes. 

$SDUMP Service Routine 

HASP MSG 

3-418 JES2 Logic 

$SDUMP is a service routine called via the $SDUMP macro. It provides a central 
service of requesting SVC dumps for all of the JES2 main task (not just during 
termination or recovery). 

$SDUMP determines the location information of the $SDUMP macro that called it 
and formats and issues the $HASP080 message. If a dump title was not passed or if 
only text to be appended to the default title was passed, $SDUMP builds a default 
dump text consisting of the $HASP080 message text. An ASID list is built of from 1 
to 3 address space identifiers, based on the options specified with the macro. 

$SDUMP issues the MVS SDUMP macro, passing the title and ASID list it has built. 
The SDATA options passed to SDUMP are (ALLPSQ, RGN, TRT, SQA, CSA, LPA, 
SWA, LSQA). If the dump fails, the next $SDUMP action depends on the ERROPT 
operand specified in the $SDUMP macro. $SDUMP either issues the $HASP081 
message and returns to the caller, or issues WTOR message $HASP089, which 
allows the operator the ability to specify that $SDUMP should retry the dump. 

HASPMSG contains a routine that supports the message building function of $SCAN 
for many checkpoint messages. It also includes $SCANTAB entries for these 
messages and their pre- and post-scan routines. HASPMSG contains $MSGDISR, 
which is called from the SCAN facility to construct the list form (MF= L) of the WTO, 
WTOR, or ML TWO macros, and to execute the MF= E form of the macro. 

LY28-i006-2 ©Copyright IBM Corp. 1988, 1990 



( 

f 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Chapter 4. Directory 

Figure 4-1 

Object Module 

HASPNUC 

The following directory lists the main entry points available within JES2. Given are 
the modules in which the entry point exists, the entry point name, and a brief 
description of the function performed by the code. 

The following information to aid you in understanding and trouble-shooting JES2 is 
available on microfiche: 

MVS/ESA Information 

Data Areas 

Microfiche Order Number 

LYBB-1850 

(Page 1 of 13). JES2 Directory Information 

Entry Point Function 

$WAIT Puts the current processor in the $WAIT state by queueing the PCE to itself, and 
dispatches other ready processors. 

$POST Makes an individual processor ready for CPU time by removing the specified 
processor control element (PCE) from its current queue and queueing it to the $READY 
queue. 

HASPPXIT Notifies a processor that there is work. 
$GETWORK Obtains a work area. 
GTWKTABL Defines work area pools. 
$RETWORK Returns a work area. 
$EXCP Schedules 1/0 for JES2 main task through EXCP or EXCPVR. 
HASPEXTP Service entry routine: Processes all $EXTP service requests to open or close a remote 

device, or to get a record from, or put a record to, a remote device. 
$QACT Indicates a JQE is active and possibly obtains an extension for it. 
$QADD Adds a new job queue element (JQE) to the active job queue. 
$QJIX Obtain a job number and add a JQE to the job queue index (JIX). 
$QPUT Releases control of a JQE on the active job queue. 
$QGET Obtains control of a JQE on the active job queue. 
$QREM Removes a JQE from the active job queue. 
$QLOC Locates a JOE by job number. 
$QMOD Modifies a JQE on the active job queue. 
$CKPT Schedule a checkpoint for an altered element. 
$QSUSE Requests access to job queue and JOT queue checkpoint records. 
$CHECK Checks for completion of the checkpoint write associated with a passed token. 
$GETUNIT Obtains control of a JES2 device. 
$FREUNIT Releases control of a JES2 device. 
$STIMER Schedules a JES2 timer queue element (TQE). 
$TTIMER Returns remaining time on a JES2 TQE. 
$TIMER Timer processor: Handles STIMER completions. 
$STCK Entry to store clock service routine 
DATECONV Day to date conversion routine 
$GETSMFB Obtains a JES2 system management facilities (SMF) buffer from the free pool. 
$QUESMFB Queues a JES2 SMF buffer to the $$MFBUSY queue for processing by the HASPACCT 

subtask. 
$GETSAVE Obtains a JES2 save area and save registers. 
$RETSAVE Returns a JES2 save area. 
$RETURN Returns to the calling routine. 
$PGSRVC Issues an MVS PGSER macro to free, fix, or release storage 
$GETBUFR Gets a buffer from a buffer pool. 
$FREEBFR Returns a buffer to its buffer pool. 
$BFRBLDR Constructs buffer prefix: Entered through the $BFRBLD macro instruction constructs 

an 108 or RPL beginning at the first byte of a JES2 buffer for the purpose of reading 
into or writing from that buffer. 

$GFMAIN Provides a branch entry interface for MVS GETMAIN/FREEMAIN services. 
$GETLOKR Obtains the MVS CMS lock. 
$FRELOKR Releases the MVS CMS lock. 
$GETJLOK Gets the JES2 job lock for a JQE. 
$FREJLOK Frees the JES2 job lock. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 4-1 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Figure 4-1 (Page. 2 of 13). JES2 Directory Information 

Object Module Entry Point Function 

HASPATTN Entry for unsolicited device ends: Provides support for the automatic starting of 
paused output devices and of readers. 

$10APPEN JES2 Input/output appendage table. 
$CKAPPEN 110 appendage vector table and appendage routines for CKPT 110. 
$POSTEX Posts the spool transfer function for 110 started by the main task. 
$FIXEND Indicates end of HASPNUC fixed storage requirement. 
$ASYNC Asynchronous 110 processor: Handles the synchronization of 110 interruptions with 

their associated JES2 processors. 
$JESEFF Entry to JES2 main task exit effector. This is the interface to user exit routines for the 

$EXIT macro. 
$JCTIOR JCT 110 exit routine: It is entered after the successful read of a JCT from the spool or 

before a write of a JCT to the spool. 
$DYN Entry to MVS to dynamically allocate and deallocate JES2 devices. 
$GETUCBS Obtains a UCB address using IOS UCB scan routine. 
$GETUCON Provide entry for recall of $GETUCBS 
$FREUCBS Frees storage for the UCB parameter list. 
HASP Initial HASJES20 module entry point. 
HOSALLOC Dynamic allocation/unallocation subtask. 
$DSOPEN Open routine for the job log. 
$DSPUT Put routine for the job log. 
$DSCLOSE Close routine for the job log. 
$MODCHK Module verification service. 
$MODLOAD Module load service. 
$MODELET Module deletion service. 
MOD875 Issues the HASP875 message for errors detected by $MODLOAD and $MODCHK. 
$XEBKIL Removes $XECBs from all JES2 dispatcher queues. 
$SEAS Security authorization service. 
$SEAS MSG Issues the HASP077 error message for security processing failure. 
SUB DEST Subtasks $DEST authorization processing. 
$SUBIT General purpose subtask queuing service. 

HASPBSC HASPBSCA Entry point for BSC $EXTP service routines. 
MWRSPCCW RTAM BSC CCW skeleton. 
HASPBACT BSC active line OCT scan routine. Called by the line manager scan routine. 
HASPBUNT BSC inactive line OCT scan routine. Called by the line manager scan routine. 
HASPBPRO BSC channel end processing routine. Called by the line manager scan routine. 
MLLMRCVO Performs error recovery processing for the line manager processor. 
HASPBSLN Completes start of dedicated lines after $SEAS request for the remote has completed. 

HASPCKPT HA$PCKPT Checkpoint processor: Writes checkpoint job queue and job output table (JOT) queue 
records. 

KTRK110 Performs 110 for track 1. 
KFORMAT Formats the specified checkpoint data set. 
KIO ERROR Analyzes 110 errors. 
KREAD2 Reads changed 4K records into the 110 area. 

HASPCKDS Checkpoint data set routines that support checkpoint processing, including the 
checkpoint reconfiguration operator dialog. 

CKBINIT Initializes internal control blocks to do checkpoint 110. 
CKPTALOC Performs dynamic allocation of the checkpoint data set. 
CKPTUNAL Performs dynamic unallocation of the checkpoint data set. 
CKPTALCLN Cleans up after a failed dynamic allocation attempt. 
KDIALOG Dialog routine to satisfy the requirement for a checkpoint data set reconfiguration. 
KBLDCKB Obtains a CKB and builds CCW packets associated with track 1. 
KBLD4KP Builds CCW packets used for 4K records. 
KRESERVE Issues the MVS RESERVE macro on the checkpoint data set. 
KNOP Issues a NOP CCW to get a hardware reserve 
KRELEASE Issues the MVS DEQ macro to release the checkpoint data set. 
HAS PC KAP Subtask that maintains a third copy of the checkpoint for use by applications. 

HASPMSG $MSGDISR Called from the $SCAN facility to build WTO line{s). 
HASPCOMM HA$PCOMM Handles all JES2 commands. 

CONSCHK Checks if this a defined MCS console. 
CWTO Writes to the operator. 
CWT OT Writes to the operator. 
COFCVE Converts halfword to EBCDIC. 
COFEDTR Converts fullword to EBCDIC. 
COFRTC Converts binary route codes for messages. 

4·2 JES2 Logic LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

../ 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Figure 4-1 (Page 3 of 13). JES2 Directory Information 

Object Module Entry Point Function 

COFJID Obtains job id information for messages. 
$JCANR Cancels or stops a job. 
CSCANDSP Command processor command display routine. 

HASPCNVT HA$PCNVT JCL conversion and authorization checking entry. 
HASPCNVS HOSCNVT JES2 JCL conversion processor subtask; works in conjunction with the JES2 JCL 

conversion processor; opens and closes, and in some cases validates, the data sets 
used by the MVS JCL converter. The converter is entered from the subtask and 
returns to the subtask. 

HASPSUBS HA$PSUBS JES2 generalized subtask; attached by HASPDYN, HA$PSUBS initializes a subtask and 
provides for generalized subtasking of calls to a specified routine. It also provides 
subtask ESTAE recovery. 

HASPCON $WTOR Schedules MVS commands or messages for the operator. 
HASPWQUE Queues a CMB. 
$WT OCR Schedules MVS commands or messages for the operator using the caller's CMB. 
$GETCMBR Gets a CMB from the free queue. 
$DOMR Deletes operator requests. 
$FRECMBR Frees a console message buffer (CMB). 
$HASPWTO Issues SVC 34 and 35 instructions to pass commands and operator messages to MVS. 

HASPTRAK $PURGER Frees space in the SYS1.HASPACE data set. 
$GBLDTGB Builds TGBs and queues them to the HASPSPOL processor. 
$TRAC KR Obtains space in SYS1.HASPACE data set 
$TGMSET Sets a bit indicating a bad track group in bad track group map. 
HASPVPRG Frees all tracks acquired for a job, queue an SMF type 26 purge record and optionally 

a JMR for output and notify the operator that a job is purged. 
HASPFSSM FSMCONCT Connects JES2 to the functional subsystem. 

FSMARR Cross-memory services ESTAE routine (FSMORDER/FSMPOST to HASPFSSP). 
FSMORDER Processes JES2 operator commands related to the functional subsystem. 
FSMPOST Notifies the functional subsystem when a request completes. 
FSMGETQC Obtains one or more quick cells from a predefined pool of cells. 
FSMFREQC Returns one or more quick cells to their associated pool. 
FSMBLDQC Builds quick cell pools and their associated extensions. 
FSMQCT Sets up the quick cell control table. 
FSMSAVE Handles save area and register linkage for JES2 FSI routines. 
FSMRETRN Handles save area and register return linkage for JES2 FSI routines. 
FSMCATER Issues catastrophic error messages and abends. 
FSMERROR Common error routine for unsupported FSI routines. 
FSMRCRTN SRB routine to reconnect the cross-memory environment. 
FSMCBIO Reads and writes JES2 control blocks. 
FSMCBCK Checks read and write completions and the EBCDIC identifiers of JES2 control blocks. 
FSMFSLNK Accesses the control blocks required by any FSI services routine. 
FSMGETLK Gets the MVS local and CMS locks. 
FSMFRELK Frees the MVS local and CMS locks. 
FSMGTBLK Acquires a storage cell from a free pool. 
FSMRTBLK Returns a storage cell to the free pool. 

HASPFSSP HA$PFSSP Processes functional subsystem requests as a JES2 processor. 
DYNFSS Searches for/adds FSS address spaces 

HASPDYN $PCEDYN Dynamically attaches/detaches PCEs. 
$PCEDYDC Dynamically attaches/detaches PCEs for DCTs. 
$DTEDYNA Attaches DTEs. 
$DTEDYND Detaches DTEs. 
$DCTDYN Finds and chains DCTs. 
$DCBDYN Attaches or detaches a DCB and DEB for a specific OCT. 
$DESTDYN Dynamically adds JES2 destinations ids. 
DDYNRDR Initializes local reader DCT. 
DDYNPUN Initializes local punch OCT. 
DDYNPRT Initializes local printer DCT. 
DDYNOFF Initializes offload OCT. 
DDYNOJT Initializes offload job transmitter OCT. 
DDYNOST Initializes offload SYSOUT receiver DCT. 
DDYNOJR Initializes offload job receiver DCT. 
DDYNOSR Initializes offload SYSOUT receiver OCT. 
DDYNLNE Initialize remote/network line OCT. 
DDYNLGN Initialize SNA LOGON OCT. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 4. Directory 4-3 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Figure 4-1 (Page 4 of 13). JES2 Directory Information 

Object Module 

HASPJOS 

HASP MISC 

HASPEVTL 

HASPNPM 

4-4 JES2 Logic 

Entry Point 

$#BLD 

$#ADD 

$#PUT 

$#MOD 

$#REM 

$#CAN 

$#GET 

GTSCREEN 
$#POST 
$#CHK 
$#ALCHK 
$#NEWS 
$#PDBCAN 
$#JOTBLD 
$#JOTCHK 
JOTVERIF 
JOTREBLD 
HASPRESM 
HASPTIME 
HASPGPRC 
HASP ACCT 
HASPNACT 
HA$PEVTL 
TRGETTB 
TTABFMT 
TROUTOOO 
TROUT001 
TROUT002 
TROUT003 
TROUT004 
TROUT005 
TROUT006 
TROUT007 
TROUT008 
TROUT013 
TROUT020 
TROUTFSI 
TROUT017 
TRCDUMP 
TRCPUT 
HASPNPMP 

HASPNDCN 

HASPNMUP 
HASPNMDN 

Function 

JOE build routine; entered through the $#BLD macro instruction; builds a pair of JOEs 
(a work JOE, and a characteristics JOE). 
Job output element add routine; entered through the $#ADD macro instruction; copies 
the data represented by a work JOE prototype and a characteristics JOE prototype into 
two JOEs, which reside in the JOT. 
Put JOE routine; entered through the $#PUT macro instruction; returns a work JOE to 
the JOT class queue so that processing of the output work it represents can be 
continued at a later time. 
Modify JOE routine; entered through the $#MOD macro instruction; unchains a work 
JOE from its current queue and places it on a new queue based on its (possibly 
modified) SYSOUT class and route code. 
Remove JOE routine; entered through the $#REM macro instruction; removes a work 
JOE (for which all output has been processed) from the JOT class queue and adds the 
JOE to the JOT free queue for reuse. 
Cancel JOE routine; entered through the $#CAN macro instruction; removes all JOEs 
for a job. 
Get JOE routine; entered through the $#GET macro instruction; selects a work JOE 
from the JOT that most closely matches the setup, class, and routing characteristics of 
the requester as described by the device control table (DCT). A security check is also 
performed. 
Screens a JOE against a work selection list. 
Posts specific processors to attempt selection of output. 
Reads/writes a spool output checkpoint record. 
Allocates a spool record for output checkpointing. 
JESNEWS data set support. 
Marks all non-held PDDBs (for a JOE) as non-printable. 
Builds the JES2 job output table during a cold start 
Verifies the JOT on a all-system warm start 
Verifies job output queues. 
JOT rebuild routine. 
Checks the state of JES2 resources for shortages. 
Monitors real time of job execution 
Priority ages jobs in the JES2 job queue at a specified time interval. 
Writes SMF records and, if applicable, calls the IEFUJP user exit. 
Converts the JES2 account number to the network account number, or vice versa. 
Trace table manager and creates a formatted log of TTEs. 
$GETMAINs ECSA trace tables. 
Invokes following formatting routines for trace table entries. 
Formats "trace events discarded" information 
Formats trace table entries 
Formats trace table entries 
Formats trace table entries 
Formats trace table entries 
Formats trace table entries 
Formats trace table entries 
Formats trace table entries 
Formats trace table entries 
Formats trace table entries 
Formats trace table entries 
Formats trace table entries 
Formats trace table entries 
Formats and prints lines in a standard dump format. 
Adds a record to the current buffer. 
Network path manager: 

• Builds and processes network connection control records. 
• Maintains routing tables based on control information regarding connections and 

disconnections. 
• Promulgates status information to path managers at connected nodes to ensure 

that the picture of the network is consistent and accurate. 
Updates the NAT when a line is disconnected; determines whether a path should be 
completely disconnected or whether another should be made primary. 
Records the fact that a multi-access spool member is up and is part of the network. 
Records the fact that a multi-access spool member is down and is no longer part of the 
network. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Figure 4-1 (Page 5 of 13). JES2 Directory Information 

Object Module 

HASPNET 

HASPPRPU 

HASPHOPE 

HASP RAS 

HASPRDR 

Entry Point 

HASPNBUF 

HASPNSNR 

HASPNJT 

HASPNST 

HASPNSR 

PRPUXSRV 
HASPPPl1 

PR PUT 

HASPIMAG 

PRTASUB 
PPDATE 
PPMSGDSP 
HA$PHOPE 

$ESTAER 
$ESTACAN 
$ESTAREP 
$DSTERR 
$10ERRTN 
$SDUMP 
SOM POPER 
$ST ABEND 
HA$PRDR 

HASPRTRM 
HASPRCCS 
HASPRDDS 

Function 

Processes a spool buffer containing network connection control records transmitted 
between shared spool members and updates the spool member's nodes attached 
table (NAT). 
Initial sign-on support subroutine: Builds a sign-on record and queues it for 
transmission. 
Network job transmitter: 

• Transmits an image of a job's JCL and instream data sets to another node for 
execution. 

• Responds to operator commands affecting job transmission. 
• Queues a job for purge if positive acknowledgement to an end of file was received 

from the associated job receiver, otherwise requeues the job for transmission. 
• Aborts a job when permission to transmit is denied. 

Network SYSOUT transmitter: 

• Transmits regular and spin SYSOUT data sets over NJE lines to one or more 
destination nodes. 

• Responds to operator commands affecting SYSOUT transmission. 
• Queues a job for purge when last work for the job is processed and positive 

acknowledgement to an end of file is received from an associated SYSOUT 
receiver, otherwise requeues the work for transmission. 

• Aborts a job when permission to transmit is denied. 
Network SYSOUT receiver: 

• Receives a job's generated SYSOUT data sets from a SYSOUT transmitter on 
another NJE node. 

• Writes received data sets to spool. 
• Prepares received data sets for local output or transmission to other NJE nodes. 

Entry point for exit services routines. 
Print/punch processor entry point: 

• Acquires output work from the JOT using its OCT as a parameter list. 
• The work described by a JOE is written to a printer or punch in compliance with 

the user's data set descriptions. 
• When it completes output, it transfers the job to the $PURGE queue. 

Entry to PPPUT branched to as a result of a $PRPUT macro instruction. Provides a 
standard interface for use by exit routines. 
SYS1.IMAGELIB loader subtask entry point: 

• Is identified and attached as a subtask by module HASPINIT. 
• Loads forms control buffer (FCB) or universal character set (UCS) images from 

SYS.IMAGELIB for 3800 printers. 
• Interfaces with the SETPRT function without causing the main JES2 task to wait. 

Print security authorization routine. 
Entry to service routine that formats the date. 
Message display routine. 
Output processor: 

• Converts the output requirements for a job described by the peripheral data 
definition blocks (PDDBs) in the job's input/output table (IOT) to JOEs. 

• As each JOE is added to the JOT, it immediately becomes available for selection 
by a print/punch processor. 

• If any spin data sets are queued to $UNSPUNQ, they are converted to JOEs. 
Establishes a $ESTAER environment. 
Cancels a $ESTAER environment. 
Replaces a $ESTAER environment. 
Displays $HASP096 message. 
Displays $HASP094 message. 
Issues an SVC dump. 
Sets up and issues WTOR SDUMP message. 
Abend services for subtasks. 
Input service processor and network job receiver: Reads jobs into the JES2 
subsystem, spools JCL and input data sets, and queues the jobs for execution 
services. 
Terminates input service. 
JES2 control card scan subroutine: Processes JES2 control language statements. 
Scans DD* card. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 4. Directory 4-5 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Figure 4-1 (Page 6 of 13). JES2 Directory Information 

Object Module 

HASPRTAM 

HASPSCAN 

HASPSERV 

HASPSSRV 

4-6 JES2 Logic 

Entry Point 

HASPRJCS 

HASPRSCN 

HASPMLLM 

MSAFCHK 
LMRPCED 
HASPRBUF 
HASP ROUT 
HAS PM CON 

HASPMDCN 

$SCAN 
$SCANB 
$SCAND 

$SCANCOM 
SCNDIAGT 
SCNDGRTN 
SCNDBRNG 
SERVXSRV 
SRVM630 
SRVMHOLD 
SRVMCLAS 
SRVMXEQN 
SRVMSAF 
SRVMROUT 
SRVPRSCN 
WSPBRS 
WSSERV 
WSNXT 
WSCOMP 
WSFLG 
WSRNG 
WSCLASS 
WSVOL 
WSROUT 
WSSAF 
WSPRMD 
WSJOEPRI 
WSJOBPRI 
WSLIM 
WSPUCS 
WSPFLSH 
WSPFCB 
WSPPFRMS 
WSLAS~ 

SRVPRSCN 
HASPLIST 
SUBRRT 

DSFOPEN 
DSFCLOSE 
PSAFSCAN 
JOBVALM 
NEWSCRE 

RPDBSEC 
SYSOVFY 

Function 

Job initialization subroutine: Constructs the basic job control blocks, scans the JOB 
statement, and initiates processing of the job. 
JOB card accounting field scan subroutine: Scans the accounting field of the JOB 
statement and sets the related job parameters. 
Manages physical and logical teleprocessing lines, and performs error recovery and 
logging when needed. 
Obtains and initializes a SWEL, WAVE, and security token; issues a SAF call. 
Provides the interface to $PCEDYN to attach remote device PCEs. 
Requeues buffers on $RJECHEQ for $EXTP routines. 
Handles rerouted XMIT jobs through use of the $EXTP routines. 
For multileaving terminals with consoles, provides immediate interface (through 
$EXTP routines) 

With the JES2 command processor and JES2 console output for all other terminals, 
provides console output spooling to be processed later as printed output. 
Remote console processor line disconnect: Handles disconnection of the line when 
RJE work station or NJE node. HASPMDCN sends a final RJE sign-off record. 
Facility to set or display control block values based on initialization statements. 
Routine to back up the control block field about to be changed by a scan setting. 
Routine to permit a pre- or post-scan exit, and HASPSCAN, to add or replace the text 
resulting from a display request. 
Subroutine to find the first non-blank comment character. 
Diagnostic message address table. 
Builds diagnostic phrase that requires a dynamic variable. 
Builds diagnostic message stating value is not within the binary range. 
Contains addresses of common service routines. 
Formats $HASP630 message. 
Modifies hold for jobs or SYSOUT. 
Modifies class for jobs. 
Modifies the route code for jobs. 
Changes system affinity. 
Modifies route code of data sets. 
Scan PRMODE operand and create PRMODE table. 
Printer work selection burst routine. 
Work selection service routine. 
General work selection work routine. 
General work selection comparison routine. 
General work selection flag routine. 
General work selection range routine. 
Work selection class routine. 
Work selection volume routine. 
Work selection route code routine. 
Work selection system affinity routine. 
Work selection PRMODE routine. 
Work selection priority routine for SYSOUT. 
Work selection job priority routine. 
Work selection limit routine. 
Printer work selection UCS routine. 
Printer work selection flash routine. 
Printer work selection FCB routine. 
Printer/punch work selection forms routine. 
Work selection slash routine. 
Scan PRMODE operand and create PRMODE table. 
$L support. 
Subtasks the $REROUTE routine (HASPSSRV). 
JES2 subtask services module; provides data set fake open/close, performs message 
logging, validates jobs/SYSOUT, and authorizes network rerouting of jobs/SYSOUT. 
Data set fake open routine. 
Closes a data set opened by DSFOPEN. 
PDDB scan and SAF call routine. 
Job validation and error message processing routine. 
Initialize JESNEWS PDDB, request create authorization and create the JESNEWS data 
set. 
System PDDB initialization processing routine. 
SYSOUT validation routine. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 



( 

(_ 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Figure 4-1 (Page 7 of 13). JES2 Directory Information 

Object Module 

HASPSNA 

HASPS POL 

HASPSXIT 

Entry Point 

$LOG MSG 
$REROUTE 
HASPSNAA 
HASPSLOG 
HASPSLNE 
HASPSIDL 
HASPSUNT 
HASPSACB 

HASPSICE 
HASPSRAT 

HASPSPRO 
HASPVTAM 

SNASNET 

APPLDYN 
HA$PSPOL 
DADAVAIL 
DADCKTGM 
DADDEB 
DADKBYTE 
DADREMVE 
DADREMWQ 
DADSPACE 
DADSPLST 
DADTGM 
DADXTENT 
HOSPOOL 

PREAPPL 
PREAUTH 
PREFSSDF 
PREJRNG 
PRELIMIT 
PRELI NE 
PRELOAD 
PRELOADR 
PR ENO DE 
PRENODES 
PRERDEV 
PRERMT 
PRERMTAL 
PRERMTST 
PRERNG 
PRETDFID 
PRETRCID 
PST APPL 
PSTBADTR 
PSTCAT 
PST CHARS 
PSTCKPT 
PSTCKPTN 
PSTCNCHR 
PSTCOMP 
PST CON CT 
PSTDEST 
PST EST 
PSTEXRTN 
PSTFEN 
PSTFFSDF 
PSTHOLD 

Function 

Puts job-related messages into the SYSMSG data set and, optionally, performs a WTO. 
Authorizes the final destination for a job or data set rerouted via $R or $TO command. 
Entry point for SNA $EXTP service routines. 
SNA active logon scan routine. Called by line manager scan routine. 
SNA active line scan routine. Called by line manager scan routine. 
SNA idle line scan routine. Called by line manager scan routine. 
Inactive SNA line and iogon OCT scan routine. Called by line manager scan routine. 
Logon OCT exit and ACB completion scan routine. Called by line manager scan 
routine. 
ICE exit scan routine. Called by line manager scan routine. 
Searches remote attribute table for autologon remote terminals. Called by line 
manager scan routine. 
SNA buffer processing routine. Called by line manager scan routine in HASPRTAM. 
OPEN/CLOSE ACB routine. Attached at initialization to run as a subtask of the JES2 
task and communicates with VTAM. 
$SN command exit routine. Called by HASPCOMM while processing the $SN command 
with the A= operand to initiate the NJE application-to-application session. 
Find/build an APT for an APPL. 
HASPSPOL processor 
Computer total and allocated track groups. 
Checkpoints the TGM. 
Initializes direct access DEB extent information. 
Computes thousands of bytes of spool. 
Removes extent from DAS. 
Removes DAS from work queue. 
Log track group map space utilization. 
Resets SPL control block. 
Initializes track group map for this extent. 
Initializes extent information. 
Dynamic spool allocation subtask. 
Contains all exits for $SCAN 
Set-related exits: 
Pre-scan for the APPL statement 
Pre-scan for the AUTH parameter on JOBCLASS statement 
Pre-scan for the FSSDEF statement 
Pre-scan for the RANGE operand 
Pre-scan for the LIMIT and PLIMIT parameters 
Pre-scan for the LINEnnnn statement 
Pre-scan for the LOADMOD statement 
Pre-scan for the LOADMOD statement ROUTINES operand 
Pre-scan for the NODE statement 
Pre-scan for the STATUS parameter on the NODE statement 
Pre-scan for the RnnnnDVX statement 
Pre-scan for the RMTnnnn statement 
Pre-scan for the AUTOLOG sub-operand on the RMTnnnn statement 
Pre-scan for the STATUS sub-operand on the RMTnnnn statement 
Pre-scan for the RANGE sub-operand of output devices 
Pre-scan for the ID sub-operand on the TRACEDEF statement 
Pre-scan for the ID sub-operand of the TRACEDEF statement 
Post-scan for the APPL statement 
Post-scan for the BADTRACK statement 
Post-scan for the TSUCLASS and STCCLASS statements 
Post-scan for the COMPACT CHARS sub-operand 
Post-scan for the CKPTDEF statement 
Post-scan for CKPTN and NEWCKPTN operands on CKPTDEF statement 
Post-scan for the CONCHAR on the CONDEF statement 
Post-scan for the COMPACT statement 
Post-scan for the CONNECT statement 
Post-scan for the DESTID statement 
Post-scan for the TEST parameters 
Post-scan for the ROUTINE sub-operand of EXITnnn statement 
Post-scan for the FENCE parameter on the SPOOLDEF statement 
Post-scan for the FSSDEF statement 
Post-scan for the HOLD operand 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 4. Directory 4-7 



Figure 4-1 (Page 8 of 13). 

Objeet Module Entry Point 

PSTJRNG 
PSTLGNA 
PSTLIMIT 
PSTLINE 
PSTLINEA 
PSTLINST 
PSTLOAD 
PSTLSPIN 
PSTMDRC 
PSTMDSAF 
PSTNODE 
PSTNOTAB 
PSTNETAC 
PSTNRT 
PSTPRMD 
PSTPRTY 
PSTRDR 
PSTRECV 
PSTRMT 
PSTRMTAL 
PSTRMTA 
PSTRC 
PSTTGBE 
PSTSELCT 
PSTSAFF 
PSTSPL 
PSTTRANS 
PSTVOL 

PREDAUTH 
PREDBADT 
PREDCHAR 
PREDCOMP 
PREDCNCT 
PRE DEST 
PREDEXIT 
PREDSBEX 
PREDMDRC 
PREDNET 
PREDPSWD 
PREDPRMD 
PREDRNG 
PREDRC 
PREDSESN 
PREDSTAT 
PREDSLCT 
PREDSAF 
PREDWS 
PREWS 
PREZEROF 

HASPSTAM HASPXFRA 
HASPXFRM 

HAS POFF 

DYNALERR 
HASPTABS HASPTABR 

DPRTWS 
DPUNWS 
DFOFFJWS 
DFOFFSWS 
TIDTABD 
$BITSON 
$0UTTAB 

4-8 JES2 Logic 

JES2 Directory Information 

Function 

Post-scan for the RANGE operand 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Post-scan for the $S, $P, and $E LOGONn statements 
Post-scan tor the DEVICE LIMIT/PLIM/RANGE sub-operands 
Post-scan for the LINEnnnn statement 
Post-scan for the $S, $P, and $E LINEnnnn statements 
Post-scan for the LINEnnnn sub-operand 
Post-scan for the LOAD statement 
Post-scan for the SPIN parameter on the TRACEDEF statement 
Post-scan for the MOD= ROUTECDE sub-operand 
Post-scan for the MOD= SYSAFF statement 
Post-scan tor the NODEnnn statement 
Post-scan for the TRACEDEF statement 
Post-scan tor the NETACCT statement 
Post-scan for the NET RECEIVER/TRANSMITTER counts 
Post-scan tor the PRMODE sub-operand of output devices 
Post-scan for the PRTYRATE statement sub-operand 
Post-scan tor the RDRnn statement 
Post-scan for the RECVOPTS statement 
Post-scan tor the RMTnnnn statement 
Post-scan for the AUTOLOG sub-operand on the RMTnnnn statement 
Post-scan tor the $Sand $P RMTnnnn statements 
Post-scan for the ROUTECDE statement 
Post-scan tor the TGBPERVL parameter on the SPOOLDEF statement 
Post-scan for the SELECT sub-operand for remote devices 
Post-scan tor the OFFn.JT and OFFn.JR SYSAFF sub-operand 
Post-scan for the SPOOLNUM operand on the SPOOLDEF statement 
Post-scan for POSTing of offload transmitters 
Post-scan tor the VOLUME sub-operand on the DEVICE statement 
Display-related exits: 
Pre-scan in support of the AUTHORITY operand 
Pre-scan in support of the BADTRACK parameter 
Pre-scan in support of the CHARS operand 
Pre-scan in support of the COMPACT parameter 
Pre-scan in support of the CONNECT parameter 
Pre-scan in support of the DESTID DEST parameter 
Pre-scan in support of the EXIT parameter 
Pre-scan in support of the EXIT parameter 
Pre-scan in support of the MOD= ROUTECDE sub-operand 
Pre-scan in support of the NETACCT parameter 
Pre-scan in support of the PASSWORD operands 
Pre-scan in support of the PRMODE parameter 
Pre-scan in support of the RANGE VECTOR operands 
Pre-scan in support of the ROUTECDE parameter 
Pre-scan in support of the SESSIONS operand 
Pre-scan in support of the STATUS operand 
Pre-scan in support of the SELECT parameter 
Pre-scan in support of the SYSAFF parameter 
Pre-scan in support of the WS parameter 
Pre-scan in support of the WS sub-operand for output devices 
Pre-scan to zero the upper and lower RANGE/PLIM/LIMIT OCT fields. 
Entry point tor spool offload $EXTP service routines. 
Manages spool offload 110 processing, including dumper and loader start and drain 
and buffer completions. 
Spool offload subtask to handle allocation, open, close and deallocation of the offload 
data set. 
Formats DYNALLOC error message 
Accesses the HASP and installation table pairs. 
Local printer default WS list. 
Local/remote punch and remote printer default WS list. 
Offload JT and JR default WS list. 
Offload ST and SR default WS list. 
Indicates end of HASP trace ID table. 
Bits on in a byte. 
Default priority table for lines and pages. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Figure 4-1 (Page 9 of 13). JES2 Directory Information 

Object Module Entry Point Function 

$TIMETAB Default priority table for estimated elapsed time. 
$QINDEX Job class queue header index table. 
$#INDEX SYSOUT class queue header index table. 

HASPSTAB HASPOPTT OPTIONS $SCAN table 
HASPMPST MAIN parameter statement $SCAN table 
HASPAPLT APPL parameter statement sub-operand $SCAN table 
HASPBADT BADTRACK parameter statement sub-operand $SCAN table 
HASPBUFT BUFDEF parameter statement sub-operand $SCAN table 
HAS PST CT STC class attribute statements sub-operand $SCAN table 
HASPTSUT TSU class attribute statements sub-operand $SCAN table 
HASPCATT JOBCLASS attributes statements sub-operand $SCAN table 
HASPCKTT CKPTDEF parameter statement sub-operand $SCAN table 
HASPKPNT CKPTDEF CKPTn = parameter statement sub-operand $SCAN table 
HASPEKNT CKPTDEF NEWCKPTn = parameter statement sub-operand $SCAN table 
HASPCOMT COMPACT parameter statement sub-operand $SCAN table 
HASPCNDT CONDEF parameter statement sub-operand $SCAN table 
HASPCONT CONNECT parameter statement sub-operand $SCAN table 
HASPDEST DESTID parameter statement sub-operand $SCAN table 
HASPELCT ESTLNCT parameter statement sub-operand $SCAN table 
HASPEBYT ESTBYTE parameter statement sub-operand $SCAN table 
HASPEPGT ESTPAGE parameter statement sub-operand $SCAN table 
HASPEPNT ESTPUN parameter statement sub-operand $SCAN table 
HASPETMT ESTIME parameter statement sub-operand $SCAN table 
HASPXITT EXITnnn parameter statement sub-operand $SCAN table 
HASPFSST FSSDEF parameter statement sub-operand $SCAN table 
HASP PITT lnnnnn parameter statement sub-operand $SCAN table 
HASPINRT INTRDR parameter statement sub-operand $SCAN table 
HASP JO BT JOBDEF parameter statement sub-operand $SCAN table 
HASPJPYT JOBPRTY parameter statement sub-operand $SCAN table 
HASPLNET LINEnnnn parameter statement sub-operand $SCAN table 
HASPLODT LOADMOD parameter statement sub-operand $SCAN table 
HASPLOGT LOGONn parameter statement sub-operand $SCAN table 
HASP MAST MASDEF parameter statement sub-operand $SCAN table 
HASPNJET NJEDEF parameter statement sub-operand $SCAN table 
HASPNODT NODEn parameter statement sub-operand $SCAN table 
HASPNETT NET ACCT parameter statement sub-operand $SCAN table 
HASPOFLT OFFLOADn parameter statement sub-operand $SCAN table 
HASPOFFT OFFn.XX parameter statement sub-operand $SCAN table 
HASPOJRT OFFn.JR parameter statement sub-operand $SCAN table 
HASPOJTT OFFn.JT parameter statement sub-operand $SCAN table 
HASPOSRT OFFn.SR parameter statement sub-operand $SCAN table 
HASPOSTT OFFn.ST parameter statement sub-operand $SCAN table 
HASPOJMT OFFn.JR MOD= parameter statement sub-operand $SCAN table 
HASPOSMT OFFn.SR MOD= parameter statement sub-operand $SCAN table 
HAS PO UTT OUTDEF parameter statement sub-operand $SCAN table 
HASPOPYT OUTPRTY parameter statement sub-operand $SCAN table 
HASPPART INITDEF parameter statement sub-operand $SCAN table 
HASPPCDT PCEDEF parameter statement sub-operand $SCAN table 
HASPOPDT OPTSDEF parameter statement sub-operand $SCAN table 
HASPPTDT PRINTDEF parameter statement sub-operand $SCAN table 
HASPPRTT PRTnn parameter statement sub-operand $SCAN table 
HASPPUNT PUNnn parameter statement sub-operand $SCAN table 
VECTPPXX VECTOR device statement sub-operand $SCAN table 
HASPRDVT RnnnnDVx parameter st,atement sub-operand $SCAN table 
HASPPUDT PUNCHDEF parameter statement sub-operand $SCAN table 
HASPRPRT RnnnnPRx parameter statement sub-operand $SCAN table 
HASPRPUT RnnnnPUx parameter statement sub-operand $SCAN table 
HASPRRDT RnnnnRDx parameter statement sub-operand $SCAN table 
HASPRDRT RDRnn parameter statement sub-operand $SCAN table 
HASPRCVT RECVOPTS parameter statement sub-operand $SCAN table 
HASPSBDT SUBTDEF parameter statement sub-operand $SCAN table 
HASPRMTT RMTnnnn parameter statement sub-operand $SCAN table 
HASPSMFT SMFDEF parameter statement sub-operand $SCAN table 
HASPS PDT SPOOLDEF parameter statement sub-operand $SCAN table 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 4. Directory 4-9 



Figure 4-1 (Page 10 of 13). 

Object Module Entry Point 

HASPSCTT 
HASPTPDT 
HASPTSTT 
HASPTRCT 
HASPTGLT 
HASPSTAT 
HASPTRIT 
HASPSSIT 

HASPTERM $ABEND 
HASPTRCA 
$HEXIT 
HEXTINIT 
FSJBHASB 
EX26ESTA 
ERMODULE 
ERMODMAP 
ERBASOFF 
ABNDRATE 

HAS PW ARM HA$PWARM 
HASPXEQ HASPEXEC 

HASPTIME 

HASPSTAC HA$PSTAC 

HASPPSO HA$PPSO 

HASPJDR 

HASPINIT 

HAS Pl RA IRA 
NBFBUILD 
NSSSM 
IRMLIST 

NQUERY 
NRDCTINT 
$RWL 
$RWLRDRS 
$RWLPRTS 
$RWLPUNS 
ISSIMSG 
NGTMNMSG 
NRTEMSG 
IHOTSMSG 
NEXITEM 

HASPIRMA IROPTS 
IRMODCHK 

IRSSI 
IRSETUP 
IRDCTDCB 
IRDCTCP 
IRCSA 
IRPCE 
IRURDEV 
IRMVS 
IRFINAL 

HASPIRPL IRPL 
IRPOSTPL 
HPARMDCB 

4-10 JES2 Logic 

JES2 Directory Information 

Function 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

OUTCLASS parameter statement sub-operand $SCAN table 
TPDEF parameter statement sub-operand $SCAN table 
TESTDEF parameter statement sub-operand $SCAN table 
TRACEDEF parameter statement sub-operand $SCAN table 
TRACEDEF LOG subscan sub-operand $SCAN table 
TRACEDEF STATUS subscan sub-operand $SCAN table 
TRACEn parameter statement sub-operand $SCAN table 
SSI parameter statement sub-operand $SCAN table 
JES2 ESTAE exit. 
Entry for $ERRTRCA in HCT 
Entry to normal recovery/termination for clean-up processing. 
Termination processing for unsuccessful initialization. 
Frees the SJBs and HASB for the JES2 address space. 
ESTAE routine for exit 26. 
Subroutine to locate an error load module. 
Subroutine to locate an error entry point. 
Subroutine to format the assembly base and offset. 
Subroutine to check for a RECVOPTS error rate excession. 
Warm start processor; provides JES2 warm start function. 
JES2 execution processor; supports requests to spin or hold subsystem data sets and 
requests for job selection, job termination, and job requeuing. 
JES2 time excession processor; monitors a job's real time in execution and issues 
WTOs to the operator when a job exceeds its estimated real execution time. 
STATUS/CANCEL processor; removes SJBs from the STATUS/CANCEL queue, scans 
for jobs to process, performs security processing for jobs, and records processing 
information in SJBs. 
JES2 process-SYSOUT processor; processes requests for subsystem data sets from 
conversational terminal systems and from external writers. 
Job disposition processor; provides an interface between HASPCOMM and HASPPSO 
for disposition of held data sets. 
JES2 initialization; this series of routines accepts initialization options, reads 
initialization parameters, examines system control blocks, and (from these input 
sources) sets up the control blocks required for JES2 processing. 
Entry to initialization administrator. 
Subroutine to generate buffer pools. 
Subroutine to load and validate HASPSSSM load modules. 
List of MIT addresses and MODMAP entry offsets for all initialization assembly 
modules. 
Subroutine for WTORs. 
Subroutine to initialize remote device DCTs. 
Remote device lookup table. 
Remote readers. 
Remote printers. 
Remote punches. 
HASP430 initialization message. 
HASP432 initialization message. 
HASP444 initialization message. 
HASP490 initialization message. 
HASP864 initialization message. 
Process JES2 initialization options. 
Verifies that this version of JES2 is compatible with the installed level of MVS; verifies 
the level of JES2 modules. 
Finds this subsystem's CVT (SSCT). 
Pre-PARMLIB storage allocations. 
DCT,DCB,DEB formatting routine. 
Completes DCT initialization. 
Creates console message buffers. 
Builds non-dynamic PCEs. 
Unit record device allocation. 
Identifies JES2 post-exit routines to MVS. 
Internal reader build. 
Initialization routine to process initialization parameter statements. 
Post-process parameters set in IRPL. 
IRPL data area; HASPPARM DCB. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990. 



'1.'' 

·~ 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Figure 4-1 (Page 11 of 13). JES2 Directory Information 

Object Module Entry Point Function 

HLISTDCB IRPL data area; HASPLIST DCB. 
NPLLOG Displays PARMLIB initialization statements to the console. 

HASPIRDA IRDA Performs DASO initialization. 
HASPIRRE IRNJE Completes final NJE initialization. 

IRRJE Completes final RJE initialization. 
HASP AM HASPAMI Provides support routines for use of GET/PUT/ENDREQ data management macros with 

JES2 SYSIN, SYSOUT data sets. 
HAMNULL Provides for immediate return to user if any macros are invoked before the data set is 

opened or after it is closed. 
HINTRDR Provides support for internal reader processing. 
HERNOEOD Return point if EOD is encountered. 
HAMAVT Appendage vector table used for 1/0 completion exits of HAM-generated 1/0. 
HCNVFDAD Routine to convert the track address from JES2 MTTR form to MVS MBBCCHHR form. 

HASCDSAL SSIALOC SSI function routine for subsystem data set allocation. 
SSIALUNA SSI function routine for subsystem data set deallocation 
$PDBBLD Build and initialize a PDDB. 
HALFDSNR Find data set number. 
HALJMERG Merge PDDB values into JFCB. 
HALOCRP Merge OCR values into PDDB. 
HALOPDBI complete initialization of a PDDB. 
HALSSALP Merge SSOB values into a PDDB. 
HALUNAL Subsystem data set unallocation service routine. 
HAOUTSCN Scan output DD reference. 
HIOTSPIN Create a common storage spin IOT and chain it to $HCCT so that HASPXEQ can 

process it. 
HASCDSOC SSIDAOPN Calls DSOPEN to open a subsystem data set or internal reader. 

SSIDACLO Closes a data set. 
SSIDARES Restarts subsystem data sets. 
SSIDACKP Checkpoints subsystem data sets. 
DSOPEN Opens a subsystem data set (SYSIN, SYSOUT, PSO, INTRDR). 
HFOPSUB "Fake opens" special subsystem data sets. 
HIORALE Ensures that this data space is permitted to access the internal reader PBUF data 

space. 
SSVCLSC Closes all data sets opened for the converter subtask. 
SSVOPNC Opens all data sets for the converter subtask. 

HASCJBST SSIJSEL SSI job select routine. 
SSIJTERM SSI job termination routine 
SSIRRREQ SSI request job id routine. 
SSIRRRET SSI return job id routine. 
SSIRQRNQ SSI requeue job routine. 
HJEOOO Job termination. 
HFJOBLOG Place header and messages into job log. 
HJSMAKSL Create a PDDB slot for a data set. 
JBFOUND Set up job for execution. 
JBSELECT Select job. 
JOBST ATS Update JCT statistics. 
JSREOPN Reposition system data sets. 
JSOPSSDS Open subsystem data sets. 
MRGSWBS Merge SWB into PDDB. 

HASCJBTR SSIENEOM SSI function routine for end-of-task processing. 
SSIETEOT SSI function routine for end-of-memory processing. 
EOTFDCON Issue FSIREQ disconnect request. 

HASCLINK $CRETRN JES2 return linkage. 
SSSMTABI JES2 subsystem initialization table. 
$CRETSAV Return save area routine. 
$CSAVE JES2 save linkage routine. 
$GETHP High private cell pooling routine. 
$HGFMAIN Branch-entry GETMAIN/FREEMAIN routine 
$MLTFBUF Free multiple buffer routine. 
$SSIBEGN Subsystem function initialization. 
$SS I END Subsystem function termination. 
$FRECEL Returns a CSA cell to the CSA cell pool. 
$GETCEL Gets a CSA cell from the CSA cell pool. 
GETTRE Gets a TCB recovery element. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 4. Directory 4-11 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Figure 4-1 (Page 12 of 13). JES2 Directory Information 

Object Module Entry Point Function 

RECOVERY Generalized recovery routine tor subsystem functions. 
SSIFINE SSI function cleanup routine. 
SSISETUP Setup routine tor SSI functions. 

HASCSIRQ SSISOUT Process SYSOUT routine 
SSICSTAT SSI function routine tor status. 
SSICSCAN SSI function routine tor cancel. 
SSIWTA SSI function routine tor WTOs. 
SSICMD SSI function routine tor commands. 
SSIUSUSE Destination verification. 
SSIFSCNT FSI connect/disconnect routine. 
TSCNVJB Convert job id to binary job number. 
TSQUEUE Queue SJB to HASP work queue. 
USERDEST Verify destination and convert to binary route code 
USERSUB User/subtask exit effector. 

HASCSRDS $CBIO Control block 1/0 routine. 
$FNDRIOT Locate reusable spin IOT. 
$10TBLD Create and chain an IOT. 
$PDBFIND Locate a PDDB. 
$SDBFREE Free an SOB. 
$SDBINIT Initialize an SOB. 
$VERIFY Verify a control block. 
DSNCMP Compress a SYSIN/SYSOUT data set name. 
DSNVFY Verify a SYSIN/SYSOUT data set name. 
HAL CLASS Determine if SYSOUT class is in hold status. 
HAL DEST Determine destination of a held data set. 
HCBCK Checkpoint all control blocks pointed to from SJB. 
HCBFM Free a JES2 control block. 
HCBGM Get a JES2 control block. 
HFCLSUB Fake close a data set. 
HFCLTRNC Truncate an unprotected buffer. 
HJSRETAB Rebuild SOB track allocation. 
HONEWOUT Open a new output data set. 
HOOLDINP Reopen an old input data set. 
HOOLDOUT Reopen an old output data set. 
MTTRVAL Validate a track address. 

HASCSRIC $$POST Cross-memory posts JES2 to post a PCE or resource 
$RA CROUT Issues a SAF call to RACROUTE services. 
$STRAK User environment spool space allocation. 
$SVJLOK Get the job communication queues lock. 
$SVJUNLK Release the job communication queues lock. 
$TRACER Obtain a JES2 trace table entry. 
$TRAREL Release a JES2 trace table. 
$VFLI Simulate a VFL instruction. 
$XMPOST Cross-memory post services routine. 
HASJFREO Initialize SJF parameter list to resolve OUTPUT JCL references. 
HKYMERGE Merge OUTPUT JCL keywords into PDDB. 
HOSWB Open processing for OUTPUT card SWBS. 
HSJFLSP Free SJF storage. 
PRTAUTH Print security authorization routine. 
PPSOSJB Purge the PSO chained from the SJB. 
PSQUEUE Queue a PSO request to the JES2 main task. 
SSVXDEF Propagate defined exit point bit map in MIT to XIT. 
TQUEBTG Check for successful 1/0. 
TSETLOCK Use the MVS SETLOCK macro to get the local and CMS lock. 
TSFRELOK Release the local and CMS lock. 
FINDLMT Open a new output data set. 
TRCKDATA Called when trace data does not fit in a trace table. TRCKDATA issues message 

$HASP381 and turns off the trace id. 
HASCSRJB $JBIDBLD Creates an 8-character EBCDIC job id. 

$SJBFIND Finds the LOJ, first, last or SSIB SJB. 
$SJ BLOCK Gets the SJB lock for an SJB. 
$SJBRQ Requeues the SJB to the specified queue. 
$SJBUNLK Releases the SJB lock. 
HETSOUT Saves interrupt status. 

4-12 JES2 Logic LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Figure 4-1 (Page 13 of 13). JES2 Directory Information 

Object Module Entry Point Function 

SJ BF REE Dechains and frees the storage of an SJB, SJXB, and SJF work area. 
SJBINIT Gets storage for and initializes the SJB, SJBX, and SJF work area. 
TSHABDQ Removes an TSO-queued SJB from the chain. 
TSUABQS Scans for TSO-queued SJB on a user abend. 

HASCDSS DSPSERV Data space services routing routine. 
DSCREATE Data space create routine. 
DSDELETE Data space delete routine. 
DSSRB Data space SRB routine. 
DSRMTR SRB resource termination routine. 
DSFRR SRB FRR recovery routine. 
DSG ET Data space ASCB/TCB get routine. 
DSDSP Issues the DSPSERV macro to create or delete a data space. 
DSALE Creates or deletes access to a data space. 
DSESTAE Data space service EST AE routine. 

HASPBLKS HA$PBLKS Control block formatting routine. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 4. Directory 4-13 



4-14 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-1006-2 © Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

(- Chapter 5. Diagnostic Aids 

( 

Introduction 

Diagnosis is the task of describing a programming problem, identifying the source of 
the problem, and solving the problem or reporting it to IBM. 

This section describes a general approach and specific resources and techniques 
that can be used to diagnose problems with JES2. The introduction provides a 
general methodology for problem solving in the JES2 address space. The next 
section tells you what documentation you need when you report you problem. The 
following section describes some of the structural features of JES2 from a diagnostic 
perspective. Familiarity with this structure can be helpful when diagnosing 
problems. Subsequent sections offer specific topics that address specific diagnostic 
tools. 

Diagnosis can be a difficult task. But you increase the difficulty if you do not 
diagnose in a disciplined way. Discipline cannot replace experience or intuition, but 
it can structure your diagnosis effort and save you valuable time. 

The diagnostic procedure can be divided into the following basic tasks: 

1. Obtain an exact description of the perceived problem condition and what led up 
to it 

2. Identify an external symptom from this context 

3. Gather pertinent information the system has provided 

4. Analyze the information 

5. Identify further needed information 

6. Use available diagnostic tools to gather that information 

7. Identify the basic functional area and then the module in control when the 
problem occurred 

8. Pinpoint the problem to a module 

9. Report the problem to your IBM Support Center and supply any needed 
information. 

Describing the Problem Condition 
This is often the most important step in the process of diagnosing problems. 
Because it is the first step, a wrong move at this point can waste hours of effort. To 
correctly identify a problem, you need an exact sense of what the conditions were at 
the time of the problem and what events led up to this condition. To do this, it is 
best to get a description of the problem as it was perceived by an eyewitness. You 
will want a description that provides a context from which to start, such as: 

"System is looping; can't get in from the console." 
"Console locked out." 
"The job won't cancel." 
"The command does not work." 
"Bad output." 
"Nothing is running." 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 5-1 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The list is endless, of course. But your objective is to fit one (or more) of these 
description to one of the external symptoms described below. To do this, ask 
questions: 

• When did you notice the problem? 
• Has the system told you anything? Messages? Codes? Dumps? 
• Did you notice anything unusual before the problem occurred? 
• Did you do anything unusual before the problem occurred? 
• What have you done to correct the condition? 

Gather this kind of information and produce an exact description of the condition 
and the events surrounding it. It can be used as a convenient checklist as you do 
the next task. 

Identifying the External Symptom of your Problem 

5-2 JES2 Logic 

The objective of this task is to match your description to one of the following 
externals symptoms: 

• Enabled wait -- the system is not executing any work and when it takes 
interrupts, nothing happens. Something appears to be stuck. 

• Disabled wait -- the system stops with a disabled PSW that has the wait bit on. 
This can be either an explicit and intentional disabled wait or a situation that 
occurs because the PSW area has been overlaid. 

• Disabled loop -- this is normally a small (fewer than 50 instructions) loop in 
disabled code. 

• Enabled loop -- this is normally a large loop in enabled code (but may include 
disabled portions -- loops as a result of interrupts). 

• Program check -- the program is automatically cancelled by the system, usually 
because of improper specification or incorrect use of instructions or data in the 
program. The program check message gives the location of the failing 
operation and the condition code. If the JCL includes a SYSABEND, 
SYSMDUMP, or SYSUDUMP DD statement, a dump will be issued. 

• ABEND -- the system has encountered an error it cannot recover from. 
Message $HASP088 gives you information about the abend. 

• An error message -- the system has encountered an error and issued a 
message about the error. $HASP095 is issued when catastrophic errors occur. 
$HASP096 is issued when disastrous errors occur. 

• An incorrect or unexpected command response -- the system is not doing what 
you have requested 

• Incorrect output -- a job or jobs are not producing required SYSOUT 

• A job failure -- a job does not execute successfully 

• An RJE or NJE failure -- a break occurs in communication between a 
workstation and its host or between nodes in a network 

• A maintenance-related problem -- the system experiences an incompatibility 
between different release levels or fixes 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



'( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Gathering Pertinent Information about your Problem 
To diagnose your problem, you need information. Generally, for the above 
problems, you do the following: 

Abend, Loop, or Wait: To analyze an abend, check the JES2 section of MVS System 
Codes for an explanation of the abend code. Then, if the system did not produce a 
dump, obtain a dump using the MVS DUMP command and specify SDATA=RGN. 
Consult MVS System Commands for further information, and see "Dumps and the 
$SDUMP Command" later in this chapter for more about dumps. 

Incorrect Output: Incorrect output can be characterized as missing records, 
duplicate records, or invalid data with sequence errors, incorrect values, format 
errors, or meaningless data. Remember that if a program or job has apparently 
executed successfully, incorrect results will be noticed only when the output is 
actually looked at or used at some future time. 

Incorrect or Unexpected Command Response: Check the syntax of the command 
you entered and ensure that it is correct, and identify on what kind of device it was 
entered and under what conditions (such as, a local or remote console, or TSO 
terminal). 

A Job-oriented Failure: Check the failing job's JCL. The system tells you right 
away about a JCL error, but your JCL may not be incorrect, only inappropriate for 
how you want your job to be processed. Also check the control statements you 
used. Use the JCL manual. 

Incorrect or Unexpected Message: Check to be sure that it is a JES2 message. All 
JES2 messages are preceded by the prefix $HASP (assuming that the dollar sign ($) 
has been left as the default console character defined by JES2). Consult JES2 
Messages for the modules that detect, contain, and issue the message. Given the 
processing that you believe was going on when the message was issued, is it 
probable that those modules were executing. If not, something went wrong with the 
flow of control; that is, unexpected calls or branches were made. 

A Remote or Networking Problem: Networking-related initialization statements are 
often the problem. (See "Remote or Networking Problems" later in this chapter for 
more information about this topic.) Check these statements, look at the console 
sheet, and SNA/VT AM messages that the system issued. 

Maintenance-related Problem: Understand SMP messages; assembly listings 
should show the errors. Keep track of program temporary fixes (PTFs), which 
provide source updates and resultant object modules. For more information about 
PTFs, see "Problem Reporting" later in this chapter. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-3 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Information the System Provides 

Messages 

5-4 JES2 Logic 

The system provides three kinds of resources to diagnose problems: 

• Input information you can check to ensure that the system is operating with the 
data it requires. This includes: 

Assembled code, including parameters passed or received, data areas, 
tables, save areas 

Initialization statements and parameters 

JCL statements and control statements 

r---.-- ...- ............... 
VVllllllClllU'=>. 

• Status information, which includes: 
Messages 
Codes 
Logs 
Traces. 

• Requested information. This includes the following diagnostic facilities: 
Dump Facility 
IPCS Exit 
SLIP Command 
DEBUG Facility 
$TRACE Facility 
Patching Facility. 

JES2 generates many messages to inform the operator and the user about system 
conditions. They are documented in MVS Message Library: JES2 Messages. There 
are three kinds of messages: 

Informational messages tell you about system conditions that require no action 
on your part. 

Action messages tell you that you must perform some action in order for 
processing to continue. 

Error messages tell you that an error has occurred during processing. Error 
codes on message $HASP095 and register contents and PSW content on 
message $HASP088 can tell you a great deal about your problem. These 
messages and their associated codes are documented in JES2 Messages 

The message "explanation," "system action," and "response" tell why a message 
was issued and the appropriate action to take. Some messages also direct you to 
the "Problem Determination" tables at the end of JES2 Messages These tables tell 
you what you must do before contacting IBM for support (also see "Problem 
Reporting" later in this chapter). 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Codes 

Logs 

The system provides system codes that can help you determine the nature and 
cause of a problem. All system codes are documented in MVS/Message Library: 
System Codes. There are several types of codes: 

• A system completion code is a three-digit hexadecimal number issued by the 
system when a module issues an ABEND macro instruction. This instruction 
causes a task or an address space to abnormally terminate. The code tells you 
why the task or address space terminated. You can find it in field TCBCMP of 
the terminated TCB. Codes for subtask terminations are also located in the ECB 
specified when the subtask was attached. 

• A wait state code signals that the system has entered a wait state. The code is 
found in the PSW. 

The only system codes that JES2 issues are 02C and 02D. 02C indicates a problem 
with a functional subsystem address space, and is accompanied by one of several 
messages (see System Codes). HASPFSSM detects the problem and issues the 
code or HASPWARM detects the problem and causes CALLRTM to issue the code. 
02D is issued for a $PJES2,ABEND command. 

JES2 issues many abend codes. They are issued with message HASP095 or 
HASPOBB. See the JES2 section of MVS Messages for these codes and their 
exp I anations. 

Information is logged in the JES2 message log, the JES2 job log, the system log, and 
SYS1 .LOGREC. Note that if something goes wrong involving a JES2 device, 
LOGREC will not show it. 

Identifying Further Needed Information 
If the information you have collected does not give enough to isolate your problem, 
the next step is to gather further information by using available diagnostic aids that 
MVS and JES2 provide. "JES2 Diagnostic Tools" later in this chapter, provides 
information about these aids. 

Isolating the Functional Area and the Module 
At any one of the points you have reached so far, you may have identified the 
module during whose processing the problem occurred. This may have been 
indicated by a dump or message. If not, and if all you have is a general sense of 
what function the system was performing when the problem occurred, a knowledge 
of JES2 processing is vital. This manual is an important resource for gaining that 
knowledge. Chapter 1 contains an overview of the structure of JES2. Figure 1-7 
maps the structure against the functions of JES2. Using that figure as a starting 
point, you can easily match modules to functions as you read Chapters 2 and 3. 
Chapter 4 is a directory of entry points in JES2. It lists all object modules and the 
names of entry points within the object modules and provides brief descriptions of 
the functions of the entry points. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-5 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Problem Reporting 

General Checklist 

When you have a problem you cannot diagnose or fix, you need to report it to the 
IBM Support Center. If you have tried to diagnose your problem and produced 
documentation about the problem, IBM can provide maximum and efficient support. 

Provide IBM support with: 

• Your correct name and phone number 

• FMID and release-related information about your installation. Rai CUIPA that u.n.u• 
-- --·- ···-· zvu1 

MYS maintenance level is the same as your JES2 maintenance level. 

• Required documentation 

System log -- showing time before and after the failure 

Console log -- all messages and commands 

JES2 initialization parameters 

A dump of JES2 -- for all abends and most other failures; include the JES2 
address space, the related user address space (for TSO), and for storage 
problems, CSA. 

A current assembly listing of the appropriate module or user exit 

The correct PTF level or PUT tape level of JES2 and MVS 

JCL and control statements for the failing job if the failure is job-oriented. 

Specific Documentation Requirements 

5-6 JES2 Logic 

• Abends/waits/loops -- provide a dump (see "Introduction" at the beginning of 
this chapter for recommendations about dumps). Note: When you report 
information In your dump, use sequence numbers, not displacements. It Is also 
Important to provide the name of the caller of the failing module. Problems can 
often originate In the caller. 

• Incorrect output -- provide details about the device type, and examples of actual 
versus expected output 

• Command response incorrect -- provide exact format of the failing command, 
and where entered, that is, local or remote console, TSO, etc., and the console 
log 

• Job-oriented failure -- provide failing job's JCL and any JES2 control statements 

• Unexpected or incorrect message -- provide the exact format and content of the 
message, and the command if the message was issued in response to a 
command 

• RJE or NJE failures -- provide exact copy of JES2 parameters, and your level of 
VTAM or TCAM if this is a SNA-related failure. Provide a dump, if you 
encountered an abend or wait. The console log is mandatory; traces may be 
required. The current assembly listings are also needed. 

• Maintenance-related problems -- provide a current CDS listing, and the exact 
SMP error messages, if any. Also provide assembly listing showing errors. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

/ ' 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• APAR fixes 

Source updates 
No superzaps 
Include "APARNUM" source statement 
Include only "real" prerequisites. 

• PTFs -- provide source updates plus resultant object modules. PTFs are created 
monthly for each FMID. Quarterly level set PTFs and PE buckets supersede all 
monthly PTFs since the last level set. PTF charts are available to check 
maintenance level, verification of FMID, and are in PE buckets and PSP files. 

Note that statement numbers or offsets are useless unless related to a label or 
sequence number in the current assembly listing. 

Specific Documentation for Failures in Certain Modules 
Problems involving HASPRTAM 

• A trace of line activity. Acceptable data includes MVS CCWTRACE, 3705 
TRACE, GTF TRACE macros. (See "Diagnostic Aids for Remotes and 
Networking Lines" in "Introduction" for more information. 

• Console sheet from the remote terminal if there is one 

Problems involving HASPXEQ or HASPSSSM 

• JCL from the user program. 

Problems involving the multi-access spool environment 

• Turn on JES2 debugging by using the $T Debug=Yes command. 

• Initialization parameters for all members in the MAS configuration. 

Note: See JES2 Initialization and Tuning for performance considerations. 

Problems involving HASPPRPU or HASPRDR 

• JCL for all the jobs involved. 
• System output from the failing jobs. 

Note that if you have user modifications, a listing of each modified module directly 
or indirectly involved in the failure is needed. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-7 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The Structure and Processing of JES2 
This section provides more detail from a diagnostic perspective about the structure 
of JES2. 

The Task Structure of JES2 

Dispatching 

$WAIT 

$$POST 

5-8 JES2 Logic 

For diagnostic purposes, it is important to remember that most JES2 modules 
execute under the main task, except modules loaded in the link pack area or 
common storage, which execute under the user task, and modules attached as 
subtasks by modules that execute under the main task. The JES2 main task 
provides the basic functions of reading and spooiing job input, converting JCL, 
selecting jobs from the JES2 job queue for MVS to execute, spooling and writing job 
output, and purging jobs. The modules that perform these functions are called 
processors and are represented by processor control elements (PCEs). JES2 
attaches nine subtasks. See Figure 1-7 for more detail about the subtasks. 

PCEs can be on a variety of queues (see Chapter 1) and are dispatched by the JES2 
dispatcher. The JES2 dispatcher allocates time to the JES2 main task processors. 
When a processor is eligible for dispatching, its PCE is on a dispatcher queue 
called the $READY queue. When a processor is waiting on an event, it is ineligible 
for dispatching. If the processor is waiting for a resource, its PCE is chained to the 
designated resource queue; if the processor is waiting for a specific event, its PCE 
is queued to itself via a specific event wait field, "PCEEWF", in the PCE. See the 
description of the $WAIT macro in JES2 Customization for a list of events and 
resources a PCE can be waiting on. The currently active processor's PCE is at the 
top of the $READY queue and is addressed by the $CURPCE field in the HCT. Major 
queue and event control fields in the HCT and HCCT are shown in Figure 1-9. 

A processor that is currently active remains so until it issues a $WAIT macro 
instruction, at which time the dispatcher is entered at entry point $WAIT (for a 
specific event), or $WAITR (for a general resource). The dispatcher continues to 
dispatch eligible processors from the $READY queue until the queue is empty. At 
this time control is passed to the dispatcher's resource posting routine, which looks 
for waiting PCEs that have been posted for events and are therefore eligible for 
dispatching. All eligible PCEs are moved to the $READY queue, and control passes 
back to the dispatcher. 

The JES2 dispatcher can be notified of work from within its own address space by 
the $POST macro. In addition, the dispatcher can be notified of work from other 
address spaces or from subtasks within its address space by the $$POST macro, 
which causes a HASPSSSM interface routine to cross-memory post the JES2 main 
task. In this case, the dispatcher post promulgation routine, which receives control 
when the resource posting routine runs out of work propagates event posts from the 
HCCT fields used by HASPSSSM interface routines to the HCT fields in the JES2 
address space. Here the resource posting routine can pick them up and mark the 
corresponding processors eligible for dispatching. Control then returns to the 
dispatcher. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

JES2 WAIT 
When the JES2 dispatcher determines that there is no more work to be done, it 
issues an MVS WAIT macro, and waits to be posted for more work. When a $$POST 
macro is issued, the dispatcher post promulgation routine receives control and 
transfers the event notifications to the HCT, where they are picked up by the 
resource posting routine. The corresponding PCEs are transferred to the $READY 
queue. 

JES2 Dispatcher Queue Structure 
JES2 dispatcher resource queues are double headed and double threaded. Each 
PCE (as shown in Figure 5-1) has a chain field to the following PCE entry and one to 
the preceding entry on the queue. In the special case of the first PCE (referred to as 
PCE zero), the preceding entry field points to the queue headers, offset so that the 
queue header appears to be a PCE itself. The last PCE has a following entry field 
that points back to the queue header. The queue header itself is double, with 
pointers to the first and last PCEs in the chain. An empty queue has both queue 
header fields pointing to itself, offset to appear as PCE zero. A PCE that is not on a 
queue has both its preceding and following entry fields pointing to its origin. In 
addition to the chain fields, each PCE has a PCEEWF field, which contains 
information about the type of event the processor is waiting for. Figure 5-2 provides 
an example of a dump of JES2 processor queue chains. 

HCT 

Specific PCE 

T 

PCEO 
PCE2 

Queue Head 

r-----
1 
l PCEO PCE 
I 

Empty Queue 

PCE not on au_a.u_e 

Figure 5-1. JES2 Processor Control Element Relationships 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-9 



Cl! 
I ..... 
C) 

c.. 
m 
Ul 
I\) 

r 
0 

<O 
c=;· 

r 
-< 
I\) 

Cf' ...... 
0 
0 
cp 
I\) 

@ 

() 
0 
u 
'< 
~

<O 
:; -
CD s:: 
() 
0 .... 

"? 
...... 
co 
00 
00 

...... 
co co 
0 

,, 
c0· 
t: ., 
CD 

°' "' 111 
)( 
Q) 

3 
" ii)" 
t:l 
t: 
3 

" 0 .... 
c:... 
111 
Cl) 
I\) 

-0 ., 
0 
(') 
CD 
en en 
0 ., 
0 
t: 
CD 
t: 
CD 

Q 
Q) 

s· 
en 

HASP· communication Table 

001258AO TO NEXT LINE ADDRESS SAME AS ABOVE 
001258CO 18 00000000 00000000 946C8C20 3EF49000 
001258EO 18 OOOOOA64 000009C4 007Al200 006400FA 
00125900 18 00000000 00000000 80402010 08040201 
00125920 18 DOF6888C 58F082D8 OOOlOOFF 00030000 
00125940 18 0018C6CO 0018ClC8 0018Cl20 00000000 
00125960 18 00000000 0018D8CO 0018C818 0018CCAO 
00125980 18 0018El58 0018CD48 FFFBFFFF 00000000 
001259AO 18 00125944 0012594C 0012594C(0019C480 
001259CO 18 0018CCAO 0018E370 001921EO 00125974 
001259EO 18 00125984 0018D400 0018D400 00125994 
00125A00 18 001259A4 001259AC 001259AC 001259B4 
00125A20 18 001259C4 0018CD48 0018CD48 000028Cl 
00125A40 18 00000000 OA3A0000 00000958 00000000 
00125A60 18 00000000 00000000 000008FO 00000000 
00125A80 18 00000000 00000000 00000000 00000000 
00125AAO 18 00000000 00000000 00000000 00000000 
00125AC0 18 00000000 00000000 00000000 00000000 
00125AEO 18 00000000 00000000 00000000 00000000 
00125800 18 00000000 00000000 00000000 00000000 
00125820 TO NEXT LINE ADDRESS SAME AS ABOVE 

Processor Control Element 

D5F2D4Fl 
00240000 
00170EF8 
0000012C 
0018D358 
0018D8B8 
00000000 

1. 

00124230 00010100 
10000000 00000001 
00000000 00000000 
00000000 0018CD48 
0018DFA0 0018£210 
0018D400 00180800 
0012593C 0012593C 

2. 

0018F7FO 0012595C 0012595C 
00125974 0012597C 0012597C 
00125994 0012599C 0012599C 
001259B4 001259BC 001259BC 
00597DOO 00000000 00000000 
00000034 00000000 00000000 
00000068 00000548 000005£4 
00000000 00001728 00000000 
00000000 00000000 00000000 
00000000 00000000 00000000 
OOOOllEO 00000000 00000000 
00000000 00000000 00000000 

00000101 
00000000 
0002D201 
0018C8D8 
00180148 
00180908 
00125944 
001C24C8 
00125984 
001259A4 
001259C4 
00000000 
00000000 
00000000 
00000000 
00000000 
0000182C 
00000000 
00000000 

3. 

I 
0019C2CO TO NEXT LINE ADDRESS SAME AS ABOVE 
0019C420 18 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0019ClE8 
0019C440 18 20000000 00000000 00197588 0019ClE8 00120100 00010001 00010000 00010000 
0019C460 18 00010000 0019C77C D9Fl4BD9 C4Fl4040 00000000 00000000 00000000 00000000 
0019C480 18 5093COC4 00000000 0019C77C 89210008 01030800 91000150 00010000 0001000] 
0019C4AO 18 00010001 7F08C1Cl OOOFEOOO 00000000 D7C3C540 00000000 00000000(50149AE8 
0019C4CO 18 00149854 00000000 0019C77C 50149AE8 00000000 00000000 00000000 0014BA70 
0019C4EO 18 00000000 0014AA70 0014CA70 00000000 00125000 00149A70 0019C4BO 0019C4BO 
0019C500 18 0019ClE8 0019C880 0019C880 00125954 00000000 00000000 00000000 00000000 
0019C520 18 00000000 000 20 00000000 00000000 0019C4BO 00000000 00000000 00000000 
0019C540 18 0019C4BO 000102CC 0019C77C 00000000 00000000 00000000 00000000 00000000 
0019C560 18 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

4. 5. 8. 6. 1. 

Legend: 

1. JES2 processor wait queues 
2. Queue is empty if first and last pointers point to queue-X'58'. 
3. Register 15 in the PCE is the resume point when the processor is dispatched . 
4. PCEPREV points to the previous PCE in the chain of all PCEs. 
5. PCENEXT points to the next PCE in the chain of all PCEs. 
6. PCEPCEA points to the next PCE waiting on this queue. 
7. PCEPCEB points to the processor queue-X'58' if this is the first PCE on the queue. 
8. PCEID, 8207 = local printer. 

* ............. 4 .• N2Ml •.•.•.•••.•• * 
* ....... D • • • • ••••••••••••••• • • • • • * 
*· ................. 8 •••••••••• K.* 
* . 6 .•. 0 . Q •••••••••••••••••••••• HQ* 
* .. F ••• AH •• A ••••••• L ••••••• S .•• J.* 
* •••••••••••••••••• Q ••• M ••• Q ••• RQ* 
* ................................ * 
* .............. D ••• 70 ........... H* 
* ...... T ••••••••••••••••••••••••• * 
* ...... M ••• M ••••••••••••••••••••• * 
* ................................ * 
*· .. 0 ••••••••••• A •••••••••••••••• * 
* ................................ * 
*· .......... o ........••..... u ... ·* 
* ................................ * 
* ................................ * 
* ................................ * 
* ................................ * 
* ................................ * 

* •••••••••••••••••••••••••••••• AY* 
* .............. AY •••••••••••••••• * 
*· ..... G.Rl.RDl ..•.•........... * 
*· .. 0 .••••• G ••••••••••••••••••••• * 
* ...... AA ..•....• PCE .•.......•.. Y * 
* .... , ...... G •••• Y •••••••••••••••• * 
* .... ,. ..................... D ••• D.* 
* .. AY,. .H ••• H ••••••••••••••••••••• * 
* ..... , ............. D ••••••••••••• * 
* .. O ••••••• G ••••••••••••••••••••• * 
* ................................ * 

r 
c=;· 
CD 
::J 
C/l 
CD a. 
s:: :D 
* !! ... ... 
iii" c;· 
en ~ 
I S:: 

"ti Ill 
.., -0 CD 
u ~-
CD Ill ... -.:<' C/l 

0 Q. - -- CD 
CD S:: s:: : 



( 

~ 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Control Block Overviews 
This section presents summary information about important JES2 control blocks and 
contains figures that show the pointers between them. Figure 5-3 provides an 
overview of the major JES2 control blocks. Figure 5-4 shows RJE/NJE-related 
control blocks. You can further consult the "JES2 Data Areas" microfiche for a 
mapping of all JES2 control blocks, or look at HASPDOC, which contains an 
assembly of each control block in JES2. Use your own HAPSDOC to find the offsets 
of field names. 

The following presents a synopsis of the major JES2 control blocks and their use. 
The control blocks are grouped according to the function they perform. 

Organizational 

Abbr. 

HCCT 
HCT 

HFCT 

MOD MAP 

MIT 

MCT 

HAVT 

HCCT 

HASB 

HASXB 

CADDR 

SVTC 

Name 

Subsystem Vector Table 
HASP Communication Table 

HASP Functional Subsystem 
(FSS) Communications 
Control Block 

HASP Module Map 

Module Information Table 

Master Control Table 

HASP Address Space Vector 
Table 
HASP Common Storage 
Communication Table 

HASP Address Space Block 

HASP Address Space 
Extension Block 
JES2 Common Storage 
Address table 

SSVT Function Matrix 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 

Storage Type 

CSA subpool 228 
JES2 address space, 
HASPNUC 

FSS address space 

JES2 address space, 
HASPTABS 

JES2 address space, All 
modules 
JES2 address space, 
HASPTABS 

CSA SUBPOOL 241 

CSA subpool 228 

ECSA 

JES2 address space 

Common storage 

JES2 address space, 
HASPIRMA 

Primary Use 

Major directory for CSA. 
Major directory for HASJES20. 
Contains queue headers, 
control blocks, pointers, 
module and entry pointers, and 
system parameters. 
Major directory for HASPFSSM. 
Contains queue headers, 
control block pointers, and 
entry point addresses for FSI 
and FSS functions. 
Contains the addresses of 
HASP modules and entry 
points. 
Contains module information 
including the exit bit map. 
Contains pointer to various 
HASP tables and their user 
extensions. 
Contains information about 
other address spaces. 
Contains address of data 
structures used by HASC 
modules. 
Contains addresses of data 
structures in CSA. 
Contains addresses of JES2 
control blocks in the user area. 
Contains addresses of routines 
in common storage called by 
$CALL. 
Contains the SSI function 
matrix. 

Chapter 5. Diagnostic Aids 5-11 



Processor Management 

Abbr. Name 

PCE Processor Control Element 

XECB Extended Event Control Block 

Buffer Management 

Abbr. Name 

BUFFER Buffer 

Job Management (transient) 

Abbr. 

JCT 

IOT 

PDDB 

OCT 

SJXB 

Name 

Job Control Table 

Input Output Table 

Peripheral Data Definition 
Block 
Output Control Table 

Subsystem Job Extension 
Block 

5-12 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Storage Type 

JES2 address space 

CSA SUBPOOL 231 

Storage Type 

JES2 address space 

Storage Type 

SYS1 .HASPACE User 
address space during XEQ 

SYS1 .HASPACE User 
address space during XEQ 

SYS1 .HASPACE User 
address space during XEQ 
SYS.HASPACE User address 
space route, during XEQ 

User address space 

Primary Use 

Unit of JES2 dispatcher. Has 
associated work space and 
save areas for JES2 
processors. 
Provides an area as a wait 
element for the JES2 
dispatcher. 

Primary Use 

Basic building block for JES2 
control blocks (JCT, IOT, 
Special). 

Primary Use 

Primary job-oriented control 
block. Contains accounting 
information and pointers to 
other job information. 
Contains job DASO information 
and PDDBs for input/output 
data sets. 
Describes a job input or output 
data set. 
Contains ouptut control records 
(OCRs) to describe data output 
records (forms, etc.). 
Contains control blocks for 
JES2 to perform 1/0 in the user 
address space. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

;r 

',1 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Job Management (resident) 

Abbr. Name 

JOE Job Queue Element 

JIX Job Queue Index 

JOT Job Output Table 

JOE Job Output Element 

SJB Subsystem Job Block 

SOB Subsystem Data Block 

LY28-1006-2 © Copyright IBM Corp. 1988, 1990 

Storage Type Primary Use 

Checkpoint data set & JES2 Represents a job in process. 
address space Resides on appropriate job 

queue chain. 
Checkpoint data set & JES2 Provides an index to the job 
address space queue by job number. 
Checkpoint data set & JES2 Central control block for all 
address space JES2 output. Contains three 

kinds of JQEs. 
Checkpoint data set & JES2 Represents output data set by 
address space units of work, characteristics of 

data set, and class of output. 
CSA subpool 231 Represents a job in process to 

OS/VS2 used by HASPSSSM 
interface routines. 

User address space subpool Used by HASPSSM to control 
229 processing of data set using 

HASP access method (HAM). 

Chapter 5. Diagnostic Aids 5-13 



Job Management (miscellaneous) 

Abbr. 

PIT 

CAT 

SCAT 

Name 

Partition Information Table 

Class Attribute Table 

SYSOUT Class Attributes 
Table 

Unit Management 

Abbr. Name 

OCT Device Control Table 

RAT Remote Attribute Table 

Multi-system Management 

Abbr. 

QSE 

Name 

Shared Queue Control 
Element 

Console Management 

Abbr. Name 

CMB Console Message Block 

Spool Management 

Abbr. 

DAS 

CKB 

Name 

Direct Access Spool Data Set 
Control Block 
Checkpoint Buffer 

5-14 JES2 Logic 

Storage Type 

CSA 

JES2 address space 

In SSVT space 

Storage Type 

JES2 address space 

JES2 address space 

Storage Type 

Checkpoint data set & JES2 
address space 

Storage Type 

CSA SUBPOOL 231 

Storage Type 

JES2 address space, CSA: 
SP231, SP241 
Checkpoint data set & JES2 
address space 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Primary Use 

Completely describes a JES2 
logical partition, its job classes 
and current state. 
Describes the attributes of a 
job class. 
Describes output classes by 
print, punch, plot, etc. 
characteristics. 

Primary Use 

Represents a unit record 
device or RJE line. Contains 
all the information necessary to 
set up EXCP. 
Consists of one entry per 
remote workstation, containing 
attributes of workstation. 

Primary Use 

One per system of a 
multi-access spool 
environment, containing 
identification and cross-system 
communication paramemters. 

Primary Use 

Used by the command 
processor to process 
commands, responses, and 
messages. 

Primary Use 

Used by the spool processor to 
maintain spool space. 
Contains the 1/0 parameters for 
checkpointing. 

LY?8-1006-2 ©Copyright IBM Corp. 1988, 1990 



f .,.,,_ 

;( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Functional Subsystem Interface (FSI) 

Abbr. Name 

FSSCB Functional Subsystem 
Control Block 

FSSXB FSSCB Extension 

FSA CB Functional Subsystem 
Application Control Block 

FSAXB FSACB Extension 

FSSWORK FSS PCE Work Area 

JIB JOE Information Block 

Recovery Management 

Abbr. Name 

PRE Process recovery element 

ERA Error recovery area 

LGRR LOGREC record 

TRCA Terminations recovery 
control area 

TRE TCB Recovery Element 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

Storage Type Primary Use 

CSA Represents a functional 
subsystem (FSS) address 
space. There is one FSSCB for 
each FSSDEF initialization 
statement. 

FSS address space Contains information for FSI 
orders, including parameter 
lists and response areas. 

CSA Represents a functional 
subsystem application (FSA). 
There is one FSACB for each 
application in an FSS address 
space. 

FSS address space Contains information for FSI 
orders, including parameter 
lists and response areas. 

JES2 address space Contains a mapping of the PCE 
work. Used vby HASPFSSP 
during FSI processing. 

FSS address space Used to pass job output 
element (JOE) information 
between JES2 and an FSS 
address space. 

Storage Type Primary Use 

JES2 address space Maintain information required 
for recovery. 

JES2 address space Provides the interface between 
the processor recovery routine 
and JES2 recovery 
management. 

JES2 address space Contains JES2 serviceability 
data. 

JES2 address space Contains termination recovery 
data. 

JES2 address space Contains information about 
global resources the TCB 
holds. It is passed as a 
parameter to the EST AE of a 
HASC module. 

Chapter 5. Diagnostic Aids 5-15 



Subtask Management 

Abbr. Name 

DTE Daughter Task Element 

SQD Subtask Queue Descriptor 

Checkpoint Management 

Abbr. Name 

HFAM HASP File Allocation Map 

KAWA Checkpoint allocation work 
area 

CAL Change log address list 
PAL Page address list 

PSL Page Service List 

Security Management 

Abbr. 

General: 
WAVE 

SAFINFO 

Remote 
Networking: 
CAPE 

SWEL 

Name 

Work Access Verification 
Element 

SAF Information Parameter 
List 

Communications Access 
Parameter Element 

Signon Work Element 

5-16 JES2 Logic 

Storage Type 

JES2 address space 

JES2 address space 

Storage Type 

Checkpoint data set 

JES2 address space 

JES2 address space 
JES2 address space 

JES2 address space 

Storage Type 

JES2 address space 

JES2 address space 

JES2 address space, 
HASPRTAM,BSC,SNA 

JES2 address space, 
HASPBSC,SNA 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Primary Use 

Central means of 
communication between the 
JES2 main task and its 
subtasks. 
Contains information to be 
queued to the subtask work 
queue for a general purpose 
subtask 

Primary Use 

Contains information required 
for the checkpoint data set 
$GETMAINed by CKPTALOC to 
provide a work area for 
checkpoint information. 
Used to build the change log 
Contains one entry for each 
control block in the change log 
Contains a list of start and end 
addresses for each piece of 
storage to be serviced by the 
PGSER macro. 

Primary Use 

Contains list form of RACROUT 
request types for $RACROUT 
routine. 
Contains SAF information for 
JOBVALM and SYSOVFY. 

Contains the MSAFCHK 
parameter list used by the Line 
Manager and the Remote 
Console Processor. 
Contains information collected 
by front end RJE signon. 

LY?.8-1006-2 ©Copyright IBM Corp. 1988, 1990 



r:J. 

' 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

l 

..._ $JOT ABLE 

JOT i--

JOE r---

JOE 

4~ 

I-
u 
0 

REG11 J 

• $JOBQPTR _.. 
p 

HGT .. ~ JOE ... 
1----i 

JOEJQE j 

UJ 
'.:) 

a 
~ UJ HCCT z 0 

.....I 0 

l (fl (fl ,, • 
LINE 

1- CMB 
..._CCTCOMQ 

$HCCT 
DCT 

... 
.....I 0 
0 I- <( 
0 u lL 
a... 0 '.:) 

I-I- u aJ 
u 0 I-
0 u 
(fl ~ 0 ,, ,~ • ..._ DCTBUFAD _.. 

IOB 
..._ _.. ... p !-- --.-

DCT PCE 
BUFFER 

I DCTPCE PCEJQE 
.. PPPWORK 

PPPXWJOE 

Note: Use your own HASPDOC to find the offsets of field names 

Figure 5-3. Pointers Between Major JES2 Control Blocks 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-17 



$DCTPOOL 
ACB 

DCTACB 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$RATABLE 
HCT 

Depending on type, OCT may be 
line reader printer, punch, etc. 

I ~:· 11_D_C_T_P_C-1Ei----t-D-CT_B_UFAD ... 

l BUFCHAIN 

j BUFCHAIN 
!--' 

108 
BUFFER 1--' 

~J MDCTRAT 
,__---------+-----+----+------------ RAT 

Depending on type, PCE may be 
reader, punch, printer etc. 

j REMOTE 

REMOTE 

~ DCTDCB 
~14_..._ ______ __ 

l I-' ICERDCT 
LINE OCT Ml~i---------------

i:::' ICEADCT 
LOGON I--' -
OCT .... ICELDCT MDCTICE 

~-------'r-- ICEAPCHN I I 
~..--1_c_E __ ,.......1~------------------1c __ EA __ LC_H __ N_:-i_ ___ 1_c_E _ ___, 

• 
ICEBUFAD ...... 

RPLICE _J RPL 

RPLPCE 1 

PCE (contains registers) 

Note: Use your own HASPDOC to find the offsets of field names 

Figure 5-4. RJEINJE-Related Control Blocks 

5-18 JES2 Logic LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Important Fields in Major Control Blocks 
ACB (access method control block) 

ACBLNDCT -- address of the VTAM logon OCT 

BUFFER (BSC) 

IOBECBCC -- 1/0 completion code 
BUFECBCC -- 1/0 completion code 
BUFSTART -- start of buffer workspace 

BUFFER (SNA) 

RPLBUFST -- start of VTAM buffer work space (see MVS mapping for an RPL) 

CMB (console message buffer) 

CMBCMB -- address of the next CMB 
CMBMSG -- Gonsole message 

DCT (device control table) 

DCTSTAT -- status of the device 
DCTPCE -- address of the PCE associated with this device 
DCTBUFAD -- address of the buffer 
DCTACB -- address of the ACB 
DCTDCB -- address of the DCB 
DCTBUFCT -- the count of active buffers 
DCTDEVTP -- the device type 
DCTFLAGS -- operator command flags 
DCTCHAIN -- address of the next OCT 
DCTDEVN -- the device name 

HCT (HASP communication table) 

$HASPMAP -- address of JES2's module directory 
$WAIT -- entries to the JES2 dispatcher 
$GETBUF -- entries to various service routines 
$WTO -- TCB and ECB address for subtasks 
$HCCT -- HASP common communication table 
$HASPTCB -- control block directory 
$NUMRDRS -- configuration constraints 
$PRIRATE -- operating constraints 
$REGSAVE -- miscellaneous control fields 
$COMMPCE -- processor PCE addresses 
$CURPCE -- address of the current PCE 
$HASPECF -- dispatcher event control field 
$READY -- queue header for PCEs eligible for dispatching 
$SAVEBEG -- checkpoint record 

Fields in the HCT related to RJEINJE 

$LNEDCT -- first LINE OCT 
$LOGNDCT -- first LOGON OCT 
$RATABLE -- address of the remote attribute table 
$NITABLE -- address of the node information table 
$NAT ABLE -- address of the nodes attached table 
$RMTSON -- remote signon table 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-19 



5-20 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$1CETRAY -- first free interface control element) ICE address 
$MCONMSG -- address of queue of input messages from remote consoles 
$RJECHEO -- queue of buffers (IOBs and RPLs) for the line manager 
$VLOGOUE -- queue of LOGON DCTs for OPEN/CLOSE VTAM ACB subtask 
$BUSYRO -- queue of output messages for remote console processor 
$MLLMPCE -- line manager PCE 
$MCONPCE -- remote console PCE 

ICE (interface control element) 

ICESTAT -- ICE status indicators 
~CEAPCH~~ -- address of the next iCE chained to LOGOi~ DCT 
ICEALCHN -- address of the next ICE allocated to a line 
ICEXTCHN -- address of the next ICE on the line manager work queue 
ICEINHD -- inbound buffer queue head 
ICBOUTHD -- outbound buffer queue head 
ICEADCT -- address of the logon DCT 
ICELDCT -- address of the line DCT 
ICERDCT -- address of the remote DCT 
ICESDCT -- address of the first suspended DCT 

JCT (job control table) 

JCT JOE -- offset of JES2 job queue entry (JOE) 
JCT JOBID -- JES2-assigned job identification 
JCT JNAME -- job name from the job card 

JOE (job output element): Work JOEs are chained in the class queues. The JOE 
counter in the JOE contains the number of work JOEs for the job that is represented 
by that JOE. 

JOENEXT -- next work JOE 
JOEFLAG -- flags 
JOECHAR -- characteristics JOE 
JOEROUT -- the remote ID of the data 
JQEJOE -- address of the JOE 

Characteristic JOEs are chained in the characteristics queues. The work JOE points 
to them. Since many work JOEs might require the same characteristics, a 
characteristics JOE might be pointed to by many work JOEs. 

JOENEXT -- next characteristics JOE 
JOEFORM -- forms ID 
JOEFCB -- FCB ID 
JOEUCS--UCSID 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

.. ,/ 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Save Area Linkage Conventions 
All JES2 processors, at one time or another, require the services of various 
subroutines or sub-processors. These can be local subroutines or JES2 Cf:mtral 
services. In turn, these called subroutines may require the services of yet other 
subroutines. It is the responsibility of the called subroutine to make the internal 
characteristics transparent to the caller. (The caller must be aware of external 
interfaces such as parameters and return codes.) The called subroutine 
accomplishes this transparency by saving the caller's environment on entry and 
restoring it on return. The $SAVE and $RETURN macros are provided for this 
purpose. See JES2 Customization for information about issuing these two macros. 

During execution of any JES2 processor, the address of its processor control 
element (PCE) is in register 13 even though the processor might be several levels 
down in subroutines. The PCE itself contains an MVS save area. This save area in 
the PCE is not used by the JES2 $SAVE and $RETURN macros, but is used when 
routines are called that use MVS save area conventions, and by the $WAIT routine. 

R13 

PSVID 
'PCE Vi 

PSVPREV -J6-

PSVNEXT -f6-

_._ __ ~ PSVPCE 

unusea 
register save 
area 

_,._ __ -I PCELPSV 

Figure 5-5. PCE-level Save Area in the PCE 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

Note: See save areas field. 

Chapter 5. Diagnostic Aids 5-21 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

When a JES2 subroutine is called, it issues a $SAVE macro. $SAVE obtains a JES2 
save area and places it on the end of the current processor's save area chain. 
Therefore, register 13 points to the processor's save area chain. 

R13 

PSVID 'PCE r,• 'SAVE' 

PSVPREV -0-

PSVNEXT 0 

1st level 
MVS save area subroutine 
registers registers 
(R14 'R12) (R14'R12) 

PSVPCE PSVPCE 

PCELPSV PSVLABAD 

Figure 5-6. Save Area Chain for First-Level Subroutine 

5-22 JES2 logic l Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

·~· 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Processing occurs on each successive level as shown in Figure 5-7. A $SAVE 
macro is invoked, and a new JES2 save area is obtained and chained on. 

R13 

~1 1 ~ 
I I l ~ I I I 

'PCEl!S' , 'SAVE' I~ 'SAVE' 

I 
PSVPREV -~- /" fllllE PSVPREV I t-- PSVPREV 

PSVNEXT I I 
PSVNEXT PSVNEXT 

I I 
j~ 

I I 

PCE-level .. Level-1 I I Level n-1 
I I registers registers registers 
I I 
I I 

~ PSVPCE V1 ~ PSVPCE 
I I 

PSVPCE -1 I 
PCELPSV '-.. PSVLABAD 11 ~ PSVLABAD 

If I I 

·- ll -r - - I I - --
Note: PSVLAST is only meaningful in the PCE save area. 

Figure 5-7. Save Area Chain for Successive Levels of Subroutine 

' 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-23 

'~ 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The $RETURN macro instruction restores the previous level's registers and 
unchains the save area. The following paragraphs describe the various save area 
fields. 

PSVID: This field contains the characters "PCE" in the PCE save area, or "SAVE" 
in other save areas on the processor's save area chain. 

PSVPCE: This field contains the address of the processor control element (PCE), 
and has the same value in all save areas on the processor's save area chain. 

PSVPREV: This field contains the address of the previous save area, that is, the 
one beionging to the previous level that issued a $SAVE macro instruction. It is 
possible, via this field, to start at any level and trace the path to that level. 
PSVPREV contains 0 when the processor is executing on the PCE-level. 

PSVNEXT: This field contains the address of the next save area on the processor's 
save area chain. It is possible, via this field, to start at the PCE-level and trace the 
flow of the processor through all levels. 

PSVNEXT contains 0 in the final save area on the processor's chain. (This field 
remains 0 while the processor is executing on the PCE-level.) 

PCELPSV: This field contains the address of the last (final) save area on the 
processor's save area chain. Therefore, this field points to the current save area. 

PSVLABAD is the beginning address ($SAVE ID) of this same area. 

Remote Job Entry and Networking Problems 

5-24 JES2 Logic 

Initialization statements, traces, and miscellaneous tools can help you diagnose 
remote job entry and networking problems. 

Initialization Statements: The following JES2 initialization statements are the single 
most meaningful items of documentation obtainable when diagnosing remote 
terminal-oriented JES2 problems. 

• LINEnnnn statement describes to JES2 the device address and optional features 
associated with a real TP adapter. 

• RMTnnnn statement describes to JES2 the type of remote terminal and its 
associated features. 

• Rnnnn.PRm statement describes the characteristics of one printer attached to 
the terminal represented by RMTn. Multiple statements may be used. 

• Rnnnn.PUm statement describes the characteristics of one punch attached to 
RMTn. Multiple statements may be used. 

• Rnnnn.RDm statement describes the characteristics of one reader attached to 
RMTn. Multiple statements may be used. 

Traces: The following traces can be used to trace the indicated items: 

$TRACE 

BSC TP buffers 
SNA RPLs 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

CCWTRACE 

BSC only 
CCWs and data 

3705 EP trace 

BSC only 

GTRACE macro 

These traces can be put anywhere to trace anything 

VTAM traces 

Internal (API, PIU) -- traces JES2 and VT AM interfaces 
External (RNIO, BUFFER) -- traces lines between JES2 and VTAM (both data and 
control) 

Miscellaneous Diagnostic Aids: The following miscellaneous items can be used to 
understand the current state of the system and what commands were issued before 
the problem occurred. 

• A JES2 dump. 
• The console log. 
• JES2 $DISPLAY commands: 

$DU,RMTnn 
$DU,LOGON1 
$DF or $DJ or $DN 
VTAM display commands (DISPLAY NET, ID=) 

• "Appendix B. External Writer" may also be useful for diagnosis. 

JES2 Error Services 
When JES2 encounters an error, it enters one of the following routines, which 
comprise JES2 error services: 

• Disastrous error routine 
• Processor retry routine 
• JES2 ESTAE routine 
• $SDUMP routine 
• JES2 exit routine 
• Input/output error-logging routine. 

The following brief descriptions of the error routines explain their functions and 
what can be done when one of these routines is entered. 

Disastrous Error Routine: This routine is entered at entry point $DSTERR in 
HASPNUC whenever a physical 1/0 error occurs, or whenever a logical error is 
detected when reading a job control table (JCT) or an input/output table (IOT). The 
symbol and module names are moved into the message from the $DISTERR macro 
expansion. A $WTO is issued to notify the operator of the error, and control is 
returned to the calling processor. The message to the operator is as follows: 

$HASP096 DISASTROUS ERROR AT SYMBOL symbol IN CSECT module 

JES2 should be quiesced and restarted as soon as it is practicable in order to 
recover any direct-access space that might have been lost as a result of the error. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-25 



5-26 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Processor Retry Routine: This routine is entered whenever JES2 encounters a 
catastrophic error or system abend. The processor retry routine (established by the 
$ESTAE macro) executes under control of the processor that was in control at the 
time of the error. The installation can construct error retry logic for dealing with 
programming errors that normally result in catastrophic error or abend termination. 

On the $ESTAE macro instruction, the installation specifies the address of the retry 
routine, whether or not an SVC dump is to be taken, and, optionally, if message 
$HASP070 is to be issued. Message $HASP070 requires the operator to specify if an 
SVC dump is to be taken and if JES2 should continue with the recovery attempt or 
terminate. 

JES2 ESTAE Routine: This routine is entered at entry point $ABEND in HASPTERM 
whenever JES2 abends for any reason and a processor retry routine did not 
intercept the error. The catastrophic error routine is called with an error code of 
ABEND and control is passed to the JES2 exit routine. 

$SDUMP Routine: This routine is entered at entry point $SDUMP in module 
HASPTERM when a $SDUMP macro is issued to request an SVC dump. The 
$SDUMP routine issues an operator message that indicates the SVC dump was 
requested and by whom. It then sets up the dump title, and, if required, builds the 
default title with the dump requester information in the $HASP080 message. 

The $SDUMP routine sets up the ASID list that was requested by the caller of the 
SVC dump and then takes the dump. (The dump does not include the nucleus, 
unless the operator's dump options include the nucleus.) The $SDUMP routine 
waits for the dump to complete. The ECB option is used because the ASIDLST 
option is specified. 

If the SVC dump fails and the caller specified an ERROPT option of WAIT, message 
$HASP089 is issued to the operator's console. The operator can retry the dump or 
bypass the dump. 

JES2 Exit Routine: This routine is entered from the catastrophic error routines 
whenever JES2 is to terminate under abnormal circumstances, and whenever a $P 
JES2 command is successfully executed. When entered from the catastrophic error 
routine, the following WTOR message is issued: 

$HASP098 ENTER TERMINATION OPTION 

The routine waits for the operator to respond with one of the following replies: 

• EXIT 
• PURGE 
• DUMP text 

If the reply is EXIT, the subsystem vector table ($HCCT) termination complete flag is 
set to 1. Control is returned to the system in the case of JES2 error detection by an 
SVC 3 instruction with register 15 set to 24; or, in the case of a JES2 task abend, by 
a branch to the location in register 14. 

If the reply is PURGE, the routine attempts to clean up commonly addressable 
control blocks. If the subsystem is the primary subsystem: the UCB attention index 
values are set to zero; tasks waiting for CANCEL/STATUS, process-SYSOUT, and 
storage cell expansion queues are posted; a system management facility (SMF) 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

record may be optionally written, and JES2 subtasks are terminated and detached. 
Control is then returned to the system as with the EXIT option. 

If the reply is DUMP, a SDUMP macro instruction is executed with the text (if any) 
used as the header. Processing continues as with the PURGE reply. 

If entry to the routine is through the normal execution of the $P JES2 command, 
processing is the same as with the PURGE option for abnormal terminations, except 
that control is returned to the system by an SVC 3 instruction with register 15 set to 
zero. 

110 Error Logging Routine: This routine is entered at entry point $10ERROR in 
module HASPNUC when an unrecoverable 1/0 error occurs on a JES2 spooling 
volume, or when a line error occurs, which might require the attempt of the 
operator. A $HASP094 message to the operator is generated containing: 

• The channel status, channel command code, sense information, track address, 
and line status are retrieved from the 108 (pointed to by register 1) and 
formatted. 

• The unit address and volume serial are obtained from the UCB. 

• The device name (if applicable) is acquired from the device control table (OCT). 

Common JES2 Subtask ESTAE Routine: Each subtask establishes $STABEND as its 
recovery routine. When the subtask issues the ESTAE macro it passes $STABEND 
the address of its DTE. This routine provides diagnostic information for problem 
determination (and ensures that diagnostic information is written in SYS1 .LOG REC) 
and attempts subtask recovery. A system dump can be obtained based on 
installation-defined recovery options (RECVOPTS). Each subtask DTE specifies its 
own retry, VRA formatting, and clean-up routines. These routines are called by 
$STABEND. If recovery is not possible, $STABEND terminates the JES2 main task 
with a $ERROR Z03. 

Miscellaneous Hints on JES2 
Starting JES2 - Enqueue Wait on STCQUE: The installation can choose the option to 
manually start JES2 by changing MSTRJCL with AMASPZAP. When MSTRJCL is 
changed, JES2 parameters are entered on an operator-issued START command 
(that must be issued before MVS processing can occur). If the operator misspells 
JES2 on the START command (such as entering JES), a wait occurs. In this case, 
there is no indication of this other than that STC (IEESB605) is exclusively enqueued 
on SYSIEFSD STCQUE behind IEEVWAIT, which does not release the resource until 
JES2 is initialized. The command scheduling control block (CSCB), pointed to by 
the parameter list to IEFJSWT, is not formatted in the dump. 

Therefore, if an enqueue wait on STCQUE occurs, the START command might have 
been entered incorrectly. This is also true for any normally started tasks (such as 
mounts or installation started tasks) that cannot be started until the primary job 
entry subsystem is started. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-27 

lj 

i 
1:1 
I 
I" 

i1 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Using Dumps, Traps, and Traces 

Dumps 

5-28 JES2 Logic 

The following describes where to locate important JES2 dump information, how to 
trap program errors, and event tracing in JES2. 

One of the most important things to remember about dumps is to find the PCE 
involved, then use the register save area to get into the code or the module 
involved. Register 14 tells you where control came from; register 15 tells you where 
control is to go. 

The first part of CSECT HASPNUG (which is the first in the load module HASJES20) 
is the JES2 HASP communications table (HGT). The HCT contains the addresses of 
many JES2 control service sub-programs and contains most of the globally used 
status bytes, counters, control block chain pointers, and queue pointers. CCTHCT in 
the $HCCT points to the HGT. $HGGT in the HCT points to the HGCT. 

If the dump has formatted MVS control blocks, such as those printed by IPCS, the 
multiple task structure of JES2 will be apparent. The main task is the load module 
named HASJES20. There are always at least five subtasks present: HASPWTO, 
HASPACCT, HASPIMAG, and HOSCNVT, and HOSPOOL. These identifiers can be 
found in the NM field of the formatted PRB. 

During the execution of instructions in HASPSSSM, register 11 usually points to the 
$HCCT, register 13 usually points to an available save area and register 10 usually 
points to the system job block (SJB). In the HASP access method (HAM), register 10 
points to the system data block (SDB). Similarly, within the main JES2 task, register 
11 points to the HCT and register 13 points to a PCE. 

To locate the save areas, refer to "Save Area Linkage Conventions" described 
earlier in this chapter. 

If you need a dump, you can request one in the following ways (the first one is best, 
the next one is second best etc.). 

• Reply DUMP to the HASP098 message. 

• Issue the $SDUMP command. The $SDUMP service routine issues an MVS 
SDUMP command (see "$SDUMP Service Routine" in Chapter 3 for more 
information). 

• Issue a $PJES2,ABEND command -- this may not give you an exact picture of 
storage at the time of the abend. 

• Issue a stand-alone dump (SDUMP). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

':11.:' . . it 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The IPCS Exit 
The JES2 dump formatting service formats JES2 storage-resident control blocks. It 
is useful in initial problem determination using JES2 dumps. It can be modified to 
suit an installation's particular requirements either by adding control block printouts 
to the dump or deleting those not needed. The dump service executes as a user exit 
of the IPCS print dump utility. 

This dump service formats control blocks including: 

• JESCT data: The JES communication table 

• SSCT data: Subsystem communication vector tables 

• SSVT data: Subsystem vector table, including: 

SSI matrix 
function routine addresses 

• HCCT data: HASP common communication table, including: 

estimated count fields 
$$POST elements 
job service queues 
spool management pointers 
SYSOUT class attribute table 

• MODMAP data: Addresses of JES2 modules 

• HGT data, including: 

addresses of JES2 services 
addresses of JES2 control blocks 
address of the track group map 
initialization parameters, grouped by 

configuration constraints 
operating constraints 
estimated count fields 
other 

PCE addresses and queue heads 
checkpointed variables 
job queue heads 

• QSE data: MAS complex control fields -- all 7 QSEs are formatted 

• Special processor PCE control blocks: The current PCE is formatted, followed 
by all other non-device related PCEs. 

• DCTs with associated PCEs 

• DTEs -- JES2 daughter task elements (subtasks) 

Installing the Dump Service 
The code for the dump service comes in both source and object form. The standard 
JES2 SMP installation procedure will place the modules on DASO, assemble and 
link them. If you have bypassed this procedure, you can link the dump formatting 
modules using member JES2BLD, which comes with JES2 source code in data set 
HASPSRC. 

HASPBLKS is the module that governs the formatting activities and is the one 
invoked by the JES2 keyword. HASPBLKS uses IPCS storage access and print 
services to do its work. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-29 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

HASPBLKS verifies that the version of JES2 which is about to be formatted is the 
same as the version of the JES2 IPCS exit modules. If the two versions are not the 
same, the JES2 IPCS exit will issue a message to terminate processing. 

HASPBLKS verifies each of the other IPCS modules it loads as each of these 
modules is loaded. If a module is not at the same version level as the HASPBLKS 
module, an error message is generated and HASPBLKS continues to the next 
formatting module. 

The exit control table (ECT) entry for JES2 in the module AMDPRECT turns off the 
MVS/370 compatibility flag. If this flag is on, a IPCS exit can accl'!ss only 24-b!t data. 

HASPBLKS loads the following formatting table modules: (The subroutine that 
formats the name and address of a JES2 control block for each of these formatting 
modules generates an 8-character address) 

• HASPFMTO, which formats the JESCT, JESPEXT, and SSCT 

• HASPFMT1, which formats the SSVT, HCCT, and CADDR 

• HASPFMT2, which formats the MODMAP, HCT, and PADDR 

• HASPFMT3, which formats all QSEs 

• HASPFMT4, which formats special processor PCEs 

• HASPFMT5, which formats DCTs and their PCEs, including the offload device 
DC Ts 

• HASPFMT6, which formats DTEs and dumps associated work areas 

• HASPFMT7, which formats checkpoint-related control blocks: HFAM, CKG, 
CKB, CKW, and KAC 

• HASPFMT8, which formats HASS, HASXB, SJB, and SJXB 

These are the macros used by these modules: 

• $FIND, which builds DSECT addresses 
• $TITLE, which creates titles for dump listings 
• $DUMP, which causes data field maps to be built 
• $TEST, which causes conditional mapping of data 
• $LINE, which creates a new print line 
• $PAGE, which creates a new page 

Running the IPCS Service 

5-30 JES2 Logic 

You can obtain a dump either by issuing an MVS operator DUMP command or by 
waiting until JES2 abends and causes a system dump. The operator dump 
command is "DUMP COMM= (title)". You reply to the message that follows with the 
ASID belonging to JES2. Use the display command with the ALL option ('D A,ALL') 
to find out the ASID of JES2. If JES2 abends, JES2's ESTAE routines will issue an 
SDUMP macro to cause a system dump. 

Make sure that the system dump provides the RGN, CSA, and NUC options. You 
need RGN for the JES2 address space, CSA for subpool 241 data, and NUC for 
JESCT. You can verify that you have the needed options with the "display dump 
options" operator command ("D D,O"). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Following is an example of a job that could be used to format and print JES2 control 
blocks from SYS1 .DUMPOO. The subsystem name is JES2, the ASID where JES2 
was running is X'E', and all of the format modules are to be used. 

//MYI PCS JOB 
//IPCS EXEC PGM=IKJEFT01,REGION=4096K 
//STEPLIB DD DSN=SYSl.LINKLIB,DISP=SHR 
//SYSTSPRT DD SYSOUT=* 
//IPCSSTOC DD SYSOUT=* 
//IPCSPRNT DD SYSOUT=* 
//SYSPROC DD DSN=SYSl.SBLSCLIO,DISP=SHR 
//SYSTSIN DD * 

IPCS 
SETDEF NOCONFIRM PRINT NOTERMINAL DA('SYS1.DUMP00') 
VERBEXIT JES2 'SUB=JES2,ASID=E,FMT=ALL' 
END 

/* 

The format of the VERBEXIT subcommand in IPCS and the VERBEXIT control card 
illustrated above is: 

VERBEXIT JES2 'SUB=,ASID=,FMT=' 
or 

VERBEXIT HASPBLKS 'SUB=,ASID=,FMT=' 

The verb name JES2 can be substituted for the format module name HASPBLKS. 

The options are as follows: 

SUB= subsystem name 
The subsystem name is the name of the JES2 subsystem (typically "JES2"). If 
no subsystem name is given or if the SUB= option is omitted, the default 
subsystem name is JES2. If no other options are given, the ASID will be 
supplied by IPCS/SNAP and the format option will be FMT=ALL. 

ASID = address space identifier (In hexadecimal) 
The ASID is either that of the JES2 subsystem itself or that of the user. If a 
user's ASID is given, then the control blocks produced by HASPFMT8 (HASB, 
HASXB, SJB, and SJXB) will represent the user's address space. The default 
format option is FMT=COM. If you wish to override this, you must provide a 
specific FMT = option: 

• FMT =COM causes the use of format modules HASPFMTO, 1, and 8. 
• FMT=ALL causes the use of all format modules (0-8). 

Note: It is possible to specify the SUB= and ASID = options representing different 
address spaces. Make sure that both options represent the same address space 
identifier. 

All options are positional. Following are examples of different ways to specify JES2 
options: 

VERBEXIT JES2 'SUB=JESA,ASID=F' 
VERBEXIT JES2 'SUB=JES2,FMT=COM' 
VERBEXIT JES2 'ASID=E,FMT=ALL' 
VERBEXIT JES2 'ASID=D' 
VERBEXIT JES2 'FMT=COM' 

For more information about the IPCS service, see /PCS User's Guide, (GC28-1833). 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-31 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The Program. Event Recording (PER) SLIP Command 
If you are not familiar with the SLIP command facility, see MVS Diagnostic ·~ ., 

The PER SLIPs 

Techniques and MVS System Commands for an introduction and a full explanation 
of the SLIP command. The following text assumes you know this information. 

The general form for setting a trap is: 

SLIP SET,event,ENABLE,ID=xxxx,ACTION=xxxx,other parameters, 
MATCHLIM=xx,END 

The system responds when the command is entered. If no ID was used, an ID is 
assigned by the system. This ID identifies the trap and is used to enable, disable, or 
delete the trap. To display a trap, use D SLIP, which gives you summary 
information on all SLIP traps, or issue D SLIP= nnnn, which gives you detailed 
information on SLIP ID nnnn. 

Only one PER SLIP event may be monitored at any given time, although more than 
one trap may be defined. This means that only one trap can be enabled at a time, 
all others must be disabled. Three types of PER events can be monitored. 

1. SA (storage alteration) 
2. SB (successful branch) 
3. IF (instruction fetch) 

Several types of ACTION may be taken, including: 

SVCD -- schedule an SVC dump 
WAIT -- put the system in a wait state 
TRACE -- write a GTF trace record 
TRDUMP -- write a GTF trace record and then schedule an SVC dump 
IGNORE -- use with other traps to filter out unwanted conditions. 

The SVC dump is the default. If specified or defaulted, the dump is scheduled for 
the address space in which the trap was matched. These dumps do not cause an 
abend. 

Printing a SLIP Dump ·"· / 
The registers and PSW at the time of this kind of dump are not reliably in the TCB 
and its RBs. They are stored in a 4K buffer pointed to by CVTSDBF in the CVT. This 
buffer is in CSA, so your SDATA options must include CSA. When you print the 
dump you must either print all of CSA or print whatever region storage is requested 
including the CVT. Then you must do another print run specifying the specific 
address of the SDUMP buffer. In the buffer, EBCDIC character eyecatchers precede 
the PSW and the registers. The sequence of the registers is 0-15. 

The GTF and AMDPRDMP Options for SLIP TRACE 

5-32 JES2 Logic 

If ACTION=TRACE or ACTION=TRDUMP, GTF must first be started with option 
TRACE=SLIP. To print the trace records using AMDPRDMP, you must specify EDIT 
DD= input ddname,SLIP. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

( 
\"-._,/ 



~·· 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The Storage Alteration Trap 
The following example traces storage alteration of a field in the HCT, a halfword at 
offset X'154': 

SLIP SET ,SA,EN, 
ACTION= TRACE 
TRDATA=(STD,REGS,E51F4,E51F5), 
JOBNAME=JES2 
RANGE=(E51F4,E51F5), 
MATCHLIM=50 
END 

(two bytes) 
(quit after fifty times) 

You may not want to trace every time this storage is altered, only the time some 
instruction turns it into a negative number. 

In this case, the DATA= parameter can be used to limit the trap matches to storage 
alteration of the area indicated by RANGE= only when the area indicated by 
DATA= is greater than, less than, or equal to the indicated value, whichever you 
specify. The following example tests for a "less than" condition: 

SLIP SET ,SA,EN, 
ACTION=SVCD, (produce a dump if storage is altered) 
SDATA=(RGN,CSA), 
JOBNAME=JES2, 
RANGE=(E51F4,E51F5), 
DATA=(E51F4,LT,OOOO), (halfword of Os, default hex) 
END 

The DATA Keyword: 
The form of the DAT A keyword is 

DATA=(target, operator, value) 

or 

DATA=(target(b),operator,value) 

target -- indicates a storage location, a register, or an indirect pointer. 

b -- indicates a binary comparison starting with bit "b" 

operator -- indicates the relationship between the "target" and the "value"; that is, 
whether the target is equal to (EQ), not equal to (NE), greater than (GT), or less than 
(LT) the "value". 

LY28-i006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-33 



Examples 

DATA=(15R(28),GT,0100) 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

This tests whether bits 28-31 of register 15 are greater than 8'0100' 

DATA=(6R%,EQ,4B3628) 

This tests whether the three bytes pointed to by register 6 are equal to X'4B3628' 

DATA=(150,EQ,FF,151,NE,ee 

This is two one-byte tests, one at storage location X'150' and one at location X'151'. 
Both conditions must exist (that is, storage location X'150' must contain FF and 
location X '151' must not be equal to 00) in order for the trap to match and take 
whatever action you specified. 

Note: To trap storage alterations, you must know the virtual addresses of the 
storage area you are monitoring. 

The Successful Branch Trap 
You may want to trace the path taken through some routine: 

SLIP SET SB,EN,ACTION=TRACE, 
TRDATA=(STD,REGS), 
JOBNAME=JES2, 
RANGE=(E6582,E6D18), 
END 

(trace path through ••• 
• • • the job queue manager) 

The Instruction Fetch Trap 

5-34 JES2 Logic 

To trap execution of a given range of instructions (for example, entry to an ESTAE 
routine), use this form: 

SLIP SET ,IF,EN, 
ACTION=SVCD, 
SDATA=(RGN,CSA), 
JOBNAME=(JES2), 
RANGE=(startaddr,endaddr), 
END 

Note: 'RANGE' may also be a single instruction. 

To trap instructions in HASPSSSM or any other module loaded into the link pack 
area (LPA), you specify: 

SLIP SET,IF,EN, 
ACTION=SVCD, 
SDATA=(RGN,CSA) 
JOBNAME=(jobname) 
LPAMOD=(HASPSSSM,offsetl,offset2), 

Note that, if you do not specify JOBNAME, the trap springs every time the LPAMOD 
is entered on behalf of any address space. Note also that instead of the RANGE 
parameter and its virtual addresses, the LPAMOD parameter uses offsets into 
whatever module is specified as the start and end of the storage to be monitored. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SLIP Trap for a Specific Message 
To save time looking for the module associated with a message, you can set traps 
for any MVS message. To do so, code: 

SLIP SET,IF,EN,ADDRESS=(XXXXXX),DATA=(1R%+6,EQ,YYYYYYYY), 
ACTION=(SVCD),END 

XXXXXX is the instruction 41COBFFF at offset X'26' or X'2E' in module IEAVVWTO 
(IGC0003E in LPAMAP). A ZAP dump of the module will give the correct offset. 

YYYYYYYY is the hex representation of the third, fourth, fifth, and sixth characters of 
the message number to be trapped. For example, for message IEF2701, the hex 
representation for F270 would be C6F2F7FO. This format is necessary because the 
DATA keyword can compare only four bytes of data. 

Note that displacement +6 must be changed to + 14 when the message is a WTOR. 
SVCD is the default on the ACTION keyword. Other actions are possible. 

The ACTION= IGNORE Specification 
This is used to set a SLIP trap for a certain range but filter out a sub-range(s) that 
you don't want trapped for whatever event and action you have specified on the 
command. For example, the following traps: 

SLIP SET,IF,EN,ACTION=TRACE, 
TRDATA=(STD), 
JOBNAME=JES2, 
RANGE=(E5000,107000), 
END 

SLIP SET,IF,EN,ACTION=IGNORE, 
JOBNAME=JES2, 
RANGE=(E5628,105230), 
END 

SLIP SET,IF,EN,ACTION=IGNORE, 
JOBNAME=JES2, 
RANGE=(l05400,106000), 
END 

(trace all in this range ••• 

... except this range .•. 

.•• and this range) 

The previous traps would trace instructions in these ranges: E5000-E5627, 
105231-1053FF, and 106001-107000. 

Indirect Addressing in SLIP Traps 
Indirect addressing is often used with the TRDATA and DATA parameters. For 
example, if you are tracing in HASPTERM and want to trace the SOWA (to which 
register 1 points), you can specify: 

... TRDATA=(lR%+0,1R%+100), ... 

This will trace X'101' bytes of data pointed to by register 1. 

If you know the SOWA resided at location X'946EFO', you could have used direct 
addressing and specified: 

... TRDATA=(946EF0,946FF0), ... 

Shorthand is permitted in indirect addressing, for example: 

... TRDATA=(1R%,+100), 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-35 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The location in the first member of the pair defaults to '+O' and the register in the 
second pair uses the register coded on the first pair as a default. 

Direct and indirect addressing can be mixed: 

••• TRDATA=(2R%+0,+30,9F6E0,9F6F8), ••• 

In this example, the first pair uses indirect addressing. It specifies X'31' bytes of 
storage pointed to by register 2. The second pair directly addresses storage 
between the virtual addresses coded. 

Pointing Through a Chain of Pointers 
You can also trace storage through chain of pointers. For example, if register 10 
points to the CVT: 

... TRDATA=(l0R%+128%+18%+10% ••. 

points to the SSVT for JES2. At X'128' bytes into the start of the CVT (pointed to by 
register 10), is the address of JESCT. At X'18' bytes into the JESCT is the address of 
the SSCVT. At X'10' bytes into the SSCVT is the address of the SSVT. 

Contents of Trace Records 

5-36 JES2 Logic 

Trace records are produced by the ACTION= TRACE or ACTION= TRDUMP 
specifications. GTF must be active. A maximum of 256 bytes plus a 16-byte header 
may be traced. 

There are four types of trace records. The standard trace record contains: 

Hex Offset 

0 
10 
14 
16 
1E 
22 
24 
2C 
30 
34 
35 
37 
43 
47 
4D 
51 
5 
58 
5F 
68 
60-87 

Contents 

16-byte GTF header 
ASC8 address 
CPUID 
Jobname 
Trap ID 
ASID 
J08STEP program name 
TCB address 
System mode indicators/error indicators 
SLIP flag 
Data unavailable (used with DATA= keyword) 
Load module and offset 
Instruction address 
Instruction trapped 
Target address of an "execute" (EX) instruction 
Target instruction of an "execute" (EX) instruction 
Beginning of the range for an SA trap 
Data for an SA trap 
Program old PSW and interrupt code 
PER interrupt code and trap mode 
Reserved 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
licensed Materiais - Property of IBM 

SLIP User Trace Record 
The contents of the SLIP user trace record are: 

Registers (optional) 
User-defined fields (191 bytes with registers, 256 without) 
A one-byte length field precedes the registers and the data 

SLIP Standard/User Trace Record 
The contents of the SLIP standard/user trace record are: 

SLIP standard record fields 
User-defined fields (71 bytes with the registers, 136 without) 
A one-byte length field precedes the registers and data 

Using the DEBUG Keyword with TRACE 
Using the DEBUG option with TRACE produces a fourth type of record, the GTF SLIP 
DEBUG record, every time the trap is tested. 

JES2 DEBUG Functions in a Multi-access Spool Configuration 
JES2 systems in a multi-access spool configuration share a single job queue, job 
output table, and master track group map, all of which are kept on the JES2 
checkpoint data set. In addition, the checkpoint data set contains shared system 
queue elements (QSEs) and other miscellaneous information needed for 
inter-system control. (Figure 5-8 illustrates the checkpoint format.) The checkpoint 
data sets are allocated to one processor at a time. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-37 

!} 
ii 

ii ,) 
I ,. 



MASTER 

HCT QSE JQE Extension DAS Extension KIT CTLB 

($CLRECN * 4K) 

00 
I MSTR TGM BAD TGM 

JIX ($NUMJBND * 2 + 2) 

I 2 BYTES per JOBNO I I 2 BYTES per JOBNO I r 2 BYTES per JOBNO 

JQE ($MAXJOBS * JQELNGTH + JQELNGTH) 

JQE JQE JQE JQE 
I I JQE JQE JQE JQE I I JQE JQE JQE JQE 

I I 

I I 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

2 BYTES per JOBNO 

JQE JQE JQE JQE 

JQE JQE JQE JQE I I JQE JQE JQE JQE I I JQE JQE JQE JQE I I JQE JQE JQE JQE 

JQE JQE JQE JQE I I JQE JQE JQE JQE I I JQE JQE JQE JQE 

JOE POST 
$NUMJOES 

1 BYTE per JOE 

JOE ($NUMJOES * JOESIZE + (JOTJOES - JOTDSECT) 

JOT QUEUE HEADS I I JOE JOE JOE JOE I I JOE JOE JOE JOE I I JOE JOE JOE JOE 

JOE JOE JOE JOE I I JOE JOE JOE JOE I I JOE JOE JOE JOE I I JOE JOE JOE JOE 

JOE JOE JOE JOE I I JOE JOE JOE JOE 

RMTSOH 
($NUMRJE) 

LCK DAS 
($MAXLCK * LCKSIZE) ($ SPOLNUM * DAS SIZE) 

I~ _i_s_YT_E_p_e_r_R_MT_~I I LCK LCK LCK LCK I LCK LCK LCK LCK I 

Figure 5-8. Checkpoint Format 

5-38 JES2 Logic LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Access to any part is controlled by a system's JES2 checkpoint processor, found in 
the HASPCKPT module. If debug mode is specified {DEBUG= YES), HASPCKPT can 
detect illegal updates to the checkpoint data set. HASPCKPT does this by copying 
its in-storage checkpoint data to a 4K 1/0 area before writing it to DASO. When this 
system regains control of the checkpoint data set, it compares its current checkpoint 
data set with its saved copy (the data in the 1/0 area). If the data is not the same, an 
invalid update has taken place. Similarly, during a write operation, HASPCKPT 
compares each 4K checkpoint area that was not flagged for change with its 
corresponding copy in the 110 area. If they don't match, an invalid update has taken 
place. If the checkpoint record was flagged for change, it creates a new 1/0 copy. 

The processor has four major sections: 

• Initialization 
• Read 
• Write 
• Release 

Initialization: Initialization is executed once when the processor is first activated by 
the JES2 dispatcher. 

Read: This function is executed at the beginning of each shared queue ownership 
period by systems in a multi-access spool configuration. If initialization parameter 
DEBUG= YES, the 4K pages are compared with copies saved just prior to the last 
write of a checkpoint. A mismatch indicates an invalid change to these shared 
queue areas and JES2 is terminated with a $K01 catastrophic error. 

After a successful read completion, the time stamps in this system's QSE, and in 
any QSE for which the $ESYS command had been entered, are compared with a 
time stamp saved in the HCT. A mismatch indicates that another system has 
illegally taken ownership of a QSE owned by this system, or that the reserve 
mechanism (hardware or IOS) has failed to prevent simultaneous access to the MAS 
configuration checkpoint records. JES2 terminates with a $K03 catastrophic error. 

Write: This function is executed repeatedly as a loop in response to various 
requests by other processors or timers. In a multi-access spool environment, the 
loop operates only during an ownership or hold period. 

If the initialization parameter is DEBUG= YES, the saved copies of the 4K pages are 
compared with the current 4K pages. If a record has been modified, but its 
corresponding checkpoint control byte does not indicate this, JES2 is terminated 
with a $KOS abend. A $KOS abend indicates a failure to issue a $CKPT macro 
instruction prior to executing a $WAIT macro instruction, after first modifying the 4K 
pages. 

The current hardware time-of-day (TOD) clock is recorded in the HCT, along with 
this system's QSE and a QSE for which any $ESYS command had been entered. In 
multi-access spool systems, these time stamps are verified following the next read 
operation to ensure the integrity of QSE ownership. 

If the parameter is DEBUG= YES, copies of the 4K pages to be written are saved. In 
multi-access spool systems, these are used prior to the next read operation to 
detect invalid updates to shared but not owned information. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-39 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Release: READ2, KPRIMW, and KFORMAT (see HASPCKPT) page-free and 
page-release the 110 area records after 110 is complete. The system default on the 
MVS PG FREE service is RELEASE= YES so that non-fixed pages are not written to 
the page data set when they are paged out. If the DEBUG option is chosen, the 
virtual copy of the record in the 1/0 area must be retained for comparison, that is, 
the fixed pages are freed but not released. With DEBUG= YES, the MVS PG FREE 
service uses RELEASE= NO, which guarantees that the content of the virtual page 
remains intact when the area no longer remains in central storage. This, however, 
results in a considerable amount of paging 1/0. 

DEBUG and HASPNUC 
Because the $GETWORK routine in HASPNUC obtains a member of a pool of 
fixed-length areas, the area provided and then returned might be larger than the 
area requested and used. If DEBUG= YES is specified, a check is made to ensure 
that the area used did not exceed the area requested. If the area used is not the 
same size as the area requested, catastrophic error $GW3 is issued. 

The Usefulness of DEBUG 

Modifying DEBUG 

The DEBUG facility is most useful for trapping unauthorized alteration of a JOE or 
JOE. It can detect a failure to issue a $QSUSE or a $CKPT macro. It can also detect 
random overlays of the 4K pages. However, the facility cannot detect all 
unauthorized alterations and its limitations should be understood. 

If a routine changes a JOE or JOE without issuing $0SUSE, it is possible that the 
routine already has exclusive control of the checkpoint data set. In this case, 
DEBUG will not detect the change. And if a routine changes a JOE or a JOE without 
first having issued a $CKPT, and another JOE or JOE in the same block was validly 
altered during the same checkpoint cycle, the error will not be detected. As a 
result, many unauthorized changes or overlays may remain undetected. 

The operator can change the current setting of the DEBUG statement by issuing the 
$T command (either $T DEBUG= YES or $T DEBUG= NO). The $D DEBUG 
command can be used to display the current setting of the DEBUG statement. 
Message $HASP827 will appear displaying the setting. 

Tracing and the $TRACE Facility 

TRACE IDs 

5-40 JES2 Logic 

For general information about tracing events in JES2 processing, see SPL: JES2 
Initialization and Tuning. This section explains what events can be traced and 
provides examples of trace output for certain trace ids. 

Figure 5-9 summarizes the various types of information available from the standard 
JES2 tracing facility. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Figure 5-9. Trace Functions 

Trace ID 

0 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

12 

13 
14 
15 
16 

17 
18 
19 
20 
21-255 

Type of Information 

Don't trace but spin-off the current trace log data set 
Trace the $SAVE macro usage of all PCEs. 
Trace the $RETURN macro usage of all PCEs. 
Trace JES2 disastrous error results 
Trace channel ends for SSC remote lines (BSC buffer trace) 
Trace RPL completions for SNA remote lines (SNA buffer trace) 
Trace JES2 initialization processing 
Trace JES2 abnormal termination 
Trace specific debugging locations in JES2 
Trace specific debugging locations in JES2 
Trace specific debugging locations in JES2 
Trace the use of the $SAVE macro in all PCEs with TR= P. Also trace all SSI routines 
with TRACE= YES. 
Trace the use of the $RETURN macro in all PCEs with TR= P. Also trace all SSI 
routines with TRACE=YES. address space 
Trace exit point invocations 
Trace the occurrences of GETDS, RELDS, and SEND FSI requests 
Trace the occurrences of GETREC, FREEREC, and CHKPT FSI requests 
Trace the occurrences of connect and disconnect requests between JES2 and the 
functional subsystem 
Trace checkpoint performance 
Trace HASPSSSM $SAVEs in all SSI functions 
Trace HASPSSSM $RETURNs in all SSI functions 
Trace $#GET calls 
Currently not used. If you use them, start with 255 and decrease the numbers. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-41 

I 
;'~ 
:.,. 
i 
I 
I~ 
I~ 
1l 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Trace ID = 0 Example 

14.55.57.96 ID 
14.55.57.97 ID 
14.55.57.97 ID 
14.55.57.97 ID 
14.55.57.97 ID 
14.55.57.97 ID 
14.55.57.97 ID 

14.56.13.09 ID = 

Figure 5-10 is an example that shows Trace ID=O. It shows the number of trace 
tables in effect, and total and recent discards. TOTAL DISCARDS is the number of 
entries discarded since tracing was turned on. RECENT DISCARDS is the number of 
entries discarded because of the current lack of an available table. Be aware that 
adding the recent number to the total number does not always add up to the next 
total. The reason is that the recent number is kept in the trace table page and the 
total number is kept in the $HCCT. 

19 $RETURN ASID 0013 Rl4-Rl 809D6F64 00000000 00000000 020A7908 
Rl4-Rl 809DlF70 00000000 0509FD10 007E9800 

19 $RETURN ASID 0012 
02COD528 $TRACK Rl4-Rl 8002EC9C 00087808 02D41254 00969888 

1 $SAVE STC16585 EVTL 809CB790 00000000 0509FD10 007E9800 
19 $RETURN ASID 0012 Rl4-Rl 02D41254 Oll5460F 

2 $RETURN STC16585 EVTL 02COD528 Rl4-Rl 8002EC9E 000878D8 
0509FD05 00000000 

18 $SAVE ASID 0012 $CBIO Rl4-Rl 809CC264 009DlE70 
0509FD05 007E9000 

18 $SAVE ASID 0012 CBIORTN Rl4-Rl 809DlF70 009D21EO 

0 TRACE EVENTS DISCARDED TRACE TABLES = 25 
TOTAL DISCARDS = 819744 RECENT DISCARDS = 231 

Figure 5-10. TRACE ID=O 

5·42 JES2 Logic LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

r{ 
' 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Trace ID= 1, ID= 2, ID= 18, ID= 19 Example 
Figure 5-11 is an example of trace output for trace IDs 1 ,2, 18, and 19. An 
explanation of the fields appear after the figure. 

10.25.31.46 
10.25.31.46 
10. 25. 31. 46 
10. 25. 31. 46 
10. 25. 31. 46 
10.25.31.53 
10.25.31.53 
10. 25. 31. 66 
10.25.31.66 
10.25.32.02 
10.25.32.12 
10.25.32.13 
10.25.32.13 
10.25.32.13 
10.25.32.13 
10.25.32.13 
10.25.32.13 
10.25.32.13 
10.25.32.13 
10.25.32.13 
10.25.32.14 
10.25.32.14 
10.25.32.14 
10.25.32.16 
10.25.32.16 
10.25.32.23 
10.25.32.27 
10.25.32.27 
10.25.32.27 
10.25.32.27 
10.25.32.41 
10.25.32.41 
10.25.32.41 
10.25.32.41 
10.25.32.41 
10.25.32.41 
10.25.32.41 
10.25.32.41 
10.25.32.42 
10.25.32.51 
10.25.32.60 
10.25.32.60 
10.25.32.60 
10.25.32.61 
10.25.32.61 
10.25.32.61 
10.25.32.61 
10.25.32.61 
10.25.32.61 
10.25.32.62 
10.25.32.62 
10.25.32.62 
10.25.32.62 
10.25.32.62 
10.25.32.62 
10.25.32.62 
10.25.32.74 
10.25.32.74 

ID = 
ID = 
ID = 
ID = 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID = 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID = 
ID = 
ID = 
ID = 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID = 
ID = 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 
ID 

In addition to the tracing of $SAVEs and $RETURNs for the routines listed in the 
figure, $SAVEs and $RETURNs associated with a functional subsystem are also 
traced. 

1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
2 $RETURN 
1 $SAVE 
2 $RETURN 
1 $SAVE 
2 $RETURN 
1 $SAVE 
1 $SAVE 
1 $SAVE 
2 $RETURN 
1 $SAVE 
2 $RETURN 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
2 $RETURN 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 
1 $SAVE 

STC 
STC 
STC 
STC 
STC 
STC 
STC 
STC 
STC 
STC 
STC 
STC 
STC 
STC 
STC 
STC 
STC 
STC 

STC 
STC 
STC 
STC 
STC 

STC 
STC 

STC 
STC 
STC 
STC 
STC 
STC 
STC 
STC 
STC 
STC 
JOB 
JOB 

0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 

0001 
0001 
0001 
0001 
0001 

0001 
0001 

0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0007 
0007 

COMM 
COMM 
EVTL 
EVTL 
EVTL 
EVTL 
EVTL 
EVTL 
EVTL 
EVTL 
EVTL 
EVTL 
EVTL 
EVTL 
EVTL 
EXEC 
EXEC 
EXEC 
EXEC 
EXEC 
CKPT 
CKPT 
CKPT 
CKPT 
CKPT 
EVTL 
EXEC 
EXEC 
EXEC 
EXEC 
CKPT 
CKPT 
CKPT 
CKPT 
CKPT 
CKPT 
CKPT 
CKPT 
CKPT 
EVTL 
EXEC 
EXEC 
PRINTRl 
PRINTRl 
PRINTRl 
PRINTRl 
PRINTRl 
PRINTRl 
PRINTRl 
PRINTRl 
PRINTRl 
PRINTRl 
PRINTRl 
PRINTRl 
PRINTR2 
PRINTR2 
CKPT 
CKPT 

CWTO 
$WTO 
$TTIMER 
$TRACK 

$TRACK 

$TRACK 

$JCTIOR 
$WTO 
$TRACK 

$TRACK 

$GETJLOK 
$#BLD 
$#ADD 
$GETBUF 
$JCTIOR 
$PGFIX 
KWRITE 
$PGFIX 
$PGFIX 
KWRITE 
$JCTIOR 
$TRACK 

$FREEBUF 
$PGRLSE 
$PGFREE 
$PGFREE 
$PGFREE 
$TTIMER 
$STIMER 
$PGFIX 
KWRITE 
$PGFIX 
KWRITE 
$STIMER 
$FREJLOK 
$QGET 
$GETBUF 
$#GET 
$GETBUF 
$PGFIX 
$GETBUF 
$PGFIX 
$GETBUF 
$PGFIX 
$PGFIX 
$#JCTRDR 
$GETBUF 
$JCTIOR 
$#GET 
$FREUNIT 
$PGFREE 
$PGFREE 

Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 
Rl4-Rl 

401BOEE2 001BOEE8 00000012 00000000 
901BOF2E 001BED58 00208DFO 00208E3C 
401C4102 001A7318 00000000 0020A450 
501C52B4 001A7AD2 00227068 0087D080 
501C52B4 001A7AD2 00227068 00017102 
501C52B4 001A7AD2 00227068 00870080 
501C52B4 001A7AD2 00227068 00016001 
501C52B4 001A7AD2 00227068 0087D080 
501C52B4 001A7AD2 00227068 00016003 
501C5262 001A92A4 00000001 00015601 
401C51EC 001BE058 00000028 0026C058 
501C52B4 001A7AD2 00227068 0026B080 
501C52B4 001A7AD2 00227068 00015702 
501C52B4 001A7AD2 00227068 OOA49080 
501C52B4 001A7AD2 00227068 00016401 
401F782A 001A8504 00000018 00227068 
601F783E 00000068 008700D4 00208830 
401F7858 001ClB60 00208830 00208884 
601C2F20 001A708E 00000001 00000028 
501C2F76 001A92A4 00000001 00000000 
801AF176 001A7A2A 000013E9 00220000 
901AE548 002540CC FFFFFBE9 00221800 
801AEB6E 001A7A2A 00001000 00247000 
801AEB6E 001A7A2A 00001000 00240000 
801AE5CE 00000000 7FOOOOOO 7FOOOOOO 
501C5262 001A92A4 00227068 00015601 
401C2FE4 001A7A02 00227068 00870080 
401C2FE4 001A7AD2 00227068 00016002 
401C30D8 001A8038 00000030 00260000 
501A819C 001A79E2 QOOOlOOO 0026D000 
701AEC6E 001A7A06 00001000 00240000 
701AEC6E 001A7A06 00001000 00247000 
801AEA78 001A7A06 000013E9 00220000 
401AF22C 001A7318 7FOOOOOO 002094AO 
501AF21A 001A71B6 FFFFE890 002094AO 
801AF176 001A7A2A 000013E9 00220000 
901AE548 002540CC FFFFFBE9 00221800 
801AEB6E 001A7A2A 00001000 00247000 
801AE5CE 00000000 7FOOOOOO 7FOOOOOO 
601C415E 001A71B6 00000000 0020A450 
501F7A08 001A857C 00000030 00227068 
401F6ElE 001A6ACE 0087EOOO 00000041 
401CED96 001A7D8E 00000024 00000020 
501CBB84 001C2468 00000024 0020AE84 
401D273C 001A7D8E 00000001 00000068 
401A7ECO 001A7A2A 00001000 0026EOOO 
401D2754 001A7D8E 00000001 00000068 
401A7ECO 001A7A2A 00001000 0026FOOO 
501D2782 001A7D8E 00000001 00000063 
401A7ECO 001A7A2A 00000448 00374448 
401D288E 001A7A2A 00000020 0084A334 
401CBD66 001C32DE 0039452D 00227068 
401C33D8 001A7D8E 00000000 00000020 
601C33EA 001A92A4 00000000 00270000 
601Cl4EE 001C2468 000000 
401Cl50C 001A70BE 000000 
701AEC6E 001A7A06 000010 
801AEA78 001A7A06 000013 

Figure 5-11. $SAVEl$RETURN Traces 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5;;,43 

ii I 
Ii 



Trace 10=3 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

A Time-of-day clock value when the $TRACE was executed. 

B Trace identifier 

ID = 1 $SAVE - $SAVE trace 
ID = 2 $RETURN - $RETURN trace 
ID= 18 $SAVE 
ID = 19 $RETURN 

C Address space identifier or job identifier associated with the program that 
issued the $TRACE (if available). 

D PCE name (if available) associated with the $TRACE. 

E PCE address 

F EBCDIC name of the routine in which the $SAVE or $RETURN was issued. 

G Contents of registers 14, 15, 0, and 1. 

Traces with ID=3 trace disastrous error results, including errors associated with a 
functional subsystem. A trace point in routine FSMCBCK in HASPFSSM traces 1/0 
errors or the encounter of invalid control blocks. The buffer at the time of the error 
is traced. 

Trace ID = 4 Example 

5-44 JES2 Logic 

Figure 5-12 is an example of trace output for trace id=4, a BSC buffer trace. A 
description of how to interpret the trace output follows the example. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



r· 
-< I\) 
00 
I .... 

0 
0 
a> 
I 
I\) 

@ 
(") 
0 

"C 
'< .., 
cCi" 
'::f' -iii 
s::: 
(") 
0 .., 

"'!=' .... 
<O 
00 
!» .... 
<O 
<O 
0 

(") 
'::f' 
II> 

"C 
1D .., 
CJ1 

0 
iii" 
co 
:J 
0 en -c;· 
)> 
c: en 

c.n 
I 

olili 
c.n 

~ 

,, 
ia· 
I:: .,, 
Q) 

°' I .... 
!" 
OJ 
C/) 
() 

OJ 
I:: :::: 
CD .,, 
::;' 
Ill 
0 
CD 

~ /~~ :'1' 

~ 25. 03. 45/,D l J. BSC-BUFRI MJLM \ lase BCFFER TRA;: FOF LINE6 

llB0390 ~ooloooo l2I9FDFC8 OOl1B0408 ocoooooo li911E03EB 0090B3F~lB03E8 FFOOOOOO 
1B03BO 001B04AO 041B04DB 00000000 Ell62950 00162350 0061106B 27000000 60A20001 
lB03DO 030FC588 60AA0004 010FC5B8 60AA0001 021B03C6 20A60002 030FC588 60A80004 
1B03FO 011B0408 AOA800D4 OJOFC5AO 60A80002 021B03C6 20A50002 

ccw 030FC588 60A80004~ 

ccw 011B0408 AOA800D4 

180408 0227E31D 57Dl40C5 40E240F2 40400140 D640C240 40D34006 40C74040 60604040 
1B0428 E240E840 E240E340 C5400440 40F340F3 40C340Fl 40406C60 40400540 D640C440 
180448 C54040Dl 40C540E2 40F21E27 61401E27 61FlF04B F2F44BF3 F340D1D6 C21D44F8 
1B0468 40405BC8 C1E2D7F3 F7F340C7 CSOSCSD9 1D44E2E3 ClD9E3CS C4406040 C905C9E3 
1B0488 4040F540 6040C3D3 ClE2E240 C1406040 E2E8E240 F3F3C3Fl 1E2761Fl F04BF2F4 
1B04A8 4BF3F440 DlD6C21D 44F84040 C9C5C6F4 FOF3C940 C7CSDSCS D9406040 E2E3ClD9 
1B04C8 E3C5C440 6040E3C9 D4C57EF1 F04BF2F4 4BF3F41E 

ccw 010FC5AO 60A80002~ 

FC5AO 3226 I 

ccw 021B03C6 20A50002 

1B03C6 106B 

/.....,, 

r 
-·::II 
0 CD 
CD en 
:J -en .., 
CD -· 
c. ~ 
s::: ~ * H y 8 y * 
es::: * & & I , - * 
CD II> 

* E - E - F E - * .., --· CD 
* M E - F * ~ ... 

en iii" 
I w * E - * 

-0 s. 
* t-' * 0 iii 

~ s::: 
* T J E S 2 J 0 B L 0 G -- * ~ 
*S Y S T E M 3 3 c 1 -- N 0 D * s. 
*E J E S 2 I /10.24.33 JOB 8* iii * $1!l,SP373 GENER STARTED - INIT* 
* 5 - CLASS A - SYS 33Cl /10.24* s::: 
*.34 JOB 8 IEF403I GENER - STAR* 
*TED - TIME=l0.24.34 * 

* E - * 

* * 

* F * 

* * 

<ri' t M 



5-46 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

This trace can assist you in diagnosing BSC problems. Both inbound and outbound 
buffers are traced when this trace is activated. Both network job entry (NJE) lines 
and remote job entry (RJE) lines can be traced. A breakdown of the trace output 
follows. 

The input to this trace point is the buffer which contains the IOB. The IOB contains 
the channel program that executed on the line being traced. Refer to Debugging 
Handbook for more details about the IOB. See Principles of Operation for more 
information about CCWs and CSWs. 

A In this column is the address of the IOB or data being traced. You will see 
trace entries with the same addrAsses as they are reused. 

B 110 completion flags (IOBFLAG1). Successful completion = X'42' Error = 

X'46'. 

C First 2 sense bytes of the 1/0 operation. See sense information for individual 
devices (IOBSENS1 and IOBSENS2). 

D ECB completion codes (IOBECBCC) and the HASP ECB pointer (IOBECBPT). 
Common completion codes are: 

X'41' --1/0 error. Check IOBSENS1 and IOBSENS2 
X'44' -- IOB intercept. CSW is not valid 
X'48' -- 110 was purged 
X'7F' -- Normal completion 
X'FF' -- Requeued BSC buffer (a JES2 only value) 

E This is the CSW without its first byte. It starts at IOB + 9 and is 7 bytes in length. 
The address in the first 3 bytes points 8 bytes past the last CCW executed. The 
CSW count field is the residual date count of the CCW that completed. The 
actual number of bytes read or written is the difference between this value and 
the CCW byte count in the CCW just completed. 

F SIO condition code (IOBSIOCC), successful in this instance (40 = CSW stored). 

G Address of the start of the channel program (IOBSTART). 

H Channel programs (IOBCCW1 through IOBCCW8) 

CCW entry. These are the CCWs from the channel program. It starts at 
X'1B03E8' with a NOP CCWand ends at X'1B0400' with a READ CCW. The 
READ or WRITE data associated with the CCW follows the CCW entry. 

J This is the data that was associated with the WRITE CCW located at X' 1803FO'. 
When this trace entry was made, this data was located at X'1B0408' and was 
X'D4' bytes in length, as indicated by the CCW byte count in the WRITE CCW 
that precedes it. 

See Figure 3-7 for an explanation of byte 5 of the CCW (TP op code). 

Refer to the description of message $HASP094 in JES2 Messages for additional 
information about some of the fields listed above. 

LY?8-1006-2 ©Copyright IBM Corp. 1988, 1990 



f 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Trace ID = 14 Example 
The following figures are examples of trace output for trace id= 14, a GETDS, 
RELDS, ORDER, ORDER RESPONSE, CHKPT, and SEND FSI request trace. A 
description of how to interpret the trace output follows the examples. The letters in 
the explanation correspond to letters in the figure. 

In addition to providing you with the contents of registers 14, 15, 0, and 1 and the 
order parameter list, these traces provide: 

DCT fields: 

DCTFLAGS,DCTSTAT,DCTFSSFL, DCTFLAG1 

FSSCB fields: 

FSSFLAG1,FSSFLAG2,FSSFLAG3 

FSA CB: 

The FSACB is traced if one exists. Only FSACB flags are traced from the 
common order routine in HASPFSSP. The entire FSACB is traced from the 
order crqss memory and response routines in HASPFSSP. 

FSIP: 

The FSIP is traced if a FSACB exists. 

TRACE ID= 14 trace points for ORDERS exist in HASPFSSP, FSI ORDER 
(FSPORDER) and ORDER CROSS MEMORY (FSPORCMS) routines. These routines 
call HASPFSSM to issue an FSI order or service request. 

The functional subsystem interface parameter list (FSIP) is traced only in the 
ORDER CROSS MEMORY routine. 

TRACE ID= 14 trace points for ORDER RESPONSES exist in HASPFSSP RESPONSE 
routines. 

TRACE ID= 14 trace points for GET DATASET (GETDS), RELEASE DATASET 
(RELDS), CHECKPOINT (CHKPT) and SEND FSI REQUEST exist in HASPFSSM. 

Figure 5-13 is an example of trace output for trace id= 14, an FSPORDER trace, when an FSA is not active. 
Note the absence of the FSA eyecatcher and FSA flag bytes of zeroes . 

• • ~ ~ r--"---. 
07.51.08.04 ID = 14 FS!LINK1 PRINTR7 

Cl){ O C4C3E340 120004C1 C6E2E240 80000000 
"---v---J L-v__J L-y__J L-y__J 

0 • Ct • 

FSPORDER R14--R1 = 400FB55E ODOFB630 00001C70 0017FF80 

00000000 00000000 00000000 •DCT AFSS 

Figure 5-13. An FSPORDER Trace When an FSA /s Not Active 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5.47 

'1,i I) 

,j 

II 
,1 ,, 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Figure 5-14 is an example of trace output for trace ID= 14, an FSPORDER trace, when an FSA is active. 

07,51.11.3~ 1tSILINK~ ~TR7 ~RDE~ R14-R1 = 400FB55E OOOFB630 00001C70 009426E8 

O C4C3E340 120004C1 C6E2E240 BOCOBOCO C6E2C140 00200000 00800000 *DCT AFSS FSA 

Figure 5-14. An FSPORDER Trace When an FSA Is Active 

Figure 5-15 is an example of trace output for trace ID= 14, an FSPORCMS trace. 

Figure 5-15. An FSPORCMS Trace 

ORDSTFSA R14-R1 = 500FB85E OOOFC830 00030000 009426A8 

C6E2C140 00030001 009426A8 00000000 
00000000 00000000 00000000 FOF1F840 
00000000 00000000 00200000 00800000 
00000000 00000000 00000000 0000000 
00900AB8 00000002 00030001 FOF1F800 
00000000 00000000 10804000 00000064 

*DCT AFSS 

* *PRINTR7 
*FSIP 

* *PRINTR7 

FSA * 
018* 

018* 

Figure 5-16 is an example of trace output for trace ID= 14, an FRSPORDR trace from the RELDS response 
routine. 

*FSWFLAG RETC FSWK * 
• 
*RETN JIB 

Figure 5-16. An FRSPORDR Trace from the RELDS Response Routine 

Figure 5-17 is an example of trace output for trace ID= 14, an FRSPORDR trace when an FSA is not active. 

Figure 5-17. An FRSPORDR Trace When an FSA Is Not Active 

50 FB6AO OOOFCBEE 00001C70 009426E8 

*DCT AFSS 
• 
* *FSWFLAG RETC FSWK STAR * 
* T AFPSIM2.FSS3,,.(JES2,0003),SU • 
•B-JES2 

Figure 5-18 is an example of trace output for trace id= 14, an FRSPORDR trace when an FSA is active. 

5-48 JES2 Logic L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 



( 

!'.i .. • ','Jt 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

07.51.11.39 ID = 14 FSIL!NK1 

O C4C3E340 120004C1 C6E2E240 800080CO 
20 00900088 0090ACE8 00000000 00000000 
40 D7D9C9D5 E3D9F740 00000000 00000000 
60 C6E2E6C6 D3C1C740 00000008 D9C5E3C3 
80 00000000 00000000 00000000 00000000 
AO 00000000 00900AB8 00000002 

0 
~ 
RSPSTFSA R14-R1 500FB6AO OOOFCBEE 00001C70 009426E8 

C6E2C140 00030001 009426A8 00000000 •OCT AFSS FSA 
00000000 00000000 00000000 FOF1F840 y 
00000000 00000000 00204000 FOCOOOOO •PRJNTR7 
00000000 C6E2E602 00000054 00000000 •FSWFLAG RETC FSWK 
00000000 00000000 00000000 00080000 • 

Figure 5-18. An FRSPORDR Trace When an FSA /s Active 

Figure 5-19 is an example of trace output for trace id= 14, an FSISEND trace. 

oo.o..oo.n m - ""'""'' "'° °'" '"' i """"° ,,._,, - '°'""' °''°''" °''""' '°''°''° 
60340 00000024 00000008 00020001 00000000 00000000 00000000 8000000 009EA224 • 

'"'" T COMOOO~OOOCOOO I°'°' 

Figure 5-19. An FS/SEND Trace 

Figure 5-20 is an example of trace output for trace id= 14, an FSICKPT trace. 

08.06.02.15 ID = 14 FSIL!NK1 ASID 0011 PRT2 FSMCHKPT R14-R1 - 60039800 0090F252 009EA120 000675F8 

675F8 rgg~~go3C 00000007 00020001 '"'' ~,,, ,,,,,,,, ,,,,,,,, 

Figure 5-20. An FSICKPT Trace 

00000000 
00000000 

00000000 00000000 00067634 00000000 
00000000 00000000 00000000 

• 
• 5 0 & 

• 
018 • 
0 

Figure 5-21 is an example of trace output for trace id= 14, a GETDS, RELDS, SEND FSI request trace. This 
trace is taken before a data set is allocated and contains only the GETDS FSIP. 

(9 
08.02.16.44 ID - 14 FSIL!NK1 ASID OOOF PRINTR2 I FSMGETDS R14-R1 = 6011F3F6 008FB1F8 008F9090 0015C400 

15C400 OOOOOOAC 00000003 0001 0001 00000000 00000000 00000000 02004000 OOOOOOC4 • D • 
15C420 0015DAOO 008E1 11C 00000000 00000000 00000000 00809038 00000000 00000000 • 
15C440 03F30003 00809008 008E 1 040 00000000 00000000 00000000 00000000 00000000 • 3 
15C460 00000000 00000000 00000000 00000000 00000000 00000000 00000000 • 
15C480 00000000 00000000 00000000 00000000 00000000 00000000 • 
15C4AO 00000000 00000000 00000000 

Figure 5-21. A GETDS, RELDS, SEND FSI Request Trace Before Data Set Allocation 

Figure 5-22 is an example of trace output for trace id= 14, a GETDS, RELDS, SEND FSI request trace. This 
trace is taken only if a data set has been allocated, and contains the FSIP, FSA flags, JIB job number, JIB 
job ID, GCB flags GCBDSPN. 

LY2B-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-49 

i.1.·.·· 

I 

I, 
i'I 



• 
08.02.16.44 IO - 14 FS!LINK1 AS!D OOOF PRINT 2 FSMGDSRT 

• 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

3F6 008FB1F8 008F9090 0015C400 

D • 
0 

• 3 

& 3JOB 10 • 
JES2 $SYSMSGS • 

Figure 5-22. A GETDS, RELDS, SEND FSI Request Trace After Data Set Allocation 

5-50 JES2 Logic LY28-1006-2 ©Copyright IBM Corp. "1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Trace ID = 15 Example 

Figure 5-23 is an example of trace output for trace id= 15, a GETREC and FREEREC FSI request trace. A 
description of how to interpret the trace output follows the example. The letters in the explanation 
correspond to letters in the figure. 

A trace point also exists in FRSPORDR. This routine processes responses to orders. This trace point will 
give you the response area that is mapped by the IAZRESPA macro, and flags FSAFLAG and FSAFLAGS in 
the FSACB. 

16.59.30.44 ID = 15 FSILINK2 ASID 0009 PRJNTR11 

lb(221DBO 00000038 00000004 00020001 00000000 
W 221000 00000000 00000000 00060002 007F9470 

16.59.30.57 ID = 15 FSILINK2 ASID 0009 PRINTR11 

2210FO 0000002C 00000005 00020001 00000000 
221E10 007F9470 008011 EB 00000002 

Figure 5-23. GETRECIFREEREC Trace 

Trace ID = 16 Example 

ct 
~---~ 

FSMGETRC R14-R1 = 60205C36 0081C4FB 00819128 00221080 

00000000 00000000 80000000 00000000 • 
008011 EB 00000000 

FSMFRERC R14-R1 = 6020555E 0081C906 00819128 00221DFO 

00000000 00000000 007FD01C 00060002 • 
y 

y 

Figure 5-24 is an example of trace output for trace id= 16, a CONNECT and DISCONNECT FSI request 
trace. A description of how to interpret the trace output follows the example. The letters in the explanation 
correspond to letters in the figure. 

icte TT j 
~ ~(::;:,:· ,:S,:::::::::::

000000
·1 ·:::i§:::~~~':,:,:::,:::,,:~:-o~-c-s-oo_A_3_1o_s_o_o_o_2~28s 

W 229088 00000000 0021808C 00000001 002~ 01C5E2F2 00000000 JES2 

16.47 .44.53 ID = 16 FS!CONCT ASID 0009 PRINTR11 

221DFO 00000038 OOOOOOFE 00020001 00000000 
221E1 0 00000000 00221 608 00000002 00221 E28 

Figure 5-24. CONNECT/DISCONNECT Trace 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 

FSMCONCT R14-R1 = 50208EEC 001903C8 OOA31080 00219288 

00000000 00000000 OOFOOOO 80221F68 • 
01C5E2F2 00000000 JES2 

Chapter 5. Diagnostic Aids 5-51 



Trace ID=14, 15, 16 Descriptions 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

A Time-of-day clock value when the $TRACE was executed. 

B Trace identifier 

ID= 14 for GETDS/RELDS/ORDER/RESPONSE/CHKPT trace. 
ID= 15 for GETREC/FREREC trace. 
ID= 16 for CONNECT/DISCONNECT trace. 

C Functional subsystem interface function name. 

FSILINK1 
FS!L!NK2 
FSICONCT 

D Address space identifier associated with the functional subsystem. 

E Device name associated with the functional subsystem. 

F Trace symbolic name associated with the trace entry. 

ORDSTFSA for START FSA ORDER trace 
ORDSTDEV for START DEVICE ORDER trace 
ORDSPDEV for STOP DEVICE ORDER trace 
ORDSPFSA for STOP FSA ORDER trace 
ORDSPFSS for STOP FSS ORDER trace 
ORDQUERY for QUERY ORDER trace 
ORDSET for SET ORDER trace 
ORDINTV for INTERVENTION ORDER trace 
ORDSYNC for SYNCH ORDER trace 
RSPSTFSA for ST ART FSA RESPONSE trace 
RSPSTDEV for START DEVICE RESPONSE trace 
RSPSPDEV for STOP DEVICE RESPONSE trace 
RSPSPFSA for STOP FSA RESPONSE trace 
RSPSPFSS for STOP FSS RESPONSE trace 
RSPQUERY for QUERY RESPONSE trace 
RSPSET for SET RESPONSE trace 
RSPINTV for INTERVENTION RESPONSE trace 
RSPSYNC for SYNCH RESPONSE trace 
RSPRELDS for RELDS RESPONSE trace 

G Contents of registers 14, 15, 0, 1. 

H Trace FSI parameter, flags and miscellaneous data area. 

OCT eyecatcher (to help you locate OCT flags in trace data). 

J DCT flags. The data is four bytes, containing DCTSTAT, DCTFLAGS, 
DCTFLAG2, and DCTFSSL. 

K FSS eyecatcher (to help you locate FSSCB flags in trace data). 

L FSSCB flags. The data is four bytes, containing FSSTYPE, FSSFLAG1, 
FSSFLAG2, and FSSFLAG3. 

M FSA eyecatcher (to help you locate FSACB flags in trace data. 

N FSACB flags. The data is eight bytes, containing FSAFLAG1, FSAFLAG2, 
FSAFLAG3, FSAFLAGO, FSAFLAGI, and FSAFLAGR. The remaining two bytes 
are not used. 

0 FSACB. The FSACB is X'50' bytes in length and traced in its entirety. 

5-52 JES2 Logic L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

6 
,,~ 
\~ 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

P FSIP eyecatcher (to help you locate the FSIP in trace data). 

Q Functional Subsystem Interface Parameter List (IAZFSIP). The length of the 
FSIP is variable. The length of IAZFSIP (and the length of the data traced) can 
be found in the low order positions of the first tour bytes of trace data. 

R FSWFLAG eyecatcher (to help you locate the FSWFLAGS trace data) 

S Functional Subsystem Support Processor PCE Work Area (FSSWORK) flags. 
The data is four bytes in length and contains FSWFLAG, a reserved byte, and 
FSWORDID. 

T RETC eyecatcher (to help you locate RESPRETC in trace data). 

U Return Code of requested function. The data is four bytes in length and contains 
the RESPRETC field of IAZRESPA. 

V FSWK eyecatcher (to help you locate the FSWRK area in trace data) 

W Functional Subsystem Work Area (located in FSSWORK). The data is X'3C' 
bytes in length and contains the response to an order. 

X RETN JIB eyecatcher (to help you locate a pointer to the JIB (JOE information 
block) being returned in the trace data). 

Y The address of the JIB being returned. The data is four bytes in length and 
contains the address of the JIB that is being removed from the FSACB return 
JIB stack (FSARETQS). 

AA 

BB 

cc 

JIB flags. The data is four bytes in length and contains JIBFLG1, JIBFLG2, 
JIBFLG3, and a reserved byte. 

JIB jobnumber. The data is two bytes in length and contains the HASP 
jobnumber (JQEJOBNO) in hexadecimal. 

JIB jobid. The data is eight bytes in length and contains the HASP job identifier 
(JOB, STC, or TSU) and the decimal equivalent of the JIB jobnumber in 
EBCDIC. 

DD GCB flags. The data is four bytes in length and contains the GCB flags. 

EE GCB Dataset ID. The data is 32 bytes in length and contains the GCB fields: 
GCBDSPN (dataset proc. name), GCBDSSN (dataset step name), GCBDSDD 
(dataset ddname), and GCBPRIO (dataset priority). 

FF FSA JOE Count. The data is two bytes in length and contains a count of the 
JOEs assigned to this FSA. 

Checkpoint Tracing 
$TRACE ID 17 (CKPTPERF) provides information about checkpoint performance. 
Each record in the trace output has eight 8-byte fields separated by blanks. The 
formatted output records appear in groups of at most 5 (more if the user has added 
CTENTS). The first field in the first record of each group contains one of the 
following values, and determines the meaning of the contents of the rest of the 
fields: 

• READ 1 -- this means that this group (1 record long) describes information about 
the first read for this checkpoint cycle. 

• READ 2 -- this means that this group (5 records long) describes information 
about the second read for this checkpoint cycle. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-53 



DCAn -1 
• • ._,.......,.. I 

READ2 

5-54 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• PRIMARY -- this means that this group (5 records long) describes information 
about the primary write for this checkpoint cycle. 

• INTERMED -- this means that this group (5 records long) describes information 
about the intermediate write for the checkpoint cycle. 

• FINAL -- this means that this group (5 records long) describes information about 
the final write for this checkpoint cycle. 

The meaning of the fields in the various records for the different groups is described 
in the following sections. 

Record 1: 

• Field 1: Contains the EBCDIC value "READ 1 " 
• Field 2: Contains the time (in tenths of milliseconds) that passed from the $EXCP 

to start the Read1 110 until the 1/0 completed and the CKPT PCE got dispatched. 
• Field 3: Contains the number of used pages in the change log. 
• Field 4: Contains the current value of MINHOLD. 
• Field 5: Contains the current value of MINDORM. 
• Field 6: Contains the current value of MAXDORM. 
• Field 7: Contains the number of change log records read in Read 1. 
• Field 8: Contains the EBCDIC name ("CKPT1 " or "CKPT2 " of the data set 

that contained the current copy of the queues when Read 1 was performed. 

Record 1: 

• Field 1: Contains the EBCDIC value "READ 2 " 
• Field 2: Contains the time (in tenths of milliseconds) that passed from the $EXCP 

to start the Read2 1/0 until the 110 completed and the CKPT PCE got dispatched. 
• Field 3: Contains the number of pages in the change log (total pages, not used 

pages). 
• Field 4: Contains the number of control blocks in the change log. 
• Field 5: Contains the number of PCEs defined to this system. 
• Field 6: Contains the number of PCEs that are $WAITing for access to the 

checkpoint. 
• Field 7: Contains the maximum length of time (in tenths of milliseconds) that a 

PCE was $WAITing for access to the checkpoint. 
• Field 8: Contains the average length of time (in tenths of milliseconds) that the 

PCEs were $WAITing for access to the checkpoint. 

Record 2: 

• Field 1: Contains the number of used bytes in the change log. 
• Field 2: Contains the length of time (in tenths of milliseconds) that this system 

did not hold the checkpoint. 
• Field 3: Contains the number of pages which would have been read if the 

complex had been in Duplex mode. (The field is meaningless if the complex is 
in Duplex mode.) This field may be low if the change log overflows. 

• Field 4: Contains the EBCDIC name ("CKPT1 " or "CKPT2 ")of the data set 
Read 2 was performed against. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

PRIMARY WRITE 

Record 3: 

• Field 1: Contains the number of pages read for the first CTENT. 
• Field 2: Contains the number of control blocks in the change log for the first 

CTENT. 
• Field 3: Contains the number of pages read for the second CTENT. 
• Field 4: Contains the number of control blocks in the change log for the second 

CTENT. 
• Field 5: Contains the number of pages read for the third CTENT. 
• Field 6: Contains the number of control blocks in the change log for the third 

CTENT. 
• Field 7: Contains the number of pages read for the fourth CTENT. 
• Field 8: Contains the number of control blocks in the change log tor the fourth 

CTENT. 

Record 4-N: These records have the same format as Record 3, but for the fifth 
through eighth, etc., CTENTs. 

Record 1: 

• Field 1: Contains the EBCDIC value 'PRIMARY'. 
• Field 2: Contains the time (in tenths of milliseconds) that passed from the $EXCP 

to start the primary write 1/0 until the 1/0 completed and the CKPT PCE was 
dispatched. 

• Field 3: Contains the number of used pages in the change log. 
• Field 4: Contains the number of control blocks in the change log. 
• Field 5: Contains the number of PCEs defined to this system. 
• Field 6: Contains the number of PCEs that are $WAiling for checkpoint write 

completion. 
• Field 7: Contains the maximum length of time (in tenths of milliseconds) that a 

PCE was $WAiling for checkpoint write completion. 
• Field 8: Contains the average length of time (in tenths of milliseconds) that the 

PCEs were $WAiling for checkpoint write completion. 

Record 2: 

• Field 1: Contains the number of used bytes in the change log. 
• Field 2: Contains the EBCDIC value 'PRIO AGE' if priority aging contributed to 

this write 
• Field 3: Contains the number of times the Checkpoint PCE put itself at the 

bottom of the Ready queue before performing this write 
• Field 4: Contains the number of pages which would have been written if the 

complex had been in Duplex mode. (This field is meaningless if the complex is 
in Duplex mode.) This field may be low if the change log overflows. 

• Field 5: Contains the level number of the data set. 
• Field 6: Contains the EBCDIC name ('CKPT1 ' or 'CKPT2 ') of the data set the 

primary write was performed against. 

Record 3: 

• Field 1: Contains the number of pages written for the first CTENT. 
• Field 2: Contains the number of control blocks in the change log for the first 

CTENT. 
• Field 3: Contains the number of pages written for the second CTENT. 
• Field 4: Contains the number of control blocks in the change log for the second 

CTENT. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-55 

I 
i ~ 

IJ 
lj 
'· 
[j 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• Field 5: Contains the number of pages written tor the third CTENT. 
• Field 6: Contains the number of control blocks in the change log for the third 

CTENT. 
• Field 7: Contains the number of pages written for the fourth CTENT. 
• Field 8: Contains the number of control blocks in the change log tor the fourth 

CTENT. 

Record 4-N: these records have the same format as Record 3, but tor the fifth 
through eighth, etc., CTENTs. 

INTERMEDIATE WRITE 
Record 1: 

5-56 JES2 Logic 

• Field 1: Contains the EBCDIC value 'INTERMED'. 
• Field 2: Contains the time (in tenths of milliseconds) that passed from the $EXCP 

to start the Intermediate Write 1/0 until the 110 completed and the CKPT PCE got 
dispatched. 

• Field 3: Contains the number of used pages in the change log. 
• Field 4: Contains the number of control blocks in the change log. 
• Field 5: Contains the number of PCEs defined to this system. 
• Field 6: Contains the number of PCEs that are $WAITing for checkpoint write 

completion. 
• Field 7: Contains the maximum length of time (in tenths of milliseconds) that a 

PCE was $WAITing tor checkpoint write completion. 
• Field 8: Contains the average length of time (in tenths of milliseconds) that the 

PCEs were $WAITing for checkpoint write completion. 

Record 2: 

• Field 1: Contains the number of used bytes in the change log. 
• Field 2: Contains the EBCDIC value 'PRIO AGE' if priority aging contributed to 

this write. 
• Field 3: Contains the number of times the checkpoint PCE put itself at the bottom 

of the Ready queue before performing this write. 
• Field 4: Contains the number of pages which would have been written if the 

complex had been in Duplex mode. (This field is meaningless if the complex is 
in Duplex mode.) This field may be low if the change log overflows. 

• Field 5: Contains the level number of the data set. 
• Field 6: Contains the EBCDIC name ('CKPT1 ' or 'CKPT2 ') of the data set the 

intermediate write was performed against. 

Record 3: 

• Field 1: Contains the number of pages written for the first CTENT. 
• Field 2: Contains the number of control blocks in the change log for the first 

CTENT. 
• Field 3: Contains the number of pages written for the second CTENT. 
• Field 4: Contains the number of control blocks in the change log for the second 

CTENT. 
• Field 5: Contains the number of pages written for the third CTENT. 
• Field 6: Contains the number of control blocks in the change log tor the third 

CTENT. 
• Field 7: Contains the number of pages written for the fourth CTENT. 
• Field 8: Contains the number of control blocks in the change log for the fourth 

CTENT. 

LY28-i006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

FINAL WRITE 

Record 4-N: these records have the same format as Record 3, but for the fifth 
through eighth, etc., CTENTs. 

Record 1: 

• Field 1: Contains the EBCDIC value 'FINAL ' 
• Field 2: Contains the time (in tenths of milliseconds) that passed from the $EXCP 

to start the final write 110 until the 110 completed and the CKPT PCE got 
dispatched. 

• Field 3: Contains the number of used pages in the change log. 
• Field 4: Contains the number of control blocks in the change log. 
• Field 5: Contains the number of PCEs defined to this system. 
• Field 6: Contains the number of PCEs that are $WAITing for checkpoint write 

completion. 
• Field 7: Contains the maximum length of time (in tenths of milliseconds) that a 

PCE was $WAiling for checkpoint write completion. 
• Field 8: Contains the average length of time (in tenths of milliseconds} that the 

PCEs were $WAITing for checkpoint write completion. 

Record 2: 

• Field 1: Contains the number of used bytes in the change log. 
• Field 2: Contains the length of time (in tenths of milliseconds) that this system 

held the checkpoint. 
• Field 3: Contains the EBCDIC value 'PRIO AGE' if priority aging contributed to 

this write. 
• Field 4: Contains the number of times the checkpoint PCE put itself at the bottom 

of the Ready queue before performing this write 
• Field 5: Contains the number of pages which would have been written if the 

complex had been in Duplex mode. (This field is meaningless if the complex is 
in Duplex mode.) The field may be low if the change log overflows. 

• Field 6: Contains the EBCDIC name ('CKPT1 'or 'CKPT2 ')of the data set the 
final write was performed against. 

Record 3: 

• Field 1: Contains the number of pages written for the first CTENT. 
• Field 2: Contains the number of control blocks in the change log for the first 

CTENT. 
• Field 3: Contains the number of pages written for the second CTENT. 
• Field 4: Contains the number of control blocks in the change log for the second 

CTENT. 
• Field 5: Contains the number of pages written for the third CTENT. 
• Field 6: Contains the number of control blocks in the change log for the third 

CTENT. 
• Field 7: Contains the number of pages written for the fourth CTENT. 
• Field 8: Contains the number of control blocks in the change log for the fourth 

CTENT. 

Record 4-N: these records have the same format as Record 3, but for the fifth 
through eighth, etc., CTENTs. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-57 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$TRACE ID = 20 

5-58 JES2 Logic 

This trace ID traces all $#GET calls made by devices, including local and remote 
print and punch devices, spool offload SYSOUT transmitters, and NJE SYSOUT 
transmitters. It also provides the job number, the class, and route code of the output 
selected. It provides.counts such as the number of elements searched before work 
is found, the total number of elements, and the number of elements in use. NJE 
transmitters also run JQE-JOE chains and display the count of JOEs on the chain 
and the count of those selected. The trace record also contains the work selection 
list. Because NJE does not use the work selection services, the WS list for NJE 
dev!ces !s aJways nuii. 

This record provides a means to analyze selection criteria and queue search 
overhead to tune work selection criteria. 

The format of the trace record is, in three cases, as follows: 

1. The Trace Record for a PRPU Processor 

ID = 20 $#GET JOB 1234 PRT2 $#GET CALL FOR PRT2 
WS = (W,R,Q,PRM/UCS,P) 
OUTGRPS DEFINED = nnnn OUTGRPS IN USE = nnnn 
OUTGRPS SCANNED = nnnn OUTGRPS THRU WS = nnnn 
OUTGRP MASK = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFF 
CLASS = A ROUTE = 00010000 FLAGS= 20A48000 

Note that: 

a. The class and route code belong to the JOE that has been selected. 

b. The outgroup mask is the mask used by the work selection services to 
determine the best output element to select. The formatted mask is of the 
JOE selected. 

c. The flags describe certain characteristics of the $#GET call and return code; 
the $GTW macro documents them. 

d. It no work is selected, there will be no jobid, class, route code, or mask 
formatted. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

2. The Trace Record for a Spool Offload Device (Held Output) 

ID = 20 $#GET JOB 1234 OFFl.ST $#GET CALL for OFFl.ST 
WS = (W,R,Q,PRM/UCS,P) 
OUTGRPS DEFINED = nnnn 
OUTGRPS SCANNED = nnnn 
OUTGRPS ON JOB CHAIN = nnnn 
JOBS DEFINED = nnnn 
JOBS THRU WS = nnnn 

OUTGRPS IN USE = nnnn 
OUTGRPS THRU WS = nnnn 
OUTGRPS SELECTED = nnnn 
JOBS SCANNED = nnnn 

JOB MASK = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFF 
FLAGS= 20A48000 

Note that: 

a. When a selectable job with held output is found, JES2 runs the JOE chain for 
that job. Thus, the mask describes the JOE, and the trace record includes 
the count of JOEs for the job. 

b. If the device is not set up to take non-held work, the job's JOE chain and 
selected counts are irrelevant and not formatted. If no work is found, the job 
chain and these selected counts are also omitted. 

3. The Trace Record for a Spool Offload Device (Non-held Output) 

ID = 20 $#GET JOB 1234 OFFl.ST $#GET CALL for OFFl.ST 
WS = (W,R,Q,PRM/UCS,P) 
OUTGRPS DEFINED = nnnn 
OUTGRPS SCANNED = nnnn 
OUTGRPS ON JOB CHAIN = nnnn 
JOBS DEFINED = nnnn 
JOBS THRU WS = nnnn 

OUTGRPS IN USE = nnnn 
OUTGRPS THRU WS = nnnn 
OUTGRPS SELECTED = nnnn 
JOBS SCANNED = nnnn 

OUTGRP MASK = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFF 
CLASS = A ROUTE = 00010000 FLAGS= 20A48000 

Note that: 

a. Because no JQEs were selected, the output queues were scanned: the 
mask, class, and route represent the JOE selected. 

The Patching Facility 
The JES2 patching facility can be used (when JES2 is started) in order to make 
dynamic changes to JES2 code. One patch space is reserved in module HASPNUC. 
Additional patch spaces can be reserved using the JES2 macro $PATCHSP. 

The JES2 patching facility permits patches to be applied (at the time JES2 is 
initialized) through statements in the JES2 parameter library. Patches can be 
applied to any module in JES2 or to any absolute storage address available from the 
address space into which JES2 is loaded. 

These patches are temporary (that is, valid only until a module is reloaded), and 
patches to modules in the JES2 address space must be applied every time that JES2 
is started. Modules that are marked REFRESH (refreshable) should not be patched 
because a system refresh nullifies the effect of the patch. 

When pages in the pageable link area (PLPA) are not paged out, any patches 
applied to modules residing in this area are not effective once the page in which the 
patch resides has been reloaded. For this reason, modules in the SYS1 .LPALIB 
data set (for example, HASPSSSM) must be fixed through an entry in the 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-59 



"Restricted Materials of IBM" 
Licensed Materials - Property oflBM 

SYS1.PARMLIB fix list before patches are applied or HASPSSSM should be directly 
loaded into the CSA. 

The patch statements in the JES2 parameter library can be specified in either the 
JES2 patch format or in AMASPZAP format however, all patches in the JES2 patch 
format should appear first. 

Refer to JES2 Initialization and Tuning for the details of using the patching facility. 

Diagnosing Routines Without Source 
For some routines, IBM supplies only the object code and not the source code. 
Therefore, you cannot diagnose problems with these routines by referring to the 
source code. Instead, you need to gather diagnostic information and report this 
information to IBM. 

This diagnosis section will help you gather information to report to your IBM support 
center. Using the information you provide, your support center will give you an 
answer to the problem with the routine. 

Recognizing the External Symptoms 
When a problem occurs in the JES2 routine for which there is no IBM-supplied 
source, JES2 issues the following message: 

$HASP477 DATA SPACE {CREATE I DELETE} FAILED FOR INTERNAL 
READER PROTECTED BUFFERS, RC=rc 

The return code specified in the $HASP477 message indicates why the routine 
failed. (See the explanation for $HASP477 in JES2 Messages for a list of return 
codes and their meanings.) This return code is part of the information that you need 
to report to your IBM support center. 

If the return code Is: You need to: 

4 ors 

12 - 76 

Contact your IBM support center and provide them with the 
message number and this return code value. This failure 
does not generate SYS1 .LOGREC information. 

Identify the important fields in the SYS1 .LOGREC and provide 
your IBM support center with this additional information. 
(RC= 16 indicates that more than one failure has occurred 
and you need to identify the important SYS1.LOGREC fields 
for each.) Refer to "Interpreting SYS1.LOGREC" for 
information about gathering this data. 

Interpreting SYS1 .LOG REC 

5-60 JES2 Logic 

If the return code from the $HASP477 message is 12 to 76, you need to gather 
information from your SYS1.LOGREC. See MVSIESA Using Dumps and Traces for 
complete information about reading SYS1 .LOGREC symptom report records. The 
SYS1.LOGREC entry for this problem will have a system abend code of OF7. Use 
this abend code to isolate the SYS1 .LOGREC for this specific problem. 

Use the following example of output to identify the information that you need to 
report to your IBM support center. This example is the section of the detail edit 
report (produced by EREP) showing the SOWA. Depending on an Indicator in the 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SOWA, the SOWA is displayed as either a hexadecimal dump or in key, length, and 
data format. 

HEXADECIMAL DUMP 

HEADER 
+000 4CB31800 00000000 0086251F 23380882 
+010 FF022047 30810000 

JOBNAME 
+000 04E80106 C2F1F2F3 

SOWA BASE 
+000 E209F3F0 F8FlFOF2 F2F0F4F7 FFFFFFF2 
+010 FF802755 C4667601 40404040 40404040 
+020 40400506 D5Cl04C5 404flF5F7 F5F2CBC2 
+03[) C2 F3 F3 F3 F04[)0080 00000000 00000000 
+040 Fl F80030 00640070 00210004 001800F5 

+ 17 0 00000000 00000000 00000000 00000000 
+ 180 00000000 00000000 00000000 00000000 
+ 190 00000000 00000000 00000000 00000000 

VARIABLE RECORDING AREA (SDWAVRA) 
+000 KEY: 00 LENGTH: 08 
+002 F1F2F3F4 F5F6F7F8 

+OOA KEY: 00 LENGTH: 14 

*<C ••••••• F ••••• B* 
* * 

*MYJOB123* 

*SR3081022047 ••• 2* 
* .... 0... * 
* NONAME 5752HB* 
*83330 •••••••••• * 
*10 ••••••••• M ••• 5* 

* ................ * 
* ................ * 
*· ............... * 

*12345678* 

+OOC 00000000 00000000 00000000 00000000 * •••••••••••••••• * 
+01 c 00000000 * * 

SOWA FIRST RECORDABLE EXTENSION (SDWARCl) 
+000 00000000 00000000 00000000 00000000 
+O 10 00000000 00000000 00000000 00000000 

* ............... . 
*· ............... * 

+080 00000000 00000000 00000000 00000000 
+090 00000000 00000000 

*· ............... * 
* ........ * 

SOWA SECOND RECORDABLE EXTENSION (SDWARC2) 
+000 00000000 00000000 00000000 00000000 ................. * 

SOWA THIRD RECORDABLE EXTENSION (SDWARC3) 
+000 00000000 00000000 00000000 00000000 
+010 00000000 00000000 00000000 00000000 

* ................ * 
* ................ * 

ERROR ID 
+000 00000000 00000000 00000000 00000000 * ................ * 

Figure 5-25. Hexadecimal Dump in the Detail Edit Report 

The variable recording area (SOWAVRA) is the section of the SOWA that you will 
need to have when you contact IBM system support. It contains the following 
$HASP477-specific information: 

• Either of the following component descriptions: 

COMPON=JES2 DATA SPACE SERVICES SRB, 
COMPID=SClHA,ISSUER=HASCDSS(DSFRR) 

COMPON=JES2 DATA SPACE SERVICES, 
COMPID=SClHA,ISSUER=HASCDSS(DSESTAE) 

• The data CSECT name ($0SWA). 

• The OSPSERV parameter list, if applicable. 

• The ALESERV parameter list, if applicable. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Chapter 5. Diagnostic Aids 5-61 



5-62 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Appendix A. Multileaving 

Multi leaving is a computer-to-computer communication technique developed for use 
by JES2. Multi leaving is fully synchronized, two-directional transmission of a 
variable number of data streams between two or more computers, utilizing binary 
synchronous communication (BSC) facilities. 

Multileaving Philosophy 
The basic element for multi leaving transmission is the character string. One or 
more character strings are formed from the smallest external element of 
transmission - the physical record. These input physical records may be any 
standard record media (card images, printed lines, tape records, etc.). For 
efficiency in transmission, each record is reduced to a series of character strings of 
two basic types: a variable length non-identical series of characters, and a variable 
number of identical characters. Because of the frequency of blank characters, a 
special case is made for identical characters when the duplicate character is a 
blank. An 8-bit control field, termed a string control byte (SCB), precedes each 
character string to identify the type and length of the string. Thus, a string of 
nonidentical characters is represented by an SCB followed by the non-duplicate 
characters. A string of consecutive, duplicate, non-blank characters can be 
represented by an SCB and a single character; the SCB indicates the duplication 
count and the character following indicates the character to be duplicated. In the 
case of an all-blank character string, only an SCB is required to indicate both the 
type and number of blank characters. A data record to be transmitted is, therefore, 
segmented by the transmitting program into the optimum number of character 
strings to take full advantage of the identical character compression. A special SCB 
is utilized to indicate the grouping of character strings that compose the original 
physical record. The receiving program can then reconstruct the original record for 
processing. 

In order to allow records of various media to be grouped together in a single 
transmission block, an additional 8-bit control field precedes the group of character 
strings representing the original physical record. This field, the record control byte 
(RCB), identifies the general type and function of the physical record (input stream, 
print stream, data set, etc.). A particular RCB type has been designated to pass 
control information between the various systems. To provide for simultaneous 
transmission of similar functions (such as multiple input streams), a stream 
identification code is included in the RCB. A second 8-bit control field, the 
subrecord control byte (SRCB) is included immediately following the RCB. This 
field supplies the receiving program with additional information concerning the 
record; for example, in the transmission of data to be printed, the SRCB can carry 
carriage control information. 

For multileaving transmission, a variable number of records can be combined into a 
variable block size, as indicated previously, (that is, RCB, SRCB, SCB1, 
SCB2, ... SCBn, RCB, SRCB, SCB1 , ... etc.). The multileaving design provides for two 
(or more) computers to exchange transmission blocks containing multiple data 
streams in an interleaved fashion. To allow optimum use of this capability, 
however, a system must have the capability to control the flow of a particular data 
stream while continuing normal transmission of all others, such as during the 
simultaneous transmission of two data streams to a system for immediate 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 A-1 



A-2 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

transcription to 1/0 devices of different speeds. To meter the flow of individual data 
streams, a function control sequence (FCS) is added to each transmission block. 
The FCS is a sequence of bits, each of which represent a particular transmission 
stream. The receiver of several data streams can temporarily stop the transmission 
of a particular stream by setting the corresponding FCS bit off in the next 
transmission to the sender of that stream. The stream can subsequently be 
resumed by setting the bit on. 

Finally, for error detection and correction purposes, a block control byte (BCB), is 
added as the first character of each block transmitted. The BCB, in addition to 
control information, contains a modulo 16 block sequence count. This count is 
maintained and verified by both the send!ng and ;eceiving systems to prevent lost 
or duplicated transmission blocks. 

In addition to the normal binary synchronous text control characters (STX, ETB, 
etc.), multileaving uses two of the BSC control characters, ACKO and NAK. ACKO is 
used as a filler by all systems to maintain communications when data is not 
available for transmission. NAK is used as the only negative response and 
indicates that the previous transmission was not successfully received. The 
following indicates the format of a typical multileaving transmission block. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Multileaving Protocol for JES2 NJE 
The following tables show the protocols used for JES2. 

Multileaving Buffer Format 

Characters 

OLE BSC contro 1 character 

STX BSC control character 

BCB Block control byte 

FCS Function control sequence 

FCS Function control sequence (continued) 

RCB Record control byte for record 1 

SRCB Subrecord control byte for record 1 

SCB String control byte for record 1 

data Character string 

SCB String control byte for record 1 

data Character string 

SCB Terminating SCB for record 1 (end-of-record) 

RCB Record control byte for record 2 

SRCB Subrecord control byte for record 2 

SCB String control byte for record 2 

f 1 
I I 

SCB Terminating SCB for last record 

RCB Transmission block terminator (end-of-block) 

OLE BSC control character 

ETB BSC control character 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 Appendix A. Multileaving A-3 

:,l, I , ~ ' 

I· 
I 

! 
I 

:f 
[., 
:·~· 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Block Control Byte (BCB) 

Binary Meaning 

r ... Reserved (must be 1) 

.xxx Control information as follows: 

.000 Normal block 

.001 Bypass sequence count validation 

.010 cccc Reset expected block sequence count to cccc 

.011 Reserved for future use 

.100 Reserved for future use 

.101 Not used 

. i iO Not used 

.111 Reserved for future use 

.... cccc Modulo 16 block sequance count 

Function Control Sequence (FCS) 

A-4 JES2 Logic 

Binary 

r ... 

.0 .. 

.1.. 

.. rr 

1... 

r... .. .. 

.. rr 

.1.. 

.1.. .. .. 

.... ..1. .... .. .. 

Meaning 

Reserved 
(must be 1 ....... 1.. ..... ) 

Normal state 
Suspend all stream transmission (WAIT-A-BIT) 

Reserved for future use 

Remote console stream identifier 

Function stream identifier for: 

RJE input stream number 1 
RJE print stream number 1 
NJE job transmission stream number 1 

Function stream identifier for: 

RJE input stream number 2 
RJE print stream number 2 
RJE punch stream number 7 
NJE job transmission stream number 2 
NJE SYSOUT transmission stream number 7 

Function stream identifier for: 

RJE input stream number 3 
RJE print stream number 3 
RJE punch stream number 6 
NJE job transmission stream number 3 
NJE SYSOUT transmission stream number 6 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Binary 

... 1 

Meaning 

Function stream identifier for: 

RJE input stream number 4 
RJE print stream number 4 
RJE punch stream number 5 
NJE job transmission stream number 4 
NJE SYSOUT transmission stream number 5 

1... Function stream identifier for: 

RJE input stream number 5 
RJE print stream number 5 
RJE punch stream number 4 
NJE job transmission stream number 5 
NJE SYSOUT transmission stream number 4 

.1.. Function stream identifier for: 

RJE input stream number 6 
RJE print stream number 6 
RJE punch stream number 3 
NJE job transmission stream number 6 
NJE SYSOUT transmission stream number 3 

.. 1. Function stream identifier for: 

RJE input stream number 7 
RJE print stream number 7 
RJE punch stream number 2 
NJE job transmission stream number 7 
NJE SYSOUT transmission stream number 2 

... 1 Function stream identifier for: 

RJE punch stream number 1 
NJE SYSOUT transmission stream number 1 

LY28-1006-2 © Copyright IBM Corp. 1988, 1990 Appendix A. Multileaving A-5 



Record Control Byte (RCB) 

Binary Hex 

0000 0000 00 

Meaning 

End-of-block 

"Restricted Materials of IBM" 
Licensed Materials ~ Property of IBM 

rrrr rrrr 01-SF Reserved for future use 

1001 0000 90 Request to initiate function (SRCEJ =RCS of function) 

1010 0000 AO Permission to initiate function (SRCB =RCS of function) 

1011 0000 BO Negative permission or receiver cancel (SRCB =RCS) of function) 

1100 0000 co Acknowledge transmission complete (SRCB =RCS of function) 

1101 0000 DO Not used 

11100000 EO BCB sequence error 

1111 0000 FO General control record 

1001 0001 91 RJE console message 
1rrr 0001 A1-F1 Reserved for future use 

1001 0010 92 RJE operator command 
lrrr 0010 A2-F2 Reserved for future use 

liii 0011 93-F3 RJE input record where iii contains identification information 

liii 0100 94-F4 RJE print record where iii contains identification information 

liii 0101 95-F5 RJE punch record where iii contains identification information 

liii 0110 96-F6 Data set record where iii contains identification information 

liii 0111 97-F? Terminal message routing request where iii contains identification information 

liii 1000 98-F8 NJE input record where iii contains identification information 

liii 1001 99-F9 NJE SYSOUT record where iii contains identification information 

1001 1010 9A NJE operator command/NJE console message 
lrrr 1010 AA-FA Reserved for future use 

1001 1011 98 Reserved 
lrrr 1011 AB-FB Reserved for future use 

lrrr 1100 9C-FC Reserved for future use 

lrrr 1101 9D-FD Reserved for future use 

lrrr1110 9E-FE Reserved for future use 

lrrr 1111 9F-FF Reserved for future use 

A-6 JES2 Logic LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

\,-, 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Subrecord Control Byte (SRCB) 

RCS SRCB 

00 

90 

AO 

None 

RCB of function to be initiated 

RCB of function to be initiated 

BO RCB of function to be cancelled 

CO RCB of function which is complete 

E) Expected count (received count is in BCB) 

FO An identification character as follows: 

A= 
B= 
C= 
D= 
E= 
F= 
G= 
H= 
I= 
J = 
K= 
L= 
M= 
N= 
0-R = 
S-Z = 

Initial RJE sign-on 
Final RJE sign-off 
Print initialization record 
Punch initialization record 
Input initialization record 
Data set transmission initialization 
System configuration status 
Diagnostic control record 
Initial network sign-on 
Response to initial network sign-on 
Reset network sign-on 
Accept (concurrence) network sign-on 
Add network connection 
Delete network connection 
Reserved for future use 
Unused 

91 1000 0000 (X'80') 

92 1000 0000 (X'80') 

93-F3 1000 0000 (X'80') 

94-F4 Carriage control information as follows: 

95-FS 

96-F& 

1010 OOnn Space immediately nn spaces (not used) 
1011 cccc Skip immediately to channel cccc (not used) 
1000 OOnn Space nn lines after print 
1000 1100 Load printer FCB image 
1001 cccc Skip to channel cccc after print 
1000 0000 Print and suppress space 

1000 1111 (X'8F') 

Undefined 

97-F7 Undefined 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Appendix A. Multileaving A-7 



RCB SRCB 

98·F8 NJE input control information as follows: 

1000 0000 Normal input record 
1100 0000 Job header 
111 O 0000 Data set header 
1101 0000 Job trailer 
1111 0000 Data set trailer (not used) 

99.f9 NJE SYSOUT control information as follows: 

10cc 0000 Carriage control type as follows: 
1000 0000 No carriage control 
1001 0000 Machine carriage control 
1010 OCOO ASA carriage controi 
1011 0000 Reserved for future use 

11cc 0000 Control record as follows: 
1100 0000 Job header 
1110 0000 Data set header 
1101 0000 Job trailer 
1111 0000 Data set trailer (not used) 

1000 ssOO Spanned record control as follows: 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

1000 0000 Normal record (not spanned) 
1000 1000 First segment of spanned record 
1000 0100 Middle segment of spanned record 
1000 1100 Last segment of spanned record 

9A 1000 0000 (X'80') 

9B 1000 0000 (X'80') 

String Control Byte (SCB) 

Binary 
0000 0000 

0100 0000 
100b bbbb 
101d dddd 

llcc 

Meaning 
End-of-record 
If first SCB, this also indicates end-of-file 
Abort transmission 
bbbbb blanks are to be inserted 
The single character following this SCB is 
to be duplicated ddddd times 
The cccccc characters following this SCB 
are to be inserted 

Standard Data Record Format 

Characters 

LRECL Original record length 

CCTL Carriage control (only present if indicated 

data Record text 

in SRCB) 

A-8 JES2 Logic LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Spanned Data Record Format 

Characters 

SEGL Segment length (1 byte) 
(present in all segments) 

LRECL Total original record length (2 bytes) 
(only present in first segment) 

data Segment text 

Channel-to-Channel Adapter Support 
The remote terminal access method (RTAM) supports the channel-to-channel 
adapter as a communication line. The support is for 360 mode operations over 
block multiplexer channels. Instead of using channel command words (CCWs) 
designed for binary synchronous communication (BSC) line transmissions, the 
channel-to-channel adapter sequences are as follows: 

Opcode Definition Comments 

X'14' Sense 

X'01' Write 

X'07' Control 

X'02' Read 

This CCW causes other end of adapter control 
CCW to fall through to the read CCW 

Writes data to the adapter 

Causes the channel program to wait until 
other end of adapter issues sense; block multiplex channel is 
free for other programs 

Read data from adapter 

The prepare to sign-on sequence sends the BSC characters SYN-NAK instead of 
being passive as with BSC lines. If one end of the adapter is placed back into 
prepare for sign-on (sends the SYN-NAK), the RTAM at the other end does likewise. 
Because there are no channel-end interrupts when both ends of the adapter are.not. 
being instructed, operators wanting to drain the line device control table (OCT) must 
also enter a line restart ($E line) after the drain command on the last active end of 
the adapter. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Appendix A. Multileaving A-9 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Multileaving in BSC/RJE 
While the JES2 support for programmable BSC work stations is completely 
consistent with the multileaving design, it does not utilize certain of the features 
provided in multi leaving. These feature limitations include: 

• The transmission of record types other than print, punch, input, console, and 
control is not supported. 

• The only general control record types utilized are the terminal sign-on and 
terminal sign-off. 

• Only SCB count units of 1 are utilized. 

• No support is included for column binary cards. 

• Multiple RCB types in an output buffer are not supported. 

Multileaving Protocol for SNA NJE 
Within an SNA NJE session, multiple streams have been defined to carry different 
types of data. NJE transmits three types of data: job, SYSOUT, and console data. 
Although JES2 only defines these three stream types, the JES2 user may specify 
more than one stream of each type. The data's stream is identified in a portion of a 
3-byte record header known as the record identifier. An RU can be composed of any 
number of data records with their record identifiers; those data records need not be 
of the same stream. 

When a job enters a node through NJE, JES2 performs a SAF call to RACF passing 
the user id, password, group id, and SECLABEL from the networking header on the 
early verification SAF call made during input service. The SAF call verifies that the 
user is valid and returns a default security token tor the job. 

Jobs entering from another node may not pass the verify call. If SAF/RACF rejects 
the request, JES2 purges the job or data set without printing any output and sends 
an error message to the sending node. 

When building job header records to send a job or SYSOUT data sets to another 
node, JES2 extracts the user id, password, group id, and SECLABEL from the job's 
security token and places it in the header. 

Record Identifiers 

A-10 JES2 Logic 

Record identifiers (RIDs) are 3-byte headers, which are required on every logical 
record sent and received by SNA NJE. The RID identifies what type of information is 
to be found in the associated record. 

An RU consists of as many record identifiers and corresponding logical records as 
can fit in the specified RU. No logical record may include more than 256 bytes; 
therefore, the maximum logical record length is 256 bytes for the logical record and 
3 bytes for the record identifier. Although these logical records may be compacted 
which normally reduces the length, RU sizes are large enough to hold several 
logical records. See Figure A-1 for a picture of an RID within an SNA transmission 
unit. 

JES2 identifies 3 types of records in the RID: the network topology record, the 
stream control record, and the data record. Network topology information is sent 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

within a session to build the NJE topology control blocks, thereby allowing alternate 
path, multiple trunk, and mixed network capabilities. Stream control records define 
and control the streams on which the data records flow. In other words, before a job 
can be transmitted from one node to another, a job stream must be started at both 
sides of the session. Once the stream control records have established the job 
stream successfully, data records (the job information itself) may flow on that 
stream. 

Currently, JES2 sends only one type of record in an RU. However, the architecture 
of SNA NJE has specifically allowed for the possibility of multiplexing record types 
within an RU. 

PIU 

PREFIX TH RH RID DATA RID 

PIU = SNA path infonnation unit 
TH = SNA transmission header (26 bytes) 
RH = SNA request header (3 bytes) 
RU = SNA request unit (maximum 65,535 bytes) 
RID = SNA NJE record identifier (3 bytes) 
DATA = Maximum 256 bytes 

Figure A-1. SNA Transmission Unit 

Data Compression and Compaction 

RU 

DATA RID DATA 

JES2 has the capability for compressing 2 or more repetitions of the character 
"blank" into a 2-byte sequence, and for compressing 3 or more repetitions of any 
other (non-blank) character into a 3-byte sequence. This standard compression 
capability is supported by all SNA NJE applications. 

JES2 also supports an optional capability called compaction for all SNA NJE 
communication. Compaction is a scheme by which some 8-bit data characters, 
called master characters, may be represented by 4-bit codes for transmission when 
they are adjacent in the data. Another group of characters, called non-master 
characters, can occur adjacent to master characters and be represented in 8-bit 
form without disturbing the compaction mode. All other characters, called 
non-compactable characters (the least frequent ones in the data), are represented in 
their true 8-bit forms and are transmitted uncompacted. The master and non-master 
compaction characters are defined by user-specified compaction tables which, are 
transmitted by SNA NJE in FM headers. 

In SNA NJE, compression and compaction is performed on an RU basis, not on a 
record basis. Therefore, everything from the beginning to the end of the RU, without 
regard to record identifiers, is compressed or compacted. Only one compaction 
table can be in effect at a time for the sending application. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Appendix A. Multileaving A-11 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The first byte of each RU must be a string control byte (SCB). The SCB contains a 
count which locates the next SCB or completes the particular SCB code definition. 

The one-byte SCB consists of a 2-bit field describing the mode of compression or 
compaction in effect, followed by a 6-bit field that provides the count of the number 
of characters described by this SCB. The format of the SCB is: 

tt=cccccc 

tt=OO 

tt=01 

tt= 10 

tt= 11 

No compressed characters; the count field defines the number of unique 
characters following. 

Compact code; the count field indicates the number of bytes betw~en this 
SCB and the next. 

Repeated blanks; the count field indicates the number of blanks to appear 
in the expanded data. 

Repeated non-blank character; the count field indicates the number of 
times the non-blank character is to be repeated in the expanded data. 

In all cases, a count of 0 is a reserved value and must not be used. Valid counts are 
in the range 1-63. 

In compression, repeated blanks are compressed only when 2 or more occur; 
repeated non-blank characters are compressed only when 3 or more occur. When 
both compression and compaction are used, as in SNA NJE, the trade-offs used in 
selecting and changing SCB modes are significantly more complex and cannot be 
adequately described here. The processes of compaction and compression deal 
with the data simply as a series of bytes without consideration for the information 
they may represent (RID, data, etc.). 

Record Identifier (RID) Format 

A-12 JES2 Logic 

The following is a description of the 3-byte RID format. 

RIDRCB (record control byte) - byte 0 

Binary Hex 

1000 0000 80 

1001 0000 90 

1010 0000 AO 

1011 0000 BO 

1100 0000 co 

1101 0000 DO 

1111 0000 FO 

Record Type 

Stream control 

Stream control 

Stream control 

Stream control 

Stream control 

Stream control 

Meaning 

Hold stream {RIDSRCB=SCB of stream) 

Request to allocate JOB/SYSOUT stream 
(RIDSRCB = RCB of stream) 

Permission to allocate stream granted 
{RIDSRCB = RCB of stream) 

Permission to allocate stream denied-or-receiver cancel 
(RIDSRCB = RCB of stream) 

Acknowledge end-of-transmission 
RIDSRCB = RCB of stream) 

Release stream {RIDSRCB = RCB of stream) 

Network topology The RID is followed by an NJE 
network topology record 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



,-

(_ 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

liii 1000 98-F8 Data The RID is followed by an NJE job stream 
data record (iii identifies the particular job stream) 

liii 1001 99-F9 Data The RID is followed by an NJE SYSOUT 
record (iii identifies the particular SYSOUT stream) 

1001 1010 9A Data The RID is followed by a modal message 
record, which in turn contains an NJE command 

or console message 

RIDSRCB: Subrecord Control Byte - Byte 1 
The meaning of this byte depends on the value of the record control byte (byte 0). 

RIDRCB 

80 

90 

AO 

BO 

co 

DO 

FO 

RIDSRCB 

RCB of JOB/SYSOUT stream to be held (X'FF' indicates all streams to be 
held.) 

RCB of JOB/SYSOUT stream to be allocated 

RCB of JOB/SYSOUT stream for which permission to allocate has been 
granted 

RCB of JOB/SYSOUT stream to be cancelled or for which permission to 
allocate has been denied 

RCB of JOB/SYSOUT stream for which end-of-transmission has been 
acknowledged 

RCB of JOB/SYSOUT stream to be released (X'FF' indicates all streams 
to be released) 

EBCDIC character identifying type of NJE topology record as follows: 

C'I' = Initial network sign-on 
C'J' = Response to initial network sign-on 
C'K' = Reset network sign-on 
C'L' = Accept (concurrence} network sign-on 
C'M' = Add network connection 
C'N' = Delete network connection 

98 Transmission end information as follows: 

0000 0000 - Normal job stream end-of-transmission 

0100 0000 - Job stream cancelled by transmitter 

98-F8 NJE job control information as follows: 

1000 0000 - Normal input record 
1100 0000 - Job header 
1110 0000 - Data set header 
1101 0000 - Job trailer 
1111 0000 - Data set trailer (not used) 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Appendix A. Multileaving A-13 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

99-F9 Transmission end information as follows: 

0000 0000 - Normal SYSOUT stream end-of-transmission 
0100 0000 - SYSOUT stream cancelled by transmitter 

NJE SYSOUT control information as follows: 

10cc 0000 - Carriage control type as follows: 

1000 0000 
1001 0000 
1010 0000 
1011 0000 

- No carriage control 
- Machine carriage control 
- ASA carriage control 
- Reserved for future use 

11 cc 0000 - Control record as follows: 

1100 0000 - Job header 
1110 0000 - Data set header 
1101 0000 - Job trailer 
1111 0000 - Data set trailer (not used) 

1000 SSOO Spanned record control as follows: 

1000 0000 
1000 1000 
1000 0100 
1000 1100 

- Normal record (not spanned) 
- First segment of spanned record 
- Middle segment of spanned record 
- Last segment of spanned record 

9A 1000 0000 - SRCB always X'BO' 

RIDRLEN: Record Length-Byte 2 

A-14 JES2 Logic 

The meaning of this byte also depends on the value of the record control byte (byte 
0). 

RIDRCB RIDRLEN 

80 

90 

AO 

BO 

co 
DO 

FO 

98-FS 

99-F9 

9A 

NIA (set to zero) 

NIA (set to zero) 

NIA (set to zero) 

NIA (set to zero) 

NIA (set to zero) 

NIA (set to zero) 

Length of the network topology record following the RID plus 3 (length of 
the RID). This is so defined to make SNA NJE topology records, which 
are processed by the network path manager without use of the $EXTP 
GET macro instruction, compatible with BSC NJE topology records. 

Length-1 of the data record following the RID (used during $EXTP GET 
processing to determine the number of bytes beyond the RID to be 
decompressedldecompacted into the user-supplied area to satisfy the 
request for a record). 

Same as for 98-F8. 

Length-1 of the nodal message record (NMR) following the RID. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Appendix B. External Writer 

There are a maximum of 10 modules that make up the external writer: 

IASXWROO 
IASXSD81 
IASXSD82 
IEFSD087 
IEFSD088 

IEFSD089 
IEFSD094 
IEFSD095 
IEFSDTTE 
IEFSDXXX 

These modules are used to create five load modules: 

IASXWROO 
IEFSD087 
IEFSD094 
IEFSDTTE 
IEFSDXXX 

Refer to Figure B-1 for a load module map of the external writer. 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 B-1 



IEFSD087 

IEFSD088 

Transition 

IEFSD089 

Put 

IEFSDXXX 

Optional 
User Routine 

Note 1 

IEFSDXXX 

Spanned 
Data Sets 

Notes: 

IASXWllOO 

Note 3 

IEFSD087 

Standard Writer 

IEFSDTTE 

IEFSDTTE 

3211 Print., 
Processor 

ENTRY 

Zero 

IASXWROO 

lnltiolizotlon 

l~SXSD8t 

Closs Nome Setup 

IASXSD82 

Main Logic: 
Control 

IEFSD094 

IEFSD094 

IEFSD095 

Block Letters 

Note 2 

I. Loaded by either IASXSD82 or IEFSD087; used os o subroutine by IEFSD087, IEFSD089, 
ond IEFSD094. 

2. Linked to from IASXSD82, IEFSD087, and IEFSD094. 

3. IASXS82A loads either IE FS0087 or the optional user routine. 

Figure B-1. Load Module Map of External Writer 

B-2 JES2 Logic 

EXIT 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEFSD088 

Transition 

IEFSD089 

Put 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IASXSD81 

IASXSD82 

The function of the external writer, once it has been started by an operator 
command, is to access data sets from the primary job entry subsystem, dynamically 
allocate these data sets, read them, write them to an output device, and dynamically 
deallocate them. When there are no subsystem data sets eligible in terms of the 
writer selection criteria, the external writer waits on two event control blocks 
(ECBs), one a subsystem ECB and another a command scheduling control block 
(CSCB) ECB, which gets posted whenever an operator stops or modifies the 
external writer. 

The purpose of the external writer is twofold. One is to provide a means of writing 
SYSOUT data sets to any device that can be accessed by QSAM, such as a tape or a 
direct-access device. The second is to allow two user interfaces for SYSOUT data 
set. The user can write a job separator routine and name that routine to the 
external writer via the PARM field on the EXECUTE statement of the writer 
procedure. The IBM-supplied separator routine is IEFSD094. The second user 
interface is a data set processing subtask that is loaded by the external writer main 
logic control program whenever a data set is to be written to the output device. The 
IBM-supplied default data set writer module is IEFSD087. 

The IBM-supplied writer procedure, XWTR, is set up to write class A SYSOUT data 
sets to tape. The program name on the EXEC statement is IASXWROO. This external 
writer control module, IASXWROO, must be named on any procedure that invokes the 
external writer. This control module loads a user-written data set writer, if 
requested. The user specifies a user-written writer name on a SYSOUT DD 
statement. If there is no name on the SYSOUT DD statement, the external writer 
loads the IBM-supplied data set writer routine, IEFSD087. 

The external writer processes all data sets that are received from the job entry 
subsystem in the same manner. It is unaware whether the data set is a JES2 job log 
data set, a system message block (SMB) data set or a user-written data set. 

IASXSD81, the class name setup routine, initializes the external writer based upon 
the writer procedure parameter area and the parameters in the start command. The 
address of the communication's ECB in the CSCB is saved in the PARLIST for future 
reference. If the parameters are all valid; the output data set is opened, and control 
is passed to IASXSD82. If errors are detected, an error message is issued, and the 
external writer stops. 

IASXSD81 also validates modify commands processed by the external writer and 
modifies the writer selection criteria. 

The main logic control module of the external writer, IASXSD82, accesses data set 
names from the primary job entry subsystem and loads the data set writer to read 
these input data sets and to write this data to the output device. If the external 
writer was started without any class list being specified, IASXSD82 immediately 
issues a waiting for work WTO and waits for the stop/modify CSCB ECB to be 
posted. If the writer was started with a class list as selection criteria, the IEFSSREQ 
macro is issued to request a data set name that is eligible for the writer to process. 
If there are no data sets eligible according to the writer selection criteria, IASXSD82 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Appendix B. External Writer B-3 



IASXWROO 

IEFSD087 

IEFSD088 

B-4 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

issues a waiting for work WTO and then waits on both a stop/modify CSCB ECB and 
a subsystem ECB, which is posted when new data sets are added to the JES2 output 
queue. When the writer is posted, it either performs the action requested by the 
command or requests another data set from JES2. 

If a data set name is received from JES2, IASXSD82 checks to see if a writer name 
was specified on the SYSOUT DD statement by the user; if so, the name is verified. 
Then the data set name is used to dynamically allocate the input data set. The job 
separator routine is linked to when necessary. The job file control block (JFCB) for 
the input data set is read and a cancel I able step type CSCB is created for the life of 
this data set processing so that the operator can cancel the writing of this data set. 
A subtask, IASXS82A, is attached. IASXS82A exists as an entry point in IASXSD82 to 
load IEFSD087 or a user-written data set writer. Once the data set writer finishes 
processing the data set, the IASXS82A subtask purges any outstanding 1/0 of the 
subtask, deletes the data set writer, and returns to IASXSD82. IASXSD82 then 
removes the cancel CSCB from the chain, dynamically deallocates the input data 
set, and restores any outstanding 110 to itself. 

To ensure that it will generate a type 6 SMF record, IASXSD82 uses an 
eight-character job id to test for a change in job numbers. This id is located in field 
SMF6JBID of the routing section of the record. 

If no modify or stop commands were issued by the operator, IASXSD82 starts the 
main loop again by requesting more work from JES2. If the stop command was 
issued, IASXSD82 returns to JES2 one final time to indicate that processing is 
complete and the external writer gives up control. If a modify command was issued 
by the operator, IASXSD82 branches to IASXSD81 to process the modify command. 
Then, IASXSD82 goes back to the main loop to call JES2 with the new selection 
criteria. 

IASXWROO is the external writer initialization routine that is entered when the writer 
is started. IASXWROO initializes an internal control block, PARLIST, used by the 
external writer and then exits to IASXSD81. 

IEFSD087, the data set processing subtask, issues an OPEN (J type) for the input 
data set received from JES2, reads the input data set, and uses the modules 
IEFSD088 and IEFSD089 to write data from the input data set to the output data set 
(device). If the output device is a 3211 Printer, IEFSD087 uses IEFSDTTE. If 
applicable, IEFSD087 uses module IEFSDXXX. After the entire input data set has 
been read, IEFSD087 closes the input data set and returns control to IASXSD82. 

The transition routine, IEFSD088, is used by IEFSD087 and IEFSD094 to handle 
American National Standard and MCH control character differences and conversion. 
It uses the put routine, IEFSD089, to write records to the output device, when 
necessary. 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEFSD089 

IEFSD094 

IEFSD095 

IEFSDTTE 

IEFSDXXX 

The put routine, IEFSD089, is entered from IEFSD087, IEFSD088, or IEFSD094 to 
write records to the output device. IEFSD089 calls IEFSDXXX, if necessary and does 
any control character manipulation caused by differences in control characters 
between the input and the output data sets. 

The IBM-supplied job separator control routine, IEFSD094, uses the modules 
IEFSD095, IEFSD088, IEFSD089, and optionally IEFSDTTE to create the separator 
pages or cards necessary to separate jobs. 

The block letter routine IEFSD095, generates the records that make up the block 
letters and numbers. 

The 3211 processor routine, IEFSDTTE, is entered only if the output device is a 3211 
Printer and some change to the universal character set/forms control buffer 
(UCS/FCB) environment has been predetermined. When the input request differs 
from the present output, the input request is transferred from the input JFCB or from 
PARLIST to a SETPRT list, and the SETPRT macro instruction is issued to cause 
data management to reload the UCS/FCB buffers. IEFSDTTE is used by IASXSD82, 
IEFSD087, and IEFSD094. 

The spanned data sets routine, IEFSDXXX, is used by IEFSD089 and IEFSD087 when 
the output data set consists of variable-length spanned (VS) records. IEFSDXXX 
moves records (or segments) from the input buffers (or work area) to the output 
buffers. 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Appendix B. External Writer B-5 



B-6 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

f Appendix C. SSVT, $HCCT, and $CADDR 

( 

( 

The subsystem vector table (SSVT), and the $HCCT and $CADDR control blocks 
contain the control information JES2 uses to communicate between processing 
programs in a user address and the JES2 mainline code (HASJES20) in the JES2 
address space. Information is broken down as follows: 

SSVT 
Function support routine matrix and entry addresses 

$HCCT 
Contains communication control fields, $$POST elements, job service queue 
heads, and miscellaneous queue heads. 

$CAD DR 
Pointers to JES2 service routines 

Function Support Routine Entry Addresses 
The $SENTRY macro contains the addresses of these routines. The $SVTC macro 
contains the supported function matrix. 

SSI Function Label Module Function 
Number 

1 SSISOUT HASCSIRQ Process SYSOUT 
2 SSICSCAN HASCSIRQ TSO Cancel Command 
3 SSICSTAT HASCSIRQ TSO Status Command 
4 SSIETEOT HASCJBTR End of Task 
5 SSIJSEL HASCJBST Job Selection 
6 SSIALOC HASCDSAL Allocation 
7 SS I ALU NA HASCDSAL Unallocation 
8 SSIENEOM HASCJBTR End of Memory 
9 SSIWTA HASCSIRQ Write to Operator (WTO) 
10 SS IC MD HASCSIRQ Command Processing 
11 SSIUSUSE HASCSIRQ Verify User 
12 SSIJTERM HASCJBST Job Termination 
13 SSIRQRNQ HASCJBST Job Re-enqueue 
16 SSIDAOPN HASCDSOC SYSIN/SYSOUT Open 
17 SSIDACLO HASCDSOC SYSIN/SYSOUT Close 
18 SSIDACKP HASCDSOC Checkpoint 
19 SS I DARES HASCDSOC Restart 
20 SSIRRREQ HASCJBST Request Job ID 
21 SSIRRRET HASCJBST Return Job ID 
53 SSIFSCNT HASCSIRQ Connect/disconnect FSI 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 C-1 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Communication Control Fields 
Label Meaning 

CCTHCT Address of HASP Communication Table 
CCTHTCBA JES2 Main Task TCB Address 
CCTSSCT Address of SSCT 
CCTHAVT Address of HASP Address Space Vector Table 
CCTPIDLE Number of Idle PITs 
CCTHASP HASP Condition 
CCTSTUS Subsystem Status 
CCTTSLOK TSU Abend Interlock Flag 
CCTCOMCH HASP Command Character 
CCTSID System ID 

$$POST Elements 

C-2 JES2 Logic 

Label Meaning 

CCTECF Event Control Field. Indicates what JES2 main task resource has been 
freed by another task. 

CCTCOMM Command Processor. 

CCTJOB Execution Processor. 

CCTASYNC Asynchronous 1/0 Processor. 

CCTXSTIM Time Excess Processor. 

CCTTIMER Timer Processor. 

CCTTRPCE Trace Logger Processor. 

CCTSPOOL Spool Manager Processor. 

CCTMLLM Line Manager Processor. 

CCTOFFM Spool Offload Processor. 

CCTCKPTP Checkpoint Processor. 

LY28-1006-2 ©Copyright IBM.Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Job Service Queue Heads 
Label Meaning 

CCT JLOCK Job service queues lock header 
CCT JPCLS Subsystem job blocks (SJBs) waiting selection of job by class 
CCT JPXBM SJBs waiting selection of job for batch monitor 
CCT JPNUM SJBs waiting selection of job by number 
CCT JXCLS SJBs representing jobs selected by class 
CCT JXNUM SJBs representing jobs selected by number 
CCT JTERM SJBs waiting for termination 
CCT JRENQ SJBs waiting for job re-enqueue 

Miscellaneous Queue Heads 
Label Meaning 

CCPOSTE 8-Byte Field. Address of JES2 ECB ($HASPECB) and JES2 ASCB. 
Used by $$POST for XMPOST. 

CCTSPIOT IOTs representing spin data sets 

CCTISCS SJBs with status or cancel requests pending 

CCTPSOQ SJBs with process SYSOUT requests 

CCTFIFOQ IOTs in FIFO order representing spin/hold requests 

CCTPRGQ Purge PSO queue 

CCTPSOFF PSO FIFO queue 

CCTIOERR Spool processor 1/0 error queue 

CCTFSSCB FSSCB queue 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 Appendix C. SSVT, $HCCT, and $CADDR C-3 

:1 .. ·.~ I 

I 
I, 
I'' 
I} 



C-4 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



I "Restricted Materials of IBM" 
I Licensed Materials - Property of IBM 

I~ 

( !J 
Appendix D. JES2 Acronyms ·:f 

,' ~ 

Ill ., 
! I~ 

ACB access control block EDS end device select 

I ACB access method control block ERA error recovery area 
ACE automatic command element EST estimated count table 
ACT automatic command table ETB end of transmission block 
ADS abort device select FB function block 

,,, 
lj 
iii 

API application program interface FCB forms control buffer j( 

APPL application FCS function control sequence 
1·1 

APT application table FIFO fi rst-i n-fi rst-out 
APW application work area FM function management 
ARR address recall register FSA functional subsystem application 
ASID address space identifier FSA CB functional subsystem application control 
AX authorization index block 
BCB block control byte FSAXB functional subsystem application 
BOS begin destination select extension block 
BFD generalized subsystem data set buffer FSCT functional subsystem control table 
BPM buffer pool map FSI functional subsystem interface 
BSC binary synchronous control FSS functional subsystem 
BSCA binary synchronous communication FSSCB functional subsystem control block 

adapter FSVT functional subsystem vector table 
BTG bad track group FSSWORK functional subsystem PCE work area 
CAT class attribute table GCB GETREC control block 
CCA cell control area HAM HASP access method 
CCE cell control element HASB HASP address space block 
CCT control record TCT HASPGBL HASP global macro variables 
ccw channel command word HASPGEN HASP generation values 
CDS continue destination select HAVT HASP address space vector table 
CES connection event sequence HCA hopper control area 
CHK checkpoint control block HCCT HASP common communications table 
CID communication identifier HCT HASP communications table 
CIRWORK common initialization routine PCE work HOB HASP data block 

area HFCT HASP functional subsystem 

1f 
CKB checkpoint block communication table 
CKD count-key-data IAR instruction address register 
CMB console message buffer ICE interface control element 
CMS cross memory services IDAL indirect address list 
CPT compaction table 108 input/output buffer 
CSA common storage area IOS input/output supervisor 
CSCB command scheduling control block IOT input/output table 
CTC channel-to-channel adapter IPL initial program load 
CVT communications vector table IRDCT internal reader device control table 
DAS direct access spool control block JAW JES2 authorization work area 
DCB data control block JFCB job file control block 
OCT device control table JIB JOE information block 
DEB data extent block JIX job queue index 
DECB data event control block JMR job management record 
DOE dump offload element JOE job output element 
DOM delete operator message JOT job output table 

<~ 
DTE daughter task element JQE job queue element 
EB end bracket JSCB job step control block 
ECB event control block KEYLIST keyword - SWB id table 
EDS end data set KIT checkpoint information table 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 D-1 



LGRR LOGREC record 
LIFO last-in-first-out 
LMT load module table 
LRC logical record control block 
MCH machine check handler 
MCS multiple console support 
MCT master control table 
MOR 3800 maintenance data record 
MFCU multi-function card unit 
MGCR MGCR parameter list 
MIT module information table 
MLWTO multiline write-to-operator 
MTTR module relative track/record 
NAT nodes attached table 
NCC network connection control 
NOH network data set header 
NEL interpreter entry list 
NIT node information table 
NJH network job header 
NJR network job route receiver 
NJT network job trailer 
NMR nodal message record 
NSR network SYSOUT receiver 
NST network SYSOUT transmitter 
NTO NAT temporary queue element 
OCR output control record 
OCT output control table 
ODS one-chain destination select 
ORE operator reply element 
PBF protected buffer 
PC program call 
PCE processor control element 
PCI program-controlled interrupt 
PCIE program-controlled interrupt element 
PDDB peripheral data definition block 
PDIR peripheral data information record 
PIT partition information table 
POE page queue entry 
POEC checkpoint POE 
POED data set POE 
POEJ job start POE 
POES SMF type 6 POE 
PPPWORK HASPPRPU PCE data area 
PRE processor rec:::·;.:;;·y element 
PSCB protected step control block 
PSO process - SYSOUT 
PSV processor save area 
PSW program status word 
PT program transfer 
OCE queue control element 
OCT quick cell control table 
QSE shared queue element 
RAT remote attribute table 
RBA relative byte address 
RCB record control byte 

D-2 JES2 Logic 

RCP 
RCT 
RDS 
ROT 
RID 
RJE 
RJO 
RPL 
RPS 
ROR 
RTAM 
RTM 
RTP 
RTR 
RU 
RWT 
SCA 
SCAT 
SCB 
SCR 
scs 
SCWA 
SOB 
SDLC 
sos 
SJB 
SJXB 
SNA 
SPL 
SRB 
SRCB 
sscs 
SSCT 
SSDA 
SSI 
SSIB 
SSJS 
SSOB 
SSVT 
STAB 
STC 
STOE 
SVF 
SWA 
SWB 
SWBIT 
TAB 
TAT 
TCB 
TCT 
TGAE 
TGB 
TGM 
TIC 
TIO 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

remote console processor 
printer TCT 
resume device select 
remote destination table 
record identifier 
remote job entry 
relative job offset 
request parameter list 
rotational position sensing 
request recovery request 
remote terminal access method 
recovery termination manager 
remote terminal program 
ready to receive 
SNA request units 
remote work table 
synchronous communication adapter 
SYSOUT class attribute table 
string control byte 
spool control record 
standard character string 
scan work area 
subsystem data set block 
synchronous data link control 
suspend device selection 
subsystem job block 
subsystem job block extension 
system network architecture 
dynamic spool allocation 
service request block 
subrecord control byte 
cancel status portion of SSOB 
subsystem communications vector table 
for OPEN/CLOSE and checkpoint/restart 
subsystem interface 
subsystem identification block 
SSOB extension for JOB select 
subsystem options block 
subsystem vector table 
scan table entry 
started task control 
STIMER queue element 
set vertical format 
scheduler work area 
scheduler work block 
SWB information table 
track allocation block 
temporary nodes attached table 
task control block 
total control table 
track group allocation entry 
track group block 
track group map 
transfer-in-control 
trace id table 

L Y28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

TOD time-of-day 
TP teleprocessing 
TQE timer queue element 
TRC table reference character for 3800 
TRCA termination recovery communication 

area 
TRE TCB recovery element 
TSO time-sharing option 
TSU time-sharing user 
TIE track table entry 
UBF unprotected buffer 
UCB unit control block 
UCM unit control module 
UCMID unit control module identifier 
UCSB universal character set buffer 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

UCT punch TCT 
UFCB unit function control block 
UPL UCB parameter list 
VRA SOWA variable recording area 
vs variable-length spanned records 
VTAM virtual telecommunication access 

method 
WCT console TCT 
ws work selection 
WQE WTO queue element 
XBM execution batch monitor 
XECB extended ECB 
XIT exit information table 
XRT exit routine table 

Appendix D. JES2 Acronyms D-3 



D-4 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Index 

A 
abend 

in HASPNUC 3-57 
processing by HASPTERM 3-77 
02C 3-385 

abend/error 
processor retry 5-26 
termination 5-26 

options ($HASP098) 5-26 
ACB 

open/close (HASPVTAM) 3-350 
access method 

HASPAM 3-130 
spool transfer (HASPSTAM) 3-407 

acronyms of JES2 D-1 
address space 

communication 
between user's and JES2's C-1 
user to JES2 3-116 

services in HASPSSSM 3-125 
al I-systems start 

definition 1-43 
allocate 

MO diagram (HASCDSAL) 2-50 
allocation 

dynamic 
in HASPNUC 3-60 

of data sets for SSI 3-120 
API routines 3-352 
APPLDYN routine 

in HASPVTAM 3-352 
application program support 3-378 
asynchronous 1/0 

processing in HASPNUC 3-58 
authority 

of consoles 3-155 
authority checking 

for commands 3-150 
autologon RAT scan routine (HASPSRAT) 3-347 

B 
backspace 

3800 3-253 
bad track 

handling (HASPSPOL) 3-399 
BSAM WRITE 3-410 
BSC 

channel-end processing (HASPBPRO) 3-291 
communication 1-42 
connection protocol 3-86 
in multileaving A-1 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 

BSC (continued) 
line protocols 3-291 
multileaving limitations A-10 
prepare sequence processing 3-293 
RJE exit (17) 3-287 
RTAM routines 3-285 

BSC lines 
HASP RT AM 3-277 

buffer 
format in multileaving A-3 
1/0 completion (SBUFPROC) 3-412 
read in HASPPRPU 3-247 
SNA processing routines 3-348 

buffer pool 
management in HASPNUC 3-54 

buffer queue routine 
HASPRBUF 3-279 

buffer services 
MO diagram 2-38 

buffers 
allocate for device 3-253 

c 
cancel/status exit 22 3-230 
cancel/status queue 

HASPST AC 3-230 
catastrophic error 

FSMCATAR routine 
issues $HASP750 3-274 

MLLMRCVO routine 3-302 
processing by HASPTERM 3-77 
termination routine 5-26 
$A01 3-59 
$B01 3-55 
$B02 3-55 
$C01 3-52 
$ER1 3-416 
$ER5 3-81 
$E01 3-59 
$FOO 3-272 
$F01 3-273 
$F02 3-273 
$F03 3-273 
$F04 3-268 
$GW1 3-42 
$GW2 3-43 
$GW3 3-43, 5-40 
$GW4 3-42 
$J06 3-72 
$K01 5-39 
$K03 5-39 
$M01 3-293, 3-302 

X-1 

I 
I i~ 



catastrophic error (continued) 
$001 3-47 
$002 3-45, 3-47 
$003 3-48, 3-49 
$004 3-49 
$R01 3-321 
$S01 3-53 
$S02 3-53 
$U01 3-60 
$U03 3-61 
$X01 3-413 
$X03 3-220 
$X04 3-228 
$02D 3-62 

CCW sequences 
for remote terminals 3-290 

cell pool 
management in HASPFSSM 3-272 

channel command processing 
in HASPPRPU 3-245 

channel program processing 
in HASPPRPU 3-245 

channel-to-channel adapter support A-9 
checkpoint 

dynamic spool alloc 3-404 
format for DEBUG 

MAS configuration 5-37 
PCE initialization 3-358 
processing for DEBUG 5-39 
processing in HASPCNVT 3-221 
processing in HASPJOS 3-72 
service in HASPFSSM 3-270 
service routines 

in HASPNUC 3-49 
support routines (HASPCKDS) 3-378 
tracing 5-53 

checkpoint processor 
HASPCKPT 3-357 
MO diagram 2-32 

close 
MO diagram (HASCDSOC) 2-58 

CMB 
free subroutine 3-143 
$GETCMB service routine 3-142 

CMB queueing 
in HASPCON 3-141 

cold start 
definition 1-43 

command preprocessor exit 5 3-152 
command processing 

cancel job service routine 3-193 
HASPCAOC 

automatic commands 3-188 
HASPCDV1 

device list commands 3-180 
HASPCDV2 

$T commands 3-182 

X-2 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property oflBM 

command processing (continued) 
HASPCDV4 

spool volume commands 3-182 
HASPCFCP 

received global formatted commands 3-191 
HASPCJB1 

job queue commands 3-176 
HASPCJB2 

job list commands 3-177 
HASPCJB3 

job name commands 3-179 
HASPCJB4 

release/cancel held data sets 3-180 
HASPCJ1A 

job queue commands 3-177 
HASPCJ3A 

set base numbers 3-180 
HASPCMS1 

misc. display commands 3-188 
HASPCNT1 

NJE commands 3-189 
HASPCOMM 3-150 
HASPCPCE 

PCE commands 3-185 
HASPCRM1 

RJE commands 3-192 
HASPCSCN 

DISPLAY and SET requests 3-175 
HASPCSSI 

global networking commands 3-189 
HASPCSY1 

system commands 3-186 
HASPCSY3 

console commands 3-187 
HASPCXIT 

exit commands 3-192 
initial entry 3-152 
IOT purge service routine 3-194 
macros used 3-163 
parse by HASPCOME 3-152 
recovery (COMMRCVR) 3-156 
register conventions 3-161 
service routines 

HASPSERV 3-195 
sub-processing routines 3-158 

command sources 3-150 
exit 5 3-152 

common storage modules 
HASCLINK in HASPSSSM 3-118 

communication 
control fields in SSVT C-2 

compaction 
and compression of data A-11 

compression 
and compaction of data A-11 

configurations 1-2 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 



( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

connect 
services 1-26 

connect FSI 3-266 
connection 

network add/subtract 3-95 
connection protocols 

for BSC and SNA 3-86 
console 

authority processing 3-155 
console message buffer (CMB) 

spooling 3-282 
use in command parse 3-154 

console routines 
HASPCON 3-140 

control blocks 
for termination 3-77 
FSIREQ 1-37 
FSS 1-36 
important fields in 5-19 
listed by function 5-11 
listing HASPDOC 3-3 
major JES2 5-11 
multileaving A-4 
needed to communicate 

between user/JES2 address spaces C-1 
pointers between major 5-17 
RJE/NJE-related 5-17 
scan DAS 3-197 
SSlstructure 3-118 
track allocation block (TAB) 3-127 
used by HASPAM 3-130 

conversion 
processing stage 1-40 

conversion subtask internal text edit 
MO diagram 2-10 

D 
DAS 

acquire value 3-405 
data 

compression and compaction A-11 
data set 

allocate for SSI 3-120 
FSS handling 3-267 
offload processing 3-414 
print/punch selection 3-239 
print/punch termination 3-244 
services in HASPNUC 

$DSCLOSE routine 3-45 
$DSOPEN routine 3-44 
$DSPUT routine 3-44 

spool (HASPSPOL) 3-399 
SSI open/close 3-121 
SSI processing 3-124 
verify (HOSPOOL) 3-405 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

data space 
fail message 477 5-60 

DATECONV routine 3-52 
OCT 

common routines 3-340 
dynamic build 3-62 
initialize for SNA line 3-342 
scan in HASPRTAM 3-278 

DEBUG 
for MAS configuration 5-37 
use and modifying 5-40 

destination id 
add to network 3-64 

device 
allocate and deallocate 

in HASPNUC 3-50 
buffer allocation 3-253 
dynamic allocation 

in HASPNUC 3-60 
device control table (OCT) 

display 3-195 
device setup 

verification in HASPPRPU 3-249 
diagnosis 5-1 

AMASPZAP 5-27 
dumps, traps, and traces 5-28 
gathering information 5-3 
JES2 error services 5-25 
JES2 task structure 5-8 
routines without source 5-60 
SLIP Command 5-32 

directory 
module entry points 4-1 

disastrous error routine 5-25 
disconnect 3-287 
dispatcher 

main task processors 3-37 
queue structure 5-9 
queuing structure 3-38 

DTE 
dynamic build 3-62 

dual mode 3-357 
dumps 

diagnosing 5-28 
formatting (IPCS) 5-29 
indicative (ABNDSNAP) 3-84 
requesting 5-28 

duplex mode 3-357 
dynamic spool alloc 

subtask (HOSPOOL) 3-404 

E 
EBCDIC 

translate table (TEBCDIC) 3-395 
ECB posting 1-13 

Index X-3 



end-of-memory 
MO diagram (HASPJBTR) 2-48 

entry point 
directory 4-1 

error routines 
$DISTERR 3-417 
$10ERROR 3-417 

ESTAE routine 5-26 
event recording 

SLIP command 5-32 
event trace log processor 3-392 
excess job output 

exit9 3-135 
execution 

processing stage 1-40 
execution batch monitor 3-212 
execution processor 

job select by job class 
MO diagram 2-14 

job select by job number 
MO diagram 2-12 

job termination 
MO diagram 2-18 

spin support 
MO diagram 2-16 

exit effector 
JES2 main task 3-60 
pass control to user exit 

called from JES2 subtask 3-127 
exit invoked 

exit O 3-4 
exit 1 3-254 
exit 11 3-146 
exit 12 3-129 
exit13 3-102 
exit 14 3-46 
exit 15 3-240 
exit 16 3-258 
exit 17 3-287, 3-288 
exit 18 3-339, 3-348, 3-349, 3-350 
exit 19 3-14 
exit 2 3-212, 3-213, 3-214 
exit 20 3-207 
exit 22 3-230, 3-231 
exit 23 3-268 
exit 24 3-5 
exit 26 3-82 
exit 27 3-62 
exit 28 3-122 
exit 29 3-123 
exit 3 3-213 
exit 30 3-121 
exit 31 3-120 
exit 32 3-122 
exit34,31 3-121 
exit 35 3-123 
exit 36, 37 3-123 

X-4 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

exit invoked (continued) 
exit 4 3-207, 3-214 
exit5 3-153 
exit 6 3-222, 3-224 
exit 8 3-124 
exit 9 3-135 
JCT 1/0 exit 7 3-59 
36 and 37 3-152 
(SMF) exit 21 3-52 

exit point 
command pre-processing 3-156 
WTOEXIT 3-141 

exit scan 
HASPSXIT 3-33 

external writer 

F 

detail description B-1 
process-SYSOUT request handling 3-234 
waiting for JOT services 

post 3-76 

FCB 
image loader subtask 

MO diagram 2-26 
load by HASPIMAG 3-237, 3-255 
reposition 3800 3-254 

FCS 
in multileaving A-4 

FMH 
build (MVFMHBLD) 3-328 
processing 3-335 
send routine 3-343 

forward space 
3800 3-253 

FSA 
data set handling 3-267 
definition 1-23 
initialization 1-30 
processing (HASPFSSP) 3-262 
request handling 1-34 

FSI 
initialization 1-30 
overview 1-23 
routines in HASPFSSM 3-265 

FSI services 1-26 
FSIREQ 

control block structure 1-37 
FSS 

control blocks 1-36 
FSI support in HASPFSSM 3-265 
HASPFSSP processing 3-260 
initialization 1-27 
overview 1-23 
processing 

HASPFSSP and HASPFSSM 1-31 
warm start 3-384 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

i"I. 

( 

( 

( .-. 

___ _,, 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

FSS connect 3-266 
FSS service routines 

in HASPFSSM 3-271 
FSVT 

in FSMCONCT 3-266 
function support routine matrix C-1 

G 
general subtask 

HASPSUBS 3-65 
get 

MO diagram (HASPAM) 2-54 
GETMAIN/FREEMAIN 

in HASPNUC 3-56 
GET/PUT 

processing in HASPAM 3-132 

H 
HASC modules 

SSI (HASPSSSM) 3-118 
HASCDSAL 

MO diagram 2-50, 2-60 
HASCDSOC 

close diagram 2-58 
open diagram 2-52 

HASJES20 
subtasks description 1-10 

HASP communications table (HCT) 
contents 1-16 

HASP AM 
MO diagrams 2-54 

HASPCOMM 
control sections 3-157 

HASPDYN 3-62 
HASPEXTP 

in HASPNUC 3-44 
HASPINIT 

general description 1-10 
HASPJBST 

MO diagrams 2-44 
HASPJBTR 

MO diagram 2-48 
HASPMISC 

miscellaneous services 3-388 
HASPMSG 

message building routine 3-418 
HASPNET 

MO diagram 
job termination processor 2-86 
network path manager 2-76 
SYSOUT reception processor 2-90 
SYSOUT transmission processor 2-82 

HASPNUC 
contents 1-16 
$GETWORK/$RETWORK 3-42 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

HASPPSO 3-232 
HASPRAS 3-416 
HASPRESM 

resource manager in HASPMISC 3-388 
HASPRTAM 

line manager diagram 2-64 
VTAM API exit diagram 2-66 

HASPSNA 
remote console processor 

MO diagram 2-70 
$EXTP diagram 2-68 

HASPSPOL 
subroutines 3-404 

HASPSSAL 
SNA processing routines 3-348 

HASPSSSM 1-8 
address space services 3-125 
invoking 1-17 

HASPSTAC 
cancel/status processor 3-230 

HASPS UBS 
general subtask 3-65 

HASPSXIT 3-33 
HASPTABS: JES2 tables 

module map 1-16 
HASPTRAK 3-145 
HASPWARM 3-382 
HINTRDR 3-138 
HOSCNVT 

JCL conversion subtask 3-223 
hot start 

definition 1-43 

I 
ICE 

exit scan routine 3-345 
IEFSSREQ 

macro issued 1-17 
initialization 

service routines 
HASPSERV 3-195 

initialize JES2 
HASP 3-4 
HASPINIT 3-4 
HASPIRA 3-5 
HASPIRDA 3-17 
HASPIRMA 3-6 
HASPIRPL 3-13 
HASPIRRE 3-27 
IRCSA 3-8 
IRDCTCP 3-11 
IRFINAL 3-11 
IRMODCHK 3-7 
IRMVS 3-10 
IRNJE 3-27 
IROPTS 3-7 

Index X-5 



initialize JES2 (continued) 
IRPCE 3-11 
IRPOSTPL 3-16 
IRRJE 3-28 
IRSETUP 3-7 
IRSS! 3-7 
IRURDEV 3-9 
list of routines 3-4 

initializing JES2 
description 1-21 

input 
processing stage 1-40 

input processor 
MO diagram 2-4 

input record handler 
for NPM 3-92 

interface control element (ICE) 
free inbound queue 3-323 

internal reader 
processing by HASPAM 3-138 
SSI processing 3-121 

interrupt 
handling in HASPNUC 3-56 

IOB 
direct-access 3-405 

IOT 
read/create 

in HASPCNVT 3-221 
IPCS exit 5-29 
1/0 

buffer completion (SBUFPROC) 3-412 
error logging 3-417 

1/0 error 
in track group 3-399 

1/0 interrupt 
handling in HASPNUC 3-56 

1/0 processing 
$ASYNC in HASPNUC 3-58 

1/0 services 
MO diagram 2-40 

1/0 supervisor 
$EXCP (HASPNUC) 3-43 

1/0 supervisor ($EXCP) 3-43 

J 
JCL conversion 

HASPCNVS 3-223 
HASPCNVT 3-220 

JCL conversion processor 
MO diagram 2-6 

JCT 
read routine 

in HASPCNVT 3-220 
JESNEWS 

modify .create 
$#NEWS in HASPJOS 3-75 

X-6 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

JES2 
acronyms D-1 

JIX updating 
in HASPNUC 3-46 

job 
cancel service routine 3-193 
pending execution 3-226 
pending termination 3-228 
related services for SSI 3-124 

job disposition processor 
in HASPPSO 3-235 

job execution 
HASPXEQ 3-225 
HASPXEQ subroutines 3-228 

job output services (HASPJOS) 3-66 
job processing 

overview 1-39 
job processing overview 

MO diagram 2-2 
job queues 

management in HASPNUC 3-45 
relationships 3-48 
shared 

$QSUSE in HASPNUC 3-50 
job selection 

by job class 
MO diagram 2-14 

by job number 
MO diagram 2-12 

MO diagram (HASPJBST) 2-44 
job select/terminate 

for SSI 3-122 
job termination 

by execution processor 
MO diagram 2-18 

MO diagram (HASPJBST) 2-46 
MO diagram (HASPNET) 2-86 

job transmitter 
network 3-111 

JOT services 
common routines 3-74 
HASPJOS 3-66 

JQE 
management in HASPNUC 3-45 

JSPA 
modify in HASPFSSM 3-268 

K 
KBLDCHLG 3-372 
KBLOB 3-376 
KREAD1 3-359 
KREAD2 3-370 
KWRITE 3-372 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

L 
line disconnect 3-97 
line manager 

MO diagram (HASPRTAM) 2-64 
line protocols 

BSC 3-291 
line resistance 3-90 
lines 

BSC and SNA (HASPRTAM) 3-277 
linkage conventions 

save area 5-21 
load modules 

$MODLOAD routine 3-36 
lock control 

in HASPNUC 3-56 
lock routines 

for SSI processing 3-123 
logon exit routine 

in HASPVTAM 3-352 
LOSTERM exit routine 

in HASPVTAM 3-353 

M 
macros 

used in command processing 
by HASPCOMM 3-163 

$PATCHSP 5-59 
$SENTRY C-1 

main task 
error services 3-416 

message 
build routine (HASPMSG) 3-418 

message spooling 
remote consoles (MCOSPOOL) 3-282 

messages 
display routine 3-143 
format $HASP630 routine 3-197 

module 
deletion 

$MODELET routine 3-37 
directory 4-1 
load routine 3-36 
verification 3-36 
$MODCHK routine 3-36 

module map in JES2 1-16 
modules 

list of 3-1 
modules and subtasks 

list of 1-10 
MTTR 

use by $STRAK 3-127 
multi leaving 

BSC limitations A-10 
buffer format A-3 
description A-1 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

N 
NCC records 3-89 

receive concurrence 3-94 
NET ACCT 

conversion routines (HASPNACT) 3-391 
network 

accounting (HASPNACT) 3-391 
HASPRT AM processing 3-277 
job transmitter 3-111 
start communication 3-98 
SYSOUT receiver 3-99 
SYSOUT transmitter 3-107 

network connection 
add/subtract 3-95 

network path manager 3-86 
buffer write to spool 3-282 
MO diagram 2-76 

network path manager (NPM) 
input record handlers 3-92 
routines 3-89 
services to other processors 3-97 
subroutines 

for BSC and SNA buffers 3-95 
network services exit routine 

in HASPVTAM 3-353 
NJE 

communication 1-42 
initialization (HASPIRRE) 3-27 
multileaving protocol A-3 
problems 5-24 
receive transmission 3-284 

NJE header/trailer 3-105 
NMR 

use in HASPRTAM 3-283 
node 

definition 1-43 
node inactive 3-97 
nodes attached table (NAT) 

in network connection 3-88 
NPM 

CALL subroutine 3-335 
nucleus 

HASPNUC 3-36 

0 
offload 

job and data set 
modify characteristics 3-199 

offload data set 
processing 3-414 

open 
MO diagram (HASCDSOC) 2-52 

output 
job excess, exit 9 3-135 
JOT services 

HASPJOS 3-66 

Index X-7 

I 
! ~ 

I, 
Ii ,, 
!' 



output (continued) 
processing stage i-40 

output processor 
HASPHOPE 3-257 
MO diagram 2-22 

p 
parse commands 

HASPCOME 3-152 
parse input 

HASPSCAN 3-29 
patching facility 5-59 
path determination 

to another node 3-283 
path manager 

BSC write 3-286 
SNA write routine 3-318 

path resistance 
set by HASPNPM 3-86 

PCE 
dispatch routine 3-39 
dispatching 5-8 
dynamic build 3-62 
FSS-mode printer 3-260 
relationships 1-14 
save area 5-21 
use in checkpoint 3-358 
wait and control fields 3-38 
$READY queue 5-9 
$WAIT/$$POST 5-8 

PCE dispatching 1-13 
POINT macro (VSAM) 

processed by HASPAM 3-137 
post 

dispatcher resource 3-39 
post ECB 

exit routine 3-41 
PQE 

allocate for 3800 3-248 
checkpoint initialization 3-251 
data set initialization 3-251 

print processing 
HASPPRPU 3-237 

printer setup 
verification in HASPPRPU 3-250 

print/punch 
channel command processing 3-245 
channel program processing 3-245 
data set selection 3-239 
data set termination 3-244 
error detection 3-246 
free resources 3-254 
initialization 3-237 
main loop 3-241 
processing stage 1-40 
recovery 3-255 

X-8 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

print/punch (continued) 
separator pages 3-244 
service routines 3-244 
single buffer read 3-247 
termination 3-247 
track cell read 3-247 

print/punch processor 
MO diagram 2-24 

priority aging 
HASPGPRC 3-389 

priority aging processor 
MO diagram 2-30 

PRMODE 
scan operands 3-199 

problem 
diagnosis 5-1 
reporting to IBM 5-6 

problem symptoms 5-1 
process SYSOUT 

conversational requests (TSO) 3-233 
external writer 3-234 

process-SYS OUT 
HASPPSO subroutines 3-236 

processing stages 1-40 
processor queue 

dump 5-10 
protocols 

for network connection 3-86 
punch processing 

HASPPRPU 3-237 
purge 

processing stage 1-40 
processor (HASPVPRG) 

in HASPTRAK 3-147 
purge processor 

MO diagram 2-28 
put 

MO diagram (HASPAM) 2-56 

Q 
QSE 

use in HASPWARM 3-384 
queue 

cancel/status 3-230 
spin and job 

processed by HASPEXEC 3-225 
queue heads 

in SSVT C-3 
quick start 

definition 1-43 

R 
RCB 

in multileaving A-1 

L Y28-1006-2 © Copyright IBM Corp. 1988, 1990 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

READ 1 processing 3-359 
reader 

control statement processing 3-208 
HASPRDR functions 3-205 
HASPRDR main processing 3-207 
HASPRDR subroutines 3-211 
HASPRDR termination 3-207 
initialization 3-205 

record 
format 

spanned data A-9 
record identifier (RID) 

format A-11 
in SNA NJE 3-304 

recovery 
for command processor 3-156 

recovery subroutines 
in HASPTERM 3-83 

RELREQ exit routine 
in HASPVTAM 3-355 

remote 
printer/punch 

verify route code 3-199 
remote console 

HASPMCON processor 3-280 
remote console processor 

MO diagram 2-70 
remote consoles 

message spooling 3-282 
remote terminal 

CCW sequences 3-290 
HASPRTAM processing 3-277 
SNA NJE open 3-303 

REMWORK routine 3-74 
request parameter list (APL) 3-89 

buffer get subroutine (MVRPLGET) 3-322 
request unit (RU) 3-89 

use in SNA A-11 
resistance (path) 

set by HASPNPM 3-86 
restart 3-382 

definition 1-43 
RID 

analysis (SNA) 3-336 
SNA NJE use A-10 

RIDRLEN record length byte A-12 
RJE 

initialization (HASPIRRE) 3-27 
overview 1-44 
SNA overview diagram 2-62 

RJE/NJE 
problems 5-24 

route code 
verify/convert 

remote printer/punch 3-199 
RPL 

request completion exit routine 
in HASPVTAM 3-355 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 

APL exit 3-327 
RTAM 

use in HASPSNA 3-303 

s 
SAF request 

in HASPRTAM 3-284 
save area 

chaining 5-24 
linkage conventions 5-21 
management in HASPNUC 3-53 
PCE 5-23 

SCB 
in multileaving A-1 

SCIP exit (VEXITSCP) 
in HASPVTAM 3-354 

SDLC 
in HASPRTAM 3-277 

SOWA 
example of contents 5-60 

SDWAVRA 
contents for $HASP477 5-61 

separator pages 
in print/punch 3-244 

service routines 
pointers to in $CADDR C-1 

setup verification 
for devices (HASPPRPU) 3-249 
for printer (HASPPRPU) 3-250 

sign-on 
response 3-89 

SIGNON statement 
processing in HASPBSC 3-287 

single-system start 
definition 1-43 

SJB 
job service queue heads C-3 
usage 1-17 

SUP command 5-32 
SMF 

buffer management 
in HASPNUC 3-52 

map records 3-10 
record queueing 3-289 
recording subroutines 3-340 
subtask in HASPMISC 3-389 
type 24 record 3-106 
type 26 record 3-149 
writer (HASPACCT) 3-390 

SMF buffer 
free in HASPPRPU 3-249 

SMF type 6 record 
buffer built/written 3-248 
generated (PSMFTST) 3-240 
jobid field for 

external writer B-4 

Index X-9 



SNA 
autologon completion 3-348 
buffer processing 3-348 
communication 1-42 
connection protocol 3-86 
FMH decode (MVDECFMH) 3-333 
NJE 

multileaving protocol A-10 
NJE CLOSE routine 3-315 
NJE protocol A-10 
path manager 

write routine (SNAWRITE) 3-318 
PUT 3-306 
service routines 3-303 
session control subroutines 3-338 
transmission unit A-12 
$EXTP 

subroutines 3-328 
SNA lines 

HASP RT AM 3-277 
SNA RJE overview 

MO diagram 2-62 
source modules and subtasks 

list of 1-10 
spanned data 

record format A-9 
spanned records 3-103 
spin queue support 

in HASPEXEC 3-225 
spin support 

execution processor 
MO diagram 2-16 

spool 
dynamic alloc 3-404 
offload (HASPSTAM) 3-407 
scan DAS control blocks 3-197 
services (HASPSPOL) 3-399 
track space 3-145 
transfer access method 3-407 

spool offload buffer completion 
$POSTEX routine 3-58 

spool space 
purge routine 3-147 

spool volume 
track address 3-127 

SRCB 
in multileaving A-1 
RIDSRCB in SNA A-11 

SRVSETUP 3-198 
SSI 

data set allocation 3-120 
data set open/close 3-121 
data set processing 3-124 
function numbers C-1 
job select/terminate 3-122 
job-related services 3-124 
lock routines 3-123 

X-10 JES2 Logic 

SSI (continued) 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

module relationships 3-117 
routine addresses 3-118 
routines and control blocks 1-17 

SSI support routines 1-8 
SSI usage example 

job processing 1-19 
SSIB 

usage 1-17 
SSOB 

usage 1-17 
SSVT 

detail description C-1 
usage 1-17 

SSVT information 
copy from $SENTRY 3-118 

start NJE communication 3-98 
starts 

definitions 1-43 
stream control 

for SNA NJE (MSCSEND) 3-338 
record 

identifiers and functions 3-336 
subroutine 

save area chain 5-24 
subsystem support modules 

in HASPSSSM 3-116 
MO diagrams 2-44 

subtask 
ESTAE routine 5-27 
general, HASPSUBS 3-65 
HASPSSRV functions 3-200 

supported function matrix C-1 
SVC 111 

in HASPAM 3-131 
synch orders 

FSA devices 3-263 
SYSOUT processing 

HASPPSO 3-232 
SYSOUT receiver 

network 3-99 
SYSOUT reception 

MO diagram (HASPNET) 2-90 
SYSOUT security checks 3-232 
SYSOUT transmission 

MO diagram (HASPNET) 2-82 
SYSOUT transmitter 

network 3-107 
system affinity 

verify 3-199 
SYS1 .HASPACE 

formatting 3-405 
SYS1 .LOGREC 

reading 5-60 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

T 
tables 

HAS PT ABS 3-3 
task structure 

JES2 diagnosis 5-8 
teleprocessing buffers 3-96 
termination options 

processing 3-82 
termination services 

HASPTERM 3-77 
termination subroutines 

in HASPTERM 3-83 
TGAE (track group allocation entry) 3-129 
threshold manager 3-388 
time excess processor 

HASPTIME 3-388 
MO diagram 2-20 

timer queue element (TOE) 
use in HASPNUC 3-51 

timer services 
MO diagram 2-42 

TPEND exit routine (VEXITTND) 
in HASPVTAM 3-354 

trace 
events (HASPEVTL) 3-392 
formatting output 3-394 
log data set 

add record 3-398 
uses for 5-24 

trace facility 
$TRACE routine (HASCRIC) 3-125 

trace IDs 
examples 5-42 
format routines 3-394 
list and function 5-40 

track address 
for spool volume 110 3-127 
obtain (T$TRACK) 3-398 

track cell read 
in HASPPRPU 3-247 

track group 
allocation 3-146 

track group block (TGB) 
build routine 3-146 

track group map 
set bit ($TGMSET) 3-146 

track space 
management (HASPTRAK) 3-145 

transmission 
blocks (multileaving) A-4 
receive routine (MCINSI) 3-284 
unit in SNA A-11 

traps 
SLIP 5-32 

TRKCELL keyword 3-12 

LY28-1006-2 © Copyright IBM Corp. 1988, 1990 

TSO 

u 

NOTIFY subroutine 3-106 
process SYSOUT 3-233 
TRANSMIT/RECEIVE 3-102 

UCB 
chain processing routines 

in HASPNUC . 3-61 
ucs 

image loader subtask 
MO diagram 2-26 

load by HASPIMAG 3-237, 3-255 
unallocate 

MO diagram (HASCDSAL) 2-60 
unit allocation 

in HASPNUC 3-50 
user exit 

pass control to 3-127 

v 
VARY INACT command 3-353 
virtual page services 

in HASPNUC 3-53 
VRA 

contents for $HASP477 5-61 
VSAM POINT macro 3-137 
VTAM 

ACB open/close 3-350 
ACB OPEN/CLOSE subtask interface 3-342 
API routines 3-352 

VTAM API exit routine 
MO diagram 2-66 

w 
wait routine 

for main task dispatcher 3-38 
warm start 

of an FSS 3-384 
processing considerations 3-385 
processor (HASPWARM) 3-382 
$QGET (in VGET JOB) 3-388 

warn start 
verify JOT 

$#JOTCHK in HASPJOS 3-73 
work area 

HASPNUC 3-42 
work selection 

service routine 3-195 
$WSSCAN macro 3-198 

WTO 
with user-provided CMB 3-141 
$HASPWTO routine 3-143 

Index X-11 



x 
XBM parameter 3-212 
XECB 

post exit routine 3-41 

Numerics 
3800 

command processing 3-253 
pending page queue 3-252 
physical page 3-252 

Special Characters 
$ABEND ESTAE Routine 3-77 
$CAD DR 

detail description C-1 
$CADDR table 

linkage between HASC modules 3-118 
$CKPT macro 

in HASPNUC 3-49 
$DCBDYN routine 3-63 
$DOMR service routine 

in HASPCON 3-142 
$ESTAE services 

in HASPRAS 3-416 
$EXCP 

1/0 supervisor 3-43 
1/0 supervisor routine 3-43 

$EXTP 
routines for HASPSTAM 3-407 
SNA common exit routines (SNASUB) 3-318 
SNA subroutines 3-328 
use in SNA 3-303 

$EXTP service routines 3-279 
in BSC 3-285 

$EXTP services 
MO diagram 2-68 

$HASPECF 
position in HCT 1-16 

$HASPMAP 
module map 1-16 

$HASP477 5-60 
$HCCT 

detail description C-1 
$HEXIT routine 3-82 
$PGSRVC service routine 3-50 
$POST 

macro issued 1-15 
$POST/$POSTR routines 

in HASPNUC 3-41 
$READY queue 1-13 
$REROUTE 

subtasked by SUBRRT 3-195 
$RETRY routine 3-79 
$RETURN routine 3-53 

X-12 JES2 Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

$SN command 3-98 
$S N exit routine 

in HASPVTAM 3-353 
$SCAN 

tables 
HASPMSG 3-4 
HASPTAB 3-4 

$SCAN facility 
HASPSCAN 3-29 
post-scan exit routines 3-33 
pre-scan exit routines 3-35 

$SDUMP routine 5-26 
$SDUMP service routine 

in HASPRAS 3-418 
$SENTRY macro C-1 
$SENTRY table 

address of SSI routines 3-118 
$SPOOLQ 3-399 
$STIMER routine 3-51 
$TRACER 

$TRACE macro services 3-125 
$TTIMER routine 3-51 
$WAIT 

macro issued 1-15 
$WTOR 

processing by HASPCON 3-140 
$XECB routine 

in HASPNUC 3-41 
$$POST 

elements in SSVT C-2 
macros issued 1-15 
promulgation routine 3-39 

$#POST service routine 
in HASPJOS 3-71 

/*XMIT job 
reroute for local execution 3-279 

LY28-1006-2 ©Copyright IBM Corp. 1988, 1990 



( 

( 

MVS/ESA 
JES2 Logic 
MYS/System Product: 
JES2 Version 3 

L Y28-1006-2 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and 
operators of IBM systems. You may use this form to communicate your comments about this publica
tion, its organization, or subject matter, with the understanding that IBM may use or distribute whatever 
information you supply in any way it believes appropriate without incurring any obligation to you. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please 
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM 
1·epresentative or to the IBM branch office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? 

How do you use this publication? 

Number of latest Newsletter associated with this publication: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments or you may mail directly to the 
address in the Edition Notice on the back of the title page.) 



MVS/ESA JES2 Logic MVS/System Product: JES2 Version 3 

"Restricted Materials of IBM" 
All Rights Reserved 
Licensed Materials - Property of IBM 
(Except for Customer-Originated Materials) 
©Copyright IBM Corp. 1988, 1990 
LY28-1006-2 

Reader's Comment Form 

Fold and Tape Please Do Not Staple 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK. N.V. 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department 058, Building 921 -2 
PO Box 950 
Poughkeepsie, New York 12602-9935 

5370-36 

Fold and Tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

1 ••• 11 •• 1.1.11 •• 11 ••••• 1.11.1 .. 1.1 •••• 11 •• 1.1 ••• 11.1 
Fold and Tape Please Do Not Staple Fold and Tape 

Printed in U.S.A. --...- ------ -- --- - -- -. ---- - ------- --_ _..._T_ 
® 

c 
u 
t 

a 
1 
0 

n 
g 

t 
h 

n 
e 

, 

'""_,/ 



--------- ----- - -- - ---- - - -----------·-
® 

Printed in Li .SA 

Program Number 
5685-001 

" Restricted Materials of IBM " 
Licensed Materials - Property of IBM 
LY28-1006-2 ©Co pyright IBM Corp. 1988, 1990 

LY28-1006-2 

111111111 

File Number 
8370-36 


