
Y

v

as
V

E

--- -----= =-= == - -. ---::.:.: .:~=

Sal/Data System
Application
Programming for
VM/System Product

Release 3

Program Number 5748-XXJ

SH24-5068-0

First Edition (December 1984)

This edition, SH24-S068-0, is a new book based on SH24-S018-2. This edition applies to
the Structured Query Language/Data System (SQL/DS) in a Virtual Machine/System
Product (VM/SP) system environment. This edition applies to the Structured Query
Language/Data System until otherwise indicated in new editions or Technical Newsletters.
Changes are periodically made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370 and
4300 Processors Bibliography, GC20-OOO1, for the editions that are applicable and current.

Throughout this manual are illustrations in which names are used. These names are
fanciful and fictitious, created by the author, and are used solely for illustrative purposes
and not for the identification of any person or company.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in alI countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM's program product may be used. Any functionalIyequivalent program may
be used instead. '

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Programming
Publications, Dept. G6O, P.O. Box 6, Endicott, NY, U.S.A. 13760. IBM may use or
distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright International Business Machines Corporation 1984

Summary of Changes

This is a list of technical changes for Release 3 of SQL/DS that affect this manual.
For a complete list of technical changes for Release 3, see SQL/ Data System
Concepts and Facilities for VM/SP, GH24-S06S.

Performance Improvements

•

Specifying the Isolation Level

Programmers can now specify whether other users can update data that the
program has finished reading in its current logical unit of work. Programmers
can tell SQL/DS either to lock all the data that the current logical unit of work
has read, or to lock just the row or page of data that a cursor is currently
pointing to.

Dispatcher Enhancements

The SQL/DS dispatcher has been enhanced to give priority to short requests.

FETCH and INSERT Blocking

Allows programmers to specify that a program retrieve and insert rows in
groups. This can improve performance for programs running in multiple user
mode which do multiple-row inserts or multiple-row SELECTs.

Enhancements for National Languages

Specifying Character Sets

Lets an installation specify an alternative character set for national languages.

• Mixing Double-Byte Character Set (DBCS) Data and EBCDIC Data

SQL/DS Release 3 can interpret identifiers and character string constants that
contain both DBCS and EBCDIC data. '

Summary of Changes iii

Miscellaneous Enhancements

• Using Labels for Tables and Columns

•

Lets users define labels, which can be used as common display names, for table
and column names.

COMMENT Enhancements

Enhanced so that users can specify comments for more than one column in a
single command.

• Nonrecoverable Storage Pools

Allows users to define nonrecoverable storage pools for improved performance
when loading large amounts of data. With nonrecoverable storage pools,
however, users must do their own data recovery.

Changes to the SOL/OS library

• Independent Library for VM/SP users

For Release 3, separate libraries of SQL/DS manuals are available for VSE
and VM/SP users.

• New Diagnostic Manuals

Two new manuals have been added to the library:

SQLIData System Diagnosis Guide for VM/SP, SY24-5230

SQL/ Data System Diagnosis Reference for VM / SP, SY24-5232

These manuals help in diagnosing problems in SQL/DS. They replace the
SQL/ Data System Logic manuals.

• Technical and Editorial Changes

In addition to documenting major changes to the product, this revision
incorporates minor technical and editorial changes.

iv SQL/Data System Application Programming for VM/SP

Preface

This book is for application programmers writing in COBOL, PL/I, FORTRAN, or
Assembler Language. It tells how to write application programs that use the
Structured Query Language (SQL) to access data stored in Structured Query
Language/Data System (SQL/DS) tables. Programmers writing in APL2 should
refer to APL2 Programming: Using Structured Query Language.

Chapter 1 covers the basics of SQL programming for beginners, starting with an
introduction to SQL program design. Then it explains some of the most common
SQL commands. After that, there is an overview on preparing and running the
program, followed by an introduction to testing and debugging concerns. The
chapter ends with a section describing administrative tasks for your application
program. This last section also describes the SQL/DS catalogs.

Each section in Chapter 1 has a quiz at the beginning. By taking the quiz, you can
check to see how much of the material in the section you already know. Depending
on your success, you may elect to skip the section after taking the quiz.

Chapter 2 expands on Chapter 1 by going into more detail and by introducing
other statements in the SQL programming language. It begins by giving a detailed
description of a framework for coding SQL programs. The next section explains
less-common SQL commands that may be useful in coding the application. After
that is a section devoted to the details of preparing and running the program. Next
is a section on error handling, describing how you can use return codes set by
SQL/DS to branch to error handling routines in your program. The chapter ends
with a detailed description of administration considerations (including
authorization, data control, and data definition).

Since Chapter 2 contains advanced information, there are no quizzes at the
beginnings of the sections to check your prior knowledge.

Chapter 3 is a reference to SQL commands used in applications programming.

When you are ready to start coding, you should read about your own host language
in one of the appendixes:

Appendix C, "PL/I Considerations"

Appendix D, "COBOL Considerations"

Appendix E, "Assembler Considerations"

Appendix F, "FORTRAN Considerations."

Preface V

Other appendixes list SQL/DS reserved words and SQL/DS "maximums" (such as",
the maximum number of columns in a table or the maximum length of one SQL
statement).

Also in the back of the book is a foldout. The foldout contains tables that are used
in examples throughout this book.

This book assumes that you can write programs in either Assembler, PL/I,
COBOL, or FORTRAN for the Virtual Machine/System Product (VM/SP).
Before you read this book, you may also find it useful to know how to use the
Conversational Monitor System (CMS) for VM/SP systems. SQL/Data System
Concepts and Facilities for VM/ SP, GH24-5065, is a prerequisite for this manual.
You will need a copy of SQL/ Data System Messages and Codes for VM / SP,
SH24-5070; that manual explains all the return codes passed to the program by
SQL/DS.

Another suggested book is the SQL/ Data System Terminal User's Guide for
VM/SP, SH24-5045, which is written in a tutorial style. It is much easier to learn
SQL/DS by reading that book before you read this one.

Further suggested publications include:

• SQL/Data System Installation/or VM/SP, SH24-5044

• VM/SP CMS Command and Macro Reference, SC19-6209

• VM/SP CMS User's Guide, SC19-621O

• VM / SP CMS Primer, SC24-5236.

vi SQL/Data System Application Programming for VM/SP

Contents

Chapter 1. Getting Started .•.••...........•...•.••.••.... 1

Designing the Program ••.••.•.•.•.••••.•••.•••.••.••••••••••••••••• 3
Contents ... 3
Section Quiz .. 4
Answers to the Section Quiz .. 5
Introduction to SQL .. 6
SQL Within a Programming Environment 7
Introduction to a Framework for Coding Programs 8
Sample Tables ... 9

Coding the Program •••.•••.•••.••..••...•.•••.•••••••.••••.•••••• 11
Contents .. 11
Section Quiz ... 12
Answers to the Section Quiz 13
Introduction to SQL Program Coding 14
Retrieving One Row of Data from a Table: SELECT I INTO 14
Retrieving or Inserting Data with a Cursor 19
Predicates ... 27
Host Variables and Constants. .. 28
Using Expressions as Search Conditions 30
Built-In Functions ... 31
Putting a New Row into a Table: INSERT 34
Deleting Data from a Table: DELETE 36
Changing Data in a Table: UPDATE 37

Preprocessing and Running the Program •.......•..•.•••..•....•..••..• 41
Contents .. 41
Section Quiz ... 42
Answers to the Section Quiz 43
Introduction ... 44
Preprocessing the Program .. 44
Compiling the Program ... 45
Link-Editing and Loading the Program 45
Running the Program .. 45

Testing and Debugging Concerns••..••......••..••••• 47
Contents .. 47
Section Quiz ... 48
Answers to the Section Quiz 49
Introduction ... 50

Contents vii

Using ISQL to Test SQL Statements Before Coding
Introduction to the SQL Communications Area (SQLCA)

50 ...,
51

Putting the Program into Production••..•..•...•....•....•... .. 53
Contents 53
Section Quiz .. . 55
Answers to the Section Quiz 56
Authorization 57
Data Control .. . 70
Data Definition .. . 74
SQL/DS Catalogs .. . 78

Chapter 2. Advanced SQL Programming 83

Designing the Program•............... .. 85
Contents 85
Application Prolog 86
Application Body .. . 92
Application Epilog 93
Summary 94
Sample Application Programs 95

Coding the Program ..•...•...•..•••..•....•.•.•.•••.....•..••••.. 97
Contents .. 97
More About Search Conditions 99
Additions to the SELECT Statement 107
More About Cursor Management 134
More About Data Manipulation 136
Use of Views 140
Indicator Variables ... 146
Dynamically Defined Statements 147

Preprocessing and Running the Program ...•••.......•.......•..•••... 183
Contents .. . 183
Introduction 184
VM/SP Connect Considerations 186
Initializing Your User Machine 186
Preprocessing the Program 187
Compiling the Program 196
Link-Editing and Loading the Program 197
Running your Program 198

Testing and Debugging Concerns•.•.....•............... 201
Contents .. . 201
Error Handling 202
Monitoring Execution Performance 209

Putting the Program into Production•.....•................. ...• 211
Contents .. . 211
Authorization .. . 213
Data Control 226
Data Definition 237

""'" Performance Considerations 250

viii SQL/Data System Application Programming for VM/SP

Including External Source Files 255
Including Secondary Input 255

Chapter 3. SQL Programming Language Reference Summary ... 257

How to Interpret SQL Format .•...........••.••••••.••..•••••.•••• 259

SQL Statement Reference Summary ...•....••.••••••.•.•.••.••..•.. 261
Contents ... 261
ACQUIRE DBSPACE .. 263
ALTER DBSP ACE .. 265
ALTER TABLE ... 267
BEGIN DECLARE SECTION 268
CLOSE .. 269
COMMENT .. 270
COMMIT WORK .. 272
CONNECT 273
CREATE INDEX .. 274
CREATE SyNONyM .. 276
CREATE TABLE ... 277
CREATE VIEW ... 279
DECLARE CURSOR .. 281
DELETE .. 284
DESCRIBE ... 286
DROP DB SPACE .. 288
DROP INDEX .. 289
DROP PROGRAM .. 290
DROP SYNONYM ... 291
DROP TABLE .. 292
DROP VIEW ... 293
END DECLARE SECTION 294
EXECUTE ... 295
EXECUTE IMMEDIATE 296
EXPLAIN .. 297
FETCH .. 299
GRANT ... 300
INSERT ... 305
LABEL .. 309
LOCK ... 312
OPEN ... 313
PREPARE ... 314
PUT .. 316
REVOKE .. 317
ROLLBACK WORK ... 321
SELECT ... 322
UPDATE .. 324
UPDATE STATISTICS ... 328
WHENEVER ... 329

Chapter 4. Extended Dynamic Statements ..•.••.••.••.•..•. 331
Contents ... 331
Purpose and Use of Extended Dynamic Statements 332

Contents ix

An Example of Extended Dynamic Statements 336 """"
Logical Unit of Work Considerations 344
Extended Dynamic Statement Descriptions 348

Appendix A. SQL/DS Reserved Words .••.••.••.•••••••••••••••••••• 363

Appendix B. SQL/DS Maximums 365

Appendix C. PL/I Considerations •••••••.••.••••••••••••••••••••••. 367
ARISPLIC -- PL/I Sample Program 367
Rules for Using SQL in PL/I 375
SQL Error Handling 380
Dynamic SQL Statements in PL/I 381
Data Types .. . 383
Additional PL/I Program Examples 383

Appendix D. COBOL Considerations ••..•.••.••.••.••••••••••••••••• 397
ARISCBLC -- COBOL Sample Program 397
Rules for Using SQL in COBOL 410
SQL Error Handling 415
Dynamic SQL Statements in COBOL 416
Data Types .. . 417
Additional COBOL Program Example 419

Appendix E. Assembler Considerations •••••••••••••••••.••••••••••••• 423
Acquiring the SQLDSECT Area
Performance Considerations for the SQLDSECT Area

423 . ."
424

ARISASMC -- Assembler Sample Program 426
Rules for Using SQL in Assembler 441
SQL Error Handling 444
Dynamic SQL Statements in Assembler 445
Data Types .. . 446
Reentrant Programs 447

Appendix F. FORTRAN Considerations .••.•••••.••••••••••••••.••••• 453
ARISFTN -- FORTRAN Sample Program 453
Rules for Using SQL in FORTRAN 461
SQL Error Handling 465
Dynamic SQL Statements in FORTRAN 466
Data Types .. . 466

Index•.•..........••..............•..........••.••..• 469

X SQL/Data System Application Programming for VM/SP

Figures

1. INVENTORY Table ... 6
2. Fonn of Embedded SQL Statements 14
3. Fonnat of the SELECT Statement 15
4. Using a Cursor ... 21
5. Breakdown of Search Conditions and Predicates 27
6. Breakdown of an Expression 30
7. Hierarchy of SQL/DS Authority 61
8. Privileges You Can Grant 63
9. Locking Summary for PRIVATE DB SPACEs 71

10. Locking Summary for PUBLIC DBSPACEs 72
11. SQL/DS Data Types .. 76
12. SQL/DS Data Conversion Chart 77
13. Examples of Host Variable Declarations 88
14. Examples of Embedded SQL Statements 90
15. SQL Declarative Statements 92
16. Pseudo Code Framework for Coding Programs 95
17. Truth T~,ble for Null Values 102
18. Values Returned in Indicator Variables 146
19. SQLDA Structure (in Pseudo Code) 152
20. Data Codes Returned in SQLTYPE 155
21. SQLDA Initialization 167
22. Using a Cursor with Dynamically Defined Statements 179
23. SQL/DS Modes of Operation 185
24. SQLCA Structure (in Pseudo Code) 202
25. Pseudo-Code Error Handling Routine 208
26. Default Table Placement 240
27. Variable Names for Specifying Mixed Isolation Levels 252
28. Relationship Between Extended Dynamic Statements Expressed Using

Host Program Variables 334
29. Dynamic vs. Extended Dynamic Statements 335
30. An Example of an Interpretive Support Program for Building and

Executing SQL Statements in an Access Module 337
31. Preprocessing and Assembly of a Two-Part Support Program 340
32. Preprocessing and Execution of an End-User Program by a Two-Part

Support Program .. 341
33. Pseudo-Code Example of Preprocessing End-User Program P 343
34. Pseudo-Code Example of Execution of End-User Program P 344
35. Placement of Extended Dynamic Statements in Logical Units of Work . 346
36. Ranges of Numeric Values 365
37. SQLCA Structure (in PL/I) 380
38. SQLDA Structure (in PL/I) 381
39. SQLDAX Structure (in PL/I) 381
40. SQL/DS Data Types for PL/I 383

Figures xi

I

41. SQLCA Structure (in COBOL) 416
42. SQL/DS Data Types for COBOL 417
43. Acquiring the SQLDSECT Area for VM/SP Applications 423
44. SQLCA Structure (in Assembler) 444
45. SQLDA Structure (in Assembler) 445
46. SQL/DS Data Types for Assembler 446
47. SQL Statements Supported in FORTRAN 461
48. SQLCA Structure (in FORTRAN) 466
49. SQL/DS Data Types r FORTRAN 466

xii SQL/Data System Application Programming for VM/SP

Chapter 1. Getting Started

This chapter teaches you the basics of how to develop an application program in
Structured Query Language/Data System (SQL/DS). It is divided according to the
tasks that you, as an application programmer, are likely to perform. Chapter 2
contains advanced information on each of these tasks. If you need to know more
about a particular task, you can just refer to the advanced version of your section
in Chapter 2. For instance, if you are reading about designing your program, and
you would like to know more about designing before you begin reading about
coding your program, you can skip to the advanced version of Designing the
Program in Chapter 2.

Each of the sections in this chapter is preceded by a section quiz. The quizzes are
to help you determine how much of the information in the section you already
know. If you think the quiz is easy, skip that section and proceed to the next one.
Because the material in Chapter 2 is more advanced, Chapter 2 does not have any
section quizzes.

Chapter 1. Getting Started 1

2 SQL/Data System Application Programming for VM/SP

Designing the Program

Contents

This section begins with an introduction to SQL. It goes on to discuss SQL within
a programming environment, and concludes with an introduction to the form that
SQL programs usually take.

Section Quiz .. 4
Answers to the Section Quiz .. 5
Introduction to SQL .. 6
SQL Within a Programming Environment 7
Introduction to a Framework for Coding Programs 8
Sample Tables ... 9

Designing the Program 3

Section Quiz

If you can answer most or all the following questions, then you probably do not
have to read this section. You could browse through the section for review, or you
could skip to "Coding the Program" on page 11. If you have trouble answering
the questions in this quiz, proceed to "Introduction to SQL" on the next page.

1. What is the form that SQL/DS data takes?

2. SQL commands can be embedded in host language programs written in:

a.

b.

c.

d.

(Four different programming languages).

3. What are the five steps or tasks to developing an application program?

4. What are the three steps you must do to prepare your program before running
it?

5. What must you place in the application prolog?

6. What needs to be coded in the application epilog?

7. What part of the program contains the SQL statements?

4 SQL/Data System Application Programming for VM/SP

Answers to the Section Quiz

1. Tables

2. FORTRAN, COBOL, PL/I, and Assembler language

3. 1. Designing, 2. Coding, 3. Preparing and Running, 4. Error Handling,S.
Administrating

4. 1. Preprocess, 2. Compile, 3. Load

5. Statements that provide for error handling, declare host variables, and establish
a connection between your program and SQL/DS

6. Statements that tell SQL/DS what to do with changes made to data, and
release the program's connection to SQL/DS

7. The application body.

Designing the Program 5

Introduction to SQL

The Structured Query Language/Data System (SQL/DS) is a data base
management system that uses the relational data model of data. You can think of a
relational data model as being a collection of tables where a relation in this model is
one of these tables. A table in the relational data model is no different than any
other simple two-dimensional table. It has a specific number of columns and some
number of unordered rows, and a specific item of data at the intersection of every
column and row. Data is accessed in terms of tables and operations on tables.
That is, you can get SQL/DS data just by knowing the names of the table and the
column that it is in. This provides for an easy-to-use set of commands which let
you work with the data, without having to bother with the way in which the data is
actually stored in the system.

Look at the sample tables in the foldout in the back of the book. These are
examples of tables in SQL/DS. We will be referring to them in examples
throughout the book. The INVENTORY table, shown in Figure 1, has columns
named PARTNO, DESCRIPTION, and QONHAND.

PARTNO DESCRIPTION QONHAND

207 GEAR 75
209 CAM 50
221 BOLT 650
222 BOLT 1250
231 NUT 700
232 NUT 1100
241 WASHER 6000
285 WHEEL 350
295 BELT 85

Figure 1. INVENTORY Table

Suppose, for example, you wanted to get a listing of all the different part names
(descriptions) of the parts that your company stocked. You could get this data
simply by knowing the name of the table, INVENTORY, and the name of the
column, DESCRIPTION, that the data was in. Then you would code this in an
appropriate SQL statement.

The language for handling SQL/DS data is called the Structured Query Language
(SQL). This language contains commands that retrieve, delete, and update tables
in the SQL/DS data base. You can embed these commands in application
programs written in COBOL, FORTRAN, PL/I, or Assembler Language. These
commands do all the data handling on SQL/DS data. With them, you use the
power of SQL/DS and decrease the data handling done by the programs
themselves. Programs that access SQL/DS data can also access data from other
sources, such as CMS files.

You can use SQL/DS under the Virtual Machine/System Product (VM/SP)
operating system. Application programs can be:

6 SQL/Data System Application Programming for VM/SP

• Online programs operating in virtual machines. These programs are controlled
by the Conversational Monitor System (CMS).

• Non-interactive programs operating in virtual machines in VM/SP.

SQl Within a Programming Environment

Programs that use SQL/DS can be written in COBOL, PL/I, FORTRAN, or
Assembler Language. These languages are called host languages because they act
as hosts for SQL. Application programs work with SQL/DS data through SQL
statements that you embed in the programs. How you embed SQL statements
varies slightly for each of the four languages that SQL/DS supports.

The core of SQL is the same for each of the host languages. For this reason, SQL
is presented throughout this book in basic form, unless otherwise noted. That is,
the SQL statements are shown without any of the language-dependent delimiters.
The SQL syntax and examples in this book are language independent.

Examples that have combinations of SQL statements and host language statements
are also shown in a language-independent form called pseudo code. Pseudo code
shows program logic but must be re-coded in a specific programming language
before it can be used. When SQL statements are shown in pseudo code examples,
they are preceded by EXEC SQL to help you distinguish the SQL statements from
the pseudo code. When shown by themselves, SQL statements are not preceded by
EXEC SQL.

For you to use SQL in a particular programming language, you must be familiar
with the rules for embedding SQL statements in that language. These language
rules are discussed in the appendixes; each programming language has a separate
appendix devoted to it:

Appendix C, "PL/I Considerations."

Appendix D, "COBOL Considerations."

Appendix E, "Assembler Considerations."

Appendix F, "FORTRAN Considerations."

You should glance over the appendix of the programming language that you will be
using before you continue reading. Don't worry right now about understanding the
SQL statements coded in the example programs in the appendixes. Just try to get a
general feel for how the statements are embedded. The SQL language is explained
in the first two chapters of this book. Once you are ready to code your first
SQL/DS application, you will probably need to refer to the appendixes again to
help you code. At that point, you can refer to the third chapter of this book,
"Chapter 3. SQL Programming Language Reference Summary" on page 257 for
reference information on each of the SQL statements that you learned.

Writing your program consists of a series of steps or tasks. This book is organized
according to these tasks.

Designing the Program 7

1. The first step is designing your program, or determining what you want the
program to do. This also includes choosing the type of application and
developing the structure or framework of the program. This information is
covered in the "Designing the Program" sections of both Chapters 1 and 2.
Chapter 1 contains basic information; Chapter 2 is for advanced programmers.

2. The second step is coding your SQL program. This consists of using the SQL
statements and tools to access and work with SQL/DS data, according to the
purpose set forth in your design. The second section of both Chapters 1 and 2
presents the various SQL statements and tells you how to use them.

3. The third step in developing your program is to get it ready to be run. This
includes:

a. Preprocessing the SQL code using one of the SQL/DS preprocessors

b. Compiling the code using the compiler of your host language to produce an
object program

c. Loading the object program to be run

d. Executing the program to carry out operations on the tables.

The "Preprocessing and Running the Program" sections of both Chapters 1
and 2 tell you how to get your program ready to be run.

4. The fourth step is to debug the program. This involves testing for errors that
may become apparent during preprocessing, compiling, loading or during
execution. The "Testing and Debugging Concerns" sections help you with this
task.

5. Finally, you must act as an administrator. You must control who can run your
program and who can use the data that your program accesses. You may have
to create your own data. You may need information about your data tables,
such as who first created them, or who else can access them. All this
information is in the "Putting the Program into Production" sections.

Also, once you have mastered the SQL language, you will probably need reminders
on the syntax or parameters of an SQL statement. The third chapter of this book is
written for this purpose.

Introduction to a Framework for Coding Programs

You can think of an SQL/DS application program as containing three main parts:
the prolog, the body and the epilog. You must place certain SQL statements at the
beginning and end of the program to handle the transition from the host language
to the embedded SQL statements. For instance, your program must establish a
connection to SQL/DS before the SQL statements can access data. Similarly, your
program must also release this connection after it is done using the data base.
Also, every SQL/DS application must provide for error handling. Statements to do
these things are put in the application prolog and the application epilog.

8 SQL/Data System Application Programming for VM/SP

Sample Tables

The application prolog should be at the beginning of every SQL program. In the
prolog, you must place SQL statements that do the following:

• Provide for error handling by setting up a communications area.

• Declare special variables (host variables) that SQL/DS uses to interact with
the host program. Host variables are really just normal host program variables
that are used in SQL statements. The only difference is that when they are
coded in an SQL statement, these variables must be preceded by a colon (:).
But they work just like regular program variables.

• Establish a connection between your program and SQL/DS.

The statements that do these things are described in "Designing the Program,"
Chapter 2.

The application body is where you place the SQL statements that operate on
SQL/DS tables. These statements are covered in the "Coding the Program"
sections of this book.

The application epilog is at the end of every SQL application program. It must
contain SQL statements that:

• Tell SQL/DS what to do with changes made to data. Changes can either be
saved ("committed") or ignored ("rolled back").

• Release the program's connection to SQL/DS.

Again, the statements that do these things are detailed in the advanced version of
this section, "Designing the Program," Chapter 2.

The foldout at the end of the book contains a set of tables. These tables are used
in an inventory control application for a small manufacturing company. They are
used throughout the book for SQL statement examples.

The INVENTORY table lists the part number, description, and quantity on hand of
each part in the inventory. The SUPPLIERS table lists the supplier number, name,
and address of the various companies that supply parts. The QUOTATIONS table
lists the part numbers that can be obtained from each supplier, together with the
current price and delivery time (in days) promised by the supplier for the given
part. The QUOTATIONS table also lists the quantity on order for each part from
a given supplier.

Next to the INVENTORY table is a list of all the columns with their corresponding
SQL/DS data types. Examples in subsequent chapters refer to these data types.

Designing the Program 9

10 SQL/Data System Application Programming for VM/SP

Coding the Program

Contents

This section tells you how to code data retrieval (SELECT) statements and data
manipulation (INSERT, DELETE, and UPDATE) statements in SQL. This
section also shows you some other things that you can use in SQL statements, such
as constants, host variables, and built-in functions.

Section Quiz ... 12
Answers to the Section Quiz 13
Introduction to SQL Program Coding 14
Retrieving One Row of Data from a Table: SELECT / INTO 14

SELECT Clause: Expressing Desired Results 15
INTO Clause: Returning a Single Row 17
FROM Clause: Specifying a Table Name 18
WHERE Clause: Searching on Conditions 19

Retrieving or Inserting Data with a Cursor 19
DECLARE CURSOR Statement 22
OPEN Statement ... 23
FETCH Statement .. 23
PUT Statement ... 25
CLOSE Statement .. 26

Predicates ... 27
Host Variables and Constants. .. 28
Using Expressions as Search Conditions 30
Built-In Functions ... 31
Putting a New Row into a Table: INSERT 34
Deleting Data from a Table: DELETE 36
Changing Data in a Table: UPDATE 37

Coding the Program 11

Section Quiz

The following questions cover the high points of "Coding the Program." If you can
answer all of these questions, you probably do not need to read this section. If you
decide to skip ahead, proceed to "Preprocessing and Running the Program" on
page 41. If you have trouble answering these questions, you should read the whole
section.

1. Write an SQL statement that would retrieve the part number and price from
the QUOTATIONS table for all the parts supplied by supplier number 54.
You should use the DECLARE CURSOR format since more than one row will
be returned. Choose your own cursor name. (Refer to the sample tables in the
foldout in the back of the book.)

2. Write an SQL statement that would retrieve the part number, price and
delivery time from the QUOTATIONS table where the supplier number is 53
and the part number is 232. Unless you are a FORTRAN coder, you should
use the SELECT / INTO format with this one, since only one row will be
returned. If you use FORTRAN, you should answer with the DECLARE
cursor format. Make up your own names for the host variables or cursor.

3. Suppose you just coded the following DECLARE CURSOR statement:

DECLARE CCC CURSOR FOR
SELECT SUPPNO, PARTNO
FROM QUOTATIONS
WHERE PRICE> 10.00
ORDER BY PRICE

Write three statements that will first open the cursor, then put the first row of
the active set into host variables SUPP and PART, and then close the cursor
once again. You do not need to begin your statements with EXEC SQL for
this exercise.

4. Write an SQL statement that will find the amount you will have to pay supplier
number 53 when part number 222 arrives. Include a 7% sales tax.

5. Write a statement that finds the difference between the maximum and the
minimum price for part number 221. Name the cursor anything you like.

6. Write an SQL statement that would delete all the rows from the INVENTORY
table that have a part number greater than 270.

7. Write a statement that would put a new row into the INVENTORY table. Let
the new row describe a part number 252 that has a description of LEVER and
a quantity on hand of 25.

8. Write a statement that would change the address of SKY PARTS to 310
SATURN ST., MILKYWAY NY.

12 SQL/Data System Application Programming for VM/SP

L Answers to the Section Quiz

1. DECLARE C1 CURSOR FOR
SELECT PARTNO, PRICE
FROM QUOTATIONS
WHERE SUPPNO = 54

2. SELECT PARTNO, PRICE, DELIVERY_TIME
INTO :PART, :PRI, :DEL
FROM QUOTATIONS
WHERE SUPPNO=53 AND PARTNO=232

or

DECLARE C2 CURSOR FOR
SELECT PARTNO, PRICE, DELIVERY TIME
FROM QUOTATIONS
WHERE SUPPNO=53 AND PARTNO=232

3. OPEN CCC
FETCH CCC INTO :SUPP, :PART
CLOSE CCC

4. SELECT QONORDER*PRICE + QONORDER*PRICE*.07
INTO :COST
FROM QUOTATIONS
WHERE SUPPNO=53 AND PARTNO=222

or

DECLARE C3 CURSOR FOR
SELECT QONORDER*PRICE + QONORDER*PRICE*.07
FROM QUOTATIONS
WHERE SUPPNO=53 AND PARTNO=222

5. SELECT MAX(PRICE)-MIN(PRICE)
INTO :RANGE
FROM QUOTATIONS
WHERE PARTNO=221

or

DECLARE C4 CURSOR FOR
SELECT MAX(PRICE)-MIN(PRICE)
FROM QUOTATIONS
WHERE PARTNO=221

6. DELETE FROM INVENTORY
WHERE PARTNO > 270

7. INSERT INTO INVENTORY
VALUES(252,'LEVER' ,25)

8. UPDATE SUPPLIERS
SET ADDRESS = '310 SATURN ST., MILKYWAY NY'
WHERE NAME = 'SKY PARTS'

Coding the Program 13

Introduction to SQl Program Coding

Application programmers using SQL/DS have some very useful statements for
retrieving and manipulating data at their disposal. As mentioned earlier, the coding
task in the SQL/DS application program consists of embedding these statements
into the host language code. The delimiters for SQL statements differ for each host
language. In each language, SQL statements are prefixed by "EXEC SQL". But,
in COBOL, the end of the command is denoted by "END-EXEC", while in PL/I,
the usual semi-colon (;) is used. There is no trailing delimiter for Assembler or
FORTRAN. Examples of the general form of embedded SQL commands are
shown in the following chart for each host language:

Host Language Format of Embedded Statement

COBOL EXEC SQL sql-statement END-EXEC

PL/I EXEC SQL sql-statement;

Assembler EXEC SQL sql-statement

FORTRAN EXEC SQL sql-statement

Figure 2. Form of Embedded SQL Statements

The exact rules of placement, continuation and delimiting of SQL statements are in
the host language appendixes. This section, "Coding the SQL Program," contains
explanations of how to code SQL/DS data retrieval and manipulation commands
for one or more rows of data from an SQL/DS table, without going into the details
of the different host languages.

One of the most common things an SQL application programmer must do is
retrieve data from the data base. In SQL, this is achieved through the use of the
SELECT statement. The SELECT statement is a form of query. It searches the
SQL/DS data base to see if any rows of any tables in the data base meet search
conditions specified in the SELECT statement. If any such rows exist, the data is
retrieved from the data base and put into specified variables in the host program.
Then the program can use this data for whatever it was designed to do.

There are two types of SELECT statements. The first, the SELECT/INTO
version, is used to retrieve only a single row of data from the data base. The
second, the DECLARE cursor version, is used to retrieve more than one row of
data. The SELECT/INTO statement cannot be used in FORTRAN programs.
Instead, for FORTRAN, the DECLARE cursor version is used to retrieve one or
more rows of data.

Retrieving One Row of Data from a Table: SELECT / INTO

The SELECT statement for retrieving one row of data is made up of four clauses:
the SELECT clause, the INTO clause, the FROM clause and the WHERE clause.
You must specify the clauses in that order.

14 SQL/Data System Application Programming for VM/SP

SELECT select-list
INTO one-or-more-host-variables
FROM table-name
[WHERE search-condition 1

Figure 3. Format of the SELECT Statement

Note: Remember that the SELECT / INTO statement cannot be used in
FORTRAN programs. Instead, you must use a cursor to retrieve data from one or
more rows in a table. Cursors (the DECLARE CURSOR statement) are described
under "Retrieving or Inserting Data with a Cursor" on page 19.

The SELECT / INTO statement finds one row of the table specified in the FROM
clause that satisfies the given search condition. From this row SQL/DS selects the
columns that you have supplied in the select-list. The results are delivered into the
host variables that you have listed in the INTO clause. For example, the following
statement selects the part number, description, and quantity on hand from the
INVENTORY table where the description of the part is 'BOLT'. It places the
result into the host variables PART, DESC, and QUANT:

SELECT PARTNO, DESCRIPTION, QONHAND
INTO : PART, :DESC, :QUANT
FROM INVENTORY
WHERE DESCRIPTION = 'BOLT'

The SELECT, INTO and FROM clauses are required for every SELECT statement
that you code. The WHERE clause is the only one of the four that is optional. If
you do not supply a WHERE clause, all rows of the table qualify.

Now let's take a look at each of the four SELECT statement clauses in more detail.

SELECT Clause: Expressing Desired Results

SELECT select-list
INTO one-or-more-host-variables
FROM table-name
[WHERE search-condition 1

The SELECT clause is the first part of a SELECT statement. It consists of the
keyword SELECT followed by a select-list.

The select-list is made up of one or more column names or expressions separated
by commas. (Expressions will be expiained in detail under section "Using
Expressions as Search Conditions" on page 30.)

The following are examples of select-lists that might occur in queries to the
example tables in the foldout:

Coding the Program 15

SELECT DISTINCT SUPPNO

SELECT DESCRIPTION, QONHAND
SELECT QONHAND - :X, PARTNO
SELECT DELIVERY TIME + 10
SELECT 250
SELECT PRICE * .85

If you specify DISTINCT immediately after the word SELECT, SQL/DS
eliminates duplicates from the query-result. (You can use DISTINCT only once in
any query.) For example, the SELECT clause below returns the set of different
supplier numbers in the rows that satisfy the search condition.

SUPPNO

55 <--·1 SQ,L/DS returns I
55 <--'1 only one of these.
56
57

Similarly, the following SELECT clause returns the set of different pairs of supplier
numbers and part numbers from rows that satisfy the search condition.

SELECT DISTINCT SUPPNO. PARTNO

SUPPNO PARTNO

55 206
55 207
55 207
55 208

<- SQ,L/DS returns
<- only one of

these.

ALL indicates that duplicates are not to be eliminated, and is the default.

SQL provides a special shorthand notation for selecting all the fields of a row:

SELECT *

For example, the following statement returns the entire row from the SUPPLIERS
table for supplier number 51:

SELECT *
INTO :SUPPNO, : NAME, :ADDR
FROM SUPPLIERS WHERE SUPPNO=51

If you specify a constant as a select-list expression, that constant occurs in every
row returned by the query. For example, the following figure shows a query that
returns a constant and all the supplier names.

16 SQL/Data System Application Programming for VM/SP

SELECT 'NAME IS', NAME
FROM SUPPLIERS

EXPRESSION

NAME IS
NAME IS
NAME IS
NAME IS
NAME IS
NAME IS
NAME IS

NAME

DEFECTO PARTS
VESUV I US, INC.
ATLANTIS CO.
TITANIC PARTS
EAGLE HARDWARE
SKY PARTS
KNIGHT LTD.

Note: Remember that the SELECT/INTO version of the SELECT statement can only be used to
retrieve a single row of data from the data base. Since the above statement returns more than
one row, you would have to declare a cursor to retrieve these rows to your program. Cursors
are discussed later in this section.

Note the difference between constants and SQL identifiers in select-lists. An
alphabetic constant (such as 'NAME IS' in the above example) is always enclosed
within single quotes (') when used in an SQL statement. A numeric constant does
not have to be enclosed within single quotes. An SQL identifier must be enclosed
within double quotes (") when it contains blanks or special symbols (such as
"SALARY COLUMN"). See "General Rules for Naming Data Objects" on
page 74 for additional information.

INTO Clause: Returning a Single Row

SELECT select-list
INTO one-or-more-host-variables
FROM table-name
[WHERE search-condition 1

Note: The INTO clause is not supported for FORTRAN. Instead, you must use a
cursor to fetch the row.

You can think of the result of a SELECT statement as a table having rows and
columns, much like a table in the data base. If the SELECT statement returns only
one row, SQL/DS delivers the results directly into the host variables specified in
the INTO clause. If the SELECT statement returns more than one row, you must
use a cursor to fetch the rows one at a time. Cursors are described under
"Retrieving or Inserting Data with a Cursor" on page 19. For the remainder of
this section, assume that the SELECT statement returns a single row. The
following are several examples of this type of SELECT statement:

SELECT ADDRESS
INTO :X
FROM SUPPLIERS
WHERE NAME='EAGLE HARDWARE'

Coding the Program 17

SELECT QONHAND + 100
INTO :Q
FROM INVENTORY
WHERE PARTNO = 221

SELECT PRICE, DELIVERY_TIME
INTO :P, :D
FROM QUOTATIONS
WHERE SUPPNO=:X AND PARTNO=:Y

If the number of expressions in the select-list is not equal to the number of main
host variables provided in the INTO clause, a warning flag (called SQL W ARN3) in
the SQLCA is set to 'W'. (See "Error Handling" on page 202 for a description of
the SQLCA.) The number of values returned is either the number of expressions
in the select-list or the number of host variables in the INTO clause (whichever is
smaller).

The host variables in the INTO clause must be compatible with the expressions in
the select-list. Integers, small integers, decimal numbers, and floating point
numbers are compatible; fixed-length, varying-length, and LONG V ARCHAR
character strings are compatible; and fixed-length, varying-length, and LONG
V ARGRAPHIC DBCS character strings are compatible.

Just before delivering each selected item into its associated host variable, SQL/DS
converts the selected item (if necessary) to the data type of the host variable.
Conversion from decimal or floating point to integer is done by truncation (for
example, 2.75 is truncated to 2). Whenever a floating point number is converted to
decimal, the decimal number acquires a precision of 15 and the maximum scale that
allows the integer part of the number to be represented without loss of either
significance or accuracy. Any necessary truncation is toward zero; that is, all losses
are on the right.

If the data value is too large for successful conversion (as when a decimal value is
larger than the largest representable integer), SQL/DS indicates a conversion error
by returning a negative SQLCODE in the SQLCA. When a conversion error
occurs, the contents of the host variable are unpredictable. Thus, if you are doing
your own error handling, you should always check SQLCODE after executing a
SELECT statement. When a decimal number is assigned to a decimal variable, the
number is converted, if necessary, to the precision and scale of the target.
SQL/DS data conversion is summarized under "Data Conversion" on page 76.

FROM Clause: Specifying a Table Name

SELECT select-list
INTO one-or-more-host-variables
FROM table-name
[WHERE search-condition 1

Use the FROM clause to specify the name of the table from which you want to
retrieve data. If the table is owned by another user, you can access it, if you are so """'"
authorized, by concatenating with a period the use rid of the owner of the table to

18 SQL/Data System Application Programming for VM/SP

the table-name itself. For example, to specify table SUPPLIERS owned by user
SMITH:

FROM SMITH. SUPPLIERS

Because any number of users can define a table with the same name, it is strongly
recommended that you always use fully qualified table names. This avoids
confusion if you are writing a program that someone else will preprocess.

WHERE Clause: Searching on Conditions

SELECT select-list
INTO one-or-more-host-variables
FROM table-name
[WHERE search-condition)

The WHERE clause is the place to specify your search conditions. If you don't
specify a WHERE clause, all the rows of the table are used to compute the
expressions in the select-list. Here are some examples of WHERE clauses:

WHERE ITEM = :X

WHERE QONORDER < :Rl
AND :FLAG = 0

If more than one row satisfies the search condition in a SELECT / INTO
statement, an error condition occurs and no rows are returned.

For more information on search conditions, see "More About Search Conditions"
on page 99.

Retrieving or Inserting Data with a Cursor

The previous section showed how to use a SELECT statement in COBOL, PL/I,
and Assembler language programs to retrieve certain fields from a single row of a
table. In FORTRAN programs, an SQL/DS cursor must be used to retrieve data
from one or more rows of a table. In COBOL, PL/I and Assembler language,
cursors must be used for queries that could return more than one row of a table.

A cursor, in general terms, is a pointer to the data base. SQL/DS cursors should
not be confused with the cursors found on display terminals.

The SQL DECLARE CURSOR statement defines a cursor by associating a name
of your own choosing with a query. The query may return many rows from the
data base. The rows of the result are called the active set of the cursor.

A cursor can be in an open state or a closed state. When the cursor is in the open
state, it maintains a position in its active set in one of three places:

Coding the Program 19

1. On a certain row (called the current row);

2. Between two rows; or

3. Before the first row.

Once you have defined a cursor, you can manipulate it using the following
statements:

OPEN

FETCH

PUT

If the cursor is a query-cursor (a cursor defined in terms of a SELECT
statement), the OPEN statement examines the contents of the host
variables, if any, in the WHERE clause of the query associated with
the cursor. The host variables of the WHERE clause are called input
host variables because they furnish information needed in the
processing of the query. By evaluating the input host variables, the
OPEN statement determines the set of rows that satisfy the query.

The cursor is placed in the open state and its active set becomes the
set of rows that satisfy the WHERE clause. However, none of these
rows is actually retrieved from the data base yet (this is done by
FETCH). The cursor is placed just before the first row of the active
set. Once you have opened a cursor, the input host variables are not
re-examined (and hence no change occurs to the contents of the active
set) until you close and re-open the cursor.

If the cursor is defined in terms of an INSERT statement, and your
program is blocking, the OPEN statement tells SOL/OS to prepare to
block. (Blocking is discussed in detail under "To Block or Not to
Block?" on page 254.) Even if your program is not blocking, you
should still OPEN and CLOSE every cursor, including insert-cursors.

Advances the position of the cursor to the next row of its active set
and delivers the selected fields of that row into the output host
variables. The output host variables are designated in the FETCH
statement. (No INTO clause is used in the SELECT statement
associated with the cursor.) When there are no rows remaining to be
fetched in the active set, SOL/OS returns the "not found" result code
(SOLCODE=100).

If your program is blocking, the PUT statement inserts the contents of
the input host variables into the insert-block. The input host variables
are defined in the VALUES clause of the DECLARE CURSOR
statement. After the PUT statement is executed, you can redefine the
input host variables to add another row to the insert-block. Rows are
not inserted into the data base until the block is full, or until a C:;LOSE
statement is issued. If blocking is not in effect, the PUT statempnt
simply inserts one row of data directly into a table as determined by
the insert-cursor.

DELETE Deletes one row of a table determined by the current position of the
cursor in the active set. This statement does not directly affect the
position of the cursor, but because the row it was positioned on is
deleted, the cursor is left in the between position. The cursor cannot

20 SQL/Data System Application Programming for VM/SP

UPDATE

CLOSE

be used for further deletions or updates until it is repositioned by a
FETCH statement.

Updates one row of a table determined by the current position of the
cursor in the active set. This statement does not affect the position of
the cursor.

Closes the cursor; the active set of the cursor becomes undefined. No
FETCH or PUT statements can be issued against the cursor until it is
re-opened. Note that both the COMMIT WORK and ROLLBACK
work statements automatically close all cursors. It is recommended,
however, that you always explicitly close all cursors when they are no
longer needed.

Figure 4, which is a pseudo code program fragment, illustrates the use of a cursor
named C 1. C 1 finds the part numbers and prices of all the rows of the
QUOTATIONS table whose supplier number matches host variable SUPP.
FETCH statements retrieve the selected fields successively into host variables
PART and PRICE. Once retrieved, the results are displayed on the console.

SUPP = 51 <---- Initialize SUPP (the input host variable).
EXEC SQL DECLARE C1 CURSOR FOR]

SELECT PARTNO,PRICE ---- Declare cursor
FROM QUOTATIONS WHERE SUPPNO=:SUPP C1.
ORDER BY PARTNO

EXEC SQL OPEN C1 <-------- Open the cursor.
EXEC SQL FETCH C1 INTO : PART, :PRICE
DO WHILE (SQLCODE=O)

DISPLAY (PART, PRICE)
EXEC SQL FETCH C1 INTO :PART,:PRICE

END-DO

Fetch the next row of the
active set into the output

<-- host variables and display
them.

DISPLAY ('END OF LIST')
EXEC SQL CLOSE C1 <--- When the active set is empty,

Figure 4. Using a Cursor

close the cursor.

Recall that SQLCODE is set to 100 when there are no rows remaining to be
fetched.

The formats of the statements for cursor management, and the details of their use,
are described below.

Coding the Program 21

./

DECLARE CURSOR Statement

Format 1:

DECLARE cursor-name CURSOR FOR select-statement

[
ORDER BY o-spec [ASCIDESC] [, o-spec [ASCIDESC]] ... J
FOR UPDATE OF column-name-l [, column-name-2] ...

Format 2:

DECLARE cursor-name CURSOR FOR insert-statement

Example (Format 1):

DECLARE Cl CURSOR FOR SELECT PARTNO, PRICE
FROM QUOTATIONS WHERE SUPPNO=:SUPP
ORDER BY PARTNO

Example (Format 2):

DECLARE C2 CURSOR FOR INSERT INTO INVENTORY
(PARTNO, DESCRIPTION, QONHAND)
VALUES (:PART, :DESC, : QUAN)

Authorization:

Anyone connected to SQL/DS can issue this statement. You must, however, be authorized to access
the tables referenced in the SELECT or INSERT statement. (See the statement authorization
descriptions for these statements.)

This statement defines a cursor by associating a cursor-name with the specified
select-statement or insert-statement. Cursor names must be unique in a logical unit
of work. The DECLARE CURSOR statement should not be confused with a host
variable declaration. The SQL DECLARE CURSOR statement should never be
placed within the host variable declare section.

A cursor-name must begin with a letter, $, #, or @. It can contain up to 18 letters,
$, #, @, underscores, and numbers. Unlike other SQL identifiers, cursor names
must never be enclosed in either single (') or double (") quotes; thus, cursor names
cannot contain embedded blanks. Cursor names can, however, be SQL reserved
words. For example:

DECLARE DELETE CURSOR FOR SELECT PART NO FROM INVENTORY

Note that the cursor name above (DELETE) is not enclosed in double quotes. If
you refer to such a cursor name in an UPDATE statement, however, you must
enclose the cursor name in double quotes. (See Format 2 of the UPDATE
statement in the next chapter.)

22 SQL/Data System Application Programming for VM/SP

OPEN Statement

Format:

OPEN cursor-name

Example:

OPEN Cl

FETCH Statement

Format:

The select-statement or insert-statement is actually a part of the DECLARE
CURSOR statement, so you must not precede SELECT or INSERT with EXEC
SQL. (However, EXEC SQL is placed in front of the DECLARE.)

If you are opening a query-cursor, this statement examines the input host variables
(if any) used in the definition of the cursor, determines the active set for the cursor,
and leaves it in the open state, as described earlier. When SQL/DS executes an
OPEN statement for a query-cursor, it positions the cursor before the first row of
the active set. After the query-cursor is opened, SQL/DS does not re-examine its
input variables until you close and re-open the cursor. No rows in the active set are
actually fetched to the host program until a FETCH statement is executed.

If you are opening an insert-cursor and your program is blocking, this statement
simply tells SQL/DS to prepare to block the rows that are to be inserted. With an
insert-cursor, you can change the values of the input host variables between inserts.
That is, you do not have to close and re-open the cursor in order to change the
values to be inserted. Even if your program is not blocking, you should OPEN and
CLOSE every insert-cursor.

Additional uses of the OPEN statement are described under "Dynamically Defined
Statements" on page 147.

FETCH cursor-name INTO host-list

Example:

FETCH Cl INTO : NAME , :ADDR, :PHONE:PHONI

The FETCH statement can be executed only when the indicated cursor is in the
open state. The position of the cursor is advanced to the next row of the active set,
and the selected fields of this row are delivered into the output host variables

Coding the Program 23

specified in the host-list. Output host variables in this list must be separated by
commas, and must be immediately preceded by colons.

If the active set of the cursor is empty, or if all its rows have already been fetched,
SQL/DS returns the "not found" SQL code (SQLCODE= 100). To perform
further operations via the cursor, you must close and re-open it.

Notice that the INTO clause on this statement is not optional; you must specify the
output host variables in the FETCH statement, not in the cursor declaration. For
example, the following is an invalid construction:

DECLARE QUERY 1 CURSOR FOR
SELECT SUPPNO, PRICE*1.10
INTO : SUPP, : NEWPR I
FROM QUOTATIONS
WHERE PARTNO = 221

OPEN QUERY1
FETCH QUERY1

Invalid. You should
not use an INTO clause
in a cursor declaration.

This is the correct way to specify the output host variables:

DECLARE QUERY1 CURSOR FOR
SELECT SUPPNO, PRICE*1.10
FROM QUOTATIONS
WHERE PARTNO = 221

OPEN QUERY1
FETCH QUERY1 INTO :S1, :P1

Correct. The values
~--------~ are returned in these

host variables.

A cursor can move "forward" only when in its active set; SQL/DS provides no
facilities for returning to rows that have already been fetched (other than closing
the cursor and re-opening it).

It is possible for two or more rows in the active set to have exactly the same values.
(For example, many rows of the QUOTATIONS table may have the same
PARTNO, and you might define a cursor that selects only PARTNO from the
table.) These duplicate values are not eliminated from the active set unless you
specify DISTINCT in the SELECT clause of the DECLARE CURSOR statement.

You can use indicator variables in the INTO clause. In the above example,
:PHONE:PHONI is a host variable (:PHONE) with an associated indicator
variable (:PHONI). (See "Indicator Variables" on page 146 for a complete
description.) Where nulls are applicable for a column, the value that SQL/DS
returns in an indicator variable is coded as follows:

o Denotes that the returned value is not null, and has been placed in the
associated main variable.

<0 Denotes that the returned value is null. The main variable should be ignored.

24 SQL/Data System Application Programming for VM/SP

PUT Statement

Format:

PUT cursor-name

Example:

PUT C1

>0 Denotes that the returned value was truncated because the main variable was
not of sufficient length.

In addition, if the truncated item was a DBCS or a character string, the
indicator variable contains the length in characters before truncation. The
SQL WARN 1 warning flag in the SQLCA is set to 'W' whenever a returned
character string is truncated. (See "Error Handling" on page 202 for a
description of the SQLCA.)

Each main variable in the INTO clause mayor may not have an associated
indicator variable, at your option. If a null value is returned, and you haven't
provided an indicator variable, a negative SQLCODE is returned to your program.
If your data is truncated and there is no indicator variable, no error condition
results.

Note that both the COMMIT WORK and ROLLBACK WORK statements
automatically close all cursors.

When blocking is in effect, after a block of rows have been successfully retrieved
from the data base, the variable SQLERRD(3) in the SQLCA indicates the number
of rows retrieved. When blocking is not in effect, SQLERRD(3) is set to 1 after
each successful FETCH. If the returned SQLCODE is non-zero, indicating
unsuccessful completion of the statement, the content of SQLERRD(3) is
unpredictable.

Additional uses of FETCH are discussed under "Dynamically Defined Statements"
on page 147.

The PUT statement inserts one row of data into a table as defined by a cursor.
This cursor must be defined in terms of an INSERT statement. The contents of
input host variables (defined in the INSERT clause of the DECLARE CURSOR
statement) are delivered to SQL/DS. These values are placed in the columns of
the table that you specified.

For instance, the following statements insert a new row of data into the
QUOTATIONS table. The values represented by the host variables :SUPP and
:PART are placed in the SUPPNO and PARTNO columns of the new row. The
other columns are assigned the null value.

Coding the Program 25

CLOSE Statement

Format:

CLOSE cursor-name

Example:

CLOSE C1

DECLARE CC CURSOR FOR
INSERT INTO QUOTATIONS (SUPPNO, PARTNO)
VALUES (:SUPP, : PART)

OPEN CC
PUT CC

If you wish to, you can place constants in the VALVES clause of the DECLARE
CURSOR statement, instead of host variables. However, this causes identical rows
to be inserted for each PUT.

The PUT statement is used mostly for inserting multiple rows of data into a table in
groups or blocks. However, the PUT statement also works with non-blocked
inserts. Blocked inserts are specified with the BLOCK preprocessor parameter. If
blocking is in effect, rows are not inserted into the data base until the block is full,
or until a CLOSE statement is issued. For more information on blocking, see "To
Block or Not to Block?" on page 254. For information on how to preprocess your
program with the BLOCK option specified, see "Preprocessing the Program" on
page 187.

The PUT statement can be executed only when the indicated cursor is in the OPEN
state, otherwise SQL/DS returns a negative SQLCODE. Note that both the
COMMIT WORK and ROLLBACK WORK statements automatically close all
cursors.

After a block of rows have been successfully inserted using PUT statements, the
variable SQLERRD(3) in the SQLCA indicates the number of rows inserted.
When blocking is not in effect, SQLERRD(3) is set to 1 after each successful PUT.
If the returned SQLCODE is non-zero, indicating unsuccessful completion of the
statement, the content of SQLERRD(3) is unpredictable.

Additional uses of the PUT statement are discussed under "PUT Statement for
Dynamically Defined Inserts" on page 181.

The indicated cursor leaves the open state, and its active set becomes undefined.
No FETCH or PUT statement can be executed on the cursor, and no DELETE or
UPDATE statement can refer to its current position, until the cursor is reopened by
an OPEN statement. CLOSE permits SQL/DS to release the resources associated
with maintaining an open cursor. CLOSE should be placed in your program so that
it is executed as soon as the program is finished using a cursor.

26 SQL/Data System Application Programming for VM/SP

Predicates

If your program is blocking, closing an insert-cursor with an incomplete block will
normally insert the remaining rows into the data base. Closing a query-cursor in
this case will return the remaining rows in the incomplete block to the program.

It is recommended that you explicitly close all cursors before issuing a COMMIT
WORK, especially when blocking.

One of the most common operations in SQL is to search through a table, choosing
certain rows for processing. A search condition is the criterion for choosing rows.

A search condition is a collection of one or more predicates. Each predicate
specifies a test that SQL/DS applies to the rows of the table. You can connect
predicates with the logical operators AND and OR. For example:

predicate1 AND predicate2 OR predicate3

The keyword NOT can be used to negate a predicate:

predicate1 AND NOT predicate2

The precedence rule among the keywords is as follows: first NOT is applied,
followed by AND, followed by OR. You can use parentheses to override this
precedence rule if necessary. For example, the search condition in Figure 5
contains three predicates; it could be used to find the rows of the QUOTATIONS
table pertaining to supplier number 61 and part number 221 or 222:

Search Condition:

SUPPNO = 61 AND (PARTNO = 221 OR PARTNO = 222)

L::> Pred cate 3
~---------------> Pred cate 2 1-.. ____________________________ > P r ed cat e 1

Predicate 1:

SUPPNO = 61

expression
comparison operator
expression

Figure 5. Breakdown of Search Conditions and Predicates

Figure 5 also shows that the format of a predicate is a comparison between two
values or expressions. This format is represented as follows:

.expression comparison-operator expression

A comparison-operator may be any of the following:

Coding the Program 27

"equal to"
..,= "not equal to"
> "greater than"
>= "greater than or equal to"
< "less than"
<= "less than or equal to"

The above symbols are the only comparison operators that you can use in SOL/OS
statements. For example, SOL/OS does not recognize """" even if supported in
the host language. The correct representation of inequality is " ... =."

Host Variables and Constants

You know that a host variable is just a normal program variable by which SOL/OS
interacts with the host program. You also know that they can be coded in the
INTO clauses of SELECT statements or in the FETCH statements associated with
cursors, in order to receive values selected from SOL/OS tables. But there are
other places that you can use host variables. You can use them in WHERE clauses,
for instance:

DECLARE C CURSOR FOR
SELECT SUPPNO
FROM QUOTATIONS
WHERE PRICE < :PRLIM AND PARTNO = :PART

You can also use them in other types of statements. For example, in a DELETE
statement:

DELETE FROM QUOTATIONS
WHERE PARTNO = :XXX

(DELETE statements are discussed later in this chapter.)

When would you use the DECLARE CURSOR example above? Suppose that you
had a list of part numbers and a corresponding list of the upper limits on prices that
your company wants to pay for each part. Then you wanted to know which
suppliers sell this part at a reasonable price. You could code the above statement
in a loop which changes the part number and price limit on each pass. Then, for
each pass through the loop, you would have a list of the supplier numbers that sell
that part below your price limit.

Constants (also called literals or literal constants) can be numeric or character data.
They are fixed values that can be coded into SOL statements. Like host variables,
they are used in the SELECT and WHERE clauses of the SELECT and
DECLARE CURSOR statements.

Numeric data can be integer, decimal or floating point data. Integer constants
consist of a number with an optional sign, such as -56, 103, or + 786. (If you do
not include a sign, SOL/OS assumes that the number is positive.) Decimal data
consists of a number with a decimal point, such as 78.9687, -.00132, 64570., or
+ 1672.80. If you do not supply a decimal point, SOLIDS interprets the constant
as an integer. A floating point number is an integer or a decimal constant followed ~ ~

by an exponent marked by the letter E. E must be followed by an exponent. EO is ~

28 SQL/Data System Application Programming for VM/SP

acceptable and evaluates to 1. All these are permissible floating point constants:
-2E5, 2.2E-1, .2E6, +5E+2 or 4EO.

Character string constants are strings of letters or numbers, such as 'SMITH', '52',
or 'k@r -5B'. They are considered varying-length character strings by SOL/OS.
(Data types are discussed later in this chapter.) Character string constants must be
put in single quotes when coded in an SOL statement. The following example
shows a character string constant coded in a WHERE clause.

DECLARE C CURSOR FOR
SELECT *
FROM SUPPLIERS
WHERE NAME = 'DEFECTO PARTS'

Numeric constants can also be coded in the WHERE clause.

If you want to represent a single quote inside of a character string constant, use
two single quote marks. SOL/OS interprets the constant:

'DON' 'T GO'

as:

DON'T GO

Constants, both character and numeric, can also be used in the SELECT clause.
The effect of this is to set up a new column in the resulting display, which has the
specified constant in each of its data fields. For example, the statement:

DECLARE C CURSOR FOR
SELECT NAME, 'WOW', 98.6
FROM SUPPLIERS
WHERE SUPPNO < 60

would have the following active set:

NAME

DEFECTO PARTS
VESUVIUS, INC.
ATLANTIS, CO.
TITANIC PARTS
EAGLE HARDWARE

EXPRESSION 1

WOW
WOW
WOW
WOW
WOW

EXPRESSION 2

98.6
98.6
98.6
98.6
98.6

For more information on constants and data types, see "Data Types" on page 75.
Also see "Additional Types of Constants" on page 99 for a discussion of other
types of constants that you can use within expressions.

Coding the Program 29

Using Expressions as Search Conditions

In addition to column names, constants and host variables, any combination of
these, connected by arithmetic operators, can also be used in SELECT and
WHERE clauses. These are called expressions. An expression can be a column
name, a constant, a host variable, or any arithmetic combination of these.
Expressions allow you to do calculations on data as part of a query. The
calculations are performed before SOL/OS returns the data to your program.

Figure 6 shows a simple expression:

Expression:

(PRICE - :MARKDOWN) * .80

T -c.....> constant
"------> host variable

> column name

Figure 6. Breakdown of an Expression

There are four arithmetic operators that you can use:

* multiplication
/ division
+ addition

subtraction

Usually, SOL/OS reads the expression from right to left, first applying any
negations, then any multiplication or division operations, then finally carrying out
additions and subtractions. You can change this order or precedence by using
parentheses. For instance, in the above example, if it were coded

PRICE - :MARKDOWN * .80

SOL/OS would take the value of the host variable MARKDOWN, multiply it by
.80, and then subtract the result from the price. As the statement was originally
coded, SOL/OS first subtracts MARKDOWN from PRICE and then multiplies the
result by .80. The two results would probably end up being quite different.

You can use parentheses in an expression if you want to establish precedence
among the operators. The default precedence rule is: negation is applied first,
followed by multiplication and division, followed by addition and subtraction.

Host variables, as noted earlier, can be used in expressions either alone or in
combination with other things. For instance

: QUANTITY

is a valid expression and so is

PRICE * :QUANTITY + 1.44

30 SQL/Data System Application Programming for VM/SP

As mentioned earlier, you must precede the names of the host variables by a colon
(:) to distinguish them from column names. That is, SOLIDS interprets

:PARTNO

as a host variable, but interprets

PARTNO

as a column name.

Numeric constants can stand alone or be used in arithmetic combination with other
constants or host variables or column names. Thus, all three of the following are
valid expressions:

200 -798.9768 PRICE * : QUANTITY + 1.44

On the other hand, alphabetic constants are only valid as expressions when they
stand alone. They cannot be used in arithmetic combinations. Thus, these are two
valid expressions using character constants:

'PLEASE DON"T EAT THE CANDY' 'BOLT'

whereas this is not a valid expression:

'FUDGE'*'GUMDROP'+'LEMON'

However, character constants can be used in comparisons in WHERE clauses.
Thus,

WHERE NAME <= 'BOLT'

is a legitimate WHERE clause. In the above example, NAME represents a column
name and 'BOLT' is a character constant. Remember that all character constants
must be surrounded by single quotes.

If you attempt to combine, with arithmetic operators, two pieces of data that do not
have compatible data types, SOLIDS will return an error code. All numeric data
types are compatible with each other. SOLIDS performs data conversion on
different types of data that are compatible. See "Data Conversion" on page 76
for more information on data conversion and compatibility.

Built-In Functions

You can also use the SOLIDS Built-In functions in the SELECT and WHERE
clause(s) of SELECT statements. The built-in functions perform handy
calculations for you, and present your program with the results, just like it was
information retrieved from the data base.

SOLIDS has five built-in functions that you can use in expressions in select-lists:

AVG MAX MIN SUM COUNT

Coding the Program 31

The argument of a built-in function may be a column name (optionally preceded by
DISTINCT or ALL -- ALL is the default), or an expression. The argument follows
the function and must be enclosed in parentheses.

DISTINCT indicates that duplicate values are to be eliminated before the function
is applied. For example,

SELECT COUNT(DISTINCT PARTNO)

computes the number of different part numbers in the rows that satisfy the search
condition. ALL indicates that duplicates are not to be eliminated.

The following are examples of SELECT statements using built-in functions:

SELECT AVG(PRICE)
INTO :MEAN
FROM QUOTATIONS
WHERE PARTNO = 222

SELECT MAX(PRICE) - MIN (PRICE)
INTO :DIFF
FROM QUOTATIONS
WHERE PARTNO = :PART

SELECT MAX (QONHAND+15)
INTO :MAXIMUM
FROM INVENTORY

SELECT MAX(PRICE * : DISCOUNT)
INTO :MAXDISC
FROM QUOTATIONS

SELECT COUNT (DISTINCT PARTNO)
INTO :NUM
FROM QUOTATIONS

SELECT MIN (PRICE) , MAX (PRICE) , MAX (PRICE) - MIN(PRICE)
INTO :H, :L, :SPREAD
FROM QUOTATIONS
WHERE PARTNO = 222

A special built-in function, COUNT("'), is also provided to count how many rows
satisfy the search-condition. For example, the following query counts the rows of
the OUOT A TIONS table that apply to part number 222:

SELECT COUNT(*)
INTO :N
FROM QUOTATIONS WHERE PARTNO=222

You must follow these rules when using built-in functions:

1. In a select-list, built-in functions cannot be mixed with expressions that do not
contain built-in functions. For example, SELECT P ARTNO, A VG(PRICE) is
an error. Exceptions to this rule are permitted in "gluuping" type queries,
which are described under "Grouping" on page 113.

2. In computing built-in functions such as AVG, SUM, MAX, and MIN, SOL/OS
ignores null values. However, if SOLIDS encounters nulls in computing a

32 SQL/Data System Application Programming for VM/SP

built-in function, it sets a warning flag (called SOLWARN2) in the SOLCA.
The function COUNT(*) counts all rows that satisfy the search-condition,
regardless of whether they contain null values.

3. If a built-in function is computed over an empty set (that is, if no rows satisfy
the search condition), the following value is returned: COUNT returns zero;
AVG, SUM, MAX, and MIN return the null value. (You should have an
indicator variable to handle this condition.)

4. The built-in functions A VG and SUM can be applied to numeric columns
(INTEGER, SMALLINT, DECIMAL or FLOAT type) only. If the data type
of the operand is DECIMAL or FLOAT, the result of the function is the same
data type as the operand column. If the data type of the operand is INTEGER
or SMALLINT, the data type of the result is INTEGER. (In this case, if the
true average is not an integer, the fractional part is truncated.) If the operand
of SUM or AVG is DECIMAL with precisionp and scale s, the result is
precision 15. For SUM, the resulting scale is s. For A VG, the resulting scale
is:

15 - p + S

For example, suppose you average a column having a data type of DECIMAL
(5,2). The precision (p) is 5, and the scale (s) is 2. When SOLIDS averages
the number, the resultant precision is 15 and the scale is (15-5)+2. Thus, the
resultant scale is 12.

5. The built-in functions MAX and MIN may be applied to columns of any type.
The result of these functions is always the same data type as the argument. If
applied to a column of character-string type, dictionary ordering is used to find
the MAX or MIN. For example:

'A' < 'B'
'A' < 'ABLE'
'z' < '35'
'A1' < 'B'

6. The built-in function COUNT can be used in only two ways:

a. COUNT(*) returns the number of rows that satisfy the WHERE clause.

b. COUNT(DISTINCT column-name) returns the number of different values
of the given column in those rows that satisfy the WHERE clause. For
example, COUNT(DISTINCT PARTNO) returns the number of different
part numbers.

Note that you cannot apply COUNT to a column unless you also specify
DISTINCT. For example, COUNT(PARTNO) results in an error. This is
because the number of part numbers including duplicates is equal to the
number of rows that satisfy the WHERE clause, which is correctly expressed
by COUNT(*). The result of COUNT is always an integer. If the host
variable into which the result of COUNT is placed does not have a data type of
INTEGER, SOLIDS attempts to convert the result of COUNT into the data
type of the host variable. (See "Data Conversion" on page 76.)

Coding the Program 33

7. In a select-list, you can use the ternl DISTINCT only once. DISTINCT can be",
used to eliminate duplicates from the query result as a whole (SELECT
DISTINCT PARTNO,PRICE). Alternatively, it can be used to eliminate
duplicates from the argument of a function (SELECT CQUNT(DISTINCT
PARTNO». However, you cannot mix these usages.

8. If you use DISTINCT inside the argument of a function, the argument must be
a simple column name, not an expression. (For example, COUNT(DISTINCT
QONHAND/2) is not permitted.) Also, a function with DISTINCT in its
argument must stand alone, and cannot be used inside an expression such as
COUNT(DISTINCT PARTNO)+ 10.

9. Although COUNT(*) includes the number of rows whose values are null,
COUNT(DISTINCT ...), A VG, MAX, MIN, and SUM ignore null values.

Putting a New Row into a Table: INSERT

Format 1 INSERT:

INSERT INTO [creator.]table-name [(list-of-column-names)]
VALUES (list-of-data-items)

Examples: ,."""

INSERT INTO JONES. INVENTORY (PARTNO,DESCRIPTION,QONHAND)
VALUES (251, 'GEAR' ,:QOH:IND1)

INSERT INTO QUOTATIONS VALUES (:A,:B,:C:CI,:D:DI,:E:EI)
INSERT INTO QUOTATIONS VALUES (68,209,18.00,14,0)
INSERT INTO WEATHER (DATE, LOCATION, TEMPERATURE)

VALUES ('JANUARY 13, 1981' ,'ENDICOTT' ,-15)

Authorization:

You can insert data into any table you create. You can insert data into another user's table if you are
given the INSERT privilege on that table, or if you have DBA authority.

Format 1 of the INSERT statement adds a single row of data into an existing table.
The statement consists of two clauses: the INSERT clause and the VALUES
clause. In the INSERT clause, specify the name of a table (table-name) and
(optionally) a list of column names (/ist-of-column-names) that the data is to be
inserted into. In the VALUES clause, place the values that you want added to the
table in the list-of-data-items. Separate each item with a comma.

SQL/DS forms new rows by placing the various data-items into the specified
columns in the order named:

34 SQL/Data System Application Programming for VM/SP

INSERT INTO SUPPLIERS (SUPPNO, NAME)
VALUES (68, 'EAGLE HARDWARE')

In the example above, SQL/DS places 68 in SUPPNO and 'EAGLE
HARDWARE' in NAME. You do not have to list the column names in the same
sequence that they were named when the table was created. For example, this
statement is equivalent to the previous one:

INSERT INTO SUPPLIERS (NAME, SUPPNO)
VALUES ('EAGLE HARDWARE', 68)

Omitting the list of column names is the same as naming all the columns in the
order that they were named when the table was created. If you do include the list
of column names, all columns of the given table that you do not name receive the
null value. You can also insert null values into a table by using the NULL
keyword:

INSERT INTO INVENTORY
VALUES (291 , 'LEVER' ,NULL)

In the above example, omission of the column-list denotes that all columns
participate; but the last column, QONHAND, receives a null value because of the
NULL keyword in the list of data-items. If you attempt to insert nulls into a
column that does not permit nulls, SQL/DS returns an error code in the SQLCA.

For the list-of-data-items, you can use constant (literal) values such as 'JOHN
DOE' or -750. You can also use host variables such as :X or :PART.

The data types of the values to be inserted (source data type) do not necessarily
have to match the data types defined for the columns (target data type). However,
the data types must be compatible, that is, character to character, numeric to
numeric, or DBCS to DBCS. SQL/DS automatically does data conversion on
compatible data types. (See "Data Conversion" on page 76 for more
information.)

SQL/DS uses no logical ordering on the rows of Ii table. Therefore, you cannot
specify a "position" in the table for the new row. SQL/DS just associates the new
row with the rest of the table. When a SELECT statement is next issued on that
table, SQL/DS determines the row's position by checking available indexes on the
table and by following sort instructions listed in the SELECT statement. (Indexes
and SELECT sort instructions are discussed in Chapter 2.)

Coding the Program 35

Deleting Data from a Table: DELETE

Format 1 DELETE:

DELETE FROM [creator.)table-name
[WHERE search-condition]

Examples:

DELETE FROM QUOTATIONS WHERE SUPPNO = 53
DELETE FROM QUOTATIONS WHERE DELIVERY_TIME IS NULL
DELETE FROM QUOTATIONS WHERE PARTNO = :X AND PRICE> :Y
DELETE FROM SCOTT. INVENTORY WHERE DESCRIPTION = 'PISTON'

Authorization:

You can delete rows from any table you create. You can delete rows from another user's table if you
are given the DELETE privilege on that table, or if you have DBA authority.

You can delete one or more rows of data from a table by using the DELETE
statement. SQL/DS deletes all rows of the named table that satisfy the search
conditions that you specify. For instance, the following example deletes all the
rows in the QUOTA nONS table that have a supplier number of 53.

DELETE FROM QUOTATIONS
WHERE SUPPNO = 53

The DELETE statement has two clauses: the DELETE clause and the WHERE
clause. The DELETE clause consists of the keywords DELETE FROM followed
by the name of the table that you want the rows deleted from. The WHERE clause
is made up of the keyword WHERE followed by a search condition. This WHERE
clause is just like the WHERE clause in the SELECT statement. The
search-condition simply describes the rows that you want SQL/DS to search for
and, in this case, delete. For more information on the WHERE clause and search
conditions, see "WHERE Clause: Searching on Conditions" on page 19.

If you omit the WHERE clause, SQL/DS deletes alI the rows from the indicated
table. For instance, the statement

DELETE FROM SUPPLIERS

would delete all the rows from the SUPPLIERS table. The table would still
"exist," but would be empty until you issue a DROP TABLE statement. When this
happens, SQL/DS sets a warning indicator in the SQLCA (SQLWARN4). You
can check this warning indicator to detect unintentional deletions and, if necessary,
you can undo these deletions before they are permanently committed to the data
base. (See "ROLLBACK WORK" on page 233 and "Error Handling" on
page 202 for more information.)

36 SQL/Data System Application Programming for VM/SP

If no rows satisfy the search condition, SQL/DS returns a message
(SQLCODE= 100) in the communications area that you declared in your
application prolog. It does not delete any rows.

If SQL/DS detects an error in your DELETE statement after some rows have
already been deleted, SQL/DS stops processing the statement and returns an error
code in the SQLCA.

After successful completion of a DELETE statement, the variable SQLERRD(3) in
the return code structure indicates the number of rows that were deleted. If the
returned SQLCODE is non-zero, indicating unsuccessful completion of the
statement, the content of SQLERRD(3) is unpredictable.

Changing Data in a Table: UPDATE

Format 1 UPDATE:

UPDATE [creator.]table-name
SET column-name-l = expression-l
[, column-name-2 = expression-2]
[WHERE search-condition]

Example:

UPDATE EMPLOYEES
SET SALARY = 65000.00,

POSITION = 'RETIRED'
WHERE NAME = 'J. B. ROBINSON'

UPDATE SUPPLIERS
SET NAME = :NAM:INAM,

ADDRESS = :ADDR:IADDR
WHERE SUPPNO = :SNO

Authorization:

You can update tables you create. You can update columns in other user's tables if you are given the
UPDATE privilege on the columns, or if you have DBA authority.

A Format 1 UPDATE statement changes the values of one or more fields in one or
more rows of a table. All rows that satisfy the search condition are updated. For
example, the following statement adds the content of variable X to the
QONORDER field of the row for part number 231 in the QUOTATIONS table:

UPDATE QUOTATIONS
SET QONORDER QONORDER + :X
WHERE PARTNO = 231

Coding the Program 37

The UPDATE statement consists of three clauses: the UPDATE clause, the SET
clause and the WHERE clause.

The UPDATE clause contains the name of the table that you wish to update. If
this table belongs to another user, you must concatenate the owner's userid to the
table name.

The SET clause specifies the changes you wish to make to particular columns of the
chosen row(s). One or more fields in each row have their values replaced by the
value of an expression. An expression can be a constant, a host variable, a column
name, or any combination of three, joined by the arithmetic operators +, -, ., and
/.

The following example sets the PRICE field to 2500.00/QONORDER and then
sets the QONORDER field to zero of the row for part number 525 in the
QUOTATIONS table:

UPDATE QUOTATIONS
SET PRICE = 2500.00 / QONORDER, QONORDER 0
WHERE PARTNO = 525

The above example also illustrates the following rule: SQL/DS computes all
update values before any updates become effective. Thus, SQL/DS computes the
new value of PRICE before setting QONORDER to zero, regardless of the order
in which you list the individual updates in the SET clause.

As with the INSERT statement, if data types in the SET clause are compatible but ."""
not identical, SQL/DS applies data conversion. Data conversion rules are
discussed under "Data Conversion" on page 76.

The WHERE clause is just like the WHERE clause in a SELECT statement -- it
specifies which rows are to be updated. If you omit the search condition, SQL/DS
updates aU the rows in the named table. However, when this happens, SQL/DS
sets a warning indicator in SQLWARN4 of the SQLCA so that you can detect
unintentional updates and, if necessary, undo these changes before they are
permanently committed to the data base. (See "ROLLBACK WORK" on
page 234 and "Error Handling" on page 202 for more information.)

If no rows satisfy the search condition, the "not found" code (SQLCODE= 100) is
returned in the SQLCA. No rows are updated.

If SQL/DS detects an error in your UPDATE statement after some rows have
been updated (for example, an attempt to update a NOT NULL field to NULL),
SQL/DS stops processing the statement and returns an error code in the SQLCA.

You can set the contents of a field to the null value by writing column-name =
NULL in the SET clause of an UPDATE statement. You can also set a field's
contents to null by using an indicator variable. The following example updates the
INVENTORY table and sets the QONHAND field to null for a certain part:

UPDATE INVENTORY
SET DESCRIPTION = 'INACTIVE',

QONHAND = NULL
WHERE PARTNO = 801

38 SQL/Data System Application Programming for VM/SP

You can improve the performance of UPDATE statements if you do not update the
same column on which you are searching. Suppose there is a table EMP that
contains a column NAME and a column NUMBER. Each name has a unique
person-number. If you want to update the name field, you should code the update
as:

UPDATE EMP SET NAME='new name'
WHERE NUMBER=value

<---- Fast

The above statement is much faster than this one:

UPDATE EMP SET NAME='new name'
WHERE NAME='old name'

<---- Slow

After successful completion of an UPDATE statement, the variable SQLERRD(3)
in the SQLCA indicates the number of updated rows. If the returned SQLCODE
is non-zero, indicating unsuccessful completion of the statement, the content of
SQLERRD(3) is unpredictable.

Coding the Program 39

40 SQL/Data System Application Programming for VM/SP

Preprocessing and Running the Program

Contents

This section gives you an introduction to the steps it takes to prepare and run your
program. It tells you what it means to preprocess, compile, load and run an
SQL/DS application program.

Note: Readers should already know how to compile, load and execute programs in
their host languages. This section, and the corresponding "Preprocessing and
Running the Program" in Chapter 2, only cover the peculiarities of compiling,
loading and executing SQL/DS application programs.

Section Quiz ... 42
Answers to the Section Quiz 43
Introduction ... 44
Preprocessing the Program .. 44
Compiling the Program ... 45
Link-Editing and Loading the Program 45
Running the Program .. 45

Preprocessing and Running the Program 41

Section Quiz

The questions in this quiz cover the high points of this section. If you can answer
most or all of these questions, you probably do not need to read this section. If you
decide to skip ahead, proceed to "Testing and Debugging Concerns" on page 47.
If you have trouble answering these questions, you should read the whole section.

1. What are the four steps necessary to prepare and run your program?

2. What are the two things that preprocessing your program does?

3. TRUE or FALSE: Compiling an SQL/DS application program is no different
than compiling an ordinary program in your host language?

4. What is an access module?

5. What is the difference between multiple user mode and single user mode?

42 SQL/Data System Application Programming for VM/SP

Answers to the Section Quiz

1. 1. Preprocessing the SQL code, 2. Compiling the program, 3. Link-editing
and loading the program, 4. Running the program.

2. It changes the SQL source code so that it can be processed during host
language compiling and converts the SQL statements into an "access module"
that is stored in the SQL/DS data base.

3. TRUE. However, there are some minor exceptions. See "Preprocessing and
Running the Program" on page 183 for an account of these exceptions.

4. An access module is a machine code version of the SQL requests made by your
program, stored in the SQL/DS data base.

5. Multiple user mode allows one or more users or programs to access the same
data base at the same time. Single user mode only allows one user or program
to access the data base at a time.

Preprocessing and Running the Program 43

Introduction

Once your program is coded, you must get it ready to be run. In SQL, this involves
a series of steps. The number of steps varies depending on the host language of the
program and the environment in which the program is running. There are,
however, four steps that are common in each case. In order to run your SQL
application program you must:

1. Preprocess the SQL code.

2. Compile the program.

3. Link-edit and load the program.

4. Run the program.

Now let's look at each of these steps in a little more detail.

Preprocessing the Program

Preprocessing your SQL code does two things:

It changes the SQL source code so that it can be processed during host
language compiling.

• It converts the SQL statements into an "access module" that is stored in the
SQL/DS data base.

The preprocessor replaces all the SQL statements in the program with host
language code that invokes the new access module. The new version of the
program also contains the SQL statements in comment form. The access module
contains machine code to carry out the SQL requests made by the program.
SQL/DS chooses the best access path to the data for each SQL command in the
program, basing its choice on available indexes and data statistics that SQL/DS
keeps track of.

When the program is run, the new code calls the module to handle each SQL
command. It also links the program to SQL/DS and translates messages and
commands between the two.

If the preprocessor encounters a severe error in an SQL statement, only syntactical
checking is performed on subsequent SQL statements. It also puts statements in
the preprocessed program which will cause a subsequent compile to fail.

44 SQL/Data System Application Programming for VM/SP

. ...",.

Compiling the Program

Once you have successfully preprocessed your program, you can compile it using
your normal host language compiler. By preprocessing the program, you have
already done all the translating that the program needed. Just use the new code
that you got after you preprocessed. Compile this code just like you would any
other program, using the usual compilers.

You should know how to compile a program in your host language already. This
book does not cover the specifics of compiling your host-language code. However,
there are a couple of special rules for SQL programs, depending on the host
language, that you must follow. These rules are discussed in "Compiling the
Program" on page 196.

Link-Editing and Loading the Program

After compilation, programs must be link-edited and loaded before they can be
run. To allow your program to communicate with SQL/DS, you must link-edit
your program with one or more SQL/DS TEXT files. One of these TEXT files is
called the resource manager stub. Every SQL/DS application program must be
link-edited with this stub. FORTRAN and COBOL programs need to link-edit
with an additional TEXT file. Also, depending on the nature of your program, you
may have to link-edit with others.

One way to link-edit these TEXT file(s) successfully to your program is to
INCLUDE the TEXT filename(s) after your program name in the CMS LOAD
command. Then, when you load your program, the CMS linkage editor
automatically links your program to the TEXT files that you specified and resolves
virtual storage addresses between files.

See Chapter 2 for more information on link-editing and loading.

Running the Program

Once you have loaded your program, it is ready to be run. You can run your
program in either single user mode or multiple user mode. In single user mode,
SQL/DS, its preprocessors, and your application programs all run in a single
VM/SP virtual machine. This is also sometimes referred to as single virtual
machine mode. Multiple user mode allows one or more users or programs to access
the same data base at the same time. This is sometimes referred to as multiple
virtual machine mode.

How you execute your SQL/DS program depends on the mode in which SQL/DS
is running. You can find the details of this under "Running your Program" on
page 198.

The access module that the preprocessors stored in the data base actually carries
out the SQL request. When SQL/DS loads the access module, it checks to see that

Preprocessing and Running the Program 45

the access module is still valid. An access module may not be valid if it lost some ...iJ
dependency. For example, some index that the access module uses may have been
dropped. SQL/DS has an internal change management facility that keeps track of
which access modules are valid and which are not valid.

If the access module is valid, SQL/DS begins running the program. If the access
module is not valid, SQL/DS tries to recreate it. The original SQL statements are
stored with the access module when you preprocess the program. SQL/DS uses
these SQL statements to try to automatically preprocess the program again. It does
this dynamically; that is, as it is running. If this "re-preprocessing" works, a new
access module is created and stored in the data base. SQL/DS then continues
execution of the program. If the re-preprocessing does not work, SQL/DS returns
an error code to the program in the SQLCA, and the program stops running.

The re-preprocessing, if it succeeds, has no negative effect on your program except
for a slight delay in processing your first SQL statement.

All the details of getting your program ready to be run are in "Preprocessing and
Running the Program" on page 183.

46 SQL/Data System Application Programming for VM/SP

Testing and Debugging Concerns

Contents

This section gives you an introduction to two methods of testing and debugging
your SQL/DS application. The first method is testing SQL commands online,
before you actually code them into the program. The second method makes use of
the SQL Communications Area (SQLCA), which is the automatic SQL/DS error
handling facility.

Section Quiz ... 48
Answers to the Section Quiz 49
Introduction ... 50
Using ISQL to Test SQL Statements Before Coding 50
Introduction to the SQL Communications Area (SQLCA) 51

Testing and Debugging Concerns 47

Section Quiz

1. What online SQL/DS facility allows you to test commands to see if they are
valid, before you code them in your application program?

2. What is a logical unit of work?

3. What are the two steps you must do to tell SQL/DS what action to take when
it comes across an SQL error?

4. What does an SQLCODE of 0 mean? What does a negative SQLCODE
mean? A positive SQLCODE?

48 SQL/Data System Application Programming for VM/SP

Answers to the Section Quiz

1. ISQL

2. A group of SQL statements, possibly with intervening host language code, that
are treated as a single unit or entity.

3. You must declare an SQL Communications Area and code an SQL
WHENEVER statement.

4. An SQLCODE of 0 means that an SQL statement has executed successfully.
SQLiDS indicates error conditions by returning a negative SQLCODE. A
positive SQLCODE indicates normal conditions experienced while executing
the statement (such as end-of-file).

Testing and Debugging Concerns 49

Introduction

Of course, even the best programmers make mistakes in coding. Unfortunately,
you have to correct these errors before the program will run correctly. Thus, you
must have methods for checking your code, to make sure it is valid.

In SQL, there are many ways to test your SQL statements and debug them. Some
of these methods are done automatically by SQL. For example, during
preprocessing, if the preprocessor comes across an SQL error, it inserts statements
in the new source code that show this. Then when you try to assemble or compile
that code, these error statements halt the compilation and tell you there was an
error.

Using ISQl to Test SQl Statements Before Coding

There are other methods of error testing that you can do on your own. One such
method is using the Interactive Structured Query Language (lSQL) facility to test
your SQL statements before you code them into the program. This method lets
you see the results of a command on the screen as you work interactively with the
SQL/DS data base. This way you can't disrupt your program during testing. All
your testing is done on the screen. If the command works, code it in your program;
if not, debug it right on your terminal until it does work.

In ISQL, all commands are entered at the terminal in basic form. None of the host ..""
language delimiters are added. Also, you cannot enter any cursor commands of
any kind (DECLARE, OPEN, FETCH, PUT, or CLOSE). In addition,
"programming-only" statements such as declarative statements and
dynamically-defined statements cannot be entered in ISQL.

The statements that you would most often want to test through ISQL are:

• SELECT
• INSERT
• UPDATE
• DELETE

On the other hand, you may wish to handle most of your data definition,
authorization, and data control tasks through ISQL. It is often easier to define the
tables and store the data for your program first, through ISQL, and then to operate
on that data, through programs, later. Also, in most cases, it is recommended that
you grant and revoke authorizations on tables and programs through ISQL, and not
through application programs.

For a tutorial on how to use ISQL, refer to SQLI Data System Terminal User's
Guide for VM I SP, SH24-S04S. In addition, SQLI Data System Terminal User's
Reference for VM I SP, SH24-S067, contains reference information on all the
commands that you can issue in ISQL.

You can also use SQL in the control data set of the Data Base Services (DBS)
utility. This is discussed in the SQL/ Data System Data Base Services Utility for

50 SQL/Data System Application Programming for VM/SP

/
VM / SP, SH24-5069 manual. In addition to its data loadin' and unloading
capabilities, the DBS utility processes SQL statements in a manner similar to ISQL,
although not interactively. You can use either ISQL or the DBS utility to create
test tables for your programs. (

!

Introduction to the SQl Communications Area 'SQLCA)

Every SQL application program must provide for error handling by declaring an
SQL Communications Area. This area receives messages that SQL/DS sends to
the program. By testing certain fields of this area, you can test for certain
conditions during the program's execution.

Error handling is important in SQL/DS because it helps protect the integrity of the
data base when a program fails. For example, consider the two-step operation
needed to transfer $500 from one account to another in a bank:

1. Subtract $500 from account A

2. Add $500 to account B.

If the system or your program fails after the first statement is executed, some
customer has just "lost" $500. This type of incomplete update is said to leave the
data base in an inconsistent state.

You can avoid an inconsistent state by using a logical unit of work. A logical unit
of work is a group of related SQL statements, possibly with intervening host
language code, that you wish to treat as a unit. The two steps in the previous
example would make up a single logical unit of work.

Logical units of work prevent inconsistent states from system or SQL statement
errors. For system errors, SQL/DS automatically restores all changes made during
the logical unit of work in which it encountered the error. This is called a roll back.
For SQL errors, you must tell SQL/DS wha't action to take when it comes across
an SQL error. This involves two steps:

1. Declaring an SQL Communications Area

2. Coding an SQL WHENEVER statement.

To declare the SQL Communications Area (SQLCA), code this statement in your
program:

INCLUDE SQLCA

When you preprocess your program, SQL/DS inserts host language variable
declarations in place of the INCLUDE SQLCA statement. This group of variables
is how SQL communicates with your program. SQL/DS uses the variables for
warning flags, error codes and diagnostic information. All the variables are
discussed under "Error Handling" in Chapter 5. The only variable you need be
concerned with now is SQLCODE.

Testing and Debugging Concerns 5 1

SQL/DS returns a result code in SQLCODE after executing each SQL statement.
SQLCODE, return code, and result code are all terms that mean the same thing:
the integer value that summarizes how your SQL statement executed. When a
statement executes successfully, SQLCODE is set to o. SQL/DS indicates error
conditions by returning a negative SQLCODE. A positive SQLCODE indicates
normal conditions experienced while executing the statement (such as end-of-file).

The WHENEVER statement below tells SQL/DS what to do when it encounters
an SQL error (that is, a negative SQLCODE):

WHENEVER SQLERROR GO TO ERRCHK

That is, whenever an SQL error (SQLERROR) occurs, program control is
transferred to a subroutine named ERRCHK. This subroutine should include logic
to analyze the error indicators in the SQLCA. Depending on how ERRCHK is
defined, action may be taken to execute the next sequential program instruction, to
carry out some special functions, or, as in most cases, to roll back the current
logical unit of work and end the program.

You can have any number of logical units of work in a program. For the simplest
case (which is being discussed here) the whole program is a single logical unit of
work. Either the program runs successfully and the changes are made to the data
base, or it doesn't and no changes are made.

SQL/DS begins a logical unit of work implicitly. That is, you don't have to code a
statement to start a logical unit of work. SQL/DS starts one when it encounters
your first executable SQL statement.

You must tell SQL/DS when to end the logical unit of work. "Application Epilog"
on page 93 explains how to do this. There are times when SQL implicitly ends a
logical unit of work. When this occurs, the SQLWARNO and SQLWARN6
indicators are set to OW'.

52 SQL/Data System Application Programming for VM/SP

Putting the Program into Production

Contents

Putting your program into production involves creating and controlling the data
that your program works with. This also involves, optionally, granting privileges to
other users to work with your data or run your program, and revoking these
privileges when they are no longer necessary or useful. You must also keep track
of which pieces of data, including programs, you own and which users have
authority to access those pieces of data. All of these topics are introduced in this
section.

Most data administration can be done using the Interactive SQL facility (ISQL).
For more infommtion on this facility, see SQLI Data System Terminal User's Guide
for VMISP.

Section Quiz ... 55
Answers to the Section Quiz 56
Authorization .. 57

Privileges on Tables and Views 57
Privileges on Programs ... 58
Special Privileges ... 60
Granting Privileges to Other Users 62
Revoking Privileges from Other Users 66

Data Control ... 70
How the Data Base Is Structured 70
Logical Units of Work ... 72
Dropping a Program ... 73

Data Definition ... 74
General Rules for Naming Data Objects 74
Data Types .. 75
Data Conversion. .. 76
Qualifying Table Names .. 78

SQLIDS Catalogs ... 78
Catalogs that Record Privileges 79

SYSUSERAUTH ... 79
SYSUSERLIST .. 79
SYSPROGAUTH ... 80
SYSTABAUTH .. 80
SYSCOLAUTH .. 80

Catalogs that Record the Contents of the Data Base 80
SYSDBSPACES .. 80
SYSCAT ALOG .. 81

Putting the Program into Production 53

SYSACCESS .. 81
SYSVIEWS ... 81
SYSCOLUMNS .. 81

Catalogs that Record Indexes and Synonyms 81
SYSINDEXES ... 81
SYSSYNONYMS ... 81

Miscellaneous Catalogs .. 81
SYSUSAGE ... 81
SYSDROP .. 82
SYSCHARSETS ... 82
SYSOPTIONS ... 82

54 SQL/Data System Application Programming for VM/SP

Section Quiz

If you can answer most of the following questions, then you probably do not have
to read this section. If you choose to skip ahead, proceed to Chapter 2. If you
have trouble answering the questions in this quiz, proceed to "Authorization" on
the next page.

1. Write an SOL statement that would grant the RUN privilege on a program
called LISTING to user KIM. Also give KIM the privilege to grant RUN
authority on this program to other users.

2. Write an SOL statement that would take away from user JULIE the privilege
to insert rows into your ACCOUNTS table.

3. Write an SOL statement that would delete a program called BANKING from
your DBSPACE.

4. What is the maximum length (in characters) of a table name? What is the
maximum length (in characters) of a program name?

5. With which characters must an SOL identifier begin?

6. Which SOL/OS catalog contains information on the privileges of users to run
programs? Which catalog would you look at to get a complete list of the
programs that you own?

Putting the Program into Production 55

Answers to the Section Quiz

1. GRANT RUN ON LISTING TO KIM WITH GRANT OPTION

2. REVOKE INSERT ON ACCOUNTS FROM JULIE

3. DROP PROGRAM BANKING

4. 18; 8

5. An uppercase letter (A-Z), $, #, or @. (If an identifier is enclosed in double
quotes, it may also begin with a number.)

6. SYSPROGAUTH; SYSACCESS

56 SQL/Data System Application Programming for VM/SP

Authorization

SQL/DS keeps track of which privileges each user has, and makes sure that each
user performs only authorized operations on the data base.

SQL/DS makes it easy for authorized users to create and drop tables, and to
compile and run programs that operate on these tables. An individual who creates
a table or compiles a program can selectively share the use of that table or program
with other users.

When SQL/DS is installed, at least one person is given Data Base Administrator
(DBA) authority. A user having DBA authority has control of SQL/DS resources
and of all privileges to use SQL/DS. One of these privileges is the ability to pass
on DBA authority to other users; thus, there may be many users with DBA
authority in your installation.

Before you can perform any data base operations, you must be authorized to use
SQL/DS. This special privilege is called CONNECT authority. Normally, you get
CONNECT authority by having a DBA grant it to you, but a DBA can also grant
CONNECT to "ALLUSERS". This makes it possible for anyone to be implicitly
connected, but has some significant limitations. Implicit connect is discussed under
"VM/SP Connect Considerations" on page 186.

Other privileges you need vary depending on what SQL/DS operations you want to
perform. There are three categories of privileges: privileges on tables and views,
privileges on programs, and special privileges. The following sections discuss each
category.

Privileges on Tables and Views

You can have any or all of the following privileges on specific tables and views:

SELECT Privilege to retrieve data

INSERT Privilege to insert new rows

DELETE Privilege to delete rows

UPDATE Privilege to change field values

ALTER Privilege to add new columns to a table (does not apply to views or
DBSPACEs)

INDEX Privilege to create new indexes on a table (does not apply to views).

When you create a new table, you are automatically given full privileges on the
table. SQL/DS also gives you the GRANT option on each privilege. You can
grant these individual privileges, or any combination of them, to other users by a
GRANT statement (described later). When you grant a privilege to another user,
you may include the GRANT option. If you do, the user will be able to grant the
privilege to others. Once granted, you may revoke a privilege by issuing a
REVOKE statement (also described later). If you revoke a privilege from User A,

Putting the Program into Production 57

you automatically revoke it from all users to whom User A granted it. If the other
users have another independent source for the same privilege, they are unaffected
by the revocation.

For each privilege, you can also hold the GRANT option. Having the GRANT
option means that you can grant the privilege to other users and exercise it
yourself.

You may exercise any privilege that you hold on a table directly through ISQL (via
the terminal) and the DBS utility as well as application programs.

Except for ALTER and INDEX, the same kinds of privileges that apply to tables
also apply to views. As with tables, the user who defined the view gets certain
privileges that can be selectively shared with other users.

Users' privileges on tables and views are listed in the SQL/DS catalogs
SYSTABAUTH and SYSCOLAUTH. All SQL/DS catalogs are described in the
SQL/ Data System Planning and Administration for VM / SP manual. You can find
out which privileges you hold, and which privileges you have granted to other users,
by making suitable queries on these catalog tables.

Privileges on Programs

All SQL/DS application programs must be preprocessed. The preprocessor creates
an access module and stores it in the data base. Access modules contain machine
code to carry out SQL requests made by the application program; for SQL/DS, it
is the essence of the application program.

When you successfully preprocess a program, you receive the RUN privilege on
your program. This means that you may at any time run your program, which in
turn loads and executes the appropriate access module. SQL/DS considers the
creator (or author) of a program to be the value specified in the USERID
preprocessor parameter. This creator is considered to be the connected user at the
time that the program is preprocessed. The USERID preprocessor parameter
establishes the userid that is to be checked for authorization to do the SQL/DS
functions that are found in the program by the preprocessor.

Normally, authorization to perform SQL/DS functions is checked and found to be
valid at preprocessing time. Even if some authorization is not found at
preprocessing time, the author is still given RUN authority for the program. The
missing authority is automatically rechecked at run time. If the required authority
is still not in place at run time, execution is not permitted. A program containing
an unauthorized statement runs successfully as long as it does not attempt to
execute the unauthorized statement.

If the creator of a program receives authorization required by the program between
the time of its being preprocessed and its being executed, SQL/DS commands
affected by the newly granted authorization will execute more slowly than they
would it the authorization had been available at the time of preprocessing. This
slower processing can also be avoided by repeating the preprocessing of the
program after the authorization is granted.

58 SQL/Data System Application Programming for VM/SP

Generally speaking, if the program contains no statements that require DBA
authority, and if the creator of the program:

1. Has all the privileges required for all the SOL statements in the program,

2. Has the GRANT option on all these privileges,

then the creator receives the RUN privilege on the program with the GRANT
option. (See "Putting the Program into Production" on page 211 in Chapter 2 for
additional information.) This enables the creator to grant the RUN privilege on
that program to other users, thus providing authorization control on an application
basis.

For example, suppose user Smith has the privilege to update employee salaries.
Smith wants to authorize Jones to update salaries in a particular way, with certain
record-keeping and validity checking. Smith can write a program that updates
salaries subject to the desired constraints, and grant the RUN privilege on the
program to Jones. Now Jones can update salaries by running the program, but
does not have an unconstrained update privilege on salaries. What is really granted
to Jones is the ability to invoke the access module for the indicated program. Note
that SOLIDS protects only the access module (which implements the SOL
statements in the program), not the logic of the program itself.

It is important to understand this distinction between the creator (author) of a
program and the user who runs the program. The runner is the user who executes
the program and therefore invokes the access modules associated with it. The
runner is identified to SOLIDS through the CONNECT statement in the program
or through the equivalent implicit connect function in the VM/SP environment.
Generally, the authorization of the creator determines whether a particular
SOLIDS statement may be executed. The only exception to this is in dynamically
defined statements. Because the statements are processed at execution time,
SOLIDS bases the authorization checking for these statements on the runner's
userid (not the creator's).

In some cases you receive the RUN privilege with the GRANT option only if you
explicitly have all the needed authority. Explicit authority means that there is an
explicit entry in the SOLIDS catalogs recording the authority for the object.
Suppose, for example, that you have DBA authority and preprocess a program that
creates an INDEX for another user. If the user does not grant you INDEX
authority, you receive only the RUN privilege. You do not receive the GRANT
option because you do not explicitly have all the needed privileges. You will,
however, be able to successfully execute your program because of your DBA
authority.

In other cases the creator of a program may receive RUN privilege with the
GRANT option even if that creator does not have the required privilege when the
program is preprocessed. In this case the creator of the program, or anyone
granted the RUN privilege, can run the program, once the privileges have been
obtained from the creator. Refer to "Putting the Program into Production" on
page 211 for decision tables that show this determination for each SOL statement
type.

Putting the Program into Production 59

Special Privileges

If you write a program that operates on some table that does not exist at
preprocessing time (for example, a program to load data into a table that has not
yet been created), it will not prevent you from receiving RUN privilege on the
program. However, when the program is run, the table in question must exist, and
you must have the necessary privileges to operate on it.

All the RUN privileges held by users on programs are listed in the SOL/OS catalog
SYSPROGAUTH. By querying SYSPROGAUTH, you can find out which
programs you are entitled to run, and which programs you have granted to other
users. If you have DBA authority, you can run any program regardless of what is
indicated in SYSPROGAUTH. All SOL/OS catalogs are described in the
SQL/ Data System Planning and Administration for VM / SP manual.

Note: Some SOL statements do not require an access module to be created by the
preprocessor; therefore, RUN authority may not apply (if the access module is not
created). The following SOL statements do not involve an access module when
they are preprocessed:

CONNECT
Extended PREPARE
Extended DECLARE CURSOR
Extended OPEN/CLOSE/FETCH/PUT

Extended DESCRIBE
CREATE PROGRAM
DROP STATEMENT
WHENEVER

If you need more details about how SOL/OS authorizes programs, see "Putting the
Program into Production" on page 211. That appendix contains decision tables
for SOL statements that affect program authorization.

In addition to privileges on tables and programs, SOL/OS recognizes some special
privileges: CONNECT, SCHEDULE, RESOURCE, and DBA authority. As
discussed above, CONNECT authority is the privilege of being recognized by
SOL/OS for purposes of using the system. It means that there is a userid recorded
in the SOL/OS catalogs for purposes of recognition. There may also be a
password recorded with the userid. If there is a password with the userid, an
explicit CONNECT statement is permitted. Without a password, only implicit
connects are possible. (See "VM/SP Connect Considerations" on page 186 for
more information on implicit connects.) Only a user with DBA authority can grant
CONNECT authority to SOL/OS users.

SCHEDULE authority is the privilege to connect users without specifying a
password. Although it is possible to grant and revoke SCHEDULE authority,
SOL/OS ensures that only resource managers can use it. The SOLIDS online
resource manager uses SCHEDULE authority when it connects a user to SOLIDS
implicitly. More information about SCHEDULE authority is in the SQL/ Data
System Planning and Administration for VM / SP manual.

Resource authority permits you to create tables in PUBLIC DB SPACEs and
acquire PRIVATE DBSPACEs. Resource authority is not required to create tables
in your own PRIVATE DBSPACE.

A DBA can allow table creation by:

60 SQL/Data System Application Programming for VM/SP

1. Granting RESOURCE authority to a user, or

2. Creating a PRIVATE DBSPACE for a user.

The latter offers more limited capability.

Only a DBA can create tables in PRIVATE DBSPACEs owned by another user or
acquire PUBLIC DBSPACEs.

Holders of DBA authority automatically hold RESOURCE and CONNECT
authority as illustrated in Figure 7.

v v
RESOURCE CONNECT

If granted DBA authority,
the user also automatically
receives RESOURCE and CONNECT.

Figure 7. Hierarchy of SQL/DS Authority

Any holder of DBA authority may grant or revoke RESOURCE, CONNECT, or
DBA authority to or from any other user. However, holders of RESOURCE
authority without DBA authority cannot grant (or revoke) RESOURCE or
CONNECT authority to (or from) other users.

DBA authority is the highest level of authorization provided in SQL/DS. If you
have DBA authority, you are "immune" to the SQL/DS authorization mechanism;
you can perform any operation on any table, or run any program. In addition,
there are certain privileges that are available only to users with DBA authority.
These privileges are listed in the SQL/ Data System Planning and Administration for
VM/SP manual.

If you hold DBA authority you may perform operations that are otherwise
unauthorized, but you cannot grant or revoke these operations. For example, you
may update the QUOTA nONS table even though you do not own this privilege
explicitly, but you cannot grant or revoke this privilege unless you own it explicitly
with the GRANT option. Similarly, if you preprocess a program containing some
operation that you would not be authorized to perform except for your DBA
authority, you receive RUN privilege on the program without the GRANT option.
There is no entry in the SQL/DS catalog SYSPROGAUTH in this case.

The DBA functions are potentially dangerous to the integrity of the data base if
misused. Therefore, an installation should carefully control the set of users who
possess DBA authority, and a user with DBA authority should be very cautious in
the use of those special powers. If you are granted DBA authority, you should read
the SQL/ Data System Planning and Administration for VM / SP manual.

Putting the Program into Production 61

The users who hold special privileges are listed in the SQL/DS catalog
SYSUSERAUTH. Only users with DBA authority are allowed to access
SYSUSERAUTH because the catalog contains userids and passwords. Other users
can query the catalog through a view called SQLDBA.SYSUSERLIST. (Passwords
are not seen in the view.)

Granting Privileges to Other Users

The GRANT statement allows you to pass privileges to other users. The most
common and most convenient use of GRANT is' via ISQL or the DBS utility. You
can code GRANT statements within a program; however, because the userid and
passwords in the GRANT statements can't be host variables, the statements have
limited use. The GRANT statement has three formats:

Format 1 (for privileges on tables and views):

GRANT

.....

ALTER
DELETE
INDEX
INSERT
SELECT
UPDATE [(col-name-list)]

ALL [PRIVILEGES]

-

>

-

ON [creator.] {table-name I view-name}
TO { PUBLIC I userid1 [,userid2] ... } [WITH GRANT OPTION]

Note: ALTER, INDEX, and ALL [PRIVILEGES] do not apply to views.

Examples:

GRANT UPDATE (PARTNO, SUPPNO) ON QUOTATIONS TO SCOTT
GRANT SELECT, INSERT ON QUOTATIONS TO SMITH, JONES
GRANT ALL PRIVILEGES ON INVENTORY TO SCOTT WITH GRANT OPTION

Authorization:

You must possess the privilege with the GRANT option before you can grant that privilege to
someone else.

Format 1 allows you to grant privileges on tables and views to other users. The
grantor is considered to be the user who preprocessed the program in which this
statement appears. (Certain exceptions to this rule are explained under
"Dynamically Defined Statements" on page 147.) The grantor is considered to be
the user who preprocessed the program in which this statement appears. (Certain

62 SQL/Data System Application Programming for VM/SP

exceptions to this rule are explained under "Dynamically Defined Statements" on
page 147.) A grant to PUBLIC is the same as a grant to all users.

The privileges you can grant are shown in Figure 8.

AL TER (to add new columns)
<~-'I Only DELETE (to delete rows) for tables I

INDEX (to create indexes) < (not for views)
INSERT (to insert rows)
SELECT (to retrieve data)
UPDATE (to change field values)

Figure 8. Privileges You Can Grant

Note especially that the ALTER privilege applies only to tables -- not to views or
DBSPACEs. (That is, it applies to the ALTER TABLE statement, but not the
ALTER DB SPACE statement.)

You can specify more than one privilege. If you do, you can specify them in any
order, but you must separate them with commas. To grant all six privileges, you
can write ALL [PRIVILEGES] instead of listing all six. (Note that you can't grant
ALL PRIVILEGES on a view; INDEX and ALTER privileges do not apply to
views.) The PRIVILEGES keyword is both optional and non-functional; you can
include it to improve readability. Thus, all of these statements are equivalent:

GRANT ALTER, DELETE, INDEX, INSERT, SELECT, UPDATE
ON QUOTATIONS TO SCOTT

GRANT DELETE, INDEX, ALTER, SELECT, UPDATE, INSERT
ON QUOTATIONS TO SCOTT

GRANT ALL PRIVILEGES
ON QUOTATIONS TO SCOTT

GRANT ALL
ON QUOTATIONS TO SCOTT

When you grant the UPDATE privilege on a table, you can optionally specify a list
of column names. When you do, the grantee gets the power to update only those
columns listed. If you choose not to specify a list of column names or if you
specify ALL [PRIVILEGES], the grantee may update all columns of the table,
even those created later via the ALTER TABLE statement.

If you specify WITH GRANT OPTION, the grantee may pass the granted
privileges to other users.

Note that only the user who creates a table or view (or a user with DBA authority)
can drop it. You can't grant a "drop" privilege to another user.

Before you grant privileges on views, you should read "Use of Views" on
page 140.

Putting the Program into Production 63

Format 2 (for privileges on programs):

GRANT RUN ON [creator.]program-name
TO { PUBLIC I useridl [,userid2] ... } [WITH GRANT OPTION]

Examples:

GRANT RUN ON TRANS 1 TO EDWARDS WITH GRANT OPTION
GRANT RUN ON JOB338 TO PUBLIC

Authorization:

You must possess the RUN privilege with the GRANT option before you can grant that privilege to
someone else.

Format 2 allows you to grant privileges on programs to other users. The grantor is
considered to be the user who preprocessed the program in which this statement
appears. (Certain exceptions to this rule are explained under "Dynamically
Defined Statements" on page 147.) A grant to PUBLIC is the same as a grant to
all users.

The only privilege you can grant on a program is the RUN privilege, which lets
another user run the indicated program. You can, however, pass on the RUN
privilege with the GRANT option, just as you can with table privileges. The
GRANT option permits the grantee to pass on that RUN privilege to others.

Note that only the user who preprocesses a program (or a user with DBA
authority) can drop its access module from the data base. You can't grant a
"drop" privilege to another user.

64 SQL/Data System Application Programming for VM/SP

Format 3 (for special privileges):

GRANT ~ CONNECT l
DBA TO userid 1 [, userid2 ... J [IDENTIFIED BY pass 1 [,pass2JJ
RESOURCE \
SCHEDULE)

Examples:

GRANT DBA TO BRUCE
GRP.NT CONNECT TO SMITH, JONES IDENTIFIED BY SECRET1, SECRET2
GRANT RESOURCE TO MARY, JIM, JOE

Authorization:

Generally, you must possess DBA authority to issue this statement. The exception is that can change
your own password as explained below.

Format 3 allows a user having DBA authority to grant special privileges to other
users. The grantor is considered to be the user who preprocessed the program in
which this statement appears. (Certain exceptions to this rule are explained under
"Dynamically Defined Statements" on page 147.)

The IDENTIFIED BY clause is optional when granting any of the special
privileges. If the clause is included, a password is added or changed for each user
specified. If the password is the same as currently exists for the user, the change
has no real effect. If no passwords are given, none are assigned and previously
assigned passwords are retained. If you have not been given a password, you
cannot explicitly CONNECT to SQL/DS, but you may still have the capability of
being implicitly connected. (See "VM/SP Connect Considerations" on
page 186.)

Userids and passwords are limited to eight characters. They can be entered in
double quotes to bypass checking under the rules of SQL identifier naming. (See
"General Rules for Naming Data Objects" on page 74.) Embedded blanks are not
permitted, even in double quotes. If you specify IDENTIFIED BY, you must
include a password for every userid specified. The passwords and userids must
correspond as indicated in the statement format above.

Granting anyone of the special privileges to a user who does not already have the
CONNECT authority causes that user to be granted CONNECT authority. For
example, if a user currently has no special privileges and that user is granted
RESOURCE authority, the user will have both RESOURCE and CONNECT
authority.

A user can change his/her own password by using the GRANT CONNECT
... IDENTIFIED BY ... form of this command without requiring any special
authority. To do this, the user need only have CONNECT authority, and mayor
may not have already been assigned a password.

Putting the Program into Production 65

Granting CONNECT to ALLUSERS is a special case that establishes implicit
connect capability for all users in the system when operating under VM/SP. (See
"VM/SP Connect Considerations" on page 186.)

Granting a special privilege that a user already possesses has no additional effect
except for changing passwords if they are specified.

You should not grant CONNECT authority to SYSTEM or PUBLIC. They are
used internally.

Note that a grant of SCHEDULE authority to a user is meaningless because
SOLIDS allows only resource managers to use it.

Revoking Privileges from Other Users

The REVOKE statement allows you to take away the privileges of other users.
(You can never revoke a privilege from yourself.) The most common and most
convenient way to use REVOKE is via ISOL or the DBS utility. You can code
REVOKE statements within a program; however, because the userid and
passwords in the REVOKE statements can't be host variables, the statements have
limited use.

If you attempt to revoke a privilege currently in use by a running program, the
REVOKE statement is queued until the running program ends its current logical
unit of work. Logical units of work are related groups of SOL statements (possibly
with intervening host language code) that programmers define in their code. Thus,
if you revoke the UPDATE privilege from user MARY, but MARY's program is
running and is already making updates, your REVOKE statement won't take effect
until MARY's updates are finished. Logical units of work are discussed more
completely under "Data Control" on page 70.

When you revoke a privilege on a table, view, or program from a user X, SOL/OS
automatically revokes it from all users to whom X has granted it, unless they have
some other source for the privilege that is not dependent on user X.

Special privileges, which can be granted and revoked only by a user with DBA
authority, are handled slightly differently. That is, if you have DBA authority, and
revoke a special privilege (such as RESOURCE authority) from a user X, no other
users are affected. In addition, if a user with DBA authority revokes RUN
authority from user X, no other users are affected. (The "cascade" effect
described earlier for the RUN privilege does not apply to users with DBA
authority.)

In some cases, SOL/OS automatically revokes the RUN privilege from a number of
users. Suppose a user GENE has preprocessed a program that makes use of some
privilege, such as SELECT. GENE receives the RUN privilege on the program
with the GRANT option, and perhaps he may grant this privilege to other users. If
the SELECT privilege is now revoked from GENE, the access module associated
with the program is automatically marked invalid. When the program is next run
(by GENE or by any other user), SOLIDS attempts to regenerate a valid (fully
authorized) access module. At the time of this regeneration process, the following
outcomes are possible:

66 SQL/Data System Application Programming for VM/SP

1. GENE has aU the privileges required by the program, and furthermore has the
GRANT option on all these privileges. In this case, the access module is
regenerated, aU existing grants of the RUN privilege ~n the program remain in
effect, and execution proceeds normally.

2. For some SQL statement in the program, GENE lacks the necessary privilege,
or has the privilege without the GRANT option. In this case, GENE retains
the RUN privilege on the program, but all existing grants of the RUN privilege
are revoked. When the program is run, those SQL statements for which
GENE has the necessary privilege execute successfully, and other SQL
statements return error codes.

SQL/DS can also automatically revoke privileges on views or drop the view
definition. Suppose BILL grants GENE the SELECT privilege with the GRANT
option on the EMPLOYEES table. GENE then defines a view called SALARY on
the EMPLOYEES table, and grants the SELECT privilege on that view to other
users. After some time, BILL decides to revoke the SELECT privilege on the
EMPLOYEES table from GENE. When BILL revokes the SELECT privilege on
the table, SQL/DS automatically revokes the SELECT privilege from SALARY
also, including all SELECT privileges on SALARY that GENE passed on. If, after
this process, GENE holds no privileges on SALARY, the definition of SALARY is
dropped from SQL/DS.

The REVOKE statement has three formats:

Format 1 (for privileges on tables and views):

/ -
ALTER
DELETE
INDEX

REVOKE ~ INSERT
SELECT
UPDATE

-

..... -
"ALL [PRIVILEGES j ,

ON [creator.} {table-name I view-name}
FROM {PUBLIC I userid1 [,userid2j ...

Note: ALTER, and INDEX, do not apply to views. ALL [PRIVILEGES] does apply, however. (See
following text.)

Examples:

REVOKE SELECT, INSERT ON QUOTATIONS FROM SMITH, JONES
REVOKE UPDATE ON INVENTORY FROM PUBLIC
REVOKE ALL ON SUPPLIERS FROM SCOTT

Putting the Program into Production 67

Authorization:

You can revoke only those privileges you have granted to other users, not those another user has
granted.

Format 1 allows you to revoke privileges you have granted on tables and views.
The revoker is considered to be the user who preprocessed the program in which
this statement appears. (Certain exceptions to this rule are explained under
"Dynamically Defined Statements" on page 147.) When you revoke authority
from PUBLIC, SQLiDS revokes the indicated privileges you have explicitly
granted to PUBLIC (via GRANT ... TO PUBLIC). It does not revoke all your
grants of the indicated privilege. For example, if you grant UPDATE on
QUOTA nONS to SMITH, JONES, and PUBLIC, and then revoke this privilege
from PUBLIC, the privilege is still held by SMITH and JONES.

You can specify more than one privilege that you wish to revoke. If you do, you
can specify them in any order, but you must separate them with commas. If you
specify ALL [PRIVILEGES] instead of listing the privileges, all table (or view)
privileges you have granted to the indicated user(s) are revoked. You can use ALL
[PRIVILEGES] even if you have not granted all six table privileges to the user.
"REVOKE ALL PRIVILEGES" means "revoke all table privileges granted by this
grantor to this grantee," regardless of whether the grantee has a complete list of
privileges. The revokee still retains any privileges obtained from another source.
The PRIVILEGES keyword is optional and non-functional; you can include it to
improve readability.

Recall that in the GRANT statement you can specify a list of columns when you
granted the UPDATE privilege. When revoking an UPDATE privilege, you cannot
list specific columns for which you want to revoke the privilege. "REVOKE
UPDATE" means "revoke all those update privileges granted by this grantor to this
grantee" (regardless of whether you originally specified a column list when you
granted the privilege).

Note that the only way to revoke the GRANT option on a privilege is to revoke the
privilege itself. (Of course, you can then re-grant the privilege without the
GRANT option.)

Format 2 (for privileges on programs):

REVOKE RUN ON [creator.]program-name FROM { PUBLIC I useridl (,userid2] '" }

Example:

REVOKE RUN ON TRANSl FROM SMITH

68 SQL/Data System Application Programming for VM/SP

~ Authorization:

You can revoke the RUN privilege from only those users to whom you have granted it.

Format 2 allows you to revoke the RUN privilege you have granted on programs.
The revoker is considered to be the user who preprocessed the program in which
this statement appears. (Certain exceptions to this rule are explained under
"Dynamically Defined Statements" on page 147.) When you revoke the RUN
privilege from PUBLIC, SQL/DS revokes the privilege you have explicitly granted
to PUBLIC (via GRANT RUN ON ... TO PUBLIC). It does not revoke all your
grants of the RUN privilege. For example, if you grant RUN on TRANSl to
SMITH, JONES, and PUBLIC, and then revoke this privilege from PUBLIC, users
SMITH and JONES are still able to run the TRANS 1 program.

If you have granted the RUN privilege with the GRANT option, the only way to
revoke the GRANT option is to revoke the RUN privilege itself (of course, you can
then re-grant the RUN privilege without the GRANT option).

Format 3 (for special privileges):

REVOKE {CONNECT I RESOURCE I SCHEDULE I DBA} FROM useridl [,userid2] ...

Example:

REVOKE DBA FROM SMITH

Authorization:

You must possess DBA authority to issue this statement.

Format 3 allows a user having DBA authority to revoke special privileges from other
users. The revoker is considered to be the user who preprocessed the program in
which this statement appears. (Certain exceptions to this rule are explained under
"Dynamically Defined Statements" on page 147.)

A user with DBA authority may revoke any special privilege from any user,
regardless of who originally granted the privilege. The only two exceptions are:

1. A user having DBA authority cannot revoke any authority from himself, and

2. No one can revoke RESOURCE authority from a user that has DBA authority.

If you issue REVOKE for a special privilege that the user doesn't have, the
revocation is ignored for that privilege. Revoking CONNECT causes all special
privileges to be revoked with it and the user is deleted from the SQL/DS catalog
SYSUSERAUTH. Revoking CONNECT does not cause objects owned by that
user to be dropped. A user with DBA authority can drop them.

Putting the Program into Production 69

Data Control

Revoking DBA authority automatically causes all special privileges to be revoked
except CONNECT. Revoking RESOURCE authority implies no other
revocations.

SQL Data Control statements manage DBSPACEs, which are units of space, and
logical units of work, which are sequences of SQL statements that SQL/DS treats
as a single entity.

How the Data Base Is Structured

A DBSPACE is a portion of the data base that can contain one or more tables and
any associated indexes. Each table stored in SQL/DS is placed in some particular
DBSPACE chosen by the creator of the table.

DBSPACEs are defined when the data base is generated and may be added later
via the ADD DBSP ACE function. Each DBSP ACE remains as an unnamed
"available" DBSPACE until it is "acquired" by means of an ACQUIRE
DBSPACE statement.

The user who acquires the DBSPACE (generally the DBA) may specify a storage
pool from which SQL/DS is to acquire the DBSPACE, or may allow SQL/DS to
choose the storage pool by default. A storage pool is a collection of data sets
called DBEXTENTs. Storage pools are numbered from 1 to 999. They allow for
the controlling of the distribution of the data base across DASDs.

Storage pools can be recoverable or non-recoverable. Recoverable storage pools
protect their data using the SQL/DS automatic recovery for data updates.
"Non-recoverable" means that if there is a system failure, some data may be lost.
But, when data is non-recoverable, system overhead is reduced. See the
SQL/ Data System Planning and Administration for VM / SP manual for more
information about storage pools.

The acquiring user gives a name to the DBSPACE, and defines certain
characteristics for it. If the type of DBSPACE is PRIVATE, the user who acquired
it becomes its owner; if it is type PUBLIC, its owner becomes PUBLIC. An
acquired DBSPACE may later be returned to the list of available DBSPACEs by
the DROP DBSPACE statement.

A user holding RESOURCE authority may create new tables in any PUBLIC
DBSPACE, or in any PRIVATE DBSPACE owned by that user. A user who does
not have RESOURCE authority may also create tables in anyPRIV ATE
DBSPACE that was acquired for that user by the DBA. Only users having DBA
authority can create tables in a PRIVATE DBSPACE owned by another user.

Your ability to access and update tables of another user is controlled by SQL/DS.
If you are authorized, you can access and update tables in any DBSPACE of any
type, (except for SQL/DS catalogs, which you can read but not update). To refer

70 SQL/Data System Application Programming for VM/SP

to a table created by another user, use the creator's userid as a prefix to the table
name (for example, SMITH.lNVENTORY).

Even though you may be authorized to access data in someone else's DBSPACE,
you may not be permitted to access the data if the DBSPACE is in use.

An attempt to read data in a PRIV ATE DBSPACE results in a negative
SQLCODE if any data in the DBSPACE has been modified by a still-active logical
unit of work. An attempt to modify data in a PRIVATE DBSPACE results in a
negative SQLCODE if any data in the DBSPACE has been read or modified by a
still-active logical unit of work. Note the difference between the two
DBSPACE-types in terms of their locking behavior. If you attempt to access
locked data in a PUBLIC DB SPACE, your program waits and does not regain
control until the lock is freed. (This waiting period is "transparent" to your
application program.) If you attempt to update locked data in a PRIVATE
DBSPACE, SQL/DS immediately returns control to your program with a negative
SQLCODE.

The size of the space that is locked is called the lock size. The lock size on a
PRIVATE DB SPACE is always the entire DBSPACE. The default lock size on a
PUBLIC DBSPACE, however, is somewhat smaller to allow more concurrency.
Thus, you should place tables in a PUBLIC DBSPACE if you expect that more
than one user may need concurrent access to them. On the other hand, because
operations on PRIVATE DB SPACEs do not pay the overhead of acquiring
individual locks within the DBSPACE, a PRIVATE DBSPACE is an efficient place
to store tables for the exclusive use by one user at a time. The cost of smaller locks
is higher overhead. Figure 9 and Figure 10 summarize the SQL/DS locking
mechanism.

If you attempt to: But another user has already:

read the data modified the data
(acquired a share (acquired an
lock) exclusive lock)

read data You are allowed You receive a
to read the data. negative SQLCODE.

modify data You receive a You receive a
negative SQLCODE. negative SQLCODE.

The lock size for a PRIVATE DBSPACE is always the entire
DBSPACE.

Figure 9. Locking Summary for PRIVATE DBSPACEs

Putting the Program into Production 71

If you attempt to: But another user has already:

read the data modified the data
(acquired a share (acquired an
lock) exclusive lock)

read data You are allowed Your program
to read the data. waits.

modify data Your program Your program
waits. waits.

The lock size of a PUBLIC DBSPACE defa.ults to a page (4096
bytes) . The lock size can be changed by the ACQUIRE
DBSPACE or ALTER DBSPACE statements.

Figure 10. Locking Summary for PUBLIC DB SPACEs

logical Units of Work

A logical unit of work is a sequence of SQL statements (possibly with intervening
host language code) that SQL/DS treats as a single entity.

SQL/DS ensures the consistency of data at the logical unit of work level. That is,
SQL/DS ensures that either all operations within a logical unit of work are
completed, or none of them are completed. Suppose, for example, that money is to
be deducted from one account and added to another. If both these updates are
placed in a single logical unit of work, the data will not be left in an inconsistent
state. If a failure of the system or a user program occurs while a logical unit of
work is in progress, the data is automatically restored to its state before the logical
unit of work began. (When a program fails, SQL/DS restores the data after
detecting the error. See "Error Handling" on page 202 for more information.
When the system fails, the data is restored when SQL/DS is restarted.)

A logical unit of work is begun implicitly when the first executable SQL statement is
encountered (except a CONNECT statement). A logical unit of work is ended by
either a COMMIT WORK or ROLLBACK WORK statement. If there is no
COMMIT or ROLLBACK WORK, the logical unit of work ends when the
program ends.

These SQL declarative statements do not start a logical unit of work:

BEGIN DECLARE SECTION
END DECLARE SECTION
WHENEVER

DECLARE CURSOR
INCLUDE SQLCA
INCLUDE SQLDA

Executable SQL statements always occur within a logical unit of work. This is
because any executable SQL statement (except CONNECT) encountered after you
end a logical unit of work automatically starts another ..

The ROLLBACK WORK statement described later allows a program to explicitly
call for the restoring of the logical unit of work and associated data.

72 SQL/Data System Application Programming for VM/SP

Dropping a Program

Format:

DROP PROGRAM [creator.]program-name

Examples:

DROP PROGRAM PAYROLL2
DROP PROGRAM SALLY.RUNRUN
DROP PROGRAM :CREATOR.:PROGNAME

Authorization:

You can only drop programs that you have preprocessed. (That is, you must be the creator of the
program you wish to drop.) To drop another user's program, you must have DBA authority.

The DROP PROGRAM statement deletes the access module associated with the
named program from the data base. Once you drop an access module, you cannot
run the program.

If a running program drops its own access module, it receives a negative return
code when it attempts to begin the next logical unit of work.

To re-create an access module, preprocess the program. Once the access module is
created, you'll be able to run the program.

You can specify both the creator and program-name as host variables (fixed length,
eight characters, padded to the right with blanks) or as constants. If host variables
are used, you can provide either value at the time the program is run.

Note: The program-name is the name specified in the PREPNAME parameter
when the program is preprocessed. If the program name is an SQL/DS reserved
word, you must enclose it in double quotes (") when used in the DROP
PROGRAM statement. When used in the PREPNAME preprocessor parameter,
however, the name should not be enclosed in double quotes. For example, when
preprocessing a program you can specify:

PREPNAME=SELECT

When dropping that program, however, you must specify:

DROP PROGRAM "SELECT"

See "Preprocessing and Running the Program" on page 183 in Chapter 2 for more
information about preprocessor parameters. Appendix A, "SQL/DS Reserved
Words" on page 363 contains a list of SQL/DS reserved words.

Putting the Program into Production 73

Data Definition

SQL Data Definition statements manage tables and things you can associate with
tables (such as indexes, synonyms, and comments).

General Rules for Naming Data Objects

In general, the following SQL identifiers must conform to specific naming rules:

1. Table names
2. View names
3. Column names
4. Index names
S. Synonyms
6. DBSPACE names
7. Program names
8. Cursor names
9. Statement names
10. Host variable names
11. Userids/creator names
12. Passwords

Folding from lowercase to uppercase is always performed for identifiei types 1
through 7 above, as long as the identifiers are not enclosed in quotes.

The naming rules are:

1. A name may begin with an uppercase letter (A-Z), $, #, or @. A name may
begin with a number (0-9) if it is enclosed in double quotes.

2. It may contain uppercase letters (A-Z), $, #, @, numbers (0-9), or underscores
(-).

As a general rule, the length is 1-18 characters. Exceptions are as follows:

1. Program names are 1-8 characters.

2. Userids and passwords: Constants are 1-8 characters; host variables are 8
characters, padded to the right with blanks when the value is less than 8.
Lowercase characters, special characters, and Double-Byte Character Set
(DBCS) characters should not be used in SQL userids or passwords.

3. Host variables are limited to 18 characters, unless the host language has a
lesser restriction. Note that FORTRAN permits only six-character host
variable names. Examples in this manual sometimes exceed the FORTRAN
limitation.

When identifiers are stored in host variables and then referred to in SQL
statements, they are generally treated by SQL/DS as if they were entered in double
quotes. That is, the general identifier rules are not checked when they appear in
host variables. An example is the CONNECT statement, where the userid (and

74 SQL/Data System Application Programming for VM/SP

Data Types

password) must be in host variables. The host variable(s) in this case may contain
any eight characters.

Some exceptions to the identifier naming rules should be noted.

1. Where the host language has restrictions on variable names, those rules will
further restrict the SQL naming rules as applied to host variable names. In
COBOL, host variables may contain dashes (-) in lieu of the underscore (_).

2. Generally, SQL reserved words cannot be used as data object names. These
are listed in Appendix A.

3. For SQL/DS installations that use an EBCDIC character set other than
English, the two naming rules and the folding rule stated above may change
slightly. Refer to the SQL/ Data System Planning and Administration for
VM / SP for more information.

The above rules for naming may be bypassed in most cases by including the name
in double quotes. In this way, lowercase letters, special characters, blanks, and
reserved words may be used in identifiers. For example,

"quotations" "DAVE'S TABLE" "SELECT COLUMN"

You cannot use the double quote (") character within a double quoted string:

"EMP"13"TABLE" <----- Not Valid

Leading blanks cannot be used in double quoted strings. If they are, an error will
result.

TABLEX" <----- Not Valid

There are a few cases that do not permit use of double quoted identifiers:

1. Host variable names
2. Program names
3. Cursor names
4. Statement names.

If you use Double-Byte Character Set data, and if the DBCS option is set to YES,
both unquoted and quoted identifiers can have DBCS characters enclosed by so
and si. The length limit (in bytes) applies to the total length of EBCDIC portions,
DBCS portions and shift characters. The folding rule does not apply to the DBCS
portions. With the DBCS option set to YES, an apostrophe (X'7F') in a DBCS
character does not terminate a quoted identifier.

Each column of every SQL/DS table is given an SQL data type when the table is
created. There are ten of these SQL/DS data types. The data types for
Double-Byte Character Set (DBCS) data support character sets that require two
bytes of storage for each character in the character set. Kanji is one example of
such a character set. Figure 11 shows the ten SQL/DS data types and how they
are stored internally:

Putting the Program into Production 75

Data Conversion

SQL/DS Data Type How Stored

INTEGER Stored as a 31-bit binary integer.

SMALLINT Stored as a IS-bit binary integer.

DECIMAL(m,[n]) Stored as a packed decimal number of precision m and
scale n. Precision is the total number of digits. Scale
is the number of digits to the right of the decimal
point. For example, 251.66 fits in a DECIMAL(5,2)
data area. The default scale is O. If an even value is
specified for m, SOLIDS rounds that value to the next
higher odd value to best utilize internal storage.

FLOAT Stored as a double-precision (8-byte) floating-point
number in standard System/370 floating-point format.

CHAR(n) Stored as an EBCDIC character string of fixed length
n. (n cannot be larger than 254.)

VARCHAR(n) Stored as a varying-length EBCDIC character string
of maximum length n. (n cannot be larger than 254.)

LONG V ARCHAR Stored as a varying-length EBCDIC character string
of maximum length 32767.

GRAPHIC(n) Stored as a Double-Byte Character Set (DBCS)
character string of fixed length n. (n cannot be larger
than 127.)

V ARGRAPHIC(n) Stored as a varying-length DBCS character string of
maximum length n. (n cannot be larger than 127.)

LONG Stored as a varying-length DBCS character string of
VARGRAPHIC maximum length 16383.

Figure 11. SQL/DS Data Types

Whenever SOLIDS moves data from one field to another, or from a host variable
to a field, or from a field to a host variable, it attempts to perform data conversion
if the data types do not match. Whether or not the conversion is successful
depends on the data types of source value and the target value.

For example, suppose you issue a SELECT statement that retrieves INTEGER
data (source data) into a host variable that was declared SMALLINT (target
variable). If the INTEGER value is small enough, SOLIDS performs the operation
successfully. If the INTEGER value is larger than the largest value that can fit in a
SMALLINT variable, however, an overflow results and SOLIDS indicates a
conversion error by returning a negative SOLCODE.

SOLIDS data conversion is summarized in Figure 12. YES indicates that
SOLIDS does the conversion. NO indicates that the conversion is not done, and
SOLIDS returns an error code to your program. Notice that overflow (loss on the
left) or truncation (loss on the right) may occur on some conversion attempts.

76 SQL/Data System Application Programming for VM/SP

TARGET DATA TYPE:

SOURCE INTE- SMALL-
DATA TYPE: GER INT

INTEGER YES YES'

SMALLINT YES YES

DECIMAL YES' 2 YES' 2

FLOAT YES' 2 YES' 2

CHAR NO NO

VARCHAR NO NO

LONG NO NO
VARCHAR

GRAPHIC NO NO

VAR- NO NO
GRAPHIC

LONG VAR- NO NO
GRAPHIC

Overflows always cause an SQL error (negative SQLCODE). Truncations are
handled differently for numeric and character data:

Numeric data: Truncation of zeros on the left or truncation of the fractional
part of decimal or floating point values takes place without error or warning.
Any other loss of data on conversion is considered an overflow error.

• Character Data (EBCDIC and DBCS): When output from SQL/DS does not
fit Into a host variable, a warning condition exits. SQL WARN 1 is set to
indicate truncation. In this case, if you provide an indicator variable, the value
within it denotes the actual length of the variable in characters before
truncation. Indicator variables are discussed under "Indicator Variables" on
page 146.

When an input character string value does not fit into an SQL/DS field, an
error results.

LONG LONG

DEC- VAR VAR- VAR- VAR-

IMAL FLOAT CHAR3 CHAR3 CHAR4 GRAPHIC3 GRAPHIC3 GRAPHIC4

YES YES NO NO NO NO NO NO

YES YES NO NO NO NO NO NO

YES5 YES6 NO NO NO NO NO NO

YES56 YES NO NO NO NO NO NO

NO NO YES YES YES NO NO NO

NO NO YES YES YES NO NO NO

NO NO YES YES YES NO NO NO

NO NO NO NO NO YES YES YES

NO NO NO NO NO YES YES YES

NO NO NO NO NO YES YES YES

Figure 12. SQL/DS Data Conversion Chart

Notes:

1. Overflow may result.

2. The fractional part of the value is dropped.

3. For output host variables, if the length of the target is smaller than the length
of the source, truncation occurs and SQLW ARNI is set. If an indicator
variable is given for an output value, it is set to the actual SQL/DS field length.
For input host variables that exceed the length of the target field, an error
results.

4. Note the restrictions under "Use of Long Fields" on page 236.

Putting the Program into Production 77

5. SQL/DS automatically aligns the decimal point. Overflow of the integer part
may result. The fractional part may be truncated.

6. SQL/DS attempts to create the "best possible" result in converting from
System/370 floating point to scaled fixed point decimal.

If you need more information about how computations are performed internally, or
how overflows can occur, refer to the "Arithmetic Operations" section of the
SQLI Data System Planning and Administration for VM I SP manual.

Qualifying Table Names

If a data object (such as a table) is owned by another user, you need to qualify
references to the object by concatenating the creator's user identifier:

SMITH. INVENTORY

-------------> table name
---------------------> creator of the table

The period (.) is the SQL/DS concatenation symbol.

You can access another user's table only if you know that person's user identifier
and have the appropriate SQL/DS authorization to access that table.

When you concatenate a userid to a table name, you fully qualify the table. A table
is fully qualified when a userid is concatenated to it. That is, a ''userid.table-name''
uniqusly identifies a table in the data base. For example, there can never be two
SMITH. INVENTORY tables in the data base at the same time.

You should use fully qualified table names until you gain some experience using
SQL/DS. By fully qualifying table names, you avoid confusion and errors. This is
especially true if you are coding programs that are to be preprocessed by another
user.

SQl/OS Catalogs

SQL/DS automatically maintains information about the data base in a set of tables
called catalogs. These catalogs are created automatically during data base
generation. They describe tables, columns, indexes, programs, authorization, and
other objects in the data base.

Since the SQL/DS catalogs are defined as normal tables with public read
authorization, you can use SQL query statements to retrieve information in the
catalogs. For example, this SQL statement finds what column names in table EMF
TABLE begin with the letter 'D':

78 SQL/Data System Application Programming for VM/SP

SELECT CNAME
FROM SYSTEM.SYSCOLUMNS
WHERE TNAME = 'EMP TABLE'
AND CNAME LIKE 'D%'

Note that when a table
name is used as a constant,

.... ---1 it is enclosed in single
quotes ('), not double (").

SYSTEM is the owner of all catalog tables; you must qualify all catalog tables with
that name, unless you have a synonym defined.

The only information in the tables not available to everyone is password
information; you must have DBA authority to access the catalog that contains
passwords (SYSUSERAUTH). A view, called SYSUSERLIST, is defined on
SYSUSERAUTH when the catalogs are created. The creator of the view is
SOLDBA; thus, you must refer to the view as SOLDBA.SYSUSERLIST. This
view is accessible to all users and contains all the columns of SYSUSERAUTH
except the passwords. If you do not have DBA authority, you must query the view
(SYSUSERLIST) instead of the underlying table (SYSUSERAUTH).

Some of the information in the catalogs is of little interest to most users. Statistics
maintained in the catalogs, for example, are used by SOLIDS to determine optimal
access paths -- to you, these statistics may be quite meaningless. If you wish, you
can define views on the catalog tables containing only columns that are meaningful
to you.

SOLIDS updates its catalogs during normal operation in response to SOL data
definition and control statements. Additionally, if you have DBA authority you can
create and maintain your own installation-dependent catalog columns using SOL
INSERT, DELETE, UPDATE, ALTER, and COMMENT statements.

The catalogs are completely described in the SQLI Data System Planning and
Administration for VM I SP manual. A brief description of each catalog is given
below.

Catalogs that Record Privileges

SYSUSERAUTH

SYSUSERLIST

SOLIDS uses SYSUSERAUTH to record special privileges. The special privileges
are DBA, RESOURCE, SCHEDULE, and CONNECT authority. As in
SYST ABAUTH, an entry in SYSUSERAUTH denotes either a special privilege
held by a user or a special privilege exercised by a program.

Only users with DBA authority can access SYSUSERAUTH; other users must
access the view SYSUSERLIST. The creator of the view is SOLDBA; thus, you
must refer to the view as SOLDBA.SYSUSERLIST. The SYSUSERLIST view
contains all columns of SYSUSERAUTH except PASSWORD.

Putting the Program into Production 79

SYSPROGAUTH

SYSTABAUTH

SYSCOLAUTH

SYSPROGAUTH records privileges of users to run programs, and to grant these
privileges to other users.

SYST ABAUTH has two purposes:

1. It records privileges owned by users to access tables and views. For each such
privilege, it also records the source of the privilege (for example, a grant from
another user).

2. It records the privileges on tables and views that are exercised by various
preprocessed programs. Each such privilege appears in SYSTABAUTH as if it
were granted to the program by the user who preprocessed the program.
SQL/DS uses this type of SYST ABAUTH entry to find and invalidate access
modules when the necessary privileges are revoked from the creators of the
program.

SYSCOLAUTH records grants of the UPDATE privilege on tables and views when
the privilege is granted on a column-by-column basis. Each entry in
SYSCOLAUTH has a corresponding entry in SYSTABAUTH with a matching
timestamp. (SYSTABAUTH records privileges granted on entire tables, but not on
individual columns.) A SYSCOLAUTH entry identifies a particular column on
which an UPDATE privilege has been granted. For example, if the UPDATE
privilege is granted on several columns in one GRANT statement, the grant is
represented as one entry in SYST ABAUTH, and several entries in
SYSCOLAUTH, all having matching timestamps.

Some of the entries in SYSCOLAUTH represent privileges that are exercised by
preprocessed programs. These entries appear as though the creator of the program
(that is, the user who preprocessed the program) granted the privilege to the
program itself.

Catalogs that Record the Contents of the Data Base

SYSDBSPACES

The SYSDBSPACES catalog contains a row for each DBSPACE in the data base,
including those DB SPACEs that no user has yet acquired. The number of
DBSPACEs available is determined during data base generation. The size of each
DBSPACE is also specified at that time.

Additional DBSPACEs may be added from time to time by the ADD DBSPACE
utility programs; refer to the SQL/ Data System Planning and Administration for
VM / SP manual for more information about these utilities.

80 SQL/Data System Application Programming for VM/SP

~ SYSCATALOG

SYSACCESS

SYSVIEWS

SYSCOLUMNS

The SYSCATALOG table contains a row for each table or view in the data base,
including itself and other catalog tables.

SOL/OS uses SYSACCESS to record the access modules that have been created
for user programs by the SOL/OS preprocessor. Some entries in SYSACCESS are
also used to record view definitions in a form for internal use.

The SYSVIEWS catalog contains the definitions of all views known to SOL/OS.
The views are stored in the form of the original SOL statements that defined the
views.

The SYSCOLUMNS catalog contains a more detailed description of the data base
than that contained in SYSCATALOG. Recall that SYSCATALOG contains a
row for each table or view in the data base; SYSCOLUMNS contains a row for
every column of every table or view in the data base (including the columns of the
SOL/OS catalogs).

Catalogs that Record Indexes and Synonyms

SYSINDEXES

SYSSYNONYMS

The SYSINDEXES catalog contains a row for every index currently in existence,
including the indexes that SOL/OS maintains on its own catalogs.

The SYSSYNONYMS catalog contains a row for every synonym that is currently in
effect. Note that each synonym is effective for only the user who defined it.

Miscellaneous Catalogs

SYSUSAGE

SYSUSAGE records dependencies of one SOL/OS object on another. For
example, an access module is dependent on the tables and indexes that it uses, or a
view is dependent on the tables on which it is defined. Each entry in SYSUSAGE
describes one dependent object and one base object. (The base object is the object
that is depended upon.)

Putting the Program into Production 81

SYSDROP

SYSCHARSETS

SYSOPTIONS

This catalog forms part of the mechanism used by SQL/DS to drop tables and
DBSPACEs from the data base. When a DBSPACE or table is dropped, its
description is dropped from the SQL/DS catalogs immediately, but the underlying
Data Base Storage System (DBSS) objects are not dropped until the end of a
logical unit of work. (The DBSS is an internal component of SQL/DS.)
SYSDROP contains a list of the DBSS objects that are waiting to be dropped.

Contains a column for the EBCDIC character classification table (to identify valid
characters) and a column for the EBCDIC character translation table (for folding
to uppercase).

Records whether or not Double-Byte Character Set data can be used for identifiers
and character string constants. Also records what EBCDIC character set SQL
statements are written in.

82 SQL/Data System Application Programming for VM/SP

,.'

Chapter 2. Advanced Sal Programming

This chapter builds off the information contained in Chapter 1. For each of the
five tasks described in Chapter 1, a corresponding section exists in this chapter,
containing more detailed information.

The first section of this chapter, "Designing the Program," contains a detailed
explanation of the framework for coding SQL application programs. This
framework was introduced in Chapter 1. This section also describes the SQL
statements that must be included in the prolog and epilog sections of the program.

The second section, "Coding the Program," describes advanced SQL statements
and clauses that you might wish to use in your programs.

The third section of this chapter, "Preprocessing and Running the Program," gives
detailed descriptions of the steps necessary to run your program.

The fourth section, "Testing and Debugging Concerns," tells you how to handle
errors that arise during the execution of your program.

The fifth section, " Putting the Program into Production," contains advanced
information that may be useful to you from an administrative standpoint.

Because this chapter contains advanced information, and because most of the
topics are self -contained, there are no section quizzes to determine whether you
need to read the sections.

Chapter 2. Advanced SQL Programming 83

84 SQL/Data System Application Programming for VM/SP

Designing the Program

Contents

Application Prolog .. 86
Declaring the SQLCA ... 86
Host Variables ... 87
Connecting to SQL/DS .. 91

Application Body ... 92
Application Epilog .. 93

CMS Applications .. 93
Summary .. 94
Sample Application Programs 95

Designing the Program 85

Application Prolog

At the beginning of every SQL/DS program, you must place SQL statements that:

• Declare a SQL Communications Area (SQLCA) and provide for error
handling

• Declare special variables (host variables) that SQL/DS uses to interact with
the host program

• Establish a connection between your program and SQL/DS.

Declaring the SQLCA

To declare the SQL Communications Area (SQLCA), code this statement in your
program:

INCLUDE SQLCA

When you preprocess your program, SQL/DS inserts host language variable
declarations in place of the INCLUDE SQLCA statement. This group of variables
is how SQL communicates with your program. SQL/DS uses the variables for
warning flags, error codes and diagnostic information. All the variables are
discussed under "Testing and Debugging Concerns" on page 201. The only
variable you need be concerned with now is SQLCODE.

SQL/DS returns a result code in SQLCODE after executing each SQL statement.
SQLCODE, return code, and result code are all terms that mean the same thing:
the integer value that summarizes how your SQL statement executed. When a
statement executes successfully, SQLCODE is set to O. SQL/DS indicates error
conditions by returning a negative SQLCODE. A positive SQLCODE indicates
normal conditions experienced while executing the statement (such as end-of-file).

The WHENEVER statement below tells SQL/DS what to do when it encounters
an SQL error (that is, a negative SQLCODE):

WHENEVER SQLERROR GO TO ERRCHK

That is, whenever an SQL error (SQLERROR) occurs, program control is
transferred to a subroutine named ERRCHK. This subroutine should include logic
to analyze the error indicators in the SQLCA. Depending upon how ERRCHK is
defined, action may be taken to execute the next sequential program instruction, to
perform some special functions, or, as in most cases, to roll back the current logical
unit of work and terminate the program.

You can have any number of logical units of work in a program. For the simplest
case (which is being discussed here) the whole program is a single logical unit of
work. Either the program runs successfully and the changes are made to the data
base, or it doesn't and no changes are made.

SQL/DS begins a logical unit of work implicitly. That is, you don't have to code a
statement to start a logical unit of work. SQL/DS starts one when it encounters

86 SQL/Data System Application Programming for VM/SP

Host Variables

your first executable SQL statement. ("Logical Units of Work" on page 72 gives
a more precise description of when logical units of work begin.)

You must tell SQL/DS when to end the logical unit of'work. "Application Epilog"
on page 93 explains how to do this. There are times when SQL implicitly ends a
logical unit of work. When this occurs, the SQLWARNO and SQLWARN6
indicators are set to 'W'.

You must declare all host variables. In addition, you must surround the host
variable declarations with two SQL statements:

BEGIN DECLARE SECTION
•
•

(host variable declarations)
•
•

END DECLARE SECTION

The data declaration statements vary from language to language. To determine
what the data declarations should be, you need to be familiar with SQL/DS data
types.

Consider the following SELECT statement:

SELECT DESCRIPTION, QONHAND
INTO :DESC, :QUANT
FROM INVENTORY
WHERE PARTNO = :PART

The statement contains three host variables: DESC, QUANT, and PART. The
host variables interact with columns of the SQL/DS INVENTORY table. Each
column of every SQL/DS table is given an SQL data type when the table is
created. There are ten of these SQL/DS data types. Figure 11 on page 76 shows
the ten SQL/DS data types and how they are stored internally.

Each SQL/DS data type can be related to a host language data type. For example,
the INTEGER SQL/DS data type is a 31-bit binary integer. In COBOL this is
equivalent to a data description entry of:

01 variable-name PICTURE S9(9) COMPUTATIONAL.

In PLII, the INTEGER data type equates to:

DeL variable-name BINARY FIXED(31)

In FORTRAN, this equates to:

INTEGER variable-name

And, in Assembler:

variable-name DS F

Designing the Program 87

COBOL Cols. 8
I
I
01

01
01

All the host language equivalents for a particular SQL/DS data type are listed in """"
the host language appendixes. The charts are at the end of each host language
appendix. See Figure 40 on page 383, Figure 42 on page 417, Figure 46 on
page 446, or Figure 49 on page 464.

It is a simple matter to see which host variables interact with which columns. Here
is the SELECT statement again:

SELECT DESCRIPTION, QONHAND
INTO :DESC, :QUANT
FROM INVENTORY
WHERE PARTNO = :PART

The DESCRIPTION column of the selected row is returned in DESC. The
QONHAND column is returned in QUANT. The PARTNO column is compared
to the PART host variable.

Once you determine which column a host variable interacts with, you need to find
what SQL/DS data type that column has. The SQL/DS data types for the example
table are listed in the upper right hand corner of the foldout (along with the tables).
DESCRIPTION is VARCHAR(24), QONHAND is INTEGER, and PARTNO is
SMALLINT. (For now, you can ignore the "NOT NULL" in the chart.)

When you are coding an actual program, you can find out what data type a given
column has by asking the person who created the table. Alternatively, you can
query the SQL/DS catalogs. The catalogs are tables maintained by SQL/DS.
They contain information about all the tables created in the data base. The
catalogs are completely described in the SQL/ Data System Planning and
Administration for VM / SP manual.

Having determined the SQL/DS data types, you can refer to the conversion charts
at the end of the host language appendixes and code the appropriate declarations.
Figure 13 shows the declarations in each host language.

12
I
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
DESC.
49 D-LENGTH
49 D-VALUE
QUANT
PART
EXEC SQL END

PICTURE S9(4) COMPUTATIONAL.
PICTURE X (24) .
PICTURE S9(9) COMPUTATIONAL.
PICTURE S9(4) COMPUTATIONAL.

DECLARE SECTION END-EXEC.

Figure 13 (Part 1 of 2). Examples of Host Variable Declarations

88 SQL/Data System Application Programming for VM/SP

PL/I EXEC SQL BEGIN DECLARE SECTION;
DCL DESC CHARACTER (24) VARYING;
DCL QUANT BINARY FIXED (31) ;
DCL PART BINARY FIXED (15) ;
EXEC SQL END DECLARE SECTION;

Assembler EXEC SQL BEGIN DECLARE SECTION
DESC DS H,CL(24)
QUANT DS F
PART DS H

EXEC SQL END DECLARE SECTION

FORTRAN Col. 7
I
EXEC SQL BEGIN DECLARE SECTION

CHARACTER*24 DESC
INTEGER QUANT
INTEGER*2 PART

EXEC SQL END DECLARE SECTION

Figure 13 (Part 2 of 2). Examples of Host Variable Declarations

The above example also shows the BEGIN and END DECLARE SECTION
statements. Observe how the delimiters for SQL statements differ for each
language. In all languages, the actual SQL statement is preceded by "EXEC
SQL". In COBOL, the end of the command is denoted by "END-EXEC." In
PL/I, the usual semicolon (;) is used. There is no trailing delimiter for Assembler
or FORTRAN.

The exact rules of placement, continuation, and delimiting of SQL statements are
in the host language appendixes. Figure 14 is another example of embedded SQL
statements. The INCLUDE SQLCA, WHENEVER, and SELECT statements are
shown in each language:

Designing the Program 89

COBOL

PL/I

Assembler

DATA DIVISION.

FILE SECTION.

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC •

•
(host variable declarations)

•
EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
EXEC SQL WHENEVER SQLERROR STOP END-EXEC.
EXEC SQL SELECT DESCRIPTION, QONHAND

INTO :DESC, :QUANT
FROM INVENTORY
WHERE PARTNO = :PART END-EXEC.

EXEC SQL BEGIN DECLARE SECTION;
•

(host variable declarations)
•

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
EXEC SQL WHENEVER SQLERROR STOP;

EXEC SQL SELECT DESCRIPTION, QONHAND
INTO :DESC, :QUANT
FROM INVENTORY
WHERE PARTNO = : PART;

EXEC SQL BEGIN DECLARE SECTION
•

(host variable declarations)
•

EXEC SQL END DECLARE SECTION Col. 72
EXEC SQL INCLUDE SQLCA
EXEC SQL WHENEVER SQLERROR STOP
EXEC SQL SELECT DESCRIPTION, QONHAND

INTO :DESC, :QUANT
FROM INVENTORY
WHERE PARTNO = :PART

Figure 14 (Part 1 of 2). Examples of Embedded SQL Statements

90 SQL/Data System Application Programming for VM/SP

*
*
*

FORTRAN EXEC SQL BEGIN DECLARE SECTION
•

(host variable declarations)
•

EXEC SQL END DECLARE SECTION
Col. 6 --EXEC SQL INCLUDE SQLCA

IEXEC SQL WHENEVER SQLERROR
*GO TO 1000

EXEC SQL DECLARE C1 CURSOR FOR
* SELECT DESCRIPTION, QONHAND
* FROM INVENTORY
* WHERE PARTNO = :PART

EXEC SQL OPEN C1
EXEC SQL FETCH C1 INTO :DESC, :QUANT
EXEC SQL CLOSE Cl

•
1000 CALL ERROUT

FJg1II'e 14 (Part 2 or 2). Examples or Embedded SQL Statements

Note: PL/I, COBOL, and Assembler language programs can also be coded using
the "DECLARE-OPEN-FETCH-CLOSE" cursor format required for FORTRAN
programs.

Connecting to SOL/OS

In VM/SP environments, the SQL/DS CONNECT statement is not required to
establish a connection between SQL/DS and your program. Userid and password
checking by VM/SP may be sufficient. SQL/DS does implicit connecting for those
environments when an explicit CONNECT is not found.

For explicit CONNECTs, SQL/DS supports the following statement:

CONNECT userid IDENTIFIED BY password

Both the userid and password must be host variables and must be declared as
fixed-length character strings of length 8. For example,

CONNECT :USER IDENTIFIED BY :PW

"USER" and "PW" are host variables and might contain the following:

JONES <------- USER
JONESPW <------- PW
12345678 <------- character positions

Note that unused positions to the right are padded with blanks.

You must initialize the host variables before the CONNECT statement is executed.
To do this, you should code the program to get values for these values via an input
file (for example, SYSIN) or via input parameters. When the variables are set from
an external source, your program can be executed only by those who know a valid
userid and password to provide as input.

Designing the Program 91

CONNECT identifies the user to SQL/DS. In the case where a previously
preprocessed program is to be executed, the CONNECT statement in that program
identifies the user that is to run the program. This may be the same or a different
user than the one that preprocessed it. In either case, the user must have
CONNECT authority for the explicit CONNECT, as well as RUN authority for the
specific program. The conditions for acquiring authority are discussed in the
section, "Authorization" on page 213 in Chapter 2.

Generally speaking, if a CONNECT statement is necessary, it must be the first
SQL statement executed in your program. Only SQL declarative statements and
host language code may precede a CONNECT statement. Figure 15 shows these
declarative statements.

BEGIN DECLARE SECTION
END DECLARE SECTION
WHENEVER
DECLARE CURSOR
INCLUDE SQLCA
INCLUDE SQLDA

Note: SQL declarative statements can also follow the CONNECT
statement in some languages.

Figure IS. SQL Declarative Statements

Both the SQLCA structure and the host variable declarations may precede the
CONNECT statement.

A CONNECT statement is not required for VM/SP. More information about the
implicit connect for VM/SP is contained under "VM/SP Connect Considerations"
on page 186.

The CONNECT statement ends the application prolog.

Application Body

The application body is where you place the SQL statements that operate on
SQL/DS tables. While there are many SQL statements, most of the day-to-day
operations are done using a small subset:

•

•

•

SELECT -- for data retrieval. When more than one row of a table is retrieved,
you must use a cursor to retrieve each row. In FORTRAN programs, a cursor
must always be used for data retrieval. Cursors are explained under
"Retrieving or Inserting Data with a Cursor" on page 19.

INSERT -- to add new rows to an existing table.

DELETE -- to delete rows from a table.

UPDATE -- to change existing rows of a table.

92 SQL/Data System Application Programming for VM/SP

Remember to declare all host variables used in SQL statements, and to properly
delimit the statements for the host language.

Application Epilog

eMS Applications

The application epilog is the logical end of your SQL/DS application program. To
properly end your program:

1. End the current logical unit of work (if one is in progress). You should always
explicitly end your logical units of work. If you want the changes to be
committed, code it explicitly. If you want the changes to be rolled back, code it
explicitly.

2. Release your connection to SQL/DS. Others can then use the SQL/DS
resources.

You can issue COMMIT WORK or ROLLBACK WORK explicitly. The unit of
termination is the end of a CMS command or the termination of the user virtual
machine. It is at these points where an implicit COMMIT or ROLLBACK WORK
may be invoked.

The implicit COMMIT or ROLLBACK WORK is automatic for any application
that accesses SQL/DS. If an SQL/DS application program is not executed through
an EXEC, it is considered a "command" and normal, explicit
COMMIT /ROLLBACK WORK procedures apply. If an SQL/DS application
program is executed through an EXEC, COMMIT/ROLLBACK WORK
processing does not occur until the EXEC completes.

When implicit COMMIT or ROLLBACK WORK is invoked at a unit of
termination, either a COMMIT or a ROLLBACK of the logical unit of work
occurs, depending upon whether the termination was normal or abnormal.

An application is considered to have terminated normally when it has returned to
CMS; or, in single virtual machine mode, when it returns to the SQL/DS calling
routine. Any other kind of termination such as HX, CMS abend, program check,
or any user machine termination is considered an abnormal termination.

In the VM/SP environment, user written interactive SQL applications are provided
with an inherent facility to cancel an SQL command without terminating the
running application. This cancel facility is invoked via the SQLHX immediate
command that is established by SQL/DS. The only special processing required of
the application is that it be sensitive to the -914 SQLCODE.

The terminal operator can cancel long-running SQL commands by entering
"SQLHX" from the keyboard. This will cause the logical unit of work to be rolled
back and an SQLCODE of -914 to be returned to the application. If the userid
and password were established with an explicit SQL CONNECT, it will be
necessary to reissue the CONNECT or the userid and password will revert to the
value established by the implicit CONNECT.

Designing the Program 93

Summary

The application can modify the basic cancel facility by defining additional names ,..""
for the SQL/DS-defined SQLHX command or by requesting SQL/DS to remove
the SQLHX command and the exit it invokes. These modifications are done using
the ARIRCAN macro. For more detail on the ARIRCAN macro interface, see
"Recovery Concepts" in the SQL/ Data System Planning and Administration for
VM / SP manual.

For more information on CMS, consult the Virtual Machine/System Product: CMS
User's Guide or the Virtual Machine/System Product: CMS Command and Macro
Reference manual.

Figure 16 summarizes what has been covered so far in this chapter. The pseudo
code illustrates a general framework for an SQL/DS application. This framework
must, of course, be tailored to suit your own program.

Remember that when used in an SQL statement, host variables must be preceded
by a colon. Be sure to declare the host variables used in the CONNECT statement
as character strings of fixed length 8.

94 SQL/Data System Application Programming for VM/SP

Start Program
EXEC SQL BEGIN DECLARE SECTION

DECLARE USERID FIXED CHARACTER .(8)
DECLARE PASS FIXED CHARACTER (8)

•
•

(other host variable declarations)
•
•

EXEC SQL END DECLARE SECTION
EXEC SQL INCLUDE SQLCA
EXEC SQL WHENEVER SQLERROR GO TO ERRCHK
READ FROM SYSIPT USERID, PASS

Application
Prolog

EXEC SQL CONNECT :USERID IDENTIFIED BY :PASS
•

EXEC SQL
EXEC SQL
EXEC SQL
EXEC SQL

•
•

SELECT
INSERT
DELETE
UPDATE 1

Application
Body (SQL
statements)

EXEC SQL COMMIT WORK RELEASE

~ •
•
•

End Program.

Application
Epilog

Note: For FORTRAN applications, the EXEC SQL SELECT ... statement
must be defined with a cursor. FORTRAN programs require the following
cursor format:

EXEC SQL DECLARE cursor-name CURSOR FOR SELECT ...
•
•

EXEC SQL OPEN cursor-name
EXEC SQL FETCH cursor-name INTO ...
EXEC SQL CLOSE cursor-name

Figure 16. Pseudo Code Framework for Coding Programs

Sample Application Programs

IBM ships five system-dependent sample applications with SQL/DS. The
applications are:

ARISAMDB A Data Base Services utility control file. This control file
contains commands that create, load, and print sample tables
similar to those in the foldout. The control file is shown in the
SQLIData System Installation/or VMISPmanual.

Designing the Program 95

ARISASMC

ARISCBLC

ARISFfN

ARISPLIC

An Assembler language program that manipulates data in the
tables created by ARISAMDB and prints results. The source
code for the program (ARISASMC) is shown in Appendix
E, "Assembler Considerations."

A COBOL program that manipulates data in the tables created
by ARISAMDB and prints results. The source code for the
program (ARISCBLC) is shown in Appendix D, "COBOL
Considerations. "

A FORTRAN program that manipulates data in the tables
created by ARISAMDB and prints results. The source code is
shown in Appendix F, "FORTRAN Considerations."

A PL/I program that manipulates data in the tables created by
ARISAMDB and prints results. The source code for the program
(ARISPLIC) is shown in Appendix C, "PL/I Considerations."

Each program is an example of using SQL within application programs. You may
wish to model your initial programs from the sample applications. IBM supplies
EXECs to preprocess, compile, link-edit, and run the sample programs on VM/SP
systems.

Each of the following examples assumes that the user (userid) is SQLDBA with a
password of SQLDBAPW. If the samples are run under a userid other than
SQLDBA, or if SQLDBAPW has been changed, the parameters in the following
examples must also be changed. Along with these changes, the host variables used
by the CONNECT statement in the sample programs must also be modified to
reflect a new userid and/or password.

In operational programs it is generally a better security practice to obtain the userid
and password from external parameters, rather than from initialized values of host
variables used by CONNECT.

The following is a list of the IBM-supplied EXECs that can be used to preprocess,
compile, link-edit, and run the SQL/DS sample programs.

SQLASMC EXEC Q The SQL/DS sample Assembler program EXEC.

SQLCBLC EXEC Q The SQL/DS sample COBOL program EXEC.

SQLPLI EXEC Q The SQL/DS sample PL/I program EXEC.

SQLFfN EXEC Q The SQL/DS sample FORTRAN program EXEC.

For example, to preprocess (via the SQL/DS COBOL preprocessor), compile, link
edit, and run the SQL/DS sample COBOL program from an SQL/DS user
machine, enter the following command:

SQLCBLC

96 SQL/Data System Application Programming for VM/SP

Coding the Program

Contents

More About Search Conditions 99
Additional Types of Constants 99

Double-Byte Character Set (DBCS) Constants 99
Mixing EBCDIC and DBCS Data in Character String Constants 100
Hexadecimal Constants 100
The USER Keyword 100

Nulls .. 101
Notes on Constructing Search Conditions 103
Rules for Evaluating Predicates 103
Additional Search Predicates 104

BETWEEN Predicate 104
IN Predicate .. 105
NULL Predicate ... 105
LIKE Predicate ... 106

Additions to the SELECT Statement 107
Joining Tables .. 107

How to Join Tables .. 107
How SQL/DS Joins Tables 107
A Simple Join Query 108
Joining Another User's Tables 108
Analyzing How a Join Works. .. 109
Nulls Within Join Conditions 110
Joining a Table to Itself 110
Limits on Joins .. 112
SELECT * As Used in a Join 112
Ordering the Results of a Join 112

Grouping .. 113
Nulls within Groups .. 114
Rules for Select-Lists of Grouping Queries 114
Using a WHERE Clause with a GROUP BY Clause 115
The HAVING Clause 116
Combining Joins, WHERE, GROUP BY, HAVING, and ORDER BY . 117
An Exercise .. 117

Nesting a Query into Another Query 119

/ Subqueries That Return a Single Value 122
Subqueries That Return a Null Value 122
Subqueries That Return Many Values 122
Using the IN Predicate with a Sub query 123

Coding the Program 97

Other Subquery Considerations 123
Subqueries That Are Executed Repeatedly: Correlation 124

How to Write a Correlated Subquery 125
How SQLIDS Does Correlation 126
An Exercise .. 127

Testing for Existence ... 131
Combining Queries into a Single Query: UNION 132

More About Cursor Management 134
ORDER BY Clause of the DECLARE CURSOR Statement 134
FOR UPDATE Clause of the DECLARE CURSOR Statement 135

More About Data Manipulation 136
Use of Views 140

Creating a View ... 140
Querying Tables Through a View 142
Modifying Tables Through a View 143
Dropping a View .. 145

Indicator Variables ... 146
Dynamically Defined Statements 147

Non-Query Statements .. 148
Dynamically Defined Queries 151
Parameterized Queries .. 159
Parameterized Non-Query Statements 163
An Alternative for Parameterized Statements 164
Dynamic Data Conversion 165
The SQL Descriptor Area (SQLDA) 167
PREPARE ... 172
EXECUTE ... 175
EXECUTE IMMEDIATE 176
DESCRIBE .. 177
DECLARE CURSOR Statement for Dynamically Defined Queries 179
OPEN Statement with USING Option 180
FETCH Statement for Dynamically Defined Queries 181
PUT Statement for Dynamically Defined Inserts 181

98 SQL/Data System Application Programming for VM/SP

l.. More About Search Conditions

Additional Types of Constants

There are other types of constants that you can use within expressions, besides the
ones discussed in Chapter 1. This section discusses Double-Byte Character Set
(DBCS) data, hexadecimal data, and the USER keyword, as used within SOL
expressions.

Double-Byte Character Set (DBCS) Constants

Note: If you are not already familiar with the Double-Byte Character Set, and you
don't intend to use it, you should skip this section.

Double-Byte Character Set (DBCS) constants can be used in COBOL and PL/I
programs, but with two different formats. The SOLIDS preprocessors for COBOL
and PL/I also support these constants. DBCS constants are not supported in
FORTRAN or Assembler language.

The SOL form of the DBCS constant can be used in dynamic SOL statements and
COBOL programs. The SOL form of the DBCS constant is:

G'so ... si'

The shift-out and shift-in characters ("so" and "si") are single-byte characters,
X'OE' and X'OF' respectively. The ellipsis represents any DBCS string. Because
they are not within the so/si delimiters, the letter G and the apostrophes (') are
single-byte EBCDIC characters, X'C7' and X'7D' respectively. The left byte of a
DBCS byte-pair must not be X'OF', since this would signal exit from DBCS
encoding. There must be an even number of bytes between the so and the si
delimiters. Although character constants require doubling of internal apostrophes
to get single apostrophes, no DBCS characters require such doubling.

For PL/I programs, the PL/I form of the DBCS constant must be used for DBCS
constants embedded in SOL statements. The DBCS constant for PL/I programs
is:

so' ... 'Gsi

Unlike the SOL form, the letter G and the apostrophes (') appear inside the so/si
delimiters. Therefore they are encoded as DBCS characters. Apostrophe is
X'427D' and G is X'42C7'. The so and si are single-byte characters, X'OE' and
X'OF'respectively. In the PL/I form of the DBCS constant, DBCS apostrophes
(X'427D') must be doubled to obtain a single DBCS apostrophe, similar to the
character string constant case for the EBCDIC apostrophe.

The SOLIDS PL/I preprocessor converts PL/I format literals into SOL form
constants when they appear in SOL statements. This is done before passing the
SOL statement to SOLIDS for processing. Therefore, some SOLIDS messages for
incorrect syntax may refer to the SOL form of the constant.

Coding the Program 99

Mixing EBCDIC and DBCS Data in Character String Constants

Hexadecimal Constants

The USER Keyword

When the DBCS option is set to YES, a character string constant can contain both
EBCDIC and DBCS data. The DBCS strings must be enclosed by so and si. For
example:

'***so ... si***so ... si***'

where the asterisks (***) represent EBCDIC data and the dots (...) represent
DBCS data.

The so ... si portions of the data strings must not span across a line. As with
unmixed DBCS data, DBCS portions of mixed EBCDIC and DBCS strings do not
double the EBCDIC apostrophe (X'7D'). However, X'7D' must be doubled in the
EBCDIC portions of the mixed strings.

For more information on mixed EBCDIC and DBCS strings, refer to the "Data
Types of Character Strings Constants" section of the SQLI Data System Planning
and Administration for VM I SP manual.

The hexadecimal representation of a constant value must be enclosed within single
quote marks, such as:

X' 2D' X'C1C2C3C4' X'4256457D'

Each pair of hexadecimal numbers (0-9, A-F) represents a single byte. (Either
uppercase or lowercase letters may be used.) Therefore, the number of
hexadecimal numbers must be an even number and, when representing a DBCS
constant, a mUltiple of 4 (each DBCS character occupies two bytes in storage).

Hexadecimal constants can be used only to represent character and DBCS data
types. The maximum length for hexadecimal constants is 254 hexadecimal
numbers; that is, 127 EBCDIC characters or 63 DBCS characters.

Note the following restrictions for hexadecimal constants:

1. They are always treated as V ARCHAR data in a SELECT -list.

2. They must not be associated with a host variable in a dynamic statement.

3. They must not be used in an IN predicate.

USER is an SQL keyword. It evaluates to the userid of the person who is running
the program, regardless of who preprocessed it. That is, USER evaluates to the
userid specified in the CONNECT statement. USER behaves exactly like a
fixed-length character string constant of length 8, with trailing blanks if the userid
has less than eight characters.

This keyword has limited use, however. In particular:

100 SQL/Data System Application Programming for VM/SP

Nulls

1. You cannot use it in an arithmetic expression (for example, USER+3).

2. You cannot use it in select-lists. (Select-lists are described in the following
discussion of the SELECT statement.)

3. You can use it in a predicate where you compare it to a character string (for
example, USER = 'JIM').

4. You can, with some restrictions, use it in the SET clause of an UPDATE
statement, or in the VALUES clause of an INSERT statement.

Below are valid expressions that incorporate the three data types just discussed:

USER

X'50C2'

SQL/DS allows the existence of nulls in fields of a table. A null is a
"non-existent" value; that is, it represents a value that is unknown or not
applicable. You can think of a null value as an empty space, or a space reserved
for later insertion of data.

When null values occur within expressions, the value of the expression is also null.
For example, in this predicate either or both QONORDER and QONHAND may
be a null value:

QONHAND + QONORDER < 100

expression1 expression2

If either QONHAND or QONORDER is null, SQL/DS considers expression 1
above as null.

When one of the expressions in a predicate evaluates to null, the truth-value of the
predicate is unknown. (That is, it is unknown whether a null value is less than
100.) If you combine this predicate with other predicates by using AND, OR, and
NOT operators, SQL/DS processes the unknown truth value according to the truth
tables in Figure 17. ("?" represents the unknown truth value.)

Coding the Program 1 0 1

1 1 1
AND 1 T F ? OR 1 T F ? NOT 1

1 1 1
------1----------- -----1----------- ------1-----

1 1 1
T 1 T F ? T 1 T T T T 1 F

1 1 1
F 1 F F F F 1 T F ? F 1 T

1 1 1
? 1 ? F ? ? 1 T ? ? ? 1 ?

1 1 1

Figure 17. Truth Table for Null Values

In any query or data manipulation statement, if the truth-value of the search
condition as applied to some row is "unknown," the row does not qualify. (That is,
it does not satisfy the search condition and SQL/DS does not select or change it.)
For example, suppose that SQL/DS is searching through a table for rows that
satisfy the following condition:

PRICE+5.25 < 20.00 AND SUPPNO = 51

Now consider what happens when SQL/DS encounters a row in which the PRICE
field is null, but the SUPPNO field is 51:

PRICE+5.25 < 20.00 AND SUPPNO = 51
------------------ 1 -----------

1
"UNKNOWN" AND "TRUE"

Because PRICE is null, the expression "PRICE+5.25" is null, thus causing the
truth value of the first predicate to be unknown. The SUPPNO field for that
particular row is 51, so the second predicate is true. By referring to the truth
tables, you can tell whether the row satisfies the search condition:

UNKNOWN ---->

1

TRUE
1
1

V

AND 1 T F ?
----1-------------

1

TIT F ?
1

F 1 F F F

? i ~ F ?

"UNKNOWN AND TRUE" evaluate to "UNKNOWN"; the row, therefore, does
not satisfy the search condition.

102 SQL/Data System Application Programming for VM/SP

..",

Notes on Constructing Search Conditions

When you are constructing search conditions, there are other considerations you
should keep in mind. For example, you should be careful to perform arithmetic
only on numeric data types (INTEGER, DECIMAL, SMALLINT, or FLOAT) and
to make comparisons only between compatible data types (INTEGER, DECIMAL,
SMALLINT, and FLOAT are compatible; all fixed and varying-length character
strings are compatible, regardless of length). DBCS data types are only compatible
with other DBCS data types. Note also that you can not use columns of the type
LONG V ARCHAR or LONG V ARGRAPHIC in your predicates. If you use a
host variable in an expression, its host language data type must be compatible with
the rest of the expression.

Whenever an arithmetic or comparison operator has operands of two different
types, SQL/DS evaluates it in the "greater" of the two types. (FLOAT takes
precedence over DECIMAL, DECIMAL takes precedence over INTEGER, and
INTEGER takes precedence over SMALLINT.) For example, if the PRICE
column is of INTEGER type and has the value 2S, the expression PRICE*.5 will
evaluate to 12.5, a decimal value. The predicate PRICE*.5=12 is false, because
the decimal value forces the predicate to be evaluated in decimal. (Decimal values
are stored in System/370 packed decimal format.)

SQL/DS computes all floating point values in normalized form as described in the
System/370 Principles of Operation, GA22-7000. When a floating point value is
stored in a table, it may not be stored exactly as entered. For example, an SQL
INSERT statement could specifically insert the constant 3EO into a field.
Internally, however, the value might actually be stored as 2.9999. Floating point
values may become even more imprecise when arithmetic operations are performed
on them. It is recommended that you use the BETWEEN predicate (described
later) when comparing floating point values.

Arithmetic operations between two items of type SMALLINT produce a result of
type INTEGER, in order to avoid possible overflow problems (as might easily
occur in multiplication). When INTEGER or SMALLINT values are used in a
division computation, the result is of type INTEGER, and any remainder is
dropped. (See "Data Conversion" o~ page 76 for more information about data
conversion.)

Rules for Evaluating Predicates

SQL/DS observes the following rules when evaluating predicates:

1. When comparing two character strings, SOLIDS uses dictionary ordering. For
example:

'A' < 'B'
'A' < 'ABLE'
'z' < '35'
'A1' < 'B'

2. When comparing two character strings of fixed length, SOLIDS pads the
shorter string on the right with blanks until it equals the length of the longer
string. (DBCS strings are padded with X'4040'.) SOLIDS then does the

Coding the Program 103

comparison. For example, if the NAME column of a table is of type
CHAR(10), you may write NAME='SMITH' in your search condition, and the
condition will be satisfied by the data base value:

'SMITH

3. When comparing two character strings of varying length, SQL/DS performs no
padding. To be considered equal, two varying-length strings must have the
same length and the same content. For example, 'AA' is not equal to 'AA '.

4. In performing an arithmetic operation, if either of the operands is null, the
result of the operation is null.

5. No predicates are permitted on data of the type LONG V ARCHAR or LONG
V ARGRAPHIC. Further restrictions on usage of these data types are given in
the section "Use of Long Fields" on page 236.

6. When decimal numbers of different scales are compared, the shorter scale is
considered extended with trailing zeros sufficient to match the scale of the
larger number. For example, 25.45 is equal to 25.4500.

7. When comparing two DBCS character strings, SQL/DS compares the value of
the respective data fields in a manner similar to that used for character data
types. This single character sequencing is generally of no value for DBCS
ordering. Therefore, it is the user's responsibility to specify the sequencing
criteria for DBCS data comparisons other than equal or not equal.

Additional Search Predicates

BETWEEN Predicate

Format:

SQL provides four additional types of predicates that you may use in search
conditions. These predicates can be used in addition to the standard predicates
that compare two expressions. These predicates, described below, are denoted by
the keywords BETWEEN, IN, NULL, and LIKE.

You may use the four predicates BETWEEN, IN, NULL, and LIKE alone or with
other predicates by using the keywords AND, OR, and NOT to form a search
condition.

expression1 [NOT] BETWEEN expression2 AND expression3

104 SQL/Data System Application Programming for VM/SP

Examples:

PRICE BETWEEN 18.00 AND 25.00
QONHAND + QONORDER BETWEEN :LIMITl AND :LIMIT2

IN Predicate

Format:

The three expressions in a BETWEEN predicate are standard expressions
constructed from column names, constants, and host variables. The BETWEEN
predicate is satisfied if the following condition is true:

expression2 <= expressionl <= expression3

The BETWEEN predicate is particularly useful in comparing floating point values.
The predicate below determines if a value in a column of floating point numbers
(called YV ALUE) is approximately equal to 3:

YVALUE BETWEEN 2.85EO AND 3.15EO

A NOT BETWEEN predicate is true if the corresponding BETWEEN predicate is
false.

expression [NOT] IN (list-of-items)

Example:

PARTNO IN (221, :P2, :P3, :P4)

NUll Predicate

This predicate enables you to quickly compare the value of an expression with a list
of items. The predicate is satisfied if the expression is equal to any of the items in
the list (or, if the NOT option is used, not equal to any of the listed items). The
items may be constants (for example, 27 or 'BOLT) or host variables (for
example, :X). There must be more than one item in the list; separate each item
with a comma. A hexadecimal constant cannot be used either as an expression or a
list-of-items.

I FOnMl

column-name IS [NOT] NULL

Coding the Program 105

I
Example:

. PART NO IS NULL

LIKE Predicate

Format:

A row of a table satisfies this predicate if the value of the designated column is (or
is not) null. This predicate provides a way for you to explicitly look for null values
in tables, or exclude null values from consideration.

Note: You can't use only the NULL keyword in a normal predicate. That is,
"WHERE PAY=NULL" is incorrect; but "WHERE PAY IS NULL" is correct.

Similarly, you can't use the NULL keyword in the IN predicate. For example,
"WHERE PAY IN (5000,NULL,8000)" is incorrect. You should write "WHERE
PAY IN (5000,8000) OR PAY IS NULL."

In addition, you can't use the NULL keyword in a select-list.

column-name [NOT] LIKE {quoted-string I host-variable}

The LIKE predicate enables you to search for character string data that partially
matches a given string.

The column you specify must be of fixed-length or varying-length character or
DBCS type. (LONG V ARCHAR and LONG V ARGRAPHIC are not permitted.)
The quoted string or variable on the right side of the LIKE is called a pattern. The
pattern must have a data type that is compatible with the named column, that is,
character to character, DBCS to DBCS, and hexadecimal to either. The pattern
may contain any character string, with special meanings for the characters "_"
(" __ " or X'426D' in DBCS) and "%" ("0/0" or X'426C' in DBCS). The "_
character (or equivalent DBCS value X'426D') represents "any single character."
The "%" character (or equivalent DBCS value) represents "any string of zero or
more characters." You can use these two special characters within patterns in any
combination. The following examples illustrate use of the LIKE predicate:

NAME LIKE '%ANNE%'
(Searches for any name that contains the word ANNE; for example,
"LIZANNE," "ANNETTE," or "ANNE.")

NAME LIKE X'426C4F5848F2426C'
(Searches for any occurrence of DBCS character strings containing
X'4F5848F2'. Note that the above character string contains the DBCS
value X'426C' as the first and last item in the character string. This value is
equivalent to the "%" character in the preceding example.)

1 06 SQL/Data System Application Programming for VM/SP

NAME LIKE G' %~ ~ %
This example accomplishes the same as the preceding example, using a
DBCS constant.

NAME LIKE' A '
(Searches for any three-character name that has A as its second letter. To
satisfy this pattern, a data value must be of length three, for example,
"PAT," "DAN," or "PAM." Its data type may be either fixed-length or
varying-length character.)

NAME LIKE :X
(Your program defines a pattern in host variable :X. The pattern may have
any combination of "%" and "_" characters. You may change the pattern
in the host variable each time the SOL statement containing this predicate is
executed. Note that when you use a host variable in a LIKE predicate, the
host variable usually should be declared as a varying-length character string.)

A NOT LIKE predicate is true if the corresponding LIKE predicate is false.

Additions to the SELECT Statement

Joining Tables

How to Join Tables

Joins allow you to write a query against the combined data of two or more tables.
(You can also join views. They are discussed under "Use of Views" on page 140.)

To join tables, follow these two steps:

1. List in the FROM clause all the tables YOll wish to join.

2. Specify in the WHERE clause a join condition. A join condition expresses
some relationship between the tables to be joined.

Note that the data types of the fields involved in the join condition do not have
to be identical; they must, however, be compatible. The join condition is
evaluated the same as any other search condition, and the same rules for
comparisons apply. (These rules are discussed under "Using Expressions as
Search Conditions" on page 30.)

How Sal/OS Joins Tables

Conceptually, SOL/OS forms all possible combinations of rows from the indicated
tables. For each combination, it tests the join condition. If you don't specify a join
condition, SOL/OS returns all possible combinations of rows from tables listed in
the FROM clause, even though the rows may be completely unrelated.

Coding the Program 107

A Simple Join Query

The following join query finds the part, description, and price of all parts supplied
by supplier 51 :

DECLARE C1 CURSOR FOR
SELECT INVENTORY.PARTNO, DESCRIPTION, PRICE
FROM QUOTATIONS, INVENTORY
WHERE INVENTORY. PARTNO = QUOTATIONS. PARTNO---11 Join I
AND SUPPNO = 51 condition.

OPEN C1
FETCH C1 INTO :X, :Y:YIND, :Z:ZIND
CLOSE C1

The WHERE clause above expresses a join condition. If a row from one of the
participating tables doesn't satisfy the join condition, that row does not appear in
the result of the join. So, if a PARTNO in the INVENTORY table has no
matching PARTNO in the QUOTATIONS table (or vice versa), that row does not
appear in your result.

Note that more than one table in a join may have a common column name. To
identify exactly which column you are referring to, you must use the table name as
a prefix, as in the example above. Unique column names don't require a table
name prefix.

Here is the query result (based on the example tables shown in the foldout):

PARTNO

221
231

DESCRIPTION

BOLT
NUT

PRICE

.30
• 10

Joining Another User's Tables

If you are referring to another user's table, you still must prefix the table name with
the userid. Suppose, for example, the tables in the query above belonged to
JONES, you would write:

DECLARE C1 CURSOR FOR
SELECT JONES.INVENTORY.PARTNO, DESCRIPTION, PRICE
FROM JONES.QUOTATIONS, JONES.INVENTORY
WHERE JONES.INVENTORY.PARTNO JONES.QUOTATIONS.PARTNO
AND SUPPNO = 51 ---------- ------

I
OPEN C1 I
FETCH C1 INTO :X, :Y:YIND, :Z:ZIND
CLOSE Cl

108 SQL/Data System Application Programming for VM/SP

column name
table name

creator

L Analyzing How a Join Works

SUPPNO PARTNO
------ ------

51 221
51 231
53 222
53 232
53 241
54 209
54 221
54 231
54 241
57 285
57 295
61 221
61 222
61 241
64 207
64 209

When writing a join query, it is often helpful to mentally go through the query to
see what the intermediate results look like.

For example, study the previous SELECT statement. The statement refers to the
INVENTORY and QUOTATIONS tables in the foldout. The result of just the join
condition looks like this:

PRICE DELIVERY TIME - QONORDER DESCRIPTION QONHAND
----- ------------- -------- ----------- -------

.30 10 50 BOLT 650
· 10 10 0 NUT 700
.25 15 0 BOLT 1250
· 10 15 200 NUT 1100
.08 15 0 WASHER 6000

18.00 21 0 CAM 50
· 10 30 150 BOLT 650
.04 30 200 NUT 700
.02 30 200 WASHER 6000

21.00 14 0 WHEEL 350
8.50 21 24 BELT 85

.20 21 0 BOLT 650

.20 21 200 BOLT 1250

.05 21 0 WASHER 6000
29.00 14 20 GEAR 75
19.50 7 7 CAM 50

Each PARTNO in QUOTATIONS was compared to every PARTNO in
INVENTORY. When the PARTNO field of both tables matched, a row was
formed. The new row contains the combined fields of the "matching" rows.
Notice that the only column name that is common to both tables is PARTNO. If
the name of the PARTNO column was different in each table, then the PARTNO
column of the conceptual result above could have been called either name. This is
because of the equality expressed in the join condition. In fact, the select-list could
have specified QUOTATIONS.PARTNO instead of INVENTORY.PARTNO, and
SQL/DS would have produced identical results.

Now consider what happens when the second part of the WHERE clause (AND
SUPPNO=51) is applied:

SUPPNO PARTNO PRICE DELIVERY TIME QONORDER DESCRIPTION QONHAND

51
51

221
231

.30
· 10

10
10

50 BOLT
o NUT

650
700

The result is further reduced so that only the rows with a supplier number of 51
remain. The entire search condition is now satisfied. Here are the columns that
SQL/DS returns based on the select-list:

Coding the Program 109

PARTNO

221
231

DESCRIPTION

BOLT
NUT

PRICE

.30

.10

Nulls Within Join Conditions

Like other predicates, a join condition is never satisfied by a null value. For
example, if a row in the INVENTORY table and a row in the QUOTATIONS table
both have a null PARTNO, neither row will appear in the result of the join.

Joining a Table to Itself

You can write a query in which you join a table to itself. To join a table to itself,
repeat the table name two or more times in the FROM clause. This tells SQL/DS
that the join consists of combinations of rows from the same table. When you
repeat a table name in the FROM clause, it is no longer unique. Thus, you must
give each table name in the FROM clause a unique join variable (sometimes called
a table label).

A join variable can be any string of up to 18 characters beginning with a letter.
You use the join variables to resolve column name ambiguities in the select-list and
the WHERE clause. For example, the following query finds pairs of quotations for
the same part in which the prices differ by more than a factor of two:

DECLARE C1 CURSOR FOR
SELECT X.PARTNO, X.SUPPNO, X.PRICE, Y.SUPPNO, Y.PRICE
FROM QUOTATIONS X, QUOTATIONS Y
WHERE X.PARTNO = Y.PARTNO
AND X.PRICE > 2 * Y.PRICE

OPEN C1
FETCH C1 INTO
CLOSE C1

: PART, :HISUPPNO, :HIPRICE, : LOSUPPNO, :LOPRICE

If the table is owned by another user, the table name must be qualified in the usual
fashion. For example, here is how to write the above query if the creator of the
QUOTATIONS table is SCOIT:

DECLARE C1 CURSOR FOR
SELECT X.PARTNO, X.SUPPNO, X.PRICE, Y.SUPPNO, Y.PRICE
FROM S~OTT.QUOTATIONS X, SCOTT.QUOTATIONS Y
WHERE X.PARTNO = Y.PARTNO
AND X "RICE> 2 * Y. PRICE

OPEN C1
FETCH C1 INTO
CLOSE C1

: PART, :HISUPPNO, :HIPRICE, : LOSUPPNO, :LOPRICE

110 SQL/Data System Application Programming for VM/SP

X.QUOTATIONS I
I ! v

SUPPNO PARTNO PRICE

51 221 .30
51 221 .30
51 221 .30
51 231 .10
51 231 .10
53 222 .25
53 222 .25
53 232 .10
53 241 .08
• •

• •
• •

This type of join query can also be easily visualized. First, assume there are two
tables, X and Y, that are identical to the QUOTATIONS table in the foldout. A
partial result of the first join condition (X.PARTNO = Y.PARTNO) looks like
this:

I I I I
·l Y.QUOTATIONS I
! ! v v v V

DELIVERY DELIVERY - -TIME QONORDER SUPPNO PRICE TIME QONORDER

10 50 51 .30 10 50
10 50 54 .10 30 150
10 50 61 .20 21 0
10 0 51 .10 10 0
10 0 54 .04 30 200
15 0 53 .25 15 0
15 0 61 .20 21 200
15 200 53 .10 15 200
15 0 53 .08 15 0

• •
• • • • •
• • • • • •

This table was formed by taking the PARTNO of the first row of
X.QUOTATIONS and comparing it to the PARTNO of the first row of
Y.QUOTATIONS. Naturally, they matched (because the X and Y tables are
identical), so a row that combined the fields of both was formed. The first row of
X was then compared to the second row of Y, and so on, until the end of the Y
table was reached. Each time a PARTNO matched, a row was formed in the above
table. Every P ARTNO of the X table was compared with all the rows of the Y
table in a similar fashion, thus completing the first part of the join. (This process is
conceptual; you can think of it as nested loops in a normal program.) Note, once
again, that P ARTNO is the logical meeting point of the tables and could belong to
either X.QUOTATIONS or Y.QUOTATIONS.

Now the second join condition (X.PRICE > 2 • Y.PRICE) is applied, producing
this result:

Coding the Program 111

Limits on Joins

Four rows remain in the join table, and from these rows SQL/DS derives your final
result via the select-list:

X.PARTNO X.SUPPNO X.PRICE Y.SUPPNO Y.PRICE
-------- -------- ------- -------- -------

221 51 .30 54 . 10
231 51 .10 54 .04
241 53 .08 54 .02
241 61 .05 54 .02

Note that the previous example had two join conditions, one relating the two rows
by PARTNO, the other by PRICE; a query can have any number of join
conditions. Also note that previous examples joined two tables; you can join up to
16 tables.

SELECT * As Used in a Join

The notation "SELECT *" in a join query means "select all the columns of the first
table, followed by all the columns of the second table, etc." However, it is not
recommended that you use SELECT * for join queries written in programs. It is
possible that someone may add a new column to the first table in the join (by an
ALTER TABLE statement). If this happens, the columns of the second table are
no longer delivered into the correct host variables. By using a normal select-list,
however, you avoid this problem.

Ordering the Results of a Join

If a join query uses a qualified column name in its select-list, you can use the same
qualified column name in an ORDER BY clause within a cursor definition. For
example, SQL/DS accepts ORDER BY X.PARTNO and ORDER BY
QUOTATIONS.PARTNO.

112 SQL/Data System Application Programming for VM/SP

L Grouping

An earlier section showed how to apply the five built-in functions (SUM, A VG,
MIN, MAX, and COUNT) to a table. Previously, however, you could apply the
function only to particular fields in rows that satisfied a search condition. For
example, the following statement finds the average price of all the parts supplied by
supplier number 61:

DECLARE Cl CURSOR FOR
SELECT AVG(PRICE)
FROM QUOTATIONS
WHERE SUPPNO = 61

OPEN C1
FETCH C1 INTO :AVG
CLOSE Cl

The grouping feature of SQLIDS permits you to conceptually divide a table into
groups of rows with matching values in one or more columns. You can then apply
a function to each group. For example, to find the average price of all the parts
supplied by each supplier:

DECLARE Cl CURSOR FOR
SELECT SUPPNO, AVG(PRICE)
FROM QUOTATIONS
GROUP BY SUPPNO

OPEN Cl
FETCH Cl INTO :SUPP, :AVGPRICE
CLOSE C1

The query yields this result (based on the example tables presented in the foldout):

SUPPNO AVG(PRICE)

51
53
54
57
61
64

.20

.14
4.54

14.75
.15

24.25

(The DECIMAL value returned by AVG
in this example is an approximation.
The actual values returned when AVG
is used with a column having a DECIMAL
data type is discussed in the "Built
In Functions" section of Chapter 1.)

You can group by any column in the table; consider the QUOTATIONS table as
grouped by PARTNO:

Coding the Program 113

SUPPNO PARTNO

51 221
54 221
61 221

51 231
54 231

53 222
61 222
•
•
• •

(Note that the blank

Nulls within Groups

PRICE DELIVERY TIME QONORDER

.30 10 50

.10 30 150 <--

.20 21 0
(Groups

.10 10 0 <-- by

.04 30 200 PARTNO)

.25 15 0 <--

.20 21 200
•

• • •
•

space between the groups does not really exist.)

One or more built-in functions can be applied to the groups. The following query
finds the maximum, minimum, and average quoted price for each part number
group, along with the count of the number of rows in each group (the built-in
function COUNT(*) evaluates to the number of rows in the group):

DECLARE Cl CURSOR FOR
SELECT PARTNO, MAX(PRICE), MIN(PRICE), AVG(PRICE), COUNT(*)
FROM QUOTATIONS
GROUP BY PARTNO

OPEN Cl
FETCH Cl INTO : PART, :HI, :LO, :MID, :NUM
CLOSE Cl

If any row has a null value in the column you are grouping by (in the previous
example, PARTNO), SQL/DS considers each such row as a separate group
containing one row.

Rules for Select-Lists of Grouping Queries

When you use the GROUP BY clause in a query, SQL/DS returns only one result
row for each group. Therefore, the select-list of such a query can contain only:

• Columns you group by

• Built-in functions on any columns.

For example, this statement is incorrect:

114 SQL/Data System Application Programming for VM/SP

..",

t

\.

DECLARE C 1 CURSOR FOR •• .--.----------.
V

SELECT SUPPNO, I PARTNO, AVG(PRICE)

FROM QUOTATIONS l Wrong! J
GROUP BY SUPPNO

OPEN C1
FETCH C1 INTO :SUPPNO, :PARTNO, :AVERAGE
CLOSE C1

You cannot include PARTNO in the select-list because PARTNO does not occur in
the GROUP BY clause, and is not the operand of some built-in function. Aside
from breaking language rules, the above statement is incorrect because a given
supplier may supply many parts. It is as though you were asking SQL/DS to return
multiple values to the same variable at the same time:

SUPPNO PARTNO AVG(PRICE)

51 221 .20 ~ An impossible I
231 result

53 222 .14
232
241

•
•

Using a WHERE Clause with a GROUP BY Clause

A grouping query can have a standard WHERE clause that eliminates
non-qualifying rows before the groups are formed and the built-in functions are
computed. Write the WHERE clause before the GROUP BY clause. The
following example query finds the average and minimum price for each part,
considering only quotations whose delivery time is less than 30 days:

DECLARE Cl CURSOR FOR
SELECT PARTNO, AVG(PRICE) , MIN (PRICE)
FROM QUOTATIONS
WHERE DELIVERY_TIME < 30
GROUP BY PARTNO

OPEN Cl
FETCH Cl INTO : PART, :A, :B
CLOSE Cl

Coding the Program 115

The HAVING Clause

You can also apply a qualifying condition to groups, causing SQL/DS to return a
result only for those groups that satisfy the condition. This is done by the
HAVING clause. You can write the HAVING clause after the GROUP BY clause.
A HAVING clause can contain one or more group-qualifying predicates, connected
by ANDs and ORs. Each group-qualifying predicate compares some property of
the group, such as MAX(PRICE), with:

1. Another property of the group (HAVING MAX(PRICE) > 2 •
MIN(PRICE»; or,

2. A constant (HAVING MAX(PRICE) > 3.00); or,

3. A host variable (HAVING MAX(PRICE) > :LIMIT).

The following example query finds the maximum and minimum prices for various
parts in the QUOTATIONS table. The query considers only parts that have at
least three quotations and for which the maximum price is more than twice the
minimum price:

DECLARE C1 CURSOR FOR
SELECT PARTNO, MAX (PRICE) , MIN(PRICE)
FROM QUOTATIONS
GROUP BY PARTNO
HAVING COUNT(*) >= 3
AND MAX(PRICE) > 2 * MIN(PRICE)

OPEN C1
FETCH C1 INTO : PART, :HI, :LO
CLOSE C1

You can specify DISTINCT as part of the argument of a built-in function in the
HAVING clause. Recall that DISTINCT causes SQL/DS to eliminate duplicate
values before a function is applied. Thus, COUNT(DISTINCT PARTNO)
computes the number of different part numbers. You cannot use DISTINCT in
both the select-list and HAVING clause; you can use it only once in a query.

It is possible (though unusual) for a query to have a HAVING clause but no
GROUP BY clause. In this case, SQL/DS treats the entire table as one group.
Since the table is treated as a single group, it is possible to have, at most, one result
row. If the HAVING condition is true for the table as a whole, the selected result
(which must consist entirely of built-in functions) is returned; otherwise the "not
found" code (SQLCODE = 100) is returned.

116 SQL/Data System Application Programming for VM/SP

Combining Joins, WHERE, GROUP BY, HAVING, and ORDER BY

An Exercise

You can use the various query techniques together in any combination. A query
can join two or more tables and can also have a WHERE clause, a GROUP BY
clause, a HAVING clause, and, if defined in a cursor, an ORDER BY clause. The
precedence of these operations is shown below. Observe that the clauses are
applied in the order in which you are to write them:

1. Conceptually, all possible combinations of rows from the listed tables are
formed.

2. The WHERE clause, which may contain join conditions, is applied to filter the
rows of the conceptual table.

3. The GROUP BY clause is applied to form groups from the surviving rows.

4. The HAVING clause is applied to filter the groups. Only the surviving groups
will return a result.

5. The ORDER BY clause determines the order in which the query result is
returned.

The actual method used by SQL/DS to arrive at the same result is controlled by
the SQL/DS preprocessor.

By now you may be wondering when you need to use which feature. Consider this
problem:

Write a query that lists the quantity on hand and minimum quoted price for
various parts. Consider only quotations whose delivery time is less than 30
days, and include only parts that have at least two such quotations.

The first thing that must be done is to find in the example tables the names of the
columns that contain the requested information so a select-list can be created:

• "quantity on hand" is the QONHAND column of the INVENTORY table.

• "quoted price" is the PRICE column of the QUOTATIONS table, but the
problem requests the minimum quoted price so the built-in function
MIN (PRICE) mustbe used in the select-list. Notice that the minimum price
for a particular part is needed, this means the query will have to group by
PARTNO later.

• "various parts" implies PARTNO, but from which table? Observe that the
other two items in the select-list are from different tables, so a join is needed,
and PARTNO is, obviously, the common field. It must be determined how the
PARTNOs are related so a join condition can be written. The problem
statement does not express any relationship between the P ARTNO fields of
the two tables that implies they should be different. Thus, it can be safely
assumed that the P ARTNOs are related by equality, and that the join condition
can be expressed as INVENTORY.PARTNO = QUOTATIONS.PARTNO.

Coding the Program 117

Since the join condition expresses equality, either PARTNO can be used in the
select-list. In this example, assume INVENTORY.PARTNO is used to
represent the "various parts."

First, the cursor(s) to be used in your program must be defined:

DECLARE C1 CURSOR FOR

A SELECT clause can now be written:

SELECT INVENTORY.PARTNO, QONHAND, MIN (PRICE)

The FROM clause must list the two tables used in the join:

FROM INVENTORY, QUOTATIONS

A WHERE clause is needed because of the join condition:

WHERE INVENTORY.PARTNO = QUOTATIONS.PARTNO

However, the problem states that for each part only those that have a delivery time
of less than 30 days should be considered. This condition needs to be added to the
WHERE clause:

AND DELIVERY TIME < 30

Note that DELIVERY_TIME is a column in the QUOTATIONS table and is
unique among all the column names of the two joined tables, so it does not have to~
be qualified. So far, the SQL statement is:

DECLARE
SELECT
FROM
WHERE
AND

C1 CURSOR FOR
INVENTORY.PARTNO, QONHAND, MIN (PRICE)
INVENTORY, QUOTATIONS
INVENTORY.PARTNO = QUOTATIONS.PARTNO
DELIVERY_TIME < 30

Next it's necessary to group by PARTNO to find the minimum price for each part,
but QONHAND is also in the select-list, so it must be listed in the GROUP BY
clause (recall the rules for grouping). Including QONHAND in the GROUP BY
clause does not affect the formation of the groups, however, because QONHAND
is a property of a given PARTNO. The GROUP BY clause is:

GROUP BY INVENTORY.PARTNO, QONHAND

Note that you can group by QUOTATIONS.PARTNO if you choose, because of
the equality expressed between QUOTATIONS.PARTNO and
INVENTORY.PARTNO in the join condition. If you use
QUOTATIONS.PARTNO in the GROUP BY clause, however, you must also use
it in the select-list:

DECLARE C1 CURSOR FOR
SELECT QUOTATIONS.PARTNO, QONHAND, MIN (PRICE)
FROM INVENTORY, QUOTATIONS
WHERE INVENTORY.PARTNO = QUOTATIONS.PARTNO
AND DELIVERY_TIME < 30
GROUP BY QUOTATIONS.PARTNO, QONHAND

118 SQL/Data System Application Programming for VM/SP

The problem requests that there be at least two quotations for the part if that part
is to be included in the query result; a HAVING clause is needed to filter out the
unwanted groups:

HAVING COUNT(*) >= 2

Finally, a nice embellishment is to have SOLIDS return the results in PARTNO
order.

SELECT
FROM
WHERE
AND
GROUP BY
HAVING
ORDER BY

INVENTORY.PARTNO, QONHAND, MIN (PRICE)
INVENTORY, QUOTATIONS
INVENTORY.PARTNO = QUOTATIONS.PARTNO
DELIVERY TIME < 30
INVENTORY.PARTNO, QONHAND
COUNT(*) >= 2
1

Now you must position the cursor(s) and identify the corresponding host variables
used in your program:

OPEN Cl
FETCH Cl INTO : PART, :Q, :PRICE
CLOSE Cl

The complete statement is:

Cl CURSOR FOR DECLARE
SELECT
FROM
WHERE
AND
GROUP BY
HAVING
ORDER BY

INVENTORY.PARTNO, QONHAND, MIN (PRICE)
INVENTORY, QUOTATIONS
INVENTORY.PARTNO = QUOTATIONS.PARTNO
DELIVERY_TIME < 30
INVENTORY.PARTNO, QONHAND
COUNT(*) >= 2
1

OPEN Cl
FETCH Cl INTO : PART, :Q, :PRICE
CLOSE Cl

Nesting a Query into Another Query

In all previous queries, the WHERE clause contained search conditions that
SOLIDS used to choose rows for computing expressions in the select-list.
SOLIDS also allows a query to refer to a value or set of values computed by
another query (called a subquery).

Consider this query that finds those quotations for part number 221 in which the
price is more than ten cents:

Coding the Program 119

DECLARE Cl CURSOR FOR
SELECT 8UPPNO, PRICE
FROM QUOTATIONS
WHERE PARTNO = 221
AND PRICE> .10

OPEN Cl
FETCH Cl INTO :8, :P
CLOSE Cl

Suppose that you want to modify the query so it finds those quotations for part
number 221 in which the price is more than twice the minimum quoted price for
that part. The problem implies two queries:

1. Find twice the minimum quoted
price for part number 221:

DECLARE Cl CURSOR FOR

SELECT I 2 * MIN(PRICE)

FROM QUOTATIONS
WHERE PART NO = 221

OPEN Cl
FETCH Cl INTO :HIPRICE
CLOSE Cl

2. Find quotations for part number 221
in which the price is greater than
the result of the above query:

DECLARE C2 CURSOR FOR
SELECT SUPPNO, PRICE
FROM QUOTATIONS
WHERE PARTNO = 221

AND PR I CE > [2J <------------'
OPEN C2
FETCH C2 INTO :S, :P
CLOSE C2

A pseudo code solution for the problem is as follows:

120 SQL/Data System Application Programming for VM/SP

EXEC SQL DECLARE CURSOR1 CURSOR FOR
SELECT SUPPNO, PRICE
FROM QUOTATIONS
WHERE PARTNO = 221
AND PRICE> :HIPRICE

Declare cursor
~--------~ that retrieves

quotations.

EXEC SQL DECLARE CURSOR2 CURSOR FOR
SELECT 2 * MIN (PRICE)
FROM QUOTATIONS
WHERE PARTNO = 221

EXEC SQL OPEN CURSOR2 I Initialize I
EXEC SQL FETCH CURSOR2 INTO :HIPRICE ~.~----~:HIPRICE. .

EXEC SQL OPEN CURSOR 1
EXEC SQL FETCH CURSOR1 INTO :S, :P
DO WHILE (SQLCODE=O)

~----~ Retrieve
quotations.

DISPLAY (S, P)
EXEC SQL FETCH CURSOR1 INTO :S, :P

END-DO
DISPLAY ('END OF LIST')
EXEC SQL CLOSE CURSOR1
EXEC SQL CLOSE CURSOR2

You can arrive at the same result by using a single query with a subquery.
Subqueries must be enclosed in parentheses and may appear in a WHERE clause or
a HAVING clause. The result of the subquery is substituted directly into the
outer-level predicate in which the subquery appears; thus, there must not be an
INTO clause in a subquery. For example, this query solves the above problem:

DECLARE C1 CURSOR FOR
SELECT SUPPNO, PRICE]
FROM QUOTATIONS ----- Outer-Level Query
WHERE PART NO = 221
AND PRICE >

(SELECT 2 * MIN (PRICE)]
FROM QUOTATIONS ----- Subquery
WHERE PARTNO = 221)

OPEN C1
FETCH C1 INTO :S, :P
CLOSE C1

The example subquery above is indented for ease of reading. Remember, however,
that the syntax of SQL is fully linear and no syntactic meaning is carried by
indentation or by breaking a query into several lines. By using a subquery, the
pseudo code is simplified:

EXEC SQL DECLARE C1 CURSOR FOR
SELECT SUPPNO, PRICE
FROM QUOTATIONS
WHERE PARTNO = 221
AND PRICE >

Declare cursor using
~------~ a subquery that

retrieves quotations.

(SELECT 2 * MIN (PRICE)
FROM QUOTATIONS
WHERE PARTNO = 221)

EXEC SQL OPEN C1
EXEC SQL FETCH C1 INTO :S, :P ~ • .---~
DO WHILE (SQLCODE=O)

DISPLAY (S, P)
EXEC SQL FETCH C1 INTO :S, :P

END-DO
DISPLAY (' END OF LIST')
EXEC SQL CLOSE C1

Retrieve quotations.

Coding the Program 121

The subquery above returned a single value (2 • MIN(PRICE» to the outer-level ..,,;;
query. Subqueries can return either a single value, a null value, or a set of values;
each variation has different considerations. In any case, a subquery must have only
a single column or expression in its select-list, and must not have an ORDER BY
clause.

Subqueries That Return a Single Value

If the subquery returns a single value, as the subquery above did, you can use it on
the right side of any predicate in the WHERE clause or HAVING clause.
(Exception: Subqueries are not permitted in BETWEEN predicates.)

Subqueries That Return a Null Value

If a subquery returns the null value, the outer-level predicate containing the
subquery evaluates to the "unknown" truth-value. How SQL/DS handles
"unknown" truth-values is discussed under "Using Expressions as Search
Conditions" on page 30.

Subqueries That Return Many Values

If a subquery returns more than one value, you must modify the comparison
operators in your predicate (=, =, >, >=, <, <=) by attaching the suffix ALL
or ANY. These suffixes determine how the set of values returned is to be treated
in the outer-level predicate. The> comparison operator is used as an example (the
remarks below apply to the other operators as well):

expression> (subquery)
denotes that the subquery must return exactly one value (otherwise an error
condition results). The predicate is true if the given field is greater than the
value returned by the subquery.

expression >ALL (subquery)
denotes that the subquery may return a set of zero, one, or more values. The
predicate is true if the given field is greater than each individual value in the
returned set. If the subquery returns no values, the predicate is true.

expression >ANY (subquery)
denotes that the subquery may return a set of zero, one, or more values. The
predicate is true if the given field is greater than at least one of the values in
the set. If the subquery returns no values, the predicate is false.

The following example uses a >ALL comparison to find those quotations having a
quoted price greater than all quotations from supplier number 51:

122 SQL/Data System Application Programming for VM/SP

DECLARE C1 CURSOR FOR
SELECT
FROM
WHERE

OPEN C1

SUPPNO, PARTNO, PRICE
QUOTATIONS
PRICE >ALL
(SELECT PRICE
FROM QUOTATIONS
WHERE SUPPNO = 51)

FETCH C1 INTO :S, :P, :Q
CLOSE C1

Using the IN Predicate with a Subquery

Your query can also use the operators IN and NOT IN when a subquery returns a
set of values. For example, the following query lists quotations for those parts
having a quantity on hand less than 100:

DECLARE C1 CURSOR FOR
SELECT SUPPNO, PARTNO, PRICE, DELIVERY TIME
FROM QUOTATIONS
WHERE PARTNO IN

OPEN C1

(SELECT
FROM
WHERE

PARTNO
INVENTORY
QONHAND < 100)

FETCH C1 INTO :SUPPNO, :PARTNO, :PRICE, :DELIVERY
CLOSE C1

The subquery is evaluated once, and the resulting list is substituted directly into the
outer-level query. For example, if the subquery above evaluates to part numbers
207, 209, and 295, the outer-level query is evaluated as if its WHERE clause were:

WHERE PARTNO IN (207,209,295)

The list of values returned by the subquery can contain zero, one, or more values.
The operator IN is equivalent to =ANY, and NOT IN is equivalent to .,=ALL.

Other Subquery Considerations

If you link a subquery to an outer query by an unmodified comparison operator
such as = or >, the subquery must not contain a GROUP BY or HAVING clause.
The operator implies that only one value will be returned, but a GROUP BY clause
implies that more than one value may be returned. However, a subquery may
contain a GROUP BY or HAVING clause if it is linked by a comparison operator
modified by ALL or ANY, or by a [NOT] IN or [NOT] EXISTS predicate.
(EXISTS is described in a following section.)

A subquery may include a join, a grouping, or one or more inner-level subqueries.
You may include many subqueries in the same outer-level query, each in its own
predicate and enclosed in parentheses

The following example shows how a join and a subquery might be combined to
solve a complex problem. The query lists supplier names, addresses, and quoted
prices for those parts having a description of 'BOLT'.

Coding the Program 123

DECLARE
SELECT
FROM
WHERE
AND

OPEN C1

C1 CURSOR FOR
NAME, ADDRESS, PARTNO, PRICE
SUPPLIERS, QUOTATIONS
SUPPLIERS.SUPPNO = QUOTATIONS.SUPPNO
PARTNO IN
(SELECT PARTNO
FROM INVENTORY
WHERE DESCRIPTION 'BOLT')

FETCH C1 INTO :N, :A, : PART, :PRICE
CLOSE C1

Subqueries That Are Executed Repeatedly: Correlation

In all the examples of subqueries above, the subquery is evaluated once and the
resulting value or set of values is substituted into the outer-level predicate. For
example, recall this query from the previous section:

DECLARE C1 CURSOR FOR
SELECT SUPPNO, PRICE
FROM QUOTATIONS
WHERE PARTNO = 221
AND PRICE >

(SELECT 2 * MIN (PRICE)
FROM QUOTATIONS
WHERE PARTNO = 221)

OPEN C1
FETCH C1 INTO :S, :P
CLOSE C1

The query finds those quotations for part number 221 in which the price is more
than twice the minimum quoted price for that part number. Now consider the
following problem:

Find those quotations for every part number in which the price is more than twice
the minimum quoted price for that part number

The subquery needs to be evaluated once for every part number. You can do this
by using the correlation capability of SQL. Correlation permits you to write a
subquery that is executed repeatedly, once for each row of the table identified in the
outer-level query. This type of "correlated subquery" is used to compute some
property of each row of the outer-level table that is needed to evaluate a predicate.

In the first query, the subquery was evaluated once for a particular part. In the new
problem, the subquery must be evaluated once for every part number. One way to
solve the problem is to place the query in a cursor definition and open the cursor
once for each different part number. The part numbers are determined by using a
separate cursor. Here is a pseudo code solution:

124 SQL/Data System Application Programming for VM/SP

EXEC SQL DECLARE QUERY1
SELECT DISTINCT
FROM QUOTATIONS

Retrieve all part numbers
CURSOR FOR listed in QUOTATIONS
PARTNO ~ (eliminate duplicates).

EXEC SQL DECLARE QUERY2 CURSOR FOR
SELECT SUPPNO, PRICE Retrieve SUPPNO and
FROM QUOTATIONS PRICE for parts that are
WHERE PARTNO = :PARTNO ~--~ twice the minimum quoted
AND PRICE> price for that part.

(SELECT 2 * MIN (PRICE)
FROM QUOTATIONS
WHERE PARTNO = :PARTNO)

EXEC SQL OPEN QUERY1
EXEC SQL FETCH QUERY1 INTO :PARTNO ~4~--~IGet a part number.
DO WHILE (SQLCODE = 0)

EXEC SQL OPEN QUERY2
EXEC SQL FETCH QUERY2

INTO :SUPPNO, :PRICE
DO WHILE (SQLCODE = 0)

DISPLAY (SUPPNO, PARTNO, PRICE)

Evaluate the query
for that part.

EXEC SQL FETCH QUERY2 INTO :SUPPNO, :PRICE
END-DO
EXEC SQL CLOSE QUERY2
SQLCODE = 0
EXEC SQL FETCH QUERY1 INTO : PARTNO ~4f-----t1 Get the next

END-DO .part number.
EXEC SQL CLOSE QUERY1
DISPLAY ('END OF LIST')

By using a correlated subquery, you can let SQL/DS do the work for you and
reduce the amount of code you need to write.

How to Write a Correlated Subquery

To write a query with a correlated subquery, you use the same basic format as an
ordinary outer query with a subquery. However, in the FROM clause of the outer
query, just after the table name, you place a correlation variable (any identifier of
up to 18 characters, starting with a letter). The subquery may then contain column
references qualified by the correlation variable. For example, if X is a correlation
variable, then "X.PARTNO" means "the PARTNO value of the current row of the
table in the outer query." The subquery is (conceptually) re-evaluated for each row
of the table in the outer query.

The following query solves the problem presented earlier. That is, it finds the
quotations for every part number in which the price is more than twice the
minimum quoted price for that part number. (Notice that the correlation variable is
written in a manner similar to a join variable.)

EXEC SQL DECLARE QUERY1 CURSOR FOR
SELECT SUPPNO, PARTNO, PRICE
FROM QUOTATIONS X
WHERE PRICE >

(SELECT 2 * MIN (PRICE)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO)

EXEC SQL OPEN QUERY1
EXEC SQL FETCH QUERY1

INTO :S, :P, :PRICE
EXEC SQL CLOSE QUERY1

Coding the Program 125

The pseudo code for the correlated subquery solution is:

EXEC SQL DECLARE QUERY CURSOR FOR
SELECT SUPPNO, PARTNO, PRICE
FROM QUOTATIONS X
WHERE PRICE >

(SELECT 2 * MIN (PRICE)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO)

EXEC SQL OPEN QUERY
EXEC SQL FETCH QUERY INTO :SUPPNO, :PARTNO, :PRICE
DO WHILE (SQLCODE=O)

DISPLAY (SUPPNO, PARTNO, PRICE)
EXEC SQL FETCH QUERY INTO :SUPPNO, :PARTNO, :PRICE

END-DO
DISPLAY ('END OF LIST')
EXEC SQL CLOSE QUERY

How SQl/OS Does Correlation

Conceptually, the query is evaluated as follows:

1. QUOTATIONS, the table identified with the correlation variable X, is placed
to the side for reference. Let this table be called X, since it is the "correlation
table."

2. SQL/DS identifies X.PARTNO with the X table, and uses the values in that
column to evaluate the query. (The entire query is evaluated once for every
P ARTNO in the X table.)

EXEC SQL DECLARE QUERY CURSOR FOR
SELECT SUPPNO, PARTNO, PRICE ------> X
FROM QUOTATIONS X ___________ 1 --------------------------
WHERE PRICE >

(SELECT 2 * MIN (PRICE)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO)

EXEC SQL OPEN QUERY
EXEC SQL FETCH QUERY INTO :S, :P
EXEC SQL CLOSE QUERY

\ SUPPNO PARTNO PRICE
\ ------ ------

-----\------------ 221 .30
\ \ 51 231 .10
I \ 53 222 .25
I 1 • • •

I • • •
1

Note that PARTNO = X.PARTNO isn't used in the WHERE clause of the
outer-level query as it was in the normal subquery; this is because SQL/DS keeps
track of which X.PARTNO it is currently evaluating the query for.

Suppose another condition is added to the problem:

Find those quotations for each part number that has a delivery time greater than 20
days, and for which the price is more than twice the minimum quoted price for that
part number.

The new query is:

126 SQL/Data System Application Programming for VM/SP

!
1"

\..

An Exercise

EXEC SQL DECLARE QUERY CURSOR FOR
SELECT SUPPNO, PARTNO, PRICE
FROM QUOTATIONS X
WHERE DELIVERY_TIME > 20
AND PRICE >

(SELECT 2 * MIN (PRICE)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO)

EXEC SQL OPEN QUERY
EXEC SQL FETCH QUERY INTO :S, :P, :PRICE
EXEC SQL CLOSE QUERY

The X table in this query is slightly different. Conceptually, whenever there are
other conditions besides the one containing the subquery, they are applied to the
"correlation table" first. Thus, the X table that is derived from the QUOTATIONS
table is:

SUPPNO PARTNO PRICE DELIVERY TIME QONORDER Only rows

54 18.00
having a

209 21 0 DELIVERY TIME
54 221 .10 30 150 greater than
54 231 .04 30 200 20 are
54 241 .02 30 200 included
57 295 8.50 21 24 in this
61 221 .10 21 0 "correlation
61 222 .20 21 200 table".
61 241 .05 21 0

The values 209, 221, 231, 241, 295, and 222 are used for X.PARTNO. Similarly,
if you include a GROUP BY clause in the outer-level query, that grouping is
applied to the conceptual correlation table first. Thus, if you use a correlated
subquery in a HAVING clause, it is evaluated once per group of the conceptual
table (as defined by the outer-level query's GROUP BY clause). When you use a
correlated subquery in a HAVING clause, the correlated column-reference in the
subquery must be a property of each group (that is, must be either the "grouper"
column or some other column used with a built-in function).

The use of a built-in function with a correlated reference in a subquery is called a
correlated function. The argument of a correlated function must be exactly one
correlated column (for example, X.PRICE), not an expression. A correlated
function may specify the DISTINCT option -- for example, COUNT(DISTINCT
X.PARTNO). If so, the DISTINCT counts as the single permitted DISTINCT
specification for the outer-level query block (remember that each query-block may
use DISTINCT only once).

When would you want to use a correlated subquery? The use of a built-in function
is sometimes a clue. Consider this problem:

List quotations whose price is less than the average price for that part
number.

Coding the Program 127

First you need to determine the select-list items. The problem says to "List
quotations." This implies that the query should return at least the number of the
supplier making the price quotation, the part number, and the price quotation itself.
If you examine the example tables, you'll find that, conveniently enough, all three
items (SUPPNO, PARTNO, and QUOTATION) are in the same table
(QUOTATIONS). A part of the query can now be constructed:

SELECT SUPPNO, PARTNO, PRICE (Assuming only one row
INTO :SUPPNO, :PARTNO, :PRICE ~----1 is returned).
FROM QUOTATIONS In FORTRAN, a cursor

is required.

Next, a search condition (WHERE clause) is needed. The problem statement says,
..... whose price is less than the average price for that part number." This means
that for each part number in the table, the average price of that part number must
be computed. This statement fits exactly the description of a correlated subquery.
Some property (average price of the current part number) is being computed for
each row. A correlation variable is needed on the QUOTATIONS table:

SELECT SUPPNO, PARTNO, PRICE
INTO :SUPPNO, :PARTNO, :PRICE
FROM QUOTATIONS X

The subquery needed is simple; it computes the average price for each part
number:

SELECT AVG(PRICE) This clause tells SQL/DS to
FROM QUOTATIONS compute the subquery once
WHERE PARTNO = X.PARTNO ~----~ for each PARTNO in the

The complete SQL statement is:

SELECT SUPPNO, PARTNO, PRICE
INTO :SUPPNO, :PARTNO, :PRICE
FROM QUOTATIONS X
WHERE PRICE <

(SELECT AVG(PRICE)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO)

outer-level query table.

Suppose that instead of listing only the supplier number, part number, and price
quoted, that you also list the supplier's name and address. A glance at the example
data base will tell you that the information you need (NAME and ADDRESS) is in
a separate table (SUPPLIERS). The outer-level query that defines a correlation
variable can also be a join query.

When you use joins in an outer-level query, list the tables to be joined in the
FROM clause and place the correlation variable next to one of these table names.

To modify the query to list the supplier's name and address, add ADDRESS and).
NAME to the select-list and change SUPPNO to SUPPLIERS.SUPPNO (to clarify ..""
which SUPPNO SQL/DS is to retrieve). The FROM clause must now also include

128 SQL/Data System Application Programming for VM/SP

the SUPPLIERS table, and the WHERE clause must express the appropriate join
condition. Here is the modified query:

SELECT SUPPLIERS.SUPPNO, NAME, ADDRESS, PARTNO, PRICE
INTO :SUPPNO, : NAME, : ADDRESS , :PARTNO, :PRICE
FROM QUOTATIONS X, SUPPLIERS
WHERE SUPPLIERS.SUPPNO= QUOTATIONS.SUPPNO
AND PRICE <

(SELECT AVG(PRICE)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO)

The above examples show that the correlation variable used in a subquery must be
defined in the FROM clause of some query that contains the correlated subquery.
However, this containment may involve several levels of nesting. Suppose that the
average price of some of the parts may be misleading since some parts only have a
few price quotations available. Suppose also that if there are at least three
quotations in the data base for a given part, then the average price is a meaningful
number to compare a supplier's quotation against. The new statement of the
problem is:

List quotations whose price is less than the average price for that part
number, but only if there are at least three price quotations for that part in
the data base.

The problem implies another subquery, because for each part number in the
outer-level query a count of how many exist in the entire QUOTATIONS table is
needed:

SELECT COUNT(.)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO

Only if the count is greater than or equal to 3 is an average to be computed:

SELECT AVG(PRICE)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO
AND 3 <=

(SELECT COUNT(.)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO)

Finally, only those quotations whose price is less than the average price for that
part are to be listed:

SELECT SUPPLIERS.SUPPNO, NAME, ADDRESS, PARTNO, PRICE
INTO :SUPPNO, : NAME , : ADDRESS , :PARTNO, :PRICE
FROM QUOTATIONS x;' SUPPLIERS
WHERE SUPPLIERS.SUPPNO = QUOTATIONS.SUPPNO
AND PRICE <

(SELECT AVG(PRICE)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO
AND 3 <=

(SELECT COUNT(.)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO»

Coding the Program 129

If you study the above query, you'll note that it is different from the previous
correlated subqueries in that the first subquery may return a null value. Suppose
the query is being evaluated for part number 222 and that there are only two
quotations for that part in the data base. Working from the bottom to the top, the
following occurs:

SELECT SUPPLIERS.SUPPNO, NAME, ADDRESS, PARTNO, PRICE
INTO :SUPPNO, : NAME, :ADDRESS, :PARTNO, :PRICE
FROM QUOTATIONS X, SUPPLIERS
WHERE SUPPLIERS.SUPPNO QUOTATIONS.SUPPNO

AND PRICE < t---""II Predicate is null I

(SELECT AVG(PRICE)

FROM QUOTATIONS
WHERE PARTNO = X.PARTNO

AND 3 <= t----tl Predicate is false I

(SELECT

FROM QUOTATIONS

WHERE PARTNO = ~))

The inner-most subquery evaluates to 2. Thus, the expression "AND 3 <= 2" is
false. Because that expression is false, no rows satisfy the search condition of the
next subquery, and no average is computed; a null value is returned to the
outer-most query. This causes the predicate "PRICE < (subquery)" to evaluate to
the unknown truth value. The join condition "SUPPLIERS.sUPPNO =
QUOTATIONS.SUPPNO", however, is always true:

WHERE SUPPLIERS.SUPPNO = QUOTATIONS.SUPPNO AND PRICE < (subquery)

"TRUE"

I
I

AND

"UNKNOWN"

"UNKNOWN"

The following figure is the "AND" truth table for search conditions; "TRUE AND
UNKNOWN" causes the search condition in the query to be "UNKNOWN," as
indicated above.

130 SQL!Dlilta System Application Programming for VM/SP

1

1

1
V

AND 1 T F ?
----1-------------

----> T 1 T F []

F 1 F F F
1

? 1 ? F ?
1

That is, no rows of the data base satisfy the search condition, and no quotation is
listed for part number 222 -- exactly the result desired in this case.

Testing for Existence

I
Format:

[NOT] EXISTS (subquery)

You can use a subquery to test for the existence of a row satisfying some condition.
In this case, the subquery is linked to the outer-level query by the predicate
EXISTS or NOT EXISTS.

When you link a subquery to an outer query by an EXISTS predicate, the subquery
does not return a value. Rather, the EXISTS predicate is true if the answer set of
the subquery contains one or more rows, and is false if the answer set of the
subquery contains no rows.

The EXISTS predicate is often used with correlated subqueries. The example
below lists the suppliers that currently have no entries in the QUOTATIONS table:

DECLARE C1 CURSOR FOR
SELECT SUPPNO, NAME
FROM SUPPLIERS X
WHERE NOT EXISTS

(SELECT *
FROM QUOTATIONS
WHERE SUPPNO = X.SUPPNO)

ORDER BY SUPPNO

OPEN C1
FETCH Cl INTO :S, :N
CLOSE C1

Coding the Program 131

You may connect the EXISTS and NOT EXISTS predicates to other predicates by .".",
using AND and OR in the WHERE clause of the outer-level query.

Combining Queries into a Single Query: UNION

The UNION operator lets you combine two or more outer-level queries into a
single query. Each of the queries connected by UNION is executed to produce an
answer set; these answer sets are then combined and duplicate rows are eliminated
from the result. If you are using the ORDER BY clause, you must write it after the
last query in the UNION. SQL/DS applies the ordering to the combined answer
set before it delivers the results to your program via the usual cursor mechanism.
None of the queries should have an INTO clause when you are using a cursor.

In COBOL, PL/I, and Assembler language programs, it is possible (though
unusual) to write a query using the UNION operator that does not return results
via a cursor. In this instance, only one row must be retrieved from the tables and
an INTO clause must be placed only in the first query.

The UNION operator is useful when you want to merge lists of values derived from
two or more tables. In the following example, the query returns a list of part
numbers that are either on order or have a quantity on hand greater than 1000:

SELECT PARTNO
INTO :P:PIND
FROM QUOTATIONS
WHERE QONORDER>O

~------~Use INTO only if the query
returns one row; otherwise, use
a cursor. In FORTRAN programs,
a cursor must always be used.

UNION

SELECT PARTNO
FROM INVENTORY
WHERE QONHAND > 1000

ORDER BY 1

By referring to the example tables in the foldout, it can be seen that the only part
not on order is 285. Consequently, the first query returns this answer set:

SELECT I PARTNO I~>
FROM QUOTATIONS
WHERE QONORDER>O

•
•
•

132 SQL/Data System Application Programming for VM/SP

PARTNO

221
232
221
231
241
295
222
207
209

The second query returns the part numbers having a quantity on hand greater than
1000:

> PARTNO
SELECT I PARTNO I~ 222

FROM INVENTORY 232
WHERE QONHAND > 1000 241

•

SQL/DS then combines the results of both queries, eliminates the duplicates, and
returns the final result in ascending order:

PARTNO

207
209
221
222
231
232
241
295

To connect queries by the UNION operator, you must ensure that the queries
adhere to the following rules:

1. The data types of corresponding items in the select-lists of all the queries must
be identical. For example, if the first item of the select-list of the first query
names a column of type INTEGER that permits null values, then the first item
of the select-list of each query must be an integer column with null values
permitted.

SQL/DS strictly enforces the identity of data types for unions: INTEGER is
not compatible with SMALLINT, DECIMAL, or FLOAT; character or DBCS
columns of different widths are not compatible; and, a column that permits
nulls is not compatible with a column that does not pernlit nulls. However,
corresponding items in the select-lists need not have the same name. For
example, a query beginning:

SELECT X

may be in union with a query that begins:

SELECT Y

Coding the Program 133

provided that X and Y have the same data type.

2. If character constants (literals) are used in the SELECT-clause(s), the
constants must be enclosed in single quotes. If the character constant
corresponds to another character constant, the shorter constant must be
padded with blanks to the length of the longer constant. If the character
constant corresponds to a table column, the column must be defined as
V ARCHAR NOT NULL and the character constant must be padded with
blanks to the maximum length defined for that column.

3. If numeric constants are used in the SELECT-clause(s), the constants must be
integers. If the numeric constant corresponds to a table column, the column
must be defined as INTEGER NOT NULL.

4. An ORDER BY clause, if used, must be placed after the last query in the
union. The order-list must contain only integers, not column names. In the
example query above, ORDER BY 1 is acceptable but ORDER BY P ARTNO
is not acceptable.

5. None of the queries in a union may select data of type LONG V ARCHAR or
LONG V ARGRAPHIC.

6. A UNION may not occur inside a subquery.

7. A UNION may not be used in the definition of a view. (Views are discussed in
a later section.)

More About Cursor Management

ORDER BY Clause of the DECLARE CURSOR Statement

The ORDER BY clause causes SQL/DS to deliver the rows of the active set in the
order specified. You can indicate orderings by specifying an "order specification"
(called o-spec in the statement syntax). The o-spec is a list of column names or
integers that refer to select-list items. For example, ORDER BY 3,5 denotes
ordering primarily by the third item and secondarily by the fifth item in the
select-list. By using integers in the ORDER BY clause, you can order the query
result by some selected expression that is not a simple column name. The following
query returns results ordered by the expression PRICE* 1.10:

DECLARE QUERY1 CURSOR FOR
SELECT SUPPNO, PRICE*1.10
FROM QUOTATIONS
WHERE PARTNO = 221
ORDER BY 2

You cannot specify ordering by a column that is not in the select-list.

When specifying column names for o-spec, the column name must be used within
the select-list and must not occur within an expression. For example:

134 SQL/Data System Application Programming for VM/SP

DECLARE QUERY2 CURSOR FOR
SELECT PARTNO, PRICE
FROM QUOTATIONS
ORDER BY PARTNO

The optional word DESC indicates descending order. ORDER BY 2,5 DESC
indicates ascending order on item 2 and descending order on item 5. ASC indicates
ascending order, and is the default. Dictionary ordering is used for character-type
data. Null values sort last in ascending order; first in descending order. If you do
not specify an ORDER BY clause, rows are delivered in an order determined by
SQL/DS.

FOR UPDATE Clause of the DECLARE CURSOR Statement

The FOR UPDATE clause tells SQL/DS that you might want to update some
columns of the active set. Updating via a cursor is done using the WHERE
CURRENT OF clause in an UPDATE statement, which is explained under
"Changing Data in a Table: UPDATE" on page 37. You can update only those
columns that you list in the FOR UPDATE clause. It is not necessary for a column
to appear in the select-list for it to appear in the FOR UPDATE clause. You can
update columns that are not explicitly retrieved by the cursor. The FOR UPDATE
clause is not required for deletion of the current row of a cursor. Deletion via a
cursor is done using the WHERE CURRENT OF clause in a DELETE statement,
which is explained under "Deleting Data from a Table: DELETE" on page 36.

You cannot include both the ORDER BY clause and the FOR UPDATE clause in
the same DECLARE CURSOR statement.

Your program may contain many DECLARE CURSOR statements that define
different cursors and associate them with different queries. During processing of a
program, several of these cursors may be in the open state at one time. The
DECLARE CURSOR statement that defines a cursor must occur earlier in the
program than any statement operating on that cursor. The DECLARE CURSOR
statement does not result in any actual processing when the program is executed
(that is, it does not automatically open the cursor).

The "scope" of a cursor-definition is an entire program. Therefore it is an error for
two DECLARE CURSOR statements in the same program to use the same
cursor-name, even if they are in different blocks or procedures.

You can use DELETE and UPDATE statements to manipulate the data in the
current row of the cursor, but only under certain circumstances. The cursor must
be open and positioned on a row of the active set before you can attempt a
DELETE or UPDATE. For example, a cursor called Cl may be open and
positioned on a row of the QUOTATIONS table. When it is in such a state,
statements such as the following can be executed:

DELETE FROM QUOTATIONS
WHERE CURRENT OF C1

UPDATE QUOTATIONS
SET PRICE = PRICE + :DELTA
WHERE CURRENT OF C1

Coding the Program 135

Each such statement deletes or updates exactly one row of the data base: the row
that is the current position of cursor Cl. If Cl is not correctly positioned on a row
of the specified table (for example, if it is not open, or if it is positioned between
two rows, or if it is defined on some table other than the one mentioned in the
DELETE or UPDATE), the DELETE or UPDATE fails and SQL/DS returns an
error code in SQLCODE.

Additional uses of the DECLARE CURSOR statement are discussed under
"Dynamically Defined Statements" on page 147.

More About Data Manipulation

Format 2 INSERT:

INSERT INTO [creator.]table-name [(list-of-column-names)]
select-statement

Example:

INSERT INTO MYPARTS
SELECT PARTNO, DESCRIPTION, PRICE
FROM SCOTT.PARTS
WHERE DESCRIPTION = 'PISTON'

Authorization:

You can insert data into any table you create. You can insert data into another user's table if you are
given the INSERT privilege on that table, or if you have DBA authority. You must have proper
SELECT authorization on those tables referenced in the select-statement.

Format 2 of the INSERT statement inserts into an existing table one or more rows.
These rows are selected or computed from other tables by a SELECT statement.
A SELECT statement used in an INSERT must not have an INTO clause. This is
because the destination of the selected items is another table -- not a list of host
variables.

When you use a SELECT statement in an INSERT statement, all the selected rows
are inserted into the target table. SQL/DS does not eliminate duplicate rows
before insertion. For example, suppose that you create a table called BOLTS,
having columns PARTNO and QONHAND. Suppose also that the new table is
presently empty. The following statement inserts into the BOLTS table the
relevant values of all rows of the INVENTORY table having a DESCRIPTION of
'BOLT':

INSERT INTO BOLTS
SELECT PARTNO,QONHAND
FROM INVENTORY WHERE DESCRIPTION 'BOLT'

136 SQL/Data System Application Programming for VM/SP

To eliminate duplicate rows, specify the DISTINCT keyword in the SELECT
statement.

An INSERT does not affect any existing rows in the target table or any rows of the
table from which the inserted rows were computed (INVENTORY in the above
example). If the number of columns selected by the SELECT statement is not
equal to the number of columns needed for the insertion, an error results.

In addition, the columns selected must be type-compatible with the columns into
which they are to be inserted. If you insert decimal data into a column of type
INTEGER or SMALLINT, the fractional part of the data is truncated before
insertion. If you assign a decimal variable to a decimal column, the number is
converted to the precision and scale of the target column. (Extra scale positions
are truncated.) A value to be inserted into a column of CHAR or GRAPHIC data
type is padded on the right with blanks (X'40' for CHAR data types; X'4040' for
GRAPHIC data types) to the correct length before insertion. No padding is
performed on values inserted into columns of varying length (V ARCHAR or
VARGRAPHIC). (SOLIDS conversion rules are summarized under "Data
Conversion" on page 76.) You cannot use Format 2 of the INSERT statement to
insert data of type LONG V ARCHAR or LONG V ARGRAPHIC.

Even though SOLIDS does data conversion, you should (if possible) code Format
2 INSERT statements so that there is little or no data conversion involved. When
SOLIDS does data conversion from source values to target values, it uses more
storage internally. It is possible for SOLIDS to exhaust its temporary internal
storage when performing operations that involve a large number of data
conversions.

The nested SELECT statement must not select rows from the same table that is the
subject of the INSERT, since this might lead to a non-terminating result. If you
code such an INSERT statement, SOLIDS returns an error.

If SOLIDS detects an error in a Format 2 INSERT statement after some rows have
been inserted (for example, an attempt to insert a null value into a NOT NULL
column), SOLIDS stops processing the statement, and returns an error code in the
SOLCA. If you coded WHENEVER SOLERROR STOP, SOLIDS rolls back the
current logical unit of work. (The STOP condition cannot be used in FORTRAN
applications.) If you are handling negative return codes via a routine you have
coded within the application program (as discussed in the next chapter), the rows
that were inserted before the error was detected remain in the table unless you
explicitly issue a ROLLBACK WORK.

Additional uses of Format 2 of the INSERT statement are discussed in the next
chapter.

SOLIDS does not impose any logical ordering on the rows of a table; therefore, no
facility is provided to specify the "position" in the table of the newly inserted rows.
(That is, rows are inserted in SOLIDS-determined order.) You must not use an
ORDER BY clause in a SELECT statement that is associated with a Format 2
INSERT statement.

After successful completion of an INSERT statement, the variable SOLERRD(3)
in the return code structure indicates the number of rows that were inserted. If the

Coding the Program 137

returned SQLCODE is non-zero, indicating unsuccessful completion of the
statement, the content of SQLERRD(3) is unpredictable.

Format 2 DELETE:

DELETE FROM [creator.]table-name WHERE CURRENT OF cursor-name

Example:

DELETE FROM INVENTORY WHERE CURRENT OF CURSOR2

Authorization:

Authorization depends on the table specified in the cursor declaration. You can delete rows of the
table named in the cursor declaration if you created that table. If you are not the creator of the table
in the cursor declaration, you must be given the DELETE privilege on that table or you must have
DBA authority.

Format 2 of the DELETE statement deletes exactly one row of a table. The
current position of the cursor determines the row to be deleted. If the cursor name
is a reserved keyword, you must use double quotes (") around the cursor name in
the DELETE statement. (Notice that the double quotes are not used when the
cursor is declared.)

The cursor must be open and positioned on a row of the table. In addition, the
cursor must meet certain other requirements before you can use it to delete a row
as follows:

1. It must be a SELECT statement on one table (not a join).

2. If it contains a subquery, the subquery must not be on the same table as the
outer-level query.

3. It must not include DISTINCT or GROUP BY or ORDER BY or UNION or
any built-in function such as A VG(PRICE).

4. If you use the BLOCK option on all CREATE PROGRAMs, and you wish to
execute a prepared Format 2 DELETE dynamically, the cursor must be a
SELECT ... FOR UPDATE statement, even if you do not plan to execute any
Format 2 UPDATEs with the cursor. The FOR UPDATE clause is needed to
tell SQL/DS that blocking should be overridden when the SELECT statement
is prepared. If you do not use the FOR UPDATE clause in this instance, an
error will occur on your DELETE statement.

When the statement is executed, SQL/DS deletes the row indicated by the position
of the cursor. The cursor goes into a between state in which it remains open but has
no current row until you reposition it by a FETCH statement. You cannot use the
cursor for further deletions or updates while it is in the between state.

Note that both the COMMIT WORK and ROLLBACK WORK statements
automatically close all cursors. A common mistake is to delete a row via a cursor,

138 SQL/Data System Application Programming for VM/SP

Format 2 UPDATE:

commit that change, and then loop backwards to repeat the process. This type of
programming construction fails because the first COMMIT WORK closes the
cursor.

UPDATE [creator.]table-name
SET column-name-1 = expression-1
[, column-name-2 = expression-2]

WHERE CURRENT OF cursor-name

Example:

UPDATE JONES.EMPLOYEE
SET SALARY = 0.00,

POSITION = 'FIRED'
WHERE CURRENT OF CURSOR1

Authorization:

Authorization depends on the table specified in the cursor declaration. You can update rows of the
table named in the cursor declaration if you created the named table. If you are not the creator of the
table in the cursor declaration, you must be given the UPDATE privilege on those columns you wish
to update, or you must have DBA authority.

Format 2 updates exactly one row -- the current row of the indicated cursor. If the
cursor name is a reserved keyword, you must use double quotes (") around the
cursor name in the UPDATE statement. (Notice that the double quotes are not
used when the cursor is declared.)

The cursor must be open and positioned on a row of the named table. (Note that
both the COMMIT WORK and ROLLBACK WORK statements automatically
close all cursors.) The UPDATE statement does not affect the position of the
cursor.

The rules for evaluating the SET clause expressions for Format 2 UPDATE
statements are identical to those for Format 1. For example, this statement
updates the current row of cursor C5. It sets the PRICE field to
2500.00/QONORDER, and then sets the QONORDER field to zero:

UPDATE QUOTATIONS
SET PRICE = 2500.00 / QONORDER, QONORDER = 0
WHERE CURRENT OF C5

Like Format I, SQL/DS computes all update values before any updates become
effective. Thus, SQL/DS computes the new value of PRICE before setting
QONORDER to zero, regardless of the order in which you list the individual
updates in the SET clause.

To use an UPDATE statement of Format 2, the named cursor must adhere to these
rules:

1. It must be a SELECT statement on one table (not a join).

Coding the Program 139

Use of Views

Creating a View

Format:

2. If it contains a subquery, the subquery must not be on the same table as the
outer-level query.

3. It must not include DISTINCT or GROUP BY or ORDER BY or UNION or
any built-in function such as A VG(PRICE).

4. If a particular field of the current row of a cursor is to be updated (for
example, PRICE in the UPDATE QUOTATIONS example), that field must
have been included in a FOR UPDATE clause in the DECLARE CURSOR
statement that defined the cursor.

Views allow different users to see different presentations of the same data. For
example, several users may be operating on a table of data about employees. The
first user may see data about some employees but not others; the second user may
see data about all employees but none of their salaries; and the third user may see
data about employees joined together with some data from another table. Each of
the users in this example is operating on a view derived from the real table of data
about employees. Each view appears to be a table, and each view has a name of its
own.

You can use views with authorization statements to control access to sensitive data.
For example, you might use a view based on a GROUP BY query to give a user
access to the average salary of employees in each department. The view prevents
the user from seeing any individual employee salaries.

A view is a dynamic "window" on tables. That is, when you update a real table,
you can see the updates through a view. Similarly, when you update a view,
SQL/DS updates the real table underlying the view. There are, however,
restrictions on modifying tables through a view. "Modifying Tables Through a
View" on page 143 covers these restrictions.

Because SQL/DS does not physically store views, you cannot create an index on a
view. However, if you create an index on the real table underlying a view, you will
improve the performance of queries on the view.

CREATE VIEW [creator.]view-name [(column-name-list)]
AS select-statement

140 SQL/Data System Application Programming for VM/SP

Example:

CREATE VIEW FASTQUOTES (MFR,PART,DAYS) AS
SELECT SUPPNO, PARTNO, DELIVERY_TIME
FROM QUOTATIONS WHERE DELIVERY TIME < 10

Authorization:

You must have the SELECT privilege on the underlying tables to create a view.

The CREATE VIEW statement causes the indicated select-statement to be stored
as the definition of a new view. The statement also gives a name to the view, and
(optionally) to each column in the view. If you don't specify the column names,
the columns of the view inherit the names of the columns from which they are
derived.

You must specify new names for the columns of the view if some column of the
view is not derived directly from a data field (that is, if a view column is defined as
AVG(SALARY) or SALARY + COMMISSION). Columns derived in this manner
are often called virtual columns. (Virtual columns, naturally, contain virtual data.)
You must also specify new column names if the selected fields of the view do not
have unique names (for example, the view is a join of two tables, each of which has
a column named PARTNO).

The data types of the columns of the view are inherited from the columns on which
they are defined. If a view column is defined by a built-in function such as
A VG(SALARY) , the data type of the view column is INTEGER, FLOAT, or
DECIMAL. (See "Built-In Functions" on page 31 for a more precise description.)

Here are some other considerations for creating views:

• Internal SQL/DS limitations restrict a view to approximately 140 columns.
The number of referenced tables, lengths of column names, and WHERE
clauses all further reduce this number.

If the select-statement in a view definition has a "SELECT * .. clause, the view
has as many columns as the underlying table. If columns are later added to the
underlying table by ALTER statements, the new columns will not appear in the
view (unless you drop and re-create the view).

• The name of the view must be unique among all the tables, views, and
synonyms that you have already created. You can refer to another user's
views, if so authorized, by using the person's userid as a prefix (for example,
SMITH.F ASTQUOTES).

• You can define a view in terms of another view. In other words, the
select-statement that defines a view may make reference to one or more other
views. In this case, you must observe the limitations listed under "Querying
Tables Through a View" on page 142.

Coding the Program 141

• The select-statement in a view definition must not have an ORDER BY clause.
Like a table, a view is considered to have no intrinsic ordering. Of course, you
can specify an ORDER BY clause when you write queries against the view.

• A select-statement in a view definition cannot contain a UNION operator.

• Host variables are not permitted in a CREATE VIEW statement. (For
example, predicates such as PRICE = :X are not permitted.)

• The creator of the view is considered to be the user who preprocessed the
program. (Certain exceptions are described under "Dynamically Defined
Statements" on page 147.)

When you define a new view, you receive the same privileges that you had on
the underlying table. If you possess these privileges with the GRANT option,
you can grant privileges on your view to other users. (See "Granting Privileges
to Other Users" on page 62.) If the view is derived from more than one
underlying table, you receive only the SELECT privilege, because multi-table
views do not permit insertion, deletion, or update. You receive the SELECT
privilege on a multi-table view only if you have the SELECT privilege on all
the tables from which it is derived. If you have no privileges on the underlying
table(s), the CREATE VIEW statement returns an error code.

• The special keyword USER, which always evaluates to the userid of the person
running the program, can be used in the definition of a view. For example, the
following view might be defined on the SQL/DS catalog table
SYSCAT ALOG:

CREATE VIEW MYTABLES AS
SELECT * FROM SYSTEM.SYSCATALOG
WHERE CREATOR = USER

This view contains only those rows of SYSCA T ALOG for which the creator is
the current user.

The select-statements that define the various views known to the SQL/DS are kept
in a catalog called SYSVIEWS. Also, descriptions of views and their columns are
kept in SYSCATALOG and SYSCOLUMNS. View names may appear in many
other places in the catalogs in place of table names (for example, in
SYSTABAUTH). All SQL/DS catalogs are described in the SQLIData System
Planning and Administration for VM I SP manual.

Querying Tables Through a View

You can write queries (SELECT statements) against views exactly as if the views
were real tables. When you make a query against a view, SQL/DS combines the
query with the definition of the view to produce a new query against real stored
tables. SQL/DS then processes this query in the usual way. For example, the
following query might be written against the view FASTQUOTES that was defined
in an example under "CREATE VIEW":

142 SQL/Data System Application Programming for VM/SP

View Definition for FASTQUOTES:
CREATE VIEW FASTQUOTES (MFR,PART,DAYS) AS

SELECT SUPPNO, PART NO , DELIVERY_TIME'
FROM QUOTATIONS WHERE DELIVERY_TIME < 10

SELECT PART,DAYS
FROM FASTQUOTES
WHERE MFR = 51
ORDER BY 2

SQL/DS combines this query with the definition of FASTQUOTES and processes
the resultant query:

SELECT PARTNO, DELIVERY TIME
FROM QUOTATIONS
WHERE DELIVERY TIME < 10
AND SUPPNO = 51
ORDER BY 2

During the processing of a query on a view, SQL/DS may detect and report errors
(via a negative SQLCODE) in either of two phases:

1. The combining of the query with the view-definition (example error: attempt
to add together two fields of character-type).

2. The execution of the resulting query on real tables (example error: attempt to
fetch a null value when no indicator variable is provided).

You can write almost any kind of query against almost any kind of view.
Techniques such as joining, grouping, and nesting can be combined in arbitrary
ways, subject to the following limitations:

1. A view column whose definition involves a built-in function cannot be referred
to in a WHERE clause, or as the argument of another built-in function in the
SELECT clause of a query.

2. A view whose definition involves a GROUP BY cannot be joined with another
table or view.

3. A UNION operator cannot be used in the definition of a view.

Modifying Tables Through a View

Like SELECT statements, INSERT, DELETE, and UPDATE statements can be
applied to a view just as though it were a real stored table. As described above, the
SQL statement that operates on the view is combined with the definition of the
view to form a new SQL statement that operates on a stored table. Any data
modification made by such a statement is visible to users of the view, or the
underlying table, or other views defined on the same table (if the views "overlap"
in the modified area).

Coding the Program 143

The following is an example of an update applied to the view F ASTQUOTES,
showing how the update would be modified by SQL/DS to operate on the real
table QUOTATIONS:

View Definition for FASTQUOTES:

CREATE VIEW FASTQUOTES (MFR,PART,DAYS) AS
SELECT SUPPNO, PARTNO, DELIVERY TIME
FROM QUOTATIONS WHERE DELIVERY_TIME < 10

UPDATE FASTQUOTES
SET DAYS = 5
WHERE MFR = 61
AND PART = 241

becomes:

UPDATE QUOTATIONS
SET DELIVERY TIME 5
WHERE SUPPNO = 61
AND PARTNO = 241
AND DELIVERY TIME < 10

You must observe the following limitations when modifying tables through a view:

1. INSERT, DELETE, and UPDATE of the view are not permitted if the view
involves any of the following operations: join, GROUP BY, DISTINCT, or
any built-in function such as A VG. If one or more of these operations is
present in the view definition, the creator of the view does not receive
INSERT, DELETE, or UPDATE privileges on the view. Even a user having
DBA authority attempting an operation of this type receives a negative
SQLCODE.

2. A column of a view can be updated only if it is derived directly from a column
of a stored table. Columns defined by expressions such as
QONHAND+QONORDER or QONHAND-SO cannot be updated. (These
columns are sometimes called virtual columns.) If a view is defined containing
one or more such columns, the definer does not receive the UPDATE privilege
on these columns. INSERT statements are not permitted on views containing
such columns, but DELETE statements are permitted.

3. The ALTER TABLE, CREATE INDEX, and UPDATE STATISTICS
statements cannot be applied to a view.

You can use an INSERT statement with a view that does not contain all the
columns of the stored table on which it is based. For example, you can insert rows
into the view F ASTQUOTES even though it does not contain the PRICE and
QONORDER columns of the underlying table QUOTATIONS. When such an
insert is done, the "invisible" columns receive the null value. If a column that does
not permit null values is missing from the view, SQL/DS does not permit insertions
to the view.

Note that you can insert or update rows of a view in such a way that they do not
satisfy the definition of the view. For example, the view F ASTQUOTES is defined
by the condition DELIVERY _ TIME< 10. It is possible to insert rows into

144 SQL/Data System Application Programming for VM/SP

Dropping a View

Format:

FAST QUOTES having a value greater than 10 in the DAYS field (the field defined
on DELIVERY TIME), or to update a row of FASTQUOTES in such a way that
its DA YS value becomes greater than 10. These insertions and updates take effect
on the underlying table, QUOTATIONS, but they are not visible in the view
F ASTQUOTES because the resulting rows do not satisfy the definition of
FASTQUOTES. In fact, an update to F ASTQUOTES that sets DA YS= 12 causes
a row to "vanish" from FASTQUOTES (a cursor positioned on the row retains its
position, but later scans through FAST QUOTES do not see this row).

Be extremely careful when updating tables through views that may contain
duplicate rows. For example, suppose a view PARTS is defined on the
INVENTORY table, containing only the columns DESCRIPTION and
QONHAND. Since PARTNO is not included in the view, and many parts may
have the same description, the user of the view cannot tell which PARTNO
corresponds to a given row of the view. If the user positions a cursor on some row
where DESCRIPTION = 'BOLT', and then updates the current row of this cursor,
some row of the stored INVENTORY table is updated. However, since there may
be many bolts in the INVENTORY table, and the unique qualifier PARTNO is not
part of the view, the user cannot control which bolt is updated. This is not a
recommended usage of views.

DROP VIEW [creator.]view-name

Example:

DROP VIEW FASTQUOTES

Authorization:

You can drop only those views that you have created. You can drop another user's views only if you
have DBA authority.

The DROP VIEW statement drops the definition of the indicated view from the
data base. When you drop a view, SQL/DS also:

1. Drops all other views defined in terms of the indicated view. (The underlying
tables on which the views are defined are not affected.)

2. Deletes all privileges on the dropped view(s) from the authorization catalogs.

3. Marks invalid all access modules that refer to the dropped views.

The invalid access modules remain in the data base until they are explicitly
dropped by a DROP PROGRAM statement. When an invalid access module is
next invoked, SQL/DS attempts to regenerate it and restore its validity.

Coding the Program 145

However, if the program contains any SQL statement that refers to a
DBSP ACE, table, or view that has been dropped, that SQL statement returns
an error code at execution time.

If a DROP VIEW statement attempts to drop a view currently in use by another
running logical unit of work, SQL/DS queues the DROP VIEW statement until the
running logical unit of work terminates.

Indicator Variables

Along with each host variable, you may optionally provide a second variable called
an indicator variable. Indicator variables can be used to indicate null values on
input to SQL/DS (UPDATE and INSERT statements), or output from SQL/DS
(INTO-clause of a SELECT statement). These are the rules for using indicator
variables:

1. The indicator variable must be of a host language data type equivalent to an
SQL/DS SMALLINT.

2. The indicator variable must follow a host variable (called the main variable).

3. All indicator variables must be declared in an SQL declare section before they
are referred to in SQL statements.

4. Like main variables, you must also precede the indicator variable by a colon
(:).

5. If an indicator variable is provided but it is not applicable (for example, if nulls
are not allowed for the column), the indicator variable is ignored.

For example:

SELECT NAME, ADDRESS
INTO :NAME:NAMEIND, :ADDR:ADDRIND
FROM SUPPLIERS WHERE SUPPNO = 51

In this example, :NAMEIND serves as the indicator variable for the main variable
:NAME, and :ADDRIND serves as the indicator variable for the main variable
:ADDR. The value returned in an indicator variable is coded as shown in
Figure 18.

Value
Returned Meaning

0 Denotes that the returned value is not null, and has been
placed in the associated main variable.

Figure 18 (Part 1 of 2). Values Returned in Indicator Variables

Value
Returned Meaning

<0 Denotes that the returned value is null. The main variable
should be ignored.

>0 Denotes that SQL/DS truncated the returned value because
the main variable was not of sufficient length.

In addition, if the truncated item was a DBCS or character
string, the indicator variable contains the length in characters
before truncation. The SQLW ARNI warning flag in the
SQLCA is set to 'W' whenever a returned character or DBCS
string is truncated.

Figure 18 (Part 2 of 2). Values Returned in Indicator Variables

For input (INSERT or UPDATE statements), indicator variables can be used to
indicate that a field is to be set to null (when the indicator variable is a negative
value). If you provide an indicator variable and assign it a negative value, SQL/DS
inserts the null value in the row. A zero or positive value in the indicator causes
SQL/DS to insert the value of the main variable. Truncation does not apply to
input variables.

Indicator variables are optional. However, if a null value is returned, and you
haven't provided an indicator variable, a negative SQLCODE is returned to your
program. If your data is truncated and there is no indicator variable, no error
condition results (for numeric data). See "Data Conversion" on page 76 for more
about truncation.

Do not use indicator variables in search conditions (WHERE clauses). The correct
way to test for nulls is via the NULL predicate (described earlier):

WHERE QONHAND IS NOT NULL I Correct

WHERE QONHAND :SUPP:SIND I Incorrect I

If you use an indicator variable in a WHERE clause, SQL/DS returns a negative
SQLCODE to your program.

Dynamically Defined Statements

Note: This topic is more advanced than previous sections. The techniques
discussed here are not needed by most application programs. It should also be
noted that these dynamically defined statements cannot be used in FORTRAN
programs.

Previous sections have described how to code various SQL statements directly into
a program and have SQL/DS preprocess them. For some kinds of applications,
however, it is desirable to execute SQL statements that are not known until the

Coding the Program 147

..

preprocessed; the preprocessed statement is also given a name of your choosing.
(This name should not be declared as a host variable.) The second step
(EXECUTE) causes the statement to be executed using values that you supply for
the parameters. Once a statement is prepared, it can be executed many times.
Here is the pseudo code:

•
•
• Preprocess the DELETE

READ DSTRING FROM TERMINAL statement and call it
EXEC SQL PREPARE S 1 FROM : DSTRING ~-.... S 1.
READ PART FROM TERMINAL ~--------------------~
DO WHILE (PART ~= 0)

EXEC SQL EXECUTE S1 USING : PART ~----------~I
READ PART FROM TERMINAL

END-DO Execute S1 (the DELETE
•
•
•

statement) repeatedly
using different values
for PART.

You should not execute a dynamically defined statement after ending the logical
unit of work in which the statement was prepared. If you do, the results are
unpredictable.

In routines similar to the above example, the number of parameters and their data
types must be known because the host variables that provide input data are
declared when the program is being written.

Naturally, this greatly limits the number of different SQL statements that you can
read in. In the above example, the only SQL statements that can be executed are
those containing a single parameter. This single parameter must be used knowing
that it is defined as an integer halfword in the program. For example, the pseudo
code above can also process the statements below. (At the terminal, the user types
in a statement followed by values for the "?" parameters.)

INSERT INTO INVENTORY (PARTNO) VALUES (?)

For each value you provide for "?", the INSERT statement is executed, and a
new row is inserted into INVENTORY. The value you enter for "?" is placed
in the PARTNO field. The other fields of the table are given the null value.

UPDATE INVENTORY SET DESCRIPTION = 'GEAR' WHERE PARTNO = ?

For each value you provide for "?", the UPDATE statement is executed, and
the DESCRIPTION column of the INVENTORY table is set to 'GEAR'.

UPDATE INVENTORY SET QONHAND = 0 WHERE PARTNO = ?

For each value you provide for "?", the UPDATE statement is executed, and
the QONHAND column of the INVENTORY table is set to O.

Obviously, there are some applications for this kind of dynamic statement
processing, but they are quite specialized. Suppose new parts are added to the
inventory. Each part is a different kind of gear, and none of the parts are yet in the
warehouse. The input stream for the pseudo code above would be as follows:

,,---._- Annlication Programming for VM/SP

INSERT INTO INVENTORY (PARTNO) VALUES (?)
301
302
303
304
o
UPDATE INVENTORY SET DESCRIPTION
301

'GEAR' WHERE PARTNO

302
303
304
o
UPDATE INVENTORY SET QONHAND
301
302
303
304
o

Dynamically Defined Queries

o WHERE PARTNO ?

?

A somewhat more complex facility is needed for executing a dynamically defined
SELECT statement. Usually a SELECT statement returns the result of a query
into one or more host variables. When the query is read from a terminal at
run-time, you cannot know in advance how many and what type of variables to
allocate to receive the query result. Therefore, SQL/DS provides a special
statement called DESCRIBE, by which a program can obtain a description of the
data types of a query result. After using the DESCRIBE statement, the program
can dynamically allocate storage areas of the correct size and type to receive the
result of the query. If DESCRIBE is used on a prepared SQL statement that was
not a SELECT, DESCRIBE returns a special "non-query" indication.

To handle a run-time query, the program first uses the PREPARE statement. As in
the previous section, the PREP ARE statement preprocesses the SQL statement.
The PREPARE step also associates a statement-name with the query. The
DESCRIBE statement is then used to obtain a description of the answer set. On
the basis of this description, the program dynamically allocates a storage area
suitable to hold one row of the result. The program then reads the query result by
associating the name of the statement with a cursor and using cursor manipulation
statements (OPEN, FETCH, and CLOSE).

The rest of this section describes some techniques for executing dynamically
defined queries. The descriptions are not meant to be comprehensive; specific
restrictions and statement descriptions are located in a following section.

Dynamically defined queries center around a structure called the SQL Descriptor
Area (SQLDA). The SQLDA is usually a based structure; that is, storage for it is
allocated dynamically at run time. Figure 19 is a representation of the SQLDA
structure with host language independent data type descriptions. Each host
language has different considerations for the SQLDA structure. You should read
the section on dynamic statements in the appropriate appendix before you attempt
to code a program that uses the SQLDA.

Coding the Program 151

SQLDA -- a based
SQLDAID
SQLDABC
SQLN
SQLD
SQLVAR

structure composed of:
character string of length 8
31-bit binary integer
15-bit binary integer
15-bit binary integer
an array composed of:

SQLTYPE -- 15-bit binary integer
SQLLEN -- 15-bit binary integer

SQLPRCSN -- 1-byte (used for DECIMAL)
SQLSCALE -- 1-byte (used for DECIMAL)

SQLDATA 31-bit binary integer (pointer)
SQLIND 31-bit binary integer (pointer)
SQLNAME -- varying-length character string

of up to 30 characters

Figure 19. SQLDA Structure (in Pseudo Code)

Note that the SQLLEN field is divided into two sub-fields. The sub-fields are used
only when working with DECIMAL values. Such usage is described in the
following discussion.

To include the descriptor area in your program, specify:

INCLUDE SQLDA

The INCLUDE SQLDA statement must not be placed in the SQL declare section.
As with the SQLCA, you can code this structure directly instead of using the
INCLUDE SQLDA statement. If you choose to declare the structure directly, you
can specify any name for it. For example, you can call it SPACEl or DAREA
instead of SQLDA.

The following text describes how to process a run-time query. First, you must
declare the SQLDA structure. Below is an illustration showing the SQLDA
structure as a box; similar illustrations are used in following examples. Remember
that SQLDA is a based structure (or, in Assembler, a DSECT); no storage has
actually been allocated yet.

(1) SQLTYPE
(2) SQLLEN

SQLVAR

11 is the length
of the character
string in SQLNAME.
SQLNAME is a 30-byte
area immediately
following 11.

SQLDAID

SQLDABC

(1) I (2)

SQLIND

152 SQL/Data System Application Programming for VM/SP

SQLN ISQLD

SQLDATA

11

The meanings of the various fields are described as they are used. A summary of
the meanings of the fields of the SQLDA is presented later for quick reference.

Suppose that a SELECT statement is assigned to a variable called QSTRING. The
SELECT statement can be read in from a terminal or SYSIPT, or it can be assigned
within the program itself. In this example, the following SELECT statement, which
retrieves information from the example tables in the foldout, is read in from the
terminal:

SELECT DESCRIPTION, QONHAND FROM INVENTORY WHERE PARTNO=221

Notice that the SELECT statement has no INTO clause. All SELECT statements
that are to be dynamically executed must not have an INTO clause (regardless of
whether they return more than one result row).

When the statement is read in, it is assigned to the host variable QSTRING.
QSTRING is then preprocessed via the PREPARE statement:

READ QSTRING FROM TERMINAL
EXEC SQL PREPARE S1 FROM :QSTRING

Now you can allocate storage for the SQLDA. The techniques for acquiring
storage are language dependent. (Refer to the appropriate compiler or Assembler
manual.)

Note: The usage of the SQLDA depends on the USING clause option of the
DESCRIBE statement. In this section, it is assumed that the NAMES option of the
USING clause has been specified. See "DESCRIBE" on page 177 for more detail
on the DESCRIBE statement. The amount of storage you need to allocate depends
upon how many elements you want to have in the SQLV AR array. Each select-list
item must have a corresponding SQLV AR array element. Therefore, the number
of select-list items determines how many SQL V AR array elements you should
allocate. However, since SELECT statements are specified at run time, it is
impossible to know how many select-list items there will be. Consequently, you
must guess. Suppose, in this example, that no more than three items are ever
expected in the select-list. This means that the SQL V AR array should have a
dimension of three, since each item in a select-list must have a corresponding entry
inSQLVAR.

Having allocated an SQLDA of what you hope will be adequate size, you must now
initialize the SQLDA field called SQLN. SQLN is set to the number of SQLV AR
array elements you have allocated. That is, SQLN is the dimension of the
SQLV AR array. In this example, you must set SQLN to three. Here's the pseudo
code for what was done so far:

Allocate an SQLDA of size 3
SQLN = 3

Having allocated storage, you can now DESCRIBE the statement. (Make sure that
SQLN is set before the DESCRIBE.)

DESCRIBE S1 INTO SQLDA

When the DESCRIBE is executed, SQL/DS places values in the SQLDA for you,
these values provide information about the select-list.

Coding the Program 153

The figure below shows the contents of the SOLDA after the DESCRIBE is
executed for the example SELECT statement. The third SOLV AR element is not
shown because it wasn't used:

Eye-catchers ->

1-1 ___ :>

SQLVAR I
Element 1 <

SQLVAR
Element 2 <

L

5 Q L

148

449 I 24

5 C R

N

7 Q
I

D

D A

3 I 2

11 0

I P T I

497 I 4

0 N H A

E

0

N

SQLN and SQLD
< __ --ll

SOLDAID and SOLD ABC are eye-catcher fields initialized by SOLIDS when a
DESCRIBE is executed; you can ignore these for now.

SOLN is not altered by SOLIDS unless you didn't allocate a large enough SOLDA.
Suppose, for example, that the SELECT statement contained four select-list
expressions instead of two. The SOLDA was allocated with an SOL V AR
dimension of three. Naturally, SOLIDS cannot describe the entire select list
because there is not enough storage. In this case, SOLIDS sets SOLD to the actual
number of select-list expressions; the rest of the structure is ignored. Thus, after a
DESCRIBE it is a good practice to check SOLN. If SOLN is less than SOLD, you
need to allocate a larger SOLDA based on the value in SOLD:

EXEC SQL DESCRIBE S1 INTO SQLDA
IF (SQLN < SQLD)

Allocate a larger SQLDA using the value of SQLD.
Reset SQLN to the larger value.
EXEC SQL DESCRIBE Sl INTO SQLDA

END-IF

For the example SELECT statement, however, the SOLDA was of adequate size.
SOL V AR has a dimension of three, and there are only two select-list expressions.
SOLN remains set to 3, and SOLIDS sets SOLD to 2.

If you use DESCRIBE on a non-SELECT statement, SOLIDS sets SOLD to O.
Thus, if your program is designed to process both query and non-query statements,
you can describe each statement (after it is prepared) to determine whether it is a
query. This example routine is designed to process only query statements, so no
test is provided.

154 SQL/Data System Application Programming for VM/SP

Your program must now analyze the elements of SQL V AR. Remember that each
element describes a single select-list expression. Consider, again, the SELECT
statement that is being processed:

SELECT DESCRIPTION, QONHAND FROM INVENTORY WHERE PARTNO=221

The first item in the select-list is DESCRIPTION. As illustrated in the beginning
of this section, each SQLVAR element contains the fields SQLTYPE, SQLLEN,
SQLDATA, SQLIND, and SQLNAME. SQL/DS returns in SQLTYPE a code
that describes the data type of the expression and tells whether nulls are applicable.
Figure 20 shows how to interpret the codes returned in SQL TYPE:

Data Code Data Type Do Nulls Apply?

496 INTEGER NO
497 INTEGER YES

500 SMALLINT NO
501 SMALLINT YES

484 DECIMAL NO
485 DECIMAL YES

480 FLOAT NO
481 FLOAT YES

448 VARCHAR NO
449 VARCHAR YES

452 CHAR NO
453 CHAR YES

456 LONG VARCHAR NO
457 LONG V ARCHAR YES

468 GRAPHIC NO
469 GRAPHIC YES

464 VARGRAPHIC NO
465 VARGRAPHIC YES

472 LONG V ARGRAPHIC NO
473 LONG V ARGRAPHIC YES

Figure 20. Data Codes Returned in SQL TYPE

For example, SQL/DS set SQL TYPE to 449 in the first SQLV AR element. This
indicates that DESCRIPTION is a V ARCHAR column and that nulls are permitted
in the column.

SQL/DS sets SQLLEN to the length of the column. For character or DBCS
strings, SQLLEN is set to the maximum length in characters of the string. For
decimal data, the precision and scale are returned in the first and second bytes,
respectively. (Recall that the SQLLEN field has two sub-fields called SQLPRCSN
and SQLSCALE for this purpose.) For other data types, SQLLEN is set as
follows:

SMALLINT
INTEGER
FLOAT

SQLLEN 2
SQLLEN 4
SQLLEN 8

Coding the Program 155

Since the data type of DESCRIPTION is V ARCHAR, SQL/DS sets SQLLEN",'
equal to the maximum length of the character string. For DESCRIPTION, that
length is 24. Thus, when the SELECT statement is later executed, a storage area
large enough to hold a VARCHAR(24) string will be needed. In addition, because
nulls are permitted in DESCRIPTION, a storage area for a null indicator variable
will also be needed.

The last field in an SQL V AR element is a varying-length character string called
SQLNAME. The first two bytes of SQLNAME contain the length of the character
data. The character data itself is usually the name of the field used in the select-list
expression (DESCRIPTION in the above example). The exceptions to this are
select-list items that are unnamed, such as functions (for example,
SUM(SALARIES» and expressions (A+B-C). These exceptions are described in
greater detail under "The SQL Descriptor Area (SQLDA)" on page 167.

The second SQLV AR element in the above example contains the information for
the QONHAND select-list item. The 497 code in SQLTYPE indicates that
QONHAND is an INTEGER column that permits nulls. For an INTEGER data
type, SQL/DS sets SQLLEN to 4. SQLNAME contains the character string
"QONHAND", and has the length byte set to 7.

After analyzing the result of the DESCRIBE, you can allocate storage for variables
that will contain the result of the SELECT statement. For DESCRIPTION, a
varying character field of length 24 must be allocated; for QONHAND a binary
integer of 31 bits (plus sign) must be allocated. Both QONHAND and
DESCRIPTION permit nulls, so you must allocate two additional halfwords to
function as indicator variables.

Once the storage is allocated, you must set SQLDAT A and SQUND to point to
the appropriate areas. For each element of the SQL V AR array, SQLDAT A points
to the location where the results are to be placed. SQUND points to the location
where the null indicator is to be placed. Here is what the structure now looks like:

156 SQL/Data System Application Programming for VM/SP

s Q. L 0 A

148 3 I 2 Main Variable:

449 I 24 •

• 11 0
E I
--->1 Varying Char. (24)

Indicator:

sci
N

I --->1 Halfword

Main Variable: I ---> 1 Binary Integer Fu llword --
497 4

~

• • Indicator:
I HI-7 Q. 0 N
I

--->1 Halfword

0

This is the pseudo code for what was done so far:

EXEC SQL INCLUDE SQLDA
•
•

READ QSTRING FROM TERMINAL
EXEC SQL PREPARE S1 FROM :QSTRING
Allocate an SQLDA of size 3.
SQLN = 3
EXEC SQL DESCRIBE S1 INTO SQLDA
IF (SQLN < SQLD)

Allocate a larger SQLDA using the value of SQLD.
Reset SQLN to the larger value.
EXEC SQL DESCRIBE S1 INTO SQLDA

END-IF
Analyze the results of the DESCRIBE.
Allocate storage to hold select-list results.
Set SQLDATA and SQLIND for each select-list item.

Now comes the easy part: retrieving the query result. Dynamically defined queries,
as noted earlier, must not have an INTO clause. Thus, all dynamically defined
queries must use a cursor. Special forms of the DECLARE, OPEN, and FETCH
are used for dynamically defined queries.

The DECLARE CURSOR statement for the example query is as follows:

DECLARE C1 CURSOR FOR S1

As you can see, the only difference is that the name of the prepared SELECT
statement (S1) is used instead of the SELECT statement itself. The dynamic
statement must be prepared before a cursor is declared for it. (It does not,
however, have to be described.)

The actual retrieval of result rows is as follows:

Coding the Program 157

EXEC SQL OPEN C1
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA
DO WHILE (SQLCODE = 0)

DISPLAY (results pointed to by SQLDATA and SQLIND
for all pertinent SQLVAR elements)

EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA
END-DO
DISPLAY ('END OF LIST')
EXEC SQL CLOSE C1

The cursor is opened, and the active set is evaluated. (Note that there are no input
host variables needed for the example query. Methods of providing input host
variables are discussed later.) The query result rows are then returned using a
FETCH. On the FETCH statement there is no list of output host variables.
Rather, the FETCH statement tells SQL/DS to return results into the descriptor
called SQLDA. The same SQLDA that was set up by DESCRIBE is now being
used for the output of the SELECT statement. In particular, the results are
returned into the storage areas pointed to by the SQLDATA and SQLIND fields of
the SQL V AR elements. The meaning of the halfword pointed to by SQLIND is
the same as any other indicator variable:

o Denotes that the returned value is not null.

<0 Denotes that the returned value is null.

>0 Denotes that the returned value was truncated because the storage area
provided was not large enough. If the truncated item was a DBCS or
character string, the indicator variable contains the length in characters before
truncation.

SQL/DS does not allow you to declare a (non-dynamic) cursor in a program, and
then execute dynamically defined statements against it. For example, suppose you
code this non-dynamic cursor in your program:

DECLARE C1 CURSOR FOR
SELECT PARTNO, PRICE
FROM QUOTATIONS
WHERE SUPPNO = :SUPP
FOR UPDATE OF PRICE

Naturally, you can open Cl and execute statements such as these:

UPDATE QUOTATIONS
SET PRICE = PRICE + .10
WHERE CURRENT OF C1

DELETE FROM QUOTATIONS
WHERE CURRENT OF C1

However, you cannot read in the above statements at run time and dynamically
prepare and execute them. Dynamically defined UPDATE and DELETE
statement containing WHERE CURRENT OF clauses will not work when the
cursor declaration is non-dynamic.

The next section describes a more general routine in which you can process queries
that have parameters in the WHERE clause. It is recommended that you do not

158 SQL/Data System Application Programming for VM/SP

read that section until you have coded some of the simpler dynamic queries
discussed thus far.

Parameterized Queries

In the example above, the query that was dynamically executed had no parameters
(input host variables) in the WHERE clause:

SELECT DESCRIPTION, QONHAND FROM INVENTORY WHERE PARTNO = 221

Suppose you wanted to execute the same query a number of times using different
values for PARTNO. A parameterized SQL statement (as described under
"Non-Query Statements" on page 148) is needed:

SELECT DESCRIPTION, QONHAND FROM INVENTORY WHERE PARTNO = ?

In previous parameterized SQL statements, the number of parameters and their
data types had to be known. What if they are unknown? The DESCRIBE
statement, at first glance, is not feasible because it describes only select-lists. With
some additional programming, however, you can use the DESCRIBE statement to
obtain information about the "?" parameters. Specifically, the code must scan the
FROM and WHERE clauses to determine which table and column a "?" parameter
is associated with. The code can then construct a SELECT statement using those
column names in the select-list. For the parameterized statement above, this query
can be generated:

SELECT PARTNO FROM INVENTORY

The query (assigned to WSTRING below) can then be preprocessed and described:

Allocate an SQLDA of size 3.
SQLN = 3
EXEC SQL PREPARE S2 FROM :WSTRING
EXEC SQL DESCRIBE S2 INTO SQLDA

Don't forget to allocate an SQLDA of adequate size and to initialize SQLN. In the
example above, it is assumed that no more than three items would appear in the
select-list. This means that there can be only three "?" parameters in the WHERE
clause since each "?" is equivalent to a select-list expression. (In truth, the
scanning routine can easily determine the exact amount of "?" parameters.) Code
to allow for re-allocation of a larger structure is appropriate if you believe there
may be more than three "1" parameters:

EXEC SQL DESCRIBE S2 INTO SQLDA
IF (SQLN < SQLD)

Allocate a larger SQLDA using the value of SQLD.
Reset SQLN to the larger value.
EXEC SQL DESCRIBE S2 INTO SQLDA

END-IF

Here is what the SQLDA looks like after the fabricated SELECT statement is
described. Only the first element of SQL V AR is shown since the others aren't
used:

Coding the Program 159

Eyecatchers ->

.... 1 ___ .>

SQLVAR
Element <

I
l

S Q L

148

500 I 2

(SQLIND)

R T N

0 A

3 I 1

(SQLDATA)

6 p

0

A

SQLN and SQLD
< __ ---II

An analysis of the SQLDA shows that there is only one "?" parameter, and that
parameter is associated with PARTNO. The SQLTYPE value (500) indicates that
PARTNO contains integer halfwords. Thus, you need to allocate a binary integer
halfword for the "?" variable. SQLDAT A must then be set to point to this area.

Previously, the SQLDA was used in a FETCH statement and SQL/DS returned
query results into the storage areas pointed to by SQLDATA and SQLIND. In
other words, the SQLDA was used for output. Now, the SQLDA is going to be
used to provide input values for the WHERE clause via an OPEN statement. When
the SQLDA is being used for input, you must assign values to the dynamically
allocated storage areas pointed to by SQLDAT A. SQLIND is never applicable
because you can't use indicator variables in WHERE clauses. In fact, if the
SQLTYPE value returned by DESCRIBE shows that the field permits nulls, you
should reset SQLTYPE to indicate that nulls are not permitted. For example, if the
SQLTYPE returned by DESCRIBE is 501, you should set it to 500 before using
the SQLDA to provide input. Once the storage for the "?" parameters is allocated
you should read in values and assign them to those areas. Here is the completed
SQLDA (assuming 221 is read in for "?"):

Eyecatchers ->

.... 1 ___ >

SQLVAR
Element <

I
l

S Q L

148

500 1 2

(SQLIND)

R T N

0 A

3

6

0

Jl
SQLN and SQLD

< __ 1

•
p A

===::;---1 Value for "1";

~ L->1221

Once an SQLDA is set up in this fashion, it can be referred to in an OPEN
statement that contains a USING clause. For example, a previously declared cursor
called C1 is opened using SQLDA:

160 SQL/Data System Application Programming for VM/SP

OPEN C1 USING DESCRIPTOR SQLDA

Since SQLDA currently has 221 in the field pointed to by SQLDATA, CI is
evaluated using that value.

Below is the pseudo code for the complete example. Two SQLDA-like structures
are used. One is called SQLDA, and is the usual structure; the other (declared
directly) is called SQLDAI. The fields of SQLDAI are suffixed with a "I"; for
example, SQLDATAI and SQLNI. An asterisk in position 1 of the pseudo code
denotes a comment.

Coding the Program 161

EXEC SQL INCLUDE SQLDA
Directly declare SQLDA1 .

•
•

* Read in a parameterized query.

*
READ QSTRING FROM TERMINAL

* * PREPARE and DESCRIBE the query; set up the output SQLDA.
*

*

EXEC SQL PREPARE S1 FROM :QSTRING
Allocate an SQLDA of size 3.
SQLN = 3
EXEC SQL DESCRIBE S1 INTO SQLDA
IF (SQLN < SQLD)

Allocate a larger SQLDA using the value of SQLD.
Reset SQLN to the larger value.
EXEC SQL DESCRIBE S1 INTO SQLDA

END-IF
Analyze the results of the DESCRIBE.
Allocate storage to hold select list results.
Set SQLDATA and SQLIND for each select-list item.

* Declare a cursor.

*
EXEC SQL DECLARE C1 CURSOR FOR S1

* * Fabricate a query so PREPARE and DESCRIBE can be used to
* set up the input SQLDA1.

*

*

Scan the FROM clause and the WHERE clause of QSTRING for "?"
parameters and generate an appropriate query in WSTRING.

Allocate an SQLDA1 of size 1 (1 was obtained from the scan).
SQLN1 = 1
EXEC SQL PREPARE S2 FROM :WSTRING
EXEC SQL DESCRIBE S2 INTO SQLDA1
Analyze the results of the DESCRIBE.
Reset SQLTYPE to reflect that there is no indicator variable.
Allocate storage to hold the input values (the "?" values).
Set SQLDATA1 for each "?" parameter value.

* Read in input parameters and retrieve the query results via
* cursor C1. Note that the pseudo code reads in only one .,?"
* parameter. Your actual code must provide for the possibility
* that more than one "?" parameter might be provided.
*

READ PARM FROM TERMINAL
DO WHILE (PARM ,= 0)

Assign PARM to area pointed to by SQLDATA1.
EXEC SQL OPEN C1 USING DESCRIPTOR SQLDA1
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA
DO WHILE (SQLCODE = 0)

DISPLAY (results pointed to by SQLDATA and SQLIND)
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA

END-DO
EXEC SQL CLOSE C1
DISPLAY ('ENTER ANOTHER VALUE OR 0')
READ PARM FROM TERMINAL

END-DO
DISPLAY ('END OF QUERY')

Of course, the pseudo code above must be modified to suit your own purposes.

162 SQL/Data System Application Programming for VM/SP

Parameterized Non-Query Statements

In "Non-Query Statements" on page 148, parameterized statements were
introduced; it was necessary, however, to know the number of "1" parameters and
their data types before run-time. In the preceding section it was shown how you
might analyze a parameterized query so that a SELECT statement could be
generated and subsequently described.

The same principle can be used for parameterized non-query statements. For
example, suppose this DELETE statement is read from the terminal and assigned
to DSTRING:

DELETE FROM QUOTATIONS WHERE PARTNO = ? AND SUPPNO = ?

Suppose also that the amount of "1" parameters and their corresponding data types
are unknown before run time. The same routine that you coded to scan the FROM
and WHERE clauses of SELECT statements can be used to scan the above
DELETE statement. Then, a SELECT statement containing the relevant columns
can be constructed:

SELECT PARTNO, SUPPNO FROM QUOTATIONS

This SELECT statement is then prepared and described as in the previous section.
The setup of the SQLDA is also identical: once the SQLDA is analyzed, space to
hold the "1" values is allocated, and the "1" values are read in and assigned to
these locations. Once again, the SQLDA will be used for input to the WHERE
clause of the SQL statement; no indicator variables are allowed. Because the
statement is a non-query statement, the SQLDA is pointed to in the EXECUTE
statement. (There is no OPEN for non-queries.) Here is the pseudo code for a
parameterized non-query statement.

EXEC SQL INCLUDE SQLDA
•
•

READ DSTRING FROM TERMINAL
Scan the FROM clause and the WHERE clause of DSTRING for "?"

parameters and generate an appropriate query in WSTRING.
Allocate an SQLDA of size 2 (2 was obtained from the scan).
SQLN = 2
EXEC SQL PREPARE S2 FROM :WSTRING
EXEC SQL DESCRIBE S2 INTO SQLDA
Analyze the results of the DESCRIBE.
Reset SQLTYPE to reflect that there is no indicator variable.
Allocate storage to hold the input values (the "?" values).
Set SQLDATA for each "?n parameter value.

EXEC SQL PREPARE S1 FROM :DSTRING
Read n?n parameter values from the terminal.

• A zero parameter value terminates the DO loop.
DO WHILE (parameters ,= O)

Assign the values to the storage allocated for
input variables.

EXEC SQL EXECUTE S1 USING DESCRIPTOR SQLDA
Prompt user for more values.
Read n?" parameter values from the terminal.

END-DO
•
•

Coding the Program 163

Note that you may need a more complex scanning routine depending on how many
different non-query statements you wish to process. For example, the above
routine would have to be modified if you wanted to process INSERT statements.
In that case, you would have to scan the INTO clause. Note also that indicator
variables are permitted when providing input to the INSERT statement via
EXECUTE. This is because a normal (not dynamically defined) INSERT
statement also permits indicators. If indicator variables are permitted in normal
usage, they are permitted in the dynamically defined case.

An Alternative for Parameterized Statements

Previous sections on parameterized statements (both query and non-query) relied
on a scanning routine that generated a query. Once this query was generated,
DESCRIBE was used to obtain information about the columns and expressions
associated with a "?" parameter.

If you have not coded a scanning routine that generates a query, there is a simple
alternative: have the user describe the "?" parameters for you, and fill in the
SQLDA yourself. There is no rule that says you must use a DESCRIBE to fill in
the SQLDA. When using the SQLDA for input or output, SQL/DS doesn't care
who filled in the SQLDA, as long as the needed values are there.

When you use the SQLDA for input (which is always the case for "?" parameters),
not all fields have to be filled in. Specifically, SQLDAID, SQLDABC, and the
SQL V AR field called SQLNAME need not be filled in. Thus, if you choose this
method, you will need to ask the user for the following:

1. How many"?" parameters are there?

2. What are the data types of these parameters (and lengths, if character)?

3. Do you want an indicator variable?

In addition, if the routine is to handle both query and non-query statements, you
may want to ask the user what category of statement it is. (Alternatively, you can
write code to look for the SELECT keyword.)

The code that interrogates the user and sets up the SQLDA would take the place of
the scanning routine and DESCRIBE in the previous sections:

164 SQL/Data System Application Programming for VM/SP

With a Scanning Routine:

•
•

READ DSTRING FROM TERMINAL
Scan the FROM and WHERE clauses of DSTRING for "?"

parameters and generate an appropriate query in WSTRING.
Allocate an SQLDA of size 2 (2 was obtained from the scan).
SQLN = 2
EXEC SQL PREPARE S2 FROM :WSTRING
EXEC SQL DESCRIBE S2 INTO SQLDA
Analyze the results of the DESCRIBE.
Reset SQLTYPE to reflect that there is no indicator variable.
Allocate storage to hold the input values (the "?" values).
Set SQLDATA for each "?" parameter value.

•
•

Without a Scanning Routine:

•
•

READ DSTRING FROM TERMINAL
Interrogate user for number of "?" parameters.
Allocate an SQLDA of that size.
Set SQLN and SQLD to the number of "?" parameters.
For each "?" parameter:

Interrogate user for data types, lengths, and
indicators.

Set SQLTYPE and SQLLEN.
Allocate storage to hold the input values

(the "?" values).
Set SQLDATA and SQLIND (if applicable) for each

"?" parameter.
•
•

The statement can then be processed in the usual manner.

Dynamic Data Conversion

In previous uses of the SQLDA for input or output, SQLTYPE always described
the data type of the storage area pointed to by SQLDAT A. In the following
example, the type code 500 (originally obtained via a DESCRIBE of the SELECT
statement) describes the data type of the main variable.

~> FETCH USING

SELECT ~

DESCRIPTOR l
SQ.LDA V

fl
Binary Halfword
Main Variable:

FROM INVENTORY
WHERE DESCRIPTION = 'GEAR'

Coding the Program 165

In previous sections, the select-list item, the type code, and the data type of the
storage area allocated for holding query results were all equivalent. That is, in the
above example, PARTNO is a SMALLINT column (with no nulls permitted), 500
is the type code meaning SMALLINT NOT NULL, and the area allocated is a
binary integer halfword. To force a data conversion, you must allocate a storage
area having a different data type and then change SQLTYPE in the SQLDA.
Suppose that you wanted to select the SMALLINT part numbers into an integer
area. Here is the sequence of instructions needed:

EXEC SQL PREPARE Sl FROM :STRING
EXEC SQL DESCRIBE Sl INTO SQLDA
Allocate a binary integer fullword of storage.
Set SQLDATA to point to it.
SQLTYPE = 496

When the FETCH is executed, SQL/DS performs the SMALLINT to INTEGER
conversion automatically. Similarly, you could have converted the retrieved
PARTNO values to FLOAT merely by setting SQLTYPE to 480 and by allocating
a floating point word of storage.

This conversion can be done when the SQLDA is used for input also. Consider the
normal case:

~ EXECUTE USING

INSERT INTO INVENTORY (PARTNO)

VALUES ~ <------------~

DESCR I PTOR <l
SQLDA

Fl
Binary Halfword
Main Variable:

As before, PARTNO is SMALLINT. The main variable is also allocated as
SMALLINT (binary integer halfword), and the SQLTYPE that describes the main
variable represents a SMALLINT. To perform data conversion on input, you need
to change only the SQLTYPE and the type of storage allocated to hold the input
values. This is done exactly as in the previous example. To insert a floating point
variable into the SMALLINT PARTNO column, for example, these steps are
needed:

EXEC SQL PREPARE Sl FROM :STRING
EXEC SQL DESCRIBE Sl INTO SQLDA
Allocate an 8-byte floating point area.
Set SQLDATA to point to it.
Assign a floating point number to the area.
SQLTYPE = 480
E,XEC SQL EXECUTE S 1 USING DESCRIPTOR SQLDA

All dynamic data conversion is done according to the rules summarized under
"Data Conversion" on page 76. Note especially that character to numeric or
numeric to character conversions are not allowed.

166 SQL/Data System Application Programming for VM/SP

Should you change the SQL TYPE code and then allocate a storage area of an
incorrect type, SQL/DS treats the storage area as though it were of the type
indicated by SQL TYPE. For example, suppose SQLTYPE indicates that the
storage area pointed to by SQLDAT A is an INTEGER, but that the actual area
allocated is a binary integer halfword (SMALLINT). SQL/DS treats the field as
though it were an INTEGER, not a SMALLINT. This type of error may yield
confusing results.

Distressing results are also obtained if SQL TYPE indicates that there is an
indicator variable, but you do not allocate one.

The SQl Descriptor Area (SQlDA)

Sequence of

First,
SQLDA DESCRIBE
Fields: in i t i ali zes:

SQLDAID X
SQ,LDABC X
SQLNI
SQLD X

SQ,LVAR

SQLTYPE X
SQLLEN X
SQLDATA
SQ,L I ND2
SQLNAME X

This section summarizes, for your reference, the SQLDA structure and related
information.

As you have learned in the previous sections, the SQLDA can be used in any
number of ways. In general, the fields within the SQLDA must be initialized either
by using a DESCRIBE statement or by user code. Once the fields are initialized,
the SQLDA can be used for input (in EXECUTE and OPEN) or for output (in
FETCH).

Figure 21 summarizes the sequence of events needed to initialize the SQLDA for
use in processing dynamically defined statements. In any case, you must always
initialize SQLN before the DESCRIBE.

Events -->

Then Next, if you in- EXECUTE,
you must tend to use the OPEN, and
initialize: SQLDA for input

(EXECUTE or
FETCH use:

OPEN), you must
place values in
the locations X
pointed to by X
SQLDATA and
SQLIND. When
the SQLDA is
used for output X
(FETCH), SQL/DS X

X wi 11 place X
X values in those X

areas.

Figure 21. SQLDA Initialization

Notes:

1. You must set SQLN before the DESCRIBE.

2. Only provide indicators if they are allowed in the non-dynamic case. (See the
previous sections.)

Coding the Program 167

If you do not use a DESCRIBE to set up the SQLDA, you need only fill in those
fields that are actually used the OPEN, FETCH, or EXECUTE.

The meanings of the fields within the SQLDA are as follows:

SQLDAID When the SQLDA is used for input or output, SQLDAID does not
apply. This field serves only as an SQLDA eye-catcher. It is set to
'SQLDA 'by SQL/DS when a DESCRIBE is first executed.
(You never have to fill in SQLDAID.)

SQLDABC When the SQLDA is used for input or output, SQLDABC does not
apply. This field is another eye-catcher field. It is set to the length
of the SQLDA by SQL/DS when a DESCRIBE is executed. (You
never have to fill in SQLDABC.)

SQLN Indicates the number of variables represented by SQL V AR.
(SQLN acts as a dimension of the SQLV AR array.) You should
always set this value when the structure is allocated. When the
USING clause of the DESCRIBE statement is set to NAMES,
LABELS, or ANY, you should specify the maximum number of
expected select-list items. When you set the USING clause option
to BOTH, you should specify twice the number of expected
select-list items.

SQLD Indicates the pertinent number of elements in the SQLV AR array.

SQLVAR

When used with a DESCRIBE statement, SQL/DS returns a zero in
SQLD if the statement being described is not a SELECT statement.
If the statement is a SELECT statement, SQL/DS sets SQLD to
indicate the number of SQL V AR elements. The number of
SQL V AR elements is either the number of select-list elements
(when the USING clause of the DESCRIBE statement is set to
NAMES, LABELS, or ANY), or twice the number of select-list
elements (if the USING clause is set to BOTH). If (after a
DESCRIBE) SQLD is greater than SQLN, the SQLVAR array is
not large enough to contain descriptions for all the select-list items.
In this case, you must allocate a larger SQLDA based on the value
of SQLD.

If you set the value of SQLD yourself, and you set it less than
SQLN, the excess elements of the SQL V AR array are ignored.

The individual entries in this array describe the characteristics of
dynamically allocated storage areas. These storage areas are
intended to hold either the values for "?" parameters (if the
SQLDA is used for input) or the values returned from a query (if
the SQLDA was used for output). The entries in this array are
bound, in order, to the "?" parameters of the prepared statement or
to the select-list items (whichever is applicable).

Here is a breakdown of an element of the SQL V AR array; to avoid confusion,
keep in mind the distinction between input (OPEN, EXECUTE) and output
(DESCRIBE) :

168 SQL/Data System Application Programming for VM/SP

SQLTYPE

Data Code

496
497

500
501

484
485

480
481

448
449

452
453

456
457

468
469

464
465

472
473

SQLLEN

In the case of input, SQL TYPE describes the data type of the
allocated storage area and tells whether you are also providing an
area for an indicator variable. The data type identified here must be
type-compatible with the storage area's use in the prepared
statement. (SMALLINT, INTEGER, DECIMAL, and FLOAT are
compatible; CHAR, V ARCHAR, and LONG V ARCHAR are
compatible; and GRAPHIC, V ARGRAPHIC, and LONG
VARGRAPHIC are compatible). A method for forcing data
conversion was discussed under "Data Conversion" on page 76.

In the case of output, the types are set by SQL/DS to indicate the
column types specified in the SELECT -list of the prepared
statement.

These are the data codes:

Data Type Indicator Variable?

INTEGER NO
INTEGER YES

SMALLINT NO
SMALLINT YES

DECIMAL NO
DECIMAL YES

FLOAT NO
FLOAT YES

VARCHAR NO
VARCHAR YES

CHAR NO
CHAR YES

LONG V ARCHAR NO
LONG V ARCHAR YES

GRAPHIC NO
GRAPHIC YES

VARGRAPHIC NO
VARGRAPHIC YES

LONG V ARGRAPHIC NO
LONG V ARGRAPHIC YES

This field contains the length of the storage area allocated. For
DBCS data types, SQLLEN is set to the number of DBCS
characters (each DBCS character occupies two bytes in storage).
SQLLEN is determined by what is indicated by SQLTYPE.

Coding the Program 169

If SQLTYPE is: SQLLEN contains:

VARCHAR the maximum length of the string.

VARGRAPHIC the maximum number of DBCS characters in the

CHAR

GRAPHIC

INTEGER

SMALLINT

FLOAT

DECIMAL

SQLDATA

SQLIND

string.

the length of the string (fixed).

the number of DBCS characters in the string
(fixed).

4

2

8

precision and scale are in the first (SQLPRCSN)
and second (SQLSCALE) bytes, respectively.

This field is never initialized by SQL/DS. You must place in this
field a pointer to the storage area that either holds the parameter
value (if SQLDA is used for input) or is to hold a select-list result
(if the SQLDA is used for output). For varying-length character
strings, the actual data should be preceded by a half-word field that
specifies the length of the character string. (The value you specify
should not include the length of the half-word.) The data must be
aligned on a half-word boundary.

This field is never initialized by SQL/DS. SQLIND must point to
the indicator variable if you have opted to provide one. The
indicator variable must be declared as a IS-bit binary integer. If
you are using the SQLDA for input, you must provide an
appropriate value in the indicator as shown below. (dnly null or
not null apply to input to SQL/DS.) Note that indicators should
not be used when providing input to a WHERE claust If you are
using the SQLDA for output, SQL/DS fills in the indicator using
these same values:

o Denotes that the parameter is not null, and is in the associated
storage area.

<0 Denotes that the parameter value is null.

>0 Denotes that a returned value was truncated because the
storage area provided was not large enough. If the truncated
item was a DBCS or character string, the indicator variable
contains the length in characters before truncation. (Applies
only for the FETCH statement.)

SQLNAME As indicated in the chart at the beginning.of this section, it is never
necessary for you to fill in SQLNAME. iSQLNAME is not used in
a FETCH, OPEN, or EXECUTE.) Wh n a DESCRIBE is
executed, however, SQL/DS fills SQLN ME with information that
may be useful in analyzing the select-list items. (Especially when a
routine is used to generate a query from a parameterized WHERE
clause.)

170 SQL/Data System Application Programming for VM/SP

In general, depending on the option specified in the USING clause
of the DESCRIBE statement, either the name or the label
associated with the column used in the select-list is retiurned in
positions 1-n of SQLNAME. (The USING clause is described in
detail under "DESCRIBE" on page 177.) The exceptions to this
are select-list items that are unnamed, such as functions (for
example, SUM(SALARIES», constants ('ABC'), and expressions
(A+B-C). In these cases, position 1 of SQLNAME is blank
(hexadecimal '40') and positions 3-30 contain a description of the
unnamed field. (The value in position 2 varies.) Since a blank
(hexadecimal '40') is not allowed in the first byte of SQL
identifiers, the application program can tell whether a column name
is returned. These rules apply:

Case 1: Basic function. SQLNAME contains the name of the
function followed by the column name in parentheses (for example,
SUM(SALARIES». Position 2 of SQLNAME is blank.

Case 2: DISTINCT object of a function. If the keyword
DISTINCT is used in the function, it appears before the column
name (for example, SUM(DISTINCT SALARIES». If the column
name is large, the whole description may not fit in positions 3-30.
In this case, the description is truncated, and hexadecimal 'FF' is set
in position 2 of SQLNAME.

Case 3: If the select-list item involves an expression, SQL/DS sets
positions 3-n of SQLNAME to this character string:

EXPRESSION m

where m is a number that identifies the mth expression in the
select-list. For example, for the sixth expression in the select-list,
SQL/DS sets positions 3-n of SQLNAME to EXPRESSION 6.
Position 2 of SQLNAME is blank. The above is true for all
expressions, even those that contain a built-in function.
Expressions include constants, such as 'ABC'.

Case 4: If the object of a function is an expression (for example,
SUM(SALARIES+ 10», SQL/DS returns in positions 3-n of
SQLNAME the name of the function followed by EXPRESSION m
in parentheses (for example, SUM (EXPRESSION 7». Position 2
of SQLNAME is blank.

Coding the Program 171

PREPARE

Format:

PREPARE statement-name FROM string-spec

Examples:

PREPARE STAT2 FROM :XSTRING
PREPARE STAT3 FROM 'DELETE FROM QUOTATIONS WHERE PARTNO = 7'

Authorization:

Any user with CONNECT authority can code this statement in an application program and
preprocess the program. SQL statements submitted to SQL/DS via the PREPARE and EXECUTE
facility have their authorization checked against the privileges of the user who is currently running the
program, not the user who preprocesses the program.

This statement preprocesses the statement identified by string-spec for later
execution. String-spec can be either a character constant or a host variable. If
string-spec is a host variable, the variable must be declared as fixed- or
varying-length character. (If a host variable is used in Assembler or COBOL, it
must be varying-length. Fixed-length strings aren't allowed for string-spec in those
preprocessors.) String-spec represents a run-time SQL statement.

The "prepared" statement is given the statement-name you specify.
Statement-name must begin with a letter, $, #, or @. It can contain up to 18
letters, numbers, $, #, @, and underscores. Unlike other SQL identifiers, the
statement-name must never be enclosed in either single (') or double (") quotes;
thus, the statement-name cannot contain embedded blanks. Statement-names can,
however, be SQL reserved words. For example:

PREPARE SELECT FROM :STRING

Note that the statement-name above (SELECT) is not enclosed in double quotes.
The host variable does not require a colon preceding it; the colon is optional in this
statement.

Assembler language programs cannot specify a constant for string-spec. A host
variable must be used.

The SQL statements you cannot use for string-spec are:

INCLUDE SQLCA
INCLUDE SQLDA
WHENEVER
OPEN
CLOSE
FETCH
DECLARE CURSOR

172 SQL/Data System Application Programming for VM/SP

ROLLBACK WORK
COMMIT WORK
CONNECT
PREPARE
EXECUTE
EXECUTE IMMEDIATE
DESCRIBE

The SQL statements must not include host language delimiters or contain any
references to host variables. If the SQL statement is a SELECT statement, it must
not have an INTO clause. (A cursor is used to retrieve results when the statement
is executed.)

Although a statement to be "prepared" can not contain any host variables, it can
contain parameters to be filled in when the statement is executed. These
parameters are denoted by question marks (?). You can specify parameters only in
places where a data value could be used. (A parameter can not represent the name
of a table or a column.) In the pseudo code example below, an INSERT statement
that has two parameters is prepared:

QSTRING='INSERT INTO SUPPLIERS (SUPPNO,NAME) VALUES (?,?)'

PREPARE S1 FROM ;QSTRING

Each time S 1 is executed, values must be supplied for the two parameters that were
specified with question marks.

Note that you must supply host language dependent delimiters for the PREPARE
statement, but not for the statement that is a value in QSTRING. In PL/I the
above example is written:

QSTRING='INSERT INTO SUPPLIERS (SUPPNO,NAME) VALUES (?,?) 'j

EXEC SQL PREPARE S1 FROM ;QSTRINGj

A semicolon is added to the end of the first statement because ordinary PL/I
statements are separated by semicolons. The "EXEC SQL" and semicolon on the
second statement are the host language delimiters for SQL statements in PL/1.

If your PL/I program constructs dynamic SQL statements by manipulating quoted
strings, remember that both SQL and PL/I use two quote marks to represent a
single quote mark inside a quoted string. The following PL/I example illustrates
this rule:

EXEC SQL PREPARE S1 FROM 'INSERT INTO SUPPLIERS(SUPPNO,NAME)
VALUES (75,' 'SMITH")';

In this example, the text beginning with INSERT and ending with SMITH' I is
considered to be a PL/I constant string. PL/I will collapse each of the quote pairs
around SMITH into a single quote before the string is processed by SQL.

In COBOL, a constant string-spec is treated as a COBOL character string and is
affected by the QUOTE/ APOST option. This option determines the character
string delimiters. If you use the same character (" or ') in the constant string-spec
as the QUOTE/ APOST option establishes for the outer string delimiters,
unexpected string termination may result.

It is best to avoid using a constant string-spec whenever it may contain quotes.
Instead, you should build the SQL statement as a host variable string-spec, using
the known host language rules for character strings. You must be especially careful
of SQL statements that contain DBCS constants, because some DBCS characters
may contain the encodings for EBCDIC quote. This could cause unintentional
termination of host language strings that contain DBCS-type constants.

Coding the Program 173

A question mark can appear in an SQL statement to be "prepared" in any place
that a host variable may appear, with the following exceptions:

1. A question mark can 110t be used in a select-list or FROM-clause (but it may
be used in the WHERE clause of a SELECT statement).

2. Two question marks can not appear directly within the same arithmetic or
comparison operation: ?+? or ?=? are invalid.

3. If a column name or a literal does not appear to the left of an IN clause, the
first item in the list of items to the right of the IN cannot be a ? host variable.

4. There are additional restrictions on the use of ? host variables with
hexadecimal literals in comparison predicates. For more information, refer to
the description of SQLCODE -422 in the SQL/ Data System Messages and
Codes for VM / SP manual.

The following examples may help clarify when ? variables can and cannot be used.
The first set of examples can be successfully processed by SQL/DS PREP ARE and
EXECUTE statements:

UPDATE QUOTATIONS SET QONORDER=?
UPDATE QUOTATIONS SET QONORDER=? WHERE PARTNO+?=?
UPDATE QUOTATIONS SET QONORDER=? WHERE ?+PARTNO=?
UPDATE QUOTATIONS SET QONORDER=? WHERE PARTNO IN (?,?)
UPDATE QUOTATIONS SET QONORDER=? WHERE PARTNO+? IN (?,?)
UPDATE QUOTATIONS SET QONORDER=? WHERE ?+PARTNO IN (?,?)
UPDATE QUOTATIONS SET QONORDER=? WHERE ? IN (0, ?)

This set of examples cannot be successfully processed by SQL/DS PREP ARE and
EXECUTE statements:

UPDATE QUOTATIONS SET QONORDER=? WHERE PARTNO IN (?)
UPDATE QUOTATIONS SET QONORDER=? WHERE PARTNO=:PART
UPDATE QUOTATIONS SET QONORDER=? WHERE ? IN (? , ?)
UPDATE QUOTATIONS SET QONORDER=? WHERE ? IN (? , 0)

174 SQL/Data System Application Programming for VM/SP

EXECUTE

Format 1:

EXECUTE statement-name [USING input-list]

Format 2:

EXECUTE statement-name [USING DESCRIPTOR input-structure]

Examples:

EXECUTE S1 USING :X, :Y:YIND
EXECUTE S1 USING DESCRIPTOR SQLDA
EXECUTE S1 USING DESCRIPTOR STUFF

Authorization:

Any user with CONNECT authority can code this statement in an application program and
preprocess the program. SOL statements submitted to SOL/OS via the PREP ARE and EXECUTE
facility have their authorization checked against the privileges of the user who is currently running the
program, not the user who preprocessed the program.

Format 1 of the EXECUTE statement causes SOL/OS to execute a statement
(identified by statement-name) that was "prepared" previously. When the
statement is executed, the host variables you list are substituted, in order, into the
statement in place of its "?" parameters. Each variable must be of a data type that
is compatible with its usage in the "prepared" SOL statement. Each variable can
also have an indicator variable if the statement syntax permits them. That is,
indicators are permitted for dynamically defined statements if they are permitted in
the non-dynamic case. In particular, indicator variables are not allowed in
WHERE clauses. All indicator variables must be defined as two-byte integers. A
negative value in an indicator variable represents a null value.

You should not execute a dynamically defined statement after ending the logical
unit of work in which the statement was prepared. If you do, the results are
unpredictable.

You can use PREPARE and EXECUTE to create new objects in the data base.
Whenever a new object is created in this manner, the creator or owner of that
object is the user who is presently running the program, rather than the user who
preprocessed the program. This permits an interactive user at a terminal to create
new tables, for example, in the user's own name rather than in the name of the
person who preprocessed the program.

If an error occurs during the execution of an SOL PREPARE statement and the
statement name is subsequently executed via an SOL EXECUTE statement, the
EXECUTE statement fails.

Format 1 of the EXECUTE statement is used when you know the number and
data types of the parameters of the prepared statement. Format 2 pemlits you to

Coding the Program 175

dynamically specify the "?" parameters of the prepared statement. If you use
Format 2, you must use an SQL/DS descriptor (called SQLDA) to specify the
required parameters. For each variable represented by a "?" in the prepared
statement, you must specify information such as length and location in the
descriptor. General usage techniques for the SQLDA were discussed in earlier
sections.

EXECUTE IMMEDIATE

Format:

EXECUTE IMMEDIATE string-spec

Example:

EXECUTE IMMEDIATE : QSTRING

Authorization:

Any user with CONNECT authority can code this statement in an application program and
preprocess the program. SQL statements submitted to SQL/DS via EXECUTE IMMEDIATE have
their authorization checked against the privileges of the user who is currently running the program,
not the user who preprocessed the program.

This statement is a short-hand form for preparing and executing SQL statements
having no parameters. (See PREPARE for string-spec syntax rules.) The
statement

EXECUTE IMMEDIATE string-spec

is exactly equivalent to the following two statements:

PREPARE statement-name FROM string-spec

EXECUTE statement-name

EXECUTE IMMEDIATE should be used when the SQL statement is to be
executed only once. If a given SQL statement is to be prepared once and executed
repeatedly, the non-immediate form of EXECUTE should be used.

If string-spec is a host variable, it does not require a colon preceding it; the colon is
optional in this statement.

176 SQL/Data System Application Programming for VM/SP

'-" DESCRIBE

Format:

DESCRIBE statement-name INTO output-spec
[USING {NAMES I LABELS I BOTH I ANY} 1

Examples:

DESCRIBE Q1 INTO SQLDA
DESCRIBE Sl INTO STRl

Authorization:

You can use DESCRIBE for any statement you have successfully prepared.

The DESCRIBE statement obtains information about a statement that has been
prepared. Structure-spec should name an SQLDA structure. If the prepared
statement is a SELECT statement, DESCRIBE returns the number of fields in the
answer set, and the data types, lengths, and names of these fields. If the prepared
statement is not a SELECT statement, DESCRIBE sets the SQLDA field called
SQLD to zero.

All fields in the SQLDA were described under "The SQL Descriptor Area
(SQLDA)" on page 167. General usage techniques are described under
"Dynamically Defined Queries" on page 151.

You should not attempt to DESCRIBE a statement that was prepared in a different
logical unit of work. If you do, the results are unpredictable.

The USING clause can be used to return column labels. You can specify one of
four parameters with the USING clause to tell SQL/DS which values to return in
the SQLNAME field of the SQLDA. The NAMES parameter is the default. It
tells SQL/DS to return column names but no column labels.

The LABELS parameter tells SQL/DS to return column labels but no column
names. The BOTH parameter specifies that both column labels and column names
are to be returned. In this case, the value returned in SQLDA is twice the number
of columns (N) in the select-list. The values returned in SQL V AR elements are as
follows:

1. Elements 1 through N

The same as when only column names are returned.

2. Elements N + 1 through 2N

a. SQLTYPE: 0

b. SQLLEN: 0

Coding the Program 177

c. SQLDATA: 0

d. SQLlND: 0

e. SQLNAME: column label

Column labels are given in a sequence which corresponds with the
sequence in which column names are given in the first N SQL V AR
elements.

If a label exists for a column, the ANY parameter of the USING clause tells
SQL/DS to return it in the SQLNAME field. If not, the column name is returned.
A label is considered not to exist if the length of the label is zero or if the value of
the label is null.

If either LABELS or BOTH is specified in the USING clause and a label does not
exist, SQLNAME is set to a length of zero, and the field is cleared to 30 blanks.
Therefore, when either LABELS or BOTH is specified, your program must be
prepared to receive a zero-length label in the SQLNAME field. That is, if you wish
to move a label from an SQLNAME field into a user work area using the length
returned in the SQLDA, you must first make sure that the length is not zero.

While column names cannot start with a blank, column labels can start with
anything. Therefore, the program cannot tell whether the select-list element is a
built-in function, an expression, or a label. The ANY option should be avoided on
a data base where this situation might arise.

If the described SELECT statement contains a union, column labels of the first
SELECT are returned.

If the select-list contains a built-in function, the label is returned in SQLNAME
with the built-in function, as it is for a column name. However, unlike for a column
name, the first two bytes are not used as the flag bytes (hexadecimal '4040' or
'40FF') for a label. That is, all thirty bytes are used for the built-in function and
the label.

If a literal is used in the select-list when LABELS is specified, the literal is treated
as a nonexistent column label. If either NAMES or ANY is specified, a two byte
flag plus "EXPRESSION m" is returned. If BOTH is specified, the two byte flag
plus "EXPRESSION m" is returned as the name, and the label is treated as
nonexistent.

If the DBCS option is set to YES, SO/SI pairing is guaranteed in SQLNAME, not
only when truncation occurs but also when the original value has an un-matching
SO for both column names and column labels.

178 SQL/Data System Application Programming for VM/SP

/

'-" DECLARE CURSOR Statement for Dynamically Defined Queries

Format:

DECLARE cursor-name CURSOR FOR statement-name

Example:

DECLARE CUR10 CURSOR FOR STAT 1

Before you can execute a "prepared" SELECT or INSERT statement and fetch or
insert its results, you must declare a cursor. For dynamically defined SELECT or
INSERT statements, you must use the variation of the SQL DECLARE CURSOR
statement that is shown above.

Cursor-name must begin with a letter, $, #, or @. It can contain up to 18 letters,
numbers, $, #, @, and underscores. Unlike other SQL identifiers, the cursor-name
must never be enclosed in either single (') or double (") quotes; thus, the
cursor-name cannot contain embedded blanks. Cursor-names can, however, be
SQL reserved words. For example:

DECLARE UPDATE CURSOR FOR STATMl

Note that the cursor-name above (UPDATE) is not enclosed in double quotes.

Cursor names must be unique in the same logical unit of work. If they are not, an
error will result. If a cursor name is the same as a statement-name in the same
access module, unpredictable results may occur.

Here is another example of a query-cursor declaration that associates cursor C1
with a SELECT statement called QUERY1:

DECLARE Cl CURSOR FOR QUERYl

QUERYI must be "prepared" before the cursor is declared. The actual retrieval of
result rows is shown in Figure 22.

EXEC SQL OPEN Cl
EXEC SQL FETCH Cl USING DESCRIPTOR SQLDA
DO WHILE (SQLCODE = 0)

DISPLAY (results pointed to by SQLDATA and SQLIND
for all pertinent SQLVAR elements)

EXEC SQL FETCH Cl USING DESCRIPTOR SQLDA
END-DO
DISPLAY ('END OF LIST')
EXEC SQL CLOSE Cl

Figure 22. Using a Cursor with Dynamically Def"med Statements

Coding the Program 179

You should not attempt to declare a cursor for a statement that was prepared in a """'"
different logical unit of work. If you do, the results are unpredictable.

Refer to "Dynamically Defined Queries" on page 151 if you need more
information about processing a run time query.

OPEN Statement with USING Option

Format 1:

OPEN cursor-name [USING host-variable-list]

Format 2:

OPEN cursor-name [USING DESCRIPTOR structure-spec]

Examples:

OPEN Cl USING :X, :Y
OPEN C2 USING DESCRIPTOR SQLDA
OPEN C3

An option on the OPEN statement allows you to open a cursor on a "prepared"
SELECT statement, and to bind the values of the "?" parameters. For example,
suppose statement SI is prepared using the following query:

SELECT PRICE FROM QUOTATIONS WHERE PARTNO=? AND SUPPNO=?

When you open a cursor to fetch the results of the query, you must provide two
variables that supply the missing part number and supplier number. You can do
this by listing host variables (Format 1) or by allocating a suitable SQLDA
structure (Format 2). You can not use indicator variables in the OPEN statement.
The use of the SQLDA structure is described in earlier sections.

To change the values of the host variables and hence the active set, you must close
and re-open the query. (This does not cause the query to be "prepared" again,
however.)

Note: When you are opening an insert-cursor, you should not specify the USING
option.

180 SQL/Data System Application Programming for VM/SP

\...., FETCH Statement for Dynamically Defined Queries

Format 1:

FETCH cursor-name INTO host-variable-list

Format 2:

FETCH cursor-name USING DESCRIPTOR structure-spec

Examples:

FETCH C1 INTO :X, :Y:YIND
FETCH C1 USING DESCRIPTOR SQLDA

The FETCH statement retrieves one row of a query result defined by a PREPARE
statement. The indicated cursor must be declared and opened. The places into
which the individual fields are to be fetched are indicated by a list of host variables
(optionally with indicator variables for null values), or by the SQLDA. General
usage techniques for the SQLDA were described in earlier sections. If no rows
remain in the active set of the cursor used in a FETCH statement, the "not found"
condition (SQLCODE= 100) is returned.

PUT Statement for Dynamically Defined Inserts

Format 1:

PUT cursor-name FROM host-variable-list

Format 2:

PUT cursor-name USING DESCRIPTOR structure-spec

Examples:

PUT C1 FROM :X, :Y
PUT C1 USING DESCRIPTOR SQLDA

The PUT statement inserts one row of data defined by a PREPARE statement.
The indicated cursor must be declared and opened. The sources of the data to be
inserted are indicated by a list of host variables or by the SQLDA. The host
variables or the SQLDA supply values for? parameters in the INSERT statement
that was either prepared or defined with a DECLARE CURSOR. General usage
techniques for the SQLDA were described in earlier sections.

Coding the Program 181

182 SQL/Data System Application Programming for VM/SP

Preprocessing and Running the Program

Contents

Introduction .. 184
VM/SP Connect Considerations 186
Initializing Your User Machine 186
Preprocessing the Program 187
Compiling the Program .. 196
Link-Editing and Loading the Program 197
Running your Program .. 198

Multiple User Mode .. 198
Single User Mode .. 199
Specifying User Parameters 199

Preprocessing and Running the Program 183

Introduction

This section discusses considerations for running application programs that access
SQL/DS. Topics described in this section are:

• Initializing a user machine

• Preprocessing

• Compiling

• Loading

• Executing

You can run applications in either single user mode or multiple user mode. In
either case, you must have access to the SQL/DS production (Q) minidisk. Refer
to the SQL/ Data System Installation for VM / SP and SQL/ Data System Planning
and Administration for VM / SP manuals. In addition, you may have a choice of
SQL/DS data bases in which to preprocess and run your program.

1. Single User Mode

In single user mode, SQL/DS, its preprocessors, and your application programs
run in a single virtual machine. A parameter in the SQL/DS startup EXEC,
SQLSTART, defines this mode (SYSMODE=S). Because both SQL/DS and
the user application run in the same virtual machine, single user mode is
sometimes referred to as single virtual machine mode.

2. Multiple User Mode

In mUltiple user mode, one or more users or applications concurrently access
the same data base. For this mode of operation, SQL/DS runs in a virtual
machine while one or more SQL/DS application programs or preprocessors
operate in other virtual machines. Multiple user mode is sometimes referred to
as multiple virtual machine mode. This mode is defined by the initialization
parameter, SYSMODE=M.

3. Multiple Data Base Operation

Multiple data base operation refers to operating more than one SQL/DS data
base machine in multiple user mode on the same VM/SP system. This implies
multiple data bases being accessed concurrently by many users. When starting
SQL/DS in single user mode, you may also have a choice of data bases;
however, in single user mode, the data base is not shared and you may not
change it without restarting SQL/DS.

4. SQL/DS Data Base Machine

The SQL/DS data base machine is a VM/SP virtual machine that owns
minidisks that make up one or more SQL/DS data bases (each data base has
an assigned name). A data base machine is active for only one data base at a

184 SQL/Data System Application Programming for VM/SP

time; the SQL/DS data base machine is initiated by an SQLST ART EXEC
and terminated by an SQLEND operator command. The SQLSTART EXEC
not only has a parameter for the DBNAME (SQL/DS data base), but also has
a parameter for the mode (multiple or single user). Once a data base machine
has been activated in multiple user mode, it is possible for multiple users to
access the SQL/DS data base. In order to do this users normally must have:

• Proper SQL/DS authorization

• A VM/SP IUCV path to the data base machine

• Read access to the SQL/DS production disk

• Executed the SQLINIT EXEC at some time, as described below. This
establishes the current data base association.

These modes of operation are illustrated in Figure 23.

Example 1 Example 2 Example 3

User Virtual Machines A B c 0 E F

-~~----~ I I

Data Base Mach i nes W X y Z

--------. r----- ~----,

Data Bases l M 0 0 0 Q

FIgure 23. SQL/DS Modes of Operation

In the first example, an SQLSTART EXEC has activated SQL/DS data base L in
single user mode (W is the data base machine for data base L).

In the second example, an SQLSTART EXEC has activated the SQL/DS data
base M in multiple user mode (X is the data base machine for data base M). User
virtual machines A and B have used the SQLINIT EXEC to select M as their
SQL/DS data base.

In the third example, SQLST ART EXECs have started data base 0 from data base
machine Y and data base Q from data base machine Z. Note that Y also owns data
bases Nand P, but only one data base may be activated concurrently, Users in
virtual machines C, D, E, and F may choose between the two active data bases (0
and Q) via an SQLINIT EXEC. Currently, only one user (F) has chosen data base
Q; the remainder have chosen data base O.

Preprocessing and Running the Program 185

VM/SP Connect Considerations

Although explicit CONNECT is supported in the VM/SP environment, it is not
required. When a CONNECT statement is omitted, SQL/DS accepts the password
verification of the VM/SP virtual machine and uses the VM/SP userid as the
SQL/DS userid. This SQL/DS support is called "implicit connect." Implicit
connect requires one of the following authorizations:

1. The special userid "ALLUSERS" must have been granted CONNECT
authority, or

2. The individual users must have been granted CONNECT authority.

Passwords are not necessary in the GRANT commands that establish the above
connect authorizations (passwords are necessary only when explicit connects are
required).

For example, assume the following GRANT command:

GRANT CONNECT TO A, B, C, ALLUSERS

After this command, any VM/SP user may be implicitly connected to SQL/DS.
However, if the following command is used:

REVOKE CONNECT FROM ALLUSERS

only users A, B, C can be implicitly connected to SQL/DS.

Thus the special userid "ALLUSERS" can be used to selectively turn the implicit
connect capability on or off for the total user set, while individual users can retain
the implicit connect privilege.

SQL/DS in a VM/SP environment supports multiple data base machines and
access to multiple data bases. From an application program standpoint, the
connect function is the final step in the process of linking to a particular SQL/DS
data base. Provision for specifying a data base machine is not included in the
CONNECT statement since it is determined by user or operator actions prior to
running the program. This is discussed in the SQL/ Data System Planning and
Administration for VM / SP manual.

Initializing Your User Machine

Format:

SQLINIT [Dbname(dbname) [dcssID(dcss-id)]]

186 SQL/Data System Application Programming for VM/SP

I E=mple
SQLINIT DBNAME(SQLDBA)

The parameters of SQLINIT are as follows:

Dbname(dbname)
DBNAME identifies the SQL/DS data base to be accessed. DBNAME is an
optional parameter; if no entry is provided, SQLDBA is the default data
base. The abbreviation for DBNAME is D.

dcssID(dcss-id)
DCSSID is an optional parameter. It should be specified only if there are
discontiguous saved segments for the SQL/DS code. The abbreviation for
DCSSID is 10.

When you preprocess a program or run an SQL/DS application program in
multiple user mode, you must first establish the data base that you want the
program to access. This is done by using a VM/SP EXEC called SQLINIT. It is
provided by SQL/DS. You invoke this EXEC by logging on to your user virtual
machine, IPLing CMS, and invoking the EXEC. You need only to do this once, as
long as you continue to operate the same data base. Even if you log off and back
on to your virtual machine, you retain your association with the data base that was
established by the SQLINIT EXEC (the association is recorded on your A-disk).
The only exception to this is when the data base machine that is associated with the
data base is changed. If you decide to change to a different data base, you must
use the SQLINIT EXEC again, specifying the new data base.

For additional information on the SQLINIT EXEC, refer to the SQL/ Data System
Planning and Administration for VM / SP manual.

Preprocessing the Program

Once a data base is established, you may preprocess programs that use the data
base by invoking the VM/SP EXEC, SQLPREP, that is provided by SQL/DS. In
multiple user mode, the data base machine that owns the selected data base must
have been started. This is normally a function of a data base administrator or their
representative.

In single user mode, you also use the SQLPREP EXEC, but in this case, it does
more work for you. It establishes an SQL/DS data base machine in your virtual
machine, where you are the sole user of the data base. You must choose the data
base you want to access, through the DBNAME= parameter. In fact, when you
specify the data base name as a parameter to the SQLPREP EXEC, you are also
indicating that you want to run in single user mode. The SQLPREP EXEC does
the SQLSTART for you.

For additional information, refer to the Operations Chapter in the SQLI Data
System Planning and Administration for VM / SP manual.

Preprocessing and Running the Program 187

There are four preprocessors supplied with SQL/DS. They have the following
program names:

PLI -- PL/I Preprocessor

ASM -- Assembler Preprocessor

COBOL -- COBOL Preprocessor

FORTRAN -- FORTRAN Preprocessor

The preprocessor takes SYSIN source program input and produces a modified
source program. The modified source program output is put to SYSPUNCH and
printed output is put to SYSPRINT. The SQLPREP EXEC allows you to direct
SYSIN, SYSPUNCH, and SYSPRINT to various virtual devices and CMS files.

If the preprocessor encounters a severe error in an SQL statement, only syntactic
checking is performed on subsequent SQL statements. (That is, all errors may not
be found on the first pass.) If successful, the preprocessor places an entry in the
catalog SYSTEM.SYSACCESS to record the newly-created access module.

The format for the SQLPREP EXEC follows:

188 SQL/Data System Application Programming for VM/SP

/

Format:

SQLPREP { PLI I COBol I ASM I FORTran }

PrepParm(PREPname=program-name
[,USERid=userid/password
[{ ,KEEP I ,REVOKE}]
[{ ,NOCHECK I ,CHECK}]
[{ ,NOGRaphic I ,GRaphic}] (for PL/I and COBOL only)
[{ ,PRint I ,NOPRint }]
[{ ,PUnch I ,NOPUnch}]
[{ ,Quote I ,APOST }] (for COBOL only)
[, LineCount (integer)]
[, ISOLation (RR I CS I USER)
[{ ,BLocK I ,NOBLocK}])

sysIN({ filename [filetype [filemode]] I Reader})

sysPRint(filename [filetype
Terminal })]

filemode I Printer

sysPUnch({ filename filetype [filemode]] I Punch }

Dbname(dbname) (Note: Specify for
[dcssID(dcss-id)
[LOGmode (Y I A IN)
[PARMID(filename)]]

Single User Mode only)

Note: Abbreviations for keywords are in upper-case letters.

Examples:

Single User Mode:

SQLPREP COB PP(PREP=MYJOB,USERID=JERRY/SECRET,KEEP,CHECK,
PRINT,PUNCH,LC(66)) DBNAME(MYDB) IN (MYINPUT) LOG (A)

Multiple User Mode:

SQLPREP COB PP(PREP=MYJOB,USERID=JERRY/SECRET,KEEP,CHECK,
PRINT,PUNCH,LC(66))IN(MYINPUT)

The parameters of the SQLPREP EXEC are:

PLI I COBOL I ASM I FORTRAN
This parameter identifies to the EXEC which preprocessor is to be executed.
This parameter is required and must be specified first. The abbreviation for
COBOL is COB and FORTRAN is FORT. The order in which you specify
the other keywords is not important.

Preprocessing and Running the Program 189

PREPPARM

PrepParm(PREPname=program-name
(,USERid=userid/password]
({,KEEP I ,REVOKE}]
({,NOCHECK I ,CHECK}]
({,NOGRaphic I ,GRaphic}] (for PL/I and COBOL only)
[{,PRint I ,NOPRint}]
({,PUnch I ,NOPUnch}]
[{,Quote I ,APOST}] (for COBOL only)
[,LineCount(integer)]
(,ISOLation(RR I CS I USER)]
[{,BLocK I ,NOBLocK}])

These parameters are used to specify the preprocessor options. The
abbreviation for PREPPARM is PP.

PREPNAME=program-name
program-name is the name by which SOLIDS will know the access
module. The length of program-name is limited to eight characters. In
addition, program-name cannot contain the character #. Otherwise,
program-name follows the rules for formulating table and column
names (as described under "General Rules for Naming Data Objects"
on page 74. PREPNAME is a required parameter and can be
abbreviated PREP.

USERID= userid/password
userid identifies the creator of the access module to the SOLIDS data
base. The password, if specified, should agree with the one
established for this userid by an SOLIDS GRANT statement. This
information may be used in executing a CONNECT statement to gain
access to the SOLIDS data base which will determine if proper
authorization exists for the SOLIDS statements contained in the
program. The abbreviation for USERID is USER.

If the USERID option is not specified, then the VM logon userid will
be used as the creator of the access module to the SOLIDS data base.
The VM logon userid will be implicitly connected to the SOLIDS data
base. All the SOLIDS statements in the program will have their
authorization checked against the implicitly connected userid.

KEEP I REVOKE
These parameters are applicable if this program has previously been
preprocessed, and the creator has granted the RUN privilege on the
resulting access module to some other users. The KEEP parameter
causes these grants of the RUN privilege to remain in in effect when
the preprocessor produces the new access module. If you specify the
REVOKE parameter, or if the creator of the program is not entitled to
grant all the privileges embodied in the program, the preprocessor
removes all existing grants of the RUN privilege. KEEP and
REVOKE are optional; the default is KEEP. KEEP and REVOKE
have no abbreviations.

190 SQL/Data System Application Programming for VM/SP

L CHECK I NOCHECK
When the NOCHECK parameter is specified, this causes the
preprocessor to execute normally, that is, to generate modified source
code and perform access module functions. If CHECK is specified,
this parameter causes the preprocessor to check all SQL statements for
validity and generate error messages if necessary. However, the
preprocessor does not generate an access module or modified source
code. CHECK and NOCHECK are optional parameters; the default
is NOCHECK. CHECK and NOCHECK have no abbreviations.

GRAPHIC I NOGRAPHIC (PL/I and COBOL preprocessors only)
GRAPHIC indicates that the preprocessor should scan for DBCS
constants in the source statements and comments, including SQL/DS
statements. GRAPHIC must be specified if DBCS data is used in the
host language or SQL statements. GRAPHIC and NOGRAPHIC are
optional parameters; NOGRAPHIC is the default. The abbreviation
for GRAPHIC is GR and NO GRAPHIC is NOGR.

PRINT I NOPRINT
When the NOPRINT parameter is specified, this causes the
preprocessor listing output to be suppressed except for the summary
messages which are normally printed at the end of the preprocessor
listing output. PRINT specifies that the preprocessor modified source
listing output, including the summary messages, should be produced.
PRINT and NO PRINT are optional parameters; PRINT is the default.
The abbreviation for PRINT is PR and NOPRINT is NOPR.

PUNCH I NOPUNCH
When the NOPUNCH parameter is specified, this causes the
preprocessor modified source output to be suppressed. PUNCH
specifies that the preprocessor modified source output should be
produced. PUNCH and NOPUNCH are optional parameters;
PUNCH is the default. The abbreviation for PUNCH is PU and
NOPUNCH is NOPU.

QUOTE I APOST (COBOL preprocessor only)
The QUOTE preprocessor parameter should be used whenever the
QUOTE parameter is used in the COBOL compiler.

QUOTE causes the preprocessor to use double quotes (") as constant
delimiters in the VALUE clauses of the declarations it generates. The
use of a single-quote (') or a double-quote (") in SQL statements is
not affected by this parameter. If you do not specify this parameter,
the COBOL preprocessor defaults to APOST and generates
apostrophes or single-quote (') delimiters for its internal source
declarations. The abbreviation for QUOTE is Q.

LINECOUNT(integer)
The LINECOUNT option allows you to specify how many lines per
page are to be printed by the preprocessor in the output listing. The
value, integer specifies the number of lines per page value. The valid
range for this value is 10 to 32767. If no value is specified, or if there
is an error in the specification of the LINECOUNT parameter, then

Preprocessing and Running the Program 191

the default LINECOUNT value of 60 is used. The abbreviation for
LINECOUNT is LC.

ISOLA nON (RR I CS I USER)
The ISOLA nON option allows you to specify the isolation level that
your program will run at. If RR (repeatable read) is specified,
SQL/DS will hold a lock on all data read by the program in the
current logical unit of work. If CS (cursor stability) is specified,
SQL/DS will only hold a lock on the row or page of data pointed to
by a cursor. If USER is specified, the application program will control
its isolation level. The default is RR. The abbreviation for
ISOLA nON is ISOL. See "Selecting the Isolation Level" on
page 251 for guidelines on choosing the isolation level for your
program.

BLOCK I NOBLOCK
When the BLOCK parameter is specified, SQL/DS inserts and
retrieves rows in groups. This improves performance for programs
running in multiple user mode where many rows will be inserted or
retrieved. NOBLOCK tells SQL/DS not to group rows. The
abbreviation for BLOCK is BLK; for NOBLOCK it is NOBLK. The
default is NOBLOCK. BLOCK and NOBLOCK are optional
parameters. See "To Block or Not to Block?" on page 254 for
guidelines on deciding which programs to specify blocking for.

Assume, for example, you wanted to specify these preprocessor parameters:
prepname = SAMPLE1, userid = USER1, password = PW, NOPRINT,
KEEP, and default values for the remaining options. The following
parameters would be used:

PREPPARM(PREP=SAMPLE1,USER=USER1/PW,NOPRINT,KEEP)

Now, if you wanted to have a linecount of 70 and REVOKE instead of
KEEP the command would look like this:

PREPPARM(PREP=SAMPLE1,USER=USER1/PW,NOPRINT,REVOKE,LC(70»

SYSIN
Two choices exist:

1. SYSIN (filename [filetype [filemode]])

This optional parameter identifies the filename (fn) and optionally the
filetype (ft) and filemode (fm) of the CMS file containing the
preprocessor source input. The file type specification will default to the
following:

PLI -- "PLISQL "

COBOL -- "COBSQL "

ASM -- "ASMSQL "

FORTRAN -- "FORTSQL "

192 SQL/Data System Application Programming for VM/SP

The filemode specification will default to A.

If this form of the SYSIN parameter is supplied, the following eMS
FILEDEF command is issued for the preprocessor source input file:

FILEDEF SYSIN DISK fn ft fm (RECFM FB LRECL 80 BLOCK 800

2. SYSIN(READER)

This specification of the SYSIN optional parameter identifies that the
preprocessor source input file is a virtual reader file. If
SYSIN(READER) is specified, the following eMS FILEDEF command
is issued for the preprocessor source input file:

FILEDEF SYSIN READER (RECFM F LRECL 80

The abbreviation for READER is: R, RE, REA, READ, or READE.

If the SYSIN information is not specified, then the user must issue a eMS
FILEDEF command for the preprocessor source input (ddname=SYSIN)
before the SQLPREP EXEC is issued. The abbreviation for SYSIN is IN.

SYSPRINT
Three choices exist:

1. SYSPRINT(filename [filetype [filemode]])

This optional parameter identifies the filename (fn) and optionally the
filetype (ft) and filemode (fm) of the eMS file containing the
preprocessor source output listing. The filetype specification will default
to LISTPREP and the file mode specification will default to A.

If this form of the SYSPRINT parameter is supplied, the following CMS
FILEDEF command is issued for the preprocessor source output listing
file:

FILEDEF SYSPRINT DISK fn ft fm .
(RECFM FBA LRECL 121 BLOCK 1210

2. SYSPRINT(PRINTER)

This specification of the SYSPRINT optional parameter identifies that
the preprocessor source output listing file is directed to a virtual printer
file. If SYSPRINT(PRINTER) is specified, the following eMS
FILEDEF command is issued for the preprocessor source output listing
file:

FILEDEF SYSPRINT PRINTER (RECFM FA LRECL 121

The abbreviation for PRINTER is: P, PR, PRI, PRIN, PRINT, or
PRlNTE.

Preprocessing and Running the Program 193

3. SYSPRINT(TERMINAL)

This specification of the SYSPRINT optional parameter identifies that
the preprocessor source output listing file is directed to the console
terminal. If SYSPRINT(TERMINAL) is specified, the following CMS
FILEDEF command is issued for the preprocessor source output listing
file:

FILEDEF SYSPRINT TERM (RECFM FA LRECL 121

The abbreviation for TERMINAL is: T, TE, TER, TERM, TERM!,
TERMIN, or TERMINA.

If the SYSPRINT information is not specified and the preprocessor source
input file was assigned to the virtual reader, then the preprocessor source
output listing file is assigned to the virtual printer via the CMS FILEDEF
command described above.

If the SYSPRINT parameter is not specified and the preprocessor source
input file was assigned to a CMS file, then the following default CMS
FILEDEF command is issued for the preprocessor source output listing file:

FILEDEF SYSPRINT DISK fn LISTPREP A . . .
(RECFM FBA LRECL 121 BLOCK 1210

where:

fn is the filename specification used for the preprocessor source input file
and filemode is defaulted to A.

If neither SYSIN nor SYSPRINT information is specified, then the user must
issue a CMS FILEDEF command for the preprocessor source output listing
file (ddname=SYSPRINT) before the SQLPREP EXEC is issued. The
abbreviation for SYSPRINT is PRo

SYSPUNCH
Two choices exist:

1. SYSPUNCH(filename [filetype [filemode]])

This optional parameter identifies the filename (fn) and optionally the
filetype (ft) and filemode (fm) of the CMS file containing the
preprocessor modified source output. The filetype specification will
default to a value based on the preprocessor invoked, as follows:

PLI -- "PLIOPT "

COBOL -- "COBOL ,.

ASM -- "ASSEMBLE"

FORTRAN -- "FORTRAN"

The filemode specification will default to A.

194 SQL/Data System Application Programming for VM/SP

If this form of the SYSPUNCH parameter is supplied, the following
CMS FILEDEF command is issued for the preprocessor modified source
output file:

FILEDEF SYSPUNCH DISK fn ft fm
(RECFM FB LRECL 80 BLOCK 800

2. SYSPUNCH(PUNCH)

This specification of the SYSPUNCH optional parameter identifies that
the preprocessor modified source output file is to a virtual punch file. If
SYSPUNCH(PUNCH) is specified, the following CMS FILEDEF
command is issued for the preprocessor modified source output file:

FILEDEF SYSPUNCH PUNCH (RECFM F LRECL 80

The abbreviation for PUNCH is: P, PU, PUN, or PUNC.

If the SYSPUNCH information is not specified and the preprocessor source
input file was assigned to the virtual reader, then the preprocessor modified
source output file is assigned to the virtual punch via the CMS FILEDEF
command described above.

If the SYSPUNCH parameter is not specified and the preprocessor source
input file was assigned to a CMS file, then the following default CMS
FILEDEF command is issued for the preprocessor modified source output
file:

FILEDEF SYSPUNCH DISK fn ft A . . .
(RECFM FB LRECL 80 BLOCK 800

where:

In is the filename specification used for the preprocessor source input file
and filemode is defaulted to A. It is the default filetype as determined by the
previously mentioned method.

If neither SYSIN nor SYSPUNCH information is specified, then the user
must issue a CMS FILEDEF command for the preprocessor modified source
output file (ddname=SYSPUNCH) before the SQLPREP EXEC is issued.
The abbreviation for SYSPUNCH is pu.

DBNAME(dbname)
This parameter indicates that the preprocessor being invoked is to execute in
SQL/DS single user mode. It also identifies the name of the SQL/DS data
base to be accessed by the SQL statements contained in the preprocessor
source input file.

If this parameter is specified, it will be used as the DBNAME parameter for
the SQLST ART EXEC that is executed for you to start up SQL/DS in
single user mode. The SQL/DS system initialization parameters
SYSMODE=S, and PROGNAME=progname (where progname varies
according to which preprocessor is being invoked) will also be supplied in the
PARM parameter of the SQLST ART EXEC. The abbreviation for
DBNAME is: D, DB, DBN, DBNA, or DBNAM.

Preprocessing and Running the Program 195

DCSSID(dcssid)
This applies only when running a preprocessor in SOLIDS single user mode.
The parameter can only be specified if the DBNAME parameter is also
specified. This parameter identifies the method in which all SOLIDS System
modules will be loaded for execution.

If this parameter is specified, it will be used as the DCSSID parameter for
the SOLSTART EXEC. If this parameter is omitted, then no DCSSID
parameter will be passed to the SOLSTART EXEC. The abbreviation for
DCSSID is ID.

Refer to the SQLI Data System Planning and Administration for VM I SP
manual for a further description of the SOLIDS System DCSSID parameter.

LOGMODE(Y I A I N)
This applies only when running a preprocessor in SOLIDS single user mode.
The parameter can only be specified if the DBNAME parameter is also
specified. It identifies the value to be used for the SOLIDS system
initialization LOGMODE parameter when SOLIDS is started in single user
mode.

If this parameter is omitted and the DBNAME parameter is specified, the
LOG MODE parameter will not be supplied as an SOLIDS system
initialization parameter in the SOLSTART EXEC. The abbreviation for
LOGMODE is LOG.

Refer to the SQLI Data System Planning and Administration for VM I SP
manual for a further description of the SOLIDS System LOGMODE
parameter and the log mode considerations.

PARMID(filename)
This applies only when running a preprocessor in SOLIDS single user mode.
The parameter can only be specified if the DBNAME parameter is also
specified. This parameter identifies filename of a CMS file that contains
SOLIDS initialization parameters.

If this parameter is omitted and the DBNAME parameter is used, the
P ARMID parameter will not be passed as an SOLIDS initialization
parameter to the SOLSTART EXEC. PARMID has no abbreviation.

Refer to the SQLI Data System Planning and Administration for VM I SP
manual for a further description of the SOLIDS System P ARMID
parameter.

Compiling the Program

Once you have successfully preprocessed your program, you can use the standard
compilers to create an object code program. Use the modified source output from
the SOLIDS preprocessor as input to the compiler. Except as noted below, there
are no extra compiler options or procedures. necessary for compiling preprocessed """""
SOLIDS application programs.

196 SQL/Data System Application Programming for VM/SP

If your PL/I application program contains DBCS data, you must specify the
GRAPHIC option for the compiler. If your COBOL application program contains
DBCS data, the output of the SQL/DS preprocessor must be processed by the
COBOL Kanji Processing function of OS/VS Utility Program -- Kanji, Program
Product number 5799-BBA, RPQ reference number 7F0095.

If the QUOTE option is used for the SQL/DS COBOL preprocessor, it should also
be used for the COBOL compiler.

Link-Editing and Loading the Program

After compilation, programs must be loaded before they can be executed. When
loading any SQL/DS application, you must link-edit extra SQL/DS TEXT file(s).
The resource manager stub is one TEXT file that must be link-edited with aU
SQL/DS application programs. The application program communicates with
SQL/DS through the resource manager stub.

The resource manager stub routine has a filename of ARIRVSTC. This stub
routine is invoked, however, by its CSECT name ARIPRDI. To link-edit this stub
routine successfully with the user program, you must INCLUDE ARIVRSTC or
place the TEXT files in a CMS TXTLIB, which will make the entry point
ARIPRDI known to the link-edit process.

To INCLUDE a TEXT file, place the included TEXT filename(s) after the user's
program name in the CMS LOAD command. Note that the CMS LOAD
command will automatically load the needed TEXT files if the user machine has
READ access to the production minidisk. That is, the CMS LOAD command
automatically searches all accessed CMS minidisks in ascending order (A through
Z) for TEXT files that it needs. For additional information about CMS LOAD, see
the VM/SP CMS Command and Macro Reference manual.

A way to avoid specifying ARlRVSTC in the CMS LOAD command is to put
ARlRVSTC and all your application TEXT files into a TXTLIB. To create a
TXTLIB, issue the following command:

TXTLIB GEN my-lib ARIRVSTC program-name

To add new programs to a TXTLIB, issue the following command:

TXTLIB ADD my-lib program-name2 program-name3

Once a program is in a TXTLIB, issue the following commands to perform the
link-edit:

GLOBAL TXTLIB my-lib
LOAD program-name

For more information about TXTLIB, see the vAl / SP CMS Command and Macro
Reference manual.

• For aU programs written in FORTRAN, you-must also link-edit the TEXT file
ARIPEIFA.

Preprocessing and Running the Program 197

• For all programs written in COBOL, you must also link-edit the TEXT file
ARIPADR.

For all programs that include the DBS utility, you must also link-edit the TEXT
files ARISYSDC, ARIDSQLA, and ARIDDFP.

All of these TEXT files are on the SQL/DS production rninidisk (Q-disk). After
loading the SQL/DS application, you should create a module by issuing the CMS
GENMOD command. This module can be used in multiple user mode, but is not
required; it is required, however, to run in single user mode. For example, if you
wanted to create a module for a SQL/DS Assembler application program called
SAMPLEl that has been compiled and added to a TXTLIB called LIBRARYl,
you would issue the following commands:

GLOBAL TXTLIB LIBRARY1
LOAD SAMPLE 1
GENMOD SAMPLE 1

After these commands have been issued, a CMS file with a filename of SAMPLE 1
and a file type of MODULE is created.

Running your Program

Multiple User Mode

How you execute SQL/DS applications varies according to the mode in which
SQL/DS is running.

When SQL/DS has been started in multiple user mode, the user machine should
have IPLed CMS and been initialized (via the SQLINIT EXEC).

File definitions may be required if the program has any input or output files. The
CMS FILEDEF command is described in the VM/SP eMS Command and Macro
Reference manual.

If a module was created, you can execute the program by specifying the name of
the module followed by any user program parameters. For example, the following
illustrates starting an Assembler program named SAMPLEl in multiple user mode.
The user parameters are passed directly to the program:

I SAMPLE 1 parro1 parm'

If a module was not created, you can execute the program by specifying the CMS
LOAD command, as described in the previous section, then specify the CMS
START command. For example, we can execute the previous program named
SAMPLEl with the following commands:

198 SQL/Data System Application Programming for VM/SP

Single User Mode

LOAD SAMPLE1 ARIRVSTC
START SAMPLE1 parm1 parm2

Single user mode application programs are programs that run in the same machine
as the SQL/DS code and that are under the control of SQL/DS. (In this case, the
user machine and the data base machine are actually the same machine.)

Single user mode programs are invoked by starting SQL/DS via the SQLST ART
EXEC, provided by IBM. (Before invoking SQL/DS, you must issue IPL CMS.)
You must specify both the mode (SYSMODE=S) and your program name
(PROGNAME=name) when you issue the SQLSTART EXEC.

When SQLST ART is invoked, SQL/DS loads the program (identified by the
PROGNAME parameter) and passes control to it once SQL/DS is initialized. For
single user mode, only the module needs to be available.

The SQL/ Data System Operation for VM / SP manual lists all the initialization
parameters you can specify when you start SQL/DS in single user mode.
However, a system programmer might determine what the best initialization
parameters for your system are, and pass these on to you.

Following is an example of the SQLST ART EXEC for invoking programs in single
user mode with no user parameters:

SQLSTART DB (SQLDBA) PARM(SYSMODE=S,LOGMODE=A,PROGNAME=SAMPLE1)

If your program or SQL/DS ends abnormally, you may receive a "minidump"
(depending on what initialization parameters were specified). "Mini-dumps" are
described in the SQL/ Data System Planning and Administration for VM / SP
manual.

Specifying User Parameters

When starting SQL/DS in single user mode, you can also specify parameters to be
passed to your application program. You should use the P ARM keyword of the
SQLST ART EXEC for parameter input. The SQLST ART EXEC purges the CMS
program and console stacks. Therefore, any program run in single user mode
cannot rely on console or program stack input.

You must place a slash (/) between the SQL/DS parameters and the application
program parameters, as shown below:

Preprocessing and Running the Program 199

SQLSTART DB(SQLDBA) PARM(SYSMODE=S,LOGMODE=A,PROGNAME=SAMPLE1/parrn1,parrn2)

Note: eMS reads only the first 130 characters of the command line. If you must
specify many SQL/DS initialization parameters and user parameters, they will not
fit on the command line. Therefore, you must use a eMS file for some of the
parameters. Remember that SQL/DS does not permit you to specify user
parameters in a eMS file. Thus, you should specify the SQL/DS initialization
parameters in the eMS file, and the user parameters on the command line.

Further information and examples of installing VM/SP applications can be found
in the SQL/ Data System Installation for VM / SP manual.

200 SQL/Data System Application Programming for VM/SP

Testing and Debugging Concerns

Contents

Error Handling .. 202
WHENEVER ... 206

Monitoring Execution Performance 209

Testing and Debugging Concerns 201

Error Handling

As mentioned previously, SQL/DS returns a result code in the SQLCA after
executing almost every SQL statement. The only statements that do not return
SQLCODEs are SQL declarative statements. (Declarative statements aren't
executed; therefore, no SQLCODE can be returned.) BEGIN and END
DECLARE SECTION, INCLUDE SQLCA, INCLUDE SQLDA, DECLARE
CURSOR, and WHENEVER statements are all declarative. INCLUDE SQLDA is
described under "Dynamically Defined Statements" on page 147; WHENEVER is
discussed after this section. Never test for an SQLCODE after a declarative
statement.

Figure 24 is a representation of the SQLCA structure with host-language
independent data type descriptions. (Refer to the appendixes for the SQLCA data
types of a particular programming language.)

SQLCA -- a structure composed of:
SQLCAID character string of length 8
SQLCABC 31-bit binary integer
SQLCODE 31-bit binary integer
SQLERRM varying character string of maximum length 70
SQLERRP character string of length 8
SQLERRD an array composed of:

SQLERRD(1) 31-bit binary i.nteger
SQLERRD(2) 31-bit binary integer
SQLERRD(3) 31-bit binary integer
SQLERRD(4) 4-byte floati.ng point number
SQLERRD(5) 31-bit binary integer
SQLERRD(6) 31-bit binary integer

SQLWARN -- a sub-structure composed of:
SQLWARNO single character
SQLWARNl single character
SQLWARN2 single character
SQLWARN3 single character
SQLWARN4 single character
SQLWARN5 single character
SQLWARN6 single character
SQLWARN7 single character
SQLWARN8 single character
SQLWARN9 single character
SQLWARNA single character

SQLEXT character string of length 5

Note: In FORTRAN, the SQLCA structure is different. See Figure 48 on page 464 for additional
information.

Figure 24. SQLCA Structure (in Pseudo Code)

The meanings of the various fields in the SQLCA are as follows:

202 SQL/Data System Application Programming for VM/SP

SQLCAID SQL/DS sets this 8-byte field to 'SQLCA ' when your program
first uses the structure. The SQLCAID field is an eye-catcher for
programmers when a dump is used for problem determination.

SQLCABC Length of SQLCA, set by SQL/DS when your program first uses
the structure. .

SQLCODE Summarizes the result of executing the statement. In general, zero
denotes successful execution. Codes greater than zero denote
normal conditions experienced while executing the statement, such
as an end of file or some specific warning conditions. Negative
codes represent various abnormal conditions, which may have been
caused by either an error in your program or a system failure. You
should not continue if a severe error occurs. (These severe errors
are documented in the SQL/ Data System Messages and Codes for
VM/SP manual.)

SQLERRM May contain one or more character strings, separated by a X'FF' (a
hexadecimal character of all '1' bits). SQL/DS uses these character
strings internally when generating messages for its own functions.
(For example, SQL/DS uses SQLERRM when generating SQL
messages that result from executing the preprocessor or the Data
Base Services utility.) Note that applications receive SQLCODEs,
not messages.

SQLERRP

SQLERRD

The message text associated with a particular SQLCODE can be
found in the SQL/ Data System Messages and Codes for VM / SP
manual. These message texts, however, often have variables in
them (for example, &1, &2, and &3). For these cases, the
SQLERRM tokens go in the SQLCODE descriptive text. Thus, in
addition to the SQLCODE, you should also print the contents of
SQLERRM if you are handling SQL errors in a common routine.

The first two bytes of SQLERRM contain the total length of the
string (remember that SQLERRM is varying-length).

If the SQLCODE is negative, SQLERRP contains the name of the
SQL/DS routine that discovered the error. Together with
SQLERRD, this information may be helpful in diagnosing failures.

A collection of six variables that describe the current internal state
of SQL/DS. This information is helpful in diagnosing SQL/DS
failures or processing status. Only variables 1-4 are used by
SQL/DS; the last two are reserved:

1. Relational Data System (RDS) or Resource Manager return
code. (RDS and the Resource Manager are internal
components of SQL/DS.)

2. Data Base Storage System (DBSS) or Resource Manager return
code. (DBSS and the Resource Manager are internal
components of SQL/DS.)

Testing and Debugging Concerns 203

3. Number of rows processed, where applicable.

4. SOLIDS cost estimate: A relative value incorporating I/O
requirements with a weighted factor of processor requirements
for a query. When preparing a dynamically defined SOL
statement, you can use this field to determine expected relative
performance of the prepared SOL statement.

SQLWARN Characters that warn of various conditions encountered during the
processing of your statement. Alternatively, specific warnings may
be indicated by positive values in the SOLCA field, SOLCODE.
For example, a warning indicator is set when SOLIDS ignores null
values in computing an average. When SOLIDS encounters a
particular condition, it sets the corresponding warning character to
'W'; otherwise it sets the character to blank. One or more warning
characters may be set to 'W' regardless of the code returned in
SOLCODE. The meanings of the warning characters are:

SQLWARNO Set to 'w' if one or more other warning characters is
equal to 'W'. Provides a quick test for the existence
of any warning. Set to'S' if SOL WARN6 is set to
'S'.

SQLWARNI One or more of the requested data items was
truncated because of insufficient space in the host
variable you provided for output. This flag is set
only for character data items; SOLIDS truncates
certain numeric data items without setting a warning
flag or returning a negative SOLCODE. (See "Data
Conversion" on page 76 for more information.)
The data items that were truncated can be found by
examining the null indicator variables of the data
items returned. A positive value in the null indicator
denotes the actual length of the variable before
truncation.

SQLWARN2 Null values were ignored in the computation of a
built-in function (A VG, SUM, MAX, or MIN). This
flag is set only during preprocessing, never at
run-time.

SQLWARN3 The number of items in the SELECT list is not equal
to the number of target variables in the INTO
clause. The number of items returned is the
minimum of these two numbers.

SQLWARN4 An UPDATE or DELETE statement has been used
without a WHERE clause. You should verify that
the update or deletion was intended unconditionally
on the entire table.

This flag is set only during preprocessing, never at
run-time.

204 SQL/Data System Application Programming for VM/SP

SQLWARNS A WHERE clause, represented internally by one or
more search arguments, associated with a SELECT
statement has exceeded an SOLIDS internal
limitation. This means that a performance
degradation will result because SOLIDS will not
internally convert eligible predicates to search
arguments. SOLIDS may still choose to use indexes
for eligible predicates, but if not, degradation may
further be increased since a DBSPACE scan would
be used to retrieve query data.

Decreasing the number of predicates, such as by
removing unnecessary conditions which may exist in
the WHERE clause of the SELECT statement, may
alleviate this condition.

SQLWARN6 Set to 'w' if the last SOL statement executed caused
SOLIDS to terminate a logical unit of work. This
flag is not set after a ROLLBACK WORK
statement, but is set by SOLIDS when the rollback
of the logical unit of work is implicit. For example,
SOL WARN 6 is set when a logical unit of work is
backed out due to a deadlock. (Deadlocks are
explained under "SOLIDS Automatic Locking
Mechanism" on page 232.)

Set to'S' when SOLIDS issues an SOLCODE which
is considered "severe." The list of severe
SOLCODEs includes:

-805 -932 -938
-806 -933 -940
-807 -934 -941
-902 -935
-931 -937

Severe errors are those that place SOLIDS in an
unusable state. Therefore, any further attempts by
the application to access SOLIDS will cause the
application to be abnormally terminated.

SQLWARN7 Reserved for SOLIDS use.

SQLWARN8 A statement has been disqualified for blocking for
reasons other than storage. For example,
SOL W ARN8 is set if long fields or a FOR UPDATE
clause were used in a statement. (See "To Block or
Not to Block?" on page 254 for more information
on blocking.)

SQLW ARN9 Blocking was cancelled for a cursor because of
insufficient storage in the user virtual machine.

Testing and Debugging Concerns 205

WHENEVER

Formats:

SQLW ARNA Blocking was cancelled for a cursor because a ...",;;
blocking factor of at least two rows could not be
maintained.

SQLEXT Reserved for SQL/DS use.

Because there is only one return code structure in each program, you should copy
out of the structure any information that you wish to save before the next SQL
statement is executed. Of particular note are the SQLCODE and the warning
indicators (SQLWARN). An SQL statement (called WHENEVER) allows you to
detect abnormal conditions and take appropriate action.

WHENEVER SQLERROR {STOP I CONTINUE I {GO TOIGOTO} statement-label}

WHENEVER SQLWARNING {STOP I CONTINUE I {GO TOIGOTO} statement-label}

WHENEVER NOT FOUND {CONTINUE I {GO TOIGOTO} statement-label}

Note: The STOP condition is not valid for FORTRAN applications.

Examples:

WHENEVER SQLERROR GOTO ERRORX
WHENEVER SQLWARNING CONTINUE
WHENEVER NOT FOUND CONTINUE

Authorization:

Anyone connected to SQL/DS can issue this statement.

The WHENEVER statement lets you specify an action to be taken depending on
what SQL/DS returns in the SQLCA. The WHENEVER statement is declarative;
it is not executed at run-time and returns no SQLCODE.

The keywords SQLERROR, SQLWARNING, and NOT FOUND in the statement
syntax above identify some SQLCA condition. The SQLERROR condition exists
when SQL/DS has set SQLCODE to a negative value. The SQL WARNING
condition exists when SQL/DS sets SQL W ARNO to 'W'. The NOT FOUND
condition exists when SQLCODE is set to 100.

The braced keywords define the action to be taken whenever the specified SQLCA
condition occurs:

206 SQL/Data System Application Programming for VM/SP

STOP

CONTINUE

causes program termination. If a logical unit of work is in
progress, it is rolled back. Note that you can't specify STOP
for WHENEVER NOT FOUND or in FORTRAN
applications.

causes the next sequential program instruction to be executed.
(The SQLCA condition is ignored.) If a fatal error is
encountered, however, the program should go no further.
Fatal errors are documented in the SQL/ Data System
Messages and Codes for VM / SP manual.

GO TO (or GOTO) causes control to pass to the statement at the specified label.
The statement label cannot exceed 18 characters unless the
host language has additional limitations.

If you don't write a WHENEVER statement, SQL/DS acts as if you had coded the
following statements in your program:

WHENEVER SQLERROR CONTINUE
WHENEVER SQLWARNING CONTINUE
WHENEVER NOT FOUND CONTINUE

The scope of a WHENEVER statement is determined by its position in the source
program listing, not by its placement in the logic flow. (This is because
WHENEVER is a declarative statement.) For example:

DO WHILE (X > Y)
EXEC SQL CREATE INDEX 11 ON SUPPLIERS (NAME)

•
(host language code)

•
•

EXEC SQL DELETE FROM QUOTATIONS
WHERE PRICE > 2000

EXEC SQL WHENEVER SQLERROR STOP
•

(host language code)
•
•

EXEC SQL SELECT SUPPNO, NAME FROM SUPPLIERS ...
•

(host language code)
•
•

EXEC SQL WHENEVER SQLERROR CONTINUE
END-DO
EXEC SQL DROP INDEX 11

In the pseudo code program fragment above, the scope of the first WHENEVER is
only the SELECT statement. The second WHENEVER applies to the DROP
INDEX statement (and to all SQL statements that follow it -- until another
WHENEVER is encountered). The CREATE INDEX and DELETE statements
are not covered by a WHENEVER (there is no preceding WHENEVER);
therefore, the default SQLERROR CONTINUE action applies. Note that the
scope of the WHENEVER is independent of the execution sequence of statements.

You can test the elements of the SQLCA for general or specific warning or error
conditions in addition to or instead of using the WHENEVER statement. To do

Testing and Debugging Concerns 207

this, use a WHENEVER statement with a CONTINUE or GOTO somewhere in J
the source program before the SQL statements for which you want to directly
examine the SQLCA. For example, Figure 25 shows pseudo code for a typical
error handling routine:

EXEC SQL WHENEVER SQLERROR GO TO LAB X
•
•
•

LABX SAVE SQLCODE
EXEC SQL WHENEVER SQLERROR CONTINUE
EXEC SQL ROLLBACK WORK RELEASE
DISPLAY ('PROGRAM TERMINATED. SQLCODE IS:')
DISPLAY (SAVE)
STOP

Figure 25. Pseudo-Code Error Handling Routine

On an SQLERROR condition, control passes to LABX. The SQLCODE is
immediately saved because SQLCODE is changed when the ROLLBACK WORK
is executed. (WHENEVER statements never return an SQLCODE.) The
WHENEVER SQLERROR CONTINUE statement prevents a program loop
resulting from ROLLBACK WORK producing an error. Once the logical unit of
work is rolled back, informational messages are displayed and the program
terminates.

As noted earlier, SQL declarative statements never return an SQLCODE. You
should never test for an SQLCODE after these statements. You should, however,
examine the SQLCA for all data manipulation statements. INSERT and UPDATE
statements, in particular, can fail after processing some rows of a table. In that
case, you would usually issue a ROLLBACK WORK before you terminate your
program so the data base isn't left in a partially updated state. If you omit the
WHERE clause in a DELETE statement, SQL/DS sets SQLWARN4 on so that
you have a chance to verify that all the rows of the table are to be deleted.

Another reason an application might want to process the SQLERROR condition is
for graceful cleanup and termination. An example of this is the SQL/DS ISQL
transaction. Rather than terminating the ISQL session, the user is given an error
message and allowed to proceed. In fact, in some cases, the terminal user is given
the opportunity to indicate whether backout is necessary or not.

Refer to the SQL/Data System Messages and Codes for VM/SP manual for all
SQLCODE descriptions.

208 SQL/Data System Application Programming for VM/SP

Monitoring Execution Perfonnance

You can use an EXPLAIN command to retrieve information about the structure
and execution performance of SQL commands. The EXPLAIN command can be
coded into COBOL, PL/I, Assembler, and FORTRAN programs. (It can also be
issued via the DBS utility or ISQL.)

The EXPLAIN command accepts as an argument another SQL command. When
executed, the EXPLAIN command analyzes the performance and structure of an
SQL command and places the information into one or more SQL/DS explanation
tables. This information can be used to:

Analyze request loads

Estimate the size of responses

Separate queries into their subquery structures

• Obtain costs for statements

Assist in data base design

• Determine when a program needs to be preprocessed again.

The format for the EXPLAIN command is as follows:

EXPLAIN explain-spec [SET QUERYNO small-integer-value] FOR sql-command

explain-spec
is the name of the explanation table(s) into which information is to be
placed. explain-spec may include one or more of the following options,
separated by commas:

REFERENCE for information contained in the REFERENCE TABLE

STRUCTURE for information contained in the STRUCTURE TABLE

COST for information contained in the COST TABLE

PLAN for information contained in the PLAN TABLE

ALL for information contained in all of the above tables.

smaU-integer-value
is an integer constant that can fit into a SMALLINT field. The SET
QUERYNO clause allows you to place an integer value into the QUERYNO
fields of the rows in the explanation tables. Assigning a different number on
each EXPLAIN will make it easier to identify information collected.

Testing and Debugging Concerns 209

sql-command ...,.)
is the SQL command to be analyzed. You can analyze UPDATE, DELETE,
and INSERT commands as well as SELECT commands. (SELECT
commands are considered the primary candidates for EXPLAIN analysis).
sql-command is not a quoted string and must not be put in a host variable.

The length of the SQL statement is limited to about 8000 characters.

To use the EXPLAIN command, you must own an explanation table for each of
the specified explain-spec options. For example, if you use the COST and
STRUCTURE options, you must own a COST_TABLE and a
STRUCTURE_TABLE. If you don't own the needed tables, EXPLAIN has no
effect, and returns an error code.

The result tables built by the EXPLAIN command are created during preprocessing
of the containing program. After preprocessing, execution of an EXPLAIN
command has no meaning and the results are unpredictable. Nevertheless, you can
PREPARE/EXECUTE or EXECUTE IMMEDIATE an EXPLAIN command.

For additional information on using the EXPLAIN command, refer to the
SQL/ Data System Planning and Administration for VM / SP manual.

210 SQL/Data System Application Programming for VM/SP

Putting the Program into Production

Contents

Authorization ... 213
When Does a Creator Get the RUN Privilege? 213
When Does a Creator Get the GRANT Option? 214
How SQL/DS Uses the Catalogs for Program Authorization 215
How SQL/DS Implements Program Authorization 216
Decision Tables Used to Determine Program Authorization 216

ACQUIRE DB SPACE 217
ALTER DBSPACE .. 217
ALTER TABLE .. 218
COMMENT .. 218
CREATE INDEX ... 219
CREATE TABLE ... 219
DELETE .. 220
INSERT ... 221
SELECT .. 222
UPDATE .. 224
LOCK DBSPACE ... 225
LOCK TABLE ... 226

Data Control .. 226
Acquiring a DBSPACE 227
Dropping a DBSPACE .. 230
Changing DBSPACE Characteristics 231
SQL/DS Automatic Locking Mechanism 232
Ending the Logical Unit of Work 232

COMMIT WORK ... 233
ROLLBACK WORK 234

Using the LOCK Statement to Override Automatic Locking 235
Use of Long Fields ... 236
Updating Internal Statistics 237

Data Definition .. 237
Creating a Table ... 238
Adding a Column to a Table 241
Dropping a Table .. 241
Creating an Index .. 242
Dropping an Index ... 245
Creating a Synonym .. 245
Dropping a Synonym ... 246
Putting Comments into SQL/DS Catalogs 247

Putting the Program into Production 211

Putting Labels on Tables or Columns 249 'IfIIIIIII
Performance Considerations 250

Selecting the Isolation Level 251
To Block or Not to Block? 254

Including External Source Files 255
Including Secondary Input 255

212 SQL/Data System Application Programming for VM/SP

Authorization

As you know, all SQL/DS programs must be preprocessed before they are
compiled or assembled. As a result of a preprocessor run, SQL/DS creates an
access module. SQL/DS uses the access module to satisfy data base requests at
run time. When a program is preprocessed, SQL/DS also determines who has the
capability to run the access module. SQL/DS bases this determination on the type
of access requested. That is, SQL/DS considers the statement used, the ownership
of the accessed objects, and other factors when determining who can run an access
module, and who can't. This section describes this determination process.

When Does a Creator Get the RUN Privilege?

At the completion of the preprocessor run, SQL/DS tells the creator whether or
not an access module was generated. SQL/DS generates an access module and
gives the creator the RUN privilege for it if:

1. All referenced objects exist when the program is preprocessed; and,

2. The creator has explicit authorization for all SQL statements used in the access
module.

There are other cases where the RUN privilege is possible. In these cases,
however, successful execution depends on the existence of the objects and the
authority of the creator at run time. This is because SQL/DS marks certain
statements for re-checking at run time if the above requirements for the RUN
privilege are not met when the program is preprocessed. Here are a few specific
examples of operations that allow the RUN privilege (with a subsequent re-check):

• A non-existing table (at preprocess time) is referenced, and an explicit qualifier
is used to indicate the creator of the table. The creator specified is not the
creator of the program.

• A creator with DBA authority creates an index on a non-existing (at
preprocess time) table.

A creator with DBA authority codes INSERT, DELETE, UPDATE, or
SELECT statements that refer to a non-existing (at preprocess time) table.

• A creator with DBA authority refers to a table in a WHERE clause. The
creator, however, lacks explicit authority.

How SQL/DS determines whether to grant the RUN privilege in such cases is not
covered by a single formula. Rather, decision tables are used for each SQL
statement. The decision tables are presented in a later section.

Putting the Program into Production 213

When Does a Creator Get the GRANT Option?

In addition to the RUN privilege, SOLIDS may also give a creator the GRANT
option. The GRANT option is also a privilege of sorts. The GRANT option allows
the creator to grant the RUN privilege of the access module to other users. In
following discussions, the RUN privilege with the GRANT option is called the
GRANT RUNprivilege.

As with RUN authority, SOLIDS uses decision tables to determine when a creator
receives the GRANT RUN privilege. These decision tables are in a later section.

Following are some of the circumstances that allow a creator to gain the GRANT
RUN privilege:

• SOL statements in the program require RESOURCE authority, and the creator
has RESOURCE authority.

• All objects that are referred to in the program exist when the program is
preprocessed.

• The creator has the necessary authority (with the GRANT option) to access
any referenced object that the creator does not own.

• The preprocessor run did not result in any error diagnostics.

• No statements required DBA authority. The following are examples of
operations that require DBA authority:

Acquiring a PUBLIC DBSPACE

Creating a table in another user's DBSP ACE or in a SYSTEM DBSPACE

Acquiring a DBSPACE for another user

Altering another user's table when the creator doesn't have explicit
ALTER authority on the table

Locking another user's DBSPACE

Commenting on another user's table

Dropping another user's object

Locking another user's table

Altering another user's DB SPACE

Creating an index on another user's table when the creator doesn't have
explicit INDEX authority on that table

Creating a table for another user

214 SQL/Data System Application Programming for VM/SP

Inserting, deleting, or updating another user's table when the creator
doesn't have the explicit authority to do so.

Note: The following statements also require DBA authority. These statements,
however, do not affect the RUN privilege, because they are not checked until
execution time:

• ALTER DBSPACE when the creator qualifier is not given

• LOCK DB SPACE when the creator qualifier is not given

• DROP DBSPACE when the creator qualifier is not given

• CREATE TABLE in someone else's DBSPACE or in a SYSTEM DB SPACE
when the DBSPACE creator qualifier is not given.

How Sal/OS Uses the Catalogs for Program Authorization

SOL/OS records the current RUN and GRANT RUN privileges held by all users in
the SYSPROGAUTH SOL/OS catalog. The entries in the catalog identify:

• The grantor

• The grantee

• The access module that is the subject of the RUN privilege

• A marker indicating that the grantee holds either RUN ('Y') or GRANT RUN
('G') authority.

The entries are added to the catalog when a preprocessor run completes. The
entries made depend, of course, on whether the program satisfies the various
conditions described in the preceding sections. SOL/OS also makes entries in the
SYSPROGAUTH catalog when a user grants the RUN privilege to another user.

SOL/OS also updates the SYSUSERAUTH, SYSCOLAUTH, and SYSTABAUTH
catalogs. In these catalogs, SOL/OS records the program's dependency on some
authorization. For example, when a program requires RESOURCE authority to
execute successfully, SOL/OS makes an entry in SYSUSERAUTH to reflect that
dependency. The catalog entries help SOL/OS keep track of which access modules
are valid, and which are invalid.

It should be noted that SYSTEM is the owner of all catalog tables; you must
qualify all catalog tables with that name, unless you have a synonym defined. All
SOL/OS catalogs are described in the SQL/ Data System Planning and
Administration for VM / SP manual.

Putting the Program into Production 215

How Sal/OS Implements Program Authorization

As noted earlier, SOL/OS uses decision tables to determine whether the creator is
authorized to execute a given statement. At preprocess time, SOL/OS evaluates
each statement and assigns it an authorization "score." At the end of the
preprocessor run, SOL/OS picks the lowest "score" of all the statements.
SOL/OS uses the low score as the program's authorization. There are three
possible scores for each statement:

'G' means that the creator has the necessary authorization for this
statement such that the creator can receive the GRANT RUN
privilege.

'V' means that the creator has the necessary authorization for this
statement such that the creator can receive the RUN privilege, but not
the GRANT option.

'D' means that the creator must have DBA authority to execute the
program containing this statement. No entry is made in the
authorization catalogs.

'G' is the highest score, followed by 'Y', followed by '0'. For example, suppose a
program contains three statements. On two of the statements, the creator receives
a 'G', but on the third statement, the creator receives a 'Y'. In this case, SOL/OS
assigns the program a 'Y' (the lowest score). The 'Y' means that the creator can
run the program, but cannot grant the RUN privilege on the program to another
user.

'G', 'Y', and '0' are used in the following decision tables. In addition, "N/ A" is
used. "N/ A" stands for "Not Applicable."

Some entries in the decision tables indicate a letter value, but also indicate that a
negative SOLCODE will be returned. In these cases, the statement still receives
the letter "score," but the negative SOLCODE means that SOL/OS will re-check
the statement at execution time.

Note: -204 SOLCODE results in an ARI5871 message during a preprocessor run.

Decision Tables Used to Determine Program Authorization

This section contains the decision tables that SOL/OS uses to determine whether
to grant the RUN privilege. A decision table is presented for each applicable SQL
statement.

When reading the following charts, remember that the creator (or author) is the
user who preprocessed the program.

216 SQL/Data System Application Programming for VM/SP

L ACQUIRE DBSPACE

ALTER DBSPACE

DBSPACE Owner

ority
f

Auth
o

Cre ator

A

B

C

L-...,
V

DBA

RESOURCE

None of
Above

l >

PUBLIC

D

G and
-551 SQLCODE

the G and
-551 SQLCODE

2 3

PRIVATE

Owner is Owner is not
Creator Creator

G D

G G and
-551 SQLCODE

G and G and
-552 SQLCODE -551 SQLCODE

For cases A2 and B2, SQL/DS makes an entry in the SYSUSERAUTH catalog
with RESOURCE set to 'Y'. The entry indicates the program's dependency.

Au

Cr

A

B

thor i ty
of
eator:

DBA

Non-DBA

DBSPACE
Owner

L > No Owner
Specified

G

G

2 3

Creator Creator is
is Owner not Owner

G D

G G and -551
SQLCODE

Putting the Program into Production 217

ALTER TABLE

COMMENT

Au

Cr

A

B

C

D

Owner of
T bl a e

L>
thority
of
eator:

, DBA and no
AL TER author i ty

AL TER author i ty

ALTER authority
wi th GRANT
option.

No DBA and
no ALTER
authority

SYSTEM

D

N/A

N/A

G and
-552
SQ.LCODE

2 3 4

Owner is Owner is
NOT the the
creator of creator of Table
this this does not
program program exist

D N/A D

Y N/A N/A

G G N/A

G and N/A G and
-551 -551
SQ.LCODE SQ.LCODE

For cases B2, C2, and C3, SQL/DS makes entries in the SYSTABAUTH catalog
with the ALTERAUTH columns set to 'Y'. The entries represent this program's
dependency on ALTER authority.

Au h t ority

Cr

A

B

of
eator:

DBA

Non-DBA

Object
Owner

L >

2

Creator is Creator is
not Owner Owner

D G

G and -551 G
SQ.LCODE

218 SQL/Data System Application Programming for VM/SP

~ CREATE INDEX

CREATE TABLE

2 3 4
Table on h h w ic
index is

based I: Table Exists Table Not Created

Creator Creator Creator Creator
Authority is is not is is not
of Creator: Owner Owner Owner Owner

A DBA, no INDEX N/A D G and Y and
authority -204 -204

SQLCODE SQLCODE

B Non-DBA, INDEX author- G G N/A N/A
ity with GRANT option

C Non-DBA, INDEX N/A Y N/A N/A
authority

D Non-DBA, no INDEX N/A G and G and Y and
authority -551 -204 -204

SQLCODE SQLCODE SQLCODE

For cases BI, B2, and B3, SQL/DS makes an entry in the SYSTABAUTH catalog
with the INDEXAUTH column set to 'Y'.

Note that it is possible for an owner of a table to create an index on that table in
the name of another user. This is true even if the table owner does not have DBA
authority.

A

B

Owner of
TABLE

Authority ~
of Creator:

DBA

Non-DBA

> Creator
SYSTEM

-550
SQLCODE

-550
SQLCODE

2 3

is Creator is Creator is
Owner not Owner

G D

G G and -551
SQLCODE

In cases A I and B I SQL/DS no access module is created.

Putting the Program into Production 219

DELETE

There are two decision tables that apply to DELETE:

Table from Which DELETE Is Made

Au
of

A

B

C

D

Table to
which DELETE
is app lied

~:
thority
Author:

DBA, no
DELETE
authority

Non-DBA,
DELETE
wi th GRANT
Option

Non-DBA,
DELETE
authority

Non-DBA,
no DELETE
authority

Owner is

TNAME
is SYS-
CATALOG

D

N/A

N/A

G and
-552
SQLCODE

2 3 4

System Table Exists

TNAME is Author Author
not SYS- is is not
CATALOG Owner Owner

G and N/A D
-823
SQLCODE

G and G G
-823
SQLCODE

G and N/A Y
-823
SQLCODE

G and N/A G and
-823 -551
SQLCODE SQLCODE

5 6

Table not
Created

Author Author
is is not
Owner Owner

G and Y and
-204 -204
SQLCODE SQLCODE

N/A N/A

N/A N/A

G and Y and
-204 -204
SQLCODE SQLCODE

In cases B3, B4, and C4, SQL/DS makes entries in the SYSTABAUTH catalog.
The entries have the DELETEAUTH column set to 'Y' to indicate the program's
dependency.

For cases AI, A2, A3, and A4, the SYSPROGAUTH entry is made, but the -823
SQLCODE indicates that the statement will always fail on subsequent re-checks
during execution.

Tables Referenced in the WHERE Clause: Note that the authorization
checking in the previous decision table precedes the logic of this table. If the first
decision table yields a negative SQLCODE, processing stops. Otherwise, SQL/DS
applies the lowest level of authorization gained from the two decision tables.

220 SQL/Data System Application Programming for VM/SP

INSERT

2 3 4
Table in
WHERE clause Table Exists Table Not Created

I > Author Author Author Author
Authority is is not is is not
of Author: Owner Owner Owner Owner

DBA, no SELECT N/A Y G and Y and
authority -204 -204

A

SQLCODE . SQLCODE

B Non-DBA, SELECT G G N/A N/A
authority with GRANT
option

C Non-DBA, SELECT N/A Y N/A N/A
authority

D Non-DBA, no SELECT N/A G and G and Y and
authority -551 -204 -204

SQLCODE SQLCODE SQLCODE

In cases Bl, B2, and C2, SQL/DS makes entries in the SYSTABAUTH catalog.
These entries have the SELECT AUTH column set to 'Y' to indicate the program's
dependency.

In case A2, SQL/DS makes an entry in the SYSUSERAUTH catalog to show the
program's dependency on DBA authority.

There are two decision tables that apply to INSERT:

Table into Which the INSERT Is Made

Au
of

A

B

C

D

Table to which
INSERT is
app 1 i ed

I
thority
Author:

DBA, no INSERT
authority

Non-DBA, INSERT
authority with
GRANT Option

Non-DBA, INSERT
authority

Nori-DBA, no
INSERT authority

>

2 3

Table Exists

Owner Author Author
is is is not
SYSTEM Owner Owner

D N/A D

G and G G
.,..552
SQLCODE

G and N/A Y
-552
SQLCODE

G and N/A G and
-552 -551
SQLCODE SQLCODE

4 5

Table Not Created

Author Author
is is not
Owner Owner

G and Y and
-204 -204
SQLCODE SQLCODE

N/A N/A

N/A N/A

G and Y and
-204 -204
SQLCODE SQLCODE

Putting the Program into Production 221

SELECT

In cases B2, B3, and C3, SQL/DS makes entries in the SYST ABAUTH catalog.
The entries have the INSERTAUTH column set to 'Y' to indicate the program's
dependencies.

Tables Referenced in the WHERE Clause: Note that the authorization
checking in the previous decision table precedes the logic of this table. If the first
decision table yields a negative SQLCODE, processing stops. Otherwise, SQL/DS
applies the lowest level of authorization gained from the two decision tables.

2 3 4
Table in
WHERE clause Table Exists Table Not Created

I > Author Author Author Author
Authority is is not is is not
of Author: Owner Owner Owner Owner

A DBA, no SELECT N/A Y G and Y and
authority -204 -204

SQLCODE SQLCODE

B Non-DBA, SELECT G G N/A N/A
authority with GRANT
option

C Non-DBA, SELECT N/A Y N/A N/A
authority

Non-DBA, no SELECT N/A G and G and Y and
authority -551 -204 -204

D

SQLCODE SQLCODE SQLCODE

In cases BI, B2, and C2, SQL/DS makes entries in the SYSTABAUTH catalog.
These entries have the SELECT AUTH column set to 'Y' to indicate the program's
dependency.

In case A2, SQL/DS makes an entry in the SYSUSERAUTH catalog to show the
program's dependency on DBA authority.

There are two decision tables that apply to SELECT:

Tables in the FROM List

222 SQL/Data System Application Programming for VM/SP

2 3 4
Tables in the
FROM list Table Exists Table Not Created

I > Author Author Author 'Author
Authority is is not is is not
of Author: Owner Owner Owner Owner

DBA, no SELECT N/A Y G and Y and
authority -204 -204

SQLCODE SQLCODE

A

B Non-DBA, SELECT G G N/A N/A
authority with GRANT
option

C Non-DBA, SELECT N/A Y N/A N/A
authority

Non-DBA, no SELECT N/A G and G and Y and
authority -551 -204 -204

D

SQLCODE SQLCODE SQLCODE

In cases Bl, B2, and C2, SQL/DS makes entries in the SYSTABAUTH catalog.
The entries have the SELECTAUTH column set to 'Y' to indicate the program's
dependency.

In case A2, there are some instances where a 'Y' entry is made in the DBAAUTH
field of the SYSUSERAUTH catalog, showing program dependencies on DBA
authority.

Tables Referenced in the WHERE Clause: Note that the authorization
checking in the previous decision table precedes the logic of this table. If the first
decision table yields a negative SQLCODE, processing stops. Otherwise, SQL/DS
applies the lowest level of authorization gained from the two decision tables.

2 3 4
T bl a e In
WHERE clause Table Exists Table Not Created

I > Author Author Author Author
Author i ty is is not is is not
of Author: Owner Owner Owner Owner

A DBA, no SELECT N/A Y G and Y and
authority -204 -204

SQLCODE SQLCODE

B Non-DBA, SELECT G G N/A N/A
authority with GRANT
option

C Non-DBA, SELECT N/A Y N/A N/A
authority

D Non-DBA, no SELECT N/A G and G and Y and
authority -551 -204 -204

SQLCODE SQLCODE SQLCODE

Putting the Program into Production 223

UPDATE

In cases BI, B2, and C2, SOL/DS makes entries in the SYSTABAUTH catalog. '<ffttIIII#
These entries have the SELECTAUTH column set to 'Y' to indicate the program's
dependency.

In case A2, SOL/DS makes an entry in the SYSUSERAUTH catalog to show the
program's dependency on DBA authority.

There are two decision tables that apply to UPDATE:

Tables on Which the Update Is Made

2 3 4
T bl h h a e on w ic
UPDATE is made Table Exists Table Not Created

I > Author Author Author Author
Authority is is not is is not
of Author: Owner Owner Owner Owner

A DBA, no UPDATE N/A D G and Y and
authority -204 -204

SQ.LCODE SQ.LCODE

B Non-DBA, UPDATE G G N/A N/A
authority with GRANT
option

C Non-DBA, UPDATE N/A Y N/A N/A
authority

Non-DBA, no UPDATE N/A G and G and Y and
authority -551 -204 -204

D

SQ.LCODE SQ.LCODE SQ.LCODE

In cases BI, B2, and C2, SOL/OS makes entries in the SYSCOLAUTH catalog
and the SYSTABAUTH catalog. These entries show that the program depends on
UPDATE authority (the UPDATEAUTH column) for specific columns. SOL/OS
makes the entries without setting the GRANT option to 'Y'.

Tables Referenced in the WHERE Clause: Note that the authorization
checking in the previous decision table precedes the logic of this table. If the first
decision table yields a negative SOLCODE, processing stops. Otherwise, SQL/DS
applies the lowest level of authorization gained from the two decision tables.

224 SQL/Data System Application Programming for VM/SP

LOCK OBSPACE

2 3 4
Table in
WHERE clause Table Exists Table Not Created

I > Author Author Author Author
Authority is is not is is not
of Author: Owner Owner Owner Owner

DBA, no SELECT N/A Y G and Y and
authority -204 -204

A

SQLCODE SQLCODE

B Non-DBA, SELECT G G N/A N/A
authority with GRANT
option

C Non-DBA, SELECT N/A Y N/A N/A
authority

D Non-DBA, no SELECT N/A G and G and Y and
authority -551 -204 -204

SQLCODE SQLCODE SQLCODE

In cases Bl, B2, and C2, SQL/DS makes entries in the SYSTABAUTH catalog.
These entries have the SELECTAUTH column set to 'V' to indicate the program's
dependency.

In case A2, SQL/DS makes an entry in the SYSUSERAUTH catalog to show the
program's dependency on DBA authority.

A

B

Authority

DBSPACE
Owner

L-
of Author:

DBA

Not DBA

>

2

Author is Author is
Owner not Owner

G D

G G and -551
SQLCODE

Putting the Program into Production 225

LOCK TABLE

Data Control

Owner of
Table 2 3

Au h t orlty L of > Owner is Owner is Table does
Au thor: Author not Author not Exist

A DBA, and no N/A D D
.SELECT authority

B Non-DBA, SELECT G G N/A
authority with
GRANT option

C Non-DBA, SELECT N/A Y N/A
authority

D Non-DBA, no N/A G and -551 G and -551
SELECT SQLCODE SQLCODE
authority

For cases BI, B2, and C2, SQL/DS makes entries in the SYSTABAUTH catalog.
The entries have the SELECTAUTH column set to 'Y' to show the program's
dependency.

SQL Data Control statements manage logical units of work and DBSPACEs, which
are units of space. More specifically, with data control statements you can:

• Acquire and drop DB SPACEs (ACQUIRE DBSPACE and DROP DB SPACE)

• Change DB SPACE characteristics (ALTER DB SPACE)

End a logical unit of work and either commit or rollback the changes you made
(COMMIT WORK and ROLLBACK WORK)

• Override the SQL/DS automatic locking mechanism (LOCK)

• Update internal statistics (UPDATE STATISTICS).

Thus, data control statements affect the areas in which your tables and program
access modules reside. They also affect the way in which programs work with the
data base.

226 SQL/Data System Application Programming for VM/SP

Acquiring a DBSPACE

Format:

ACQUIRE {PUBLIC I PRIVATE} DBSPACE

NAMED [owner.]dbspace-name

""""
([NHEADER PAGES

PCTINDEX
PCTFREE
LOCK
STORPOOL

= {~Iinteger} 1)
= {128Iinteger}
= {33Iinteger}
= {12linteger}
= {PAGEl size}
= {integer}

-

-

The LOCK parameter is applicable to PUBLIC DBSPACEs only.

Example:

ACQUIRE PRIVATE DBSPACE NAMED MFBSPACE
(STORPOOL=3, PCTFREE=25)

Authorization:

You must have DBA authority to acquire either a PUBLIC DBSPACE or a DBSPACE for another
user. You must have RESOURCE authority to acquire a PRIVATE DBSPACE.

The ACQUIRE DBSPACE statement causes SQL/DS to find an available
DB SPACE of the requested type (PUBLIC or PRIVATE) and give it the
dbspace-name you specify. The dbspace-name must be an SQL identifier, as
described in Chapter 1; you can use it to refer to the DBSPACE in other SQL
statements, such as CREATE TABLE.

If the DBSPACE type is PUBLIC, its owner becomes PUBLIC; if the type is
PRIVATE, its owner becomes the user who preprocessed the program in which the
ACQUIRE DBSPACE is embedded. DBSPACE names must be unique within all
the DB SPACEs owned by the same user, but may duplicate the name of a
DBSPACE owned by another user.

If you have DBA authority, you can acquire a DBSPACE for another user by
concatenating the userid to the dbspace-name:

ACQUIRE PRIVATE DBSPACE NAMED JONES.SPACEl

In the above statement, the owner of the DBSPACE is user JONES. User JONES
can refer to it as simply SPACEl.

Putting the Program into Production 227

You can optionally specify the following properties of a DBSPACE. If you specify
more than one, you can specify them in any order. You must separate the
parameters with commas.

NHEADER

PAGES

PCTINDEX

Number of Header Pages. The number of 4096-byte logical
pages in the DBSPACE that SQL/DS reserves for header pages.
SQL/DS uses header pages to record information about the
contents of the DB SPACE.

Notes:

1. NHEADER cannot be larger than eight pages.

2. If NHEADER is not specified, the default is eight pages.

3. You cannot change NHEADER after the DBSPACE has been
acquired. If you choose a small number for NHEADER, it
may limit the number of different tables that can be created in
the DBSPACE.

Number of Pages. The minimum number of 4096-byte logical
pages you require for this DBSPACE.

Notes:

1. SQL/ DS may actually give you more pages than you request
because it acquires storage in units of 128 pages. However, of
the available DBSPACEs, the one chosen will be the smallest
that will satisfy the size specified for PAGES. SQL/DS
determines the number of pages you receive by rounding the
number you specify to the next higher multiple of 128 pages.
For example, if you specify PAGES=53, SQL/DS acquires a
block of 128 pages. If you specify PAGES=130, SQL/DS
acquires 256 pages.

2. If you do not specify PAGES, SQL/DS acquires the smallest
available DB SPA CE (128 pages) by default.

Percentage of Index Pages. The percentage of all pages in the
DBSPACE that SQL/DS is to reserve for the construction of
indexes.

Notes:

1. If you don't specify PCTINDEX, the default is 33 percent.

2. You cannot change PCTINDEX after the DBSPACE has been
acquired. If you choose a small number for PCTINDEX, it
may limit the number of indexes that can be created on tables
in the DBSPACE. (If you find that the PCTINDEX is too
small, you can acquire another DBSPACE and move the data
to it.)

228 SQL/Data System Application Programming for VM/SP

PCTFREE

LOCK

Percentage of Free Space. The percentage of the space on each
page that SQL/DS is to keep empty when data is inserted into
the DBSPACE.

Notes:

1. If you don't specify PCTFREE, the default is 15 percent.

2. Typically a user might acquire a DBSPACE with PCTFREE
set to some value such as 25 percent. The DBSPACE is then
loaded with data via the Data Base Services utility (described in
the SQL/Data System Data Base Services Utility for VM/SP
manual). SQL/ DS ensures that at least 25 percent of the
space on each page is left empty. After the initial loading of
the DBSPACE, the user can set PCTFREE to zero by means
of the ALTER DBSPACE statement (described later). Then,
in subsequent insertions, SQL/ DS is free to place new data in
the space reserved during initial loading. Using reserved free
space in this way results in a more favorable physical clustering
of data on pages when the data is loaded, and, therefore,
improves access time. The SQL/ Data System Planning and
Administration for VM / SP manual discusses data clustering in
more detail.

3. The value of PCTFREE is critical during mass insertion of
data into a DBSPACE (for example, a DBS Utility
DATALOAD command). Refer to the appendix "Estimating
the Number of Data Pages Required" in SQL/ Data System
Planning and Administration for VM / SP for more information
on the DBSPACE percent free specification.

Lock Size. Applicable to PUBLIC DBSPACEs only.
(PRIVATE always locks a DBSPACE.) The valid specifications
for size are DBSPACE, PAGE, and ROW.

Notes:

1. The lock size determines the size of the locks that SQL/ DS
acquires when a user reads or updates data. If you specify
Raw, SQL/ DS locks only an individual row in the table;
PAGE or DBSPACE cause the smallest lockable unit to be a
page (4096 bytes) or a DBSPACE, respectively. Key level
locking is used for indexes or tables in DBSPACEs for which
row [evellocking is specified.

2. In general, larger locking units (for example, DBSPACE)
cause less overhead to be spent in acquiring locks, but also limit
concurrency.

3. The default LOCK for each PUBLIC DBSPACE is PAGE.

Putting the Program into Production 229

STORPOOL Storage Pool Number. This parameter indicates that SQL/DS
must acquire this DBSPACE from the specified storage pool.

Notes:

1. If a DBSPACE of the specified type and size is not available in
this storage pool, the ACQUIRE DBSPACE is not successful;
SQLI DS returns a negative SQLCODE.

2. If you don't specify STORPOOL, SQLIDS acquires a
DBSPACE of the correct type and size from any recoverable
storage pool. To acquire a DBSPACE from a non-recoverable
storage pool, you must specify the STORPOOL parameter.

3. You can also define storage pools that are not recoverable.
Non-recoverable data reduces system overhead. This is done at
the expense of automatic recovery for data update. That is, the
burden of recovery is placed on the user. Non-recoverable
storage pools are particularly useful in cases where large
amounts of data are loaded from an external source, and that
data is never modified thereafter. See SQLI Data System
Planning and Administration for VM I SP for more
information.

Dropping a DSSPACE

Format:

DROP DBSPACE [owner.]dbspace-name

Examples:

DROP DBSPACE MFBSPACE
DROP DBSPACE MIKE.MFBSPACE
DROP DBSPACE PUBLIC. SPACE1 0

Authorization:

A DBSPACE may be dropped only by its owner or by a user having DBA authority. You must have
DBA authority to drop a PUBLIC DBSPACE. No user, even with DBA authority, can drop the
DBSPACE containing the SQL/DS catalogs.

The DROP DBSPACE statement destroys the contents of a DB SPACE and returns
the DBSPACE to an "available" state. The DROP DBSPACE statement is a much
faster way to destroy the contents of a DBSPACE than by deleting the data one
row at a time or one table at a time. You can use DROP DBSPACE with both
PUBLIC and PRIVATE DBSPACEs.

All existing access modules for programs that operate on the dropped DB SPACE"
are automatically marked "invalid." If one of these programs is currently running,

230 SQL/Data System Application Programming for VM/SP

SQL/DS does not drop the DBSPACE until the running program ends its current
logical unit of work. The invalid acce$S modules remain in the data base until they
are explicitly dropped via a DROP PROGRAM statement (d,escribed in the
previous chapter). When an invalid access module is invoked, SQL/DS attempts to
regenerate it and restore its validity. However, if the program contains any SQL
statement that refers to a DBSP ACE or table that has been dropped, that SQL
statement returns a negative SQLCODE at execution time.

Changing OSSPACE Characteristics

Format:

({
PCTFREE = integer })

ALTER DBSPACE [owner.]dbspace-name
LOCK = size

The LOCK parameter is applicable to PUBLIC DB SPACEs only.

Examples:

ALTER DBSPACE MFBSPACE (PCTFREE = 0)
ALTER DBSPACE PUBLIC.SPACE (LOCK = PAGE,PCTFREE=3)

Authorization:

To alter a PRIVATE DBSPACE, you must either own the DBSPACE, or have DBA authority. You
must have DBA authority to alter a PUBLIC DBSPACE.

The ALTER DBSPACE statement allows you to alter the percentage of free space
that SQL/DS reserves on each data page when records are inserted into a PUBLIC
or PRIVATE DBSPACE. It also allows you to alter the lock size of a PUBLIC
DBSPACE. (You can't alter the lock size of a PRIVATE DBSPACE.)

When you acquire a DBSPACE, you should set the percentage of free space to
some number greater than zero (the default is 15 percent). A typical use of
ALTER DBSPACE is to set the percentage of free space to zero (PCTFREE=O)
after initial loading of data into a DBSP ACE. Subsequent insertions can then take
advantage of the free space that SQL/DS reserves during the loading process. It is
also possible to increase PCTFREE again for a later loading phase.

To alter the lock size of a PUBLIC DB SPACE at any time, use the LOCK
parameter. You can specify both the PCTFREE and LOCK parameters when
altering a PUBLIC DBSPACE. If you specify both, you can specify them in any
order, but you must separate them with a comma. (See the example above.) The
valid lock sizes are ROW, PAGE, and DBSPACE, as described under the
ACQUIRE DBSPACE statement. When an ALTER DBSPACE statement is

Putting the Program into Production 231

executed to alter the lock size of a DBSPACE, SQL/DS acquires an exclusive lock
on the entire DBSPACE and holds the lock until the end of the current logical unit
of work. The newly selected lock size then becomes effective for subsequent
logical units of work.

Sal/OS Automatic locking Mechanism

Recall from the SQL/ Data System Concepts and Facilities for VM / SP manual that
SQL/DS can operate in either multiple user or single user mode. When you use
SQL/DS in single user mode, there is no contention from other users when you
attempt to access data. In multiple user mode, however, other users may be
accessing data that you are trying to access. SQL/DS provides for concurrent
access via a locking mechanism.

Internally, SQL/DS acquires locks on data accessed by a logical unit of work.
There are two types of locks, called share locks and exclusive locks. All logical units
of work automatically acquire exclusive locks on all data that they modify and
acquire share locks on data that they read. Exclusive locks prevent other users
from reading or modifying the data. Share locks permit other users to read, but
prevent them from modifying, the data. In general, locks are held to the end of the
logical unit of work in which they are acquired.

SQL/DS automatically detects and corrects potential deadlocks. A deadlock
occurs when two logical units of work are each waiting to access data that the other
has locked. Fortunately, SQL/DS detects these situations and "backs out" the
youngest logical unit of work. A "back out" means that SQL/DS restores all
changes made to the data base during that logical unit of work, and then releases
the lock that was acquired for it. The other application can then proceed. If your
logical unit of work is backed out, SQL/DS returns a negative SQLCODE and sets
ona warning flag (SQLWARN6).

SQL/DS locking is fully automatic and requires no user intervention. However,
certain statements permit knowledgeable users to adjust or override the normal
locking. The size of the lockable data units can be adjusted by the LOCK option
of the ACQUIRE DBSPACE and ALTER DB SPACE statements. Also, you can
override automatic locking and explicitly acquire certain kinds of locks by the
LOCK statement. All of these statements are discussed in the following sections.

The only way to run SQL/DS with locking inhibited is in single user mode.

Ending the logical Unit of Work

When you end a logical unit of work, you must tell SQL/DS what to do with
changes made to the data. The data changes can either be saved ("committed") or
ignored ("rolled back"). The COMMIT WORK and ROLLBACK WORK
commands in your program tell SQL/DS to either save the data changes or ignore
them.

232 SQL/Data System Application Programming for VM/SP

COMMIT WORK

Format:

COMMIT WORK [RELEASE]

Authorization:

Anyone connected to SQL/DS can issue this statement.

The COMMIT WORK statement ends the current logical unit of work if one is in
progress. SQL/DS commits any changes made during the logical unit of work to
the data base.

It is strongly recommended that each application program explicitly end its logical
unit of work before terminating. If you don't explicitly end the logical unit of
work, SQL/DS automatically commits (upon successful termination of the
program) all changes made by the program during its pending logical unit of work.

Note: If you don't specify COMMIT WORK in SQL/DS Release 1 single user
mode batch applications, SQL/DS rolls back the changes. This exception is
removed in SQL/DS Release 2.

See "Application Epilog" on page 93 and "Error Handling" on page 202 for more
information about program termination.

If you use the RELEASE option in a VM/SP environment, your default use rid
established by implicit connect is re-established for a subsequent logical unit of
work. If you had overridden this default use rid with an explicit CONNECT in the
terminating logical unit of work, that explicitly established userid is replaced by the
default userid. If the RELEASE option is omitted, the userid in effect at
termination of the logical unit of work is retained for a subsequent logical unit of
work. (See I'VM/SP Connect Considerations" on page 186.)

COMMIT WORK has no effect on the contents of host variables or on the control
flow of the host program.

Putting the Program into Production 233

ROLLBACK WORK

Format:

ROLLBACK WORK [RELEASE]

Authorization:

Anyone connected to SQL/DS can issue this statement.

The ROLLBACK WORK statement restores the data base to its state prior to the
current logical unit of work. SQL/DS terminates the current logical unit of work
(if any).

If you use the RELEASE option in a VM/SP environment, your default userid
established by implicit connect is re-established for a subsequent logical unit of
work. If you had overridden this default userid with an explicit CONNECT in the
terminating logical unit of work, that explicitly established userid is replaced by the
default userid. If the RELEASE option is omitted, the userid in effect at
termination of the logical unit of work is retained for a subsequent logical unit of
work. (See "VM/SP Connect Considerations" on page 186.)

ROLLBACK WORK has no effect on the contents of host variables or on the
control flow of the host program.

Under some circumstances, SQL/DS automatically backs out of a logical unit of
work. See "SQL/DS Automatic Locking Mechanism" on page 232 for more
information.

Note: If you use a ROLLBACK WORK in a routine that was entered because of
an error or warning and you used the SQL WHENEVER statement, specify
WHENEVER SQLERROR CONTINUE and WHENEVER SQLWARNING
CONTINUE before the ROLLBACK WORK. This avoids a program loop if the
ROLLBACK WORK fails with an error or warning.

234 SQL/Data System Application Programming for VM/SP

Using the LOCK Statement to Override Automatic locking

Format:

LOCK {TABLE [creator.]table-nameIDBSPACE [owner.]dbspace-narne}
IN {SHARE I EXCLUSIVE} MODE

Examples:

LOCK TABLE PARTS IN EXCLUSIVE MODE
LOCK DBSPACE DSP3 IN SHARE MODE

Authorization:

To lock a DBSPACE, you must either be the owner of the DB SPACE, or have DBA authority. You
can lock a table if you own the table, if you have the SELECT privilege on the table, or if you have
DBA authority. No user, regardless of authority, can lock any SOLIDS catalog or the DBSPACE
containing the catalogs.

The LOCK statement overrides the SOLIDS automatic locking mechanism. It
explicitly acquires a lock on a table or DBSPACE. SOLIDS holds the requested
lock until the end of the current logical unit of work.

Naturally, the LOCK command is useful only in multiple user mode. In single user
mode, there is no contention for resources, and, hence, no locking. When running
in single user mode, SOLIDS ignores all LOCK statements.

An exclusive lock prevents other users from reading or changing any data in the
locked table or DBSPACE. A share lock permits other users to read, but prevents
them from modifying, the data in the locked object.

The requested lock may be unavailable because other logical units of work are
reading or modifying the indicated data. When this is the case, the logical unit of
work that requested the lock waits until the other active logical units of work have
completed. SOLIDS then grants the lock and the requesting logical unit of work
proceeds normally.

Note that it is never necessary for you to use the LOCK statement; SOLIDS has
fully automatic locking. You may issue all SOL queries and updates independently
of explicit LOCK statements. .

The LOCK statement is useful mainly for avoiding the overhead of acquiring many
small locks when scanning over a table. For example, suppose some DBSPACE
has been acquired with a lock size of row. If you know that you will be accessing
all the rows of a table within that DBSPACE, you may explicitly lock the table to
avoid the overhead of acquiring a lock on each individual row.

A LOCK statement on a table in a PRIVATE DBSPACE is the same as a LOCK
statement on the entire DBSPACE, since locking is always done at the DBSPACE
level for PRIVATE DBSPACEs.

Putting the Program into Production 235

Use of Long Fields

Use of the LONG V ARCHAR and LONG VARGRAPHIC data types is subject
to more severe limitations than other data types in SQL/DS. Long fields are
intended for storage of unstructured data such as text strings, images, and
drawings. Data that you intend to use in search conditions should not be placed in
such fields.

You can use either a CREATE TABLE or ALTER TABLE statement to create a
long field. As with other data types, you can disallow null values by specifying the
NOT NULL option when creating the field. See the CREATE TABLE and
ALTER TABLE statements for more information about defining tables and fields.

These are the only operations that SQL/DS permits on long fields:

1. SELECT in an outer-level query (not in a subquery).

2. INSERT into the data base from an input host variable (not from a constant or
from a subquery). You can, however, insert null values into long fields via the
usual INSERT statement mechanisms. (That is, you are not restricted to host
variables when inserting nulls.)

3. UPDATE from an input host variable or UPDATE to the null value. (SET
LONGFIELD=:X and SET LONGFIELD=NULL are permitted, but SET
LONGFIELD = 'HELLO' and SET LONGFIELD=OTHERFIELD are not
permitted.)

4. DELETE of rows containing long fields.

You must observe these rules when using long fields:

1. No indexes are permitted on long fields.

2. A long field cannot be an operand of ORDER BY or GROUP BY or
DISTINCT or a built-in function. A query involving ORDER BY can select a
long field only if the long field is not included in the ORDER BY clause.

3. Predicates (search conditions) are not permitted on long fields.

4. Queries that are part of a UNION cannot select long fields.

5. Long fields may be used in views if their usage does not conflict with the above
rules. (Views are discussed next.)

236 SQL/Data System Application Programming for VM/SP

~ Updating Internal Statistics

Format:

UPDATE [ALL] STATISTICS FOR
{TABLE [creator.]table-name I DBSPACE [creator.]dbspace-name}

Example:

UPDATE STATISTICS FOR TABLE QUOTATIONS

Authorization:

No authorization is required for this statement. Any user can issue UPDATE STATISTICS for any
table or DBSPACE.

Data Definition

The UPDA TE STATISTICS statement is used to bring up to date the internal
statistics recorded by SQL/DS for a table and its indexes. These statistics, which
are contained in the SQL/DS catalogs, include the size of the table, various index
characteristics, and other information. The SQL/DS preprocessor uses these
statistics when choosing access paths for SQL statements. If UPDATE
STATISTICS is not issued for a table, the SQL/DS preprocessor uses default
values in choosing access paths to the table. These default values may not be as
efficient as those generated by UPDATE STATISTICS.

You should invoke the UPDATE STATISTICS statement for a table after a
significant number of changes have been made to the data in the table since it was
last examined by UPDATE STATISTICS. For example, you might want to issue
UPDATE STATISTICS after a table has been changed by 20 percent or more.

The UPDATE STATISTICS statement scans over the indicated table and each of
its indexes; therefore, it is a relatively expensive and time-consuming statement. If
the ALL option is specified, statistics are updated for all columns including those
that contain indexes. In the case of columns without indexes, the column statistics
are an approximation. If ALL is not specified, statistics are updated for only the
columns that contain indexes.

If the DB SPACE option is selected, statistics are updated for every table in the
designated DBSPACE.

SQL Data Definition statements allow you to:

Create and drop tables (CREATE TABLE and DROP TABLE)

Create and drop indexes on tables (CREATE INDEX and DROP INDEX)

Putting the Program into Production 237

• Add new columns to existing tables (ALTER TABLE)

• Create and drop synonyms for table names (CREATE SYNONYM and DROP
SYNONYM)

• Enter comments about tables into the SQL/DS catalogs (COMMENT).

One advantage of SQL/DS is that you may define new objects in the data base
without stopping the system or invoking special utilities. Thus, for example, your
application program can create a table for storing and manipulating some
temporary result, and drop the table when it is no longer needed.

Data Definition statements automatically update the SQL/DS catalogs that
describe the data base. (These catalogs are explained more completely in the
SQL/ Data System Planning and Administration for VM / SP manual.) To avoid
inconsistently updating the catalogs, SQL/DS rolls back the current logical unit of
work if it encounters certain types of errors related to Data Definition statements.
An error code lets you know if a logical unit of work is rolled back. You should put
Data Definition statements in a logical unit of work of their own to minimize the
effects of an automatic ron back.

Some Data Definition statements may invalidate the access modules of one or more
programs previously preprocessed by SQL/DS. If the access module for a program
named PLANNER, for example, accesses the INVENTORY table by a particular
index, SQL/DS renders this access module invalid if someone drops that index. In
this case, when PLANNER is next used, SQL/DS creates a new access module
based on the indexes currently available. No changes need be made to PLANNER.
The process of producing the new access module is entirely transparent to
programs except for a slight delay in processing the first SQL statement.

Creating a Table

Format:

CREATE TABLE [creator.]table-name

Example:

(column-name-l data-type-l [NOT NULL]
[,column-name-2 data-type-2 [NOT NULL]] ...)

[IN [owner.]dbspace-name]

CREATE TABLE MIKE.MUSICIANS
(NAME VARCHAR(20)

INSTRUMENT VARCHAR(10)
"BAND NAME" VARCHAR(10)

IN MIKE.DBSPl

NOT NULL,
NOT NULL,

238 SQL/Data System Application Programming for VM/SP

)

Authorization:

You must have RESOURCE authority to create a table, unless someone with DBA a.uthority has
acquired a PRIVATE DBSPACE on your behalf. If a DBA does acquire a DB SPACE for you, you
may create a table in that DBSPACE, even if you do not have RESOURCE authority. You must
have DBA authority to create a table for another user.

This statement creates a new table in the data base; the table has the designated
name and the designated columns. The table-name must follow the rules for an
SQL identifier as discussed under "General Rules for Naming Data Objects" on
page 74.

If you specify the NOT NULL option for a column of a table, SQL/DS does not
permit null values in that column. Any statement that attempts to place a null
value in such a column is rejected with an error code.

Before declaring a column DECIMAL with a scale of 0, you should consider
declaring it INTEGER or SMALLINT instead. SMALLINT and INTEGER data
types use storage more efficiently than a DECIMAL value with a scale of O.

Once a table has been created, you may not change the data types of its columns or
drop a column from the table. However, you may add new columns to the table by
the AL TER TABLE statement.

Each table in the data base has a creator, which is noted in the SQL/DS catalogs.
If creator isn't specified, the creator of a table is the user who preprocessed the
program in which the table is created. (Certain exceptions to this rule are
explained under "Dynamically Defined Statements" on page 147.)

For example, if user SCOTT preprocesses a program that creates a table named
SUMMARY, and user JONES runs the program, the creator of the SUMMARY
table is SCOTT. Note that JONES must be a DBA to run the program. Any
program preprocessed by SCOTT can refer to the SUMMARY table simply by the
name SUMMARY. Any program preprocessed by another user that refers to the
SUMMARY table must use Scott's use rid as a prefix to the table-name,
SCOTT. SUMMARY. (Before the user can run the program successfully, though,
Scott must grant the user the proper privileges.) A table-name qualified by its
creator can be used in any kind of SQL statement. A given user cannot create two
tables with the same name; however, two different creators may have tables with
the same name.

A newly created table is placed in one of the existing DBSPACEs of the data base
according to the following rules:

1. If you specify a dbspace-name in the CREATE TABLE statement, the table
goes into the named DB SPACE. The owner of the DBSPACE must be either
the user who preprocessed the current program, or PUBLIC. If you have DBA
authority, you can create a table in a PRIVATE DBSPACE of any user by
qualifying the db space-name with its owner's userid, as follows:

CREATE TABLE IN SCOTT.DSP3

Putting the Program into Production 239

2. If you don't specify a dbspace-name in the CREATE TABLE statement, the
table goes into any PRIVATE DBSPACE owned by the user who preprocessed
the program. In the case where:

a. The person who preprocessed the program has DBA authority, and

b. No DBSPACE is specified, and

c. The table name is qualified with a userid,

SQL/DS places the table into any PRIVATE DBSPACE owned by the
specified userid. If there is no such DBSPACE, an error condition results.

3. If the dbspace-name is not qualified, SQL/DS will not place the table into a
nonrecoverable DBSPACE by default. Therefore, if you wish to create a table
in a nonrecoverable DBSPACE, you must specify the dbspace-name.

4. If both the table name and the DBSPACE name are qualified, but are not
qualified with the same userid, and the user who preprocessed the program has
DBA authority, SQL/DS uses both qualifiers. That is, if JIM has DBA
authority, he may create table KELLI.SUPPLIERS in DB SPACE
JOE.SPACE 1.

Figure 26 summarizes where a table is placed depending on what is specified. X
represents the userid of the person who preprocessed the program. X is denoted as
optional below because if no userid is specified, the creator always defaults to the
userid of the person who preprocessed the program (X). Y represents some other
userid.

User X Preprocesses the Program:

DBA Table Table DBSPACE DBSPACE
Needed? Creator Name Owner Name SQL/DS Action

NO [X 1 A User X creates X.A
in a PRIVATE DBSPACE
owned by X.

YES Y A User X creates Y.A
in any PRIVATE
DBSPACE owned by Y.

NO [X 1 A [X 1 B User X creates X.A
in X. B1

YES A Y B User X creates X.A
in Y.B

YES Y A B User X creates Y.A
in Y.B1

YES Y A Z B User X creates Y.A
in Z.B

1 If"there is no PRIVATE DBSPACE, B, but there is PUBLIC DBSPACE, B,
the PUBLIC DBSPACE will be used.

Figure 26. Default Table Placement

240 SQL/Data System Application Programming for VM/SP

Confusion can be easily avoided if you always concatenate the desired userids to both
the table name and the OBSPACE name. When you do this, there is no doubt who
you want to create the table for and where you want the table to be placed; the
only concern is whether you are authorized to create a table for someone else, or in
someone else's DBSPACE.

Adding a Column to a Table

Format:

ALTER TABLE [creator. j table-name
ADD column-name data-type

Example:

ALTER TABLE SCOTT.SUPPLIERS ADD RATING CHAR(1)

Authorization:

To alter a table, you must either be its creator or have the ALTER privilege on it. You can alter any
table if you have DBA authority (even the SQL/DS catalogs).

Dropping a Table

Format:

This statement expands an existing table by adding one new column on the
right-hand side of the table. All existing rows of the table are expanded and
considered to have a null value for the new column. Therefore, you cannot specify
the NOT NULL option for the new column. Also, the new column-name must not
be the same as the name of any existing column in the table. The data-type can be
any of the SQL/DS data types listed earlier.

Once a column name is established, it remains for the life of the table. To change
it, you must drop the table and re-create it.

DROP TABLE [creator.jtable-name

Example:

DROP TABLE INVENTORY

Putting the Program into Production 241

Authorization:

You can drop a table only if you have created the table, or if you have DBA authority.

Creating an Index

Format:

This statement drops the indicated table from the data base. All indexes and views
defined on the table, and all privileges granted on the table, are also dropped from
the data base. All contents of the table are lost. However, users can have
previously defined synonyms (via a CREATE SYNONYM statement) for the name
of the table that was dropped; these synonyms remain in effect even though the
data no longer exists.

When a table is dropped, SQL/DS marks invalid any access modules for programs
that operate on the dropped table. The invalid access modules remain in the data
base until they are explicitly dropped by a DROP PROGRAM statement. When an
SQL statement attempts to invoke an invalid access module, SQL/DS tries to
regenerate the module to restore its validity. However, if the SQL statement refers
to a dropped DBSPACE or table, that SQL statement returns an error code at
execution time.

If you issue a DROP TABLE statement while some program that depends on the
table is running and has a logical unit of work in progress, the DROP TABLE
statement does not take effect until the end of the running logical unit of work.
Meanwhile, your program waits.

When dropping a table, SQL/DS temporarily requires additional space so it can
restore the table in case the logical unit of work is not committed. SQL/DS
behaves as though a table approximately doubles in size immediately before it is
dropped. The empty pages are taken from the DBSPACE from which the table
was dropped. Note that if all rows of a table have previously been deleted, such
additional space is not required.

CREATE [UNIQUE] INDEX [creator.]index-name ON [creator.]table-name
(column-name-1 [ASC I DESC]

[,column-name-2 [ASC I DESC]] ...)
[PCTFREE= {lQlinteger}]

242 SQL/Data System Application Programming for VM/SP

Example:

CREATE INDEX FASTQUOTES ON QUOTATIONS
(PARTNO ASC, PRICE DESC, DELIVERY_TIME)
PCTFREE = 33

Authorization:

You can create indexes on tables that you have created. You need the INDEX privilege or DBA
authority to create an index on another user's table (for example, CREATE INDEX MYID.INDI ON
OTHERID.TABl). You need DBA authority to create an index for another user (for example,
CREATE INDEX OTHERID.IND1 ON OTHERID.TAB1).

This statement allows you to create an index on one or more columns of a table,
and give a name to the new index. The indicated table must exist, but it may be
empty. None of the columns over which the index is created may be of type
LONG V ARCHAR or LONG V ARGRAPHIC.

You can create an index on a column in either ascending (ASC) or descending
(DESC) order. Ascending order is the default. Performance may be improved for
queries that access the indexed column in the specified order.

An index is maintained by SQL/DS until it is explicitly dropped in a DROP
INDEX statement, or until its table or DBSP ACE is dropped.

Indexes are invisible to application programs in the sense that SQL/DS provides no
means for using an index directly. The SQL/DS preprocessor chooses which index,
if any, is to be used in processing a given query or data manipulation statement.
However, the existence of an index has the following implications:

1. An index on a column of a table, such as the P ARTNO column of the
QUOTATIONS table, provides SQL/DS with a fast means to access the table
directly by the indexed column. This improves the performance of queries
based on that column, such as searching for rows of QUOTATIONS with a
given PARTNO. However, there is a slight increase in the time required to
update the indexed column, since SQL/DS must update the index also.

If you are going to do many updates to an indexed column, or are going to
insert many rows into an indexed table (as the Data Base Services utility does),
consider dropping the index before you do the updates and then re-creating it
after the updates are complete. This allows SQL/DS to update the table
without having to update the index.

2. If you declare an index UNIQUE when you create it, SQL/DS ensures that no
two rows of the indicated table are identical in the indexed column(s). For
example, you can ensure that no two rows of the SUPPLIERS table have the
same SUPPNO by creating a unique index on SUPPLIERS(SUPPNO). You
can force all rows of a table to be unique by creating a unique index on all
columns of the table. Any INSERT or UPDATE statement that would cause a
table to violate the uniqueness property of an index fails with an error code. If,

Putting the Program into Production 243

when a CREATE UNIQUE INDEX statement is executed, the table already
contains some rows that are not unique in the indexed columns, the CREATE
UNIQUE INDEX statement fails and returns an error code.

As in the CREATE TABLE statement, the user who preprocessed the program
that creates an index becomes the creator of the index. (Certain exceptions to this
rule are explained under "Dynamically Defined Statements" on page 147.) A
given creator cannot have two indexes with the same name, but two different
creators may each have an index with the same name. Only the creator of an index
(or a user with DBA authority) can drop the index.

The optional PCTFREE clause of a CREATE INDEX statement controls the
amount of free space reserved in an index for later insertions and updates.
PCTFREE defines the percentage of the total space of the index that is to be
reserved for this purpose. It may range from 0 to 99, but for practical purposes
should not exceed 50. Increasing PCTFREE causes the index to take more space
in the data base, but reduces the time required to insert or update rows of the
indexed table. If you don't include a PCTFREE clause in the CREATE INDEX
statement, SQLIDS sets PCTFREE to the default value of to.

When creating indexes on multiple columns, you must observe the following
limitations:

1. An index cannot be created on more than 16 columns.

2. The sum of the widths of the indexed columns, plus 25% of the widths of any
indexed columns of varying-length character type, must not exceed 255 bytes.
If you are creating the index after data has been loaded into the table, an SQL
sort is invoked during the preprocessing of the CREATE INDEX command. If
duplicate keys are allowed in the index, then the sort will require 4 bytes to be
added to the encoded key. These four bytes are part of the 255 total bytes.

Also, when creating new indexes, remember the following rules:

1. When you preprocess a program, SQL/DS creates an access module for it that
takes advantage of the best access path available at the time of the
preprocessing. Therefore, it is good practice to create indexes be/ore
preprocessing programs that might take advantage of them.

2. When you create a new index, existing access modules are not made invalid
because they can still use their original access path. However, an existing
program may run more efficiently by taking advantage of the new index. If
this is the case, you should preprocess the program again. A new access
module is then created for the program, possibly using the new index.

244 SQL/Data System Application Programming for VM/SP

Dropping an Index

Format:

DROP INDEX [creator.lindex-name

Example:

DROP INDEX FASTQUOTES

Authorization:

You can use the DROP INDEX statement only if you are the creator of the index to be dropped (or if
you have DBA authority).

Creating a Synonym

Format:

The DROP INDEX statement drops the indicated index from the data base. The
table on which the index is defined is not affected.

If you have DBA authority, you can drop another user's index by qualifying the
index name with that person's userid (for example, SMITH.TABINDEX).

All existing access modules that use the dropped index are marked invalid. A
subsequent attempt to use one of these access modules causes SQL/DS to
re-create the access module, using the best access paths currently available. The
process of producing the new access module is entirely transparent to your program
except for a slight delay in processing your first SQL statement.

CREATE SYNONYM identifier FOR creator. {table-name I view-name}

Example:

CREATE SYNONYM PARTS FOR SMITH. INVENTORY

Authorization:

Anyone connected to SQL/DS can issue this statement. You can create a synonym for any user's
table or view. (No authorization is required.)

The CREATE SYNONYM statement defines an alternative name for a table or
view. For example, the statement:

CREATE SYNONYM PARTS FOR SMITH. INVENTORY

Putting the Program into Production 245

defines the alternative name PARTS to refer to the table named INVENTORY
whose owner is SMITH. The right-hand side of the CREATE SYNONYM
statement (SMITH.INVENTORY in the above example) must be the name of a
table or view, not another synonym.

Synonyms are commonly used when a group of users all wish to share a table.
Suppose one user, ADAMS, creates a table called DATA. All users wishing to
share this table can then issue the statement:

CREATE SYNONYM DATA FOR ADAMS.DATA

Then each user can refer to the shared table as DATA, without using the fully
qualified name ADAMS.DAT A. (Remember that ADAMS must authorize the
other users to access his table.)

A synonym is effective only for the user who created it. If many users wish to have
the same synonym, they must each issue a CREATE SYNONYM statement.

When synonyms are created in a program, the creator is the user who preprocessed
the program. (Certain exceptions are described under "Dynamically Defined
Statements" on page 147.) More commonly, synonyms are created via ISQL or
the DBS utility.

Once created, a synonym remains in effect until it is explicitly dropped by a DROP
SYNONYM statement.

Dropping a Synonym

Format:

DROP SYNONYM identifier

Example:

DROP SYNONYM DATA

Authorization:

You can drop a synonym only if you have created it.

The DROP SYNONYM statement causes the indicated synonym to be dropped
from the data base. The table on which the synonym is based is not affected.

Dropping a synonym does not affect the access modules of existing programs that
use the synonym, since in the access modules the synonym has already been
resolved to a real table name. However, a program containing a dropped synonym
cannot be preprocessed successfully, either automatically or by user request.

246 SQL/Data System Application Programming for VM/SP

,..... Putting Comments into SOL/OS Catalogs

Format 1:

COMMENT ON) TABLE [creator.]table-name t IS quoted-string I COLUMN [creator.]table-name.column-name \

Format 2:

COMMENT ON [creator.]table-name (column-name IS quoted-string,
............................ ,
column-name IS quoted-string)

Examples:

COMMENT ON COLUMN QUOTATIONS.DELIVERY_TIME IS 'MEASURED IN DAYS'

COMMENT ON TABLE INVENTORY IS 'INVENTORY OF MACHINE PARTS ONLY'

COMMENT ON QUOTATIONS (SUPPNO IS 'SEE SUPPLIERS TABLE FOR NAMES',
PRICE IS 'IN U.S. DOLLARS', DELIVERY_TIME IS 'MEASURED IN DAYS')

Authorization:

You may use the COMMENT statement only if you are the creator of the table in question or if you
have DBA authority.

The SQL COMMENT statement lets you associate remarks or comments with your
tables or views, or with columns in your tables or views. SQL/DS places the
comment that you specify into one of the SQL/DS catalogs. The comment is put
into either:

1. The REMARKS column of SYSCAT ALOG (if you are commenting on a table
or view); or,

2. The REMARKS column of SYSCOLUMNS (if you are commenting on a
column).

If there already is a comment for your table or column, the new comment replaces
the old one.

The basic format of the COMMENT statement is as follows:

COMMENT ON TABLE [creator.]table-name IS quoted-string
or

COMMENT ON COLUMN [creator.]table-name.column-name IS quoted-string

For instance, the statement:

COMMENT ON COLUMN QUOTATIONS.DELIVERY_TIME IS 'MEASURED IN DAYS'

Putting the Program into Production 247

finds the row in SYSCOLUMNS which is associated with the DELIVERY TIME
column of the QUOTATIONS table. SQL/DS then inserts the explanatory
comment 'MEASURED IN DAYS' into the REMARKS of that row. The next
time you did a SELECT on SYSCOLUMNS, you would see the 'MEASURED IN
DA YS' in the REMARKS column of the DELIVERY TIME row.

For another example, if you were to enter the statement:

COMMENT ON TABLE INVENTORY IS 'INVENTORY OF MACHINE PARTS ONLY'

SQL/DS would place the comment 'INVENTORY OF MACHINE PARTS
ONLY' into the REMARKS column of the SYSCAT ALOG table. This would be
on the TOW associated with your INVENTORY table.

Another format for the COMMENT statement is available. This format can be
used to specify comments for more than one column in the same table in one
statement. It can be used only for columns, not for tables or views. The format for
this statement is:

COMMENT ON [creator.]table-name (column-name IS quoted-string,
............................ ,
column-name IS quoted-string)

For instance, if you entered the statement:

COMMENT ON QUOTATIONS (SUPPNO IS 'SEE SUPPLIERS TABLE FOR NAMES',
PRICE IS 'IN U.S. DOLLARS', DELIVERY_TIME IS 'MEASURED IN DAYS')

SQL/DS would place all three comments into the REMARKS column of the
SYSCOLUMNS catalog. The next time you did a SELECT on that catalog, you
would see 'SEE SUPPLIERS TABLE FOR NAMES' on the row associated with
the SUPPNO column of the QUOTATIONS table. You would also see 'IN U.S.
DOLLARS' on the PRICE row, and 'MEASURED IN DAYS' on the
DELIVERY TIME row.

To use the COMMENT statement, you must be the creator of the table in
question, or you must have DBA authority. You must have SELECT authority on
the SYSTEM.S), SCAT ALOG and SYSTEM.SYSCOLUMNS catalog tables to see
the comments that you put in them.

The comment must not exceed 254 characters, and must be enclosed in single
quotes, as is shown above. To represent a single quote within a comment, use two
single-quotes:

COMMENT ON TABLE SUPPLIERS IS
'DON"T ADD NEW SUPPLIERS UNTIL THE CONTRACTS
ARE APPROVED'

You can comment on another user's table only if you have DBA authority. To
comment on another user's table, concatenate the userid to the table name in the
usual fashion:

COMMENT ON COLUMN JONES.EMPTABLE.NAME IS

248 SQL/Data System Application Programming for VM/SP

Putting Labels on Tables or Columns

Format 1:

LABEL ON

Format 2:

~ TABLE [creator.]table-name t I COLUMN [creator.]table-name.column-name \
IS quoted-string

LABEL ON [creator.]table-name (column-name IS quoted-string,
............................ ,
column-name IS quoted-string)

Examples:

LABEL ON TABLE QUOTATIONS IS 'CURRENT PRICE QUOTATIONS'

LABEL ON COLUMN INVENTORY.PARTNO IS 'PART NUMBER'

LABEL ON INVENTORY (PARTNO IS 'PART NUMBER', DESCRIPTION IS
'PART DESCRIPTION', QONHAND IS 'QUANTITY ON HAND')

Authorization:

Only the creator of the table or a user with DBA authority can issue the LABEL statement on a table
or column.

The SQL LABEL ON statement lets you define a label for a table name or a
column name. Unlike synonyms, labels cannot be used as identifiers. Instead, they
can be used in displays created by applications that process SQL commands
dynamically. You can enter SQL commands using the actual table and column
names (which are easier to enter). The program can display the results using the
labels (which are easier to understand) instead of the table and column names.

Labels are ignored by DBS utility and ISQL SELECT processing. Only column
names will identify SQL SELECT command output displayed by DBS utility or
ISQL processing.

The basic format of the LABEL ON statement is as follows:

LABEL ON TABLE [creator.jtable-name IS quoted-string

or

LABEL ON COLUMN [creator.]table-name.column-name IS quoted-string

For instance, the statement:

LABEL ON TABLE SUPPLIERS IS 'SUPPLIER NAMES AND ADDRESSES'

Putting the Program into Production 249

defines a label of 'SUPPLIER NAMES AND ADDRESSES' for the SUPPLIERS ~
table. This could then be used as a universal heading in all the reports created by
various applications using this table. The statement:

LABEL ON COLUMN INVENTORY.QONHAND IS 'QUANTITY ON HAND'

defines a common presentation heading of 'QUANTITY ON HAND' for the
QONHAND column of the INVENTORY table.

An additional format for the LABEL ON statement is available to let you create
labels on more than one column in a table at the same time. Similar to the second
format of the COMMENT command (discussed above), this format is as follows:

LABEL ON [creator.jtable-name (column-name IS quoted-string,
............................ ,
column-name IS quoted-string)

If you entered the statement:

LABEL ON INVENTORY (PARTNO IS 'PART NUMBER', QONHAND IS
'QUANTITY ON HAND')

you would define labels for both the PARTNO and QONHAND columns of the
INVENTORY table. This format cannot create a label for a table.

Labels for tables are stored in the TLABEL column of the
SYSTEM.SYSCATALOG catalog table; labels for columns are stored in the
CLABEL column of the SYSTEM.SYSCOLUMNS catalog table. You can see
what labels are defined by querying these catalogs.

Column labels are returned in the SQLDA when a "SELECT" statement is
described by a "DESCRIBE" statement. The USING clause of the DESCRIBE
statement tells SQL/DS whether you want to have the column names or the
column labels (or both) returned. See "DESCRIBE" on page 286 for more
information on returning labels with the DESCRIBE statement. Your program can
then move the label from the SQLNAME field of the SQLDA into a work area.

A column is considered to have no label if either its LABEL column in
SYSTEM.SYSCOLUMNS is NULL, or if it has a zero length value. If there is no
column label when you try to do a DESCRIBE, the SQLNAME field of the
SQLDA is set to length 0, and the field is cleared to 30 blanks. For this reason,
your program should move the label into a work area using the length returned in
SQLDA only after it makes sure that the length is not zero.

Perfonnance Considerations

When preprocessing your program, there are two performance parameters that you
can specify: the BLOCK/ NOBLOCK option and the isolation level option. The
format and use of these options within the SQLPREP EXEC was discussed under
"Preprocessing the Program" on page 187. This section is devoted to showing you
when you would want to specify each of these options.

250 SQL/Data System Application Programming for VM/SP

Selecting the Isolation Level

SOLIDS puts locks on data that your program is working with, to keep other users
from reading or changing that data. You can specify how long SOLIDS will hold
the lock on data that your program has already read. You can tell SOLIDS either
to lock all the data that the current logical unit of work has read, or to lock just the
row of data that a cursor is currently pointing to. This is called specifying the
"isolation level" of the lock. If you choose to put a lock on all the data that your
program's current logical unit of work has read, this is called specifying isolation
level repeatable read. Repeatable read locks are held until the end of the logical unit
of work. If you choose to just put a lock on the row or page of data that your
cursor is pointing to, then you are specifying isolation level cursor stability. With
cursor stability locking, when the cursor moves, SOLIDS frees all the data
previously read by the program and held by the lock.

Both repeatable read and cursor stability provide you with the following data
isolation from other concurrent users:

1. Your LUW (logical unit of work) cannot modify or read any data which
another active LUW has modified. Similarly, if your LUW has modified some
data, no one else can modify or read that data until your LUW has ended.
Modify implies SOL INSERT, DELETE, UPDATE, or PUT. Read implies
SOL SELECT or FETCH.

2. If your LUW has a cursor pointing to a row of data, no other LUW can modify
that data. Similarly, your LUW cannot modify a row which another user has a
cursor pointing to.

In addition to the above, repeatable read locking provides you with the following
data isolation from other concurrent users:

1. No other LUW can modify any row which your active LUW has read. Also,
you cannot modify any data which another active LUW, specifying repeatable
read, has read.

2. You don't have to worry about your data being changed between reads, as long
as you don't end your LUW between those reads.

This extra isolation has its drawbacks. When you specify repeatable read for data
in PUBLIC DBSPACEs with PAGE or ROW level locking, you reduce the
concurrency of the data. This means that other users may be locked out from the
data for a long time, causing delays in their programs' executions.

Isolation level cursor stability reduces these locking problems by making the data
more available. When you specify cursor stability, SOLIDS does not hold the
locks as long. Once a cursor has moved past a row or page of data, the lock on
that data is dropped. This increases concurrency. Other users can access data
faster while, at the same time, no other user can modify the row or page of data
pointed to by your cursor.

Cursor stability can, however, cause some data inconsistencies. For instance, if an
LUW reads data twice, it can get different results each time. Another user could
have modified the data and committed the modification. Also, your program could

Putting the Program into Production 251

try to re-read a row of data and find it doesn't exist any longer. Another user
could have deleted the row during your logical unit of work, and committed the
change.

When should each of these options be chosen? Usually, you should specify
repeatable read locking for your programs. You should only use cursor stability if
your program causes or will cause locking problems. For instance, you would
probably want to use cursor stability for transactions that perform terminal reads
without performing a COMMIT or ROLLBACK WORK. You probably would
also want to use cursor stability for programs that do bulk reading. It is handy for
programs that browse through large amounts of data. On the other hand, programs
that perform commits or rollbacks before issuing terminal reads should use
repeatable read locking, since they probably will not cause locking problems. Also,
some applications need to protect themselves against updates. These programs
should also use repeatable read locking.

You can also "mix" isolation levels. Your program can set, change and control its
own isolation level as it is running. You can specify mixed isolation level with the
USER option of the ISOLATION preprocessor parameter, as detailed under
"Preprocessing the Program" on page 187.

If you choose this option, your program must pass the isolation level value to
SQL/DS via a program variable. It must declare a one-character program variable
and must set this variable to the desired isolation level value before executing SQL
statements. To set the isolation level to repeatable read, your program should set
this variable to 'R'. For cursor stability, the variable should be set to 'C'. The
program can change the variable at any time so that the subsequent SQL
statements will be executed at the new isolation level value. However, if your
program changes the isolation level while a cursor is OPEN, all operations on that
cursor (until the cursor has been closed) will be executed at the isolation level value
in effect when the cursor was opened. The change will not take effect for
operations on that cursor until it has been closed and opened again. Note that the
changed isolation level will be used (without error) for SQL statements not
referencing the opened cursor.

If the program sets the isolation level variable to a value other than 'C' or 'R', or if
it fails to initialize the variable at all, SQL/DS will stop execution and return an
error code in the SQLCA.

Figure 27 shows the isolation level variable name for each of the four host
languages.

Host Language Variable Name Example

Assembler SQLISL SQLISL DS CLl

COBOL SQL-ISL 01 SQL-ISL PIC X(1).

FORTRAN SQLISL CHARACTER SQLISL

Figure 27 (Part 1 of 2). Variable Names for Specifying Mixed Isolation Levels

252 SQL/Data System Application Programming for VM/SP

Host Language Variable Name Example

PL/I SQLISL DCL SQLISL CHAR(1);

Figure 27 (Part 2 of 2). Variable Names for Specifying Mixed Isolation Levels

Note: If you forget to declare the isolation level variable in a PL/I program, the
PL/I compiler will issue an informational message which might, in some
environments, be suppressed. An example that shows how to mix isolation levels in
a PL/I program is contained in Appendix C.

Isolation level cursor stability only has meaning for data in PUBLIC DB SPACEs
with ROW or PAGE level locking. Data in PRIVATE DB SPACEs and PUBLIC
DB SPACEs with DB SPACE level locking always use repeatable read isolation.
However, programs which access such data and do not require repeatable read
should be preprocessed with cursor stability. The data concurrency requirements
might change and cause the data to be moved to a PUBLIC DB SPACE with
PAGE or ROW level locking. In this case, the program would not need to be
re-preprocessed to run at isolation level cursor stability.

When SQL/DS uses a DBSPACE scan (does not use an index) to access a table in
a DBSPACE with ROW level locking using isolation level cursor stability, the
effect is the same as repeatable read. That is, no other logical unit of work can
update the table until the logical unit of work performing the DB SPACE scan ends.
Also, if one logical unit of work has updated a table, another logical unit of work
(using cursor stability) cannot access that table with a DBSPACE scan until the
updating logical unit of work ends. This reduced concurrency for DB SPACE scans
does not apply for tables in DBSPACEs with PAGE level locking, or when
accessing through indexes. Since most data base accesses will typically use indexes,
the reduced concurrency caused by DBSPACE scans should not occur frequently.

Also note that the isolation level specification affects UPDATE and DELETE
processing as well as SELECT processing. For UPDATE and DELETE
processing, SQL/DS frequently acquires SHARE locks that will be released quickly
with cursor stability, but will be held until the end of the LUW with repeatable
read. The use of data administration commands such as CREATE, ACQUIRE, or
GRANT should not playa role in your choice of isolation level. They use
repeatable read locking no matter what the isolation level is set to. Also, catalog
access for SQL statement preprocessing is always done with repeatable read
locking.

Previous releases of SQL/DS supported only isolation level repeatable read. If you
have old programs which might qualify for cursor stability locking, just
re-preprocess and recompile these programs with cursor stability specified. You do
not need to make any programming changes.

Putting the Program into Production 253

To Block or Not to Block"1

SOL/OS gives you the option of telling SOL/OS to insert and retrieve rows in
groups or blocks, instead of one at a time. This is called specifying the blocking
option. When you specify the blocking option, performance improves for SOL/OS
application programs that:

1. Execute in mUltiple user mode, and

2. Retrieve or insert multiple rows.

You can specify the blocking option as an SOL/OS preprocessor parameter, or as
an option on the CREATE PROGRAM statement. After an SOL/OS program has
been preprocessed with the blocking option, all eligible cursor SELECTs and all
eligable cursor INSERTs within the program will be blocked. You don't have to
specify a block size or block factor. SOL/OS automatically fixes the block size for
inserts and for SELECTs.

Which programs would benefit from blocking? Programs that do multiple-row
inserts (with PUT statements) or multiple-row SELECTs (with FETCH
statements) are most likely to perform better when you specify blocking for them.
In both of these cases, a cursor must be defined. (See "Retrieving or Inserting
Data with a Cursor" on page 19.) Thus, follow this general rule for blocking:

USE BLOCKING FOR PROGRAMS THAT DECLARE CURSORS

A program can use either PUT or FETCH statements without being sensitive to
whether SOL/OS will be blocking. That is, PUT and FETCH will work, regardless
of whether you specified the blocking option.

If you are moving from an earlier release of SQL/DS, you may wish to
re-preprocess existing programs which might benefit from blocking for cursor
SELECTs. Just preprocess the program again with the BLOCK option. You don't
need to make any changes to the program itself.

Remember that when you preprocess a program with the blocking option, all
eligible INSERTs and SELECTs are blocked. You cannot specify blocking for just
INSERTs or for just SELECTs. If you specify the blocking option, it automatically
applies to both.

When are INSERTs or SELECTs not eligible for blocking? SOL/OS sometimes
overrides blocking for a particular cursor because of storage limitations in the
SOL/OS virtual machine, or because of SOL statement ineligibility. The following
SOL statements are ineligible for blocking and cause blocking to be overridden
automatically for the cursors they refer to:

• DELETE ... WHERE CURRENT OF ...

• UPDATE ... WHERE CURRENT OF ...

• SELECT ... FOR UPDATE

• Any SOL statement which contains a long field.

254 SQL/Data System Application Programming for VM/SP

Preparing a SELECT or INSERT statement in single user mode also causes
blocking to be overridden. SOLiDS also disqualifies blocking if it cannot fit at
least two rows into a block.

SOLiDS does not halt the program when it overrides blocking. Instead, in each of
the above cases, it sets a warning flag in the SOLCA. The warning can be detected
by using WHENEVER SOL WARNING in the program. See "Error Handling" on
page 202 for more information on the SOLCA and the SOL WHENEVER
declarative statement.

SOLiDS also overrides blocking for all programs running in single user mode.
However, in this instance, SOLiDS does not return a warning to the SOLCA.

Note: You should always CLOSE a cursor before issuing a COMMIT WORK,
especially when blocking. If you commit changes before closing a cursor, you will
get an error.

Including External Source Files

The inclusion of external files is indicated to the SOLiDS preprocessor by an
embedded SOLiDS command, the INCLUDE command, in the user's source code.
It is indicated within the source code where the external source is to be placed.
The syntax for the INCLUDE command is as follows:

INCLUDE text-name

where text-name identifies the external source files. text-name is a one to eight
character identifier and cannot be delimited by double quotes. The first character
of text-name must be a letter (A-Z), $, #, or @; the remaining characters must be
letters, numbers (0-9), $, #, @, or underscore (_) unless further restricted by the
operating system. Also, text-name cannot be SOLCA or SOLDA, as these are
special include keywords.

The statements contained in the external source specified by text-name may be
host language statements or SOLiDS statements (except for another INCLUDE
command). INCLUDE commands may not be nested, but the external source may
contain INCLUDE SOLDA or INCLUDE SOLCA commands. The INCLUDE
command may appear in an SOL DECLARE section or the entire SOL DECLARE
section(s) may be placed within an external source file(s).

Including Secondary Input

The SOLiDS INCLUDE command may be used to obtain secondary input from a
VMiCMS file. If a source program input to an SOLiDS preprocessor uses the
INCLUDE facility, any files to be used as secondary input must be accessed by the
user. A search of all accessed CMS mini-disks for the filename and filetype is
conducted in standard CMS search order (A-Z); the first match determines the
filemode. This filename, filetype, and file mode are used as the secondary input or
external source. The CMS file containing the secondary input statements must be
fixed-length, 80-character records.

Putting the Program into Production 255

The SQL/DS INCLUDE command causes input to be read from the specified
filename until the end of the file, at which time the SYSIN input resumes. The file
to be included must have an appropriate filetype:

ASMCOPY filetype - Assembler

COBCOPY filetype - COBOL

FORTCOPY filetype - FORTRAN

PLICOPY file type - PL/I

The filemode is determined by the search of the virtual machine's accessed
mini-disks. If the INCLUDE command specifies a file name that is not located on
any user-accessed CMS mini-disk, an error will result.

Secondary input must not contain preprocessor INCLUDE commands other than
INCLUDE SQLDA or INCLUDE SQLCA, although it may contain both host
language and SQL/DS statements. If an INCLUDE command is encountered, an
error will result.

In the INCLUDE command, text-name specifies the filename of the secondary
input source; the filetype is determined by which preprocessor is invoked. The
filemode must be a CMS mini-disk accessed by the user's virtual machine. The
text-name must not contain the filetype identifier or filemode.

256 SQL/Data System Application Programming for VM/SP

Chapter 3. SQl Programming language Reference Summary

This chapter is a "quick" reference and reminder for SQL statements. Each entry
contains a brief description of a statement and its parameters. In addition, a chart
shows the statement syntax, an example, and authorizations necessary to use the
statement.

For the details of how a statement works or peculiarities in how it runs, see the
corresponding description of the statement in one of the first two chapters in this
book. However, if you have trouble remembering how to code a statement or what
its parameters are for, refer to this chapter.

Because Chapter 4, "Extended Dynamic Statements," is a self-contained chapter,
and because it contains its own reference section, the statements introduced in that
chapter are not included in this one.

Chapter 3. SQL Programming Language Reference Summary 257

258 SQL/Data System Application Programming for VM/SP

How to Interpret SQl Fonnat

Each SQL statement consists of the statement name followed by one or more
keywords (the statement name itself is a keyword). Statement names and
keywords may have parameters associated with them. These parameters can be
constants or user-defined variables called host-program variables (or host variables
for short). In describing the format of SQL statements in this book, uppercase
characters indicate parts that must be coded as shown (statement names and
keywords). Lowercase characters indicate that you are to enter a value in their
place.

CREATE [UNIQUE] INDEX index-name ON table-name
1 1 1 1 1 1-> value you provide
1 1 1 1 1--------> keyword
1 1 1 1--------------> value you provide
1 1 1-----------------------> keyword
1 1-------------------------------> keyword
1---------------------------------------> keyword

The brackets [] in the above example (a portion of the CREATE INDEX
statement) indicate that "UNIQUE" is optional. Do not include the brackets when
writing the statement; they serve only as indicators for optional parts of the
statement. For example, you could write the above portion of the CREATE
INDEX statement as follows:

CREATE UNIQUE INDEX FAST1 ON INVENTORY

An option that consists of a choice of items (keywords or parameters) has a vertical
bar I separating the choices. For example,

[AAAIBBBICCC]

indicates that you can specify "AAA" or "BBB" or "CCC" or none; you cannot
specify more than one. There can also be options within options, such as:

[AAAIBBB[,CCC]IDDD]

which means, if you choose "BBB" you can also include "CCC" if you wish.
Notice that a comma is included to separate the items if "BBB" and "CCC" are
chosen. Commas are used throughout the statement formats in this manner.

To illustrate several items, one, and only one, of which must be chosen, braces { }
are used. For example,

{AAAIBBBICCC}

How to Interpret SQL Format 259

means you must choose "AAA" or "BBB" or "CCC." When there are many items"
they are often stacked.

When the items are stacked within braces { }, you must choose one:

{ =} CCC

(If you can choose more than one, it is explained
with the individual statement description.)

When items are stacked within brackets [], you can either choose one of the items
or none of the items:

[=] CCC

(If you can choose more than one, it is explained
with the individual statement description.)

Sometimes a parameter constant is underlined. This means it is the default -- the
constant used by SQL/DS if none is written. For example,

[AAAIBBBICCC]

indicates that if none is chosen, "BBB" is assumed.

To illustrate a long string of items, an ellipsis (...) is used. For example,

column-1, column-2, ... , column-n

means column-l to column-n (where n is the last column).

Unlike brackets [] and braces { }, parentheses () are coded as part of the actual
statement.

RELOAD TABLE([creator.]table-name)

In the above example (a portion of the Data Base Services utility RELOAD
TABLE statement), the parentheses are part of the statement and must be coded:

RELOAD TABLE(JOANNE.EMPTABLE)

For easy reading, statement formats in this book are shown spread over several
lines, with lines after the first often indented. Statement examples are also shown
in this manner. When coding statements in your program, line breaks and
indentations are not important unless there are host-language restrictions.

260 SQL/Data System Application Programming for VM/SP

SQl Statement Reference Summary

Contents

ACQUIRE DBSPACE .. 263
ALTER DBSPACE .. 265
ALTER TABLE ... 267
BEGIN DECLARE SECTION 268
CLOSE .. 269
COMMENT .. 270
COMMIT WORK 272
CONNECT ... 273
CREATE INDEX 274
CREATE SYNONYM .. 276
CREATE TABLE ... 277
CREATE VIEW ... 279
DECLARE CURSOR .. 281
DELETE .. 284
DESCRIBE ... 286
DROP DBSPACE 288
DROP INDEX .. 289
DROP PROGRAM .. 290
DROP SYNONYM 291
DROP TABLE .. 292
DROP VIEW ... 293
END DECLARE SECTION 294
EXECUTE ... 295
EXECUTE IMMEDIATE 296
EXPLAIN 297
FETCH .. 299
GRANT ... 300
INSERT ... 305
LABEL .. 309
LOCK ... 312
OPEN ... 313
PREPARE ... 314
PUT .. 316
REVOKE .. 317
ROLLBACK WORK ... 321
SELECT ... 322
UPDATE .. 324
UPDATE STATISTICS ... 328

SQL Statement Reference Summary 261

WHENEVER ... 329 ,...."J

262 SQL/Data System Application Programming for VM/SP

ACQUIRE DBSPACE

Format:

ACQUIRE {PUBLIC I PRIVATE} DBSPACE

NAMED [owner.]dbspace-name

r- -
([HMDER - Illiote.er) 1)

PAGES = {128Iinteger}
PCTINDEX = {331 integer}
PCTFREE = {]2linteger}
LOCK = {PAGElsize}
STORPOOL = {integer} - -

Note: Any number of options may be specified in any order (separate them with commas).

The LOCK parameter is applicable to PUBLIC DBSPACEs only.

Example:

ACQUIRE PRIVATE DBSPACE NAMED MFBSPACE
(STORPOOL=3, PCTFREE=25)

Authorization:

You must have DBA authority to acquire either a PUBLIC DBSPACE or a DBSPACE for another
user. You must have RESOURCE authority to acquire a PRIVATE DB SPACE.

The ACQUIRE DB SPACE statement causes SQL/DS to find an available
DB SPACE of the requested type (PUBLIC or PRIVATE) and give it the
dbspace-name you specify.

PUBLIC I PRIVATE

owner.

is the type of DBSPACE. If the DBSPACE type is PUBLIC, its owner
becomes PUBLIC; if the type is PRIVATE, its owner becomes the user who
preprocessed the program in which the ACQUIRE DBSPACE is embedded.

is the user for whom you are acquiring the DBSPACE, followed by a period.
If you are acquiring a DB SPACE for yourself, you need not specify this
parameter. If owner is specified when acquiring a PUBLIC DBSPACE, it is
ignored.

dbspace-name
is the name you wish to give to the DBSPACE you are acquiring. The name
must be an SQL identifier, as described under "General Rules for Naming
Data Objects" on page 74. It must be unique within all the DBSPACEs

SQL Statement Reference Summary 263

owned by the same user, but may duplicate the name of a DB SPACE owned ...""
by another user.

NHEADER
is the number of 4096-byte logical pages in the DBSPACE that SQL/DS
reserves for header pages. SQL/DS uses header pages to record information
about the contents of the DBSPACE. NHEADER cannot be larger than
eight pages, which is the default.

PAGES
is the minimum number of 4096-byte logical pages you require for this
DBSPACE. SQL/DS determines the number of pages you receive by
rounding the number you specify to the next higher multiple of 128 pages. If
you do not specify PAGES, SQL/DS acquires the smallest available
DBSPACE (128 pages) by default.

PCTINDEX
is the percentage of all pages in the DB SPACE that SQL/DS is to reserve
for the construction of indexes. If you don't specify PCTINDEX, the default
is 33 percent.

PCTFREE
is the percentage of the space on each page that SQL/DS is to keep empty
when data is inserted into the DBSPACE. If you don't specify PCTFREE,
the default is 15 percent.

LOCK
is the lock size, applicable to PUBLIC DB SPACEs only. The lock size
determines the size of the locks that SQL/DS acquires when a user reads or
updates data. The valid specifications for size are DBSPACE, PAGE, and
ROW. The default LOCK for each PUBLIC DBSPACE is PAGE. If you
specify ROW, SQL/DS locks only an individual row in the table; PAGE or
DBSPACE cause the smallest lockable unit to be a page (4096 bytes) or a
DBSPACE, respectively.

STORPOOL
is the storage pool number. This parameter indicates that SQL/DS must
acquire this DBSPACE from the specified storage pool. If a DB SPACE of
the specified type and size is not available in this storage pool, the
ACQUIRE DBSPACE is not successful; SQL/DS returns a negative
SQLCODE. If you don't specify STORPOOL, SQL/DS acquires a
DBSPACE of the correct type and size from any recoverable storage pool.

264 SQL/Data System Application Programming for YM/SP

ALTER DBSPACE

Format:

PCTFREE = integer
ALTER DB SPACE [owner.)dbspace-name

LOCK = size

Examples:

ALTER DBSPACE MFBSPACE (PCTFREE = 0)
ALTER DBSPACE PUBLIC.SPACE (LOCK = PAGE,PCTFREE=3)

Authorization:

To alter a PRIVATE DBSPACE, you must either own the DBSPACE, or have DBA authority. You
must have DBA authority to alter a PUBLIC DBSPACE.

With the ALTER DBSPACE statement, you can alter the percentage of free space
that SOLIDS reserves on each data page when records are inserted into a PUBLIC
or PRIV A TE DBSPACE. You can also alter the lock size of a PUBLIC
DBSPACE. (You can't alter the lock size of a PRIVATE DBSPACE.)

owner.
is the userid of the owner of the DBSPACE that is to be altered. It is not
necessary for DBSPACEs that you own. If the DB SPACE is PUBLIC, then
the owner is "PUBLIC." To alter another user's DBSPACE, you must have
DBA authority.

dbspace-name
is the name of the DBSPACE that you wish to change.

PCTFREE
is a keyword telling SOLIDS that you wish to alter the percentage of space
on each data page that is to be kept empty. It is a performance
consideration. If an index has been defined for some table in the
DBSPACE, the use of reserved free space may result in a more favorable
placement of data on pages and, therefore, improve access time.

LOCK
is a keyword telling SOLIDS that you wish to alter the lock size of a public
DBSPACE. The valid lock sizes are ROW, PAGE, and DBSPACE. If
ROW is specified, the system locks only individual rows in the DBSP ACE.
PAGE causes the smallest lockable unit to be a page (approximately 4000
characters); DBSPACE causes this unit to be a DBSPACE. The default is
PAGE. The LOCK parameter applies to PUBLIC DBSPACEs only.

SQL Statement Reference Summary 265

You can specify both the PCTFREE and LOCK parameters when altering a ...,;
PUBLIC DBSPACE. If you specify both, you can specify them in any order, but
you must separate them with a comma. (See the example above.)

266 SQL/Data System Application Programming for VM/SP

ALTER TABLE

Format:

ALTER TABLE [creator.jtable-name
ADD column-name data-type

Example:

ALTER TABLE SCOTT.SUPPLIERS ADD RATING CHAR(1)

Authorization:

To alter a table, you must either be its creator or have the ALTER privilege on it. You can alter any
table if you have DBA authority (even the SQL/DS catalogs).

With the ALTER TABLE statement, you can add a single column to an existing
table. The new column is added to the right-hand side of the table. All existing
rows of the table are expanded and assigned the null value for the new column.

creator.
is the userid of the owner of the table that you wish to add the column to,
followed by a period. It is not necessary for tables that you own.

table-name
is the name of the table that you wish to add the column to.

column-name
is the name of the column that you are adding. The new column-name must
not be the same as the name of any existing column in the table. Once a
column-name is established, it remains for the life of the table. To change it,
you must drop the table and re-create it.

data-type
is the data type of the column to be created. For a discussion and listing of
valid data types, see "Data Types" on page 75. Any of these data types can
be used in the ALTER TABLE statement. However, because the new
column is initially assigned null values, you cannot specify the NOT NULL
option for the new column.

SQL Statement Reference Summary 267

BEGIN DECLARE SECTION

Format:

BEGIN DECLARE SECTION

Authorization:

Anyone connected to SQL/DS can issue this statement.

BEGIN DECLARE SECTION is a declarative statement that must be coded in the
application prolog. It is used to delineate the beginning of the SQL/DS host
variable declaration section. The host variable declaration section is ended by the
END DECLARE SECTION statement.

268 SQL/Data System Application Programming for VM/SP

CLOSE

Format:

CLOSE cursor-name

Example:

CLOSE Cl

The CLOSE statement is used to stop the usage of the group of rows pointed to by
the named cursor (cursor-name). This cursor must be in the open state in order to
be closed. A cursor is opened using the OPEN statement.

When the CLOSE statement is executed, the indicated cursor leaves the open state,
and its active set becomes undefined. No FETCH or PUT statement can be
executed on the cursor, and no DELETE or UPDATE statement can refer to its
current position, until the cursor is reopened by an OPEN statement. CLOSE
permits SQL/DS to release the resources associated with maintaining an open
cursor. CLOSE should be placed in your program so that it is executed as soon as
the program is finished using a cursor.

When a CLOSE statement is executed in a program that is blocking, the remaining
rows in an incomplete block are inserted or retrieved.

Note that both the COMMIT WORK and ROLLBACK WORK statements
automatically close all cursors.

SQL Statement Reference Summary 269

COMMENT

Format 1:

COMMENT ON

1
TABLE [creator.]table-name ~ IS quoted-string
COLUMN [creator.]table-name.column-name

Examples:

COMMENT ON COLUMN QUOTATIONS.DELIVERY_TIME IS 'MEASURED IN DAYS'
COMMENT ON TABLE INVENTORY IS 'INVENTORY OF MACHINE PARTS ONLY'

Authorization:

You may use Format 1 of the COMMENT statement only if you are the creator of the table in
question or if you have DBA authority.

The SOL COMMENT statement lets you associate an explanatory comment with a
table or view, or with a column in a table or view. SOL/OS places this comment
into the REMARKS column of either the SYSCATALOG or the SYSCOLUMNS
catalog table. When you do a SELECT on either of these catalog tables, you can
see all the comments you put on your tables or columns.

TABLE
is a keyword telling SOL/OS that you are putting a comment on a table or a
view, as opposed to a column. The comment that you specify will be put into
the REMARKS column of the SYSTEM.SYSCAT ALOG catalog table, on
the row for the table you are commenting on.

COLUMN
tells SOL/OS that you are commenting on a column of a table or view. The
comment that you specify will be put into the REMARKS column of the
SYSTEM.SYSCOLUMNS catalog table, on the row for the column of the
table or view you are commenting on.

creator.
is the userid of the owner of the table or view which you are commenting on.
It is not necessary for tables that you own. To comment on another user's
table, you must have DBA authority.

table-name
is the name of the table or view that you wish to comment on. If you are
commenting on a column, it is the name of the table or view that contains
the column.

270 SQL/Data System Application Programming for VM/SP

Format 2:

column-name
is the name of the column that you wish to comment on.

quoted-string
is the actual comment that you wish to have placed in the appropriate
SOL/OS catalog. The comment must not exceed 254 characters, and must
be enclosed in single quotes, as shown above. If there already is a comment
there, the new comment replaces the old one.

COMMENT ON [creator.jtable-name (column-name IS quoted-string,
............................ ,
column-name IS quoted-string)

Example:

COMMENT ON QUOTATIONS (SUPPNO IS 'SEE SUPPLIERS TABLE FOR NAMES' ,
PRICE IS 'IN U.S. DOLLARS' , DELIVERY TIME IS 'MEASURED IN DAYS')

Authorization:

You may use Format 2 of the COMMENT statement only if you are the creator of the table in
question or if you have DBA authority.

Format 2 of the SOL COMMENT statement lets you specify comments for more
than one column in a table at one time. It can be used only for columns, not for
tables or views. SOL/OS places the comments into the REMARKS column of the
SYSCOLUMNS catalog table, on the rows associated with the columns that you
are commenting on.

creator.
is the userid of the owner of the table or view containing the columns that
you are commenting on. It is not necessary for tables that you own. To
comment on another user's table, you must have DBA authority.

table-name
is the name of the table or view that contains the columns you wish to
comment on.

column-name
is the name of a column that you wish to comment on.

quoted-string
is the actual comment that you wish to have placed in the SYSCOLUMNS
catalog. The comment must not exceed 254 characters, and must be
enclosed in single quotes, as shown above. If there already is a comment
there, the new comment replaces the old one.

SQL Statement Reference Summary 271

COMMIT WORK

Format:

COMMIT WORK [RELEASE]

Authorization:

Anyone connected to SOLIDS can issue this statement.

The COMMIT WORK statement ends the current logical unit of work if one is in
progress and commits any changes made during the logical unit of work to the data
base. It is strongly recommended that each application program explicitly end its
logical unit of work before terminating.

RELEASE
specifies to SOLIDS that when the COMMIT work processing is done, your
connection to SOLIDS is ended. See "COMMIT WORK" on page 233 for
more information on this parameter.

272 SQL/Data System Application Programming for VM/SP

CONNECT

Format:

CONNECT userid
IDENTIFIED BY password

Example:

CONNECT CRAIG
IDENTIFIED BY : SECRET

Authorization:

You must have CONNECT authority to issue this statement.

The CONNECT statement connects an application program to the SQL/DS data
base so it can access and work with SQL/DS data. The CONNECT statement also
identifies the user to SQL/DS, and determines whether the user has the proper
authorization to preprocess or run the program containing the CONNECT
statement. See "Connecting to SQL/DS" on page 91 for more information.

The CONNECT statement is not required because SQL/DS does implicit
connecting (from VM/SP userids and passwords) if an explicit CONNECT is not
found.

If you do choose to code a CONNECT statement, it must be the first SQL
statement executed in your program. However, SQL declarative statements (such
as the host variable declaration section and the SQLCA structure) may precede the
CONNECT statement. The CONNECT statement ends the application prolog.

userid
is the userid of the person trying to CONNECT to SQL/DS. It must be
declared as a fixed-length character string of length 8 and must be initialized
before the CONNECT statement is executed. However, a userid can be less
than 8 characters long. Unused character positions in the host variable for
the userid are padded with blanks.

password
is the password of the person trying to CONNECT to SQL/DS. It must be
a host variable. It must be declared as a fixed-length character string of
length 8 and must also be initialized before the CONNECT statement is
executed. And, a password can be less than 8 characters long.

SQL Statement Reference Summary 273

CREATE INDEX

Format:

CREATE [UNIQUE] INDEX index-name ON [creator.]table-name
(column-name-l [ASC I DESC]

[,column-name-2 [ASC I DESC]] ...)
[PCTFREE= {lQlinteger}]

Example:

CREATE INDEX FASTQUOTES ON QUOTATIONS
(PARTNO ASC, PRICE DESC, DELIVERY_TIME)
PCTFREE = 33

Authorization:

You can create indexes on tables that you have created. You need the INDEX privilege or DBA
authority to create an index on another user's table (for example, CREATE INDEX MYID.lNDl ON
OTHERID.TABl). You need DBA authority to create an index for another user (for example,
CREATE INDEX OTHERID.lNDl ON OTHERID.TABl).

The CREATE INDEX statement creates an index on one or more columns of a
table and gives a name to the new index. The SQL/DS preprocessor chooses
which index, if any, is to be used in processing a given query or data manipulation
statement. The index provides SQL/DS with a fast means to access the table
directly by the indexed column. However, there is a slight increase in the time
required to update the indexed column because SQL/DS must also update the
index.

When you preprocess a program, SQL/DS creates an access module for it that
takes advantage of the best access path available at the time of the preprocessing.
Therefore, it is good practice to create indexes before preprocessing programs that
might take advantage of them. When you create a new index, existing access
modules are not made invalid because they can still use their original access path.
However, an existing program may run more efficiently by taking advantage of the
new index. If this is the case, you should preprocess the program again. A new
access module is then created for the program, possibly using the new index.

An index is maintained by SQL/DS until it is explicitly dropped in a DROP
INDEX statement, or until its table or DBSPACE is dropped. Indexes cannot be
created for views or for columns whose data type is LONG V ARCHAR or LONG
V ARGRAPHIC.

UNIQUE
ensures that no two rows of the indicated table are identical in the indexed
column(s). If, when a CREATE UNIQUE INDEX statement is executed,
the table already contains some rows that are not unique in the indexed

274 SQL/Data System Application Programming for VM/SP

columns, the CREATE UNIQUE INDEX statement fails and returns an
error code. You can force all rows of a table to be unique by creating a
unique index on all columns of the table.

index-name
is the name you wish to give to the index you are creating.

creator.
is the userid of the owner of the table that you wish to put the index on,
followed by a period. It is not necessary for tables that you own.

table-name
is the name of the table that you wish to create the index on.

column-name-l
is the name of the primary column that you wish to create the index on.

column-name-2, column-name-3, •••
are the names of additional columns that you wish to create the index on.
See "Creating an Index" on page 242 for a list of rules to follow when
creating an index on multiple columns.

ASC I DESC
specifies the order of the index on a column. You can create an index on a
column in either ascending (ASC) or descending (DESC) order. Ascending
order is the default. Performance may be improved for queries that access
the indexed column in the specified order.

PCTFREE
controls the amount of free space reserved in an index for later insertions
and updates. PCTFREE defines the percentage (integer) of the total space
of the index that is to be reserved for this purpose. It may range from 0 to
99, but for practical purposes should not exceed 50. Increasing PCTFREE
causes the index to take more space in the data base, but reduces the time
required to insert or update rows of the indexed table. If you don't include a
PCTFREE clause in the CREATE INDEX statement, SQL/DS sets
PCTFREE to the default value of 10.

SQL Statement Reference Summary 275

CREATE SYNONYM

Format:

CREATE SYNONYM identifier FOR creator. {table-name I view-name}

Example:

CREATE SYNONYM PARTS FOR SMITH. INVENTORY

Authorization:

Anyone connected to SQL/DS can issue this statement. You can create a synonym for any user's
table or view. (No authorization is required.)

The CREATE SYNONYM statement defines an alternative name for a table or
view. This allows you to refer to a table or view owned by you or another user
without having to enter the fully-qualified name. Once created, a synonym remains
in effect until it is explicitly dropped by a DROP SYNONYM statement.

identifier
is the synonym (alternative name) you wish to use to refer to the table or
view. Rules for identifiers are outlined under "General Rules for Naming
Data Objects" on page 74.

creator.
is the use rid of the owner of the table or view that you wish to create the
synonym for, followed by a period. This is required, even when you are
creating a synonym for one of your own tables or views.

table-name I view-name
is the name of the table or view for which you wish to create the synonym.

276 SQL/Data System Application Programming for VM/SP

CREATE TABLE

Format:

CREATE TABLE [creator.]table-name

Example:

(column-name-l data-type-l [NOT NULL]
[,column-name-2 data-type-2 [NOT NULL]] ...)

[IN [owner.]dbspace-name]

CREATE TABLE MIKE.MUSICIANS
(NAME

INSTRUMENT
VARCHAR (20)
VARCHAR (10)

"BAND NAME" VARCHAR (10)
IN MIKE.DBSP1

NOT NULL,
NOT NULL,

)

Authorization:

You must have RESOURCE authority to create a table, unless someone with DBA authority has
acquired a PRIVATE DBSPACE on your behalf. If a DBA does acquire a DB SPACE for you, you
may create a table in that DBSPACE, even if you do not have RESOURCE authority. You must
have DBA authority to create a table for another user.

The CREATE TABLE statement creates a new table in the data base with the
table name and the column names that you specify. Once a table has been created,
you may not change the data types of its columns or drop a column from the table.
However, you may add new columns to the table by the ALTER TABLE
statement.

creator.
is the userid of the person who you are creating the table for, followed by a
period. When you create tables for yourself, you do not need to specify this
parameter. If you are creating a table in a program and you do not specify
creator, creator defaults to the user who preprocesses the program.

table-name
is the name that you wish to give the table you are creating. The table-name
must follow the rules for an SOL identifier as discussed under "General
Rules for Naming Data Objects" on page 74.

column-name-t, column-name-2, ...
are the names you wish to give to the columns of the table. Column names
must also follow the rules for an SOL identifier.

data-type-t, data-type-2, ...
are the types of data (such as integer, decimal or character) that you want
each column to have. Valid data types for columns are listed under "Data
Types" on page 75. Any of those data types can be used as data types in
SOLIDS tables.

SQL Statement Reference Summary 277

NOT NULL
is a parameter telling SQL/DS not to permit null values in that column. Any
statement that attempts to place a null value in such a column is rejected
with an error code.

owner.
is the owner of the DBSPACE that you are creating the table in.

dbspace-name
is the name of the DBSPACE that you are creating the table in. You don't
have to specify this (or owner.) if you are creating the table in one of your
own DBSPACEs. You can avoid confusion, however, by specifying who you
are creating the table for (creator.) and where you want the table to be
placed (owner.dbspace-name).

278 SQL/Data System Application Programming for VM/SP

.\. CREATE VIEW

Format:

CREATE VIEW [creator.]view-name [(column-name-list)]
AS select-statement

Example:

CREATE VIEW FASTQUOTES (MFR, PART, DAYS) AS
SELECT SUPPNO, PARTNO, DELIVERY_TIME
FROM QUOTATIONS WHERE DELIVERY_TIME < 10

Authorization:

You must have the SELECT privilege on the underlying tables to create a view.

The CREATE VIEW statement causes the indicated select-statement to be stored
as the definition of a new view. The statement also gives a name to the view, and
(optionally) to each column in the view. Host variables are not allowed in a
CREATE VIEW statement.

creator.
is the userid of the person who you are creating the view for. This defaults
to the person issuing the command in ISQL, or to the person preprocessing
the program that the CREATE VIEW statement is in.

view-name
is the name that you wish to give the view that you are creating. It must
follow the rules for identifiers as outlined under "General Rules for Naming
Data Objects" on page 74. Also, the name of the view must be unique
among all the tables, views, and synonyms that you have already created.

column-name-Iist
is the list of the names that you wish to give particular columns in the view
you are creating. If you don't specify the column names, the columns of the
view inherit the names of the columns from which they are derived. You
must specify new names for virtual columns. See "Creating a View" on
page 140 for the definition of a virtual column. You must also specify new
column names if the selected fields of the view do not have unique names
(for example, the view is a join of two tables, each of which has a column
named PARTNO).

Internal SQL/DS limitations restrict a view to approximately 140 columns.
The number of referenced tables, lengths of column names, and WHERE
clauses all further reduce this number.

SQL Statement Reference Summary 279

select-statement
is the SELECT statement that defines the view you are creating. It is coded
in basic form; that is, with j'lst the SELECT, FROM and WHERE clauses
included, and no cursor defined.

If you use a "SELECT *" clause in the view definition and you later add
columns to the underlying table with ALTER statements, the new columns
will not appear in the view. Therefore, you may wish to avoid this type of
clause.

The select-statement must not have an ORDER BY clause and cannot
contain a UNION operator.

The select-statements that define the various views known to the SQL/DS
are kept in a catalog called SYSVIEWS. Also, descriptions of views and
their columns are kept in SYSCAT ALOG and SYSCOLUMNS.

280 SQL/Data System Application Programming for VM/SP

~ DECLARE CURSOR

Format 1:

DECLARE cursor-name CURSOR FOR select-statement

[ORDER BY o-spec [ASCIDESC] [, o-spec [ASCIDESC]] ...] FOR UPDATE OF column-name-1 [, column-name-2] ...

Example:

DECLARE C1 CURSOR FOR SELECT PARTNO, PRICE
FROM QUOTATIONS WHERE SUPPNO=:SUPP
ORDER BY PARTNO

Authorization:

Anyone connected to SOLIDS can issue this statement. You must, however, be authorized to access
the tables referenced in the SELECT statement. (See the SELECT statement authorization
description.)

Format 1 of the DECLARE CURSOR statement should not be confused with a
host variable declaration. This statem~nt defines a cursor by associating a
cursor-name with the specified select-statement. The set of rows defined by the
specified select-statement are called the active set of the cursor. Once the cursor is
defined, you can manipulate the active set using the OPEN, FETCH and CLOSE
statements.

Note: The DECLARE CURSOR statement for dynamically defined queries is not
reviewed in this chapter. It is discussed in detail under "Dynamically Defined
Statements" on page 147.

cursor-name
is the name you wish to give to the cursor you are defining. Cursor names
must be unique in a logical unit of work. They must follow all the usual rules
for SOL identifiers and, unlike other SOL identifiers, cursor names must
never be enclosed in either single (') or double (") quotes. Thus, cursor
names cannot contain embedded blanks. Cursor names can, however, be
SOL reserved words.

select-statement
defines the active set of the cursor. All the rows that satisfy the search
conditions in this select-statement become part of the active set, which you
can manipulate using OPEN, FETCH, and CLOSE statements.

ORDER BY
causes SOLIDS to deliver the rows of the active set in the specified order.
This clause is discussed in detail under "More About Cursor Management"
on page 134.

SQL Statement Reference Summary 281

Format 2:

o-speciS the order specification for the active set. It is a list of column names or ...,,;;
integers that refer to select-list items for the purpose of indicating an
ordering in the ORDER BY clause.

ASC I DESC
indicates the order that you want a column ordered by: either ascending or
descending order. Ascending is the default.

FOR UPDATE OF
is an optional clause telling SQL/DS that you might want to update some
columns of the active set. This clause is discussed in more detail under
"More About Cursor Management" on page 134.

column-name-I, column-name-l, '"
are the names of columns that you might want to update via this cursor. You
can only update these columns listed in the FOR UPDATE clause.

DECLARE cursor-name CURSOR FOR insert-statement

Examples:

DECLARE C2 CURSOR FOR INSERT INTO INVENTORY
(PARTNO, DESCRIPTION, QONHAND)

VALUES (:PART, :DESC, : QUAN)

DECLARE C3 CURSOR FOR INSERT INTO QUOTATIONS
(SUPPNO, PARTNO, QONORDER)
VALUES (58, 207, , ,)

Authorization:

Anyone connected to SQL/DS can issue this statement. You must, however, be authorized to access
the tables referenced in the INSERT statement. (See the INSERT statement authorization
description.)

Format 2 of the DECLARE CURSOR statement should not be confused with a
host variable declaration. This statement defines a cursor for inserting rows into a
table by associating a cursor-name with the specified insert-statement. The set of
rows defined by the specified insert-statement are called the active set of the
cursor. Once the cursor is defined, you can manipulate the active set using the
OPEN, PUT and CLOSE statements.

Note: The DECLARE CURSOR statement for dynamically defined inserts is not
reviewed in this chapter. It is discussed in detail under "Dynamically Defined
Statements" on page 147.

cursor-name
is the name you wish to give to the cursor you are defining. Cursor names
must be unique in a logical unit of work. They must follow all the usual rules ..J

282 SQL/Data System Application Programming for VM/SP

for SQL identifiers and, unlike other SQL identifiers, cursor names must
never be enclosed in either single (') or double (") quotes. Thus, cursor
names cannot contain embedded blanks. Cursor names can, however, be
SQL reserved words.

insert-statement
defines the active set of the cursor. You can manipulate this active set with
the OPEN, PUT, and CLOSE statements. This active set consists of one
row of data which is to be inserted into an SQL/DS table. The
list-of-data-items in the insert-statement (usually a list of host variables)
defines the values that you wish to insert by using the PUT statement.

SQL Statement Reference Summary 283

DELETE

Format 1 DELETE:

DELETE FROM [creator.] table-name
[WHERE search-condition]

Examples:

DELETE FROM QUOTATIONS WHERE SUPPNO = 53
DELETE FROM QUOTATIONS WHERE DELIVERY_TIME IS NULL
DELETE FROM QUOTATIONS WHERE PARTNO = :X AND PRICE> :Y
DELETE FROM SCOTT. INVENTORY WHERE DESCRIPTION = 'PISTON'

Authorization:

You can delete rows from any table you create. You can delete rows from another user's table if you
are given the DELETE privilege on that table, or if you have DBA authority.

Format 1 of the DELETE statement deletes one or more rows from a given table.
SQL/DS deletes all rows of the named table that satisfy the search condition.

creator.
is the userid of the owner of the table that you wish to delete rows from. If
you do not specify this parameter, it defaults to the person who preprocessed
the program that the DELETE statement is contained in.

table-name
is the name of the table that you wish to delete rows from.

search-condition
describes the row or rows to be deleted. The search condition may take any
of the forms described under "Using Expressions as Search Conditions" on
page 30.

If you omit the search condition, SQL/DS deletes all rows from the named
table, but sets a warning indicator in SQLWARN4. You can check
SQL W ARN 4 to detect unintentional deletions and rollback the logical unit
of work before the changes are permanently committed to the data base.

If no rows satisfy the given search condition, SQL/DS returns the "not
found" code (SQLCODE= 100).

284 SQL/Data System Application Programming for VM/SP

Format 2 DELETE:

DELETE FROM [creator.] able-name WHERE CURRENT OF cursor-name

Example:

I
DELETE FROM INVENTORyrHERE CURRENT OF CURSOR2

Authorization: J

I
Authorization depends on t1 table specified in the cursor declaration. You can delete rows of the
table named in the cursor de laration if you created that table. If you are not the creator of the table
in the cursor declaration, yo must be given the DELETE privilege on that table or you must have
DBA authority.

I
I

I

F~rmat 2 of the DELETE statement deletes exactly one row of a table. The
cent position of the cursor determines the row to be deleted.

cr ator.
. is the userid of the owner of the table that you wish to delete a row from. If
i you do not specify this parameter, it defaults to the person who preprocessed
. the program that the DELETE statement is contained in.

talle-name r is the name of the table that you wish to delete a row from.

clr::: name of the cursor that is pointing to the row that you wish to delete.
The cursor must be open and positioned on a row of the table. Also, it must
be defined by a SELECT statement on one table (not a join). If the
SELECT statement contains a subquery, the subquery must not be on the
same table as the outer-level query.

SQL Statement Reference Summary 285

DESCRIBE

Format:

DESCRIBE statement-name INTO output-spec
[USING {NAMES I LABELS I BOTH I ANY} 1

Examples:

DESCRIBE Q1 INTO SQLDA
DESCRIBE S1 INTO STR1 USING LABELS
DESCRIBE STMT INTO SQLDA USING ANY

Authorization:

You can use DESCRIBE for any statement you have successfully prepared.

The DESCRIBE statement obtains information about a statement that has been
prepared. If the prepared statement is a SELECT statement, DESCRIBE returns
the number of fields in the answer set, and the data types, lengths, and names of
these fields. If the prepared statement is not a SELECT statement, DESCRIBE
sets the SQLDA field called SQLD to zero.

All fields in the SQLDA were described under "The SQL Descriptor Area
(SQLDA)" on page 167. General usage techniques are described under
"Dynamically Defined Queries" on page 151.

You should not attempt to DESCRIBE a statement that was prepared in a different
logical unit of work. If you do, the results are unpredictable.

statemoent-naJDe
is the name of the statement that you are preparing.

output-spec
should name an SQLDA structure.

NAMES
tells SQL/DS to return column names but no column labels to the
SQLNAME fields of SQLDA. This is the default.

LABELS
tells SQL/DS to return column labels but no column names to the
SQLNAME fields of SQLDA.

BOTH
tells SQL/DS to return both column labels and column names to the
SQLNAME fields of the SQL V AR array in SQLDA. The value returned in
SQLDA is twice the number of columns (N) in the select-list.

286 SQL/Data System Application Programming for VM/SP

ANY
If a label exists for a column, it is returned to the SQLNAME field. If not,
the column name is returned.

SQL Statement Reference Summary 287

DROP DBSPACE

Format:

DROP DBSPACE [owner.]dbspace-name

Examples:

DROP DBSPACE MFBSPACE
DROP DBSPACE MIKE.MFBSPACE
DROP DBSPACE PUBLIC. SPACE1 0

Authorization:

A DBSPACE may be dropped only by its owner or by a user having DBA authority. You must have
DBA authority to drop a PUBLIC DBSPACE. No user, even with DBA authority, can drop the
DBSPACE containing the SQL/DS catalogs.

The DROP DBSPACE statement destroys the contents of a DBSPACE and returns
the DB SPACE to an "available" state. All existing access modules for programs
that operate on the dropped DB SPACE are automatically marked "invalid." You
can use DROP DBSPACE with both PUBLIC and PRIVATE DBSPACEs.

owner.
is the owner of the DBSPACE that you wish to drop.

dbspace-name
is the name of the DBSPACE that you wish to drop.

288 SQL/Data System Application Programming for VM/SP

DROP INDEX

Format:

DROP INDEX [creator.jindex-name

Example:

DROP INDEX FASTQUOTES

Authorization:

You can use the DROP INDEX statement only if you are the creator of the index to be dropped (or if
you have DBA authority).

The DROP INDEX statement drops the indicated index from the data base. The
table on which the index is defined is not affected. All existing access modules that
use the dropped index are marked invalid.

creator.
is the owner of the index that you wish to drop.

index-name
is the name of the index that you wish to drop.

SQL Statement Reference Summary 289

DROP PROGRAM

Format:

DROP PROGRAM [creator.)program-name

Examples:

DROP PROGRAM PAYROLL2
DROP PROGRAM SALLY.RUNRUN
DROP PROGRAM :CREATOR.:PROGNAME

Authorization:

You can only drop programs that you have preprocessed. (That is, you must be the creator of the
program you wish to drop.) To drop another user's program, you must have DBA authority.

The DROP PROGRAM statement erases the access module associated with the
named program. Once you drop an access module, you cannot run the program.

creator.
is the owner of the program that you wish to drop.

program-name
is the name of the program that you wish to drop. This is the name specified
in the PREPNAME parameter when the program is preprocessed.

290 SQL/Data System Application Programming for VM/SP

DROP SYNONYM

Format:

DROP SYNONYM identifier

Example:

DROP SYNONYM DATA

Authorization:

You can drop a synonym only if you have created it.

With the DROP SYNONYM statement you can erase a synonym from the data
base. Then you can no longer use this synonym as an alternate name for a table
unless you re-create it using the CREATE SYNONYM statement. The table on
which the synonym is based is not affected.

identifier
is the synonym (referring to a table or view) that you wish to drop.

SQL Statement Reference Summary 291

DROP TABLE

Format:

DROP TABLE [creator.]table-name

Example:

DROP TABLE INVENTORY

Authorization:

You can drop a table only if you have created the table, or if you have DBA authority.

This statement drops the indicated table from the data base. All indexes and views
defined on the table, and all privileges granted on the table, are also dropped from
the data base. All contents of the table are lost.

creator.
is the owner of the table that you wish to drop. It is not necessary for tables
that you own.

table-name
is the name of the table that you wish to drop.

292 SQL/Data System Application Programming for VM/SP

DROP VIEW

Format:

DROP VIEW [creator. 1 view-name

Example:

DROP VIEW FASTQUOTES

Authorization:

You can drop only those views that you have created. You can drop another user's views only if you
have DBA authority.

The DROP VIEW statement drops the definition of the indicated view from the
data base.

creator.
is the owner of the view that you wish to drop.

view-name
is the name of the view that you wish to drop.

SQL Statement :Reference SUftIIUty 293

END DECLARE SECTION

Format:

END DECLARE SECTION

Authorization:

Anyone connected to SQL/DS can issue this statement.

END DECLARE SECTION is a declarative statement that must be coded in the
application prolog. It is used to delineate the end of the SQL/DS host variable
declaration section. The host variable declaration section is begun by the BEGIN
DECLARE SECTION statement.

294 SQL/Data System Application Programming for VM/SP

EXECUTE

Format 1:

EXECUTE statement-name [USING input-list]

Format 2:

EXECUTE statement-name [USING DESCRIPTOR input-structure]

Examples:

EXECUTE S1 USING :X, :Y:YIND
EXECUTE S1 USING DESCRIPTOR SQLDA
EXECUTE S1 USING DESCRIPTOR STUFF

Authorization:

Any user with CONNECT authority can code this statement in an application program and
preprocess the program. SQL statements submitted to SQL/DS via the PREP ARE and EXECUTE
facility have their authorization checked against the privileges of the user who is currently running the
program, not the user who preprocessed the program.

Format 1 of the EXECUTE statement causes SQL/DS to execute a statement that
was "prepared" previously. When the statement is executed, the host variables you
list are substituted, in order, into the statement in place of its "7" parameters.

Format 1 of the EXECUTE statement is used when you know the number and
data types of the parameters of the prepared statement. Format 2 permits you to
dynamically specify the "7" parameters of the prepared statement. If you use
Format 2, you must use the SQLDA to specify the required parameters. General
usage techniques for the SQLDA were discussed under "Dynamically Defined
Queries" on page 151.

statemnent-DalDe
is the name of the statement that you wish to execute. This statement must
have been prepared earlier by a PREP ARE statement.

input-Ust
is the list of host variables that you wish to substitute, in order, into the
prepared statement in place of its "7" parameters. .

input-structure
is the SQLDA that specifies information for each variable represented by a
"7" in the prepared statement. See "Dynamically Defined Queries" on
page 151 for more information.

SQL Statement Reference Summary 295

EXECUTE IMMEDIATE

Format:

EXECUTE IMMEDIATE string-spec

Example:

EXECUTE IMMEDIATE : QSTRING

Authorization:

Any user with CONNECT authority can code this statement in an application program and
preprocess the program. SQL statements submitted to SQL/DS via EXECUTE IMMEDIATE have
their authorization checked against the privileges of the user who is currently running the program,
not the user who preprocessed the program.

The EXECUTE IMMEDIATE statement is a short-hand form of the PREPARE
and EXECUTE statements. It is used for preparing and executing SQL statements
having no parameters. EXECUTE IMMEDIATE should be used when the SQL
statement is to be executed only once. If a given SQL statement is to be prepared
once and executed repeatedly, the non-immediate form of EXECUTE should be
used.

string-spec
identifies the statement that you want to prepare and execute. (See
"PREPARE" on page 314 for string-spec syntax rules.)

296 SQL/Data System Application Programming for VM/SP

EXPLAIN

Format:

EXPLAIN explain-spec [SET QUERYNO = srnall-integer-value] FOR sql-cornrnand

Example:

EXPLAIN REFERENCE, STRUCTURE, COST, PLAN
SET QUERYNO = 1500
FOR SELECT * FROM QUOTATIONS
WHERE SUPPNO >= 53

Authorization:

You must own an explanation table for each of the specified explain-spec options. Also, you must
have the proper privileges to execute the SQL statement defined by sql-command.

The EXPLAIN statement retrieves information about the structure and execution
performance of an SQL command It places the information into one or more
SQL/DS explanation tables.

The result tables built by the EXPLAIN statement are created during preprocessing
of the containing program. You can also PREP ARE/EXECUTE or EXECUTE
IMMEDIATE an EXPLAIN statement.

explain-spec
is the name of the explanation table(s) into which information is to be
placed. explain-spec may include one or more of the following options,
separated by commas:

REFERENCE for information contained in the REFERENCE TABLE

STRUCTURE for information contained in the STRUCTURE TABLE

COST for information contained in the COST TABLE

PLAN for information contained in the PLAN TABLE

ALL for information contained in all of the above tables.

small-integer-value
is an integer constant that can fit into a SMALLINT field. The SET
QUERYNO clause allows you to place an integer value into the QUERYNO
fields of the rows in the explanation tables. Assigning a different number on
each EXPLAIN will make it easier to identify information collected.

SQL Statement Reference Summary 297

•. '"
sql-command ..."",

is the SQL command to be analyzed. You can analyze UPDATE, DELETE,
and INSERT commands as well as SELECT commands. (SELECT
commands are considered the primary candidates for EXPLAIN analysis).
sql-command is not a quoted string and must not be put in a host variable.

The length of the SQL statement is limited to about 8000 characters.

298 SQL/Data System Application Programming for VM/SP

FETCH

Format:

FETCH cursor-name INTO host-list

ExQ1

FETCH C1 INTO : NAME , :ADDR, :PHONE:PHONI

The FETCH statement retrieves a row from the active set into specified host
variables. The position of the cursor is advanced to the next row of the active set,
and the selected fields of this row are delivered into the output host variables
specified in the host-list.

Note: The FETCH statement for dynamically defined queries is not reviewed in
this chapter. It is discussed in detail under "Dynamically Defined Statements" on
page 147. In FORTRAN programs, only the simple form of the FETCH
statement (as listed in this section) is allowed.

cursor-name
is the name of the cursor defining the active set that you wish to retrieve a
row from. The cursor must have been defined in terms of a SELECT
statement and must be in the open state.

host-list
is the list of output host variables that you want the retrieved values
delivered into. Output host variables in this list must be separated by
commas, and must be immediately preceded by colons.

SQL Statement Reference Summary 299

GRANT

Format 1 (for privileges on tables and views):

/ /""""

GRANT -<

"-

ALTER
DELETE
INDEX
INSERT
SELECT
UPDATE [(col-name-list)]

-

-
ALL [PRIVILEGES]

ON [creator.] {table-name I view-name}
TO { PUBLIC I userid 1 [, userid2] ... } [WITH GRANT OPTION]

Note: ALTER, INDEX, and ALL [PRIVILEGES] do not apply to views.

Examples:

GRANT UPDATE (PARTNO, SUPPNO) ON QUOTATIONS TO SCOTT
GRANT SELECT, INSERT ON QUOTATIONS TO SMITH, JONES
GRANT ALL PRIVILEGES ON INVENTORY TO SCOTT WITH GRANT OPTION

Authorization:

You must possess the privilege with the GRANT option before you can grant that privilege to
someone else.

With Format 1 of the GRANT statement, you can grant privileges on tables and
views to other users. This is usually issued through ISQL or the DBS utility.

You can specify more than one privilege. If you do, you can specify them in any
order, but you must separate them with commas.

Note that only the user who creates a table or view (or a user with DBA authority)
can drop it. You can't grant a "drop" privilege to another user.

ALTER
enables the specified users to add new columns to the specified table. This
privilege does not apply to views or DBSPACEs. (That is, it applies to the
ALTER TABLE statement, but not the ALTER DBSPACE statement.)

DELETE
enables the specified grantee(s) to delete rows from the table or view.

INDEX
allows the grantees to create indexes on the specified table. This privilege
does not apply to views.

300 SQL/Data System Application Programming for VM/SP

J

INSERT
lets the grantees insert rows into the table or view.

SELECT
enables the grantees to insert rows into the table or view.

UPDATE
allows the grantees to update the table or view.

col-name-list
gives the grantee the power to update only the columns listed. If you choose
not to specify a list of column names or if you specify ALL [PRIVILEGES],
the grantee may update all columns of the table, even those created later via
the ALTER TABLE statement.

ALL [PRIVILEGES I
grants all six privileges to the specified user(s). This parameter lets you write
ALL [PRIVILEGES] instead of listing all six. (Note that you can't grant
ALL PRIVILEGES on a view; INDEX and ALTER privileges do not apply
to views.) The PRIVILEGES keyword is both optional and non-functional;
you can include it to improve readability.

creator.
is the userid of the owner of the table or view that you wish to grant
privileges on. This is not necessary for tables that you own.

table-name
is the name of the table that you wish to grant privileges on.

view-name
is the name of the view that you wish to grant privileges on.

PUBLIC
grants the specified privilege(s) to all users.

useridl, userid2, ...
are the userid(s) of the user(s) to whom you wish to grant the specified
privileges.

WITH GRANT OPTION
enables the grantee to pass the granted privileges to other users.

SQL Statement Reference Summary 301

Format 2 (for privileges on programs): ...,;)

GRANT RUN ON [creator.]program-name
TO { PUBLIC I userid1 [,userid2] ... } [WITH GRANT OPTION]

Examples:

GRANT RUN ON TRANS1 TO EDWARDS WITH GRANT OPTION
GRANT RUN ON JOB338 TO PUBLIC

Authorization:

You must possess the RUN privilege with the GRANT option before you can grant that privilege to
someone else.

Format 2 allows you to grant privileges on programs to other users. The only
privilege you can grant on a program is the RUN privilege, which lets another user
run the indicated program. This is usually issued through ISQL or the DBS utility.

Note that only the user who preprocesses a program (or a user with DBA
authority) can drop its access module from the data base. You can't grant a
"drop" privilege to another user.

creator.
is the userid of the person who preprocessed the program that you wish to """'"
grant privileges on. This is not necessary for programs that you own.

program-name
is the name of the program that you wish to grant privileges on.

PUBLIC
grants the RUN privilege to all users.

useridl, userid2, •.•
are the userid(s) of the user(s) to whom you wish to grant the RUN
privilege.

WITH GRANT OPTION
enables the grantee to pass the RUN privilege to other users.

302 SQL/Data System Application Programming for VM/SP

~ Format 3 (for special privileges):

GRANT
{

~~~NECT 1 TO userid1[,userid2 ... ] [IDENTIFIED BY pass1[,pass2]] 
RESOURCE 
SCHEDULE 

Examples: 

GRANT DBA TO BRUCE 
GRANT CONNECT TO SMITH, JONES IDENTIFIED BY SECRET1, SECRET2 
GRANT RESOURCE TO MARY, JIM, JOE 

Authorization: 

Generally, you must possess DBA authority to issue this statement. The exception is that can change 
your own password as explained below. 

Format 3 allows a user having DBA authority to grant special privileges to other 
users. The special privileges are CONNECT, DBA, RESOURCE and 
SCHEDULE authority. 

CONNECT 

DBA 

tells SQL/DS to grant CONNECT authority to the specified user(s). A user 
can use this parameter with the IDENTIFIED BY clause to change his/her 
own password. Granting CONNECT to ALLUSERS is a special case that 
establishes implicit connect capability for all users in the system when 
operating under VM/SP. 

tells SQL/DS to grant DBA authority to the specified user(s). This also 
means that the specified user(s) will be automatically granted CONNECT 
authority. 

RESOURCE 
tells SQL/DS to grant RESOURCE authority to the specified user(s). This 
also means that the specified user(s) will be automatically granted 
CONNECT authority. 

SCHEDULE 
tells SQL/DS to grant SCHEDULE authority to the specified user(s). This 
also means that the specified user(s) will be automatically granted 
CONNECT authority. Note that a grant of SCHEDULE authority to a user 
is meaningless because SQL/DS allows only resource managers to use it. 

userid 1, userid2, .•. 
are the user(s) to whom you wish to grant special privileges. Userids are 
limited to eight characters. 

SQL Statement Reference Summary 303 



IDENTIFIED BY 
adds or changes the password for each user specified. If you specify 
IDENTIFIED BY, you must include a password for every userid specified. 

passt, passl, '" 
specify the new or changed password(s) for each of the specified user(s). 
Passwords are limited to eight characters. The passwords and userids must 
correspond as indicated in the statement format above. If the password is 
the same as currently exists for the user, or if no passwords are specified, the 
change has no real effect. 

304 SQL/Data System Application Programming for VM/SP 



INSERT 

Format 1 INSERT: 

INSERT INTO [creator.]table-name [(list-of-column-names)] 
VALUES (list-of-data-items) 

Examples: 

INSERT INTO JONES. INVENTORY (PARTNO,DESCRIPTION,QONHAND) 
VALUES (251,'GEAR',:QOH:IND1) 

INSERT INTO QUOTATIONS VALUES (:A,:B,:C:CI,:D:DI,:E:EI) 
INSERT INTO QUOTATIONS VALUES (68,209,18.00,14,0) 
INSERT INTO WEATHER (DATE, LOCATION, TEMPERATURE) 

VALUES ('JANUARY 13, 1981','ENDICOTT',-15) 

Authorization: 

You can insert data into any table you create. You can insert data into another user's table if you are 
given the INSERT privilege on that table. or if you have DBA authority. 

Format 1 of the INSERT statement inserts a single new row into an existing table. 
SQL/DS forms the new row by placing the various data-items into the specified 
columns in the order named. Rows are inserted in SQL/DS-determined order. 
That is, no facility is provided to specify the "position" in the table of the newly 
inserted rows. 

For inserting more than one row into a table, you may wish to use the SQL Pur 
statement (see "pur Statement" on page 25). 

creator. 
is the userid of the owner of the table that you wish to insert a row into. 
This must be specified for tables owned by another user (as shown in the 
first example above). It is not necessary to specify for tables that you own. 

table-name 
is the name of the table that you wish to add a row to. This must follow the 
rules for SQL identifiers as outlined under "General Rules for Naming Data 
Objects" on page 74. 

llSt-of-columwn-names 
is the list of columns in the specified table that you wish to insert values into, 
separated by commas. All columns of the table that you do not name receive 
the null value. You do not have to list the column names in the same 
sequence that they were named when the table was created. Omitting the 
list of column names is the same as naming all the columns in the order that 
they were named when the table was created. 

SQL Statement Reference Summary 305 



list-of -data-items 
is the list of pieces of data to be inserted, separated by commas. Data items 
can be numeric or alphabetic constants. They can also be host variables, 
with or without associated indicator variables. The NULL keyword can also 
be used as a data item, indicating to SQL/DS that you wish to insert a null 
value into the table. 

The data types of the values to be inserted (source data type) do not 
necessarily have to match the data types defined for the columns (target data 
type). However, the data types must be compatible, that is, character to 
character, numeric to numeric, or DBCS to DBCS. SQL/DS performs data 
conversion automatically on compatible data types. Data conversion rules 
are summarized under "Data Conversion" on page 76. 

306 SQL/Data System Application Programming for VM/SP 



Format 2 INSERT: 

INSERT INTO [creator.)table-name [(list-of-column-names)) 
select-statement 

Example: 

INSERT INTO MYPARTS 
SELECT PARTNO, DESCRIPTION, PRICE 
FROM SCOTT.PARTS 
WHERE DESCRIPTION = 'PISTON' 

Authorization: 

You can insert data into any table you create. You can insert data into another user's table if you are 
given the INSERT privilege on that table, or if you have DBA authority. You must have proper 
SELECT authorization on those tables referenced in the select-statement. 

Format 2 of the INSERT statement inserts into an existing table one or more rows. 
These rows are selected or computed from other tables by a SELECT statement. If 
SOLIDS detects an error in a Format 2 INSERT statement after some rows have 
been inserted, SOLIDS stops processing the statement and returns an error code in 
the SOLCA. 

Rows are inserted in SOLIDS-determined order. That is, no facility is provided to 
specify the "position" in the table of the newly inserted rows. 

creator. 
is the userid of the owner of the table that you wish to insert rows into. This 
must be specified for tables owned by another user. It is not necessary for 
tables that you own. 

table-name 
is the name of the table that you wish to insert rows into. This must follow 
the rules for SOL identifiers as outlined under "General Rules for Naming 
Data Objects" on page 74. 

Ust-of -column-names 
is the list of the columns in the specified table that you wish to insert values 
into, separated by commas. All columns in the table that you do not name in 
the list-of-column-names receive the null value in each row inserted. You do 
not have to list the column names in the same sequence that they were 
named when the table was created. Omitting the list of column names is the 
same as naming all the columns in the order that they were named when the 
table was created. 

select-statement 
is the SELECT statement you are using to indicate which rows (from other 
tables) you wish to insert into the specified table (table-name). A SELECT 

SQL Statement Reference Summary 307 



statement used in an INSERT must be in "basic" form; that is, it must not 
have an INTO clause. 

If the number of columns selected by the SELECT statement is not equal to 
the number of columns needed for the insertion, an error results. Also, the 
nested SELECT statement must not select rows from the same table that is 
the subject of the INSERT, since this might lead to a non-terminating result. 

The data types of the values to be inserted (source data type) do not 
necessarily have to match the data types defined for the columns (target data 
type). However, the data types must be compatible, that is, character to 
character, numeric to numeric, or DBCS to DBCS. SQL/DS performs data 
conversion automatically on compatible data types. 

You cannot use Format 2 of the INSERT statement to insert data of type 
LONG V ARCHAR or LONG V ARGRAPHIC. 

303 SQL/Data System Application Programming for VM/SP 



LABEL 

Format 1: 

LABEL ON ~ TABLE [creator.] table-name ~ IS quoted-string 
COLUMN [creator.]table-name.column-name 

Examples: 

LABEL ON TABLE QUOTATIONS IS 'CURRENT PRICE QUOTATIONS' 
LABEL ON COLUMN INVENTORY.PARTNO IS 'PART NUMBER' 

Authorization: 

Only the creator of the table or a user with DBA authority can issue the LABEL statement on a table 
or column. 

The SQL LABEL statement lets you define a label for a table name or column 
name. Labels are used as common presentation headings. You can specify a query 
using column names and table names (easier to enter) and see the data with labels 
(easier to understand). Using labels provides you with the same headings on all the 
reports created by various applications that access your labeled tables. 

SQL/DS stores the labels in either the TLABEL column of the SYSCA T ALOG 
catalog table or in the CLABEL column of the SYSCOLUMNS catalog table. 
SQL/DS returns the labels to the application program via the SQLDA structure. 
The program requests the labels by specifying one of the following options on the 
DESCRIBE statement: LABELS, ANY or BOTH. See "DESCRIBE" on 
page 286 for more information on the DESCRIBE statement. 

TABLE 
is a keyword telling SQL/DS that you are defining a label for a table or a 
view name, as opposed to for a column name. The label that you define will 
be stored in the TLABEL column of the SYSTEM.SYSCAT ALOG catalog 
table, on the row for the table you are labeling. 

COLUMN 
tells SQL/DS that you are defining a label for a column of a table or view. 
The label that you define will be stored in the CLABEL column of the 
SYSTEM.SYSCOLUMNS catalog table, on the row for the column of the 
table or view you are defining the label for. Column labels are returned in 
the SQLDA when a "SELECT" statement is described by a "DESCRIBE" 
statement. 

SQL Statement Reference Summary 309 



Format 2: 

creator. 
is the userid of the owner of the table or view which you are defining the 
label for. It is not necessary for tables that you own. To define a label for 
another user's table, you must have DBA authority. 

table-name 
is the name of the table or view that you wish to define a label for. If you 
are defining a label for a column, it is the name of the table or view that 
contains the column. 

column-name 
is the name of the column that you wish to define a label for. 

quoted-string 
is the actual label that you wish to define for your table or column. The 
maximum length of a label is 30 bytes. The label must be enclosed in single 
quotes, as shown above. If a label already exists for the table or column that 
you specify, the new label replaces the old one. 

LABEL ON [creator.] table-name (column-name IS quoted-string, 
............................ , 
column-name IS quoted-string) 

Example: 

LABEL ON INVENTORY (PARTNO IS 'PART NUMBER', DESCRIPTION IS 
'PART DESCRIPTION' , QONHAND IS 'QUANTITY ON HAND') 

Authorization: 

Only the creator of the table or a user with DBA authority can issue the LABEL statement on a 
column. 

Format 2 of the SQL LABEL statement lets you create labels for more than one 
column in a table. It can be used only for columns, not for tables or views. 
SQL/DS stores the labels in the CLABEL column of the SYSCOLUMNS catalog 
table. SQL/DS returns the labels to the application program via the SQLDA 
structure. The program requests the labels by specifying one of the following 
options on the DESCRIBE statement: LABELS, ANY or BOTH. See 
"DESCRIBE" on page 286 for more information on the DESCRIBE statement. 

creator. 
is the userid of the owner of the table or view which contains the columns 
that you are defining the labels for. It is not necessary for tables that you 
own. To define a label on someone else's table, you must have DBA 
authority. 

310 SQL/Data System Application Programming for VM/SP 



table-name 
is the name of the table or view which contains the columns that you wish to 
define the labels for. 

column-name 
is the name of a column that you wish to define a label for. 

quoted-string 
is the actual label that you wish to define for a column. The maximum 
length of a label is 30 bytes. The label must be enclosed in single quotes, as 
shown above. If a label already exists for a column that you specify, the new 
label replaces the old one. 

SQL Statement Reference Summary 311 



LOCK 

Format: 

LOCK {TABLE [creator.]table-nameIDBSPACE [owner.]dbspace-name} 
IN {SHARE I EXCLUSIVE} MODE 

Examples: 

LOCK TABLE PARTS IN EXCLUSIVE MODE 
LOCK DBSPACE DSP3 IN SHARE MODE 

Authorization: 

To lock a DBSPACE, you must either be the owner of the DBSPACE, or have DBA authority. You 
can lock a table if you own the table, if you have the SELECT privilege on the table, or if you have 
DBA authority. No user, regardless of authority, can lock any SQL/DS catalog or the DBSPACE 
containing the catalogs. 

The LOCK statement overrides the SQL/DS automatic locking mechanism. It 
explicitly acquires a lock on a table or DBSPACE. SQL/DS holds the requested 
lock until the end of the current logical unit of work. 

A LOCK statement on a table in a PRIVATE DB SPACE is the same as a LOCK 
statement on the entire DBSPACE, since locking is always done at the DBSPACE 
level for PRIVATE DBSPACEs. 

TABLE 
indicates to SQL/DS that you want to acquire a lock on the named table 
(table-name). 

creator. 
is the owner of the table that you wish to acquire the lock on. 

DBSPACE 

owner. 

indicates to SQL/DS that you want to acquire a lock on the named 
DBSPACE (dbspace-name). 

is the owner of the DB SPACE that you wish to acquire the lock on. 

SHARE I EXCLUSIVE 
indicates to SQL/DS the mode of the lock you wish to acquire. An exclusive 
lock prevents other users from reading or changing any data in the locked 
table or DBSPACE. A share lock permits other users to read, but prevents 
them from modifying, the data in the locked object. 

3 12 SQL/Data System Application Programming for VM/SP 



~ OPEN 

Format: 

OPEN cursor-name 

Examples: 

OPEN C1 

If you are opening a query-cursor, the OPEN statement examines the input host 
variables (if any) used in the definition of the named cursor (cursor-name), 
determines the active set for the cursor, and leaves it in the open state. When 
SQL/DS executes an OPEN statement for a query-cursor, it positions the cursor 
before the first row of the active set. No rows in the active set are actually fetched 
to the host program until a FETCH statement is executed. 

If you are opening an insert-cursor and your program is blocking, this statement 
tells SQL/DS to prepare to block the rows to be inserted. If you are not blocking, 
SQL/DS prepares to insert a single row into the data base. Rows are not actually 
inserted into the data base until one or more PUT statements have been executed. 

Note: The OPEN statement for dynamically defined queries and inserts is not 
reviewed in this chapter. It is discussed in detail under "Dynamically Defined 
Statements" on page 147. In FORTRAN programs, only the simple form of the 
OPEN statement (as listed in this section) is allowed. 

SQL Statement Reference Summary 313 



PREPARE 

Format: 

PREPARE statement-name FROM string-spec 

Examples: 

PREPARE STAT2 FROM :XSTRING 
PREPARE STAT3 FROM 'DELETE FROM QUOTATIONS WHERE PARTNO = ? ' 

Authorization: 

Any user with CONNECT authority can code this statement in an application program and 
preprocess the program. SQL statements submitted to SQL/DS via the PREP ARE and EXECUTE 
facility have their authorization checked against the privileges of the user who is currently running the 
program, not the user who preprocesses the program. 

This statement preprocesses the statement identified by string-spec for later 
execution. The "prepared" statement is given the statement-name you specify. 

stateD1ent-naIDe 
is the name that you wish to give to the statement being "prepared." It must 
follow the rules for SQL identifiers as discussed under "General Rules for 
Naming Data Objects" on page 74. Unlike other SQL identifiers, however, 
the statement-name must never be enclosed in either single (') or double (") 
quotes; thus, the statement-name cannot contain embedded blanks. 
Statement-names can, however, be SQL reserved words. 

string-spec 
identifies the run-time SQL statement that you wish to prepare. String-spec 
can be either a character constant or a host variable. If string-spec is a host 
variable, the variable must be declared as fixed- or varying-length character. 
Assembler language programs cannot specify a constant for string-spec. A 
host variable must be used, and it must be varying length. Also, if a host 
variable is used in COBOL, it must be varying-length. 

The SQL statements you cannot use for string-spec are: 

INCLUDE SQLCA 
INCLUDE SQLDA 
WHENEVER 
OPEN 
CLOSE 
FETCH 
DECLARE CURSOR 

314 SQL/Data System Application Programming for VM/SP 

ROLLBACK WORK 
COMMIT WORK 
CONNECT 
PREPARE 
EXECUTE 
EXECUTE IMMEDIATE 
DESCRIBE 



The SQL statements must not include host language delimiters or contain 
any references to host variables. If the SQL statement is a SELECT 
statement, it must not have an INTO clause. 

A question mark (representing a parameter to be filled in when the statement 
is executed) can appear in an SQL statement to be "prepared" in any place 
that a host variable may appear, with the following exceptions: 

1. A question mark cannot be used in a select-list or FROM-clause (but it 
may be used in the WHERE clause of a SELECT statement). 

2. Two question marks cannot appear directly within the same arithmetic or 
comparison operation: ?+? or ?=? are invalid. 

3. A question mark cannot be the first item in an IN-predicate. 

SQL Statement Reference Summary 315 



PUT 

Format: 

PUT cursor-name 

Example: 

PUT C1 

The PUT statement is most often used to insert rows into SOLIDS tables in groups 
or blocks. Each time a PUT statement is executed, a single row of data is added to 
the insert-block. Rows are not inserted into the data base until the block is full, or 
until a CLOSE statement is executed. The PUT statement can also be executed 
when blocking is not in effect. In this case, one row of data is inserted directly into 
an SOLIDS table. The PUT statement can only be executed when the indicated 
cursor is in the OPEN state. 

Note: The PUT statement for dynamically defined inserts is not reviewed in this 
chapter. It is discussed in detail under "Dynamically Defined Statements" on 
page 147. In FORTRAN programs, only the simple form of the PUT statement 
(as listed in this section) is allowed. 

cursor-name 
is the name of the cursor defining the row that you wish to insert. You must 
define this cursor with an SOL DECLARE CURSOR statement, in terms of 
a Format 1 INSERT statement. (Format 2 is acceptable, but relatively 
useless.) The DECLARE CURSOR statement should contain a DECLARE 
clause (defining the name of the cursor), an INSERT clause (indicating 
which table and which columns you wish to insert the row into), and a 
VALUES clause (defining the values to be inserted). The values to be 
inserted can be defined through input host variables or constants. See 
"Retrieving or Inserting Data with a Cursor" on page 19 for more 
information on the DECLARE CURSOR statement. 

316 SQL/Data System Application Programming for VM/SP 



\. REVOKE 

Format 1 (for privileges on tables and views): 

REVOKE 

/ r- - " 

ALTER 
DELETE 
INDEX 
INSERT 
SELECT 
UPDATE 

- -
, ALL [PRIVILEGES) 

ON [creator.) {table-name I view-name} 
FROM {PUBLIC I userid 1 [, userid2) ... } 

Note: ALTER, and INDEX, do not apply to views. ALL [PRIVILEGES] does apply, however. (See 
following text.) 

Examples: 

REVOKE SELECT, INSERT ON QUOTATIONS FROM SMITH, JONES 
REVOKE UPDATE ON INVENTORY FROM PUBLIC 
REVOKE ALL ON SUPPLIERS FROM SCOTT 

Authorization: 

You can revoke only tHOSe privileges you have granted to other users, not those another user has 
granted. 

With Format 1 of the REVOKE statement, you can revoke privileges you have 
granted on tables and views. The specified privileges on the specified table or view 
are revoked from the specified user(s). This is usually issued through ISQL or the 
DBS utility. 

You can specify more than one privilege that you wish to revoke. If you do, you 
can specify them in any order, but you must separate them with commas. 

Note that the only way to revoke the GRANT option on a privilege is to revoke the 
privilege itself. 

ALTER 
tells SQL/DS to take away the privilege to add new columns. 

DELETE 
tells SQL/DS to revoke the privilege to delete rows. 

SQL Statement Reference Summary 317 



INDEX 
tells SOL/OS to take away the privilege to create indexes. 

INSERT 
tells SOL/OS to take away the privilege to insert rows. 

SELECT 
tells SOL/OS to revoke the privilege to insert rows. 

UPDATE 
tells SOL/OS to revoke the privilege to update any columns. 

ALL [PRMLEGES] 
tells SOL/OS to take away all the table (or view) privileges granted by you 
to the specified user(s). This parameter lets you write ALL [PRIVILEGES] 
instead of listing all the privileges you granted. You can use this parameter 
even if you did not grant all six table privileges to the user. The 
PRIVILEGES keyword is both optional and non-functional; you can include 
it to improve readability. 

creator. 
is the userid of the owner of the table or view that you wish to revoke 
privileges from. This is not necessary for tables that you own. 

table-name 
is the name of the table that you wish to revoke privileges from. 

view-name 
is the name of the view that you wish to revoke privileges from. 

PUBUC 
tells SOL/OS to revoke the indicated privileges you have explicitly granted 
to PUBLIC (via GRANT ... TO PUBLIC). It does not revoke all your grants 
of the indicated privilege. 

userid 1, useridl, ... 
are the userid(s) of the user(s) from whom you wish to revoke the specified 
privileges. 

318 SQL/Data System Application Programming for VM/SP 



Format 2 (for privileges on programs): 

REVOKE RUN ON [creator.]program-name FROM { PUBLIC I userid1 [,userid2] ... } 

Example: 

REVOKE RUN ON TRANS 1 FROM SMITH 

Authorization: 

You can revoke the RUN privilege from only those users to whom you have granted it. 

Format 2 of the REVOKE statement revokes the RUN privilege you have granted 
on programs. This is usually issued through ISQL or the DBS utility. 

If you have granted the RUN privilege with the GRANT option, the only way to 
revoke the GRANT option is to revoke the RUN privilege itself. 

creator. 
is the userid of the owner of the program that you wish to revoke RUN 
authority from. This is not necessary to specify for programs that you 
preprocessed. 

program-name 
is the name of the program that you wish to revoke RUN authority from. 

PUBLIC 
tells SQL/DS to revoke RUN authority on a program that you have 
explicitly granted to PUBLIC (via GRANT RUN TO PUBLIC). It does not 
revoke all your grants of the RUN privilege. 

useridl, userid2, .•. 
are the userid(s) of the user(s) from whom you wish to revoke the RUN 
privilege. 

SQL Statement Reference Summary 3 19 



Format 3 (for special privileges): 

REVOKE {CONNECT I RESOURCE I SCHEDULE I DBA} FROM userid1 [ ,userid2l ... 
Example: 

REVOKE DBA FROM SMITH 

Authorization: 

You must possess DBA authority to issue this statement. 

Format 3 of the REVOKE statement allows a user having DBA authority to revoke 
special privileges from other users. This is usually issued through ISQL or the DBS 
utility. 

CONNECT 
tells SQL/DS to revoke CONNECT authority from the specified user(s). 
Revoking CONNECT causes all special privileges to be revoked with it and 
the user is deleted from the SQL/DS catalog SYSUSERAUTH. 

RESOURCE 
tells SQL/DS to revoke RESOURCE authority from the specified user(s). 
No one can revoke RESOURCE authority from a user that has DBA 
authority. Revoking RESOURCE authority implies no other revocations. 

SCHEDULE 

DBA 

tells SQL/DS to revoke SCHEDULE authority from the specified user(s). 

tells SQL/DS to revoke DBA authority from the specified user(s). A user 
having DBA authority cannot revoke any authority from himself. Revoking 
DBA authority automatically causes all special privileges to be revoked 
except CONNECT. 

useridl, userid2, ... 
are the userid(s) of the user(s) from whom you wish to revoke the special 
privileges. 

320 SQL/Data System Application Programming for VM/SP 



ROLLBACK WORK 

Format: 

ROLLBACK WORK [RELEASE] 

Authorization: 

Anyone connected to SQL/DS can issue this statement. 

The ROLLBACK WORK statement ends the current logical unit of work if one is 
in progress and undoes any changes made during that time. It restores the data 
base to its state prior to the current logical unit of work. It is strongly 
recommended that each application program explicitly end its logical unit of work 
before terminating. 

RELEASE 
tells SQL/DS that when the ROLLBACK WORK processing is done, your 
connection to SQL/DS is ended. See "ROLLBACK WORK" on page 234 
for more information on this parameter. 

SQL Statement Reference Summary 321 



SELECT 

Format: 

SELECT [ALL I DISTINCT] {select-list I * } 
INTO one-or-more-host-variables 
FROM table-name 
[ WHERE search-condition ] 

Example: 

SELECT PARTNO, QONHAND 
INTO :PARTNO, :QUANT 
FROM INVENTORY 
WHERE DESCRIPTION = 'BOLT' 

Authorization: 

You can select information from tables that you have created. You can select information from 
another user's table only if you have the SELECT privilege on that table or if you have DBA 
authority. 

The SELECT statement (with the INTO clause) selects one row of data from the 
specified SQL/DS table(s) and returns the specified column(s) of that row into one 
or more host variables. The statement first finds the row of the table specified in 
the in the FROM clause that satisfies the given search condition specified in the 
WHERE clause. From this row SQL/DS selects the columns that you have 
supplied in the select-list. The results are delivered into the host variables that you 
have listed in the INTO clause. 

To retrieve more than one row of a table, use Format 1 of the DECLARE 
CURSOR statement instead. If you are coding in FORTRAN, you must use the 
DECLARE CURSOR statement, regardless of whether one row or more than one 
row is to be returned. 

ALL 
tells SQL/DS that all rows satisfying the search-condition are to be returned, 
including duplicates. This isn't very useful in the SELECT / INTO 
statement when only one row can be returned. It is more often used in the 
select-statement part of the DECLARE CURSOR statement. 

DISTINCT 
tells SQL/DS that only unique rows satisfying the search-condition are to be 
returned. That is, duplicate rows are not selected. It can also be used to 
eliminate duplicates from a built-in function. However, it can only be used 
once per SELECT statement. 

This parameter is more often used in the select-statement part of the 
DECLARE CURSOR statement. 

322 SQL/Data System Application Programming for VM/SP 



select-Ust 

* 

is a definition of the data that you want returned into the host variables. It 
consists of one or more column names or expressions, separated· by commas. 
An expression can be a constant, a host variable, or an arithmetic 
combination of column names and/or host variables and/or constants. The 
items in the select-list are retrieved in the same left-to-right order as they 
appear in the select-list. An item in a select-list may also be preceded by a 
built-in function. 

indicates that the data in aU the columns of the table is to be selected and 
placed into host variables. This is the same as specifying aU the columns of 
the table in the same left-to-right order as they are defined in the table. 

one-or-more-host-variables 
is the list of host variables that are to receive the results of the SELECT 
statement. After SQL/DS has determined which row is to be returned, 
SQL/DS delivers into these host variables the field values that you specify in 
the SELECT clause. The number of host variables that you specify in this 
list must be equal to the number of expressions or column names that you 
specify in the select-list. Otherwise, SQL/DS returns an error message. 

creator. 
is the owner of the table that you wish to select the row from. 

table-name 
is the name of the table that you wish to select the row from. 

search-condition 
identifies the row that is to be selected. It consists of one or more conditions 
that apply to selecting data. See "WHERE Clause: Searching on 
Conditions" on page 19, "Host Variables and Constants" on page 28, and 
"Using Expressions as Search Conditions" on page 30 for more information 
on search conditions. 

SQL Statement Reference Summary 323 



UPDATE 

Format 1 UPDATE: 

UPDATE [creator.jtable-name 
SET column-name-1 = expression-1 
[, column-name-2 = expression-2] 
[ WHERE search-condition 1 

Examples: 

UPDATE EMPLOYEES 
SET SALARY = 65000.00, 

POSITION = 'RETIRED' 
WHERE NAME = 'J. B. ROBINSON' 

UPDATE SUPPLIERS 
SET NAME = :NAM:INAM, 

ADDRESS = :ADDR:IADDR 
WHERE SUPPNO = :SNO 

Authorization: 

You can update tables you create. You can update columns in other user's tables if you are given the 
UPDATE privilege on the columns, or if you have DBA authority. 

A Format 1 UPDATE statement changes the values of one or more fields in one or 
more rows of a table. SQL/DS updates all rows that satisfy the search condition. 

creator. 
is the userid of the owner of the table that you wish to update, followed by a 
period. It is not necessary to specify this parameter when updating tables 
that you own. 

table-name 
is the name of the table that you wish to update. 

column-name-l, column-name-2, .•. 
are the names of the columns that you wish to update. 

expression-I, expression-2, •.. 
define values that you want the specified columns set to. Only the rows 
which satisfy the search condition are updated. SQL/DS then changes the 
specified columns of these rows, replacing their values with new values 
defined by the expressions. An expression, as described under "Using 
Expressions as Search Conditions" on page 30, can contain constants, host 
variables, field names, and the arithmetic operators +, -, *, and /. An ..."" 
expression can also be the NULL keyword, which sets a column to the null 

324 SQL/Data System Application Programming for VM/SP 



value. A field name occurring on the right side of an "=" sign in a SET 
clause represents the value of that field before the update occurs. All the 
updates specified in an UPDATE statement are done simultaneously, after 
all the update values have been computed. 

Note that SQL/DS applies data conversion to SET clause expressions as 
described under "Using Expressions as Search Conditions" on page 30. 

search-condition 
defines the row or rows to be updated. The search condition may take any 
of the forms described under "Using Expressions as Search Conditions" on 
page 30. 

If you omit the search condition, SQL/DS updates all rows of the named 
table, but sets a warning indicator in SQLWARN4 so that you can detect 
unintentional updates and rollback the logical unit of work before the 
changes are permanently committed to the data base. 

If no rows satisfy the search condition, the "not found" code 
(SQLCODE= 100) is returned. 

SQL Statement Reference Summary 325 



Format 2 UPDATE: 

UPDATE [creator.]table-name 
SET column-name-1 = expression-1 
[, colurnn-name-2 = expression-2] 

WHERE CURRENT OF cursor-name 

Example: 

UPDATE JONES.EMPLOYEE 
SET SALARY = 0.00, 

POSITION = 'FIRED' 
WHERE CURRENT OF CURSOR 1 

Authorization: 

Authorization depends on the table specified in the cursor declaration. You can update rows of the 
table named in the cursor declaration if you created the named table. If you are not the creator of the 
table in the cursor declaration, you must be given the UPDATE privilege on those columns you wish 
to update, or you must have DBA authority. 

Format 2 of the UPDATE statement changes the values of one or more fields in 
exactly one row of a table -- the current row of the indicated cursor. The 
UPDATE statement does not affect the position of the cursor. 

creator. 
is the userid of the owner of the table that you wish to update, followed by a 
period. It is not necessary to specify this parameter when updating tables 
that you own. 

table-name 
is the name of the table that you wish to update. 

column-name-I, column-name-2, ... 
are the names of the columns that you wish to update. 

expression-I, expression-2, ... 
define values that you want the specified columns set to. SQL/DS changes 
the specified columns of the row pointed to by the cursor, replacing their 
values with new values defined by the expressions. An expression, as 
described under "Using Expressions as Search Conditions" on page 30, can 
contain constants, host variables, field names, and the arithmetic operators 
+, -, *, and /. An expression can also be the NULL keyword, which sets a 
column to the null value. A field name occurring on the right side of an "=" 
sign in a SET clause represents the value of that field before the update 
occurs. All the updates specified in an UPDATE statement are done 
simultaneously, after all the update values have been computed. 

Note that SQL/DS applies data conversion to SET clause expressions as 
described under "Using Expressions as Search Conditions" on page 30. 

326 SQL/Data System Application Programming for VM/SP 



cursor-name 
is the name of the cursor pointing to the row that you wish to update. The 
cursor must be open and positioned on a row of the named table. It must 
have been defined as a SELECT statement on one table (not an INSERT or 
a join). 

If the SELECT statement which defines the cursor contains a subquery, the 
subquery must not be on the same table as the outer-level query. Also, this 
SELECT statement must not include DISTINCT or GROUP BY or ORDER 
BY or UNION or any built-in function such as AVG(PRICE). Each field to 
be updated must have been included in a FOR UPDATE clause in the 
DECLARE CURSOR statement that defined the cursor. 

SQL Statement Reference Summary 327 



UPDATE STATISTICS 

Format: 

UPDATE [ALL] STATISTICS FOR 
{TABLE [creator.] table-name I DBSPACE [creator.]dbspace-name} 

Example: 

UPDATE STATISTICS FOR TABLE QUOTATIONS 

Authorization: 

No authorization is required for this statement. Any user can issue UPDATE STATISTICS for any 
table or DBSPACE. 

You can use the UPDATE STATISTICS statement to bring up to date the internal 
statistics recorded by SQL/DS for tables and indexes. Invoking UPDATE 
STATISTICS can improve performance on statements which access data from 
those tables. These statistics, which are contained in the SQL/DS catalogs, include 
the size of the table, various index characteristics, and other information. See 
"Updating Internal Statistics" on page 236 for information on the use of UPDATE ........ 
STATISTICS. ...... 

ALL 
tells SQL/DS to update statistics for all columns, including those that contain 
indexes. In the case of columns without indexes, the column statistics are an 
approximation. If ALL is not specified, statistics are updated for only the 
columns that contain indexes. 

TABLE 
indicates to SQL/DS that you wish to update statistics on only the named 
table (table-name). 

creator. 
is the userid of the owner of the table or DB SPACE that you wish to update 
statistics on. 

DBSPACE 
indicates to SQL/DS that you wish to update statistics on every table in the 
designated DBSPACE (dbspace-name). 

328 SQL/Data System Application Programming for VM/SP 



WHENEVER 

Formats: 

WHENEVER SQLERROR {STOP I CONTINUE I {GO TO I GOTO} statement-label} 

WHENEVER SQLWARNING {STOP I CONTINUE I {GO TO I GOTO} statement-label} 

WHENEVER NOT FOUND {CONTINUE I {GO TOIGOTO} statement-label} 

Note: The STOP condition is not valid for FORTRAN applications. 

Examples: 

WHENEVER SQLERROR GOTO ERRORX 
WHENEVER SQLWARNING CONTINUE 
WHENEVER NOT FOUND CONTINUE 

Authorization: 

Anyone connected to SQL/DS can issue this statement. 

The WHENEVER statement lets you specify an action to be taken depending on 
what SQL/DS returns in the SQLCA. The WHENEVER statement is declarative; 
it is not executed at run-time and returns no SQLCODE. 

The keywords SQLERROR, SQLWARNING, and NOT FOUND in the statement 
syntax above identify some SQLCA condition. The braced keywords (STOP, 
CONTINUE, GOTO) define the action to be taken whenever the specified 
SQLCA condition occurs. 

The scope of a WHENEVER statement is determined by its position in the source 
program listing, not by its placement in the logic flow. That is, the scope of the 
WHENEVER is independent of the execution sequence of statements. 

SQLERROR 
is the keyword identifying the SQLCA SQLERROR condition. The 
SQLERROR condition exists when SQL/DS has set SQLCODE to a 
negative value. 

SQLWARNING 
is the keyword identifying the SQLCA SQL WARNING condition. The 
SQLWARNING condition exists when SQL/DS sets SQLWARNO to 'W'. 

NOT FOUND 
is the keyword identifying the SQLCA NOT FOUND condition. The NOT 
FOUND condition exists when SQLCODE is set to 100. 

SQL Statement Reference Summary 329 



STOP 
causes program termination. If a logical unit of work is in progress, it is 
rolled back. Note that you can't specify STOP for WHENEVER NOT 
FOUND or in FORTRAN applications. 

CONTINUE 
causes the next sequential program instruction to be executed. (The SQLCA 
condition is ignored.) 

GO TO (or GOTO) statement-label 
causes control to pass to the statement at the specified label 
(statement-label). The statement label cannot exceed 18 characters unless 
the host language has additional limitations. 

330 SQL/Data System Application Programming for VM/SP 



Chapter 4. Extended Dynamic Statements 

Contents 

Purpose and Use of Extended Dynamic Statements .................... 332 
An Example of Extended Dynamic Statements ........................ 336 
Logical Unit of Work Considerations ............................... 344 

Virtual Storage Considerations in a Logical Unit of Work ............. 347 
Extended Dynamic Statement Descriptions .......................... 348 

CREATE PROGRAM ........................................ 348 
Extended PREPARE ......................................... 350 
Extended DESCRIBE ........................................ 352 
Extended EXECUTE ......................................... 354 
Extended DECLARE CURSOR ................................ 356 
Extended OPEN ............................................. 358 
Extended FETCH ........................................... 359 
Extended PUT .............................................. 360 
Extended CLOSE ............................................ 361 
DROP STATEMENT ........................................ 362 

Chapter 4. Extended Dynamic Statements 331 



Purpose and Use of Extended Dynamic Statements 

An understanding of dynamically defined statements, presented under "Coding the 
Program" in Chapter 2, is a prerequisite for this topic. 

Extended dynamic statements support direct creation and maintenance of access 
modules for SOLIDS data. These statements provide a function similar to that 
provided by the SOLIDS preprocessors, but the functions may be particularly 
useful where: 

• The current preprocessors do not support the language of the application or 
support program that is needed. 

SOL statements are conceived and built dynamically, but are executed 
repetitively (in a different logical unit of work). In this case it is a performance 
benefit to avoid having to repeat the preprocessing of statements each time 
they are executed, as would be required for normal dynamic statements. 

• It is desirable to build and maintain an application package of SOL statements 
to be shared by a group of users. 

Individual SOL statements can be added or deleted without affecting or repeating 
the preprocessing of other SOL statements in the group (a group can be stored in 
one access module). 

By using the extended dynamic statements, development programmers can write 
their own preprocessors or data base interface routines that support compiled 
access to SOLIDS. Compiled access means that access paths to SOLIDS data are 
optimized once when the statement is prepared. They need not be prepared again 
for each execution. 

Following are some of the areas that may be appropriate for this support: 

Preprocessed stored SOL statements in SOLIDS access modules 

• General high-level language support for SOL data base access 

• Preprocessor functions in other systems that may support SOLIDS. 

The extended dynamic statement support is intended primarily for language and 
program development use, not directly for application programmers. However, 
because the extended dynamic statements are available to any program that is 
written in Assembler, or that can interface with an Assembler module, their use in 
application programs is not precluded. One example of such an application is one 
where program storage is critical and there are a significant number of predefined 
"transactions" involving SOLIDS data. By using extended dynamic statements, 
the number of host language statements generated by SOLIDS preprocessing of 
the application may be significantly reduced. All SOLIDS access statements may 
be prepared using a single PREPARE statement, and all data may be retrieved 
using a single cursor. Thus an application requiring dozens of SOLIDS statements, 
with their individual expansions for SOLIDS access, may be handled via a single 
set of seven or eight extended dynamic statements, without losing the performance 

332 SQL/Data System Application Programming for VM/SP 



,. 

benefits of compiled access. This may result in significant reduction in the size of 
the application program. 

The following extended dynamic statements are supported: 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

CREATE PROGRAM - build an empty access module. 

PREP ARE - add a statement to an access module. 

DESCRIBE - obtain information about columns in the select list of a prepared 
SELECT statement. 

EXECUTE - execute a non-SELECT statement in an access module created 
via CREATE PROGRAM. 

DECLARE CURSOR - in connection with OPEN, FETCH, PUT, and 
CLOSE, execute a SELECT or an INSERT statement in an access module 
created via CREATE PROGRAM. 

OPEN (cursor) 

FETCH (cursor) 

PUT (cursor) 

CLOSE (cursor) 

DROP STATEMENT - delete a statement from an access module. 

Except for CREATE PROGRAM and DROP STATEMENT, the names of these 
statements are the same as the corresponding "normal" dynamic statements 
discussed under "Dynamically Defined Statements" on page 147, but their format 
and meaning are somewhat different. For example, the statement-id, 
program-name, and cursor-name fields can all be specified via host variables. Each 
of these extended dynamic statements is described at the end of this appendix. 

Unlike the dynamic statements that are related through a specific statement name, 
the extended dynamic statements are related through the symbolic host variables 
used for statement-id and program-name. This relationship between the statements 
is shown in Figure 28. Because the statement-id and program-name are host 
variables, actual values can be substituted when the program is executed. STMTID 
is returned by Extended PREP ARE and is used as input by the subsequent 
Extended EXECUTE (or DECLARE CURSOR) statement. 

Chapter 4. Extended Dynamic Statements 333 



page 73. Like the extended dynamic statements, DROP PROGRAM permits the ..J 
program name to be specified as a host program variable. 

Extended dynamic statements, like all other SQL statements, require preprocessing, 
but extended dynamic statements are supported by only the Assembler 
preprocessor. Once they are preprocessed (and the containing program is 
compiled), the program holding the extended dynamic statements may itself be 
used to process SQL statements and create access modules. That is, it may prepare 
SQL statements for repetitive execution. 

An Example of Extended Dynamic Statements 

Consider the following example. A support group needs to develop a support 
program that dynamically accepts SQL statements for execution and it does not 
know what specific SQL statements will be processed. This is a typical application 
for normal dynamic SQL statements. But if additionally, there is a requirement for 
repetitively executing the preprocessed statements at a later time (stored SQL 
application) without having to repeat the PREPARE, it is an application for 
extended dynamic statements. 

The support program that supports preparation of end user SQL statements may 
also support their execution (via commands of the support program). This is 
essentially a query language support program (but it supports more than just 
queries (SELECT statements». The support program may also support deleting 
statements from and adding statements to existing access modules. There are 
extended dynamic statements for adding statements to, and deleting statements 
from, an access module: 

• PREPARE 

DROP STATEMENT 

as well as statements to control execution: 

• EXECUTE 

• DESCRIBE 

• DECLARE CURSOR 

• OPEN (cursor) 

FETCH (cursor) 

• PUT (cursor) 

CLOSE (cursor) 

The support program may use CREATE PROGRAM and Extended PREPARE to 
build an access module and preprocess the end-user SQL statements. However, ....J 
you must first PREPARE the support program itself. This is done by running it 

336 SQL/Data System Application Programming for VM/SP 



End User 
Commands -

through the SQL/DS Assembler Preprocessor and the Assembler. Refer to 
Figure 30. 

SUPPORT PROGRAM 

Scan User Commands 

CREATE PROGRAM 

PREPARE 

COMMIT WORK 

l 
SOLIDS 

Access Modules: 
SOLIDS 

ASSEMBLER PREPROCESSOR - - - - - - - - .... SP 

~ 
r------ .... P , 

ASSEMBLER 

~ 
SUPPORT PROGRAM 

I 

Object .... _...J 

H3 

Figure 30. An Example of an Interpretive Support Program for Building and Executing SQL Statements in an Access Module 

The resulting support program can accept end-user SQL statements and can create 
access modules in the SQL/DS data base to hold them. There can be a separate 
access module to hold the SQL statements for each end-user, for example. A more 
advanced support program may even accept end-user commands that are a higher 
level than that supported by SQL/DS, then translate them to SQL statements 
before preparing them. 

Notice the distinction between access modules SP and P. SP is created by the 
SQL/DS Assembler preprocessor for the SQL statements of the support program, 
while P is built by the support program (via CREATE PROGRAM) for the 
particular end-user SQL statements. 

If the support program allows both adding SQL statements to, and dropping SQL 
statements from the access module P, then the support program must utilize and be 
preprocessed with a DROP STATEMENT, as well as the PREPARE. Of course 
there are a few other ordinary SQL statements that may be appropriate for the 
support program: WHENEVER, COMMIT/ROLLBACK WORK, and so on to 
make it complete. 

So far this example has not addressed execution of the end-user SQL statements. 
We have already listed the extended dynamic statements that support execution 
(Extended EXECUTE, DECLARE CURSOR, and so on). The support program 
would ordinarily support end-user commands to retrieve data and update data 
(again either direct SQL/DS statements or higher level commands that require 
translation to SQL/DS). The addition of this execution capability does not alter 

Chapter 4. Extended Dynamic Statements 337 



the concept shown in Figure 30 except to add additional extended dynamic 
statements to the support program. 

The DESCRIBE statement can be used in basically the same way as illustrated 
under normal dynamic statements ("Dynamically Defined Statements" on 
page 147). 

Note that only one "copy" of each extended dynamic statement need be provided 
in the support program, because each of these statements is parameterized with 
host variables that can be dynamically changed for each use. For example, one 
DECLARE CURSOR statement may service aU cursor retrievals, even if they are 
concurrently open, since each can be given a different cursor name via the host 
variable value for the cursor name. The support program must translate user 
requests into SQL statements, including the initialization of host variables required. 

Structurally this example is fairly straight forward. We have assumed that the 
support program remains in control as an interpreter through preparation, 
maintenance, and execution of the user's SQL statements. 

For a typical language preprocessor program such as those provided with SQL/DS, 
this is not the case. If you write a support program for a new language 
preprocessor, you would probably separate the two parts, each with SQL 
statements: 

1. One for preparation of end-user SQL statements and creation of an access 
module 

2. Another for supporting the execution of the SQL statements that were 
prepared by the first part. 

The SQL functions performed are about the same as in the previous example, 
except we will assume that no access module maintenance functions are needed. 
The language preprocessor has the following characteristics: 

1. It is a batch program, rather than an interpreter. 

2. Since it requires extended dynamic statements, it is written in Assembler. This 
was also true in the preceding example. Alternatively, at least part of it must 
be in written in Assembler (the part that contains the extended dynamic 
statements) and the remaining part must be written in a language that is 
capable of calling an Assembler module. 

3. Rather than accepting predefined commands from the end-user, the end-user's 
source language code is scanned for SQL statements, which must be identified 
by some defined convention (EXEC SQL, for example) for proper recognition. 

4. The support program must record information about host program variables in 
a control structure that is added to the end-user's source program and passed 
via a generated call to the execution-time part of the support program. This 
control structure is used to build SQLDA structures that are passed to or 
received from SQL/DS (refer to the Extended EXECUTE, OPEN, and 
FETCH statements). "<tttIIII 

338 SQL/Data System Application Programming for VM/SP 



5. The execution part of the support program is link/loaded with the user's 
application program, where it is available to handle the execution-time 
functions. 

6. As each end-user SQL statement is prepared, the program-id and the 
statement-id (returned by SQL/DS along with the program-id) must be saved 
in a control structure (again generated into the end-user's source program) for 
use by the execution-time support program. 

7. For each SQL statement in the end-user's source program, a call must be 
generated to the execution-time support program, passing the control structure, 
containing the host variable, program-id, and statement-id information for the 
current SQL statement. 

8. The execution-time support program must build the SQLDA structures 
required, set values in host variables required by the execution-time extended 
dynamic statements, and then execute these statements. 

This process is illustrated in Figure 31, Figure 32, Figure 33, and Figure 34. The 
support program is the preprocessor for language X. It preprocesses the end-user 
program, modifying the source (adding control structures and generating calls to 
pass to the support program part two at execution-time). Once the modified 
end-user source has been compiled by the Language X compiler, it is combined in 
one load module with the object code for the support program part two, which 
provides the SQL/DS support for execution-time functions (DECLARE 
CURSOR, and so on). 

Figure 31 shows the SQL/DS preprocessing and a~sembly steps for the two parts 
of the support program. This results in two access modules: SPt and SP2. 

Chapter 4. Extended Dynamic Statements 339 



SOURCE 
SUPPORT PROGRAM 

PART I 

Preparation Time 
Functions 

SOURCE 
SUPPORT PROGRAM 

PART II 

Execution Time 
Functions 

SOLIDS 
Assembler 

Preprocessor 

I 
I 
I 
I 

, 
I 
I 
I 
I 
I 

SOLIDS 

Access Modules 

L_ - - - .SP1 

I 
I , , 
I 

SOLIDS 
Assembler 

Preprocessor 

Assembler 

Assembler 

FJgIII'e 31. Preprocessing and Assembly of a Two-Part Support Program 

OBJECT 
SUPPORT PROGRAM 

PART I 

Sal Statement 
Expansions and 
Calls to SOLIDS 
Added 

OBJECT 
SUPPORT PROGRAM 

PART II 

Sal Statement 
Expansions and 
Calls to SOLIDS 
Added 

Figure 32 shows how the two resulting object modules of the support program are 
used to process end-user SQL statements. 

340 SQL/Data System Application Programming for VM/SP 



Preprocessing End- User 
Program, P. 

SOURCE 
END-USER PROGRAM 

P, LANGUAGE X. 

SELECT 

Execution of End-User 
Program, P. 

OBJE¢r, 
SUPPORT PR.OGRAM 

PART' {';: 

BuildlSet uP: 
Routin~s 

{
I CREATE PROGRAM I , , 

- I PREPARE' 1 
I COMMIT WORK I 

SOLIDS 

Access Modules 

L-------J:::l-------~ I 

EXPANDED SOURCE 
END-USER PROGRAM, P 

SELECT Commented Out 
and replaced by Control 
Structure and a Call to 
Support Program, Part 11 

OBJECT, END-USER 
PROGRAM, P 

Figure 32. Preprocessing and Execution of an End-User Program by a Two-Part Support Program 

Part 1 scans the end-user's source for SQL statements; uses CREATE PROGRAM 
to build an empty access module, P; uses Extended PREPARE to add SQL 
statements to P; and uses COMMIT WORK to finalize P. It also adds calls and 
control structures, required by Part 2 of the support program, to the user's source 
program and comments out the original SQL statement. 

Chapter 4. Extended Dynamic Statements 341 



Part 2 of the support program works with the access module, P, executing the SQL ..",J 
statements scanned and prepared by Part 1. Part 2 uses the control structures 
passed in the calls generated by Part 1. 

Part 2 must be link/loaded with any end-user module that is preprocessed by Part 
1. 

Figure 33 shows Part 1 of the support program in more detail, with pseudo code to 
illustrate a simple user program that includes a DECLARE ... CURSOR FOR 
SELECT ..... , an OPEN of that cursor, and a FETCH for the same cursor. Control 
structures are shown in more detail and some particular values for parameters are 
given. The value 26 returned from the PREPARE statement is only for purposes 
of illustration, representing a unique identifier returned by SQL/DS to identify the 
statement within the access module, P. A userid may be necessary to identify the 
owner of the access module, but it is omitted here for simplicity. Other statements, 
such as CLOSE (cursor) and COMMIT WORK are not shown in order to simplify 
the illustration. 

342 SQL/Data System Application Programming for VM/SP 



External Invocation Passing: I 
Program Name (P) and User's Source t 

~-----------------. 
END USER'S SOURCE PROGRAM 

(P) IN lANGUAGE (X) 
SUPPORT PROGRAM (OBJECT) 

PART I 

• • • 
Declare Variables 

A, B,C 

• 

Put Program (P) into "PROG" 
CREATE PROGRAM :PROG--- --, 

.--- --- SCAN 
----- -_ Record Name, Type, length of 

Variables found 
DECLARE C1 CURSOR _ - - - - - SCAN 

FOR SELECT. . . ------ --+ Move Sal Statement (SECECT ... ) 

• into variable "a" 
• PREPARE FROM :0 SETTING :S 

• 
OPEN C1 

IN PROGRAM :PROG • 6 
_--- ~ __ SCAN L2_ 

• - - - - - ... Build a control structure in end·user's 
source: 

Ctl Structu re 

-I 
I 
1,
I - - .. • 

• 
• 
• 
• 

Call Type: OPEN 
C1 

L __ 26 

FETCH C1 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

INTO :A, :B,:C 

Ctl Structu re 

CAll SP2 ( ) 

Cursor: 
Program: P 
Stmtid: 26 

.... ---1---4 Build a call to Support Program, 
Part II ... --- --- SCAN 

- _ Build a Control Structure in 
end-user's source: 

Call Type: 

Cursor 
Program 
Stmtid 

Variables 

A 
B 
C 

Fetch 

C1 
P 
26 

len 

CHAR 10 
DEC 6,2 
INTEGER 4 

----I---i Build a call to Support Program, 
Part II 

I COMPILE I 

SOLIDS 

Access 
Module 

P 

Figure 33. Pseudo-Code Example of Preprocessing End-User Program P 

Figure 34 shows the execution-time flow between the end-user's object program 
and the support program (Part 2) in a little more detail, The two calls shown 
correspond to the two calls generated in Figure 33. This example does not go far 
enough to illustrate that two calls of the same type (two opens, for example) would 
share the same set of logic and the same extended dynamic statement (OPEN) in 
the support program. 

Chapter 4. Extended Dynamic Statements 343 



END USER'S OBJECT 
PROGRAM (P) 

I 
i 
I 

OBJECT SUPPORT PROGRAM 
PART II 

CAll SP2 (OPEN) -- I- - - Control- - ---I- • CAll TYPE: OPEN 
Structure 

SET Cursor Name in 
host variable, C 
(Value 'C') 

SET STMT·id in 
host variable, SI 
(Value 26) 

SET Program in 
host variable, PI 
(Value 'P') 

DECLARE :C CURSOR - I- - - -
FOR :SI 
IN PROGRAM :PI 

OPEN :C - - - - - - - -

Control 
CAll SP2 (FETCH) - - I- - - Structure 

I 
I Passback 

_- -- - - Area -, 
....... ----' I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L... 

_ CAll TYPE: FETCH 

Set Cursor, STMT·id. and 
Program, as above 

Build a SClDA 
Structure Using 
variable information 
for A, B, C, 

FETCH :C USING - - -
DESCRIPTOR SClDA 

MOVE A, B, C results 
from SClDA to 

- - Passback Area 

Figure 34. Pseudo-Code Example of Execution of End-User Program P 

Logical Unit of Work Considerations 

I 
I 
I 
I 
I , 
I 
I 
I 
I 
I 

I 
I 

-I-.J 

• 

SCl/DS 

Access 
Module 

P 

There are primarily three cases to consider when determining the proper grouping 
of extended dynamic statements in a logical unit of work: 

1. A Logical Unit of Work contains a CREATE PROGRAM without the 
MODIFY Option. This would be the case for a language preprocessor 
application. 

2. A logical unit of work contains a CREATE PROGRAM with the MODIFY 
Option. This would be the case for an application that gets new SQL 
statements from its users, then prepares and executes them immediately (but ....,j 

344 SQL/Data System Application Programming for VM/SP 



also has them available for later execution, since they are stored in an access 
module). 

3. A logical unit of work contains no CREATE PROGRAM (the referenced 
access module has been created with the MODIFY option in another logical 
unit of work). This would be the case for an application that prepares, 
executes or changes statements in an access module that was created 
previously. 

In the first case, the only other extended dynamic statement permitted is the 
PREPARE statement and it must reference only the program that is specified in the 
CREATE PROGRAM statement. If the logical unit of work is terminated by a 
COMMIT WORK, an SQL/DS access module is created. If no Extended 
PREP AREs were executed, the access module is essentially empty and the 
COMMIT WORK results in an error (-759 SQLCODE). If a ROLLBACK 
WORK statement terminates the logical unit of work, no access module is created. 
In Figure 35, example 1 is a valid illustration of this case. 

Chapter 4. Extended Dynamic Statements 345 



.2..1 
CREATE PROGRAM 

USING OPTION 
NOMODIFY 

• 
• 
• 
• 

X 

PREPARE ••••••••• IN X 

• 
• 
• 
• 
COMMIT WORK 

~ 

7 

EXECUTE ••••••••• IN X2 
DROP STATEMENT •••• IN X1 
PREPARE ••••••••• IN X1 
DECLARE •• CURSOR •• IN X1 

OPEN 
FETCH 
CLOSE 

DESCRIBE ••••••••• IN X1 
EXECUTE ••••••••• IN X1 

• 
• 
COMMIT WORK 

DROP STATEMENT •••• IN X1 
EXECUTE ••••••••• IN X2 

INVALID __ ....... t 

~ 
CREATE PROGRAM Y 

• 
• 

USING OPTIONS 
MODIFY, DESCRIBE 

PREPARE ••••••••• IN Y 

• 
• 
• 
DESCRIBE ••••••••• IN Y 
EXECUTE ••••••••• IN Y 
DECLARE •• CURSOR •• IN Y 

OPEN 
FETCH 
CLOSE 

COMMIT WORK 

~ 

8 

DESCRIBE ••••••••• IN X1 
EXECUTE ••••••••• IN X2 
EXECUTE ••••••••• IN X3 
PREPARE ••••••••• IN X2 
DESCRIBE ••••••••• IN X2 
EXECUTE ••••••••• IN X2 

• 
• 
• 
COMMIT WORK 

PREPARE ••••••••• IN X1 
DESCRIBE ••••••••• IN X2 

INVALlD-____ t 

3 

6 

CREATE PROGRAM X4 
USING OPTION MODIFY 

PREPARE •••••••••• IN X4 
CREATE PROGRAM X5 

INVALID __ .... t 

EXECUTE ••••••••• IN Z 
PREPARE ••••••••• IN Y 
DROP STATEMENT •••• IN Y 

• 
• 
• 
PREPARE •••••••••• IN Z 

INVALlD--...I+ 

Figure 35. Placement of Extended Dynamic Statements in Logical Units of Work 

In the second case, the rules discussed above for case 1 apply, but additionally, 
Extended DESCRIBE, EXECUTE, DECLARE CURSOR, OPEN, FETCH, 
DROP STATEMENT, and CLOSE statements may be used in the same logical 
unit of work, referencing the statements just added to or already contained in the 
current access module. However, you cannot reference an access module other 
than the one created in the current logical unit of work. In Figure 35, example 2 is 
a valid example of this case. Example 3 illustrates an invalid case 2 sequence. If 
the current logical unit of work is committed before Extended PREPAREs are used 
to add statements to it (it is empty), it still may be extended in a later logical unit of 
work (since it is modifiable, it may make sense to leave it empty initially). 

In case 3, where the current logical unit of work contains no CREATE ..J 
PROGRAM, extended dynamic statements may reference any access module that 

346 SQL/Data System Application Programming for VM/SP 



has been created with a CREATE PROGRAM statement. However, once an 
extended dynamic statement that causes modification of the access module is used 
(Extended PREPARE or DROP STATEMENT), then subsequent extended 
dynamic statements in the same Logical Unit of Work may only refer to the 
modified access module. Once the logical unit of work is terminated, reference to 
any access module that has been created by a CREATE PROGRAM may be 
resumed. (Note that this does not preclude additional restrictions: to modify an 
access module, you must have created it with the MODIFY option and to 
DESCRIBE a statement in an access module, it must have been created with the 
DESCRIBE option). 

For example, if access modules Xl, X2, and X3 have been created with a 
CREATE PROGRAM, where Xl and X2 have the MODIFY and DESCRIBE 
options, examples 1, 2, 4 and 5 in Figure 35 are valid while 3, 6, 7, and 8 are 
invalid. 

Virtual Storage Considerations in a Logical Unit of Work 

If virtual storage consumption is an important consideration, you should be 
especially careful when adding statements to a modifiable access module (created 
with the MODIFY option). Approximately 23K is added for each SELECT, 
INSERT, UPDATE, or DELETE statement that is added in a logical unit of work. 
For other statement types only about 16K is added. Since this storage 
consumption is accumulated until the logical unit of work is terminated by a 
COMMIT or ROLLBACK WORK, you may have to be careful to terminate 
logical units of work more frequently when your program involves this type of 
maintenance activity. This virtual storage consumption occurs so that you may 
optionally execute the statements that you just added without first storing the 
access module in the data base. If you COMMIT WORK before executing the new 
statement, virtual storage consumption is considerably less, but there is additional 
processing to store the updated access module in the data base and retrieve it again. 
This trade-off must be made based on the nature of the processing in your 
program. 

Chapter 4. Extended Dynamic Statements 347 



Extended Dynamic Statement Descriptions 

CREATE PROGRAM 

Format: 

CREATE PROGRAM [userid.] program-name [USING {OPTION I OPTIONS} 
{{KEEP I REVOKE} 

{DESCRIBE I NODESCRIBE} 
{REPLACE I NEW} 
{MODIFY I NOMODIFY} 
{BLOCK I NOBLOCK}}] 

Example: 

CREATE PROGRAM JERRY.MUSICIANS USING OPTIONS DESCRIBE NEW BLOCK 

Authorization: 

Anyone connected to SQLiDS is authorized to issue this statement. 

This statement creates an access module. The access module is stored in the data 
base when a COMMIT WORK is issued. 

If the program-name is identical to the name of an existing access module 
(REPLACE option), the existing access module is implicitly dropped and replaced 
with a new access module. 

userid 
is an optional parameter that determines the owner of the program that is 
being created. Userid can be specified as either a host variable (fixed-length, 
eight characters, padded to the right with blanks) or a constant. If userid is 
not specified, the userid of the user explicitly or implicitly connected with 
SQLiDS at run-time is used. 

program-name 
is the name of the access module that is to be created. Program-name can be 
specified as a host variable (fixed-length, eight characters, padded to the 
right with blanks) or a constant. 

KEEP I REVOKE 
This parameter applies if the access module has previously been created and 
the creator of the access module has granted the RUN privilege on the 
resulting access module to other users. KEEP causes these grants of the 
RUN privilege to remain in effect when the new access module is created. If 
the REVOKE parameter is specified, or if the creator of the access module is 
not entitled to grant all privileges embodied in the program, the preprocessor ....;, 

348 SQL/Data System Application Programming for VM/SP 



revokes all existing grants of the RUN privilege. The KEEP and REVOKE 
parameters are optional; KEEP is the default. 

DESCRIBE I NODESCRIBE 
This parameter allows the use of the Extended DESCRIBE for statements 
added to the created access module. If DESCRIBE is specified, Extended 
DESCRIBE statements can be executed for prepared SELECT statements in 
the access module; if NODESCRIBE is specified, these statements cannot be 
executed. The DESCRIBE and NODESCRIBE parameters are optional; 
NODESCRIBE is the default. 

REPLACE I NEW 
This parameter specifies whether the access module being created is new or 
whether it will replace an existing access module that has the same name. If 
NEW is specified, an error (SQLCODE -168) results if an access module 
already exists with the same name. If REPLACE is specified and no 
previous module exists with the same name, no error or warning is given. If 
NEW is specified along with KEEP or REVOKE, an error results 
(SQLCODE -160). The REPLACE and NEW parameters are optional; 
REPLACE is the default. 

MODIFY I NOMODIFY 
This parameter specifies whether the created access module can be modified 
once it is stored through a COMMIT WORK. Statements are added to the 
access module by using the Extended PREP ARE and deleted by using the 
DROP STATEMENT function. 

Statements in access modules created with the MODIFY option can also be 
executed or dropped before committing the logical unit of work in which 
they were prepared. 

The MODIFY parameter should not be used if the entire access module will 
be replaced using the REPLACE option. Once an access module has been 
created with the MODIFY parameter specified, it can be changed but not 
replaced by subsequent CREATE PROGRAM statements. To replace an 
access module created with the MODIFY option, it is necessary to issue a 
DROP PROGRAM statement and then issue a CREATE PROGRAM. 
MODIFY and NOMODIFY are optional parameters; NOMODIFY is the 
default. 

BLOCK I NOBLOCK 
When the BLOCK parameter is specified, SQL/DS inserts and retrieves 
rows in groups. This improves performance for programs running in multiple 
user mode where many rows will be inserted or retrieved. NOBLOCK tells 
SQL/DS not to group rows. The default is NOBLOCK. BLOCK and 
NOBLOCK are optional parameters. See "To Block or Not to Block?" on 
page 254 for guidelines on deciding which programs to specify blocking for. 

When the logical unit of work, in which the CREATE PROGRAM statement is 
issued, is committed (via COMMIT WORK), a new access module is created. 
ROLLBACK WORK prevents the storage of the new access module. An access 
module created with the MODIFY option can be committed even if it contains no 
statements. 

Chapter 4. Extended Dynamic Statements 349 



Extended PREPARE 

Format: 

PREPARE FROM string-spec SETTING statement-id 
IN [userid.J program-name [USING DESCRIPTOR structure-spec] 

Example: 

PREPARE FROM :XSTRING SETTING :STMID 
IN :USERID.:PROGNAME USING DESCRIPTOR MYSQLDA 

Authorization: 

The user executing the PREPARE command must be the creator of the access module (specified 
program-name) or have DBA authority. Authority for commands prepared are as specified for 
individual commands in this publication. 

This statement permits a statement to be prepared and stored in an access module 
for later execution. The various extended dynamic statements associated with the 
PREPARE statement can be issued with program names and statement identifiers. 
This permits the user to issue these extended dynamic statements independently to 
serve different programs at different times. 

The PREPARE statement is used to add an SQL statement to an existing access 
module. If the access module is new, the PREPARE statement must be preceded 
by a CREATE PROGRAM statement. Existing access modules, created using the 
MODIFY option of CREATE PROGRAM, can be extended using this PREPARE 
statement. 

string-spec 
specifies the statement that is to be prepared. String-spec must be a host 
variable that is a varying string of maximum length 8192. 

statement-id 

userid 

is a host program variable of the INTEGER data type. It is set by SQL/DS 
to an identifier for the statement that is prepared. It is used in subsequent 
DESCRIBE, EXECUTE, DROP STATEMENT, and DECLARE CURSOR 
statements to specify the corresponding prepared statement. 

is an optional parameter that identifies the owner of the program that is 
being modified or extended. Userid can be specified as a host variable 
(fixed-length, eight characters, padded to the right with blanks) or a 
constant. If use rid is not specified, the user connected to SQL/DS when the 
PREPARE command is executed becomes the default user. The explicit or 
default use rid is necessary to identify completely the access module being 
changed. 

350 SQL/Data System Application Programming for VM/SP 



program-name 
is the name of the access module in which the prepared statemen\ is to be 
stored. If the access module does not exist (has not been created), an error 
(SQLCODE -805) will result. Program-name can either be a host variable 
(fixed-length, eight characters, padded to the right with blanks) or a 
constant. 

structure-spec 
identifies an input SQLDA structure. When used with the Extended 
PREPARE, only the following fields are used: SQLD, SQLTYP, and 
SQLLEN. 

Use of SQLDA is optional. It should be used to improve run-time 
performance and reduce conversions in those cases where data types and 
lengths are known for the'?' parameters in the prepared SQL statement. 
The fields described in the SQLDA should match the '?' parameters in the 
statement being prepared. If there are fewer fields specified in the SQLDA, 
an error will result; if there are more, excess SQLDA fields will be ignored 
by SQL/DS. If the type and length information given in the PREP ARE 
SQLDA does not match that given in the EXECUTE or OPEN statements, 
errors may result. 

The following SQL statements cannot be prepared, that is, may not be used for 
string-spec: 

WHENEVER 
INCLUDE 
COMMIT WORK 
ROLLBACK WORK 
BEGIN DECLARE SECTION 
END DECLARE SECTION 
CREATE PROGRAM 
PREPARE 
DESCRIBE 

EXECUTE 
EXECUTE IMMEDIATE 
OPEN 
FETCH/PUT 
CLOSE 
DROP STATEMENT 
CONNECT 
DECLARE CURSOR 
SELECT with an INTO clause 

A question mark (?) can appear in an SQL statement to be "prepared" in any place 
that a host variable can appear, with some exceptions. These exceptions are 
discussed under "PREPARE" on page 172. 

Because a DBA can add a statement to an access module on behalf of the owner 
(creator) of the module, where the owner is not authorized for the added function, 
the DBA should grant the proper authorization to the owner. 

Chapter 4. Extended Dynamic Statements 351 



Extended DESCRIBE 

Format: 

DESCRIBE statement-id IN [userid.]program-name INTO structure-spec 
(USING {NAMES I LABELS I BOTH I ANY} ] 

Example: 

DESCRIBE :STMID IN :USERID.:PROGNAME INTO MYSQLDA 

Authorization: 

At execution time, the connected user must be the creator of the access module (program-name), or 
have DBA authority, or have RUN authority on the access module. 

This statement permits the retrieval of information about an SQL SELECT 
statement prepared by an Extended PREP ARE statement. The DESCRIBE 
command does not have to be in the same logical unit of work or program as the 
PREPARE statement that was originally used to process the statement. To be 
successful, the access module must have been created using a CREATE 
PROGRAM with the DESCRIBE option. DESCRIBE returns the number of fields ..."., 
in the answer set, the data types, lengths, and names in the named SQLDA 
structure. 

statement-id 

userid 

is specified by the user to contain the statement-id returned by SQL/DS as 
the result of an earlier PREPARE statement. It indicates the statement that 
is to be the subject of this DESCRIBE function. Statement-id must be a 
host program variable of data type INTEGER. 

is an optional parameter that identifies the owner of the program in which 
the referenced statement resides. Userid can be specified as a host variable 
(fixed-length, eight characters, padded to the right with blanks) or a 
constant. If userid is not specified, the user connected to SQL/DS when the 
DESCRIBE statement is executed becomes the default user. 

program-name 
is the name of the access module in which the referenced SQL statement 
resides. If the qualified program-name does not refer to an existing access 
module, an error (SQLCODE -805) will result. Program-name can either be 
a host variable (fixed-length, eight characters, padded to the right with 
blanks) or a constant. 

structure-spec 
identifies an output SQLDA structure that is to receive information about 
the columns that are to be retrieved by the described SQL statement. When 

352 SQL/Data System Application Programming for VM/SP 



used with the Extended DECLARE, only the following fields are used: 
SQLD, SQLTYP, and SQLLEN. Structure-spec is identical to that used for 
the DESCRIBE dynamic statement (see "Dynamically Defined Statements" 
in Chapter 5). 

The USING clause of the EXTENDED DESCRIBE statement works the same as 
in the DESCRIBE dynamic statement, and follows the same rules. (See 
"DESCRIBE" on page 177 for more information.) The labels returned in the 
SQLDA are those which were in the SYSCOLUMNS catalog table when the SQL 
statement was prepared. 

Chapter 4. Extended Dynamic Statements 353 



Extended EXECUTE 

Format: 

EXECUTE statement-id IN [userid.]program-name 
[USING DESCRIPTOR structure-spec] 

Example: 

EXECUTE :STMID IN :USERID.:PROGNAME 
USING DESCRIPTOR MYSQLDA 

Authorization: 

At execution time, the connected user must be the creator of the access module (program-name), or 
have DBA authority, or have RUN authority on the access module. 

This statement causes SQL/DS to execute a statement (identified by statement-id) 
that was prepared previously using an Extended PREPARE statement. When the 
statement is executed, the host variables you specify in your SQLDA are 
substituted, in order, into the the statement in place of the '7' parameters that were 
given in the PREP ARE statement. Each variable must be of a data type that is 
compatible with its usage in the "prepared" SQL statement. Extended EXECUTE 
will fail if the prepared statement was a SELECT statement (requires a DECLARE 
CURSOR). 

statement-id 

userid 

is specified by the user to contain the statement-id returned by SQL/DS as 
the result of an earlier PREP ARE statement. It indicates the statement that 
is to be executed. Statement-id must be a host program variable of data type 
INTEGER. 

is an optional parameter that identifies the owner of the program in which 
the referenced statement resides. Userid can be specified as a host variable 
(fixed-length, eight characters, padded to the right with blanks) or a 
constant. If userid is not specified, the user connected to SQL/DS when the 
EXECUTE statement is executed becomes the default user. 

program-name 
is the name of the access module in which the referenced SQL statement 
resides. If the qualified program-name does not refer to an existing access 
module, an error (SQLCODE -805) will result. Program-name can either be 
a host variable (fixed-length, eight characters, padded to the right with 
blanks) or a constant. 

354 SQL/Data System Application Programming for VM/SP 



structure-spec 
identifies an input SQLDA structure that provides information about 
variables that were not specified when the statement was prepare(j ('1' 
parameters). For additional information on SQLDA and its use, see 
"Dynamically Defined Statements" on page 147. 

Chapter 4. Extended Dynamic Statements 355 



Extended DECLARE CURSOR 

Format: 

DECLARE cursor-name CURSOR FOR statement-id IN [userid.]program-name 

Example: 

DECLARE : CURSOR 1 CURSOR FOR :STMID IN :USERID.:PROGNAME 

Authorization: 

At execution time, the connected user must be the creator of the access module (program-name), or 
have DBA authority, or have RUN authority on the access module. 

This statement declares the cursor through which a user may OPEN, FETCH, 
PUT, or CLOSE the results of a prepared statement. Cursors are associated with a 
prepared SELECT statement or INSERT statement by the statement-id and the 
program-name specified in the DECLARE CURSOR statement. Extended 
DECLARE CURSOR may be used for any SELECT or INSERT statement in an 
access module created using CREATE PROGRAM. A cursor need not be 
declared in the same logical unit of work or program in which the statement was 
prepared. 

Remember that a cursor name used in a WHERE CURRENT OF clause cannot be 
specified via a host variable. Therefore, you should make sure that, at execution 
time, the content of cursor-name in the EXTENDED DECLARE CURSOR 
statement must be the same as the cursor-name hard-coded in the WHERE 
CURRENT OF clause. 

cursor-name 
identifies the cursor(s) that are to be used. Cursor-name is a host variable, 
thus allowing a cursor name to be provided when the program is run. 
Cursor-name must be a V ARCHAR data type. The name placed in the 
cursor-name host variable must be unique within the logical unit of work in 
which it is used, because that is the scope of the name. 

statement-id 

userid 

is specified by the user to contain the statement-id returned by SQL/DS as 
the result of an earlier PREPARE statement. It indicates the statement that 
is to be executed. Statement-id must be a host program variable of data type 
INTEGER. 

is an optional parameter that identifies the owner of the program in which 
the referenced statement resides. Userid can be specified as a host variable 
(fixed-length, eight characters, padded to the right with blanks) or a 

356 SQL/Data System Application Programming for VM/SP 



constant. If userid is not specified, the user connected to SQL/DS when the 
DECLARE statement is executed becomes the default user. 

program-name 
is the name of the access module in which the referenced SQL statement 
resides. If the qualified program-name does not refer to an existing access 
module, an error (SQLCODE -805) will result. Program-name can either be 
a host variable (fixed-length, eight characters, padded to the right with 
blanks) or a constant. 

Once the DECLARE CURSOR statement is issued, a cursor is established; the 
cursor can then be opened and used to retrieve or insert rows through the OPEN, 
FETCH, and PUT statements. 

Chapter 4. Extended Dynamic Statements 357 



Extended OPEN 

Format: 

OPEN cursor-name [USING DESCRIPTOR structure-spec] 

Example: 

OPEN :CURSOR1 USING DESCRIPTOR MYSQLDA 

Authorization: 

At execution time, the connected user must be the creator of the access module (program-name), 
have DBA authority, or have RUN authority on the access module. 

This statement opens the cursor of a previously prepared statement to retrieve the 
results of a query, or to insert values into SQL/DS. 

In many respects, the Extended OPEN statement is similar to the OPEN statement 
for dynamically defined queries, described in Chapter 2. However, in the Extended 
OPEN statement, the cursor-name is a host variable, thereby making it possible for 
a user to provide the cursor name when the program is run and to open the cursor 
in a logical unit of work or program other than the one in which the statement was """'" 
prepared. DECLARE CURSOR and OPEN must occur in the same logical unit of 
work. 

Note: When the cursor you are opening is to be used for inserting data into a 
table, the USING DESCRIPTOR clause should not be included. 

cursor-name 
identifies the cursor to be opened. Cursor-name is a host variable, thus 
allowing a cursor name to be provided when the program is run. 
Cursor-name must be a V ARCHAR data type. The name placed in the 
cursor-name host variable must be unique within the logical unit of work in 
which it is used, because that is the scope of the name. 

structure-spec 
identifies an SQLDA structure that provides information concerning input 
variables that were specified as '?' parameters when the statement was 
prepared. For additional information on SQLDA and its use, see 
"Dynamically Defined Statements" on page 147. 

358 SQL/Data System Application Programming for VM/SP 



Extended FETCH 

Format: 

FETCH cursor-name USING DESCRIPTOR structure-spec 

Example: 

FETCH : CURSOR 1 USING DESCRIPTOR MYSQLDA 

Authorization: 

At execution time, the connected user must be the creator of the access module (program-name), 
have DBA authority, or have RUN authority on the access module. 

This statement retrieves one row of a query result defined by a PREPARE 
statement. The indicated cursor must be declared and opened. The places into 
which the individual fields are to be fetched are indicated by the structure-spec. 

In most respects, the Extended FETCH statement is identical to the FETCH 
statement for dynamically defined queries, as described under "Dynamically 
Defined Statements" on page 147. However, in the Extended FETCH statement, 
the cursor-name is a host variable, thereby making it possible for a user to provide 
the cursor name when the program is run and to FETCH in a logical unit of work 
or program other than the one in which the statement was prepared. DECLARE 
CURSOR, OPEN, and FETCH must occur in the same logical unit of work. 

cursor-name 
identifies the cursor that is used. Cursor-name is a host variable, thus 
allowing a cursor name to be provided when the program is run. 
Cursor-name must also have a data type of V ARCHAR. The name placed 
in the cursor-name host variable must be unique within the logical unit of 
work in which it is used, because that is the scope of the name. 

structure-spec 
identifies an SQLDA structure that provides information concerning output 
variables that were specified as '7' parameters when the statement was 
prepared. For additional information on SQLDA and its use, see 
"Dynamically Defined Statements" on page 147. 

Chapter 4. Extended Dynamic Statements 359 



Extended PUT 

Format 1: 

PUT cursor-name FROM host-variable-list 

Format 2: 

PUT cursor-name USING DESCRIPTOR structure-spec 

Examples: 

PUT :CURSORl FROM : X, :Y 
PUT :CURSOR2 USING DESCRIPTOR SQLDA 

Authorization: 

At execution time, the connected user must be the creator of the access module (program-name), 
have DBA authority, or have RUN authority on the access module. 

This statement inserts one row of data defined by a PREP ARE statement. The 
indicated cursor must be declared and opened. The sources of the individual fields 
to be inserted are indicated by the structure-spec or the host-variable-list. 

In most respects, the Extended PUT statement is identical to the PUT statement 
described under "PUT Statement for Dynamically Defined Inserts" on page 18l. 
However, in the Extended PUT statement, the cursor-name is a host variable. This 
feature makes it possible for a user to provide the cursor name when the program is 
run and to issue a PUT statement in a logical unit of work or program other than 
the one in which the statement was prepared. DECLARE CURSOR, OPEN, and 
PUT must occur in the same logical unit of work. 

cursor-name 
identifies the cursor that is used. Cursor-name is a host variable, thus 
allowing a cursor name to be provided when the program is run. 
Cursor-name must also have a data type of V ARCHAR. The name placed 
in the cursor-name host variable must be unique within the logical unit of 
work in which it is used, because that is the scope of the name. 

host-variable-list 
identifies the values to be inserted. The host variables provide information 
concerning input variables that were specified as '?' parameters when the 
statement was prepared. 

structure-spec 
identifies an SQLDA structure that provides information concerning input 
variables that were specified as '?' parameters when the statement was 
prepared. For additional information on SQLDA and its use, see 
"Dynamically Defined Statements" on page 147. 

360 SQL/Data System Application Programming for VM/SP 



Extended CLOSE 

Format: 

CLOSE cursor-name 

Example: 

CLOSE : CURSOR 1 

Authorization: 

At execution time, the connected user must be the creator of the access module (program-name), 
have DBA authority, or have RUN authority on the access module. 

This statement "closes" the cursor identified by cursor-name. The cursor leaves 
the open state, and its active set becomes undefined. No FETCH or PUT 
statement can be executed on the cursor, and no DELETE or UPDATE statement 
can refer to its current position, until the cursor is reopened by an OPEN 
statement. CLOSE permits SQL/DS to release the resources associated with 
maintaining an open cursor. 

In most respects, the Extended CLOSE statement is identical to the CLOSE 
statement described under "Retrieving or Inserting Data with a Cursor" on 
page 19. However, in the Extended CLOSE statement, the cursor-name is a host 
variable, thereby making it possible for a user to provide the cursor name when the 
program is run and to CLOSE the cursor in a logical unit of work or program other 
than the one in which the statement was prepared. CLOSE must occur in the same 
logical unit of work as the corresponding cursor declaration. 

cursor-name 
identifies the cursor that is to be closed. Cursor-name is a host variable, thus 
allowing a cursor name to be provided when the program is run. 
Cursor-name must be a V ARCHAR data type. The name placed in the 
cursor-name host variable must be unique within the logical unit of work in 
which it is used, because that is the scope of the name. 

Chapter 4. Extended Dynamic Statements 361 



DROP STATEMENT 

Format: 

DROP STATEMENT statement-id IN [userid.]program-name 

Example: 

DROP STATEMENT :STMID IN :USERID.:PROGNAME 

Authorization: 

At execution time, the connected user must be the creator of the access module (program-name), 
have DBA authority, or have RUN authority on the access module. 

This statement selectively deletes a statement from an access module. When used 
with the Extended PREPARE statement, it may be used to effectively replace a 
statement in an access module. (That is, the DROP STATEMENT deletes the 
statement and the PREPARE statement adds a new statement.) DROP 
STATEMENT applies only to access modules created with a CREATE 
PROGRAM statement with the MODIFY option. 

statement-id 

userid 

is specified by the user to contain the statement-id returned by SQL/DS as 
the result of an earlier PREPARE statement. It indicates the statement that 
is to be dropped in the named access module. Statement-id must be a host 
program variable of data type INTEGER. 

is an optional parameter that identifies the owner of the program in which 
the referenced statement resides. Userid can be specified as a host variable 
(fixed-length, eight characters, padded to the right with blanks) or a 
constant. If userid is not specified, the user connected to SQL/DS when the 
DROP statement is executed becomes the default user. 

program-name 
is the name of the access module in which the referenced SQL statement 
resides. If the qualified program-name does not refer to an existing access 
module, an error (SQLCODE -805) will result. Program-name can either be 
a host variable (fixed-length, eight characters, padded to the right with 
blanks) or a constant. 

362 SQL/Data System Application Programming for VM/SP 



\.. 

Appendix A. SQl/OS Reserved Words 

ACQUIRE 
ADD 
ALL 
ALTER 
AND 
ANY 
AS 
ASC 
AVG 

BETWEEN 
BY 

CHAR 
COLUMN 
COMMENT 
COMMIT 
CONNECT 
COUNT 
CREATE 
CURRENT 

DBA 
DBSPACE 
DECIMAL 
DELETE 
DESC 
DISTINCT 
DROP 

The following keywords are reserved in the SQL language. You cannot use them 
in SQL statements except for: 

1. Their defined meaning in the SQL syntax; and, 

2. As host variables (preceded by a colon). 

In particular, you cannot use them as names for tables, indexes, columns, views, or 
DB SPACEs unless they are enclosed in double quotes (") as described in Chapter 
1. 

EXCLUSIVE NAMED 
EXISTS NHEADER 
EXPLAIN NOT 

NULL 
FLOAT 
FOR OF 
FROM ON 

OPTION 
GRANT OR 
GRAPHIC ORDER 
GROUP 

PAGE 
HAVING PAGES 

PCTFREE 
IDENTIFIED PCTINDEX 
IN PRIVATE 
INDEX PRIVILEGES 
INSERT PROGRAM 
INTEGER PUBLIC 
INTO 
IS RELEASE 

RESOURCE 
LIKE REVOKE 
LOCK ROLLBACK 
LONG ROW 

RUN 
MAX 
MIN SCHEDULE 
MODE SELECT 

SET 
SHARE 

Appendix A. SQL/DS Reserved Words 363 



SMALLINT 
STATISTICS 
STORPOOL 
SUM 
SYNONYM 

TABLE 
TO 

UNION 
UNIQUE 
UPDATE 
USER 

VALUES 
VARCHAR 

364 SQL/Data System Application Programming for VM/SP 

VARGRAPHIC 
VIEW 

WHERE 
WITH 
WORK 



Appendix B. Sal/OS Maximums 

INTEGER 

SMALLINT 

FLOAT 

DECIMAL 

The number lines in Figure 36 show the range of numeric values that can be stored 
in a column of a given data type or handled as an intermediate value of a 
computation. 

NEGATIVE VALUES POSITIVE VALUES 
<--------------------------~b~-----------------------> 

-2147483648 
I 

+2147483147 0 

I I +32~67 -32768 0 

I III I 
-7.2E75 -5.4E-79 +5.4E-79 +7.2E75 

0 

I III I 
-999999999999999 -.000000000000001 +.000000000000001 999999999999999 

o 

Figure 36. Ranges of Numeric Values 

In addition, the following maximums are defined for SQL in SQL/DS: 

• Maximum number of columns in a table is 255. 

• Maximum number of indexes in a table is 255. 

• Maximum number of columns in a view is approximately 140. The number of 
referenced tables, lengths of column names, and WHERE clauses all further 
reduce this number. 

• Maximum total length of a single row of a table, not including fields of type 
LONG V ARCHAR is approximately 4070 bytes (slightly less if the row has 
many fields). 

• Maximum length of a name of a table, column, index, cursor, statement name 
(for dynamically defined statements), or DBSPACE is 18 characters. 

Appendix B. SQL/DS Maximums 365 



• Maximum length of a host variable is 18 characters, unless the host language ~ 
has a further restriction. For example, FORTRAN permits only six-character 
host variable names. 

• Maximum number of application program variables used in SQL statements in 
one preprocessed program is 512. 

• Maximum number of host variables used in one SQL statement is 256. 

• Maximum length of one SQL statement is 8192 characters. 

• Maximum number of columns in an index definition is 16. 

• When an index is created, the sum of the lengths of the indexed columns, plus 
25% of the lengths of any indexed columns that are of varying-length 
character type, must not exceed 255 bytes. 

• Maximum number of columns listed in an ORDER BY clause is 16. 

• Maximum number of items that may appear in a select list is 255. 

• Maximum number of tables in a DBSPACE is 255. 

• Maximum number of concurrent users is 252. 

• Maximum number of cursors in a program is 512. 

• Maximum number of IUCV connections for a virtual machine (MAX CONN) 
is 65,535; the default is 4. 

366 SQL/Data System Application Programming for VM/SP 



Appendix C. PL/I Considerations 

This appendix contains a sample program that illustrates the use of SOL within 
PL/I. Following the sample are specific rules for using SOL in PL/1. 

ARISPllC -- PL/I Sample Program 

ARISPLIC is a PL/I sample program that is provided with SOL/OS for VM/SP 
systems. The source code of this program begins on the next page. You can learn 
most of the rules for using SOL within PL/I just by scanning through the program. 
Note, in particular, how the program satisfies the requirements of the application 
prolog and epilog. Near the beginning of the program all the host variables are 
declared, error handling is defined, and a connection is established with SOL/OS. 
Near the logical end of the program, the data base changes are committed. (The 
connection to SOL/OS is implicitly released on program termination.) 

Notice that the delimiters for all SOL statements coded within a PL/I program are 
"EXEC SOL" and a semicolon (for example, "EXEC SOL INCLUDE SOLCA;"). 

The DCL statements for the host variables were determined by referring to 
Figure 40 on page 383. That figure gives the PL/I representation for each of the 
ten SOL/OS data types. When you are coding your own applications you'll need 
to obtain the data types of the columns that your host variables interact with. This 
can be done either by consulting the person who created the table, or by querying 
the SOL/OS catalogs. The SOL/OS catalogs are described in the SQLI Data 
System Planning and Administration for VM / SP manual. 

Notice also that all the host variables are declared in separate DCL statements. 
You can't declare more than one host variable in a single declare statement. This 
example is incorrect: 

EXEC SQL BEGIN DECLARE SECTION; 
DCL USERID CHAR(8), PASS CHAR(8); 
DCL PART BIN FIXED(15), DESC CHAR(24) VAR; 

• 
• 
• 

EXEC SQL END DECLARE SECTION; 
Don't do this! 
SQL/DS won't recognize 
PASS and DESC. 

Appendix C. PL/I Considerations 367 



/*********************************************************************/ 
/* */ 
/* SAMPLE PROGRAM FOR VM/SP ARISPLIC */ 
/* */ 
/* PURPOSE: THIS PROGRAM SERVES TWO PURPOSES: * / 
/* 1. IT IS AN EXAMPLE FOR HOW TO IMBED SQL */ 
/* STATEMENTS IN A PL/1 PROGRAM. */ 
/* 2. IT CAN BE USED TO TEST SOME BASIC SQL */ 
/* FUNCTIONS FROM AN APPLICATION PROGRAM. */ 
/* */ 
/* DESCRIPTION: THIS PROGRAM GENERATES A SAMPLE ORDER FOR */ 
/* THE PARTS 302 AND 311 IF QONHAND IS LESS */ 
/* THAN 1000 AND 700 RESPECTIVELY, AND IF */ 
/* QONORDER IS ZERO. THE TABLE QUOTATIONS */ 
/* IS UPDATED ACCORDINGLY. PART 302 IS ORDERED */ 
/* FROM THE COMPANY THAT SELLS IT FOR THE */ 
/* LOWEST PRICE, PART 311 FROM THE COMPANY WITH */ 
/* THE SHORTEST DELIVERY TIME. */ 
/* */ 
/* AT THE END OF THE PROGRAM PART 321 IS DELETED */ 
/* FROM THE DATA BASE. */ 
/* */ 
/* PREREQUISITE: THE SQL/DS SAMPLE TABLES MUST BE CREATED AND */ 
/* LOADED. */ 
/* */ 
/* OUTPUT PRODUCED: 1. AN EXECUTION BEGIN AND END MESSAGE IS */ 
/* PRINTED AT THE BEGIN AND END OF PROGRAM */ 
/* EXECUTION. ~/ 
/* 2. ALL TABLES ARE PRINTED WITH THEIR ORIGI- ./ 
/* NAL CONTENTS. */ 
/* 3. A SAMPLE ORDER IS PRINTED. */ 
/* 4. THE CONTENTS OF THE TABLES ARE PRINTED */ 
/* AFTER ALL UPDATES AND DELETES ARE MADE. */ 
/* 5. UNEXPECTED RETURN CODE: * / 
/* AN ERROR MESSAGE IS ISSUED TOGETHER WITH */ 
/* THE SQLCA-INFORMATION AND CHANGES BACKED */ 
/* OUT. */ 
/* */ 
/*********************************************************************/ 
SAMPP: PROC OPTIONS (MAIN); 
%SKIP; 
/*********************************************************************/ 
/* */ 
/* ESTABLISH HOST VARIABLES */ 
/* */ 
/*********************************************************************/ 
%SKIP; 

EXEC SQL BEGIN DECLARE SECTION; 
%SKIP; 

DCL PARTNO DEC FIXED(6); 
/* THE DESCRIPTION COLUMN IN THE INVENTORY TABLE IS VARCHAR(24) */ 
/* SQL/DS WILL CONVERT IT TO FIXED LENGTH AND TRUNCATE LONGER */ 
/* DATA WHENEVER THE DESCR HOST VARIABLE IS USED. */ 

%SKIP; 

%SKIP; 

DCL DESCR CHAR(10); 
DCL QONHAND DEC FIXED(11); 
DCL SUPPNO DEC FIXED(6); 
DCL NAME CHAR(15); 
DCL ADR CHAR(35) ; 
DCL TIME DEC FIXED(6); 
DCL QONORDER DEC FIXED(11); 
DCL PRICE DEC FIXED(S,2); 
DCL 10 CHAR(S) INIT('SQLDBA '); 
DCL PASSW CHAR(S) INIT('SQLDBAPW'); 

EXEC SQL END DECLARE SECTION; 

368 SQL/Data System Application Programming for VM/SP 



/* 
%SKIP; 

INTERNAL PROGRAM VARIABLES 

DCL STMT CHAR(25); 
DCL TPRICEl DEC FIXED{9,2); 
DCL TPRICE2 DEC FIXED{9,2); 

*/ 

%SKIP; 
/*********************************************************************/ 
/* */ 
/* OPEN PRINT FILE AND DISPLAY START MSG */ 
/* */ 
/*********************************************************************/ 
%SKIP; 
DCL PRTFILE FILE STREAM OUTPUT PRINT; 
DISPLAY ('SAMPLE PROGRAM ARISPLIC STARTED'); 
PUT FILE (PRTFILE) SKIP EDIT ('SAMPLE PROGRAM ARISPLIC STARTED') 

(A (31 ) ) ; 
%SKIP; 
/*********************************************************************/ 
/* */ 
/* ERROR HANDLING */ 
/* */ 
/*********************************************************************/ 
%SKIP; 

EXEC SQL INCLUDE SQLCA; 
/* THIS PROGRAM WILL IGNORE WARNING AS THEY WILL NOT AFFECT RESULTS */ 

EXEC SQL WHENEVER SQLWARNING CONTINUE; 
EXEC SQL WHENEVER SQLERROR GOTO SQLERR; 
EXEC SQL WHENEVER NOT FOUND GOTO SQLERR; 

%SKIP; 
/*********************************************************************/ 
/* */ 
/* START PROGRAM */ 
/* */ 
/*********************************************************************/ 
%SKIP; 

STMT = 'EXEC SQL CONNECT '; 
EXEC SQL CONNECT :ID IDENTIFIED BY :PASSW; 

%SKIP; 
/*********************************************************************/ 
/* */ 
/* PRINT TABLES */ 
/* */ 
/*********************************************************************/ 
%SKIP; 
PUT FILE (PRTFILE) EDIT ('*** PRINTOUT OF TABLE INVENTORY UNCHANGED *** 
') (PAGE, A(45)); 
CALL PRINT 1 ; 
PUT FILE (PRTFILE) EDIT ('*** PRINTOUT OF TABLE QUOTATIONS UNCHANGED ** 
*') (PAGE, A(46)); 
CALL PRINT2; 
PUT FILE (PRTFILE) EDIT ('*** PRINTOUT OF TABLE SUPPLIERS UNCHANGED *** 
') {PAGE, A (4 5) ) ; 
CALL PRINT3; 
%SKIP; 
/*********************************************************************/ 
/* */ 
/* FIND MINIMUM PRICE FOR PART #302 */ 
/* */ 
/* THE FOLLOWING SELECT STATEMENT RETURNS THE MINIMUM PRICE OF ALL */ 
/* OCCURRENCES OF PART #302 WITH QONHAND LESS THAN 1000, AND */ 
/* QONORDER O. AS PRICE IS A COLUMN IN QUOTATIONS, AND QONHAND A */ 
/* COLUMN IN INVENTORY, THE TWO TABLES HAVE TO BE LINKED VIA A JOIN */ 
/* BETWEEN THE PART NUMBERS IN INVENTORY AND THOSE IN QUOTATIONS. */ 
/* NO CURSOR IS USED BECAUSE THE STATEMENT IS EXPECTED TO RETURN */ 
/* ONLY ONE ROW. */ 
/* */ 
/*********************************************************************/ 

Appendix C. PL/I Considerations 369 



%SKIP; 
STMT = 'SELECT MIN(PRICE) FOR 302'; 
EXEC SQL SELECT MIN (PRICE) 

INTO :PRICE 
FROM INVENTORY, QUOTATIONS 
WHERE INVENTORY.PARTNO = 302 AND 

QONHAND < 1000 AND 
INVENTORY.PARTNO = QUOTATIONS.PARTNO AND 
QONORDER = 0; 

%SKIP; 
/*********************************************************************/ 
/* */ 
/* RETRIEVE DATA FOR ORDER AND */ 
/* UPDATE QONORDER FOR PART #302, TABLE QUOTATIONS */ 
/* */ 
/*********************************************************************/ 
%SKIP; 

TPRICEl = 1000 * PRICE; 
STMT = 'SELECT FOR PART #302 '; 
EXEC SQL SELECT INVENTORY.PARTNO, DESCRIPTION, QONHAND, 

PRICE, NAME, ADDRESS, QUOTATIONS.SUPPNO 
INTO :PARTNO, :DESCR, : QONHAND , :PRICE, : NAME, :ADR, 

:SUPPNO 
FROM INVENTORY, QUOTATIONS, SUPPLIERS 
WHERE INVENTORY.PARTNO = 302 AND 

INVENTORY.PARTNO = QUOTATIONS.PARTNO AND 
PRICE = :PRICE AND 
QUOTATIONS.SUPPNO = SUPPLIERS.SUPPNOj 

STMT 'UPDATE QUOTATIONS '; 
EXEC SQL UPDATE QUOTATIONS SET QONORDER = 1000 

WHERE PARTNO = :PARTNO AND 
QONORDER = 0 AND 
PRICE = :PRICE AND 
SUPPNO = :SUPPNO; 

%SKIP; 
/*********************************************************************/ 
/* */ 
/* PRINT SAMPLE ORDER WITH RESULTS OF PART #302 */ 
/* */ 
/*********************************************************************/ 
%SKIP; 
PUT FILE (PRTFILE) EDIT ('SAMPLE ORDER') (PAGE, X(30), A(12))j 
PUT FILE (PRTFILE) EDIT ('NUMBER OF', 'DESCRIPTION', 'QUANTITY', 

%SKIPj 

'COMPANY NAME', 'COMPANY ADDRESS', 'PRICE PER', 'TOTAL') 
(SKIP(2), COL(2), A(9), COL(14), A(ll), COL(28), A(8), 
COL(39), A(12), COL(55) , A(15), COL(92), A(9), COL(102), 
A(5)); 

PUT FILE (PRTFILE) EDIT ('PARTS', 'ON HAND', 'UNIT', 'COSTS') 
(COL(4), A(S), COL(28), A(7), COL(94) , A(4), COL(102), A(S)); 

%SKIP; 
PUT FILE (PRTFILE) EDIT ('1000', DESCR, QONHAND, NAME, ADR, PRICE, 

TPRICE1) (SKIP(2) , COL(3), A(4), COL(14), A(10), COL(24) , 
F(ll), COL(39) , A(lS), COL(55), A(3S), COL(90) , F(9,2), 
COL ( 100), F (9, 2) ) ; 

%SKIPj 
/*********************************************************************/ 
/* */ 
/* FIND MINIMUM DELIVERY TIME FOR PART #311 */ 
/* */ 
/* THE FOLLOWING SELECT STATEMENT RETURNS THE MINIMUM DELIVERY */ 
/* TIME OF ALL OCCURENCES OF PART #311 WITH QONHAND LESS THAN 700 */ 
/* AND QONORDER O. AS DELIVERY TIME IS A COLUMN IN QUOTATIONS */ 
/* AND QONHAND A COLUMN IN INVENTORY, THE TWO TABLES HAVE TO BE */ 
/* LINKED VIA A JOIN BETWEEN THE PART NUMBERS IN QUOTATIONS AND */ 
/* THOSE IN INVENTORY. */ 

370 SQL/Data System Application Programming for VM/SP 



/* */ 
/*********************************************************************/ 
jlSKIP; 

STMT = 'SELECT MIN(DELIVERY TIME) '; 
EXEC SQL SELECT MIN (DELIVERY_TIME) 

INTO :TIME 
FROM INVENTORY, QUOTATIONS 
WHERE INVENTORY.PARTNO = 311 AND 

QONHAND < 700 AND 
INVENTORY.PARTNO QUOTATIONS.PARTNO AND 
QONORDER = 0; 

jlSKIP; 
/*********************************************************************/ 
/* */ 
/* RETRIEVE DATA OF PART 311 FOR THE ORDER */ 
/* AND */ 
/* UPDATE QONORDER FOR PART #311 */ 
/* */ 
/*********************************************************************/ 
jlSKIP; 

STMT = 'SELECT FOR PART #311 '; 
EXEC SQL SELECT INVENTORY.PARTNO, DESCRIPTION, QONHAND, 

PRICE, NAME, ADDRESS 
INTO :PARTNO, :DESCR, : QONHAND, :PRICE, :NAME, :ADR 
FROM INVENTORY, QUOTATIONS, SUPPLIERS 
WHERE INVENTORY.PARTNO = 311 AND 

INVENTORY.PARTNO = QUOTATIONS.PARTNO AND 
DELIVERY TIME = :TIME AND 
QUOTATIONS.SUPPNO = SUPPLIERS.SUPPNO; 

STMT 'UPDATE QUOTATIONS '; 
EXEC SQL UPDATE QUOTATIONS SET QONORDER = 700 

WHERE PARTNO = :PARTNO AND 
QONORDER = 0 AND 
DELIVERY_TIME = :TIME; 

jlSKIP; 
/*********************************************************************/ 
/* */ 
/* PRINT ON SAMPLE ORDER */ 
/* */ 
/*********************************************************************/ 
jlSKIP; 
TPRICE2 = 700 * PRICE; 
PUT FILE (PRTFILE) EDIT ('700', DESCR, QONHAND, NAME, ADR, PRICE, 

TPRICE2) (SKIP(2), COL (3) , A(4), COL(14), A(10), COL(24), 
F(11), COL(39), A(15), COL(55), A(35), COL(90), F(9,2), 
COL ( 100), F (9,2) ) ; 

jlSKIP; 
/*********************************************************************/ 
/* */ 
/* DELETE PART #321 */ 
/* */ 
/*********************************************************************/ 
jlSKIP; 

STMT = 'DELETE 321 FROM QUOTATION'; 
EXEC SQL DELETE FROM QUOTATIONS 

WHERE PART NO = 321; 
STMT = 'DELETE 321 FROM INVENTORY' ; 
EXEC SQL DELETE FROM INVENTORY 

WHERE PARTNO = 321; 
jlSKIP; 
/*********************************************************************/ 
/* */ 
/* COMMIT CHANGES */ 
/* */ 
/*********************************************************************/ 
jlSKIP; 

STMT = 'COMMIT WORK 

Appendix C. PL/I Considerations 371 



EXEC SQL COMMIT WORK; 
%SKIP; 
/*********************************************************************/ 
/* */ 
/* PRINT TABLES */ 
/* */ 
/*********************************************************************/ 
%SKIP; 
PUT FILE (PRTFILE) EDIT ('*** PRINTOUT OF TABLE INVENTORY UPDATED ***') 
(PAGE, A(4S)); 
CALL PRINT1; 
PUT FILE (PRTFILE) EDIT ('*** PRINTOUT OF TABLE QUOTATIONS UPDATED ***' 
) (PAGE, A(4S)); 
CALL PRINT2; 
PUT FILE (PRTFILE) EDIT ('*** PRINTOUT OF TABLE SUPPLIERS UPDATED ***') 
(PAGE, A(4S)); 
CALL PRINT3; 
GO TO DONE; 
%SKIP; 
/*********************************************************************/ 
/* */ 
/* PRINT ROUTINE FOR TABLES */ 
/* */ 
/*********************************************************************/ 
PRINT1: PROC; 
%SKIP; 

%SKIP; 

EXEC SQL DECLARE C1 CURSOR FOR SELECT PARTNO, DESCRIPTION, 
QONHAND 

FROM INVENTORY 
ORDER BY PARTNO; 

PUT FILE (PRTFILE) EDIT ('PARTNO', 'DESCRIPTION', 'QONHAND') 
(SKIP(2), A(6), X(3), A(11), X(3), A(7)); 

EXEC SQL WHENEVER NOT FOUND CONTINUE; 
STMT = 'OPEN C1 - PROC PRINT1 '; 
EXEC SQL OPEN C1; 
DO WHILE (SQLCODE = 0); 

STMT = 'FETCH C1 IN PROC PRINT1 'i 
EXEC SQL FETCH C1 

INTO :PARTNO, :DESCR, : QONHAND; 
IF SQLCODE = 0 THEN 

PUT FILE (PRTFILE) ~DIT (PARTNO, DESCR, QONHAND) (SKIP, 
F(6), X(3), A(10), X(S), F(6))i 

END; 
STMT = 'CLOSE C1 IN PROC PRINT1 
EXEC SQL CLOSE C1; 

, . , 

END PRINT1; 
%SKIP; 
PRINT2: PROC; 
%SKIP; 

EXEC SQL DECLARE C2 CURSOR FOR 
SELECT SUPPNO, PARTNO, PRICE, DELIVERY_TIME, QONORDER 

FROM QUOTATIONS 
ORDER BY SUPPNO, PARTNO; 

PUT FILE (PRTFILE) EDIT ('SUPPNO', 'PARTNO', 'PRICE', 
• DELIVERY TIME', 'QONORDER') (SKIP (2), A (6), X (3), A (6) , 
X(6), A(S), X(3), A(13), X(6), A(S)); 

STMT = 'OPEN C2 - PROC PRINT2 'i 
EXEC SQL OPEN C2; 
DO WHILE (SQLCODE = 0); 

STMT = 'FETCH C2 IN PROC PRINT2 '; 
EXEC SQL FETCH C2 

INTO :SUPPNO, :PARTNO, :PRICE, :TIME, : QONORDER; 
IF SQLCODE = 0 THEN 

PUT FILE (PRTFILE) EDIT (SUPPNO, PARTNO, PRICE, TIME, 
QONORDER) (SKIP, F (6), X (3), F ( 6), X ( 3), F (S , 2) , 

372 SQL/Data System Application Programming for VM/SP 



X(3), F(13), X(3), F(11)); 

"SKIP; 

END; 
STMT 'CLOSE C2 IN PROC PRINT2 
EXEC SQL CLOSE C2; 

END PRINT2; 
"SKIP; 
PRINT3: PROC; 
"SKIP; 

EXEC SQL DECLARE C3 CURSOR FOR 
SELECT SUPPNO, NAME, ADDRESS 

FROM SUPPLIERS 
ORDER BY SUPPNO; 

, . , 

PUT FILE (PRTFILE) EDIT ('SUPPNO', 'NAME', 'ADDRESS') (SKIP(2) , 

"SKIP; 

A(6), X(3), A(4), X(9), A(7)); 
STMT = 'OPEN C3 - PROC PRINT3 '; 
EXEC SQL OPEN C3; 
DO WHILE (SQLCODE = 0); 

STMT = 'FETCH C3 IN PROC PRINT3 '; 
EXEC SQL FETCH C3 

INTO :SUPPNO, : NAME , :ADR; 
IF SQLCODE = 0 THEN 

PUT FILE (PRTFILE) EDIT (SUPPNO, NAME, ADR) (SKIP, 
F(6), X(3), A(10), X(3), A(35)); 

END; 
STMT = 'CLOSE C3 IN PROC PRINT3 
EXEC SQL CLOSE C3; 

, . , 

END PRINT3; 
"SKIP; 
/*********************************************************************/ 
/* */ 
/* ROUTINE FOR HANDLING ERRORS */ 
/* */ 
/*********************************************************************/ 
"SKIP; 
SQLERR: 

DISPLAY ('UNEXPECTED SQL ERROR RETURNED'); 
DISPLAY ('CHANGES WILL BE BACKED OUT'); 
DISPLAY ('FAILING SQL STATEMENT IS'); 
DISPLAY (STMT); 
PUT FILE (PRTFILE) SKIP EDIT ('UNEXPECTED SQL ERROR RETURNED') 

(A(29)); 
PUT FILE (PRTFILE) SKIP EDIT ('FAILING SQL STATEMENT IS " STMT) 

PUT 
PUT 
PUT 
PUT 
PUT 
PUT 
PUT 
PUT 
PUT 
PUT 
PUT 
PUT 
PUT 
PUT 
PUT 

"SKIP; 

(2(A(25))); 
FILE (PRTFILE) 
FILE (PRTFILE) 
FILE (PRTFILE) 
FILE (PRTFILE) 
FILE (PRTFILE) 
FILE (PRTFILE) 
FILE (PRTFILE) 
FILE (PRTFILE) 
FILE (PRTFILE) 
FILE (PRTFILE) 
FILE (PRTFILE) 
FILE (PRTFILE) 
FILE (PRTFILE) 
FILE (PRTFILE) 
FILE (PRTFILE) 

SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 

EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 

('SQLCODE: ',SQLCODE) (A(9),F(4)); 
('SQLERRM: ',SQLERRM) (A(9),A(70)); 
('SQLERRP: ',SQLERRP) (A(9) ,A(S)); 
('SQLERRD: ',SQLERRD) (A(9) ,6 F(5)); 
('SQLWARNO: ',SQLWARNO) (A(10) ,A); 
('SQLWARN1: ',SQLWARN1) (A(10),A); 
('SQLWARN2: ',SQLWARN2) (A(10) ,A); 
('SQLWARN3: ',SQLWARN3) (A(10) ,A); 
(' SQLWARN4: ',SQLWARN4) (A( 1 0) ,A) ; 
('SQLWARN5: ',SQLWARN5) (A(10) ,A); 
('SQLWARN6: ',SQLWARN6) (A(10) ,A); 
('SQLWARN7: ',SQLWARN7) (A(10) ,A); 
('SQLWARNS: ',SQLWARN8) (A(10) ,A); 
('SQLWARN9: ',SQLWARN9) (A(10),A); 
('SQLWARNA: ',SQLWARNA) (A(10) ,A); 

/* IGNORE ERRORS DURING ROLLBACK TO AVOID ERROR ROUTINE LOOP 
EXEC SQL WHENEVER SQLERROR CONTINUE; 
EXEC SQL ROLLBACK WORK; 

"SKIP; 

*/ 

/*********************************************************************/ 
/* */ 

Appendix C. PL/I Considerations 373 



/* PRINT END MSG AND TERMINATE PROGRAM */ 
/* */ 
/*********************************************************************/ 
"SKIP; 
DONE: DISPLAY ('SAMPLE PROGRAM ARISPLIC COMPLETED'); 

JSKIP; 

PUT FILE (PRTFILE) EDIT ('SAMPLE PROGRAM ARISPLIC COMPLETED') 
(PAGE, A(33»; 

END SAMPP; 

374 SQL/Data System Application Programming for VM/SP 



Rules for Using SQl in Pl/I 

This section lists, for your reference, all the rules for embedding SOL statements 
within a PL/I program. 

Placement and Continuation of Sal Statements 

The PL/I program that is to be called first must have an OPTIONS(MAIN) clause 
on the first statement. All statements in your PL/I program, including PL/I source 
statements and SOL statements, must be contained in columns 2 through 72 of 
your source deck. Normal PL/I continuation rules apply. 

DBCS strings appearing in comments embedded in an SOL statement must begin 
and end on the same line. 

Delimiting Sal Statements 

Delimiters are required on all SOL statements to help SOLIDS distinguish them 
from regular PL/I statements. You must precede each SOL statement in your 
program with "EXEC SOL" and end each statement with a semicolon, as shown in 
the sample program. "EXEC" and "SOL" must be on the same line with only 
blanks separating them (no in-line comments). 

Within SOL statements, comments are allowed anywhere that blanks are allowed. 
However, there should not be any comments within SOL statements that are 
dynamically defined and executed. 

An SOL statement cannot be followed on the same line by another SOL statement, 
a normal PL/I statement, or a comment. When you preprocess a program 
containing such a combination, the trailing statements or comments will not appear 
in the SYSPRINT listing. 

Using the INCLUDE Command 

To include external secondary input, specify: 

EXEC SQL INCLUDE text-name; 

at the point in the source code where the secondary input is to be included. The 
text-name is the filename of a CMS file with a "PLICOPY" filetype and located on 
a CMS minidisk accessed by the user. 

The INCLUDE command must be completely contained within one line. There 
must be no comments between the 'EXEC SOL' and the semicolon (if there are, 
the preprocessor will not recognize the command). Additional commands cannot 
appear on the same line, but comments that follow the semicolon and finish on the 
same line are allowed. 

Appendix C. PL/I Considerations 375 



Declaring Static External Variables 

A declaration for a variable with the attributes STATIC and EXTERNAL must 
also have the attribute INITIAL. If it does not, the declaration generates a 
common CSECT, which SQL/DS cannot handle. 

PL/I programming using "DEFAULT RANGE (*) STATIC" gives an error 
message. The SQL/DS preprocessor builds control blocks that are incompatible 
with this statement. 

Declaring Host Variables 

You must declare all PL/I variables that are to be used in SQL statements. The 
declarations, as shown in the sample program, must appear in a section that begin: 
with 

EXEC SQL BEGIN DECLARE SECTION; 

and ends with 

EXEC SQL END DECLARE SECTION; 

These two statements must each be on a single line. There must be no comments 
between the "EXEC SQL" and the semicolon. (If there are, the preprocessor 
won't recognize the statement.) 

You can have a label on the "EXEC SQL BEGIN DECLARE SECTION;", but 
not on the "EXEC SQL END DECLARE SECTION;". If you do place a label on 
this statement, the preprocessor does not recognize it and assumes that the special 
declare section hasn't ended. 

When placing comments after either of these statements, make sure the comment 
ends on the same line. If it doesn't, PL/I compiler errors result. 

PL/I DECLARE statements within the SQL declare section are also subject to a 
few rules: 

• "DCL" or "DECLARE" must be the first character sequence on the line. You 
can, however, have a carriage control character in column 1. Otherwise, the 
line is ignored. (You can place in-line comments anywhere after the 
DECLARE or DCL keyword; and you can continue these comments over 
mUltiple lines.) 

• DECLARE statements can be continued on additional lines, but more than one 
DECLARE statement cannot be on the same line. All DECLARE statements 
must end with a semicolon. 

• Only one host variable can be declared per DCL or DECLARE statement. If 
multiple variables are declared, only the first variable is recognized; the others 
are ignored: 

376 SQL/Data System Application Programming for VM/SP 



DCL AA FIXED BIN(15) INIT(7), 
BB CHAR(7), 
CC BINARY FLOAT (53) ; 

IBB and CC are ignored. 

The exception is that if multiple variables have exactly the same attributes, they 
can be combined into a single DECLARE statement: 

DCL (I,J,K) FIXED BIN(15) INIT(7); IAll are recognized. 

• The data type cf the variable must be stated before any other attributes: 

DECLARE XX BIN FIXED(31) STATIC; I Correct 

DECLARE XX STATIC BIN FIXED(31); I Incorrect I 

• The data type can be stated in any way that is acceptable to PL/I; BIN 
FIXED(31), BINARY FIXED(31), and FIXED BIN(31) are all equivalent. If 
several variables have exactly the same attributes, you can combine them in a 
single DCL statement: 

DCL (X,Y,Z) BIN FIXED; 

• Host variables must be scalars (not arrays or structures). 

• You must not declare two host variables with the same name in a single 
program, even if they are in different blocks or procedures. (SQL host 
variables can be declared once and referenced throughout the program.) 

• You should not declare variables whose names begin with SQL, ARI, or RDI, 
because these names are reserved for SQL/DS use. 

• If a host variable is used within an SQL statement, the SQL statement must be 
within the scope of the variable's declaration. 

There can be more than one SQL declare section in a program. A host variable, 
however, must be declared earlier in the program than the first use of the variable 
in an SQL statement. 

Note that other program variables can also be declared as usual outside the SQL 
declare section. The previous restrictions do not apply to non-SQL declarations. 

Using Host Variables in SQl Statements 

When you place host variables within an SQL statement, you must precede each 
such variable with a colon (:). The colon distinguishes the host variables from the 
SQL identifiers (such as PARTNO). When the same variable is used outside of an 
SQL statement, do not use a colon. 

A host variable can represent a data value, but not an SQL identifier. For example, 
you cannot assign a character constant, such as 'MUSICIANS', to a host variable, 

Appendix C. PL/I Considerations 377 



and then use that host variable in a CREATE TABLE statement to represent the ~ 
table name. This pseudo-code sequence is invalid: 

TT = 'MUSICIANS' 
CREATE TABLE :TT (NAME ... 

I Incorrect \ 

PL/I Data Conversion Notes 

Host variables must be type-compatible with the columns with which they are to be 
used. For example, if you want to compare a program variable with the 
QONHAND column of the data base, and the data type of QONHAND is 
INTEGER, you should declare the program variable BIN FIXED(31), BIN 
FIXED(15), BIN FLOAT(53), or FIXED DECIMAL(10). 

SQL/DS considers the four numeric data types compatible; SQL/DS also 
considers the three types of character strings (fixed, varying, and long -- including 
strings of different declared lengths) compatible. SQL/DS also considers the three 
types of DBCS strings to be similarly compatible. Of course, an overflow condition 
may result if, for example, you assign a 31-bit integer to a 15-bit integer and the 
current value of the 31-bit integer is too large to fit in 15 bits. Truncation also 
occurs when a decimal number having a scale greater than zero is assigned to an 
integer. In general, overflow occurs when significant digits are lost, but truncation 
occurs when non-significant digits are lost. 

Refer to "Data Conversion" on page 76 for a data conversion summary. 

Using the Double-Byte Character Set (OBCS) 

The GRAPHIC preprocessor option must be specified in order to use DBCS data. 

PL/I DBCS constants are used in the SQL DECLARE section. As opposed to 
PL/I DBCS constants used outside of the SQL DECLARE section, these cannot 
span across lines. 

The DBCS constant in an SQL statement embedded in a PL/I program is: 

so' ... 'Gs i 

This is the same as the DBCS constant in PL/1. 

The letter G and the apostrophes (') appear inside the so/si delimiters. Therefore 
they are encoded as DBCS characters. Apostrophe is X'427D' and G is X'42C7'. 
The so and si are single-byte characters, X'OE' and X'OF'. DBCS apostrophes 
(X'427D') must be doubled in order to obtain a single DBCS apostrophe. As 
opposed to the PL/I DBCS constant, a DBCS constant in an SQL statement 
cannot have X'OF' as the first byte of a DBCS character. 

The SQL/DS PL/I preprocessor converts PL/I format DBCS constants into SQL 
format DBCS constants (G'so ... si') when they appear in SQL statements. This is 
done prior to passing the SQL statement to SQL/DS for processing. Therefore, 
some SQL/DS messages for incorrect syntax may refer to the SQL format of the 
constant, even though a PL/I format constant was coded in your program. 

378 SQL/Data System Application Programming for VM/SP 



When the DBCS option is set to YES, SQL identifiers with DBCS characters can 
be used in SQL statements. For more information on SQL identifiers, see 
"General Rules for Naming Data Objects" on page 74. 

When the DBCS option is set to YES, both character string constants in SQL 
statements and character string constants in PL/I statements can contain DBCS 
strings which are enclosed by so and si. However, no DBCS string can span across 
a line in the program. An apostrophe (X'7D') in a DBCS string does not terminate 
a character string constant and does not have to be duplicated. Therefore, note 
that if there is a X'7D' between so and si in a character string constant in a PL/I 
statement, it cannot be correctly compiled by the PL/I compiler. 

Using SQl Statements in Pl/I Subroutines 

The first SQL statement encountered in a sequential scan of your program by the 
SQL/DS PL/I preprocessor results in a generated control block named SQL TIE, 
commonly used by internal SQL/DS code that is associated with the remaining 
SQL statements in your program. If your program structure involves SQL 
statements in multiple procedures, it is essential that you maintain a structure 
whereby the SQL TIE is addressable by all other SQL statement occurrences in 
your program. 

The following is an incorrect structure: 

A: PROC OPTIONS(MAIN); 

CALL B; 

CALL C; 

B: PROC; 

EXEC SQL CONNECT ..... 
EXEC SQL DECLARE C1 CURSOR .... 
EXEC SQL OPEN C1 ... 

END B; 
C: PROC; 

EXEC SQL DECLARE C2 CURSOR .... 
EXEC SQL OPEN C2 

END C; 

END A; 

The SQL TIE will be generated from the CONNECT in B, but it is not addressable 
from C, where other SQL statements appear. This can be solved in this case by 

Appendix C. PL/I Considerations 379 



putting the CONNECT statement in A, where it will cause the SQL TIE to be 
generated at a place that is addressable by from both Band C. 

SQl Statements in External Procedures 

The SQL/DS PL/I preprocessor generates control blocks in your source program 
to communicate information to the SQL/DS system. These control blocks have the 
default storage class: AUTOMATIC. As a result, storage is allocated for these 
control blocks upon each invocation of the external procedure that contains them. 
Performance considerations may make it necessary for you to locate SQL 
statements in the main procedure of your program to avoid this the allocation time 
for automatic storage. This will depend upon the frequency of calls and the 
number of SQL statements involved, as well as the nature of your application. 

SQl Error Handling 

There are two ways to declare the return code structure (called SQLCA): 

1. You may write: 

EXEC SQL INCLUDE SQLCA; 

in your source program. The SQL/DS preprocessor replaces this with the 
declaration of the SQLCA structure. 

2. You may declare the SQLCA structure directly as shown in Figure 37. 

DCL 1 SQLCA, 
2 SQLCAID CHAR(S) 
2 SQLCABC BIN FIXED(31) 
2 SQLCODE BIN FIXED(31), 
2 SQLERRM CHAR(70) VAR, 
2 SQLERRP CHAR(S) , 
2 SQLERRD (6) BIN FIXED(31), 
2 SQLWARN, 

3 SQLWARNO CHAR(1), 
3 SQLWARN1 CHAR(1), 
3 SQLWARN2 CHAR(1), 
3 SQLWARN3 CHAR(1), 
3 SQLWARN4 CHAR(1), 
3 SQLWARNS CHAR(1), 
3 SQLWARN6 CHAR(1), 
3 SQLWARN7 CHAR(1), 
3 SQLWARNS CHAR(1), 
3 SQLWARN9 CHAR(l), 
3 SQLWARNA CHAR(1), 

2 SQLEXT CHAR(S); 

Figure 37. SQLCA Structure (in PL/I) 

380 SQL/Data System Application Programming for VM/SP 



The SQLCA must not be declared within the SQL declare section. The meanings 
of the fields within the SQLCA are discussed under "Error Handling" on 
page 202. 

Dynamic SQL Statements in PL/I 

You may need to declare an SQLDA structure to execute dynamically defined SQL 
statements. (See "Dynamically Defined Statements" on page 147.) You can have 
SQL/DS include the structure automatically by specifying: 

EXEC SQL INCLUDE SQLDA; 

in your source code, or by directly coding the structure as shown in Figure 38. 

DCL 1 SQLDA BASED(SQLDAPTR), 
2 SQLDAID CHAR(S) , 
2 SQLDABC BIN FIXED(31), 
2 SQLN BIN FIXED(15), 
2 SQLD BIN FIXED(15), 
2 SQLVAR(SQLSIZE REFER(SQLN)), 

3 SQLTYPE BIN FIXED(15), 
3 SQLLEN BIN FIXED(15), 
3 SQLDATA PTR, 
3 SQLIND PTR, 
3 SQLNAME CHAR(30) VAR; 

DCL SQLSIZE BIN FIXED(15); 
DCL SQLDAPTR PTR; 

Figure 38. SQLDA Structure (in PL/I) 

The SQLDA must not be declared within the SQL declare section. 

In addition to the structure above, it is recommended that you declare an additional 
mapping for the same area. Figure 39 shows this mapping. 

DCL 1 SQLDAX BASED (SQLDAPTR), 
2 SQLDAIDX CHAR(S), 
2 SQLDABCX BIN FIXED(31), 
2 SQLNX BIN FIXED(15), 
2 SQLDX BIN FIXED(15), 
2 SQLVARX(SQLSIZE REFER(SQLNX)), 

3 SQLTYPEX BIN FIXED(15), 
3 SQLPRCSN BIN FIXED(S) , 
3 SQLSCALE BIN FIXED(S), 
3 SQLDATAX PTR, 
3 SQLINDX PTR, 
3 SQLNAMEX CHAR(30) VAR; 

Figure 39. SQLDAX Structure (in PL/I) 

Appendix C. PL/I Considerations 381 



The SQ~PRCSN and SQLSCALE fields of the second mapping are used when 
decimal data is used. The other fields in the second mapping should be ignored. 

Because the PL/I SQLDA is declared as a based structure, your program can 
dynamically allocate an SQLDA of adequate size for use with each EXECUTE 
statement. For example, the code fragment below allocates an SQLDA adequate 
for five fields and uses it in an EXECUTE of statement S3: 

SQLSIZE=5i 
ALLOCATE SQLDA SET(SQLDAPTR)i 
/* Add code to set values and pointers in the SQLDA */ 
EXEC SQL EXECUTE S3 USING DESCRIPTOR SQLDAi 

The statement SQLSIZE=5 determines the size of the SQLDA to be allocated by 
means of the PL/I REFER feature. The ALLOCATE statement allocates an 
SQLDA of the size desired and sets SQLDAPTR to point to it. (Before an 
EXECUTE statement is issued using this SQLDA, your program must fill in its 
contents.) 

You can use a similar technique to allocate an SQLDA for use with a DESCRIBE 
statement. The following program fragment illustrates the use of SQLDA with 
DESCRIBE for three fields and a "prepared" statement S1: 

EXEC SQL DECLARE C1 CURSOR FOR S1; 
SQLSIZE = 3; 
ALLOCATE SQLDA SET(SQLDAPTR); 
EXEC SQL DESCRIBE S1 INTO SQLDA; 
IF SQLD > SQLN THEN 

- get a bigger one 
Set SQLDATA and SQLIND 
EXEC SQL OPEN C1; 
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA; 

382 SQL/Data System Application Programming for VM/SP 



Data Types 

Description SQL/DS Equivalent PL/I 
Keyword Declaration 

A binary integer of 31 bits, plus sign. INTEGER BINARY FIXED(31) 

A binary integer of 15 bits, plus sign. SMALLINT BINARY FIXED(15) 

A packed decimal number, precision m, scale n DECIMAL(m[,nD FIXED DECIMAL(m,n) 
(1 :5 m:5 15 and 0:5 n:5 m). In storage the number 
occupies an even number of bytes up to a 
maximum of 8 bytes. Precision is the total 
number of digits. Scale is the number of those 
digits that are to the right of the decimal point. 

A double-precision (8- byte) floating point FLOAT BINARY FLOAT(53) 
number, in standard System/370 floating point 
format. 

A fixed-length character string of length n where CHAR(n) CHARACTER(n) 
n <= 254. 

A varying-length character string of maximum VARCHAR(n) CHARACTER(n) 
length n, where n <= 254. VARYING 

A varying-length character string of maximum LONG CHARACTER(n) 
length 32767 bytes, subject to certain usage VARCHAR VARYING 
limitations. 

A fixed-length DBCS character string of n DBCS GRAPHIC(n) GRAPHIC(n) 
characters where n < = 127. 

A varying-length DBCS character string of n V ARGRAPHIC(n) GRAPHIC(n) 
DBCS characters where n < = 127. VARYING 

A varying-length DBCS character string of LONG GRAPHIC(n) 
maximum length 16383, subject to certain usage VARGRAPHIC VARYING 
limitations. 

F"JgUre 40. SQL/DS Data Types for PL/I 

Note: In PL/I declarations, GRAPHIC can be abbreviated 'G'. The SQL/DS 
keyword GRAPHIC, however, must not be abbreviated. 

Additional PL/I Program Examples 

The following program is another example of how to embed SQL statements in a 
PL/I program. 

Sometimes the BETWEEN function causes performance problems because it does 
not have very good information on path selection. This program shows an 
alternate way of performing the BETWEEN function, when these performance 
problems exist. 

Appendix C. PL/I Considerations 383 



/******************************************************************/ 
/* */ 
/* THIS IS A SAMPLE PLI PROGRAM THAT PERFORMS THE BETWEEN */ 
/* FUNCTION USING DYNAMIC SQL STATEMENTS */ 
/* */ 
/* WHEN THE USER CODES A STATIC SQL STATEMENT USING HOST */ 
/* VARIABLES FOR THE BETWEEN FUNCTION, THE SQL/DS OPTIMIZER */ 
/* DOES NOT HAVE VERY GOOD INFORMATION FOR PATH SELECTION. */ 
/* THEREFORE, THE USER SHOULD USE SQL DYNAMIC STATEMENTS */ 
/* TO PERFORM THIS FUNCTION. */ 
/* */ 
/******************************************************************/ 
BETWDYNP: PROC OPTIONS (MAIN); 

DCL AD DR BUILTIN; 
/*********************************************************************/ 
/* */ 
/* ESTABLISH HOST VARIABLES */ 
/* */ 
/*********************************************************************/ 

EXEC SQL BEGIN DECLARE SECTION; 
DCL PARTNO BINARY FIXED (15); 
DCL DESCR CHAR(24) VARYING; 
DCL DESCR IND BINARY FIXED (15); 
DCL QONHAND BINARY FIXED (31); 
DCL ID CHAR(8) INIT('SQLDBA '); 
DCL PASSW CHAR(8) INIT('SQLDBAPW'); 
DCL ESTRING CHAR(66) VARYING; 

EXEC SQL END DECLARE SECTION; 
/* INTERNAL PROGRAM VARIABLES */ 

DCL P2 PIC '9999999'; 
DCL P4 PIC '9999999'; 

/*********************************************************************/ 
/* */ 
/* OPEN PRINT FILE AND DISPLAY START MSG */ 
/* */ 
/*********************************************************************/ 
DCL PRTFILE FILE STREAM OUTPUT PRINT; 
DISPLAY ('SAMPLE PROGRAM BETWDYNP STARTED'); 
PUT FILE (PRTFILE) SKIP EDIT ('SAMPLE PROGRAM BETWDYNP STARTED') 

(A(31»; 
/*********************************************************************/ 
/* */ 
/* ERROR HANDLING */ 
/* */ 
/*********************************************************************/ 

EXEC SQL INCLUDE SQLCA; 
/* THIS PROGRAM WILL IGNORE WARNING AS THEY WILL NOT AFFECT RESULTS */ 

EXEC SQL WHENEVER SQLWARNING GO TO SQLERR; 
EXEC SQL WHENEVER SQLERROR GOTO SQLERR; 
EXEC SQL WHENEVER NOT FOUND GOTO END_DATA; 

/*********************************************************************/ 
/* */ 
/* START PROGRAM */ 
/* */ 
/*********************************************************************/ 

EXEC SQL CONNECT :ID IDENTIFIED BY :PASSW; 
GET RANGE VALUES: 
/**************************************************************/ 
/* */ 
/* THERE ARE MANY WAYS TO GET THE RANGE VALUES FOR */ 
/* THE BETWEEN FUNCTION INTO YOUR PROGRAM. THIS PROGRAM */ 
/* WILL SIMPLY MOVE VALUES INTO THE DATA STRING OF THE */ 
/* SQL COMMAND. */ 

384 SQL/Data System Application Programming for VM/SP 



/* */ 
/**************************************************************/ 

P2 = 75; 
P4 = 100; 
ESTRING = 'SELECT * FROM INVENTORY WHERE QONHAND BETWEEN' 

I I P2 I I ' AND ' I I P4; 
PREPARE_REQUEST: 

EXEC SQL PREPARE STATl FROM :ESTRING; 
DECLARE_CURSOR: 

EXEC SQL DECLARE Cl CURSOR FOR STAT1; 
OPEN CURSOR: 

- EXEC SQL OPEN Cl; 
PUT FILE (PRTFILE) EDIT ('PARTNO', 'DESCRIPTION', 'QONHAND') 

(SKIP (2 ) ,A (6 ) ,X (3 ) ,A ( 11 ) ,X ( 16 ) ,A (7) ) ; 
GET NEXT: 

- EXEC SQL FETCH Cl 
INTO :PARTNO, :DESCR:DESCR IND, : QONHAND; 

IF LENGTH(DESCR)=O THEN DESCR='ZERO LENGTH'; 
IF DESCR IND<O THEN DESCR='NULL DATA'; 
PUT FILE-(PRTFILE) EDIT (PARTNO, DESCR, QONHAND) 

(SKIP,F(6) ,X(3) ,A(24) ,X(4) ,F(6)); 
GO TO GET_NEXT; 

/*********************************************************************/ 
/* */ 
/* ROUTINE FOR HANDLING ERRORS */ 
/* */ 
/*********************************************************************/ 
SQLERR: 

DISPLAY ('UNEXPECTED SQL ERROR RETURNED'); 
DISPLAY ('CHANGES WILL BE BACKED OUT'); 
DISPLAY ('FAILING SQL STATEMENT IS'); 
DISPLAY (STMT); 
PUT FILE (PRTFILE) SKIP EDIT ('UNEXPECTED SQL ERROR RETURNED') 

(A(29)) ; 
PUT FILE (PRTFILE) SKIP EDIT ('SQLCODE: ' ,SQLCODE) (A(9),F(4)); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLERRM: ' ,SQLERRM) (A(9),A(70)); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLERRP: ' ,SQLERRP) (A(9),A(8)); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLERRD: ',SQLERRD) (A(9),6 F(5)); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARNO: ',SQLWARNO) (A(10) ,A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN1: ',SQLWARN1) (A(10),A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN2: ',SQLWARN2) (A(10) ,A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN3: ',SQLWARN3) (A(10) ,A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN4: ',SQLWARN4) (A(10),A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN5: ',SQLWARN5) (A(10),A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN6: ',SQLWARN6) (A(10),A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN7: ',SQLWARN7) (A(10) ,A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN8: ',SQLWARN8) (A(10) ,A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN9: ',SQLWARN9) (A(10),A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARNA: ',SQLWARNA) (A(10),A); 

/* IGNORE ERRORS DURING ROLLBACK TO AVOID ERROR ROUTINE LOOP */ 
EXEC SQL WHENEVER SQLERROR CONTINUE; 
EXEC SQL ROLLBACK WORK; 

/*********************************************************************/ 
/* */ 
/* PRINT END MSG AND TERMINATE PROGRAM */ 
/* */ 
/*********************************************************************/ 
END DATA: DISPLAY ('SAMPLE PROGRAM BETWDYNP COMPLETED'); 

- PUT FILE (PRTFILE) EDIT ('SAMPLE PROGRAM BETWDYNP COMPLETED') 
(PAGE, A(33)); 

END BETWDYNP; 

Appendix C. PL/I Considerations 385 



The following program is an example of dynamic SQL statements which use the 
SQLDA: 

/******************************************************************/ 
/* */ 
/* THIS IS A SAMPLE PL/I PROGRAM WHICH SHOWS HOW TO USE */ 
/* DYNAMIC SQL STATEMENTS WHICH USE THE SQLDA. */ 
/* */ 
/* THIS SAMPLE PROGRAM IS AN IMPLEMENTATION OF THE */ 
/* SELECT DESCRIPTION,QONHAND FROM INVENTORY WHERE PARTNO = ? */ 
/* QUERY THAT IS DESCRIBED UNDER DYNAMICALLY DEFINED STATEMENTS, */ 
/* PARAMETERIZED QUERIES UNDER CODING THE PROGRAM IN CHAPTER 2 */ 
/* */ 
/******************************************************************/ 
SAMPDYNP: PROC OPTIONS (MAIN); 

DCL ADDR BUILTIN; 
DCL PLIRETV BUILTIN; 

/*********************************************************************/ 
/* */ 
/* SQLDA DEFINITIONS */ 
/* */ 
/*********************************************************************/ 

EXEC SQL INCLUDE SQLDA; 
DCL 1 SQLDA1 BASED(SQLDAPTR1), 

2 SQLDAID1 CHAR(8), 
2 SQLDABC1 BIN FIXED(31), 
2 SQLN1 BIN FIXED, 
2 SQLD1 BIN FIXED, 
2 SQLVAR1(SQLSIZE1 REFER (SQLN1)), 

3 SQLTYPE1 BIN FIXED, 
3 SQLLEN1 BIN FIXED, 
3 SQLDATA1 PTR, 
3 SQLIND1 PTR, 
3 SQLNAME1 CHAR(30) VAR; 

DCL SQLSIZE1 BIN FIXED; 
DCL SQLDAPTR1 PTR; 

/*********************************************************************/ 
/* */ 
/* ERROR HANDLING */ 
/* */ 
/*********************************************************************/ 

EXEC SQL INCLUDE SQLCA; 
EXEC SQL WHENEVER SQLERROR GO TO SQLERR; 
EXEC SQL WHENEVER SQLWARNING GO TO SQLERR; 
EXEC SQL WHENEVER NOT FOUND GOTO END DATA; 

/*********************************************************************/ 
/* */ 
/* DECLARE HOST VARIABLES */ 
/* */ 
/*********************************************************************/ 

EXEC SQL BEGIN DECLARE SECTION; 
DCL STRING1 CHAR(100) VAR; 
DCL STRING2 CHAR(100) VAR; 
DCL ID CHAR (8) INIT('SQLDBA '); 
DCL PASSW CHAR(8) INIT('SQLDBAPW'); 

EXEC SQL END DECLARE SECTION; 
/*********************************************************************/ 
/* */ 
/* DECLARE OTHER PROGRAM VARIABLES */ 
/* */ 
/*********************************************************************/ 

DCL POINTER PTR; 
DCL PARTNO FIXED BINARY(15) BASED(POINTER)i 

386 SQL/Data System Application Programming for VM/SP 



DCL DESCR CHAR(24) VAR BASED(POINTER); 
DCL DESCR IND BINARY FIXED(15) BASED(POINTER); 
DCL QONHAND FIXED BINARY(31) BASED(POINTER); 
DCL QONHAND IND BINARY FIXED(15) BASED(POINTER); 

/*********************************************************************/ 
/* */ 
/* OPEN PRINT FILE AND DISPLAY START MSG */ 
/* */ 
/*********************************************************************/ 
DCL PRTFILE FILE STREAM OUTPUT PRINT; 
DISPLAY ('SAMPLE PROGRAM SAMPDYNP STARTED'); 
PUT FILE (PRTFILE) SKIP EDIT ('SAMPLE PROGRAM SAMPDYNP STARTED') 

(A(31»; 
/*********************************************************************/ 
/* */ 
/* START PROGRAM * / 
/* */ 
/* ••••••••••••••••• * •• * •••••• * ••• * •• ****.*.* •• *** •• *****.*************/ 

EXEC SQL CONNECT :ID IDENTIFIED BY :PASSW; 
STRING 1 = 'SELECT DESCRIPTION, QONHAND FROM SQLDBA.INVENTORY WHERE 
PARTNO = ?'; 

EXEC SQL PREPARE STAT1 FROM :STRING1; 
SQLSIZE = 2; 
ALLOCATE SQLDA SET(SQLDAPTR); 
SQLN = 2; 
EXEC SQL DESCRIBE STAT 1 INTO SQLDA; 
ALLOCATE DESCR SET(POINTER); 
SQLDATA(1) = POINTER; 
ALLOCATE DESCR IND SET(POINTER); 
SQLIND(1) = POINTER; 
ALLOCATE QONHAND SET(POINTER); 
SQLDATA(2) = POINTER; 
ALLOCATE QONHAND IND SET(POINTER); 
SQLIND(2) = POINTER; 
EXEC SQL DECLARE C1 CURSOR FOR STAT1; 
STRING2 = 'SELECT PARTNO FROM SQLDBA.INVENTORY'; 
SQLSIZE1 = 1; 
ALLOCATE SQLDA1 SET (SQLDAPTR1); 
SQLN1 = 1; 
EXEC SQL PREPARE STATEMENT1 FROM :STRING2; 
EXEC SQL DESCRIBE STATEMENT 1 INTO SQLDA1; 
ALLOCATE PARTNO SET (POINTER); 
SQLDATA1(1)=POINTER; 

/*********************.***************.************************/ 
/* */ 
/* THERE ARE MANY WAYS TO GET THE PARTNO INTO YOUR */ 
/* PROGRAM. THIS PROGRAM WILL SIMPLY MOVE A VALUE ./ 
/* INTO THE PARTNO VARIABLE. */ 
/* */ 
/**************************************************************/ 

PARTNO = 207; 
EXEC SQL OPEN C1 USING DESCRIPTOR SQLDA1; 

PUT FILE(PRTFILE) EDIT ('PARTNO', 'DESCRIPTION', 'QONHAND') 
(SKIP (2) , A (6) , X ( 3 ) ,A ( 11 ) , X ( 16) , A (7) ) ; 

GET_NEXT: ~ 

EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA; 
IF LENGTH(SQLDATA(1) -> DESCR)=O 

THEN SQLDATA(1) -> DESCR = 'ZERO LENGTH'; 
IF SQLIND(1) -> DESCR IND < 0 

THEN SQLDATA(1) -> DESCR = 'NULL DATA'; 
IF SQLIND(2) -> QONHAND IND = 0 

THEN PUT FILE (PRTFILE) EDIT 
(SQLDATA1(1) -> PARTNO, SQLDATA(1) -> DESCR, 

SQLDATA(2) -> QONHAND) 
(SKIP,F(6) ,X(3) ,A(24) ,X(4) ,F(6»; 

ELSE PUT FILE (PRTFILE) EDIT 
(SQLDATA1(1) -> PARTNO, SQLDATA(1) -> DESCR, 

Appendix C. PL/I Considerations 387 



NULL' ) 
(SKIP,F(6) ,X(3) ,A(24) ,X(4) ,A(6»; 

GO TO GET NEXT; 
1*********************************************************************1 
1* *1 
1* ROUTINE FOR HANDLING ERRORS *1 
1* *1 
1*********************************************************************1 
SQLERR: 

DISPLAY ('UNEXPECTED SQL ERROR RETURNED'); 
DISPLAY ('CHANGES WILL BE BACKED OUT'); 
PUT FILE (PRTFILE) SKIP EDIT ('UNEXPECTED SQL ERROR RETURNED') 

(A(29»; 
PUT FILE (PRTFILE) SKIP EDIT ('SQLCODE: ',SQLCODE) (A(9),F(4»; 
PUT FILE (PRTFILE) SKIP EDIT ('SQLERRM: ',SQLERRM) (A(9),A(70»; 
PUT FILE (PRTFILE) SKIP EDIT ('SQLERRP: ',SQLERRP) (A(9),A(8»; 
PUT FILE (PRTFILE) SKIP EDIT ('SQLERRD: ',SQLERRD) (A(9),6 F(S»; 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARNO: ',SQLWARNO) (A(10),A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN1: ',SQLWARN1) (A(10),A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN2: ',SQLWARN2) (A(10),A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN3: ',SQLWARN3) (A(10),A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN4: ',SQLWARN4) (A(10),A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN5: ',SQLWARNS) (A(10),A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN6: ',SQLWARN6) (A(10),A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN7: ',SQLWARN7) (A(10),A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN8: ',SQLWARN8) (A(10),A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN9: ',SQLWARN9) (A(10),A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARNA: ',SQLWARNA) (A(10),A); 

1* IGNORE ERRORS DURING ROLLBACK TO AVOID ERROR ROUTINE LOOP *1 
EXEC SQL WHENEVER SQLERROR CONTINUE; 
EXEC SQL ROLLBACK WORK; 

1*********************************************************************1 
1* *1 
1* PRINT END MSG AND TERMINATE PROGRAM *1 
1* *1 
1*********************************************************************1 
END DATA: 

- DISPLAY ('SAMPLE PROGRAM SAMPDYNP COMPLETED'); 

:CSKIP; 

PUT FILE (PRTFILE) EDIT ('SAMPLE PROGRAM SAMPDYNP COMPLETED') 
(PAGE, A(33» i 

EXEC SQL CLOSE C1; 

END SAMPDYNP; 

388 SQL/Data System Application Programming for VM/SP 



The following is an example of how to mix isolation levels in a PL/I program: 

/*********************************************************************/ 
/* */ 
/* SAMPLE PROGRAM ARISAMPP */ 
/* */ 
/* PURPOSE: THIS PROGRAM SERVES TWO PURPOSES: */ 
/* 1. IT IS AN EXAMPLE FOR HOW TO IMBED SQL */ 
/* STATEMENTS IN A PL/1 PROGRAM. */ 
/* 2. IT CAN BE USED TO TEST SOME BASIC SQL */ 
/* FUNCTIONS FROM AN APPLICATION PROGRAM. */ 
/* */ 
/* DESCRIPTION: THIS PROGRAM GENERATES A SAMPLE ORDER FOR */ 
/* THE PARTS 302 AND 311 IF QONHAND IS LESS */ 
/* THAN 1000 AND 700 RESPECTIVELY, AND IF */ 
/* QONORDER IS ZERO. THE TABLE QUOTATIONS */ 
/* IS UPDATED ACCORDINGLY. PART 302 IS ORDERED */ 
/* FROM THE COMPANY THAT SELLS IT FOR THE */ 
/* LOWEST PRICE, PART 311 FROM THE COMPANY WITH */ 
/* THE SHORTEST DELIVERY TIME. */ 
/* */ 
/* AT THE END OF THE PROGRAM PART 321 IS DELETED */ 
/* FROM THE DATA BASE. */ 
/* */ 
/* PREREQUISITE: A SUCCESSFUL EXECUTION OF PROGRAM ARISAMDB. */ 
/* */ 
/* OUTPUT PRODUCED: 1. AN EXECUTION BEGIN AND END MESSAGE IS */ 
/* PRINTED AT BEGIN AND END OF PROGRAM */ 
/* EXECUTION. */ 
/* 2. ALL TABLES ARE PRINTED WITH THEIR ORIGI- */ 
/* NAL CONTENTS. */ 
/* 3. A SAMPLE ORDER IS PRINTED. */ 
/* 4. THE CONTENTS OF THE TABLES ARE PRINTED */ 
/* AFTER ALL UPDATES AND DELETES ARE MADE. */ 
/* 5. UNEXPECTED RETURN CODE: */ 
/* AN ERROR MESSAGE IS ISSUED TOGETHER WITH */ 
/* THE SQLCA-INFORMATION AND CHANGES BACKED */ 
/* OUT. */ 
/* */ 
/*********************************************************************/ 
SAMPP: PROC OPTIONS (MAIN); 
"SKIP; 
/*********************************************************************/ 
/* */ 
/* ESTABLISH HOST VARIABLES */ 
/* */ 
/*********************************************************************/ 
"SKIP; 

EXEC SQL BEGIN DECLARE SECTION; 
"SKIP; 

DCL PARTNO DEC FIXED(6); 
/* THE DESCRIPTION COLUMN IN THE INVENTORY TABLE IS VARCHAR(24) */ 
/* SQL/DS WILL CONVERT IT TO FIXED LENGTH AND TRUNCATE LONGER */ 
/* DATA WHENEVER THE DESCR HOST VARIABLE IS USED. */ 

DCL DESCR CHAR(10); 
DCL QONHAND DEC FIXED(11); 
DCL SUPPNO DEC FIXED(6); 
DCL NAME CHAR(15) ; 
DCL ADR CHAR(35); 
DCL TIME DEC FIXED(6); 
DCL QONORDER DEC FIXED(11); 
DCL PRICE DEC FIXED(5,2); 
DCL ID CHAR(8) INIT('SQLDBA '); 
DCL PASSW CHAR(8) INIT('SQLDBAPW'); 

Appendix C. PL/I Considerations 389 



DCL SQLISL CHAR (1) INIT ( 'R') ; 
%SKIP; 

EXEC SQL END DECLARE SECTION; 
%SKIP; 
/* INTERNAL PROGRAM VARIABLES */ 
%SKIP; 

DCL STMT CHAR(25); 
DCL TPRICE1 DEC FIXED(9,2); 
DCL TPRICE2 DEC FIXED(9,2); 

%SKIP; 
/*********************************************************************/ 
/* */ 
/* OPEN PRINT FILE AND DISPLAY START MSG */ 
/* */ 
/*********************************************************************/ 
%SKIP; 
DCL PRTFILE FILE STREAM OUTPUT PRINT ENVIRONMENT (MEDIUM (SYSLST, 1403) 

F BUFFERS (1) ) ; 
DISPLAY ('SAMPLE PROGRAM ARISAMPP STARTED'); 
PUT FILE (PRTFILE) SKIP EDIT ('SAMPLE PROGRAM ARISAMPP STARTED') 

(A(33»; 
%SKIP; 
/*********************************************************************/ 
/* */ 
/* ERROR HANDLING */ 
/* */ 
/*********************************************************************/ 
%SKIP; 

EXEC SQL INCLUDE SQLCA; 
/* THIS PROGRAM WILL IGNORE WARNING AS THEY WILL NOT AFFECT RESULTS */ 

EXEC SQL WHENEVER SQLWARNING CONTINUE; 
EXEC SQL WHENEVER SQLERROR GOTO SQLERR; 
EXEC SQL WHENEVER NOT FOUND GOTO SQLERR; 

%SKIP; 
/*********************************************************************/ 
/* */ 
/* START PROGRAM */ 
/* */ 
/*********************************************************************/ 
%SKIP; 

STMT = 'EXEC SQL CONNECT '; 
EXEC SQL CONNECT :ID IDENTIFIED BY :PASSW; 

%SKIP; 
/*********************************************************************/ 
/* */ 
/* PRINT TABLES */ 
/* */ 
/*********************************************************************/ 
%SKIP; 
PUT FILE (PRTFILE) EDIT ('*** PRINTOUT OF TABLE INVENTORY UNCHANGED *** 
') (PAGE, A (45) ) ; 
SQLI SL = ' C I ; 

CALL PRINT1; 
PUT FILE (PRTFILE) EDIT ('*** PRINTOUT OF TABLE QUOTATIONS UNCHANGED ** 
*') (PAGE, A(45)}; 
SQLISL = 'R I ; 

CALL PRINT2; 
PUT FILE (PRTFILE) EDIT ('*** PRINTOUT OF TABLE SUPPLIERS UNCHANGED *** 
') (PAGE, A(45}); 
SQLISL = 'C'; 
CALL PRINT3; 
%SKIP; 
/*********************************************************************/ 
/* */ 
/* FIND MINIMUM PRICE FOR PART #302 */ 
/* */ 

390 SQL/Data System Application Programming for VM/SP 



/* THE FOLLOWING SELECT STATEMENT RETURNS THE MINIMUM PRICE OF ALL */ 
/* OCCURRENCES OF PART #302 WITH QONHAND LESS THAN 1000, AND */ 
/* QONORDER O. AS PRICE IS A COLUMN IN QUOTATIONS, AND QONHAND A */ 
/* COLUMN IN INVENTORY, THE TWO TABLES HAVE TO BE LINKED VIA A JOIN */ 
/* BETWEEN THE PART NUMBERS IN INVENTORY AND THOSE IN QUOTATIONS. */ 
/* NO CURSOR IS USED BECAUSE THE STATEMENT IS EXPECTED TO RETURN */ 
/* ONLY ONE ROW. */ 
/* */ 
/*********************************************************************/ 
%SKIP; 

STMT = 'SELECT MIN(PRICE) FOR 302'; 
EXEC SQL SELECT MIN (PRICE) 

INTO :PRICE 
FROM INVENTORY, QUOTATIONS 
WHERE INVENTORY.PARTNO = 302 AND 

QONHAND < 1000 AND 
INVENTORY.PARTNO = QUOTATIONS.PARTNO AND 
QONORDER = 0; 

%SKIP; 
/*********************************************************************/ 
/* */ 
/* RETRIEVE DATA FOR ORDER AND */ 
/* UPDATE QONORDER FOR PART #302, TABLE QUOTATIONS */ 
/* */ 
/*********************************************************************/ 
%SKIP; 

TPRICE1 = 1000 * PRICE; 
STMT = 'SELECT FOR PART #302 '; 
EXEC SQL SELECT INVENTORY.PARTNO, DESCRIPTION, QONHAND, 

PRICE, NAME, ADDRESS, QUOTATIONS.SUPPNO 
INTO :PARTNO, :DESCR, : QONHAND, :PRICE, : NAME, :ADR, 

:SUPPNO 
FROM INVENTORY, QUOTATIONS, SUPPLIERS 
WHERE INVENTORY.PARTNO = 302 AND 

INVENTORY.PARTNO = QUOTATIONS.PARTNO AND 
PRICE = :PRICE AND 
QUOTATIONS.SUPPNO = SUPPLIERS.SUPPNO; 

STMT 'UPDATE QUOTATIONS '; 
EXEC SQL UPDATE QUOTATIONS SET QONORDER = 1000 

WHERE PARTNO = :PARTNO AND 
QONORDER = 0 AND 
PRICE = :PRICE AND 
SUPPNO = :SUPPNO; 

%SKIP; 
/*********************************************************************/ 
/* */ 
/* PRINT SAMPLE ORDER WITH RESULTS OF PART #302 */ 
/* */ 
/*********************************************************************/ 
%SKIP; 
PUT FILE (PRTFILE) EDIT ('SAMPLE ORDER') (PAGE, X(30), A(12)); 
PUT FILE (PRTFILE) EDIT ('NUMBER OF', 'DESCRIPTION', 'QUANTITY', 

%SKIP; 

'COMPANY NAME', 'COMPANY ADDRESS', 'PRICE PER', 'TOTAL') 
(SKIP(2), COL(2), A(9), COL(14), A(11), COL(28), A(8), 
COL(39), A(12), COL(55), A(15), COL(92), A(9), COL(102), 
A(5)); 

PUT FILE (PRTFILE) EDIT ('PARTS', 'ON HAND', 'UNIT', 'COSTS') 
(COL(4), A(5), COL(28), A(7), COL(94), A(4), COL(102), A(5)); 

%SKIP; 
PUT FILE (PRTFILE) EDIT ('1000', DESCR, QONHAND, NAME, ADR, PRICE, 

TPRICE1) (SKIP(2), COL(3), A(4), COL(14), A(10), COL(24), 
F(11), COL(39), A(15), COL(55), A(35), COL(90), F(9,2), 
COL ( 1 00), F (9,2) ) ; 

%SKIP; 
/*********************************************************************/ 
/* */ 

Appendix C. PL/I Considerations 391 



/* FIND MINIMUM DELIVERY TIME FOR PART #311 */ 
/* */ 
/* THE FOLLOWING SELECT STATEMENT RETURNS THE MINIMUM DELIVERY */ 
/* TIME OF ALL OCCURENCES OF PART #311 WITH QONHAND LESS THAN 700 */ 
/* AND QONORDER O. AS DELIVERY TIME IS A COLUMN IN QUOTATIONS */ 
/* AND QONHAND A COLUMN IN INVENTORY, THE TWO TABLES HAVE TO BE */ 
/* LINKED VIA A JOIN BETWEEN THE PART NUMBERS IN QUOTATIONS AND */ 
/* THOSE IN INVENTORY. */ 
/* */ 
/*********************************************************************/ 
"SKIP; 

STMT = 'SELECT MIN(DELIVERY TIME) '; 
EXEC SQL SELECT MIN (DELIVERY_TIME) 

INTO :TIME 
FROM INVENTORY, QUOTATIONS 
WHERE INVENTORY.PARTNO = 311 AND 

QONHAND < 700 AND 
INVENTORY.PARTNO = QUOTATIONS.PARTNO AND 
QONORDER = 0; 

"SKIP; 
/*********************************************************************/ 
/* */ 
/* RETRIEVE DATA OF PART 311 FOR THE ORDER */ 
/* AND */ 
/* UPDATE QONORDER FOR PART #311 */ 
/* */ 
/*********************************************************************/ 
"SKIP; 

STMT = 'SELECT FOR PART #311 '; 
EXEC SQL SELECT INVENTORY.PARTNO, DESCRIPTION, QONHAND, 

PRICE, NAME, ADDRESS 
INTO :PARTNO, :DESCR, : QONHAND, :PRICE, :NAME, :ADR 
FROM INVENTORY, QUOTATIONS, SUPPLIERS 
WHERE INVENTORY.PARTNO = 311 AND 

INVENTORY.PARTNO = QUOTATIONS.PARTNO AND 
DELIVERY TIME = :TIME AND 
QUOTATIONS.SUPPNO = SUPPLIERS.SUPPNO; 

STMT 'UPDATE QUOTATIONS '; 
EXEC SQL UPDATE QUOTATIONS SET QONORDER = 700 

WHERE PARTNO = :PARTNO AND 
QONORDER = 0 AND 
DELIVERY_TIME = :TIME; 

"SKIP; 
/*********************************************************************/ 
/* */ 
/* PRINT ON SAMPLE ORDER */ 
/* */ 
/*********************************************************************/ 
%SKIP; 
TPRICE2 = 700 * PRICE; 
PUT FILE (PRTFILE) EDIT ('700', DESCR, QONHAND, NAME, ADR, PRICE, 

TPRICE2) (SKIP(2), COL(3), A(4), COL(14), A(10), COL(24), 
F(11), COL(39), A(15), COL(55), A(35), COL(90), F(9,2), 
COL ( 100), F (9, 2) ) ; 

"SKIP; 
/*********************************************************************/ 
/* */ 
/* DELETE PART #321 */ 
/* */ 
/*********************** •••••••••••••• * ••••• ** •• **.* •••• *.*.**.* •••••• / 
%SKIP; 

STMT = 'DELETE 321 FROM QUOTATION'; 
EXEC SQL DELETE FROM QUOTATIONS 

WHERE PARTNO = 321; 
STMT = 'DELETE 321 FROM INVENTORY'; 
EXEC SQL DELETE FROM INVENTORY 

392 SQL/Data System Application Programming for VM/SP 



WHERE PARTNO = 321; 
%SKIP; 
/*********************************************************************/ 
/* */ 
/* COMMIT CHANGES */ 
/* */ 
/*********************************************************************/ 
%SKIP; 

STMT = 'COMMIT WORK 
EXEC SQL COMMIT WORK; 

%SKIP; 
/*********************************************************************/ 
/* */ 
/* PRINT TABLES */ 
/* */ 
/*********************************************************************/ 
%SKIP; 
PUT FILE (PRTFILE) EDIT ('*** PRINTOUT OF TABLE INVENTORY UPDATED ***') 
(PAGE, A(4S)); 
CALL PRINT 1 ; 
PUT FILE (PRTFILE) EDIT ('*** PRINTOUT OF TABLE QUOTATIONS UPDATED ***' 
) (PAGE, A(4S)); 
CALL PRINT2; 
PUT FILE (PRTFILE) EDIT ('*** PRINTOUT OF TABLE SUPPLIERS UPDATED ***') 
(PAGE, A(4S)); 
CALL PRINT3; 
GO TO DONE; 
%SKIP; 
/*********************************************************************/ 
/* */ 
/* PRINT ROUTINE FOR TABLES */ 
/* */ 
/*********************************************************************/ 
PRINT 1: PROC; 
"SKIP; 

%SKIP; 

EXEC SQL DECLARE C1 CURSOR FOR SELECT PARTNO, DESCRIPTION, 
QONHAND 

INTO :PARTNO, :DESCR, :QONHAND 
FROM INVENTORY 
ORDER BY PARTNO; 

PUT FILE (PRTFILE) EDIT ('PARTNO', 'DESCRIPTION', 'QONHAND') 
(SKIP ( 2), A (6), X ( 3), A ( 11 ), X ( 3), A (7) ) ; 

EXEC SQL WHENEVER NOT FOUND CONTINUE; 
STMT = 'OPEN Cl - PROC PRINTl '; 
EXEC SQL OPEN Cl; 
DO WHILE (SQLCODE = 0); 

STMT = 'FETCH Cl IN PROC PRINTl 
EXEC SQL FETCH Cl; 
IF SQLCODE = 0 THEN 

, . , 

PUT FILE (PRTFILE) EDIT (PARTNO, DESCR, QONHAND) (SKIP, 
F(6), X(3), A(10), XiS), F(6)); 

END; 
STMT 'CLOSE Cl IN PROC PRINTl 
EXEC SQL CLOSE Cl; 

, . , 

END PRINT 1 ; 
"SKIP; 
PRINT2: PROC; 
%SKIP; 

EXEC SQL DECLARE C2 CURSOR FOR 
SELECT SUPPNO, PARTNO, PRICE, DELIVERY TIME, QONORDER 

INTO :SUPPNO, :PARTNO, :PRICE, ~TIME, :QONORDER 
FROM QUOTATIONS 
ORDER BY SUPPNO, PARTNO; 

PUT FILE (PRTFILE) EDIT ('SUPPNO', 'PARTNO', 'PRICE', 
'DELIVERY TIME', 'QONORDER') (SKIP (2), A (6), X (3), A (6) , 
X(6), A(S), X(3), A(13), X(6), A(8)); 

Appendix C. PL/I Considerations 393 



STMT = 'OPEN C2 - PROC PRINT2 
EXEC SQL OPEN C2; 
DO WHILE (SQLCODE = 0); 

STMT = 'FETCH C2 IN PROC PRINT2 
EXEC SQL FETCH C2; 
IF SQLCODE = 0 THEN 

PUT FILE (PRTFILE) EDIT (SUPPNO, PARTNO, PRICE, TIME, 
QONORDER) (SKIP, F(6), X(3), F(6), X(3), F(8,2), 
X(3), F(13), X(3), F(ll)); 

%SKIP; 

END; 
STMT 'CLOSE C2 IN PROC PRINT2 
EXEC SQL CLOSE C2; 

END PRINT2; 
%SKIP; 
PRINT3: PROC; 
%SKIP; 

%SKIP; 

EXEC SQL DECLARE C3 CURSOR FOR 
SELECT SUPPNO, NAME, ADDRESS 

INTO :SUPPNO, : NAME , :ADR 
FROM SUPPLIERS 
ORDER BY SUPPNO; 

PUT FILE (PRTFILE) EDIT ('SUPPNO', 'NAME', 
A(6), X(3), A(4), X(9), A(7)); 

STMT = 'OPEN C3 - PROC PRINT3 ' 
EXEC SQL OPEN C3; 
DO WHILE (SQLCODE = 0); 

STMT = 'FETCH C3 IN PROC PRINT3 
EXEC SQL FETCH C3; 
IF SQLCODE = 0 THEN 

END; 

PUT FILE (PRTFILE) EDIT (SUPPNO, NAME, 
F(6), X(3), A(10), X(3), A(35)); 

STMT = 'CLOSE C3 IN PROC PRINT3 
EXEC SQL CLOSE C3; 

END PRINT3; 

'ADDRESS') (SKIP (2) , 

ADR) (SKIP, 

%SKIP; 
/*********************************************************************/ 
/* */ 
/* ROUTINE FOR HANDLING ERRORS */ 
/* */ 
/*********************************************************************/ 
%SKIP; 
SQLERR: 

DISPLAY ('UNEXPECTED SQL ERROR RETURNED'); 
DISPLAY ('CHANGES WILL BE BACKED OUT'); 
DISPLAY ('FAILING SQL STATEMENT IS'); 
DISPLAY (STMT); 
PUT FILE (PRTFILE) SKIP EDIT ('UNEXPECTED SQL ERROR RETURNED') 

(A(29)); 
PUT FILE (PRTFILE) SKIP EDIT ('FAILING SQL STATEMENT IS " STMT) 

(2 (A(25))) ; 
PUT FILE (PRTFILE) 
PUT FILE (PRTFILE) 
PUT FILE (PRTFILE) 
PUT FILE (PRTFILE) 
PUT FILE (PRTFILE) 
PUT FILE (PRTFILE) 
PUT FILE (PRTFILE) 
PUT FILE (PRTFILE) 
PUT FILE (PRTFILE) 
PUT FILE (PRTFILE) 
PUT FILE (PRTFILE) 
PUT FILE (PRTFILE) 
PUT FILE (PRTFILE) 

SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 
SKIP 

EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 
EDIT 

('SQLCODE: ',SQLCODE) (A(9) ,F(4)); 
('SQLERRM: ',SQLERRM) (A(9),A(70)); 
(' SQLERRP: ',SQLERRP) (A (9) ,A(8) ) ; 
( , SQLERRD : " SQLERRD) (A ( 9) ,6 F ( 5) ) ; 
('SQLWARNO: ',SQLWARNO) (A(10) ,A); 
('SQLWARN1: ',SQLWARN1) (A(10),A); 
('SQLWARN2: ',SQLWARN2) (A(10) ,A); 
('SQLWARN3: ',SQLWARN3) (A(10) ,A); 
(' SQLWARN4: ',SQLWARN4) (A (10) ,A) ; 
('SQLWARN5: ',SQLWARN5) (A(10),A); 
('SQLWARN6: ',SQLWARN6) (A(10) ,A); 
( 'SQLWARN7: ',SQLWARN7) (A (10) ,A) ; 
('SQLWARN8: ',SQLWARN8) (A(10) ,A); 

394 SQL/Data System Application Programming for VM/SP 



PUT FILE (PRTFILE) SKIP EDIT ('SQLWARN9: ',SQLWARN9) (A(10),A); 
PUT FILE (PRTFILE) SKIP EDIT ('SQLWARNA: ',SQLWARNA) (A(10) ,A); 

"SKIP; 
I. IGNORE ERRORS DURING ROLLBACK TO AVOID ERROR ROUTINE LOOP .1 

EXEC SQL WHENEVER SQLERROR CONTINUE; 
EXEC SQL ROLLBACK WORK; 

"SKIP; 

I·····································································1 I· ·1 
I. PRINT END MSG AND TERMINATE PROGRAM .1 
I· ·1 
I·····································································1 "SKIP; 
DONE: DISPLAY ('SAMPLE PROGRAM ARISAMPP COMPLETED'); 

PUT FILE (PRTFILE) EDIT ('SAMPLE PROGRAM ARISAMPP COMPLETED') 
(PAGE, A(33»; 

"SKIP; 
END SAMPP; 

I· 
CLOSE SYSPCH,D 

ASSGN SYSIPT,DISK,VOL=SQLWK1,SHR 
II OPTION CATAL 

PHASE ARISAMPP,S II EXEC PLIOPT,SIZE=800K 
INCLUDE ARIPRDID 

II EXEC LNKEDT 
I· 
CLOSE SYSIPT,C 
II EXEC PGM=ARISAMPP,SIZE=800K 
I· 
II EXEC MAINT 

DELETC ARISAMPP 
I· 
II ASSGN SYSIN,C 
1& 

Appendix C. PL/I Considerations 395 



396 SQL/Data System Application Programming for VM/SP 



Appendix D. COBOL Considerations 

This appendix contains a sample program that illustrates the use of SQL within 
COBOL. Following the sample are specific rules for using SQL in COBOL. 

ARISCBLC -- COBOL Sample Program 

ARISCBLC is a COBOL sample program that is provided with SQL/DS. The 
source code of this program begins on the next page. You can learn most of the 
rules for using SQL within COBOL just by scanning through the program. Here is 
a summary by COBOL Divisions: 

• Identification and Environment Divisions 

You don't have to do anything different in either of these divisions for 
SQL/DS applications. 

• Data Division 

In the Data Division of any COBOL SQL/DS application, you must declare all 
host variables and the SQLCA structure. 

Notice that the SQL statements (BEGIN DECLARE SECTION, END 
DECLARE SECTION, and INCLUDE SQLCA) are preceded by "EXEC 
SQL" and followed by "END-EXEC". These delimiters help SQL/DS 
distinguish SQL statements from regular COBOL code. Note also that all SQL 
statements must be placed in columns 12 to 72. 

The only SQL statements allowed in the Data Division are those shown in the 
sample programs and the INCLUDE command (not shown); all others must be 
placed in the Procedure Division. 

The COBOL PICTURE clauses for the host variables were determined by 
referring to Figure 42 on page 417. That figure gives the COBOL 
representation for each of the ten SQL/DS data types. When you are coding 
your own applications you'll need to obtain the data types of the columns that 
your host variables interact with. This can be done either by consulting the 
person who created the table, or by querying the SQL/DS catalogs. The 
SQL/DS catalogs are described in the SQL/ Data System Planning and 
Administration for VM / SP manual. 

Appendix D. COBOL Considerations 397 



• Procedure Division 

A WHENEVER statement should be coded to provide for error handling, and 
the program must connect to SQL/DS. 

398 SQL/Data System Application Programming for VM/SP 



***************************************************************** 
* * 
* SAMPLE PROGRAM FOR VM/SP ARISCBLC * 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* * PURPOSE: 
* 
* 
* 
* 
* 
* 
* 
* 
* 

THE PURPOSE OF THIS SAMPLE PROGRAM IS TWOFOLD. 

1. IT IS AN EXAMPLE FOR HOW TO IMBED SQL 
STATEMENTS IN A COBOL APPLICATION PROGRAM. 

2. IT CAN BE USED TO TEST SOME BASIC SQL 
FUNCTIONS FROM AN APPLICATION PROGRAM. 

* DESCRIPTION: 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
THIS PROGRAM GENERATES A SAMPLE OReER FOR PARTS * 
310 AND 316 IF QONHAND IS LESS THAN 1000 AND 700 * 
RESPECTIVELY AND IF QONORDER IS ZERO. THE TABLE * 
QUOTATIONS IS UPDATED ACCORDINGLY. PART 310 IS * 
ORDERED FROM THE COMPANY THAT SELLS FOR THE LOWEST * 
PRICE, PART 316 FROM THE COMPANY WITH THE SHORTEST * 
DELIVERY TIME. * 

* 
AT THE END OF THE PROGRAM PART 322 IS DELETED FROM * 
THE DATA BASE. * 

* * PREREQUISITE: * 
* * 

* 
* 

THE SQL/DS SAMPLE TABLES MUST BE CREATED AND LOADED.* 

* OUTPUT PRODUCED: * 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

CONSOLE: 1. AN EXECUTION BEGIN AND END MESSAGE 
IS DISPLAYED AT THE BEGIN AND END 
OF PROGRAM EXECUTION. 

2. UNEXPECTED RETURN CODES PRODUCE AN 
ERROR MESSAGE. 

SYSPRINT: 1. PRINTOUT OF ALL TABLES BEFORE CHANGES.* 
2. SAMPLE ORDER IS PRODUCED. * 
3. PRINTOUT OF ALL TABLES AFTER CHANGES. * 
4. UNEXPECTED RETURN CODES PRODUCE AN * 

ERROR MESSAGE WITH THE SQLCA STRUCTURE* 
PRINTED OUT AND CHANGES BACKED OUT. * 

* ***************************************************************** 

IDENTIFICATION DIVISION. 

PROGRAM-ID. ARISCBLC. 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 
SPECIAL-NAMES. 

COl IS NEWPAGE. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT OUT-FILE ASSIGN TO UT-2400-S-0UT-FILE. 

DATA DIVISION. 

FILE SECTION. 
FD OUT-FILE 

LABEL RECORDS ARE OMITTED 
DATA RECORD IS PRINT-OUT. 

Appendix D. COBOL Considerations 399 



01 PRINT-OUT PICTURE X(130). 

WORKING-STORAGE SECTION. 

***************************************************************** 
* HOST VARIABLE DECLARATION SECTION * ***************************************************************** 

EXEC SQL BEGIN DECLARE SECTION END-EXEC. 

77 PARTNO 
77 QONHAND 
77 SUPPNO 
77 TIMEX 
77 QONORDER 
77 PRICE 
77 TTL-PRICE 

PIC S9(6) COMPo 
PIC S9(9) COMPo 
PIC S9(6) COMPo 
PIC S9(4) COMPo 
PIC S9(9) COMPo 
PIC S9(9)V9(2) COMP-3. 
PIC S9(9)V9(2) COMP-3. 

* THE DESCRIPTION COLUMN IN THE INVENTORY TABLE IS DEFINED AS 
* VARCHAR(24). SQL/DS WILL CONVERT DATA TO FIXED LENGTH AND 
* TRUNCATE IT WHENEVER THE DESCR HOST VARIABLE IS USED. 

01 DESCR PIC X(10) VALUE SPACES. 
01 NAME PIC X(15) VALUE SPACES. 
01 USERID PIC X(8) VALUE 'SQLDBA 
01 PASSW PIC X(8) VALUE 'SQLDBAPW'. 

01 ADDR. 
49 ADDRLEN 
49 ADDRVAL 

PIC S9(4) COMP VALUE +35. 
PIC X(35) VALUE SPACES. 

EXEC SQL END DECLARE SECTION END-EXEC. 

EXEC SQL INCLUDE SQLCA END-EXEC. 

***************************************************************** 
* PROGRAM VARIABLE DECLARTION SECTION * 
***************************************************************** 

01 STEP-DENOTER 

01 DECODED-SQLCODE 

01 ARRAY-SQLERRD. 

PIC X(50) VALUE SPACES. 

PIC --------999. 

02 DECODED-SQLERRD 
01 INDX2 
01 INDXPIC 

PIC --------999 OCCURS 6 TIMES. 
PIC S9(1) SYNC USAGE IS COMPo 
PIC ZZZ9. 

01 TERMINAL-MESSAGES. 

01 

02 MSG14 PIC X(80) VALUE 
, *** ARISCBLC EXECUTION BEGINS ***'. 

02 MSG15 PIC X(80) VALUE 
I *** ARISCBLC ENDED SUCCESSFULLY ***' 

FETCHED-TABLE-HEADERS. 
02 MSG16. 

03 FILLER PIC X(17) VALUE SPACES. 
03 FILLER PIC X(80) VALUE 

'*** PRINTOUT OF TABLE INVENTORY UNCHANGED ***'. 
02 MSG17 . 

03 FILLER PIC X(26) VALUE SPACES. 
03 FILLER PIC X(80) VALUE 

'*** PRINTOUT OF TABLE QUOTATIONS UNCHANGED ***' 
02 MSG18. 

03 FILLER PIC X(31) VALUE SPACES. 
03 FILLER PIC X(80) VALUE 

'*** PRINTOUT OF TABLE SUPPLIERS UNCHANGED ***' 
02 MSG19. 

400 SQL/Data System Application Programming for VM/SP 



03 FILLER PIC X(17) VALUE SPACES. 
03 FILLER PIC X(80) VALUE 

'*** PRINTOUT OF TABLE INVENTORY AFTER DELETE ***' 
02 MSG20. 

03 FILLER PIC X(22) VALUE SPACES. 
03 FILLER PIC X(80) VALUE 

'*** PRINTOUT OF TABLE QUOTATIONS AFTER UPDATE & DELETE ***' 

01 SAMPLE-ORDER-HEADINGS. 
02 HEADING 1 . 

01 

03 FILLER PIC X(50) VALUE SPACES. 
03 FILLER PIC X(31) VALUE 

'SAMPLE ORDER FOR SAMPLE PROGRAM'. 
02 HEADING2. 

03 FILLER PIC X(50) VALUE SPACES. 
03 FILLER PIC X(31) VALUE 

02 HEADING3. 
03 FILLER PIC X (10) VALUE ' NUMBER OF' . 
03 FILLER PIC X(5) VALUE SPACES. 
03 FILLER PIC X ( 11 ) VALUE 'DESCRIPTION'. 
03 FILLER PIC X(4) VALUE SPACES. 
03 FILLER PIC X(8) VALUE 'QUANTITY'. 
03 FILLER PIC X(5) VALUE SPACES. 
03 FILLER PIC X (12) VALUE 'COMPANY NAME' . 
03 FILLER PIC X(4) VALUE SPACES. 
03 FILLER PIC X(15) VALUE 'COMPANY ADDRESS' . 
03 FILLER PIC X(22) VALUE SPACES. 
03 FILLER PIC X(9) VALUE 'PRICE PER'. 
03 FILLER PIC X(10) VALUE SPACES. 
03 FILLER PIC X(5) VALUE 'TOTAL' . 

02 HEADING4. 
03 FILLER PIC X (3) VALUE SPACES. 
03 FILLER PIC X(5) VALUE 'PARTS' . 
03 FILLER PIC X(22) VALUE SPACES. 
03 FILLER PIC X (7) VALUE 'ON HAND'. 
03 FILLER PIC X(62) VALUE SPACES. 
03 FILLER PIC X(4) VALUE 'UNIT'. 
03 FILLER PIC X(13) VALUE SPACES. 
03 FILLER PIC X(4) VALUE 'COST' . 

02 HEADING5. 
03 FILLER PIC X (10) VALUE , 
03 FILLER PIC X(5) VALUE SPACES. 
03 FILLER PIC X(ll) VALUE , 
03 FILLER PIC X(4) VALUE SPACES. 
03 FILLER PIC X(8) VALUE , 
03 FILLER PIC X (5) VALUE SPACES. 
03 FILLER PIC X (12) VALUE , 
03 FILLER PIC X(4) VALUE SPACES. 
03 FILLER PIC X(35) VALUE , 
03 FILLER PIC X(l) VALUE SPACES. 
03 FILLER PIC X (12) VALUE , 
03 FILLER PIC X(4) VALUE SPACES. 
03 FILLER PIC X ( 1 2) VALUE , 

INVENTORY-HEADINGS. 
02 FILLER PIC X VALUE SPACES. 
02 FILLER PIC X(23) VALUE SPACES. 
02 FILLER PIC X(6) VALUE 'PARTNO'. 
02 FILLER PIC X(3) VALUE SPACES. 
02 FILLER PIC X(ll) VALUE 'DESCRIPTION'. 
02 FILLER PIC X(4) VALUE SPACES. 
02 FILLER PIC X (7) VALUE 'QONHAND' . 

Appendix D. COBOL Considerations 401 



01 INVENTORY-UNDERLINE. 
02 FILLER PIC X VALUE SPACES. 
02 FILLER PIC X (23) VALUE SPACES. 
02 FILLER PIC X(6) VALUE 

, 
02 FILLER PIC X(3) VALUE SPACES. 
02 FILLER PIC X ( 11 ) VALUE , 
02 FILLER PIC X(4) VALUE SPACES. 
02 FILLER PIC X(7) VALUE 

, 

01 QUOTATIONS-HEADINGS. 
02 FILLER PIC X VALUE SPACES. 
02 FILLER PIC X(23) VALUE SPACES. 
02 FILLER PIC X(6) VALUE 'SUPPNO' . 
02 FILLER PIC X(3) VALUE SPACES. 
02 FILLER PIC X(6) VALUE 'PARTNO' . 
02 FILLER PIC X (10) VALUE SPACES. 
02 FILLER PIC X(5) VALUE 'PRICE' . 
02 FILLER PIC X(4) VALUE SPACES. 
02 FILLER PIC X(4) VALUE 'TIME' . 
02 FILLER PIC X(4) VALUE SPACES. 
02 FILLER PIC X(8) VALUE ' QONORDER' . 

01 QUOTATIONS-UNDERLINE. 
02 FILLER PIC X VALUE SPACES. 
02 FILLER PIC X(23) VALUE SPACES. 
02 FILLER PIC X(6) VALUE , 
02 FILLER PIC X (3) VALUE SPACES. 
02 FILLER PIC X(6) VALUE , 
02 FILLER PIC X (10) VALUE SPACES. 
02 FILLER PIC X(5) VALUE , I 

02 FILLER PIC X(4) VALUE SPACES. 
02 FILLER PIC X(4) VALUE , 
02 FILLER PIC X(4) VALUE SPACES. 
02 FILLER PIC X(8) VALUE 

, 

01 SUPPLIERS-HEADINGS. 
02 FILLER PIC X VALUE SPACES. 
02 FILLER PIC X(23) VALUE SPACES. 
02 FILLER PIC X(6) VALUE 'SUPPNO' . 
02 FILLER PIC X(3) VALUE SPACES. 
02 FILLER PIC X(4) VALUE 'NAME' . 
02 FILLER PIC X (14) VALUE SPACES. 
02 FILLER PIC X(7) VALUE 'ADDRESS' . 

01 SUPPLIERS-UNDERLINE. 
02 FILLER PIC X VALUE SPACES. 
02 FILLER PIC X(23) VALUE SPACES. 
02 FILLER PIC X(6) VALUE , , 
02 FILLER PIC X(3) VALUE SPACES. 
02 FILLER PIC X (16) VALUE , 
02 FILLER PIC X(2) VALUE SPACES. 
02 FILLER PIC X (34) VALUE 

01 SAMPLE-ORDER-STRUC. 
02 FILLER PIC X ( 1 ) VALUE SPACES. 
02 QONORDER-S PIC ZZZZZZZZ9. 
02 FILLER PIC X(5) VALUE SPACES. 
02 DESCR-S PIC X(10) . 
02 FILLER PIC X(4) VALUE SPACES. 
02 QONHAND-S PIC ZZZZZZZZ9. 
02 FILLER PIC X(5) VALUE SPACES. 
02 NAME-S PIC X(15) . 
02 FILLER PIC X ( 1 ) VALUE SPACES. 
02 ADDR-S PIC X(35). 
02 FILLER PIC X (1) VALUE SPACES. 

402 SQL/Data System Application Programming for VM/SP 



02 PRICE-S PIC ZZZZZZZZZ.99. 
02 FILLER PIC X(4) VALUE SPACES. 
02 TTL-PRICE-S PIC ZZZZZZZZZ.99. 

01 INVENTORY-STRUC. 
02 FILLER PIC X(24) VALUE SPACES. 
02 PARTNO-S PIC ZZZZZ9. 
02 FILLER PIC X(3) VALUE SPACES. 
02 DESCR-S PIC X ( 1 0) . 
02 FILLER PIC X (3) VALUE SPACES. 
02 QONHAND-S PIC ZZZZZZZZ9. 

01 QUOTATIONS-STRUC. 
02 FILLER PIC X(24) VALUE SPACES. 
02 SUPPNO-S PIC ZZZZZ9. 
02 FILLER PIC X(3) VALUE SPACES. 
02 PARTNO-S PIC ZZZZZ9. 
02 FILLER PIC X(3) VALUE SPACES. 
02 PRICE-S PIC ZZZZZZZZZ.99. 
02 FILLER PIC X (3) VALUE SPACES. 
02 TIME-S PIC ZZZZ9. 
02 FILLER PIC X(3) VALUE SPACES. 
02 QONORDER-S PIC ZZZZZZZZ9. 

01 SUPPLIERS-STRUC. 
02 FILLER PIC X (24) VALUE SPACES. 
02 SUPPNO-S PIC ZZZZZ9. 
02 FILLER PIC X(3) VALUE SPACES. 
02 NAME-S PIC X ( 15) . 
02 FILLER PIC X(3) VALUE SPACES. 
02 ADDRVAL-S PIC X (35) . 

PROCEDURE DIVISION. 

OPEN OUTPUT OUT-FILE. 

* IGNORE SQL WARNINGS AS THEY WILL NOT AFFECT RESULTS 
EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC. 
EXEC SQL WHENEVER SQLERROR GOTO ERRCHK END-EXEC. 
EXEC SQL WHENEVER NOT FOUND GOTO ERRCHK END-EXEC. 

DISPLAY MSG14 UPON CONSOLE. 
WRITE PRINT-OUT FROM MSG14 AFTER ADVANCING NEWPAGE. 

MOVE 'CONNECT' TO STEP-DENOTER. 

EXEC SQL CONNECT :USERID IDENTIFIED BY :PASSW END-EXEC. 

***************************************************************** 
* PRINT TABLES INVENTORY, QUOTATIONS & SUPPLIERS (UNCHANGED) * 
***************************************************************** 

WRITE PRINT-OUT FROM MSG16 AFTER ADVANCING NEWPAGE. 
PERFORM TABLE1. 

WRITE PRINT-OUT FROM MSG17 AFTER ADVANCING NEWPAGE. 
PERFORM TABLE2. 

WRITE PRINT-OUT FROM MSG18 AFTER ADVANCING NEWPAGE. 
PERFORM TABLE3. 

***************************************************************** 
* FIND MINIMUM PRICE FOR PART NUMBER 310. * 
* THE FOLLOWING SELECT STATEMENT RETURNS THE MINIMUM PRICE * 
* FOR ALL OCCURRENCES OF PART NUMBER 310 WITH QONHAND LESS * 
* THAN QONORDER OF ZERO. AS PRICE IS A COLUMN IN QUOTATIONS * 
* AND QONHAND A COLUMN IN INVENTORY, THE TWO TABLES MUST * 

Appendix D. COBOL Considerations 403 



* BE LINKED VIA A JOIN BETWEEN THE PART NUMBERS IN INVENTORY * 
* AND QUOTATIONS. NO CURSOR IS USED BECAUSE THE STATEMENT * 
* RETURNS ONLY ONE ROW. * 
****************************************************** *********** 

MOVE SPACES TO STEP-DENOTER. 
MOVE 'SELECT MIN PRICE ... , PARTNO=31 0 , TO STEP-DENOTER. 

EXEC SQL SELECT MIN (PRICE) 
INTO :PRICE 
FROM INVENTORY, QUOTATIONS 
WHERE INVENTORY.PARTNO = 310 AND 

QONHAND < 1000 AND 
INVENTORY.PARTNO QUOTATIONS.PARTNO AND 
QONORDER = 0 
END-EXEC. 

***************************************************************** 
* RETRIEVE DATA OF PART 310 FOR THE SAMPLE ORDER. * 
* THE FOLLOWING SELECT STATEMENT RETRIEVES DATA THAT WILL BE * 
* USED FOR PRINTING A SAMPLE ORDER FOR PART 310 WITH THE * 
* LOWEST PRICE. THE STATEMENT CONTAINS TWO JOINT CONDITIONS * 
* BECAUSE DATA FROM ALL THREE TABLES IS REQUIRED. * 
***************************************************************** 

MOVE SPACES TO STEP-DENOTER. 
MOVE 'SELECT INVENTORY.PARTNO .. ,PARTNO=310' TO STEP-DENOTER. 

EXEC SQL SELECT INVENTORY.PARTNO, DESCRIPTION, QONHAND, 
PRICE, NAME, ADDRESS, QUOTATIONS.SUPPNO 

INTO :PARTNO, :DESCR, : QONHAND, :PRICE, : NAME , 
:ADDR, :SUPPNO 

FROM INVENTORY, QUOTATIONS, SUPPLIERS 
WHERE INVENTORY.PARTNO = 310 AND 

INVENTORY.PARTNO = QUOTATIONS.PARTNO AND 
PRICE = :PRICE AND 
QUOTATIONS.SUPPNO = SUPPLIERS.SUPPNO 
END-EXEC. 

***************************************************************** 
* WRITE OUT HEADINGS FOR SAMPLE ORDER AND PLACE FIRST ORDER * 
* OF 1000 PIECES FOR PART 310. * 
****************************************************** *********** 

WRITE PRINT-OUT FROM HEADING 1 AFTER ADVANCING NEWPAGE. 
WRITE PRINT-OUT FROM HEADING2 AFTER ADVANCING O. 
WRITE PRINT-OUT FROM HEADING3 AFTER ADVANCING 3. 
WRITE PRINT-OUT FROM HEADING4 AFTER ADVANCING 1. 
WRITE PRINT-OUT FROM HEADINGS AFTER ADVANCING O. 

MOVE 1000 TO QONORDER. 
COMPUTE TTL-PRICE = PRICE * QONORDER. 
PERFORM MOVEOUT. 

***************************************************************** 
* UPDATE QONORDER FOR PART 310 IN TABLE QUOTATIONS. * 
* * 
***************************************************************** 

MOVE SPACES TO STEP-DENOTER. 
MOVE 'UPDATE QUOTATIONS ... ,PARTNO=310' TO STEP-DENOTER. 

EXEC SQL UPDATE QUOTATIONS SET QONORDER 1000 
WHERE PARTNO = :PARTNO AND 

QONORDER = 0 AND 

404 SQL/Data System Application Programming for VM/SP 



PRICE = :PRICE AND 
SUPPNO = :SUPPNO 
END-EXEC . 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• FIND MINIMUM DELIVERY TIME FOR PART 316 • 
• THE FOLLOWING SELECT STATEMENT RETURNS THE MINIMUM DELIVERY. 
• TIME OF ALL OCCURRENCES OF PART NUMBER 316 WITH QONHAND • 
• LESS THAN 700 AND QONORDER ZERO. AS DELIVERY TIME IS A • 
• COLUMN IN QUOTATIONS AND QONHAND A COLUMN IN INVENTORY THE • 
• TWO TABLES MUST BE LINKED VIA A JOIN BETWEEN THE PART • 
• NUMBERS IN QUOTATIONS AND THOSE IN INVENTORY. • 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

MOVE SPACES TO STEP-DENOTER. 
MOVE 'SELECT MIN DELIVERY TIME .. PARTNO=316' TO STEP-DENOTER. 

EXEC SQL SELECT MIN (DELIVERY_TIME) 
INTO :TIMEX 
FROM INVENTORY, QUOTATIONS 
WHERE INVENTORY.PARTNO = 316 AND 

QONHAND < 700 AND 
INVENTORY.PARTNO = QUOTATIONS.PARTNO AND 
QONORDER = 0 
END-EXEC . 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• RETRIEVE DATA OF PART 316 FOR THE SAMPLE ORDER. • 
• THE FOLLOWING SELECT STATEMENT RETRIEVES DATA THAT WILL BE • 
• USED FOR PRINTING A SAMPLE ORDER FOR PART 316 WITH THE • 
• LOWEST PRICE. THE STATEMENT CONTAINS TWO JOIN CONDITIONS • 
• BECAUSE DATA FROM ALL THREE TABLES IS REQUIRED. • 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

MOVE SPACES TO STEP-DENOTER. 
MOVE 'SELECT INVENTORY.PARTNO .. ,PARTNO=316' TO STEP-DENOTER. 

EXEC SQL SELECT INVENTORY.PARTNO, DESCRIPTION, QONHAND, 
PRICE, NAME, ADDRESS, QUOTATIONS.SUPPNO 

INTO :PARTNO, :DESCR, : QONHAND, :PRICE, : NAME, 
:ADDR, :SUPPNO 

FROM INVENTORY, QUOTATIONS, SUPPLIERS 
WHERE INVENTORY.PARTNO = 316 AND 

INVENTORY.PARTNO = QUOTATIONS.PARTNO AND 
DELIVERY_TIME = :TIMEX AND 
QUOTATIONS.SUPPNO = SUPPLIERS.SUPPNO 
END-EXEC . 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• WRITE AN ORDER FOR PART 316 FOR 700 PIECES. • 
• • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

MOVE 700 TO QONORDER. 
COMPUTE TTL-PRICE = PRICE • QONORDER. 
PERFORM MOVEOUT . 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• UPDATE QONORDER FOR PART 316 IN TABLE QUOTATIONS. • 
• • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

MOVE SPACES TO STEP-DENOTER. 
MOVE 'UPDATE QUOTATIONS ... ,PARTNO=316' TO STEP-DENOTER. 

EXEC SQL UPDATE QUOTATIONS SET QONORDER = 700 
WHERE PARTNO = :PARTNO AND 

QONORDER = 0 AND DELIVERY_TIME = :TIMEX AND 

Appendix D. COBOL Considerations 405 



SUPPNO = :SUPPNO 
END-EXEC. 

***************************************************************** 
* DELETE PART 322 FROM TABLE INVENTORY * 
***************************************************************** 

MOVE SPACES TO STEP-DENOTER. 
MOVE 'DELETE FROM INVENTORY ... ,PARTNO=322' TO STEP-DENOTER. 

EXEC SQL DELETE FROM INVENTORY WHERE PARTNO = 322 END-EXEC. 

***************************************************************** 
* DELETE PART 322 FROM TABLE QUOTATIONS * 
***************************************************************** 

MOVE SPACES TO STEP-DENOTER. 
MOVE 'DELETE FROM QUOTATIONS ... ,PARTNO=322' TO STEP-DENOTER. 

EXEC SQL DELETE FROM QUOTATIONS WHERE PARTNO = 322 END-EXEC. 

***************************************************************** 
* PRINT TABLES INVENTORY, QUOTATIONS & SUPPLIERS (CHANGED) * 
***************************************************************** 

WRITE PRINT-OUT FROM MSG19 AFTER ADVANCING NEWPAGE. 
PERFORM TABLE 1 . 

WRITE PRINT-OUT FROM MSG20 AFTER ADVANCING NEWPAGE. 
PERFORM TABLE2. 

WRITE PRINT-OUT FROM MSG18 AFTER ADVANCING NEWPAGE. 
PERFORM TABLE3. 

MOVE SPACES TO STEP-DENOTER. 
MOVE 'COMMIT WORK' TO STEP-DENOTER. 

EXEC SQL COMMIT WORK END-EXEC. 

DISPLAY MSG15 UPON CONSOLE. 
WRITE PRINT-OUT FROM MSG15 AFTER ADVANCING NEWPAGE. 

CLOSE OUT-FILE. 

STOP RUN. 

***************************************************************** 
* INTERNAL SUBROUTINE SECTION. * 
***************************************************************** 

EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC. 

MOVE SPACES TO STEP-DENOTER. 
MOVE 'SUBROUTINE TABLE 1 , TO STEP-DENOTER. 

TABLE1. 
EXEC SQL DECLARE C1 CURSOR FOR 

SELECT PARTNO, DESCRIPTION, QONHAND 
FROM INVENTORY ORDER BY PARTNO 
END-EXEC. 

EXEC SQL OPEN C1 END-EXEC. 
WRITE PRINT-OUT FROM INVENTORY-HEADINGS 

AFTER ADVANCING 3 LINES. 
WRITE PRINT-OUT FROM INVENTORY-UNDERLINE 

AFTER ADVANCING O. 

406 SQL/Data System Application Programming for VM/SP 



PERFORM FETCHl UNTIL SQLCODE 100. 
EXEC SQL CLOSE Cl END-EXEC. 

FETCH1. 
EXEC SQL FETCH Cl 

INTO :PARTNO, :DESCR, :QONHAND END-EXEC, 
IF SQLCODE NOT EQUAL 100 THEN 

MOVE PART NO TO PARTNO-S IN INVENTORY-STRUC, 
MOVE DESCR TO DESCR-S IN INVENTORY-STRUC, 
MOVE QONHAND TO QONHAND-S IN INVENTORY-STRUC, 
WRITE PRINT-OUT FROM INVENTORY-STRUC AFTER ADVANCING 1, 
MOVE ZEROES TO PARTNO, 
MOVE SPACES TO DESCR, 
MOVE SPACES TO INVENTORY-STRUC. 

MOVE SPACES TO STEP-DENOTER. 
MOVE 'SUBROUTINE TABLE2' TO STEP-DENOTER. 

TABLE2. 
EXEC SQL DECLARE C2 CURSOR FOR SELECT SUPPNO, PARTNO, PRICE, 

DELIVERY_TIME, QONORDER 
FROM QUOTATIONS ORDER BY 
SUPPNO, PARTNO END-EXEC. 

EXEC SQL OPEN C2 END-EXEC. 
WRITE PRINT-OUT FROM QUOTATIONS-HEADINGS 

AFTER ADVANCING 3 LINES. 
WRITE PRINT-OUT FROM QUOTATIONS-UNDERLINE 

AFTER ADVANCING O. 
PERFORM FETCH2 UNTIL SQLCODE = 100. 

EXEC SQL CLOSE C2 END-EXEC. 
FETCH2. 

EXEC SQL FETCH C2 
INTO :SUPPNO, :PARTNO, 
:PRICE, :TIMEX, :QONORDER END-EXEC, 

IF SQLCODE NOT EQUAL 100 THEN, 
MOVE SUPPNO TO SUPPNO-S IN QUOTATIONS-STRUC, 
MOVE PARTNO TO PARTNO-S IN QUOTATIONS-STRUC, 
MOVE PRICE TO PRICE-S IN QUOTATIONS-STRUC, 
MOVE TIMEX TO TIME-S IN QUOTATIONS-STRUC, 
MOVE QONORDER TO QONORDER-S IN QUOTATIONS-STRUC, 
WRITE PRINT-OUT FROM QUOTATIONS-STRUC AFTER ADVANCING 1, 
MOVE ZEROES TO SUPPNO, 
MOVE ZEROES TO PARTNO, 
MOVE ZEROES TO PRICE, 
MOVE ZEROES TO TIMEX, 
MOVE ZEROES TO QONORDER, 
MOVE SPACES TO QUOTATIONS-STRUC. 

MOVE SPACES TO STEP-DENOTER. 
MOVE 'SUBROUTINE TABLE3' TO STEP-DENOTER. 

TABLE3. 
EXEC SQL DECLARE C3 CURSOR FOR SELECT SUPPNO, NAME, 

ADDRESS FROM SUPPLIERS 
ORDER BY SUPPNO END-EXEC. 

EXEC SQL OPEN C3 END-EXEC. 
WRITE PRINT-OUT FROM SUPPLIERS-HEADINGS 

AFTER ADVANCING 3 LINES. 
WRITE PRINT-OUT FROM SUPPLIERS-UNDERLINE 

AFTER ADVANCING O. 
PERFORM FETCH3 UNTIL SQLCODE = 100. 

EXEC SQL CLOSE C3 END-EXEC. 
FETCH3. 

EXEC SQL FETCH C3 
INTO :SUPPNO, : NAME, :ADDR END-EXEC, 

IF SQLCODE NOT EQUAL 100 THEN, 
MOVE SUPPNO TO SUPPNO-S IN SUPPLIERS-STRUC, 
MOVE NAME TO NAME-S IN SUPPLIERS-STRUC, 

Appendix D. COBOL Considerations 407 



MOVEOUT. 

MOVE ADDRVAL TO ADDRVAL-S IN SUPPLIERS-STRUC, 
WRITE PRINT-OUT FROM SUPPLIERS-STRUC AFTER ADVANCING 1, 
MOVE SPACES TO SUPPLIERS-STRUC. 
MOVE SPACES TO ADDRVAL. 

MOVE QONORDER TO QONORDER-S IN SAMPLE-ORDER-STRUC. 
MOVE DESCR TO DESCR-S IN SAMPLE-ORDER-STRUC. 
MOVE QONHAND TO QONHAND-S IN SAMPLE-ORDER-STRUC. 
MOVE NAME TO NAME-S IN SAMPLE-ORDER-STRUC. 
MOVE ADDRVAL TO ADDR-S IN SAMPLE-ORDER-STRUC. 
MOVE PRICE TO PRICE-S IN SAMPLE-ORDER-STRUC. 
MOVE TTL-PRICE TO TTL-PRICE-S IN SAMPLE-ORDER-STRUC. 
WRITE PRINT-OUT FROM SAMPLE-ORDER-STRUC AFTER ADVANCING 2. 
MOVE ZEROES TO QONORDER-S IN SAMPLE-ORDER-STRUC. 
MOVE SPACES TO DESCR-S IN SAMPLE-ORDER-STRUC. 
MOVE ZEROES TO QONHAND-S IN SAMPLE-ORDER-STRUC. 
MOVE SPACES TO NAME-S IN SAMPLE-ORDER-STRUC. 
MOVE SPACES TO ADDR-S IN SAMPLE-ORDER-STRUC. 
MOVE ZEROES TO PRICE-S IN SAMPLE-ORDER-STRUC. 
MOVE SPACES TO PRINT-OUT. 

ERRCHK. 

***************************************************************** 
* THE FOLLOWING ROUTINE PRINTS THE SQLCA STRUCTURE: * 
* * 
* - SQLCODE SQL RETURN CODE * 
* SQLERRM SQL ERROR MESSAGE * 
* - SQLERRP MODULE DETECTING ERROR * 
* SQLERRD INTERNAL ERROR VALUES * 
* SQLWARN SQL WARNING STRUCTURE * 
* * 
***************************************************************** 

DISPLAY '*********************************' UPON CONSOLE. 
DISPLAY '* PROGRAM ERROR ROUTINE ENTERED *' UPON CONSOLE. 
DISPLAY '* CHECK SYSPRINT FOR ERROR CODES*' UPON CONSOLE. 
DISPLAY '* CHANGES WILL BE BACKED OUT *' UPON CONSOLE. 
DISPLAY '*********************************' UPON CONSOLE. 
MOVE SQLCODE TO DECODED-SQLCODE. 
DISPLAY 'PROGRAM ERROR ROUTINE ENTERED'. 
DISPLAY' *******' 
DISPLAY 'A PROBLEM HAS BEEN DETECTED IN THE' 
DISPLAY STEP-DENOTER. 
DISPLAY 'THE FOLLOWING ERROR CODES SHOULD AID YOU IN'. 
DISPLAY 'PROBLEM DETERMINATION OF THE SQL STATEMENT.'. 
DISPLAY' *******' 
DISPLAY 'SQLCODE 'DECODED-SQLCODE. 
DISPLAY 'SQLERRM : ' SQLERRMC. 
DISPLAY 'SQLERRP : ' SQLERRP. 
PERFORM ERRD VARYING INDX2 FROM 1 BY 1 UNTIL INDX2 7. 
IF SQLWARNO NOT EQUAL 'w' 

THEN GO TO BACKOUT, 
ELSE DISPLAY 'SQLWARNO: ' SQLWARNO, 

DISPLAY 'SQLWARN1: ' SQLWARN1, 
DISPLAY 'SQLWARN2: ' SQLWARN2, 
DISPLAY 'SQLWARN3: ' SQLWARN3, 
DISPLAY 'SQLWARN4: ' SQLWARN4, 
DISPLAY 'SQLWARN5: ' SQLWARN5, 
DISPLAY 'SQLWARN6: ' SQLWARN6, 
DISPLAY 'SQLWARN7: ' SQLWARN7, 
DISPLAY 'SQLWARN8: ' SQLWARN8, 
DISPLAY 'SQLWARN9: ' SQLWARN9, 
DISPLAY 'SQLWARNA: ' SQLWARNA, 
GO TO BACKOUT. 

ERRD. MOVE SQLERRD (INDX2) TO DECODED-SQLERRD (INDX2). 
* MOVE INDX2 TO INDXPIC. 

408 SQL/Data System Application Programming for VM/SP 



DISPLAY 'SQLERRD', INDX2, ': " DECODED-SQLERRD (INDX2). 
BACKOUT. 

***************************************************************** 
* 'WHENEVER' RESET TO 'CONTINUE' IN THE EVENT THAT THE ROLLBACK * 
* WORK STATEMENT FAILS TO AVOID LOOP IN ERROR ROUTINE. * 
***************************************************************** 

MOVE SPACES TO STEP-DENOTER. 
MOVE 'SUBROUTINE BACKOUT' TO STEP-DENOTER. 

EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
EXEC SQL ROLLBACK WORK END-EXEC. 

STOP RUN. 

Appendix D. COBOL Considerations 409 



Rules for Using SQl in COBOL 

This section lists, for your reference, all the rules for embedding SQL statements 
within a COBOL program. 

Placement and Continuation of SQl Statements 

All SQL statements must be placed in columns 12 to 72. Place all non-declarative 
SQL statements (including all cursor-related statements) in the Procedure Division. 

The rules for continuation of SQL keywords from one line to the next are the same 
as the COBOL rules for the continuation of words and constants. If a 
string-constant is continued from one line to the next, the first non-blank character 
in that next line must be an apostrophe ('). If a delimited SQL identifier (such as 
"EMP TABLE") is continued from one line to the next, the first non-blank 
character in that next line must be a quote mark ("). COBOL comment lines, 
identified by an • in column 7, can be coded within an embedded statement. 

Delimiting SQl Statements 

Delimiters are required on all SQL statements to help SQL/DS distinguish them 
from regular COBOL statements. You must precede each SQL statement with 
"EXEC SQL" and terminate each one with "END-EXEC". Any desired COBOL 
punctuation, such as a period, can be placed after the "END-EXEC". (No 
punctuation is required after the "END-EXEC" that terminates an SQL 
statement.) For example, suppose an SQL statement occurs as one of several 
statements nested inside a COBOL IF-statement. In this instance, the SQL 
statement should not be followed by a period. 

"EXEC SQL" must be specified within one line; the same is true for 
"END-EXEC" . 

If an SQL statement appears within an IF sentence such that a COBOL ELSE 
clause immediately follows the SQL statement, the COBOL ELSE clause must 
begin with the word "ELSE". In addition, this "ELSE" must be contained entirely 
on one line. (No continuation is allowed for the word "ELSE".) 

SQL WHENEVER and DECLARE CURSOR statements should not be the only 
contents of COBOL IF or ELSE clauses. The SQL/DS preprocessor does not 
generate COBOL code for these statements. 

If an SQL statement is to terminate a COBOL IF sentence, a period should 
immediately follow "END-EXEC" with no intervening blanks. A blank should 
follow the period. 

Because a COBOL statement can be immediately preceded by a paragraph name, 
an embedded statement can also be immediately preceded by a paragraph name. 
Similarly, an embedded statement in the Procedure Division can be immediately 
followed by a separator period. 

410 SQL/Data System Application Programming for VM/SP 



........ Declaring Host Variables 

You must declare all host variables to be used in SQL statements. The 
declarations, as shown in the earlier example program, must appear in an SQL 
declare section that begins with 

EXEC SQL BEGIN DECLARE SECTION END-EXEC. 

and ends with 

EXEC SQL END DECLARE SECTION END-EXEC. 

The declarations in the SQL declare section follow normal COBOL continuation 
rules. The declare sections can be located in the Working-Storage Section, the File 
Section, or the Linkage Section of the Data Division. You can have more than one 
SQL declare section within a program. 

Place within these SQL declare sections the data description entries for all the host 
variables. You can use the variables appearing in these SQL declare sections in 
regular COBOL statements as well as in SQL statements. 

You can also place data description entries for non-host variables in the SQL 
declare section. The COBOL preprocessor scans the SQL declare section(s) for 
potential host variable declarations and performs error-checking on only those data 
description entries that may be host variable declarations. All other data 
description entries within the SQL declare section(s) are ignored. Thus, it is 
possible, but not recommended, to place all data description entries within an SQL 
declare section. 

Cursor declarations should appear in the Procedure Division. 

The rules for declaring variables within SQL declare sections are as follows: 

• Host variables can be named using COBOL rules, but they are limited to 18 
characters. The SQL/DS preprocessor changes hyphens (-) in host variable 
names in SQL statements to underscores ( ), conforming to SQL/DS naming 
rules. Note that GO TO labels in SQL/DS WHENEVER statements are also 
restricted to 18 characters. 

• Variables named in the SQL declare sections must have data descriptions like 
those in Figure 42 on page 417. Single-level variables can utilize either level 
01 or level 77. The levels for varying-length strings are described below. 
Other valid COBOL clauses such as SYNC or VALUE can be added to those 
given in Figure 42. The OCCURS, SIGN, JUSTIFIED, and BLANK WHEN 
ZERO clauses can not be used. Any data description entry except the 
LENGTH part of a varying-length character string may be followed by one or 
more REDEFINES or RENAMES entries (however, the names in these entries 
cannot be used in SQL statements). Level-88 entries ("condition-name" 
entries associated with another variable) are permitted in the SQL declare 
sections. Entries with the name "FILLER" are ignored by the preprocessor. 

• Variables corresponding to varying-length strings in SQL/DS must have group 
level 01 and the group must contain two level-49 elementary items, as shown in 
Figure 42. The group, and the two elementary items, can have any desired 

Appendix D. COBOL Considerations 411 



names. The first elementary item must have PICTURE S9(n), where n is an ~ 

integer from 1-4, and is used to represent the length of the string. The second 
elementary item must have PICTURE X(n) where n is the maximum length of 
the string, and is used to contain the value of the string. 

The variable should be referred to in SQL statements by its group-name only. 
If the variable is being used for storing a varying-length string in the data base, 
SQL/DS will store only as many characters as indicated by the length-item. If 
SQL/DS is retrieving a string from the data base into the variable, it will 
indicate in the length-item the number of characters which were retrieved into 
the value-item. 

• You should not give any variable a name beginning with SQL or RDI, because 
these names are reserved for SQL/DS use. 

Using Host Variables in SQl Statements 

When you place host variables within an SQL statement, you must precede each 
such variable with a colon (:). The colon distinguishes the host variables from the 
SQL identifiers (such as PARTNO). When the same variable is used outside of an 
SQL statement, do not use a colon. 

A host variable can represent a data value, but not an SQL identifier. For example, 
you cannot assign a character constant, such as 'MUSICIANS', to a host variable, 
and then use that host variable in a CREATE TABLE statement to represent the 
table name. This pseudo-code sequence is invalid: 

TT = 'MUSICIANS' 
CREATE TABLE :TT (NAME ... 

I Incorrect I 

When performing subtraction in an SQL statement, delimit the minus sign (-) with 
blanks: 

blanks 
I I 
V V 

QUANT - :ORDER-AMOUNT 

QUOTE Parameter of the SQl/DS Preprocessor 

If the COBOL compiler QUOTE option is used, the QUOTE (or Q) option of the 
SQL/DS preprocessor should also be specified. You should use a single quote (') 
to delineate constants used in embedded SQL statements, regardless of the 
COBOL compiler QUOTE option. 

412 SQL/Data System Application Programming for VM/SP 



COPYBOOKs 

You should not use COPYBOOKs when an SQL host variable is involved. 

Using the INCLUDE Command 

To include the external secondary input, specify: 

EXEC SQL INCLUDE text-name END-EXEC. 

at the point in the source code where the secondary input is to be included. 
Text-name is the filename of a CMS file with a "COBCOPY" filetype and located 
on a CMS minidisk accessed by the user. 

The INCLUDE command can appear anywhere within the File, Linkage, or 
Working Storage Sections of the Data Division and anywhere within the Procedure 
Division, including the Declaratives Section, if one is used. Note that the 
INCLUDE command is the only type of SQL statement that is allowed within the 
Declaratives Section of a Procedure Division. 

COBOL Data Conversion Notes 

COBOL variables used in SQL statements must be type-compatible with the 
columns of the tables with which they are to be used (stored, retrieved, or 
compared). 

A column of type INTEGER, SMALLINT, DECIMAL, or FLOAT is compatible 
with a COBOL variable of PICTURE S9(4) COMPUTATIONAL, PICTURE 
S9(9) COMPUTATIONAL, PICTURE S9(p)[V9(q)] COMPUTATIONAL-3, or 
COMPUTATIONAL-2. Of course, an overflow condition may occur if, for 
example, an INTEGER data item is retrieved into a PICTURE S9(4) variable, and 
its current value is too large to fit. 

The three types of character data (fixed-length, varying-length, and LONG 
V ARCHAR) and three types of DBCS data (fixed-length, varying-length, and 
LONG V ARGRAPHIC) are also considered compatible. SQL/DS automatically 
converts a varying-length string to a fixed-length string, and vice-versa, when 
necessary. If a varying-length string is converted to a fixed-length string, it is 
truncated or padded on the right with blanks to the correct length. SQL/DS also 
truncates or pads with blanks if a fixed-length string is assigned to another 
fixed-length string of a different size (for example, a variable of PICTURE X(12) 
is stored in a column of type CHAR(18». 

Refer to "Data Conversion" on page 76 for a data conversion summary. 

Appendix D. COBOL Considerations 413 



COBOL Comments 

The SQL/DS preprocessor scans past COBOL NOTE-type comments and line 
comments defined via an ,*, in column 7. Line comments identified by a 'I' in 
column 7 are not recognized by the preprocessor. 

SQl Statements in COBOL Subprograms 

There is considerable SQL initialization processing in connection with invoking a 
program that contains SQL statements. The performance of your program may be 
considerably reduced by locating SQL statements in called subprograms, rather 
than in the main program. The initialization processing by SQL/DS is 
approximately proportional to the number of SQL statements involved. Your 
decision to locate SQL statements in subprograms will depend on the number of 
SQL statements, the frequency of subprogram invocation, and other 
application-dependent considerations. 

Using the Double-Byte Character Set (DBCS) 

If your program contains DBCS data representations, the following sequence of 
processing is necessary: 

• SQL/DS COBOL Preprocessor 

• COBOL Kanji Preprocessor 

• CICS/DOS/VS Translator, if necessary 

• COBOL Compiler. 

The COBOL Kanji preprocessor is a PRPQ that comes in two versions. The one 
for the VM/SP environment is OS/VS Utility Program -- Kanji, 5799-BBA (RPQ 
reference number 7F0095). 

The DBCS constant in SQL statements embedded in COBOL programs has the 
following format: 

G'so ... si' 

That is. SQL DBCS constants are used. 

Since they are not within the so/si delimiters, the letter G and the apostrophes (') 
are single-byte, EBCDIC characters, X'CT and X'7D' respectively. (The ellipsis, 
...• represents a DBCS string.) The left byte of a DBCS byte-pair must not be 
X'OF', since this would signal exit from DBCS encoding. The characters contained 
within the so/si delimiters can be of any bit configuration. but no mixed data 
(DBCS and EDCDIC) is allowed. That is, there must be an even number of bytes 
between the so and the si delimiters. In this form of the constant. the DBCS 
character for apostrophe (X'427D') is not doubled to obtain a single DBCS 
apostrophe character. as opposed to DBCS constants used in PL/I programs. 

414 SQL/Data System Application Programming for VM/SP 



The SQL/DS COBOL preprocessor does not support options for changing the 
encoding for the so/si characters. They must be defined as X'OE' and X'OF'. 

When the DBCS option is set to YES, SQL identifiers with DBCS characters can 
be used in SQL statements. For more information on SQL identifiers, see 
"General Rules for Naming Data Objects" on page 74. 

When the DBCS option is set to YES, both character string constants in SQL 
statements and character string constants in COBOL statements can contain DBCS 
strings which are enclosed by so and si. However, no DBCS string can span across 
a line in the program. An apostrophe (X'7D') in a DBCS string does not terminate 
a character string constant and does not have to be duplicated. Therefore, note 
that if there is a X'7D' between so and si in a character string constant in a 
COBOL statement, it cannot be correctly compiled by the COBOL compiler. 

Sal Error Handling 

The SQLCA return code structure that is required for SQL/DS can be declared in 
two ways: 

1. You may write: 

EXEC SQL INCLUDE SQLCA END-EXEC. 

in the Working-Storage Section of your source program. The SQL/DS 
preprocessor replaces this with a declaration of the SQLCA structure. 

2. You may declare the SQLCA yourself in the Working-Storage Section as 
shown in Figure 41. 

Appendix D. COBOL Considerations 415 



01 SQLCA. 
05 SQLCAID 
05 SQLCABC 
05 SQLCODE 
05 SQLERRM. 

49 SQLERRML 
49 SQLERRMC 

05 SQLERRP 
05 SQLERRD 

05 SQLWARN. 
10 SQLWARNO 
10 SQLWARN1 
10 SQLWARN2 
10 SQLWARN3 
10 SQLWARN4 
10 SQLWARN5 
10 8QLWARN6 
10 8QLWARN7 
10 SQLWARN8 
10 8QLWARN9 
10 SQLWARNA 

05 SQLEXT 

PIC X(8) . 
S9(9) COMPUTATIONAL. 
PIC 89(9) COMPUTATIONAL. 

PIC 89(4) COMPUTATIONAL. 
PIC X(70). 
PIC X(8) . 
OCCURS 6 TIME8 
PIC 89(9) COMPUTATIONAL. 

PIC X(1). 
PIC X(1). 
PIC X(1). 
PIC X ( 1 ) . 
PIC X (1) . 
PIC X(1). 
PIC X(1). 
PIC X ( 1 ) . 
PIC X ( 1 ) . 
PIC X ( 1) . 
PIC X (1) . 
PIC X(5). 

Figure 41. SQLCA Structure (in COBOL) 

A COBOL program containing SQL/DS statements must have a Working-Storage 
Section. The meanings of the fields within the SQLCA are discussed under "Error 
Handling" on page 202. 

In COBOL, the object of a GO TO in the SQL WHENEVER statement must be a 
section-name or an unqualified paragraph-name. 

Dynamic SQl Statements in COBOL 

The COBOL preprocessor does not support the DESCRIBE statement, and 
supports only Format 1 of the EXECUTE, OPEN, and FETCH statements. The 
SQLDA structure does not apply. 

For COBOL, the string-spec in PREP ARE and EXECUTE IMMEDIATE must be 
in the same format as the SQL V ARCHAR data type (you must set the proper 
length) or a quoted string. If a quoted string is used, its length is limited to 120 
characters (the maximum length allowed for COBOL constants). In addition, you 
cannot use a single (') or double e') quote within a COBOL constant that is the 
object of a PREP ARE or EXECUTE IMMEDIATE. 

416 SQL/Data System Application Programming for VM/SP 



Data Types 

Description SQL/DS Equivalent COBOL 
Keyword Declaration 

A binary integer of 31 bits, plus sign. INTEGER 01 PICTURE S9(9) 
COMPUTATIONAL. 

A binary integer of 15 bits, plus sign. SMALLINT 01 PICTURE S9(4) 
COMPUTATIONAL. 

A packed decimal number, precision m, scale DECIMAL(m[,n]) 01 PICTURE S9(p)[V9(q)] 
n (1 SmS 15 and OSnSm). In storage the COMPUTATIONAL-3. 
number occupies an even number of bytes up Where p + q = m and 
to a maximum of 8 bytes. Precision is the q=n 
total number of digits. Scale is the number of 
those digits that are to the right of the 
decimal point. 

A double-precision (8-byte) floating point FLOAT COMPUTATIONAL-2. 
number, in standard System/370 floating 
point format. 

A fixed-length character string of length n CHAR(n) 01 S PICTURE X(n). 
where n <= 254. 

A varying-length character string of VARCHAR(n) 01 S. 
maximum length n, where n <= 254. (Only 49 S-LENGTH 
the actual length is stored in the data base.) PICTURE S9( 4) 

COMPUTATIONAL. 
49 S-VALUE 

PICTURE X(n). 

A varying-length character string of LONG 01 S. 
maximum length 32767 bytes, subject to VARCHAR 49 S-LENGTH 
certain usage limitations. PICTURE S9(4) 

COMPUTATIONAL. 
49 S-VALUE 

PICTURE X(n). 

A fixed-length DBCS character string of n GRAPHIC(n) 01 GNAME PICTURE G(n) 
DBCS characters where n <= 127. USAGE DISPLAY-I. 

A varying-length DBCS character string of n V ARGRAPHIC(n) 01 GNAME. 
DBCS characters where n <= 127. 49GGLEN 

PICTURE S9(4) 
COMPUTATIONAL. 

49GGVAL 
PICTURE G(n). 
USAGE DISPLAY-I. 

Figure 42 (Part 1 of 2). SQL/DS Data Types for COBOL 

Appendix D. COBOL Considerations 417 



Description SQL/DS Equivalent COBOL 
Keyword Declaration 

A varying-length DBCS character string of LONG 01 XNAME. 
maximum length 16383, subject to certain VARGRAPHIC 49XNAMLEN 
usage limitations. PICTURE S9(4) 

COMPUTATIONAL. 
49XNAMVAL 

PICTURE G(n). 
USAGE DISPLA Y -1. 

Figure 42 (Part 2 of 2). SQL/DS Data Types for COBOL 

Notes: 

1. Level Number 77 (but not other levels) can be used in place of Level Number 
01 for all but V ARCHAR and V ARGRAPHIC data types. 

2. "USAGE" or "USAGE IS" is optional before "COMPUTATIONAL" and 
"DISPLA Y -1". 

3. "COMPUTATIONAL" can be abbreviated "COMP". "PICTURE" can be 
abbreviated "PIC". 

4. INTEGER and SMALLINT data types can have sliding ranges. For example, 
if you wish to declare a SMALLINT variable that you know will remain very 
small, you could use S9(2) instead of S9(4). Or, you could declare an integer 
with a range of S9(7) instead of S9(9). However, only the ranges shown in the 
above table allow for the largest possible values of SMALLINT and 
INTEGER. Truncation may occur if you elect to declare smaller ranges. 

5. For COMPUTATIONAL types, 9s may be repeated rather than using the 
repetition factors in parentheses (that is, 9999 instead of 9(4». The same is 
true for the Xs in the character types and Gs in the DBCS character types. 

6. The word "IS" can follow "PICTURE" or "PIC" to improve readability. 

7. In DECIMAL data types, precision is the total number of digits. Scale is the 
number of digits to the right of the decimal point. If an even precision is 
specified, SQL/DS assumes the next higher (odd) precision. 

8. When a VALUE clause is used for host variables of the form "PIC S9( 4) 
COMP", 9999 is the highest value accepted by COBOL. If you specify the 
COBOL NOTRUNC option, however, a value up the 32767 can be moved into 
the host variable. If host variables are to contain LONG V ARCHAR or 
LONG V ARGRAPHIC data where the length exceeds 9999, the NOTRUNC 
option must be set. 

418 SQL/Data System Application Programming for VM/SP 



Additional COBOL Program Example 

The following program is another example of how to embed SQL statements in a 
COBOL program. 

Sometimes the BETWEEN function causes performance problems because it does 
not have very good information on path selection. This program shows an 
alternate way of performing the BETWEEN function, when these performance 
problems exist. 

*********************************************************** 
* THIS IS A SAMPLE COBOL PROGRAM THAT PERFORMS THE * 
* BETWEEN FUNCTION USING DYNAMIC SQL STATEMENTS * 
* * * WHEN THE USER CODES A STATIC SQL STATEMENT USING * 
* HOST VARIABLES FOR THE BETWEEN FUNCTION, THE SQL/DS * 
* OPTIMIZER DOES NOT HAVE VERY GOOD INFORMATION FOR * 
* PATH SELECTION. THEREFORE, THE USER SHOULD USE * 
* SQL DYNAMIC STATEMENTS TO PERFORM THIS FUNCTION. * 
*********************************************************** 

IDENTIFICATION DIVISION. 
PROGRAM-ID. BETWDYNC. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SPECIAL-NAMES. 

C01 IS NEWPAGE. 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT OUT-FILE ASSIGN TO SYS008-UR-1403-S-0UT-FILE. 
DATA DIVISION. 
FILE SECTION. 
FD OUT-FILE 

LABEL RECORDS ARE OMITTED 
DATA RECORD IS PRINT-OUT. 

01 PRINT-OUT PIC X(130). 
WORKING-STORAGE SECTION. 

********************************************************* 
* HOST VARIABLE DECLARATION SECTION * 
********************************************************* 

EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
77 PARTNO PIC S9(4) COMPo 
77 QONHAND PIC S9(9) COMPo 
01 DESCR. 

49 DESCR-LEN PIC S9(4) COMPo 
49 DESCR-DATA PIC X(24). 

01 DESCR-IND PIC S9(4) COMPo 
01 USERID PIC X(8) VALUE 'SQLDBA . 
01 PASSW PIC X(8) VALUE 'SQLDBAPW'. 
01 ESTRING. 

49 E-LEN PIC S9(4) COMP VALUE +66. 
49 P1 PIC X(47) VALUE 

'SELECT * FROM INVENTORY WHERE QONHAND BETWEEN' 
49 P2 PIC 9999999. 
49 P3 PIC XeS) VALUE' AND '. 
49 P4 PIC 9999999. 
EXEC SQL END DECLARE SECTION END-EXEC. 
EXEC SQL INCLUDE SQLCA END-EXEC. 

01 DECODED-SQLCODE PIC --------999. 
01 ARRAY-SQLERRD. 

02 DECODED-SQLERRD PIC --------999 OCCURS 6 TIMES. 

Appendix D. COBOL Considerations 419 



01 
01 
01 

INDX2 PIC S9(l) SYNC USAGE IS COMPo 
R15 PIC -9999. 
INVENTORY-HEADINGS. 
02 FILLER PIC 
02 FILLER PIC 
02 FILLER PIC 
02 FILLER PIC 
02 FILLER PIC 
02 FILLER PIC 
02 FILLER PIC 

X VALUE SPACES. 
X(23) VALUE SPACES. 
X(6) VALUE 'PARTNO'. 
X(3) VALUE SPACES. 
X(11) VALUE 'DESCRIPTION'. 
X(17) VALUE SPACES. 
X(7) VALUE 'QNOHAND'. 

01 INVENTORY-UNDERLINE. 
02 FILLER PIC 
02 FILLER PIC 
02 FILLER PIC 
02 FILLER PIC 
02 FILLER PIC 
02 FILLER PIC 
02 FILLER PIC 

01 INVENTORY-STRUC. 
02 FILLER 
02 PARTNO-S 
02 FILLER 
02 DESCR-S 
02 FILLER 
02 QONHAND-S 

01 END-MSG. 

PIC 
PIC 
PIC 
PIC 
PIC 
PIC 

X VALUE SPACES. 
X(23) VALUE SPACES. 
X(6) VALUE' 
X(3) VALUE S~P~A~C~E~S-. 

X(11) VALUE' 
X (17) VALUE S::-PA""""C":""CE=-S-.---
X(7) VALUE ' __ _ 

X(24) VALUE SPACES. 
ZZZZZ9. 
X(3) VALUE SPACES. 
X (24) . 
X(2) VALUE SPACES. 
ZZZZZZZZ9. 

02 FILLER PIC X(20) VALUE SPACES. 
02 FILLER PIC X(17) VALUE 'END OF ANSWER SET'. 

PROCEDURE DIVISION. 
OPEN OUTPUT OUT-FILE. 
EXEC SQL WHENEVER SQLERROR GO TO ERRCHK END-EXEC. 
EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC. 
EXEC SQL WHENEVER NOT FOUND GO TO END-DATA END-EXEC. 
EXEC SQL CONNECT :USERID IDENTIFIED BY :PASSW END-EXEC. 
MOVE RETURN-CODE TO R15. 

GET-RANGE-VALUES. 
********************************************************** 
* THERE ARE MANY WAYS TO GET THE RANGE VALUES FOR * 
* THE BETWEEN FUNCTION INTO YOUR PROGRAM. THIS * 
* PROGRAM WILL SIMPLE MOVE VALUES INTO THE DATA * 
* STRING OF THE SQL COMMAND. * 
********************************************************** 

MOVE 75 TO P2. 
MOVE 100 TO P4. 

PREPARE-REEQUEST. 
EXEC SQL PREPARE STATl FROM :ESTRING END-EXEC. 

DECLARE-CURSOR. 
EXEC SQL DECLARE Cl CURSOR FOR STATl END-EXEC. 

OPEN-CURSOR. 
EXEC SQL OPEN Cl END-EXEC. 
MOVE RETURN-CODE TO R15. 
WRITE PRINT-OUT FROM INVENTORY-HEADINGS 

AFTER ADVANCING NEWPAGE. 
WRITE PRINT-OUT FROM INVENTORY-UNDERLINE 

AFTER ADVANCING O. 
GET-NEXT. 

MOVE SPACES TO DESCR-DATA. 
EXEC SQL FETCH Cl INTO :PARTNO, : DESCR:DESCR-IND, :QONHAND 

END-EXEC. 
MOVE PART NO TO PARTNO-S IN INVENTORY-STRUC. 
IF DESCR-IND < 0 THEN MOVE 'NULL DATA' TO DESCR-S 

IN INVENTORY-STRUC 
ELSE IF DESCR-LEN = 0 THEN MOVE 'ZERO LENGTH' TO DESCR-S 

IN INVENTORY-STRUC 
ELSE MOVE DESCR-DATA TO DESCR-S IN INVENTORY-STRUC. 

MOVE QONHAND TO QONHAND-S IN INVENTORY-STRUC. 

420 SQL/Data System Application Programming for VM/SP 



WRITE PRINT-OUT FROM INVENTORY-STRUC AFTER ADVANCING 1. 
GO TO GET-NEXT. 

END-DATA. 
EXEC SQL COMMIT WORK END-EXEC. 
WRITE PRINT-OUT FROM END-MSG AFTER ADVANCING NEWPAGE. 
CLOSE OUT-FILE. 
MOVE 0 TO RETURN-CODE. 
STOP RUN. 

ERRCHK. 
***************************************************************** 
* THE FOLLOWING ROUTINE PRINTS THE SQLCA STRUCTURE: * 
* * 
* - SQLCODE SQL RETURN CODE * 
* - SQLERRM SQL ERROR MESSAGE * 
* SQLERRP MODULE DETECTING ERROR * 
* - SQLERRD INTERNAL ERROR VALUES * 
* - SQLWARN SQL WARNING STRUCTURE * 
* * 
***************************************************************** 

DISPLAY '*********************************' 
DISPLAY '* PROGRAM ERROR ROUTINE ENTERED *' 
DISPLAY '* CHECK SYSPRINT FOR ERROR CODES*' 
DISPLAY '* CHANGES WILL BE BACKED OUT *' 
DISPLAY '*********************************' 
MOVE SQLCODE TO DECODED-SQLCODE. 
DISPLAY 'PROGRAM ERROR ROUTINE ENTERED' . 
DISPLAY' *******' 
DISPLAY 'SQLCODE 'DECODED-SQLCODE. 
DISPLAY 'SQLERRM 'SQLERRMC. 
DISPLAY 'SQLERRP 'SQLERRP. 

UPON 
UPON 
UPON 
UPON 
UPON 

CONSOLE. 
CONSOLE. 
CONSOLE. 
CONSOLE. 
CONSOLE. 

PERFORM ERRD VARYING INDX2 FROM 1 BY 1 UNTIL INDX2 
IF SQLWARNO NOT EQUAL 'w' 

7. 

THEN GO TO BACKOUT, 
ELSE DISPLAY 'SQLWARNO: 

DISPLAY 'SQLWARN1: 
DISPLAY 'SQLWARN2: 
DISPLAY 'SQLWARN3: 
DISPLAY 'SQLWARN4: 
DISPLAY 'SQLWARN5: 
DISPLAY 'SQLWARN6: 
DISPLAY 'SQLWARN7: 
DISPLAY 'SQLWARN8: 
DISPLAY 'SQLWARN9: 
DISPLAY 'SQLWARNA: 
GO TO BACKOUT. 

, SQLWARNO, 
, SQLWARN1, 
, SQLWARN2, 
, SQLWARN3, 
, SQLWARN4, 
, SQLWARN5, 
, SQLWARN6, 
, SQLWARN7, 
, SQLWARN8, 
, SQLWARN9, 
, SQLWARNA, 

ERRD. MOVE SQLERRD (INDX2) TO DECODED-SQLERRD (INDX2). 
DISPLAY 'SQLERRD', INDX2, ': " DECODED-SQLERRD (INDX2). 

BACKOUT. 
***************************************************************** 
* 'WHENEVER' RESET TO 'CONTINUE' IN THE EVENT THAT THE ROLLBACK * 
* WORK STATEMENT FAILS TO AVOID LOOP IN ERROR ROUTINE. * 
***************************************************************** 

EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
EXEC SQL ROLLBACK WORK END-EXEC. 
MOVE 12 TO RETURN-CODE. 
STOP RUN. 

Appendix D. COBOL Considerations 421 



422 SQL/Data System Application Programming for VM/SP 



Appendix E. Assembler Considerations 

This appendix contains a sample programs that illustrates the use of SQL within 
Assembler language. Following the sample are specific rules for using SQL in 
Assembler language. 

Acquiring the SQLDSECT Area 

The assembler preprocessor puts all the variables and structures it generates within 
a DSECT named SQLDSECT. The preprocessor also generates a variable, called 
SQLDSIZ, that contains the length of the SQLDSECT DSECT in bytes. Thus, for 
all Assembler programs, you must provide an area of size SQLDSIZ, zero the area, 
and provide addressability to the SQLDSECT DSECT. 

You must use the CMS DMSFREE macro GETMAIN (CMS OS/VS program) or 
GETVIS (CMS VSE program) to acquire storage. Note that SQLDSIZ is in bytes 
and that you need the length in doublewords. Figure 43 shows sample 
pseudo-code that can be used to acquire the SQLDSECT area. 

TESTNAME CSECT 
STM 14, 1 2, 1 2 ( 1 3 ) 
BALR regx,O 
USING *,regx 
LA regy,7(O,O) 
A regy,SQLDSIZ 
SRL regy,3 
(save computed doubleword length for DMSFRET) 
LR O,regy 
DMSFREE DWORDS=(O) 
LR regz, 1 
USING SQLDSECT,regz 
(add code to zero the area) 

• 
• 
• 

(add code to free storage via DMSFRET) 
END 

This area is needed only until the program is finished executing 
all SQL statements, at which time the area should be freed (DMSFRET). 

Figure 43. Acquiring the SQLDSECT Area for VM!SP Applications 

Appendix E. Assembler Considerations 423 



If you know the approximate size of the SQLDSECT that will be generated in your 
program, you can define an area (AREA DS CLxxxx) within your program and use 
this as your SQLDSECT area. Your program will not be re-entrant if you use this 
method. 

The preprocessor generates the code to calculate SQLDSIZ directly in front of the 
last statement in the source program. It is recommended that the last statement be 
an END statement. 

If the Assembler preprocessor is run with the CHECK option, SQLDSECT and 
SQLDSIZ will not be generated. Errors will occur if you attempt to assemble the 
output generated by the preprocessor when the CHECK option is specified. See 
"Preprocessing and Running the Program" on page 183 in Chapter 2 for more 
information about preprocessor parameters. 

Note that you must provide a save area for all Assembler programs. 

Perfonnance Considerations for the SQLDSECT Area 

There are two performance considerations about the SQLDSECT area that you 
should be aware of: 

1. Acquire and clear the SQLDSECT area only once. 

The example shown in Figure 43 assumes that the TESTNAME is entered 
once. If TESTNAME is a subroutine of a mainline module, and if 
TESTNAME is invoked many times, you should acquire the SQLDSECT in the 
mainline module. The following is an example of how this may be done: 

a. In TESTNAME add an entry card as follows: 

ENTRY SQLDSIZ 

This allows the field containing the size information for the SQLDSECT 
area to be accessed externally. 

b. The mainline module can now access the size information using the 
following sequence: 

L regy,=V(SQLDSIZ) GET POINTER TO FIELD CONTAINING SIZE 
L O,O(,regy) SET LENGTH 
GETVIS ADDRESS=(l),LENGTH=(O) 
LR regy,l SAVE POINTER TO SQLDSECT 
(Zero the SQLDSECT area.) 

c. When the mainline module calls TESTNAME, it should pass the pointer to 
the SQLDSECT. Assuming that regy still contains the pointer, 
TESTNAME simply issues the appropriate USING as follows: 

424 SQL/Data System Application Programming for VM/SP 



TESTNAME CSECT 
STM 14, 1 2 , 1 2 ( 1 3 ) 
BALR regx,O 
USING SQLDSECT,regy 
• 
• 

Depending on how many times TESTNAME is invoked, the above could 
be an important performance consideration. Using the technique reduces 
the path length because you only need to get, clear, and free storage once. 
Further, the cleared SQLSECT area serves as a "first pass" flag for the 
SQL/DS batch/ICCF and CMS resource managers. Thus, by letting the 
mainline module initialize the SQLSECT area only once, you further avoid 
significant SQL/DS resource manager "first pass" processing. 

2. Provide only one SQLDSECT area. 

If you structure an application so that the mainline module invokes several 
modules that each contain SQL commands, you need to provide only one 
SQLDSECT area. The area that you provide must be the largest SQLDSECT 
area. For example, suppose the mainline module invokes MODA and MODB, 
each of which contain SQL commands. MODA and MODB have different 
SQLDSECT area requirements. The mainline module must satisfy the larger of 
the two requirements. 

By inserting the following into MODA and MODB you could allow the 
mainline module to calculate the SQLDSECT area requirement: 

INTO MODA: INTO MODB: 

MODADSIZ DC A(SQLDSIZ) 
ENTRY MODADSIZ 

MODBDSIZ DC A(SQLDSIZ) 
ENTRY MODBDSIZ 

• 
• 

• 
• 

The mainline module could reference the above entries and provide for the 
maximum SQLDSECT area. The following shows how, for example, the 
mainline module could determine the requirement of MODA: 

L regy,=V(MODADSIZ) 
L regy, 0 ( , regy) 
L O,O(,regy) 

GET POINTER TO POINTER FIELD 
GET POINTER TO FIELD CONTAINING SIZE 
SET LENGTH. 

The same technique could be used to access the SQLDSIZ of MODB. Given 
the two SQLDSIZ values, the mainline module should provide for a 
SQLDSECT area equal in size to the greater SQLDSIZ value. 

By using only one SQLDSECT area for your application, you reduce the 
storage requirement and minimize the "first pass" processing. 

Appendix E. Assembler Considerations 425 



ARISASMC -- Assembler Sample Program 

ARISASMC is an Assembler language sample program for VM/SP systems. The 
source code of these programs begins on the next page. You can learn most of the 
rules for using SOL within Assembler language just by scanning through these 
programs. Note, in particular, how the programs satisfy the requirements of the 
application prolog and epilog. Near the beginning of the programs, all the host 
variables are declared, the SOLDSECT area is acquired (and set to zero), error 
handling is defined, and a connection is established with SOL/OS. Near the logical 
end of the programs, the data base changes are committed. (The connection to 
SOL/OS is implicitly released on program termination.) Note that the INCLUDE 
SOLCA statement is also near the end of the programs. This is possible because 
the Assembler preprocessor is a two-pass operation. 

Observe that all SOL statements must be preceded by "EXEC SOL". There is no 
trailing delimiter in Assembler. 

The OS and DC statements for the host variables were determined by referring to 
Figure 46 at the end of this appendix; This figure gives the Assembler 
representation for each of the seven SOL/OS data types supported by Assembler 
programs. When you are coding your own applications you'll need to obtain the 
data types of the columns that your host variables interact with. This can be done 
either by consulting the person who created the table, or by querying the SOL/OS 
catalogs. The SOL/OS catalogs are described in the SQL/ Data System Planning 
and Administration for VM / SP manual. 

426 SQL/Data System Application Programming for VM/SP 



********************************************************************** 
* * * SAMPLE PROGRAM FOR VM/SP ARISASMC * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

PURPOSE: 

DESCRIPTION: 

PREREQUISITE: 

* 
* 

THIS PROGRAM SERVES TWO PURPOSES: * 
1. IT IS AN EXAMPLE FOR HOW TO IMBED SQL * 

STATEMENTS IN AN ASSEMBLER PROGRAM. * 
2. IT CAN BE USED TO TEST SOME BASIC SQL * 

STATEMENTS FROM AN APPLICATION PROGRAM. * 

* THIS PROGRAM GENERATES A SAMPLE ORDER FOR * 
THE PARTS 315 AND 301 IF QONHAND IS LESS * 
THAN 1000 AND 700 RESPECTIVELY AND IF * 
QONORDER IS ZERO. THE TABLE QUOTATIONS * 
IS UPDATED ACCORDINGLY. PART 315 IS * 
ORDERED FROM THE COMPANY THAT SELLS IT * 
FOR THE LOWEST PRICE, PART 301 FROM THE * 
COMPANY WITH THE SHORTEST DELIVERY TIME. * 

AT THE END OF THE PROGRAM PART 320 IS 
DELETED FROM THE DATA BASE. 

THE SQL/DS SAMPLE TABLES MUST BE CREATED 
AND LOADED. 

* 
* 
* 
* 
* 
* * * 

* OUTPUT PRODUCED: 1. AN EXECUTION BEGIN AND END MESSAGE IS * 
* PRINTED AND DISPLAYED AT THE BEGIN * 
* AND END OF PROGRAM EXECUTION. * 
* 2. ALL TABLES ARE PRINTED WITH THEIR ORIGI- * 
* NAL CONTENTS. * 
* 3. A SAMPLE ORDER IS PRINTED. * 
* 5. THE CONTENTS OF ALL TABLES ARE PRINTED * 
* AFTER THE UPDATE / DELETE STEP. * 
* 6. UNEXPECTED RETURN CODE: * 
* AN ERROR MESSAGE IS ISSUED TOGETHER * 
* WITH THE SQLCA-INFORMATION AND CHANGES * 
* ARE BACKED OUT. * 
* * 
********************************************************************** 

EJECT 
*********************************************************************** 
*+++++++++++++++ SAMPLE PROGRAM ARISASMC +++++++++++++++++++++++++++++* 
*********************************************************************** 

* SAMPA 

* 

PRINT NOGEN 

START 
STM 
BALR 
USING 
B 

X'OO' 
R14,R12,D12(R13) 
R7,0 
*,R7,R11,R12 
SOOO 

SAVE REGISTERS 
LOAD BASE REGISTER 
ESTABL~SH ADDRESSABILITY 
BRANCH AROUND CONSTANTS 

*********************************************************************** 
* ++ DECLARE HOST VARIABLES * 
*********************************************************************** 
* EXEC SQL BEGIN DECLARE SECTION 

* PARTNO DS H SMALLINTEGER 

* * THE DESCRIPTION COLUMN IS DEFINED AS VARCHAR(24) IN THE INVENTORY 
* TABLE. SQL/DS WILL CONVERT THE DATA TO FIXED LENGTH AND TRUNCATE 
* ANYTHING OVER 10 CHARACTERS WHEN THE DESCR HOST VARIABLE IS USED. 
* DESCR DS 
QONHAND DS 
SUPPNO DS 

CL10 
F 
H 

CHARACTER 
INTEGER 
SMALL INTEGER 

Appendix E. Assembler Considerations 427 



NAME DS CL15 CHARACTER 
ADDRESS DS H,CL35 VARCHAR 
TIME DS H SMALL INTEGER 
QONORDER DS F INTEGER 
PRICE DS PL6'999999999.99' DECIMAL(11,2) 
ID DC CL8'SQLDBA' USER ID 
PASSW DC CL8'SQLDBAPW' PASS~'iORD 

* 
EXEC SQL END DECLARE SECTION 

* 
* 
SOOO LA Rll,XFFF(R7) LOAD BASE REGISTER 

LA Rll,Dl(Rl1) LOAD BASE REGISTER 
LA R 1 2 i XFFF (R 1 1 ) LOAD BASE REGISTER 
LA R12,Dl (R12) LOAD BASE REGISTER 

* 
*********************************************************************** 
* ++ SET UP SAVE AREA POINTERS * 
*********************************************************************** 

* 

* 

ST 
LA 
ST 
LR 

R13,SAVEO+D4 
R9,SAVEO 
R9,D8(R13) 
R 13 ,R9 

STORE BACKWARD POINTER TO SAVEAREA 
R9:=ADDR(NEW SAVE AREA) 
STORE FORWARD POINTER TO SAVE AREA 
R13:=ADDR(NEW SAVE AREA) 

*********************************************************************** 
* ++ OPEN PRINT FILE AND PRINT START MESSAGE * 
*********************************************************************** 

* 
* 
* 

* 

OPEN PRINTER AND CONSOLE FILE 
OPEN (PRFILE, (OUTPUT) ,CSFILE, (OUTPUT)) 

PUT 
MVI 
BAL 

CSFILE,OUTAREA 
OUTCNTR,SKIP3 
R9,PRINT 

TYPE 'SAMPLE PROGR. EXECUTING' 
SKIP3 
PRINT 'SAMPLE PROGR. EXECUTING' 

*********************************************************************** 
* ++ GET VIRTUAL STORAGE FOR SQL/DS AND INITIALIZE IT TO ZERO * 
*********************************************************************** 

* 

* 
S005 

SOlO 

* 
* 

LA R1,7(0,0) COMPUTE SIZE OF STORAGE IN DWORDS. 
A R 1, SQLDSIZ 
SRL R1,3 
ST Rl,DSIZE 
LR RO,R1 
DMSFREE DWORDS=(O) 
LTR R15,R15 TEST IF RETURN CODE 
BZ S005 NO RETURN CODE 
MVC OUTAREA(L'MSG01),MSG01 MOVE MESSAGE TO OUTPUT AREA 
BAL R9,PRINT PRINT 'DMSFREE FAILED' 
B SAMPTRM TERMINATE 

LR 
USING 
LR 
MVI 
LA 
BCT 

R6,Rl 
SQLDSECT,R6 
R4,RO 
DO(R1) ,X'OO' 
R1,D1(Rl) 
R4,S010 

R6:=ADDR(DMSFREE AREA) 
ESTABLISH ADDRESSABILITY 
R4:=LENGH OF DMSFREE SPACE 
CLEAR THE AREA 
INCREMENT R1 
LOOP 

* PROGRAM WILL IGNORE WARNINGS SINCE THEY WILL NOT AFFECT RESULTS * 

* 
* 

EXEC SQL WHENEVER SQLWARNING CONTINUE 
EXEC SQL WHENEVER SQLERROR GOTO SQLERR 
EXEC SQL WHENEVER NOT FOUND GOTO SQLERR 

428 SQL/Data System Application Programming for YM/SP 



MVC MSG02C,FUNCl MOVE FUNCTION IN CASE OF AN ERROR 
EXEC SQL CONNECT :10 IDENTIFIED BY :PASSW 

* *********************************************************************** 
* ++ PRINT THE THREE TABLES * 
*******************************************************************.*** 
* 

* 

BAL 
BAL 
BAL 

R8, INVENT 
R8,QUOT 
R8,SUPPL 

PRINT TABLE INVENTORY 
PRINT TABLE QUOTATIONS 
PRINT TABLE SUPPLIERS 

*********************************************************************** 
* ++ FIND MINIMUM PRICE FOR PART NUMBER 315. * 
* THE FOLLOWING SELECT STATEMENT RETURNS THE MINIMUM PRICE OF * 
* ALL OCCURRENCES OR PART NUMBER 315 WITH QONHAND LESS THAN 100* 
* QUNORDER ZERO. AS PRICE IS A COLUMN IN QUOTATIONS AND QONHAND* 
* A COLUMN IN INVENTORY THE TWO TABLES HAVE TO BE LINKED * 
* VIA A JOIN BETWEEN THE PART NUMBERS IN INVENTORY AND THOSE * 
* IN QUOTATIONS. NO CURSOR IS USED BECAUSE THE STATEMENT RE- * 
* TURNS ONLY ONE ROW. * 
*********************************************************************** 
* 

* 

MVC 
EXEC SQL 

MSG02C,FUNC2 MOVE FUNCTION IN CASE OF AN ERROR 
SELECT MIN (PRICE) 

INTO :PRICE 
FROM INVENTORY, QUOTATIONS 
WHERE INVENTORY.PARTNO = 315 AND 

QONHAND < 1000 AND 
INVENTORY.PARTNO QUOTATIONS.PARTNO AND 
QONORDER = 0 

**********************************¥************************************ 
* ++ RETRIEVE DATA OF PART 315 FOR THE SAMPLE ORDER. * 
* THE FOLLOWING SELECT STATEMENT RETRIEVES DATA THAT WILL BE * 
* USED FOR PRINTING A SAMPLE ORDER FOR PART 315 WITH THE * 
* LOWEST PRICE. THE STATEMENT CONTAINS TWO JOIN CONDITIONS * 
* BECAUSE DATA FROM ALL THEE TABLES IS REQUIRED. * 
*********************************************************************** 
* 

MVC 
EXEC SQL 

MSG02C,FUNC3 MOVE FUNCTION IN CASE OF AN ERROR 
SELECT INVENTORY.PARTNO, DESCRIPTION, QONHAND, PRICE, 

NAME, ADDRESS, QUOTATIONS.SUPPNO 
INTO :PARTNO,:DESCR,:QONHAND,:PRICE,:NAME,:ADDRESS, 

:SUPPNO 
FROM INVENTORY, QUOTATIONS, SUPPLIERS 
WHERE INVENTORY.PARTNO = 315 AND 

INVENTORY.PARTNO = QUOTATIONS.PARTNO AND 
PRICE = :PRICE AND 
QUOTATIONS.SUPPNO = SUPPLIERS.SUPPNO 

* 
*********************************************************************** 
* ++ STORE OUTPUT OF ABOVE SQL STATEMENT INTO THE OUTPUT AREA * 
* FOR PRINTING AND CONVERT THE DATA IF NECESSARY. * 
*********************************************************************** 
* 

USING 
LA 
MVC 
MVC 
L 
CVD 
UNPK 
01 
MVC 
LH 
BCTR 

DSECT4,Rl0 ESTABLISH ADDRESSABILITY 
Rl0,FLDl Rl0:=ADDR(SECOND OUTPUT AREA) 
D4PART,=C' 1000 'NUMBER OF PARTS TO BE ORDERED 
D4DESCR(L'DESCR),DESCR MOVE DESCRIPTION INTO OUTP AREA 
R3,QONHAND R3:=QUANTITY ON HAND 
R3,CVDFLD CONVERT TO DECIMAL 
D4QONH,CVDFLD UNPACK FOR PRINT 
D4QONH+L'D4QONH-Dl,XFO ERASE THE SIGN 
D4NAME,NAME SAVE NAME 
R3,ADDRESS R3:=LENGTH OF ACTUAL ADDRESS 
R3,RO R3:=R3-1 

* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 

Appendix E. Assembler Considerations 429 



S020 

* 

EX 
MVC 
UNPK 
01 
MVC 
MVI 
MVC 
MP 
UNPK 
01 
MVC 
MVI 

R3,S020 ADJUST LENGTH FIELD IN MVC 
D4ADDR(LO),ADDRESS+L2 SAVE ADDRESS 
D4PRICE,PRICE UNPACK PRICE 
D4PRICE+L'D4PRICE-Dl,XFO ERASE SIGN 
D4PRICE-Dl (L'D4PRICE-L2),D4PRICE SPACE FOR DECIMAL POINT 
D4PRICE+L'D4PRICE-D3,C'.' INSERT DECIMAL POINT 
PRICE1,PRICE SAVE PRICE 
PRICE1,=P'1000' CALCULATE SUM 
D4TOTAL,PRICE1 UNPACK TOTAL 
D4TOTAL+L'D4TOTAL-D1,XFO ERASE SIGN 
D4TOTAL-D1 (L'D4TOTAL-L2),D4TOTAL SPACE FOR DECIMAL POINT 
D4TOTAL+L'D4TOTAL-D3,C' .' INSERT DECIMAL POINT 

*********************************************************************** 
* ++ UPDATE QONORDER FOR PART 315 IN TABLE QUOTATIONS. * 
* 1000 PARTS WILL BE ORDERED. * 
*********************************************************************** 
* 

MSG02C,FUNC4 MOVE FUNCTION IN CASE OF AN ERROR MVC 
EXEC SQL UPDATE QUOTATIONS SET QONORDER = 1000 * 

WHERE PARTNO :PARTNO AND * 
QONORDER = 0 AND PRICE = :PRICE AND SUPPNO = :SUPPNO 

* 
*********************************************************************** 
* ++ FIND MINIMUM DELIVERY TIME FOR PART 301 * 
* THE FOLLOWING SELECT STATEMENT RETURNS THE MINIMUM DELIVERY * 
* TIME OF ALL OCCURRENCES OF PART NUMBER 301 WITH QONHAND LESS * 
* THAN 700 AND QONORDER ZERO. AS DELIVERY TIME IS A COLUMN IN * 
* QUOTATIONS AND QONHAND A COLUMN IN INVENTORY THE TWO TABLES * 
* HAVE TO BE LINKED VIA A JOIN BETWEEN THE PART NUMBERS IN * 
* QUOTATIONS AND THOSE IN INVENTORY. * 
*********************************************************************** 
* 

* 

MVC 
EXEC SQL 

MSG02C,FUNC5 MOVE FUNCTION IN CASE OF AN ERROR 
SELECT MIN (DELIVERY_TIME) 

INTO :TIME 
FROM INVENTORY, QUOTATIONS 
WHERE INVENTORY.PARTNO = 301 AND 

QONHAND < 700 AND 
INVENTORY.PARTNO QUOTATIONS.PARTNO AND 
QONORDER = 0 

*********************************************************************** 
* ++ RETRIEVE DATA OF PART 301 FOR THE SAMPLE ORDER. * 
* THE FOLLOWING SELECT STATEMENT RETRIEVES DATA THAT WILL BE * 
* USED FOR PRINTING A SAMPLE ORDER FOR PART 301 WITH THE * 
* LOWEST PRICE. THE STATEMENT CONTAINS TWO JOIN CONDITIONS * 
* BECAUSE DATA FROM ALL THEE TABLES IS REQUIRED. * 
*********************************************************************** 
* 

* 

MVC 
EXEC SQL 

MSG02C,FUNC6 MOVE FUNCTION IN CASE OF AN ERROR 
SELECT INVENTORY.PARTNO, DESCRIPTION, QONHAND, PRICE, 

NAME, ADDRESS, QUOTATIONS.SUPPNO 
INTO :PARTNO,:DESCR,:QONHAND,:PRICE,:NAME,:ADDRESS, 

:SUPPNO 
FROM INVENTORY, QUOTATIONS, SUPPLIERS 
WHERE INVENTORY.PARTNO = 301 AND 

INVENTORY.PARTNO = QUOTATIONS.PARTNO AND 
DELIVERY TIME = :TIME AND 
QUOTATIONS.SUPPNO = SUPPLIERS.SUPPNO 

*********************************************************************** 
* ++ UPDATE QONORDER FOR PART 301 IN TABLE QUOTATIONS. * 
* 700 PARTS WILL BE ORDERED. * 
*********************************************************************** 
* 

430 SQL/Data System Application Programming for VM/SP 

* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 



* 

MVC 
EXEC SQL 

MSG02C,FUNC7 MOVE FUNCTION IN CASE OF AN ERROR 
UPDATE QUOTATIONS SET QONORDER = 700 

WHERE PARTNO = :PARTNO AND QONORDER = 0 AND 
DELIVERY TIME = :TIME AND SUPPNO = :SUPPNO 

*********************************************************************** 
* ++ WRITE A SAMPLE ORDER FOR PART 301 AND 315 * 
*********************************************************************** 

* S035 

* 

* 

MVI 
MVC 
BAL 
MVI 
MVC 
BAL 
MVC 
BAL 

MVC 
MVI 
BAL 

OUTCNTR,PAGE SET PRINTER CONTROL CHARACTER 
OUTAREA(L'MSG03),MSG03 MOVE MSG TO OUTPUTAREA 
R9,PRINT PRINT 'SAMPLE ORDER ... ' 
OUTCNTR,SKIP3 SET PRINTER CONTROL CHARACTER 
OUTAREA(L'MSG04),MSG04 MOVE MSG TO OUTPUTAREA 
R9,PRINT PRINT 1. HEADING 
OUTAREA(L'MSG05) ,MSG05 MOVE MSG TO OUTPUTAREA 
R9,PRINT PRINT 2. HEADING 

OUTAREA,FLD1 
OUTCNTR,SKIP2 
R9,PRINT 

MOVE OUTPUT OF FIRST SELECT STMT 
SET PRINTER CONTROL CHARACTER 
PRINT OUTPUT OF FIRST SELECT STMT 

*********************************************************************** 
* ++ STORE OUTPUT OF ABOVE SQL STATEMENT INTO THE OUTPUT AREA * 
* FOR PRINTING AND CONVERT THE DATA IF NECESSARY. * 
*********************************************************************** 

* 

S040 

* 

LA 
MVC 
MVC 
L 
CVD 
UNPK 
01 
MVC 
LH 
BCTR 
EX 
MVC 
UNPK 
01 
MVC 
MVI 
MP 
UNPK 
01 
MVC 
MVI 
MVI 
BAL 

R10,OUTAREA R10:=ADDR(SECOND OUTPUT AREA) 
D4PART,=C' 700 'NUMBER OF PARTS TO BE ORDERED 
D4DESCR(L'DESCR) ,DESCR MOVE DESCRIPTION INTO OUTP AREA 
R3,QONHAND R3:=QUANTITY ON HAND 
R3,CVDFLD CONVERT TO DECIMAL 
D4QONH,CVDFLD UNPACK FOR PRINT 
D4QONH+L'D4QONH-D1,XFO ERASE THE SIGN 
D4NAME, NAME SAVE NAME 
R3,ADDRESS R3:=ACTUAL LENGTH OF ADDRESS 
R3,RO R3:=R3-1 
R3,S040 ADJUST LENGTH FIELD IN MVC 
D4ADDR(LO) ,ADDRESS+L2 SAVE ADDRESS, OMIT LENGTH FIELD 
D4PRICE,PRICE UNPACK PRICE 
D4PRICE+L'D4PRICE-D1,XFO ERASE SIGN 
D4PRICE-D1 (L'D4PRICE-L2),D4PRICE SPACE FOR DECIMAL POINT 
D4PRICE+L'D4PRICE-D3,C'.' INSERT DECIMAL POINT 
PRICE,=P'700' CALCULATE SUM 
D4TOTAL,PRICE UNPACK PRICE 
D4TOTAL+L'D4TOTAL-D1,XFO ERASE SIGN 
D4TOTAL-Dl (L'D4TOTAL-L2) ,D4TOTAL SPACE FOR DECIMAL POINT 
D4TOTAL+L'D4TOTAL-D3,C'.' INSERT DECIMAL POINT 
OUTCNTR,SKIP2 SET PRINTER CONTROL CHARACTER 
R9,PRINT PRINT OUTPUT OF SECOND SELECT STMT 

*********************************************************************** 
* ++ DELETE PART 320 FROM TABLE INVENTORY * 
*********************************************************************** 
* 

MVC MSG02C,FUNC8 MOVE FUNCTION IN CASE OF AN ERROR 
EXEC SQL DELETE FROM INVENTORY WHERE PARTNO = 320 

* 
*********************************************************************** 
* ++ DELETE PART 320 FROM TABLE QUOTATIONS * 
*********************************************************************** 
* 

MVC MSG02C,FUNC9 MOVE FUNCTION IN CASE OF AN ERROR 
EXEC SQL DELETE FROM QUOTATIONS WHERE PARTNO = 320 

* 
*********************************************************************** 
* ++ PRINT THE THREE TABLES * 

* 
* 

Appendix E. Assembler Considerations 431 



*********************************************************************** 
* 

* 
* 

MVC MSG07+L'MSG07-L'MSG16(L'MSG16),MSG16 'AFTER CHANGE' 
MVC MSGOB+L'MSGOB-L'MSG16(L'MSG16),MSG16 'AFTER CHANGE' 
BAL RB,INVENT PRINT TABLE INVENTORY 
BAL RB,QUOT PRINT TABLE QUOTATIONS 
BAL RB,SUPPL PRINT TABLE SUPPLIERS 

* ++ COMMIT ALL CHANGES THAT HAVE BEEN MADE IN THE DATA BASE 
* 

* 

MVC MSG02C,FUNC10 
EXEC SQL COMMIT WORK 

MOVE FUNCTION IN CASE OF AN ERROR 

*********************************************************************** 
* ++ PRINT END MESSAGE, RESTORE REGISTERS AND TERMINATE * 
*********************************************************************** 
* 
S050 

* 

MVC 
PUT 
MVI 
BAL 

OUTAREA(L'MSG06) ,MSG06 MOVE MESSAGE TO OUTPUT AREA 
CSFILE,OUTAREA TYPE 'ARISASMC COMPLETED SUCCESSF.' 
OUTCNTR,SKIP3 SET PRINTER CONTROL CHARACTER 
R9,PRINT PRINT 'ARISASMC COMPLETED SUCCESSF.' 

SAMPEND CLOSE (CSFILE"PRFILE) 
L RO,DSIZE 
LR Rl,R6 
DMSFRET DWORDS=(O) ,LOC=(l) 

SAMPTRM L R13,SAVEO+D4 R13:=ADDR(SAVE AREA) 
LM R14,R12,D12(R13) RELOAD REGISTERS 
BR R14 -- END OF PROGRAM --

* 
*********************************************************************** 
* +++++ THE FOLLOWING ROUTINE PRINTS THE TABLE INVENTORY ++++++++++* 
*********************************************************************** 
* EXEC SQL WHENEVER NOT FOUND CONTINUE 

* *********************************************************************** 
* ++ PRINT HEADINGS FOR TABLE INVENTORY * 
*********************************************************************** 
* 
INVENT 

* 

* 

* 

MVI 
MVC 
BAL 

USING 
LA 
MVC 
MVC 
MVC 
MVI 
BAL 

MVC 
MVC 
MVC 
BAL 

OUTCNTR,PAGE PRINTER CONTROL CHARACTER 
OUTAREA(L'MSG07) ,MSG07 MOVE MSG TO OUTPUT AREA 
R9,PRINT PRINT 'PRINTOUT OF TABLE INVENTORY' 

DSECT1,Rl0 ESTABLISH ADDRESSABILITY 
Rl0,OUTAREA Rl0:=ADDR(OUTAREA) 
D1PART,=C'PARTNO' MOVE TO OUTPUT AREA 
D1DESCR,=C'DESCRIPTION' MOVE TO OUTPUT AREA 
D1QONH,=C'QONHAND 'MOVE TO OUTPUT AREA 
OUTCNTR,SKIP3 SKIP 3 
R9,PRINT PRINT HEADING 

D1PART,UNDERSC 
D1DESCR,UNDERSC 
D1QONH,UNDERSC 
R9,PRINT 

MOVE TO OUTPUT AREA 
MOVE TO OUTPUT AREA 
MOVE TO OUTPUT AREA 
PRINT HEADING 

*********************************************************************** 
* ++ DECLARE AND OPEN CURSOR FOR SUBSEQUENT FETCH OF ALL ROWS * 
* IN TABLE INVENTORY * 
*********************************************************************** 
* EXEC SQL DECLARE Cl CURSOR FOR 

SELECT PARTNO, DESCRIPTION, QONHAND 
FROM INVENTORY 

432 SQL/Data System Application Programming for VM/SP 

* 
* 
* 



* 

* 

ORDER BY PARTNO 

MVC MSG02C,FUNCll 
EXEC SQL OPEN Cl 

MOVE FUNCTION IN CASE OF AN ERROR 

*********************************************************************** 
* ++ FETCH AND PRINT A ROW OF TABLE INVENTORY AND REPEAT UNTIL * 
* RETURN CODE +100 (END OF DATA) COMES UP. * 
*********************************************************************** 

* INVENT05 MVC MSG02C,FUNC12 MOVE FUNCTION IN CASE OF AN ERROR 

* 

* 

* 

* 

EXEC SQL FETCH C1 INTO :PARTNO, :DESCR, :QONHAND 

CLC 
BE 

LH 
CVD 
UNPK 
01 
MVC 
L 
CVD 
UNPK 
01 

BAL 
B 

SQLCODE,FD100 
INVENT20 

TEST IF END OF DATA 
END OF DATA 

R3,PARTNO R3:=PARTNO 
R3,CVDFLD CONVERT TO DECIMAL 
D1PART,CVDFLD UNPACK FOR PRINT 
D1PART+L'D1PART-D1,XFO ERASE THE SIGN 
D1DESCR(L'DESCR),DESCRMOVE TO OUTPUT AREA 
R3,QONHAND R3:=QONHAND 
R3,CVDFLD CONVERT TO DECIMAL 
D1QONH,CVDFLD UNPACK FOR PRINT 
D1QONH+L'D1QONH-Dl,XFO ERASE THE SIGN 

R9,PRINT 
INVENT05 

PRINT ROW 
READ NEXT ROW 

INVENT20 MVC MSG02C,FUNC13 
EXEC SQL CLOSE Cl 

MOVE FUNCTION IN CASE OF AN ERROR 

BR R8 RETURN 

* 
* 
*********************************************************************** 
* +++++ THE FOLLOWING ROUTINE PRINTS THE TABLE QUOTATIONS ++++++++++* 
*********************************************************************** 

* 
* 
*********************************************************************** 
* ++ PRINT HEADINGS FOR TABLE QUOTATIONS * 
*********************************************************************** 

* 
QUOT 

* 

* 

* 

MVI 
MVC 
BAL 

USING 
LA 
MVC 
MVC 
MVC 
MVC 
MVC 
MVI 
BAL 

MVC 
MVC 
MVC 
MVC 
MVC 
BAL 

OUTCNTR,PAGE PRINTER CONTROL CHARACTER 
OUTAREA(L'MSG08) ,MSG08 MOVE MSG TO OUTPUT AREA 
R9,PRINT PRINT 'PRINTOUT OF TABLE QUOTATIONS' 

DSECT3,Rl0 ESTABLISH ADDRESSABILITY 
Rl0,OUTAREA R10:=ADDR(OUTAREA) 
D3SUPPNO,=C'SUPPNO' MOVE TO OUTPUT AREA 
D3PART,=C'PARTNO' MOVE TO OUTPUT AREA 
D3PRICE,=C'PRICE 'MOVE TO OUTPUT AREA 
D3TIME,=C'DELIVERY TIME' MOVE TO OUTPUT AREA 
D30RDER,=C'QONORDER 'MOVE TO OUTPUT AREA 
OUTCNTR,SKIP3 SKIP 3 
R9,PRINT PRINT HEADING 

D3SUPPNO,UNDERSC MOVE TO OUTPUT AREA 
D3PART,UNDERSC MOVE TO OUTPUT AREA 
D3PRICE,UNDERSC MOVE TO OUTPUT AREA 
D3TIME,UNDERSC MOVE TO OUTPUT AREA 
D30RDER,UNDERSC MOVE TO OUTPUT AREA 
R9,PRINT PRINT HEADING 

*********************************************************************** 
* ++ DECLARE AND OPEN CURSOR FOR SUBSEQUENT FETCH OF ALL ROWS * 
* IN TABLE QUOTATIONS * 

Appendix E. Assembler Considerations 433 



*********************************************************************** 
* 

* 

* 

EXEC SQL DECLARE C2 CURSOR FOR * 
SELECT SUPPNO, PARTNO, PRICE, DELIVERY_TIME, QONORDER * 

FROM QUOTATIONS * 
ORDER BY SUPPNO, PARTNO 

MVC MSG02C,FUNC14 
EXEC SQL OPEN C2 

MOVE FUNCTION IN CASE OF AN ERROR 

*********************************************************************** 
* ++ FETCH AND PRINT A ROW OF TABLE QUOTATIONS AND REPEAT UNTIL * 
* RETURN CODE +100 (END OF DATA) COMES UP. * 
*********************************************************************** 
* QUOTOS MVC MSG02C,FUNC1S MOVE FUNCTION IN CASE OF AN ERROR 

EXEC SQL FETCH C2 INTO :SUPPNO, :PARTNO, :PRICE, :TIME, :QONORDER 
* 

* 

* 

* 

CLC 
BE 

LH 
CVD 
UNPK 
01 
LH 
CVD 
UNPK 
01 
UNPK 
01 
MVC 
MVI 
LH 
CVD 
UNPK 
01 
L 
CVD 
UNPK 
01 

BAL 
B 

SQLCODE,FD100 
QUOT20 

TEST IF END OF DATA 
END OF DATA 

R3,SUPPNO R3:=PARTNO 
R3,CVDFLD CONVERT TO DECIMAL 
D3SUPPNO,CVDFLD UNPACK FOR PRINT 
D3SUPPNO+L'D3SUPPNO-D1,XFO ERASE THE SIGN 
R3,PARTNO R3:=PARTNO 
R3,CVDFLD CONVERT TO DECIMAL 
D3PART,CVDFLD UNPACK FOR PRINT 
D3PART+L'D3PART-D1,XFO ERASE THE SIGN 
D3PRICE,PRICE UNPACK PRICE 
D3PRICE+L'D3PRICE-D1,XFO ERASE THE SIGN 
D3PRICE-D1 (L'D3PRICE-L2) ,D3PRICE SPACE FOR DECIMAL POINT 
D3PRICE+L'D3PRICE-D3,C' .' INSERT DECIMAL POINT 
R3,TIME R3:=TIME 
R3,CVDFLD CONVERT TO DECIMAL 
D3TIME,CVDFLD UNPACK FOR PRINT 
D3TIME+L'D3TIME-D1,XFO ERASE THE SIGN 
R3,QONORDER R3:=QONORDER 
R3,CVDFLD CONVERT TO DECIMAL 
D30RDER,CVDFLD UNPACK FOR PRINT 
D30RDER+L'D30RDER-D1,XFO ERASE THE SIGN 

R9,PRINT 
QUOTOS 

PRINT ROW 
READ NEXT ROW 

QUOT20 MVC MSG02C,FUNC16 
EXEC SQL CLOSE C2 

MOVE FUNCTION IN CASE OF AN ERROR 

BR R8 RETURN 

* 
* 
*********************************************************************** 
* +++++ THE FOLLOWING ROUTINE PRINTS THE TABLE SUPPLIERS ++++++++++* 
*********************************************************************** 
* 
* 
*********************************************************************** 
* ++ PRINT HEADINGS FOR TABLE SUPPLIERS * 
*********************************************************************** 
* SUPPL 

* 

MVI 
MVC 
BAL 

OUTCNTR,PAGE PRINTER CONTROL CHARACTER 
OUTAREA(L'MSG09),MSG09 MOVE MSG TO OUTPUT AREA 
R9,PRINT PRINT 'PRINTOUT OF TABLE SUPPLIERS' 

USING DSECT2,R10 ESTABLISH ADDRESSABILITY 
LA R10,OUTAREA R10:=ADDR(OUTAREA) 
MVC D2SUPPNO,=C'SUPPNO' MOVE TO OUTPUT AREA 

434 SQL/Data System Application Programming for VM/SP 



MVC 
MVC 
MVI 
BAL 

* 
MVC 
MVC 
MVC 
BAL 

* 

D2NAME(L4) ,=C'NAME' MOVE TO OUTPUT AREA 
D2ADDR(L7) ,=C'ADDRESS' MOVE TO OUTPUT AREA 
OUTCNTR,SKIP3 PRINTER CONTROL CHARACTER 
R9,PRINT PRINT HEADING 

D2SUPPNO,UNDERSC 
D2NAME,UNDERSC 
D2ADDR,UNDERSC 
R9,PRINT 

MOVE TO OUTPUT AREA 
MOVE TO OUTPUT AREA 
MOVE TO OUTPUT AREA 
PRINT HEADING 

*********************************************************************** 
* ++ DECLARE AND OPEN CURSOR FOR SUBSEQUENT FETCH OF ALL ROWS * 
* IN TABLE SUPPLIERS * 
*********************************************************************** 

* 
EXEC SQL DECLARE C3 CURSOR FOR 

* 

SELECT SUPPNO, NAME, ADDRESS 
FROM SUPPLIERS 
ORDER BY SUPPNO 

MVC MSG02C,FUNC17 
EXEC SQL OPEN C3 

MOVE FUNCTION IN CASE OF AN ERROR 

* 
*********************************************************************** 
* ++ FETCH AND PRINT A ROW OF TABLE SUPPLIERS AND REPEAT UNTIL * 
* RETURN CODE +100 (END OF DATA) COMES UP. * 
*********************************************************************** 

* SUPPL05 MVC MSG02C,FUNC18 MOVE FUNCTION IN CASE OF AN ERROR 
EXEC SQL FETCH C3 INTO :SUPPNO, : NAME, :ADDRESS 

* 

* 

SUPPL15 

* 

* 

CLC 
BE 

LH 
CVD 
UNPK 
01 
MVC 
LH 
BCTR 
EX 
MVC 

BAL 
B 

SQLCODE,FD100 
SUPPL20 

TEST IF END OF DATA 
END OF DATA 

R3,SUPPNO R3:=PARTNO 
R3,CVDFLD CONVERT TO DECIMAL 
D2SUPPNO,CVDFLD UNPACK FOR PRINT 
D2SUPPNO+L'D2SUPPNO-D1,XFO ERASE THE SIGN 
D2NAME(L'NAME),NAME MOVE TO OUTPUT AREA 
R3,ADDRESS R3:=LENGTH OF ACTUAL ADDRESS 
R3,RO R3:=R3-1 
R3,SUPPL15 ADJUST LENGTH FIELD IN MVC 
D2ADDR(LO),ADDRESS+L2 SAVE ADDRESS 

R9,PRINT 
SUPPL05 

PRINT ROW 
READ NEXT ROW 

SUPPL20 MVC MSG02C,FUNC19 
EXEC SQL CLOSE C3 

MOVE FUNCTION IN CASE OF AN ERROR 

BR R8 RETURN 
* 
*********************************************************************** 
*+++++++++ THE FOLLOWING ROUTINE ELIMINATES LEADING ZEROES AND ++++++* 
*+++++++++ PRINTS ONE LINE ON THE PRINTER. ++++++* 
*********************************************************************** 
* PRINT LA R1,L'OUTAREA R1:=LENGTH(OUTPUT AREA) 

LA R3,OUTAREA R3:=ADDR(OUTPUT AREA) 
* PRZ05 CLI DO(R3),CB FIND FIRST NONBLANK CHARACTER 

BNE PRZ15 FOUND 
PRZ10 LA R3,D1(R3) R3:=ADDR(NEXT BYTE IN OUTAREA) 

BCT R1,PRZ05 REPEAT UNTIL END OF OUTAREA 
B PRINT 1 PRINT LINE 

* PRZ15 CLI DO(R3) ,CO TEST IF LEADING ZERO 
BNE PRZ20 NOT LEADING ZERO 

* 
* 
* 

Appendix E. Assembler Considerations 435 



CLI 01 (R3) , CB TEST IF LAST ZERO 
BE PRZ10 LAST ZERO, DON'T BLANK 
MVI DO(R3),CB ERASE LEADING ZERO 
B PRZ10 TEST NEXT BYTE 

* 
PRZ20 LA R3,D1 (R3) R3:=ADDR(NEXT BYTE IN OUTAREA) 

BCT R1,PRZ25 REPEAT UNTIL END OF OUTAREA 
B PRINT1 PRINT LINE 

* 
PRZ25 CLI DO(R3),CB TEST IF BLANK 

BNE PRZ20 NOT BLANK 
B PRZ10 GO, FIND NEXT NUMBER 

* 
PRINT1 PUT PRFILE,OUTCNTR PRINT LINE 

MVI OUTCNTR,CB PREPARE FOR NEXT INSTRUCTION 
MVC OUTAREA,OUTAREA-D1 CLEAR OUTPUT AREA 
MVI OUTCNTR,SKIPl SET CONTROL CHARACTER FOR PRINTER 
BR R9 RETURN 

* 
*********************************************************************** 
*++++++++++ THE FOLLOWING ROUTINE PRINTS THE SQLCA STRUCTURE +++++++++* 
*********************************************************************** 
* 
SQLERR 

* 

MVI 
MVC 
BAL 

OUTCNTR,SKIP2 SKIP 2 
OUTAREA(L'MSG02),MSG02 MOVE MESSAGE TO OUTPUT AREA 
R9,PRINT PRINT 'SQL ERROR OCCURED ... ' 

*********************************************************************** 
* ++ PRINT SQLCODE * 
*********************************************************************** 
* 

PR05 

* 

L 
CVD 
UNPK 
TM 
BZ 
MVI 
01 
MVC 
BAL 

R1,SQLCODE Rl:= ERROR CODE 
R1,CVDFLD CONVERT SQLCODE TO DECIMAL 
MSG10B,CVDFLD UNPACK SQLCODE FOR PRINT 
MSG10B+L'MSG10B-D1,Xl0 TEST IF NEGATIVE 
PR05 POSITIVE ERROR CODE 
MSG10B,MINUS MOVE MINUS SIGN BEFORE SQL CODE 
MSG10B+L'MSG10B-Dl,XFO ERASE ORIGINAL SIGN 
OUTAREA(L'MSG10),MSG10 MOVE MESSAGE TO OUTPUT AREA 
R9,PRINT PRINT 'SQLCODE: XXX X , 

*********************************************************************** 
* ++ PRINT SQLERRM * 
*********************************************************************** 

* MVC MSGllB,SQLERRM+D2 MOVE SQLERRM, OMIT THE LENGTH FIELD 
MVC OUTAREA(L'MSG11),MSG11 MOVE MESSAGE TO OUTPUT AREA 
BAL R9,PRINT PRINT 'SQLERRM: XXXXXX' 

* 
*********************************************************************** 
* ++ PRINT SQLERRP * 
*********************************************************************** 
* MVC MSG12B,SQLERRP MOVE ROUTINE NAME INTO MESSAGE 

MVC OUTAREA(L'MSG12) ,MSG12 MOVE MESSAGE TO OUTPUT AREA 
BAL R9,PRINT PRINT 'SQLERRP: XXXXXX' 

* 
*********************************************************************** 
* ++ PRINT SQLERRD * 
*********************************************************************** 
* 

* 
PR10 

LA RO,SQLERRD+ERRDLEN RO:=END OF DIAGNOSTIC FIELDS 
LA Rl,SQLERRD R1:=ADDR(FIRST DIAGNOSTIC FIELD) 
LA R2,MSG13B R2:=ADDR(DIAGNOSTIC AREA IN MESSAGE) 

L R3,DO(R1) R3:= DIAGNOSTIC INFORMATION 

436 SQL/Data System Application Programming for VM/SP 



PR11 

* 

* 

CVD 
UNPK 
TM 
BZ 
MVI 
01 
MVI 
LA 
LA 
CR 
BL 

R3,CVDFLD 
DO(L4,R2) ,CVDFLD 
D3(R2),X10 
PR 11 
DO(R2) ,MINUS 
D3(R2) ,XFO 
D4(R2) ,CB 
R 1 , D4 (R 1 ) 
R2,D5(R2) 
R1,RO 
PR10 

CONVERT DIAGNOSTIC INFO TO DECIMAL 
UNPACK DIAGNOSTIC INFO FOR PRINT 
TEST IF NEGATIVE 
POSITIVE ERROR CODE 
MOVE MINUS SIGN BEFORE VALUE 
ERASE THE SIGN 
PUT BLANK BETWEEN VALUES 
R1:=ADDR(NEXT DIAGNOSTIC FIELD) 
R2:=ADDR(NEXT DIAG FLD IN MESSAGE) 
TEST IF ALL FLDS HAVE BEEN CONVERTED 
NO, TAKE NEXT FIELD 

MVC OUTAREA(L'MSG13) ,MSG13 MOVE MESSAGE TO OUTPUT AREA 
BAL R9,PRINT PRINT 'SQLERRD: XXX XXX XXX ... ' 

*********************************************************************** 
* ++ PRINT SQLWARN * 
*********************************************************************** 

* 

* 
PR15 

PR20 

* PR25 

* 
EXEC 

* 
PR30 

* 
* 

CLI 
BE 
MVC 
LA 
LA 

SQLWARNO,CB 
PR25 
MSG14B,SQLWARN 
R1,L11 
R2,MSG14B 

TEST FOR WARNINGS 
NO WARNINGS 
MOVE WARNINGS INTO MESSAGE 
R1:=LENGTH OF WARNING FIELDS 
R2:=ADDR(MESSAGE) 

CLI DO(R2),CB TEST IF WARNING EXISTS FOR THIS FLD 
BNE PR20 YES, WARNING 
MVI DO(R2) ,C'.' MARK THE POSITION 
BCT R1,PR15 LOOP EIGHT TIMES 
MVC OUTAREA(L'MSG14) ,MSG14 MOVE MESSAGE TO OUTPUT AREA 
BAL R9,PRINT PRINT 'SQLWARN: XXXXXXXXXXX' 

CLC 
BE 

MSG02C,FUNC20 
PR30 

MVC MSG02C,FUNC20 
SQL ROLLBACK WORK 

TEST IF ERROR DURING ROLLBACK 
TERMINATE TO AVOID LOOP 

MOVE FUNCTION IN CASE OF AN ERROR 

MVC OUTAREA(L'MSG15) ,MSG15 MOVE MESSAGE INTO OUTPUT AREA 
PUT CSFILE,OUTAREA TYPE 'SAMPLE PROGRAM UNSUCCESSFUL' 
MVI OUTCNTR,SKIP3 SET PRINTER CONTROL CHARACTER 
BAL R9,PRINT WRITE 'SAMPLE PROGRAM UNSUCCESSFUL' 
B SAMPEND GO TO END OF JOB 

* 
*********************************************************************** 
*+++++++++++++++++++++ EQUATES AND CONSTANTS +++++++++++++++++++++++++* 
*********************************************************************** 

* RO 
R1 
R2 
R3 
R4 
R5 
R6 
R7 
R8 
R9 
R10 
R 11 
R12 
R13 
R14 
R 15 

* 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 

Appendix E. Assembler Considerations 437 



DO 
D1 
D2 
D3 
D4 
D5 
DS 
D12 

* LO 
L2 
L4 
L7 
L11 
* 
XFO 
X10 
XFFF 
* CB 
CO 
MINUS 
SKIP1 
SKIP2 
SKIP3 
PAGE 
* DSIZE 
* 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

DS 

FO DC 
FD100 DC 
FD501 DC 
PRICE1 DS 
UNDERSC DC 
* SAVEO 

* FUNC1 
FUNC2 
FUNC3 
FUNC4 
FUNC5 
FUNC6 
FUNC7 
FUNCS 
FUNC9 
FUNC10 
FUNC11 
FUNC12 
FUNC13 
FUNC14 
FUNC15 
FUNC16 
FUNC17 
FUNC1S 
FUNC19 
FUNC20 
* 

DS 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

OUTCNTR DC 
OUTAREA DC 
FLD1 DC 
* 
CVDFLD 
* MSG01 

DS 
DC 

DC 

o 
1 
2 
3 
4 
5 
S 
12 

o 
2 
4 
7 
11 

X'FO' 
X' 10' 
X'FFF' 

C' , 
C'O' 
C'-' 
C' , 
C'O' 
C'-' 
C'1 ' 

F 

F'O' 
A ( 100) 
A (501 ) 
PL6 

DISPLACEMENT 
DISPLACEMENT 
DISPLACEMENT 
DISPLACEMENT 
DISPLACEMENT 
DISPLACEMENT 
DISPLACEMENT 
DISPLACEMENT 

LENGTH 
LENGTH 
LENGTH 
LENGTH 
LENGTH 

HEX NUMBER, MASK 
HEX NUMBER, MASK 
HEX NUMBER, MASK 

CHAR, BLANK 
CHAR, NULL 
CHAR 
PRINTER CONTR CHR 'SPACE 1 AND WRITE' 
PRINTER CONTR CHR 'SPACE 2 AND WRITE' 
PRINTER CONTR CHR 'SPACE 3 AND WRITE' 
PRINTER CONTR CHR SKIP TO NEXT PAGE 

RETURN CODE 
RETURN CODE 
RETURN CODE 
SAVE AREA FOR PRICE 

C'-----------------------------------' 
32F SAVE AREA 

C'CONNECT *** 
C'SELECT MIN 315 **' 
C'SELECT 315 *** 
C'UPDATE 315 *** 
C'SELECT MIN 301 **' 
C'SELECT 301 *** 
C'UPDATE 301 *** 
C'DELETE INV 320 **' 
C'DELETE QUO 320 **' 
C'COMMIT WORK *** 
C'OPEN INV *** 
C'FETCH INV *** 
C'CLOSE INV *** 
C'OPEN QUO *** 
C'FETCH QUO *** 
C'CLOSE QUO *** 
C'OPEN SUPP *** 
C'FETCH SUPP *** 
C'CLOSE SUPP *** 
C'ROLLBACK WORK ***' 

C' , PRINTER CONTROL CHARACTER 
CL130'*** SAMPLE PROGRAM ARISASMC EXECUTING ***' 
CL 130' , SECOND OUTPUTAREA 

OD 
PLS'O' 

ALIGNMENT FOR NEXT FIELD 
FIELD USED FOR CVD INSTRUCTION 

C'*** DMSFREE FAILED ***' 

438 SQL/Data System Application Programming for VM/SP 



* 
MSG02A 
MSG02B 
MSG02C 

MSG02 

* MSG03 

* 
MSG04 

MSG05 

MSG06 

MSG07 

MSG08 

MSG09 

* MSG10A 
MSG10B 

MSG10 

MSGllA 
MSGllB 

MSGll 

* MSG12A 
MSG12B 

MSG12 

* MSG13A 
MSG13B 
MSG13C 
MSG13D 
MSG13E 
MSG13F 
MSG13G 

MSG13 

* 
MSG14A 
MSG14B 

MSG14 

* MSG15 

* MSG16 

* 

DC 
DC 
DS 
ORG 
DS 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 
DS 
ORG 
DS 
SPACE 
DC 
DS 
ORG 
DS 

DC 
DS 
ORG 
DS 

DC 
DS 
DS 
DS 
DS 
DS 
DS 
ORG 
DS 

DC 
DS 
ORG 
DS 

DC 

DC 

C'*** SQL ERROR OCCURRED' 
C'FUNCTION = ' 
CL (L' FUNC1) 
MSG02A 
CL (L'MSG02A+L 'MSG02B+L'MSG02C) 

C' * * * SAM P L E 
PAR T S 301 AND 3 

o R D E R 
5 * * *' 

FOR * 

C'NUMBER OF DESCRIPTION 
COMPANY ADDRESS 

QUANTITY COMPANY NAME * 
PRICE PER TOTAL' 

C' PARTS ON HAND * UNIT COSTS' 
C'*** SAMPLE PROGRAM ARISASMC COMPLETED SUCCESSFULLY **** 

C' *** PRINTOUT OF TABLE INVENTORY UNCHANGED* 
*** 
C' *** PRINTOUT OF TABLE QUOTATION* 
S UNCHANGED *** 
C' *** PRINTOUT OF TABLE SUPPLIER* 
S UNCHANGED ***' 

C' SQLCODE : ' 
CL4 
MSG10A 
CL(L'MSG10A+L'MSG10B) 

C ' SQLERRM : ' 
CL70 
MSGllA 
CL(L'MSGllA+L'MSGllB) 

C ' SQLERRP : ' 
CL8 
MSG12A 
CL(L'MSG12A+L'MSG12B) 

C'SQLERRD: ' 
CL5 
CL5 
CLS 
CLS 
CLS 
CLS 
MSG13A 
CL(L'MSG13A+L'MSG13B+L'MSG13C+L'MSG13D+L'MSG13E+L'MSGl3F* 
+L'MSG13G) 

C ' SQLWARN : ' 
CL11 
MSG14A 
CL(L'MSG14A+L'MSG14B) 

C'*** EXECUTION OF SAMPLE PROGRAM ARISASMC UNSUCCESSFUL * 
***' 

C'AFTER MODIFICATION ***' 

CSFILE DCB DDNAME=SYSCON,DSORG=PS,LRECL=130,MACRF=PM,RECFM=F 
SPACE 

PRFILE DCB DDNAME=SYSPRT,DSORG=PS,LRECL=131,MACRF=PM,RECFM=FBA 
SPACE 
EXEC SQL INCLUDE SQLCA 

ERRDLEN EQU 6*L'SQLERRD 
SPACE 3 

DSECTl DSECT 

Appendix E. Assembler Considerations 439 



DS 
D1PART DS 

DS 
D1DESCR DS 

DS 
D1QONH DS 

SPACE 
DSECT2 DSECT 

DS 
D2SUPPNO DS 

DS 
D2NAME DS 

DS 
D2ADDR DS 

SPACE 
DSECT3 DSECT 

DS 
D3SUPPNO DS 

DS 
D3PART DS 

DS 
D3PRICE DS 

DS 
D3TIME DS 

DS 
D30RDER DS 

* 
DSECT4 

D4PART 

D4DESCR 

D4QONH 

D4NAME 

D4ADDR 

D4PRICE 

D4TOTAL 

DSECT 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
END 

CL20 
CL6 
CL2 
CL 11 
CL2 
CL 11 
3 

CL20 
CL6 
CL2 
CL1S 
CL2 
CL3S 
3 

CL20 
CL6 
CL2 
CL6 
CL2 
CL7 
CL2 
CL13 
CL2 
CL 11 

CL3 
CL4 
CLS 
CL 11 
CL3 
CL6 
CLS 
CL1S 
CL2 
CL3S 
CL2 
CL8 
CL2 
CL8 

PARTNUMBER FIELD WITHIN INVENTORY 

DESCRIPTION FIELD WITHIN INVENTORY 

QONHAND FIELD WITHIN INVENTORY 

SUPPNO FIELD WITHIN SUPPLIERS 

NAME FIELD WITHIN SUPPLIERS 

ADDRESS FIELD WITHIN SUPPLIERS 

SUPPNO FIELD WITHIN QUOTATIONS 

PARTNUMBER FIELD WITHIN QUOTATIONS 

PRICE FIELD WITHIN QUOTATIONS 

TIME FIELD WITHIN QUOTATIONS 

QONORDER FIELD WITHIN QUOTATIONS 

PARTS FIELD IN OUTPUT AREA 

DESCRIPTION FIELD IN OUTPUT AREA 

QONHAND FIELD IN OUTPUT AREA 

NAME FIELD IN OUTPUT AREA 

ADDRESS FIELD IN OUTPUT AREA 

PRICE FIELD IN OUTPUT AREA 

TOTAL COST FIELD IN OUTPUT AREA 

440 SQL/Data System Application Programming for VM/SP 



Rules for Using SQl in Assembler 

This section lists, for your reference, all the rules for embedding SQL statements 
within an Assembler program. 

Note: OPSYN and ICTL Assembler statements may not be used. 

Declaring Host Variables 

Col. 
I 
I 
I 

The following example shows an SQL declare section for an Assembler program: 

Col. 72 
I 
I 
I 

LABEL EXEC SQL BEGIN DECLARE SECTION 
AA DS F 
BB DC H' 3' comment 
* comment card or 
* comment section 
CC DC CL80 I xxxx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xxxx * 
XYZ DSECT 
DD DS 
EE DS 
FF DS 

ORG 
GG DS 
HH DS 

* 
II DS 
JJ DC 
KK DS 
LL DS 
LABEL2 EXEC 

xxxx ............... xxxxx' 

D 
CLS 
H,CL40 
FF 
H 
CL40 comment 

continued comment 
PLS 
PLS ' 123.4S' 
OH 
CL12 

SQL END DECLARE SECTION comment 

The above example illustrates the following rules: 

1. All assembler variables that are to be used in SQL statements must be 
declared, and their declarations must appear within one or more sections that 
begin with 

EXEC SQL BEGIN DECLARE SECTION 

and end with 

EXEC SQL END DECLARE SECTION 

Each of these two statements must be totally contained on one line. Note that 
there is no semicolon delimiter at the end of the SQL statements. There may 
be a label on either of the statements, and comments are allowed after the 
statements. 

Appendix E. Assembler Considerations 441 



2. Comments are allowed on any statement within the host variable declare ...,J 
section. Also, comment line images (* in column 1) are allowed in the declare 
section. 

3. The Assembler preprocessor processes the line(s) in the declare section as 
follows: 

a. If there is no label, the preprocessor ignores the line and goes on to the 
next. 

b. If there is a label, but the opcode is not DS or DC, the preprocessor 
ignores the line and goes on to the next. 

c. If there is a label and a DS or DC opcode, the operand is checked. The 
operand must be an acceptable data type as shown in the Figure 46 on 
page 446. Here are some examples: 

F 
F'5' 
H 
H' 100' 
CL255 
CL5'ABCDE' 
H,CL5 
H'S' ,CLS'ABCDE' 
D 
D'2.SE10' 
PL2 
PL5'123.45' 
H,CL32767 

The first character of the operand may also be 0 and used as follows: 

OH 
OF 
OD 
OC 

In this case, the line is ignored and the next line is processed. 

If there are no errors at this stage, the variable is validly defined as a host 
variable. If there are errors, the line is flagged as an error, and the next 
line is processed. 

4. Continuations are allowed by using a non-blank character in column 72 and 
beginning the next line in column 16. 

5. The declare section can be anywhere that a normal DS or DC can be used. 
Because the SQL/DS assembler preprocessor is a two-pass operation, the 
declare section can come after the SQL statements that use the host variables. 

6. There can be more than one host variable declare section in a program. 

442 SQL/Data System Application Programming for VM/SP 



Embedding SQl Statements 

The following are the rules for embedding SQL statements within Assembler 
programs: 

1. Each SQL statement must be preceded by "EXEC SQL", which must be on 
the same line. Only blanks can appear between the "EXEC" and "SQL". 
There must not be a semicolon (;) delimiter on the SQL statement. 

2. The first line of an SQL statement can have a label beginning in column 1. If 
there is no label, the SQL statement must begin in column 2 or greater. 

3. Continuations are allowed by placing a non-blank character in column 72 and 
beginning the next line in column 16. 

4. No comments or comment lines are allowed within an SQL statement. Any 
comments are considered part of the SQL statement. 

5. Avoid using labels or variable names that begin with SQL, ARI, or RDI. Also 
avoid names beginning with PID, PBC, PA, PB, PC, PD, PE, PL, or PN where 
these letters are followed by numbers. These names may conflict with names 
generated by the assembler preprocessor. 

Using the INCLUDE Command 

To include external secondary input, specify: 

EXEC SQL INCLUDE text-name 

at the point in the source code where the secondary input is to be included. 
Text-name is the filename of a CMS file with an "ASMCOPY" filetype, located on 
a CMS minidisk accessed by the user. 

The INCLUDE command must be completely contained on one line. There may 
be a label on the command, and comments are allowed after the command. 

Using Host Variables in SQl Statements 

When you place host variables within an SQL statement, you must precede each 
such variable with a colon (:). The colon distinguishes the host variables from the 
SQL identifiers (such as PARTNO). When the same variable is used outside of an 
SQL statement, do not use a colon. 

A host variable can represent a data value, but not an SQL identifier. For example, 
you cannot assign a character constant, such as 'MUSICIANS', to a host variable, 
and then use that host variable in a CREATE TABLE statement to represent the 
table name. This pseudo-code sequence is invalid: 

TT = 'MUSICIANS' 
CREATE TABLE :TT (NAME ... 

I Incorrect I 

Appendix E. Assembler Considerations 443 



Using Double-Byte Character Set (DBCS) Constants 

The Assembler Preprocessor does not support either DBCS constants or host 
program variables except through dynamically defined statements. With 
dynamically defined statements you can access DBCS data, using an SQLDA for 
question mark (?) parameters and using DBCS-type codes defined for the SQLDA 
structure. In addition, hexadecimal constants can be used for DBCS data 
representation in SQL statements. 

If the DBCS option is set to YES, embedded SQL statements can contain character 
string constants and identifiers with DBCS characters enclosed by so and si. 

SQL Error Handling 

There are two ways to declare the return code structure (called SQLCA): 

1. You may write: 

EXEC SQL INCLUDE SQLCA 

in your source program. The SQL/DS preprocessor replaces this with a 
declaration of the SQLCA structure. 

2. You may declare the SQLCA directly as shown in Figure 44. 

SQLCA DS OF 
SQLCAID DS CL8 
SQLCABC DS F 
SQLCODE DS F 
SQLERRM DS H,CL70 
SQLERRP DS CL8 
SQLERRD DS 6F 
SQLWARN DS OC 
SQLWARNO DS C 
SQLWARN1 DS C 
SQLWARN2 DS C 
SQLWARN3 DS C 
SQLWARN4 DS C 
SQLWARN5 DS C 
SQLWARN6 DS C 
SQLWARN7 DS C 
SQLWARN8 DS C 
SQLWARN9 DS C 
SQLWARNA DS C 
SQLEXT DS CL5 

Figure 44. SQLCA Structure (in Assembler) 

You must not declare the SQLCA within the SQL declare section. The 
meaning of the fields is explained under "Error Handling" on page 202. 

444 SQL/Data System Application Programming for VM/SP 



Dynamic SQl Statements in Assembler 

An SQLDA structure may be required for dynamically executed SQL statements. 
There are two ways to declare the SQLDA structure: 

1. You may write: 

EXEC SQL INCLUDE SQLDA 

in your source program. The SQL/DS preprocessor replaces this with a 
declaration of the SQLDA structure. 

2. You may declare the SQLDA directly as shown in Figure 45. 

SQLDA DSECT 
SQLDAID DS CL8 
SQLDABC DS F 
SQLN DS H 
SQLD DS H 
SQLVAR DS OF 
SQLVARN DSECT 
SQLTYPE DS H 
SQLLEN DS OH 
SQLPRSCN DS CL1 
SQLSCALE DS CL1 
SQLDATA DS A 
SQLIND DS A 
SQLNAME DS H,CL30 
&SYSECT CSECT 

Figure 45. SQLDA Structure (in Assembler) 

The SQLDA structure must not be declared within an SQL declare section. When 
you specify INCLUDE SQLDA, the Assembler preprocessor generates a CSECT 
statement at the end of the SQLDA. This CSECT is generated with the name of 
the CSECT currently active in your program. 

You must not specify a constant string on a PREPARE or EXECUTE 
IMMEDIATE statement. You can only specify a variable defined as a 
variable-length character string: 

EXEC SQL PREPARE S1 FROM :STRING1 
EXEC SQL EXECUTE IMMEDIATE :STRING1 

• 
• 
• 

EXEC SQL BEGIN DECLARE SECTION 
STRING1 DS H,CLxxxxx (xxxxx <= 8192) 

EXEC SQL END DECLARE SECTION 

The halfword of STRING 1 must contain the length of the string, and the character 
portion must contain the string itself when the PREP ARE or EXECUTE 
IMMEDIATE is executed. 

Appendix E. Assembler Considerations 445 



Data Types 

Description SQL/DS Equivalent Assembler 
Keyword Declaration 

A binary integer of 31 bits, plus sign. INTEGER F 

A binary integer of 15 bits, plus sign. SMALLINT H 

A packed decimal number, precision m, scale DECIMAL(m[,n]) PLp ['decimal constant'] 
n (1 :5m:515 and O:5n:5m). In storage the 
number occupies an even number of bytes up The precision is 2p-l and the 
to a maximum of 8 bytes. Precision is the scale is that of the decimal 
total number of digits. Scale is the number of constant. If the constant is 
those digits that are to the right of the not specified, the scale is O. 
decimal point. 

A double-precision (8- byte) floating point FLOAT D 
number, in standard System/370 floating 
point format. 

A fixed-length character string of length n CHAR(n) CLn 
where n <= 254. 

A varying-length character string of VARCHAR(n) H,CLn 
maximum length n, where n <= 254. (Only 
the actual length is stored in the data base.) 

A varying-length character string of LONG H,CLn 
maximum length 32767 bytes, subject to VARCHAR 
certain usage limitations. 

Figure 46. SQL/DS Data Types for Assembler 

Note: Double-Byte Character Set (DBCS) host variables are not supported by the 
SQL/DS Assembler preprocessor. 

446 SQL/Data System Application Programming for VM/SP 



Reentrant Programs 

A reentrant program has the characteristic of dynamic allocation of space for data 
and save areas. This reentrant chara(.;teristic can be employed in Assembler 
programs. In this case, the data and save areas are allocated in a calling (driver) 
program and passed to a called (reentrant) program as parameters. Storage for 
these areas need not be allocated in the called program. 

A convenient use for reentrancy is the use of an SQLDA-like structure declared as 
a DSECT in the calling program. This, in combination with an INCLUDE SQLDA 
statement in the called program, permits the passing back of values, extracted by a 
SELECT/FETCH in the called program, in a clean and simple manner. A 
DESCRIBE statement can be used by the called program to fill the SQLDA-like 
structure or it can be hand-filled in the driver program. Other SQL statements (i.e. 
INSERT, DELETE, UPDATE) utilize single data locations to communicate 
SQLCODES. 

If statement results, other than the SQLCODE, are desired, an SQLCA-like 
structure can be allocated in the driver program. However, unlike the SQLDA-like 
structure allocation by a DSECT, the fields of the SQLCA-like structure must be 
hard-coded into the driver. An INCLUDE SQLCA statement is then required in 
the called program. SQLCA communication between the 2 programs can be 
achieved by passing the address of the first field of the SQLCA-like structure to 
the reentrant program. Then by knowing the length of the SQLCA structure, the 
other fields can be addressed. 

The following are skeleton programs illustrating the use of the SQLDA-like 
structure and a single data location for communicating SQLCODEs. The reentrant 
example illustrates only a FETCH statement. If more than one "action" statement 
(INSERT, DELETE, etc.) is used, then various flags are needed to direct access to 
the individual operations. The required modifications to include an SQLCA-like 
structure follow these skeletons. 

Appendix E. Assembler Considerations 447 



Driver CSECT 
* Standard Linkage Conventions 

Qstring DC H,'57',CL57'SELECT DESCRIPTION FROM INVENTORY WHERE 
QONHAND < 100' 

* * Single data location to be passed to reentrant program 
LA R4,1 
ST R4,Code Flag to monitor when no more entries satisfy 

search condition; also used to indicate 
whether first call to reentrant program. 

* Block of storage (SQLDA-like) to be passed to reentrant program 
LA R4,Space 
USING Locda 

* Fill structure (or can be filled by DESCRIBE) 

LA R7,Outarea+l Address where result will be stored 
ST R7,Locdata 

x 

LA R7,Indaddr Address where indicator value will be stored 
ST R7,Locind 

* Call reentrant program -- loop needed to handle cursor operations 
Loop DS OH 

CLC Code,Fl00 
BE Final 

* Blank out output area for next result 

* 

LA 
L 
BALR 

Rl,Parmlist 
R15,=V(Reentrant) 
R14,R15 

* Test indicator values -- move value into Outarea if null 

* Print results -- use data conversion if output not in char form 

PUT Printer 
CLC Code,FO 
BM Errchk 
B Loop 

Errchk DS OH 
* Print error messages 

Final DS OH 
* Restore registers 

* Declare section 

SaveO DS 32F 
\ 

Areas to save registers upon calls 

448 SQL/Data System Application Programming for VM/SP 



Save1 
Code 
Parrnlist 

Outarea 
Indaddr 
Space 
Locda 
Loclaid 

Locdata 
Locind 
Locnarne 

DS 
DS 
DC 
DC 
DC 
DC 
DC 
DS 
DS 
DS 
DSECT 
DS 

DS 
DS 
DS 

32F 
F 
A(Qstring) 
A(Space) 
A(Code) 
A(Outarea) 
A(Save1 ) 
CLBO 
F 
CL500 

CL8 

A 
A 
H,CL30 

END Driver 

Appendix E. Assembler Considerations 449 



Reentrant CSECT 
* Standard Linkage Conventions. Use save area passed as parameter. 

* Get addresses of parameters 
LR Rl0,Rl 
L R4,8(R10) Code address 
L R6,12(Rl0) Outarea address 

* Get storage for host variables 

* Check if first call to this program 
CLC 8(4,R10),FO 
BE Next 

EXEC SQL CONNECT ... 

MVC QSTRING(82),O(R10) Parm string moved into host var 
EXEC SQL PREPARE Sl FROM :QSTRING 

CLC SQLCODE,FO 
BNE Goback 

EXEC SQL DECLARE Cl CURSOR FOR S1 

EXEC SQL OPEN C1 

Next DS OH 
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA 

CLC SQLCODE,F100 
BE Done 
CLC SQLCODE,FO 
BE Goback 

Done DS OH 
EXEC SQL CLOSE C1 

CLC SQLCODE,FO 
BE Final 

* Move appropriate SQLCODE into parameter position in Final or Goback 
Final DS OH 

Goback 
B 
DS 

Exit 
OH 

Exit DS OH 
* Restore registers and return 

* Declare section 
EXEC SQL INCLUDE SQLDA 

END Reentrant 

450 SQL/Data System Application Programming for VM/SP 



To include SQLCA communication the following is needed: 
* Driver program DECLARE section 

Parmlist 

Locca 
Lid 
Lbc 
Lcode 
Lerrm 
Lerrp 
Lerrd 
Locwarn 
WarnO 

Warna 
Text 

DC 
DC 
DC 
DC 
DC 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 

DS 
DS 

A(Qstring) 
A(Space) 
A(Code) 
A(Outarea) 
A(Lid) 
OF 
CL8 
F 
F 
H,CL70 
CL8 
6F 
OC 
CLl 

CLl 
CL8 

* In the Reentrant program 

L R9,16(Rl) Address of 1st field in SQLCA-like structure 

MVC 12(4,R9),SQLCODE 

* Declare section 
EXEC SQL INCLUDE SQLCA 

To return SQLCODE 
To return any field of SQLCA modify 
offset. (Offset in given stmt is 12) 

Appendix E. Assembler Considerations 451 



452 SQL/Data System Application Programming for VM/SP 



Appendix F. FORTRAN Considerations 

This appendix contains a sample program that illustrates the use of SQL within 
FORTRAN. Following the sample are specific rules for using SQL in FORTRAN. 

ARISFTN -- FORTRAN Sample Program 

ARISFTN is a FORTRAN sample program that is provided with SQL/DS. The 
source code of this program begins on the next page. You can learn most of the 
rules for using SQL within FORTRAN just by scanning through the program. 
Note, in particular, how the program satisfies the requirements of the application 
prolog and epilog. Near the beginning of the program all the host variables are 
declared, error handling is defined, and a connection is established with SQL/DS. 
Near the logical end of the program, the data base changes are committed. (The 
connection to SQL/DS is implicitly released on program termination.) 

Notice that all SQL statements must be preceded by EXEC SQL. There is no 
trailing delimiter in FORTRAN. 

The data description statements for the host variables were determined by referring 
to Figure 49 on page 466. That figure gives the FORTRAN representation for 
each of the seven SQL/DS data types that are supported by FORTRAN program 
(the DBCS data types are not supported in FORTRAN). When you are coding 
your own applications you'll need to obtain the data types of the columns that your 
host variables interact with. This can be done either by consulting the person who 
created the table, or by querying the SQL/DS catalogs. The SQL/DS catalogs are 
described in the SQL/ Data System Planning and Administration for VM / SP 
manual. 

Appendix F. FORTRAN Considerations 453 



********************************************************************** 
* SAMPLE PROGRAM ARISFTN * 
* 
* PURPOSE: 

* 
* 
* 
* 
* 
* DESCRIPTION: 

* 
* 
* 
* 
* 
* 
* 
* 

THIS PROGRAM SERVES TWO PURPOSES: 
1. IT IS AN EXAMPLE ON HOW TO IMBED SQL 

STATEMENTS IN A FORTRAN PROGRAN. 
2. IT CAN BE USED TO TEST SOME BASIC SQL 

FUNCTIONS FROM AN APPLICATION PROGRAM. 

THIS PROGRAM GENERATES A SAMPLE ORDER FOR 
THE PARTS 315 AND 316 IF QONHAND IS LESS 
THAN 1000 AND 700 RESPECTIVELY, AND IF 
QONORDER IS ZERO. THE TABLE QUOTATIONS 
IS UPDATED ACCORDINGLY. PART 315 IS ORDERED 
FROM THE COMPANY THAT SELLS IT FOR THE 
THE LOWEST PRICE, PART 316 FROM THE COMPANY 
WITH THE SHORTEST DELIVERY TIME. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 

AT THE END OF THE PROGRAM PART 323 IS DELETED * 
FROM THE DATA BASE. * 

* 
* PREREQUISITE: 

* 
* * OUTPUT PRODUCED: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

SUCCESSFUL EXECUTION OF THE COMMANDS IN 
ARISAMDB VIA THE DBS UTILITY. 

1. AN EXECUTION BEGIN AND END MESSAGE IS 
PRINTED AT BEGIN AND END OF PROGRAM 
EXECUTION. 

2. ALL TABLES ARE PRINTED WITH THEIR ORIGI
NAL CONTENTS. 

3. A SAMPLE ORDER IS PRINTED. 
4. THE CONTENTS OF THE TABLES ARE PRINTED 

AFTER ALL UPDATES AND DELETES ARE MADE. 
5. UNEXPECTED RETURN CODES: 

AN ERROR MESSAGE IS ISSUED TOGETHER WITH 
THE SQLCA-INFORMATION AND CHANGES BACKED 
OUT. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

********************************************************************** 
PROGRAM TEST1 

* INTERNAL PROGRAM VARIABLES 

* 

CHARACTER*40 
REAL*8 
REAL*8 

STMT 
TPRCE1 
TPRCE2 

EXEC SQL INCLUDE SQLCA 
********************************************************************** 
* ESTABLISH HOST VARIABLES * 
********************************************************************** 

EXEC SQL BEGIN DECLARE SECTION 
INTEGER PARTNO*2,QONHND,SUPPNO*2,TIME*2 

* THE DESCRIPTION COLUMN IN THE INVENTORY TABLE IS VARCHAR(24) 
* SQL/DS WILL CONVERT IT TO FIXED LENGTH AND TRUNCATE LONGER 
* DATA WHENEVER THE DESCR HOST VARIABLE IS USED. 

CHARACTER DESCR*10,NAME*15,ADR*35 
REAL*8 PRICE 
CHARACTER*8 ID,PASS 

EXEC SQL END DECLARE SECTION 

DATA 10 I'SQLDBA 'I 
DATA PASS I'SQLDBAPW'I 

********************************************************************** 
* ERROR HANDLING * 
********************************************************************** 

454 SQL/Data System Application Programming for VM/SP 



* * THIS PROGRAM WILL IGNORE WARNINGS AS THEY WILL NOT AFFECT RESULTS 
EXEC SQL WHENEVER SQLWARNING CONTINUE 
EXEC SQL WHENEVER SQLERROR GOTO 100 
EXEC SQL WHENEVER NOT FOUND GO TO 100 

******************************* 
* DISPLAY START MESSAGE * 
******************************* 

PRINT *, ('SAMPLE PROGRAM ARISFTN STARTED') 
********************************************************************** 
* START PROGRAM * 
********************************************************************** 

STMT = 'EXEC SQL CONNECT 
SQLCOD = 0000 
EXEC SQL CONNECT :ID IDENTIFIED BY :PASS 
CONTINUE 

********************************************************************** 
* PRINT TABLES * 
********************************************************************** 
5 FORMAT ('1',TR10,A45) 

WRITE (6,5) '*** PRINTOUT OF TABLE INVENTORY UNCHANGED ***' 
CALL PRINT1 

15 FORMAT ('1' ,TR10,A46) 
WRITE (6,15) '*** PRINTOUT OF TABLE QUOTATIONS UNCHANGED ***' 
CALL PRINT2 

25 FORMAT ('1',TR10,A45) 
WRITE (6,25) '*** PRINTOUT OF TABLE SUPPLIERS UNCHANGED ***' 
CALL PRINT3 

********************************************************************** 
* FIND MINIMUM PRICE FOR PART #315 * 
* * 
* THE FOLLOWING SELECT STATEMENT RETURNS THE MINIMUM PRICE OF.ALL * 
* OCCURRENCES OF PART #315 WITH QONHAND LESS THAN 1000, AND * 
* QONORDER O. AS PRICE IS A COLUMN IN QUOTATIONS, AND QONHAND A * 
* COLUMN IN INVENTORY, THE TWO TABLES HAVE TO BE LINKED VIA A JOIN * 
* BETWEEN THE PART NUMBERS IN INVENTORY AND THOSE IN QUOTATIONS. * 
* A CURSOR IS DECLARED FOLLOWED BY A 'OPEN' CURSOR, 'FETCH' CURSOR * 
* AND 'CLOSE' CURSOR TO RETURN THE ROW. * 
* * 
********************************************************************** 

STMT 
EXEC 

1 
2 
3 
4 
5 

STMT 
EXEC 
STMT 
EXEC 

1 
STMT 
EXEC 

= 'DECLARE CURSOR S1 FOR MIN (PRICE) 315' 
SQL DECLARE S1 CURSOR FOR SELECT MIN (PRICE) 
FROM INVENTORY, QUOTATIONS 
WHERE INVENTORY.PARTNO = 315 AND 

QONHAND < 1000 AND 
INVENTORY.PARTNO = QUOTATIONS.PARTNO AND 
QONORDER = 0 

'OPEN S1 FOR MIN (PRICE) 315 ' 
SQL OPEN S1 
= 'FETCH S1 FOR MIN(PRICE) 315' 
SQL FETCH S1 

INTO :PRICE 
= 'CLOSE S1 FOR MIN (PRICE) 315' 
SQL CLOSE S1 

********************************************************************** 
* RETRIEVE DATA FOR ORDER AND * 
* UPDATE QONORDER FOR PART #315, TABLE QUOTATIONS * 
********************************************************************** 

TPRCE1 = 1000 * PRICE 
STMT = 'DECLARE CURSOR S2 FOR PART #315' 

EXEC 
1 
2 
3 

SQL DECLARE S2 CURSOR FOR 
SELECT INVENTORY.PARTNO, DESCRIPTION, QONHAND, 
PRICE, NAME, ADDRESS, QUOTATIONS.SUPPNO 

FROM INVENTORY, QUOTATIONS, SUPPLIERS 

Appendix F. FORTRAN Considerations 455 



4 
5 
6 
7 

WHERE INVENTORY.PARTNO = 315 AND 
INVENTORY.PARTNO = QUOTATIONS.PARTNO AND 
PRICE = :PRICE AND 
QUOTATIONS.SUPPNO SUPPLIERS.SUPPNO 

STMT 
EXEC 
STMT 
EXEC 

'OPEN FOR PART #315 
SQL OPEN S2 
= 'FETCH FOR PART #315 
SQL FETCH S2 

1 INTO :PARTNO,:DESCR,:QONHND,:PRICE,:NAME,:ADR, 
2 

STMT 
EXEC 
STMT 
EXEC 

1 
2 
3 
4 

:SUPPNO 
= 'CLOSE FOR PART #315 
SQL CLOSE S2 
= 'UPDATE QUOTATIONS 
SQL UPDATE QUOTATIONS SET QONORDER 
WHERE PART NO = :PARTNO AND 

QONORDER = 0 AND 
PRICE = :PRICE AND 
SUPPNO = :SUPPNO 

CONTINUE 

1000 

********************************************************************** 
* PRINT SAMPLE ORDER WITH RESULTS OF PART #315 * 
********************************************************************** 
45 FORMAT ('1',TR10,A27) 

WRITE (6,45) 'SAMPLE ORDER PAGE' 
PRINT *, (' NUMBER OF DESCRIPTION QUANTITY COMPANY NAME C 

10MPANY ADDRESS PRICE PER TOTAL') 
PRINT *, (' PARTS ON HAND 

1 UNITS COSTS') 
55 FORMAT (' , ,TR2,A4,TR6,A10,I11,TR6,A15,TR1,A35,TR3,F7.2, 

1TR4,F7.2) 
WRITE (6,55) '1000' , DESCR,QONHND,NAME,ADR, PRICE, TPRCE1 

********************************************************************** 
* FIND MINIMUM DELIVERY TIME FOR PART #316 * 
* * * THE FOLLOWING SELECT STATEMENT RETURNS THE MINIMUM DELEVERY * 
* TIME OF ALL OCCURRENCES OF PART #316 WITH QONHAND LESS THAN 700 * 
* AND QONORDER O. AS DELIVERY TIME IS A COLUMN IN QUOTATIONS * 
* AND QONHAND A COLUMN IN INVENTORY, THE TWO TABLES HAVE TO BE * 
* LINKED VIA A JOIN BETWEEN THE PART NUMBERS IN QUOTATIONS AND * 
* THOSE IN INVENTORY. * 
* * 
********************************************************************** 

STMT = 'DECLARE CURSOR S3 FOR MIN (DELIVERY TIME) , 

EXEC SQL DECLARE S3 CURSOR FOR SELECT MIN (DELIVERY_TIME) 
1 FROM INVENTORY, QUOTATIONS 
2 WHERE INVENTORY.PARTNO = 316 AND 
3 QONHAND < 700 AND 
4 INVENTORY.PARTNO = QUOTATIONS.PARTNO AND 
5 QONORDER = 0 

STMT 'OPEN MIN (DELIVERY TIME) 
EXEC SQL OPEN S3 
STMT = 'FETCH MIN (DELIVERY TIME) 
EXEC SQL FETCH S3 

1 INTO :TIME 
STMT = 'CLOSE MIN (DELIVERY TIME) 
EXEC SQL CLOSE S3 
CONTINUE 

********************************************************************** 
* RETRIEVE DATA OF PART #316 FOR THE ORDER * 
* AND * 
* UPDATE QONORDER FOR PART #316 * 
********************************************************************** 

STMT = 'DECLARE CURSOR S4 FOR PART #316 
EXEC SQL DECLARE S4 CURSOR FOR SELECT INVENTORY.PARTNO, 

456 SQL/Data System Application Programming for VM/SP 



1 
2 
3 
4 
5 
6 
7 

STMT 
EXEC 
STMT 
EXEC 

1 
STMT 
EXEC 
STMT 
EXEC 

1 
2 
3 

DESCRIPTION, QONHAND, 
PRICE, NAME, ADDRESS 

FROM INVENTORY, QUOTATIONS, SUPPLIERS 
WHERE INVENTORY.PARTNO = 316 AND 

INVENTORY.PARTNO = QUOTATIONS.PARTNO AND 
DELIVERY TIME = :TIME AND 
QUOTATIONS.SUPPNO SUPPLIERS.SUPPNO 

'OPEN FOR PART #316 
SQL OPEN S4 
= 'FETCH FOR PART #316 
SQL FETCH S4 

INTO :PARTNO,:DESCR,:QONHND,:PRICE,:NAME,:ADR 
= 'CLOSE FOR PART #316 
SQL CLOSE S4 
= 'UPDATE QUOTATIONS 
SQL UPDATE QUOTATIONS SET QONORDER 700 
WHERE PARTNO = :PARTNO AND 

QONORDER = 0 AND 
DELIVERY TIME = :TIME 

CONTINUE 
********************************************************************** 
* PRINT ON SAMPLE ORDER * 
********************************************************************** 

TPRCE2 = 700 * PRICE 
65 FORMAT (' ',TR2,A4,TR6,Al0,Ill,TR6,A15,TR1,A35,TR3,F7.2, 

lTR4,F9.2) 
WRITE (6,65) '700' , DESCR,QONHND,NAME,ADR,PRICE, TPRCE2 

********************************************************************** 
* DELETE PART #323 * 
********************************************************************** 

STMT = 'DELETE 323 FROM QUOTATIONS' 
EXEC SQL DELETE FROM QUOTATIONS 

1 WHERE PART NO = 323 
STMT = 'DELETE 323 FROM INVENTORY , 
EXEC SQL DELETE FROM INVENTORY 

1 WHERE PARTNO = 323 
CONTINUE 

********************************************************************** 

* COMMIT WORK * 
********************************************************************** 

STMT = 'COMMIT WORK 
EXEC SQL COMMIT WORK 
CONTINUE 

********************************************************************** 
* PRINT TABLES * 
********************************************************************** 
75 FORMAT ('1' ,TR10,A43) 

WRITE (6,75) '*** PRINTOUT OF TABLE INVENTORY UPDATED ***' 
CALL PRINTl 

85 FORMAT ('1' ,TR10,A44) 
WRITE (6,85) '*** PRINTOUT OF TABLE QUOTATIONS UPDATED ***' 
CALL PRINT2 

95 FORMAT ('1' ,TR10,A43) 
WRITE (6,95) '*** PRINTOUT OF TABLE SUPPLIERS UPDATED ***' 
CALL PRINT3 
GOTO 110 

100 CALL ERROUT (STMT) 
110 PRINT *, ('SAMPLE PROGRAM ARISFTN COMPLETED') 

END 
SUBROUTINE PRINTl 

********************************************************************** 
* PRINT ROUTINE FOR TABLES * 
********************************************************************** 

CHARACTER*40 STMT 
EXEC SQL INCLUDE SQLCA 

* 
********************************************************************** 

Appendix F. FORTRAN Considerations 457 



* ESTABLISH HOST VARIABLES * 
********************************************************************** 

EXEC SQL BEGIN DECLARE SECTION 
INTEGER PARTNO*2,QONHND 
CHARACTER DESCR*10 
CHARACTER*8 ID,PASS 

EXEC SQL END DECLARE SECTION 
DATA ID I'SQLDBA 'I 
DATA PASS I'SQLDBAPW'I 

********************************************************************** 
* ERROR HANDLING * 
********************************************************************** 

EXEC SQL WHENEVER SQLWARNING CONTINUE 
EXEC SQL WHENEVER SQLERROR GOTO 100 

******************************* 
EXEC SQL DECLARE Cl CURSOR FOR SELECT PARTNO, DESCRIPTION, 

1 QONHAND 
2 FROM INVENTORY 
3 ORDER BY PARTNO 

45 FORMAT (lHO,A33,11) 
PRINT *,('PARTNO DESCRIPTION QONHAND') 
EXEC SQL WHENEVER NOT FOUND CONTINUE 
STMT = 'OPEN Cl PRINT 
EXEC SQL OPEN Cl 
STMT = 'FETCH Cl IN PRINTl 

50 EXEC SQL FETCH Cl 
1 INTO :PARTNO,:DESCR,:QONHND 
IF (SQLCOD .EQ. 0) THEN 

55 FORMAT (' ',I6,TR5,Al0,TRl ,111) 
WRITE (6,55) PARTNO,DESCR,QONHND 
GOTO 50 

ELSE 
STMT = 'CLOSE Cl IN PRINTl 
EXEC SQL CLOSE Cl 

ENDIF 
GOTO 110 

100 CALL ERROUT (STMT) 
110 RETURN 

END 
SUBROUTINE PRINT2 

CHARACTER*40 STMT 
EXEC SQL INCLUDE SQLCA 

* 
********************************************************************** 
* ESTABLISH HOST VARIABLES * 
********************************************************************** 

EXEC SQL BEGIN DECLARE SECTION 
INTEGER PARTNO*2,TIME*2,QONORD,SUPPNO*2 
REAL*8 PRICE 
CHARACTER*8 ID,PASS 

EXEC SQL END DECLARE SECTION 
DATA ID I'SQLDBA 'I 
DATA PASS I'SQLDBAPW'I 

********************************************************************** 

* ERROR HANDLING * 
********************************************************************** 

EXEC SQL WHENEVER SQLWARNING CONTINUE 
EXEC SQL WHENEVER SQLERROR GOTO 100 
EXEC SQL WHENEVER NOT FOUND CONTINUE 

******************************* 
EXEC SQL DECLARE C2 CURSOR FOR 

1 SELECT SUPPNO, PARTNO, PRICE, DELIVERY_TIME, QONORDER 
2 FROM QUOTATIONS 
3 ORDER BY SUPPNO, PARTNO 

PRINT *,('SUPPNO PARTNO PRICE DELVERY TIME QONORDER 
1 ' ) 

458 SQL/Data System Application Programming for VM/SP 



STMT = 'OPEN C2 PRINT2 
EXEC SQL OPEN C2 
STMT = 'FETCH C2 IN PRINT2 

50 EXEC SQL FETCH C2 
1 INTO :SUPPNO,:PARTNO,:PRICE,:TIME,:QONORD 
IF (SQLCOD .EQ. 0) THEN 

55 FORMAT (' ',I6,TR4,I6,TR3,F7.2,TR10,I6,TR3,I11) 
WRITE (6,55) SUPPNO,PARTNO,PRICE,TIME,QONORD 
GOTO 50 

ELSE 
STMT = 'CLOSE C2 IN PRINT2 
EXEC SQL CLOSE C2 

ENDIF 
GOTO 110 

100 CALL ERROUT (STMT) 
110 RETURN 

END 
SUBROUTINE PRINT3 

CHARACTER*40 STMT 
EXEC SQL INCLUDE SQLCA 

* 
********************************************************************** 
* ESTABLISH HOST VARIABLES * 
********************************************************************** 

EXEC SQL BEGIN DECLARE SECTION 
INTEGER SUPPNO*2 
CHARACTER NAME*15,ADR*35 
CHARACTER*8 ID,PASS 

EXEC SQL END DECLARE SECTION 
DATA ID I'SQLDBA 'I 
DATA PASS I'SQLDBAPW'I 

********************************************************************** 
* ERROR HANDLING * 
********************************************************************** 

EXEC SQL WHENEVER SQLWARNING CONTINUE 
EXEC SQL WHENEVER SQLERROR GOTO 100 
EXEC SQL WHENEVER NOT FOUND CONTINUE 

******************************* 
EXEC SQL DECLARE C3 CURSOR FOR 

1 SELECT SUPPNO, NAME, ADDRESS 
2 FROM SUPPLIERS 
3 ORDER BY SUPPNO 

PRINT *,('SUPPNO NAME 
STMT = 'OPEN C3 PRINT3 
EXEC SQL OPEN C3 
STMT = 'FETCH C3 IN PRINT3 

50 EXEC SQL FETCH C3 
1 INTO :SUPPNO,:NAME,:ADR 
IF (SQLCOD .EQ. 0) THEN 

55 FORMAT (' ',I6,TR4,A15,TR4,A35) 
WRITE (6,55) SUPPNO,NAME,ADR 
GOTO 50 

ELSE 
STMT = 'CLOSE C3 IN PRINT3 
EXEC SQL CLOSE C3 

ENDIF 
GOTO 110 

100 CALL ERROUT (STMT) 
110 RETURN 

* 

END 
SUBROUTINE ERROUT (STMT) 
EXEC SQL INCLUDE SQLCA 

EXEC SQL BEGIN DECLARE SECTION 
CHARACTER * 40 STMT 
INTEGER*4 I 

EXEC SQL END DECLARE SECTION 

ADDRESS' ) 

Appendix F. FORTRAN Considerations 459 



I 

PRINT*, ('UNEXPECTED SQL ERROR RETURNED') 
PRINT*,'FAILING SQL STATEMENT IS ',STMT 
PRINT*,SQLCOD 
PRINT*, (SQLERR(I), I=1, 6) 
PRINT*,SQLERP 
PRINT*, (SQLWRN(I), I=O, 11) 
PRINT*,SQLTXL 
PRINT*,SQLTXT 

********************************************************************** 
* IGNORE ERRORS DURING ROLLBACK TO AVOID ERROR ROUTINE LOOP * 
************************************.****** ••••• **.* •• * ••• **.* •••••••• 

EXEC SQL WHENEVER SQLERROR CONTINUE 
EXEC SQL ROLLBACK WORK 
RETURN 
END 

460 SQL/Data System Application Programming for VM/SP 



Rules for Using SQl in FORTRAN 

This section lists, for your reference, the rules for embedding SQL statements 
within a FORTRAN program. 

The FORTRAN SQL preprocessor supports programs written for the VS 
FORTRAN compiler with the LANGLVL (77) option specified. Only 
FIXED-FORM source statements are supported. 

If FORTRAN labels are placed on SQL declarative statements (BEGIN/END 
DECLARE SECTION, WHENEVER, and INCLUDE), the label will be removed 
and an information message given. 

The FORTRAN preprocessor supports a maximum of 255 program units per input 
source file (254 subprograms in addition to the main program). 

Figure 47 summarizes the SQL statements that are supported by the FORTRAN 
preprocessor. 

Statement Comments 

INCLUDE SQLCA 
Extended INCLUDE 
WHENEVER No STOP support. 
BEGIN/END DECLARE SECTION 

CREATE/DROP TABLE 
CREATE/DROP VIEW 
CREATE/DROP INDEX 
CREATE/DROP SYNONYM 
DROP PROGRAM 
ACQUIRE/DROP DBSPACE 
ALTER TABLE/DBSPACE 
GRANT /REVOKE 
LOCK TABLE/DB SPACE 
COMMENT ON 

INSERT 
UPDATE 
DELETE 

SELECT On DECLARE CURSOR only. 

DECLARE CURSOR DECLARE CURSOR does not 
OPEN CURSOR support the dynamic form of the 
FETCH CURSOR command (DECLARE CURSOR 
CLOSE CURSOR FOR statement-name). Likewise 

the dynamic form of OPEN is not 
supported. 

Figure 47 (Part 1 of 2). SQL Statements Supported in FORTRAN 

Appendix F. FORTRAN Considerations 461 



Statement Comments 

COMMIT WORK [RELEASE] 
ROLLBACK WORK [RELEASE] 

Figure 47 (Part 1 of 1). SQL Statements Supported in FORTRAN 

Placement of Data Statements 

FORTRAN releases prior to 3.0 do not restrict the placement of data statements. 
Release 3.0 and later require that data statements follow explicit declare 
statements. Thus in a program containing an SQL DECLARE section, all data 
statements should follow the END DECLARE SECTION. 

Long Character Strings 

FORTRAN releases prior to 3.0 do not support SQL character strings longer than 
254. To process FORTRAN Release 3.0 character strings that are longer than 
254: 

1. Declare INTEGER *2 to contain the length of the string 

2. Declare CHARACTER*(length) string of data 

3. Declare a CHARACTER*(2 + length of string) 

4. Declare a COMMON block containing (1) and (2) above 

5. Use EQUIVALENCE statement (name of (1) above, name of (2) above) 

6. Specify a DATA BLOCK subroutine to initialize (1) and (2) above. 

For example: 

INTEGER*2 STRNGL 
CHARACTER*498 STRING 
CHARACTER*500 STRNGW 
COMMON /SDATA/ STRNGL,STRING 
EQUIVALENCE (STRNGW,STRNGL) 

• 
• 
• 

(References to string by SQL use (STRNGW) 
• 
• 

BLOCK DATA 
COMMON /SDATA/ STRNGL,STRING 
INTEGER STRNGL*2 / 498 / 
CHARACTER STRING*498 

DATA STRING /' .........•........................ '/ 
END 

Note: When the character string is fetched in the FORTRAN program by SQL, .."" 
the first two bytes of the string will contain the length of the character string. 

462 SQL/Data System Application Programming for VM/SP 



Placement and Continuation of SQl Statements 

All SQL statements must be placed in columns 7 to 72. Columns 73 to 80 may 
contain sequence numbers and information; columns 1 to 5 may also contain 
statement numbers. 

The rules for continuation of SQL keywords from one line to the next are the same 
as the FORTRAN rules for the continuation of words and constants. However, an 
SQL statement may use up to 124 continuation lines in addition to the first line 
(for a total of 125). (Note that the maximum length of an SQL statement is 8192 
characters.) 

Declaring Host Variables 

Host variables must be explicitly declared to be used in SQL statements. The 
following example shows an SQL declare section for a FORTRAN program: 

EXEC SQL BEGIN DECLARE SECTION (at beginning of section) 
• 

(Data description entries for host variables) 
• 
• 

EXEC SQL END DECLARE SECTION (at end of section) 

Place the data description entries for all the host variables within the SQL declare 
sections. You may use the variables appearing in these SQL declare sections in 
regular FORTRAN statements as well as in SQL statements. 

A host variable declared within the SQL DECLARE SECTION may not be 
continued. That is, the host variable declaration must appear on a single line to be 
recognized by the preprocessor. 

You can also place data description entries for non-host variables in the SQL 
declare section. That is, the FORTRAN preprocessor ignores data description 
entries within the SQL declare section that it does not recognize as valid host 
variable declarations. No error message is generated; instead, the statement is left 
for the FORTRAN compiler to process. Thus it is possible, but not recommended, 
to place all data description entries within an SQL declare section. 

The rules for declaring variables within SQL declare sections are: 

• Host variables must be valid FORTRAN variable names. That is, they can be 
from one to six characters long, the first character must be a letter (A-Z) or $, 
and the remaining characters must be letters (A-Z), numbers (0-9), or $. Note 
that many examples in this manual have names that are too large for 
FORTRAN. 

• Variables named in the SQL declare sections must have data descriptions like 
those in Figure 49 on page 466. 

• Variables cannot be any of the following: 

- Vector or array declarations, 

Appendix F. FORTRAN Considerations 463 



A constant defined by a PARAMETER statement, 

Any declarations that use expressions to define the length of the variables, 
or 

Character variables declared with an undefined length, such as 
CHARACTER *(*). 

• You should not give any variable a name beginning with SQL or SQ, since 
these names are reserved for SQL/OS use. 

A host variable must be declared earlier in the program than the first use of the 
variable in an SQL statement. 

Embedding SQl Statements 

You must precede each SQL statement in your program with EXEC SQL. No 
delimiter should be used at the end of each statement. 

FORTRAN source statements and SQL statements cannot be contained on the 
same line or within the same continued statement, except when an SQL statement 
is used as the imperative statement of a logical IF. Also, only one SQL statement 
can be contained in a single line, or within the same continued statement. 

Using Host Variables in SQl Statements 

When you place host variables within an SQL statement, you must precede each 
such variable with a colon (:). The colon distinguishes the host variables from the 
SQL identifiers (such as PARTNO). When the same variable is used outside of an 
SQL statement, do not use a colon. 

A host variable can represent a data value, but not an SQL identifier. For example, 
you cannot assign a character constant, such as 'MUSICIANS', to a host variable, 
and then use that host variable in a CREATE TABLE statement to represent the 
table name. This pseudo-code sequence is invalid: 

TT = 'MUSICIANS' 
CREATE TABLE :TT (NAME ... 

I Incorrect I 

Using Double-Byte Character Set (DBCS) Constants 

The FORTRAN preprocessor does not support either OBCS constants or host 
program variables. Hexadecimal constants, however, can be used for OBCS data 
representation in SQL statements. 

If the DBCS option is set to YES, embedded SQL statements can contain character 
string constants and identifiers with OBCS characters enclosed by so and si. 

464 SQL/Data System Application Programming for VM/SP 



~ Using the INCLUDE Command 

To include the external secondary input, specify: 

EXEC SQL INCLUDE text-name 

at the point in the source code where the secondary input is to be included. 
Text-name is the filename of a CMS file with a "FORTCOPY" filetype and 
located on a CMS minidisk accessed by the user. 

FORTRAN Data Conversion Notes 

Host variables must be type-compatible with the columns with which they are to be 
used. 

A column of type INTEGER, SMALLINT, or DECIMAL is compatible with a 
FORTRAN variable of INTEGER, INTEGER*2, or INTEGER*4. Of course, an 
overflow condition may occur if, for example, an INTEGER data item is retrieved 
into an INTEGER variable, and its current value is too large to fit. 

Fixed-length and varying-length character data (CHAR, V ARCHAR) are also 
considered compatible. SQL/DS automatically converts a varying-length string, 
and vice-versa, when necessary. If a varying-length string is converted to a 
fixed-length string, it is truncated or padded on the right with blanks to the correct 
length. SQL/DS also truncates or pads with blanks if a fixed-length string is 
assigned to another fixed-length string of a different size (for example, a variable 
of CHARACTER*12 is stored in a column of type CHAR(18». 

Refer to "Data Conversion" on page 76 for a data conversion summary. 

SQl Error Handling 

There are two ways to declare the return code structure (called SQLCA): 

1. You may write: 

EXEC SQL INCLUDE SQLCA 

in your source program. The SQL/DS preprocessor replaces this with the 
declaration of the SQLCA structure. 

2. You may declare the SQLCA structure directly as shown in Figure 48. 

Appendix F. FORTRAN Considerations 465 

, 



INTEGER*4 SQLCOD, 
* SQLERR(6) , 
* SQLTXL*2 

COMMON /SQLCA1/ SQLCOD,SQLERR,SQLTXL 

CHARACTER SQLERP*8, 
* SQLWRN ( 0 : 1 0) , 
* SQLTXT*70 

COMMON SQLERP,SQLWRN,SQLTXT 

Figure 48. SQLCA Stnlcture (in FORTRAN) 

The SQLCA must not be declared within the SQL declare section. The meanings 
of the fields within the SQLCA are discussed under "Error Handling" on 
page 202. 

Dynamic SQl Statements in FORTRAN 

Dynamically defined SQL statements are not supported in FORTRAN. 

Data Types 

Description SQL/DS Equivalent FORTRAN 
Keyword Declaration 

A binary integer of 31 bits, plus sign. INTEGER INTEGER 
INTEGER*4 

A binary integer of 15 bits, plus sign. SMALLINT INTEGER*2 

A packed decimal number, precision m, DECIMAL(m[,n]) Not supported. FORTRAN 
scale n (1 SmS 15 and OSnSm). In storage INTEGER, REAL, and 
the number occupies an even number of DOUBLE PRECISION host 
bytes up to a maximum of 8 bytes. variables are supported for 
Precision is the total number of digits. Scale conversion to and from 
is the number of those digits that are to the DECIMAL columns. 
right of the decimal point. 

A double-precision (8- byte) floating point FLOAT REAL 
number, in standard System/370 floating REAL*4 
point format. REAL*8 

REAL * 16 
DOUBLE PRECISION 

Figure 49 (Part 1 of 2). SQL/DS Data Types for FORTRAN 

466 SQL/Data System Application Programming for VM/SP 



- ------------------~--~, 

Description SQL/DS Equivalent FORTRAN 
Keyword Declaration 

A fixed-length character string of length n CHAR(n) CHARACTER 
where n < = 254. CHARACTER *n 

A varying-length character string of VARCHAR(n) Not supported. FORTRAN 
~aximum length n, where n < = 254. character (fixed length) host 

variables are supported for 
conversion to and from 
V ARCHAR and LONG 
V ARCHAR columns. 

A varying-length character string of LONG Not supported. FORTRAN 
maximum length 32765 bytes (two bytes VARCHAR character (fixed length) host 
less that the SQL/DS maximum, because of variables are supported for 
the length field). (Character strings >= conversion to and from 
255 are not supported in FORTRAN VARCHARandLONG 
releases prior to Release 1.3.) V ARCHAR columns. 

Figure 49 (Part 2 of 2). SQL/DS Data Types for FORTRAN 

Notes: 

1. An * length specification can also be used to override a length specification 
associated with the initial keyword. The following are examples: 

Specification Valid Invalid (ignored) 

INTEGER VAR001,VAR002(2) V AROOt 4 bytes VAR002 

INTEGER*2 VAR001*4,VAR002 V AROOI 4 bytes 
V AR002 2 bytes 

INTEGER*4 VAR001*2/1O/,VAR002*4 VAROOI 2 bytes 
V AR002 4 bytes 

INTEGER *5 V AROOI *2,V AR002*4 V AROO 1, V AR002 

REAL VAR001*8,VAR002 VAROOI VAR002 

REAL*8 VAROO1,VAR002*4,VAR003 VAR001,VAR003 VAR002 

DOUBLE PRECISION V AR001,V AR002*4 VAROOI VAR002 

REAL*8 VAROOI (10, 10) *4,VAR002 VAR002 VAROOI 

REAL*t6 VAROOt,VAR002*4,VAR003*8 VAR003 VAR001,VAROO2 

CHARACTER V ARl,V AR2*80 VARI 1 byte 
V AR2 80 bytes 

CHARACTER * 10 V ARl,V AR2*80 VARI 10 bytes 
V AR2 80 bytes 

CHARACTER*500 VAR1(5),VAR2*1 VAR2 1 byte VARI 

2. Double-Byte Character Set (DBCS) data types are not supported by the 
SQL/DS FORTRAN preprocessor. 

Appendix F. FORTRAN Considerations 467 



468 SQL/Data System Application Programming for VM/SP 



Index 

access modules 
as affected by DROP SYNONYM 246 
automatic regeneration of 46, 66 
dropping 73,290 
general description of 44 
having a reserve-word name 73 
index considerations for 244,274 
invalidated by DROP DBSP ACE 230, 288 
invalidated by DROP INDEX 245, 289 
invalidated by DROP TABLE 242 
invalidated by DROP VIEW 145 
invalidated by REVOKE 66 

access path 
See access modules 

access, concurrent 232 
accessing tables owned by other users 18 
ACQUIRE DBSPACE statement 227,263 
active set of a cursor 19 
adding columns to tables 241,267 
adding rows to tables 34, 305 
addition in SQL expressions 30 
additional predicates 104 
ALL keyword 

as used in subqueries 122 
within a SELECT clause 16 
within built-in functions 32 

ALL PRIVILEGES keyword 63, 68 
ALLOCATE statement of PL/I 382 
ALTER DBSPACE statement 231,265 
ALTER privilege 

granting the 63 
revoking the 67, 317 

ALTER TABLE statement 241,267 
altering DBSPACE characteristics 231,265 
altering tables 241,267 
alternative for parameterized statements 164 
analyzing SQL/DS statements 209,297 
AND logical operator 27 
ANY keyword 122 
APOST preprocessor parameter 191 
apostrophes 

as used in constants 29 
usage restriction for DECLARE 22 
usage restriction for PREP ARE 172 
use considerations in COBOL 

application body 9,92 
application programs, sample 95 
application prolog 86 
applications, CMS 93 

ARISAMDB 
general description of 95 

ARlSASMC 
general description of 95 
source code for 426, 427 

ARlSCBLC 
general description of 96 
source code for 397,399 

ARISFTN 453 
general description of 96 
sample code for 454 
source code for 453 

ARlSPLIC 
general description of 96 
sample code for 368 
source code for 367 

arithmetic operators 30 
ASM preprocessor parameter 189 
Assembler 

acquiring the SQLDSECT area 423 
data types 446 
declaring host variables 

example 89 
declaring host variables for 441 
declaring the SQLCA for 444 
declaring the SQLDA for 445 
embedding SQL statements 

example 90 
embedding SQL statements within 443,464 
sample program 95 
sample programs 425 

Assembler considerations 423 
author, definition of 58 
authority 

granting to others 62, 300 
revoking from others 66 

authority, hierarchy of 61 
authorization 

granting to others 62, 300 
overview of 57 
revoking from others 66 

authorization checking for dynamically defined 
statements 175,295 

automatic blocking override 
warning flags set because of 205 

automatic revocation of privileges 66 
automatic rollback 

due to data definition statements 238 
due to deadlocks 232 
warning flags set because of 205 

averages via a built-in function 31 
A VG built-in function 31 

Index 469 



back out, definition of 232 
backing out changes 234,321 
based structures 151 
basic form, definition of 7 
BEGIN DECLARE SECTION statement 87,268 
between position of a cursor 20 
BETWEEN predicate 104 
blanks within identifiers 75 
BLOCK preprocessor parameter 192 
blocking 254 

override 205 
warning flags set because of 205 

blocking override 
warning flags set because of 205 

blocks of pages 228 
braces, as used in statement formats 259 
brackets, as used in statement formats 259 
built-in functions 

ALL keyword 32 
applied to numeric columns 33 
as used in grouping 113 
Ava function 31 
computed over the empty set 33 
COUNT function 31 
DISTINCT keyword 32 
general usage rules 32 
MAX function 31 
MIN function 31 
SUM function 31 
with a correlated reference 127 

catalog tables 78,215 
catalog tables, owner of (SYSTEM) 79 
changing data 37,324 
changing DBSPACE characteristics 231,265 
changing the data type of a column 239 
CHAR data type 

for Assembler 446 
for COBOL 417 
for FORTRAN 467 
for PL/I 383 

character data 29 
character string constants 29 
CHECK preprocessor parameter· 191 
checking the SQLCA 207 
clauses, order of 117 
CLOSE statement 

format of 26,269 
general description of 21 

CLOSE statement, extended 361 
closed state of a cursor 19 

CMS 
applications 93 

COBOL 
column 7 414 
continuation of SQL statements within 410 
COPYBOOKs 413 
data conversion considerations for 413 
data types 417 
declaring host variables 

example 88 
declaring host variables for 411 
declaring SQLCA for 415 
delimiting SQL statements within 410 
embedding SQL statements 

example 90 
placement of SQL statements within 410 
programs using DBCS data 414 
QUOTE compiler option consideration for 412 
restrictions on dynamic statements 416 
sample program 96, 397 
using the INCLUDE command 413 

COBOL considerations 397 
COBOL preprocessor parameter 189 
codes, data, as used by SQLTYPE 169 
colon 

as used in indicator variables 146 
column name, maximum length of 365 
column names, join considerations for 108 
columns 

naming conventions 74 
columns, virtual 141,279 
combining queries 132 
commas, as used in statement formats 259 
COMMENT statement 

of SQL 247 
of SQL, format 1 270 
of SQL, format 2 271 

COMMIT WORK statement 
format of 233, 272 

committing changes to tables 233,272 
common column names 108 
comparison operator 27 
compatibility of data types 18 
compiling your program 196 
completion code 

SeeSQLCODE 
concatenation symbol for SQL/DS 78 
concatenation within EXECUTE IMMEDIATE 149 
concurrent access 232 
concurrent users, maximum number of 366 
CONNECT authority 

description of 57 
granting 65, 303 

CONNECT considerations 186 
CONNECT statement 

format of 273 
in application programs 91 

connecting to SQL/DS 
in application programs 91 

470 SQL/Data System Application Programming for VM/SP 



connecting users without passwords 60 
consistency of data 72 
constants 28 

as used in search conditions 28, 31 
as used in UNIONs 134 
data types of 28, 134 
within select-list expressions 16, 134 

contention for resources 232 
continuation of SQL statements 

within Assembler 443 
within COBOL 410 
within FORTRAN 463 
within PL/I 375 

CONTINUE keyword of WHENEVER 207, 330 
conversion of data 

See data conversion 
conversion of floating point to integer 18 
COPYBOOKs, COBOL 413 
correlated function 127 
correlated subqueries 124 
correlated subqueries using joins 128 
correlation 124 
correlation table 126 
correlation variable 125 
cost estimate for an SQL statement 204 
COUNT built-in function 31 
COUNT(*) built-in function 32 
COUNT(*) within a grouping query 114 
counting via a built-in function 31 
CREATE INDEX statement 242,274 
CREATE PROGRAM statement 348 
CREATE SYNONYM statement 245,276 
CREATE TABLE statement 238, 277 
CREATE VIEW statement 140,279 
creating indexes 242,274 
creating objects via dynamically defined statements 175 
creating synonyms 245, 276 
creating tables 238,277 
creating views 140,279 
creator names 

naming conventions 74 
creator, definition of 58 
current row of a cursor 19 
cursor management 19 
cursor name 

maximum length of 365 
syntax rules for 22 

cursor stability locking 251 
cursors 

active set of 19 
as affected by COMMIT WORK 21 
as affected by ROLLBACK WORK 21 
between state 20, 138 
closed state of 19 
closing 26, 269 
current row of 19 
declaring 22, 179, 281, 282 
deleting rows via 138, 285 
fetching 23, 181,299 

for dynamically defined queries 
general description of 19 
inserting 25, 181, 316 
maximum number of 366 
naming conventions 74 
open state of 19 
operung 23,180,313 
operations on 20 

157 

ordering results of 134 
requirements for deletion via 
requirements for updates via 
scope of 135 

138,285 
139 

updating rows via 139,326 

Data Base Admirustrator (DBA) 
description of 57 

data base machine SQL/DS 184 
Data Base Storage System (DBSS) code 203 
data codes used by SQL TYPE 169 
data consistency 72 
data control 70 
data conversion 

as done in uruons 133 
in COBOL 413 
in dynamically defined statements 165 
in INSERT statements 35, 137 
in join conditions 107 
in PL/I 378 
in UPDATE statements 38 
summary of 76 

data defirution 74, 237 
data dictionary 

See catalog tables 
data marupulation 

DELETE statement 284 
INSERT statement 34, 305 
UPDATE statement 37,324 

data types 134 
as returned by DESCRIBE 169 
for Assembler 446 
for COBOL 417 
for FORTRAN 466 
for PL/I 383 
introduction to 75, 87 

data, inconsistent 72 
data, virtual 141 
DBA (Data Base Administrator) 

description of 57 
DBA authority 

general description of 61 
granting 65, 303 

DBCS and FORTRAN 464 
DBCS constants 99 
DBCS data 

using in Assembler 444 

Index 471 



using in COBOL 414 
using in FORTRAN 464 
using in PL/I 378 

DBCS data types 
for COBOL 417 
for PL/I 383 

DBEXTENTs, description of 70 
DBNAME initialization parameters 187 
DBNAME preprocessor parameter 195 
DBSPACE 

acquiring 227,263 
altering the free space of 231,265 
altering the lock size of 231, 265 
creation of 70 
definition of 70 
dropping 230, 288 
maximum number of tables within 366 
naming conventions for 74 
owner of 70 
specifying the placement of tables within 239 

DBSPACE lock size 231,266 
DBSPACES 

naming conventions 74 
DBSS (Data Base Storage System) return code 203 
DCSSID initialization parameters 187 
DCSSID preprocessor parameter 195 
deadlocks 

description of 232 
warning flags set because of 205 

DECIMAL data type 
for Assembler 446 
for COBOL 417 
for FORTRAN 466 
for PL/I 383 

DECIMAL values, range of 365 
declarative SQL statements 92 
DECLARE CURSOR statement 

for coded inserts 282 
for coded queries 22, 281 
for dynamically defined statements 179 

DECLARE CURSOR statement, extended 356 
declare section 

beginning 268 
ending 294 

declaring host variables 
in Assembler 441 
in COBOL 411 
in FORTRAN 463 
in PL/I 376 

declaring static external variables 
in PL/I 376 

declaring the return code structure 
for Assembler 444 
for COBOL 415 
for PL/I 380 

defining indexes 242,274 
defining synonyms 245,276 
defining tables 238, 277 
defining views on views 141 

DELETE privilege 
granting the 63 
revoking the 67, 317 

DELETE statement 
as used in a cursor 20, 135, 138, 285 
error considerations for 37 
Format 1 of 36, 284 
Format 2 of 138,285 
meaning of SQLCODE 100 for 37,284 
SQLERRD(3) consideration 37 
warning flags set because of 36, 204, 284 

deleting indexes 245, 289 
deleting rows of tables 284 
deleting synonyms 246,291 
deleting tables 241,292 
delimiting SQL statements 

for dynamic execution 149 
within Assembler 443 
within COBOL 410 
within PL/I 375 

DESCRIBE parameter 
of extended CREATE PROGRAM statement 349 

DESCRIBE statement 
format of 177, 286 
usage techniques for 151 

DESCRIBE statement, extended 352 
descriptor 151 

See also SQLDA 
destroying access modules 73,290 
destroying programs 73,290 
destroying tables 241, .292 
determining the number of rows processed 203 
dictionary, data 

See catalog tables 
DISTINCT keyword 

as used within Format 2 INSERT 136 
within a HAVING clause 116 
within a SELECT clause 16 
within built-in functions 32 

division in SQL expressions 30 
double quotes 

as used in identifiers 75 
restrictions 75 
usage restriction for DECLARE 22 
usage restriction for PREPARE 172 

Double-Byte Character Set 
SeeDBCS 

DROP DBSP ACE statement 230, 288 
DROP INDEX statement 245, 289 
DROP PROGRAM statement 73, 290 
DROP STATEMENT statement 362 
DROP SYNONYM statement 246,291 
DROP TABLE statement 241, 292 
DROP VIEW statement 145,293 
dropping a column from a table 239 
dropping access modules 73,290 
dropping indexes 245,289 
dropping programs 73,290 
dropping rows of tables 36, 284 

472 SQL/Data System Application Programming for VM/SP 



dropping synonyms 246,291 
dropping tables 241,292 
dropping views 145,293 
dropping views currently in use 146 
DSECTs used by SQL/DS 423 
duplicates 

eliminated via unions 133 
within Format 2 INSERTs 136 

duration of locks 232 
dynamic data conversion 165 
dynamic SQL statements in Assembler 445 
dynamic SQL statements in COBOL 416 
dynamic SQL statements in FORTRAN 466 
dynamic SQL statements in PL/I 381 
dynamic statements 

comparison with extended dynamic statements 335 
dynamic statements, extended 

comparison with dynamic statements 335 
description 333 
introduction 332 
logical unit of work considerations 344 
relationship between 334 

dynamically defined queries 151 
dynamically defined statements 

creating new objects via 175 
data conversion for 165 
estimating cost of 204 
processing for 

non-queries 148 
queries 151 

SQLDA use in 167 

eliminating access modules 73,290 
eliminating duplicates 

via unions 133 
eliminating programs 73,290 
eliminating rows of tables 36, 284 
ellipses, as used in statement formats 
empty set 

built-in functions computed over 
END DECLARE SECTION statement 
equal sign 28 
erasing indexes 245,289 
erasing rows of tables 284 
erasing synonyms 246, 291 
erasing tables 241, 292 
error code 

See SQLCODE 
error conditions 206, 329 
error considerations 

for Format 1 DELETE 
for Format 1 UPDATE 
for Format 2 INSERT 

error handling 

37 
3& 

137,307 

in application programs 202 

260 

33 
87,294 

introduction to 51 
error recovery 

See error handling 
errors, fatal 203,207 
evaluating predicates, rules for 103 
examining the SQLCA 207 
example tables 9 
exclusive lock, description of 232, 235, 312 
EXECs 

for sample programs 96 
SQLINIT 186 
SQLPREP 187 
SQLSTART 199 

executable functions 
See built-in functions 

executable subroutines 
See built-in functions 

EXECUTE IMMEDIATE statement 
format of 176, 296 
usage techniques for 148 

EXECUTE statement 
format of 175, 295 
usage techniques for 149 

EXECUTE statement, extended 354 
executing applications 

in multiple user mode 198 
in single user mode 199 

executing dynamically defined statements 
See dynamically defined statements 

execution of SQL/DS requests 45 
execution performance 

monitoring 209 
EXISTS predicate 131 
expanding tables 241,267 
EXPLAIN command 209 
EXPLAIN statement 297 
explain-spec, definition 209, 297 
explanation tables 209, 297 
expressing equality 28 
expressing inequality 28 
EXPRESSION m, meaning of, in SQLNAME 171 
expressions 

as used in search conditions 30 
constants used within 31 
description of 30 
host variables within 30 

extended CLOSE statement 361 
extended DECLARE CURSOR statement 356 
extended DESCRIBE statement 352 
axtended dynamic statements 

Assembler example 336 
comparison with dynamic statements 335 
description 333, 348 
introduction 332 
logical unit of work considerations 344 
relationship between 334 

extended EXECUTE statement 354 
extended FETCH statement 359 
extended OPEN statement 358 

Index 473 



extended PREPARE statement 350 
extended PUT statement 360 
external source files 

including 255 
eye-catcher fields 

of the SQLCA 203 
of the SQLDA 168 

fatal errors 203, 207 
fetch and insert blocking 254 
FETCH statement 

for dynamically defined queries 181 
format of 23, 299 
general description of 20, 23, 299 

FETCH statement, extended 359 
FLOAT data type 

for Assembler 446 
for COBOL 417 
for FORTRAN 466 
for PL/I 383 

FLOAT values, range of 365 
FOR UPDATE clause 135 
format of SQL statements 259 
Format 1 INSERT 34, 305 

See also INSERT statement 
Format 1 UPDATE 37,324 

See also UPDATE statement 
Format 2 DELETE 138, 285 

See also DELETE statement 
Format 2 INSERT 

See also INSERT statement 
basic uses of 136, 307 
det~rmining the number of rows inserted by 13 7 
error considerations for 13 7, 307 
order of rows added by 13 7 

Format 2 UPDATE 139,326 
See also UPDATE statement 

FORTRAN 
continuation of SQL statements within 463 
data types 466 
declaring host variables 

example 89 
declaring host variables for 463 
embedding SQL statements 

example 91 
long character strings 462 
placement of SQL statements within 463 
sample program 96,453 
using the INCLUDE command 465 

FORTRAN considerations 453 
FORTRAN preprocessor parameter 189 
FROM clause 

as used in joins 107 
correlation variable within 125 
general description of 18 

of the PREPARE statement 172, 314 
of the PUT statement 181 

fully qualify 78 
functions, built-in 

See built-in functions 

general rules for naming data objects 74 
GOTO keyword of WHENEVER 207, 330 
GRANT option 

general description of 57, 59 
granting the 63, 64 
revoking the 68, 69 

GRANT RUN privilege 214 
GRANT statement 62, 300 
granting authority to others 62, 300 
granting privileges 

on programs 63,302 
on tables and views 62, 300 

granting special privileges 65, 303 
granting special privileges already owned 66 
granting the RUN privilege 63, 302 
GRAPHIC data type 

for COBOL 417 
for PL/I 383 

GRAPHIC preprocessor parameter 191 
greater than or equal to sign 28 
greater than sign 28 
GROUP BY clause 

correlated subquery considerations for 127 
general description of 113 
sub queries within 123 

grouping 113 

HAVING clause 
correlated subqueries within 127 
general description of 116 
subqueries within 121, 123 

header pages 228, 264 
hexadecimal constants within expressions 100 
hierarchy of authority 61 
host language, definition of 7 
host variables 

as declared in Assembler 441 
as declared in COBOL 411 
as declared in FORTRAN 463 
as declared in PL/I 376 
as used in Assembler 443 
as used in COBOL 412 
as used in FORTRAN 464 
as used in PL/I 378 

474 SQL/Data System Application Programming for VM/SP 



as used in search conditions 30 
declaring 268,294 

examples 89 
detecting nulls within 146 
detecting truncation of 146 
maximum length of name 366 
maximum number of 366 
naming conventions 74 
pointed to by SQLDATA 170 
restriction on use within CREATE VIEW 142 
restriction on use within GRANT 62 
restriction on use within REVOKE 66 
within dynamically defined statements 173 
within INTO clauses 18 
within statements to be dynamically executed 149 

host-program variables 
See host variables 

how SQL/DS joins tables 107 
how to interpret SQL format 259 
how to join tables 107 
hyphens in COBOL 411 

identifier, definition of 74 
implicit revocation of privileges 66 
IN predicate 105, 123 
INCLUDE command 255 

using, in ASSEMBLER 443 
using, in COBOL 413 
using, in FORTRAN 465 
using, in PL/I 375 

INCLUDE SQLCA statement 
in Assembler language 444 
in COBOL 415 
in FORTRAN 465 
in PL/I 380 
in pseudo code 51, 86 

INCLUDE SQLDA statement 
in Assembler language 445 
in PL/I 381 
in pseudo code 152 

including external source files 255 
including secondary input from VM 

CMS file 255 
inconsistent data 72 
inconsistent state 51, n 
index name, maximum length of 365 
INDEX privilege 

granting the 63 
revoking the 67, 317 

indexes 
creating 242, 274 
dropping 245,289 
maximum length of 366 
maximum number of columns referenced by 366 
naming conventions 74 

restriction on use with views 140 
indicator variables 

declaration of 146 
general description of 146 
in dynamic data conversion 167 
meaning of values returned within 146 
pointed to by SQLIND 170 
usage restrictions for EXECUTE 175 
usage restrictions for OPEN cursor 180 
used to detect nulls 24, 147 
used to detect truncation 24, 147 
within the FETCH statement 24, 181 

initialization parameters 
DBNAME 187 
DCSSID 187 

initializing the SQLDA 167 
initializing your user machine 186 
input host variables 20, 23, 313 
insert and fetch blocking 254 
INSERT privilege 

granting the 63 
revoking the 67,317 

INSERT statement 
data conversion within 35, 137 
eliminating duplicate rows via 136 
error considerations for 137, 307 
inserting nulls via 35 
order of rows added by 35,305 
SELECT statement within (Format 2) 136, 307 
SQLERRD(3) consideration for 137 
use of DISTINCT keyword within 136 
using a list of values (Format 1) 34, 305 

inserting nulls into tables 35 
inserting rows 

See also INSERT statement 
using a list of values 34, 305 
using a SELECT statement 136,307 

installing applications 184 
INTEGER data type 

for Assembler 446 
for COBOL 417 
for FORTRAN 466 
for PL/I 383 

INTEGER values, range of 365 
intermediate values of computation, limitation on 365 
internal statistics, updating 237,328 
interpreting SQL fornlat 259 
INTO clause 

as used in unions 132 
general description of 17 
of the DESCRIBE statement 177, 286 
of the FETCH statement 23, 181,299 
usage restriction for dynamically defined 

queries 173,315 
use restriction for subqueries 121 
within dynamically defined statements 153 

invoking programs that contain unauthorized 
statements 58 

invoking/the preprocessor 187 

Index 475 



isolation level cursor stability 251 
isolation level repeatable read 251 
isolation levels 

cursor stability 251 
mixing 252,389 
repeatable read 251 

ISOLATION preprocessor parameter 192 

join conditions 
data conversion performed on 107 
definition of 107 
nulls within 110 
number permitted 112 

join variable 110 
joining a table to itself 110 
joining tables 

See joins 
joins 

data conversion performed within 107 
introduction to 107 
join variable 110 
limits on 112 
nulls within 11 0 
of a single table (to itself) 110 
ORDER BY considerations of 112 
referring to another user's table 108, 110 
SELECT· 112 
with common co)lumn names 108 
within correlated subqueries 128 
without join conditions 107 

~EPparameter 

of extended CREATE PROGRAM statement 348 
KEEP preprocessor parameter 190 
keywords, reserved 363 

LABEL statement 
format 1 309 
format 2 310 
of SOL 249 

less than or equal to sign 28 
less than sign 28 

LI~ predicate 106 
limits of SOL/DS 365 
limits on joins 112 
LINECOUNT preprocessor parameter 

VM/SP 191 
literal constants 28 
literals 

as used in UNIONs 134 
data types of 28 

loading your program 197 
LOCK parameter of ACOUIRE DB SPACE 229,264 
LOCK parameter of ALTER DBSPACE 231,265 
lock size 

altering 231, 265 
definition of 71 

LOCK statement 235,312 
locked DBSPACEs, modifying 71 
locked DBSPACEs, reading from 71 
locking DBSPACEs explicitly 235, 312 
locking duration 232 
locking tables explicitly 235, 312 
locking, description of 232 
locks 

exclusive 232 
share 232 

logical operator 
logical units of work 

as used in error handling 51 
automatic locking of 232 
automatic rollback of 232,238 
CMS considerations for 93,234,321 
committing work done during 233,272 
considerations in using extended dynamic 

statements 344 
definition of 51, 72 
revoking privileges during 66 
rolling back work done during 234,321 

LOG MODE preprocessor parameter 196 
long character strings in FORTRAN 462 
long fields 236 
LONG V ARCHAR 

general usage restrictions 236 
usage restrictions for unions 134 

LONG V ARCHAR data type 
for Assembler 446 
for COBOL 417 
for FORTRAN 467 
for PL/I 383 

LONG V ARGRAPHIC 
general usage restrictions 236 
usage restrictions for unions 134 

LONG V ARGRAPHIC data type 
for COBOL 418 
for PL/I 383 

lowercase letters within identifiers 75 

476 SOL/Data System Application Programming for VM/SP 



main variable 
See host variables 

main variable, definition of 146 
manipulating a cursor 20 
MAX bUilt-in function 31 
maximum length of an SQL statement 366 
maximums on joins 112 
maximums, determining via a built-in function 31 
maximums, SQL/DS 365 
meaning of value returned in indicator variables 146 
merging results of queries 132 
MIN built-in function 31 
minimums, determining via a built-in function 31 
minimums, SQL/DS 365 
mixing isolation levels 252, 389 
MODIFY parameter 

of extended CREATE PROGRAM statement 349 
modifying a locked DBSPACE 71 
modifying tables through a view 143 
monitoring execution performance 209 
multi-partition mode, locking considerations of 232 
multi-row query results 19 
multiple data base operation 184 
multiple row results 19 
multiple user mode 

description 184 
executing applications in 198 
invoking the preprocessors 187 

multiple virtual machine mode 184 
multiple-partition mode, locking considerations of 232 
multiple-row query results 19 
multiplication in SQL expressions 30 

names of prepared statements 172 
naming columns 74 
naming data objects 74 
naming DBSPACEs 74 
naming indexes 74 
naming tables 74 
negative SQLCODE, meaning of 52, 86 
nesting correlated subqueries 129 
NEW parameter 

of extended CREATE PROGRAM statement 349 
NHEADER parameter of ACQUIRE DBSP ACE 228, 

264 
NOBLOCK preprocessor parameter 192 
NO CHECK preprocessor parameter 191 
NODE SCRIBE parameter 

of extended CREATE PROGRAM statement 349 
NOGRAPHIC preprocessor parameter 191 
NOMODIFY parameter 

of extended CREATE PROGRAM statement 349 

NOPRINT preprocessor parameter 191 
NOPUNCH preprocessor parameter 191 
NOT BETWEEN predicate 104 
not equal sign 28 
NOT EXISTS predicate 131 
not found SQLCODE (100) 

as set by DELETE 37,284 
as set by FETCH 24 
as set by UPDATE 38,325 
detecting via WHENEVER 206, 329 

NOT IN predicate 105, 123 
NOT keyword 27 
NOT LIKE predicate 106 
NOT NULL option of CREATE TABLE 239,278 
NOT NULL predicate 105 
notes on coristructing search conditions 103 
NULL keyword 

as used in UPDATE 38 
NULL predicate 105 
null values used within indicator variables 146 
nulls 

in computing built-in functions 32 
in creating tables 239,278 
in new columns 241, 267 
in search conditions 101 
inserting into tables 35 
using indicator variables to detect 146 
warning flags set because of 204 
within correlated subqueries 130 
within grouping queries 114 
within joins 110 
within LONG V ARCHAR fields 236 
within subqueries 122 
within unions 133 
within UPDATE statements 38 

number of rows processed 203 

open state of a cursor 19 
OPEN statement 

format of 23,313 
general description of 20 
specific description of 23, 313 
with USING option 180 

OPEN statement, extended 358 
operators 

arithmetic 30 
comparison 27 
logical 27 

OPTIONS(MAIN) clause 375 
OR logical operator 27 
ORDER BY clause 

as used in joins 112 
as used in unions 132. 134 
description of 134 
maximum number of columns within 366 

Index 477 



use restriction for CREATE VIEW 141 
order of clauses 117 
order of rows added by INSERT 35,137,305 
ordering query results 134 
ordering the results of a join 112 
output host variables 20, 23, 299 
overflow 76 
owner of a DBSPACE 70 
owner of catalog tables (SYSTEM) 79 

PAGE lock size 231,266 
PAGES parameter of ACQUIRE DBSP ACE 228, 264 
pages, header 228, 264 
parameterized non-query statements 163 
parameterized queries 159 
parameterized statement, definition of 149 
parameterized statements 159, 163,164 
parameters, question-mark 149, 173 
parameters, specifying user 199 
parentheses, as used in statement formats 260 
P ARMID preprocessor parameter 196 
passwords 

naming conventions 74 
paths, access 

See access modules 
pattern, definition of 106 
PCTFREE clause 

of CREATE INDEX 244,275 
PCTFREE parameter of ACQUIRE DBSPACE 229, 

264 
PCTFREE parameter of ALTER DBSP ACE 231, 265 
PCTINDEX parameter of ACQUIRE DBSP ACE 228, 

264 
performance considerations 250 
performance monitoring 209 
period, as used for SQL/DS concatenation 78 
PL/I 

attributes of variables 377 
considerations 367 
continuation of SQL statements within 375 
data conversion considerations for 378 
data types 383 
declaring host variables 

example 89 
declaring host variables for 376 
declaring SQLCA for 380 
declaring SQLDA for 381 
declaring static external variables 376 
delimiting SQL statements within 375 
dynamic allocation of SQLDA 381 
embedding SQL statements 

example 90 
placement of SQL statements within 375 
sample program 96, 367 
using the INCLUDE command 375 

placement of SQL statements 
in Assembler 443 
in COBOL 410 
in FORTRAN 463 
in PL/I 375 

placement of tables in DB SPACEs 239 
PLI preprocessor parameter 189 
positions of a cursor 19 
positive SQLCODE, meaning of 52, 86 
potential deadlocks 232 
precedence rules 27,30 
predicates 

BETWEEN 104 
constants used within 28, 31 
description of 27 
host variables within 30 
IN 105 
LIKE 106 
NULL 105 
rules for evaluating 103 

preface v 
PREPARE statement 

format of 172,314 
usage techniques for 149 

PREPARE statement, extended 350 
PREP ARM preprocessor parameter 190 
PREPNAME preprocessor parameter 73, 190, 290 
preprocessing 

general description of 44 
in multiple user mode 187 
in single user mode 187 
parameters 189 

preprocessing programs with unauthorized statements 58 
preprocessor parameters 250 

APOST 191 
ASM 189 
BLOCK 192 
CHECK 191 
COBOL 189 
DBNAME 195 
DCSSID 195 
FORTRAN 189 
GRAPHIC 191 
ISOLATION 192,252 
KEEP 190 
LINECOUNT 191 
LOGMODE 196 
NOBLOCK 192 
NOCHECK 191 
NOGRAPHIC 191 
NOPRINT 191 
NOPUNCH 191 
PARMID 196 
PLI 189 
PREPARM 190 
PREPNAME 73, 190, 290 
PRINT 191 
PUNCH 191 
QUOTE 191,412 

478 SQL/Data System Application Programming for VM/SP 



REVOKE 190 
SYSIN 192 
SYSPRINT 193 
SYSPUNCH 194 
USERID 190 

preprocessors 188 
PRINT preprocessor parameter 191 
privileges 

automatic revocation of 66 
definition of 57 
granting to others 62, 300 
revoking from others 66 

PRIVILEGES keyword 63,68 
privileges on programs 

description of 58 
granting 63, 302 
revoking 68, 319 

privileges on tables and views 
description of 57 
granting 62, 300 
revoking 67, 317 

program creator, definition of 58 
program privileges 

description of 58 
granting 63, 302 
revoking 68, 319 

program termination 
for CMS programs 93 

programs 
dropping 73,290 
having a reserve-word name 73 
naming conventions 74 
that drop their own access module 73 

programs using DBCS data 
in COBOL 414 

programs, sample 95 
prolog 86 
pseudo code, definition of 7 
PUNCH preprocessor parameter 191 
PUT statement 

for dynamically defined inserts 181 
format of 25,316 
general description of 20, 25, 316 

PUT statement, extended 360 
putting labels on 309, 310 
putting labels on columns 309,310 
putting labels on tables 309 

qualifiers 
for column names 108 
for table names 78 

qualify, fully 78 
queries 

dynamically defined 151 
parameterized 159 

querying tables through a view 142 
question-mark parameters 149, 173 
QUOTE preprocessor parameter 191,412 
quotes 

as used in constants 29 
as used in identifiers 75 
usage restriction for DECLARE 22 
usage restriction for PREPARE 172 

range of values 365 
RDS (Relational Data System) return code 203 
reading from a locked DBSPACE 71 
REFER feature of PL/I 382 
Relational Data System (RDS) return code 203 
relative cost of an SQL statement 204 
RELEASE option 

of COMMIT WORK 233,272 
of ROLLBACK WORK 234,321 

releasing your connection 
in CMS applications 233, 234, 272 

releasing your connection to SQL/DS 233, 234 
repeatable read locking 251 
REPLACE parameter 

of extended CREATE PROGRAM statement 349 
repositioning cursors 20 
reserved words 

as used for identifiers 75 
list of 363 

RESOURCE authority 
granting 65, 303 

Resource Manager return code 203 
restoring data 234,321 
restrictions 

involving unions 133 
on DISTINCT within a SELECT statement 34 
on the COUNT built-in function 33 

result code 
See SQLCODE 

retrieving all the fields of a row 16 
return code 

See SQLCODE 
revocation, automatic, of privileges 66 
REVOKE parameter 

of extended CREATE PROGRAM statement 348 
REVOKE preprocessor parameter 190 
REVOKE statement 66 
revoking a privilege currently in use 66 
revoking privileges 

on programs 68, 319 
on tables and views 67, 317 
overview of 66 

revoking the GRANT option 68 
roll back, introduction to 51 
ROLLBACK WORK statement 232,234,321 
rollback, automatic 

Index 479 



due to data definition statements 238 
due to deadlocks 232 
warning flags set because of 205 

rolling back changes 234, 321 
ROW lock size 231, 266 
rows, maximum length of 365 
rules for evaluating predicates 103 
rules for naming data objects 74 
rules for using SQL in Assembler 441 
rules for using SQL in COBOL 410 
rules for using SQL in FORTRAN 461 
rules for using SQL in PL/I 375 
RUN authority , 

See RUN privilege 
RUN privilege 

automatic revocation of 66 
conditions for receipt of 213 
description of 58 
granting 63, 302 
when revoked by a DBA 66 
with the GRANT option 59 

run-time statements 
See dynamically defined statements 

running programs that contain unauthorized 
statements 58 

sample application programs 95 
sample program EXECs 96 
sample programs 

ARISASMC 426 
ARISCBLC 397 
ARISFTN 453 
ARISPLIC 367 

sample tables 9 
SCHEDULE authority 60 
scope 

of a WHENEVER statement 207 
of cursors 135 

search condition, definition of 27 
search conditions 

See also WHERE clause 
AND logical operator 27 
arithmetic operators within 30 
comparison operators within 27 
constants used within 28, 31 
expressions within 30 
host variables within 30 
join conditions within 107 
NOT keyword 27 
OR logical operator 27 
precedence rules of 27, 30 
predicates within 27 

SELECT * 
as applies to views 141, 280 
as used in a join 112 

as used in basic queries 16 
SELECT clause 15 
SELECT privilege 

granting the 63 
revoking the 67, 317 

SELECT statement 
ALL keyword 16, 122 
ANY keyword 122 
built-in functions within 31 
constants within 16 
DISTINCT keyword 16 
EXISTS predicate 131 
INTO clause of 17 
introduction to 14 
involving correlation 124 
involving grouping 113 
involving joins 107 
involving subqueries 119 
involving unions 132 
NOT EXISTS predicate 131 
order of clauses within 14, 117 
ordering results of 134 
SELECT * form of 16 
SELECT clause of 15 
select-list 15 
WHERE clause of 19 

select-list restrictions 34 
select-list restrictions for GROUP BY 114 
select-list, definition of 15 
select-lists 

built-in functions within 31 
constants within 16 
maximum number of items within 366 

selecting all the fields of a row 16 
selecting the isolation level 252 
sequence of clauses 117 
SET clause 38, 139 

See also UPDATE statement 
share lock, description of 232,235,312 
single quotes 

as used in constants 29 
usage restriction for DECLARE 22 
usage restrictions for PREP ARE 172 

single user mode 
description 184 
executing applications in 199 
invoking a program, example 199 
invoking the preprocessors 187 
specifying user parameters 199 

single virtual machine mode 184 
single-partition mode, locking considerations of 232 
single-row query results 17 
small-integer-value, definition 209,297 
SMALLINT data type 

for Assembler 446 
for COBOL 417 
for FORTRAN 466 
for PL/I 383 

SMALLINT values, range of 365 

480 SQL/Data System Application Programming for VM/SP 



source value 76 
special characters within identifiers 75 
special privileges 

description of 60 
granting of 65, 303 
revoking of 69,320 
when revoked by a DBA 66 

special statements 
DROP PROGRAM 73, 290 
UPDATE STATISTICS 237,328 

SQL format 259 
SQL identifier, definition of 74 
SQL identifiers, maximum length of 365 
SQL reserved words 363 
SQL statements 

embedding in application program 
examples 91 

SQL statements in PL/I subroutines 380 
SQL statements, maximum length of 366 
SQL syntax 259 
sql-command, definition 210, 298 
SQL/DS catalogs 78,215 
SQL/DS data base machine 184 
SQL/DS data types, introduction to 75,87 
SQL/DS maximums 365 
SQL/DS tninimums 365 
SQL/DS statements 

ACQUIRE DB SPACE 227,263 
ALTER DBSPACE 231,265 
ALTER TABLE 241,267 
BEGIN DECLARE SECTION 87, 268 
CLOSE 26, 269 
COMMENT 247,270,271 
COMMIT WORK 233, 272 
CONNECT 91,273 
CREATE INDEX 242,274 
CREATE SYNONYM 245,276 
CREATE TABLE 238,277 
CREATE VIEW 140,279 
DECLARE 22, 179 
DECLARE, format 1 281 
DECLARE, format 2 282 
DELETE 284 
DESCRIBE 177, 286 
DROP DBSPACE 230,288 
DROP INDEX 245,289 
DROP PROGRAM 73,290 
DROP SYNONYM 246, 291 
DROP TABLE 241,292 
DROP VIEW 145,293 
END DECLARE SECTION 87,294 
EXECUTE 175, 295 
EXECUTE IMMEDIATE 176,296 
EXPLAIN 209, 297 
FETCH 23, 181,299 
GRANT 62, 300 
INCLUDE 255 
INCLUDE SQLCA 51,86 
INCLUDE SQLDA 152 

INSERT 34, 305 
LABEL 249,309,310 
LOCK 235,312 
OPEN 23,180,313 
PREPARE 172,314 
PUT 25,181,316 
REVOKE 66 
ROLLBACK WORK 234,321 
SELECT 

basic use of 14 
correlation 124 
grouping 113 
joins 107 
subqueries 119 
testing for existence 131 
unions 132 

UPDATE 37,324 
UPDATE STATISTICS 237,328 
WHENEVER 206,329 

SQL/DS statements, analyzing 209, 297 
SQLCA 

Assembler declaration of 444 
COBOL declaration of 415 
description and use of 202 
FORTRAN declaration of 465 
meaning of fields within 202 
PL/I declaration of 380 
testing the 207 

SQLCABC, description of 203 
SQLCAID, description of 203 
SQLCODE 52, 86, 203 
SQLCODE 100 (not found) 

as set by DELETE 37,284 
as set by FETCH 24 
as set by UPDATE 38,325 
detecting via WHENEVER 206, 329 

SQLD field of the SQLDA 168 
SQLDA 

as used in DESCRIBE 177, 286 
as used in EXECUTE 176, 295 
Assembler declaration for 445 
PL/I declaration of 381 
summary of 167 
usage techniques for 151 

SQLDABC field of the SQLDA 168 
SQLDAID field of the SQLDA 168 
SQLDATA field of SQLVAR 170 
SQLDAX structure (in PL/I) 381 
SQLDSECT, acquiring 423 
SQLDSIZ variable 423 
SQLERRD(3) 

as set by Format 1 DELETE 37 
as set by Format 1 UPDATE 39 
as set by Format 2 INSERT 137 

SQLERRD, description of 203 
SQLERRM, description of 203 
SQLERROR condition, definition of 206, 329 
SQLERRP, description of 203 
SQLEXT, description of 206 

Index 481 



J> 

SQLIND field of SQL V AR 170 
SQLINIT EXEC 186 

parameters 187 
SQLLEN field of SQL V AR 169 
SQLN field of the SQLDA 168 
SQLN, when to set 167 
SQLNAME field of SQL V AR 170 
SQLPREP EXEC 187 

format 189 
parameters 189 

SQLSTART EXEC 199 
example 199 

SQLTYPE field of SQLVAR 168 
SQL V AR array of the SQLDA 168 
SQLWARN, description of 204 
SQL W ARNA, description of 205 
SQLWARNING condition, definition of 206,329 
SQL W ARNO, description of 204 
SQLWARN1, description of 204 
SQL W ARN2, description of 204 
SQLWARN3, description of 204 
SQLWARN4 

as set by DELETE 36, 284 
as set by UPDATE 38, 325 
description of 204 

SQLWARN5, description of 204 
SQLWARN6 

as set by automatic roll back 232 
description of 205 

SQL W ARN7, description of 205 
SQL W ARN8, description of 205 
SQL W ARN9, description of 205 
statement format, how to interpret 259 
statement name, maximum length of 365 
statement names 172 
statement syntax, how to interpret 259 
statements 

naming conventions 74 
statements, parameterized 159, 163, 164 
statistics on tables 237, 328 
STOP keyword of WHENEVER 207, 330 
storage pools 

definition of 70 
non-recoverable 70 
recoverable 70 
specifying the placement of DBSPACEs within 230, 

264 
STORPOOL parameter of ACQUIRE DBSPACE 230, 

264 
string-spec, syntax rules for 172, 314 
structures, based 151 
subqueries 

ALL keyword 122 
ANY keyword 122 
IN predicate 123 
introduction to 119 
involving unions (restriction) 134 
many values returned by 122 
NOT IN predicate 123 

nulls within 122 
single value returned by 122 
that use correlation 124 

subtraction in SQL expressions 30 
success code 

SeeSQLCODE 
SUM built-in function 31 
summary of program framework 94 
summing via a built-in function 31 
synonyms 

creating 245, 276 
dropping 246,291 
naming conventions 74 

syntax of SQL statements 259 
SYSACCESS catalog table 81 
SYSCAT ALOG catalog table 81 
SYSCHARSETS catalog table 82 
SYSCOLAUTH catalog table 80 
SYSCOLUMNS catalog table 81 
SYSDBSPACES catalog table 80 
SYSDROP catalog table 82 
SYSIN preprocessor parameter 192 
SYSINDEXES catalog table 81 
SYSOPTIONS catalog table 82 
SYSPRINT preprocessor parameter 193 
SYSPROGAUTH catalog table 80 
SYSPUNCH preprocessor parameter 194 
SYSSYNONYMS catalog table 81 
SYSTABAUTH catalog table 80 
SYSTEM, owner of catalog tables 79 
SYSUSAGE catalog table 81 
SYSUSERAUTH catalog table 79 
SYSUSERLIST view on SYSUSERAUTH 79 
SYSVIEWS catalog table 81 

table label 110 
table name, maximum length of 365 
tables 

altering 241, 267 
creating 238, 277 
creating indexes for 242, 274 
creating synonyms for 245,276 
defining labels for 249 
dropping 241,292 
dropping indexes created on 245, 289 
dropping synonyms created for 246,291 
entering comments in SQL/DS catalogs for 247, 

270,271 
explanation 209, 297 
inserting nulls into 35 
maximum number of columns within 365 
maximum number of indexes within 365 
naming conventions 74 
placement of 239 
privileges on 57 

482 SQL/Data System Application Programming for VM/SP 



SQL/DS catalog 78 
target value 76 
termination 

of CMS applications 93 
testing for existence 131 
testing the SQLCA 207 
totals via a built-in function 31 
truncation 76, 204 
truth tables 101 
truth value 101 

underscores in COBOL 411 
UNION operator 

description of 132 
eliminating duplicates via 133 
ordering results of 132, 134 
usage restrictions involving 

data types 133 
LONG V ARCHAR data 134 
nulls 133 
subqueries 134 
views 134 

use restriction for CREATE VIEW 142 
unions 

See UNION operator 
unique indexes 243 
uniquely identifying a table 78 
unknown truth value 101 
UPDATE privilege 

granting the 63 
revoking the 67, 317 

UPDATE statement 
as used in a cursor 21, 135, 139 
data conversion within 38 
error considerations for 38 
Format 1 of 37, 324 
Format 2 of 139,326 
how values are computed for 38 
meaning of SQLCODE 100 for 38,325 
nulls within 38 
SQLERRD(3) consideration 39 
warning flags set because of 38, 204, 325 

UPDATE STATISTICS statement 237,328 
updating internal statistics 237,328 
use restrictions on COUNT built-in function 33 
USER keyword 100 
USERID preprocessor parameter 190 
userids 

naming conventions 74 
users, concurrent, maximum number of 366 
USING clause 

of the EXECUTE statement 175,295 

of the FETCH statement 181 
of the OPEN statement 180 
of the PUT statement 181 

using SQL in Assembler 441 
using SQL in COBOL 410 
using SQL in FORTRAN 461 
using SQL in PL/I 375 
using the INCLUDE command 

in COBOL 413 
in FORTRAN 465 
in PL/I 375 

valid lock sizes 231, 266 
V ARCHAR data type 

for Assembler 446 
for COBOL 417 
for FORTRAN 467 
for PL/I 383 

V ARGRAPHIC constants within expressions 99 
V ARGRAPHIC data type 

for COBOL 417 
for PL/I 383 

variable, host 
See host variables 

variable, indicator 
See indicator variables 

variable, main 
See host variables 

vertical bar, meaning of 259 
views 

CREATE VIEW statement 140,279 
DROP VIEW statement 145,293 
general description of 140 
involving unions (restriction) 134 
modifying tables through 143 
naming conventions 74 
privileges on 57 
querying tables through 142 
SYSUSERLIST 79 

virtual columns 141,279 
virtual data 141 
VM/CMS file 

including secondary input from 255 
VM/SP 

CMS applications 93 
compiling your program 196 
CONNECT considerations 186 
executing applications 198 
initializing your user machine 186 
loading your program 197 
preprocessing programs 187 

Index 483 



warning conditions 204, 206, 329 
warning flags 204,206,329 
when to invoke UPDATE STATISTICS 237 
WHENEVER statement 52, 86, 206, 329 
WHEru;/Clause 

ALL keyword 122 
ANY keyword 122 
as used within DELETE statements 36, 284 
as used within UPDATE 37,324 
correlated subquery within 124 
EXISTS predicate 131 
general description of 19 
grouping considerations for 115 
IN predicate 123 
join conditions with 107 
NOT EXISTS predicate 131 
NOT IN predicate 123 
subqueries within 119 

WITH GRANT OPTION 
See GRANT option 

words, reserved 363 
writing clauses in order 117 

zero SQLCODE, meaning of 52, 86 

I Numerics I 

100, not found SQLCODE 
as set by DELETE 37,284 
as set by FETCH 24 
as set by UPDATE 38,325 
detecting via WHENEVER 206, 329 

484 SQL/Data System Application Programming for VM/SP 





f 
C/) 

P 
SH24-5068-0 r--0 

Ql .... 
Ql 

~ C/) 
-< 
CJ) .... 
CD 
3 
» 
"'0 
~ 
(') 
Ql .... o· 
::::l 

-c ., 
0 
co ., 
Ql 

3 
3 
::J 
co ...., 
0 ., 
< s:: -C/) 
-< 
CJ) .... 
CD 
3 
-c ., 
0 
a. 
I:: 
(') .... 
"T1 

CD 
Z ..., 0 

C/) 
W 
-...J 
0 -,::. w 
0 
0 
I 

C11 
9 

-c 
::::!. 
::::l .... 
CD 
a. 
::::l 

C 
C/) 

~ 

C/) 
:::I: 
N ,::. 
I 

C11 
0 en 
00 
I 

0 

-------
---~ ---- -.. ----- - - -~---_ .... ----- - y-

® 



.... E 
c: 0 G) _ 

E '" .52- :.E 
:::1-

:if: 
co '" .S: 0 
t
o I» 
'" Q. _ '" .- -
E~ 
"C E 
~ E 
'" ::1 E C> 
o ... 
- I» :::I ..c: 
"''S 
:Eo 

== I» 
'" .2: E .'!: 

..2! ~ 

.<:I I» 

e '" c.. G) 

G) :; 

'" '" :::I '" 
'" I» .., ... 
c: Q. 

'" I» .., ~ 
'" I» I» - '" c..", 
'" I» ci5o:::: 

SQL/Data System Application Programming for VM/System Product 

Order No. SH24-5068-0 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. You may use this form to communicate your 
comments about this publication, its organization, or subject matter, with the understanding 
that IBM may use or distribute whatever information you supply in any way it believes 
appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if 
any, are deemed appropriate. Comments may be written in y'0ur own language; English is 
not required. 

Note: Copies of IBM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

• Does the publication meet your needs? 

• Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

Well illustrated? 

Written for your technical level? 

• What is your occupation? 

• How do you use this publication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes 

D 

D 
D 
D 
D 
D 

D 
D 
D 

No 

D 

D 
D 
D 
D 
D 

As an instructor in class? 

As a student in class? 

As a reference manual? 

D 
D 
D 

If you would like a reply, please supply your name and address on the reverse side of this form. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or 
you may mail directly to the address in the Edition Notice on the back of the title page.) 



r 

SH24-5068-0 

Reader's Comment Form 

Fold and Tape 

Fold 

Please Do Not Staple 

I I 
BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department G60 
P. 0, Box 6 
Endicott, New York 13760 

Fold and Tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold 

If you would like a reply, please print: 

YourName ______________________________________________________ __ 

Company Name _____________________________ Department -----------
Street Address ____________________________________ _ 
Ciry ________________________________________ _ 

State ________________________ Zip Code __________ _ 

IBM Branch Office serving you ------------------------------------

--------- ------ ----- -. ----- - - ---------- - . 
® 

(f) 
p 
r -0 
Q) .. 
Q) 

(') ~j 
S 
Q CD 

." 3 
~ ~ 
~ '0 
0 '0 
" co (;' c: 
" Q) 
co .. 

0' 
::J 

"C ..., 
0 
co ..., 
Q) 

3 
3 
::J 
co 
...... 
0 ..., 
< s: -(f) 
'< 
(Jl .. 
CD 
3 
"C ..., 
0 
a. 
c:: 
(') .. 
'T1 

CD 
Z ',-, 
~ ..J (f) 
W 
-.J 
0 --'=" w 
0 
0 
I 

0'1 
9 

"C 
~. 
::J .. 
CD 
a. 
::J 

C 
(f) 

~ 

(f) 
:::c 
N 
-'=" I 
0'1 
0 
0) 
co 
I 

0 



..... E 
c 0 ... -E en 
.9- :c 
= -lifgj 
c> en 
.: 0 
'1::
o ... 
en CI.. 

- «I .- -
E~ 

"I:l E 
.l!:l E 
«I = E c> 
o -- ... = .=. 
«I -o 

:E 0 
3: ... 
en .~ 
E .'t:: 
... en 

:E ~ 
o en 
i5.. ... ... :; 
en en = en 
«I ... 
Y i5.. 
c 
«I ... 
Y ~ 
en ... ... c.; 
«I ... 

Ci5o::: 

... -o 
Z 

SQL/Data System Application Programming for VM/System Product 

Order No. SH24-5068-0 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. You may use this form to communicate your 
comments about this publication, its organization, or subject matter, with the understanding 
that IBM may use or distribute whatever information you supply in any way it believes 
appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if 
any, are deemed appropriate. Comments may be written in y,our own language; English is 
not required. 

Note: Copies of IBM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

• Does the publication meet your needs? 

• Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

Well illustrated? 

Written for your technical level? 

• What is your occupation? 

• How do you use this publication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes 

o 

o 
o 
o 
o 
o 

o 
o 
D 

No 

o 

o 
o 
o 
D 
o 

As an instructor in class? 

As a student in class? 

As a reference manual? 

o 
D 
o 

If you would like a reply, please supply your name and address on the reverse side of this form. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or 
you may mail directly to the address in the Edition Notice on the back of the title page.) 



I 

SH24-5068-0 

Reader's Comment Form 

Fold and Tape Please Do Not Staple Fold and Tape 

.................................................... , ................................................................................................................. , ....... , .................................................................................................................. . 

""" 
BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department G60 
P. O. Box 6 
Endicott, New York 13760 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

........................................................................................................................................................................................................................................................................................ 
Fold Fold 

If you would like a reply, please print: 

YourlVame ________________________________________________________ ___ 

Company lVame _____________________________ Department __________ _ 
Street Address _________________ _ 
Ciry ______________________ __ 

State ____________ Zip Code _____ _ 
IBM Branch Office serving you __________________ _ 

-~- .------ - --------. -~-- - - -~--------., 
® 

CJ) 
p 
r -0 
0) 
.-+ 
0) 

n ~..J s 
!l CD 

~ 
3 
~ 

~ "0 
0 "0 oil 
r (') 
:;' 0) 
CD .-+ o· 

:::I 

'"C ..., 
0 

CO ..., 
0) 

3 
3 
:::I 

CO ...., 
0 ..., 
< s: -CJ) 
-< en 
.-+ 
CD 
3 
'"C ..., 
0 
Co 
t: 
(') 
.-+ 

:!! 
CD 
z J p 
CJ) 
W 
-...J 
0 -~ w 
0 
0 
I 

(TI 

.9 

'"C 
::!. 
:::I 
.-+ 
CD 
Co 

:::I 

C 
en 
l> 

CJ) 
:I: 
N 
~ 
I 

(TI 
0 
0) 
00 
I 

0 



+-' E 
c l3 
cu
E en 

.9- :E 
:::> -gi 
<= en 
C 0 "-e +'" 
o a> 
en c.. 

_ (II 

.- -
~a; 

"'C E 
.f!l E 
(II ::I 
E <= o ... _ cu 

:::> ..c: 
=15 
~ 0 
3: a> 
'" .:2: E :!: 
cu '" 

::E ~ 
o en 
e.a> 
cu ::. 
'" '" :::> '" 
~ E 

c.. c 
(II .., 

a> -o 
Z 

SQL/Data System Application Programming for VM/System Product 

Order No. SH24-5068-0 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. You may use this form to communicate your 
comments about this publication, its organization, or subject matter, with the understanding 
that IBM may use or distribute whatever information you supply in any way it believes 
appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if 
any, are deemed appropriate. Comments may be written in y,our own language; English is 
not required. 

Note: Copies of IBM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

• Does the publication meet your needs? 

• Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

Well illustrated? 

Written for your technical level? 

• What is your occupation? 

• How do you use this publication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes 

o 

o 
o 
o 
o 
o 

o 
o 
o 

No 

o 

o 
o 
o 
o 
o 

As an instructor in class? 

As a student in class? 

As a reference manual? 

o 
o 
o 

If you would like a reply, please supply your name and address on the reverse side of this form. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or 
you may mail directly to the address in the Edition Notice on the back of the title page.) 

'\ 
i 



SH24-5068-0 

Reader's Comment Form 

Fold and Tape Please Do Not Staple Fold and Tape 

.................................................................................................................................................................................................................................................................................................. 

IIII 
BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department G60 
P. O. Box 6 
Endicott. New York 13760 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

.............................................................................................................................................................................................................................................................................................. 
Fold Fold 

If you would like a reply, please print: 

YourlVatne ________________________________________________________ ___ 

Company lVatne _____________________ Department _______ _ 
Street Address _________ -'--_______ _ 
Ciry ___________________________________ __ 

State ____________________ Zip Code _____ _ 
IBM Branch Office serving you _____________________ _ 

--.. -. ------- ------ ----- -.. ----- - - ------- ------ - . -
® 

en 
0 
r -0 
III 
.-+ 
III 

en e-

n *~ S 
S/ 3 ." 
5!. :t> Q. 

~ '0 
0 ~ " cc 
c: C'l 

" III co .-+ o· 
::J 

-C ., 
0 

CO ., 
III 

3 
3 
::J 

I CO 

"*' 0 ., 
< s: -en 
-< 
(fl 
.-+ 
CD 
3 
-C ., 
0 
c. 
c 
C'l 
.-+ 

::!! 
CD 
z 

J 0 

en w 
-...J 
0 -.j::o 
W 
0 
0 
I 

C1I 
9 

-C 
~. 
::J 
.-+ 
CD 
C. 

::J 

C 
en 
?> 
en 
:J: 
N 
.j::o 
I 

C1I 
0 
0) 
CO 
I 

0 



SAMPLE TABLES

INVENTORY

SUPPLIERS

QUOTATIONS

PARTNO -- SMALLINT (NOTNI.'LL)
DESCRIPTION -- VARCHAR(24)
QONHAND -- INTEGER
SUPPNO -- SMALLINT (NOT NIJLL)
NAME -- CHAR(15)
ADDRESS -- VARCHAR(35)
PRICE -- DECIMAL(s,2)
DELIVERY-TIME -- SMALLINT
QONORDER -- INTEGER

PARTNC DBSCRIPTION QONHAND

247
,no
221
222
231
aa1

241
285
295

GEAR
CAM
BOLT
BOLT
NUT
NUT
WASHER
WHEEL
BELT

15
50

650
1250

700
f i00
6000

350
B5

SUPPNC NAME - --:FCC

51
52
53
trlt

51
61
64

DEFECTO PARTS
VESUV]US, IN'.
ATLANTIS CO.
TITANIC PARTS
EAGLE HARDWARE
SKY PARTS
KNIGHT LTD.

'6 3-l"i sT., BROKEN HAND WY

r- 2 .I,NCIENT BLVD. , POMPEII NY
. .:EAN AVE., WASHINGTON DC

-.1 2 -ARGE ST., BIG?OWN TX
6+ TRANQUILITY PLACE, APOLLO MN
I23 CRBIT BLVD., SIDNEY AUSTRALIA
2 5 6 ARTHUR COURT, CAI"{ELOT ENGLAND

SUPPNO PARTNO PRICE DELIVERY_TIME QONORDER

51
51
53
53
53
54
l/

F/)

l/

57
51
61
61
61
64
64

221
231
222
232
241
249
221
231
241
285
295
221
222
241
20'7
209

.30

.10

.10
NQ

18.00
.10
.04
.02

21.00
8.50

.24

.24
o5

29.O0
19.50

'10

10
15
15
'15

21
30
30
30
14
21
21
2t
21
14

1

50
0
0

200
0
0

150
200
200

0
24

0
2Aa

0
20

1

E

E
B.

a

F

E

L

l



s H 24-5 068-0

1; ;l 

i 

llilltrttltlltllilt]ilt1ilil!ilfi]l]ilil!]illiltil

-

sn24-5068-0
t


