
Systems

File No. S370-37
Order No. GC20-1807-3

IBM Virtual Machine
Facility /370:
System Programmer's Guide

Release 2 PLC 13

This publication is intended for VM/370 system
programmers. A debugging section describes the pro­
cedures, commands, and utilities useful in debugging
and provides guidance in dump reading. A Control
Program (CP) section describes how CP works and
tells how to modify or better utilize CPo A Conver­
sational Monitor System (CMS) section describes
how CMS works, and describes in detail some
special features of CMS. The last two sections de­
scribe teleprocessing support for VM/370: one
section describes the IBM 3704 and 3705
Communications Controllers and the other
describes the Remote Spooling Communications
Subsystem (RSCS).

For the titles and abstracts of related publications,

refer to the latest IBM System/360 and System/370
Bibliography, GA22-6822, and its Virtual Storage
Supplement, GC20-0001.

GC20-1807-3 Paqe Modified by TNL GN2U-2662, March 31, 1975

This edition, together with Technical Newsletter GN20-2662 dated March
31, 1975, is a major revision of GC20-1807-2 and makes that edition and
Technical Newsletter GN20-2643 obsolete. This edition corresponds to
B~l~~~~ l R1~ 11 (Program Level Change) of IBM Virtual Machine
Facility/370 and to all subsequent releases until otherwise indicated in
new editions or technical newsletters.

Changes are periodically made to the specifications herein; before using
this publication in connection with the operation of IBM systems,
consult the latest l~~ ~I~!~~L1§Q ~nQ ~I~!g!L11Q ~iQliQg~~EhI, Order No.
GA22-6822, and its Yi~!Y~l ~!QE~~~ ~~EE1~!~n!, Order No. GC20-0001, for
the editions that are applicable and current.

Technical changes and additions to text and illustrations are indicated
by a vertical bar to the left of the change.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Corporation, VM/370 Publications, 24 New England Executive Park,
Burlington, Massachusetts 01803. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972, 1973,
1974, 1975

This publication describes how to debug
VM/370 and how to modify, extend or
implement Control Program (CP) and
Conversational Monitor System (CMS)
functions. This information is intended
for system programmers, system analysts,
and program personnel.

This publication consists of five parts
and two appendixes.

"Part 1: Debugging with VM/370"
discusses the CP and CMS debugging tools
and procedures to follow when debugging.
This part is logically divided into three
topics. The first section "Introduction to
Debugging" tells you how to identify a
problem and lists guidelines to follow to
find the cause. The second section
"Debugging with cpu describes the CP
debugging com.ands and utilities, debugging
CP in a virtual .achine, the internal trace
table and restrictions. A detailed
description of CP dump reading is also
included. The third section "Debugging
with CMS" describes the CMS debugging
commands and utilities, load maps, and
restrictions and tells you what fields to
examine when reading a CMS dump.

"Part 2: Control Program (CP)" contains
an introductory and functional description
of CP as well as guidance in implementing
some CP features.

"Part 3: Conversational Monitor System
\~n~J" contains dll introductory dUU

functional description of CMS including how
CMS handles interrupts and SVC calls,
structures its nucleus and its storage, and
manages free storage. Information on
saving the CMS system and implementing the
Batch Facility is also included.

"Part 4. IBM 3704 and 3705
Communications Controllers" describes the
functions and uses of these programmable
units. Information is included on loading,
testing, and updating the control program.

"Part 5. Remote Spooling Communications
Subsystem (RSCS)" describes the functions
and uses of the component of VM/370 that
handles the trans.ission of files between
VM/370 users and remote programmable and
non-program.able stations.

Preface

"Appendix A: System/370 Information"
describes the System/370 extended PSi and
extended control register usage.

"Appendix B: MULTI-LEAVING" provides a
detailed description of MULTI-LEAVING1, a
computer-to-computer communications
technique developed for use by the HASP
system and used by the RSCS component of
VM/370.

In this publication, the term 3330
series is used in reference to both the IBM
3330 Disk Storage, Models 1, 2, and 11, and
the IBM 3333 Disk storage and Control,
Models 1 and 11. The term 2305 series is
used in reference to the IBM 2305 Fixed
Head storage, Models 1 and 2. Also, any
reference to the IBM 2741 Terminal is also
applicable to the IBM 3767 Communications
Terminal unless noted otherwise.

The Glossary has been eliminated from
this publication. An expanded glossary is
available in the IBM virtual Machine
Faci!illn70: Gl.Q§sar,!-!nd Masti!: -!J!de!,
Order No. GC20-1813.

Knowledge of Asse.bler Language and
experience with programming concepts and
techniques are prerequisite to using this
publication.

References to a standalone dump occur in
several places in this publication. One
such program is the BPS Storage Print
program, Program No. 360P-UT-056.

PREREQUISITE PUBLICATIONS

IBM Q..§L.!.§ !J!,g VML37.Q AS2~!!2!~ Pr2gra!!u!:~
Guid§, GC33-4021.

IBM OSLVS,]OS/VS, and !l1L37.Q !2§~!~ler
l~gy!g~, GC33-4010.

Knowledge of the co.mands and system
functions of CP, CMS, and RSCS is
corequisite.

1 IBM Unregistered Trademark

COREQUISITE PUBLICATIONS

f!~nni~ ~~g ~2!~! Ge]~~!!~] ~~id~,
Order No. GC20-1801

Co •• ~n~ 1~~gy~g§ ~yid~ !£! Ge~~!~!
~2§!2' Order No. GC20-1804

QE~~!Q!~2 ~uide, Order No. GC20-1806

Terminal Y~~2
(;C20=1810

Order No.

111~ ~2~I!2 ~uid~, Order No. GC20-1812

£~n!!~! R!Qgf~~ (£R)
Order No. SY20-0880

Re!Qte ~EQQ!~ng £~!~yni£gtiQn2 ~ybsY2!§!
(RS~~) RIQgf~ 1Qqic, Order No.
SY20-0883

!~te: References in text to titles of
coreguisite VM/370 publications will be
given in abbreviated form.

g~L!~ Data ~~naqe.ent ~~fI~ lB2!!Yfti~n2'
Order No. GC26-3793.

IBM 3211 Printer, J~l~ InteI£ha!lg~~~le
Train-~artr~gg§, ~nd 3811 Printer Control
unit ~2~EQ!l~! Descript!Q!l and gperatQI's
Gui~§, Order No. GA24-3543.

1~~ Q~L!~ Lin!~g§ Idit~£ ~]g 1~~g~!, Order
No. GC26-3813.

Introduction to the IBM 3704 and 1105
CommunIcations-- contro!!er§-,---Order No.
GA27=3051:----

IBM 3704
controllers
"(;127==3055:

If the IBM 3767 Communication Terminal
is used by the system programmer as a
virtual machine console, the IBM 3767
Q~§!~!£!!§ ~~id§, Order No. GA18-2000~s
also a coreguisite publication.

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

!~!: Program Feature

A new commmand (INDICATE) and an
expa~sion of the MONITOR command provide
a way to dynamically measure system
performance. The general user can have
displayed, at his terminal, certain
certain system load conditions and his
virtual system's usage of system
resources. The system analyst can
sample and record a wide variety of
system load data, I/O activity, resource
utilization, response data and
simulation data.

A new section, "Performance
Observation and Analysis" has been added
to "Part 2: Control Program (CP)."

!~~: Program Feature

The VM/VS Handshaking feature is a
communication path between VM/370 and
OS/VS1 that makes each system control
program aware of certain capabilities
and requirements of the other. ~n~
following changes to this manual reflect
this support:

• A new operand, PAGEX, is added to the
CP SET command in "Part 1: Debugging
with VM/370."

• A new section, "VM/VS Handshaking" is
added to "Part 2: Control Program
(CP) ."

• A new Diagnose code 0 is added to the
"Diagnose Instruction in a virtual
Machine" section in "Part 2: Control
Program (CP)."

!~~: Program Feature

VM/370 now supports the IBM 3270
Information Display System as a remote
virtual machine console attached via
nonswitched point-to-point lines to a
2701 Data Adapter Unit, 2703

Summary of Amendments
for GC20-1807-3

VM/370 Release 2 PLC 13

Transmission Control Unit, or a
3704/3705 Communications Controller in
emulation mode. The remote 3270 user
also has the capability of copying an
entire screen display on a 3284, 3286,
or 3288 printer at the remote location.

The followinq changes to this manual
reflect this new support:

• A new operand, PFnn COPY is added to
the CP SET command in "Part 1:
Debugging with VM/370."

• The section on "CP Restrictions" is
updated to include restrictions to
this new support.

• "Figure 11. CP Control Block
Relationships" is updated.

• "Part 4: IBM 3704 and 3705
Communications Controllers" is
updated to include remote 3270
support.

!~!: Program Feature

Two new operands to the SET command
described in "Part 1: Debugging with
VM/370" allow the virtual machine user
~u ~naD~e and disable ~ne ECMODE and/or
ISAME options, dynamically.

!~!: Program Feature

A virtual machine user may now initiate
the punching of an accounting card
containing up to 70 bytes of data, the
content and format of which he can
determine. The fcllowing changes to
this manual reflect this support:

• "Accounting Records for Virtual
Machine Users" in "Part 2: Control
Program (CP) " is updated to describe
the implementaticn of this support.

• The section "Diagnose Instruction in
a Virtual Machine" in "Part 2:
Control Program (CP)" is updated to
expand the function of Diagnose code
X'4C' to include this new support.

!~!: Program Feature

The 3340 Direct Access storage Facility
is now supported by VM/370. This
support includes:

• 3348 Data Module, Models 35 and 70
• Rotational position Sensing
• Fixed Head Feature

This device support is reflected in the
following changes to this publication:

• "Figure
Types,
updated.

12. CP Device Classes,
Models and Features" is

• The INPUT AND OUTPUT control
statements for the DASD Dump Restore
Program, described in "Part 2:
Control Program (CP)," are changed.

!~: Documentation Only

VM/370 support for the IBM 3767
Communications Terminal (at 300bps) as
an IBM 2741 Communications Terminal is
reflected in an update to "Figure 12. CP
Device Classes, Types, Models and
Fea tures".

!~: Program Feature

The Remote Spooling Communications
Subsystem (RSCS) has been included as a
component of the VM/370 system. Together
with the Control Program (CP) of VM/370,
it manages telecommunication I/O devices
and lines used to automatically transfer
files between:

• VM/370 users and remote stations.

• Remote stations and
stations.

other remote

• VM/370 users and remote HASP/ASP type
batch systems.

Summary of Amendments
for GC20-1807 .. 3

VM/370 Release 2 PLC 11

• Remote stations and remote HASP/ASP
type batch systems.

• Remote stations and
virtual machine.

a CMS Batch

The addition of this new component is
reflected in the following changes and
additions to this publication:

• The Spooling Functions" section in
"Part 2: Control Program (CP)" has
been updated to include the remote
spooling capabilities of RSCS and the
addition of the spool file tag field
to all output spool files.

• The "Diagnose Instruction in a
virtual Machine" section in "Part 2:
Control Program (CP)" has been
updated to include a new subfunction
code X'OFFF' to Diagnose code 14.
RSCS uses this new option to retrieve
spool file block and tag data for
files that it is to process for
transmission.

• The "CMS Batch Facility" section in
"Part 3: Conversational Monitor
System (CMS) has been updated to
include remote job entry via RSCS.

• "Part 5: Remote Spooling
Communications SubsJste. CRSeS)" bas
been added to provide the system
programmer with pertinent information
on the new component of VM/370.

!§!: Program Feature

CMS now supports the reading of DOS
files as well as OS data sets. This
support is described in the "OS Data
Management Simulation" section of "Part
3: Conversational Monitor System (CMS) ".
The "VM/370: Restrictions" section in
"Part 1: Debugging with VM/370" is
updated to remove the restriction
against reading DOS files.

Be!: Program Feature

Programs such as DOs/Vs, Vs1 and Vs2
that use block multiplexer channel
operations can now be run under VM/370
in virtual block multiplexer mode. The
.ode of operation for all channels,
except channel 0 and any channel to
which a channel-to-channel Adapter
(CTCA) is attached, is selectable via a
DIRECTORY option or the DEFINE Command.

This new feature is described under
"Functional Information" in "Part 2:
Control Program (CP)".

£A~~E~g: Documentation Only

Information on planning considerations
and generation of the 3704/3705 control
program, formerly in "Part 4: IBM 3704
and 3705 Communications Controllers" has
been moved to the !ML37Q: Pl~nni~E and
§~§!~! Ge~~£~tio~ Gu!g~.

The information about generating and
testing the standalone program that
controls the 2780 formerly in "Part 5:
IBM 2780 Data Transmission Terminal" has
been moved to the !~Ll1Q: PI~~ni~g and
~I§!~~ Gene~!io~ 2~!~~.

]~!~!~~~~£~: Program and Documentation

Two new ABEND codes, PGT008 and PRG019,
have been added to "Figure 10. CP ABEND
Codes". Many other changes, to numerous
to detail, have also been included in
this publication.

IBM 3704/3705 COftftUNICATIONS
NETWORK CONTROL PROGRAM
PARTITIONED EMULATION PROGR1~

CONTROLLERS
(NCP) AND

IDVD\ , I

VM/370 now supports all three of the
3704/3705 control programs:

• Emulation Program (EP)
• Network Control Program (NCP)
• Partitioned Emulation program (PEP)

The following
support:

changes reflect

• The Preface is updated.

this

• A new CP ABEID code, NLDOOi, ~~ added
to "Figure 10. CP ABEND Codes" in
"Part 1: Debugging with Vft/370".

The following changes to "Part 4: IBM
3704 and 3705 Communications
Controllers" also reflect this support:

• A new section, "VM/370 Support of the
3704/3705" is added to the "Planning
Considerations" section. This new
section describes the extent to which
Vft/370 supports the three 3704/3705
control programs.

• The NAMENCP macro is updated in the
"Planning Considerations" section.

• The required options for the SYSCNTRL
macro are updated in Step 4 of the
"Generating and Loading the 3704/3705
Control Program" section.

Summary of A.endments
for GC20-1807-2

as updated by TNL GN20-2643
VM/370 Release 2 PLC 4

• The considerations for the use of the
ftultiple Terminal Access (MTA)
feature with a PEP control program
are updated in Step 4 of the
"Generating and Loading the 3704/3705
Control Program" section.

• The "Special Considerations for the
stage 1 Assellbly" section of "Step 6.
The stage 1 Generation Procedure" is
updated.

• A new section, "Special
Considerations for Loading the EP
3704/3705 Control Program", is added
to step 10 of the "Generating and
Loading the 3704/3705 Control
Program" section.

• A new step, "step 11. Logging On
Through the 3704/3705", is added to
the "Generating and Loading the
3704/3705 Control Program" section.

• The "Testing the 3704/3705 Control
Program" section is updated to add
information about using the NETWORK
cOllmand.

MISCELLANEOUS

£h!ng~~: Documentation only

A new section "CMS Interface for Display
Terminals", is included in "Part 3:
Conversational Monitor System (CftS)."

The index is corrected.

!~~: program Feature

The following IBM devices are now
supported:

• IBM 3330 Disk storage, Model 11

• IBM 3333 Disk Storage and Control,
Model 11

• IBM 3420 Magnetic Tape Units, Models
4, 6, and 8

• IBM 3272 Control unit, Model 2 (local
attachment)

• IBM 3277 Display station, Model 2
(local attachment)

• IBM 3066 System Console, Model 2

This device support caused the following
changes to this pUblication:

• "Figure
Types,
updated.

11. CP Device Classes,
Models and Features" is

• The SET command described in "Part 1:
Debugging with VM/370" contains
support for the 3270 program function
1r,.. ... ~
1\.<:;;1~·

• The INPUT AND • OUTPUT control
statements for the DASD Dump Restore
program, described in "Part 2:
Control Program (CP)," are changed.

• The "DIAGNOSE Code 58 -- 3270 virtual
Console Interface" section of "Part
2: Control Program (CP)" describes
the DIAGNOSE interface for a 3270.

!~!: Program Feature

A new section, "OS/VS2 Release 2
Uniprocessor under VM/370," in "Part 2:
Control Program (CP)," describes this
support.

Summary of Amendments
for GC20-1807-2

VM/370 Release 2 PLC 1

~~!: Program Feature

A new section, "storage Protection," in
"Part 2: Control Program ~P),"
describes both store and fetch storage
protection.

!~!: Program Feature

The virtual machine assist feature is a
combination of a CPU feature and VM/370
programming which improves the
performance of VM/370. The discussion,
"virtual Machine Assist Feature," in the
"preferred Machines" section of "Part 2:
Control Program (CP)," describes this
feature.

Changes for this feature appear in "Part
1: Debugging with VM/370" in the
descriptions of the following CP
commands:

• ADSTOP
• SET
• TRACE
• QUERY

The "Program States" section of "Part 2:
Control Program (CP) " is also updated.

!~!: Program Feature

All virtual machines that issue an SVC
76 to record errors signal VM/370 to do
the recording for them. SVC 76 support
caused changes to "Part 2: Control
Program {CP)II in

• The "svc Interrupts" section

• "Figure 20. SVC Interrupt Handling"

New: Program Feature

All terminal input and output (not just
the input and output from the virtual
machine operating system) is now
spooled. This spooling change is
described in the "Spooling Facilities"
section of "Part 2: Control Program
(CP) ."

Ne~: Program Feature

CMS now supports the reading of OS data
sets. This change is described in the
"OS Macro Siaulation under CMS" section
of "Part 3: Conversational Monitor
System (CMS)." The restriction list in
"Part 1: Debugging with VM/370" is also
updated to remove the restriction
against reading OS data sets.

!~!: Documentation Only

Four CMS
docullented,
pUblication:

lIacros, previously
are described in

not
this

• DMSABI is described in the "CMS
ABEIDs" section of "Part 1: Debugging
with VM/370."

• DMSFREE, DMSFRET, and DMSFRES are
described in the "Free Storage
Managellent" section of "Part 3:
Conversational Monitor System
(CMS) ."

!~!: Program Feature

This publication is updated to describe
the 3704/3705 control program under the
control of VM/370. The changes are:

• A new chapter, "Part 4: IBM 3704 and
3705 Communications Controllers,"
contains an introduction, planning

considerations, guidelines for
generating and loading the 3704/3705
control program, and a description of
the co.mands used for testing the
3704/3705 control prograll.

• Two new abnormal teraination codes
(BIBOOl and BIB002) are described in
"Figure 9. CP ABEID Codes."

• "Figure 11. CP Device Classes, Types,
Models, and Features" is updated.

• A new DIAGNOSE code
the "DIAGBOSE Code
3704/3705 Control
(Privilege Class A,
section of "Part 2:
(CP) • "

is described in
50 -- Save the

Program Image
B, or COnly)"
Control Prograll

!~!: Program and Documentation

Programaing changes have caused control
block changes for both CP and CMS. The
changes to the CP control blocks are
described in:

• The "Virtual and Real Control Block
Status" section of "Part 1: Debugging
with V~/310."

• "Figure 10. Control Block
Relationships."

• "Figure 11. CP Device Classes,
Types, Models, and Features."

The changes to the CMS control blocks
are described in:

• "Figure 15. CMS Control Blocks."

• "Figure 36. CMS Storage Map."

For CP, the abnormal termination codes
have changed. "Figure 9. CP ABEND
Codes" reflects the following changes:

• Codes CFM001, CNSOOl through CNSOOS,
PTR006, QCN001, QCN002 and VATOOl
have been deleted froll CP.

• Codes PRG016, PRG017, PRG01S, PTR011,
PTR012, RNB001, and RNB002 have been
added to CP.

For CP, the internal trace table now
traces machine checks, entry to the
scheduler, and the unstacking of
IOBLOKs and TRQBLOKs. "Figure S. CP
Trace Table Entries" reflects these
changes.

!~!: Program and Documentation

Attention handling has been revised.
Not all terminals have "attention"
keys. The number of attention
interrupts required depends on command
settings and the environment of the
virtual machine. Consequently, the
phrase "signal attention" is used
instead of "press the attention key
[onceltwice]."

~h~ng~~: Program and Documentation

Several CP commands have additional
operands and features. The commands
(DCP, DISPLAY, DMCP, and DUMP) are
described in "Part 1: Debugging with
VK/370." Also, "Figure 6. Summary of
VK/370 Debugging Tools" is updated to
reflect the command changes.

~!~n~~~: Documentation Only

Information about the Assembler virtual
storage requirements and overlay
structures has been added to "Part 3:
Conversational Monitor System (CMS) ."
This information was in the VKL37Q:
~Q!!Ang 19n9yg~ §y~g~ !Q~ §~~~~gl Q~~§
previously.

The information about generating and
testing the standalone program that
controls the 2780 has been moved from
the .!~L11Q : f.!gnni!!9 ~n~ ~I§!~!
Generation Guide to the "Part 5. IBM
2780-Dati-TraiiSiission Terminal" section
of this publication.

~hgng~g: Program and Documentation

• The VDUMP command has been renamed
the VMFDUMP command.

• The description of the PAGING operand
of the QUERY command contains more
detailed information.

~!lg!!g~§ 1Q iifgrt ~: £ont~QJ: fIQgIg!
(£~) ":

• The description of the PRIORITY
operand of the SET command described
in the "Preferred Machines" section
contains more detailed information.

• The KINIDASD command is no longer
supported. The IBCDASDI Virtual Disk
Initialization program replaces
MINIDASD.

• The Set Page Boundary (SPB) card is
no longer required for every page
boundary in the loadlist. See the
"CP Loadlist Requirements" section.

• A new section, "Removing Optional
support from the CP Nucleus," has
been added.

• ~Pigure 37. CMS Command (and Request)
Processing" has been redrawn to
include more detail.

• The "BATEXIT2: Processing the Batch
Facility /JOB Control Card" section
contains additional information.

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

PART 1: DEBUGGING WITH VM/370. • 11

• 13 INTRODUCTION TO DEBUGGING ••
How To start Debugging • •

Does a Problem Exist?
Identifying the Problem~
Analyzing the Problem. •

• • • • 13

How 10 Use VM/370 Facilities to Debug.
ABEND. • • • • • • • • • •

CP ABEND • • • • • • • • • • •
CP Termination without a Dump.
CMS ABEND ••••••••
Virtual Machine ABEND (Other Than

CM S). • • • • • • • • • • •
Unexpected Results ••••••

Unexpected Results in CP ••
Unexpected Results in a Virtual
Machine • • • •

Loop • • • • • • • •
CP Disabled Loop •
Virtual Machine Disabled Loop.
Virtual Machine Enabled Loop •

WAIT • • • • • • • • •••
CP Disabled Wait ••••
CP Enabled Wait •••••
Virtual Machine Disabled Wait.
virtual Machine Enabled Wait •
RSCS Virtual Machine Disabled Wait
RSCS virtual Machine Enabled Wait.

Summary of VM/370 Debugging Tools •••
Comparison of CP and CMS Facilities for

• 14
16

• 22
• 26
• 26
• 26
• 27
• 28

• 31
• 32
• 32

• 32
• 33
• 33
• 34
• 34
• 35
• 35
• 36
• 36
• 37
• 37
• 38
• 39

Debugging • • • • • • • • • • • 44

DEBUGGING WITH CPo • • • • • • 45
CP Commands Used To Debug in the Virtual

Machine •••• • • • • • 45
ADSTOP • • • • • • 46
BEGIN. • • 48
DISPLAY. • •••• 49
DUMP • • • • • • • • • • • 54
SE T. • • • • • • • 57
STORE. • • 62
SYSTEM • • • • • • 65
TRACE. • 67
CP Commands for System

System Analysts •
DCP. •
DMCP ••
LOCA'IE •
MONITOR.
QUERY ••
SAVENCP.
SAVESYS.
STCP ••

Programmers and

DASD Dump Restore Program (Standalone
Version). • • • • • • • • • •

DDR Control Statements • • • • •
I/O Definition Statements •••
INPUT/OUTPUT Control Statement
SYSPRINT Control statement ••

• 72
• 73
• 76
• 79
• 81
• 82
• 83
• 84
• 85

• 86
• 86
• 86
• 86
• 87

Contents

Function Statement • • • • • • • • • 88
PRINT/TYPE Function Statement •••• 92

Debugging CP on a Virtual Machine.. 93
CP Internal Trace Table ••••••••• 93
CP Restrictions. • • • • • • • • •• 96
Dynamically Modified Channel Programs. • 96
Minidisk Restrictions. • • • • • 96
Timing Dependencies. . . • • • • • .
CPU Model-Dependent Functions ••
Virtual Machine Characteristics.
CMS Restrictions • • • • • •
Miscellaneous Restrictions • •
ABEND Dumps. • • • • • • • • •

Using the VMFDUMP Command ••
How to Print A CP Abend Dump From
Tape. • • • • • • • • •

Reading CP ABEND Dumps
Reason for the ABEND
Collect Information •••
Register Usage • • • •

Q"7 • • :7,
• • 98
• • 98
• • 101
• .102
• • 103
• • 103

• .104
• .104
• .105
• .120
• • 120
• • 121 Save Area Conventions. •

Virtual and Real Control Block Status. 122
VMBLOK •
VCHBLOK.
VCUBLOK.
VDEVBLOK •
RCHBLOK.
RCUBLOK.
RDEVBLOK

Identifying a Pageable Module.

DEBUGGING WITH CMS • • •
CMS Debugging Commands •

DEBUG. • • • • • • •
SVCTRACE • • • • • • •

DASD Dump Restore Service Program and

• • 122
• • 125
• • 125
• • 126
• .127
• • 128
• • 128
• • 133

• • 134
• • 134
• • 135
• • 160

How To Use It ••••••••••••• 164
Invoking DDR under CMS •••••••• 164
Invoking DDR as a Standalone Program • 164

Nucleus Load Map. • • • • • .165
Load Map. • • • • • • • • • .165
Reading CM S AEEND Dumps. • • • 167

Reason for the ABEND. • .167
Collect Information. • .171
Register Usage •••••••••••• 173

PART 2: CONTROL PROGRAM (CP) • • 175

VM/370 • • • • • • • • • • • • .177
Introduction to the VM/370 Control

Program •••••••••••••••• 177
Virtual Machine Time Management •••• 178
Virtual Machine Storage Management •• 178
Virtual Machine I/O Management •••• 180
Spooling Functions •••••• 181
CP Commands. • • • • • • • ••• 182

PROGRAM STATES

USING CPU RESOURCES. •
Queue 1 •••
Queue 2 ••••••••

• .183

• • 184
• • 184
• • 184

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

INTERRUPTION HANDLING •••
Program Interrupt. • • •
Machine Check Interrupt.
SVC Interrupt. • • • • •
External Interrupt • • •

• 186
• 186
.186
• 186
.187

FUNCTIONAL INFORMATION. • • • • .188
Performance Guidelines • .200

General Information. • • • • • .200
Virtual Machine I/O. • • •••• 201
Paging Considerations. .202
Preferred virtual Machines • • • • • .204
The Virtual Block Multiplexer Channel
Option •••••••••••••••• 210

PERFORMANCE OBSERVATION AND ANALYSIS .210.1
Load Indicators •••••••••••• 210.1

The Indicate Command •••••••• 210.1
The Class G INDICATE Command • .210.2
The Class E INDICATE Command •••• 210.4

The MONITOR Command. • • • ••• 210.8
Implemented Classes. • • 210.12
VM Monitor Response to Unusual

Tape Conditions. • • • •• 210.14
VM Monitor Considerations. 210.14
VM Monitor Data Volume and
Overhead. • • • • • • • .. • 210.15

Load Environments of VM/370. 210.16

ACCOUNTIN G RECORDS •••••
Accounting Records for Virtual Machine

Users • • .. • • • ••• • • • • •
Accounting Records for Dedicated

Devices • • • •• •••••
User Formatted Accounting Records.
Operational Notes. • • • •••• •
User Accounting Options ••••••

GENERATING NAMED SYSTEMS •••••
Configuring the NAMESYS Macro (Module

DMK SN T) • • • • • • • • • • • • •
Using the SAVESYS Command
Determining When To Save a System ••

Special Considerations for Shared
Segments. • • • • • • • •

Saving OS. • • • • • • • •••

.211

.211

.211

.212

.212

.213

.214

.214

.215

.216

.216

.216

VM/VS HANDSHAKING ••••
Closing CP Spool Files •
Pseudo Page Faults •••••
VS 1 Nonpaging Mode • • •
Miscellaneous Enhancements

• .218.1
• .218.2

• •• 218.2
• .218.2
• .218.3

OS/VS2 RELEASE 2 UNIPROCESSOR UNDER
VM/370. • • • • • ••• .219

DOS UNDER VM/370
System Generation. • • • • •
Standard Label Cylinder.
System Residence • • • • •

VM/370 OPERATING IN A VIRTUAL MACHINE

• 220
.220
.220
.220

ENVIRONMENT •••••••••••••• 221
VM/370 Directory Definition. • • • • • .221
Virtual Machine Configuration •••••• 222
virtual System Residence Considerations.222
Virtual IPL and Operation. • • .223

Accessing Devices. • • • • • • • • • .224

S pooling Consider ations. . • • • • • .225
An Example of VM/370 Running under

VM/370. • • • • • • • • • • • .225

• .236 TIMERS IN A VIRTUAL MACHINE.
Interval Timer • • • ••• 236
CPU Timer •••••
TOD Clock. • • • • • • •
Clock Comparator • • • • •
Pseudo Timer • • • • • • •

Pseudo Timer Start I/O
Pseudo Timer DIAGNOSE. •

DIAGNOSE INSTRUCTION IN A VIRTUAL

• .236
• .237
• .237
• .237
• .238
• .238

MACHINE. • • • • • • • • • • • • .239
DIAGNOSE Code 0 -- Store
Extended-Identification Code.. • .239

DIAGNOSE Code 4 -- Examine Real Storage.240
DIAGNOSE Code 8 -- virtual Console

Function •••••••••••••••• 240
DIAGNOSE Code C -- Pseudo Timer •••• 240.1
DIAGNOSE Code 10 -- Release Pages ••• 240.1
DIAGNOSE Code 14 -- Input Spool File

Manipulation ••••••••••••• 240.2
DIAGNOSE Code 18 Standard DASD I/O •• 241
DIAGNOSE Code lC Clear I/O Recording.242
DIAGNOSE Code 20 General I/O. •• .242
DIAGNOSE Code 24 Device Type and
Features ••••

DIAGNOSE Code 28
Modification. •

DIAGNOSE Code 2C
of LOGREC • • •

-- Channel Program

-- Return DASD Start

DIAGNOSE Code 30 -- Read One Page of

• .243

• .244

• .245

LOGREC Data •••••••••••••• 245
DIAGNOSE Code 34 -- Read System Dump

spool File ••••••••••••••• 245
DIAGNOSE Code 38 -- Read System Symbol
Table ••••••••••••••••• 246

DIAGNOSE Code 3C -- VM/370 Directory •• 246
DIAGNOSE Code 4C -- Generate Accounting
Cards for the Virtual User ••••••• 246

DIAGNOSE Code 50 -- Save the 3704/3705
Control Program Image. • • • .247

DIAGNOSE Code 58 -- 3270 Virtual
Console Interface. • • • • •• • .247

DIAGNOSE Code 5C: Error Message Editing.248

CP CONVENTIONS • • • • • •
CP Coding Conventions. • •
CP Loadlist Requirements

• ••• 249
• .249
• .251

HOW TO ADD A CONSOLE FUNCTION TO CPo •• 253

PRINT BUFFERS AND FORMS CONTROL •••
Adding New Print Buffer Images •

ues Buffer Images •••••••
USCB Buffer Images • • • • • •

Forms Control Buffer •

PART 3: CONVERSATIONAL MONITOR SYSTEM
(CM S) • • • • • • • •

INTRODUCTION TO CMS •••
The CMS Command Language •
The File System ••••
Program Development ••••

• .254
• .255
• .255
• .257
• .260

• .263

• .265
• .265
• .266
• .268

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

INTERRUPT HANDLING IN CMS.
SVC Interruptions •••••••

Internal Linkage SVCs. • •
at her SVCs • • •

Input/Output Interruptions
Terminal Interruptions • •
Reader/Punch/Frinter Interruptions
User Controlled Device Interruptions •
Program Interruptions •••••••••
External Interruptions • • • •
Machine Check Interruptions ••••••

FUNCTIONAL INFORMATION •
Register Usage • • • • •
structure of DMSNUC. .

USERSECT (User Area)
DEVTAB (Device Table) •••

structure of CMS Storage •
Free Storage Management ••

GETMAIN Free Storage Management.
DMSFREE Free storage Management.
Releasing Allocated storage. • •
DMSFREE Service Routines • • • •
Error Codes from DMSFRES, DMSFREE,

and DMSFRET •••••••
CMS Handling of PSW Keys • • • • • •
CMS SVC Handling • • • • • • • • • •
SVC Types and Linkage Conventions ••
Search Hierarchy for SVC 202 • •
User and Transient Program Areas • •
Called Routine Start-up Table. • • •
Returning to the Calling Routine • •

CMS Interface for Display Terminals ••

HOW TO ADD A COMMAND OR EXEC PROCEDURE
TO CMS. • • • • • • • • •

OS MACRO SIMULATION UNDER CMS •••
OS Data Management Simulation. •

Handling Files that Reside on CMS
Disks • • • • • • • • • •

Handling Files that Reside on 05 or
DOS Disks • • • • • •

Simulation Notes • • • •
Access Method support ••
Reading OS Data Sets and DOS Files •
The FILEDEF Command.

SAVING THE CMS SYSTEM •••
Saved System Restrictions for CMS.

.269

.269

.269

.269

.270

.271
~271
.271
• 271
.272
• 272

.273

.273

.273

.274

.274

.275

.278

.278

.279

.284

.284

.286

.287

.288

.288

.290

.291

.294

.295

.297

.299

.300

.300

.300

.301

.303

.307

.309

.311

.312

.312

CMS BATCH FACILITY. • • • • • • • .313
Resetting Batch Facility System Limits .313
Writing Routines To Handle Special
Installation Input ••••••••••• 313

BATEXIT1: Processing User-Specified
Control Language ••••••••••• 314

BATEXIT2: Processing the Batch
Facility /JOB Control Card •••••• 314

EXEC Procedures for the Batch Facility
Virtual Machine •••••••••••• 314

Data Security under the Batch Facility .315
IPL Performance Using a Saved System •• 315

AUXILIARY DIRECTORIES •••••••••• 316
How To Add an Auxiliary Directory •••• 316

Generation of the Auxiliary Directory.316
Initializing the Auxiliary Directory .316

Establishing the Proper Linkage •••• 317
An Example of Creating an Auxiliary
Directory ••••••••••••••• 318

ASSEMBLER VIRTUAL STORAGE REQUIREMENTS .320
Overlay structures • • • • • .320

Prestructured Overlay. • • .320
Dynamic Load Overlay • • • • .322

PART 4: IBM 3704 AND 3705
COMMUNICATIONS CONTROLLERS. .323

INTRODUCTION TO THE IBM 3704 and 3705
COMMUNICATIONS CONTROLLERS. • .325

VM/370 support of the 3704 and 3705 ••• 325
Emulation Program (EP) with VMj370 • .326
Network Control Program (NCP) with

VM/370 •••••••••••••••• 326
Partitioned Emulation Program (PEP)
with VM/370 • • • • • • • • • • .327

Generating a VM/370 System that
Supports the 3704 and 3705 ••••••• 327

LOADING THE 3704/3705 CONTROL PROGRAM •• 328
Save the 3704/3705 Control Program

Image on Disk ••••••••••••• 328
The SAVENCP Command •••••••••• 328
Execution of the SAVENCP Program ••• 329

Load the 3704/3705 Control Program ••• 330
The NETWORK LOAD Command Line ••••• 330
Execution of the NETWORK LOAD Command.330
Special Considerations for Loading
the EP 3704/3705 Control Program ••• 331

special considerations for Loading
the NCP and PEP 3704/3705 Control
Programs. • • • • • • • • •• • .331

Logging on Through the 3704/3705 •••• 332
Turn the Power On ••••••••••• 332
Check for an Online Message •••••• 332
Follow the special Sign-on Procedures
for 3704/3705 Lines that Are in NCP
Mode and also Have the MTA Feature •• 333

Logging on After an NCP Control
Program Has Abnormally Terminated •• 334

Applying PTFs to the 3704/3705 Load
Library. • • • • • • • • • • • • .334

The ZAP Service Program. • • • .334
ZAP Input Control Records ••••••• 336
Special Considerations For Using

The ZAP Service Program •••••• 336.6

TESTING THE 3704/3705 CONTROL PROGRAM. .337
.337
.337

NETWORK. • • • • • • • • • • • • •
Bow to Use the NETWORK Com.and •

NCPDUMP Service Program and How to Use
It. • • • • • • • • • • • • • • • .345
Using the NCPDUMP Command. • •• .345

PART 5: REMOTE SPOOLING COMMUNICATIONS
SUBSYSTEM (RSCS). • • • .347

INTRODUCTION TO RSCS
Locations And Links ••
Remote Stations •••
VM/370 Spool System Interface ••
RSCS Command Language ••••••

• .349
• .349
• .349
• .350
• .350

STRUCTURE OF RSCS VIRTUAL STORAGE •••• 352

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

RSCS Supervisor ••••••••••••
su perv isor Queue Extension • • • • • •

• 353
.353
• 353
.354
.354
.354
.354

Free Storage • • • • • • • • • • • • •
System Control Task. • •• ••• •
Free Storage and Line Drivers ••
Line Allocation Task • • •
Spool File Access Task • • • • • • • •

FUNCTIONAL INFORMATION ••••
Virtual Storage Management

Page Allocation. • • • • • •
Queue Element Management

File Management. • • • • • • •

.355

.355

.355
• 355
• 356
.356
.356
.357
.357
.358
.358
.358
.358
.359

Tag slot Queues •••••••
Spool File Access. • • •

Task-to-Task Communication • •
RSCS Command processing.
RSCS Message Handling ••
Interruption Handling. • • • •

External Interruptions
SVC Interruptions.
I/O Interruptions. • •

FIGURES

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.
Figure 10.
Figure 11.

Figure 12.

Figure 13.

Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.

ABEND Messages ••••••••••••••• 14
VM/370 Problem Types ••••••••• 18
Does a Problem Exist?====~==23
Debug Procedures for Waits
and Loops •••••••••••••••••••• 24
Debug Procedures for
Unexpected Results and an
ABEND •••••••••••••••••••••••• 25
Summary of VM/370 Debugging
Tools •••••••••••••••••••••••• 39
Comparison of CP and CMS
Facilities for Debugging ••••• 44
Annotated Sample of Output
from the TYPE and PRINT
Functions of the DDR
Program •••••••••••••••••••••• 92
CP Trace Table Entries ••••••• 95
CP ABEND Codes •••••••••••••• 106
CP Control Block
Relationships ••••••••••••••• 124
CP Device Classes, Types,
Models, and Features •••••••• 131
Summary of SVC Trace Output
Lines ••••••••••••••••••••••• 163
Sample CMS Load Map ••••••••• 166
CMS Control Blocks=~e.e= •••• 168
CMS ABEND Codes ••••••••••••• 169
CP Initialization ••••••••••• 189
Real I/O Control Blocks ••••• 190
Virtual I/O Control Blocks •• 191
SVC Interrupt Handling •••••• 192
External Interrupt Handling.193
Program Interrupt Handling •• 194

LeGGING I/O ACTIVITY • • .360

AFPENDIX A: SYSTEM/370 INFORMATION •.. 363
Control Registers. • • • • • .363

APPENDIX B: MULTILEAVING
MULTI-LEAVING in VM/370. •
MULTI-LEAVING Philosophy ••
MULTI-LEAVING Control specification.

• .367
• .367
• .367
• .369

Record Control Byte (RCB). • •
Sub-Record Control Byte (SRCB) • •
String Control Byte (SeB). • • • •
Block Control Byte (BCB) • • • • •
Function Control Sequence (FCS). •

• .370
• .371
• .373
• .373
• .374

AFPENDIX C: VM MONITOR TAPE FORMAT
AND CONTENT • • • • • • • .374.1

.374.1

.374.2
Header Record. •
Data Records •

INDEX. • • •

Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.

Figure 28.

Figure 29.

Figure 30.

Figure 31.
Figure 32.

Figure 33.
Figure 34.

Figure 35.

Figure 36.

Figure 37.

Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.

Figure 43.

Figure 44.

• .377

Paging •••••••••••••••••••••• 195
Virtual Spooling •••••••••••• 196
Real Spooling ••••••••••••••• 197
Virtual Tracing ••••••••••••• 198
Virtual-to-Real Address
Translation ••••••••••••••••• 199
storage in a Virtual=Real
Machine ••••••••••••••••••••• 207
Formats of Pseudo Timer
Information ••••••••••••••••• 237
UCSB Associative Field
Chart ••••••••••••••••••••••• 258
eMS File System ••••••••••••• 267
Devices Supported by a CMS
Virtual Machine ••••••••••••• 275
CMS Storage Map ••••••••••••• 277
CMS Command (and Reques~

processing ••••••••••••••••• 293
PSW Fields When Called
Routine Starts •••••••••••••• 294
Register Contents When
Called Routine Starts ••••••• 294
Simulated OS Supervisor
Calls ••••••••••••••••••••••• 302
An Overlay Structure •••••••• 321
RSCS Command Summary •••••••• 351
RSCS Storage Allocation ••••• 352
Control Register Allocation.363
Control Register
Assignments ••••••••••••••••• 364
The Extended Control PSW
(Program status Word) ••••••• 365
A Typical MULTI-LEAVING
Transmission Block •••••••••• 368

Part 1: Debugging with Vr-ll./370

This debugging section contains the followi~g information:

• How to star~ debugging
• How to use VM/370 facilities to debug ABE8Ds, unexpected

results, loops, and waits
• summary of VM/370 debugging too~s
• comparison of CP and eMS debugging tools

• Debugging CP on a virtual machine
• Commands useful in debugging
• DASD Dump Restore program
• Internal trace table
• Restrictions
• ABEND dumps
• Reading CP ABEND dumps
• Control block summary

• Debugging commands
• DASD Dump Restore Program
• Nucleus load map
• Reading CMS ABEND dumps
• Control block summary

Part 1: Debugging with VM/370 11

Introduction to Debugging

The Vft/310 Control Program manages the resources of a single computer
such that multiple computing systems appear to exist. Each "virtual
computing system," or virtual machine, is the functional equivalent of
an IBft System/310. Therefore, the person trying to determine the cause
of a Vft/310 software problem must consider three separate areas:

1. The Control Program (CP) which controls the resources of the real
machine.

2. The virtual machine operating system running under the control of
CP, such as CftS, RSCS, OS, or DOS.

3. The problem program, which executes under the control of a virtual
machine operating system.

Once the area causing the problem is identified, the appropriate
person should take all available information and dete.rmine the cause of
the problem. ftost likely, the IBft Pield Engineering program systems
Representative or system programmer handles all problems with CP, CftS,
and RSCS; information that is helpful in debugging CP and CftS is
contained in this publication. The application programmer handles all
problem program errors; techniques for application program debugging are
found in the !~L1IQ: ~Q!.a~~ La~~y~~ ~yig~ fo~ ~~~~~al Us~!§.

If the problem is caused by a virtual machine operating system (other
than CftS and RSCS), refer to the publications pertaining to that
operating system for specific information. However, use the CP debugging
facilities, such as the CP commands, to perform the recommended
debugging procedures discussed in that other publication. The IBft Pield
Engineering Program systems Representative or system programmer most
likely handles problems with virtual machine operating systems.

If it becomes necessary to apply a PTP (Program Temporary Fix) to a
component of Vft/310, refer to the !ALllQ: PI~~i~~ ~!~ ~yste~ Gen~~!i~!
iY!~§ for detailed information on applying PTFs.

Before you can correct any problem, you must recognize that one exists.
Next, you must identify the problem, collect information and determine
the cause so that the problem can be fixed. When running Vft/310, you
must also decide whether the problem is in CP, the virtual machine, or
the problem program.

A good approach to debugging is:

1. Recognize that a problem exists.

2. Identify the problem type and the area affected.

3. Analyze the data you have available, collect more data if you need
it, then isolate the data that pertains to your problem.

4. Pinally, determine the cause of the problem and correct it.

Part 1: Debugging with Vft/310 13

DOES A PROBLEM EXIST?

There are four types of problems:

1. Loop
2. wait state
3. ABEND (Abnormal End)
4. Incorrect results

The most obvious indication of a problem is the abnormal termination
of a program. Whenever a program abnormally terminates, a message is
issued. Figure 1 lists the possible ABEND messages and identifies the
type of ABEND for these messages.

Message

(Alarm rings)
DMKDMP9081 SYSTEM FAILURE CODE xxxxxx

DMKDMP90SW SYSTEM DUMP FAILURE;
PROGRAM CHECK

DMKDMP906W SYSTEM FAILURE; MACHINE
CHECK, RUN SEREP

DMKDMP907W SYSTEM DUMP FAILURE; FATAL
I/O ERROR

DMKCKP900W SYSTEM RECOVERY FAILURE;
PROGRAM CHECK

DMKCKP901W SYSTEM RECOVERY FAILURE;
MACHINE CHECK, RUN SEREP

DMKCKP902W SYSTEM RECOVERY FAILURE;
FATAL I/O ERROR - NUCL CYL

- WARM CYL
DMKCKP904W SYSTEM RECOVERY FAILURE;

INVALID WARM START DATA
DMKCKP910W SYSTEM RECOVERY FAILURE;

INVALID WARM START CYLINDER
DMKCKP911W SYSTEM RECOVERY FAILURE;

WARM START AREA FULL

DMKWRM902W SYSTEM RECOVERY FAILURE;
FATAL I/O ERROR

DMKWRM903W SYSTEM RECOVERY FAILURE;
VOLID xxxxx ALLOCATION ERROR
CYLINDER xxx

DMKWRM904W SYSTEM RECOVERY FAILURE;
INVALID WARM START DATA

DMKWRM909W SYSTEM RECOVERY FAILURE;
VOLID xxxxxx NOT MOUNTED

Figure 1. ABEND Messages (Part 1 of 3)

14 IBM VM/370: System Programmer's Guide

Type of ABEND

CP ABEND, system dumps to
disk. Restart is automatic.

If the dump program encoun­
ters a program check, ma­
chine check or fatal I/O
error, a message is issued
indicating the error. CP
enters the wait state with
code 3 in the PSW.

If the checkpoint program
encounters a program check,
a machine check, a fatal I/O
error or an error relating
to a certain warm start
cylinder or warm start data
conditions, a message is
issued indicating the error
and CP enters the wait state
with code 7 in the PSW.

If the warm start program
encounters a severe error, a
message is issued indicating
the error and CP enters the
wait state with code 9
in the PSW.

r--·----------~
Message Type of ABEND

DMKDMP9081 SYSTEM FAILURE, CODE xxxxxx ICP ABEND, system dumps to
DMKCKP960! SYSTEM WARM START DATA SAVED' tape or printer. The system
DMKCKP961W SYSTEM SHUTDOWN COMPLETE stops; the operator must IPL

the system to start again.

DMKDMP905W SYSTEM DUMP FAILURE;
PROGRAM CHECK

DMKDMP906W SYSTEM DUMP FAILURE;
MACHINE CHECK, RUN SEREP

DMKDMP907W SYSTEM DUMP FAILURE; FATAL
I/O ERROR

DMKMCH6101 MACHINE CHECK SUPERVISOR
DAMAGE

DMKMCH6111 MACHINE CHECK SYSTEM
INTEGRITY LOST

If the dump program encoun­
ters a program check, a ma­
chine check or fatal I/O
error, a message is issued
indicating the error. CP
enters the wait state with
code 3 in th~ PSi.

If the dump cannot find a
defined dump device and if
no printer is defined for
the dump, CP enters a dis­
abled wait state with code 4
in the PSW.

CP termination with automatic
restart.

The machine check handler en­
countered a nonrecoverable
error with the VM/370 con­
trol program.

The machine check handler en­
countered an error that can-I
not be diagnosed; system I
integrity, at this point, I
is not reliable. I L-___ ~I

Figure 1. ABEND Messages (Part 2 of 3)

Part 1: Debugging with VM/370 15

DMKCCH603W CHANNEL ERROR, RUB SEREP,
RESTART SYSTEM

DMKCPI955W INSUPPICIENT STORAG! FOR
'M/370

DMSABN148T SYSTEM ABEND xxx
CALLED PRO" xxxxxx

others
Refer to OS and DOS publication
for the abnormal termination
messages.

Figure 1. ABEND "essages (Part 3 of 3)

Type of ABEND

CP ter.ination without auto­
matic restart.

There was a channel check
condition from which the
channel check handler could
not recover. CP enters the
wait state with code 2 in
the PSW.

The generated system requires
more real storage than is
available. CP enters the
disabled wait state with
code OOD in the PSW.

IC"S ABEND, system will accept
I commands from the terminal.
I Enter the DEBUG command and
I then the DUMP subcommand to
I have C"S dump storage on the
I printer.

IWhen OS or DOS abnormally
I terminates on a virtual
I machine, the messages issued
I and the dumps taken are the
I same as they would be if OS
I or DOS abnormally terminated
I on a real machine.

Another obvious indication of a problem is unexpected output. If your
output is missing, incorrect, or in a different format than expected,
some problem exists.

Unproductive processing time is another symptom of a problem. This
problem is not as easily recognized, especially in a time sharing
environment.

IDENTIFYING THE PROBLE"

Two types of problems are easily identified: abnormal termination is
indicated by an error message, and unexpected results become aFparent
once the output is examined. The looping and wait state conditions are
not as easily identified.

When using V"1370, you are normally sitting at a terminal and do not
have the lights of the CPU control panel to help you. You may have a
looping condition if your program takes longer to execute than you
anticipated. Also, check your output. If the number of output records or
print lines is greater than expected, the output may really be the same
information repeated many times. Repetitive output usually indicates a
program loop.

16 IBM '"1370: System Programmer's Guide

Another way to identify a loop is to periodically examine the current
PSW. If the PSW instruction address always has the same value, or if the
instruction address has a series of repeating values, the program
probably is looping.

The wait state is also difficult to recognize when at the terminal.
Again, the console lights are unavailable. If your program is taking
longer than expected to execute, the virtual machine may be in a wait
state. Display the current PSW on the terminal. periodically, issue the
CP command

QUERY TIME

and compare the elapsed processing time. When the elapsed processing
time does not increase, the wait state probably exists.

Figure 2 helps you to identify problem types and the areas where they
aay occur.

Part 1: Debugging with V8/370 17

~.---,
IProbleml Where I
I Type IABBND Occurs I Distinguishing Characteristics
1--

ABBND CP ABBND

CP ABEND

The alarm rings and the message
DMKDMP9081 SYSTBM FAILURB, CODE xxx xxx

appears on the CPU console. In this instance,
the system dump device is a disk, so the system
dumps to disk and automatically restarts. If
an error occurs in the dump, checkpoint, or
warmstart program, CP enters the wait state
after issuing one or more of the following
messages:

DMKDMP905W SYSTEM DUMP FAILURE; PROGRAM CHECK
DMKDMP906W SYSTEM DUMP FAILURE; MACHINE CHECK,

RUN SERBP
DMKDMP907W SYSTEM DUMP FAILURE; FATAL I/O ERROR
DMKCKP900W SYSTBM RBCOVERY FAILURE; PROGRAM

CHECK
DMKCKP901W SYSTBM RECOVERY FAILURE; MACHINE

CHECK, RUN SEREP
DMKCKP902W SYSTEM RECOVERY FAILURE; FATAL I/O

ERROR
DMKCKP904W SYSTEM RECOVERY FAILURE;

INVALID WARM START DATA
DMKCKP910W SYSTEM RECOVERY FAILURE;

INVALID WARM START CYLINDER
DMKCKP911W SYSTEM RECOVERY FAILURE;

WARM START AREA FULL
DMKWRM902W SYSTEM RECOVERY FAILURE; FATAL I/O

ERROR
DMKWRM903W SYSTEM RECOVERY FAILURE;

VOLID xxxxxx ALLOCATION ERROR
CYLINDER xxx

DMKWRM904W SYSTEM RECOVERY FAILURE; INVALID
WARM START DATA

DMKWRM909W SYSTEM RECOVERY FAILURE; VOLID
xxxxxx NOT MOUNTED

The following messages appears on the CPU console
DMKDMP9081 SYSTEM FAILURE, CODE xxxxxx
DMKDMP9601 SYSTEM WARM START DATA SAVED
DMKDMP961W SYSTEM SHUTDOWN COMPLETE

The system dumps to tape or printer and stops.
The operator must IPL the system to restart. If
an error occurs in the dump or checkpoint pro­
grams, CP enters the wait state after issuing
one or more of the following messages:

DMKDMP905W SYSTEM DUMP FAILURE; PROGRAM CHECK
DMKDMP906W SYSTEM DUMP FAILURE; MACHINE CHECK,

RUN SEREP
DMKDMP907W SYSTEM DUMP FAILURE; FATAL I/O ERROR
DMKCKP900W SYSTEM RECOVERY FAILURE; PROGRAM

CHECK
DMKCKP901W SYSTEM RECOVERY FAILURE; MACHINE

CHECK, RUN SEREP
DMKCKP902W SYSTEM RECOVERY FAILURE; FATAL I/O

ERROR
DMKCKP910W SYSTEM RECOVERY FAILURE;

INVALID WARM START CYLINDER
DMKCKP911W SYSTEM RECOVERY FAILURE;

WARM START AREA FULL

igure 2. VM/370 Problem Types (Part 1 of 5)

18 IBM VM/370: System Programmer's Guide

Problem
Type

ABEND
(Cont.)

I

Where
ABEN D Occurs Distinguishing Characteristics

CP terminationlAn unrecoverable machine check error has
with auto- I occurred. One of the following messages: i
matic start I DMKMCH610I MACHINE CHECK SUPERVISOR DAMAGE

I DMKMCH611I MACHINE CHECK INTEGRITY LOST
I appears on the CPU console. The system is
I automatically restarted.

CP termination IAn unrecoverable channel check error has
without auto-I occurred. The message:
matic restartl DMKCCH603W CHANNEL ERROR, RUN SEREP,

I RESTART SYSTEM
appears on the CPU console, and CP enters
wait state.

IVirtual
I Machine

IThe CMS message
I DMSABM148T SYSTEM ABEND xxx CALLED FROM

I ABEND (CM S)
I
I

"I

I

Virtual
Machine ABEND
(other than

CMS)

I xxxxxx
I appears on the terminal. The system stops
I and waits for a command to be entered on
I the terminal. In order to have a dump
I taken, issue the CMS DEBUG command and then

the DUMP subcommand. ""

When OS or DOS abnormally terminates on a
virtual machine, the messages issued and
the dumps taken are the same as they would
be if OS or DOS abnormally terminated on a
real machine.

VM/370 may terminate or reset a virtual
machine if a nonrecoverable channel check
or machine check occurs in that virtual
machine. One of the following messages:

DMKMCH616I MACHINE CHECK; USER userid
TERMINATED

DMKCCH604I CHANNEL ERROR; DEV xxx; USER
userid; MACHINE RESET

to the system operator at the CPU console.
Also, the virtual user is notified that qis
machine was terminated or reset by one of
following messages:

DMKMCH6191 MACHINE CHECK; OPERATOR
TERMINATED

DMKCCH606I CHANNEL ERROR; OPERATOR
TERMINATED

Unexpected I CP IIf an operating system, other than CMS,
Results I

I
I
I

executes properly on a real machine, but
I not properly with CP, a problem exists.
I Inaccurate data on disk or system files
I (such as spool files) is an error.

1--
Iyirtual
I Machine
I
I
I

IIf a program executes properly under the
I control of a particular operating system
I on a real machine, but does not execute
I correctly under the same operating system
I with VM/370, a problem exists.

Figure 2. V~/370 Problem Types (Part 2 of 5)

Part 1: Debugging with VM/370 19

Problem
Type

Where
ABEND Occurs

I

1
Distinguishing Characteristics 1

---1 wait

I

Disabled CP
wait

I Enabled CP
1 wait

Disabled
virtual
machine wait

Enabled
virtual
machine wait

The CPU wait light is on. Also, pressing I
the REQUEST key on the operator's console, 1
or the equivalent action, leaves the 1
REQUEST PENDING light on. If the message 1

D"K"CB612W "ACHINE CHECK TI"ING FACILITIESI
DAftAGE, RUN SEREP 1

appears on the CPU console, a machine check
(probable hardware error) caused the CP
disabled wait state. If the message

D"KCCB603W CHANNEL ERROR, RUN SEREP,
RESTART SISTE"

appears on the CPU console, a channel check
(probable hardware error) caused the CP
disabled wait state. If the message

D"KCPI955W INSUFFICIENT STORAGE FOR V"/370
appears on the CPU console, the control
program has entered a disabled wait state
with code OOD in the PSW. Either the
generated system is larger than the real
machine size, or a hardware machine mal­
function prevents V"/370 from using the
necessary amount of storage. If the message

D"KPAG415E CONTINUOUS PAGING ERRORS FROft
DASD xxx

appears on the CPU console, the control
program (CP) has entered a disabled wait
state with code OOF in the PSW. Consecutive
hardware errors are occurring on one or
more V"/370 paging devices.

IThe CPU console light is on, but the system
I accepts interrupts from I/O devices.

IThe V"/370 Control Program does not allow a
I virtual machine to enter a disabled wait
I state or certain program loops. Instead, CP
I issues one of the following messages:
I D"KDSP450W CP ENTERED; DISABLED WAIT PSi
I DftKDSP451W CP ENTERED; INVALID PSW
I D"KDSP452W CP ENTERED; EXTERNAL INTERRUPT
I LOOP
I DftKDSP453W CP ENTERED; PROGRA" INTERRUPT
I LOOP

A PSi enabled fer I/O interrupts is leaded.
Nothing happens if an I/O device fails to
issue an I/O interrupt. If a program is
taking longer to execute than expected,
periodically issue the CP command, QUERY
TlftE. If the processing time remains un­
changed, there is probably a virtual
.achine enabled wait.

C"S types a blip character for every 2
seconds of elapsed processing time. If the
program does not end and blip characters
stop typing, an enabled wait state probably
exists.

Figure 2. Vft/370 Problem Types (Part 3 of 5)

20 IBft V"/370: System Programmer's Guide

Problell
Type

wait
(cant.)

Loop

Where
ABEND Occurs Distinguishing Characteristics

Disabled RSCS The RSCS operator is notified of the wait
wait state by CP issuing the message

DMKDSP450W CP ENTERED; DISABLED WAIT PSW

If, in addition, the message

DMTINI402T IPL DEVICE READ I/O ERROR

appears on the RSCS console, an unrecover­
able error has occurred while reading the
RSCS nucleus from DASD storage. RSCS
enters a disabled wait state with a code
of 011 in the PSW.

If a program check occurs before the
program check handler is activated, RSCS
enters a disabled wait state with a code of
007 in the PSW.

If a prograll check occurs after the program
check handler is activated, Rses enters a
disabled wait state with a code of 001 in
the PSW. One of the following messages may
also appear on the RSCS console:

DMTREX090T PROGRAM CHECK IN SUPERVISOR
RSCS SHUTDOWN

DMTREX091T INITIALIZATION PAILURE -- RSCS
SHUTDOWN

Enabled Rses IRSeS has no task ready for execution. A
wait I PSW, enabled for external and I/O

CP disabled
loop

CP enabled
loop

I interrupts, is loaded with a wait code of
I all zeroes.

IThe CPU console wait light is off. The
i problem state bit of the real PSi is off.
I No I/O interrupts are accepted.

IThere is no such condition.
I

IThe program is taking longer to execute than
I anticipated. Signalling attention from the

Virtual
machine
disabled loopl terminal does not cause an interrupt in the

I virtual lIachine. The virtual machine opera-I
I tor cannot communicate with the virtual I
I machine's operating system by signalling I
I attention. I ,

Pigure 2. VM/370 Problem Types (Part 4 of 5)

Part 1: Debugging with VM/370 21

Problem
Type

Loop
(cont.)

Where
ABEND Occurs

,Virtual
, machine
, enabled loop , ,
I ,
I ,
I ,

Distinguishing Characteristics

,Excessive processing time is often an indi­
cation of a loop. Use the CP QUERY TIME
command to check the elapsed processing
time. In CMS, the continued typing of the
blip characters indicates that processing
time is elapsing. If time has elapsed,
periodically display the virtual PSW and
check the instruction address. If the same
instruction, or series of instructions,
continues to appear in the PSW, a loop
probably exists.

Figure 2. VM/370 Problem Types (Part 5 of 5)

ANALYZING THE PROBLEM

Once the type of problem is identified, the cause of it must be
determined. There are recommended procedures to follow. These
procedures are helpful, but do not identify the cause of the problem in
every case. Be resourceful. Use whatever data you have available. If
the cause of the problem is not found after the recommended debugging
procedures are followed, it may be necessary to undertake the tedious
job of desk-checking.

The section, "How To Use VM/370 Facilities To Debug," describes
procedures to follow in determining the cause of various problems that
can occur in the Control Program or in the virtual machine. (See the
!~Lll~: ~2!!2~~ 12~~Q~~~ §~ig~ !2~ §~~~~~! Q§~!§ for information on
using VM/370 facilities to debug a problem program.)

If it becomes necessary to apply a Program Temporary Fix (PTF) to a
VM/370 component, refer to the VMLl1Q: ~la~~ing ~!g EY2i~~ Generation
§~ig~ for detailed information on applying PTFs. Figure 3, Figure-4;
and Figure 5 summarize the debugging process from identifying the
problem to finding the cause.

22 IBM VM/370: System Programmer's Guide

r- Is there an ABEND condition? ------..

II If the message
DMKDMP9081 SYSTEM FAILURE, CODE XXX XXX

aPP6ar:; vii the CCr1i50:6 iiild
the alarm rings,

this is a CP ABEND.
The system dumps to disk

and automatically ~
performs IPL. • ~

II If the messages
DMKDMP9081 SYSTEM FAILURE, CODE XXXXXX

DMKCKP9601 SYSTEM WARMSTART DATA SAVED
DMKCKP961W SYSTEM SHUTDOWN COMPLETE

appear on the console,

this is a CP ABEND.
The system dumps to tape

or printer and stops. ~ rs;;l

V
II

If the message

DMSABNI48T SYSTEM ABEND XXX,

CALLED FROM YYYYYY

appears on the terminal,

this is a CMS ABEND.---C5J

II If an ABEND message

, from the virtual machine appears

on the terminal,

this is an ABEND in the
operating system controlling

this virtual machine. ~C5J

II Otherwise, an ABEND
condition does not exist,

No problem exists

GO TO=) ___________ .J

Figure

(0 Unexpected Results?---------...

II If an operating system which

executes properly on a real machine
fails to execute properly under VM/370,

there are unexpected results

in CPo ------... - rs:J

II If a program which executes under V
the control of an operating system on

a real machine fails to execute correctly

with the same operating system under
VM/370,

there are unexpected results ~
In the virtual machine. --- 'V

II If the program's output is

maccurate or mlssmg,
there are unexpected results
in the problem program. _______ '-__

If the output is redundant r::'\
check for a loop. --- \.!J

II Otherwise, check for a wait or

~ ___ IO_OP_.~---------------------J
(0

3. Does a Problem Exist?

t Is there a wait or Loop? _________ ..

a If pressing the REQUEST ke\' on the operator's

console leaves the REQUEST PENDING light on,
a CP disabled wait state exists.

The CPU console light will be on. __ ~

II If the CPU console wait light is on,
the system is in a CP enabled wait state. __ ~

II If the real PSW problem bit is OFF,

thtre is a CP loop. • ~

II If any of the following messages

DMKDSP450W CP ENTERED; DISABLED WAIT PSW

DMKDSP451W CP ENTERED; INVALID PSW

DMKDSP452W CP ENTERED; EXTERNAL INTERRUPT
LOOP

DMKDSP453W CP ENTERED; PROGRAM INTERRUPT

LOOP

appears on the terminal,
there is a disabled wait or an interrupt loop in the

virtual machine. --------....

'\
II If pressing the ATTN key once does not cause

an Interrupt, C5J
there is a disabled loop in the virtual machine.)

li lt processi~g has ceased in the virtual
machine without reaching end-of-job,

the virtual machine is in an
enabled wait state and no I/O interrupt

has occurred.

~

.~

II If processing time exceeds normal expectations,

the virtual machine may have an enabled loop.)

II f4al
Otherwise,~ ____________ V ____

(0
Refer to the IBM Vir.tual Machine Facility/370:

Command Language Guide for General Users
GC20-1804. '

Part 1: Debugging with V"/370 23

Figure 4.

Debug Procedures for a Wait

CP Disabled Wait --------------------------------,

• •
Use ALTER/DISPLAY console mode (if available), to display real PSW and CSW. Also,
display general and extended control registers and storage locations X'OO'-X'l00'.

Press SYSTEM RESTART button to cause a CP ABEND
dump to be taken.

IPL.

CP Enabled Wait ----------------------------------4

•
Press SYSTEM RESTART button to cause a
CP ABEND dump to be taken.

Use the dump to check the status of each VMBLOK. Also,
check RCHBLOK, RCUBLOK, and RDEVBLOK for each device.

Virtual Machine Disabled Wait ----------------------------1

•
Use CP commands (CMS users may use the CMS DEBUG command) to display
the PSW, CSW, general registers, and control registers.

Use the CP DUMP command (or CMS DUMP subcommand) to
take a dump.

Virtual Machine Enabled Wait ----------------------------1

Take a dump.

Debug Procedures for a Loop

CPLoop---,

• •
Use ALTER/DISPLAY console mode (if available) to
display real PSW, general registers, control
registers, and storage locations X'OO'-X'100'.

Press SYSTEM RESTART button to cause a CP
ABEND dump to be taken.

Examine the CP internal trace table to see where the loop is.

Virtual Machine Disabled Loop ----------------------------1

• • •

Use the CP TRACE command to trace the loop.

Display the general registers and control registers
via the CP DISPLAY command.

Take a dump using the CP DUMP command.

Examine the source code.

Virtual Machine Enabled Loop ----------------------------1

• •
Trace the loop. Display the PSW, general registers,
and extended control registers.

Take a dump.

Examine source code.

Debug Procedures for waits and LOOps

24 IBM VM/370: System Programmer's Guide

Figure 5.

Debug Procedures for Unexpected Results

Unexpected Results in CP -----------------------------,

• • •

Check that the program is not violating any
CP restrictions.

Check that the program and operating system running
on the virtual machine are exactly the same as those
that ran on the real machine.

Use the CP TRACE command to trace CCWs, SIOs, and interrupts.
Look for an error in CCW translation or interrupt reflection.

If disk 1/0 error, use the CP DDR (CASe Dump Restore)
program to print the contents of any disk.

Unexpected results in a virtual machine -------------------------4

• •
Check that the program executmg on the virtual machine is
exactly the same as the one that ran on the real machine.

Make sure that operating system restrictions
are not violated.

Use CP TRACE to trace all I/O operations.

Debug Procedures for an ABEND

CPABEND--,

• •
Find out why CP abnormally terminated. Examine the
PROPSW, INTPR, SVCOPSW, and CPABEND fields in the PSA
from the dump.

Identify the module that caused the ABEND.
Examine the SAVEAREA, BALRSAVE, and FREESAVE areas of the dump.

If liO operation, examine the real and virtual I/O
control blocks.

CMSABEND--~

•
Determine reason for ABEND from code in ABEND
message DMSABN148T.

Enter debug environment or CP console function mode
to use the commands, to display the PSW, and to examine
low storage areas:

LASTLMOD and LASTTMOD
LASTCMND and PREVCMND
LASTEXEC and PREVEXEC and DEVICE

Look at the last instruction executed.
Take dump if need be.

Virtual Machine ABEND (other than CMS) -----------------------1

• •
Examine dump, if there is one.

Use CP commands to examine registers and
control words.

Use CP TRACE to trace the processing up to
the point where the error occurred.

Debug Procedures for Unexpected Results and an ABEND

Part 1: Debugging with V8/370 25

Once t~e prcblem, and the area where it occurs, is identified, you can
gather the information needed to determine the cause of the problem. The
type of information you want to look at varies with the type of problem.
The tools used to gather the information vary depending upon the area in
which the problem occurs. For exa~ple, if the problem is looping, you
will want to examine the PSW. For a CP loop, you have to use the
operator's console to display the PSW, but for a virtual machine loop
you can display the PS~ via the CP DISPLAY command.

The following sections describe specific debugging procedures for the
various error conditions. The procedures will tell you what to do and
what debug tool to use. For example, the procedure may say dump storage
using the CP DUMP command. The procedure will not tell you how to use
the debug tool. Refer to the "CP Commands to Debug the virtual Machine"
and "CMS Debugging Commands" sections for a detailed description of each
debug tool, including how to invoke it.

AEEND

When a system does not know how to continue, it abnormally terminates.

When the VM/370 Control Program abnormally terminates, a dump is taken.
This dump can be directed to tape or printer or dynamically allocated to
a direct access storage device. The output device for a CP ABEND dump is
spec~fied by the CP SET command. See the "ABEND Dumps" section for a
description of the SET and VMFDUMP commands.

Use the dump to find what caused the Contrel Program to terminate.
First, find why the system abnormally terminated and then see how the
condition can be correc~ed. See the "Reading CP ABEND Dumps" discussion
for detailed information on reading a CP ABEND dump.

REASON FOR 1~~ ABEND: CP will terminate and take an abnormal
teriI~atIon dump under-three conditions:

1. Program Check in CP

Examine the PROPSW and INTPR fields in the Prefix Storage Area to
determine the failing module.

2. Module Issuing an SVC 0

Examine the SVC old PSW (SVCOPSW) and ABEND code (CPABEND) fields
in the Prefix Storage Area to determine the module that issued the
SVC 0 and the reason it was issued.

CPABEND contains an abnormal termination code. The first
characters identify the failing module (for example, ABEND
TRCOO~ indicates DMKTRC is the fuiling module).

~. Operator Pressing SYSTEM RESTART Button on CPU Console

three
code

Ex~mine the old PSW at location X'08' to find the location of the
instruction that was executing w~en the operat~r pressed SYSTEM

26 IBM VM/370: S~stem Programmer's Guide

RESTART. The operator presses SYSTEM RESTART when CP is in a
disabled wait state or loop.

~!!MIB] 1Q! ~lQ!!§~ !!~!E: The information in low storage tells you the
status of the system at the time CP terminated= status information is
stored in the Prefix storage Area (PSA). You should be able to tell the
module that was executing by looking at the PSA. Refer to the
appropriate save area (SAVEAREA, BALRSAVE, or FREESAVE) to see how that
module started to execute. The Prefix Storage Area is described in the
!~37Q: ~2n~I2! RIQgI~! (CP) RIQEI~~ 1QEi£ publication.

Examine the real and virtual control blocks to find the status of I/O
operations. Figure 11 shows the relationship of CP Control Blocks.

Examine the CP internal trace table. This table can be extremely
helpful in determining the events that preceded the ABEND. The "CP
Internal Trace Table" description tells you how to use the trace table.

The values in the general registers can help you tc locate the
current IOBLOK and VMBLOK and the save area. Refer to "Reading CP ABEND
Dumps" for detailed information on the contents of the general
registers.

If the program check old PSi (PROPSi) or the SVC old PSi (SVCOPSi)
points to an address beyond the end of the resident nucleus, the module
that caused the ABEND is a pageable module. Refer to "Reading CP ABEND
Dumps" to find out how to identify that pageable module. Use the CP load
map that was created when the VM/370 system was generated to find the
address of the end of the resident nucleus.

Two types of severe machine checks can cause the VM/370 control program
to terminate:

• An unrecoverable machine check in the control program
• A machine check that cannot be diagnosed

A machine check error cannot be diagnosed if either the machine check
old PSi or the machine check interrupt code is invalid. These severe
machine checks cause the control program to terminate, but no dump is
taken since the error is recorded on the error recording cylinders. The
system is automatically restarted and a message is issued identifying
the machine check error.

If an unrecoverable machine check occurs in the control program, the
message

DMKMCH610I MACHINE CHECK SUPERVISOR DAMAGE

appears on the CPU console. The control program is terminated and
automatically restarted.

If the machine check handler cannot diagnose a certain machine check,
the integrity of the system is questionable. The message

DMKMCH6111 MACHINE CHECK SYSTEM INTEGRITY LOST

appears on the CPU console, the control program is terminated and
automatic~lly restarted.

Part 1: Debugging with VM/370 27

Hardware errors are probably the cause of these severe aachine
checks. The system operator should run the CP!REP program and save the
output for the installation hardware aaintenance personnel.

When CftS abnormally terminates, the following error message appears on
the terminal:

DftSABR148T SYSTEft ABERD xxx CALLED FROft yyyyyy

where xxx is the ABEND code and yyyyyy is the address of the instruction
causing the ABERD. The DftSABR module issues this messag~. Then, CftS
waits for a command to be entered from the terminal.

Because CftS is an interactive system, you will probably want to use
its debug facilities to examine status. You may be able to determine the
cause of the ABEND without taking a dump.

The debug program is located in the resident nucleus of CftS and has
its own save and work areas. Because the debug program itself does not
alter the status of the system, you can use its options knowing that
routines and data cannot be overlaid unless you specifically request
it. Likewise, you can use the CP commands in debugging knowing that you
cannot inadvertently overlay storage because the CP and CftS storage
areas are completely separate.

REASON FOR THE ABEND: First determine the reason CftS abnormally
termInated: There are-four types of CftS abnormal terminations:

1. program Exception

control is given to the DftSITP routine whenever a hardware program
exception occurs. If a routine other than a SPIE exit routine is in
control, DftSITP issues the message

DftSITP141T xxxxxxxx EXCEPTION OCCURRED AT xxxxxx IN ROUTINE
xxxxxxxx

and invokes DftSABN (the ABEND routine). The ABEND
where x is the program exception number (O-F).
programming exceptions are:

£od~
o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

~~~!~g 
Imprecise 
Operation 
privileged operation 
Execute 
Protection 
Addressing 
specification 
Decimal data 
Fixed-point overflow 
Fixed-point divide 
Deciaal overflow 
Decimal divide 
Exponent overflow 
Exponent underflow 
Significance 
Floating-point divide 

28 IBft Vft/370: System Prograa.er's Guide 

code is OCx, 
The possible 



2. ABEND ftacro 

control is given to the DftSSAB routine whenever a user routine 
executes the ABEND macro. The ABEND code specified in the ABEND 
macro appears in the abnormal termination message DftSABN148T. 

3 • Halt Ex ecution (HX) 

Whenever the virtual machine operator signals attention and types 
HX, CftS terminates and, types "CftS". 

4. System AEEID 

A CftS system routine can abnormally terminate by issuing the DftSABN 
macro. The first three hexadecimal digits of the system ABEND code 
type in the efts ABEND message, DftSABN148T. The format of the 
DftSABN macro is: 

[ label] 

label 

code 

(reg) 

TYPCALL=SVC 
TYPCALL= BALR 

DftSABN code 
(reg) 

r r" 
I,TYPCALL=I~!£ II 

IBALR II 
L L .... 

is any valid assembler language label. 

is the 
appears 
message. 

abnormal 
in the 

termina tion 
DftSABN149T 

code 
system 

(0-111) that 
termination 

is the register containing the abnormal termination 
code. 

specifies how control is passed to the abnormal 
termination routine, DftSABN. Routines that do not 
reside in the nucleus should use TYPCALL=SVC to 
generate CftS SVC 203 linkage. Nucleus-resident 
routines should specify TYPC1LL=BALR 50 that a 
direct branch to DftSABN is generated. 

If a CftS SVC handler abnormally terminates, that routine can set an 
ABEND flag and store an ABEND code in NUCON (the CMS nucleus 
constant area). After the SVC handler has finished processing, the 
ABEND condition is recognized. The DMSABN ABEND routine types the 
ABEND message, DMSABN148T, with the ABEND code stored in NUCON. 

WHAT TO DO ~HI] £ftS A~!QRMALLY TERMINATES: After an ABEND, two courses 
of-actlon- are available in CMs.--In-addItion, by signalling attention, 
you can enter the CP command mode and use CP's debugging facilities. 

Two courses of action available in CftS are: 

1. Issue the DEBUG command and enter the debug environment. After 
using all the DEBUG subcommands that you wish, exit from the debug 
environment. Then, either issue the RETURN command to return to 
DMSABN so that ABEND recovery will occur, or issue the GO command 
to resume processing at the point the ABEND occurred. 

2. Issue a CMS command other than DEBUG and the ABEND routine, DMSABN, 
performs its ABEND recovery and then passes control to the DMSINT 
routine to process the command just entered. 

Part 1: Debugging with VM/370 29 



The ABEID recovery function performs the following: 

1. The SVC handler, DMSITS, is re-initialized, and all stacked save 
areas are released. 

2. "FINIS * * *" is invoked by means of SVC 202, to close all files, 
and to update the master file directory. 

3. If the ElECTOR module is in real storage, it is released. 

4. All link blocks allocated by DMSSLB are freed. 

5. All FCB pointers are set to zero. 

6. All user storage is released. 

7. The amount of system free storage which §~QY1~ be allocated is 
computed. This figure 1S compared to the amount of free storage 
that is actually allocated. 

8. The console input stack is purged. 

When the amount of storage actually allocated is less than the amount 
that should be allocated, the message 

DMSABN149T xxxx DOUBLEWORDS OP SYSTEM STORAGE HAVE BEEN DESTROYED 

appears on the terminal. If the amount of storage actually allocated is 
greater than the amount that should be allocated, the message 

DMSABN150W nnn (HEX xxx) DOUBLEWORDS OP SYSTEM STORAGE WERE NOT 
RECOVERED 

appears on the terminal. 

A DEBUGGING PROCEDURE: When a CMS ABEND occurs, you will probably want 
to-use--the DEBU~subcommands or CP commands to examine the PSW and 
certain areas of low storage. Refer to "CMS Debugging Commands" for 
detailed description of how to use the CMS DEBUG subcommands. See "CP 
Commands Used to Debug the Virtual Machine" and "CP Commands Used to 
Debug CP" for a detailed description of how to use the CP commands. 
Also refer to Pigure 7 for a comparison of the CP and CMS debugging 
facilities. 

The following procedure may be useful in determining the cause of a 
CMS ABEND: 

1. Display the PSW. (Use the CP DISPLAY command or CMS debug PSW 
subcommand.) Compare the PSW instruction address to the current 
CMS load map trying to determine the module that caused the ABEND. 
The CMS storage-resident nucleus routines reside in fixed storage 
locations. 

Also check the interruption code in the PSW. 

2. Examine areas of low storage. The information in low storage can 
tell you more about the cause of the ABEND. 

!igl~ Contents 
LASTLMOD contaIns the name of the last module loaded into 

storage via the LOADMOD command. 

LASTTMOD Contains the name of the last module loaded into the 
transient area. 

30 IBM VM/370: System Programmer's Guide 



1!~Jg 
LASTCMND 

PREVCMND 

LASTEXEC 

PREVEXEC 

DEVICE 

contents contains the name of the last ccmmand issued. 

Contains the name of the next to the last command 
issued. 

Contains the name of the last 

Contains the name of the next 

Identifies the device that 
interrupt. 

EXEC procedure. 

to last EXEC procedure. 

caused the last I/O 

The'low storage areas examined depend on the type of ABEND. 

3. Once you have identified the module that caused the ABEND, examine 
the specific instruction. Refer to the listing. 

4. If you have not identified the problem at this time, take a dump by 
issuing the debug DUMP subcommand. Refer to "Reading CMS ABEND 
Dumps" for information on reading a CMS dump. If you can reproduce 
the problem, try the CP or CMS tracing facilities. 

The abnormal termination of an operating system (such as OS or DOS) 
running under VM/370 appears the same as a like termination on a real 
machine. Refer to publications for that operating system for debugging 
information. However, all of the CP debugging facilities may be used to 
help you gather the information you need. Because certain operating 
systems (OS/VS1, OS/VS2, and DOS/VS) manage their virtual storage 
themselves, CP commands that examine or alter virtual storage locations 
should be used only in virtual=real storage space with OS/VS1, OS/VS2, 
and DOS/VS. 

If a dump was taken, it was sent to the virtual printer. Issue a 
CLOSE command to the virtual printer to have the dump print on the real 
printer. 

If you choose to run a standalone dump program to dump the storage in 
your virtual machine, be sure to specify the NOCLEAR option when you 
issue the CP IPL command. At any rate, a portion of your virtual 
storage is overlaid by cpts virtual IPL simulation. 

If the problem can be reproduced, it can be helpful to trace the 
processing using the CP TRACE command. Also, you can set address stops, 
and display and alter registers, control words (such as the PSi), and 
data areas. The CP commands can be very helpful in debugging because you 
can gather information at various stages in processing. A dump is static 
and represents the system at only one particular time. Debugging on a 
virtual machine can often be more flexible than debugging on a real 
machine. 

VM/370 may terminate or reset a virtual machine if a nonrecoverable 
channel check or machine check occurs in that virtual machine. Hardware 

Part 1: Debugging with VM/370 31 



errors usually cause this type of virtual machine termination. One of 
the following messages: 

D"KMCH6161 "ACHINE CHECK; USER userid TERMINATED 

DMKCCH6041 CHANNEL ERROR; DEV xxx; USER userid; "ACHINE RESET 

appears on the CPU console. 

UNEXPECTED RESULTS 

The type of errors classified as unexpected results vary from operating 
systems improperly functioning under V"/370 to printed output in the 
wrong format. 

If an operating system executes properly on a real machine but does not 
execute properly with VM/370, a problem exists. Also, if a program 
executes properly under the control of a particular operating system on 
a real machine but does not execute correctly under the same operating 
system with V"/370, a problem exists. 

First, there are conditions (such as time-dependent programs) that CP 
does not support. Be sure that one of these conditions is not causing 
the unexpected results in CP. Refer to the "CP Restrictions" section for 
a list of the restrictions. 

Next, be sure that the program and operating system running on the 
virtual machine are ~~~ctlI the same as the one that ran on the real 
machine. Check for 

• The same job stream 
• The same copy of the operating system (and program) 
• The same libraries 

If the problem still is not found, look for an I/O problem. Try to 
reproduce the problem, this tiae tracing all CCWs, SIOs, and interrupts 
via the CP TRACE command. Compare the real and virtual CCWs from the 
trace. A discrepancy in the CCWs may indicate that one of the CP 
restrictions was inadvertently violated, or that an error occurred in 
the Control Program. 

When a program executes correctly under the control of a particular 
operating system on a real machine but has unexpected results executing 
under the control of the same operating system with V"/370, a problem 
exists. Usually you will find that something was changed. Check that the 
job stream, the operating system, and the system libraries are the 
same. 

If unexpected results occur (such as TEXT records interspersed in 
printed output), you may wish to examine the contents of the system or 
user disk files. Non-CMS users may execute any of the utilities 
included in the operating system they are using to examine and rearrange 

32 IB" VM/370: System Programmer's Guide 



files. Refer to 
running in the 
utilities. 

the utilities publication for 
virtual machine for information 

the operating system 
on how to use the 

eMS users should use the DASD Dump Restore (DDR) serV1ce program to 
print or move the data stored on direct access devices. The Yft/370 D1SD 
Dump Restore (DDR) program can be invoked by the CftS DDR command in a 
virtual machine controlled by CftS. The DDR program has five functions: 

1. DUKP dumps part, or all of the data from a D1SD device to 
magnetic tape. 

2. RESTORE -- transfers data from tapes created by DDR DUftP to a 
direct-access device. The direct access device that the data is 
being restored to must be the same type of device as the direct 
access device originally containing that data. 

3. ~OP! -- copies data from one device to another device of the same 
type. Data may be reordered, by cylinder, when copied from disk to 
disk. In order to copy one tape to another, the oriqinal tape must 
have been created by the DDR DUftP function. 

4. E~!!~ selectively prints the hexadecimal and EBCDIC 
representation of DASD and tape records on the virtual printer. 

5. ~I~~ selectively displays the hexadecimal and EBCDIC 
representation of DASD and tape records on the terminal. 

CKS users should refer to the "Debugging with CftS" section for 
instructions on using the DDR command. The "Debugging with cpu section 
contains information about executing the DDR program in a real or 
virtual machine and a description of the DDR control statements. 

LOOP 

The real cause of a loop usually is an instruction that sets or branches 
on the condition code incorrectly. The existence of a loop can usually 
be recognized by the ceasing of productive processing and a continual 
returning of the PSi instruction address to the same address. If I/O 
operations are involved, and the loop is a very large one, it may be 
extremely difficult to define, and may even comprise nested loops. 
Probably the most difficult case of looping to determine is entry to the 
loop from a wild branch. The problem in loop analysis is finding either 
the instruction that should open the loop or the instruction that passed 
control to the set of looping instructions. 

The CPU operator should perform the following sequence when gathering 
information to find the cause of a disabled loop. 

1. Use the alter/display console mode to display the real PSi, general 
registers, control registers and storage locations X'OO' - X'100'. 

2. Press the SYSTEM RESTART button to cause an ABEND dump to be 
taken. 

3. Save the information collected for the system programmer or IBK 
Field Engineering Program Systems Representative. 

Part 1: Debugging with YM/370 33 



After the CPU operator has collected the information, the system 
programmer or Field Engineering representative examines it. If the cause 
of the loop is not apparent, 

1. Examine the CP internal trace table to determine the modules that 
may be involved in the loop. 

2. If the cause is not 
caused the loop entry 
branch. 

yet determined, assume that a wild branch 
and search the source code for this wild 

When a disabled loop in a virtual machine exists, the virtual machine 
operator cannot communicate with the virtual machine's operating system. 
That means tpat signalling attention does not cause an interrupt. 

Enter the CP console function mode. 

1. Use the CP TRACE command to trace the entire loop. Display general 
arid extended control registers via the CP DISPLAY command. 

2. Take a dump via the CP DUMP command. 

3. Examine the source code. 

Use the information just gathered, along with listings, to try to 
find the entry into the loop. 

!21~: You can IPL a standalone dump program such as the BPS Storage 
Print to dump the storage of your virtual machine. If you choose to use 
a standalone dump program, be sure to specify NOCLEAR on the IPL 
command. Also, be aware that the CP IPL simulation destroys a page of 
storage in your virtual machine and the standalone dump alters your 
virtual storage while the CP DUMP command does not. 

However, if the operating system in the virtual machine itself 
manages virtual storage, it is usually better to use that operating 
system's dump program. CP does not retrieve pages which exist only on 
the virtual machine's paging device. 

The virtual machine operator should perform the following sequence when 
attempting to find the cause of an enabled leop: 

1. Use the CP TRACE command to trace the entire loop. Display the PSW 
and the general registers. 

2. If your virtual machine has the Extended Control (EC) mode and the 
EC option, also display the control registers. 

3. Use the CP DUMP command to dump your virtual storage. CMS users 
can use the debug DUMP subcommand. A standalone dump may be used, 
but be aware that such a dump destroys the contents of some areas 
of storage. 

34 IBM VM/370: System Programmer's Guide 



4. Consult the source code to search for the faulty instructions, 
exam1n1ng previously executed modules if necessary. Begin by 
scanning for instructions that set the condition code or branch on 
it. 

5. If the .anner of loop entry is still undetermined, assume that a 
wild branch has occurred and begin a search for its origin. 

WAIT 

No processing occurs in the virtual machine when it is in a wait state. 
When the wait state is an enabled one, an I/O interrupt causes 
processing to resume. Likewise, when the Control Program is in a wait 
state, its processing ceases: 

A disabled wait state usually results from a hardware malfunction. 
During the IPL process, normally correctable hardware errors may cause a 
wait state because the operating system error recovery procedures are 
not accessible at this point. These conditions are recorded in the 
current PSW. 

CP may be in an enabled wait state with channel 0 disabled when it is 
attempting to acquire more free storage. Examine EC register 2 to see 
whether or not the multiplexer channel is disabled. A severe machine 
check could also cause a CP disabled wait state. 

If a severe machine check or channel check caused a CP disabled wait, 
one of the following mesSages will appear: 

DMKMCH612W MACHINE CHECK TIMING FACILITIES DAMAGE; RUN SEREP 

DMKCCH603W CHANNEL ERROR, RUN SEREP, RESTART SYSTEM 

If the generated system cannot run on the real machine because of 
insufficient storage, CP enters the disabled wait state with code OOD in 
the PSW. The insufficient storage condition occurs if: 

1. The generated system is larger than the real machine size g~ 

2. A hardware malfunction occurs which reduced the available amount of 
real storage to less than that required by the generated system. 

The message 

DMKCPI955W INSUFFICIENT STORAGE FOR VM/370 

appears on the CPU console. 

If CP cannot continue because consecutive hardware errors are 
occurring on one or more VM/370 paging devices, the message 

DMKPAG415E CONTINUOUS PAGING ERRORS FROM DASD xxx 

appears on the CPU console and CP enters the disabled wait state with 
code OOF in the PSW. 

Part 1: Debugging with VM/370 35 



If more than one paging device is available, disable the device on 
which the hardware errors are occurring and IPL the system again. If 
the VM/370 system is encountering hardware errors on its only paging 
device, move the paging volume to another physical device and IPL 
again. 

Rote: This error condition may occur if the VM/370 paging volume was not 
properly formatted. 

The following procedure should be followed by the CPU operator to 
record the needed information. 

1. Using the alter/display mode of the CPU console, display the real 
PSW and CSW. Also, display the general registers and the control 
registers. 

2. Press the SYSTEM RESTART button in order to get a system ABEND 
dump. 

3. IPL the system. 

Examine this information and attempt to find what caused the wait. 
If you cannot find the cause, attempt to reconstruct the situation tha~ 
existed just before the wait state was entered. 

If you determine that CP is in an enabled wait state, but that no I/O 
interrupts are occurring, there may be an error in CP routine or CP may 
be failing to get an interrupt from a hardware device. Press the SYSTEM 
RESTART button on the operator's console to cause an ABEND dump to be 
taken. Use the ABERD dump to determine the cause of the enabled (and 
noninterrupted) wait state. After the dump is taken, IPL the system. 

Using the dump, examine the VMBLOK for each user and the real device, 
channel, and control unit blocks. If each user is waiting because of a 
request for storage and no more storage is available, there is an error 
in CP. There may be looping in a routine that requests storage. Refer to 
"Reading CP ABEND Dumps" for specific informaticn on how to analyze a CP 
dump. 

The VM/370 Control Program does not allow the virtual machine to enter a 
disabled wait state or certain interrupt loops. Instead, CP notifies 
the virtual machine operator of the condition with one of the following 
aessages: 

DMKDSP450W CP ENTERED; DISABLED WAIT PSi 

DMKDSP451i CP ENTERED; INVALID PSW 

DMKDSP452i CP ENTERED; EXTERBAL INTERRUPT LOOP 

DMKDSP453W CP ENTERED; PROGRAM INTERRUPT LOOP 

and enters the console function mode. Use the CP commands to display the 
following inforaation on the terainal. 

36 IBM VM/370: System Programmer's Guide 



• PSW 
• CSW 
• General registers 
• Control registers 

Then use the CP DUftP command to take a dump. 

If you cannot find the cause of the wait or loop from the inforaation 
just gathered, try to reproduce the problem, this time tracing the 
processing via the CP TRACE command. 

If CftS is running in the virtual machine, the CftS debugging 
facilities may also be used to display information, take a dump, or 
trace the processing. The CftS SVCTRACE and the CP TRACE commands record 
different information. Figure 7 compares the two. 

If the virtual machine is in an enabled wait state, try to find out why 
no I/O interrupt has occurred to allow processing to resume. 

The Control Program treats one case of an enabled wait in a virtual 
.achine the same as a disabled wait. If the virtual machine does not 
have the "real timer" option and loads a PSW enabled only for external 
interrupts, CP issues the message 

DftKDSP450W CP ENTERED; DISABLED WAIT STATE 

since the virtual timer is not decremented while the virtual machine 
is in a wait state, it cannot cause the exter~al interrupt. A "real 
timer" runs in both the problem state and wait state and can cause an 
external interrupt which will allow processing to resume. 

Three disabled wait conditions can occur during the operation of the 
RSCS component of Vft/370. They can result from either hardware 
malfunctions or system generation errors. CP notifies the RSCS operator 
of the wait condition by issuing the message 

DftKDSP450W CP ENTERED; DISABLED WAIT PSW 

to the RSCS operator's console. Using CP 
display the virtual machine's PSW. The 
characters indicate the error condition. 

commands, the 
rightmost three 

operator can 
hexadecimal 

~!!I ~I!I~ £~~~ !~QQ1~: If no RSCS message was issued, a program check 
interrupt occurred during the execution of the program check handler. A 
programming error is the probable cause. 

If the RSCS message 

DftTREX091T INITIALIZATION FAILURE -- RSCS SHUTDOWN 

was issued, RSCS operation has been terminated due to an error in the 
loading of DftTAXS or DftTLAX. A dump of virtual storage is automatically 
taken. Verify that the CftS files 'DftTAXS TEXT' and 'DftTLAX TEXT' are 
correctly written and resident on the RSCS system-residence device. 

Part 1: Debugging with Vft/370 37 



If the RSCS message 

DMTREX090T PROGRAM CHECK IN SUPERVISOR -- RSCS SHUTDOWN 

was issued, the program check handler has terminated RSCS due to a 
program check interrupt in other than a dispatched line driver. 1 dump 
of virtual storage is automatically taken. 1 program.ing error is the 
probable cause. 

The wait state code is loaded by DMTREX at RSCS termination or 
automatically during program check handling. 

If neither of the last two 
command to dump the contents of 
Load to restart the system. 
installation support personnel. 

messages was issued, use the CP Duep 
virtual storage. Do an Initial Program 
If the problem persists, notify the 

IAIT ~I!I~ £~~~ !~QI~: A program check interrupt has occurred during 
initial processing, before the program check handler could be 
activated. This may be caused by a programming error or by an attempt 
to load RSCS into an incompatible virtual machine. The latter case can 
occur if the virtual machine has (1) an incomplete instruction set, (2) 
less than 512K of virtual storage, or (3) does not have the required 
Ve/370 DIAGNOSE interface support. The wait state code is loaded 
automatically during the initial loading and execution of the RSCS 
supervisor, DeTIII, DeTREX, DeT1IS or DeTLAI. 

verify that the RSCS virtual machine configuration has been correctly 
specified and that the "retrieve subsequent file descriptor" function of 
Diagnose code 1'14' is supported. Dump the contents of virtual storage 
via the CP Duep command. If the problem persists, notify the 
installation support personnel. 

WAIT STATE CODE 1'011': An unrecoverable error occurred when reading the 
RSCS -nncleus-fro;--nAsD storage. This may be caused by a hardware 
malfunction of the DASD device. It may also be the result of an 
incorrect virtual DASD device definition, an attempt to use a system 
residence device unsupported by RSCS, incorrect RSCS system generation 
procedures, or the subsequent overwriting of the RSCS nucleus on the 
system residence device. The wait state code is loaded by DeTINI after 
an attempt, successful or not, to issue the message: 

DeTINI402T IPL DEVICE READ I/O ERROR 

Verify that the RSCS system residence device has been properly 
defined as a virtual DASD device and that the real DASD device 1S 
mounted and operable. If the problem persists, dump virtual storage via 
the CP Duep command and notify the installation support personnel. The 
RSCS system residence device may have to be restored or the RSCS system 
may have to be regenerated. 

Whenever Rses has no task ready for execution, DeTDSP loads a masked-on 
wait state PSi with a code of hexadecimal zeroes. This occurs during 
normal Rses operation and does not indicate an error condition. An 
external interrupt due to command entry or an I/O interrupt due to the 
arrival of files automatically resumes processing. 

38 IBe VM/370: System Programmer's Guide 



Figure 6 summarizes the VM/370 commands that are useful in debugging. The CP and CMS 
commands are classified by the function they perform. 

r-
, Function comments CP Command 

Stop execu- Set the ad- ADSTOP hexloc 
tion at a dress stop 
specified before the 
location. program 

reaches the 
specified 
address. 
CMS allows 
16 address 
stops to 
be active 
while CP 
allows only 
one 

Resume ,Resume BEGIN 
execution. I execution 

, where pro-
, gram was , 
, interrupted I 
I 
I Continue BEGIN hexloc 
I execution I 
I at a speci-I 
I fic loca- I 
I tion I 

I Dump data. IDump the I , I contents oflDUMP { hexlocl } 
I , specific I {Lhexloc 1 } 
I , storage I , I locations I 
I I I , I I , I , 
I I I [ *dumpid] 
L 

r r " I{ -}I hexloc2" 
I{ : }I~!!Q II 
I L .. , 
I r , I 
I{.}I bytecount , , 
I I~!!Q II 
L L .... 

Figure 6. Summary of VM/370 Debugging Tools (Part 1 of 

CMS Com Bland 

DEBUG 

BREAK id {symbol} 
{hexloc} 

DEBUG 
GO 

DEBUG 

GO {symbol} 
{hexloc} 

IDEBUG 
I r , r , 
,DUMP I symbolll Isymbol21 
I I hexloc11 Ihexloc2, 
I , Q I I * I 
I L .. , 11~ I 
I L .. 
I [ ident] 
I 

5) 

Part 1: Debugging with VM/370 39 



-, 
Function Comments CP Command CMS Command I 

I 
Display IDisplay I r r "IDEBUG { r , } I 
data. I contents oflDISPLAY hexloc1 I{ - }lhexloc211lX { symbol I n I } I 

I storage 10-1 I{ : } I]!] III { I !!H!91h I } I 
I cations (in I I L J II { L J } I 
I hexadeci- I I r , II { r , } I 
I mal) I I{.}I bytecount I I I { I n I } I 
I I I lEND III {hexloc I ~ I } I 
I I L L JJ I { L J } I 
I I 
I Display I r r " I I 
I contents oflDISPLAY Thexloc 11 { - } I hexloc21 I I I 
I storage I I{ : } I ~!!! III I 
I locations I I L J II I 
I (in hexa- I I r , II I 
I decimal andl I{.}I bytecoun t I I I I 
I EBCDIC) I I lEND III I 
I I L L JJ I I 
I 
IDisplay r r " I 
I storage keYIDISPLAY Khexloc 11{ -}I hexloc2111 
I of specific I I{ : } I]!] III 
I storage I I L J II 
I locations I I r , II 
I in hexa- I l{.}1 bytecount I I I 
I decimal I I lEND III 
I I L L JJ I 
I 
I Display I r , DEBUG 
I general IDISPLAY Greg11{ -} [reg2] I GPR reg1 [reg2 ] 
I registers I I { :} ~!!! I 

I ! r , ! 
I I I{ • } I regcount II 
I I I lEND II 
I I L L JJ 

I 
I Display I r , 
I floating- I DISPLAY Yreg 11{ - } [reg2] I 
I point I I { : } ~!Q I 
I registers I I r , I 
I I l{ • } I regcount I I 
I I I I~!!! II 
I I L L JJ 

I 
I Display I r , 
I control I DISPLAY Xreg 11 {- }[reg2] I 
I registers I I { :} ~!!! I 
I I I r , I 
I I I{ • } I regcount I I 
I I I lEND II 
I I L L JJ 

I 
I Display IDISPLAY PSW DEBUG 
I contents ofl PSW 
I current I 
I virtual PSWI 
I in hexa- I 
I decimal I 
I format I 

'--
Figure 6. Summary of VM/370 Debugging Tools (Part 2 of 5) 

40 IBM VM/370: System Programmer's Guide 



r--------------------------------------------------------------------------------------, Function 

Display 
data 
(cont.) 

Coallents 

IDisplay 
1 contents 
1 CAW 

IDISPLAY 
ofl 

1 

CP COllmand 

CAW DEBUG 
Cli 

CftS Coaaand 

1----------------------------------------------------------------------
I Display 
1 contents 

IDISPLAY 
ofl 

CSW 

1 CSW I 

store data. store I 
specified ISTORE Shexloc hexdata ••• 
inforllatio n I 
into con- I 
secutive I 
storage I 
locations I 
without I 
alignment I 

store 
specified I STORE {heXIOC } 
words of I Lhexloc 
inforllationl 
into con- I {hexword1[hexword2 ••• ]} 
secutive I 
fullword I 
storage I 
locations I 

store ISTORE 
specified I 
words of I 
inforllationl 
into con- I 
secutive I 
general I 
registers I 

store I STORE 
specified I 
words of i 
information 1 
into con- I 
secutive 1 
floating- I 
point I 
registers I 

Greg hexword 1 
[ hexword2 ••• ] 

Yreg hexword 1 
[ hexword2 ••• ] 

DEBUG 
CSW 

DEBUG 
STORE {syabol } 

hexloc 

hexinfo[hexinfo[hexinfo]] 

IDEBUG 
ISET GPR reg hexinfo[hexinfo] 
I 
I 
I 
I 
I 
I 

L-____________ . ________________________________________________________________________ ~ 

Figure 6. Sumaary of V8/370 Debugging Tools (Part 3 of 5) 

Part 1: Debugging with V8/370 41 



Function comments CP Command CMS Command 

store data 
(cont. ) 

store ISTORE Xreg hexword1 
specified I 
words of I 
data into I 
consecutive I 
control I 
registers I 

[ bexword 2 ••• )I 
I 
I 
I 
I 
I 
I 

store ISTORE PSW [hexword1] bexword2 I DEBUG 
information I 
into PSW I 

store I 
information I 
in CSW I 

store I 
information I 
in CAW I 

Trace ITrace all TRACE ALL 
execution. 1 instruc-

I tions, I 
1 interrupts, 1 
I and 1 
1 branches 1 

ISET PSW hexinfo [hexinfo] 
I 

I DEBUG 
ISET CSW hexinfo [hexinfo] 
I 

I DEBUG 
I SET CAW hexinfo 
I 

1-----------------------------------------------------------------------------------------
ITrace SVC TRACE SVC 
1 interrupts 
1 
ITrace I/O TRACl I/O 
1 interrupts 
I 
ITrace TRACE PROGRAM 
1 program 
1 interrupts 

Trace 
external 
interrupts 

Trace 
privileged 
instruc­
tions 

Trace all 
user I/O 
operations 

TRACE EXTERNAL 

TRACE PRIV 

TRACl SIO 

Figure 6. Summary of VM/370 Debugging Tools (Part 4 of 5) 

42 IBM VM/370: System Programmer's Guide 

SVCTRACE ON 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

r 
Function comments CP Command CMS Command 

Trace ! Tr'::ior=.-.. I I~.LU."'~ TRACE SIO 
execution I virtual andl TRACE CCW 
(cont. ) I real CCws I 

I 
ITrace TRACE BRANCH 
I all user 
I interrupts 
i and suc-
I cessful 
I branches 
I 
ITrace TRACE INSTRUCTION 
I all in-
I structions 
I 
lEnd all. TRACE END SVCTRACE OFF 
I tracing 
I activity 

Trace real ITrace MOBITOR START CPTRACE 
machine I events in 
events I real 

I machine 
I 
Istop tracingl MONITOR STOP CPTRACE 
I events in I 
I the real I 
I machine I L-____________ . ________________________________________________________ __ 

Figure 6. Summary of VM/370 Debugging Tools (Part 5 of 5) 

Part 1: Debugging with VM/370 43 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

If you are debugging problems while running CMS, you can choose the CP 
or CMS debugging tools. Refer to Figure 7 for a comparison of the CP 
and CMS debugging tools. 

1 Function CP CMS 
1-------------------------------
ISetting ICan set only one address stoplCan set up to 16 address 
1 address 
1 stops. 

1 at a time. stops at a time. 
I 

1 
IDumping 
1 contents 
1 of stor-
1 age to 
1 the 
1 printer. 

IThe dump is printed in hexa- IThe dump is printed in hexa­
decimal format with EBCDIC I decimal format. The storage 
translation. The storage ad-I address of the first byte of 
dress of the first byte of I each line is identified at 
each line is identified at I the left. The contents of 
the left. The control blocksl general and floating-point 

1 
1 

are formatted. I registers are printed at the 
I beginning of the dump. 

DisplayinglThe display is typed in hexa­
the con- 1 decimal format with EBCDIC 
tents of 1 translation. The CP command 
storage I displays storage keys, 
and I floating-point registers and 
control 1 control registers. 
registersl 
at the I 
terminal. 1 

storing 
informa­
tion. 

Tracing 
informa­
tion. 

The amount of information 
stored by the CP command is 
limited onl~ by the length 
of the input line. The in­
formation can be fullword 
aligned when stored. CP 
stores data in the PSW, but 
not in the CAW or CSW. How­
ever, data can be stored in 
the CSW or CAW by specifying 
the hardware address in the 
STORE command. CP also 
stores the status of the 
virtual machine in the 
extended logout area. 

CP traces: 
• All interrupts, instruc-

tions and branches 
• SVC interrupts 
• I/O interrupts 
• Program interrupts 
• External interrupts 
• Privileged instructions 
• All user I/O operations 
• Virtual and real CCW's 
• All instructions 

The CP trace is interactive. 
You can stop and display 
other fields. 

The display is typed in hexa­
decimal format. The CMS com­
mands gg ~g! display storage 
keys, floating-point regis­
ters or control registers as 
the CP command does. 

The CMS command stores up to 
12 bytes of information. CMS 
stores data in the general 
registers but not in the 
floating-point or control 
registers. CMS stores data 
in the PSW, CAW, and CSW. 

CMS traces all SVC inter­
rupts. CMS displays the 
contents of general and 
floating-point registers 
before and after a routine 
is called. The parameter 
list is recorded before a 
routine is called. 

Figure 7. Comparison of CP and CMS Facilities for Debugging 

44 IBM VM/370: System Programmer's Guide 



Debugging with CP 

This section contains information you may want to refer to while 
debugging and a discussion of when and how to use the CP debugging 
tools. Also included is a discussion of how to read a CP ABEND dump •. 

The first section, "Introduction to Debugging," described the 
debugging procedures to XOllOW ana ~n1S section tells you hew to use the 
debugging tools and commands mentioned in that first section. The 
following topics are discussed in this section. 

• Debugging CP in a v1r~ual maCD1ne 
• CP commands useful for debugging 
• DASD dump restore program 
• CP Internal Trace Table 
• CP restrictions 
• ABEND dumps 
• Reading ABEND dumps 
• Control block summary 

The VM/370 Control Program has a set of interactive commands that 
control the VM/370 system and enable the user to control his virtual 
machines and associated control program facilities. The virtual machine 
operator using these commands can gather much the same information about 
his virtual machine that an operator of a real machine gathers using the 
CPU console. 

The CP commands are eight characters or less in length. The commands 
can be abbreviated by truncating them to the minimum permitted length 
shown in the format description. When truncation is permitted, the 
shortest acceptable version of the command is represented by capital 
'~~~~r~- wi~h thp- optional nart renresented bv lower case letters. 
B~t~: h~we;;~~ -that you can ~~t~r-a~y CP command with any mixture of 
upper and lower case letters. 

The operands, if any, follow the command on the same line and must be 
separated from the com.and by a blank. Lines cannot be continued. 
Generally, the operands are positional, but some commands have reserved 
words and keywords to assist processing. Blanks must separate the 
command from any operands and the operands from each other. 

several of these commands (for example, STORE or DISPLAY) examine or 
alter virtual storage locations. When CP is in complete control of 
virtual storage (as in the case of .DOS, MFT, MVT, PCP, CMS, and RSCS) 
these commands execute as expected. However, when the operating system 
in the virtual machine itself manipulates virtual storage (OS/VS1, 
05/V52, or DOS/VS), these CP commands should not be used. 

Each CP user has one or more privilege classes as indicated in his 
VM/370 directory entry. Class G commands useful for debugging are 
discussed in the following paragraphs. For a discussion of all the CP 
Class G commands and the CP command privilege classes, refer to the 
!~LJIQ: £Q!!~~g l~~gy~gg §Yi~~ ior §en~~~l M§~£§. The remainder of this 
section discusses the CP Class G commands that provide material and 
techniques that are useful in debugging. 

Part 1: Debugging with VM/370 45 



Use the ADSTOP command to halt execution at a virtual instruction 
address. Execution halts when the instruction at the specified address 
is. the next instruction to be executed. 

When execution halts, the CP command mode is entered and a message is 
displayed. At this point, you may invoke other CP debugging co.mands. 
To resume operation of the virtual machine, issue the BEGIN command. 
Once an ADSTep location is set, it may be removed by one of the 
following: 

• Reaching the virtual storage location specified in the ADSTOP command 
• Performing a virtual IPL or SYSTEM RESET 
• Issuing the ADSTOP OFF command 
• Specifying a different location with a new ADSTOP hexloc command 

The format of the ADSTOP command is: 

ADSTOP { hexloc } 
OFF 

hexloc is the hexadecimal representation of the virtual instruction 
address where execution is to be halted. The specified 
address cannot be in a storage segment shared with other 
users, since the ADSTOP function modifies storage. 

OFF cancels any previous ADSTOP setting. 

1. Since the ADSTOP function modifies storage (by placing a CP SVC 
X'B3' at the specified location) your program should not examine 
the two bytes at the instruction address. CP does not verify that 
the location specified contains a valid CPU instruction. 

2. Address stops may not be set in an OS/VS or 
machine's virtual storage; address stops may only 
virtual equals real partitions or regions of 
machines. 

46 IBM VM/370: System Programmer's Guide 

DOS/VS 
be set 
those 

virtual 
in the 

virtual 



3. If the SVC handling portion of the virtual machine assist feature 
is enabled on your virtual machine, CP turns it off when an address 
stop is set. lfter the address stop is removed, CP returns the 
assist feature SVC handling to its previous status. 

ADSTOP AT xxxxxx 

The instruction whose address is xxxxxx is the next instruction 
scheduled for execution. The virtual machine is in a stopped 
state. Any CP command (including an ADSTOP command to set the next 
address stop) can be issued. Enter the CP command BEGIN to resume 
execution at the instruction location xxxxxx, or at any other 
location desired. 

Use the ADSTOP command to stop the execution of a program at a specific 
instruction location. The address stop should be set after the program 
is loaded, but before it executes. When the specified location is 
reached during program execution, execution halts and the CP environment 
is entered. The message 

ADSTOP AT xxxxxx 

appears on the terminal indicating that program execution has halted. 
The virtual machine operator may issue other CP commands to examine and 
alter the status of the program at this time. 

set an address stop at a location in the program where an error is 
suspected. Then display registers, control words, and data areas to 
check the program at that point in its execution. This procedure helps 
you to locate program errors. You may be able to alter the contents of 
storage in such a way that the program will execute correctlv. The 
detected error is then corrected and the program is compil~d, if 
necessar1, and executed again. 

lote: In order to successfully set an address stop, the 
Instruction address must be in real storage at the time the 
command is issued. 

virtual 
ADSTOP 

Part 1: Debugging with VM/370 47 



Use the BEGIN co •• and to continue or resu.e execution in the virtual 
machine at either a specified storage location or the location pointed 
to be the virtual aachine's current PSi. The format of the BEGIN 
command is: 

• I Begin [hexloc] L ______ ------------________________________________________________________ ~ 

hexloc is the hexadecimal storage location where execution is to 
begin. ihen BEGIN is issued without hexloc, execution begins 
at the storage address pointed to by the current virtual 
machine PSi. Unless the PSi has been altered since the CP 
command mode was given control, the location stored in the PSi 
is the location where the virtual machine stopped. 

ihen BEGIN is issued with a storage location specified, 
execution begins at the specified storage location. The 
specified address replaces the instruction address in the PSi, 
then the PSi is loaded. 

None. The virtual machine begins execution. 

Use the BEGI) command to continue or resume program execution. When 
BEGIN is issued without an operand, execution begins at the storage 
address pointed to by the current virtual machine PSi. Unless the PSi 
has been altered since the CP environment was given control, the 
location stored in the PSi is the location where the virtual machine 
stopped. ihen BEGIN is issued with a storage location specified, 
execution begins at the specified storage location. The specified 
address replaces the instruction address in the PSi, then the PSi is 
loaded. 

48 IB" V"/310: System Programmer's Guide 



Use the DISPLAY command to examine the following virtual machine 
components: 

• 
• 
• 
• 
• 
• 

Virtual storage locations 
Gener~l reg~sters . 
~'~~+~ft~_~~1ft+ ~~~1~+~~~ 
~~va~~u~~v~u~ ~~~~~~~~~ 

Control registers 
Program status word (PSW) 
Channel address word (CAW) 
Channel status word (CSW) 

If a command line with an invalid operand is entered, the DISPLAY 
command terminates when it encounters the invalid operand; however, any 
previous valid operands are processed tefore termination occurs. 
storage locations, registers, and control words can be displayed using a 
single command line. The format of the DISPLAY command is: 

Display 

hexloc1 
Lhexloc1 
Thexloc1 
Khexloc1 

Q 

\ 

r , r r , , 
I hexloc11 I{ - }I hexloc2 I I 
I Khexloc11 I : I1BH2 I I 
ILhexloc 11 I L .J I 
I Thexloc 11 I r , I 
I Q I I{ • }I bytecount I I 
L .J I 11l!~ I I 

L L .J .J 

r r , , 
Greg1 I { -} I reg21 I 
Yreg1 I : I Jl!J2 I I 
Xreg1 I L .J I 

Psw 
CAW 
CSW 

I r , I 
I { • } I regcount I I 
I IJ!!~ I I 
L L .J .J 

} 
is the first, or only, hexadecimal storage location 
whose contents are to be displayed at the terminal. If 
L is specified, the storage contents are displayed in 
hexadecimal. If T is specified, the storage contents 
are displayed in hexadecimal, with EBCDIC translation. 
If K is specified, the storage keys are displayed in 
hexadecimal. 

If hexloc1 is followed 
fullword boundary, it 
lowest fullword. 

by a period and is not 
is rounded down to the 

on a 
next 

If hexloc1 is not specified, the 
storage location O. If L, T, or K 

display begins at 
are entered either 

Part 1: Debugging with V"/370 49 



{ 
-}heXlOC2 
: 1112 

{ ·lbytecount 
~!~ 

Greg1 

Yreg1 

xreg1 

{ 
-}reg2 
: 1112 

without any operands, or followed immediately by a 
blank, the contents of all storage locations are 
displayed. If L, T, or K are not specified and this is 
the first operand, then the default value of zero is 
assumed. The address, hexloc1, may be one to six 
hexadecimal digits; leading zeros are optional. 

is the last of the range of hexadecimal storage 
locations whose contents are to be displayed at the 
terminal. Either - or: must be specified to display 
the contents of more than one location by storage 
address. If hexloc2 is not specified, the contents of 
all storage locations from hexloc1 to the end of 
virtual storage are displayed. If specified, hexloc2 
must be equal to or greater than hexloc1 and within the 
virtual storage size. The address, hexloc2, may be 
from one to six hexadecimal digits; leading zeros are 
optional. 

is a hexadecimal integer designating the number of 
bytes of storage (starting with the byte at hexloc1) to 
be displayed at the terminal. The period, ., must be 
specified to display the contents of more than one 
storage location by byte count. The sum of hexloc1 and 
bytecount must be an address that does not exceed the 
virtual machine size. If this addres~ is not on a 
fullword boundary, it is rounded up to the next highest 
fullword. The value, bytecount, must have a value of 
at least one and may be from one to six hexadecimal 
digits; leading zeros are optional. 

is a decimal number from 0-15 or a hexadecimal integer 
from O-F representing the first, or only, general 
register whose contents are to be displayed at the 
terminal. If G is specified without a register number, 
the contents of all the general registers are displayed 
at the terminal. 

is an integer (0, 2, 4, or 6) representing the first, 
or only, floating-point register whose contents are to 
be displayed at the terminal. If Y is specified 
without a register number, the contents of all of the 
floating-point registers are displayed at the 
terminal. 

is a decimal number from 0-15 or a hexadecimal number 
from O-F representing the first, or only, control 
register whose contents are to be displayed at the 
terminal. If X is specified without a register number, 
the contents of all of the control registers are 
displayed at the terminal. If Xreg1 is specified for a 
virtual machine without extended mode operations 
available, only control register 0 is displayed. 

is a number representing the last register whose 
contents are to be displayed at the terminal. Either -
or : must be specified to display the contents of more 
than one register by register number. If reg2 is not 
specified, the contents of all registers from reg1 
through the last register of this type are displayed. 

50 IBM VM/370: System Programmer's Guide 



The operand, reg2, must be equal to or greater than 
reg1. If Greg1 or Xreg1 are specified, reg2 may be a 
decimal number from 0-15 or a hexadecimal number from 
O-F. If Yreg1 is specified, reg2 may be 0, 2, 4, or 
6. The contents of reqisters reql throuqh reg2 are 
displayed at the terminai. - --

{ • }regcount 
].!!] 

is a decimal number from 1 to 16 or a hexadecimal 
number from 1 to F specifying the number of registers 

PSW 

CAW 

CSW 

(starting with reg1) whose contents are to be displayed 
at the terminal. If the display type G or X is 
specified, regcount can te a decimal number from 1 to 
16 or a hexadecimal number from 1 to F. If display type 
Y is specified, regcount must be 1, 2, 3, or 4. The 
sum of reg1 and regcount must be a number that does not 
exceed the maximum register number for the type of 
registers being displayed. 

displays the current virtual machine 
status word) as two hexadecimal words. 

PSW (program 

displays as one hexadecimal word the contents of 
hexadecimal location 48 (channel address word). 

displays as two hexadecimal words the contents of the 
channel status word (double word at hexadecimal location 
40) • 

When multiple operands are entered on a line for location or register 
displays, the default display type is the same as the previous explicit 
display type. The explicit specification of a display type defines the 
default for subsequent operands for the current display function. 
Blanks are used to separate operands or sets of operands if more than 
one operand is entered on the same command line. Blanks must not be 
used to the right or left of range or length delimiters (: ~): 
unless it is intended to take the default value of the missing operand 
defined by the blank. For example: 

display 10 20 T40 80 G12 5 L60-100 

displays the following: 

hexadecimal location 10 
hexadecimal location 20 
hexadecimal location 40 with EBCDIC translation 
hexadecimal location 80 with EBCDIC translation 
general register 12 
general register 5 
hexadecimal locations 60 through 100 

One or more of the following responses is displayed, depending upon the 
operands specified. 

Part 1: Debugging with VM/370 51 



xxxxxx word1 word2 word3 word4 [key] *EBCDIC TRANSLATION* 

This is the response you receive when you display storage 
locations; XXXIXX is the hexadecimal storage location of word1. 
Word1 is displayed (word-aligned) for a single location 
specification. Up to four words are displayed on a line, followed, 
optionally, by an EBCDIC translation of those four words. Periods 
are printed for unprintable characters. Multiple line are used (if 
required) for a range of locations. If translation to EBCDIC is 
requested (Thexloc), alignment is made to the next lower 16-byte 
boundary; otherwise, alignment is made to the next lower fullword 
boundary. If the location is at a 2K page boundary, the key for 
that page is also displayed. 

xxxxxx TO XXXXXX KEY = kk 

This is the response you receive when you display storage keys; 
xxxxxx is a storage location and kk is the associated storage key. 

GPR n = genreg1 genreg2 genreg3 genreg4 

This is the response you receive when you display general 
registers; n is the register whose contents are genreg1. The 
contents of the following consecutive registers are genreg2 and so 
on. The contents of the registers are displayed in hecadecimal. 
Up to four registers per line are displayed for a range of 
registers. Multiple lines are displayed if required, with a 
maximum of four lines needed to display all 16 general registers. 

FPR n = xxxxxxxxxxxxxxxx .xxxxxxxxxxxxxxxxx E xx 

This is the response you receive when you display floating-point 
registers; n is the even-number floating-point register whose 
contents are displayed on this line. The contents of the requested 
floating-point registers are displayed in both the internal 
hexadecimal format and the E format. One register is displayed per 
line. Multiple lines are displayed for a range of registers. 

52 IBM VM/370: Systea Programmer's Guide 



ECR n = ctlreg1 ctlreg2 ctlreg3 ctlreg4 

This is the response you receive when you display control 
registers; n is the register whose contents are ctlreg1. The 
contents of the following consecutive registers are ctlreg2 and so 
on. The contents of the requested control registers are displayed 
in hexadecimal. Up to four registers per line are displayed. 
Multiple lines are displayed if required. 

PSW = xxxxxxxx xxxxxxxx 

The contents of the PSW are displayed in hexadecimal. 

CAW = xxxxxxxx 

The contents of the CAW (hexadecimal location 48) are displayed in 
hexadecimal. 

CSW = xxxxxxxx xxxxxxxx 

The contents of the CSW (hexadecimal location 40) are displayed in 
hexadecimal. 

Press the Attention key (or its equivalent) 
function while data is being displayed at the 
display terminates, another command may be entered. 

to terminate 
terminal. When 

this 
the 

Use the DISPLAY co.mand to display the contents of various storage 
locations, registers, and control words at the terminal. By examining 
this type of information during the program's execution, you may be able 
to determine the cause of program errors. Usually, an address stop is 
set to stop the program execution at a specified point. The system 
enters the CP environment and you may then issue the DISPLAY command. 

The DISPLAY command terminates if an invalid operand is specified 
however, all operands preceding the invalid operand are processed before 
DISPLAY terminates. To intentionally terminate the DISPLAY console 
function, signal attention. The display terminates and another command 
may be entered. 

Part 1: Debugging with VM/370 53 



Use the DUMP co •• and to print the contents of various components of the 
virtual machine on the virtual spooled printer. The following items are 
printed: 

• virtual program status word (PSi) 

• General registers 

• Floating-point registers 

• control registers (if you have the ECMODE option specified in your 
VM/370 directory entry) 

• storage keys 

• virtual storage locations 

The DUMP com.and prints the virtual PSi and the virtual registers 
(general, floating-point, and control) • If only this information is 
desired, at least one virtual address must be specified, such as: 

DUMP 0 

The output format for the virtual storage locations is eight words 
per line with EBCDIC translation on the right. Each fullword consists 
of eight hexadecimal characters. All the rest of the information (PSi, 
general floating-point and storage keys) is printed in hexadecimal. If 
you have the ECMODE option in your VM/370 directory entry, the control 
registers are also printed. To print the dump on the real printer, a 
CLOSE command must be issued for the spooled virtual printer. The 
format of the DUMP command is: 

DUMP r , r r , 
ILhexloc111{-}lhexloc2 I 
IThexlocll I : lEI] I 
I he xl 0 c 1 I I L .I 

I .Q II r , 
L .I I{. 11 bytecount I 

I IlUH! I 
L L .I 

, 
I 
I 
I 
I 
I 
I 

.I 

[*dumpid] 

L-____________________________________________ . ____________________________ ~ 

Lhexloc1 
Thexloc1 

hexloc1 
Q 

is the first or only hexadecimal storage location to 
be dumped. If you enter L or T without operands, the 
contents of all virtual storage locations are dumped. 

The address, hexloc1, may be one to six hexadecimal 
digits; leading zeros are optional. If hexloc1 is not 
specified, the dump begins at storage location O. 

If hexloc1 is followed by a period and is not on a 
fullword boundary, it is rounded down to the next lowest 
fullword. 

54 IBM VM/370: System Programmer's Guide 



{ -}heXlOC2 
: EN~ 

{ • }bytecount 
]1!~ 

*dumpid 

is the last hexadecimal storage location whose contents 
are to be dumped to the printer. The operand, hexloc2, 
must be equal to or greater than hexloc1 and within the 
virtual storage size. To dump to the end of storage, you 
can specify END instead of hexloc2 or you can leave the 
field blank, since the default is END. If you specify 
:END or -END, the contents of storage from hexloc1 to END 
are dumped. The contents of storage locations hexloc1 
through hexloc2 are printed with EBCDIC translation at 
the printer. The operand, hexloc2, may be from one to six 
hexadecimal digits; leading zeros are optional. 

is a hexadecimal integer designating the number of bytes 
of storage (starting with the byte at hexloc1) to be 
dumped to the printer. The period, ., must be specified 
to dump the contents of more than one storage location by 
byte count. The sum of hexloc1 and bytecount must be an 
address that does not exceed the virtual machine size. 
If this address is not on a fullword boundary, it is 
rounded up to the next highest fullword. The value, 
bytecount, must be one or greater and can be no longer 
than six hexadecimal digits. Leading zeros are 
optional. 

can be entered for descriptive purposes. If specified, 
it becomes the first line printed preceding the dump 
data. Up to 100 characters, with or without blanks, may 
be specified after the asterisk prefix. No error 
messages are issued, but only 100 characters are used, 
including asterisks and embedded blanks. 

Normally, you should define beginning and ending dump locations in the 
following manner: 

dump Lhexloc1-hexloc2 
dump Lhexloc1.bvtecount 
dump Lhexloc1-hexloc2 hexloc1.bytecount * dumpid 

If, however, a blank follows the type character (L or T) or the 
character and the hexloc, the default dump starting and ending locations 
are assumed to be the beginning and/or end of virtual storage. Blanks 
are used to separate operands or sets of operands if more than one 
operand is entered on the same command line. Blanks must not be used to 
the right or left of range or length delimiters (: - • ), unless it is 
intended to take the default value of the missing operand defined by the 
blank. Thus, all of the following produce full storage dumps: 

dump 1 dump t: dump O-end 
dump t dump 1. dump l:end 
dump dump t. dump t:end 
dump dump 0- dump O:end 
dump . dump 0: dump l.end 
dump 1- dump O. dump t.end 
dump t- dump I-end dump O.end 
dump 1: dump 't-end 

The following produces three full dumps: 

dump 1 . t 
dump . : 

Part 1 : Debugging with VM/370 55 



DUMPING LOC hexloc 

As the dump is processing, the following message is displayed at 
the terminal indicating that the dump is continuing from the next 
64K boundary: where hexloc is the segment (64~ boundary address 
for the dump continuation, such as 020000, 030000, or 040000. 

If you press the Attention key, 
while the message is being 
terminated. 

COMMAND COMPLETE 

or its equivalent, on the terminal 
displayed, the dump function is 

This response indicates normal completion of the dump function. 

Use the DUMP command to dump to the virtual spooled printer the contents 
of the specified storage locations. Issue the CLOSE command to the 
spool printer to have the dump print at the real printer. 

When debugging, issue the DUMP command to print information you want 
to look at after the program executes. Because the real printer may be 
at a different location than your terminal, you cannot always look at 
the printed output while the program is executing. 

When you must examine large portions of storage, use the DUMP command 
rather than the DISPLAY command. Because the terminal operates at a 
much slower speed than the printer, only limited amounts of storage 
should be printed (via the DISPLAY command) at the terminal. 

The CP DUMP command executes in an area of storage separate from your 
virtual machine storage and does not destroy any portion of your 
storage. 

56 IBM VM/370: System Programmer's Guide 



GC20-1807-3 Page Modified by TNt GN20-2662, .,1 
..J I , March 10"7C 

1.7 I..J 

Use the SET command to control various functions within your virtual 
system. The format of the SET command is: 

SET ACNT 
MSG 
WNG 
IMSG 
RUN 
1,1 NEDi t 
ECmode 
ISAM 
NO TRans 
PAGEX 

EMSG 

TIMER 

ASsist 

r 

{

ON } OFF 
CODE 

, TEXT, 

{ 
Q! } OFF 
REAL 

1 

r , 
ION I 
I I 
L J 

OFF 

, 
PFnn IIMMed I 

1~~1~Y!!Q I 
L J 

r , 

( 
ISVC I 
INOSVCI 
L J 

[pfdata1#pfdata2# ••• pfdatan] 

l PPnn [TAB n1 n2 ••• 

PFnn COPY [resid] L-___________________________________________________________ __ J 

ACNT {ON } 
OFF 

MSG {ON } 
OFF. 

WNG {ON } 
OFF 

controls whether accounting information is displayed at 
the terminal or not (ON and OFF respectively) when the 
operator issues the CP ACNT command. When you log on 
VM/370, ACNT is set on. 

controls whether messages sent ~y the MSG command from 
other users are to be received at the terminal. If ON is 
specified, the messages are displayed. OFF specifies 
that no messages are received. When you log on VM/370, 
MSG is set on. 

controls whether warning messages are displayed at the 
terminal. If ON is specified, all warning messages sent 

Part 1: Debugging with VM/370 57 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

IMSG {ON } 
OFF 

RUN {ON } 
OFF 

LINEDIT {ON } 
OFF 

ECMODE 

ISAM 

NOTRA NS {ON } 
OFF 

via the CP WARNING command from the system operator are 
received at the terminal. If OFF is specified, no 
warning messages are received. When you log on VM/370, 
WNG is set on. 

controls whether certain informational responses issued 
by the CP CHANGE, DEFINE, DETACH, ORDER, PURGE, and 
TRANSFER commands are displayed at the terminal or not. 
The descriptions of these CP commands tell which 
responses are affected. If ON is specified the 
informational responses are displayed. If OFF is 
specified, they are not. The SET IMSG ON or OFF command 
line has no effect on the handling of error messages set 
by the SET EMSG command. When you log on VM/370, IMSG is 
set on. 

controls whether the virtual machine stops when the 
Attention key is pressed. ON allows you to activate the 
Attention key (causing a read of a CP command) without 
stopping your virtual machine. When the CP command is 
entered, it is immediately executed and the virtual 
machine resumes execution. OFF places the virtual 
machine in the normal CP environment, so that when the 
Attention key is pressed, the virtual machine stops. 
When you log on VM/370, RUN is set off. 

controls the line editing functions. ON specifies that 
the line editing functions and the symbols of the VM/370 
system are to be used to edit virtual CPU console input 
requests. This establishes line editing features in 
systems that do not normally provide them. OFF specifies 
that no character or line editing is to be used for the 
virtual machine operating system. When you log on 
VM/370, LINEDIT is set on. 

controls whether the virtual machine operating 
system may use System/370 extended control mode and 
control registers 1 through 15. Control register zero may 
be used with ECMODE either ON or OFF. When you log on 
VM/370, ECMODE is set according to the user's directory 
option; ON if ECMODE was specified and OFF if not. 

Note: Execution of the SET ECMODE {ONIOFF} command always 
causes a virtual system reset. 

controls whether additional checking is performed 
on virtual I/O requests to DASD in order to support the 
use of the as Indexed Sequential Access Method (ISAM). 
When you log on VM/370, ISAM is set according to the 
user's directory options; ON if ISAM was specified and 
OFF if not. 

controls CCW translation for CP. NOTRANS can be 
specified only by a virtual machine that occupies the 
virtual=real space. It causes all virtual I/O from the 
issuing virtual machine to bypass the CP CCW 
translation. To be in effect in the virtual=real 

58 IBM VM/370: System Programmer's Guide 



PAGEX {ON } 
OFF 

~nuu VI' , "'If~ro { "I., \ 
OFF \ 
CODE' 
TEXT' 

TIMER {ON } 
OFF 
REAL 

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1q75 

environment, SET NOTRANS ON must be issued after the 
virtual=real machine is loaded via the IPL command. (IPL 
sets the NOTRANS option to an OFF condition.) 

controls the pseudo page fault portion of the 
VM/VS Handshaking feature. PAGEX ON or OFF should only be 
issued for an OS/VS1 virtual machine that has the VM/VS 
Handshaking feature active. It can only be specified for 
a virtual machine that has the extended control mode 
(ECMODE) option. PAGEX ON sets on the pseudo page fault 
portion of handshaking; PAGEX OFF sets it off. When you 
log on to VM/370, PAGEX is set OFF. 

controls error message handling. ON specifies that both 
the error code and text are displayed at the terminal. 
TEXT specifies that only text is displayed. CODE 
specifies that only the error code be displayed. OFF 
specifies that no error message is to be displayed. When 
you log on VM/370, EMSG is set to TEXT. 

Note, CMS recognizes EMSG settings for all error (E), 
information (I), and warning (W) messages, but ignores 
the EMSG setting and displays the complete message (error 
code and text) for all response (R), severe error (S), 
and terminal (T) messages. 

controls the virtual timer. ON specifies that the 
virtual timer is to be updated only when the virtual CPU 
is running. OFF specifies that the virtual timer is not 
be updated. REAL specifies that the virtual timer is to 
be updated during virtual CPU run time and also during 
virtual wait time. If the REALTIMER option is specified 
in your VM/370 directory entry, TIMER is set to REAL when 
you log on; otherwise it is set to ON when you log on. 

ASSIST ~ r , r '? ION I ISVC I 
I I INOSVC I 
L .J L .J 

( OFF ) 

controls the availability of the virtual machine assist 
feature for your virtual machine. The assist feature is 
available to your virtual machine when you log on if (1) 
the real CPU has the feature installed and (2) the system 
operator has not turned the feature off. The SVC handling 
portion of the assist feature is invoked when you log on 
unless your VM/370 directory entry has the SVCOFF option. 
Issue the QUERY SET command line to see if the assist 
feature is activated and whether the assist feature or 
VM/370 is handling SVC interrupts. 

All SVC 76 requests are passed to CP for handling, 
regardless of the SVC and NOSVC operands. 

If you issue the SET ASSIST command line and specify SVC 
or NOSVC while the virtual machine assist feature is 
turned off, the appropriate bits are set. Later, if the 
feature is turned on again, the operand you specified 
while it was off becomes effective. 

Part 1: Debugging with VM/370 59 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

r , 

eN sets the assist feature on for the virtual machine; 
OFF turns it off. SVC specifies that the assist feature 
handles all SVC interrupts except SVC 76 for the virtual 
machine; NOSVC means VM/370 handles the SVC interrupts. 
See the "Virtual Machine Assist Feature" discussion in 
"Part 2: Control Program (CP)" for information on how to 
use the assist feature. 

PFnn IIMMED I [pfdatal.pfdata2 •••• pfdatan] 
IDELAYED I 
L 

PFnn TAB nl n2 

defines a program function for a program function key on 
a 3277 Display Station and indicates when that function 
is to be executed. See the Y~Lll~: 1~!~!n~1 Q§~!~§ §~!Q~ 
for a description of how to use the 3277 program function 
keys. 

The value, nn, is a number from 1 (or 01) to 12 that 
corresponds to a key on a 3277. The program function is a 
"function", or programming capability, you create by 
defining a series of VM/370 commands or data you want 
executed. This series of commands executes when you press 
the appropriate program function key. 

IMMED specifes that the program function is executed 
immediately after you press the program function key. 

DELAYED specifies that execution of the program function 
is delayed for a display terminal. When the program 
function is entered, it is displayed in the input area 
and not executed until you press the Enter key. DELAYED 
is the default value for display terminals. 

pfdatal.pfdata2 •••. pfdatan defines the VM/370 command or 
data lines that constitute the program function. If more 
than one command line is to be entered, the pound sign 
(I) must separate the lines. If you use the pound sign 
(') to separate commands that you want executed with the 
designated PF key, you must precede the command line with 
ICP, turn line editing off, or precede each pound sign 
with the logical escape character ("). For further 
explanation, see the "Examples of setting Program 
Function Keys" section that follows. If no command lines 
are entered, PFnn is a null command. Program functions 
cannot be embedded within one another. 

specifies a program function number to be associated with 
tab settings on a terminal. The number of the PF key, nn, 
can be a value from 1 (or 01) to 12. See the !~LJ1Q: 
~~!1 §~!g~ for examples of how this feature is used. 

TAB is a keyword identifying the tab setting function. 
The tab settings may be entered in any order. 

PFnn COPY [resid] 
specifies that the program function key, numbered nn, 
performs a COpy function for a remote 3270 terminal. nn 
must be a value of 1 or 01 to 12. The COpy function 
produces a printed output of the entire screen display at 
the time the PF key is actuated. The output is printed on 
an IBM 3284, 3286 or 3288 printer connected to the same 
control unit as your display terminal. 

60 IBM VM/370: System Programmer's Guide 



GC20-1807-3 Modified by March 3 i, i975 

The resid operand may be specified if more than one 
printer is connected to the same control unit as your 
display terminal. It is a three-character hexadecimal 
resource identification number assigned to a specific 
printer. If resid is entered, the printed copy is 
directed to a specific printer; if not, the copy is 
printed on the printer with the lowest resid number. The 
resid numbers of the printers available to your display 
terminal can be obtained from your system operator. If 
only one printer is available, resid need not be 
specified. 

If the command is invalid or if the designated or default 
printer is not free (other display terminals may be using 
it) or is not connected to the same control uuit a~ your 
display terminal, a NOT ACCEPTED message appears on the 
screen, If the printer was busy, retry the operation 
until the printer honors your request. 

You may include your own identification on the printed 
output by entering the data into the user input area of 
the screen before you press the PF key. The 
identification appears in the lower left of the printed 
copy. 

This example shows you how the SET PFnn command is processed if you do 
not turn line editing off or use the logical escape character. 

Enter one of the following commands while in CMS mode: 

SET PF02 IMMED Q RDR'Q PTR'Q PUN 

or 

CP SET PF02 IMMED Q RDR'Q PTR'Q PUN 

Now press the ENTER key: 

1. The ENTER key causes immediate execution, 

2. Only the Q PTR and Q PUN commands execute, and 

3. Q PTR and Q PUN are stripped from the PF02 key assignment leaving Q 
RDR, which was not executed. 

The following examples demonstrate two methods for avoiding the 
problem. 

Enter one of the following commands while in CMS mode: 

Part 1: Debugging with VM/370 60.1 



ICP SET PF02 IMMED Q RDRIQ PTRIQ PUN 

-- or 

CP SET PF02 IMMED Q RDR"'Q PTR"IQ PUN 

or 

SET PF02 IMMED Q RDR"'Q PTR"'Q PUN 

Now press the ENTER key. 

CP assigns the three QUERY commands as functions of the PF02 key. 
Pressing the PF02 key executes the three QUERY commands. 

Enter the following command while in CMS mode: 

SET LINEDIT OFF 

and press the ENTER key. 

Then enter: 

SET PF02 IMMED Q RDR'Q PTR'Q PUN 

or 

CP SET PF02 IMMED Q RDRIQ PTRIQ PUN 

and press the ENTER key. 

CP assigns the three QUERY commands as functions of the PF02 key. 

Then enter: 

SET LINEDIT ON 

and press the ENTER key. 

pressing the PF02 key executes the three QUERY commands. 

* PFnn UNDEFINED 

This response appears in the user area of the screen on a 3277 
Display station if a PF key that is undefined is pressed. 

Use the SET command to control various systems options. 
set the MSG, WNG, and EMSG options ON when debugging. 
printing at the terminal may provide information that 
helpful. 

In particular, 
The messages 

'is immediately 

Part 1: Debugging with VM/370 61 



Use the STORE co •• and to alter the contents of specified registers and 
locations of the virtual aachine. The contents of the folloving can be 
al tered: 

• Virtual storage locations 
• General registers 
• Floating-point registers 
• Control registers (if available) 
• program status vord 

The STORE command can also save virtual machine data in lov storage. 

The operands may be combined in any order desired, separated by one 
or more blanks, for up to one full line of input. If an invalid operand 
is encountered, an error aessage is issued and the store function is 
terminated. Hovever, all valid operands entered, before the invalid 
one, are processed properly. 

Storage locations, registers, the PSW, and status can be stored using 
a single command line. When you combine the operands for storing into 
storage, registers, the PSi, or the status area on a single command 
line, all operands must be specified; default values do not aFply in 
this case. 

The format of the STORE command is: 

STore 

hexloc 
Lhexloc 

hexloc 
Lhexloc 

Shexloc 

{
Greg} 
Yreg 
Xreg 

Psv 

STATUS 

hexvordl [hexvord2 ••• ] 

hexda ta ••• 

hexvordl [hexvord2 ••• ] 

[ hexvord 1] hexvord2 

hexvord 1 [hexvord2 ••• ] 
stores the specified data (hexvordl [hexvord2 ••• ]) in 
successive fullvord locations starting at the addres~ 
specified by hexloc. The smallest group of hexadecimal values 
that can be stored using this form is one fullvord. Alignment 
is made to the nearest fullvord boundary. Either form (hexloc 
or Lhexloc) can be used. 

The operands (hexvordl hexvord2 ••• ) each represent up to eight 
hexadecimal digits. If the value tein9 stored is less than a 
fullvord (eight hexadecimal digits), it is right-adjusted in 

62 IBM VM/370: System Programmer's Guide 



the word and the high order bytes 
zeros. If two or aore hexwords 
separated by one or more blanks. 

Shexloc hexdata ••• 

of the word are filled with 
are specified, they must be 

stores the data specified (hexdata ••• ) in the address 
specified by hexloc, without word alignment. The shortest 
string that can be stored is one byte (two hexadecimal 
digits). If the string contains an odd number of characters, 
the last character is not stored, an error message is sent, 
and the function is terminated. 

The operand, hexdata, is a string of two or more hexadecimal 
digits with no embedded blanks. 

Greg hexword 1 [hexword2 ••• ] 
stores the hexadecillal da ta (hexword 1 [hexword2 ••• ]) in 
successive general registers starting at the register 
specified by reg. The reg operand must be either a decimal 
number from 0-15 or a hexadecimal digit from O-F. 

The operands (hexword1 [hexword2 ••• ]) each represent up to 
eight hexadecimal digits. If less than eight digits are 
specified, the string is right justified in a full word and 
left-filled with zeros. If two or lIore hex words are specified, 
they must be separated by one or more blanks. 

Yreg hexword 1 [hexword2 ••• ] 
stores the hexadecimal data (hexword1 [hexword2 ••• ]) in 
successive floating-point registers starting at the register 
specified by reg. The reg operand must be a digit from 0-6. 
If reg is an odd number, it is adjusted to the preceding even 
number. 

The operands (hexword1 [hexword2 ••• ] each represent up to 
eight hexadecimal digits. If less than eight digits are 
specified, the string is right justified in a fullword and 
left-filled with zeros. If two or more hexwords are specified, 
they must be separated by one or more blanks. 

Xreg hexword1 [hexword2 ••• ] 
stores the hexadecimal data (hexword 1 [hexword2 ••• ]) in 
successive control registers starting at the register 
specified by reg. The reg operand must either be a decimal 
number from 0-15 or a hexadecimal digit from O-F. If the 
virtual machine is in basic control mode, you can store data 
in register 0 only. 

The operands (hexword1 [hexword2 ••• ]) each represent up to 
eight hexadecimal digits. If less than eight digits are 
specified, the string is right justified in a fullword and 
left-filled with zeros. If two or more hexwords are specified, 
they must be separated by one or more blanks. 

PSi [hexword1] hexword2 
stores the hexadecimal data ([hexword1] hexword2) in the first 
and second words of the virtual machine's program status word 
(FSi). If only hexword2 is specified, it is stored into the 
second word of the PSi. The operands hexword1 and hexword2 
must be separated by one or more blanks. They represent up to 
eight hexadecimal digits. If less than eight digits are 
specified, the string is right justified and left-filled with 
zeros. 

Part 1: Debugging with '"/370 63 



STATUS stores selected virtual machine data in certain low storage 
locations of the virtual machine, siaulating the hardware 
store status facility. These locations are peraanently 
assigned locations in real storage. To use the STATUS 
operand, your virtual machine must be in the Extended control 
Mode. The STATUS operand should not be issued for CftS virtual 
machines or for DOS virtual machines generated for a CPU 
smaller than a Systea/360 Model 40. The STATUS operand stores 
the following data in low storage: 

Deciaal 
!gg!~§§ 

216 
224 
256 
352 
384 
448 

Hexadecimal 
!gg!~§§---­

D8 
EO 

100 
160 
180 
lCO 

Length 
in~I1~§ 

8 
8 
8 

32 
64 
64 

Data 
CPU-Timer 
clock Comparator 
Current PSW 
Floating-point registers 0-6 
General registers 0-15 
Control registers 0-15 

STORE COMPLETE 

Use the STORE command to alter the contents of virtual 
locations, registers, and the PSi. ihen debugging, you may 
advantageous to alter storage, registers, or the PSi and then 
execution. This is a good procedure for testing a proposed 
Also, you can make a temporary correction and then continue 
that the rest of execution is trouble-free. 

With the STORE command, data is stored 
with fullword boundary alignment or in 
alignment. 

either in units of 
units of one byte 

storage 
find it 
continue 
change. 

to check 

one word 
without 

The STORE STATUS command stores data in the extended logout area. 
The STORE STATUS command stores CPU Timer and Clock Comparator values 
that may then be displayed at the terminal via the DISPLAY co.mand. The 
procedure is the only way to get timer information at the terminal. 

One debugging use of STORE STATUS would be as follows: 

1. Issue the STORB STATUS co.mand before entering a routine you wish 
to debug. 

2. When execution stops (because an address stop was reached or 
because of a failure) display the extended logout area. This area 
contains the status that was stored before entering the routine. 

3. Issue STORE STATUS again and display the extended logout area 
again. You now have the status information before and after the 
failure. This inforaation could help you solve your problem. 

64 IBM VM/370: Systea Programmer's Guide 



Use the SYSTEM command to simulate the action of the RESET and RESTART 
buttons on the real computer console, and to clear storage. The RESET 
function and the CLEAR function leave the virtual machine in a stopped 
state. An IPt command must be issued after a SYSTEM CLEAR command. 
After a SYSTEM RESTART, the virtual machine is automatically restarted 
at the location loaded into the PSi from tbe doubleword at virtual 
location zero. The format of the SYSTEM command is: 

System 

CLEAR 

RESET 

RESTART 

{
CLEAR } 
RESET 
RESTART 

clears virtual storage and virtual storage keys to binary 
zeros. 

clears all pending interrupts and conditions in the virtual 
machine. 

simulates the hardware system RESTART function by storing the 
current PSi at virtual location eight and loading, as the new 
PSi, the doubleword from virtual location zero. Interrupt 
conditions and storage remain unaffected. 

STORAGE CLEARED - SYSTEM RESET 

This response is given if the com.and SYSTEM CLEAR is entered. 

SYSTEM RESET 

This response is given if the command SYSTEM RESET is entered. 

If the command SYSTEM RESTART is entered, no response is given; the 
virtual macbine resumes execution at the address in the virtual PSi 
loaded from virtual storage location zero. 

Use the SYSTEM command to simulate the Reset and PSi Restart buttons on 
the computer console. Also, use the SYSTEM command to clear storage and 
its associated storage keys. It is a good practice to clear storage to 
binary zeros before you IPL a system. 

Part 1: Debugging with VM/370 65 



After issuing the SYSTEft com.and with RESET or CLEAR specified, 
either STORE a PSi and issue EEGIN or issue EEGIN with a hexadecimal 
storage location specified, to resuae operation. The virtual machine 
automatically restarts at the location specified in the new PSi (which 
is loaded from the doubleword at location zero) after the SYSTEM RESTART 
co •• and is processed. 

66 lEft V8/370: System Programmer's Guide 



Use the TRACE command to trace specified virtual machine activity and to 
record the results at the terminal, on a virtual spooled printer, or on 
both terminal and printer. If trace output is being reccrded at the 
terminal, the virtual machine stops execution and CP command mode is 
entered after each output message. This simulates the single ~yc~e 
function. To resume operation at the virtual machine, the BEGIN command 
must be entered. If the RUN operand is specified, the virtual machine is 
not stopped after each output message. If trace output is being 
recorded on a virtual sPooled printer. a CLOSE command must be issued to 
that printer in order for the- trace" output to be printed. Successful 
branches to the next sequential instruction and branch-to-self 
instructions are not detected by TRACE. Instructions that modify or 
examine the first two bytes of the next sequential instruction cause 
erroneous processing for BRANCH and INSTRUCT tracing. 

When tracing on a virtual machine with only one printer, the trace 
data is intermixed with other data sent to the virtual printer. To 
separate trace information from other data, define another printer with 
a lower virtual address than the previously defined printer. For 
example, on a system with OOE defined as ~ne only printer, define a 
second printer as OOB. The regular output goes to OOE and the trace 
output goes to OOB. 

When operation of a shared system is being traced, the following 
options cannot be used: 

• BRANCH 
• INSTRUCT 
• ALL 

I/O operations for virtual channel-to-channel adapters, with both ends 
connected to the same virtual machine, cannot be traced. 

The format of the TRACE command is: 

r , 
TRace ,SVC 1 I Printer I 

I/O I r , r , I 
PROgram I 111~~inall I!Q~Y~I I 
EXTernal I IBOTH I IRUN I I 
PRIV I L J L J I 
SIO I I 
CCW I OFf I 
BRanch L J 

INSTruct 
ALL 
CSW 

END 

1More than one of these activities may be traced by using a single 
TRACE command. For example: 

TRACE SVC PROGRAM SIO PRINTER 

Part 1: Debugging with VM/370 67 



GC20-1807-3 Paqe Modified by TNL GN20-266L, March 31, 1975 

SVC 

1/0 

PROGR~M 

EXTERNAL 

PRIV 

SIO 

CCW 

BRANCH 

traces virtual machine SVC interrupts. 

traces virtual machine 1/0 interrupts. 

traces virtual machine program interrupts. 

traces virtual machine external interrupts. 

traces all virtual machine non-I/O privileged instructions. 

traces TIO, CLRIO, HIO, HDV and TCH instructions to all 
virtual devices. Will also trace SIO and SIOF instructions 
for non-console and non-spool devices only. 

traces virtual and real CCWs for non-Spool/non-Console device 
I/O operations. When CCW tracing is requested, SIO and TIO 
instructions are also traced. 

traces all virtual machine interrupts, all PSW instructions, 
and all successful branches. 

INSTRUCT traces all instructions, virtual 
successful branches. 

machine interrupts and 

ALL 

CSW 

END 

PRINTER 
PRT 

traces all instructions, interrupts, successful branches, 
privilege instructions, and virtual machine I/O operations. 

provides contents of virtual and real channel status words at 
1/0 interrupt. 

terminates all tracing activity and prints a termination 
message. 

directs tracing output to a virtual spooled printer. 

±]B~l!!~ directs tracing output to the terminal (virtual machine 
console). 

BOTH 

OFF 

RUN 

Notes: 

directs tracing output to both a virtual spooled printer and 
the terminal. 

halts tracing of the specified activities on both the printer 
and terminal. 

stops program execution after the trace output to the terminal 
and enters CP command mode. 

lig~~: If a Diagnose code X'008' is being traced, NORUN has no 
effect and program execution does not stop. 

continues the program execution after the trace output to the 
terminal has completed and does not enter CP command mode. 

-1:--If your virtual machine has the virtual=real option and NOTRANS set 
on, CP forces CCW translation while tracing either SIO or CCW. When 
tracing is terminated with the TRACE END command, CCW translation 
is bypassed again. 

2. If the virtual machine assist feature is enabled on your virtual 
machine, CP turns it off while tracing SVC and program interrupts 

68 IBM VM/370: System Programmer's Guide 



GC20-i807-3 page Modified by TNL GN20-2662, March 31, 1975 

(SVC, PRIV, BRANCH, INSTRUCT, or ALL). After the 
terminated with the TRACE END command line, CP turns 
feature on again. 

tracing is 
the assist 

The following symbols are used in the responses received from TRACE: 

.§.Y!!£21 
vvvvvv 
tttttt 
rrrrrr 
xxxxxxxx 
yyyyyyyy 
ss 
ns 
zz 

zzzzzzzz 
type 

V vadd 
R radd 
mnem 
int 
code 
CC n 
IDAL 

*** 
==) 

~g~!!!!!g 
virtual storage address 
virtual transfer address or new PSW address 
real storage address 
virtual instruction, channel command word, CSW status 
real instruction, CCW 
argument byte (SSM-byte) for SSM instruction 
new system mask after execution of STOSM/STNSM 
low order byte of Rl register in an execute instruction 

(not shown if Rl register is register 0) 
referenced data 
virtual device name (DASD, TAPE, LINE, CONS, RDR, 

PRT, PUN, GRAF, DEV) 
virtual device address 
real device address 
mnemonic for instruction 
interrupt type (SVC, PROG, EXT, I/O) 
interrupt code number (in hexadecimal) 
condition-code number (0, 1, 2, or 3) 
Indirect data address list 
virtual machine interrupt 
privileged operations 
transfer of control 

TRACE STARTED 

This response is issued when tracing is initiated. 

TRACE ENDED 

This response is issued when tracing is suspended. 

I/O vvvvvv TCH xxxxxxxx type vadd CC n 

I/O vvvvvv mnem xxxxxxxx type vadd CC n type radd CSW xxxx 

I/O vvvvvv mnem xxxxxxxx type vadd CC n type radd CSW xxxx CAW vvvvvvvv 

CCW 
CCW 
CCW 

vvvvvv xxxxxxxx xxxxxxxx rrrrrr 
IDAL vvvvvvvv vvvvvvvv IDAL 
SEEK xxxxxxxx xxxxxx SEEK 

yyyyyyyy yyyyy-!yy 
OOrrrrrr OOrrrrrr 
yyyyyyyy yyyy 

Part 1: Debugging with VM/370 69 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

The IDAL or SEEK line is included only if applicable. The virtual IDAL 
is not printed if the real eew opcode does not match the real eew. 

!!!.§1!B!£1!Q1! 1~!£!1!'§: 

~£!!!l~g~g .!!!§~!:'!!£~.!.Q!!: 

· .. vvvvvv SSM xxxxxxxx ss (normal SSM) 
· .. vvvvvv SSM xxxxxxxx ss tttttt (switch to/from translate mode) 
· .. vvvvvv STOSI! xxxxxxxx ns (normal STOSI!) 
· .. vvvvvv STOSI! xxxxxxxx ns tttttt (switch to translate mode) 
· .. vvvvvv STNSM xxxxxxxx ns (normal STNSM) 
· .. vvvvvv STBSM xxxxxxxx ns tttttt (switch from translate mode) 
· .. vvvvvv LPSW xxxxxxxx tttttttt tttttttt (WAIT bit on) 
· .. vvvvvv LPSW xxxxxxxx ==) tttttttt tttttttt (WAIT bit not on) 
· .. vvvvvv mnem xxxxxxxx (all others) 

vvvvvv EX xxxxxxxx zz vvvvvv mnem xxxx xxxxxxxx 

For an executed instruction, where zz (see preceding explanation of 
symbols) is nonzero, the mnemonic for the executed instruction is given 
as if the zz byte had been put into the instruction with an OR 
operation. 

vvvvvv mnem xxxxxxxx xxxx 

vvvvvv mnem xxxxxxxx ==) tttttt 

*** vvvvvv int code ==) tttttt 

!LQ l!Il!!Hi.Q~1 (First line given only if "esw" was specified): 

esw V vadd xxxxxxxx xxxxxxxx R radd yyyyyyyy yyyyyyyy 
*** vvvvvv I/O vadd ==) tttttt esw xxxx 

]~!!£] IR!£l!: (ALL option selected) 

Entry for 'branch from' instruction 

vvvvvv mnem xxxxxxxx tttttt 

Entry for 'branch to' instruction 

==) vvvvvv mnem xxxxxxxxxxxx 

70 IBM VM/370: System Programmer's Guide 



Use the TRACE command to trace specified virtual machine activity and to 
record the results at the terminal, at a virtual printer r or at both. 
This command is useful in debugging programs because it allows you to 
trace only the information that pertains to a particular problem. 

When the terminal is used for the trace output, the virtual machine 
stops executing after each output message is printed and the system 
enters the CP environment. At this time, other commands may be issued 
to display, dump, or alter storage. Using the terminal for trace output 
thus simulates the single cycle execution function of the computer 
console. To resume execution, the BEGIN command must be issued. 

When the virtual printer is used for trace output, a CLOSE command 
must be issued to the virtual printer in order for the trace information 
to print at the real printer. 

A successful branch to the next sequential instruction and a branch 
to self instruction are not traced. Any instruction that modifies or 
examines the first two bytes of the next sequential instruction causes 
erroneous processing for BRANCH and INSTRUCT tracing. 

Part 1: Debugging with ,"/370 71 



CP real machine debugging is reserved for Class C users (system 
programmers) and Class E users (system analysts). CP has facilities to 
examine data in real storage (via the DCP and D"CP commands) and to 
store data into real storage (via. the STCP co •• and). There is no 
facility to examine or alter real machine registers, PSi, or storage 
words. 

Remember, real storage is changing even as you issue the CP commands 
to examine and alter it. 

system programmers and analysts may also want to use the CP internal 
trace table. This table records events that occur on the real machine. 

72 IB" V"1370: System Programmer's Guide 



Use the DCP command to display the contents of real storage locations at 
the terminal. 

If an invalid argument is entered, the DCP command terminates 
however, any previous valid arguments are processed before termination 
occurs. The format of the DCP command is: 

r---------------------------------.---------------------------------------, 
DCP 

Lhexloc1 
Thexlocl 

hexloc1 
o 

r , 
1 hexloc21 
I ~!Q I 
L .J 

r , 

r ,r r " 
ILheXIOC111{-}1 hexloc2 I I 
IThexlocll I : 1 ~!~ 1 I 
1 hexloc 11 1 L .J 1 
1 .Q 1 1 1 
L .J 1 1 

1 r , 1 
I{. }Ibytecount 1 1 
1 IEN~ 1 I 
L L .J .J 

is the first or only storage location to be displayed 
in hexadecimal. If hexloc1 is not specified, L or T must 
be specified and the display begins with storage location 
O. If hexlocl is specified and L or T is not specified, 
the display is the same as if L were specified. If T is 
specified, an EBCDIC translation is included with the 
hexadecimal display. 

If hexlocl is followed by a period and is not on a 
fullword boundary, it is rounded down to the next lower 
fullword. 

specifies that a range of locations is to be displayed. 
To display the contents of one or more storage 
locations by specified storage address location the "-" 
or ":" must be used. The hexloc2 operand must be 1 to 6 
hexadecimal digits; leading zeroes need not be 
specified. In addition, The hexloc2 operand must be 
equal to hexloc1 and it should not not exceed the size of 
real storage. If END is specified, real storage from 
hexlocl through the end of real is displayed. If hexloc2 
is not specified, END is assumed by default. Note that 
this occurs only if "-"or";" follows the first operand. 

{. }Ibytecountl is a hexadecimal integer designating the number of 
1 j!~ 1 the number of bytes of real storage (starting with 
L .J the byte at hexloc1) to be displayed on the terminal. 

The sum of hexloc1 and the bytecount must be an address 
that does not exceed the size of real storage. If this 
address is not on a fullword boundary, it is rounded up 
to the next higher fullword. The bytecount operand must 
be a value of 1 or greater and may not exceed 6 
hexadecimal digits. 

Part 1: Debugging with VM/370 73 



Normally, a user will or should define the beginning and ending 
locations of storage in the following aanner: 

dcp Lhexloc1-hexloc2 
dcp Thexlocl-hexloc2 
dcp hexloc1:hexloc2 
dcp. hexloc1.bytecount 
dcp hexloc1:hexloc2 hexlocl.bytecount 

lote that no blanks can be entered between the liait or range symbols 
(:, -, or.) or any of the operands except for the blank or blanks 
between the coaaand name and the first operand. 1 blank is also 
required between each set of operands when more than one set of operands 
are entered on one coaaand line. 

If, how~ver, a blank imaediately follows the designated type 
character (T or L) DCP displays all of real storage. If the next 
operand is either a colon (:), a hyphen (-), or a period (.) followed by 
a blank character, the system again defaults to a display of all storage 
locations as this operand assuaes a second set of operands. 

!2te: Blanks separate operands or sets of operands if more than one 
operand is entered on the same co.aand line. Blanks should not occur on 
the right or left of range or length syabols, unless it is intended to 
take the default value of the missing operand defined by the blank. 

The following are examples of DCP entries that produce full storage 
displays. 

dcp 1 
dcp t 
dcp -
dcp 
dcp • 
dcp 1-
dcp 1: 

The following 
eabedded blanks: 

dcp 1 • t 

dcp t: 
dcp 1. 
dcp t. 
dcp 0-
dcp 0: 
dcp 1-end 
dcp t-end 

displays all 

dcp O-end 
dcp t:end 
dcp t:end 
dcp O:end 
dcp I.end 
dcp O.end 

of storage three times because of 

Requested locations are displayed in the following format: 

xxxxxx = wordl word2 word3 word4 [key] *BBCDIC trans1ation* 

the 

where xxx xxx is the real storage location of wordl. "word1" is 
displayed (word aligned) for a single hexadecimal specification. 
Up to four words are displayed on a line. If required, multiple 
lines are displayed. The EBCDIC translation is displayed aligned 
to the next lower 16-byte boundary if Thex10c is specified. 
Nonprintab1e characters display as a ".". If the location is at a 
2K page boundary the key for that page is also displayed. The 
output can be stopped and the command terminated by pressing the 
1TTN key (or its equivalent). 

74 IBM VM/370: System Programmer's Guide 



Use the DCP command to display real storage locations at the terainal. 

The requested locations are typed in the following format: 

xxxxxx = WORD1 WORD2 WORD3 WORD4 [EBCDIC translation] 

where XXX XIX is the real storage location of WORD1. WORD1 is displayed 
(word aligned) for a single hexloc specification. Up to four words are 
displayed on a line. If required, multiple lines are printed. The EBCDIC 
translation is displayed if Thexloc is specified. 

Part 1: Debugging with V"/370 75 



Use the DftCP co •• and to print the contents of real storage locations on 
the user's virtual spooled printer. The output format is eight words 
per line with EBCDIC translation. ftultiple storage locations and ranges 
may be specified. To get the output printed on the real printer, the 
virtual spooled printer must be terminated with a CLOSE co •• and. The 
format of the DMCP com.and is: 

DftCP 

Lhexloc1 
Thexloc1 

hexloc1 
Q 

r , 
I hexloc21 
11!!~ I 
L .I 

r , 

r , r r , , 
ILhexloc1 II{ - }I hexloc2 I I [*dumpid] 
I Thexloc 1 I I : I ~I~ I I 
I hexloc1 II L .I I 
I 
L 

.Q II I 
.I I I 

I r , I 
I{. Jlbytecount I I 
I IERD I I 
L L .I .I 

is the first or only storage location to be dumped. If 
hexloc1 is not specified, L or T must be specified and 
dumping starts with location O. If hexloc1 is specified 
and L or T are not specified, an EBCDIC translation is 
included with the hexadecimal dump contents. If hexloc1 
is followed by a period and is not on a fullvord 
boundary, it is rounded down to the next lower fullword. 

is a range of real storage locations to be dumped. 
To dump to the end of real storage, hexloc2 may be 
specified as ERD or not specified at all, in which case 
END is assumed by default. 

{. }Ibytecountl is a hexadecimal integer designating the number of 
IEN~ I bytes of real storage (starting with the byte 
L .I at hexloc1) to be typed at the printer. The sum of 

*dum~id 

hexloc1 and the bytecount must be an address that does 
not exceed the size of real storage. If this address is 
not on a fullword boundary, it is rounded up to the next 
higher fullword. 

If the "." is used for a range, hexloc2 is defined as the 
number of hexadecimal storage locations (in bytes) to be 
dumped starting at hexloc1. If hexloc2 is specified as a 
length, it must have a value such that when added to 
hexloc1 it will not exceed the storage size. 

is specified for identification purposes. If specified, 
it becomes the first line printed preceding the dump 
data. Up to 100 characters with or without blanks may be 
specified after the asterisk prefix. If dumpid is 
specified, hexloc2 or bytecount must be specified. The 
asterisk (*) is required to identify the dumpid. 

16 IBM Vft/310: System Programmer's Guide 



Normally, a user would define beginning and ending dump locations in the 
following manner: 

dmcp Lhexloc-hexloc 

or 

dmcp hexloc.bytecount 

Note that there are no blanks between length or range symbols (-,:, 
or.) or between any of the operands except for the blank(s) between 
the command and the first operand. A blank is also required between 
each set of operands when more than one set of operands are entered. 
Hote, only one ., :, or - or no delimiter may be used within each set of 
operands. 

If, however, a blank immediately follows the designated type 
character, the default dump starting and ending locations are assumed to 
be the beginning and/or end of virtual storage. similarly, if the range 
or length symbol separates the first character from a blank or END, all 
of real storage is dumped. 

!Q!~: Blanks separate operands or sets of operands if more than one 
operand 1S entered on the same command line. Blanks should not occur on 
the right or left of the range or length symbol, unless it is intended 
to take the default value of the missing operand defined by the blank. 
Thus, all of the following produce full storage dumps. 

dmcp 1 dmcp 1-
dmcp t dmcp t-
dmcp - dmcp 1: 
dmcp dmcp t: 
dmcp . dmcp 1. 

Each of the following 
embedded blanks: 

dmcp 1 • t 
dmcp -

dmcp t. dmcp t-end 
dmcp 0- dmcp O:end 
dmcp 0: dmcp l.end 
dmcp O. dmcp l.end 
dmcp 1-end dmcp O.end 

produces three full dumps because of the 

!Q!~: In cases where multiple storage ranges or limits are specified on 
one command line and the line contains errors, command execution 
successfully processes all correct operands to the encountered error. 
The encountered error and the remainder of the command line is rejected 
and an appropriate error message is displayed. 

As the dump proceeds, the following message appears at the terminal 
indicating that the dump is continuing from the next 64K boundary: 

DUMPING LOC hexloc 

where "hexloc" is the segment (64K) address for the dump continuation, 
such as 020000, 030000, 040000. 

If the user signals attention on the terminal !hi!g the above message 
is displayed, the dump ends. 

COMMAND COMPLETE 

indicates normal completion of the dump. 

Part 1: Debugging with VM/370 77 



Use the DMCP command to dump the contents of real storage locations to 
your virtual spooled printer. The output format is eight words per line 
with EBCDIC translation. If a du.pid is used, it aay be up to 100 
characters, including blanks. In order to print the output at the real 
printer, the virtual spooled printer must be terminated with a CLOSE. 

78 IBM VM/370: System Programmer's Guide 



Use the LOCATE 
associated with 
system device. 

com.and to find the addresses of CP control blocks 
a particular user, a user's virtual device, or a real 
The control blocks and their use are described in the 
Pro~l:!! (~f) fl:~gl:!! 1~g!£. The format of the LOCATE !~nl.Q: ~~1!!l:~.! 

command is: 

LOCate 

userid 

vaddr 

raddr 

! userid [vaddr] \ 
lraddr J 

is the user identification of the logged on user. The address 
of this user's virtual machine block (V~BLOK) is printed. 

causes the virtual channel block (VCBBLOK), virtual control 
unit block (VCUBLOK), and virtual device block (VDEVBLOK) 
addresses associated with this virtual device address to be 
printed with the VMBLOK address. 

causes the real channel block (RCBBLOK), real control unit 
block (RCUBLOK), and the real device block (RDEVBLOK) 
addresses associated with this real device address to be 
printed. 

V~BLOK = XXXXXX 

VMBLOK 
XXXXXX 

RCBBLOK 
xxxxxx 

VCBBLOK 
xxxxxx 

RCUBLOK 
XXX XXX 

VCUBLOK 
XXX XXX 

RDEVBLOK 
XXX XXX 

VDEVBLOK 
xxxxxx 

Use the LOCATE command to find the addresses of the system control 
blocks associated with a particular user, a user's virtual device, or a 
real system device. 

Part 1: Debugging with VM/370 79 



Once you know the location of the system control blocks you can 
exaaine (dump or display) the block you want to see. When you want to 
examine specific control blocks, use the co.mands LOCATE and DOftP or 
DISPLAY to examine the control blocks, instead of taking a dump. A 
discussion of the most important fields of the VftBLOK, VCHBLOK, VCOBLOK, 
VDEVBLOK, BCHBLOK, BCOBLOK, and BDEVBLOK are included in the "Beading CP 
ABEND Dumps" section. 

80 IBft Vft/370: System Programmer's Guide 



GC20-i807-3 Page Hodified by TNL GN20-2662, Harch 3i, i975 

Use the MONITOR command to initiate or terminate the recording of events 
that occur in the real machine. This recording is always active after a 
VM/370 IPL (manual or automatic). The events that are recorded in the 
CP internal trace table are: 

• External interruptions 
• SVC interruptions 
• Program interruptions 
• Machine check interruptions 
• I/O interruptions 
• Free storage requests 
• Release of free storage 
• Entry into scheduler 
• Queue drop 
• Run user requests 
• start I/O 
• Unstack I/O interruptions 
• storing a virtual CSW 
• Test I/O 
• Halt device 
• Unstack IOELOK or TRQELOK 
• NCP BTU (Network control Program Basic Transmission Unit) 

Use the trace table to determine the events that preceded a CP system 
failure. Refer to the "CP Internal Trace Table" section of this manual 
for information on finding and using the internal trace table. The 
format of the MONITOR command for tracing events in the real machine is: 

I r---------------·--------·-----------
I I MONitor 

{
STArt CPTRACE'l 
STOP CPT RACE f I I 

I L 

START CPT RACE 

I STOP 

starts the tracing of events that occur on the real machine. 
The events are recorded on the CP internal trace table in 
chronological order. When the end of the table is reached, 
recording continues at the beginning of the table, overlaying 
data previously recorded. 

CPTRACE 
terminates the internal trace table event tracing. Event 
recording ceases but the pages of storage containing the CP 
internal trace table are not released. Tracing can be 
restarted at any time by issuing the MONITOR START CPTRACE 
command. 

COMMAND COMPLETE 

The MONITOR command was processed successfully. 

Part 1: Debugging with VM/370 81 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

Use the QUERY command to request system status and machine configuration 
information. (For 3704 or 3705 Communication Controllers see also the 
NETWORK command.) Not all operands are available in every privilege 
class. Operands available to the specified privilege classes are given 
below. The format of the Class A and E QUERY command is: 

Query I {PAGing } 
I PRIORity use rid 
I SASsist 

PAGING displays the current system paging activity. 

PRIORITY userid displays 
userid. 
but can 
command. 

the current priority of the specified 
This is established in the VM/370 directory 

be overridden by the SET PRIORITY nn 

SASSIST displays the current status of the virtual Machine 
Assist feature for the VM/370 system. 

PAGING nn, SET mm, RATE nnn/SEC INTERVAL= xx:xx:xx 

nn 

mm 

nnn/SEC 

specifies the percentage of time the system was in 
page wait during this time interval. 

is the system paging activity index (threshold 
value). This value affects the paging rate and degree 
of multiprogramming that VM/370 tries to attain. The 
value mm is normally 16. 

is the current CP paging rate in pages per second. 

xx:xx:xx is the time interval between the issuance of QUERY 
PAGING commands. 

82 IBM VM/370: System Programmer's Guide 



userid PRIORITY = nn 

nn is the the assigned priority of the specified user. The 
lower the value, the higher the priority. 

ON or OFF is indicative that the virtual ftachine Assist feature 
is enabled or disabled from the system. 

The QUERY comJand tells you the value of the paging activity index and 
the priority. This information ca~ be useful in evaluating the 
usefulness of the perforJance options and in examining dispatching 
functions. 

See "Part 4. IBft 3704 and 3705 Communications Controllers" for a 
description of this command. 

Part 1: Debugging with Vft/370 83 



Use the SAVESIS command to 
registers and PSi as they 
com.and is: 

save a virtual machine storage 
currently exist. The format of 

space wi th 
the SAVESIS 

SAVESIS 

systemname 

SISTEft SAVED 

systemname 

must be a predefined name representing a definition of 
installation requirements of the named system. The 
definition indicates the number of pages to be saved, the 
DASD volume on which the system is to be saved, and the 
shared segments (if any). Refer to the discussion of 
named systems in Named systems" section of for further 
information concerning saved systems. 

See the "Generating Named Systems" section of "Part 2. Control Program 
(CP)" for a complete discussion of when and how to save a named system. 

84 lBB Vft/370: System Programmer's Guide 



Use the STCP command to alter the contents of real storage. The real 
PSi or real registers cannot be altered with this command. The format 
of the STCP command is: 

r-======~~~--------------------------------------------------------------~ 
STCP 

L 

hexloc 
Lhexloc 

Shexloc 

hexword 

hex data 

{ 
{ 

heXIOC} hexword1 [hexword2 ••• ] } 
Lhexloc 

Shexloc hexdata 

stores the data given in hexword1 [hexword2 ••• ] in successive 
fullword locations starting at the address specified by 
hexloc. The saallest group of hexadecimal values that can be 
stored using this specification is one fullword. Data is 
aligned to the nearest fullword boundary. If the data being 
stored is less than a fullword (eight hexadecimal digits), it 
is right-adjusted in the word and the high order bytes of the 
word are filled with zeros. Either specification (hexloc or 
Lhexloc) may be used. 

stores the data given in hex data in the address specified by 
hexloc without word alignment. The shortest string that can 
be stored is one byte (two hexadecimal digits). If the string 
contains an odd nuaber of characters, the last character is 
not stored. An error message occurs and the function ends. 

specifies up to eight hexadecimal digits. If less than eight 
digits are specified, the string is right justified in a 
fullword and left-filled with zeros. If two or aore hexwords 
are specified, they must be separated by at least one blank. 

specifies a string of two or aore hexadeciaal digits with no 
embedded blanks. 

STORE COMPLETE 

Use the STCP command to alter the contents of real storage. 
PSi or real registers may !2! be altered by this command. 

The real 

Part 1: Debugging with V"/370 85 



The DASD Dump Restore (DDR) program can be run standalone in the real or 
virtual machine. To run DASD Dump Restore standalone, IPL an input 
device that contains all the necessary control statements. The centrol 
statements necessary to run the DDR program are: 

• I/O Definition statements 
• Function statements 

DDR CONTROL STATEftENTS 

Control statements describe the processing that is to take place and the 
I/O devices that are to be used. I/O definition statements must be 
specified first. 

All control statements may be entered from the system console or a 
card reader. Only columns 1 to 71 are inspected by the program. All 
data after the last possible parameter in a statement is ignored. An 
output tape must have the DASD cylinder header records in ascending 
sequences; therefore, the extents must be entered in sequence by 
recorded cylinders. Only one type of function - dump, restore, or copy -
may be performed in one execution, but up to 20 statements describing 
cylinder extents may be entered. The function statements are delimited 
by detection of an input or output statement, or by a null line if the 
console is used for input. If additional additional functions are to be 
performed, the sequence must be repeated. Only those statements needed 
to redefine the I/O devices are necessary for subsequent steps. All 
other I/O definitions remain the same. 

To return to CftS, enter a null line (carriage return) in response to 
the prompting message (ENTER:). 

The PRINT and TYPE statements work differently in that they operate 
on only one data extent at a time. If the input is from a tape created 
by the dump function, it must be positioned at the header record for 
each step. The PRINT and TYPE statements have an implied output of 
either the console (type) or system printer (print). Therefore, PRINT 
and TYPE statements need not be delimited by an input or output 
statement. 

The I/O definition statements describe the tape, DASD, and printer 
devices used while executing the DASD Dump Restore program. 

An INPUT or OUTPUT statement describes each tape and DASD unit used. 
The format of the INPUT/OUTPUT statement is: 

86 IBft VM/370: System Programmer's Guide 



cell 

INput 
OUTput 

type 

volser 

altape 

ccu type 
r , 
Ivolserl 
laltape I 
L .J 

[ (options ••• ) ] 
2Elio!!§: 

r , r , 
r , IMOde 6250 I I LEave I 
I SKip nn I IMOde 1600 I I REWind I 
laIiE Q I IMOde 800 I I!!Nl~~ I 
L .JL .JL .J 

is the unit address of the device. 

is the device type (2314, 2319, 3330, 3330-11, 3340-35 (3340 
access device equipped with a 3348-35 megabyte disk pack), 
3340-10 (3340 access device equipped with a 3348-10 megabyte 
disk pack), 2305-1, 2305-2, 2400, 2420, or 3420). There is no 
1 track support. 

is the volume serial number of a DASD device. If the keyword 
'SCRATCH' is specified instead of the volume serial number, no 
label verification is performed. 

is the address of an alternate tape drive. 

!gl~: If multiple reels of tape are required and "altape" is 
not specified, DDR displays the following at the end of the 
reel: "END OF VOLUME CYL xxx HD xx, MOUNT NEXT TAPE." After 
the new tape is mounted, DDR continues automatically. 

SKIP nn forward spaces nn files on the tape. nn is any number up to 
255. The SKIP option is reset to zero after the tape has been 
positioned. 

MODE 6250 causes all output tapes that are opened for the first time 
MODE 1600 and at the load point to be written or read in the specified 
MODE 800 mode. All subsequent tapes mounted are also set to the 

specified mode. If no mode option is specified, then no mode 
set is performed. 

REWIND rewinds the tape at the end of a function. 

UNLOAD rewinds and unloads the tape at the end of a function. 

LEAVE leaves the tape positioned at the end of the file at the end 
of a function. 

Use the SYSPRINT control statement to describe a printer device that is 
used to print data extents specified by the PRINT statement for the 
standalone version of DDR. It is also used to print a map of the 
cylinder extents from the DUMP, RESTORE, or COPY statement. If the 
SYSPRINT statement is not provided, the printer assignment defaults to 
OOE. The SYSFRINT control statement is used by the standalone version 
of DDR to define the printer device if it is other than OOE. DDR, 

Part 1: Debugging with VM/310 81 



running under the control of C~S, ignores this control statement since 
the C~S printer is OOE. The format of the SYSPRINT control statement 
is: 

SYsprint ccu 

ccu specifies the unit address of the device. 

The function statements tell the DDR program what action to perform. 
The function commands also describe the extents to be dumped, copied, or 
restored. The format of the DU~P/COPY/RESTORE control statement is: 

DU~P 

DUmp 
COpy 
REstore 

r 
Icyl1 [To] 
ICPvol 
IAL! 
INUcleus 
L 

, 
[cyl2 [Reorder] [To] [cyI3]]1 

I 
I 
I 
~ 

requests the program to move data from a direct access volume 
onto a magnetic tape or tapes. The data is moved cylinder by 
cylinder. Any number of cylinders may be moved. The format 
of the resulting tape is: 

Record 1: a volume header record, consisting 
describing the volumes. 

of data 

Record 2: a track header record, consisting of a list of count 
fields to restore the track, and the number of data records 
written on tape. After the last count field the record 
contains key and data records to fill the 4K buffer. 

Record 3: track 
records packed 
truncated. 

data 
into 

records, consisting 
4K blocks, with 

of 
the 

key and data 
last record 

Record 4: either the end of volume or end of job trailer 
label. The end of volume label contains the same information 
as the next volume header record except that the ID field 
contains EOV. The end of job trailer label contains the same 
information as record 1 except that the cylinder number field 
contains the disk address of the last record on tape and the 
ID field contains EOJ. 

88 IB~ V~/370: System Programmer's Guide 



COpy requests the program to copy data from one device to another 
device of the same or equivalent type. Data may be recorded on 
a cylinder basis from input device to output device. A 
tape-to-tape copy can be accomplished only with data dumped by 
this program. 

RESTORE requests the program to return data that has been dumped by 
this program. Data can be restored only to a DASD volume of 
the same or equivalent device type as it was dumped from. It 
is possible to dump from a real disk and restore to a 
minidisk. 

cyll [TO] [cyl2 [REORDER] [TO] [cyI3] 
Only those cylinders specified are moved, starting with the 
first track of the first cylinder (cyll), and ending with the 
last track of the second cylinder (cyI2). If cyl2 is not 
specified, only the first cylinder (cyll) is operated on. The 
REORDER operand causes the output to be reordered, starting at 
the specified cylinder (cyI3) or at the starting cylinder 
(cyll) if (cyl3) is not specified. The REORDER operand may 
not be used with the CPVOL, ALL, or NUCLEUS operands. 

CPVOL specifies that cylinder 0 and all active directory and 
permanent disk space are to be copied, dumped, or restored. 
This indicates that both source and target disks should be in 
CP format, that is, they must have been formatted by the CP 
Format/Allocate program. 

A~~ specifies that the operation is to be performed on all 
cylinders. 

NUCLEUS specifies that record 2 on cylinder 0, track 0 and the nucleus 
cylinders will be dumped, copied, or restored. 

1. Each track must contain a valid home address, containing the real 
cylinder and track location. 

2. Record zero must not contain more than eight key and/or data 
characters. 

3. For the IBM 2314, 2319, and 2305, flagged tracks will be treated as 
any other track , that is, no attempt will be made to substitute 
the alternate track data when a defective primary track is read. 
In addition, tracks will not be inspected to determine whether they 
were previously flagged when written. Therefore, volumes 
containing flagged tracks should be restored to the volume from 
which they were dumped. The message DMKDDB115E is displayed each 
time a defective track is dumped, copied, or restored, and the 
operation continues. 

4. For the IBM 3330, flagged tracks are automatically handled by the 
control unit and should never be detected by the program. However, 
if a flagged track is detected, message DMKDDR115E is displayed and 
the operation terminates. 

Part 1: Debugging with VM/310 89 



INPUT 191 3330 SYSRES 
OUTPUT 180 2400 181 (ftODE 800 
SYSPRIIT OOP 
DUftP CPVOL 
INPUT 130 3330 ftIIIOl 
DUftP 1 TO 50 REORDER 51 
60 70 101 

This example sets the mode to 800 bpi, then dumps all pertinent data 
from the volume labeled 'SYSRES' onto the tape that is .ounted on unit 
180. If the program runs out of room on the first tape, it continues 
dumping onto the alternate device (181). While dumping, a map of the 
cylinders dumped is printed on unit OOP. When the first function is 
complete, the volume labeled 'ftIII01' is dumped onto a new tape. Its 
cylinder header records are labeled 51 to 100. 1 map of the cylinders 
dumped is printed on unit OOP. lext, cylinders 60 to 70 are dumped and 
labeled 101 to 111. This extent is added to the cylinder map on unit 
OOP. When the DDR processing is complete, the tapes are unloaded and 
the program stops. 

If cylinder extents are being defined from the console, the following 
is displayed: 

ENTER CYLINDER EXTENTS 
ENTER: 

For any extent after the first extent, the message 

ENTER NEXT EXTENT OR NULL LINE 
ENTER: 

is displayed. 

The user may then enter additional extents to be dumped, restored, or 
copied. A null line causes the job step to start. 

90 IBft Vft/370: System Programmer's Guide 



in hexadecimal format 

Record 1 --+--____ - re 7rth;:;:;a length field is :;ze:- - l AI-_-__ -
Cylinder, head, and 
record numbers in 
decimal 

Record ID 
(hexadecimal) 

I /
• A heading is printed containing the I 

data length from the count field first in 

• The data is then printed in hexadecimal I 
~ / with graphic interpretation to the right X 

decimal, then in hexadecimal 

..... __________ / y ___ ~tshownhere). ____ J 
04096 1000 DATA LENGTH ..... ~ 

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS !1.BOVE ... 

IstHalfof-+---~CYL 019.HD 00 REC 002 COUNT 0013000002 00 09A8 Note: Data Length field repeated 
in heading. Record 2 

02472 09A8 DATA LENGTH 

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS ABOVE ... 

ABOVE RECORD WRITTEN USING RECORD OVERFLOW e 
f":::j--------, 
Ie This statement indicates that this portion I 

of Record 2 was written using the Write I 
I 

Special Count, Key, and Data command. The 
remainder of Record 2 is found on the next 
track as the first record after Record O. L ______ ...J 

Home Address +---.._. CYL 019 HD 01 HOME ADDRESS 0000130001 RECORD ZERO 0013000100 00 0008 00000000 00000000 
Record 0 

CYL 019 HD 01 REC 002 COUNT 0013000102 00 0658--'--------------------/ 
2nd Half of 

Record 2 01624 0658 DATA LENGTH 

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS ABOVE ... 

re--If t~y length ~ is-;: z;;;: -- -- -- -, 

I • A headmg IS printed containing the key length I 
I • The key is then printed in hexadecimal WIth I ~ 

first in decimal, then in hexadecimal. 

/ lU"aphic mterpretatJon to the right (not shown here)' 

Record 3 _--+ _____ - eYL 019 HD 01 REe 003 COUNT 0013000103 4! OF80 ;/ _0- -- - - __ 0 --' .J 

001280080 KEY LENGTH~-------7 
00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAM6 AS ABOVE ... 

03968 OF80 DATA LENGTH 

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
SUPPRESSED CHARACTERS SAME AS ABOVE ... 

Record 4 ---i-------- CYL 019 HD 01 REC 004 COUNT 0013000104 00 0000 

Figure 8. 

END OF FILE RECORD 

Annotated Sample of Output 
Program 

r:::-------..., 
I~ I Whenever the data length field is zero 
I an end-of-file prints next. I 
L _______ .....J 

from the TYPE and PRINT Functions of the DDR 

Part 1: Debugging with VM/370 91 



Use the PRINT and TYPE function state.ent to print or display a 
hexadecimal and EBCDIC translation of each record specified. The input 
device .ust be defined as direct access or tape. The output is directed 
to the system console for the TYPE function, or to the SYSPRIIT device 
for the PRINT function. (This does not cause redefinition of the output 
unit definition.) The format of the PRIIT/TYPE control state.ent is: 

PRint 
TYpe 

cc 1 [hh 1 [rr 1 ]] [TO cc2 [hh2 [rr2 ]]] [(options)] 

QE!ions: 
[Hex] [Graphic] [Count] 

ccl is the starting cylinder. 

hh1 is the starting track. If present, it must follow the ccl 
operand. The default is track zero. 

rr1 is the starting record. If present, it must follow the hhl 
operand. The default is home address and record zero. 

[TO] cc2 is the ending cylinder. If more than 1 cylinder is to be 
printed or displayed "TO cc2" must be specified. 

hh2 is the ending 
operand. The 
cylinder. 

track. If present, it must 
default is the last track 

follow the cc2 
on the ending 

rr2 is the record ID of the last record to print. The default is 
the last record on the ending track. 

HEX prints or displays a hexadecimal representation of each record 
specified. 

GRAPHIC prints or displays an EBCDIC translation of each record 
specified. 

COUNT prints or displays only the count field for each record 
specified. 

PRINT 0 TO 3 

Prints all of the records from cylinders 0, 1, 2, and 3. 

PRINT 0 1 3 

Prints only one record, from cylinder 0, track 1, record 3. 

PR IN T 1 10 3 TO 1 15 4 

92 IBM VM/370: System Programmer's Guide 



prints all records starting with cylinder 1, track 10, record 3, and 
ending with cylinder 1, track 15, record 4. 

The example in Pigure 8 shows the information that would be displayed 
at the console (TYPE function) or system printer (PRINT function) by the 
DDR program. The listing has been annotated to describe some of the 
data fields. 

"any CP problems can be isolated without standalone machine testing. It 
is possible to debug CP by running it in a virtual machine. In most 
instances, the virtual machine system is an exact replica cf the system 
running on the real machine. TO set up a CP system on a virtual 
machine, use the same procedure that is used to generate a CP system on 
a real machine. However, remember that the entire procedure of running 
service programs is now done on a virtual machine. llso, the virtual 
machine must be described in the real V"/370 directory. See the "V"/370 
Operating in a virtual Machine Environment" section of "Part II. Control 
Program (CP)" for directions for setting up the virtual machine. 

CP has an internal trace table which records events that occur in the 
real machine. The events that are traced are: 

• External interruptions 
• SVC interruptions 
• program interruptions 
• Machine check interruptions 
• I/O interruptions 
• Pree Storage requests 
• Release of free storage 
• Entry into scheduler 
• Queue drop 
• Run user requests 
• Start I/O 
• Unstack I/O interruptions 
• storing a virtual CSW 
• Test I/O 
• BaIt Device 
• unstack IOBLOK or TRQBLOK 

I. RCP BTU (Network Control Program Basic Transmission Unit) 

The size of the trace table depends on the amount of real storage 
available at IPL time. Por each 256K bytes (or part thereof) of real 
storage available at IPL time, one page (4096 bytes) is allocated to the 
CP trace table. Each entry in the CP trace table is 16 bytes long. 
There are 17 possible types of trace table entries; one for each type of 
event recorded. The first byte of each trace table entry, the 
identification code, identifies the type of event being recorded. 

The trace table is allocated by the main initialization routine, 
D"KCPI. The first event traced is placed ~n the lowest trace table 
address. Each subsequent event is recorded 1n the next available trace 
table entry. Once the trace table is full, events are recorded at the 
lowest address (overlaying the data previously recorded there). Tracing 
continues with each new entry replacing an entry from a previous cycle. 

Part 1: Debugging with V"/370 93 



Use the trace table to determine the events that preceded a CP system 
failure. An ABEND dump contains the CP internal trace table and the 
pointers to it. The address of the start of the trace table, TRACSTRT, 
is at location X'OC'. The address of the byte following the end of the 
trace table, TRACEND, is at location X'10'. And the address of the next 
available trace table entry, TRACCURR, is at location X'14'. Substract 
16 bytes (X'10') from the address stored at X'14' (TRACCURR) to obtain 
the trace table entry for the last event completed. 

The CP internal trace table is initialized during IPL. If you do not 
wish to record events in the trace table, issue the MONITOR STOP com.and 
to suppress recording. The pages allocated to the trace table are not 
released and recording can be restarted at any time by issuing the 
MONITOR START com.and. If the VM/370 system should abnormally terminate 
and automatically restart, the tracing of events on the real machine 
viII be active. After a VM/370 IPL (manual or automatic), CP internal 
tracing is alway active. 

There are 17 possible types of trace table entries, each uniguely 
identified by the value of the first byte. Figure 9 describes the 
format of each type of trace table entry. 

94 IBM VM/370: System Programmer's Guide 



Type of Event Module 

External interrupt DMKPSA 

SVC interrupt DMKPSA 

Program interrupt DMKPRG 

Identification 
Code 

(hexadecimal) 

01 

02 

03 

X'OOOOOOOOOO' 

GR 15 

First 3 bytes 
ofVMPSW 

Format of Trace Table Entry 

External Old PSW 

SVCOld PSW 

Program Old PSW 

Machine Check I DMKMCH 
!~'!c:-:-i..iPt 

04 
Address of 
VMBlOK 

Machine Check Old PSW 

1/0 interrupt 

Free Storage (FREE) 

Return storage (FRET) 

Enter Scheduler 

Queue drop 

Run user 

Start 1/0 

Unstack 1/0 interrupt 

Virtual CSW store 

Test 1/0 

Halt Device 

Unstack 
10BLOKor 
TROBLOK 

NCP BTU 
(see note) 

Figure 9. 

DMKIOS 05 

DMKFRE 06 

DMKFRE 07 

DMKSCH 08 

OM KSCH 09 

DMKDSP OA 

DMKCNS 
DMKIOS OB 
DMKVIO 

DMKDSP OC 

DMKVIO OD 

DMKCNS 
DMKIOS OE 
DMKVIO 

DMKCNS 
DMKIOS OF 
DMKVIO 

DMKDSP 10 

DMKRNH 11 

Address of 
VMBLOK 

Address of 
VMBLOK 

Address of 
VMBLOK 

Address of VMBLOK 

X'OOOOOO' 

I/O Old PSW +4 

GR Oat entry 

GR 0 at entry 

Value of VI\o1RSTAT, 
VMDSTA T. VMOSTAT. 

andVMOSTAT 

RUNUSER value 
fromPSA 

Address of 10BLOK 

Address of VMBLOK 

Address of VMBLOK 

Address of 10BLOK 

Address of 10BLOK 

CSW 

GR 1 at exit 

GR 1 at entry 

Value of VMOLEVEL. 
VMCLEVEL. VMTlEVEl. 

RUNPSW value from PSA 

ForCC = 1. CSW +4 
CAW otherwise this field is 

12 not used 

Virtual CSW 

Virtual CSW 

ForCe= ~.CS~"':+'; 
CAW otherwise this field is 

not used 

For CC = 1. CSW +4 
CAW otherwise this field is 

not used 

Address of Interrupt Return 
IOBLOK or TRQBLOK Address 

Note: Bytes 2 through 15 of a code 11 trace record represent a Basic Transmission Unit, sent or received by a 3704/3705. If CONSYSR!CONEXTR are zero, 
the BTU was transmitted to the 3704/3705. If they are non·zero, the BTU was received, If CONTCMD equals X'7700', this is an unsolicited BTU response. 

CP Trace Table Entries 

Part 1: Debugging with V"/370 95 



~R BESTBICTI01~ 

1 virtual aachine created by '8/310 is capable of running an IBB 
Systea/360 or Systea/310 operating systea as long as certain '8/310 
restrictions are not violated. If your virtual aachine produces 
unexpected results, be sure that none of the following restrictions are 
violated. 

In general, virtual aachines aay not execute channel prograas that are 
dynaaically aodified (that is, channel prograas that are changed between 
the tiae the ST1BT 1/0 (510) is issued and the end of the input/output 
occurs, either by the channel prograa itself or by the CPO). Bowever, 
soae dynaaically aodified channel prograas are given special handling by 
CP: specifically, those generated by the Indexed seguential lccess 
8ethod (lSI!) running under OS/PCP, OS/8PT, and OS/B'T: those generated 
by 1518 running in an 05/'5 virtual=real partition: and those generated 
by the 05/'5 Telecoaaunications lccess Bethod (TCI8) LevelS, with the 
'8/310 option. 

The self-modifying channel prograas that 151ft generates for soae of 
its. operations receive special handling if 'B/310 is generated with the 
1518 option and if the virtual aachine using 1518 has that option 
specified in its 'B/310 directory entry. There is no such restriction 
for DOS lSI!, or for 1518 if it is running in an 05/'5 virtual=virtual 
partition. If 151ft is to run in an 05/'5 virtual=real partition, you 
.ust specify the 151ft option in the 'ft/310 directory entry for the 05/'5 
virtual aachine. 

'irtual machines using 05/'5 TC18 (LevelS, generated or invoked with 
the '"/310 option) issue a DI1GNOSE instruction when the channel prograa 
is modified. This instruction causes CP to reflect the change in the 
virtual CCI string to the real CCI string being executed by the channel. 
CP is then able to execute the dynaaically aodified channel prograa 
properly. 

The restriction against dynaaically aodified channel prograas does 
not apply if the virtual aachine has the virtual=real perforaance option 
and the NOTBIIS option has been set on. 

The following restrictions exist for ainidisks: 

1. In the case of Bead Boae lddress with the skip bit off, '8/310 
modifies the hoae address data in user storage at the coapletion of 
the channel prograa because the addresses aust be converted for 
minidisks: therefore, the data buffer area aay not be dynaaically 
modified during the input/output operation. 

2. On a .inidisk, if a CCI string uses aultitrack search on 
input/output operations, subseguent operations to that disk aust 
have preceding seeks or continue to use aultitrack operations. 
There is no restriction for dedicated disks. 

3. OS/PCP, ftPT, and ft'T 151ft aay be used with a ainidisk only if the 
ainidisk is located at the beginning of the physical disk (that is, 

96 IBft '"/310: System Programaerts Guide 



GC20-1807-3 page M~dified by TNL GN20-2662, March 31, 1975 

at cylinder zero) • 
ISAM. 

There is no such restriction for DOS or OS/VS 

4~ VM/370 does not return an end of cylinder condition to a virtual 
machine that has a virtual 2311 mapped to the top half (that is, 
tracks 0 through 9) of 2314 or 2319 cylinders. 

5. If the user's channel program (CCWs) for a minidisk do not perform 
a Seek operation, then to prevent accidental accessing, VM/370 
inserts a positioning Seek operation into the user's CCWs. Thus, 
certain channel programs may generate a condition code (CC) of zero 
on a SIO instead of an expected CC of one, which is reflected to 
the virtual machine. The final status is reflected to the virtual 
machine as an interrupt. 

6. DASD channel programs directed to minidisks on 3330 or 3340 devices 
may give different results than on dedicated drives if the channel 
program includes multiple-track operations and depends on a Search 
ID High or a Search ID High or Equal to terminate the program. 
This is because the record 0 count fields on the 3330 and 3340 must 
contain the real cylinder number of the track on which they reside; 
therefore, a Search ID High based on a low virtual cylinder number 
may terminate prematurely if a real record 0 is encountered. This 
restriction does not apply to minidisks with a relocation factor of 
zero. This restriction does apply to minidisks with a VTOC greater 
than one track that are used with OS (Release 20.6 and later) or 
OS/VS (any release), since the VTOC Locate function uses a Search 
ID High to stop at the end of the VTOC. 

!Q~~: If the 'R' byte of 'CCHHR' is equal to zero at the time a 
virtual Start I/O is issued, but the 'CCHHR' field is read in 
dynamically by the channel program before the SEARCH ID CCW is 
executed, then the real SEARCH ID CCW uses the relocated 'CCHHR' 
field instead of the 'CCHHR' field that was dynamically read in. 
This causes erroneous results. To avoid this problem, the virtual 
machine should not default the'R' byte of 'CCHHR' to binary zero if 
the search arguments are to be read in dynamically and a SEARCH ID 
on Record RO is not intended. 

7. The IBCDASDI program cannot assign alternate tracks for a 3330. 

Timing dependencies in input/output devices or programming do not 
function consistently under VM/370: 

1. The following telecommunication access methods (or the designated 
option) violate the restriction on timing dependency by using 
program-controlled interrupt techniques and/or the restriction on 
dynamically modified channel programs: 

• OS Basic Telecommunications Access Method (BTAM) with the 
dynamic buffering option. 

• OS Queued Telecommunications Access Method (QTAM). 

• DOS Queued Telecommunications Access Method (QTAM). 

• OS Telecommunications Access Method (TCAM). 

• OS/VS Telecommunications Access Method (TCAM) 
earlier, and LevelS if TCAM is not generated or 
the VM/370 option. 

Level 4 or 
invoked with 

Part 1: Debugging with VM/370 97 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

These access methods may run in a virtual=real machine with CCW 
translation suppressed by the SET NOTRANS ON command. (OS BTA" can 
be generated without dynamic buffering, in which case no virtual 
machine execution violations occur. However, the BTA" reset poll 
macro will not execute under V"/370 if issued from third level 
storage. For example, a reset poll macro has a NOP effect if 
executed from a virtual=virtual storage under VS1 which is running 
under V"/370.) 

2. Programming that makes use of the PCI channel interrupt for channel 
program modification or processor signalling must be written so 
that processing can continue normally if the PCI is not recognized 
until I/O completion or if the modifications performed are not 
executed by the channel. 

3. Devices that expect a response to an interrupt within a fixed 
period of time may not function correctly because of execution 
delays caused by normal VM/370 system processing. An example of 
such a device is the IB" 1419 Magnetic Character Reader. 

4. The operation of a virtual block multiplexer channel is timing 
dependent. For this reason, the channel appears available to the 
virtual machine operating system, and channel available interrupts 
are not observed. However, operations on virtual block-multiplexing 
devices should use the available features like Rotational Position 
Sensing to enhance utilization of the real channels. 

On the System/370 Model 158 only, the virtual Machine Assist feature 
cannot operate concurrently with the 7070/7074 compatibility feature 
(Feature t7117). 

Programs written for CPU model-dependent functions may not execute 
properly in the virtual machine under VM/370. The following points 
should be noted: 

1. Programs written to examine the machine logout area do not have 
meaningful data since VM/370 does not reflect the machine logout 
data to a virtual machine. 

2. Programs written to obtain CPU identification (via the Store CPU ID 
instruction, STIDP) receive the real machine value. When the STIDP 
instruction is issued by a virtual machine, the version code 
contains the value 256 in hexadecimal ("PP") to represent a virtual 
machine. 

3. Programs written to obtain channel identification (via the Store 
Channel ID instruction, STIDC) receive information from the virtual 
channel block. only the virtual channel type is reflected; the 
other fields contain zeroes. 

4. No simulation of other CPU models is attempted by V"/370. 

Other characteristics that exist for a virtual machine under V"/370 are 
as follows: 

98 IBM VM/370: System Programmer's Guide 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

1. If the virtual=real option is selected for a virtual machine, 
input/output operations specifying data transfer into or out of the 
virtual machine's page zero, or into or out of storage locations 
whose addresses are greater than the storage allocated by the 
virtual=real option, must not occur. The storage-protect-key 
mechanism of the IBM System/370 CPU and channels operates in these 
situations but is unable to provide predictable protection to other 
virtual machines. In addition, violation of this restriction may 
compromise the integrity of the system. The results are 
unpredictable. 

2. VM/370 has no multiple path support and, hence, does not take 
advantage of the two-channel switch. However, a two-channel switch 
can be used between the IBM system/370 running a virtual machine 
under V!/370 and another cpu. 

3. The DIAGNOSE instruction cannot be issued by the virtual machine 
for its normal function. VM/370 uses this instruction to allow the 
virtual machine to communicate system services requests. The 
Diagnose interface requires the operand storage addresses passed to 
it to be real to the virtual machine issuing the DIAGNOSE 
instruction. For more information about the DIAGNOSE instruction in 
a virtual machine, see the !~LllQ: ~I§!~! ~!Qy!~!me~~§ ~~!g~. 

4. A control unit normally never appears busy to a virtual machine. 
An exception exists when a forward space file or backward space 
file command is executed for a tape drive. Subsequent I/O 
operations to the same virtual control unit result in a control 
unit busy condition until the forward space file or backward space 
file command completes. If the real tape control unit is shared by 
more than one virtual machine, a control unit busy condition is 
reflected only to the virtual machine executing the forward space 
file or backward space file command. When a virtual machine 
attempts an I/O operation to a device for which its real control 
unit is busy, the virtual machine is placed in I/O wait 
(non-dispatchable) until the real control unit is available. If 
the virtual machine executed a SIOF instruction (rather than SIO) 
and was enabled for block-multiplexing, it is not placed in I/O 
wait for the above condition. 

5. The number of pages used for input/output must not exceed the total 
number of user pages available in real storage; violation of this 
restriction causes the real computing system to be put into an 
enabled wait state. 

6. The CP IPL command cannot simulate self-modifying IPL sequences off 
dedicated unit record devices or certain self-modifying IPL 
sequences off tape devices. 

7. The VM/370 spooling facilities do not support punch-feed-read, 
stacker selection, or column binary operations. Detection of 
carriage control channels is supported for a virtual 3211 only. 

8. VM/370 does not support count 
operator's console. 

control on the virtual 1052 

9. Programs that use the integrated emulators function only if the 
real computing system has the appropriate compatibility feature. 
VM/370 does not attempt simulation. The DOS emulators are not 
supported. 

10. The READ DIRECT and WRITE DIRECT instructions are not supported for 
a virtual machine. 

11. The system/370 SET CLOCK instruction cannot be simulated and, 

Part 1: Debugging with VM/370 99 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

hence, is ignored if issued by a virtual machine. The System/370 
STORE CLOCK instruction is a nonprivileged instruction and cannot 
be trapped by VM/370; it provides the true TaD clock value from the 
real cpu. 

12. The 1050/1052 Model 2 Data Communication system is supported only 
as a keyboard operator's console. Card reading, paper tape I/O, 
and other modes of operation are not recognized as unique, and 
hence may not work properly. This restriction applies only when 
the 1050 system is used as a virtual machine operator's console. 
It does not apply when the 1050 system is attached to a virtual 
machine via a virtual 2701, 2702, or 2703 line. 

13. The pseudo-timer (usually device address OFF, device type TIMER) 
does not return an interrupt from a start I/O; therefore, do not 
use EXCP to read this device. 

14. A virtual machine IPL with the NOCLEAR option renders one page of 
the virtual machine invalid. The IPL simulator uses one page of 
the virtual machine to initiate the IPL function. The starting 
address of the invalid page is either the result of the following 
formula: 

virtual machine size 
starting address of invalid page 

2 

or the hexadecimal value 20,000, whichever is smaller. 

15. To maintain system integrity, data transfer sequences to and from a 
virtual system console are limited to a maximum of 2032 bytes. 
Channel programs containing data transfer sequences that violate 
this restriction are terminated with an interrupt whose CSW status 
indicates incorrect length and a channel program check. 

!2~~: A data transfer sequence is defined as one or more read or 
write CCWs connected via chain data. The introduction of command 
chaining defines the start of a new data transfer sequence. 

16. If you intend to define more than 73 virtual devices for a single 
virtual machine, be aware that any single request for free storage 
in excess of 512 doublewords (a full page) will cause the VM/370 
system to abnormally terminate (ABEND code PTR007) if the extra 
storage is not available on a contiguous page. Therefore, two 
contiguous pages of free storage must be available in order to log 
on a virtual machine with more than 73 virtual devices (three 
contiguous pages for a virtual machine with more than 146 virtual 
devices, etc.). Contiguous pages of free storage are sure to be 
available only immediately after IPL, before other virtual machines 
have logged on. Therefore, a virtual machine with more than 73 
devices should be the first to log on after IPt. 

17. When an I/O error occurs on a device, the System/370 hardware 
maintains a contingent connection for that device until a SENSE 
channel command is executed and sense data is recorded. That is, no 
other I/O activity can occur on the device during this time. Under 
VM/370, the ~ontingent connection is maintained until the SENSE 
command is executed, but I/O activity from other virtual machines 
can begin on the device while the sense data is being reflected to 
the virtual machine. Therefore, the user should be aware that on a 
shared disk, the access mechanism may have moved during this time. 

18. The mode setting for 7-track tape devices is maintained by the 
control unit. Therefore, when a virtual machine issues the SET 

100 IBM VM/370: System Programmer's Guide 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

MODE channel command to a 7-track tape device, it changes the mode 
setting of all 7-track tape devices attached to that control unit. 

This has no effect on virtual machines (such as OS or DOS) that 
issue SET MODE each time a CCW strinq is to be executed. However, 
it can cause a problem if a virtual-machine fails to issue a SET 
mode with each CCW string executed. Another virtual machine may 
change the mode setting for another device on the same control 
unit, thereby changing the mode setting of all 7-track tape devices 
attached to that control unit. 

19. OS/VS2 is supported in uniprocessor mode only: 

20. For remote 3270s, VM/370 supports a maximum 
synchronous lines, minus the number of 3704/3705 
Controllers in NCP mode minus one (if there are 
Communications Controllers in emulation mode). 

of 16 binary 
Communications 
any 3704/3705 

21. If an I/O device (such as a disk or tape drive) drops ready status 
while it is processing virtual I/O activity, any virtual machine 
users performing I/O on that device are unable to continue 
processing or to log off. Also, the LOGOFF and FORCE commands are 
not effective because they do not complete until all outstanding 
I/O is finished. The system operator should determine which I/O 
device is involved and make that device ready once more. 

The following restrictions apply to CMS, the conversational subsystem of 
VM/370: 

1. CMS executes only on a virtual IBM system/370 provided by VM/370. 

2. The maximum sizes of CMS minidisks are as follows: 

Qi~! 
2314/2319 
3330 Series 
3340 Model 35 
3340 Model 70 

~~~i~g~ ~y!igQ~£~ 
203
246
349
682

3. Unit record equipment cannot be dedicated to CMS;
facilities of VM/370 must be used.

the spooling

4. Only those OS facilities that are simulated by CMS can be used to
execute OS programs produced by language processors under CMS.

5. Many types of object programs produced by CMS (and OS) languages
can be executed under CMS using CMS's simulation of OS supervisory
functions. The following functions, although supported in DOS and
OS virtual machines under VM/370, are not supported under CMS:

• The execution of DOS object programs. Although DOS programs can
be assembled under CMS (using the VM/370 Assembler), DOS object
programs cannot execute under CMS.

• The writing or updating of OS data sets and DOS files.

6. CMS can read sequential and partitioned OS data sets and sequential
DOS files, by simulating certain OS macros.

Part 1: Debugging with VM/370 101

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

The following restrictions apply when CMS reads OS data sets that
reside on OS disks:

• Read-password-protected data sets are not read.

• VSAM, BDAM, and ISAM data sets are not read.

• Multi-volume data sets are read as single-volume data sets.
End-of-volume is treated as end-of-file and there is no
end-of-volume switching.

• Keys in data sets with keys are ignored and only the data is
read.

• User labels in user-labeled data sets are bypassed.

The following restrictions apply when CMS reads DOS files that
reside on DOS disks:

• No DOS macros are simulated.

• Only DOS sequential files can be read. CMS options and operands
that do not apply to OS sequential data sets {such as the MEMBER
and CONCAT options of FILED!F and the PDS option of MOVEFILE}
also do not apply to DOS sequential files.

• The following types of DOS files cannot be read:

--DOS VSAM, DAM, and ISAM files.

--DOS core image, relocatable, source statement and procedure
libraries.

--Files with the input security indicator on.

--DOS files that contain more than 16 user label and/or data
extents. (If the file has user labels, they occupy the
first extent; therefore the file must contain no more than
15 data extents.)

• Multi-volume files are read
End-of-volume is treated as
end-of-volume switching.

as single-volume
end-of-file. There

• User labels in user-labeled files are bypassed.

files.
is no

• Since DOS files do not contain BLKSIZE, 'RECFM, or LRECL
parameters, these parameters must be specified via FILEDEF or
DCB parameters, otherwise, defaults of BLOCKSIZE=32760 and
RECFM=U are assigned. LRECL is not used for RECFM=U files.

If you intend to run VM/370 Release 1 and Release 2 systems alternately,
apply Release 1 PLC 14 or higher (APAR Vl179) to your Release 1 system,
to provide compatibility and to prevent loss of spool files in case of a
warm start.

102 IBM VM/370: System Programmer's Guide

GC20-1807-3 Page Modified by TNl GN20-2662, March 31, 1975

There are three kinds of abnormal termination dumps possible when using
CP. If the problem program cannot continue, it terminates and in some
cases attempts to issue a dump. Likewise, if the operating system for
your virtual machine cannot continue, it terminates and, in some cases,
attempts to issue a dump. In the VM/370 environment, both the problem
program and the virtual machine's operating system dumps go to the
virtual printer. A CLOSE must be issued to the virtual printer to have
either dump print on the real printer.

The third type of dump occurs when the CP system cannot continue.
The CP abnormal termination dumps can be directed to a printer or tape
or be dynamically allocated to DASD. If the dump is directed to a tape,
the dumped data must fit on one reel of tape. Multiple tape volumes are
not supported by VM/370. The historical data on the tape is in print
line format and can be processes by user created programs or via CMS
commands. Specify the output device for CP ABEND dumps with the CP SET
command. The format of the SET command used is:

r-
I
I Set
!
I
I
L

AUTO

raddr

CP

ALL

} r ,
DUMP { AUTO I £~ I

raddr , ALL
I I
L J

automatically directs the ABEND dump to disk.

directs the ABEND dump to the specified unit address (either a
printer or a tape unit). If the address specifies a tape
device, the dump data must fit on one reel; VMj370 does not
support multiple tape volumes.

dumps only the CP storage area.

dumps all of real storage.

I USING THE VMFDUMP COMMAND

When the CP ABEND dump is sent to a disk, use the CMS VMFDUMP command to
print the dump on the real printer. The format of the VMFDUMP command
is:

r ,
I I ,. , r , I
I VMFDUMP I I I I ERASl I I
I I I DUMPxx I I NOMAP I I
I I I I I NOHEX I I
I I L .J I NOFORM I I
I I I NOVIRT I I
I I L .J I
L- .J

Part 1: Debugging with VMj370 103

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

DUMPxx specifies the name of the CP dump file to be formatted and
printed. xx may be any value from 00 to 09. Class 0 spool
files will contain only CP dump files. These files are
searched for the indicated dump file. When the file is found,
it is used to create a CMS file which, in turn, is formatted
and printed.

ERASE

NOMAP

NOBEX

specifies that the CMS file which is being formatted and
printed is to be erased at the conclusion of the program.

specifies that a load map is not to be printed.

specifies that a hexadecimal dump is not to be printed.

NOFORM specifies that no formatted control blccks are to be printed.

NOVIRT specifies that only the real machine control blocks are to be
formatted. This option is ignored if NOFORM is also
specified.

Use the VMFDUMP command to format and print a current or previous
VM/370 system ABEND dump. specify

VMFDUMP

to obtain a complete formatted, hexadecimal printout.

When the dump has been printed, one of two messages will be printed.

DUMP FILE - DUMP xx - PRINTED AND KEPT

-- or --

DUMP FILE - DUMP xx - PRINTED AND ERASED.

BOW TO PRINT A CP ABEND DUMP FROM TAPE

When the CP ABEND dump is sent to a tape, the records are 133 characters
long, unblocked, and contain carriage control characters.

To print the tape, first make sure the tape drive is attached to your
system. Next, define the printer and tape file.

FILEDEF ddname1 PRINTER (RECFM F LRECL 133)

FILEDEF ddname2 {TAP2} (9-track DEN 1600 RECFM F LRECL 133 BLOCK 133)
TAP1

Then use the MOVEFILE command to print the tape:

MOVEFILE ddname2 ddname1

Two types of
the options

printed dumps occur when CP abnormally
specified in the CP SET DUMP command.

104 IBM VM/370: System Programmer's Guide

ends, depending on
When the dump is

GC20~1807-3 Page Modified by TNL GN20-2662, March 3i, i975

directed to a direct access device, VMFDUMP must be used to format and
print the dump. VMFDUMP formats and prints:

• control blocks
• General registers
• Floating-point registers
• Control registers
• TOD (Time of Day) Clock
• CPU Timer
• storage

Storage is printed in hexadecimal notation, eight words to the line,
with EBCDIC translation at the right. The hexadecimal address of the
first byte printed on each line is indicated at the left.

If the CF SET DUMP command di~e~ted the dump to tape or ~ne printer,
the printed format of the dump is the same as with VMFDUMP, except that
the control blocks are not formatted and printed.

When the Control Program can no longer continue
terminates, you must first determine the condition
ABEND, and then find the cause of that condition. You
structure and function of the Control Program. "Part 2:
(CP) " contains information that will help you understand

and abnormally
that caused the
should know the
Control Program
the major

Part 1: Cebugging with VM/370 104.1

functions of CP. The following discussion on reading CP dumps includes
many references to CP control blocks and control block fields. Refer to
!~L]70: ~~!~2! frOqI~~ (~f) fI2g~~! 12g!£ for a description of the CP
control blocks. Pigure 11 shows the relationships of the CP control
blocks. Also, you will need the current load map for CP to be able to
identify the .odules from their locations.

REASON POR THE ABEND

Determine the immediate reason for the
several fields in the PSA (prefix storage
storage, to find the reason for the ABEND.

ABEND. You need to examine
Area) which is located in low

1. Examine the program old PSi and program interrupt code to find out
if a program check occurred in CP. The program old PSi (PROPSW) is
located at X'2S' and the program interrupt code (INTPR) is at
X'SE'. If a program check has occurred in supervisor mode, use the
CP system load map to identify the module. If you cannot find the
module using the load map, refer to "Identifying a pageable
Module." Pigure 43 in "Appendix A: System/370 Information"
describes the format of an Extended Control PSi.

2. Examine the SVC old PSi, the SVC interrupt code, and the ABEND code
to find out if a CP routine issued an SVC O. The SVC old PSi
(SVCOPSi) is located at X'20', the SVC interrupt code (INTSVC) is
at X'SA', and the ABEID code (CPABEID) is at X'374'.

The modules that may issue an SVC o are:

DMKBLD DMKIOS DMKSCH
DftKCPI DftKPGT DftKTDK
D8KCVT DMKPRG DftKTRC
DftKD.RD DftKPSA DftKUDR
Dft«DSP DMKPTR DftKV DB
DMKPRE DMKRNH DftKVIO
DHKHVC DftKRPA DHKVSP

The ABEID code (CPABEND) is a fullword in length. The first three
bytes identify the module that issued the SVC 0 and the fourth byte
is a binary field whose value indicates the reason for issuing an
SVC O. See Pigure 10 for the possible values of CPABEID.

Use the CP system load map to identify the module issuing the SVC
O. If you cannot find the module using the CP system load map,
refer to "Identifying a Pageable Module". Pigure 43 in Appendix A
describes the format of an Extended Control PSi.

3. Examine the old PSi at X'OS'. If the operator has pressed the
System Restart button on the CPU console, the old PSi indicates the
instruction executing when the ABEND (caused by pressing the System
Restart button) was recognized. Pigure 43 in Appendix A describes
the for.at of an Extended Control PSi.

4. Por a machine check, examine the machine check old PSi and the
logout area. The machine check old PSi (MCOPSi) is found at X'30'
and the fixed logout area is at X'100'. Also examine the machine
check interrupt code (IITHC) at X'ES'.

Part 1: Debugging with V8/370 105

ABEND
Code

BLD001

CPI001

CPI002

Reason for ABEND

Register 8 should contain
a pointer to the
RDEVBLOK for the user's
terminal. This routine
(DMKBLDVM) attempts to
create and partially
initialize a VMBLOK for
a user. DMKBLDVM
abnormally terminates if
general register 8 does
not contain a pointer to
the user.

The RDEVBLOK for the DASD
on which the SYSRES
volume is mounted cannot
be located, or the IPL
volume is not the SYSRES
volume. The SYSRES
volume is specified in
the SYSRES macro in the
DMKSYS module.

A valid system directory
file could not be
located.

CPI003 IThe system TOD clock is
I not operational.

Action

Verify that general register 8
points to a RDEVBLOK for a
terminal. If it does not, there is
probably an error in the calling
program. Identify the calling
program by means of the return
address and the base register in
the save area pointed to by
general register 13. Then, attempt
to identify the source of the
incorrect RDEVBLOK address.

Verify that the volume serial
number on the SYSRES volume from
which the IPL was attempted, is
the same as that specified in the
field DMKSYSVL. If the volume
serial number is not the same, it
may have been altered by the CLIP
utility. Or, the image of the same
nucleus saved on the SYSRES may
have been partially destroyed and
the SYSRES specification altered.
Load or restore the nucleus from a
backup copy to the SYSRES volume
and attempt to IPL again.

Display the volume labels for all
owned volumes. If the volumes de
not contain an active directory
pointer, run DMKDIR (the
standalone directory program) to
recreate the system directory on
an owned volume. If an active
directory pointer is present in at
least one volume label, verify
that the device on which the
volume is mounted is online and
ready before attempting to IPL the
system.

ICall your IBM FE representative to
I fix the clock.

-----------------------------------1
CVT001 IThe system TOD clock is

I in error or is not
I operational.

1
I
I

Figure 10. CP ABEND Codes (Part 1 of 14)

106 IBM VM/370: Syste. Programmer's Guide

ABEND
Code

DRD001

Reason for ABEND

IThe device code index in
the compressed DASD
address for the system
dump file points to a
RDEVBLOK for an invalid
DASD. The valid DASDs
are 2305 series, 3330
series, or 2314/2319.

Action

IVerify that the contents and order
I of the owned list have not been
I altered since the dump was taken.
I If these fields have not been
I altered, the SPBLOK for the dump
I file may have been destroyed. The
I owned list is specified by the

SYSOWN macro 1ll the DMKSYS module.

DSP001 IDuring I/O Interrupt IThe integrity of the user's virtual
I I/O configuration has probably

been violated. The unit addresses
or indexes in the virtual control
blocks are in error, or the
virtual configuration has been
altered by ATTACH/DETACH w~ile I/O
was in progress. Check for a
device reset failure in DftKCFPRD.

I Unstack and Reflection,
DMKSCNVU could not
locate all of the
virtual control blocks
for the interrupting
unit.

DSP002 IThe dispatcher (DMKDSP) IMost likely, a free storage
I is attempting to

dispatch a virtual
relocate user whose
shadow segment tables orl
virtual extended controll
register 0 are invalid. I

I

violation has occurred. First look
at the DMKPRi and DMKiAT modules.
Examine the real, virtual, and
shadow translation tables for
consistency of entry size and
format. Also compare page and
segment size.

DSP003 IThe interval timer was ICheck the timer fields in real
not incremented
properly. This is most
likely a hardware error.1
The dispatcher tests fori
interval timer errors I
and abnormally I
terminates if such errorl
occurs. Results would bel
unpredictable if CP i
continued when the I
interval timer was in I
error. I

I
I
I
I

storage. The value of the real
interval timer is at real storage
location X'SO'. The dispatcher
loads the value of the real
interval timer in real storage
location X'S4' when a user is
dispatched. The value of the real
interval timer is loaded into real.
storage location X'4C' when an
interrupt occurs. If the value
stored at X'4C' is not less than
the value stored at X'S4', the
dispatcher abnormally terminates.
Check the routines that control
the value of the time fields at
X'4C', X'SO', and X'S4'.

DSP004 IWhile tracing SIOs or I/OIExamine the operator's console
interrupts, the virtual I sheet and the user's terminal
device was detached. I sheet to see who detached the
Now, the VDEVELOK cannot I device. Warn the person
be found. I responsible that devices should

I not be detached during I/O
I tracing.

Figure 10. CP ABEND Codes (Part 2 of 14)

Part 1: Debugging with VM/370 107

ABERD
Code Reason for ABERD Action

FRE001 IThe size of the block IUsing FR!!R14 and FBEER12 in the
being returned (via GR 1 PSA, identify the CP module
0) is less than or equall releasing the storage. Check for
to o. I an error in calculating the size

FRE002 IThe address of the free
1 storage block being
1 returned matches the
1 address of a block
I already in the free
I storage chain.
I
,I
1
1
1
I
1
1
1

PRE003 The address of the free
storage block being
returned overlaps the
next lower block on the
free storage chain.

I of the block or for a .odification
1 to the stored block size for
1 variable-size blocks.

Identify the program returning the
storage by means of the return
address and base registers stored
(FREE14 and FREE12 in DftKFRE's
save area in PSA). The most co.mon
cause of this type of failure is a
module that returns a free storage
block but fails to clear a pointer
to the block that has been saved
elsewhere. All modules that return
blocks via a call to DftKPRET
should first verify that the saved
pointer is nonzero; then, after
returning the block, any saved
pointers should be set to zero.

A free storage pointer may have
been destroyed. Also, the module
releasing the lower (overlapped)
block may have returned too much
storage. Examine the lower block
and determine its use and former
owner. Or, identify the program
returning the storage by means of
the return address and base
registers stored (PREER14 and
PREER12 in DftKFRE's save area in
PSA). The most co •• on cause of
this type of failure is a module
that returns a free storage block
but fails to clear a pointer to
the block that has been saved
elsewhere. All modules that return
blocks via a call to DMKPRET
should first verify that the saved
pointer is nonzero; then, after
returning the block, any saved
pointers should be set to zero.

FRE004 IThe address of the free IA free storage pointer may have
1 storage block being I been destroyed. Also, the module
1 returned overlaps the I releasing the higher (overlapped)
1 next higher block on thel block may have returned too much
1 free storage chain. I storage, or the module may be
I I attempting to release storage at
lithe wrong address.

igure 10. CP ABEND Codes (Part 3 of 14)

108 IBft VM/370: system Programmer's Guide

AB!ND
Code Reason for ABEND Action

FRE005 IA module is attempting tolA module is probably attempting to
release storage in the I release location o. Check for the
resident VK/370 nucleus. I module picking up a pointer to a

I free storage block without first
I testing the pointer for O. Use
I FREER14 and FRBER12 in the PSA to
I identify the .odule.

FRB006 IA module is requesting a I Using FREER14 and FREER12 in the
block of storage whose I PSA, identify the module. Check
size (contained in GR 0) I for an error in calculating the
is less than or equal tal block size. Improper use of the

FRE007

FRE008

zero. I halfword instructions ICK and STCK
I can cause truncation of high order
I bits that results in a calculation
I error.

A module is atte.pting to
release a block of
storage whose address
exceeds the size of real
storage.

IThe address of the free
I storage block being
I returned matches the
I address of the first
I block in the sub pool
I for that size.

Kost likely, a free storage pointer
has been destroyed. Attempt to
identify the owners of the free
storage blocks adjacent to the one
containing the pointer that was
destroyed. Check for moves and
translation where initial counts
of zero have been decremented to
minus 1, thus generating an
executed length code of X'FF', or
an effective length of 256 bytes.

I Identify the program returning the
I storage by means of the return
I address and base registers stored
I (FREER14 and FREER12 in DKKFRE's
I save area in the PSA). The most
I common cause of this type of

------------------------------------1 failure is a module that returns a
FRE009 IThe address of the free

I storage block being
I returned matches the
I second block in the
I subpool for that size.
I
I
I
I

I free storaqe block but fails to
i clear a pointer to the block that
J has been saved elsewhere. All
I modules that return blocks via a
I call to DKKFRET should first
I verify that the saved pointer is
I nonzero; then, after returning the
I block, any saved pointers should
I be set to zero.

FRE010 IA program is attempting I Examine the EITSAVE save area in
to extend free storage I DKKFREE to determine which module
while storage itself is I requested an excessive amount of
being extended. I storage. L-__ ~

Figure 10. CP ABEND Codes (Part 4 of 14)

Part 1: Debugging with VK/370 109

ABEND
Code Reason for ABEND Action

FRE011 A CP module has attempted Identify the ~rogram returning the

BVC001

to return a block of storage by means of the return
storage that is in the address and base registers stored
user dynamic paging (FREER14 and FREER12 in D"KFRE's
area. save area in the PSA). The most

common cause of this type of
failure is a module that returns a
free storage block but fails to
clear a pointer to the block that
has been saved elsewhere. All
modules that return blocks via a
call to D"KFRET should first
verify that the saved pointer is
nonzero; then, after returning the
block, any saved pointers should
be set to zero.

IThe user pointed to by
I 11 issued a DIAGNOSE
I instruction while
I attempting to format
I I/O Error or Channel
I Check/Machine Check
I recording areas: the
I SYSRES device type is
I unrecognizable.

GRIThe RDEVBLOK for the SYSRES device
I was probably destroyed, or a
I volume with the same serial number

thel as the SYSRES volume was mounted.
I If a volume with the same serial
I number was mounted"check the
I ATTACH processing in the DMKVDB
I routine.
I

105001 IThe caller is attempting
I to reset an active

The IOBLOK may have been returned
(via DMKFRET) or destroyed. Verify
that the IOBLOK was valid and use
the IOBLOK and RDEVBLOK to
determine the last operation.

I IOBLOK from the RCHBLGK
I queue, but that IOBLOK
I contains an invalid
I address.

105002 IDMKIOS is attempting to
I restart an IOBLOK from
I the RCBBLOK queue, but

105003

I that IOBLOK contains an
I invalid address.

ID"KIOS is attempting to
I remove an IOBLOK from a
I queue, but that IOBLOK
I contains an invalid
I address.
I
I
I

IRegister 2 points to the RCHBLOK,
I RCUBLOK, or RDEVBLOK from whose
I queue the IOBLOK is being removed.
I Register 10 points to the IOBLOK.
I Use the CP internal trace table to
I determine which module called
I DMKIOS twice to start the same
I IOBLOK.

Figure 10. CP ABEND Codes (Part 5 of 14)

110 IBM VM/370: System Programmer's Guide

ABBND
Code Reason for ABBND Action

NLD001 During execution of a ICorrect the RDBVICB macro specify-

PGT001

NBTWORK DUMP command, orl ing the 3704 or 3705, reassemble
during an automatic dumpl the DMKRIO module, and regenerate
of a 3704 or 3705, I the V8/370 CP nucleus with the
VM/370 detected that it I corrected module.
had not allocated suffi-I
cient spool DISD space I .- --" .. ~" .~- ~--- ~- . '-v ,",V",-Q.LII '-11'1:: \,lUlU):' .LU- I

formation from the 3704 I
or 3705. The MODBL oper-I
and on the RDEVICB macrol
describing the 3704 or
3705 was not specified
correctly. VM/370
determines the storage
size of a 3704 or 3705
by the model specified
on the RDBVICB macro.

The number of cylinders
in use stored in the
allocation block
(ALOCBLOK) is less than
the maximum but the
DMKPGT module was unable
to find available
cylinders.

Inspect the chains of paging and
spooling allocation blocks
anchored at RDBVPIGE and RDEVRECS
on the RDEVBLOK for the device in
qUestion, and verify that a
cylinder allocation block
(RBCBLOK) exists for each cylinder
marked and allocated in the
lLOCBLOK. If RBCBLOKs for some
cylinders are missing, it is
possible that the bit map in the
ALOCBLOK has been destroyed. If
all cylinders are accounted for,
the updating of the count field
is in error.

PGT002 IThe count of pages in usellf the RBCBLOK is question is in
I in a page allocation I use for paqinq, then locate a
I block (RBCBLOK) is less I SWPTABL!-entry for each page allo-I
I than the maximum but thel cated on the cylinder. However, if I
I D8KPGT module was unablel the cylinder is in use for spool- I
I to find available pages.1 ing, it is possible that the I
I I RECBLOK itself has been destroyed, I
I I or that the updating of the use I
I I count is faulty. I L-__ _

Figure 10. CP ABBND Codes (Part 6 of 14)

Part 1: Debugging with V8/370 111

~--, lBEID I
Code Beason for lBllD lction I

---1 PGT003 The D1SD page slot being
released is not aarked
allocated.

Identify the aodule atteapting to I
release the page by aeans of the I
caller's return address and base I
register stored in B1LB14 and I
B1LB12 in the B1LBS1'1 saye area I
in PSI. Locate the source (controll
block or SWPT1BLI entry) of the I
D1SD address being released and I
yerify that they haye not been I
inadYertently destroyed. If the I
D1SD page is in a spool file, it I
is possible that the file or the I
BECBLOK chain haye been incorrect­
ly checkpointed and warastarted
after a systea shutdown or a
systea crash.

PGT004 IThe duaay RBCBLOK indi- IThe spool file pOinters aay haye
I cating the spooling I been destroyed while the file was
I D1SD pages on the I being processed, or the allocation
I cylinder that are to be I chain aay be in error. I cold
I released contains a pagel start will probably be necessary.
I count greater than the I If feasible, use the D1SD Duap
I nuaberof pages allo- I Restore prograa to print the D1SD
I cated on the cylinder. I areas containing the affected
I I file, and try to locate the
I I incorrect pointers.

PGTOOS 1 aodule is atteapting to Use B1LB14 and B1LR12 in the
release a D1SD page slot B1LBS1VI area of the PSI to
on a cylinder for which identify the aodule atteapting to
no page allocation block release the page. Verify that the
(BECBLOK) exists. D1SD cylinder address is yalid fori

the deyice in question. If it is, I
and the rest of the D1SD address I
is yalid, yerify that the cylinder I
is in the dynaaically allocatable 1
area. If these restrictions are I
.et, the D1SD page slot aust haye I
been used by aore than one user. I

---·-----------------1 PGT006 IThe last D1SD page slot I~he lLOCBLOK has probably been I
I in a BBCBLOK has been I destroyed, or the chain pointer inl
I deallocated but the bit I the RDEVBLOK is in error. I
I representing the cylin- I I
I der in the cylinder I I
I allocation block I I
I (lLOCBLOK) is not cur- I I
I rently set to one, indi-I I
I cating that the cylinderl I
I was not allocated. I I

Pigure 10. CP lBBID Codes (Part 1 of 14)

112 IBft Vft/310: System Programmer's Guide

I

ABEID I
Code Reason for ABEID Action I

---1
PGT001 A module is attempting to Use BALR14 and BALR12 in the I

release a page of vir- BALRSAVE area of the PSI to iden- I
tual storage being used tify the module attempting to re- I
by the V"/310 control lease the page. Locate the control I
program that has not block containing the virtual page i
been marked allocated. address that is being released. It

is possible that the address has
been destroyed, or a pointer to a
virtual page has been retained
after the page was destroyed.

PGT008 IThe system's virtual
I storage buffers have
I been exhausted because
I of an excessive number
I of open spool files.

IRequest users to close all spool
I files that are no longer active.
I
I
I

PRG001 IProgram check (operation) Examine the ABEID dump. In partic­
I in the control program. ular, exa.ine the old PSi and

identify the module that had the
PRG002 IProgram check (privileged program check.

I operation) in the
I control program.

PRG003 Iprogram check (execute)
I in the control program.

PRG004 IProgra. check (protec­
I tion) in the control
I program.

PRGOOS IProgram check (address­
I ing) in the control
I program.

PRG006 IProgram check (specifi­
I cation) in the control
I program.

PRG001 IProgram check (data) in
I the control program.

PRG008 IProgram check (fixed-
I point overflow) in the
I control progra ••

PRG009 IProgram check (fixed­
I point divide) in the
I control program.

PRG010 IProgram check (decimal
I overflow) in the control
I program.

PRG011 IProgram check (decimal
divide) in the control
program.

Figure 10. CP ABEID Codes (Part 8 of 14)

Part 1: Debugging with V"/310 113

r--~
I ABEND
I Code Reason for ABEND Action
1---
I
I
I

PRG012 IProgram check (exponen­
I tial overflow) in the
I control program.

1---------------------------------

Examine the ABERD dump. In partic­
ular, examine the old PSi and
identify the module that had the
program check.

I
I
I

PRG013 IProgram check (exponen­
I tial underflow) in the
I control program.

PRG014 I program check (signifi­
I cancel ,in the control
I program.

PRG015 IProgram check (floating­
I point divide) in the
I control program.

PRG016 IProgram check (segment)
I in the control program.

PRG017 IProgram check (paging)
I in the control program.

PRG018 IProgram check (transla­
I tion) in the control
I program.

PRG019 IProgram check (special
I operation) in the

PRG254

I control program.

IA translation specifica­
I tion exception has been
I received for a virtual
I machine that is not in
I Extended Control Mode.
I
I

IIf the set of translaticn tables
I pointed to by RUNCR1 is correct, a
I hardware failure has occurred,
I possibly with Dynamic Address
I Translation. Otherwise, call your
I IBM FE representative for software
I support.

PRG255 IA PER (Program Event IRetry the program causing the
Recording) has been re- I error; if the problem persists,
ceived for a virtual I call your IBM FE representative.
machine that is running I
with PER disabled in itsl
virtual PSi. I

PSA001 INo free storage is avail-I Try to identify the extreme load
able for save areas. condition that caused the problem.

Verify that a routine has not
requested an inordinate amount of
storage. If the storage requests
are valid and the problem occurs
regularly, alter the DMKCPI module
to allocate more than six pages of
free storage per 256K bytes of
storage.

Figure 10. CP ABEND Codes (Part 9 of 14)

114 IBM VM/370: System Programmer's Guide

ABEND
Code Reason for ABEND Action

PSA002 IThe 'PSi Restart' key on !Examine the resulting ABEND dump
I the console was activa- I for a dynamic picture cf the sys­
I ted to cause this ABBND.I tem's status.
I This action is normally I
I taken when an unusual I
I system condition occurs, I
I such as a system loop orl
I a slow-running machine. I

PSA003 IA fatal DASD I/O error
I on a paging device

ICheck the unit address in the I/O
I old PSi to find the paging device
I in error. This is a hardware

PTR001

PTR002

i occurred.
I
I

IA segment exception or a
translation specifica­
tion has occurred while
executing a LRA (Load
Real Address) instruc­
tion in the DftKPTR
.odule.

IA program is attempting
to unlock a page frame

I whose address exceeds
I ~he size of real
I storage.

I error. Call your IBft PB Represent­
I ative for service.

I Inspect the contents of Control
I Registers 0 and 1, and the format
I of the Segment Table pointed to by
I CR 1. One or more of these tables
I &nd registers may contain invalid
I data. If CR 1 is invalid, check
I the contents of the V8BLOK pointed
I to by GR 11, especially the ad-
I dress in the VftSEG field.

IUse BALR14 and BALR12 in the
I BAL~SAVE area of the PSA to iden­
I tify the module attempting to
I unlock the page frame. Check for
I the sourCE of the invalid address.

----------~--------------------I
PTR003 IA program is attempting I

I to unlock a real storagel
I page frame whose I
I CORTABLE entry is not I
I flagged as locked. I

PTR004 IThe lock count in the
I COR TABLE entry for the
I page frame being un-

ICheck the routines that update the
I lock count field and CORTABLE

I locked has been decre­
I mented to a value that
I is less than O.

I entry.
I
I
I

igure 10. CP ABEND Codes (Part 10 of 14)

Part 1: Debugging with Vft/370 115

t

1 ABEND
Code Reason for ABBND Action 1

---1 PTB007

PTR008

DBKPRE requested a page
for fixed free storage
but DBKPTR deter.ined
that there were no pages
left in the dyna.ic
paging area.

IA CORTABLE entry on the
I free list points to a
I valid PTE (Page Table
I Entry), but the page is
I allocated.
I

Exa.ine the dump for one of the I
following conditions: 1
1. Excessive a.ounts of free stor­

age have been allocated by CP
and not released via DBKPRBT.
Look for blocks of identical
data and deter.ine which .od-
ules built that data.

2. A block of storage greater than
4096 bytes was requested. Re­
quests for large blocks of free
storage require contiguous
pages from DB'fTR and as a
result have a higher probabil­
ity of failure than requests
for one page or less. If pos­
sible, change the application
to reduce the size cf storage
requests. otherwise, schedule
the application when storage is
less fragmented.

IPages on the free list should not
I contain valid PTEs. Examine the
I dump to determine which module
I called DBKPTRPR. The mcdule that
I called DBKPTBPR probably contains
I an error.

PTR009 IThe count of the number IThe field DBKPTRSC contains the
I of resident shared pagesl number of resident shared pages
I was incorrectly decre- 1 and the field DBKDSPNP contains
I· mented so that the countl the number of pageable pages.

PTR010

PTBOll

I is now less than zero. 1 DBKDSPNP must always be greater
1 I than DBKPTRSC. If ABEND PTR009
I 1 occurs, check the routines that
I I update these two count fields.

IThe count of the number
1 of resident reserved
1 pages was incorrectly
I decremented so that the
I count is now less than
I zero.
I

IA CORTABLE entry to be
placed on the free list
points to a valid PTE
(page table entry), but
the page is allocated.
An ABEND occurs trying
to honor a deferred
request.

IThe field, DBKPTRRC, contains the
I number of reserved pages. DBKPTRRC
I must always be less than DBKDSPNP.
I If ABEND PTR010 occurs, check the
I routines that update these two
i count fields (DBKDSPNP and
I DBKPTRRC).

IPages to be put on the free list
I should not contain valid PTEs.
I Examine the dump to determine why
I the page was not marked invalid
I before the call to DBKPTRPT.
I
I
I

Pigure 10. CP ABEND Codes (Part 11 of 14)

116 IBB V"/370: System Programmer's Guide

GC20-1807-3 Page Modified by TNL f'lJ'1"_'1CC'1
\.JI1.1LV LUVL, March ... 1

.) I,

r--------------------------
ABEND
Code Reason for ABEND Action

PTR012 IA CORTABLE entry to be IPages to be put on the free list

RGF001

I placed on the free list I should not contain valid PTEs.
I points to a valid PTE I Examine the dump to determine why

(page table entry), but i the page was not marked invalid
the page is allocated. I before the call to DMKPTRFT.

The reflected device
status in the CSW is not
supported for certain
3270 remote device and
line protocol I/O
operations. Specifi­
cally, the returned CSW
contains a device status
other than CE, DE, and
UE; and, the ending CCW
contains an embedded
teleprocessing code of
02, 03, or 06.

IPL to restart the system. If the
problem persists, call your IBM FE
representative.

I
RGF002 IThe status flag (BSCFLAG) I

I in the ESCBLOK indicatesl
a condition that is net
valid for a 3270 line
reset function (tele­
processing code 09).

RNH001 IA fatal I/O error IRetry. If the problem persists,
I occurred during read or ensure that the 3704/3705 and
I write for the 3704/3705.1 channel hardware are functioning
I Status indicates programl correctly.
I failure. I

RNH002 IA response that should
I not occur was received
I from the 3704/3705

IVerify that the 3704/3705 NCP is
I operating correctly. Use the
I NETWORK TRACE command to determine
I the exact cause of the response.

RPAOOl

RPA002

I control program.

IThe virtual address
I supplied to DMKRPAGT is
I outside of the virtual
I storage being
I referenced.

The virtual address
supplied to DMKRPAPT is
outside of the virtual
storage being
referenced.

IThe virtual storage belengs either
I to the user whose VMBLOK is
I pointed to by GR 11 or, if GR 2 in
I the SAVEAREA indicates a PARM of
I SYSTEM, to the system VMBLOK.

Identify the calling program by
means of the return address and
base register saved in the
SAVEAREA pointed to by GR 13. If
the virtual address was obtained
from the system's virtual storage,
examine the virtual page
allocation routine, DMKPTRVG. If
the virtual page refers to a
user's storage, attempt to
identify the routine that has
generated the incorrect address.
Verify that the VMSIZE in the
relevant VMBLOK reflects the
correct storage size for the
system or user being referenced.

Figure 10. CP ABEND Codes (Part 12 of 14)

Part 1: Debugging with VM/370 117

GC20-1807-3 Page Modlfled by TNL GN20-2662, March 31, ., n -,r
I ;1 , .J

r

I

ABEND
Code Reason for ABEND Action

RPA003 IThe user page count in
I the VMBLOK became

IA module has attempted to release
more pages than it originally
received. The module that last
called DMKRPA is probably the
module in error.

SCH001

TDK001

TDK002

I negative.
I
I

IThe total number of userslThe field SCHN1 is the count of
(interactive users plus I the number of interactive users
batch users) in the I and the field SCHN2 is the count
scheduler's queue is I of the number of batch users.
less than zero. A I Check the routines that update
counter was probably I these two count fields (SCHN1 and
decremented incorrectly. I SCHN2) to determine why their sum

I was negative.

IA program is attempting IVerify that GR 8 points to a
to deallocate a cylinderl RDEVBLOK for a CP-owned volume. If
of T-DISK space for I it does not, the error probably
which no cylinder I originated in the calling program.
allocation block I Identify the caller by means of
(ALOCBLOK) exists. I the return address and base

A program is attempting
to deallocate
cylinder(s} of T-DISK
space that are not
marked allocated.

register in the SAVEAREA pointed
to by GR 13, and attempt to
identify the source of the
incorrect RDEVBLOK address. If the
RDEVBLOK is valid, it is possible
that the cylinder number passed is
incorrect. The VDEVBLOK for the
device for which the T-DISK was
defined may have been destroyed.
If the cylinder number appears
valid, examine the allocation
record on the real volume by
running DMKFMT (VM/370 FORMAT
program), invoking the ALLOCATE
option without allocating any new
space. If the output indicates the
deallocated cylinder falls within
an area defined for T-DISK
allocation, the ALOCBLOK chained
to the RDEVBLOK may have been
destroyed.

I UDR001 IThe user directory modulelUse the DASD Dump Restore program
I
I
I
I
I
I
I
I
I VDB002
I
I
I
I
L

I is looping trying to I to print the UDIRBLOK page buffers
I read all of the UDIRBLOKI from the directory device.
I page buffers from the I Determine if the chain pointers
I directory device. Or, a I are valid.
I directory containing I
lover 10,816 users was I
I loaded. I

IThe system-owned list
I an invalid format.
I
I
I

haslIPL to restart. If the problem
persists, check the SYSOWN macro

I in DMKSYS for validity. If the
I macro is good, print the dump and
I examine it.

Figure 10. CP ABEND Codes (Part 13 of 14)

118 IBM VM/370: system Programmer's Guide

r
, ABEND
, Code ,
, VDR003 , ,

VI0002

VI0003

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

Reason for ABEND Action

,The DASD link chain is
invalid. In the case of
minidisks, attaching a
minidisk that points to
an RDEVBLOK whose count ,
of users is already zero,
causes this ABEND. I

IIPL to restart. If the problem
persists, examine the RDEVSYS
flag. If the RDEVSYS flag is off,
the problem is especially serious:
print the dump and examine it.
Examine the VDEVBLOK and RDEVBLOK
checking the link chain.

DMKSCNVU was unable to
locate all of the
virtual I/O contrel
blocks for the virtual
unit address associated
with the interrupt just
stacked.

IDMKIOS has returned an
I IOBLOK indicating a
I condition code of 2 was
, received from the start
I I/O for the operation.
I
I

verify that the unit address in the
field IOBVADD in the IOBLOK
pointed to by GR 10 is valid for
the user who initiated the I/O.
The field IOBUSER contains the
address of the user's VMBLOK. If
the address is valid, the
integrity of the user's virtual
I/O configuration has probably
been destroyed. If the address is
not valid, the IOBLOK has been
altered, or was built incorrectly
in the first place.

ICondition code 2 should never be
I returned to the virtual I/O
I interrupt handler. Its presence
I indicates either a failure in the
I I/O Supervisor (DMKIOS), or that
I the status field in the IOBLOK
I (IOBSTAT) has been destroyed.

VSP001 IThe virtual spooling IVerify that the unit address
manager could not locatel (IOBVADD) in the IOBLOK is valid.
all virtual control I If the address is valid, the
blocks for an inter- I integrity of the virtual I/O
rupting unit. I configuration has probably been

I destroyed. If the address is not
I valid, the IOBLOK has been alteredl
I or was built incorrectly. I

Figure 10. CP ABEND Codes (Part 14 of 14)

Part 1: Debugging with VM/370 119

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

COLLECT INFORMATION

Examine several other fields in the PSA to analyze the status of the
system. As you progress in reading the dump, you may return to the PSA
to pick up pointers to specific areas (such as pointers to the real
control blocks) or to examine other status fields.

The following areas of the
information.

PSA may contain useful debugging

1. CP Running status Field

The CP running status is stored in CPSTAT at location X'34S'. The
value of this field indicates the running status of CP since the
last entry to the dispatcher.

Value of
~R'§1!1

X'SO'
X'40'
X'20'

2. Current User

Comments
cp-Is-In wait state
CP is running the user in RUNUSER
CP is executing a stacked request

The PSi that was most recently loaded by the dispatcher is saved in
RUNPSi at location X'330', and the address of the dispatched VMELOK
is saved in RUNUSER at location X'33S'. Also, examine the contents
of control registers 0 and 1 as they were when the last PSi was
dispatched. See RUBCRO (X'340') and RUNCRl (X'344') for the
control registers.

Also, examine the CP internal trace table to determine the events
that preceded the abnormal termination. start with the last event
recorded in the trace table and proceed backward through the trace table
entries. The last event recorded is the last event that was completed.

The trace table is at least one page (4096 tytes) long. One page is
allocated to the trace table for each block of 256K bytes of real
storage available at IPL time. !ach trace table entry is 16 bytes long.
The TRACSTRT field (location X'OC') contains the address of the start of
the trace table. The TRACEND field (location X'10') contains the
address of the byte following the end of the trace table. And, the
address of the next available trace table entry is found in the TRACCURR
field (location X '14') •

Subtract 16 (X'10') bytes from the value at X'14' (TRACCURR) to find
the address of the last trace table entry recorded. Figure 9, earlier
in this section, describes the format of each of the 16 possible types
of trace table entries.

REGISTER USAGE

In order to trace control blocks and modules, it is necessary to know
the CP register usage conventions.

The 16 general registers have many
operation. The following table shows
general registers.

uses that vary depending upon the
the general use of some of the

120 IBM VM/370: system Programmer's Guide

!!§.9!§.!§f
GR 1
GR 2
GR 6,7,8

GR 10
GR 14, 15

Contents
The-vIrtual address to be translated.
The real address or parameters.
The virtual or real channel, control unit, and device

control blocks.
The address of the active IOBLOK.
The external branch linkage.

The following general registers always contain the same information.

!!§.91§.!§!
GR 11
GR 12
GR 13

Contents
The-address of the active VftBLOK.
The base register for the module executing.
The address of the current save area, if the module was

called via an SVC.

use these registers along with the CP
the Prefix storage Area to determine
ABERD •

contrel blocks and the data in
the error that caused the CP

. SAVE AREA CONVENTIONS

There are three save areas that may be helpful in debugging CP. If a
module was called by an SVC, examine the SAVEAREA. SAVEAREA is not in
the PSA; the address of the SAVEAREA is found in general register 13.
If a module was called by a branch and link, the general registers are
saved in the PSA in an area called BALRSAVE (X'240'). The DftKFRE save
area and work area is also in the PSA: these areas are only used by the
DftKFREE and DftKFRET routines. The DftKFRE save area (FREESAVE) is at
location X'280' and its work area (FREEWORK) follows at location
X' 2CO ' •

Use the save areas to trace backwards and find the previous module
executed.

1. SAVEAREA

An active save area contains the caller's return address in
SAVERETN (displacement X'OO'). The caller's base register is saved
in SAVER12 (displacement X'04'), and the address of the save area
for the caller is saved in SAVER13 (displacement X'08'). Using
SAVER13, you can trace backwards again.

2. BALRSAVE

All the general registers are saved in BALRSAVE after branching and
linking (via BALR) to another routine. Look at BALR14 for the
return address saved, BALR13 for the caller's save area, and BALR12
for the caller's base register, and you can trace module control
backwards.

3. FREESAVE

All the general registers are saved in FREESAVE before DftKFRE
executes. Use this address to trace module control backwards.

Part 1: Debugging with Vft/370 121

lig.!g
FREER15
FREER14
FREER13

FREER12
FREER1
FREERO

Contents
The-entry point (DMKFREE or DMKFRET).
The saved return address.
The caller's save area (unless the caller was called via

BALR).
The caller's base register.
Points to the block returned (for calls to DMKFRET) •
Contains the number of doublewords requested or

returned.

VIRTUAL AND REAL CONTROL BLOCK STATUS

Examine the virtual and real control blocks for more informaticn on the
status of the CP system. Figure 11 describes the relationship of the CP
control blocks; several are described in detail in the following
paragraphs.

The address of the VMBLOK is in general register 11.

1 •

2.

Examine the following VMBLOK fields:

The virtual machine
(displacement X'5S').
running status:

running status
The value of

is
this

contained in VMRSTAT
field indicates the

Value of
l].!t~I!!_

X'SO'
X' 40'
X'20'
X '1 0 '
X' OS'
X' 04 •
X'02'
X' 01 '

~Q!!~H!i~
waiting executing console function
Waiting page operation
Waiting -- scheduled IOBLOK start
Waiting -- virtual PSW wait state
Waiting -- instruction simulation
User not yet logged on
User logging off
virtual machine in idle wait state

The virtual machine dispatching status is
(displacement X'59'). The value of this
dispatching status:

contained in VMDSTAT
field indicates the

value of
!~12§!!!_

X'SO'
X'40'
X'20'
X' 10'
X'OS'
X'04'

Comments
iIrtual-machine is dispatched RUNUSER
Virtual machine is compute bound
virtual machine in-queue time slice end
virtual machine in TIO/SIO busy loop
virtual machine runnable
Virtual machine in a queue

122 IBM VM/370: System Programmer's Guide

......

......

~ .ern
IT
O

CBLOK

RCUBLOKs _ /

RCUCHA

Cl
n
I\J
C)
I

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

3. Examine the virtual PSW and the last virtual machine privileged
instruction. The virtual machine PSW is saved in VMPSW
(displacement X'A8') and the virtual machine privileged or tracing
instruction is saved in VMINST (displacement X'98').

4. Find the name of the last CP command that executed in VMCOMND
(displacement X' 148') •

5. Check the status of I/O activity.
pertinent information.

The following fields contain

a. VMPEND (displacement X'63') contains
summary flag. The value of VMPEND
interrupt.

the interrupt pending
identifies the type of

Value of
_!~R1B!!L

X'40'

X'20'
X' 10'
X'02'
X'Ol'

Comments
vIrtual-PER (Program Event Recording)

interrupt pending
virtual program interrupt deferred
Virtual SVC interrupt deferred
Virtual I/O interrupt pending
virtual external interrupt pending

b. VMEXTINT (displacement X'68') contains the external interrupt
pending flags. The value of the flag identifies the external
interrupt.

Value of
YJt~!:!:!!:!:

X'08'
X'04'

Value of
!11~!I!!I_.!l

X'80'
X'40'

X'2F'

Comments
Clock-comparator interrupt pending
CPU timer interrupt pending

Comments
Interval timer interrupt pending
Operator's external button interrupt

pending
External signals pending

c. VMIOINT (displacement X'6A') contains the I/O interrupt pending
flag. Each bit represents a channel (0-15). An interrupt
pending is indicated by a 1 in the corresponding bit position.

d.

Value of
!~!Q!!:!:-

10000000 00000000
01000000 00000000

00000000 00000001

Interrupt pending channel a
Interrupt pending channel 1

Interrupt pending channel 15

VMIOACTV (displacement X'36')
active channel is indicated
position.

is the active channel mask. An
by a 1 in the corresponding bit

124 IBM VM/370: System Programmer's Guide

The address of the VCBBLOK table is found in the V"CHSTRT field
(displacement X'18') of the VMBLOK. General register 6 contains the
address of the active VCBBLOK. Examine the following fields:

1. The virtual channel address is contained in VCHADD (displacement
X'OO').

2. The status of the virtual channel is found in the VCHSTIT field
(displacement 1;06;;. The value of this field indicates the virtual
channel status:

Value of
VCBSTIT
i'80'--
X' 40'
X'Ol'

COllllents
iIrtual-channel busy
virtual channel class interrupt pending
virtual channel dedicated

3. The value of the VCHTYPE field (displacement X'07') indicates the
virtual channel type:

value of
.Y~HI.!.f~
X'80'
X'40'

Comments
Virtual-selector channel
virtual block multiplexer

The address of the VCUBLOK table is found in the VCUSTRT field
(displacement X'lC') of the VMBLOK. General register 7 contains the
address of the active VCUBLOK. Useful information is contained in the
following fields:

1. The virtual control unit address is found in the VCUADD field
(displacement X'OO')~

2. The value of the VCUSTAT field (displacement X'06') indicates the
status of the virtual control unit:

Value of
!~J1~l!I
X'80'
X' 40'
X' 20 '
X' 10'
X '08 '

Com.ents
iIrtual-subchannel busy
Interrupt pending in subchannel
Virtual control unit busy
Virtual control unit interrupt pending
virtual control unit end pending

3. The value of the VCUTYPE field (displacement X'07') indicates the
type of the virtual control unit:

Value of
.Y~.Ylli~
X'80'
X' 40 '

Comments
vIrtual-control unit on shared subchannel
virtual control unit is a channel-to-channel

adapter

Part 1: Debugging with VM/370 125

The address of the VDEVBLOK table is found in the VMDVSTRT field
(displacement X'20') of the VMBLOK. General register 8 contains the
address of the active VDEVBLOK. Useful information is contained in the
following fields:

1. The virtual device address is found in
(displacement X'OO').

the VDEVADD field

2. The value of the VDEVSTAT field (displacement X'06') describes the
status of the virtual device:

Value of
!Q!!~I!I
X'80'
X'40'
X'20'
X'10'
X'08'
X '04 '
X'02'
X'Ol'

Comllents
iIrtuiI-subchannel busy
virtual channel interrupt pending
Virtual device busy
Virtual device interrupt pending
Virtual control unit end
Virtual device not ready
virtual device attached by console function
VDEVREAL is dedicated to device RDEVBLOK

3. The value of the VDEVFLAG field (displacement X'07') indicates the
device dependent information:

Value of
VDEVFLAG
i'80'---
X'SO'
X'40'
X '40'
X'40'
X '20'
X' 10'
X '10'
X'08'
X '02'
X' 0 l'

Comments
nAsn-==-read/only device
virtual 2701/2702/2703 device line enabled
DASD -- TDISK space allocated by CP
virtual 2701/2702/2703 device line connected
Console -- activity spooled
DASD -- 2311 device simulated on top half of 2314
DASD -- 2311 device simulated on bottom half of 2314
Console and spooling device -- processing first CCw
DASD -- executing standalone seek
RESERVE/RELEASE are valid CCW operation codes.
virtual device sense bytes present

4. The VDEVCSW field (displacement X'OS') contains the virtual channel
status word for the last interrupt.

5. The VDEVREAL field (displacement X'24') contains the pointer to the
real device block, RDEVBLOK.

6. The VDEVIOB field (displacement X'34') contains the pointer to the
active IOBLOK.

7. For console devices, the value of the VDEVCFLG field (displacellent
X'26') describes the virtual console flags:

Value of
!Q!!~l~§
X'SO'
X'40'
X'20'
X' 10'
X'OS'

COllments
User-signalled attention too many times
Last CCW processed was a TIC
Data transfer occurred during this channel program
virtual console function in progress
Automatic carriage return on first read

126 IBM VM/370: System Programmer's Guide

8. For spooling devices, the value of the VDEVSFLG field (displacement
X'27') describes the virtual spooling flags:

Value of
.!~E.!~1.L2
X'80'
X'80'
X'40'
X'20'
X' 10'
X'08'
X'08'
X'04'
X'02'
X'02'
X' 0 l'

Comments
Spool-reader last command was a feed
Spool output transfered to VSPXXUSR
Spool device continuous operation
Hold output -- save input
Spool output -- for user and distribution
Spool input -- set unit exception at EOF
Terminal output required for spooled console
Device closed by console function
Spool output -- purge file at close
Spool input -- device opened by DIAG~OSE
Spool output -- DMKVSP entered via svc

9. For output spooling devices, the VDlVEXTB field (displacement
X'10') contains the pointer to the virtual spool extension block,
VSPXBLOK.

The address of the first RCHBLOK is found in the ARIOCH field
(displacement X'3B4') of the PSA (Prefix storage Area). General register
6 contains the address of the active RCHBLOK. Examine the following
fields:

1. The real channel address is found in the RCHADD field (displacement
X'OO') •

2. The value of the RCHSTAT field (displacement X'04') describes the
status of the real channel.

R~!L~!!!
X'80'
X'40'
X'20'
X' 0 l'

Com.ents
Channel-busy
lOB scheduled on channel
Channel disabled
Channel dedicated

3. The value of the RCHTYPE field (displacement X'OS') describes the
real channel type:

value of
R~1!!!f~
X'80'
X' 40' '
X'20'
X' 01'

Comllents
selector channel
Block lIultiplexer channel
Byte multiplexer channel
S/370 type channel (S/370 instruction support)

4. The RCHFIOB field (displacement X'08') is the pointer to the first
IOBLOK in the queue and the RCHLIOB field (displacement X'OC') is
the pointer to the last IOBLOK in the queue.

Part 1: Debugging with Vft/370 127

The address of the first RCUBLOK is found in the
(displacement X'3BS') of the PSA. General register 7
current RCUBLOK. Exaaine the following fields:

ARIOCU field
points to the

1. The RCUAtD field (displacement X'OO') contains the real control
unit address.

2. The value of the RCUSTAT field (displacement X'04') describes the
status of the control unit:

Value of
RCUSTAT
i18o'-'-
X'40'
X'20'
X' 0 l'

Com.ents
Control-unit busy
lOB scheduled on control unit
Control unit disabled
Control unit dedicated

3. The value of the RCUTYPE field (displacement X'OS'} describes the
type of the real control unit:

4.

Com.ents
Value of
!!~!!%!f~
X'SO'
X' 0 1 '
X'02'
X'03'

ThIS-control unit can attach to only one subchannel
TCU is a 2701
TCU is a 2702
TCU is a 2703

The RCUFIOB field (displacement X'OS') points to
in the queue and the RCULIOB field (displacement
the last IOBLOK in the queue.

the first IOBLOK
X'OC') points to

The address of the first RDEVBLOK is found in the ARIODV field
(displacement X'3BC') of the PSA. General register 8 peints to the
current RDEVBLOK. Also, the VDEVREAL field (displacement X'24') of each
VDEVBLOK contains the address of the associated RDEVBLOK. Examine the
following fields of the RDEVBLOK:

1. The RDEVADD field (displacement X'OO') centains the real device
address.

2. The values of the RDEVSTAT (displacement X'04') and RDEVSTA2
(displacement X'45') fields describe the status of the real device:

Value of
RDEVSTAT
X'80'---
X'40'
X'20'
X' 10'
X' 08'
X'04'
X' 0 l'

Value of
RDEVSTA2
i'80'---
X'40'
X'20'

Comments
DevIcebusy
lOB scheduled on device
Device disabled (offline)
Device reserved
Device in intensive error recording mode
Device intervention required
Dedicated device (attached to a user)

Comments
Active-device is being reset
Device is busy with the channel
Contingent connection present

12S IBM VM/370: System Programmer's Guide

3. The value of
device flags.

Value of
RDEVFLIG
i'80'---
X'40'
X'20'
X'10'
X'08'
X'80'
X'40'
X'20'
X '10'
X' 08'
X '04'
x'02'
X'Ol'
X' 80'
X'40'
X'20'
X '10'
X'08'
X '04 '
X'02'
X '01 '
X'80'
X '40 '
X' 20'
X '10 '
X'08'
X '04 '
X'02'
X' 01 '

the BDEVFLAG field (displacement X'OS')
These flags are device dependent.

indica tes

~.Q.!.!!!nt.§
DASD
DASD
DISD
DISD
DASD
Console
Console
Console
Console
Console
Console
Console
Console
spooling
spooling
Spooling
Spooling
spooling
Spooling
Spooling
Spooling
Special
Special
Special
Special
Special
Special
Special
Special

ascending order seek que?ing
volume preferred for pag1ng
volume attached to system
CP owned volume
volume mounted but not attached

terminal has print suppress
terminal executing prepare co •• and
IOBLOK pending; queue request
2741 terminal code identified
device is enabled
next interrupt from a halt I/O
device is to be disabled
3704/370S ICP resource in EP mode
device output drained
device output terminated
device busy with accounting
force printer to single space
restart current file
backspace the current file
print/punch job separator
UCS buffer verified

network control program is active
2701/2702/2703 e.ulation program is active
3704/370S is in buffer slowdown mode
automatic dump/load is enabled
IOBLOK is pending; queue requests
emulator lines are in use by system
automatic dump/load process is active
basic terminal unit trace requested

4. The value of the RDEVTYPC field (displacement X'06') describes the
device type class and the value of the RDEVTYPE field (displacement
X'07') describes the device type. Refer to Figure 12 for the list
of possible device type class and device type values.

S. The RDEVAIOB field (displacement X'24') contains the address of the
active IOBLOK.

6. The RDEVUSER field (displacement X'28') points to the VMBLOK for a
dedicated user.

7. The BDEVITT field (displacement X'2C') contains the attached
virtual address.

8. The BDEVIOEB field (displacement X'48') contains the address of the
IOERBLOK for the last CP error.

9. For spooling unit record devices, the RDEVSPL field (displacement
X'18') points to the active RSPLCTL block.

10. For real 3704/370S Communications Controllers, several pointer
fields are defined. The RDEVEPDV field (displacement X'lC') points
to the start of the free BD!VBLOK list for EP lines. The RDEVRICL
field (displace.ent X'38') points to the network control list and
the RDEVCKPT field (displacement X'3C') points to the CKPBLOK for
re-enable. Also, the RDEVMIX field (displacement X'2E') is the
highest valid ICP resource name and the RDEVICP field (displacement
X'30') is the reference name of the active 370S RCP.

Part 1: Debugging with VM/370 129

11 •

12.

For terminal
the RDEVTFLG
flags:

Value of
~J1~!Ill~
X'SO'
X'40'
x'20'
X'SO'
X' 40'
X'20'
X' 10'
X'OS'
X' 04'
X' 02 '

devices, additional flags are defined. The value of
field (displacement X'3E') describes the additional

Comments
TeriIiiiI
Terminal
Teraina1
Graphic
Graphic
Graphic
Graphic
Graphic
Graphic
Graphic

logon process has been initiated
terminal in reset process
suppress attention signal

screen full, in held status
screen full, more data waiting
screen in running status
read pending for screen input
last input not accepted
timer request pending
CP command interrupt pending

For terminals, an additional
RDEVTMCD field (displacement
translation to be used:

flag is
X'46')

defined. The value of the
describes the line code

Value of
!!DE!I~£J1
X' 10'
X'OC'
X'OS'
X'04'
X'OO'

Coaments
uisci~=- S level
APL correspondence
APL PTTC/EBCD
Correspondence
PTTC/EBCD

130 IBM VM/370: System Programmer's Guide

r---,
DEVICE CLASS CODES (COLUMN 33 IN ACCOUNTING CARD)

~Qg~
X'80'
X' 40'
X'20'
X' 10'
X'08'
X' 04'
X'02;

Device Class
TermInal-Device
Graphics Device
unit Record Input Device
unit Record Output Device
Magnetic Tape Device
Direct Access storage Device
Special Device

DEVICE TYPE CODES (COLUMN 34 IN ACCOUNTING CARD)

1. For Terminal Device Class

£QQ.~
X' 40'
X'40'
X' 20'
X '20'
X' 10'
X' 18 '
Xii 8 i
X '14 '
X' lC'
X'OO'
X'OO'
X'OO'
X' 00'
X'OO'

J2!!!i~ !IE~
2700 Binary synchronous Line
2955 Communication Line
Telegraph Terminal Control Type II
Teletype Terminal
IBM Terminal contro1 Type I
IBM 2741 Communication Terminal
IBM 3767 Communication Terminal
IBM 1050 Data Communication System
Undefined Terminal Device
IBM 3210 Console
IBM 3215 Console
IBM 2150 Console
IBM 1052 Console
IBM 7412 Console

2. For Graphics Device Class

~.Qg~
X'80'
X' 40'
X'20'
X' 10'
X'08'
X' 04'
X '02'
X' 02'

J2~!.!£~ lI.E!!
IBM 2250 Display Unit
IBM 2260 Display station
IBM 2265 Display station
IBM 3066 Console
IBM 1053 Printer
IBM 3277 Display station
IBM 3284 Printer
IBM 3286 Printer

igure 12. CP Device Classes, Types, Models, and Features (Part 1 of 3)

Part 1: Debugging with VM/370 131

3. Por unit Record Input Device Class

Code i,so'
X'Sl'
X'S2'
X'S4'
X'SS'
X'90'
X'40'
X'20'
X'21'
X'22'
X'24'

~evice ~
Card Reader
IBft 2501 Card Reader
IBft 2540 Card Reader
IBft 3505 Card Reader
IBft 1442 Card Reader/Punch
IBft 2520 Card Reader/Punch
Tiaer.
Tape Reader
IBft 2495 ftagnetic Tape Cartridge Reader
IBft 2611 Paper Tape Reader
IBft 1011 Paper Tape Reader

4. Por Unit Record output Device Class

~Qg~ ~~ice Ill~
X'SO' Card Punch
X'S2' IBft 2540 Card Punch
X'S4' IBft 3525 Card Punch
X'SS' IBft 1442 Card Punch
X'90' IBft 2520 Card Punch
X'40' Printer
X'41' IBft 1403 Printer
X'42' IBft 3211 Printer
X'44' IBft 1443 Printer
X'20' Tape Punch
X'24' IBft 101S Paper Tape Punch

5. Por ~agnetic Tape Device Class

Code
I'eo'
X'40'
X'20'
X' 10'
X'OS'

~~.!ice Ta:E~
IBft 2401 Tape Drive
IBft 2415 Tape Drive
IBft 2420 Tape Drive
IBft 3420 Tape Drive
IBft 3410/3411 Tape Drive

6. Por Direct Access Storage Device Class

Code
i'so'
X'40'
X'40'
X'20'
X' 10'
X' 10'
X'OS'
X'04'
X'02'
X'Ol'

Figure 12.

~~!ic~ I:l.E~
IBft 2311 Disk storage Drive
IBft 2314 Disk storage Facility
IBft 2319 Disk storage Facility
IBft 2321 Data Cell Drive
IBft 3330 Disk storage Facility
IBft 3333 Disk Storage and Control
IBft 2301 Parallel Drum
IBft 2303 Serial Drum
IBft 2305 Fixed Head storage Device
IBft 3340 Disk Storage Facility

CP Device Classes, Types, ftodels, and Features (Part 2 of 3)

132 IBft Vft/310: System Programmer's Guide

r---~
7. For Special Device Class

Code
X'80'
X'40'
X' 01'

~evi£~ ~IE~
Channel-to-Channel Adapter (CTCA)
3704/3705 programmable-Communications Controller
Device unsupported by VM/370

MODEL CODES (CCLUMN 35 IN ACCOUNTING CARD)

As specified in the RDEVIC! macro at system generation.

FEATURE CODES (COLUMN 36 IN ACCOUNTING CARD)

1. For printer Devices

2. For Magnetic Tape Devices

£Q~~
X'SO'
X '40 '
X' 20'
X '1 0 '

Feature
7=Track
Dual Density
Translate
Data Conversion

3. For Direct Access Storage Devices

Code
X'8Q'
X' 20'
X '1 0 '
X' OS'
X'04'
X' 02'

Feature
RotatIonal position Sensing (RPS) installed (3340)
Top Half of 2314 Used as 2311
Bottom Half of 2314 Used as 2311
35MB Data Module (mounted)
70MB Data Module (mounted)
Reserved/Release are valid CCi operation codes

4. For special devices

£Q~~
X' 10'
X'20'

Figure 12.

Feature
rype-i-channel adapter for 3704/3705
Type II channel adapter for 3704/3705

CP Device Classes, Types, Models, and Features (Part 3 of 3)

IDENTIFYING A PAGEABLE MODULE

If a program check PSi or SVC PSi points to an address beyond the end of
the CP resident nucleus, the failing module is a pageable module. The
CP system load map tells you where the end of the resident nucleus is.

Go to the address indicated in the PSi. Backtrack to the beginning
of !!~! page frame. The first eight bytes of that page frame (the page
frame containing the address pointed to by the PSi) contains the name of
the failing module. If multiple modules exist within the same page
frame, identify the module using the load map and failing address
displacement within the page frame.

Part 1: Debugging with VM/370 133

Debugging with eMS

This section describes the debug tools that CMS provides. These tools
can be used to help you debug CMS or a problem progra.. In addition, a
CMS user can use the CP commands to debug. Information that is often
useful in debugging is also included. The following topics are
discussed in this section:

• CMS debugging commands
• DASD dump restore program
• Load maps
• Reading CMS dumps
• control block summary

CMS provides two commands that are useful in debugging: DEBUG and
SVCTRACE. Eoth commands execute from the terminal.

The debug environment is entered whenever:

• The DEBUG command is issued
• A breakpoint is reached
• An external or program interrupt occurs

CMS will not accept other commands while
However, while in the debug environment,
cOllmand can:

in
the

the debug environment.
options of the DEBUG

• set breakpoints (address stops) which stop program execution at
specific locations.

• Display the contents of the CAW (channel address word), CSW (channel
status word), old PSW (program status word), or general registers at
the terminal.

• Change the contents of the control words (CAW, CSW and PSW) and
general registers.

• Dump all or part of virtual storage at the printer.

• Display the contents of up to 56 bytes of virtual storage at the
terllinal.

• store data in virtual storage locations.

• Allow an origin or base address to be specified for the program.

• Assign symbolic names to specific storage locations.

• Close all open files and I/O devices and update the master file
directory.

• Exit from the debug environment.

13q IBM VM/370: System Programmer's Guide

The SVCTRACE command records information for all SVC calls. When the
trace is terminated, the information recorded up to that point is
printed at the system printer.

In addition, several CftS commands produce or print load maps. These
load maps are often used to locate storage areas while debugging
programs.

nt:lDnr
jJJjjJU U

The DEBUG command provides support for debugging programs at a terminal.
The virtual machine operator can stop the program at a specified
location and examine and alter virtual storage, registers, and various
control words. Once CMS is in its debug environment, the virtual
machine operator can request the various DEBUG options. However, in the
debug environment, all of the other CMS commands are considered
invalid.

Any DEBUG subcommand may be
environment and if the keyboard is
to DEBUG subcommands:

entered if CMS is in the debug
unlocked. The following rules apply

1 • No operand should be longer than eight characters.
longer than eight characters are left justified and
the right after the eighth character.

All operands
truncated on

2. The DEFINE subcommand must be used to create all entries in the
DEBUG symbol table.

3. The DEBUG subcommands can be truncated. The following is a list of
all valid DEBUG subcommands and the1r minimum truncation.

.§Y~£.Q!!g!!g
BREAK
CAW
CSW
DEFINE
DUMP
GO
GPR
HX
ORIGIN
PSW
RETURN
SET
STORE
X

Minimum
.'E!:!!!!£!tio!!

BR
CAW
CSW
DEF
DU
GO
GPR
HX
OR
PSW
RET
SET
ST
X

One way to enter the debug environment is to issue the DEBUG
command. The message

DMSDBG7281 DEBUG ENTERED

appears at the terminal. Any of the DEBUG subcommands may be entered.
To continue normal processing, issue the RETURN subcommand.

Whenever a program check occurs, the DMSABN routine gains control.
Issue the DEBUG command at this time if you wish CMS to enter its debug
environment.

Part 1: Debugging with VM/370 135

Whenever a breakpoint is encountered, a program check occurs. The
.essage

D~SDBG7281 DEBUG ENTERED
BREAKPOINT II AT XXXXX

appears on the terminal. Pollow the same procedure to enter subco.mands
and resume processing as with a regular progra. check.

An external interrupt, which occurs when the CP
issued, causes CftS to enter its debug environment.

EXTERNAL co •• and is
The message

D~SDBG7281 DEBUG ENTERED
EXTERNAL INTERRUPT

appears on the console. Any of the DEBUG subco.mands may be issued. To
exit from the debug environment after an external interrupt, use GO •

•
While CMS is in its Debug environment, the control words and low

storage locations contain the Debug program values. The Debug program
saves the control words and low storage contents (X'OO' - X'100') of the
interrupted routine at location X'CO'.

The following is a detailed discussion of the possible DEBUG
subcommands.

The format of the BREAK subcommand is

r--,
I BReak id { Symbol}
I hexloc L ____ --__ ~

id

symbol

hexloc

is a decimal number, from 0 to 15, which identifies the
breakpoint.

is a name assigned to the storage location where the
breakpoint is set. The symbolic name must be previously
assigned to the storage address using the DEP subcommand of
the DEBUG command.

is the hexadecimal storage location (relative to the current
origin) where the breakpoint is set.

Use the BREAK subcommand to set breakpoints which stop execution of a
program or module at specific instruction locations, called breakpoints.
Issuing the BREAK subcommand causes a single breakpoint to be set. A
separate BREAK subcommand must be issued for each breakpoint desired. A
maximum of 16 breakpoints (with identification numbers 0 through 15) may
be in effect at one time; any attempt to set more than 16 breakpoints is'
rejected.

Breakpoints should be set after a program is loaded, but before it
executes. When a breakpoint is encountered during program execution,

136 IBM VM/370: system Progra.mer's Guide

execution stops and the debug environment is entered. The virtual
aachine operator can then use the other DEBUG subco •• ands to analyze the
prograa at that particular point. Registers, storage, and control words
can be examined and altered. After the virtual machine operator
finishes analyzing the program at this point in its execution, he issues
the GO subcommand to resume program execution.

Breakpoints are set before the program executes. They are set on
instruction (halfword) boundaries at locations that contain operation
codes. After setting all the desired breakpoints, issue the RETURN
subcommand to exit from the debug environment. Then issue the efts START
command to begin program execution.

The first operand of the BREAK subcom.and (id) assigns an
identification number (0-15) to the breakpoint. If the identification
number specified is the same as a currently set breakpoint, the previous
breakpoint is cleared and the new one is set.

The second operand of the BRBAK subcommand (symbol or hexloc)
indicates the storage location of the breakpoint~ If the operand
contains any nonhexadecimal characters, the DEBUG symbol table is
searched for a matching symbol entry. If a match is found, the
breakpoint is set at the storage address corresponding to that symbol,
provided that the storage address is on an even (halfword) boundary. If
no match is found in the DEBUG symbol table (and the operand is a valid
hexadecimal nuaber), the second operand is treated as the hexadecimal
representation of the storage address. When the second operand is a
valid hexadecimal number, this number is added to the program origin.
If the resulting storage address is on a halfword boundary and is not
greater than the user's virtual storage size, the breakpoint is set.

When the debug program sets a breakpoint, it saves the contents of the
halfword at the location specified by the second operand of the BREAK
subcommand. This halfword is replaced by B2EX, where x is the
hexadecimal equivalent of the identification number, specified in the
first operand of the BRBAK subcommand. The storage location specified
for a breakpoint must contain an operation code. It is the user's
responsibility to see .that breakpoints are set only at locations
containing operation codes. After breakpoints are set and during
program execution, the value B2EO through B2BP is encountered at a
location where an operation code should appear. A program check occurs
because all values B2EO through B2EP are invalid operation codes and
control is transferred to the debug environment. DEBUG recognizes the
invalid operation code as a breakpoint. The original operation code
replaces the invalid operation code, and a message

D"SDBG728I DEBUG ENTERED
BREAKPOINT yy AT xxxxxx

appears at the terminal. "yy" is the bre~kpoint identification number
and xxxxxx is the storage address of the breakpoint. After the message
is typed, the keyboard is unlocked to accept any DEBUG subcommands
except RETURN. A breakpoint is cleared when it is encountered during
program execution.

Part 1: Debugging with V"/370 137

It is the responsibility of the user to ensure that breakpoints are
set only at operation code locations. Otherwise, the breakpoint is not
recognized; data or some part of the instruction other than the
operation code is overlaid. Thus, errors may be generated if
breakpoints are set at locations that do not contain operation codes.

The following error messages may appear while entering the BREAK
subcommand.

INVALID OPERAND

This message indicates that the breakpoint identification number
specified in the first operand is not a decimal number between 0 and
15 inclusive, or the second operand cannot be located in the DEBUG
symbol table and is not a valid hexadecimal number. If the second
operand is intended to be a symbol, a DEF subcommand must have been
previously issued for that symbol; if not, the operand must be a
valid hexadecimal storage location.

INVALID STORAGE REFERENCE

The location indicated by the second operand is uneven (not on a
halfword boundary) or the sum of the second operand and the current
origin value is greater than the user's virtual storage size. If the
current origin value is unknown, it may be reset to the desired value
by issuing the ORIGIN subcommand.

MISSING OPERAND

The minimum number of operands has not been supplied.

TOO ~ANY OPERANDS

The user entered more than two operands.

HEXLOC 'hexaddr' IN SHARED STORAGE

A shared system was loaded (via IPL) and an attempt was made to
modify a storage location between X'10000' and X'20000', the shared
storage. To set a breakpoint in this address range, IPL a nonshared
system.

138 IBM VM/370: System Programmer's Guide

The format of the CAW subcommand is:

I CAW I L __ --______________________ ~

The CAW subcommand has no operands.

The ~AW subcommand may be issued whenever the debug environment is
entered. Issuing the CAW subcommand causes the contents of the CAW
(channel address word), as it existed at the time the debug environment
was entered, to appear at the terminal. The CAW located at storage
location X'48' is saved at the time the debug environment is entered and
displayed on the terminal whenever the CAW subcommand is issued. If the
subcommand is issued correctly, the contents of the CAW are typed in
hexadecimal representation at the terminal.

The format of the CAW is:

KEY I 0000 I Command Address

o 3 4

4-7

7 8 31

Contents
The-protection key for all commands associated with start I/O.
The protection key in the CAW is compared to a key in storage
whenever a reference is made to storage.

This field is not used and must contain binary zeros.

8-31 The command address field contains the storage address (in
hexadecimal representation) of the first CCW (channel command
word) associated with the next or most recent start I/O.

The three low-order bits of the command address field must be zeros
in order for the CCW to be on a doubleword boundary. If the CCW is not
on a doubleword boundary or if the command a6dress-specifies a location
protected from fetching or outside the storage of a particular user,
start I/O causes the status portion of the CSW to be stored with the
program check or protection check bit on. In this event, the I/O
operation is not initiated.

Issue the CAW subcommand to check that the command address field
contains a valid CCW address, or to find the address of the current CCW
so you can examine it.

The following error
subcommand.

TOO MANY OPERANDS

message may appear while entering the CAW

An operand was entered on the command line; the CAW subcommand has no
operands.

Part 1: Debugging with V8/370 139

The format of the esw subcoamand is:

esw

The esw subcommand has no operands.

The esw subco.aand aay be issued whenever the debug environment is
entered. Issuing the esw subcommand causes the contents of the esw
(channel status word), as it existed at the time the debug environment
was entered, to appear at the terminal. The esw indicates the status of
the channel or an input/output device, or the conditions under which an
I/O operation terainated. The esw is formed in the channel and stored
in storage location X'40' when an I/O interrupt occurs. If I/O
interruptions are suppressed, the esw is stored when the next start I/O,
Test I/O, or BaIt I/O instruction is executed. The esw is saved when
DEBUG is entered.

If the subcommand is issued correctly, the contents of the esw are
displayed at the ter.inal in hexadecimal representation.

The format of the esw is:

I

IKEYIOOOOI Command Address status Byte Count

03478 31 32 47 48 63

4-7

8-31

32-47

48-63

Contents
The--protection key is moved to the esw from the elW. It
indicates the protection key at the time the I/O started. The
contents of this field are not affected by programming errors
detected by the channel or by the condition causing
termination of the operation.

This field is not used and must contain binary zeros.

The command address contains a storage address (in hexadecimal
representation) eight bytes greater than the address of the
last eew executed.

The status bits indicate the conditions in the device or
channel that caused the esw to be stored.

The residual count is the difference between the number of
bytes specified in the last executed eew and the number of
bytes that were actually transferred. When an input operation
is terminated, the difference between the original count in
the eew and the residual count in the esw is equal to the
number of bytes transferred to storage; on an output
operation, the difference is equal to the number of bytes
transferred to the I/O device.

Whenever an I/O operation abnormally terminates, issue the esw
subcommand. The status and residual count information in the esw is
very useful in debugging. Also, use the esw to calculate the address of
the last executed eew (subtract 8 bytes from the command address to find
the address of the last eew executed).

140 IBft VM/370: System Programmer's Guide

The following error message may appear
subcommand.

TOO ftANY OPERANDS

when you enter the CSW

An operand was entered on the command line; the CSW subcommand has no
operands.

Part 1: Debugging with VM/370 141

The format of the DEFINE subcommand is:

DEFine

symbol

hexloc

bytecount

symbol hexloc
r ,
lbytecountl
I ~ I
L

is the name to be assigned to the storage address derived
from the second operand, hexloc.

is the hexadecimal storage location, in relation to the
current origin, to which the name specified in the first
operand (symbol), is assigned.

is a decimal number, between 1 and 56 inclusive, which
specifies the length in bytes of the field whose name is
specifed by the first operand (symbol) and whose starting
location is specified by the second operand (hexloc). When
the bytecount operand is not specified, a default bytecount
of 4 is assumed.

Use the DEFINE subcommand to assign symbolic names to a specific
storage address. Once a symbolic name is assigned to a storage address,
that symbolic name can be used to refer to that address in any of the
other DEBUG subcommands. However, the symbol is valid only in the debug
environment.

The first operand (symbol) may be from one to eight characters long.
It must contain at least one nonhexadecimal character. Any symbolic
name longer than eight characters is left-justified and truncated on the
right after the eighth character.

The second operand (hexloc), a hexadecimal number, is added to the
current origin established by the ORIGIN subcommand. The sum of the
second operand (hexloc) and the origin is the storage address to which
the symbolic name is assigned. In order to assign the symbolic name to
the correct location be sure to know the current origin. The existing
DEBUG symbol table entries remain unchanged when the ORIGIN subcommand
is issued.

The third operand (bytecount), a decimal number between 1 and 56
inclusive, specifies the length of the field whose name is specified by
§I~~Q! and whose starting address is specified by ~~~l~f.

Issuing the DEFINE subcommand creates an entry in the DEBUG symbol
table. The entry consists of the symbol name, the storage address, and
the length of the field. A maximum of 16 symbols can be defined in the
DEBUG symbol table at a given time.

When a DEFINE subcommand specifies a symbol that already exists in
the DEBUG symbol table, the storage address derived from the current
request replaces the previous storage address. Several symbols may be
assigned to the same storage address, but each of these symbols
constitutes one entry in the DEBUG symbol table. The symbols remain
defined until a new DEF is issued for them or until an IPt request loads
a new copy of c~s.

142 IBM V~/370: system Programmer's Guide

The following error messages may appear when the DEFINE subcommand is
issued:

INVALID OPERAND

This message indicates that the name specified in the first operand
contains all numeric characters, the second operand is not a valid
hexadecimal number, or the third operand is not a decimal number
between 1 and 56 inclusive.

INVALID STORAGE ADDRESS

The sum of the second operand and the current origin is greater than
the user's virtual storage size. If the current origin size is
unknown, reset it to the desired value by issuing the ORIGIN
subcommand and then reissue the DEF subcommand.

16 SYMBOLS ALREADY DEFINED

The DEBUG symbol table is full and no new symbols may be defined
until the current definitions are cleared ~y obtaining a new copy of
eMS. However, an existing symbol may be assigned to a new storage
location by issuing another DEF subcommand for that symbel.

MISSING OPERAND

The DEFINE subcommand requires at least two operands and less than
two were entered.

TOO MANY OPERANDS

Three is the maximum number of operands for the DEFINE subcommand and
more than three were entered.

Part 1: Debugging with VM/370 143

Q~~f

The format

r-
I

I DUmp
I
I
I

I
L-

symboll

hexlocl

symbo12

hexloc2

*

ident

of the DU"P subcommand is:

r , r ,
I sy.boll I I symbo12 I
I hexlocl I I hexloc2 I [ident]
I ~ I I * I
L J I 11 I

L J

is the name assigned (via the DEFINE subcommand) to the
storage address that begins the dump.

is the hexadecimal storage location, in relation to the
current origin, that begins the dump.

is the name assigned (via the DEFINE subcommand) to the
storage address that ends the dump.

is the hexadecimal storage location, in relation to the
current origin, that ends the dump.

indicates that the dump ends at the user's last virtual
storage address.

is the name (up to eight characters) that identifies this
particular printout.

Use the DUMP subcommand to Frint part or all of a user's virtual
storage on the printer. The requested information is printed offline as
soon as the printer is available. First, a heading:

ident FRO" starting location TO ending location

is printed. Next, the general registers 0-7 and 8-15, and the
floating-point registers 0-6 are printed. Then the specified portion of
virtual storage is printed with the storage address of the first byte in
the line printed at the left, followed by the alphameric interpretation
of 32 bytes of storage.

The first and second operands specify the starting and ending
addresses, respectively, of the area of storage to be dumped. If DUMP
is issued without the first and second operands. 32 bytes of storage are
dumped starting at the current origin. If DUMP is issued without the
second operand, 32 bytes of storage are dumped starting at the location
indicated by the first operand.

The first and second operands, if specified, must be either valid
symbols or hexadecimal numbers. When a symbol is specified, the DEBUG
symbol table is searched. If a match is found, the storage location
corresponding to that symbol is used as the starting or ending address
for the dump. When a hexadecimal number is specified, it is added to
the current origin to calculate the starting or ending storage address
for the dump. The first and second operands must designate storage
addreSses that are not greater than the user's virtual storage size.

144 IBM V"1370: System Programmer's Guide

Also, the storage address derived from the second operand must be
greater than the storage address derived from the first operand. An
asterisk may be specified for the second operand. In this case, all of
storage from the starting address (first operand) to the end of storage
is dumped to the printer.

The following error messages may appear when you issue the DUftP
subcommand.

INVALID OPERAND

This message is issued if the address specified by the second operand
is less than that specified by the first operand, or if the first or
second operands cannot be located in the DBBUG symbol table and are
not valid hexadecimal nu.bers. If either operand is intended to be a
symbol, a DBlINB subcommand must previously have been issued for that
syabol: if not, the operand must specify a valid hexadecimal
location.

INVALID STORAGE ADDRESS

The hexadecimal number specified in the first or second operand, when
added to the current.or~g~n, is greater than the user's virtual
storage size. If the current origin value is unknown, reset it to
the desired value by issuing the ORIGIN subcommand and then reissue
the DUMP subcommand.

TOO ~ANY OPERABDS

Three is the maximua number of operands for the DUMP subcommand; aore
than three operands were entered.

Part 1: Debugging with VM/370 145

The format of the GO subcommand is:

r----------
I
I GO
I
I

r ,
I symbol I
I hexloc I
L L-__ ~

symbol is the name, already assigned by the DEFINE subcommand, to a
storage location where execution begins.

hexloc is the hexadecimal location, in relation to the current
origin, where execution begins.

Use th~ GO subcommand to exit from the debug environment and begin
execution in the CMS environment. The old PSW for the interrupt that
caused the debug environment to be entered is saved and later loaded to
resume processing. Issuing the GO subcommand loads the old PSi.

When the GO subcommand is issued, the general registers, CAW
(channel address word), and CSW (channel status word) are restored
either to their contents upon entering the debug environment, or, if
they have been modified while in the debug environment, to their
modified contents. Then the old PSi is loaded and becomes the current
PSW. Execution begins at the instruction address contained in bits
40-63 of the PSW.

By specifying an operand with the GO subcommand, it is possible to
alter the address where execution is to begin. This operand must be
specified whenever the GO subcommand is issued if the debug environment
is entered by issuing the DEBUG command.

The operand may be a symbol or a hexadecimal location. When a symbol
is specified, the DEBUG symbol table is searched. If a match is found,
the storage address corresponding to the symbol replaces the instruction
address in the old PSW. ihen a hexadecimal number is specified, it is
added to the current origin to calculate the storage address that
replaces the instruction address in the old PSW. In either case, the
derived storage address must not be greater than the user's virtual
storage size. Further, it is the user's responsibility to make sure
that the address referred to by the operand of the GO subcommand
contains an operation code.

If the debug environment was entered due to a breakpoint, external
interrupt, or program interrupt, then the GO subcommand does not need an
operand specifying the starting address.

The following error
subcommand.

messages may appear while entering the GO

INVALID OPERAND

An operand specified in the GO
DEBUG symbol table and is not a

subcommand cannot be located
valid hexadecimal number.

146 IBM VM/370: system Programmer's Guide

in the
If the

operand is intended to be a symbol, a DEFINE subcommand must have
been previously issued for that symbol; if not, the operand must
specify a valid hexadecimal storage location.

INVALID STORAGE ADDRESS

The address at which execution is to begin is not on a halfword
boundary (indicating that an operation code is not located at that
address) or the sum of the GO operand and the current origin value is
greater than the user's ~irtual storage size. If the current value
is unknown, it may be reset to the desired value by issuing the
ORIGIN subcommand.

INCORRECT DEBUG EXIT

The GO subcommand without an operand has been issued when DEBUG had
not been entered due to a breakpoint or external interrupt. The
RETURN subcommand must be issued if DEBUG had been entered via the
DEBUG command.

TOO MANY OPERANDS

The GO subcommand has a maximum of one operand; more than one operand
was entered.

Part 1: Debugging with V"/370 147

The format of the GPB subcommand is:

I GPB I reg1 [reg2]
L ______ ----------------------__ ~

reg1

reg2

is a decimal number (from 0-15 inclusive) indicating the first
or only general register whose contents are to be typed.

is a decimal number (from 0-15 inclusive) indicating the last
general register whose contents are to be typed. This operand
is optional and is only specified when more than one register's
contents are to be printed •.

Use the GPB subcommand to print the contents of one or more general
registers at the terminal. When only one operand is specified, only the
contents of that general register are typed at the terminal. When two
registers are specified, the contents of all general registers from the
register indicated by the first operand through the register indicated
by the second operand are typed at the terminal. Both operands must be
decimal numbers from 0-15 inclusive, and the second operand must be
greater than the first.

The following error messages may appear on the terminal when the GPR
subcommand is entered.

INVALID OPERAND

The operand (s) specified are not decimal numbers between 0 and 15
inclusive, or the second operand is less than the first.

KISSING OPEBAID

The GPR subo.mand requires at least one operand, and none was
entered.

TOO KANY OPERANDS

The GPR subcommand has a maximum of two operands, and more than two
operands vere entered.

148 IBK VK/370: System Programmer's Guide

The format of the HX subcommand is:

HX

The HX subcommand has no operands.

Use the HX subcommand to close all open files and I/O devices, and to
update the master file directory. This subcommand may be issued
whenever the keyboard is unlocked in the debug environment, regardless
of the reason the debug environment was entered.

The following error message may appear on the terminal while entering
the HX subcommand.

TOO BANY OPERANDS

The HX subcommand has no operands, and one or more operands were
entered.

Part 1: Debugging with VM/370 149

The format of the ORIGIN subcommand is:

oRigin I { Symbol}
I hexloc

symbol

hexloc

is a name that was previously assigned (via the DEFINE
subcommand) to a storage address.

is a hexadecimal location within the limits of the user's
virtual storage.

The ORIGIN subcommand sets an origin or base address to be used in
the debug environment. Use the ORIGIN subcommand to set the origin
equal to the program load point, then in all debug subcommands you can
specify instruction addresses in relation to the program load point,
rather than to O. The hexadecimal location specified in DEBUG
subcommands then represents a specific location within a program, the
origin represents the storage location of the beginning of the program;
and the two values added together represent the actual storage location
of that specific point in the program.

When the ORIGIN subcommand specifies a symbol, the DEBUG symbol table
is searched. If a match is found, the value corresponding to the symbol
becomes the new origin. When a hexadecimal location is specified, that
value becomes the origin. In either case, the operand cannet specify an
address greater than the user's virtual storage size.

Any origin set by an ORIGIN subcommand remains in effect until
another ORIGIN subcommand is issued, or until you obtain a new copy of
eMS. Whenever a new ORIGIN subcommand is issued, the value specified in
that subcommand overlays the previous origin setting. If you obtain a
new copy of eMS (via IPL), the origin is set to 0 until a new ORIGIN
subcommand is issued.

The following error messages may appear while you enter the ORIGIN
su bcommand.

INVALID OPERAND

The operand specified in the ORIGIN subcommand cannot be located in
the DEBUG symbol table and is not a valid hexadecimal number. If the
operand is intended to be a symbol, a DEFINE subcommand must have
been previously issued for that symbol; if not, the operand must
specify a valid hexadecimal location.

INVALID STORAGE ADDRESS

The address specified by the ORIGIN operand is greater than the
user's virtual storage size.

150 IBM VM/370: System Programmer's Guide

MISSING OPERAND

The ORIGIN subcommand requires one operand, and none vas entered.

TOO MANY OPERANDS

The ORIGIN subcommand requires only one operand, and more than one
was entered.

Part 1: Debugging with VM/370 151

The format of the PSi subcommand is:

,
PSi I

The PSi subcomaand has no operands.

Use the PSi subcommand to type the contents of the old PSi (program
status word) for the interrupt that caused DEBUG to be entered. If
DEBUG was entered due to an external interrupt, the PSi subcommand
causes the contents of the external old PSi to be typed at the terminal.
If a program interrupt caused DEBUG to be entered, the contents of the
program old PSi are typed. If DEBUG was entered for any other reason,
the following is typed in response to the PSi subcommand:

01000000 xxxxxxxx

where the 1 in the first byte means that external interrupts are allowed
and xxxxxxxx is the hexadecimal storage address of the DEBUG program.

The PSi contains some information not contained in storage or
registers but required for proper program execution. In general, the
PSi is used to control instruction sequencing and to hold and indicate
the status of the system in relation to the program currently
executing. Refer to Figure 43 in "Appendix A: System/370 Information"
for a description of the PSi.

The following error
subcommand.

TOO MANY OPERANDS

message may appear while entering the PSi

The PSi subcommand has no operands and one or more was entered.

152 IBM VM/370: System Programmer's Guide

The format of the RETURN subcommand is:

RETurn

The RETURN subcommand has no operands.

Use the RETURN subco.mand to exit from the debug environment to the
CftS command environment. RETURN should be used only when DEBUG is
entered by issuing the DEBUG command.

When RETURN is issued, the information contained in the general
registers at the time DEBUG was entered is restored or, if this
information was changed while in the debug environment, the changed
information is restored. In either case, register 15, the error code
register, is set to zero. A branch is then made to the address
contained in register 14, the normal CftS return register. If DEBUG is
entered by issuing the DEBUG command, register 14 contains the address
of a central C~S service routine and control transfers directly to the
CftS command environment. The Ready message followed by a carriage
return and an unlocked keyboard indicates that the RETURN subcommand has
successfully executed and that control has transferred from the DEBUG
environment to the CftS command environment.

The following error messages may appear while entering the RETURN
subcommand.

TOO ftAIY OPERANDS

The RETURN subcommand has no operands, and one or more were
specified.

INCORRECT DEBUG EXIT

If DEBUG is entered due to a program or external interrupt, a
breakpoint or an unrecoverable error, this message is displayed in
response to the RETURN subcommand. To exit from the DEBUG
environment under the above circumstances, issue GO.

Part 1: Debugging with Vft/370 153

The format of the SET subcommand is:

r---~
I SET
I
I
I
I

{

CAW
CSW
PSW
GPR

hexinfo
hexinfo
hexinfo
reg

[hexinfo]
[hexinfo]

hexinfo [bexinfo 1 !
CA W hexinfo indicates that the specified information

(hexinfo) is stored in the CAW (channel
address word) that existed at the time DEBUG
was entered.

CSW hexinfo [hexinfo]

PSW hexinfo [hexinfo]

GPR reg hexinfo [hexinfo]

indicates that the specified information
(hexinfo [hexinfo]) is stored in the CSW
(channel status word) that existed at the
time DEBUG was entered.

indicates that the specified information
(hexinfo [hexinfo]) is stored in old PSW
(program status word) for the interrupt that
caused DEBUG to be entered.

indicates that the specified information
(hexinfo [hexinfo]) is stored in the
specified general register (reg).

Use the SET subcommand to change the contents of the control words
and general registers which are saved when the debug environment is
entered. The contents of these registers are restored when control
transfers from DEBUG to another environment. If register contents were
modified in DEBUG, the changed contents are stored.

The SET subcommand can only change the contents of one control word
at a time. For example, the SET subcommand must be issued three times:

SET
SET
SET

CAW
CSW
PSW

hexinfo
hexinfo [hexinfo]
hexinfo [hexinfo]

to change the contents of the three control words.

The SET subcommand can change the contents of one or two general
registers each time it is issued. When four or less bytes of
information are specified, only the contents of the specified register
are changed. When more than four bytes of information is specified, the
contents of the specified register and the next sequential register are
changed. For example, the SET subcommand:

SET GPR 2 xxxxxxxx

changes only the contents of general
su bcommand:

SET GPR 2 xxxxxxxx xxxxxxxx

register 2.

changes the contents of general registers 2 and 3.

154 IB" V"1370: System programmer's Guide

But, the SET

Each hexinfo operand should be from one to four bytes long. If an
operand is less than four bytes and contains an uneven number of
hexadecimal digits (representing half-byte information), the information
is right-justified and the left half of the uneven byte is set to zero.
If more than eioht hexadecimal dioits are specified in a sinqle operand.
the information-is left-justified and truncated on the right after the
eighth digit.

The number of bytes that can be stored using the SET subcommand
varies depending on the form of the subcommand. with the CAW form, up
to four bytes of information may be stored. with the CSW, GPR, and PSW
forms, up to eight bytes of information may be stored, but these bytes
must be represented in two operands of four bytes each. When two
operands of information are specified, the information is stored in
consecutive locations (or registers), even it one or both operands
contain less than four bytes of information. '

The contents of registers changed using the SET subcommand are not
displayed after the subcommand is issued. TO inspect the contents of
control words and registers, the CAW, CSW, PSW, or GPR subcommands must
be issued.

The following error messages may
subcommand.

INVALID OPERAND

appear while entering the SET

The first operand is not CAW, CSW, PSW, or GPR, or the first operand
is GPR and the second operand is not a decimal number between 0 and
15 inclusive, or one or more of the hexinfo operands does not contain
hexadecimal information.

MISSING OPERAID

The minimum number of operands has not been entered;

TOO MANY OPERAIDS

More than the required number of operands were specified.

Part 1: Debugging with V8/370 155

The format of the STORE subcommand is:

I STore I {Symbol} hexinfo [hexinfo [hexinfo]]
I I hexloc

symbol is the name assigned (via the DEFINE
storage address where the first
inforaation is stored.

subco.mand) to the
byte of specified

hexloc is the hexadecimal location, relative to the current
origin, where the first byte of information is stored.

hexinfo is any hexadecimal information, four bytes or less in
length, to be stored.

Use the STORE subcommand to store up to 12 bytes of hexadecimal
information in any valid virtual storage address. The information is
stored starting in the location derived from the first operand (symbol
or hexloc).

If the first operand contains any non hexadecimal characters, the
DEBUG symbol table is searched for a matching symbol entry. If a match
is found in the DEBUG symbol table, or if thE first operand contains
only hexadecimal characters, the current or1g1n is added to the
specified operand and the resulting storage address is used, provided it
is not greater than the user's virtual storage size.

The information
the second through
one to four bytes
an operand is less
hexadecimal digits
is right-justified
If more than eight
the information is
eighth digit.

to be stored is specified in hexadecimal format in
the fourth operands. Each of these operands is from
(that is, two to eight hexadeciaml digits) long. If
than four bytes long and contains an uneven number of
(representing half-byte information), the information
and the left half of the uneven byte is set to zero.
hexadecimal digits are specified in a single operand,
left-justified and truncated on the right after the

The STORE subcommand can store a maximum of 12 bytes at one time. By
specifying all three information operands, each containing four bytes of
information, the maximum 12 bytes can be stored. If less than four
bytes are specified in any or all of the operands, the information given
is arranged into a string- of consecutive bytes, and that string is
stored starting at the location derived from the first operand. Stored
information is not typed at the terminal. To inspect the changed
contents of storage aftQr a STOBE subcommand, issue an X subcommand.

The following error messages may a~pear on the terminal while entering
the STORE subcommand.

INVALID OPERAND

The first operand cannot be located in the DEBUG symbol table and is
not a valid hexadecimal number, or the information specified in the

156 IB" V"1370: System Programmer's Guide

second, third, or fourth operands is not in hexadecimal format. If
the first operand is intended to be a symbol, a DEFINE subcommand
must have been previously issued for that symbol; if not, the
operand must specify a valid hexadecimal storage location.

INVALID STORAGE ADDRESS

The current origin value, when added to the hexadecimal number
specified as the first operand, gives an address greater than the
user's virtual storage S1ze. If the origin value is unknown, reset
it to the desired value using the ORIGIN subcommand and reissue the
STORE subcommand.

MISSING OPERAID

Less than two operands were specified.

TOO MANY OPERA IDS

More than four operands were specified.

HEXLoe 'hexaddr' II SHARED STORAGE

A shared system has been loaded (via IPL) and an attempt was made to
modify a storage location between X'10000' and X'20000'. To store
into this address range, IPL a nonshared system.

~2i~: Data was stored up to the point where the address violation was
detected. Shared storage remains the same.

Part 1: Debugging with VM/370 157

The format of the X (examine) subcommand is:

X

symbol

hexloc

n

r ,
symbol I n I

I len~!! I
L ~

r ,
hexloc I n I

I ~ I
L ~

is the name assigned (via the DElINE subcommand) to the
storage address of the first byte to be examined.

is the hexadecimal location, in relation to the current
origin, of the first byte to be examined.

is a decimal number from 1 to 56 inclusive, that specifies the
number of bytes to be examined. If a symbol is specified
without a second operand, the length attribute associated with
that symbol in the DEBUG symbol table specifies the number of
bytes to be examined. If a hexadecimal location is specified
without a second operand, four bytes are examined.

Use the X subcommand to examine and display the contents of specific
locations in virtual storage. The information is displayed at the
terminal in hexadecimal format.

The first operand of the subcommand specifies the beginning address
of the portion of storage to be examined. If the operand contains any
nonhexadeciaal characters, the DEBUG symbol table is searched for a
matching symbol entry. If a match is found, the storage address to
which that sy.bol refers is used as the location of the first byte to be
examined. If no match is found, or if the first operand contains only
hexadecimal characters, the current origin as established by the ORIGIN
subcommand is added to the specified operand and the resulting storage
address is used as the location of the first byte to be examined. The
derived address must not be greater than the user's virtual storage
size.

The second operand of the X subcommand is optional. If specified, it
indicates the number of bytes (up to a maximum of 56) whose contents are
to be displayed. If the second operand is omitted and the first operand
is a hexadecimal location, a default value of four bytes is assumed. If
the second operand is omitted and the first operand is a symbol, the
length attribute associated with that symbol in the DEBUG symbol table
is used as the number of bytes to be displayed.

The following error messages may appear on the terminal when the X
subcommand is entered.

158 IB! V!/370: system Progra.mer's Guide

INVALID OPERAND

The first operand cannot be located in the DEBUG symbol table and is
not a valid hexadecimal number, or the second operand is not a
decimal number between 1 and 56 inclusive. If the first operand is
intended to be a symbol, it must have been defined in a previous
DEFINE subcommand; otherwise, the operand must specify a valid
hexadecimal number.

INVALID STORAGE ADDRESS

The hexadecimal number specified in the first operand, when added to
the current origin, is greater than the storage size of the machine
being used. If the current origin value is unknown, reset it to the
desired value by issuing the ORIGIN subcommand and reissue the X
subcommand.

8ISSING OPERAND

No operands were entered; at least one is required.

TOO !ANY OPERANDS

80re than the maximum of two operands were entered.

Part 1: Debugging with V8/370 159

SiCTR1CE

The SVCTR1CE co •• and traces internal transfers of inforaation resulting
from SiC (supervisor call) instructions. Issuing the SVCTR1CE co.mand
causes switches to be set. These switches, in turn, cause inforaation
to be recorded at appropriate times. When the trace is ter.inated, the
recorded infor.ation is printed at the syste. printer.

The infor.ation recorded for a normal SVC call is:

• storage address of the SVC calling instruction
• Bame of the program being called
• contents of the SVC old PSi
• storage address of the return from the called program
• The general registers and floating-point registers
• The parameter list at the time the SVC is issued.

The for.at of the SVCTRACE co.mand is:

ISVCTrace
I
l

ON indicates tracing for all SVC calls.

OFF discontinues all SVC tracing.

The trace information is:

• The general registers both before the SVC-called program is given
control and after a return from that program.

• The floating-point registers both before the SVC-called program is
given control and after a return from that program.

• The parameter list, as it existed when the SVC was issued.

To terminate tracing set by the SYCTRACE command, issue the HO or
SVCTRACE OFF command. Both SYCTRACE OFF and HO cause all trace
information recorded up to the point they are issued to be printed at
the system printer. SYCTRACE OFF can be issued only when the keyboard
is unlocked to accept input to the CftS command environment. To
terminate tracing at any other point in system processing, HO must be
issued. If a HX subcommand to the DEBUG environment or a logout from
the control program is issued before terminating SVCTRACE, the switches
are cleared automatically and all recorded trace information is printed
at the system printer.

A variety of information is printed whenever the

SVCTRACE OB

command is issued.

160 IBft Vft/370: System Programmer's Guide

The first line of trace output starts with a -, +, or *. The format
of the first line of trace output is:

S - l l : f N/D :; xxx/dd naae FROl! Icc OLDPSW = ps.l GOPSW = ps.2 [He -- rc J

!!!!~I~:

indicates information recorded before processing the SVC.

+ indicates information recorded after processing the SVC, unless *
applies.

* indicates information recorded after processing a CftS SVC whicb had
an error return.

I/D is an abbreviation for SVC lumber and Depth (or level).

xxx is the number of the SVC call (they are numbered sequentially).

dd is the nesting level of the SVC call.

name is the macro or routine being called.

loc is the program location from which the SVC was issued.

psw1 is the PSi at the time the svc was called.

psw2 the PSi with which the routine (e.g. BDBUF) being called is
invoked, if the first character of this line is a minus sign (-).
If the first character of this line is a plus sign or asterisk (+
or *), PSi2 represents the PSi which returns control to the user.

rc is the return code passed from the svc handling routine in general
register 15. This field is omitted if the first character of this
line is a minus sign (-), or if this is an as svc call. For a CftS
SVC, this field is zero if the line begins with a plus sign (+),
and nonzero for an asterisk (*). Also, this field equals the
contents of Register 15 in the "GPRS AFTER" line.

The next two lines
registers when control
output is identified at
is:

of output are the contents of the general
is passed to the SVC handling routine. This
the left by "eGPRSB". The format of the output

eGPRSB = h h h h h h h h *dddddddd*
= h h h h h h h h *dddddddd*

where h represents the contents of a general register in hexadecimal
format-and ~ represents the EBCDIC translation of the contents of a
general register. The contents of general registers 0-7 are printed on
the first line, with the contents of registers 8-F on the second line.
The hexadecimal contents of the registers are printed first, following
by the EBCDIC translation. The EBCDIC translation is preceded and
followed by an asterisk (*).

The next line of output is the contents of general registers 0, 1 and
15 when control is returned to the user's program. The output is
identified at the left by neGPRS AlTER :". The format of the output is:

-GPRS AFTER: RO-R1 = h h *dd* R15 = h *d*

where h represents the hexadecimal contents of a general register and ~
is the- EBCDIC translation of the contents of a general register. The

Part 1: Debugging with Vft/370 161

only general registers that C"S routines alter are registers 0, 1, and
15 so only those registers are printed when control returns to the user
program. The EBCDIC translation is preceded and followed by an asterisk
(*) •

The next two lines
registers when the SVC
output is identified at
is:

of output are the contents of the general
handling routine is finished processing. This
the left by "-GPRSS". The format of the output

-GPRSS = h h h h h h h h *dddddddd*
= h h h h h h h h *dddddddd*

where E represents the hexadecimal contents of a general register and g
represents the EBCDIC translation of the contents of a general
register. General registers 0-7 are printed on the first line with
registers 8-P on the second line. The EBCDIC translation is preceded and
followed by an asterisk (*). '

The next line of output is the contents of
floating-point registers. The output is identified at
"-PPRS." The format of the output is:

-PPRS = f f f f *gggg*

the caller's
the left by

where! represents the hexadecimal contents of a floating-point register
and ~ is the EBCDIC translation of a floating-point register. Each
floating-point register is a doubleword: each ! and g represents a
doubleword of data. The EBCDIC translation is preceded and followed by
an asterisk (*).

~he next line of output is the contents of floating-point registers
when the SVC-handling routine is finished processing. The output is
identified by "-PPRSS" at the left. The format of the output is:

-PPRSS = f f f f *gggg*

where! represents the hexadecimal contents of a floating-point register
and ~ is the EBDCIC translation. Each floating-point register is a
doubleword and each i and g represents a douhleword of data. The EBCDIC
translation is preceded and followed by an asterisk (*).

The last two lines of output are only printed if the address in
Register 1 is a valid address for the virtual machine. If printed, the
output is the parameter list passed to the SVC. The output is identified
by "-PARM" at the left. The output format is:

-PARM = h h h h h h h h *dddddddd*
= h h h h h h h h *dddddddd*

where h represents a word of hexadecimal data and ~ is the EBCDIC
translation. The parameter list is found at the address contained in
register 1 before control is passed to the SVC-handling program. The
EBCDIC translation is preceded and followed by an asterisk (*).

Pigure 13 summarizes the types of SVC trace output.

162 IB" VM/370: System Programmer's Guide

Identification I comments

f ~ ~ HID
(*)
-GPRSB

- GPRS APTER

-GPRSS

-PPRS

- PPRSS

The SVC and the routine which issued the SVC.

Contents of general registers when control passed to
the SVC handling routine.

Contents of general registers 0, 1, and 15 when con-
6 __ 1 ~~ __ 6"_n_~ +_ +~o "~O~ "rnnr2m
~LU~ ~~ ~~~u~u~u ~u ~UV W~~~ r~~~.~~.

contents of the general registers when the SVC hand­
ling routine is finished processing.

contents of floating-point registers before the
SVC-called program is given control and after re­
turning from that program.

contents of the floating-point registers when the
SVC handling routine is finished processing.

The parameter list, when one is passed to the SVC.

Figure 13. Summary of SVC Trace Output Lines

Part 1: Debugging with V"/370 163

Use the DASD Dump Bestore (DDB) service program to dump, restore, copy,
display, or print Vft/370 user .inidisks. The DDB program .ay run as a
standalone progra., or under CftS via the DDR co •• and.

IBVOKING DDR UNDER CftS

The format of the DDR command is:

r ,
DDR [filena.e [filetype I file.ode I]

I * I
L .J

filename filetype [file.ode]
is the identification of the file containing the control
statements for the DDR program. If no file identification is
provided, the DDR program attempts to obtain control
statements from the console. The filemode defaults to • if a
value is not provided.

INVOKING DDR AS A STANDALONE PROGRAft

To use DDB as a standalone program, the operator should IPL it from a
real or virtual IPL device as he would any other standalone progra ••
Then indicate where the DDR program is to obtain its control statements
by responding to prompting messages at the console.

See the "DDB Control Statements" discussion in the "Debugging with
CP" section. The control statements for running standalone and under
CMS are identical, except that CftS ignores the SYSPRINT centrol
statement.

164 IBM VM/370: System Progra.mer's Guide

Each time the CftS resident nucleus is loaded on a DASD, and an IPL can
be performed on that DASD, a load map is produced. Save this load ma~.
It lists the virtual storage locations of nucleus-resident routines and
work areas. Transient modules will not be included in this load map.
When debugging CftS, you can locate routines using this map.

The load map may be saved as a disk file and printed at any time. A
copy of the nucleus load map is contained on the system with file
identification of 'filename BUCftApl. Issue the

LISTF * NUCftAP S

command to determine the filename. Then issue

PRINT filename NUCftAP

to obtain a copy of the current nucleus load map.

Figure 14 shows a sample CftS load map. Notice that the DEBUG work
area (DBGSECT) and DftSIN! module have been located.

The load map of a disk resident command module contains the location of
control sections and entry points loaded into storage. It may also
contain certain messages and card images of any invalid cards or replace
cards that exist in the loaded files. The loadmap is contained in the
third record of the !ODULE file.

This load map is useful in debugging. When using the Debug
environment to analyze a program, use the. program's load map to help in
displaying information.

There are several ways to get a load map.

1. When loading relocatable object code into storage, make sure that
the ftAP option is in effect when the LOAD command is issued. since
!AP is the default option, just be sure that NO!AP is not
specified. A load map is then created on the primary disk each
time a LOAD command is issued.

2. When generating the absolute image form of files already loaded
into storage, make sure that the MAP option is in effect when the
GENMOD command is issued. Since MAP is the default option, just be
sure that IOMAP is not specified. Issue the MODMAP command to type
the load map associated with the specified MODULE file on the
terminal. The format of the !ODMAP command is:

MODmap I filename

filename is the module whose map is to be displayed. The filetype must
be MODULE.

Part 1: Debugging with VM/370 165

FILE: LOAD CMSMAP C CONVERSATIONAL MONITOR SYSTEM

INVALID CARD ••• :READ DM SN UC TEXT C1 CMS191 9/21/72 9:01

* UPLIB MACLIB D1 CMS191 9/21/72 8:47

* CMSLIB MACLIB D1 CMS191 9/21/72 8:44

* OSMACRO MACLIB Y2 CMS19E 7/19/72 18:11

* DMSNUC ASSEMBLE C1 SOURCE 9/18/72 23:09
DMSNUC AT 000000
DMSNUCU AT 002800
NUCON AT 000000
SYSREF AT 000600
lEIBM AT 000274
CMNDLINE AT 0007AO
SUBFLAG AT 0005E9
IADT AT 000644
DBVICE AT 00026C
DBVTAB AT 000C90
CONSOLE AT 000C90
ADISK AT OOOCAO
DDISK AT OOOCDO
SDISK AT 000D10
YDISK AT 000D20
TABEND AT OOODFO
lDTSECT AT OOODFO
lFTSTART AT 001200
BXTSECT AT 001500
EXTPSW AT 0015A8
IOSECT AT 0015DO
IONTABL AT 001610
PGMSECT AT 001660
PIE AT 001668
SVCSECT AT 0016F8
DIOSECT AT 001998
FVS AT 001A88
ADTFVS AT 001E48
KXFLAG AT 001C2F
UFDEUSY AT 001C2E
CMSCVT AT 001C80
DBGSECT, AT 001D~Q
DMSERT AT 002098
DMSlRT AT 002208
DMSAEW AT 002258
OPSECT AT 002800
DMSERL AT 002935
TSOELKS AT 0029BO
SUESECT AT 002A40
USERSECT AT 002AD8
INVALID CARD ••• :READ DMSINA TEXT C1 CMS191 9/19/72 15:37
ABBREV AT 003000
USABRV AT 0030DO
INVALID CARD ••• :READ DMSINM TEXT C1 CMS191 9/18/72 20:36
CMSTIMER AT 003200
GETCLK AT 003200
DMSINM AT 003200
INVALID CARD ••• :READ DMSTIO TEXT C1 CMS191 9/19/72 10:33
TAPBIO AT 003308
DMSTIO AT 003308

Figure 14. Sa.ple ces Load eap

166 IBft Vft/370: Syste. Progra.mer's Guide

ihen CMS abnormally terminates, the terminal operator must enter the
DEBUG co.mand and then the DUMP subcommand if an ABEND dump is desired.
The DUMP formats and prints the following:

• General registers
• Extended control registers
• Ploating-point registers
• storage boundaries with their corresponding storage protect key
• Current PSi
• selected storage

storage is printed in hexadecimal representation, eight words to the
line, with EBCDIC translation at the right. The hexadecimal storage
address corresponding to the first byte of each line is printed at the
left.

ihen the Conversational ftonitor system can no longer continue, it
abnormally terminates. yOU must first determine the condition that
caused the ABEND and then find why the condition occurred. In order to
find the cause of a eftS problem, you mu~t be familiar with the structure
and functions of CftS. Befer to "Part 3: Conversational Monitor System
(CMS) " for functional information. The following discussion on reading

CftS dumps will refer to several CftS control tlocks and fields in the
control blocks. Refer to the VftL11~: ~2n!~~!!ional !~~i!2! Syste~ (~)
R~gg~~~ 12g!£ for a description of each CMS control block. Pigure 15
shows the relationships of CftS control blocks. You will also need a
current CftS nucleus load map in order to analyze the dump.

REASON POR THE ABEND

Determine the immediate reason for the ABEND and identify the failing
module. The ABEND message DMSABN148T contains an ABEND code and failing
address. Figure i6 lists all the eMS ABEND codes, identifies the .odule
that caused the module to ABEND, and describes the action that should be
taken whenever CftS abnormally terminates.

You may have to examine several fields in the Nucleus Constant Area
(NUCON) of low storage.

1. Examine the program old PSi (PGMOPSi) at location 1'28'. Using the
PSi and current CMS load map, determine the failing address.

2. Examine the SVC old PSi (SVCOPSi) at location 1'20'.

3. Examine the external old PSi (EXTOPSi) at location X'18'. If the
virtual machine operator terminated CftS, this PSi points to the
instruction executing when the termination request was recognized.

4. For a machine check, examine the machine check old PSi (MCKOPSi) at
location X'30'. Refer to Figure 43 in "Appendix A: system/370
Information" for a description of the PSi.

Part 1: Debugging with VM/370 167

SYSREF

600

608

610

618

620

628

630

638

640

648

650

658

660

668

670

678

680

688

690

698

6A8

6BO

688

6CO

6C8

600

Figure 15. CMS Control Blocks

DMSNUC

USERSECT

SUBSECT

OPSECT

DMSABW

DMSFRT

DMSERT

DBGSECT (Debug work areal

Some fields are filled in

FVS

DIOSECT

SVCSECT

PGMSECT

IOSECT

EXTSECT

AFTSECT (Create when the file is
opened. There is room for 5 AFTs in
DMSNUC, others are in free storage.

ADTSECT (Space is allocated when
DMSNUC is assembled, fields are
filled in when ACCESS command is
issued. There is one ADT entry for
each of the 10 possible disks.)

DEVTAB

Terminal Buffers and Saveareas

NUCON

168 IBM VM/370: System Programmer's Guide

CMSCB

DCB DECB

I CMSAVE I B

ABENDI Module
Code I

Cause of ABEND Action

001 DMSSCT IThe problem program encoun- IMessage DMSSCT120S

OCx

OP 1

OF2

DMSITP

tered an input/output error I indicates the possible
processing an os _acro. I cause of the error.
Either the associated DCB I Examine the error
did not have a SYNAD routinel message and take the
specified or the I/O error I action indicated.
was encountered processing I
an OS CLOSE macro. I

IThe specified hardware excep­
I tion occurred at a specified
I location. "x" is the type
I of exception:
I x ~~
I '0 IMPRECISE
I 1 OPERATION
I 2 PRIVILEGED OPERATION
J 3 EXECUTE

4 PROTECTION
5 ADDRESSING
6 SPECIPICATION
7 DECIMAL DATA
8 PIXED-POINT OVERPLOW
9 PIXED-POINT DIVIDE
A DECIMAL OVERFLOW
B DECIMAL DIVIDE
C EXPOIENT OVERPLOW
D EXPONENT UNDERFLOW
E SIGIIPICAICE
P FLOATING-POINT DIVIDE

Type DEBUG to examine
the PSW and registers
at the time of the
exception.

DMSITS IAn invalid halfword code is
I associated with SVC 203.

IEnter DEBUG and type GO.
I Execution continues.

DMSITS IThe CMS nesting level of 20
I has been exceeded.
I

INone. ABEND recovery
I will take place when
I the next command is
I " " ,...;1 I ~u'"~ ... ~

OP3 DMSITS ICMS SVC (202 or 203) instruc-JEnter DEBUG and type GO.

OF4

tion was executed and no I Control will return to
provision was made for an I point to which a normal
error return from the I return would have been
routine processing the SVC I made.
call. I

DMSITS IThe DMSKEY key stack over­
I flowed.

IEnter DEBUG and type GO.
I Execution will continue
I and the DMSKEY macro I

I I will be ignored.
--1 OF5 DMSITS IThe DMSKEY key stack under­

I flowed.

Pigure 16. CMS ABEND Codes (Part 1 of 2)

I
I

Part 1: Debugging with VM/370 169

ABENDI Module
Code I

Cause of ABERD Action

OF6 DMSITS IThe DMSKEY key stack was not
empty when control returned
from a co •• and or function.

IEnter DEBUG and type GO.
control will return
from the command or
function as if the key
stack had been empty.

OF7 DMSFRE 10ccurs when TYPCALL=SVC (the lIn the case of a system
I default) is specified in thel ABERD, the user .ay
I DMSFREE or DMSFRET macro. I employ DEBUG to attempt
I I recovery.

OF8 DMSFRE 10ccurs when TYPCALL=BALR is lIn the case of a system
I specified in the DMSFREE or I ABEND, use DEBUG to
I DMSFRET "acro devices. I attempt recovery.

101 D"SSVN IThe wait count specified in IExamine the program for
I an OS WAIT macro was larger I excessive wait count
I than the number of ECB' s I specification.
I specified. I

155 D"SSLN IError during LOADMOD after ani See last LOAD MOD (DMSMOD

15A

I OS LINK, LOAD, ICTL, or error message for error
I ATTACH. The compiler switch description. In the
I is on. case of an I/O error,
I recreate the module; if
I the module is missing,
I create it.

DftSSLN ISevere error during load
(phase not found) after an

OS LINK, LOAD, ICTL, or
ATTACH. The compiler switch
is on.

ISee last LOAD error
message (D"SLIO) for
the error description.
In the case of an I/O
error, recreate the
text deck or txtlib. If
either is missing,
create it.

240 DMSSVT INO work area was provided in ICheck RDJFCB specifi-

400

I the parameter list for an OSI cation.
I RDJFCB macro. I

DMSSVT IAn invalid or unsupported
I form of the OS XDAP macro
I has been issued by the
I problem program.

IExamine program for
I unsupported XDAP macro
I or for SVC O.
I

AOA DftSS"B IAn OS GET"AIN or FRlE"AIN IExamine the error
I macro has been issued. I messages and take the

Either there is not enough t action indicated.
storage to satisfy the I
request, or the free chain I
has been destroyed, or the I
parameters passed to GET"AINI
or FREE"AIB were invalid. I

Figure 16. C"S Abend Codes (Part 2 of 2)

170 IBM V"/370: System Programmer's Guide

COLLECT INFORMATION

Examine several other fields in NUCON to analyze the status of the CMS
system. As you proceed with the dump, you may return to NUCON to pick up
pointers to specific areas (such as po~n~ers to file tables) or to
examine other status fields. The complete contents of NUCON and the
other CMS control blocks are described in the !~LJIQ: £~~~~£§~tio~~J
~Qni!Q£ ~I§!~! (£~~) R£Qg£~! 1Q9if. The following areas of NUCON may
contain useful debugging information.

• Save area for low storage.

Before executing, DEBUG saves the first 160 bytes of low storage in a
NUCO! field called LOWS!VE. LOWS!V! begins at X'CO'~

• Register save area.

DMSABN, the ABEND routine, saves the user's floating-point and
general registers.

li~!g
FPRLOG
GPRLOG
ECRLOG

• Device.

Location
i'160"--
X'1S0'
X'1CO'

contents
user-floating-point registers
User general registers
User extended control registers

The name of the device causing the last I/O interrupt is in the
DEVICE field at X'26C'.

• Last Two Commands or Procedures Executed.

l!~!g
L!STCMND
PREVCMND
LASTEXEC
PREVEXEC

1Qcat.i~~
X'2AO'
X' 2AS'
X'2BO'
X' 2BS '

Contents Last-cis command issued
Next to last CMS command issued
Last EXEC procedure invoked
Next to last EXEC procedure invoked

• Last module load into free storage and transient area.

The name of the last module loaded into free storage via a LOADMOD is
in the field LASTLKOD (location X'2CO'). The name of the last module
loaded into the transient area via a LOAD MOD is in the field LASTTMOD
(location X'2CS').

• Pointer to CKSCB.

The pointer to the CMSCB is in the FCBT!B field located at X'SCO'.
CMSCB contains the simulated OS control blocks. These simulated OS
control blocks are in free storage. The CMSCB contains a PLIST for
CMS I/O functions, a simulated Job File Control Block (JFCB), a
simulated Data Event Block (DEB), and the first in a chain of I/O
Blocks (lOBs).

Part 1: Debugging with VM/370 171

• The Last Co •• and.

The last command entered from the terminal is stored in an area
called CMNDLINE (X'7AO'), and its corresponding PLIST is stored at
CMNDLIST (I'S4S').

• External Interrupt Work Area.

EXTSECT (X'1550') is a vork area for the external interrupt handler.
It contains:

The PSW, EXTPSW (X'15FS')
Register save areas, EXSAVEl (X'15BS')
Separate area for timer interrupts, EXSAVE (X'1550')

• I/O Interrupt Work Area.

IOSECT (X'1620') is a vork area for the I/O interrupt
oldest and nevest PSW and CSW are saved. Also, there
save area.

• Program Check Interrupt Work Area.

handler. The
is a register

PGMSECT (X'16BO') is a vork area for the program check interrupt
handler. The old PSW and the address of register 13 save area are
stored in PGMSECT.

• SVC Work Area.

SVCSECT (X' 174S') is a vork area for the SVC interrupt handler. It
also contains the first four register save areas assigned. The SFLAG
(X'175S') indicates the mode of the called routine.

Value of
_§Il!!~ __

X'SO'
X'40'
X'20'
X'Ol'

Descri.pti~l!
SVC protect key is zero
Transient area routine
lucleus routine
Invalid re-entry flag

Also, the SVC ABEND code, SVCAB, is located at X'175A'.

• Simulated CVT (Communications vector Table) •

The CVT, as supported by CMS, is CVTSECT (X'lCCS'). Only the fields
supported ty CMS are filled in.

• Active Device Table and Active File Table.

For file system problems, examine the ADT (Active Device Table), or
AFT (Active File Table) in NUCON.

172 IBM VM/370: System Progra.mer's Guide

REGISTER USAGE

In order to trace control blocks and modules, it is important to know
the C~S register usage conventions.

B~~ist~~
GR1
GR12
GR13
GR14
GR15

contents
Address-of the PLIST
Program's entry point
Address of a 12-doubleword work area for an svc call

.Return address
Program entry point or the return code

The preceding information should help you to read a c~S dump. If it
becomes necessary to trace file system control blocks, refer to Figure
31 in "Part 2: Conversational ~onitor System" for more information. with
a dump, the control block diagrams, and a c~S load map you should be
able to find the cause of the ABlID.

Part 1: Debugging with V~/370 173

GC20-i807-3 Page Modified by TNL GN20-2662, March 31, 1975

Part 2: Control Program (CP)

Part 2 contains the following information:

• Introduction to VM/370
• Program states
• Using CPU Resources
• Interruption Handling
• Functional Information
• Performance Guidelines
• Performance Observation and Analysis
• Accounting Information
• Generating Named Systems and Saving Systems
• VM/VS Handshaking
• OS/VS2 Release 2 Uniprocessor under VM/370
• DOS under VM/370
• Running VM/370 in a Virtual Machine
• Timers
• DIAGNCSE Instruction
• CP Conventions
• How to Add a Console Function
• How to Add a New print or Forms Buffer Image

Part 2: Control Program (CP) 175

VM/370

The V8/370 Control Program manages the resources of a single computer in
such a manner that multiple computing systems appear to exist. Each
"virtual" computing system, or virtual machine, is the functional
equivalent of an IBM System/370.

A virtual machine is configured by recording appropriate information
in the VM/370 directory. The virtual machine configuration includes
counterparts of the components of a real IB8 System/370:

• A virtual operator's console
• virtual storage
• A virtual CPU
• virtual I/O devices

CP makes these components appear real to whichever operating system
is controlling the work flow of the virtual machine.

The virtual machines operate
techniques. CP overlaps the idle
execution in another.

concurrently
time of one

via multiprogramming
virtual machine with

Each virtual machine is managed at two levels. The work to be done
by the virtual machine is scheduled and controlled by some System/360 or
System/370 operating system. The concurrent execution of multiple
virtual machines is managed by the control program.

A virtual machine is created for a user ,when he logs on V8/370, on the
basis of information stored in his V8/370 directory entry. The entry
for each user identification includes a list of the virtual input/output
devices associated with the particular virtual machine.

Additional information
V8/370 directory entry.
class, accounting data,
dispatching priority, and
as extended control mode.

about the virtual machine is kept in the
Included are the VM/370 command privilege
normal and maX1mum virtual storage sizes,

optional virtual machine characteristics such

The Control Program supervises the execution of virtual machines by
(1) permitting only problem state execution except in its own routines,
and (2) receiving control after all real computing system interrupts.
CP intercepts each privileged instruction and simulates it if the
current program status word of the issuing virtual machine indicates a
virtual supervisor state; if the virtual machine is executing in
virtual problem state, the attempt to execute the privileged instruction
is reflected back to the virtual machine as a program interrupt. All
virtual machine interrupts (including those caused by attempting
privileged instructions) are first handled by CP, and are reflected to
the virtual machine if an analogous interrupt would have occurred on a
real machine.

Part 2: Control Program (CP) 177

VIRTUAL KACHINE TIKE MANAGEKENT

The real CPU simulates multiple virtual CPUs. virtual machines that are
executing in a conversational manner are given access to the real CPU
more frequently than those that are not; these conversational machines
are assigned the smaller of two possible time slices. CP determines
execution characteristics of a virtual machine at the end of each time
slice on the basis of the recent frequency of its console requests or
terminal interrupts. The virtual machine is queued for subsequent CPU
utilization according to whether it is a conversational or
nonconversational user of system resources.

A virtual machine can gain cbntrol of the CPU only if it is not
waiting for some activity or resource. The virtual machine itself may
enter a virtual wait state after an input/output operation has begun.
The virtual machine cannot gain control of the real CPU if it is waiting
for a page of storage, if it is waiting for an input/output operation to
be translated and started, or if it is waiting for a CP command to
finish execution.

A virtual machine can be assigned a priority of executicn. priority
is a parameter affecting the execution of a particular virtual machine
as compared with other virtual machines that have the same general
execution characteristics. priority is a parameter in the virtual
machine's VM/370 directory entry. The system operator can reset the
value with the Class A SET command.

VIRTUAL MACHINE STORAGE MANAGEMENT

The normal and maximum storage sizes of a virtual machine are defined as
part of the virtual machine configuration in the VK/370 directory. You
may redefine virtual storage size to any value that is a mu1tiple of 4K
and not greater than the maximum defined value. VM/370 implements this
storage as virtual storage. The storage may appear as paged or unpaged
to the virtual machine, depending upon whether or not the extended
control mode option was specified for that virtual machine. This option
is required if operating systems that control virtual storage, such as
OS/VS1 or VK/370, are run in the virtual machine.

Storage in the virtual machine is logically divided into 4096 byte
areas called pages. A complete set of segment and page tables is used
to describe the storage of each virtual machine. These tables are
updated by CP and reflect the allocation of virtual storage pages to
blocks of real storage. These page and segment tables allow virtual
storage addressing in a System/370 machine. storage in the real machine
is logically and physically divided into 4096 byte areas called page
frames.

only referenced virtual storage pages are kept in real storage, thus
optimizing real storage utilization. Further, a page can be brought into
any available page frame; the necessary relocation is done during
program execution by a combination of V6/370 and dynamic address
translation on the System/370. The active pages from all logged on
virtual machines and from the pageable routines of CP compete for
available page frames. When the number of page frames available for
allocation falls below a threshold value, CP determines which virtual
storage pages currently allocated to real storage are relatively
inactive and initiates suitable page-out operations for them.

Inactive pages
inactive page has

are kept on a direct access storage device.
been changed at some time during virtual

178 IBK VM/370: System Programmer's Guide

If an
machine

GC20~1807-3 Page Modified by TNL GN20-2662, March 31, 1915

execution, CP assigns it to a paging device, selecting the fastest such
device with available space. If the page has not changed, it remains
allocated in its original direct access location and is paged into real
storage from there the next time the virtual machine references that
page. A virtual machine program can use the DIAGNOSE instruction to
tell CP that the information from specific pages of virtual storage is
no longer needed; CP then releases the areas of the paging devices which
were assigned to hold the specified pages.

Paging is done on demand by CP. This means that a page of virtual
storage is not read (paged) from the paging device to a real storage
block until it is actually needed for virtual machine execution. CP
makes no attempt to anticipate what pages might be required by a virtual
machine. While a paging operation is performed for one virtual machine,
another virtual machine can be executing~ Any paging operation
initiated by CP is transparent to the virtual machine.

If the virtual machine is executing in extended control mode with
translate on, then two additional sets of segment and page tables are
kept. The virtual machine operating system is responsible for mapping
the virtual storage created by it to the storage of the virtual machine.
CP uses this set of tables in conjunction with the page and segment
tables created for the virtual machine at logon time to build shadow
page tables for the virtual machine. These shadow tables map the
virtual storage created by the virtual machine operating system to the
storage of the real computing system. The tables created by the virtual
machine operating system may describe any page and segment size
permissible in the IBM System/370.

VM/370 provides both fetch and store protection for real storage. The
contents of real storage are protected from destruction or misuse caused
by erroneous or unauthorized storing or fetching by the program.
Storage is protected from improper storing or from both improper storing
and fetching, but not from improper fetching alone.

When protection applies to a storage access, the key in
compared with the protection key associated with the request
access. A store or fetch is permitted only when the key
aatches the protection key.

storage is
for storage
in storage

When a store access is prohibited because of protection, the contents
of the protected location remain unchanged. On fetching, the protected
information is not loaded into an addressable register, moved to another
storage location, or provided to an I/O device.

When a CPU access is prohibited because of protection, the operation
is suppressed or terminated, and a program interruption for a protection
exception takes place. When a channel access is prohibited, a
protection-check condition is indicated in the channel status word (CSW)
stored as a result of the operation.

When the access to storage is inhibited by the CPU, and protection
applies, the protection key of the CPU occupies bit positions 8-11 of
the PSi. When the reference is made by a channel, and protection
applies, the protection key associated with the I/O operation is used as
the comparand. The protection key for an I/O operation is specified in
bit positions 0-3 of the channel-address word (CAW) and is recorded in
bit positions 0-3 of the channel status word (CSW) stored as a result of
the I/O operation.

Part 2: Control Program (CP) 179

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

To use fetch protection, a virtual machine must execute the set
storage key (SSK) instruction referring to the data areas to be
protected, with the fetch protect bit set on in the key. VM/370
subsequently:

1. Checks for a fetch protect violation in handling privileged and
nonprivileged instructions.

2. Saves and restores the fetch protect bit (in the virtual storage
key) when writing and recovering virtual machine pages from the
paging device.

3. Checks for a fetch protection violation on a write CCW (except for
spooling or console devices).

The CMS nucleus resides in a shared segment. This presents a special
case for storage protection since the nucleus must be protected and
still shared among many CMS users. To protect the CMS nucleus in the
shared segment, user programs and disk-resident CMS commands run with a
different key than the nucleus code.

The system operator may assign the reserved page frames option to a
single virtual machine. This option, specified by the SET RESERVE
command, assigns a specific amount of the storage of the real machine to
the virtual machine. CP will dynamically build up a set of reserved
real storage page frames for this virtual machine during its execution
until the maximum number "reserved" is reached. Since other virtual
machines' pages are not allocated from this reserved set, the effect is
that the most active pages of the selected virtual machine remain in
real storage.

During CP system generation, the installation may specify an option
called virtual=real. With this option, the virtual machine's storage is
allocated directly from real storage at the time the virtual machine
logs on (if it has the VIRT=REAL option in it's directory). All pages
except page zero are allocated to the corresponding real storage
locations. In order to control the real computing system, real page
zero must be controlled by CP. Consequently, the real storage size must
be large enough to accommodate the CP nucleus, the entire virtual=real
virtual machine, and the remaining pageable storage requirements of CP
and the other virtual machines.

The virtual=real option improves performance in the selected virtual
machine since it removes the need for CP paging operations for the
selected virtual machine. The virtual=real option is necessary whenever
programs that contain dynamically modified channel programs (excepting
those of OS ISAM and OS/VS TCAM Level 5) are to execute under control of
CP. For additional information on running systems with dynamically
modified channel programs, see "Dynamically Modified Channel Programs"
in "part 1: Debugging with VM/370."

VIRTUAL MACHINE I/O MANAGEMENT

A real disk device can be shared among multiple virtual machines.
Virtual device sharing is specified in the VM/370 directory entry or by
a user command. If specified by the user, an appropriate password must
be supplied before gaining access to the virtual device. A particular
virtual machine may be assigned read-only or read/write access to a
shared disk device. CP checks each virtual machine input/output

180 IBM VM/370: System Programmer's Guide

operation against the parameters in the virtual machine configuration to
ensure device integrity.

The virtual machine operating system is responsible for the operation
of all virtual devices associated with it~ These virtual devices may be
defined in the VM/370 directory entry of the virtual machine, or they
may be attached to (or detached from) the virtual machine's
configuration while it remains logged on. Virtual devices may be
dedicated, as when mapped to a fully equivalent real device; shared, as
when mapped to a minidisk or when specified as a shared virtual device;
or spooled by CP to intermediate direct access storage.

In a real machine running under control of as, input/output
operations are normally initiated when a problem program requests as to
issue a START I/O instruction to a specific device. Device error
recovery is bandIed by the operating system. In a virtual machine, os
can perform these same functions, but the device address specified and
the storage locations referenced will both be virtual. It is the
responsibility of CP to translate the virtual specifications to real.

In addition, the interrupts caused by the input/output operation are
reflected to the virtual machine for its interpretation and processing.
If input/output errors occur, CP records them but does not initiate
error recovery operations. The virtual machine operating system must
handle error recovery, but does not record the error (if SVC 76 is
used).

Input/output operations initiated by CP
and spooling), are performed directly
translation.

SPOOLING FUNCTIONS

for its own purposes (paging
and are not subject to

A virtual unit record device, which is mapped directly to a real unit
record device, is said to be dedicated. The real device is then
controlled completely by the virtual machine's operating system.

CP facilities allow multiple virtual machines to share unit record
devices. since virtual machines controlled by CMS ordinarily have
modest requirements for unit record input/output devices, such device
sharing is advantageous, and it is the standard mode of system
operation.

Spooling operations cease if the direct access storage space assigned
to spooling is exhausted, and the virtual unit record devices appear in
a not ready status. The system operator may make additional spooling
space available by purging existing spool files or by assigning
additional direct access storage space to the spooling function.

Specific files can be transferred from the spooled card punch or
printer of a virtual machine to the card reader of the same or another
virtual machine. Files transferred between virtual unit record devices
by the spooling routines are not physically punched or printed. with
this method, files can be made available to multiple virtual machines,
or to different operating systems executing at different times in the
same virtual machine.

Files may also be spooled to remote stations via the Remote spooling
Communications Subsystem (RSCS), a component of VM/370. For a
description of RSCS and the remote stations that it supports see "Part
5. Remote Spooling Communications Subsystem (RSCS)."

Part 2: Control Program (CP) 181

CP spooling includes .any desirable options for the virtual machine
user and the real machine operator. These options include printing
aultiple copies of a single SFool file, backspacing any number of
printer pages, and defining spooling classes for the scheduling of real
output. Each output spool file has, associated with it, a 136 byte area
known as the spool file tag. The information contained in this area and
its syntax are determined by the originator and receiver of the file.
For example, whenever an output spool file is destined for transmission
to a remote location via the Remote Spooling Communications Subsystem,
RSCS expects to find the destination identification in the file tag. Tag
data is set, changed, and queried using the CP TAG command.

It is possible to spool terminal input and output. All data sent to
the terminal, whether it be from the virtual machine, the control
program or the virtual machine operator, can be spooled. Spooling is
particularly desirable when a virtual machine is run with its console
disconnected.

CP COMMANDS

The CP commands allow you to control the virtual machine from the
terminal, much as an operator controls a real machine. virtual machine
execution can be stopped at any time by use of the terminal's attention
key (for 3066 and 3270 terminals, the ENTER key is used); it can be
restarted by entering the approFriate CP command. External, attention,
and device ready interrupts can be simulated on the virtual machine.
Virtual storage and virtual machine registers can be inspected and
modified, as can status words such as the PSi and the CSi. Extensive
trace facilities are provided for the virtual machine, as well as a
single-instruction mode. Commands are available to invoke the spooling
and disk sharing functions of CP.

CP commands are classified by privilege classes. The VM/370
directory entry for each user assigns one or more privilege classes.
The classes are primary system operator, system resource operat?r,
system programmer, spooling operator, system analyst, serV1ce
representative, and general user. Commands in the system analysts class
may be used to inspect real storage locations, but may not be used to
make modifications to real storage. Commands in the operator class
provide real resource control capabilities. System operator commands
include all commands related to virtual machine performance options,
such as assigning a set of reserved page frames to a selected virtual
aachine. For descriptions of all the CP commands, see the VM/370:
fQ!!~Bg 19B9ygg~ Gu!g~ !Q~ g~B~!~! ~§~§ and the !~L37Q: Operator'§
2Yig~.

182 IBM VM/370: System Programmer's Guide

Program States

When instructions in the Control Program are being executed, the real
computer is in the supervisor state; at all other times, when running
virtual machines, the real computer is in the problem state. Therefcre,
privileged instructions cannot be executed by the virtual machine.
Programs running on a virtual machine can issue privileged instructions;
but such an instruction either (1) causes an interruption that is
handled by the Control Program, or (2) is intercepted and handled by the
CPU, if the virtual machine assist feature is enabled and supports that
instruction. CP examines the operating status of the virtual machine
PSi. If the virtual aachine indicates that it is functioning in
supervisor mode, the privileged instruction is simulated according to
its type. If the virtual machine is in problem mode, the privileged
interrupt is reflected to the virtual machine.

Only the Control Program aay operate in the supervisor state on the
real machine. All programs other than CP operate in the problem state
on the real machine. All user interrupts, including those caused by
attempted privileged operations, are handled by either the control
program or the CPU (if the virtual Bachine assist feature is
available). Cnly those interrupts that the user program would expect
from a real machine are reflected to it. A problem program will execute
on the virtual machine in a manner identical to its execution on a real
system/370 CPU, as long as it does not violate the CP restrictions. See
the "CP Restrictions" discussion in "part 1: Debugging with CP" for a
list of the restrictions.

Part 2: Control Program (CP) 183

Using CPU Resources

CP allocates the CPU resource to virtual machines according to their
operating characteristics, priority, and the system resources
available.

virtual aachines are dynamically categorized at the end of each tiae
slice as interactive or noninteractive, depending on the frequency of
operations to or from either the virtual system console or a terminal
controlled by the virtual machine.

Virtual machines are dispatched from one of two queues, called Queue
1 and Queue 2. To be dispatched from either queue, a virtual machine
must be considered executable (that is, not waiting for some activity or
for some other system resource). virtual machines are net considered
dispatchable if the virtual machine:

1. Enters a virtual wait state after an I/O operation has begun.

2. Is waiting for a page frame of real storage.

3. Is waiting for an I/O operation to be translated by CP and
started.

4. Is waiting for CP to simulate its privileged instructions.

5. Is waiting for a CP console function to be performed.

2Y1YJ 1

Virtual machines in Queue 1 (Q1) are considered conversational or
interactive users, and enter this queue when an interrupt from a
terminal is reflected to the virtual machine. There are two lists of
users in Q1, executable and nonexecutable. The executable users are
stacked in a first in, first out (FIFO) basis. When a nonexecutable
user becomes executable, he is placed at the bottom of the executable
list. If a virtual machine uses more than 50 milliseconds (ms) of CPU
time without entering a virtual wait state, that user is placed at the
bottom of the executable list.

virtual machines are dropped from Q1 when they complete their time
slice of CPU usage, and are placed in an "eligible list". virtual
machines entering CP command mode are also dropped from Q1. When the
virtual machine becomes executable again (returns to execution mode) it
is placed at the bottom of the executable list in Q1.

Virtual machines in Queue 2 (Q2) are considered noninteractive users.
Users are selected to enter 02 from a list "of eligible virtual machines
(the "eligible list"). The list of eligible virtual machines is sorted
on a FIFO basis within user priority (normally defined in the USER
record in the VM/370 directory, but may be altered by the system
opera tor) •

184 IBM VM/370: System Programmer's Guide

A virtual machine is selected to enter Q2 only if its "working set"
is not greater than the number of real page frames available for
allocation at the time. The working set of a virtual machine is
calculated and saved each time a user is dropped from Q2 and is based on
the nu.ber of virtual pages referred to bi the virtual machine during
its stay in 02, and the number of its virtual pages that are resident in
real storage at the time it is dropped from the queue.

If the calculated working set of the highest priority virtual machine
in the eligible list is greater than the number of page frames available
for allocation, CP continues through the eligible list in user priority
order.

There are two lists of users in 02, executable and nonexecutable.
Executable virtual machines are sorted by "dispatching priority". This
priority is calculated each time a user is dropped from a queue and is
the ratio of CPU time used while in the queue to elapsed time in the
queue. Infrequent CPU users are placed at the top of the list and are
followed by more frequent CPU users. When a nonexecutable user becomes
executable, he is placed in the executable list based on his dispatching
priority.

When a virtual machine completes its time slice of CPU usage, it is
dropped from Q2 and placed in the eligible list by user priority. When
a user in 02 enters CP command mode, he is removed from Q2~ When he
becomes executable (returns to virtual machine execution mode) he is
placed in the eligible list based on user priority.

If a user's virtual machine is not in 01 or 02, it is because:

1. The virtual machine is on the "eligible list", waiting to be put on
02, or

2. The virtual machine execution is suspended because the user is in
CP .ode executing CP commands.

To leave CP mode and return his virtual machine to the "eligible
list" for 02, the user can issue one of the CP commands that transfer
control to the virtual machine operating system for execution (for
example, BEGI., IPt, EITERIAt, and RESTART).

In CP, interactive users (Q1), if any, are considered for dispatching
before noninteractive users (Q2). This means that CftS users entering
co.mands which do not involve disk or tape I/O operations should get
fast responses from the VM/370 system even with a large number of active
users.

An installation may choose to override the CP scheduling and
dispatching scheme and force allocation of the CPU resource to a
specified user, regardless of its priority or operating characteristics.
The favored execution facility allows an installation to:

1. Specify that one particular virtual machine is to receive up to a
specified percentage of CPU time.

2. Specify that any number of virtual machines are to remain in the
queues at all times. Assignment of the favored execution option is
discussed in the "Preferred virtual Machines" section.

Part 2: Control Program (CP) 185

Interruption Handling

Input/output interrupts from completed I/O operations initiate various
completion routines and the scheduling of further I/O requests. The I/O
interrupt handling routine also gathers device sense information.

Program interrupts can occur in two states. If the CPU is in supervisor
state, the interrupt indicates a system failure in the CP nucleus and
causes the system to abnormally terminate. If the CPU is in problem
state, a virtual machine is executing. CP takes control te perform any
required paging operations to satisfy the exception, or to simulate the
instruction. The fault is transparent to the virtual machine execution.
Any other program interrupt is a result of the virtual machine
processing and is reflected to the machine for handling.

When a machine check occurs, the CP Recovery Management Support (RMS)
gains control to save data associated with the failure fer the Field
Engineer. RMS analyzes the failure to determine the extent of damage.

Damage assessment results in one of the following actions being
taken:

• System termination (with automatic restart)

• system termination (CP disabled wait state)

• Selective virtual user termination

• selective virtual machine reset

• Refreshing of
configuration

damaged information with no effect on system

• Refreshing of damaged information with the defective storage page
removed from further systems use.

• Error recording only for certain soft machine checks

The system operator is informed of all actions taken by the RftS
routines. When a machine check occurs during VM/370 startup (before the
system is sufficiently initialized to permit RftS to operate
successfully), the CPU goes into a disabled wait state and places a
completion code of X'OOB' in the high-order bytes of the current PSW.

When an SVC interrupt occurs, the SVC interrupt routine is entered. If
the machine is in problem mode, the type of interrupt (if it is other

186 IBft VM/370: System Programmer's Guide

than an SVC 76 or ADSTOP SVC) is reflected back to the pseudo-supervisor
(that is, the supervisor operating in the user's virtual machine).
Control is transferred to the appropriate interrupt handler for ADSTOP
SVCs and all SVC 76s.

~L the machine
determined, and a
handler.

is in supervisor mode,
branch is taken to the

the SVC interrupt code is
appropriate SVC interrupt

If a timer interrupt occurs, CP processes it according to type. The
interval timer indicates time slice end for the running user. The clock
comparator indicates that a specified timer event occurred, such as
midnight, scheduled shutdown, or user event reached.

The external console interrupt invokes CP processing tc switch from
the 3210 or 3215 to an alternate operator's console.

Part 2: Control Program (CP) 187

Functional Information

The functional diagraas that follow describe the prograa logic
associated with various control program functions. lot all CP functions
are described. These functional diagraas are aeant to describe the CP
functions about which you may want more detailed inforaaticn if you are
debugging, aodifying, or updating CP.

Figure 17 describes CP initialization process.

Figures 18 and 19 describe the real and virtual I/O control blocks
used by CP in its I/O control.

Figures 20, 21, and 22 show how CP handles SVC, external, and prograa
interrupts.

The CP paging function is described in Figure 23.

The CP spooling function (both virtual and real) is described in
Figures 24 and 25.

Figure 26 shows how virtual tracing is performed.

Figure 27 shows the steps involved in translating a virtual address
to a real address and gives an example of address translaticn.

The functional information contained in these diagrams is intended
for system programmers and IBft Field Engineering program support
representatives.

188 IBft Vft/370: System Programmer's Guide

~
GI
t1
c+

'"
(")
0
I:'
c+
t1
0
~
t1
0

I.Q
t1
GI
S

-(")
~ -
~

CO
1.0

()

~

H
I:'
c+
GI
N
GI
c+
o
I:'

INPUT---------------

RCHBLOK

INPUT--------------

INPUT

IDW.D""I

t'Dc,eo'l
RCUBLOKs

RDEVBLOKs

B

-IPL

PROCESS

IT OM"" '0 "'00'

DMKCKP
For a warm start

II- checkpoint active file chains >CJ u' ,,"",m ,»"m '''' m."~.· ---y-"-----"

OUTPUT-----

SEGTABLE

-----_._-HOM""

~MKSAV (DMKSAVRS entry POint)
ead copy of nucleu~

SEGPAGE PAGT.~~B~L~E~----------

D "0'<0' mOM""

DMKCPI

~~t~~I~Z~e:ti:~:ge and check TOO clock

Log on operator

Allocate Dump File
If warm start, perform that function'-.J----,..-------

Go to Dispatcher
Wait for work

I-----.:.=-~-..-

RCUBLOK

'CU"'j-[]

(j)
(")

'" o
I

co
o
..,J
I

W

w

~
~ 1-"
e I.Q

j:l

H
H It)
ttl
3:

CD
<
3:

" VJ ~
--.I It)
e ~
til H

t< " Ul 0
M-
It) n
s 0

t:I
It:! M-
H H
0 0

I.Q
H
~ ttl
S
S 0
It) 0
H X'

Ul
Ul

en
j:l

1-"
Q..
It)

The real machine configuration is represented by
a set of related control blocks. These blocks are:

• in the VM/370 nucleus
• built from macros during system generation
• loaded at system IPL and initialized then for

operation.
There is one control block per channel, per control
unit, and per device.
The characteristics of VM/370 real I/O control are:

• Block multiplexing (BMPX) with RPS (Rotational Position
Sensing) is used .

• Multi·path scheduling is not used.
• All I/O operations are handled by VM/370

scheduling and interrupt handling.

DMKRIOCT - real channel table1

11111~x -negative value (FFFF) ~
indicates that no channel exists

- positive value is an index
to the RCHBLOK .".

RCHBLOK - real channel block 1

Channel identification
Scheduling Control

XXXX)

XXXX

if negative (FFFF), no control
unit exists

if positive, that value is an
index to the RCUBLOK

Control Unit
Index Table

1 See IBM Virtual Machine Facility/370: Control Program (CP)

Control Unit identification
Scheduling Control

XXXX XXXX) Device
~--+----+----+----I Index

XXXX XXXX Table
~-~'----7~------~

if positive, that value is
an index to RDEVBLOK

Program Logic publication, SY20 - 0880, for a complete description of CP control blocks.

Relationship of Real I/O Control Blocks --------,

DMKRIOCT (part of DMKRIO)

RCUBLOKs RDEVBLOKs

n

RDEVBLOK real device block 1

Device identification
Scheduling Control
Terminal Control
Spooling Control

Dedicated Control
Error Recovery
Allocation Control

Part of the RDEVBLOK pertains to functions that ar e
device independent; that part of the RDEVBLOK is used
in the same way for all devices. However, some of the
fields in the RDEVBLOK have mUltiple uses, depending
on the device type and function.

n
o
t:S
c+
H
o
......

tU
H
o

IQ
H
I»
Iii

....
\0

<
H
c+
~
I»
......
H

" o
n
o
t:S
c+
H
o
......
tJ:t
......
o
n
~
Ul

The virtual machine configuration is represented by a set
of related control blocks. These blocks are:

• built by VM/370 at LOGIN from data in directory

• modified by user commands (for example, DETACH, LINK, DEFINE)
There is one control block per channel, per control unit, and per
device.

The characteristics of VM/370 virtual I/O control are:

• BMPX (block multiplexing) is supported
• RPS (rotational position sensing) is supported

• the virtual machine operating system performs scheduling
• VM/370 uses virtual I/O control blocks to

simulate real hardware interface

• virtual unit record devices use VM/370 Spooling
• virtual console is simulated on terminal

• minidisks simulate DASD
• dedicated devices are supported

VMCHTBL - virtual channel index table

VCHBLOK - virtual channel block 1

Channel identification

status

XXXX XXXX XXXX XXX~

XXXX XXXX XXXX XXXX

if negative (FFFFI. no control
unit exists

if positive, the value is an index
to the VCUBLOK

Relationship of Virtual I/O Control Blocks --,--------,-----

VCUBLOK - virtual control unit block 1

Control unit identification
status

XXX X XXXX XXXX XXXX

XXXX

if negative (FFFFI. no device

exists

if positive, the value is an index
to the VDEVBLOK

}

Device
Index
Table

VCUBLOKs VDEVBLOKs

n

VDEVBLOK - virtual device block 1

Device idimtification

Status pending
Positioning
Terminal control

Spooling control

RDEVBLOK Pointer

Part of the VDEVBLtJK contains device ind','pendent
information and is us,ed identically in all VDEVBLOKs.
However, some fields of the VDEVBLOKs have multiple
uses, depending on the device type.

1 See the IBM Virtual Machine racility/370: ~
Control Program rCP) Program Logic publication, SY20 - 0880,
for a detailed description of the CP control blocks

"'IiI
IQ
~
11
en
N
0

..--INPUT
VI

I < GR 1 I I GR 2 I n
H

FOR SVC 76 t:S
c+
en
11 .--

0
11
~ SVC

't:I OLD
c+ PSW

tIl L--

I»
t:S
0. VMBLOK
t:S

IQ

I A (CALLED ROUTINE) I I---'"

.---INPUT------,~
GR15 /

v

I
SVC Interrupt

1---------Process--------......

If PROBLEM MODE

• And ADSTOP SVC, simulate 'ADSTOP' to
virtual machine

• And an SVC 76, verify the parameters and
call DMKVER to build the error record."

• And virtual machine is in e)(tended WI'
mode and/or Page 0 is not in storage,
reflect interrupt to virtual machine

• Otherwise, fetch Page 0, move CP PSW
to virtual SVCOPSW, and move SVCNPSW
to the CP PSW

• If supervisor mode, run user·LPSW

If SVC 0 (Impossible condition or fatal error),

dump the machine

If SVC 8 (Link Request), __

pass control from one module to another

If SVC 12 (Return Request),
return control to calling module

If SVC 16, release Save Area _

If SVC 20, get next save area for
calling module

~>
v

r--OUTPUT

VMBLOK User Page

[] PSA

SVCOLD PSW

RUNPSW 1

SVC NEW PSW
V

..... E=J ~ Caller's return
.I GR 13' address and

V base regIster
v

I I
SAVE AREA OF

MODULE CALLED

SAVE AREA OF CALLING
MODULE

If DMKPSA determines that the SVC 76
parameters are valid, it calls DMKVER to budd the
error record. I f the parameters are not val id or d
DMKVER cannot build the errOr record, DMKPSA
reflects the SVC back to the virtual machIne. I f the
error record is recorded, DMKVER gives control to
the dispatcher with the user's running status set to
return to the next sequential instruction followll1g

the SVC 76 .

• .., A new save area is acquired
and passed on. The caller's addressability
register (R 12), the save area address (R 13),
and the return address (SVCOPSW) are
saved in the new save area.

Control is returned to module issuing
SVC 16, rather than to calling module
as in SVC 12.

e Return is to module issuing SVC 20.

n
o
I:'
r+
11
o
~

tt:I
11
o

IQ
11
~
EI

External Interrupt

Process--~

OUTPUT ----.....
If TOO clock comparator interrupt

• unchain from TOO clock comparator VMBLOK
INPUT----------------------~ • queue the re,lated TRQBLOK

PSA (Prefix Storage Area)

VMBLOK

VMTERM ~ RDEVBLO

• place on dispatch queue GO TO
• set new clock comparator request ~ DISPATCHEFI

If CPU timer interrupt;..-------

VMGPRS

• flag running user to be dropped from queue VMFPRS

If a Timer interrupt

• if supervisor mode, ignore Timeelr:i:n~te:r:rL::IP:t~~~~~~~~~~=~~~~~~~~~=~>F;V~M~PSW
• otherwise, save machine status: VMOSlf'AT

If interrupt from the Console Interrupt Button (External)
• Set the disconnect flag in VMBLOK
• Halt any outstanding I/O
• Clear any outstanding console requests

K (for
operator)

• If the running user was not interrupted,
resume where left off by LPSW of External old PSW ~

• Otherwise --_____ _

•

GO TO
DISPATCHER

External interrupt from control panel is used to disconnect
the system operator's terminal. The system operator may
reconnect at any other terminal via the LOGON command.

VMBLOK

VMOSTAT

X'lO'

VMTERM

X'OO'

"'Id
1.0 1-"
-'= ~

~
H

1-1 (I)

tx:I
3: IV

IV
<
3:

" W tU
-J H
0 0

~
H

CIl III
'"< a
Ul
~ H
(I) I:'
a ~

(I)

't! H
H H
0 ~
~ '"tj
H ~
III
a ::.t:
a I»
(I) I:'
H P-.....
Ul 1-"

I:'
G"l ~
~
1-"
P-
(I)

INPUT-----------,

Program Old PSW

PSA

VMBLOK

•
This is the entry point

to reflect SVC interrupts
(when DMKPSASV could not
reflect it) and to reflect
privileged instructions that
cannot be simulated by
DMKPRVLG

e. Invalid operation code
is in GR O. The VMINST
field of the VMBLOK contains
the image of the privileged
instruction that caused the
interrupt

•

I
Program Interrupt

~-,----------.----- Process

Determine machine mode and cause of interrupt

If in supervisor mode, go to DMKDMPDK to take CP dump ------r------------.......

If invalid operation, go to DMKPRGHF routine ,~
GO TO

DMKPRGRF '-------

If recognizable privileged instruction,
simulate it _______ ' ____________ ---,, _______ -,......

If privileged instruction is not recognized,
issue SVC 0 and dump CP --.::..--..:.-=:..---------~

If paging exception, call DMKPTRAN to

bring page with requested address
into real storage.

If program interrupt occurs in virtual
problem mode, reflect the
interrupt back to the virtual
machine _________________ _

OUTPUT-------------------,

Virtual Storage

VMPSW

VMINST

D
SWPTABLE

OUTPUT-------------------,

User's Page 0

VMPSW

VMINST

(')
o
=='
r+
11
o
~

~
11
o

\Q
11
I»
a

1.0
U1

• Request For
Real Storage

INpUT------------------------------~
GR 2 REQUEST GPRl

I Virtual Address ------------>
~---------------~~--------------PROCESS------­

Translate address

CORTABLE

SWPTABLE

PAGTABLE

PAGCORE
real page
address

INPUT----~

PAGING

DEVICE

• Bits defined for CORFLAG

CORIOLCK EQU X'SO' Page locked for I/O

CORCFLCK EQU X'40' Page locked by console function

CORFLUSH EQU X'20' Page is in flush list

CORFREE EQU X'10' Page is in free list

CORSHARE EQU X'OS' Page is shared

CORRSV EQU X'04' Page is reserved

CORDISA EQU X'Ol' Page disabled - not available

YES
Is requested page already in storage? • NO

~
Determine page selection

r- OUTPUT -.,--------_

r----__ -Is page available from lists? YES.

FREELIST

FLUSHLIST

USER LIST

• /' _.-

NO ,
PAGII\~G

Release pages...... DEVICE _________ ~~---~--.---L--"'~~
Allocate DASD space '
Schedule page I/O
Mark page free

I

Lock - if requested
Form address

_.

•................... GR 2 Real Address Return to requester r--
.~: I

• Bits defined for SWPFLAG

SWPTRANS EQU X'SO' Page in transit

SWPRECMP EQU X'40' Page permanently assigned

SWPALLOC EQU X'20' Page enqueued for allocation

SWPSHR EQU X'10' Page shared

SWPREFl EQU X'OS' 1 st half page referenced

SWPCHGl EQU X'04' 1st half page changed

SWPREF2 EQU X'02' 2nd half page referenced

SWPCHG2 EQU X'Ol' 2nd half page changed

toll!
~
0'1 I.Q

c:
1-1

~ (t)
Il'
til N

~
<:
til
"-W <:
-..J
0 11

rt-
c:

til ~
~ ~
Ul
rt- til
(t) "1:j

EI 0
0

tt:I ~
1-1
0 :::s

\Q \Q
1-1
~
EI
EI
(t)

1-1

Ul

(j')
c:
Q"
(t)

•

INPUT

GR 2

Virtual CAW

Virtual Storage

VDEVBLOK

VDEVSPL

VDEVCSW

~
SIO From Virtual

Machine
____________ PROCESS ________________ ~

DMKVSP

If spool file not open,
create VSPLCTL
get virtual buffer
save data in VSPLCTL

If Printer, Punch, or Console •
get a work buffer
get virtual CCW
move logical record I[CCW and data) from

spool buffer to work buffer

move data to user's data area
post 'interrupt' pendiing and return to virtual machine

If a Card Reader
get a work buffer
get virtual CCW
move logical record (CCW and data) from

spool buffer t() work buffer

move data to virtual data area
post 'interrupt' pending and return to virtual machine .

Virtual console spooling is the same as printer spooling except that: DMKDSPCH

• A skip to channel one CCW is inserted every 60 lines of output
• The operator's virtual console spool buffer is written for every 16 lines of output
• The Virtual spool buffer is written to the allocated spool device when the first CCW is

placed in the Virtual buffer. The buffer is kept in a pseudo closed state so that checkpoint
saves the buffer in the event of a system failure.

OUTPUT--------------------~

Real Storage

VYORK

Free
Storage
Area

User's virtual machine
page containing the Data Area

n
o
::s
r+
H
o
I-'

I't:l
H
o

\Q
H
~
S

INPUT FOR PUNCH/PRINTER

RDEVBLOK

INPUT FOR READER

10BLOK

~

• Interrupt From
Spool Device

--.-- PROCESS ----------,

Find nonbusy unit record device

Find SFBLOK for that device type

Create RSPLCTL block and chain it to RDEVBLOK

Remove SFBLOK from chain and chain it to RSPLCTL

Get virtual Duffer and read DASD page

Reconstruct CCWs in data page

Create 10BLOK and chain CCWs to 10BLOK

Schedule I/O operation

When there is an interrupt from the
unit-record device, get next DASD
page -from chain

,...------ OUTPUT FOR PUNCH/PRINTER .-----..,

RDEVBLOK
10BLOK

RDEVSTAT 1+J RDEVTYC

RDEVSPL ~

SPUNK

~_C.....;C.....;W....:.s_[I§
Data

CCWs TIC

Data

C=:J
OR

1------------OUTPUT FOR READER -------------i

Real Stor.lge

DASD Auxiliarv Storage

SPOOL BUFFER

.... ~
\D
<Xl \Q

~
H

H CD
txt
3: tv

0\
<
3:

........ INPUT W <
....J
0 H

r+
TRACE XXX

~
til I»
'< I-' VMBLOK
[Jl
r+ 1-3
CD H
B I»

0 VMTRCTL
It:!
H I:' VMTREXT
0 \Q

\Q
H
I»
B
B
CD
H

[Jl

en
~
P-
CD

Entered From DMKCFM
After 'TRACE' Command
Entered

_D_M_KT_R_A ___ PROCESS ______ • ___ -,

Pick up operands and options and check for validity

If 'OFF' specified, turn off flags1
If 'END' specified, call ,

DMKTRCPBto restore any instructions
altered by TRACE, turn off flags, and'
return TREXT block to free storage

Otherwise,
Issue 'TRACE STARTED' message

Get trace control block and set VMBLOK 15
pointer to it, if a trace control block does'
not exist. Set trace flags. Call DMKTRCIT to
initialize branch or full instruction tracing,
if

Entry via SVC 8 e
------PROCESS-------------~

Put trace prefix and type in output line
Convert binary addresses to hexadecimal (DMKCVT)
Get mnemonic for OP code, if applicable (DMKNEM)
Write trace line to output dt'llice

If ATTN was pressed or if halt after trace line was specified

enter console function mode and exit .1IIi ~j
Otherwise ••••••

Entered from DMKCFM after
• ADSTOP' command entered

DMKCFDAD

Get work buffer
Set VMBLOK pointer
Save instruction and its virtual address
Replace instruction with SVC B3 •••••• ~.

OUTPUT-----------------~

VMBLOK

VMTREXT V--
VMTRCTL I--- equal

TREXT

TREXCTLl

TREXCTL2

TREXTERM

TREXPRNT

TREXRUNF

e
COMMENTS

If this turns off the last flag, then the TREXT block
is returned to free storage. If branch and instruction
tracing are both turned off, DMKTRCPB is called
to put back any instructions altered by TRACE.

VMTRCTL and TREXCTL 1 are identical.

A Entry via SVC 8 as follows
V Entry Point From

External Interrupt DMKTRCEX DMKDSP
I/O Interrupt DMKTRCIO DMKDSP
Program Interrupt
Privileged Instructions
I/O Operations
Virtual and Real CSWs
SVC, branch Or full

instruction trace

DMKTRCPG DMKPRG
DMKTRCPV DMKPRV
DMKTRCSI DMKVIOEX
DMKTRCSW DMKVIOIN
DMKTRCSV DMKPSA

Restore user instructions DMKTRCPB DMKTRA
altered by tracing

Initialize instruction tracingi DMKTRCIT DMKTRA

r---------- OUTPUT----------.,

n
o
t:l
t+
t1
o
.....
I'tI
t1
o

IQ
t1
~
II

-n
I'tI -

Virtual Address

•
LOCATE THE
SEGMENT TABLE

Segment Table Register (CR 1)

31

Page Table

•
LOCATE PAGE
TABLE

• USE AS INDEX
TO PAGE TABLE
ENTRY

Example

Translate Virtual Addmss 00080424 to Real Address

/
(
I
I
I
I
I
I
I
I

Virtual Address

~I---T--+------t

I i

•
Locate the appropriate Segment Table 1/
entry - The eighth entry in !

the Segment Table at location 014440 I £..
This entry points to the Page Table. /

•
Locate the appropriate Page Table entry __ /1
The 13th entry in the Page Table at _ _ .J r,--'-2---,

. 01 424 = Real Address
location 014440. This entry contains JI"'-----.....
the real block number. / Block Displacement

•
The block number in the Page __ J
Table entry and the displacement in

./ Number

the Virtual AddrHss combine to provide the Real Address

GENERAL INFORftATION

The performance characteristics of an operating system when it is run in
a virtual aachine environment are difficult to predict. This
unpredictability is a result of several factors:

• The System/370 aodel used.

• The total number of virtual machines executing.

• The type of work being done by each virtual machine.

• The speed, capacity, and number of the paging devices.

• The amount of real storage available.

• The degree of channel and control unit contention, as well as arm
contention, affecting the paging device.

• The type and nuaber of Vft/370 performance options in use by one or
more virtual machines.

Performance of any virtual machine may be improved up
by the choice of hardware, operating system and Vft/370
topics discussed in this section address:

to some limit
options. The

1. The performance options available in Vft/370 to improve the
performance of a particular virtual machine.

2. The system options and operational characteristics of operating
systems running in virtual machines that will affect their
execution in the virtual aachine environment.

The performance of a specific virtual machine may never equal that of
the same operating system running standalone on the same system/370, but
the total throughput obtained in the virtual machine environment may
equal or better that obtained on a real aachine.

When executing in a virtual machine, any function that cannot be
performed wholly by the hardware causes some degree of degradation in
the virtual machine's performance. As the control program for the real
machine, CP initially processes all real interrupts. A virtual aachine
operating system's instructions are always executed in Eroblem state.
Any privileged instruction issued by the virtual machine causes a real
privileged instruction exception interruption. The amount of work to be
done by CP to analyze and handle a virtual machine-initiated interrupt
depends upon the type and coaplexity of the interrupt.

The simulation effort required of CP may be trivial, as for a
supervisor call (SVC) interrupt (which is generally reflected back to
the virtual machine), or may be more complex, as in the case of a start
I/O (SIO) interrupt (which initiates extensive CP processing).

When planning for the virtual machine environaent, consideration
should be given to the number and type of privileged instructions to be
executed by the virtual machines. Any reduction in the number of
privileged instructions issued by the virtual machine's operating system
will reduce the amount of extra work CP must do to support the machine.

200 IBft Vft/370: systea Prograa.er's Guide

VIRTUAL "ACHINE I/O

To support I/O processing in a virtual machine, CP must translate all
virtual machine channel command word (CCW) sequences to refer to real
storage and real devices and, in the case" of minidisks, real cylinders.
When a virtual machine issues an 510, CP must:

1. Intercept the virtual machine 510 interrupt.

2. Allocate real storage space to hold the real CCW list to be
----~-~ ~~~Q~~U.

3. Translate the virtual device addresses referred to in the virtual
CCws to real addresses.

4. Page into real storage and
operation all virtual storage
operation.

lock for the duration of the I/O
pages required to support the I/O

5. Generate a new CCW sequence building a Channel Indirect Data
Address list if the real storage locations cross page boundaries.

6. Schedule the I/O request.

7. Present the SIO condition code to the virtual machine.

8. Intercept, retranslate, and present the channel end and device end
interrupts to the appropriate virtual machine, where they aust then
be processed by the virtual machine operating system.

CP's handling of SIOs for virtual machines can be one of the most
significant causes of reduced performance in virtual machines.

The number of SIO operations required by a virtual aachine can be
significantly reduced in several ways:

• Use of large blocking factors (of up to 4096 bytes) for user data
sets to reduce the total number of SIOs needed.

• Use of preallocated data sets.

• Use of virtual machine operating system options (such as chained
scheduling in OS) that reduce the number of 510 instructions.

• substitution of a faster resource
operations, by building small temporary
rather than using an I/O device.

(virtual storage) for I/O
data sets in virtual storage

Frequently, there can be a performance gain when CP paging is
substituted for virtual aachine I/O operations. The performance of an
operating system such as as can be improved by specifying as resident as
many frequently used as functions (transient subroutines, IS A" indexes,
and so forth) as are possible. In this way, paging I/O is substituted
for virtual machine-initiated I/O. In this case, the only work to be
done by CP is to place into real storage the page which contains the
desired routine or data.

Two CP performance options are available to reduce the CP overhead
associated with virtual aachine I/O instructions or other privileged
instructions used by the virtual machine's I/O supervisor:

Part 2: Control Prograa (CP) 201

1 • The virtual=real option removes the need
reference translation and paging before
specific virtual .achine.

for CP to perform storage
each I/O operation for a

2. The virtual machine assist feature reduces the real supervisor
state time used by VM/370. It is available as a hardware feature
on the System/370 Models 135, 145, and 158, and as an RPQ on the
Model 168.

Assignment and use of these options is discussed in "Preferred
virtual M~chines."

PAGING CONSIDERATIONS

When virtual machines refer to virtual storage addresses that are not
currently in real storage, they cause a paging exception and the
associated CP paging activity.

The addressing characteristics of programs executing in virtual
storage have a significant effect on the number of page exceptions
experienced by that virtual machin~. Routines that have widely
scattered storage referenced tend to increase the paging load of a
particular virtual machine. When possible, modules of cede that are
dependent upon each other should be located in the same page. Reference
tables, constants, and literals should also be located near the routines
that use them. Exception or error routines that are infrequently used
should not be place within main routines, but located elsewhere.

When an available page of virtual storage contains only reenterable
code, paging activity can be reduced, since the page, altheugh referred
to, is never changed, and thus does not cause a write operation to the
paging device. The first copy of that page is written on the paging
device when that frame is needed for some other more active page. Only
inactive pages that have changed must be paged out.

Virtual machines that reduce their paging activity by controlling
their use of addressable space improve resource management for that
virtual machine, the VM/370 system, and all other virtual machines. The
total paging load that must be handled by CP is reduced, and more time
is available for productive virtual machine use.

CF provides three performance options, locked pages, reserved page
frames, and a virtual=real area, to reduce the paging requirements of
virtual machines. Generally, these facilities require some dedication
of real storage to the chosen virtual machine, and therefore improve its
performance at the expense of other virtual machines.

The LOCK command, which is available to the system operator (with
privilege class A), can be used to permanently fix or lock specific user
pages of virtual storage into real storage. In doing so, all paging I/O
for these page frames is eliminated.

Since this facility reduces total real storage resources (real page
frames) that are available to support other virtual machines, only
frequently used pages should be locked into real storage. Since page
zero (the first 4096 bytes) of a virtual machine storage is referred to
and changed frequently (for example, whenever a virtual machine

202 IBM VM/370: System Programmer's Guide

interrupt occurs or when a CSW is stored), it should be the first page
of a particular virtual machine that an installation considers locking.
The virtual machine interrupt handler pages might also be considered
good candidates for locking.

other pages to be locked depend upon the work being done by the
particular virtual machine and its usage of virtual storage.

The normal CP paging mechanism selects unreferenced page frames in
real storage for replacement by active pages. Un referenced page frames
are those whose contents have not been referred to during the last 50
milliseconds. page frames belonging to inactive virtual machines will
all eventually be selected and paged out if the real storage frames are
needed to support active virtual machine pages.

When virtual machine activity is initiated on an infrequent or
irregular basis, such as' from a remote terminal in a teleprocessing
inquiry system, some or all of its virtual storage may have been paged
out before the time the virtual machine must begin processing. Some
pages will then have to be paged in so that the virtual machine can
respond to the teleprocessing request compared to running the same
teleprocessing program on a real machine. This paging activity may cause
an increase in the time required to respond to the request compared to
running the teleprocessing program on a real machine. Further response
time is variable, depending upon the number of paging operations that
must occur.

Locking specific pages of the virtual machine's program into real
storage may ease this problem, but it is not always easy or possible to
identify which specific pages will always be required.

A more flexible approach than locked pages is the reserved page frames
option. This option provides a specified virtual machine with an
essentially private set of real page frames, the number of frames being
designated by the system operator, when he issues the CP SET RESERVE
command line~ Pages will not be locked into these frames~ They can be
paged out, but only for other active pages of the same virtual machine.
When a temporarily inactive virtual machine having this option is
reactivated, these page frames are immediately available. If the
program code or data required to satisfy the request was in real storage
at the time the virtual machine became inactive, no paging activity is
required for the virtual machine to respond.

This option is usually more efficient than locked pages in that the
pages that remain in real storage are those pages with the greatest
amount of activity at that moment, as determined automatically by the
system. Although multiple virtual machines may use the LOCK option,
only one virtual machine at a time may have the reserved page frames
option active. Assignment of this option is discussed further in
"Preferred Virtual Machines."

The reserved page frames option provides performance that is
generally consistent from run to run with regard to pag1ng activity.
This can be especially valuable for production-oriented virtual machines
with critical schedules, or those running teleprocessing applications
where response times must be kept as short as possible.

Part 2: Control Program (CP) 203

The VM/370 virtual=real option eliminates CP paging for the selected
virtual machine. All pages of virtual machine storage, except page
zero, are locked in the real storage locations they would use on a real
computer. CP controls real page zero, but the remainder of the CP
nucleus is relocated and placed beyond the virtual=real machine in real
storage. This option is discussed in more detail in "Preferred virtual
Machines."

since the entire address space required by the virtual machine is
locked, these page fra.es are not available for use by other virtual
machines except when the virtual=real machine is not logged on. This
option often increases the paging activity for other virtual machine
users, and in some cases for VM/370. (Paging activity on the system may
1ncrease substantially, since all other virtual machine storage
requirements must be managed with fewer remaining real page frames.)

The virtual=real option may be desirable or mandatory in certain
situations. The virtual=real option is desirakle when running a virtual
machine operating system (like DOS/VS or OS/VS) that performs paging of
its own because the possibility of double paging is eliminated. The
option must be used to allow programs that execute self-modifying
channel programs or have a certain degree of hardware ti.ing
dependencies to run under VM/370.

PREFERRED VIRTUAL MACHINES

VM/370 provides five functions that create a special virtual machine
environment:

• Favored execution
• Priority
• Reserved page frames
• Virtual=real option
• virtual machine assist

The first four functions are designed to improve the performance of a
selected virtual machine; the last function improves the performance of
VM/370. Although each of the first four functions could be applied to a
different virtual machine, usually they are applied to only one if
optimum performance is required for that one specific virtual machine.
The fifth function can be applied to as many virtual machines as
desired.

The favored execution options allow an installation to modify the normal
scheduling algorithms and force the system to devote more of its CPU
resources to a given virtual machine than would ordinarily be the case.
The options provided are:

1. The basic favored execution option.

2. The favored execution percentage option.

The basic favored execution option means that the virtual machine so
designated is not to be dropped from the active (in queue) subset by the

204 IBM VM/370: System Programmer's Guide

scheduler, unless it becomes non-executable. When the virtual machine is
executable, it is to be placed in the dispatchable list at its normal
priority position. However, any active virtual machine represents
either an explicit or implicit co.mitment of main storage. An explicit
storage commitment can be specified by either the virtual=real option or
the reserved page frames option. An implicit commitment exists if
neither of these options is specified, and the scheduler recomputes the
virtual machine's projected work-set at what it would normally have been
at queue-drop time. Multiple virtual machines can have the basic
favored execution option set. However, if their combined main storage
requirements exceed the system's capacity, performance can suffer
because of thrashing.

If the favored task is highly compute bound and must compete for the
CPU with many other tasks of the same type, an installation can define
the CPU allocation to be made. In this case, the favored execution
percentage option can be selected for one virtual machine. This option
specifies that the selected virtual machine, in addition to remaining in
queue, is guaranteed a specified minimum percentage of the total CPU
time, if it can use it. The favored execution option can only be
invoked by a system operator with command privilege class A. The format
of the command is as follows:

r ,
SET FAVORED userid Inn I

10FFI
l ~

userid identifies the virtual machine to receive favored execution
status.

nn is any value from 1 through 99 and specifies the percentage
of the in-queue time slice that is guaranteed to this
virtual machine.

OFF specifies that the virtual machine is to be removed from
favored execution status.

The percentage option of the SET FAVORED command is administered as
follows:

1. The in-queue time slice is multiplied by the specified percentage
to arrive at the virtual machine's guaranteed CPU time.

2. The favored virtual machine, when it is executable, is always
placed at the top of the dispatchable list until it has obtained
its guaranteed CPU time.

3. If the virtual machine obtains its guaranteed CPU time before the
end of its in-queue time slice, it is placed in the dispatchable
list according to its calculated dispatching priority.

4. In either case (2 or 3), at the end of the in-queue time slice the
guarantee is recomputed as in step 1 and the process is repeated.

Whether or not a percentage is specified, a virtual machine with the
favored execution option active is kept in the dispatching queues except
under the following conditions:

Part 2: Control Program (CP) 205

• Entering CP console function mode
• Loading a disabled PSW
• Loading an enabled PSW with no active I/O in process
• Logging on or off

When the virtual machine becomes executable again, it is put back on the
executable list in 01. If dropped from 01, the virtual machine is
placed directly in 02 and remains there even though it may exhaust its
allotted amount of CPU usage. virtual machine with this option are thus
considered for dispatching more frequently than other virtual machines.

Note, however, that these options, can impact the response time of
interactive users and that only one favored percentage user is allowed
at any given tiae.

The VM/370 operator can assign specific priority values to different
virtual machines. In doing so, the virtual machine with a higher
priority is considered for dispatching before a virtual machine with a
lower priority. User priorities are set by the following class A
command:

SET PRIORITY use rid nn

where userid is the user's identification and nn is an integer value
from 1 to 99. The value of nn affects the user's dispatching priority
in relation to other users in the system. The priority value (nn) is
one of the factors considered in VM/370's dispatching algorithm.
Generally, the lower the value of nn, the more favorable the user's
position in relation to other users in VM/370's dispatch queues.

VM/370 uses chained lists of available and pageable pages. Pages for
users are assigned from the available list, which is replenished from
the pageable list.

Pages that are temporarily locked in real storage are not available
or pageable. The reserved page function gives a particular virtual
machine an essentially "private" set of pages. The pages are not
locked; they can be swapped, but only for the specified virtual machine.
Paging proceeds using demand paging with a "reference bit" algorithm to
select the best page for swapping. The number of reserved page frames
for the virtual machine is specified as a maximum. The page selection
algorithm selects an available page frame for a reserved user and marks
that page frame "reserved" if the maximum specified for the user has not
been reached. If an available reserved page frame is encountered for the
reserved user selection, it is used whether or not the maximum has been
reached.

The maximum number of reserved page frames is specified by a class A
command of the following format:

SET RESERVE userid xxx

where xxx is the maximum number required. If the page selection
algorithm cannot locate an available page for other users because they

206 IBM VM/370: System Programmer's Guide

are all reserved, the algorithm forces the use of reserved pages. This
function can te specified in only one virtual machine at anyone time.

!gte: xxx should never approach the total available pages, since CP
overhead is substantially increased in this situation, and excessive
paging activity is likely to occur in other virtual machines.

For this option, the VM/370 nucleus must be reorganized tc provide an
area in real storage large enough to contain the entire virtual=real
machine. In the virtual machine, each page from page 1 to the end is in
its true real storage location; only its page zero is relocated. The
virtual machine is still run in dynamic address translaticn mode, but
since the virtual page address is the same as the real page address, no
ccw translation is required. Since CCW translation is not performed, no
check is made to ensure that I/O data transfer does not occur into page
zero or any page beyond the end of the virtual=real machine's storage.

systems that are generated with the virtual=real option use the
system loader (DMKLDOOE). See the !~L370: R!~~~!~g and Sys1!~
~!~!I~1!Q~ ~y!g~ for information about generating a virtual=real
system.

Figure 28 is an example of
virtual=real option.

a real storage layout with the

Real storage
Addresses

r---------------------------------------__ . OK
CP PAGE 0 (MODULE DMKPSA) 1

---------------------------------------1 4K
Virtual Page 1 virtual Page 2 1

-------------------------------------1
VIRTUIL=REIL IREI

/ /
/ SIZE = 128K BYTES /
1 (Minimum size is r-------------------I
1 32K bytes.) Virtual Page 0 1
I I 132K (DMKSLC)
I I
/ REMAINDER OF CP NUCLEUS /
/ /
I I
I I End of CP Nucleus (DMKCPE)
I I
/ DYNAMIC PAGING AREA /
/ and /
I FREE STORAGE I
~--------------------------------------~I 512K (End of real storage)

Figure 28. Storage in a virtual=Real Machine

There are several considerations for the virtual=real option that
affect overall system operation:

Part 2: Control Program (CP) 207

a. The area of contiguous storage built for the virtual=real
machine must be large enough to contain the entire addressing
space of the largest virtual=real machine. The virtual=real
storage size that a V~/370 system allows is defined during
system generation when the option is selected.

b. The storage reserved for the virtual=real machine can only be
used by a virtual machine with that option specified in the
V~/370 directory. It is not available to other users for paging
space, nor for V~/370 usage until released from virtual=real
status by a system operator via the CP UNLOCK command. Once
released, V~/370 must be loaded again before the virtual=real
option can become active again.

c. The virtual machine with the virtual=real option operates in
the pre-allocated storage area with normal ccw translation in
effect until the CP SET NOTRANS ON command is issued. At that
time, all subsequent I/O operations are performed from the
virtual CCWs in the virtual=real space without translation. In
this mode, the virtual machine must not perform I/O operations
into page zero, nor beyond its addressable limit. Violation of
this requirement may cause damage to the V~/370 system and to
other virtual machines.

d. since no CCW translation is being perfomed for virtual machine
I/O when NOTRANS is ON, virtual machines cannot use minidisks
while operating in this mode.

e. If the virtual=real machine performs a virtual reset or IPL,
then the normal CCW translation goes into effect until the CP
SET NOTRANS ON command is again issued. This permits
simulation of an IPL sequence by CP. only the virtual=real
virtual machine can issue the command. A message is issued if
normal translation mode is entered.

The virtual machine assist feature is a combination of a CPU feature and
V~/370 programming. It improves the performance of V~/370. Virtual
storage operating systems which run in problem state under the control
of V~/370 use many privileged instructions and SVCs that cause
interrupts which V~/370 must handle. When the virtual machine assist
feature is used, many of these interrupts are intercepted and handled by
the CPU; and, consequently, V~/370 performance is improved.

The virtual machine assist feature is available with System/370
~odels 135, 145, and 158. It intercepts and handles interruptions
caused by SVCs (other than SVC 76), invalid page conditions, and several
privileged instructions. An SVC 76 is never handled by the assist
feature; it is always handled by CP. The processing of the following
privileged instructions are handled by this feature:

LRA
STCTL
RRB
ISK
SSK
IPK

(load real address)
(store control)
(reset reference bit)
(insert storage key)
(set storage key)
(insert PSW key)

208 IB~ V~/370: System Programmer's Guide

GC20-1807-3 Page Modified by TNL GN20-2662; March 31; 1975

STNSM
STOSM
SSM
LPSW
SPKA

(store then and system mask)
(store then or system mask)
(set system mask)
(load PSW)
(set PSW key from address)

Although the assist feature was designed to improve the performance
of VMj370, virtual machines may see a performance improvement because
more resources are available for virtual machine users.

Q§l!~ lB~ Y1R1Q!b ~!£B!!~ !~§!~1 f~!±Q~~: Whenever you IPL VM/370 on a
CPU with the virtual machine assist feature, the feature is available
for all VMj370 virtual machines. However, the system operator's SET
command can make the feature unavailable to VMj370, and subsequently
~vailable again. The fnrmat of ~he ~y~~em operator's ~ET ~nmman~ is:

SET ASSIST {ON }
OFF

If you do not know if the virtual machine assist feature is available
to VMj370, use the class A and E QUERY command. See the Y~LJIQ:
QE~E~!QE~§ Q~lg~ for a complete description of the QUERY and SET
commands.

If the virtual machine assist feature is available to VMj370 when you
log on your virtual machine, it is also supported for your virtual
machine. If your VMj370 directory entry has the SVCOFF option, the SVC
handling portion of the assist feature is not available when you leg on.
The class G SET command can disable the assist feature (or only disable
SVC handling). It can also enable the assist feature, or if the assist
feature is available, enable the SVC handling. The format of the
command is:

SET ASSIST {ON } {SVC }
OFF NOSVC

You can use the class G QUERY SET command line to find if you have full,
partial, or none of the assist feature available. See the Y~LJIQ:
~g!!~Bg b~B~Y~~~ QYlg~ !QE §g~~E~l Q§gE§ for a complete description of
the QUERY and SET commands.

RESTRICTED USE OF THE VIRTUAL MACHINE ASSIST FEATURE: Certain interrupts
must-be--handled-by--VM/370:- consequently;- the-assist feature is not
available under certain circumstances. VM/370 automatically turns off
the assist feature in a virtual machine if it:

• Has shared segments.
• Has an instruction address stop set.

I • Traces SVC and program interrupts.

If you IPL a virtual machine operating system that has shared
segments, the assist feature is automatically turned off. For example,
if you IPL CMS by system name, it has a shared segment and the assist
feature is turned off. If you issue the QUERY SET command line, the
response will indicate the feature is off. If you later IPL an
operating system that can run with the assist feature, CP turns the
assist feature on again. However, if you IPL CMS by disk address, it
does not have a shared segment and the assist feature is left on.

Part 2: Control Program (CP) 209

GC20-1807-j Page Modified by TNL GN20-2662, March 31, 1975

since an address stop is recognized by an SVC interrupt, VM/370 must
handle SVC interrupts while address stops are set. Whenever you issue
the ADS TOP command, VM/370 automatically turns off the SVC handling
portion of the assist feature for your virtual machine. The assist
feature is turned on again after the instruction is encountered and the
address stop removed. If you issue the QUERY SET command line while an
address stop is in effect, the response will indicate that the SVC
handling portion of the assist feature is off.

Whenever a virtual machine issues a TRACE command with the SVC, PRIV,
BRANCH, INSTRUCT, or ALL operands, the virtual assist feature is
automatically turned off for that virtual machine. The assist feature
is turned on again when the tracing is completed. If the QUERY SET
command line is issued while SVCs or program interrupts are being
traced, the response will indicate the assist feature is off.

THE VIRTUAL BLOCK MULTIPLEXER CHANNEL OPTION

Virtual machine SIO operations are simulated by CP in three ways:
byte-multiplexer, selector, and block multiplexer channel mcde.

virtual byte-multiplexer mode is reserved for I/O operations that
apply to devices allocated to channel zero.

Selector channel mode, the default mode, is the mode of operation for
any channel that has an attached Channel to Channel Adapter (CTCA) ,
regardless of the selected channel mode setting (the CTCA is treated as
a shared control unit and therefore it must be connected to a selector
channel). The user need not concern himself as to the location of the
CTC! since CP interrogates the related channel linkage and marks the
channel as being in selector mode. As in real selector channel
operations, CP reflects a busy condition (condition code 2) to the
virtual machine's operating system if the system attempts a second SIO
to the same device, or another device on the same channel, before the
first SIO is completed.

Block multiplexer channel mode is a CP simulation of real block
multiplexer operation; it allows the virtual machine's operating system
to overlap S10 requests to multiple devices connected to the same
channel. The selection of block multiplexer mode of operation may
increase the virtual machine's through-put, particularly for those
systems or programs that are designed to use the block multiplexer
channels.

Note: CP simulation of block multiplexing does not reflect channel
avaIlable interruptions (CAls) to the user's virtual machine.

Selecting the channel mode of operation for the virtual machine can
be accomplished by either a system generation DIRECTORY OPTION operand
or by use of the CP DEFINE command.

210 IBM VM/370: System Programmer's Guide

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

Performance Observation and Analysis

Two commands, INDICATE and MONITOR, provide a way to dynamically measure
system performance.

1!]1~!1]: Provides the system analyst and general user with a method to
observe the load conditions on the system while it is running.

~g!!1g~: Provides the system analyst and the system operator with a data
collection tool designed for sampling and recording a wide range of
data. The collection of data is divided into functional classes. The
different data collection functions can be performed seoaratelv or
concurrently. Keywords in the MONITOR command enable the collection of
data and identify the various data collection classes. Other keywords
control the recording of collected data on tape for later examination
and reduction.

The INDICATE command allows the system operator to check
persistently heavy loads. He can therefore judge when
apply additional scheduling controls (if appropriate) or
analyst to perform an analysis of the condition by using
and MONITOR commands.

the system for
it is best to
call a system
the INDICATE

The system analyst has a set of operands in the INDICATE command
which enable him to understand the basic utilizations of and contentions
for major system resources (possible bottleneck conditions) and to
identify the userids and characteristics of the active users and the
resources that they use.

Virtual machine users can use the INDICATE command to observe the
basic smoothed conditions of contention and utilization of the primary
resources of CPU and storage. The INDICATE command allows them to base
their uSe UI ~ne system on an intelligent guess of what the service is
likely to be. Over a period of time, virtual machine users relate
certain conditions of service to certain utilization and contention
figures, and know what kind of responses to expect when they start their
terminal session.

I THE INDICATE COMMAND

The INDICATE command allows the general user and the system analyst to
display at any time, at their consoles, the usage of and ccntention for
major system resources.

The general user can display usage of and contention for the major
system resources of CPU and storage. He can also display the total
amount of resources he has used during his terminal seSSlon and the
number of I/O requests. If he uses the INDICATE command before and after
the execution of a program, he can determines the execution
characteristics of that program in terms of resource usage.

The system analyst can identify active users, the queues they are
using, their I/O activity, their paging activity, and many other user
characteristics and usage data.

Part 2: Control Program (CP) 210.1

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

The system analyst can use the data on system resource usage and
contention to monitor the performance of his system. He can thus be
aware of heavy load conditions or low performance situations that may
require the use of more sophisticated data collection, reduction, and
analysis techniques for resolution.

The VM/370 scheduler maintains smoothed values of CPU usage and main
storage contention. specifically, every 30 seconds, the scheduler
calculates the total wait time for the last interval and factors it into
a smoothed wait value in the following way:

new smoothed wait value (3* old smoothed wait value + current
interval wait)/4

Thus only 1/4 of the most recent interval wait is factored into the new
smoothed wait which makes it predominantly the old smoothed wait value.

The remaining INDICATE components are sampled prior to a user being
dropped from a queue. Because of the frequency of this event, the
remaining components are subject to a heavier smoothing than the wait
time. A general expression for the smoothing follows:

new smoothed value = (15 * old smoothed value + last interval
value)/16

other operands of the command allow users to obtain other performance
information that enables them to understand the reasons for the observed
conditions.

I THE CLASS G INDICATE COMMAND

I The format of the class G INDICATE command is:

r
I INDicate
I [~ USER
L-

INDICATE LOAD
-produces the following response, where n is a decimal number:

CPU nnnl Q1-nn Q2-nn STORAGE-nnnl RATIO-n.n

The CPU figure indicates the percentage of time that the
system is running and is derived from the smoothed wait value
maintained by the scheduler.

The contention
the numbers of
scheduler.

for CPU is represented by smoothed values of
users in queue1 and queue2, maintained by the

The next field, STORAGE, is a measure of the usage of real
storage. It is a smoothed ratio of the sum of the estimated
working sets of the users in queue1 and queue2, to the number
of pageable pages in the system, expressed as a percentage.

210.2 IBM VM/370: System Programmer's Guide

GC20-1807-3 Page Modified by TNL ("loT '1 ,,_ '1 t:: t:: '1
>:Jl1LV-LUUL, March

..J I , 1975

Due to the algorithm used by the scheduler in
entry to the active queues, the value of STORAGE
1001.

determining
can exceed

The scheduler contention ratio, RATIO, is a smoothed measure
of the contention for real storage, and is defined as:

E+M
RATIO

M

M is the number of users in queuel and queue2

E is the number of users waiting to be allocated real
storage by the scheduler and therefore temporQ~ily
resident in the scheduler's eligible lists.

Thus, RATIO is the ratio of active users to users being
serviced, and is 1.0 for optimum response. Optimum response
occurs when enough real storage is available to accommodate
all active users, assuming the CPU can process their
commands. If E and M are both zero, the value of RATIO is set
to 1.0.

Given the value of RATIO and M, (Ql+Q2) the number of users in
the eligible list can be computed as:

E = M (RATIO-l)

INDICATE USER *
allows a user to determine the
his virtual machine, and the
place.

resources used and occupied by
I/O events that have taken

The following two line response is returned:

PAGES: RES-nnnn WS-nnnn READS=nnnnnn WRITES=nnnnnn DISK-nnnn DRUM-nnnn
VTIME=nnn:nn TTIME=nnn:nn SIO=nnnnnn RDR-nnnnnn PRT-nnnnnn PCH-nnnnnn

The first line of the response displays the data from the user's VMBLOR
that is relevant to his virtual machine's paging activity and resource
occupancy.

RES is the current number of the user's virtual storage pages
resident in real storage at the time the command is issued.

WS is the most recent system estimate of the user's working
set size.

READS is the total number of page reads for this user since he
logged on or since the last ACNT command was issued for his
virtual machine.

WRITES is the total number of page writes for this user since
he logged on or since the last ACNT command was issued for his
virtual machine.

DISK is the current number of virtual pages allocated on the
system paging disk for this user.

DRUM is the current number of virtual pages allocated on the
system paging drum for this user.

Part 2: Control Program (CP) 210.3

GC'20-1807-3 Page Modified bV TNL GN20-2662, March j 1, 1'1 I':)

The second line of the response gives the user his
accumulated I/O activity counts since logon or since
command was issued for his virtual machine.

CPU usage and
the last ACNT

VTIME is the total virtual CPU time for the user.

TTIME is the total virtual CPU and simulation time for the
user.

SIO is the total number of non-spooled I/O requests issued by
the user.

RDR is the total number of virtual cards read.

PRT is the total number of virtual lines printed.

PCH is the total nUIDber of virtual cards punched.

I THE CLASS E INDICATE COMMAND

The format of the class E INDICATE command is:

r
r ,

INDica te ILOAD I
I r , I
IUSER I~ II
I I userid II
I L J I
\Queues I
iI/O I

I

I r , I
IPAGing I~!!~ II
I IALL II
L L JJ

INDICATE LOAD
-provides the same output as the INDICATE 1Q!~ option described

under "The Class G Indicate Command."

INDICATE USER *
reflects activity of the system analyst's own virtual
machine. The output of this option is the same as that of the
INDICATE USER.! option described under "The Class G Indicate
Command."

INDICATE USER userid
allows the system analyst to determine the activity of other
virtual machines in terms of the resources used and occupied
and events that have taken place. Users with class E authority
can access data from the VMBLOK of any user currently logged
onto the system in their attempts to understand an overload or
poor performance situation.

The output of this option is the same as that of the INDICATE
USER.! option described under "The Class G Indicate Command".

210.4 IBM VM/370: system Programmer's Guide

GC20-1807-3 Page Modified by TNL GN20-2662, March 3i, i975

INDICATE QUEUES
displays the active users, the queues they are in, the storage
~her are occupying, and the status. th:yare.in. The display
lndlcates those users currently domlnatlng maln storage. Users
waiting in eligible lists are included in the response because
they are contending for main storage and it is only by chance
that they were not occupying main storage at the time of the
command.

The response to the INDICATE QUEUES command is as follows:

userid1 aa bb ssslttt userid2 ••• (up to 3 userids per line)

useridn is the user identification.

aa is the eligible list or queue that the user cccupies.

bb is one of the following status indicators:

RU the user is currently running.
PG the user is not running because CP is attempting to

bring in a page from a paging device.
IO the user is in 1/0 wait because access to the device

is not available at the moment.
EX the user is waiting for the completion of an

instruction simulation.
PS the user is in an enabled wait state for high speed

1/0 devices.
waiting to be redispatched

!g!~: In cases where a virtual machine may be in more
than one of the above states, only one state is
displayed. The state displayed is the first one
encountered in the order of priority indicated above.

sss is a hexadecimal number indicating the number of pages
resident in real storage

ttt is a hexadecimal number indicating the working set size

INDICATE 1/0
provides information about conditions leading to possible I/O
contention within the system. The response gives the userids
of all the users in I/O wait state at that instant in time,
and the address of the real device to which the most recent
virtual SIO was mapped. Because the response indicates only
an instantaneous sample, use the command several times before
assuming a condition to be persistent. If it is persistent,
run the SEEKS option of the MONITOR command to conduct a
thorough investigation of the suggested condition.

The response to the INDICATE 1/0 option is as follows:

userid1 cuu userid2 cuu ••• (up to 5 userids per line)

useridn is the user identification

cuu indicates the real device address.

Part 2: Control Program (CP) 210.5

GC20-1807-3 Page Modified by TNt GN20-2662, March 31, 1975

In the case where a virtual machine may have issued multiple
SIOs, the response indicates the real device address
corresponding to the most recent one issued.

INDICATE PAGING WAIT
is provIded for installations that have 2305s as primary
paging devices and other direct access devices as secondary
paging device. A full primary device and subsequent
allocation of paging space on the slower device may be
responsible for degradation in system performance. Use the
INDICATE PAGING WAIT option when the INDICATE QUEUES option
shows that a significant proportion of the users in queue1 and
queue2 are persistently in page wait. The response to the
command gives the userids of those users currently in page
wait and the numbers of page frames allocated on drum and on
disk.

The response to the INDICATE PAGING WAIT option is as
follows:

userid1 nnn:mmm userid2 nnn:mmm ••• (up to 4 userids per line)

useridn

nnn

mmm

is the user identification.

is the hexadecimal number of pages allocated on drum
for these users.

is the hexadecimal number of pages allocated on disk
for these users.

!2!~: Consider, for example, the following response:

usera 010:054 userb 127:000

If the two users were to execute programs of similar
characteristics, then usera would be expected to experience
more pagewait than userb. Also, if the level of
multiprogramming were to be low during the execution of
usera's program, then more system page wait would occur than
during the execution of userb's program.

If users appear to have most of their pages allocated on disk,
it would be useful to know which users are occupying most of
the primary paging device space, and whether or not they are
still active. (That is, a virtual machine that is running a
large operating system may have been allocated large amounts
of primary paging device space at IPL time but then may have
become inactive. Consequently, the machine is occupying a
critical resource that could be put to better use.

INDICATE PAGING ALL
displays the page residency data of all users of the system
(including the system nucleus and pageable routines). The
response is identical to that of the INDICATE PAGING !!!!
option.

The following response is issued for the INDICATE QUEUES option when
appropriate:

NO USERS IN QUEUE

210.6 IBM VM/370: system Programmer's Guide

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

The following response is issued for the INDICATE 1/0 option when
appropriate:

NO USERS IN I/O WAIT

The following response is issued for the INDICATE PAGING WAIT option
when appropriate:

NO USERS IN PAGEWAIT

Part 2: Control Program (CP} 210.7

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

VM Monitor collects data in two ways:

1. By handling interruptions caused by executing MONITOR CALL (MC)
instructions.

2. By using timer interruptions to give control periodically to
sampling routines.

MONITOR CALL instructions with appropriate classes and codes are
presently emtedded in strategic places throughout the main body of
VM/370 code (CP). When a MONITOR CALL instruction executes, a program
interruption occurs if the particular class of MONITOR CALL is enabled.
The classes of MONITOR CALL that are enabled are determined by the mask
in control register 8. For the format and function of the MONITOR CALL
instruction, refer to the System/370 Principles of Operation manual,
Order No. GA22-7000. The format of control register 8 is as follows:

I r
I I I I I I I I I
I I xxxx xxxx xxxx xxxx 0123 4567 89AB CDEF
I I I I I I I I I
I L

I x indicates unassigned bits

O-F
(hexadecimal)

indicates the bit associated with each possible class of
the MONITOR CALL.

When a MONITOR CALL interruption occurs, the CP program interruption
handler (DMKFRG) transfers control to the VM Monitor interruption
handler, (DMKMON) where data collection takes place.

sixteen classes of separately enabled MONITOR CALL instructions are
possible, but only eight are implemented in the VM Monitor~

Monitor output consists of event data and sampled data. Event data
is obtained via MONITOR CALL instructions placed within the VM/370
code. Sampled data is collected following timer interruptions. All
data is recorded on the output tape as though it were obtained through a
MONITOR CALL instruction. This simplifies the identification of the
ta pe records.

The following table indicates the type of collection mechanism for
each Monitor class:

Monitor Class Collection
£!~~~ !~.!!!~ Mechanism

0 PERFORM "TImer-requests
1 RESPONSE MC instructions
2 SCHEDULE MC instructions
3 Reserved
4 USER Timer requests
5 INSTSIM MC instructions
6 DASTAP Timer requests
7 SEEKS MC instructions
8 SYSPROF Collected via class 2

210.8 IBM VM/370: System Programmer's Guide

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

Another function, separate from the VM Monitor, is also handled by
the MONITOR command. The MONITOR command can stop and start CP internal
trace table data collection, which is g21 initiated by MONITOR CALLs.

!21g: The VM Monitor tape record format and the contents of the tape
record are shown in Appendix B in this manual.

The MONITOR command:

; e stops and starts CP internal trace table data collection.
I. Displays the status of the internal trace table and each implemented
I class of VM Monitor data collection. Enables one or more classes of
I MONITOR CALL.
!. starts and stops data collection recording by VM Monitor onto tape:
I. Specifies what interval is to be used for timer driven data
I collection.

I The format of the class A and E MONITOR command is:

r- -,
MONitor Display

ENable PERForm 1

RESPonse
SCHedule
USER
INSTsim
DAStap
SEEKs
SYSprof

r ,
INTerval nnnnn I~~~I

IMINI
L J

STArt CPTRACE

r rOO}' STArt TAPE raddr IMODE 1600 I
I 6250 I
L J

STOP { CPT RACE }
TAPE

lSelect one or more of the classes subject to the restrictions below. L-__________________________ _

-----------------~

DISPLAY
displays the status of the internal trace table and the
implemented classes. A separate line of output for the
internal trace table and each class of MONITOR CALL indicates
the class and its status (enabled or disabled).

Part 2: Control Program (CP) 210.9

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

ENABLE PERForm
RESPonse
SCHedule
USER
INSTsim
DAStap
SEEKs
SYSprof

enables the specified classes of MONITOR CALL. Each
successful completion of this command creates a new mask for
control register 8. The function of each class is described
in the section "Implemented Classes."

The effect of the MONITOR ENABLE command depends on whether
data collection is active or inactive when the command is
issued. If data collection is active (MONITOR START TAPE has
been issued), the new mask is moved directly into control
register 8, replacing the previous mask, and the new mask
takes effect immediately. Collection then continues with the
classes just entered. If data collection is not active at the
time the command is issued, then the mask is saved until the
MONITOR START TAPE command is issued.

Restrictions exist on issuing the MONITOR ENABLE command while
the VM Monitor is collecting and recording data on tape.

Every MONITOR ENABLE command yields a new mask. Thus, for
example, if PERFORM and USER classes are currently being
collected, and you enter MONITOR ENABLE INSTSIM, then PERFORM
and USER classes are stopped and INSTSIM is started.

Thp DASTAP operand in the MONITOR ENABLE command must be
specified prior to the MONITOR START TAPE command. DASTAP may
be disabled at any time by respecifying the MONITOR ENABLE
command with DASTAP absent from the class list.

The SYSPROF class cannot be activated unless both the DASTAP
and SCHEDULE classes are also active.

If data collection is in progress when you issue a MONITOR
ENABLE command and an error occurs in the command line during
processing, no change is made to the monitoring status.
Unrecognizable keywords, conflicting or missing operands
generate appropriately different error messages.

Due to the security exposure which potentially exists with
collecting terminal input and output data, the RESPONSE class
of data collection does not occur unless the system programmer
sets the TRACE (1) bit in the LOCAL COPY to 1 and reassembles
the CP module DMKMCC. If this is not done, the RESPONSE class
is considered an invalid operand of the MONITOR ENABLE
command.

r ,
INTERVAL nnnnn I~~£I

IMINI
L J

specifies the time interval to be used for the three timer
driven data collection classes: PERFORM, USER, and DASTAP.
The value specified by nnnnn is the number of seconds or
minutes between data collections. If no interval is specified
on the MONITOR INTERVAL command, an error message occurs. If

210.10 IBM VM/370: system Programmer's Guide

GC20-i807-3 Page Modified by TNL GN20-2662, March 31, 1975

you give an interval but enter neither SEC nor MIN, the
default is SEC. The maximum allowatle interval is 9 hours
(540 minutes or 32,400 seconds). The minimum is 30 seconds.

If the MONITOR INTERVAL command is not issued, the default
interval is 60 seconds. The MONITOR INTERVAL command can be
issued at any time; however, if data collection is already in
progress, the new interval does not take effect until the
current interval has elapsed.

The MONITOB interval is reset to ~ne default of 60 seconds
whenever any of the following occurs:

• the user issues MONITOR STOP
• the because of an unrecoverable

I/O error
• the end of tape is reached

!g!~: The information regarding the INTERVAL operand of the
MONITOR command, contained in this publication, supersedes
that found in the Y~LJ1Q: QE~£~!Q£~~ g~iQ~.

START CPTRACE
starts the tracing of events that occur on the real machine.
The events are recorded in the CP internal trace table in
chronological order. When the end of the table is reached,
recording continues at the beginning of the table, overlaying
data previously recorded.

r ,

START TAPE raddr :MODE{l:gg}:
I 6250 I
L J

starts the data collection by VM Monitor on to a tape.
Specify "raddr" as the real hexadecimal address of the tape
drive that you want to use. It activates data collection for
those classes of MONITOR CALL previously specified in a
MCNITOR ENABLE command. The mask that was saved by the
MONITOR ENABLE command is moved into control register 8. The
data is collected in two buffer pages in real storage. These
pages are separate from the internal trace table pages. As
each data page is filled, it is written onto the tape.

When the VM Monitor is started, CP
followed by a Set Mode command for
density.

issues a REWIND command
the reset value of tape

The user can request a different mode setting by specifying
the MODE option 1n the MONITOR START TAPE command. Mode
values of 800, 1600, or 6250 BPI may be specified.

]2!~: If a user specifies density mode that the tape cannot
handle, the control unit may not return an error conditon; in
this case the mode setting is ignored and the default control
unit setting is used.

STOP CPTRACE
terminates
machine.
containing
Tracing can
CPTRACE.

the tracing of events occurring on the real
Event recording ceases but the pages of storage
the CP internal trace table are not released.
be restarted at any time by issuing MONITOR START

Part 2: Control Program (CP) 210.11

GC20-1807-3 Page Modified by TNL GN20-2662. March 31, 1975

STOP TAPE
stops data collection by VM Monitor on to tape. A zero mask
is immediately stored in control register 8, thus disabling
MCNITOR CALL interruptions. The last partially filled page is
written out, two tape marks are written, and the tape is
rewound and unloaded. The two buffer pages, which were
obtained at the time the MONITOR START TAPE command was
issued, are released.

!Q1~: The CPTRACE and TAPE operands
completely separate functions. Commands
function have no effect on the other.

of the MONITOR
affecting the

command
status of

are
one

The following response occurs if you issue the MONITOR DISPLAY command:

~1~ !~X~Q~Q ~1A1~~
0 PERFORM
1 RESPONSE (ENABLED
2 SCHEDULE
4 USER or
5 INSTSIM
6 DASTAP DISABLED)
7 SEEKS
8 SYSPROF

CPTRACE

The following response occurs for MONITOR commands, except MONITOR
DISPLAY, that successfully execute:

COMMAND COMPLETE

I IMPLEMENTED CLASSES

The following MONITOR CALL classes correlate with the corresponding
classes in control register 8. Refer to the System/370 ~£!~£!£!~§ Qf
Q£~~~!iQQ, Order No. GA22-7000 for details of the MC instruction and the
bits in control register 8.

Monitor
~!~§§

Zero

One

Two

PERFORM

RESPONSE

SCHEDULE

Samples system resource usage data by accessing
system counters of interest to system
performance analysts.

Collects data on terminal I/O. simplifies
analyses of command usage, user and system
response times. It can relate user activity to
system performance. This class is invalid and
no data can be collected for it unless the
system programmer changes the LOCAL COPY file
and reassembles DMKMCC.

Collects data about scheduler queue
manipulation. Monitors flow of work through
the system, and indicates the resource
allocation strategies of the scheduler.

Three Reserved

210.12 IBM VM/370: system Programmer's Guide

Four USER

Five INSTSIM

six DASTAP

Seven SEEKS

Page ml.1T
..L. 11.J."

r'l.l')(\~_')CC,)
~ 11 £ V - L U U L ,

u,~_t..
nUJ,.\.-ll

-') 1
..J I ,

10"71:
1.:11-1

Periodically scans the chain of VMBLOKs in the
system, and extracts user resource utilization
and status data.

Records every virtual machine privileged
instruction handled by the control program
(CP) • Because simulation of privileged
instructions is a major source of overhead,
this data may lead to methods of improving
performance.

If the VMA feature is active, the number of
privileged instructions that are handled by the
control program is reduced for those virtual
machines that are runnino with the feature
acti va ted. -

Periodically samples device I/O activity counts
(SIOs), for tape and DASD devices only.

It is possible that the number of DASD and tape
devices defined in DMKRIO exceeds 291 (the
maximum number of MONITOR DASTAP records that
fi t in a MONITOR buffer) • The following
algorithm determines which devices are
monitored:

1. If the total number of DASD and tape
devices that are online is less than or
equal to 291, all online DASD and tape
devices are monitored.

2. If the online DASD devices total less than
or equal to 291, all online DASD devices
are monitored.

3. Otherwise, the first
device are monitored.

291 online DASD

Collects data for every I/O request to DASD
devices. Reveals channel, control unit, or
device contention and arm movement interference
problems.

No data is collected for TIO
operations. For SIC operations,
collected when the request for
operation is initially handled and
the request is satisfied.

or HIO
data is

the I/O
again when

This means that a single SIO request could
result in two Monitor Calls. For example, if
the request gets queued because the device is
already busy, then a Monitor Call would be
issued as the request is queued. Later, when
the device becomes free and is restarted, a
second Monitor Call is issued.

In general, the data collected is the same
except that in the first case there will be
non-zero counts associated with queued
requests.

Part 2: Control Program (CP) 210.13

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

Eight SYSPROF

If the request for I/O is satisfied when it is
initially handled, without being queued v only
one Monitor Call results. In both this case
and the second of the two data collections
mentioned above, the count of I/O requests
queued for the device is zero.

Collects nata complimentary to the DASTAP and
SCHEDULE classes in order to provide a more
detailed "profile" of system performance
through a closer examination of DASD
utilization.

I VM MONITOR RESPONSE TO UNUSUAL TAPE CONDITIONS

When I/O to the tape is requested, the device may still be busy from the
previous request. If this occurs, two data pages are full and data
collection must be temporarily suspended. Control register 8 is saved
and then set to zero to disable MONITOR CALL program interruptions and
timer data collection. A running count is kept of the number of times
suspension occurs. The current Monitor event is disregarded. When the
current tape I/O operation ends, the next full data page is scheduled
for output. MONITOR CALL interruptions are re-enabled (control register
8 is restored), a record containing the time of suspension, the time of
resumption and the suspension count is recorded and data collection
continues. The suspension count is reset to zero when the MONITOR STOP
TAPE is issued.

When an unrecoverable error occurs, DMKMON receives control and attempts
to write two tape marks, rewind and unload the tape. The use of the
tape is discontinued and data collection stops. The operator is
informed of the action taken. Whether or not the write-tape-marks,
rewind and unload are successful, the tape drive is released.

When an end-of-tape condition occurs, DMKMON receives control. A tape
mark is written on the tape and it is rewound and unloaded. The VM
Monitor is stopped and the operator is informed of the action taken.

I VM MONITOR CONSIDERATIONS

The system programmer may want to set the TRACE(1) bit to 1 in the LOCAL
COPY file and reassemble DMKMCC to allow RESPONSE data (MONITOR class 1)
to be collected. See the information about security exposure in
"MONITOR ENABLE Restrictions" in the MONITOR command description.

210.14 IBM VM/370: system Programmer's Guide

GC20-1807-3 Page Modified by TNL f"~'')(\ _')c C ')
Ul'~V LUUL,

U~_~L
na.L.vu

'") 1
J I, 1n...,c:

I :7 , .J

MONITOR START CPTRACE is active after real system IPL (manual or
automatic). The VM Monitor tape data collection is off after IPL.

System shutdown implies a MONITOR STOP
processing for the MONITOR STOP TAPE
system.

TAPE command. Normal command
function is performed by the

If the VM/370 system fails and data collection is active, an attempt is
made to write two tape marks, rewind and unload the tape. If the tape
drive fails to rewind and unload, be sure to write a tape mark before
rewinding and unloading the tape. VM Monitor data collection is
terminated by the system failure.

A supported tape drive must be dedicated to the system for the duration
of the monitoring. For accounting purposes, all I/O is charged to the
system.

I VM MONITOR DATA VOLUME AND OVERHEAD

Use of the VM Monitor requires that three pages be locked in storage for
the entire time the VM Monitor is active; this reduces by three the
number of page frames available for paging. This significantly affects
the performance of the rest of the system when there is a limited number
of page frames available for paging.

PERFORM This class of data collection is activated once every 60
seconds (or as defined by the MONITOR INTERVAL command), and
records system counters relevant to performance statistics.
It is, therefore, a very low overhead data collection option.

RESPONSE This class collects terminal interaction data and, because of
the human factor, has a very low rate of occurrence relative
to CPU speeds. Consequently, this class causes negligible
overhead and produces a low volume of data.

SCHEDULE This class records the queue manipulation activity of the
scheduler and generates a record every time a user is added to
the eligible list, added to queue1 or queue2, or removed from
queue. The recording overhead is very low.

Part 2: Control Program (CP) 210.15

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

USER

INSTSIM

DASTAP

SEEKS

SYSPROF

This class of data collection is active once every 60 seconds
(or as defined by the MONITOR INTERVAL command). Data is

extracted from each user's VMBLOK, including the system
VMBLOK. The overhead incurred is comparable with that of the
statistical data of the PERFORM class; however, it increases
with the number of users logged onto the system.

This class of data collection can give rise to large volumes
of data because of the frequency of privileged instructions in
some virtual machines. This may incur significant overhead.
It should be activated for short periods of time and
preferably, though not necessarily, when other classes of data
collection are inactive. If the virtual Machine Assist
feature is active for the virtual machine, the data volume and
consequently the CP overhead may be reduced.

This class of data collection samples device activity counts
once every 60 seconds (or as defined by the MONITOR INTERVAL
command), and is a very low source of overhead, similar to the
PERFORM and USER classes.

This class of data collection can give rise to large volumes
of data because every start I/O request to DASD devices is
recorded via a MONITOR CALL.

This class of data collection is complementary to the SCHEDULE
and DASTAP classes and results in a small amount of additional
overhead. It obtains more refined data on DASD resource
usage.

For daily monitoring, to generate a data tape suitable for analyzing
utilization and performance trends, use the PERFORM class only. If
performance bottlenecks are suspected, run the RESPONSE and SCHEDULE
classes to relate user activity to system scheduling decisions in terms
of demands on system resources. If particular users are suspected of
dominating the system, or if I/O activity is suspected of being
concentrated on particular devices, then run the USER and DASTAP
classes. If the DASTAP class does not give enough information to
resolve possible I/O contention questions, activate the SEEKS class for
a short period of time, for instance, ten minutes.

The SYSPROF class can be enabled along with SCHEDULE and DASTAP to
give an additional breakdown of I/O device activity as it relates to
queue manipulation by the scheduler. The INSTSIM class can be enabled
to determine which users are incurring high amounts of system overhead
due to instruction simulation.

I LOAD ENVIRONMENTS OF VM/370

Two distinct uses of VM/370 can be readily identified, and consequently
some differences in criteria for acceptable performance may occur. The
system may be required to time share multiple batch-type virtual
machines with interactive machines performing minor support roles; or,
the system may be primarily required to provide good interactive
time-sharing services in the foreground, with a batch background
absorbing spare resources of real storage and CPU.

210.16 IBM VM/370: system Programmer's Guide

GC20-1807-3 Page Modified by TNL GN20-2662. March 31; 1975

First you must determine how many similar users can be run concurrently
on a given configuration before the throughput of individual users
becomes unacceptable.

After determining this, you can perform external observations of
turn-around time on benchmarks and specify a point beyond which the
addition of more users would be unacceptable. However, when that point
is reached, more sophisticated internal measurement is required to
determine the most scarce resource and how the bottleneck can be
relieved by additional hardware.

Several possible
different bottlenecks.

conditions
They are:

can be identified resulting from

I •
I

Real storage is the bottleneck; levels of multiprogramming
compared with the number of contending users. Hence, each
dispatched so infrequently that running time or response
become intolerable.

are low
user is

time may I
I

I. storage may be adequate to contain the working sets of contending
I users, but the CPU is being shared among so many users that each is
I receiving inadequate attention for good throughput.

I. Real storage space may be adequate for the CPU, and a high speed drum
I is used for paging; however, some virtual storage pages of some users
I have spilled onto slower paging devices because the drum is full.
I with low levels of multiprogramming, user page wait can become a
I significant portion of system wait time. Consequently, CPU
I utilization falls and throughput deteriorates.

I. storage, CPU, and paging resources are adequate, yet several users
I are heavily I/O bound on the same disk, control unit, or channel. In
I these circumstances, real storage may be fully committed because the
I correct level of multiprogramming is selected, yet device contention
I is forcing high I/O wait times and unacceptatle CPU utilization.

Estimates of typical working set sizes are needed to determine how
well an application may run in a multiprogramming environment on a given
virtual storage system. A measure of the application's CPU requirements
may be required for similar reasons. Measurements may be required on
the type and density of privileged instructions a certain programming
system may execute, because, in the virtual machine environment,
privileged instruction execution may be a major source of overhead. If
the virtual machine environment is used for programming development,
where the improvement in programmer productivity outweighs the
disadvantages of extra overheads, the above points may not be too
critical. However, if throughput and turnaround time are important,
then the converse is true, and the points need close evaluation before
allocating resources to a virtual machine operation.

High levels of multiprogramming and overcommitment of real storage
space leads to high paging rates. High paging rates can indicate a
healthy condition; but, be concerned about page stealing and get
evidence that this rate is maintained at an acceptable level. A system
with a high rate of page stealing is probably thrashing.

Par~ 2: Control Program (CP) 210.17

GC20-1807-3 Page Mcdified by TNL GN20-2662, ~arch 31, 1975

Most of the conditions for good performance, established for the
time-shared batch systems, apply equally well to mixed mode systems.
However, two major factors make any determination more difficult to
make. First, get evidence to show that, in all circumstances, priority
is given to maintaining good interactive response, and that non-trivial
tasks take place truly in the background. Second, background tasks, no
matter how large, inefficient, or demanding should not be allowed to
dominate the overall utilization of the time-sharing system. In other
words, in mixed mode operation, get evidence that users with poor
characteristics are discriminated against for the sake of maintaining a
healthy system for the remaining users.

A number of other conditions are more obvious and straightforward.
You need to measure response and determine at what point it becomes
unacceptable and why. Studies of time-sharing systems have shown that a
user's rate of working is closely correlated with the system response.
When the system responds quickly, the user is alert, ready for the next
interaction, and thought processes are uninterrupted. When the system
response is poor, the user becomes sluggish.

For interactive environments, a need exists to analyze command
usage. Average execution time of the truly interactive commands can
provide data for validation of the queue1 execution time.

210.18 IBM VM/370: System Programmer's Guide

GC20-1807-3 Page Modified by TNL GN20-2662, ~1
.oJ • , 1975 March

Accounting Records

Accounting cards are punched and selected to pocket 2 of any class C
card punch when a user logs off of the system, detaches a dedicated
device or T-disk or lssues a Diagnose code x'4C' instruction. (If the
real punch is a 2540, the accounting cards are put in pocket 3.) These
records should be kept for system accounting purposes. The information
on the accounting card is as follows (columns 1-28 contain character
data; all other data is in hexadecimal form, except as noted):

Column
-'=-8-

9-16
17-28
29-32
33-36

37-40
41-44
45-48
49-52

53-56
57-60

61-64
65-78
79-80

Conten ts UserIa:--
Account number
Date and Time of Accounting (mmddyyhhmmss)
Number of seconds connected to VM/370 System
Milliseconds of CPU time used, including time for

VM/370 supervisor functions
Milliseconds of virtual CPU time used
Number of page reads
Number of page writes
Number of virtual machine SIO instructions for

nons pooled I/O
Number of spool cards to virtual punch
Number of spool lines to virtual printer (this

includes one line for each carriage control command)
Number of spool cards from virtual reader
Reserved
Accounting card identification code l (01 or Cl)

Accounting cards are punched and selected to pocket 2 of any class C
card punch when a previously dedicated device is released by a user via
DETACH, LOGOFF, or releasing from DIAL; or, by a user lssuing a Diagnose
code x'4C' instruction. A dedicated device is any device assigned to a
virtual machine for that machine's exclusive use. These include devices
dedicated by the ATTACH command, those being assigned at logon by
directory entries, or by a user establishing a connection (via DIAL)
with a system that has virtual 2702 or 2703 lines. The information on

1 The accounting card identification code is one of the following:

co
xl
x2
x3

~}~;~~
(' = C

User formatted accounting card
User virtual machine accounting card
User dedicated device accounting card
User temporary disk space accounting card.

if the card is initiated via CP command processing
if the card is initiated via a DIAGNOSE code x'4C'

Part 2: Control Program (CP) 211

GC20-1807-3 Page Mcdified by TNL GN20-2662, ~~rrh 11, 1Q7S

the accounting card is as follows (columns 1-28 contain character data;
all other data is in hexadecimal form, except as noted):

f2!!!!!!!!
1- 8
9-16

17-28
29-32

33
34
35
36

37-38

39-78
79-80

f.2!!!~!!.!~
Userid
Account number
Date and Time of Accounting (mmddyyhhmmss)
Number of seconds connected to VM/370 system
Device class
Device type
Model (if any)
Feature (if any)
Number of cylinders of temporary disk space used (if

any). This informa tion appears only in a code 03 or
C3 accounting card.

Unused
Accounting card identification code. (02, 03, C2, or

C3)

The device class, device type, model, and feature codes in columns
33-36 are shown in Figure 12.

A virtual machine user can initiate the punching of an accounting card
that contains up to 70 bytes of information of his own choosing. To do
this, he issues a DIAGNOSE code x'4C' instruction with the following
operands:

I •
I

The address of a data area in virtual
information, in the actual format, that he
into columns 9 through 78 of the card.

storage containing the
wishes to have punched

I

I • A hexadecimal function code of x'10'

I • The length of the data area in bytes

The information on the accounting card is as follows:

~2!!!!!!!!
1-8

contents Useri"a:--
9-79

79-80
User formatted data
Accounting card identification, "CO"

A complete description of the DIAGNOSE
found under "DIAGNOSE Instruction in
section.

code x'4C' instruction can be
a Virtual Machine" in this

If a punch is started for two classes with NOSEP specified, accounting
cards are not uniquely separated from data decks. If started with NOSEP
specified, the operator is prompted when a user has a deck to be
punched. The operator can thus remove any accounting cards before
starting the punch. After data is through punching, accounting cards may
be punched.

212 IBM VM/370: System Programmer's Guide

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

If the amount of free storage (available page frames) is relatively
small and the card punch is not periodically assigned to punch out CP's
accounting cards, it is possible for CP's accounting routine to
progressively use up a significant percentage of the available page
frames and cause a page thrashing condition to occur in VM/370. This is
because the accounting routine creates and updates accounting records in
real storage, and does not free that storage space until the accounting
records are punched out on the real system card punch. This situation
is further aggravated when the accounting option for a batch virtual
machine is in effect. due to the increased number of accounting records
generated.

To eliminate this problem, it is recommended that one punch pocket be
permanently dedicated to this accounting function, or if that is not
feasible, to punch out all the accumulated accounting records every 1 to
2 hours.

You may insert your own accounting procedures in the accounting
routines. See the "CP Conventions" section for information on CP coding
conventions and loadlist requirements. Operator responsibilities in
such cases should be defined by the installation making the additions.
When designing such accounting procedures, you should understand that:

1. The accounting routines are designed to be expanded. The entry
point provided in the accounting module for installation use is
called DMKACON. If you want to perform additional accounting
functions, you should modify the following copy files:

ACCTON (account on) -- for action at logon time. This is provided
as a null file. It can be expanded to provide additional functions
at logon time. The ACCTON routine can request the system to force
the user off by returning a nonzero value in SAVER2. However, if
the operator is automatically logged on during system
initialization, the nonzero return code has no effect.

!Q1~: The ACCTON COpy file distributed with VM/370 contains the
basic logic required to enhance system security based on the 3277
Operator Identification Card Reader feature. Additional checking
may be added to examine or validate the data read from the
identification card.

ACCTOFF (account off) -- for action at logoff time. This section
contains the code that fills in the account card fields. It does
not reset any internal data. This file exists in both DMKACO and
DMKCKP (checkpoint). If the ACCTOFF copy file is changed, both
modules should be reassembled.

2. CP has no provision for writing the accounting records to disk.

3. In addition to CP accounting, your installation can use the
accounting routines to supply virtual machine operating system
accounting records. This provides a means of job accounting and
operating system resource usage accounting.

4. If no punch is generated in the VM/370 system, accounting records
are not queued for punching. The ACCTON and ACCTOFF copy files are
still called, however.

Part 2: Control Program (CP) 213

Generating Named Systems

By taking advantage of the SAV!SYS command, system resources are not
committed to perform an IPL each time a saved system is requested.
Instead, the named system is located and page tables are initialized
according to its system name table entry. The named system is not
automatically loaded at IPL time; however, its pages are brought into
storage on demand as the virtual machine operating system executes.

In addition
share segments
real storage.

to saving time by avoiding an IPL, a saved system can
of reenterable code, thus making more efficient use of

This technique is especially valuable when using CMS.

When adding, changing, or deleting, the DMKSNT module must be
reassembled. The GENERATE EXEC procedure has a facility to reassemble
only the DMKSNT module. See the description of the GENERATE EXEC
procedure in the !~LllQ: Rlg~ni~~ g~g §I§!~! §~!~!~!!Qn Guig~.

The procedure for generating a named system consists of two steps:

1. Configuring and assembling the NAMESYS macro (DMKSNT).

2. Loading the system to be saved and then invoking the SAVESYS
command.

When allocating DASD space for named systems, provide an extra page
for information purposes; do not overlay this area with subsequent named
systems.

The NAMESYS macro is assembled by the installation system programmer and
is used to describe the location of the saved system. Shared segments
may be specified, but they must consist of reenterable cede, with no
alteration of its storage space permitted.

A DMKSNT ASSEMBLE module supplied with the system contains a dummy
NAME TABLE. Either edit or update this module to include the NAMESYS
macros describing your installation's named systems. Note that this
module may contain a PUNCH SPB card, which is used by the loader to
force this module to a 4K boundary when the CP system is built (a 12-2-9
multipunch must be specified in column 1 of an SPB).

The format of the NAMESYS macro is:

label

label

SYSSIZE

NAMESYS SYSSIZE=nnnK,SYSNAME=cccccc,VSYSRES=cccccc,
VSYSADR=ccu,SYSVOL=cccccc,SYSCYL=nnn,
SYSSTRT=(cc,p) ,SYSPGCT=nn,
SYSPGBM=(nn,nn,nn-nn, •••),
SYSHRSG=(n,n, •••)

is any desired user label.

is the
system.

minimum storage size
K must be specified.

needed to operate the saved

214 IBM VM/370: system Programmer's Guide

SYSNAME

VSYSRES

VSYSADR

SYSVOL

SYSCYL

SYSSTRT

SYSPGCT

SYSPGNM

SYSHRSG

is the name given the system to be used for identification by
SAVESYS and 1PL. The name selected must never be one that
could be interpreted as a hexadecimal device address (for
example, 'A' or 'E').

is the real volume serial number of the DASD volume containing
the virtual disk that is the system residence volume ~or the
system to be saved.

is the virtual address of the virtual disk that is the system
residence volume for the system to be saved.

is the volume serial number of the DASD designated to receive
the saved system. This must be a CP-owned volume.

is the real starting cylinder of the virtual disk (specified
by VSYSRES and VSYSADR) that is the system residence volume
for the system to be saved.

designates the starting cylinder and page address on SYSVOL at
which this named system is to be saved. During the SAVESYS and
1PL processing, this will be used to make up the "cylinder
page and device" address for the DASD operations. These
numbers are to be specified in decimal.

is the total number of pages to be saved.

are the numbers of the pages to be saved. Specification may
be done as groups of pages or as single pages. For example:
if pages 0, 4, and 10 through 13 are to be saved, use the
format: SYSPGHM (0,4,10-13).

are the segment numbers designated as shared. The pages in
these segments will be set up at 1PL time to be used by any
user loading by this name. All segments to be shared must be
reentrant.

For example, a DMKSNT module to create a named CMS could be coded as
follows:

DMKSNTBL CSECT
FSTNAME NAMESYS SYSS1ZE=384K,SYSNAME=CMS,VSYSRES=CPDSK1,

VSYSADR=190,SYSCYL=100,SYSVOL=CPDSK2,
SYSSTRT=(400,1) ,SYSPGCT=35,
SYSPGNM= (0-34) , SYSHRSG= (1)

END

x
X
X

The system to be saved must first be loaded by device address in the
traditional manner. The system to be saved must have its execution
stopped before its page-format image can be saved. The point at which
the operating system is stopped should be determined by the installation
system programmer. Then, the command "SAVESYS name" must be issued,
where name corresponds to the identification of the saved system. The
user must have a CP privilege class of E to issue the SAVESYS command.
Hext, you should 1PL the saved system. The virtual machine will attempt
to resume execution and immediately encounter a page fault. The
required page is brought into storage and execution continues. As
execution continues, subsequent page faults will bring the required
pages into storage.

Part 2: Control Program (CP) 215

A system should be saved as soon after IPL as possible. All pages to be
saved must be resident at the time the SAVESYS command is issued. Also,
before issuing the SAVESYS command, be sure that the system is stopped.

CMS was designed to run under CP and it was also designed 50 that it
could easily be saved by CP. See "saving the CMS System" in "Part 3:
Conversational Monitor System (CMS)" of this publication.

I SPECIAL CONSIDERATIONS FO~ SHARED SEGMENTS

When a saved system containing one or more shared segments is again
saved, a problem can occur if the following conditions are present:

1. The previous system has been loaded by name before the new system
was saved, and is still in use.

2. The unshared segments contain at least one address pointing to data
in a shared segment that has moved as a result of a change.

3. The new system has been loaded by name.

The problem is that when the new system is loaded, it will use the
old system's shared segaents if one or more users of the old system are
still logged on. Therefore, new versions of named systems containing
shared segments (for example, CMS) should not be saved as long as the
above conditions exist.

SAVING OS

Since OS varies with system, release, and system generation options, it
is impossible to outline a detailed Frocedure to save OS. The following
considerations are only guidelines. It is up to you to determine when
to save your installation's os.

The following steps should be performed:

1. Make the os system residence volume read-only. Some modification to
OS is required. Consider the following modifications to OS for a
saved OS system: .. Uncatalog SYS1.DUMP -- if needed, CP dumps

your installation wants to have a shared OS
must be cataloged on a scratch disk.

can be taken. If
system, SYS1.DUMP

• Modify the RDR SYS1.PROCLIB entry to allocate only a small
amount of space for IEFDATA (5 cylinders are adequate).

• Eliminate the writing location of SYS1.PROCLIB on the system
disk.

• Eliminate LOGREC recording; CP does its own error recording.

• If 2314s are used, eliminate alIOS standalone seeks, and turn
off all shared 2314 DASD bits (UCDTYP field, byte 2, bit 2).

216 IBM VM/370: System Programmer's Guide

For a 2314, if the first CCW in a channel program is a command
chained seek, CP executes a split seek before starting the
actual given CCW commands. This technique renders the OS
standalone seek redundant. A shared DASD is a problem because
OS prefaces data transfer CCW command sequences with a release
command. As a result, CP does not do its split 2314 seek but
just executes the given CCW commands. Thus for a shared DASD,
since the CP split seek and the OS standalone seek both have
been eliminated, the actual 2314 CCW commands always tie up the
real channel for the duration of the seek (including arm
movement).

2. Use the IBCDASDI program to initialize a virtual scratch disk.

3. IPL OS in the usual
job queue, the VTOC
in addition to the
reload a saved OS
it can be saved.
when the saved OS
required.

manner and then save
of the scratch disk,
contents of storage

system. The following
The job also causes a
system is started no

it. You must save the os
and the working data set
in order t? successfully
job will sp1n OS so that
reader interrupt so that
operator intervention is

consider using the following job to help you save OS at the right
moment:

FOS
FASTOS

*ENTRY

TITLE
CSECT
USING
B
ORG
STM
ST
ST
LR
SPACE
WTO
WTO
WTC
WTO
WTO
WTO
WTO
WTO
WTO
WTO
SPACE
B
EJECT

TO SAVE
SPACE
LA
LA
DC
SPACE
SR
L
RETURN
SPACE
END

'SUPPORT FAST START OF SYSTEM UNDER VM370'

FASTOS,13 USE R13 AS BASE FOR FASTOS
72(,15) BRANCH TO START OF PROGRAM
FASTOS+72 SAVE AREA
14,12,12 (13) SAVE ALL REGISTERS BUT R13
15,8(,13) SAVE START ADDRESS IN CALLERS SAVE AREA
13,4(,15) SAVE ADDRESS OF CALLERS SAVE AREA
13,15 SET BASE

'AFTER SPINNING IS TYPED - ENTER CP AND DISPLAY PSW'
'NEXT, STORE A NEW PSW USING ST PSW XXXXOOOO OOYYYYYY'
'WHERE XXXX is 0004,FOR OS, OR 040C FOR VS'
'AND YYYYYY IS ADDRESS IN DISPLAYED ORIG PSW +4'
'NEXT, BITER SAVESYS ZZZZZZZZ'
'WHERE ZZZZZZZZ IS A SAVESYS NAME IN DMKSNT'
'LAST, IPL CMS AND SAVE 1ST FEW CYL OF'
'SCRATCH PACK'

'SPINNING'

* SPIN, GO INTO CP AND SET SUPR MODE

OS PROGRAM AFTER IPL ZZZZZZZZ HAS BEEN GIVEN

1,=C'READY OOC' SET UP TO READY C
2,10
X'83120008' ISSUE DIAG COMMAND FOR READY C

15,15 NORMAL RETURN CODE
13,4(,13) GET CALLER'S SAVE AREA ADDRESS
(14, 12) , T, RC = (15) EXIT

After the 'SPINNING' message types, issue the SAVESYS command. Then,
enter CMS and use the DASD Dump Restore program to copy the job queue,
VTOC of scratch disk, and working data set to a master scratch disk.

Part 2: Control Program (CP) 217

Several steps are also required to restart or activate a saved OS
system. You must:

1. Build an identical configuration.

2. Use the D1SD Dump Bestore program to copy the master scratch disk
to your working scratch disk. This ensures that the job queue,
VTOe, and working data set are identical to those of the saved OS
system.

3. Load the job stream you wish to execute into the virtual card
reader.

4. IPL the named system. The job run in step 3 of "Saving OS" will
cause an interrupt from the reader and allow OS to process the jobs
placed in the virtual reader without additional user action.

218 IBM VM/370: System Programmer's Guide

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

VM/VS Handshaking

iM/iS Handshaking is a communication path between the VM/370 Control
Program and a virtual machine operating system (OS/VS1) that makes each
system control program aware of any capabilities or requirements of the
othpT_ VM/V~ H~nn~h~kinn ron~i~+~ OT· - ------- .-,.- -------_._---;] --------- --.

I • Closing CP spool files when VS1 job output from its DSO, terminator,
I and output writer is completed

I • Processing VS1 pseudo page faults

I. Providing an optional nonpaging mode for VS1 when it is run under the
I control of VM/370

I. Providing miscellaneous enhancements for VS1 when it is run under the
J control of VM/3JO

The handshaking feature improves the operational characteristics of
VS1 with VM/370 and yet allows the same iSi operating system to run
without change in either (1) a real machine or (2) a virtual machine
under the control of VM/370. When the VM/VS Handshaking feature is
active, the operation of VSl with VM/370 more closely resembles the
standalone operation of VS1. lhere is less need for virtual machine
operator intervention because VSl closes its CP spool files so they can
be processed by VM/370 when the job output from the VSl DSO, terminator,
and output writer is complete. Also, one VSl task can be dispatched
while another is waiting for a page to be brought into real storage if
the pseudo page fault handling portion of handshaking is active. with
nonpaging mode, duplicate paging can be eliminated.

Although handshaking is a system generation feature for VS1, it is
active only when VS1 is run under the control of VM/370; it is disabled
when that same VS1 operating system is run on a real machine. The VM/VS
Handshaking feature is not active unless:

I • VSl is generated with the VM/370 option.

I. VSl is run under the control of a version of VM/370 that supports the
I feature (VM/370 supports handshaking with Release 2 PLC 13.)

The pseudo page fault portion of the handshaking feature is not active
unless it is set on. It can be set on, and later set off, with the CP
SET PAGE X command line.

When a VS1 virtual machine with the handshaking feature is loaded,
its initialization routines determine whether the handshaking feature
should be enabled or not. First, VSl checks to see if it is running
under the control of VM/370 by issuing an STIDP (Store Processor ID)
instruction. STIDP returns a version code; a version code of X'FF'
indicates VSl is running under VM/370. If VSl finds a version code of
X'FF', it then issues a DIAGNOSE code X'OO' instruction to store the
VM/370 extended-identification code. If an extended-identification code
is returned to VS1, VSl knows that VM/370 supports handshaking; if
nothing is returned to VS1, VM/370 does not support handshaking. At
this point in the VS1 initialization process, VM/VS Handshaking support
is available. If VSl is running in the nonpaging mode and if the
virtual machine operator issues the CP SET PAGEX ON command, full VM/VS
Handshaking support is available.

Pa rt 2: Control Program (CP) 218.1

GC20~1807~3 Page Modified by TNL GN20-2662, March 31, 1975

When the handshaking feature is active, VS1 closes the CP spool files
when the job output from the VS1 DSO, terminator, and output writer is
complete. Once the spool files are closed, they are processed by VM/370
and sent to the real printer or punch. With the VM/VS Handshaking
feature, virtual machine operator intervention is not required to close
CP spool files.

During its job output termination processing, VS1 issues DIAGNOSE
code X'OS' instructions to pass the CP CLOSE command to VM/370 for each
CP spool file.

A page fault is a program interrupt that occurs when a page that is
marked "not in storage" is referred to by an instructicn within an
active page. The virtual machine operating system referring to the page
is placed in a wait state while the page is brought into real storage.
without the handshaking feature, the entire VS1 virtual machine is
placed in page wait by VM/370 until the needed page is available.

However, with the handshaking feature, a multiprogramming (or
multitasking) VS1 virtual machine can dispatch one task while waiting
for a page request to be answered for another task. VM/370 passes a
pseudo page fault (program interrupt X'14') to VS1. When VS1 recognizes
the pseudo page fault, it places only the task waiting for the page in
page wait and can dispatch any other VS1 task. Thus, when VS1 uses
pseudo page faults, its execution under the control of VM/370 more
closely resembles its execution on a real machine.

When a page fault occurs for a VS1 virtual machine, VM/370 checks
that the pseudo page fault portion of handshaking is active and that the
VS1 virtual machine is in EC mode and enabled for I/O interrupts. Then,
VM/370 reflects the page faults to VS1 by:

I. Storing the virtual machine address, that caused the page fault, at
I location X'90', the translation exception address
I. Reflecting a program interrupt (interrupt code X'14') to VS1
I • Removing the VS1 virtual machine from page and execution wait

When VS1 recognizes program
associated task in wait state.

interrupt code X'14', it places the
VS1 can then dispatch other tasks.

When the requested page is available in real storage, VM/370 reflects
the same program interrupt to VS1, except that the high order bit in the
translation exception address field is set on to indicate completion.
VS1 removes the task from page wait; the task is then eligible to be
dispatched.

When VS1 is run under the control of VM/370, it executes in nonpaging
mode if:

I. Its virtual address space is equal to the size of the VM/370 virtual
I machine
I. Its virtual machine size is a least one megabyte

21S.2 IBM VM/370: System Programmer's Guide

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

I. The VM/VS Handshaking feature is available

When VS1 executes in nonpaging mode, it uses fewer privileqed
instructions and avoids duplicate paging. The VS1- Nucleus
Initialization Program (NIP) fixes all VS1 pages to avoid the duplicate
paging. Note, that the working set size may be larger for a VS1 virtual
machine in nonpaging mode than for one not in nonpaging mode.

When OS/VS1 is run in the VM/370 environment without the handshaking
feature, some duplication results. VS1 must perform certain functions
when it is run on a real machine; it continu~s to perform all those
functions in a VM/370 virtual machine even though VM/370 also provides
services. However, with the handshaking feature, VS1 avoids many of the
instructions and procedures that are redundant or less efficient in the
VM/370 environment. For example, VS1 avoids:

I •
I •

ISK (Insert storage Key) instructions and instead uses a key table
Seek separation for 2314 direct access devices

I • ! •
I

The ENABLE/DISABLE sequence in the VS1 I/O Supervisor (lOS)
TCH (Test Channel) instructions preceding SIO (start
instructions

T ,n\
.L/ v J

Part 2: control Program (CP) 218.3

OS/VS2 Uniprocessor Under VM/370

'M/370 simulates five System/370 instructions required by OS/VS2 Release
2 operating in uniprocessor .ode. These instructions included three
privileged instructions and two nonprivilegEd instructions. The three
privileged instructions are: .

CLEAR I/e (CLRIC)
INSERT PSW KEY (IPK)
SET PSW KEY PROft ADDRESS (SPKA)

The two nonprivileged instructions, which are optional on the
system/370 ftodels 135 and 145, are:

COMPARE AID SWAP (CS)
COMPARE DOUBLE AND SWAP (CDS)

The compare instructions are executed normally, that is, CP does not
simulate them, when the machine is equipped with the appropriate
hardware feature. However, V8/370 simulates the compare instructions
(CS and CDS) if OS/VS2 Release 2 is run under the control of V8/370 on a
System/370 machine without these instructions installed.

Part 2: Control Program (CP) 219

DOS Under VM/370

The following guidelines .ay be helpful if you wish to share a saved DOS
system between users. The guidelines that follow ought to he considered
when you are planning to share a DOS system.

If at all possible, generate DOS with a minimum supervisor without the
options that support multiprogramming.

In general, a DOS system which is to run in a virtual machine should
have as few options as possible. very often, options that improve
performance on a real machine have no effect (or possibly an adverse
effect) in a virtual machine. For example, seek separation, which
improves performance on the real machine, is redundant in a V"/370
virtual machine: CP itself issues a standalone seek for all disk I/O.
If you plan to share the saved DOS system among users, you should
specify Private Core Image Library support.

If you intend to share the DOS system among virtual machines, you must
provide a unique standard label cylinder for each such virtual DOS
user. The individual standard label cylinders are at the end of the
system residence volume (following the normal standard label cylinder).

Some modification to DOS is necessary to support unique standard
label cylinders:

• The communication region in each DOS virtual machine must point to
the appropriate label cylinder for each user. The IPL communication
routines can be modified to do this.

• $JOBCTLA updates the co.munication
standard label cylinder at the end
should be bypassed.

region pointer to
of each job. This

the nor.al
procedure

When users share a DOS system, you have several users writing to the
system residence disk since it contains a standard label cylinder for
each user. The system residence volume must be in "write multiple" mode
to support a shared DOS system. Then, each user can write on its own
label cylinder.

Bach user should have his own permanently assigned read/write private
core image library where he can catalog his own programs. The
relocatable and source statement libraries can be on virtual disks as
well.

220 IB" VM/370: System Programmer's Guide

VM/370 Operating in a Virtual Machine Environment

You can update and test a VM/370 system in a virtual machine. This
procedure allows you to do all the time consuming work in processing for
other users.

After you are through testing, use the DASD Dump Restore (DDR)
program to dump the virtual ---- -- to tape. I'I"IL __ restore ~L_~

\"1:' ::iI::iLt:=w ·~Dt=ll, l.ua. l.

virtual CP system to the real system disk and you are ready to execute
the new version of VM/370 with a minimum amount of real comFuter time.

First, there must be a VM/370 directory entry for a VM/370 virtual
machine. Assume TESTSYS is the userid for this virtual machine.
TESTSYS contains the options RBALTIMER and BCMODl, and would normally be
used to check a new CP nucleus before moving that nucleus to the floor
system. It contains two MDISKs, 330 and 331. These disks would
normally be mirror images of the real SYSRES and SYSWORK volumes. They
would be formatted and allocated so that the real system could speol and
page on these disks. Any additional disks needed should be linked to
before issuing IPL for the virtual system.

A sample VM/370 directory entry for TESTSYS would be:

USER TESTSYS PASSWORD 512K
ACCOUNT NUMBER BIN11
OPTION BCMODB RBALTI8ER

CONSOLE 01F 3215
SPOOL C 2540 RBADER
SPOOL D 2540 PUNCH
SPOOL B 1403
LINK CMSSYS 190 190 R
MDISK 330 3330 1 15 SYSWRK WR RPASS WPASS
MDISK 331 3330 16 20 SYSWRK WB RPASS WFASS

This user ID has the options and configuration necessary to minimally
define a system that can IPL V8/370 in a virtual machine. The minimum
storage required is 240K, but in a virtual machine environment any
reasonable amount can be defined; in this example 512K is used. A 512K
virtual machine is required to do a virtual VM/370 system load.

The OPTION card specifies ECMODE and REALTIMER, which is required for
the virtual machine to operate in extended control mode. The console
and spool device addresses must match the same addresses as the real
machine configuration, or if that is not used for the virtual system
operation, they must match whatever configuration is specified in the
DMKRIO module.

The LINK card is specified so that this virtual machine may operate
CMS, although special considerations have to be used for this function.
The minidisk cards for 330 and 331 define disks that are used for CP
system residence, paging, and spooling. Note that in this configuration
no other user disks are defined, nor are there any definitions for
teleprocessing lines or tape drives.

All additional devices required for testing in a virtual machine
environment can be specified in the virtual machine by the proper use of
the ATTACH, LINK, and DEFIlE commands.

Part 2: Control Program (CP) 221

If the virtual machine that can run CP is also going to be used to run
CMS, the configuration may be modified, once logged on. The spooling
unit record equipment must have addresses that are recognized by CMS.

A LINK card can be specified for the CMS system residence or a link
can be made to the C8S system residence disk, and a link can also be
made if passwords are provided to other user's disks so that they can be
used as primary disks by the C8S system. It is possible, for instance,
under this one ID that can run V8/370 in a virtual machine, to link to
all the disks necessary to do a virtual system VMFLOAD or any other
similar function.

The V8/370 nucleus to be run in a virtual machine must be loaded onto
the corresponding minidisk that represents the virtual system residence
volume. Once this has been done, before IPL, the configuration of the
virtual machine should be carefully set up and verified. This involves
setting the console to the correct address, making sure that sufficient
unit record equipment is available at the proper addresses and attaching
or linking to enough disks so that a reasonable test can be made.

In setting up the virtual machine configuration, links can be made to
other user disks so that the V8/370 system can use these disks in its
virtual operation. Be careful to ensure that links to other disks are
made with the correct addresses.

For instance, if the VM/370 system has 2314s defined as 130 to 137,
then links to user disks that are 2314s must be in this range. 3330 or
3340 links should be in the range of 330 to 337, for example, or
whatever is required to match the real machine configuration to
3330/3340 addresses. If a user disk is linked to as a 2314 address when
it is actually a 3330 or 3340 device, errors will be encountered when
trying to process that user disk.

It is probably not necessary to have a 2305 paging device in the
configuration unless the test specifically addresses that area. If this
is required, and if the real configuration allows it, the user may
define temporary 2305 space fer a paging volume. Depending upon the
nature of virtual machine testing, one or more teleprocessing lines can
be defined so that users may DIAL into the VM/370 system in a virtual
machine. In most cases, simple tests do not require teleprocessing
lines to be defined or enabled at the virtual machine level. Most
testing can be performed by the operator's virtual machine from the
virtual console.

Before any of the CP disks can be used in a virtual machine environment,
they must be properly formatted and set up. This includes formatting
and allocating the disks, and creating a virtual directory and a virtual
nucleus. The virtual disks to be used for virtual system residence,
paging, and spooling must be formatted using the CP FORMAT program.
This program can be run in a virtual machine environment, but does not
operate under CMS.

To run the FORMAT program, make it available in the virtual machine's
spool card reader and IPL it from that reader. Remember that it is a
virtual disk that is being formatted, and hence the specification for
the number of cylinders should reflect the size of the virtual disk that
is being used.

222 IBM VM/370: System Programmer's Guide

In the sample directory for TESTSYS, virtual device 330 is only 15
cylinders; thus only 15 cylinders can be formatted. The label written
on the virtual disk should match the label in the installation-owned
list if you are going to use the same DMKSYS module that the
installation is using. In other words, if your installation has two
volumes in the owned list (for instance, CPDSK1 and CPDSK3), then those
must be the labels that are placed on the minidisks that are going to be
used in a virtual machine.

Once the volumes are formatted, you must also allocate space on these
volumes. Space must be allocated to hold a virtual directory, to allow
for nucleus cylinders, warm start and error recording cylinders, and
temporary space for paging and spooling. All space that is not
accessible to the virtual CP system because it is beyond the bounds of
the virtual disk must be assi.gned as permanent space or else the virtual
system attempts to access temporary space beyond the size of the virtual
disk and the real CP system reflects seek checks back to the virtual
system. The installation's allocation for permanent space to hold the
directory, CP nucleus, error recording area, and warm start cylinder
should be organized so that all these cylinders are in the first
available cylinders on the disk. If the real installation system
residence volume is organized in this fashion, then the same DMKSYS and
DMKRIO modules can be used in a virtual machine configuration.

If, for example, the real configuration specifies that one of the
areas is beyond the range accessible by the virtual disk, then a special
DMKSYS module has to be generated. It is preferable that the same
installation modules are used when operating in a virtual machine
environment in order to ensure that the testing environment matches the
one to be used in the real machine configuration. The only exception to
this rule is the directory that appears on the virtual disk. The
directory on the virtual disk cannot be the same as the real system
directory because none of the labels nor displacements for the user
disks match.

A special directory must be created to handle the virtual Vft/370
environment. The virtual directory need only specify a m1n1mum number
of users, sufficient to perform testing. It is usually beneficial to
define an operator's virtual machine that is large enough and varied
enough to perform all necessary functions. This will allow most virtual
testing from one userid without requiring several userids to dial into
this system to accomplish a test.

The virtual directory that is to be placed on the virtual system
residence volume can be created by running CMS in the same virtual
machine. This is accomplished by setting up a CMS fil~ on one of the
virtual disks to which the user linked with the desired filename and the
filetype of DIRECT. This file contains sufficient entries for testing
in the virtual machine environment. The DIRECT program that is invoked
under CMS will use this file to create the virtual system's directory.

Once you have verified (by using a QUERY VIRTUAL command) that the
virtual machine configuration matches the one that you wish to test, you
can perform a virtual IPL of the virtual disk containing the CP nucleus.
In this example it is disk 330. Remember that a terminal is handled
like a simulated virtual console. In this example a 2741 terminal is
used. Each exclamation point (!) appearing in the sample terminal
output indicates the Attention key has been pressed. The operation of
the Attention (ATTN) key on the terminal remains the same as it weuld

Part 2: Control Program (CP) 223

have been if running any other system, but the operation of the virtual
console is as though the device were an online console (3215) and not a
2741.

!gte: Attention handling varies with the
the !~Lll~: l~!~in~l ~§~!~§ Qyjg~ for a
supported by V"/370.

type of terminal used. See
description of the terminals

Proceed through the virtual machine IPL in the normal fashion,
responding where required. You are not able to set the time-of-day
clock, so always reply "n6" to the change time-of-day-clock question.
Under most circumstances, it is advisable to perform a cold start unless
some specific function requiring a warm start is to be tested. Once the
IPL is successfully completed, one of the first things you should do is
specify that the dump go to the virtual printer. It is sometimes
difficult to obtain a listing of a virtual machine dump once it has been
placed on the virtual spool disk.

In this example, SET DU"P OOE causes virtual machine dumps to go to
the CP spool printer. This, of course, will be much faster than if on
the real machine they went to an online printer. Once you IPL the
virtual machine and logon the operator's virtual machine, you are free
to operate virtual operating systems under this userid or to enable any
virtual teleprocessing lines so that other users may dial into this
system, log on to V6/370 in a virtual machine, and perform whatever
actions they require.

ACCESSING DEVICES

Rote that once you IPL the virtual machine, the devices that were not
accessible to that machine at IPL time are considered offline. It is
possible to attach more devices to this machine and have them placed
online, if required. For instance, tape drives can be attached by the
real machine operator to the virtual machine configuration at the
required address that matches the configuration of the virtual CP
system. The same procedure can be used for teleprocessing lines, unit
record equipment, or other devices.

Remember that teleprocessing lines (virtual 2701/2702/2703 for DIAL)
and spool unit record devices can be created using DEFINE. Before these
can be attached by the virtual CP operator to a virtual machine user in
that environment, they aust first be placed online at the virtual
machine level. Once they have been placed online they can be attached
and used by virtual machines in the virtual CP system. Note also that
in the virtual machine environment there are two ways of displaying and
storing into real storage. The user can use the virtual CP system and
perform DCP and STCP co.mands or, as a much faster approach, he can use
the real CP system and use the functions of display and store. Remember
that display and store are operating on virtual storage, which is in
reality the real storage of the virtual CP system. Operating DCP and
STep at the virtual level appear to that machine to be operating on real
storage, when in fact it is virtual storage managed by the real CP
system. The virtual machine operating in the virtual CP system can, of
course, do its own display and store function, which displays and stores
into the third level virtual storage.

As was mentioned before, most testing can be accomplished if you IPL
and run tests from the operator's virtual machine without enabling any
virtual teleprocessing lines. Note also that teleprocessing lines, if
required, can be attached directly to the virtual CP system for testing
in that environ.ent without using DIAL. Remember that disks that were
linked to before this system IPL appear to the virtual system as disks

224 IBM VM/370: Systea Programmer's Guide

with a zero cylinder relocation factor; therefore, in order to access
them via C~S in the operator's virtual machine, you must attach them at
the virtual CP level to the operator so that he may access them as
though they were dedicated disks. In reality.they are virtual disks,
but yeu will not normally access beyond your disk. If you do, the real
CP system will present I/O errors in the form of seek checks to the
virtual CP system, which will, in turn, reflect them back to the virtual
operating system.

It is possible to use virtual disks in the virtual CP system; however,
their setup is complex and requires careful consideration to coordinate
it with the real directory of the real system. If the real directory of
the real system is changed, and a virtual disk is moved and the virtual
directory is not changed, serious operating errors can occur; therefore,
this practice is not advised unless a specific test of that function is
required.

SPOOLING CONSIDERATIONS

If the virtual machine performs any spooling operations, recognize that
the virtual CP system is also doing spooling operations unless it has
dedicated unit record equipment. This double spooling operation is not
a problem; however, certain operational peculiarities exist. Por
instance, when the virtual system specifies that a printer is producing
output, the output is in fact being spooled. The user cannot easily
determine when this spooling operation is complete. One way 1S to
specify a DRAIN on the particular output device, and when the virtual CP
system reports that the device is drained, the output has indeed
stopped.

It is now necessary to specify a CLOSE for that device to the real CP
system to See the real spooled ou~put. also be aware that double
separators will occur. Por instance, the separator page on virtual
printed output will include one page for the virtual CP system, and
another page for the separator of the virtual machine the virtual CP
system is running. The operation of virtual machines at this level is,
to say the leas~, complex. There is no easy way of describing how to do
all the functions. It requires careful study and analysis, and at all
times an awareness of what level of virtual machine is operating, and
what function you are trying to perform. If you keep all these things
straight you will have no problem testing and operating virtual .achines
and systems themselves operating in a virtual machine environment.

The following sample terminal session is taken directly from a system
that was used to run a virtual CP system in a virtual machine
environment, and is annotated to point out some of the considerations
that have been previously outlined.

Part 2: Control Program (CP) 225

vm/370 online

logon v145r
ENTER PASSWORD:

Ijh359 <jsyosu

LOG"SG - 17:20:14 EDT THURSDAY am/dd/yy
* RUNNING SYS061--IPL 7
* QUERY LOG lOR RESTRICTIONS
LOGON AT 18:38:06 EDT THURSDAY am/dd/yy

This segment shows a normal logon procedure for a user identified as
V145R. This userid is defined in the real CP directory with sufficient
options and configurations to run V"/370 in a virtual machine
environment.

query virtual
STORAGE = 00512K
RDR OOC CLS A
PUN OOD CLS A COPY 01
PRT OOE CLS A COpy 01
CONS 01l ON DEV 051
DASD 190 2314 C"S370 R/O 056 CYL
DASD 19A 2314 C"S190 R/O 055 CYL
DASD 19E 2314 C"S190 R/O 026 CYL
DASD 290 2314 PIDSK3 R/O 045 CYL
DASD 330 3330 PIDSK4 RIW 020 CYL

Issuing the QUERY VIRTUAL command permits you to verify the virtual
machine configuration after logging on. Note that the storage size is
512K bytes, that some unit record devices have been defined, and that
the console address is 011. Device OlP, a pseudo timer, is not required
and could have been left out. Devices 190 and 19E are used to operate
C"S in this virtual machine. Device 290 is not used and could have been
deleted. Device 330 is the 3330, 20-cylinder, read/write minidisk that
becomes the virtual system residence volume for this virtual system when
it is running V"/370.· The volume serial numbers (volids) are those of
the real disks on the real computing system.

link usecms 191 191 rr
ENTER READ PASSWORD:

DASD 191 LINKED R/O; RIW BY USECMS

The LINK command allows the user to access a userid that has a CMS
disk containing certain directory files. This example uses one of these
files to create a virtual system directory.

def 1f as 009
CONS 009 DElI NED
i ems
CMS ••• lLCOR ••• mm/dd/yy

Y (19E) R/O.
A (191) R/O.
013 USERS, 000 DIALED
DMSACC113S 'B (196) , NOT ATTACHED.
DMSACC 113S 'c (194) I NOT ATTACHED.
R;

226 IBM VM/370: System Programmer's Guide

This segment shows the redefinition of console 01F as 009 before
issuing IPL. The error messages indicate that a PROFILE EXEC is running
from the user's 191 disk; the PROFILE EXEC is attempting to access disks
that are not defined in the virtual machine configuration. These disks
are not required to do a directory load.

listf * direct a
FILENAME FILETYPE
V145A DIRECT
USERTEST DIRECT
USER DIRECT
USERl DIRECT
R;

MODE
Al
A2
Al
11

This LISTFILE command, issued in ~ne eMS environment, shows that
there are four files with a filetype of DIRICT. This example uses the
one named V145A.

type v145a direct

DIRECTORY 330 3330 CPDSK3

R;

USER OPERATOR OPERATOR 256K 1M ABCDIFG
ACCOUNT 12345678 COMP.RM

CONSOLE 9 3215
SPOOL C 2540 READER A
SPOOL D 2540 PUNCH A
SPOOL E 1403 A
LINK USECMS 191 191 WR
MDISK 196 3330 0 10 SYS196 RR RDGDEV
MDISK 190 2314 0 56 CMS190 RR RDGDEV
MDISK 19E 2314 0 26 FLRCMS RR RDGDEV

USER USECMS TOM 256K 1M G
ACCOUNT 12345679 ROOM331

CONSOLE 9 3215
SPOOL C 2540 READER A
SPOOL D 2540 PUNCH A
SPOOL E 1403 A
LINK OPERATOR 196 196 RR
LINK OPERATOR 190 190 RR
LINK OPERATOR 19E 19E RR
MDISK 191 3330 0 9 USECMS WR RDGDEV WDGDEV MDGDEV
MDISK 192 2314 T-DISK 5
DED 19A CMS19A

This segment requests a type out of the file V145A DIRECT. Note that
the DIRECTORY statement specifies that the directory is to be written on
a 3330 device at address 330, and that its virtual label is CPDSK3.
This corresponds to the 3330 virtual disk that was shown and discussed
under the QUERY VIRTUAL command. Because this is a virtual disk, CPDSK3
is a virtual label, not a real label. In other words, the virtual 3330
disk (CPDSK3) is on the real disk labeled PIDSK4. This virtual disk was
previously formatted, labeled, and allocated by the CP FORMAT service
program (not shown in this example).

Note that the user identified as OPERATOR has all privilege classes
to allow him to easily controi the virtual VM/370 system. The console
and unit record devices are defined to allow him to operate CMS. The
virtual disks defined for this userid have a displacement of zero and a
size that does not exceed the bounds of the virtual disks that are
defined for the virtual VM/370 system. The volids specified on the
cards are the volids on the virtual disks for the virtual CP system and
not the volids of the real disks on which those virtual disks for the
virtual CP system are defined.

Part 2: Control Program (CP) 227

direct v145a
EOJ DIRECTORY UPDATED
R(00006)i

This segment shows the operation of the directory program in a
virtual machine. The file used to create the virtual directory is V145A
DIRECT, which was previously typed out. Note that the return code is 6.
The directory has been updated on the disk, but since this disk is a
virtual disk and not the real system residence disk, the real CP system
dicectory has not been modified. The return cede of 6 is the normal
code indicating this fact. However, a return code of 4, 5, or 6 is
acceptable.

det 191
DASD 191 DETACHED
Ri

since the 191 disk of user USEC"S is no lenger needed, it is now
detached.

link cpsys 196 196 rr
ENTER READ PASSWORD:

Ri

link cpsys 194 194 rr
ENTER READ PASSWORD:

Ri

acc 196 a
'196' REPLACES' A (191) ,
A (196) R/O.
Ri

acc 194 b/a
B (194) R/O.
Ri

Before doing a virtual VMFLOAD function, it is necessary to access
the disks required to perform this function. These LINK commands define
the disks that contain the CP system to be tested in a virtual machine
environment. The ACCESS commands access those disks and place them in a
read-only status.

spool pun *
Ri

The CP SPOCL command transfers the output of the spool punch back to
this userid. This is required so that the user may later IPL the
virtual card reader to load the CP nucleus onto the virtual system
residence disk.

vmfload cpload ptmx
************SYSTEM LOAD DECK COMPLETE
PCB FILE 0189 TO V145R
Ri

The V"FlOAD function is executed specifying the load list of CPLOAD
and a control file of PTMX. PT"X is a special control file used to
apply experimental updates and PTFs. The "*" marks are the CMS blip
character; at the completion of the load function, the spool file is
transferred to V145R and is available as a reader file.

228 IBM V"/370: System Programmer's Guide

! !
CP
def 009 as 01f
CONS 01F DEFINED
ipl OOc
NUCLEUS LOADED ON CPDSK3
DMKDSP450W CP ENTERED; DISABLED WAIT PSW
CP

You have now finished using CMS for the directory and IPL deck set
u~. Before you IPL the card deck and disk, the console must be
redefined as 01F. (That is the address expected by the CP nucleus for
its loading function and for typing responses.) The IPL of card reader
OOC accomplishes the nucleus load function. The message "NUCLEUS LOADED
ON CPDSK3" confirms that this nucleus has been loaded on the virtual
disk. Note that the virtual minidisk label must be CPDSK3, or the label
must be defined in the DMKSYS module. The virtual machine enters the
disabled wait state producing the message from the real CP system.

query virtual
STORAGE = 00512K
RDR OOC CLS A
PUN OOD CLS A TO V145R
PRT OOE CLS A COPi 01
CONS 01F ON DEV 051
DASD 190 2314 CMS370 R/O 056 CYL
DASD 194 3330 PIDSK5 R/O 060 CIL
DASD 196 3330 PIDSK7 R/O 010 CYL
DASD 19A 2314 CMS190 R/O 055 CIL
DASD 19E 2314 CMS190 R/O 026 CYL
DASD 290 2314 PIDSK3 R/O 045 CYL
DASD 330 3330 PIDSK4 R/W 020 CYL

The QUERY VIRTUAL command displays the current virtual machine
configuration. This is the configuration that was used to run the CMS
machine, except that the console address has been changed to 01F.
Before you IPL the virtual 330 disk and bring in VM/370, it is necessary
to redefine the disk addresses so that they can be recognized by the
VM/370 system.

define 190 as 130
DASD 130 DEFINED
define 194 as 331
DASD 331 DEFINED
define 196 as 332
DASD 332 DEFINED
define 1ge as 131
DASD 131 DEFINED
link virtest 191 333 r
ENTER READ PASSWORD:

DASD 333 LINKED R/O

These DEFINE commands and the LINK command change the configuration
of the virtual machine so that it can be recognized by the virtual
VM(370 nucleus. Note that devices that are 2314s are defined in the
2314 range of 130 to 137 and devices that are 3330s are defined in the
3330 range of 330 to 337. The LINK command is used to access another
user's disk as a 3330 at address 333.

Part 2: Control Program (CP) 229

query virtual
STORAGE = 00512K
RDR OOC CLS A
PUN OOD CLS A TO V145R
PRT OOE CLS A COpy 01
CONS 01F 01 DEV 051
DASD 130 2314 CMS370 R/O 056 CYL
DASD 131 2314 CMS190 ~O 026 CYL
DASD 19A 2314 C"S190 R/O 055 CYL
DASD 290 2314 PIDSK3 ~O 045 CYL
DASD 330 3330 PIDSK4 R/W 020 CYL
DASD 331 3330 PIDSK5 ~O 060 CYL
DASD 332 3330 PIDSK7 R/O 010 CYL
DASD 333 3330 PIDSK7 ~O 010 CYL

A QUERY VIRTUAL is issued again to show that the virtual machine
configuration has been redefined to match the one that can be recognized
by the virtual VM/370 systea. Notice that the 330 disk has read/write
status (this is required for V"/370 to do virtual paging and spooling).
All the others have read-only status. Disks 19A and 290 are not
recognized by the virtual VM/370 system since they are not defined in
the DMKRIO module; however, their inclusion in the configuration does
not matter.

ipl 330

The virtual V"/370 system is loaded by an IPL of the virtual system
residence volume (330).

VM/370 VERSION x LEVEL 1 PLC nnn mm/dd/yy hh:mm:ss

NOW 19:02:54 EDT THURSDAY mm/dd/yy
CHANGE TOD CLOCK (YESINO) :no
19:03:15 DMKLNK018E USEC"S 191 NOT LINKED; VOLID USECMS NOT MOUNTED
RRRR •••• RING •••• GGGG
19:03:16 DMKLNK108E OPERATOR 19E NOT LINKED; VOLID FLRCMS NOT MOUNTED
RRRR •••• RING •••• GGGG
19:03:16 LOGON AT 19:03:16 EDT THURSDAY mm/dd/yy
19:03:16 LINE 01F LOGON AS OPERATOR USERS = 001
19:03:16

This is the output from the VM/370 system running in a virtual
machine. It is printing the responses on what appears to it to be a
virtual 3215 console. Note that the response to the CHANGE TOD CLOCK
(YES/NO) response is "no." If the response had been "yes," it would
have requested a date and time to be set; however, the real time-of-day
clock cannot be changed from a virtual machine environment. The LINK
error messages are a result of the automatic operator logon and the
directory not being able to find some disks defined in the operator's
virtual machine. The "RING" message is the real CP simulation of the
virtual console alarm function. Finally, the operator receives
confirmation of a logon.

230 IBM VM/370: System Programmer's Guide

DMKCPI9511 CP VOLID CPDRM1 NOT MOUNTED

RRRR •••• RING •••• GGGG
19:03:16

DMKCPI9511 CP VOLID PIDSK2 NOT MOUNTED

RRRR •••• RING •••• GGGG
19: 03 : 16 START «COLD I WARM) (DRAIN» I (S BUT DOWN) : cold
19:04:00 FILES: NO RDR, NO PRT, NO PUN

The messages indicating the CPDRM1 and PIDSK2 are not mounted are
issued because the virtual DftKSYS module has an owned list that has
three volumes specified, CPDRM1, PIDSK2, and PIDSK3. The only one
available in the configuration at the time of the IPL was the system
residence volume, CPDSK3. These error messages are not severe, since
only a minimum amount of space is required by Cp to accomplish paging
and spooling. The response to the start message in this case is cold,
and that should be the normal response unless a specific test of warm
start is required.

!
19:04:23 query dasd all
19:04:30 DASD 130 CP SYSTEft CMS190 001
19:04:30 DASD 131 FREE
19:04:30 DASD 132 OFFLINE
19:04:30 DASD 133 OFFLINE
19:04:30 DASD 134 OFFLINE
19:04:30 DASD 135 OFFLINE
19:04:30 DASD 136 OFFLINE
19:04:30 DASD 137 OFFLINE
19:04:30 DASD 250 OFFLINE
19:04:30 DASD 251 OFFLINE
19:04:30 DASD 252 OFFLINE
19:04:30 DASD 253 OFFLINE
19:04:30 DASD 254 OFFLINE
19:04:30 DASD 255 OFFLINE
19:04:30 DASD 256 OFFLINE
19:04:30 DASD 257 OFFLINE
19:04:30 DASD 2DO OFFLINE
19:04:30 DASD 2D1 OFFLINE
19:04:30 DASD 2D2 OFFLINE
19:04:30 DASD 330 CP OWNED PIDSK4 001
19:04:30 DASD 331 CP SYSTEM CPRL10 001
19:04:30 DASD 332 CP SYSTEM SYS196 001
19:04:30 DASD 333 FREE
19:04:30 DASD 334 OFFLINE
19:04:30 DASD 335 OFFLINE
19:04:30 DASD 336 OFFLINE
19:04:30 DASD 337 OFFLINE
19:04:30 DASD 350 OFFLINE
19:04:30 DASD 351 OFFLINE
19:04:30 DASD 352 OFFLINE
19:04:30 DASD 353 OFFLINE

In this example, the exclamation mark (!) indicates that an attention
has been signalled on a 2741 terminal. This is reflected as an
"attention" to the virtual machine. The virtual CP system responds to
the attention by typing the time and issuing a read. The response to
the read is the entry of the command QUERY tASt. The response to this
command from the virtual CP system is the DASD status shown. Notice
that most of the devices are in an off-line condition, since at the time
of IPL these device address were not available in the virtual machine
configuration. The devices that were availatle are now marked free,

Part 2: Control Program (CP) 231

owned, or systea. The syste. voluaes are ones that have minidisks in
use by the operator. Notice that device 332 has a label of 5Y5196 in
the virtual CP systea. A previous QUERY VIRTUAL showed that DA5D 332 is
actually physically mounted on PID5K7. However, this label is the real
system label and is not the one recognized by the virtual CP system. In
order for users to access the 332 disk, it is necessary to have a
virtual directory that refers to the virtual label of 5Y5196. Remember
that the operator's virtual disk 196 refers to a zero cylinder
displacement on volume 5Y5196.

19:06:34 q virtual
19:06:40 5TORAGE = 00256K
19:06:40 CONS 009 ON DEV 01F
19:06:40 RDR OOC CLS A
19:06:40 PUN OOD CLS A
19:06:40 PRT OOE CLS A
19:06:40 DASD 190 2314 CMS190
19:06:40 DASD 196 3330 SYS196

COpy 01
COpy 01

R/O 056 CYL
R/O 010 CYL

Again, you signal attention to the virtual CP system. The operator
types in QUERY VIRTUAL, and the display is the virtual machine
configuration for the virtual machine operator. Note that the operator
has a configuration that is suitable for running CM5 by loading (via
IPL) virtual device 190.

19:07:38 att 131 operator 191
19:07:55 DASD 131 ATTACH TO OPERATOR 191

The operator attaches what appears to him as real disk 131 to himself
as virtual address 191. The response indicates a successful attach.

! !
CP
q v 131
DASD 131 2314 C"S190 R/O 026 CYL

The attention signalled here, shown by two exclamation marks followed
by the word CP, indicates that you are at the real CP level. At that
level, issue a QUERY VIRTUAL 131. The response indicates that the
virtual 131 disk is a 2314 with read-only status, with 026 usable
cylinders.

!
19:08:40 q 131
19:08:50 DASD 131 ATTACH TO OPERATOR 191
!
19:08:58 q v 191
19:09:04 DASD 191 ON DEV 131

5ignalling attention takes you back to the virtual machine level,
where an attention interrupt is reflected. The virtual CF system then
responds with the time and issues a read. At the virtual CP system, you
issue a QUERY 131, which for the operator is a query of what appears to
him as real disk 131. Note that the status is that of the disk attached
to the operator as virtual address 191. This is the same disk that was
previously noted; however, the virtual CP system thinks that the disk
has read/write status. The single attention again causes a read, and
you issue a QUERY VIRTUAL 191. The response indicates a dedicated disk
on device 131 and assumed read/write status.

232 IBM V"/370: System Programmer's Guide

!
19:09:16 ipl 190
19:09:23 C~S •• FLOOR •• mm/dd/yy

DftSACC112S 'A (191) , DEVICE ERROR
R; T=O.02/0.04 19:11:29

Signalling attention again causes a CP read, and the operator
performs a virtual IPL of the virtual 190 disk to bring in the CftS
system. The response is from the CftS system operating in a virtual
machine, under a virtual V~/370 system. operating. under a real Vft/370
system_ A carriage return to the ensu1Dg read g1ves an error aessage
from C~S. The reason for the error message is that CftS has an
indication from the virtual CP system that it has write access to the
disk, since it appears as a dedicated disk. However, the real CP system
has the disk in read-only status and rejects the write attempt back to
the virtual CP system, which in turn reflects it to CftS, causing the
device error message.

! !
CP
det 333
DASD 333 DETACHED
link virtest 191 333 w
ENTER WRITE PASSWORD:

DASD 333 LINKED R/W

You then enter the real CP mode by signalling attention and gain
write access to another user's virtual disk. Device 333 is detached and
linked as 333 in write aode. The fact that the operator detached and
relinked is transparent to the virtual CP system at this level. You
have accomplished a status change from read to write. The physical
extent definition has not changed.

!
19:15:38 det 191'att 333 operator 191
19:15:52 DASD 131 DETACHED OPERATOR 191
19:15:52 DASD 191 DETACHED
19:15:43 DASD 333 ATTACH TO OPERATOR 191
19:15:53 b
CftS

ace 191 a
R; T=0.39/0.76 19:16:23

Signalling attention causes a read from the virtual CP system, where
the operator detaches the virtual 191 disk and attaches the real 333
disk to his userid as 191. Remember that the 333 appears tc the virtual
CP systea as a real disk, when it is actually a virtual disk. The BEGIN
command changes the virtual machine environment to CftS. The ACCESS 191
command is then successfully completed, giving write access to the
virtual 191 disk, which is the virtual CP system's 333 disk previously
linked in write mode.

print profile exec
19:16:45 PRT OOE OUTPUT OF OPERATOR FILE = 0002 LINES= 00013'
R; T=0.23/0.51 19:16:46

!
19:17:05 drain OOe
19:17:04 PRT OOE SPOOL CLS IA DRAINED

Froa CftS, the PROFILE EIEC is printed. The virtual CP system
responds with a printer output message for file 2, which is the output

Part 2: Control Program (CP) 233

fro. the previous print function. The ready message is the response
from the C~S system. This example shows a virtual .achine running from
a virtual CPU console that is receiving both virtual .achine output and
CP output. signalling attention places the virtual machine in virtual
CP mode, where you specify a drain of device OOE. The system responds
with a message indicating that the device is drained. This indicates
that the virtual CP system has co.pleted printing on what it thinks is a
real printer. This printer is actually spooled by the real CP system.

II
CP
close OOe
b
CMS

signalling attention returns you to the real CP system level, where
you issue a CLOSE OOE co.mand, followed by a BEGIN. This allows you to
have the spooled output of the virtual VM/370 system printed on the real
VM/370 system printer.

!
19:19:44 set dump OOe
!
19:19:51 q dump
19:19:55 PRT OOE DU~P UNIT CP

to the virtual CP lev~l, where you Signalling attention takes you
issue a SET DUMP OOE co.mand.
unstable system, this would have
would have entered after issuing
query of the dump unit verifies

Ordinarily, if you were testing an
been one of the first commands that you
the IPL for the virtual CP system. The
that the dump is of the CP nucleus to

the printer at address OOE.

! !
CP
system restart
RRRR •••• RIIG •••• GGGG

19:20:06 DMKDMP9081 SYSTEM FAILURE; CODE PSA002

RRRR •••• RIIG •••• GGGG

RRRR •••• RING •••• GGGG

DMKCKP9601 SYSTEM WARM START DATA SAVED

DMKDSP450W CP ENTERED; DISABLED WAIT PSW
CP

DMKCKP961W SYSTEM SHUTDOWN COMPLETE

CP

RRRR •••• RING •••• GGGG
CP

Signalling attention takes you to the real CP level, where you enter
the command SYSTEM RESTART. This is the equivalent of a system restart
function on a real CPU console. The system restart function for a CP
system automatically dumps the system and then issues 1PL again. The
following messages indicate the abnormal termination code PSA002, which
indicates a system dump due to pressing the system restart key. The
virtual bell rings to indicate that the system has been reloaded when
the SYSTEM WAR~ START DATA SAVED message is printed, followed by the
SYSTEM SHUTDOWN COMPLETE message. The message indicating that CP has

234 IBM V~/370: System Programmer's Guide

entered a disabled wait state is prematurely issued between these two
messages because of a synchronization of the real CP system with the
virtual CP system console output. Finally, you are in real CP mode,
where you can issue a CLOSE to device OOE to receive on the real printer
the spool printed output of the system ABEND dump.

If no further work is to be done, you can then log off the system.

Part 2: Control Program (CP) 235

Timers in a Virtual Machine

This section describes the results obtained in using timers in a virtual
machine created by CP.

Virtual location 80 (X'SO'), the interval timer, contains different
values than would be expected when operating in a real machine. A real
interval timer is updated 60 times per second when enabled and when the
real machine is not in manual state. A real interval timer thus
reflects system time and wait state time. A virtual interval tiaer
reflects only virtual CPU time, and not wait time. It is updated by CP
whenever a virtual machine passed control to CP, and the one updating
reflects the entire time the virtual machine had control. Note that
during the time a virtual machine has control, the virtual interval
timer does not change; the virtual CPU time used is added to the virtual
interval timer when CP regains control. For some privileged
instructions, CF may be able to simulate the instructicn and still
return control to the virtual machine before the end of that virtual
machine's time slice. In such cases, the interval timer is not updated
when CP gets control to perform the privileged instruction simulation,
but is updated when CP gets control at the end of the time slice.

If the virtual machine assist feature is ON, more time is charged to
the virtual interval timer than if the feature is OFF. When the virtual
machine assist feature is OFF, the time spent by CP to simulate
priv~leged instructions is no! charged to the virtual interval timer;
whereas, with the feature ON, the time spent by virtual machine assist
to execute privileged instrictions is charged to the virtual interval
timer.

VM/370 provides an option, called the REALTIMER option, which causes
the virtual interval tiaer to be updated during virtual wait state as
well. with the real timer option in effect, a virtual interval timer
reflects virtual CPU time and virtual wait time, but not CP time used
for services for that virtual machine, such as privileged instruction
execution. The more services a virtual machine requires from CP, the
greater the difference between its real timer and the actual elapsed
time.

A virtual machine must have the ECMODE directory option to use the
System/370 CPU timer.

The CPU timer is supported in a virtual machine in much the same way
as is the interval timer. That is, the CPU timer in a virtual machine
records only virtual CPU time, and it is updated when the virtual
aachine passes control back to CP.

If the real timer option is specified, the CPU timer reflects all
actual elapsed time except CP time used for services, such as privileged
instruction execution, for that virtual machine.

236 IBM VM/370: System Programmer's Guide

The method of sampling the value in the CPU timer causes it to appear
to a virtual machine to be updated more often than an interval timer.
The privileged instructions set CPU Timer (STP) and store CPU Timer
(STPT) are used to set a doubleword value in the CPU timer and to store
it in a doubleword location of virtual storage. When a virtual machine
samples the value in the CPU timer by issuing a STPT instruction, CP
regains control to execute the privileged instruction, and updates the
time. The act of sampling the CPU timer from a virtual machine causes
it to be brought up to date.

The System/370 time-of-day (TOD) clock does not require simulation in a
virtual machine. The system/370 in which CP is operating has one real
TOD clock, and all virtual machines can interrogate that real ~OD clock.
The store Clock (STCK) instruction is non-privileged; any virtual
machine can execute it to store the current value of the TOD clock in
its virtual storage. The set Clock (SCK) instruction, which is used to
set the TOD Clock value can be issued from a virtual machine, but CP
always returns a condition code of zero, and does not actually set the
clock. Note that the TOD clock is the only true source of actual
elapsed time information for a virtual machine. The base value for the
TOD clock in VM/370 is 00:00:00 GMT January 1, 1900.

The clock comparator associated with the TOD clock is used in virtual
machines for generating interrupts based on actual elapsed time. The
'BCMODB' option must be specified for a virtual machine to use the clock
comparator feature. The Set Clock Comparator (SCKC) instruction
specifies a doubleword value which is placed in the clock comparator.
When the TOD clock passes that value, an interrupt is generated.

The pseudo timer is a special VM/370 timing facility. It provides 24 or
32 bytes of time and date information in the format shown in Figure 29.

start I/O Diagnose
< 8 bytes > <---- 8 bytes >

MM/DD/II MM/DD/II

HH:MM:SS HH:MM:SS
or

VIRTCPU TOTCPU VIRTCPU

TOTCPU

Figure 29. Formats of Pseudo Timer Information

Part 2: Control Program (CP) 237

The first eight-byte field is the date, in EBCDIC, in the fora
Month/Day-of-Month/Year. The next eight-byte field is the Time of Day
in Hours:"inutes:Seconds. The VIRTCPU and TOT CPU fields contain virtual
CPU and total CPU time used. The units in which the CPU ti.es are
expressed and the length of the fields depend upon which of two methods
is used for interrogating the pseudo timer.

PSEUDO TIMER START I/O

The pseudo timer can be interrogated by issuing a START I/O to the
pseudo timer device, which is device type TIMER, and is usually at
device address OFF. No I/O interrupt is returned from the SIO. The
address in virtual storage where the timer information is to be placed
is specified in the data address portion of the CCW associated with the
SIO. This address must not cross a page boundary in the user's address
space. If this method is used, the virtual CPU and the total CPU times
are expressed as fu11words in high resolution interval timer units. One
unit is 13 microseconds.

PSEUDO TI"ER DIAGNOSE

The pseudo timer can also be interrogated by issuing DIAGNOSE with an
operation code of C, as described under "DIAGNOSE Instruction in a
Virtual Machine." If this method is used, the virtual and total CPU
times are expressed as doub1ewords in microseconds.

238 IBM VM/370: system Programmer's Guide

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

DIAGNOSE Instruction in a Virtual Machine

The DIAGNOSE instruction cannot· be used in a virtual machine for its
normal function. If a virtual machine attempts to execute a DIAGNOSE
instruction, a program interrupt returns control to CP. Since a
DIAGNOSE instruction issued in a virtual machine results only ,n
returning control to CP, and not in performing normal DIAGNOSE
functions, the instruction is used for communication between a virtual
machine and CP. The machine language format of DIAGNOSE is:

<------------- 4 bytes ------->
r-------
I 83 I R 1 I R2 I CODE

(There is no Assembler language mnemonic for X'83')

The operand storage addresses, passed to the DIAGNOSE interface in Rl
and R2, must be real addresses to the virtual machine issuing the
DIAGNOSE.

The Code is a two-byte hexadecimal value that CP uses to determine
what function to perform. The codes defined for the general VMj370 user
are described in this section. The code must be a multiple of 4. Codes
X'OO' through X'FC' are reserved for IBM use, and codes X'100' through
X'lFC' are reserved for users.

Because DIAGNOSE operates differently in a virtual machine than in a
real machine, a program should determine that it is operating in a
virtual machine before 1ssu1ng a DIAGNOSE, and prevent execution of a
DIAGNOSE when in a real machine. The Store CPU ID (STIDP) instruction
provides a program with information about the CPU in which it is
executing, including the CPU version number. If STIDP is issued from a
virtual machine the version number will be 'FF', in the first byte of
the CPUID field.

A virtual machine issuing a Diagnose instruction should run with
interrupts disabled. This prevents loss of status information
pertaining to the Diagnose operation such as condition codes and sense
data.

Execution of DIAGNOSE code 0 allows a virtual machine to examine the
VMj370 extended-identification code. For example, an OS/VSl virtual
machine issues a DIAGNOSE code 0 instruction to determine if the version
of VMj370 it is running with supports the VMjVS Handshaking feature. If
the extended-identification code is returned to VS1, VMj370 supports
handshaking; otherwise, it does not.

The register specified as Rl contains the doubleword aligned virtual
storage address where the VMj370 extended-identification cede is to be
stored. The R2 register contains the number of bytes to be stored.

If the VMj370 system currently running does not support the DIAGNOSE
code 0 instruction, no data is returned to the virtual machine. If it
does support the DIAGNOSE code 0 instruction, the following data is
returned to the virtual machine (at the location specified by Rl) :

Part 2: Control Program (CP) 239

GC20-1807-3 Page Modified by TNL GN20-2662, Harch 31, 1975

System
Name

version
Humber

Version
Code

HCEL

Processor
Address

Userid

"VH/370"

The first byte is the
version number, the second
byte is the level, and the
third byte is the PLC (Pro­
gram Level Change) number.

VH/370 executes the STIDP
(Store CPU ID) instruction
to determine the version
code.

VH/370 executes the STIDP
instruction to determine
the maximum length of the
HCEL (Machine Check Extended
Logout) area.

VM/370 executes the STAP
(store CPU Address) instruction
to determine the processor
address.

The userid of the virtual
machine issuing the DIAGNOSE.

8 bytes, EBCDIC

3 bytes, hexadecimal

1 byte, hexadecimal

2 bytes, hexadecimal

2 bytes, hexadecimal

8 bytes, EBCDIC

If VH/370 is executing in a virtual machine, another 24 bytes, or less,
of extended identification data is appended to the first 24 bytes
described above. Up to five nested levels of VH/370 virtual machines
are supported by this Diagnose instruction resulting in a maximum of 120
bytes of data that can be returned to the virtual machine that initially
issued the Diagnose instruction.

Upon return, R2 contains its original value less the number of bytes
that were stored.

No completion code is returned, and the condition code remains
unchanged.

Execution of a DIAGNOSE Code 4 allows a user with command privilege
class C or E to examine real storage. The register specified as R1
contains the virtual address of a list of CP (real) addresses to be
exaained. The R2 register, which cannot be register 15, contains the
count of entries in the list. R2+1 contains the virtual address of the
result field. The result field contains the values retrieved from the
specified real locations.

The execution of DIAGHOSE with code 8 allows a program executing in
supervisor mode in a virtual machine to perform a CP command. The
register specified as R1 contains the address, in virtual storage, of
the data area defining the CP command and parameters. The R2 register

240 IBH VH/370: System Programmer's Guide

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

contains the length of the associated command input, which may be up to
132 characters. The following example illustrates how DIAGNOSE Code 8
would be issued to perform the CP command, QUERY, to determine the
number of input and output spool files:

LA 6,CMMD
LA 10,CMMDL
DC X'83',X'6A' ,XL2'0008'

CMMD DC
CMMDL EQU

C'QUERY FILES'
*-CMMD

The output of the command is at the user's terminal. A completion
code is returned to the user as a value in the register specified as R2.
In the example above it would be register 10. A comFletion code of 0
signifies normal completion. If there is an error, the completion code
is the binary value of the numeric portion of the error message. For
instance, the error message

DMKCFM045E userid NOT LOGGED ON

returns '045' in
unchanged.

the R2 register. The condition code remains

Execution of DIAGNOSE with Code C causes CP to store four doublewords of
time information in the user's virtual storage. The register specified
as R1 contains the address of the 32 byte area where the time
information is to be stored. The address must be a doubleword boundary.
The information returned is as shown in Figure 29.

The first eight bytes contain the Month/Day-of-Month/Year. The next
eight bytes contain the time of day in Hours:Minutes:Seconds. The last
16 bytes contain the virtual and total CPU time usea Dy the virtual
machine that issued the DIAGNOSE. These times are expressed as
doubleword, unsigned integers, in microseconds. No completion code is
returned, and the condition code remains unchanged.

Pages of virtual storage can be released by issuing a DIAGNOSE with Code
10. When a page is released it is considered all zero. The register
specified by R1 contains the address of the first page to be released,
and the R2 register contains the address of the last page to be
released. Both addresses must be page boundaries. A page boundary is a
storage address whose low order three digits, expressed in hexadecimal,
are zero. No completion code is returned, and the condition code
remains unchanged.

Part 2: Control Program (CP) 240.1

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

Execution of DIAGNOSE Code 14 causes DMKDRDER to perform input spool
file manipulation. Depending on the value of the function subcode, the
register specified as R1 contains a buffer address, a copy count, or a

240.2 IBM VM/370: System Programmer's Guide

spool file identifier. The R2 register, which cannot be register 15,
contains either the virtual address of a spool input card reader or, if
R2+1 contains X'OFFF', a spool file ID number. R2+1 contains a
hexadecimal code indicating the file manipulation to be performed. The
codes are:

,g.Qg~
0000
0004
0008
OOOC
0010
0014
0018
OFFF

1.Y!!£!!2!!
Read next spool buffer (data record)
Read next print spool file block (SPBLOK)
Read next punch spool file block (SFBLOK)
Select a file for processing
Repeat active file ~~ times
Restart active file at beginning
Backspace one record
Retrieve subseOquent file descriptor

On return R2+1 may contain error codes which further define a
returned condition code of 3.

Condition
Code --'0----

1
2
3
3
3
3

4
8

12
16

Error
Data-transfer successful
End of file
Pile not found
Device address invalid
Device type invalid
Device busy
Patal paging I/O error

Input/output operations to a direct access device of the type used by
CftS, can be performed from a virtual machine using DIAGNOSE with Code
18. No I/O, interrupts are returned by CP to the virtual machine; the
DIAGNOSE instruction is complete only when the Read or Write commands
associated with the DIAGNOSE are completed. The R1 register contains
the virtual device address of the direct access device. The R2 register
contains the address of a chain of CCWs. The CCW chain must be in a
standard format that CP expects when DIAGNOSE Code 18 is used, as shown
below. Register 15 must be loaded by the user with the number of reads
or writes in the CCW chain.

A typical CCW string to read or write two 800-byte records is as
follows:

SEEK,A,CC,6
SET SECTOR (needed only for 3330)
SRCB,A+2,CC,5
TIC,*-8,0,0
RD or WRT,DATA,CC+SILI,800
SEEK BEAD,B,CC,6 (omitted if BEAD number unchanged)
SET SECTOR (needed only for 3330)
SRCB,B+2,CC,5
TIC,*-8,0,0
RD or WRT,DATA+800,SILI,800

A SEEK and SRCB arguments for first RD/WRT
B SEEK and SRCH arguments for second RD/WRT

Part 2: Control Program (CP) 241

The Condition Codes and Completion Codes returned are as follows:

cc=O I/O complete with no errors

cc=1 Error condition. Register 15 contains one of
the following:
R15=1 Device not attached
R15=2 Device not 2319, 2314, or 3330
R15=3 Atteapt to write on a Read-only disk
R15=4 Cylinder number not in range of user's disk
R15=5 Virtual device is busy or has an interrupt pending

cc=2 Error condition. Register 15 contains one of
the following:
R15=5 Pointer to CCW string not doubleword aligned.
R15=6 SEEK/SEARCH arguments not within range of

user's storage
R15=7 READ/WRITE CCW is neither Read (06) nor Write (05)
R15=8 READ/WRITE Byte Count=O
R15=9 READ/WRITE Eyte Count greater than 2048
R15=10 READ/WRITE buffer not within user's storage
R15=11 The value in R15, at entry, was not a positive

number from 1 through 15; or, was not large
enough for the given CCW string.

R15=12 Cylinder number on seek head was not the same
number as on the first seek.

cc=3 Uncorrectable I/O error:
R15=13
CSW (8 bytes) returned to user
Sense bytes are available if user issues a SENSE command

Execution of DIAGNOSE Code 1C allows a user with privilege class F to
clear the I/C error recording data on disk. The D~KIOEF~ routine
performs the clear operation. The register specified as R1 contains a
code value:

Function
Clear-and reformat all I/O error recording
Clear and reformat all machine check error recording
Clear and reformat all error recording (I/O and machine

check)

with DIAGNOSE Code 20, a virtual machine user can specify any valid CCW
chain to be performed on a tape or disk device. No I/O interrupts are
reflected to the virtual machine; the DIAGNOSE instruction is complete
only when all I/O commands in the specified CCW chain are finished. The
register specified as R1 contains the virtual device address. The R2
register contains the address of the CCW chain.

The eei string is processed V1a D5KCCWTR through DMKGIOEX, providing
full virtual I/O in a synchronous fashion (self-modifying CCW strings
are not permitted, however) to any virtual machine specified. Control
returns to the virtual machine only after completion of the operation or

242 IB~ VM/370: System Programmer's Guide

detection of a fatal error condition. EREP support is provided for tape
and DASD devices only; all other devices will present an error condition
in the PSW to the virtual user. Condition codes and error codes are
returned to the virtual system.

The Condition Codes and Completion Codes returned are as follows:

cc=O I/O complete with no errors

cc=l Error condition. Register 15 contains the following:.
R15=1 Device is either not attached or the virtual channel is

dedicated.
R15=5 Virtual device is busy or has an interrupt pending.

cc=2 Exception conditions. Register 15 contains one of the
following:
R15=2 unit Exception bit in device status byte=1
R15=3 Wrong Length Record detected.

cc=3 Error Condition:
R15=13 A permanent I/O error occurred or an unsupported

device was specified. The two low-order positions
of the user's R2 register contain the first two sense bytes.

CP maintains control blocks describing each virtual device and each real
device. DIAGNOSE Code 24 causes CP to return to the virtual machine
certain information from the virtual device block (VDEVBLOK) and the
real device block (RDEVBLOK) associated with a given virtual device
address. The R1 register from the caller contains a virtual device
address or a value of -1, indicating that the device is a virtual
console and its address is not known. If the console is found, control
returns to the caller with the virtual device address in the low order 2
bytes of the R1 register. The R2 register and the R2+1 register, on
return, contain the following one-byte fields:

R2 VDEVTiPe VDEVTYPE

R2+1 RDEVT;YPC RDEVTYPE

VDEVSTAT

RDEVMDL

VDEVFLAG

RDEVFTR
- or -

RDEVLLEN

The meanings of these fields are as follows:

R2
~~g!§!~!
VDEVTYPC
VDEVTYPE
VDEVSTAT
VDEVFLAG

R2+1
!~gi2!~I
RDEVTYPC
RDEVTYPE
RDEVMDL
RDEVFTR

RDEVLLEN

Virtual Device Information iirtuiI-devIce-type-cliss-
Virtual device type
virtual device status
virtual device flags

Real Device Information ReiI-devlce-type-class-
Real device type
Real device model number
Real device feature code, for a device other than a
virtual console

Current device line length, for a virtual console

Part 2: Control Program (CP) 243

Note: If B2 is register 15, only the virtual device information is
returned to the caller.

A condition code of 3 indicates that the virtual device address
specified was invalid, or that the virtual device does not exist. A
condition code of 2 indicates the virtual device exists, but there is no
real device associated with it, and therefore no real device information
was provided. Spooling devices and Pseudo Timers are examples of such
devices. A condition code of 0 indicates normal completion.

DIAGNOSE Code 28 allows a virtual machine to correctly execute some
channel programs modified after the Start I/O (SIO) instruction is
issued and before the input/output operation is completed. The channel
command word (CCi) modifications allowed are:

• A Transfer in Channel (TIC) CCi modified to a No Operation (NOP) CCi

• 1 TIC CCi modified to point to a new list of CCis

• A NOP modified to a TIC CCi

ihen a virtual machine modifies a TIC CCi, it is modifying a virtual
channel program. CP has already translated that channel program and is
waiting to execute the real CCis. The DIAGNOSE instructicn, with Code
28, must be issued to inform CP of the change in the virtual channel
program, so CP can make the corresponding change to the real CCV before
it is executed. In addition, when a NOP CCW is modified to point to a
new list of CCis, CP translates the new CCWs.

To be sure that the DIAGNOSE instruction is recognized in time to
update the real CCW chain, the virtual machine issuing the DIAGNOSE
instruction should have a high favored execution value and a low
dispatching priority value. The CP SET command should be issued:

SET FAVORED xx

SET PRIOBITY nn

where xx has a high numeric value and nn has a low numeric value. The
virtual machine issuing the DIAGNOSE Code 28 must be in the supervisor
mode at the time it issues the DIAGNOSE instruction.

When DIAGNOSE Code 28 is issued, the R1 register contains the address
of the TIC or NOP CCW that was modified by the virtual machine. The B2
register contains the device address in bits 16 through 31. Rl and R2
cannot be the same register. The addresses specified in the Rl
register, the new address in the modified TIC CCV, and the new CCV list
that the modified TIC CCi points to must all be addresses that appear
real to the virtual machine: CP knows these addresses are virtual, but
the virtual machine thinks they are real.

The condition codes (cc) and completion codes are as follows:

cc=O The real channel program was successfully modified; register
15 contains a zero.

cc=l There was probably an error in issuing the DIAGNOSE
instruction. Register 15 (R15) contains one of the following
completion codes:
R15=1 The same register was specified for Bl and R2.

244 IBK VK/370: System Program.er's Guide

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

R15=2 The device specified by the R2 register was not found.
R15=3 The address specified by the Rl register was not within

the user's storage space.
R15=4 The address specified by the Rl register was not

doubleword aligned.
R15=5 A CCW string corresponding to the device (R2) and

address (Rl) specified was not found.
R15=6 The CCW at the address specified by the R1 register is

not a TIC or a NOP, or the CCW in the channel program is
not a TIC or a NOP.

R15=7 The new address in the modified TIC CCW is not within
the user's storage space.

R15=8 The new address in the modified TIC CCW is not
doubleword aligned.

cc=2 The real channel program cannot be modified because a channel
end or device end already occurred. Register 15 contains a 9.
The virtual machine should restart the modified channel
program.

Execution of DIAGNOSE Code 2C allows a user with privileqe class C, E,
or F to find the location on disk of the error-recording area. The
register specified as Rl, on return contains the DASD location (in
VM/370 control program internal format) of the first record of the
system I/O and machine check error recording area.

Execution of DIAGNOSE Code 30 allows a user with privilege class C, E,
or F to read one page of the system error recording area. The register
specified as Rl contains the DASD location (in VM/370 control program
internal format) of the desired record. The R2 register contains the
virtual address of a page-size buffer to receive the data. The DMKRPAGT
routine supplies the page of data. The condition codes returned are:

Condition
__ fQg~ __ _ ~~~~i~g

o Successful read, data available
1 End of cylinder, no data
2 Invalid cylinder, outside recording area

A user with privilege class C or E can read the system spool file by
issuing a DIAGNOSE Code 34 instruction. The register specified as Rl
contains the virtual address of a page-size buffer to receive the data.
The R2 register, which cannot be register 15, contains the virtual
address of the spool input card reader. R2+1, on return, may contain
error codes:

Part 2: Control Program (CP) 245

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

Condition R2+1
~££Q£_fQQg __ fQgg __ _ ~~!~!~g

o
1
2
3
3
3
3

4
8

12
16

Data transfer successful
End of file
File not found
Device address invalid
Device type invalid
Device busy
Fatal paging I/O error

The DMKDRDMP routine searches the system chain of spool input files
for the dump file belonging to the user issuing the DIAGNOSE
instruction. The first (or next) record from the dump file is provided
to the virtual machine via DMKRPAGT and the condition code is set to
zero. The dump file is closed via VM/370 console function CLOSE.

Execution of DIAGNOSE Code 38 causes the routine DMKDRDSY to read the
system table into storage. The register specified as Rl contains the
address of the page buffer to contain the symbol table.

Execution of DIAGNOSE Code 3C allows a user to dynamically update the
VM/370 directory. The register specified as Rl contains the first 4
bytes of the volume serial label. The first two bytes of R2 contain the
last 2 bytes of the volume serial label. The routine DMKUDRDS
dynamically updates the directory.

This code can be issued only by a user with the account option (ACCT) in
his directory.

Rl contains the virtual address of either a 24-byte parameter list
identifying the "charge to" user, or a variable length data area that is
to be punched into the accounting card. The interpretation of the
address is based on a hexadecimal code supplied in R2. If the virtual
address represents a parameter list, it must be doubleword aligned; if
it represents a data area, the area must not cross a page boundary. If
Rl is interpreted as pointing to a parameter list and the value in Rl is
zeroes, the accounting card is punched with the identification of the
user issuing the DIAGNOSE instruction.

R2 contains a hexadecimal code interpreted by DMKHVC as follows:

Code
0000
0004
0008

Rl ~g!~!§ !g:
a parameter list containing only a userid.
a parameter list containing a userid and account number.
a parameter list containing a userid and distribution

number.
OOOC a parameter list containing a userid, account number, and

distribution number.
0010 a data area containing up to 70 bytes of user information to

be transferred to the accounting card slarting in column
9.

!Qi~: If R2 contains X'0010', R2 cannot be register 15.

246 IBM VM/370: System Programmer's Guide

GC20-1807-3 Page Modified by TNt March 1975

R2+1 contains the length of the data area pointed to by Rl. If Rl
points to a parameter list (R2 not equal to X'0010'), R2+1 is ignored.

DMKHVC checks the VMACCOUN flag in VMPSTAT to verify that the user
has the account option and if not, returns control to the user with a
condition code of one.

If R2 contains a code of X'0010', DMKHVC performs the following
checks:

I. If the address specified in R1 is negative or greater than the size
I of the user's virtual storage, an addressing exception is generated.

I. If the combination of the address in Rl and the length in R2+1
I indicates that the data area crosses a page boundary, a specification
I exception is generated.

I. If the value in R2+1 is zero, negative or greater than 70, a
I specification exception is generated.

If both the virtual address and the length are valid, DMFREE is
called to obtain storage for an account buffer (ACNTBLOK) which is then
initialized to blanks. The userid of the user issuing the DIAGNOSE
instruction is placed in columns 1 through 8 and an accounting card
identification code of "CO" is placed in columns 79 and 80. The user
data pointed to by the address in Rl is moved to the accounting card
starting at column 9 for a length equal to the value in R2+1. A call to
DMKACOQU queues the ACNTBLOK for real output. If a real punch is
available, DMKACOPU is called to punch the card; otherwise, the buffer
is stored in main storage until a punch is free. DMKHVC then returns
control to the user with a condition code of zero.

If R2 contains other than a X'0010' code, control is passed to DMKCPV
to generate the card. DMKCPV passes control to DMKACO to complete the
"charge to" information; either from the User Accounting Block
(ACCTBLOK), if a pointer to it exists, or from the user's VMBLOK.
DMKCPV then punches the card and passes control back to DMKHVC to
release the storage for the ACCTBLOK, if one exists. DMKHVC then checks
the parameter list address for the following conditions:

I. If zero, control is returned to the user with a condition code of
I zero.

I. If invalid, an addressing exception is generated.

I. If not aligned on a doubleword boundary, a specification exception is
I generated.

For a parameter list address that is non-zero and valid, the userid
in the parameter list is checked against the directory list and if not
found, control is returned to the user with a condition code of two. If
the function hexadecimal code is invalid, control is returned to the
user with a condition code of three. If toth userid and function
hexadecimal code are valid, the User Accounting Block (ACCTBLOK) is
built and the userid, account number, and distribution number are moved
to the block from the parameter list or the User Machine Block belonging
to the userid in the parameter list. Control is then passed to the user
with a condition code of zero.

Part 2: Control Program (CP) 246.1

(Privilege Class A, B, or C Only) DIAGNOSE Code 50 invokes the CP module
DeKSNC (1) to validate the parameter list and (2) write the page~format
image of the 3704/3705 control program to the appropriate system
volume.

When a 3704/3705 control program load module is created, the CMS
service program SAVENCP builds a communications controller list (CCPARM)
of control information. It passes this information to CP via a DIAGNOSE
Code X'0050'.

The register specified as R1 contains the virtual address of the
parameter list (CCPARM). The R2 register is ignored on entry.

upon return, the R2 register contains the following error codes:

£~~~
044
171
178

179
435

]~~ni~g
'ncpname' was not found in system name table.
system volume specified not currently available.
Insufficient space reserved for program and system control
information.

System volume specified is not a Cp-owned volume.
Paging error while writing saved system.

Execution of DIAGNOSE Code 58 allows a virtual machine to display large
amounts of data on a 3270 in a very rapid fashion. The interface can
display the entire 3270 screen with one write operation instead of 22
writes (one for each line in the output area of a 3270 screen).

The register specified as R1 contains the address of the console CCW
string. The R2 register contains (in bits 16-31) the device address of
the virtual console.

The format of the special display CCi is!

CCW 1'19' ,dataddr,flags,ctl,count

dataddr

flags

ctl

count

is the beginning address of the data to be displayed.

is the standard CCW flag field.

is a control byte that indicates the starting output display
line. If the high-order bit is on, the entire 3270 output
display area is erased before the new data is displayed. A
value of X'FF' clears the screen, but writes nothing.

is the number of bytes to be displayed. The maximum number of
bytes is 1760.

When the DIAGNOSE is executed with a valid CCW string, a buffer
(whose length is the number of bytes specified by fQYn!) is built in
free storage. The data pointed to by g~!~~~! is loaded into the buffer.
Data chaining may be specified in the CCW to link noncontiguous data
areas; however, command chaining is an end of data indication for the
current buffer.

Part 2: Control Program (CP) 247

Using the starting output line (ctl) and the number of bytes of
output (count), CP checks that the data will fit on the screen. CP then
does the display. A zero condition code indicates the I/O operation
completed successfully; a nonzero condition code indicates an I/O error
occurred.

Execution of DIAGNOSE Code SC causes the editing of an error message
according to the user's setting of the EMSG function:

E! contains the address of the message to te edited.

EI contains the length of the message to be edited.

DMKHVC tests the VMMlEVEl field of the VMBlOK and returns to the caller
with !! and El modified as follows:

VMMlEVEl Registers on Return

VMMCODE V""TEXT ~.! E.I

ON ON no change no change

01 OFF no change 10 (length of
code)

OFF ON pointer to text length of text
part of message alone

OFF OFF N/A 0

!Qi~: DIAGNOSE Code X'SC' does not write the message; it merely
rearranges the starting pointer and length. For CMS error aessages, a
console write is performed following the DIAGNOSE unless E.I is returned
with a value of O.

248 IB" VM/370: System Programmer's Guide

CP Conventions

The following are coding conventions used by CP modules. This
information should prove helpful if you debug~ modify~ or update CP~

1. FORMAT:

~Ql!!!!!
1

10
16

~Q!!!~'!!!§
Labels.
Op Code
Operands

31, 36, 41, etc. Comments (see Item 2)

2. COMMENT:

Approximately 75 percent of the source code contains comments.
sections of code performing distinct functions are separated from
each other by a co •• ent section.

3. CONSTANTS:

Constants follow the executable code and precede the copy files
and/or macros that contain CSECTs or system equates. Constants are
defined in a section followed by a section containing initialized
working storage, followed by working storage. Each of these
sections is identified by a com.ent. Wherever possible for a
module that is greater than a page, constants and working storage
are within the same page in which they are referenced.

4. No program modifies its own instructions during execution.

5. No program uses its own unlabeled instructions as data.

6. REGISTER USAGE:

For CP, in general

!t~gist~~
6
7
8

10
11
12

13

14

15

Us~
RCBBLOK, VCBBLOK
RCUBLOK, VCUBLOK
RDEVBLOK, VDEVBLOK
IOBLOK
VMBLOK
Base register for modules

called via SVC
SAVEAREI for modules

called via SVC
Return linkage for modules

called via BILR
Base address for modules

called via BILR

For virtual-to-Real address translation:

]~gist~!
1
2

Use
iIrtual address
Real address

Part 2: Control Program (CP) 249

7. When describing an area of storage in mainline code, a copy file,
or a macro, DSECT is issued containing DS instructions.

8. eeaningful naaes are used instead of self-defining terms, for
example 5,X'02',C'I' to represent a quantity (absolute address,
offset, length, register, etc.). All labels, displaceaents, and
values are symbolic. All bits should be syabolic apd defined by
EQO. lor example:

veSTATUS EQU X'02'

To set a bit, use:

01 BYTE, BIT

Where BYTE = name of field, BIT is an EQU symbol.

TO reset a bit, use:

II BYTE,255-BIT

To set mUltiple bits, use:

01 BYTE,BIT1+EIT2

etc.

All registers are referred to as:

RO, R1, . . . , R15 •

All lengths of fields or blocks are symbolic, that is, length of
V"BLOK is:

veBLOKSZ EQU *-veBLOK

9. Avoid absolute relative addressing in branches and data references,
(that is, location counter value (*) or symbolic label plus or
minus a self-defining term used to form a displacement).

10. When using a single operation to reference multiple values, specify
each value referenced, for example:

Le R2,R4,COIT SET R2=COI1
SET R3=CON2
SET R4=COI3

CON1 DC F'1'
CON2 DC F'2'
CON3 DC F'3'

11. Do no use PRINT NOGEN or PRINT OFF in source code.

12. eODULE IAeES:

Control section Names and External References are as follows:

Control Section or eodule Name
The first three letters of the name are the assigned component
code.

Example: DMK

250 IBe VM/370: System Programmer's Guide

The next three letters of the ftodule Name identify the module and
must be unique.

Example: DSP

This three-letter, unique module identifier is the label of the
TITLE card.

Each entry point or external reference must be prefixed by the six
letter unique identifier of the module.

Example: DftKDSPCH

13. TITLE Card:

DSP TITLE 'DftKDSP Vft/370 DISPATCHER VERSION v LEVEL l'

14. PTF Card Example:

CP/CftS: PUNCH 'xxxxxxxx APPLIED'

Where xxxxxxxx = APAR Number Response

15. EaROR ftESSAGES:

There should not be any insertions into the message at execution
time and the length of the message should be resolved by the
assembler. If insertions must be made, the message must be
assembled as different DC statements, and the insert positions are
to be individually labeled.

16. For all RX instructions use I,' to specify the base register when
indexing is not being used, that is:

L R2,AB(,R4)

17. To determine if you are executing in a virtual machine or a real
machine, issue the Store CPU ID (STIDP) instruction. If STIDP is
issued from a virtual machine, the version number (the first byte
of the CPUID field) returned will be X'FF'.

The CP load list EXEC contains a list of CP modules used by the VftFLOAD
procedures when punching the text decks that will make up the CP
system. All modules following DftKCPE in· the list are pageable CP
.odules. Each 4K page in this area may contain one or more modules.
The module grouping is governed the order in which they appear in the
loadlist. An SPBI (Set Page Boundary) card is a loader control card
which forces the loader to start this module at the next higher 4K
boundary. An SPB card is required only for the first module following
DftKCPE. If more than one module is to be contained in a 4K page, only
the first can be assembled with an SPB card. The second and subsequent
modules for a multiple module 4K page must not contain SPB cards.

If changes are made to the loadlist, care must be taken to ensure
that any modules loaded together in the pageable area do not exceed the
4K limit. Page boundary crossover is not allowed in the pageable CP
modules.

IA 12-2-9 multipunch must be in column 1 of an SPB card.

Part 2: Control Program (CP) 251

The position of two .odules in the loadlist is critical. All .odules
following D!KCPE must be reenterable and must not contain any address
constants referring to anything in the pageable CP area. D!KCKP must be
the last module in the loadlist.

252 IBft V8/310: System Programmer's Guide

How to Add a Console Function to CP

You can add your own command to your installation's VM/370. First, code
the module to handle the command processing. You should fellow the CP
coding convention outlined in an earlier section of this book.

Second, you must add an entry for your command in
module. DMKCFM has two entry points: one for logged
another for non-logged on users. If your command is
users, be sure its entry is beyond the label COMRBEG1.

the CP DMKCFM
on users and

for logged on

TO place an entry for your command in the DMKC1M module, insert a
line with the following format:

r'--------------·--,
I [label] I COMND I commandname,class,min,entrypt[,RCL=1]

commandname is a one- to eight-character name.

class

min

entrypt

RCL=1

is the command privilege class (up to four classes are
allowed). 0 is coded for non-logged on user commands.

is the number
truncation.

of characters allowed as the minimum

is the entry point of the module you write to process the
new command.

is specified only when class is "0".

After you have inserted the above entry in the DMKCPM module, you
must reload DMKC1M as a resident module being sure it does not cross a
page boundary_ You must also load your own module which mayor may not
be a resident module.

Part 2: Control Program (CP) 253

Print BuHers and Forms Control

Buffer images are supplied for the UCS (Universal Character Set) buffer,
the UCSB (Universal Character Set Buffer), and the PCB (poras Control
Buffer). The V!/370 supplied buffer images are:

UCS - POR THE 1403 PRINTER

l~!~
AN
HI
PCAN
PCHI
QN
QIC
RN
II
TN
PI
SN

JJ~~!!!!!g
Normal AN arrangement
lormal HI arrangement
Preferred character set, AI
Preferred character set, HI
PL/I - 60 graphics
PL/I - 60 graphics
PORTRAN, COBOL commercial
High speed alphanumeric
Text printing 120 graphics
PL/I - 60 graphics
Text printing 84 graphics

UCSB - POR THE 3211 PRIITER

PCB -

!!!§
All
Hll
Gll
P 11
Tll

POR

There

!!!~
PCBl

!1~~!!!!!g
Standard COllmercial
Standard Scientific
ASCII
PLl
Text Printing

THE 3211 PRINTER

is only one name provided for

!1~~!!!!!g
Space 6 lines/inch
Length of page 66 lines

Line
Channel

Skip

an

]~E!~§~!!1~~
1

.§E~!!if!1!~!!
1

3
5
7
9

11
13
15
19
21
23
64

2
3
4
5
6
7
8

10
11
12

9

FCB image.

Refer to the following publications for the exact contents of the
buffer images:

254 IB~ V~/370: System Programmer's Guide

If you find that the supplied buffer images do not meet your needs,
you can alter a buffer image or create a new buffer image. Be careful
not to violate the VM/370 coding conventions if you add a new buffer
image; buffer images must not cross page boundaries.

In order to add a new print buffer image to VM/370 you must:

1. Provide a buffer image na lie and 12 byte header for the buffer
load.

2. Provide the exact image of the print chain.

3. Provide a means to print the buffer image if VER is specified on
the LOADBUF command.

4. Reload the changed CP modules.

Macros are available which make the process of adding buffer images
relatively easy.

UCS EUFFER IMAGES

The UCS buffer contains up to 240 characters and supports the 1403
printer. To add a new UCS buffer image, first code the ucs macro. This
creates a 12-byte header for the buffer load which is used by the CP
module DMKCSO. The format of the UCS macro is:

ucsname

ucs I ucsname

is a one- to four-character name which is assigned to the
buffer load.

Next, supply the exact print image. The print image is supplied by
coding DCs in hexadecimal or character format. The print image may
consist of several DCs, the total length of the print image cannot
exceed 240 characters.

The UCSCCW macro must immediately follow the print image. This macro
creates a CCW string to print the buffer load image when VER is
specified by the operator on the LOADBUF command. The format of the
UCSCCW macro is:

ucsccw I ucsname[, (print 1, print2, ••• , print 12)]

ucsname is the same as the "ucsname" specified on the UCS macro.

Part 2: Control Program (CP) 255

[(print 1, ••• , print 12)]
is the line length (or number of characters to be printed by
the corresponding CCW) for the verify operation. Each count
specified must be between 1 and 132 (the length of the print
line on a 1403 printer) and the default line length is 48
characters. Op to 12 print fields may be specified. However,
the total number of characters to bE printed may not exceed
240.

Finally, insert the macros just coded, OCS and OCSCCW, into the
DMKOCS module. This module must be reloaded. D"KOCS is a pageable
module (with no executable code) that is called by DMKCSO. DMKOCS must
be on a page boundary and cannot exceed a full page in size.

]~~!~!~ 1: You do not have to specify the line length for verification
of the buffer load. Insert the following code in DMKOCS:

OCS EX01
DC 5CL'1234567890A ••• Z1234567890*/'
UCSCCW EXOl

The buffer image is 5 representations of a 48 character string
containing:

• The alphabetic characters
• The numeric digits, twice
• The special characters: * and /

since the line length for the print verification is not specified on the
OCSCCW macro, it defaults to 48 characters per line for 5 lines.

I!!!E!~ ~: Insert the following code in DMKOCS:

OCS NUM 1
DC 24CL'1234567890'
OCSCCW NUM1,(60,60,60,60)

The NO"l print buffer consists of 24 10-character entries. If, after
DKKUCS is reloaded, the com.and

LOADBUF OOE UCS 10Kl VEB

is specified, 4 lines of 60 characters (the 10-character string repeated
6 times) are printed to verify the buffer load).

I!!!E!~ J: ThE print image can be specified in character or hexadecimal
notation, or a combination of the two. The code in DMKOCS to support
the preferred character set, AI, is as follows:

OCS
DC
DC
DC
DC
DC
DC
DC
DC
UCSCCW

PCAN
C'1234567890,-PQB'$i/STOVWXYZ',X'9C'
C'.*1234567890,-JKL"NOABCDEFGHI+.*'
C'1234567890,-PQB&&$I/STOVWXYZ',X'9C'
C'.*1234567890,-JKLKBOABCDEFGHI+.*'
C'1234567890,-PQR'$i/STUVWXYZ',X'9C'
C'.*1234567890.-JKLMBOABCDEFGHI+.*'
C'1234567890,-PQR&&$I/STUVWXYZ',X'9C'
C'.*1234567890,-JKLMBOABCDEFGHI+.*'
PCAN,(60,60,60,60)

256 IBM V"/370: System Programmer's Guide

The DCs are coded in both character and hexadecimal notation. The
hexadecimal code for the lozenge (X'9C') follows the character notation
on 4 of the DCs. The DCs, when taken in pairs, represent 60
characters. When print verification of a buffer load is requested, 4
lines of 60 characters are printed.

USCB BUFFER I~AGES

The UCSB buffer contains up to 512 characters and supports the 3211
printer. To add a new UCB buffer image, first code the UCB macro. This
.acro creates a 12-byte header record for the buffer load which is used
by the CP module, DMKCSO. The format of the UCB macro is:

r---~
I UCB I ucbname L, ______________ • __ ~

ucbname is a one- to four-character name which is assigned to the
buffer load.

Next, supply the exact print image. The print image is supplied by
coding DCs in hexadecimal or character notation. The total length of
the print image cannot exceed 512 characters.

The format of the UCB buffer is:

~Q§i!iQ~
1-432

433-447

448-511

512

Contents
PrInt-train image.

Reserved for IBM use. Must be all zeros.

Associative field. See Figure 30 for an explanation
of the contents of this field. The associative
field is used to check (during print line buffer
(PLB) load1ng) that each character loaded into the

PLB for printing also appears in the train i.age
field of the USCB and, therefore, is on the print
train. Any character loaded into the PLB without
its associated code in the train image field of the
USCB is unprintable, and causes a 'print data check'
to be set immediately. The associative field also
contains dualing control bits.

Reserved for IBK use. Kust be z~ro.

Part 2: Control Program (CP) 257

Bit 0 Bit 1 Bit 2 Bit 3

UCSB Hexa- Graphic & Control Hexa- Graphic & Control Hexa- Graphic & Control Hexa- Graphic & Control
Address decimal Symbols EBCDIC decimal Symbols EBCDIC decimal Symbols EBCDIC decimal Symbols EBCDIC

448 00 NUL 40 SP 80 CO
449 01 41 81 a C1 A
450 02 42 82 b C2 B
451 03 43 83 c C3 C
452 04 PF 44 84 d C4 0

453 05 HT 45 85 e C5 E
454 06 LC 46 86 f C6 F
455 07 DEL 47 87 9 C7 G
456 08 48 88 h C8 H
457 09 49 89 i C9 I

458 OA 4A e 8A { CA
459 OB 4B 8B CB

J1 460 OC 4C < 8C ~ CC
461 00 40 (80 (CO y 462 OE 4E + 8E + CE

463 OF CU1 4F I 8F CF
464 10 50 & 90 DO
465 11 51 91 j 01 J
466 12 52 92 k 02 K
467 13 53 93 I 03 L

468 14 RES 54 94 m 04 M
469 15 NL 55 95 n 05 N
470 16 BS 56 96 0 06 0
471 17 IL 57 97 p 07 P
472 18 58 98 q 08 Q

473 19 59 99 r 09 R
474 lA CC 5A ! 9A } OA
475 18 5B $ 9B DB
476 1C 5C * 9C lJ DC
477 10 50) 90) DO

478 1E 5E ; 9E ± DE
479 IF CU2 5F -, 9F • OF
480 20 60 - AO 0- EO
481 21 61 / A1 E1
482 22 62 A2 s E2 S

483 23 63 A3 t E3 T
484 24 BYP 64 A4 u E4 U
485 25 LF 65 A5 v E5 V
486 26 E08 66 A6 w E6 W
487 27 PRE 67 A7 x E7 X

488 28 68 A8 y E8 Y
489 29 69 A9 z E9 Z
490 2A SM 6A AA EA
491 2B 6B AB L E8
492 2C 6C % AC r- EC rl

493 20 60 - AD [ED
494 2E 6E > AE ~ EE
495 2F CU3 6F ? AF • EF
496 30 70 BO 0 FO 0
497 31 71 B1 1 F1 1

498 32 72 B2 2 F2 2
499 33 73 B3 3 F3 3
500 34 PN 74 84 4 F4 4
501 35 RS 75 B5 5 F5 5
502 36 UC 76 B6 6 F6 6
503 37 EOT 77 87 7 F7 7
504 38 78 B8 8 F8 8
505 39 79 B9 9 F9 9
506 3A 7A

BA FA

507 38 7B BB .J FB
508 3C 7C @ BC ""1 FC
509 3D 70 BO 1 FO
510 3E 7E = BE -! FE

I 511 3F 7F BF FF

Figure 30. UCSB Associative Field Chart

258 IBM VK/370: system Programmer's Guide

The UCBCCW macro must immediately follow the print image. This macro
creates a CCW string to print the buffer load image when the operator
specifies VER on the LOADBUF command. The format of the UCBCCW macro
is:

,
I I UCBCCW I ucbnalle[, (print 1, print2, ••• print 12)]
l

ucbname is the same nalle specified on the corresponding UCB macro

[(print i, ••• ,print i2j j
specifies the line length of each line (up to 12) printed to
verify the buffer load. The line length must be between 1 and
150 ~he length of a print line on a 3211 printe~. The
default specification for verification is 48 characters per
line for 9 lines. The total number of characters to be
printed must not exceed the size of the print train image, 432
characters.

Finally, insert the two macros just coded, UCB and UCBCCW, into the
DMKUCB module. This module must be reloaded before the new buffer image
can be used. DMKUCB is a pageable module (with no executable code) that
is called by DMKCSO. DMKUCB must be on a page boundary and cannot
exceed a full page in size.

The code for the All UCB buffer is as follows:

UCB
DC
DC
DC
DC
DC
DC
DC
DC
UCBCCW
EJECT

All STANDARD COMMERCIAL 48 GRAPHICS 3211
All
9C'l<.+IHGFEDCBA*$-RPQONMLKJI,&&ZYXWVUTS/~'098765432'
X'OOOOOO' 433-435
X'000000000000000000000000101010' 436-450
X'101010101010100040404240004010' 451-465
X' 101010101010101000404041000040' 466-480
X'401010101010101010004040000000' 481-495
X'101010101010101010100040404448' 496-510
X'OOOO' 511-512
All,(48,48,48,48,48,48,48,48,48)

Note that the DC specification contains 49 characters and the UCBCCW
macro specifies 48 characters. The ampersand, &, has to be coded twice
in order to be accepted by the assembler. The single quote, " must
also be specified twice in order to be accepted.

It would have been acceptable to code the UCBCCW as:

UCBCCW All

since the default is what was coded.

Part 2: Control Program (CP) 259

It is possible to have a foras control buffer with both a virtual and
real 3211 printer. 1 virtual 3211 file can be printed on a real 1403;
in fact, one way to provide forms control for a 1403 is to define it
virtually as a 3211.

There is an FCB .acro to support forms control. The for.at of the
FCB macro is:

FCB I fcbname,space,length, (line, channel •••) ,index

fcbname is the name of the forms control buffer. "fcbname" can be one
to four alphameric characters.

space is the number of lines/inch. Valid specifications are 6 or 8.
This operand may be o.itted, the default is 6 lines/inch. When
the space operand is omitted, a comma must be coded. Spacing
has no .eaning for a virtual printer.

length is the number of print lines per page or carriage tape (1 to
180).

(line,channel •••)

index

shows which print line (line) prints in each channel (1 to 12).
The entries can be specified in any order.

is an index value (from 1 to 31). "index" specifies the print
position which is to be the first printed position. (The
"index" specification can be overridden with the LOADBUF
command).

One standard FCB image is supplied, FCB1. You will find FCBl in the
module DftKFCB. DftKFCB is a pageable module which is called by DftKCSO.
It aust start on a page boundary and cannot exceed a full page in size.
As long as you follow these conventions, you can add additional forms
control buffer images to DMKFCB.

!2te: The GEIERATE EXEC procedure has a facility to reassemble only the
DftKFCB module. See the description of the GENERATE EXEC procedure in
the !11L37Q: R!!!!!!ing !nd ~I§te!! Ge~~io!! ~.!!id~.

~!!!12!~ 1:

If you wanted your printer to print:

• 8 lines/inch
• 60 lines/page ,
• print line 3 in channel 1
• print line 60 in channel 9
• print line 40 in channel 12
• print position 10 the first print position

you would code the FCB macro (with a name, SPEC) as:

FCB SPEC,8,60, (3,1,40,12,60,9) ,10

260 IBft VM/370: System Programmer's Guide

If you want another forms control buffer, called LONG, to be exactly
the same as SPEC (except that only 6 lines print per inch) you could
code either of the following:

FCB LONG,6,60, (3,1,40,12,60,9) ,10

FCB LONG,,60, (3,1,40,12,60,9) ,10

].!~.!!!.EJ:~ ~:

You could have your special forms control buffer (SPEC) loaded for
either a virtual or real 3211 printer. The LOADVFCB command is for the
virtual 3211 and the LOltBUF command is for the real 3211. If INDEX is
not specified on these commands, no indexing is done. If INDEX is
specified without a value, the value coded in the FCB macro is used and
if INDEX is specified with a value, the specified value overrides the
value coded in the FCB macro.

If you specify INDEX for the virtual 3211 printer and
real 3211 printer, the output is indexed the sum
specifications minus 1. For example, the command

LOADVFCB OOF FCB SPEC INDEX

again for the
of the two

indexes the virtual print file 10 positions because 10 was specified in
the FCB macro for the SPEC forms control buffer. When this file is sent
to the real printer, the command

LOADBUF OOE FCB SPEC INDEX 20

indexes the file an additional 20 positions. The value specified on the
command line (20) overrides the value 1n the FCB macro (10). The output
will start printing in print position 29 (10+20-1=29).

Part 2: Control Program (CP) 261

Part 3: Conversational Monitor System (CMS)

Part 3 contains the following inforaation:

• Introduction to CftS

• Interrupt Handling

• Functional Information (How CftS works)
Register usage
DftSBUC structure
storage structure
Free storage management
SVC handling

• How To Add a Command or EXEC Procedure to CftS

• os Macro simulation

• Saving the CftS system

• Batch Monitor

• Auxiliary Directories

Part 3: Conversational Monitor System (CMS) 263

Introduction to eMS

The Conversational Monitor System (CMS), the major subsystem of VM/370,
provides a comprehensive set of conversational facilities to the user.
Several copies of CMS may run under CP, thus providing several users
with their own time sharing system. CMS is designed specifically for
the VM/370 virtual machine environment.

Each copy of CMS supports a single user. This means that the storage
area contains only the data pertaining to that user. Likewise, each CMS
user has his own machine configuration and his own files. Debugging is
simpler because the files and storage area are protected from other
users.

Programs can be debugged from the terminal. The terminal is used as
a printer to examine limited amounts of data. After examining program
data, the terminal user can enter commands on the terminal which will
alter the program. This is the most common method used to debug
programs that run in CMS.

CMS, operating with the VM/370 Control Program, is a time sharing
system suitable for problem solving, program development, and general
work. It includes several programming language processors, file
manipulation commands, utilities, and debugging aids. Additionally, CMS
provides facilities to simplify the operation of other operating systems
in a virtual machine environment when controlled from a remote terminal.
For example, CMS capabilities are used to create and modify job streams,
and to analyze virtual printer output.

Part of the CMS environment is related to the virtual machine
environment created by CP. Each user is completely isolated from the
activities of all other users, and each machine in which CMS executes
has virtual storage available to it and managed for it. The CP commands
are recognized by CMS. For example, the commands allow messages to be
sent to the operator or to other users, and virtual devices to be
dynamically detached from the virtual machine configuration.

The CMS command language offers terminal users a wide range of
functions. It supports a variety of programming languages, service
functions, file manipulation, program execution control, and general
system control. The CMS commands that are useful in debugging are
discussed in the "Debugging with CMS" section of "Part 1: Debugging with
VM/370." For detailed information on all other CMS commands, refer to
the !11LJ.IQ: £Q.!!.!~nd !!~'!!.9'y~.9~ Gu!de £.2£ Q~.!!~al Us~!:§.

Figure 34 describes CMS command processing.

Part 3: Conversational Monitor System (CMS) 265

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1Y75

The Conversational Monitor system interfaces with virtual disks, tapes,
and unit record equipment. The CMS residence device is kept as a
read-only, shared, system disk. Permanent user files may be accessed
from up to nine active disks. Logical access to those virtual disk~ is
controlled by CftS, while CP facilities manage the device sharing and
virtual-to-real mapping.

User files in CMS are identified with three designators. The first
is filename. The second is a filetype designator which may imply
specific file characteristics to the CftS file management routines. The
third is a filemode designator which describes the location and access
mode of the file.

The compilers available under CMS default to particular input
filetypes, such as ASSEftBLE, but the file manipulation and listing
commands do not. Files of a particular filetype form a logical data
library for a user; for example, the collection of all COBOL source
files, or of all object (TEXT) decks, or of all EXEC procedures. This
allows selective handling of specific groups of files with minimum input
by the user.

User files can be created directly from the terminal with the CMS
EDIT facility. EDIT provides extensive context editing services. File
characteristics such as record length and format, tab locations, and
serialization options can be specified. The system includes standard
definitions for certain filetypes.

CMS automatically allocates compiler work files at the beginning of
command execution on whichever active disk has the greatest amount of
available space, and deallocates them at completion. Compiler object
decks and listing files are normally allocated on the same disk as the
input source file or on the primary read/write disk, and are identified
by combining the input filename with the filetypes TEXT and LISTING.
These disk locations may be overridden by the user.

The size of a single user file is limited to one virtual disk. The
file management system limits the number of files on anyone virtual
disk to 3400. All CMS disk files are written as 800-byte records,
chained together by a specific file entry that is stored in a table
called the Master File Directory; a separate Master File Directory is
kept for, and on, each virtual disk. The data records may be
discontiguous, and are allocated and deallocated automatically. A
subset of the Master File Directory (called the User File Directory) is
made resident in virtual storage when the disk directory is made
available to CMS; it is updated on the virtual disk at least once per
command if the status of any file on that disk has been changed.

virtual disks may be shared by CMS users; the facility is provided by
VM/370 to all virtual machines, although a user interface is directly
available in CMS commands. specific files may be spooled between
virtual machines to accomplish file transfer between users. Commands
allow such file manipulations as writing from an entire disk or from a
specific disk file to a tape, printer, punch, or the terminal. Other
commands write from a tape or virtual card reader to disk, rename files,
copy files, and erase files. Special macro libraries and text or
program libraries are provided by CMS, and special commands are provided
to update and use them. CMS files can be written onto and restored from
unlabeled tapes via CMS commands.

Caution: Multiple write access under CMS can produce unpredictable results.

266 IBM VM/370: System Programmer's Guide

GC20~1807~3 Page Modified by TNL GN20=2662, March ~1
J I , 1975

Problem programs which execute in CMS can create files on unlabeled
tape in any record and block size; the record format can be fixed,
variable, or undefined. Figure 31 describes the CMS file system.

Part 3: Conversational Monitor System (CMS) 266.1

~
I.Q DMSNUC Area of Storage Free Storage Disk Storage
C
H
(1)

W AFT

n DMSNUC
tJr
tn

"'II
.....
(1)

tn
loci
en
t+
(1)
EI

AFT
continued

AFTS

to
I» ADTSECT
H
t+

w

n

I 0
t:S
<I
(1)

I H
en
I»
t+

I
0
t:S For Read/Write
I»

disks only •
I

OMSK • for each file ::.:
0
t:S I
t+
0

I H

tn
loci

I en
t+
(t)

II

I n
::.:

I tn

tv I 0\
...,J

The Conversational Monitor System includes commands to create and
compile source programs, to modify and correct source programs, to build
test files, to execute test programs and to debug from the terminal.
The commands of eMS are especially useful for as program development,
but also may be used in combination with other operating systems to
provide a virtual machine program development tool.

eMS utilizes the as compilers via interface modules; the compilers
themselves normally are not changed. To provide suitable interfaces,
eMS includes a certain degree of as simulation. The sequential, direct,
and partitioned access methods are logically simulated; the data records
are physically kept in the chained 800-byte blocks which are standard to
CMS, and are processed internally to simulate as data set
characteristics. as supervisor Call functions such as GETMAIN/FREEMAIN
and TIME are simulated. The simulation restrictions concerning what
types of as object programs can be executed under CMS are primarily
related to the OS/PCP, MPT, and MVT Indexed sequential Access Method
(ISAM) and the telecommunications access methods, while functions
related to multitasking are ignored by CMS. For more information on as
macro simulation, see "aS Macro Simulation under CMS."

268 IBM VM/370: System Programmer's Guide

Interrupt Handling in eMS

CftS receives virtual SVC, input/output, program, aachine, and external
interruptions and passes control to the appropriate handling program.

The Conversational ftonitor System is SVC (supervisor call) driven. SVC
interruptions are handled by the DftSITS resident routines. Two types of
SVCs are processed by D!SITS: internal linkage SVC 202 and 203, and any
other SVCs. The internal linkage SVC is issued by the command and
function programs of the systea when they require the services of other
CftS programs. (Commands entered by the user from the terminal are
converted to the internal linkage SVC by DftSIBT). The OS SVCs are
issued by the processing programs (for example, the Assembler).

INTERNAL LINKAGE SVCS

When DftSITS receives control as a result of an internal linkage SVC (202
or 203), it saves the contents of the general registers, floating-point
registers, and the SVC old PSW, establishes the normal and error return
addresses, and passes control to the specified routine. (The routine is
specified by the first 8 bytes of the parameter list whose address is
passed in register 1 for SVC 202, or by a halfword code following SVC
203.)

For SVC 202, if the called program is not found in the internal
function table of nucleus (resident) routines, then DftSITS attemFts to
call in a module (a CftS file with file type ftODULE) of this name via the
LOADftOD command.

If the program was not found in the function table, nor was a module
successfully loaded, DftSITS returns an error indicator code to the
caller.

To return from the called program, DftSITS restores the calling
program's registers, and makes the appropriate normal or error return as
defined by the calling program.

OTHER SVCS

The general approach taken by DftSITS to process other SVCs supported
under CftS is essentially the same as that taken for the internal linkage
SVCs. However, rather than passing control to a command or function
program, as is the case with the internal linkage SVC, DftSITS passes
control to the appropriate simulation routine. The SVC number
determines the appropriate routine.

In linking to the particular SVC routine, however, DftSITS uses a
different procedure than the search used for SVC 202 or 203 calls.

Part 3: Conversational Monitor System (CftS) 269

In handling these other calls, DftSITS uses two tables, a user-defined
SVC table (if any -- set up by the DftSHDS program), and the table of
standard OS supervisor fUnctions simulated by CftS.

If the user-defined SVC table is present, any SVC number (other than
202 or 203) is looked for in that table. If it is found, control is
transferred to the routine at the specified address.

If the SVC number is not found in the user-defined SVC table (or if
the table is nonexistent), the standard system table of OS calls is
searched for that SVC number. If the SVC number is found, control is
transferred to the corresponding address in the usual manner. If the
SVC number is not in either table, then the supervisor call is treated
as an ABEND call.

The DftSHDS initialization program sets up the user-defined SVC
table. It is possible for a user to provide his own SVC routines.

All input/output interruptions are received by the I/O interrupt
handler, DMSITI. DftSITI saves the I/O old PSW and the CSW (channel
status word). It then determines the status and requirements of the
device causing the interruption and passes control to the routine that
processes interruptions from that device. DMSITI scans the entries in
the device table until it finds the one containing the device address
that is the same as that of the interrupting device. The device table
(DEVTAB) contains an entry for each device in the system. Each entry
for a particular device contains, among other things, the address of the
program that processes interruptions from that device.

When the appropriate interrupt handling routine completes its
processing, it returns control to DftSITI. At this point, DMSITI tests
the wait bit in the saved I/O old PSi. If this bit is off, the
interruption was probably caused by a terminal (asynchronous) I/O
operation. DMSITI then returns control to the interrupted program by
loading the I/O old PSi.

If the wait bit is on, the interruption was probably caused by a
nonterminal (synchronous) I/O operation. The program that initiated the
operation most likely called the DMSIOi function routine to wait for a
particular type of interruption (usually a device end.) In this case,
DftSITI checks the pseudo-wait bit in the device table entry for the
interrupting device. If this bit is off, the system is waiting for some
event other than the interruption from the interrupting device; DftSITI
returns to the wait state by loading the saved I/O old PSW. (This PSi
has the wait bit on.)

If the pseudo-wait bit is on, the system is waiting for an
interruption from that particular device. If this interruption is not
the one being waited for, DftSITI loads the saved I/O old PSi. This will
again place the machine in the wait state. Thus, the program that is
waiting for a particular interruption will be kept waiting until that
interruption occurs.

If the interruption is the one being waited for, DMSITI resets both
the pseudo-wait bit in the device table entry and the wait bit in the
I/O old PSW. It then loads that PSW. This causes control to be
returned to the DftSIOi function routine, which, in turn, returns control
to the program that called it to wait for the interruption.

270 IBM VM/370: System Programmer's Guide

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

Terminal input/output interruDtions are handled by the DMSCIT module.
All interruptions ~ther than those containing device end, channel end,
attention, or unit exception status are ignored. If device end status
is present with attention and a write CCW was terminated, its buffer is
unstacked. An attention interrupt causes a read to be issued to the
terminal, unless attention exits have been queued via the STAX macro.
The attention exit with the highest priority is given control at each
attention until the queue is exhausted, then a read is issued. ueVl~e
end status indicates that the last I/O operation has been completed. If
the last I/O operation was a write, the line is deleted from the output
buffer and the next write, if any, is started. If the last I/O
operation was a normal read, the buffer is put on the finished read list
and the next operation is started. If the read was caused by an
attention interrupt, the line is first checked fur the commands RT, HO,
HT, or HX, and the appropriate flags are set if one is found. Unit
exception indicates a canceled read. The read is reissued, unless it
had been issued with ATTREST=NO, in which case unit exception is treated
as device end.

Interruptions from these devices are handled by the routines that
actually issue the corresponding I/O operations. When an interruption
from any of these devices occurs, control passes to DMSITI. Then DMSITI
passes control to DMSIOW, which returns control to the routine that
issued the I/O operation. This routine can then analyze the cause of
the interruption.

Interrupts from devices under user control are serviced the same as CMS
devices except that DMSIOW and DMSITI manipulate a user created device
table! and DMSITI passes control to any user written interrupt
processing routine that is specified 1n the user device table.
Otherwise, the processing program regains control directly.

The program interruption handler, DMSITP, receives control when a
program interruption occurs. When DMSITP gets control, it stores the
program old PSW and the contents of the registers 14, 15, 0, 1, and 2
into the program interruption element (PIE). (The routine that handles
the SPIE macro instruction has already placed the address of the program
interuption control area (PICA) into PIE.) DMSITP then determines
whether or not the event that caused the interruption was one of those
selected by a SPIE macro instruction. If it was not, DMSITP passes
control to the DMSABN ABEND recovery routine.

If the cause of the interruption was one of those selected in a SPIE
macro instruction, DMSITP picks up the exit routine address from the
PICA and passes control to the exit routine. Upon return from the exit
routine, DMSITP returns to the interrupted program by loading the
original program check old PSW. The address field of the PSW was
modified by a SPIE exit routine in the PIE.

Part 3: Conversational Monitor System (CMS) 271

GC20-1801-3 Page Modified by TNL GN20-2662, March 31, 1915

An external interruption causes control to be passed to the external
interrupt handler DMSITE. If the user has issued the HNDEXT macro to
trap external interrupts, DMSITE passes contrel to the user's exit
routine. If the interrupt was caused by the timer, DMSITE resets the
timer and types the BLIP character at the terminal. The standard BLIP
timer setting is two seconds, and the standard BLIP character is upper
case, followed by the lower case (it moves the typeball without
printin~. Otherwise, control is passed to the DEBUG routine.

Hard machine check interruptions on the real CPU are not reflected to a
CMS virtual user by CPo A message prints on the console indicating the
failure. The user is then disabled and must IPL CMS again in order to
continue.

212 IBM VM/310: System Programmer's Guide

Functional Information

The most important thing to remember about CftS, from a debugging
standpoint, is that it is a one-User system. The supervisor manages
only one user and keeps track of only one user's file and storage
chains. Thus, everything in a dump of a particular machine relates only
to that virtual machine's activity.

You should be familiar with register usage, save area structuring,
and control block relationships before attempting to debug or alter
CftS.

When a CftS routine is called, Rl must point to a valid parameter list
(PLIST) for that program. On return, RO mayor may not contain
meaningful information (for example, on return from a call to FILEDEF
with no change, RO will contain a negative address if a new FCB has been
set up; otherwise, a positive address of the already existing FCB). R15
will contain the return code, if any. The use of Registers 0 and 2
through 11 varies.

On entry to a command or routine called by SVC 202:

~~g!.§!~£
1

12
13

14
15

~g!!te!!!~
The address of the PLIST supplied by the caller.
The address entry point of the called routine.
The address of a work area (12 doublewords) supplied by

SVCIIT.
The return address to the SVCINT routine.
The entry point (same as register 12).

On return from a routine, Register 15 contains:

Return
Cog~

o
<0
)0

~~!1!i~
No error occurred
Called routine not found
Error occurred

If a CftS routine is called by an SVC 202, registers 0 through 14 are
saved and restored by CftS.

ftost CftS routines use register 12 as a base register.

DftSNUC is the portion of storage in a CftS virtual machine that contains
system control blocks, flags, constants, and pointers.

The CSECTs in DftSNUC contain only symbolic references. This means
that an update or modification to CftS, which changes a CSECT in DftSNUC,
does not automatically force all CftS modules to be recompiled. Only
those modules that refer to the area that was redefined must be
recompiled.

Part 3: Conversational ftonitor System (CftS) 273

USERSECT (USER AREA)

The USERSECT CSECT defines space that is not used by C"S. A
.odification or update to C"S can use the 18 full words defined for
USERSECT. There is a pointer (AUSER) in the NUCON area to the user
space.

DEVTAB (DEVICE TABLE)

The DEVTAB CSECT is a table describing the devices available for the C"S
system. The table contains the following entries:

• 1 console
• 10 disks
• 1 reader
• 1 punch
• 1 printer
• 4 tapes

You can change some existing entries in DEVTAB. Each device table
entry contains the following information:

• virtual device address
• Device flags
• Device types
• Symbol device name
• Address of the interrupt processing routine (for the console)

The virtual address of the console is defined at IPL time. The
virtual address of the user disks can be altered dynamically with the
ACCESS command. The virtual address of the tapes can be altered in the
device table. Changing the virtual address of the reader, printer, or
punch will have no effect. Figure 32 describes the devices supported by
C"s.

274 IB" V"/370: System Programmer's Guide

r-
Virtual virtual I symbolic

IBM Device Address 1 1 Name Device Type

3210~ 3215~ 1052; cell CON1 C:::vc:+ em
~.l ~- console

3066, 3270
23.14, 3330, 3340 190 DSKO System disk (read-only)
2314, 3330, 3340 191 2 DSK 1 Primary disk (user files)
2314, 2319, 3330, ccu DSK2 Disk (user files)

3340
2314, 2319, 3330, ccu DSK3 Disk (user files)

3340
2314, 2319, 3330, 192 DSK4 Disk (user files)

3340
2314, 2319, 3330, ccu DSK5 Disk (user files)

3340
2314, 2319, 3330, ccu DSK6 Disk (user files)

3340
2314, 2319, 3330, ccu DSK7 Disk (user files)

3340
2314, 2319, 3330, 19E DSK8 Disk (user files)

3340
2314, 2319, 3330, ccu DSK9 Disk (user files)

3340
1403, 3211, 1443 OOE PRNl Line printer
2540, 2501, 3505 OOC RDRl Card reader
2540, 3525 OOD PCBl Card punch
2415, 2420, 3410, 181-4 TAP1-TAP4 Tape drives

3420

1The device addresses shown are those that are preassembled into the
CMS resident device table. These need only be modified and a new
device table made resident to change the addresses.

2The virtual device address (ccu) of a disk for user files can be
any valid System/370 device address, and can be specified by the
CMS user when he activates a disk. If the user does not activate
a disk immediately after loading CMS, CMS automatically activates
the primary disk at virtual address 191.

Figure 32. Devices Supported by a CMS virtual Machine

Figure 33 describes how CMS uses its virtual storage. The pointers
indicated (MAINSTRT, MAINBIGB, FRllLOWF, and FREEUPPR) are all found in
NUCON (the nucleus constant area).

•

The sections of CMS storage have the following uses:

~~~!y£ (!~QQQQQ~ t2 g~~!2~i!~t~!Y !~Q1QQQ~)· 
pointers, flags, and other data updated by 
routines. 

This area 
the various 

contains 
system 

• 19!=~!Q!gg~ DMSFREE Free 2!2!~~~ A!~~ (A£E!~!j!~!~lI ~Q30Q~ !9 
!~Q~QQ~~). ThIs--area-Is a free storage area, from which requests 
from DMSFREE are allocated. The top part of this area contains the 
File Directory for the System Disk (SSTAT). If there is enough room 
(as there will be in most cases), the FREETAB table also occupies 
this area, just below the SSTAT. 

Part 3: Conversational Monitor System (CMS) 275 



• Transient g~g~~! Ar~~ (!~Q~QQQ~ 12 !~1QQ~Q~) • Since it is not 
essentIal to keep all nucleus functions resident in storage all the 
time, some of them are made "transient." This means that when they 
are needed, they are loaded from the disk into the Transient Program 
Area. Such programs may not be longer than two pages, because that 
is the size of the Transient Area. (A page is 4096 bytes of virtual 
storage.) All transient routines must be serially reusable since 
they are not read in each time they are needed. 

• ~~~ !y£!~y§ (!~lQQQQ~!~ !~lQQQQ~). Segment 1 of storage contains 
the reenter able code for the eMS Nucleus routines. In shared e"s 
~ystems, this is the "protected segment." That is, this segment must 
consist only of reenterable code, and may not be modified under any 
circumstances. This fact implies certain system restrictions for 
functions which require that storage be modified, such as tpe fact 
that DEBUG breakpoints or CP address stops cannot be placed in this 
segment, in a saved system. 

• y§~~ R~QgIg! Area (1'20000' !2 Lo!g!I %!Bl!§). User programs are 
loaded into this-area-~Y-the LOAD command. Storage allocated by 
means of the GETMAII macro instruction is taken from this area, 
starting from the high address of the user program. In addition, 
this storage area can be allocated from the top down by DMSPREE, if 
there is not enough storage available in the low DMSPREE storage 
area. Thus the usable size of the User Program Area is reduced by 
the amount of free storage which has been allocated from it by 
DMSFREE. 

• ~~~~~~ I~~l~§ (I~E ~!~~§ £! §!£!g~~). The top of storage is occupied 
by the Loader Tables, which are required by the eMS Loader. These 
tables indicate which modules are currently loaded in the User 
Program Area (and the Transient Program Area after a LOAD COMMAND) • 
The size of the Loader Tables can be varied by the SET LDRTBL~ 
command. However, to successfully change the size of the Loader 
Tables, the SET LDRTBLS command must be issued immediately after 
IPL. 

216 IBM '"1310: System Programmer's Guide 



---.----------

reentrant and cannot be 
modified) 

X'lOOOO-f------------=--.-.:.---f 

Transient Program Area 

X'EOOO'----lf------------.:::.....~--
Low Storage DMSFREE Free Storage Area 

DMSFREE requests are filled from 
this area. The upper part of this 
area contains the System Disk MFD 
followed by the FREETAB, if there is 
enough room. 

X'3000' _f-________ S_t_o_ra..:;:g_e _K..:.eY.:...-=..:.X.:...'::;.E'_o:.:.r...:.X.:..·-=--F' 

DMSNUC 

X'O·--...... ------____ ..;;.._:..... __ 

has a storage key = X'E' 

Figure 33. CMS storage Map 

CONTROL BLOCKS 
FREESTORAGE----------~ 

I ,nc~T I I 
I ~~ .. u. I L..--I ----l 

I I I I 
I CM~AVE II CMSCS I 

I I o 

FVS 

DIOSECT 

SVCSECT 

NUCON 

Part 3: Conversational Monitor System (CMS) 277 

X'3UOO' 

X·2ADS' 

X'2A40' 

X'29BO' 

X'2800' 

X'2350' 

X'2300' 

X·2i90" 

X'1DOO' 

X'lCC8' 

X'lAD8' 

X'19E8' 

X'1748' 

X'16BO' 

X'1620' 

X'1550' 

X'1200' 

X'DFO' 

X'C90' 

X'700' 

X'600' 

X'2EO' 



Free storage can be allocated by issuing GET~AIN or D~SFREE macros. 
Storage allocated by the GETMAIN macro is taken from the user program 
area, beginning after the high-address of the user program. 

storage allocated by the DMSFREE macro can be taken from several 
areas. 

If possible, DMSFREE requests are allocated from the low-address free 
storage area. Otherwise, D~SFREE requests are satisfied from the 
storage above the user program area. 

There are two types of DMSFREE requests for free storage: requests 
for USER storage and NUCLEUS storage. Because the two types of storage 
are kept in separate 4K pages, it is possible for storage of one type to 
be available in low storage, while no storage of the other type is 
available. 

GETMAIN FREE STORAGE MANAGEMENT 

All GETMAIN storage is allocated in the user program area, starting 
after the end of the user's actual program. Allocation begins at the 
location pointed to by the NUCON pointer MAINSTRT. The location 
MAINHIGB in NUCON is the "high-extend" pointer for GETMAIN storage. 

Before issuing any GETMAIN macros, user programs must use the STRINIT 
macro to set up user free storage pointers. The STRINIT macro is issued 
only once, preceding the initial GETMAIN request. The format of the 
STRINIT macro is: 

[label] STRINIT 

r , 

r r" 
ITYPCALL=ISV~ II 
I IEALRII 
L L JJ 

, 
I 
I 
I 
I 

TYPCALL=I~!~ I indicates how control is passed to DMSSMN, the routine 
IBALRI that processes the STRINIT macro. Since DMSSMN is a 
L J nucleus-resident routine, other nucleus-resident routines 

can branch directly to it (TYPCALL=BALR) while routines 
that are not nucleus-resident must use linkage SVC 
(TYPCALL=SVC). If no operands are specified the default 
is TYPCALL=SVC. 

When the STRINIT macro is executed, both MAINSTRT and MAINBIGB are 
initialized to the end of the user's program, in the user program area. 
As storage is allocated from the user program area to satisfy GETMAIN 
requests, the MAINHIGB pointer is adjusted upward. Such adjustments 
are always in multiples of doublewords, so that this pointer is always 
on a doubleword boundary. As the allocated storage is released, the 
MAINHIGB pointer is adjusted downward. 

278 IBM VM/370: System Programmer's Guide 



The pointer MAINBIGB can never be higher than FREELOWE, the 
"low-extend" pointer for DMSFREI storage allocated in the user program 
area. If a GETMAIN request cannot be satisfied without extending 
ft!INHIGH Ahovp. FREELOVE, then GETftAIN will take an error exiti 
indicating that insufficient storage is available to satisfy the 
request. 

The area between MAINSTRT and MAINBIGB may contain blocks of storage 
which are not allocated, and which are therefore available for 
allocation by a GETMAIN instruction. These blocks are chained together, 
with the first one pointed to by the NUCON location MAINSTRT. Refer to 
Figure 33 for a description of CMS virtual storage usage. 

The format of an element on the GETMAIN free element chain is as 
follows: 

, iii 

FREPTB -- pointer to next free I 
0(0) element in the chain, or 0 I 

if there is no next element I 
------I I I I 

FRBLEN -- length, in bytes, of I 
4 (4) this element I 

I 
------I I I I 

Remainder of this free element I 
> 

< > 
< > 

When issuing a variable length GBTMAIN, six and a half pages are 
reserved for CMS usage; this is a design value. A user who needs 
additional reserved pages (for example, for larger directories) should 
free up some of the variable GETftAIN storage from the high end. 

DMSFREE FREE STORAGE nANAGEnENT 

The DftSFRBE macro allocates CftS free storage. The format of the DMSFREE 
macro is: 

[label] DftSFREE 
r , 

DWORDS={ n } l,ftIN={ n }' 
(0) I ( 1) I 

L .J 

r r "r r " 
I,TYPE=IUS!~ I I I,ERR=lladdrl I 
I I NUCLEUSII I I! II 
L L .J.J L L .J.J 

r r" 
I, AREA= I LOW II 
I IBIGBII 
L L.J.J 

r r" 
I ,TYPCALL=I~!£ I I 
I I BALRII 
L L.J.J 

Part 3: Conversational Monitor System (CMS) 279 



label 

DWORDS={ n } 
(0) 

MIN={ n } 
(1) 

r , 

is any valid assembler language label. 

is the number of doublewords of free storage requested. 
DWORDS=n specifies the number of doublewords directly and 
DVORDS=(O) indicates that register 0 contains the number 
of doublewords requested. 

indicates a variable request for free storage. If the 
exact nuaber of doublewords indicated by the DWORDS 
operand is not available, then the largest block of 
storage that is greater than or equal to the minimum is 
returned. MIN=n specifies the minimum number of 
doublewords of free storage directly while MIN=(1) 
indicates that the minimum is in register 1. 

TYPE=IY~!~ I indicates the type of CMS storage with which this request 
INUCLEUSI for free storage is filled: USER or NUCLEUS. 
L 

r , 
ERR=lladdrl 

I * I 
L ~ 

r , 
AREA=ILOW I 

IHIGHI 
L ~ 

~ 

r , 

is the return address if any error occurs. "laddr" is 
any address that can be referred to in an LA (load 
address) instruction. The error return is taken if there 
is a macro coding error or if there is not enough free 
storage available to fill the request. If * is specified 
for the return address, the error return is the same as a 
normal return. 

indicates the area of CMS free storage from which this 
request for free storage is filled. LOW indicates the 
low storage area between DMSNUC and the transient program 
area. HIGH indicates the area of storage between the 
user program area and the CMS loader tables. If AREA is 
not specified, storage is allocated wherever it is 
available. 

TYPCALL=I~!~ I indicates how control is passed to DMSFREE. Since DMSFREE 
IBALRI is a nucleus-resident routine, other nucleus-resident 
L ~ routines can branch directly to it (TYPCALL=BALR) while 

routines that are not nucleus-resident must use linkage 
SVC (TYPCALL=SYC). 

The pointers FREEUPPR and FREELOWE in NUCON indicate the amount of 
storage which DMSFREE has allocated from the high portion of the user 
program area. These pointers are initialized to the beginning of the 
Loader Tables. 

The pointer FREELOVE is the "low-e~tend" pointer of DMSFREE storage 
in the user program area. As storage is allocated from the user program 
area to satisfy DMSFREE requests, this pointer will be adjusted 
downward. Such adjustments are always in multiples of 4K bytes, so that 
this pointer is always on a 4K boundary. As the allocated storage is 
released, this pointer is adjusted upward. 

The pointer FREELOWE can never be lower than MAINHIGH, the 
"high-extend" pointer for GETMAIN storage. If a DMSFREE request cannot 
be satisfied without extending FREELOWE below MAINHIGH, then DMSFREE 
will take an error exit, indicating that insufficient storage is 
available to satisfy the request. Figure 33 shows the relationship of 
these storage areas. 

280 IBM VM/370: System Programmer's Guide 



The FREETAB free storage table is kept in free storage, usually in 
low-storage, just below the Master lile Directory for the System Disk 
(S-disk). However, the FREETAB may be located at the top of the user 
program area~ This table contains one byte for each page of virtual 
storage. Each such byte contains a code indicating the use of that page 
of virtual storage. The codes in this table are as follows: 

Code J1~!!i!!g 
US ERCODE-1x I 01 1) The page is assigned to user storage. 

IUCCODE (X I 02 I) The page is assigned to nucleus storage. 

TRNCODE (X I 03 1 ) The page is part of the Transient Program Area. 

USARCODE (X I 041) The page is part of the User Program Area. 

SYSCODE (X I 05 1 ) The page is none of the above. The page is assigned 
to systell storage, system code, or the Loader 
Tables. 

other DMSFREE storage pointers are maintained in the DftSFRT CSECT, in 
BUCON. The four chain header blocks are the most important fields in 
DftSFRT. The four chains of unallocated elements are: 

• The low-storage nucleus chain 
• The low-storage user chain 
• The high-storage nucleus chain 
• The high-storage user chain 

For each of these chains of unallocated elements, there is a control 
block consisting of four words, with the follo~ing format: 

POINTER 

NUM 

iii 
POINTER -- pointer to the first 

0(0) free element on the chain, or 
zero, if the chain is empty. 

II III \ .... , .... I 

8 (8) 

12 (C) 

-------I 1 1-------
NUft -- the number of elements on 

1---1 
MAX -- a value equal to or greater 

than the size of the largest 
element. 

1 I 
FLAGS- 1 SKEY 1 TCODl -I Unused 

Flag IStorage IFREETAB I 
byte 1 key 1 code 1 

I .L I 

points to the first element on this chain of free elements. 
If there are no elements on this free chain, then the POINTER 
field contains all zeros. 

contains the number of elements on this 
elements. If there are no elements on this 
this field contains all zeros. 

chain of free 
free chain, then 

ftAX is used to avoid searches which will fail. It contains a 
number not exceeding the size, in bytes, of the largest 
element on the free chain. Thus, a search for an element of a 

Part 3: Conversational Monitor System (eMS) 281 



FLAGS 

SKEY 

TeODE 

given size will not be made if that size 
field. However, this number may actually be 
size of the largest free element on the chain. 

The following flags are used: 

exceeds the "AX 
larger than the 

FLCll (XISO') -- Clean-up flag. This flag is set if the chain 
must be updated. This will be necessary in the following 
circumstances: 

• If one of the two high-storage chains contains a 4K page 
which is pointed to by FREELOVE, then that page can be 
removed from the chain, and FREELOVE c~n be increased. 

• All completely unallocated 4K pages are kept on the user 
chain, by convention. Thus, if on~ of the nucleus chains 
(low-storage or high-storage) contains a full page, then 
this page must be transferred to the corresponding user 
chain. 

FLCLB (XI401) -- Destroyed flag. set if the chain has been 
destroyed. 

FLHC (XI201) -- High-storage chain. 
and user high-storage chains. 

Set for both the nucleus 

FLBU (X'10') -- Nucleus chain. set for both the low-storage 
and high-storage nucle~s chains. 

FLPA (X'OS') -- Page available. This flag is set if there is 
a full 4K page available on the chain. This flag may be set 
even if there is no such page available. 

contains the one-byte storage key assi9ned to storage on this 
ch~in. 

contains the one-byte FREETAE table code for storage on this 
chain. 

When DMSFRBE with TYPB=USER (the default) is called, one or more of the 
following steps are taken in an attempt to satisfy the request. As soon 
as one of the following steps succeeds, then user free storage 
allocation processing terminates. 

1. Search the low-storage user chain for a block of the required 
size. 

2. Search the high-storage user chain for a block of the required 
size. 

3. Extend high-storage user storage downward into the User Program 
Area, modifying FREELOVE in the process. 

4. For a variable request, put all available storage in the User 
Program Area onto the high-storage user chain, and then allocate 
the largest block available on either the high-storage user chain 
or the low-storage user chain. The allocated block will not be 
satisfactory unless it is larger than the minimum requested size. 

282 IB" V!/370: System Programmerls Guide 



When DMSFREE with TYPE=BUCLKUS is called, the following steps are taken 
in an attempt to satisfy the request, until one succeeds: 

1. Search the low-storage nucleus chain for a block of the required 
size. 

2. Get free pages from the low-storage user chain, if any are 
available, and put the. on the low-storage nucleus chain. 

3. Search the high-storage nucleus chain for a block of the required 
size. 

4. Get free pages from the high-storage user chain, if they are 
available, and put them on the high-storage nucleus chain. 

S. Extend high-storage nucleus storage downward into the User Program 
Area, modifying FREELOWE in the process. 

6. For variable requests, put all available pages from the user chains 
and the User Program Area onto the nucleus chains, and allocate the 
largest block available on either the low-storage nucleus chains, 
or the high-storage nucleus chains. 

The DMSFRET macro releases free storage previously allocated with the 
DMSFREE macro. The format of the DMSFRET macro is: 

[label] 

label 

DWORDS={ n } 
(0 ) 

LOC={laddr } 
(1 ) 

DMSFRET DWORDS= { n }' LOC={laddr } 
(0) (1) 

r .. "r .." 
!#ERR=lladdr!! I.TYPCALL=!§!£ !! 
I I * II I IBALR II 
L L .J.J L L.J.J 

is any valid assembler language label. 

is the number of doublewords of storage to be released. 
DWORDS=n specifies the number of doublewords directly and 
DWORDS=(O) indicates that register 0 contains the number 
of doublewords being released. 

is the address 
"laddr" is any 
(load address) 
address directly 
in register 1. 

of the block of storage being released. 
address that can be referred to in an LA 
instruction. LOC=laddr specifies the 
while LOC=(1) indicates the address is 

Part 3: Conversational Menitor System (CMS) 283 



r , 
EBR=lladdrl 

I * I 
L J 

r , 

is the return address if an error occurs. "laddr" is any 
address that can be referred to by an LA (Load Address) 
instruction. The error return is taken if there is a 
macro coding error or if there is a problem returning the 
storage. If * is specified, the error return address is 
the same as the nor.al return address. 

TYPCALL=I§!~ I indicates how control is passed to DMSFRET. Since DMSFRET 
IBALRI is a nucleus-resident routine, other nucleus-resident 
L J routines can branch directly to it (TYPCALL=BALR) while 

routines that are not nucleus-resident must use SYC 
linkage (TYPCALL=SYC). 

When DMSFRET is called, the block being released is placed on the 
appropriate chain. At that point, the final update operation is 
performed, if necessary, to advance FREELOVE, or to move pages from the 
nucleus chain to the corresponding user chain. 

similar update operations will be performed, when necessary, after 
calls to DMSPREE, as well. 

RELEASING ALLOCATED STORAGE 

Storage allocated by the GETMAIN macro instruction may be released in 
any of the following ways: 

1. A specific block of such storage may be released by means of the 
FREE!!IN macro instruction. 

2. The STRINIT macro instruction releases 
any previous GETMAIN requests. 

all storage allocated by 

3. Almost all CMS commands issue a STRINIT macro instruction. Thus, 
executing almost any CMS command will cause all GET MAIN storage to 
be released. 

Storage allocated by the DMSFREE macro instruction may be released in 
any of the following ways: 

1. A specific block of such storage may be released by means of the 
DMSPRET macro instruction. 

2. Whenever any user routine or CMS com.and abnormally terminates (so 
that the routine DMSABN is entered), and the ABEND recovery 
facility of the system is invoked, all DMSPREE storage with 
TYPE=USER is released automatically. 

Except in the case of ABEND recovery, storage allocated by the 
DMSPRE! macro is never released automatically by the system. Thus, 
storage allocated by means of this macro instruction should always be 
released explicitly by .eans of the DMSFRET macro instruction. 

DMSPREE SERYICE ROUTINES 

The DMSPRES macro instruction is used by the system to request certain 
free storage .anagement services. 

284 IBM YM/370: System Programmer's Guide 



The format of the DMSlRES macro is: 

[label] DMSlRES IllT1 
IllT2 
CHECK 
CKOI 
CKOll 
UREC 
CAtOC 

r r" 
I,TYPCAtL=I~!~ II 
I IBALR II 
L L ~~ 

L-__________________________________________________________________________ ~ 

.!l!~: 

label 

IllT1 

IHIT2 

is any valid assembler language label. 

invokes the first free storage initialization routine, so 
that free storage requests can be made to access the 
system disk. Before this routine is invoked, no free 
storage requests may be made. After this routine has 
been invoked, free storage requests may be made, but 
these are subject to the following restraints until the 
second free storage management initialization routine has 
been invoked: 

• All requests for USER type storage are changed to 
requests for IUCLEUS type storage. 

• Error checking is limited before initialization is 
complete. In particular, it is sometimes possible to 
release a block which was never allocated. 

• All requests that are satisfied in high storage must 
be of a temporary nature, since all storage allocated 
1n high storage is released when the second free 
storage initialization routine is invoked. 

When CP's saved system facility is used, the CMS system 
is saved at the point just after the A-Disk has been made 
accessible. It is necessary for DMSlRE to be used before 
the size of virtual storage is known, since the saved 
system can be used on any size virtual machine. Thus, 
the first initialization routine initializes DMSFRE so 
that limited functions can be requested, while the second 
initialization routine performs the initialization 
necessary to allow the full functions of DMSFRE to be 
exercised. 

invokes the second initialization routine. This routine 
is invoked after the size of virtual storage is known, 
and it performs initialization necessary to allow all the 
functions of DMSFRE to be used. The second 
initialization routine performs the following steps: 

• Releases all storage which has been allocated in the 
high-storage area. 

• Allocates the FREETAB free storage table. This table 
contains one byte for each 4K Fage of virtual storage, 
and so cannot be allocated until the size of virtual 
storage is known. 

Part 3: Conversational Monitor system (CMS) 285 



CHECK 

CKON 

CKOFF 

UREC 

CALOC 

• The FREETAB table is initialized, and all storage 
protection keys are initialized. 

• All completely unallocated 4K pages on the low-storage 
nucleus free storage chain are removed to the user 
chain. Any other necessary operations are performed. 

invokes a routine which checks all free storage chains 
for consistency and correctness. Thus, it checks to see 
whether any free storage pointers have been destroyed. 
This option can be used at any time for system 
debugging. 

turns on a flag which causes the CHECK routine to be 
invoked each time a call is made to DftSFREE or DftSFRET. 
This can be useful for debugging purposes (for example, 
when you wish to identify the routine destroying free 
storage management pointers). Care should be taken when 
using this option, since the CHECK routine is coded to be 
thorough rather than efficient. Thus, after the CKON 
option has been invoked, each call to DftSFREE or DftSFRET 
will take much longer to be completed than before. 

turns off the flag which was turned on by the CKON 
option. 

is used by DftSABN during the ABEND recovery process to 
release all user storage. 

is used by DftSABN after the ABEND recovery process has 
been completed. It invokes a routine which returns, in 
register 0, the number of doublewords of free storage 
which have been allocated. This number is used by DHSABN 
to determine whether ABEND recovery has been successful. 

ERROR CODES FROH DHSFRES, DftSFREE, AND DftSFRET 

A nonzero return code upon return from DftSFRES, DftSFREE, or DftSFRET 
indicates that the request could not be satisfied. Register 15 contains 
this return code, indicating which error has occurred. The following 
codes apply to the DftSFRES, DftSFREE, and DftSFRET macros. 

2 

3 

5 

Error 
(DMSFREE) Insufficient storage space is available to satisfy 
the request for free storage. In the case of a variable 
request, even the minimum request could not be satisfied. 

(DHSFREE or DHSFRET) User storage pointers destroyed. 

(DMSFREE, DftSFRET, or DMSFRES) 
destroyed. 

Nucleus storage pointers 

(DHSFREE) An invalid size was requested. This error exit is 
taken if the requested size is not greater than zero. In the 
case of variable requests, this error exit is taken if the 
m~n~mu. request is greater than the maximum request. 
(However, the latter error is not detected if DftSFREE is able 
to satisfy the maximum request.) 

(DHSFBET) An invalid size was passed to the 
This error exit is taken if the specified 
positive. 

DMSFRET macro. 
length is not 

286 IBft Vft/370: System programmer's Guide 



6 (DMSFRET) The block of storage which is being released was 
never allocated by DMSFREE. Such an error is detected if one 
of the following errors is found: 

The block does not lie entirely 
low-storage free storage area or the 
between FREELOiE and FREEUPPR. 

either 
User Program 

the 
Area 

• The block crosses a page boundary which separates a page 
allocated for USER storage from a page allocated for 
NUCLEUS type storage. 

• The block overlaps another block already on the free 
storage chain. 

7 (DMSFRET) The address given for the block being released is 
not doubleword aligned. 

8 (DMSFRES) An invalid request code was passed to the DMSFRES 
routine. since all request codes are gen~rated by the DMSFRES 
macro, this error code should never appear. 

9 (DMSFREE, DMSFRET, or DMSFRES) Unexpected and unexplained 
error in the free storage management routine. 

CMS HANDLING CF PSi KEYS 

The purpose of the CMS Nucleus protection scheme is to protect the CMS 
nucleus from inadvertent destruction by a user progra.. iithout it, it 
would be possible, for example, for a FORTRAN user who accidentally 
assigns an incorrectly subscripted array element to destroy nucleus 
code, wipe out a crucial table or constant area, or even destroy an 
entire disk by destroying the contents of the Master File Directory. 

In general, user programs and disk-resident CMS commands run with a 
PSi key of X'E', while nucleus code runs with PSi key of X'O'. 

There QL~, however, ~um~ exceptions to this rule. certain 
disk-resident CMS commands run with a PSi key of X'O', since they have a 
constant need to modify nucleus pointers and storage. The nucleus 
routines called by the GET, PUT, READ, and iRITE macros run with a user 
PSi key of X'E', to increase efficiency. 

Two macros are available to any routine that wishes to change its PSi 
key for some special purpose. These are the DMSKEY macro and the DMSEXS 
macro. 

The DMSKEY macro may be used to change the PSi key to the user value 
or the nucleus value. The DMSKEY NUCLEUS option causes the current PSi 
key to be placed in a stack, and a value of a to be placed in the PSi 
key. The DMSKEY USER option causes the current PSi key to be placed in 
a stack, and a value of X'E' to be placed in the PSi key. The DMSKEY 
RESET option causes the top value in the DMSKEY stack to be removed and 
re-inserted into the PSi. 

It is a requirement of the CMS system that when a routine terminates, 
the DMSKEY stack must be empty. This means that a routine should 
execute a DMSKEY RESET option for each DMSKEY NUCLEUS option and each 
DMSKEY USER option executed by the routine. 

Part 3: Conversational Monitor System (CMS) 287 



The DMSKEY key stack has a current maximum depth of seven for each 
routine. In this context, a "routine" is anything invoked by an SVC 
call. 

The DMSKEY LASTUSER option causes the current PSi key to be placed in 
the stack, and a new key inserted into the PSi, determined as follows: 
the SVC system save area stack is searched in reverse order (top to 
bottom) for the first save area corresponding to a user routine. The 
PSi key which was in effect in that routine is then taken for the new 
PSi key. (If no user routine is found in the search, then LASTUSER has 
the same effect as USER.) This option is used by OS .acro simulation 
routines when they wish to enter a user-supplied exit routine; the exit 
routine is entered with the PSi key of the last user routine on the SVC 
system save area stack. 

The NOSTACK option of DMSKEY may be used with NUCLEUS, USER, or 
LASTUSER (as in, for example, DMSKEY NUCLEUS,NOSTACK) if the current key 
is not to be placed on the DMSKEY stack. If this option is used, then 
no corresponding DMSKEY RESET should be issued. 

The DMSEXS ("execute in system mode") macro instruction is useful in 
situations where a routine is running with a user protect key, but 
wishes to execute a single instruction which, for example, sets a bit in 
the NUCON area. The single instruction may be specified as the argument 
to the DMSEXS macro, and that instruction will be executed with a system 
PSi key. 

Whenever possible, CMS commands run with a user protect key. This 
protects the CMS nucleus in cases where there is an error in the system 
command which would otherwise destroy the nucleus. If the command must 
execute a single instruction or small group of instructions which modify 
nucleus storage, then the DMSKEY or DMSEXS macros are used, so that the 
system PSi key will be used for as short a period of time as possible~ 

CMS SVC HANDLING 

DMSITS (INTSVC) is the CMS system SVC handling routine. 
operation of DMSITS is as follows: 

The general 

1. The SVC new PSi (low-storage location X'60') contains, in the 
address field, the address of DMSITS1. The DMSITS module will be 
entered whenever a supervisor call is executed. 

2. DMSITS allocates a system and user save area. The 
is used as a register save area (or work area) 
routine. 

3. The called routine is called (via a LPSi or BALR) • 

user save area 
by the called 

4. Upon return from the called routine, the save areas are released. 

5. Control is returned to the caller (the routine which originally 
made the SVC call). 

SVC TYPES AND LINKAGE CONVENTIONS 

SVC conventions are important to any discussion of CMS because the 
system is driven by SVCs (supervisor calls). SVCs 202 and 203 are the 
most common CMS SVCs. 

288 IBM VM/370: System Progra.mer's Guide 



SVC 202 
calling 
modules). 

is used both for 
routines written 

calling nucleus resident routines, 
as commands (fer example~ disk 

and for 
resident 

A typical coding sequence for an SVC 202 call is the following: 

LA R1,PLIST 
SVC 202 
DC AL4(BRRADD) 

Whenever SVC 202 is called, register 1 must point to a parameter list 
(PLIST). The format of this parameter list depends upon the actual 
routine or command being called, but the SVC handler will examine the 
first eight bytes of this parameter list to find the name of the routine 
or command being called. 

The "DC AL4 (address)" instruction following the SVC 202 is optional, 
and may be omitted if the programmer does not expect any errors to occur 
in the routine or command being called. If included, an error return is 
made to the address specified in the DC. DMSITS determines whether this 
DC was inserted by examining the byte following the SVC call inline. A 
nonzero byte indicates an instruction, a zero value indicates that "DC 
AL4(address) " follows. 

SVC 203 is called by CMS macros to perform various internal system 
functions. It is used to define SVC calls for which no parameter list 
is provided. For example, DMSFREB parameters are passed in registers 0 
and 1. 

A typical calling sequence for an SVC 203 call is as follows: 

SVC 203 
DC H'code' 

The halfword decimal code following the SVC 203 indicates the 
specific routine being called. DMSITS examines this halfword code, 
taking the absolute value of the code by an LPR instruction. The first 
byte of the result is ignored, and the second byte of the resulting 
halfword is used as an index to a branch table. The address of the 
correct routine is loaded, and control is transferred to it. 

It is possible for the address in the SVC 203 
zero. In this case, the index entry will contain an 
command name, which will be handled in the same way 
passed in the parameter list to an SVC 202. 

index table to be 
8-byte routine or 

as the 8-byte name 

The programmer indicates an error return by the sign of the halfword 
code. If an error return is desired, then the code is negative. If the 
code is positive, then no error return is made. The sign of the 
half word code has no effect on determining the routine which is to be 
called, since DMSITS takes the absolute value of the code to determine 
the routine called. 

Since only the second byte of the absolute value of the code is 
examined by DMSITS, seven bits (bits 1-7) are available as flags or for 
other uses. Thus, for example, DMSFRBB uses these seven bits to 
indicate such things as conditional requests and variable requests. 

Part 3: Conversational Monitor system (CMS) 289 



When an SVC 203 is invoked, DMSITS stores the halfword code into the 
NUCON location CODE203, so that the called routine can examine the seven 
bits made available to it. 

All calls made by means of SVC 203 should be made by macros, with the 
macro expansion computing and specifying the correct halfword code. 

The programmer may use the HNDSiC macro to specify the address of a 
routine which will handle any SVC call other than for SVC 202 and SiC 
203. 

In this case, the linkage conventions are as required by the 
user-specified SiC-handling routine. 

CMS supports selected SVC calls generated by as macros, by simulating 
the effect of these macro calls. 

The proper linkages will be set up 
DMSITS does not recognize a "normal" or 
simulation SVC call. 

by the as macro generations. 
"error" return from an as macro 

There are several types of invalid SiC calls recognized by DMSITS. 

1. Invalid SiC number. If the SVC number does not fit into any of the 
four classes described above, then it is not handled by DMSITS. An 
appropriate error message is displayed at the terminal, and control 
is returned directly to the caller. 

2. Invalid routine name in SVC 202 parameter list. If the routine 
named in the SVC 202 parameter list is invalid or cannot be found, 
DMSITS handles the situation in the same way it handles an error 
return from a legitimate SiC routine. The error code is -3. 

3. Invalid SiC 203 code. If an invalid code follows SiC 203 inline, 
then an error message is displayed, and the ABEND routine is called 
to terminate execution. 

SEARCH HIERARCHY FOR SiC 202 

When a program issues SiC 202, passing a routine or command name in the 
parameter list, then DMSITS must be searched for the specified routine 
or command. (In the case of SVC 203 with a zero in the table entry for 
the specified index, the same logic must be applied.) 

The search algorithm is as follows: 

290 IBM VM/370: System Programmer's Guide 



1. First, a check is made to see if there is a routine with the 
specified name currently occupying the system Transient Area. If 
this is the case, then control is transferred there. 

2. Second, the system function name table is 
command by this name is nucleus-resident. 
goes to the specified nucleus routine. 

searched, to see if a 
If successful, control 

3. Next, a search is made for a disk file with the specified name as 
the filename, and MODULE as the filetype. The search is made in 
the standard disk search order. If this search is successful, then 
~n~ specified module is loaded 
control passes to the storage 
command. 

(via the 
location 

LOAD MOD comaand), 
now occupied by 

--~ auu 

the 

4. If all searches so far have failed, then DMSINA (ABBREV) is called, 
to see if the specified routine name is a valid system abbreviation 
for a system command or function. user-defined abbreviations and 
synonyms are also checked. If this search is successful, then 
steps 2 through 4 are repeated with the full function name. 

5. If all searches fail, then an error code of -3 is issued. 

When a command is entered from the terminal, DMSINT processes the 
command line, and calls the scan routine to convert it into a parameter 
list consisting of eight-byte entries. The following search is 
performed: 

1. DMSINT searches for a disk file whose filename is the command name, 
and whose filetype is EXEC. If this search is successful, EXEC is 
invoked to process the EXEC file. 

If not found, the command name is considered to be an abbreviation 
and the appropriate tables are examined. If found, the abbreviation 
is replaced by its full equivalent and the search for an EXEC file 
is repeated a 

2. If there is no EXEC file, DMSINT executes SVC 202, passing the 
scanned parameter list, with the command name in the first eight 
bytes. DMSITS will perform the search described for SVC 202 in an 
effort to execute the command. 

3. If DMSITS returns-to DMSINT with a return code of -3, indicating 
that the search was unsuccessful, then DMSINT uses the CP DIAGNOSE 
facility to attempt to execute the command as a CP command. 

4. If all these searches fail, then DMSINT displays the error message 
UNKNOWN CP/CMS COMMAND. 

See Figure 34 for a description of this search for a command name. 

USER AND TRANSIENT PROGRAM AREAS 

Two areas can hold programs which are loaded from disk. These are 
called the User Program Area and the Transient Program Area. (See 
Figure 33 for a description of CMS storage usage.) 

Part 3: Conversational Monitor System (CMS) 291 



The User Progra. Area starts at location X'20000' and extends upward 
to the Loader Tables. Generally, all user programs and certain system 
commands (such as EDIT, and COPYFILE) run in the User Program Area. 
Since only one program can be running in the User Program Area at any 
one time, it is impossible (without unpredictable results) for one 
program running in the User Program Area to invoke, by means of SVC 202, 
a module which is also intended to be run in the User Program Area. 

The Transient Program Area is two pages long, running from location 
X'EOOO' to location X'PllF'. It provides an area for system com.ands 
which may also be invoked from the User Program Area by means of an SVC 
202 call. 

The Transient Program Area is also used to handle certain OS macro 
simulation SVC calls. If DMSITS cannot find the address of a sUFPorted 
OS SVC handling routine, then it loads the file DMSSVT MODULE into the 
transient area, and lets that routine handle the SVC. 

A program running in the Transient Program Area may not invoke 
another program intended to run in the Transient Program area, 
including OS macro simulation SVC calls which are handled by DMSSVT. 
For example, a program running in the Transient Program Area may not 
invoke the RENAME command. In addition, it may not invoke the OS macro 
iTO, which generates an SVC 35, which is handled by DMSSVT. 

292 IBM VM/370: System Programmer's Guide 



Figure 34. 

No 

Expand Line by 
inserting the 
command name 
EXEC to: 
EXEC name 

Display 
UNKNOWN 
CP/CMS 
COMMAND 

Ves 

CMS Command (and Request) Processing 

C_r----" 

Notes: 

Pass control to the 
routine (in the nucleus, 
transient area, or 
user area) to execute 
the command 

1. If the terminal line was actually from an EXEC file, or if the 
command SET IMPEX OFF has been executed, implied EXEC 
is not in effect. 

2. A -3 return code indicates SVC 202 processing did not find 
the command. 

3. If the terminal line was actually from an EXEC file, or if the 
command SET IMPEX OFF has been executed, implied CP 
is not in effect. 

Part 3: Conversational Monitor System (CMS) 293 



DMSITS starts programs running in the User Program Area enabled for 
all interrupts but starts programs running in the Transient Program Area 
disabled for all interrupts. The individual program may have to use the 
SSM (Set System Mask) instruction to change the current status of its 
system mask. 

CALLED ROUTINE START-UP TABLE 

Figures 35 and 36 show how the PSi and registers are set up when the 
called routine is entered. 

r- --, 
I "Called" Type System Mask storage Key Problem Bit 
I 
ISVC 202 or 203 Disabled System Off 
I - Nucleus 
I resident 
I 
ISVC 202 or 203 Disabled User Off 
I - Transient 
I area MODULE 
I 
ISVC 202 or 203 Enabled User Off 
I - User area 
I 
I User-handled Enabled User Off 
1 
lOS - Nucleus Disabled System Off 
I resident 
I 
lOS - in DMSSVT Disabled System Off 

Figure 35. PSi Fields When Called Routine Starts 

I Registers RegisterslRegister Register Register Register 
Type I o - 1 2 - 11 I 12 13 14 15 

1 1 
SVC 2021Same as Unpredic-IAddress User Return Address 
or 2031 caller table I of save address of 

I I called area to called 
I I routine DMSITS routine 
1---- I 

Other ISame as Same as I Address User Return Same as 
I caller caller I of save address caller 
I I caller area to 
I I DMSITS 

Figure 36. Register Contents When Called Routine Starts 

294 IBM VM/370: System Programmer's Guide 



RETURNING TO THE CALLING ROUTINE 

ihen the called routine finishes processing, control is returned to 
DftSITS, which in turn returns control to the calling routine. 

The return is accomplished by loading the original SVC old PSi (which 
vas saved at the time D~SITS vas first entered)~ after possibly 
modifying the address field. The address field modification depends 
upon the type of SVC call, and on whether the called routine indicated 
an error return. 

For SVC 202 and 203, the called routine indicates a normal return by 
placing a zero in register 15, and an error return by placing a nonzero 
code in register 15. If the called routine indicates a normal return, 
then DftSITS makes a normal return to the calling routine. If the called 
routine indicates an error return, DftSITS passes the error return to the 
calling routine, if one was specified, and atnormally terminates if none 
was specified. 

For an SVC 202 not followed by "DC AL4 (address)", a normal return is 
made to the instruction following the SVC instruction, and an error 
return tauses an ABEID. For an SVC 202 followed by "DC AL4(address)", a 
normal return is made to the instruction following the DC, and an error 
return is made to the address specified in the DC. In either case, 
register 15 contains the return code passed tack by the called routine. 

For an SVC 203 with a positive halfword code, a normal return is made 
to the instruction following the halfword code, and an error return 
causes an ABEND. For an SVC 203 with a negative halfword code, both 
normal and error returns are made to the instruction following the 
halfword code. In any case, register 15 contains the return code passed 
back by the called routine. 

For OS macro simulation SVC calls, and for user-handled SVC calls, no 
error return is recognized by DftSITS. As a result, D~SITS always 
returns to the calling routine by loading the SVC old PSi which was 
saved when D~SITS was first entered. 

Upon entry to DftSITS, all registers are saved as they were when the SVC 
instruction was first executed. Upon exiting from D~SITS, all registers 
are restored from the area in which they were saved at entry. 

The exception to this is register 15 in the case of SVC 202 and 203. 
Upon return to the calling routine, register 15 always contains the 
value which was in register 15 when the called routine returned to 
D~SITS after it had completed processing. 

If the called routine 
storage protect key of 
Save Area. 

has system status, so that it runs with a PSi 
0, then it may store new values into the System 

Part 3: Conversational ~onitor System (C~S) 295 



If the called routine wishes to modify the location to which control 
is to be returned, it .ust .odify the following fields: 

• For SVC 202 and 203, it must modify the IUMRET and ERRET (normal and 
error return address) fields. 

• For other SVCs, it must modify the addr~ss field of OLDPSW. 

To modify the registers that are to be returned to the calling routine, 
the fields EGPR1, EGPR2, ••• , EGPR15 must be modified. 

If this action is taken by the called routine, then the SVCTRACE 
facility may print misleading information, since SVCTRACE assumes that 
these fields are exactly as they were when DMSITS was first entered. 
Whenever an SVC call is made, DMSITS allocates two save areas for that 
particular SVC call. Save areas are allocated as needed. For each SVC 
call, a system and user save area are needed. 

When the SVC called routine returns, the save areas are not released, 
but are kept for the next SVC. At the completion of each command, all 
SVC save areas allocated by that command are released. 

The system Save Area is used by DMSITS to save the value of the SVC 
old PSi at the time of the SVC call, the calling routine's registers at 
the time of the call, and any other necessary control information. 
Since SVC calls can be nested, there can be several of these save areas 
at one time. The system Save Area is allocated in protected free 
storage. 

The User Save Area contains 12 doublewords (24 words), allocated in 
unprotected free storage. DMSITS does not use this area at all, but 
si.ply passes a pointer to this area (via register 13.) The called 
routine can use this area as a temporary work area, or as a register 
save area. There is one User Save Area for each System Save Area. The 
field USAVEPTR in the System Save Area points to the User Save Area. 

The exact for.at of the System Save Area can be found in the VM,37~: 
£B~~~§!!io~!J ~BnitQ~ ~~~!!! (~A~) f~Qg~!! 199if. The most important 
fields, and their uses, are as follows: 

CALLER 

CALLEE 

CODE 

OLDPSW 

IRMRET 

(Fullword) The address of the SVC instruction which resulted 
in this call. 

(Doubleword) Eight-byte symbolic name of the called routine. 
For OS and user-handled SVC calls, this field contains a 
character string of the form SVC nnn, where nnn is the SVC 
number in decimal. 

(Balfword) For SVC 203, this field contains the halfword code 
following the SVC instruction line. 

(Doubleword) The SVC old PSW at the time that DMSITS was 
entered. 

(Fullword) The address of the calling routine to which control 
is to be passed in the case of a normal return from the called 
routine. 

296 IBM VM/370: System Programmer's Guide 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

ERRET (Fullword) The address of the calling routine to which control 
is to be passed in the case of an error return from the called 
routine. 

EGPRS (16 Fullwords, separately labeled EGPRO, EGPR1, EGPR2, EGPR3, 
••• , EGPR15) The entry registers. The contents of the 
general registers at entry to DMSITS are stored in these 
fields. 

EFPRS (4 Doublewords, separately labeled EFPRO, EFPR2, EFPR4, EFPR6) 
~ne en~Ly floating-point registers. The contents of the 
floating-point registers at entry to DMSITS are stored in 
these fields. 

SSAVENXT {Full word} The address of the next System Save Area in the 
chain. This points to the System Save Area which is being 
used, or will be used, for any SVC call nested in relation to 
the current one. 

SSAVEPRV (Fullword) The address of the previous system Save 
the chain. This points to the System Save Area for 
call in relation to which the current call is nested. 

Area in 
the SVC 

USAVEPTR (Fullword) Pointer to the User Save Area for this SVC call. 

CMS has an interface that allows it to display large amounts of data in 
a very rapid fashion. This interface for display terminals is much 
faster and has less overhead than the normal write because it displays 
up to 1760 characters in one operation, instead of issuing 22 individual 
writes of 80 characters each (that is one write per line on a display 
terminal). Data that is displayed in the screen output area with this 
interface is not placed in the console spool file. 

The DISPW macro allows you to use this display terminal interface. 
It generates a calling sequence for the CMS display terminal interface 
module, DMSGIO. DMSGIO creates a channel program and issues a DIAGNOSE 
instruction 
macro is: 

,.------
I 
I [label] 
I 
I 
I 
L-

where: 
label 

bufad 

r , 
ILINE=nl 
ILINE=OI 
L .J 

The format of the eMS DISPW 

DISPW 
r , 

bufad I,LINE=nl 
ILb!!~::.Q1 
L .J 

r , 
I,BYTES=bbbbl 
IL!!!1:§.§::11'§QI 
L .J 

[ERASE=YES] [CANCEL=YES] 

is an optional macro statement label. 

is the address of a buffer containing the data to be 
written to the display terminal. 

is the number of the 
display terminal that 
number 0 is the default. 

line, 
is to 

o to 
be 

23, on 
written. 

the 
Line 

Part 3: Conversational Monitor System (CMS) 297 



GC20-1807-3 Paqe Modified bV TNL GN20-2662, March 31, 1975 

r , 
I BY TES=bbbb I 
1!!.!1~~=lI§QI 
L .I 

is the 
on the 

number 
display 

of bytes 
terminal. 

(0 to 1760) to be 
1760 bytes is the 

written 
default. 

[ERASE=YES] specifies that the display screen is to be erased before 
the current data is written. The screen is erased 
regardless of the line or number of bytes to be 
displayed. Specifying ERASE=YES causes the screen to go 
into "MORE" status. 

[CANCEL=YES] causes the CANCEL operation to be performed: the output 
area is erased. 

298 IBM VM/370: System Programmer's Guide 



How to Add a Command or EXEC Procedure to CMS 

You can create a module or EXEC procedure which executes in the user 
area and resides on disk. To execute such a comsand or EXEC procedure, 
you only have to enter the filename from the terminal. However, be 
aware of the C~S search order for terminal input. Once a match is 
found, the search stops. The search order is: 

1. EXEC file on any currently accessed disk. 

2. Valid abbreviation for an EXEC file on any currently accessed 
disk. 

3. Nucleus resident or transient area command. 

4. Command on any currently accessed disk. 

s. Valid abbreviation or synonym for nucleus resident or transient 
area command. 

6. Valid abbreviation for disk resident command. 

For example, if you create an EXEC file with the same name as a disk 
resident command, the CftS search will always find the EXEC file first. 
Thus, the disk resident command will never get executed. 

C~S has a fUnction table containing the names of C~S functions. C~S 
reserves the following names, all entries in the CftS FUNCTAB (found in 
DftSFNC), for its own use: 

ATTN 
CARDPH 
CARDRD 
C~STI~E 

CONREAD 
CONWAIT 
CP 
DEBUG 
DESBUF 
DftSCIOSI 
DftSERR 
D~SLADAD 

D~SPIOCC 

D~SPIOSI 

ERASE 
EXEC 
FIllS 
GEN~OD 

INCLUDE 
LOAD 
LOADftOD 
POINT 
PRIIiTIO 
PRINTR 
RDBUF 
RETURN 

START 
STATE 
STATEW 
SUBSET 
SVCFREE 
SVCFR!T 
TAPEIO 
TRAP 
TYPLIN 
WAIT 
WAITRD 
WRBUF 

Part 3: Conversational Monitor System (CftS) 299 



OS Macro Simulation Under eMS 

When a language processor or a user-written program is executing in the 
C"S environment and using os-type functions, it is not executing as 
code. Instead, C"S provides routines that simulate the as functions 
required to support as language processors and their generated object 
code. 

C"S functionally simulates the as macros in a way that presents 
equivalent results to programs executing under C"S. The as macros are 
supported only to the extent stated in the publicaticns for the 
supported language processors, and then only to the extent necessary to 
successfully satisfy the specific requirement of the supervisory 
function. 

The restrictions for COBOL and PL/I program execution listed in 
"Executing a Program that Uses as "acros" in the !ALl1.Q: Pla]]ing ~]g 
~I~~~! §~~g!g~!2] ~y!gg exist because of the limited siaulation by CftS 
of the as macros. 

Figure 37 shows the as macro functions that are partially or 
completely simulated, as defined by SVC number. 

The disk format and data base organization of C"S are different from 
those of as. A CMS file produced by an as program running under C"S and 
written on a CftS disk, has a different format than that of an OS data 
set produced by the same as program running under as and written on an 
as disk. The data is exactly the same, but its format is different. (An 
as disk is one that has been formatted by an as program, such as 
IBCDASDI.) 

Because DOS macros are not simulated by CMS, DOS programs cannot run 
under C"S. Therefore, DOS files cannot be written on a C"S or as disk. 

I HANDLING FILES THAT RESIDE ON C"S DISKS 

C"S can read, write, or update any as data that resides on a CMS disk. 
CMS simulates the following access methods so that as data organized by 
these access methods can reside on C"S disks: 

direct 

partitioned 

sequential 

identifying a record by a key or by its relative 
position within the data set. 

seeking a named member within the data set. 

accessing a record in a sequence relative to preceding 
or following items in the data set. 

Refer to Figure 37 and the "Simulation Notes", then read "Access 
Method Support" to see how CMS handles these access methods. 

since CftS does not simulate the indexed sequential access method 
(ISAM), no as program which uses ISAft can execute under C"S. Therefore, 
no program can write an indexed sequential data set on a C"S disk. 

300 IBK VM/370: System Programmer's Guide 



I HANDLING FILES THAT RESIDE ON OS OR DOS DISKS 

CftS can read, but not write or update, OS sequential and partitioned 
data sets that reside on OS disks. The OS macros simulated by CftS read 
~ne OS data. uS1ng ~ne same simu~a~ed os macros, efts can read DOS 
sequential files that reside on DOS disks. No DOS macros are simulated, 
but the OS macros handle the DOS data as if it were OS data. Thus a DOS 
file can he used as input to an OS program running under CftS. 

CMS cannot write or update any OS data set that resides on an OS 
disk. Such a data set can be written or updated only by an OS program 
running in a real virtual OS machine. The same restriction applies to 
DOS files that reside on DOS disks. 

For more information, see "Reading OS Data Sets and DOS Files", in 
this section. 

Part 3: Conversational Menitor System (CMS) 301 



r--------------·----------------------------------------------------------~ 
ftacro 
li!!~ 

XDApl 
WAIT 
POST 
GETftAIR 
FREEftAIR 
GETPOOL 
FREEPOOL 
LINK 
XCTL 

LOAD 
DELETE 
GETftAIN/ 

FREEftAIR 
TIft El 
ABEND 
SPIEl 

BLDL/FINDI 

OPEN 
CLOSE 
STOWI 
OPENJ 
TCLOSE 
DEVTYPEI 

TRKBAL 
WTO/WTORI 
EXTRACTI 
IDENTIFy1 
A'ITACH I 
CHApl 
T'IIftERI 
STlftERI 
DEQI 
SNApl 
ENQI 
FREEDBUF 
STAE 

DETACHI 
CHKPTI 
RDJFCBI 

SYNADI 
BSPI 
GET/PUT 
READ/WRITE 
NOTE/POINT 
CBECK 
TGET/TPUT 
TCLEARQ 
STAX 
RETURN 

svc 
RU!B~!: 

00 
01 
02 
04 
05 

06 
07 

08 
09 
10 

11 
13 
14 

18 

19 
20 
21 
22 
23 
24 

25 
3S 
40 
41 
42 
44 
46 
47 
48 
S1 
S6 
S7 
60 

62 
63 
64 

68 
69 

93 
94 
96 

Function 
Read or-write-direct access volumes 
Wait for an I/O completion 
Post the I/O completion 
Conditionally acquire user storage 
Release user-acquired storage 
Simulate as SVC 10 
Simulate as SVC 10 
Link control to another phase 
Delete, then link control to another 

load phase 
Read a phase into storage 
Delete a loaded phase 
ftanipulate user free storage 

Get the time of day 
Terminate processing 
Allow processing program to 

handle program interrupts 
ftanipulate simulated partitioned 

data files 
Activate a data file 
Deactivate a data file 
ftanipulate partitioned directories 
Activate a data file 
Temporarily deactivate a data file 
Obtain device-type physical 

characteristics 
NOP 
communicate with the terminal 
Effective NOP 
Add entry to loader table 
Effective LINK 
Effective NOP 
Access or cancel timer 
Set timer 
Effective NOP 
Dump specified areas of storage 
Effective HOP 
Release a free storage buffer 
Allow processing program to 

decipher ABEND conditions 
Effective NOP 
Effective NOP 
Obtain information from FILEDEF 

command 
Handle data set error conditions 
Backup a record on a tape or disk 
Access system-blocked data 
Access system-record data 
ftanage data set positioning 
Verify READ/WRITl completion 
Read or write a terminal line 
Clear terminal input queue 
Create an attention exit block 
Return from a linked or 

attached routine 

ISimulated in the transient routine "DftSSVT". Other simulation 
routines reside in the nucleus. 

Figure 37. Simulated OS Supervisor Calls 

302 IBft Vft/370: System Programmer's Guide 



SIMULATION NOTES 

Because CMS has its own file system and is a single-user system 
operating in a virtual machine with virtual storage, there are certain 
restrictions for the simulated OS function in CMS. For example, HIARCHY 
options and options that are used only by OS multitasking systems are 
ignored by CMS. 

Listed below are descriptions of all the OS macro functions that are 
simulated by CMS as seen by the programmer. Implementation and program 
results that differ from those given in Q~LVS Da!! ~!~~~~~! fta£!~ 
Instructions and CSLVS Su£ervisor Services and !acrc Instructions are 
stated:--HIARCHY options-and those used--only-by os-iultitasking-systems 
are ignored by efts. validity checking is not performed within the 
simulation routines. The entry point name in LINK, XCTL, and LOAD (SVC 
6, 7, 8) must be a member name or alias in a TXTLlB directory uuless the 
COMPSWT is set to on. If the COMPSWT is on, SVC 6, 7, and a must 
specify a MODULE name. This switch is turned on and off by using the 
COMPSWT macro. See the !~Ll1Q: ~Q~~~!~ 1!~Y!E~ ~Y~~~ !~ g~ne~gl Us~~§ 
for descriptions of all CftS user macros. 

WAIT-SVCl 

POST-SVC2 

GETMAIN-SVC4 

FREEMAIN-SVCS 

I LINK-SVC6 

XCTL-SVC7 

LOAD-svca 

Q!!!~!~B~E-~~-I~le~entat!~B 
The TYPE option must be R or W; the V, I, and K 
options are not supported. The BLKREF-ADDR must point 
to an item number acquired by a NOTE macro. Other 
options associated with V, I, or K are not supported. 

All options of 
waits for the 
specified ECBs. 

WAIT are supported. 
completion bit to 

The 
be 

WAIT routine 
set in the 

All options of POST are supported. POST sets a 
completion code and a completion bit in the specified 
ECB. 

All the options of GETMAIN are supported. 
gets blocks of free storage. 

GETMAIN 

All the options of FREEMAIN are supported. FREEftAIN 
frees blocks of storage acquired by GETMAIN. 

The DCB and HIARCHY options are ignored by CftS. All 
other options of LINK are supported. LINK loads the 
specified program into storage (if necessary) and 
passes control to the specified entry point. 

The DCB and HIARCHY options are ignored by CftS. All 
other options of XCTL are supported. XCTL loads the 
specified program into storage (if necessary) and 
passes control to the specified entry point. 

The DCB and HIARCHY options are ignored by CMS. All 
other options of LOAD are supported. LOAD loads the 
specified program into storage (if necessary) and 
returns the address of the specified entry point in 
register zero. However, if the specified entry point 
is not in core when SVC a is issued, and the 
subroutine contains VCONs which cannot be resolved 
within that TXTLIB member, CMS will attempt to resolve 
these references, and may return another entry point 
address. To insure a correct address in register zero, 
the user should bring such subroutines into core 
either by the CMS LOAD/INCLUDE commands or by a VCON 
in the user program. 

Part 3: Conversational Monitor System (CMS) 303 



Macro-SVC No. GETPC0 Lj-----
FREEPOOL 

DELETE-SVC9 

GETMAIN/ 
FRFEMAIN­
SVC10 

TIME-SVC11 

ABEND-SVC13 

SPIE-SVC14 

BLDL-SVC18 

FIND-SVC18 

STOW-SVC21 

OPEN/OPENJ­
SVC19/22 

CLOSE/TCLOSE­
SVC20/23 

DEVTYPE-SVC24 

~~1!~f~g£~§_~]_!!]1~!~n!~!i2n 
All the options of GETPOOL and FREEPOOL are supported. 
GETPOOL constructs a buffer pool and stores the 
address of a buffer pool control block in the DCB. 
FREEPOOL frees a buffer pool constructed by GETPOOL. 

All the options of DELETE are supported. DELETE 
decreases the use count by one and if the result is 
zero frees the corresponding virtual storage. Code 4 
is returned in register 15 if the phase is not found. 

All the options of GETMAIN and FREEMAIN are supported. 
Subpool specifications are ignored. 

All the options of TIME except MIC are supported. 
TIME returns the time of day to the calling program. 

The completion code parameter is supported. The DUMP 
parameter is not. If a STAF request is outstanding, 
control is given to the proper STAE routine. If a 
STAE routine is not outstanding, a message indicating 
an ABEND has occurred is printed on the terminal along 
with the completion code. 

All the options of SPIE are supported. The SPIE 
routine specifies interruption exit routines and 
program interruption types that will cause the exit 
routine to receive control. 

BLDL is an effective NOP for LINKLIBs and JOBLIBs. 
For MACLIBs, item numbers are filled in the TTR field 
of the BLDL list; the K, Z, and user data fields, as 
described in Q~L!~ ~~!~ ~~n~g~!~~! ~~£Q !~!!ycti2~' 
are set to zeros. The 'alias' bit of the C field is 
supported, and the remaining bits in the C field are 
set to zero. 

All the options of FIND are supported. FIND sets the 
read/write pointer to the item number of the specified 
member. 

All the options of STOW are supported. The 'alias' 
bit is supported, but the user data field is not 
stored in the MACLIB directory since CMS MACLIBs do 
not contain user data fields. 

All the options of OPEN and OPENJ are supported except 
for the DISP and RDBACK options which are ignored. 
OPEN creates a CMSCB (if necessary), completes the 
DCB, and merges necessary fields of the DCB and 
CMSCB. 

All the options of CLOSE and TCLOSE are supported 
except for the DISP option, which is ignored. The DCB 
is restored to its condition before OPEN. If the 
device type is disk, the file is closed. If the 
device type is tape, the REREAD option is treated as a 
REWIND. 

All the options of DEVTYPE are supported. 
moves device characteristic information 
specified data set into a specified user area. 

DEVTYPE 
for a 

304 IBM VM/370: System Programmer's Guide 



ftacro-SVC 10. 
WTO/iTOi=sVC35 

EXTBACT-SVC40 

IDENTIFY-SVC41 

ATTACH-SVC42 

CHAP-SVC44 

TTlftER-SVC46 

STlftER-SVC47 

DEQ-SVC48 

SNAP-SVC51 

ENQ-SVC56 

FRElDBUF-SVC57 

STAE-SVC60 

DETACH-SVC62 

Diffe~~~~~!~_I.ple~~1~1!~B 
All options of WTO and WTOR are supported except those 
options concerned with multiple console support. WTO 
displays a aessage at the operator's ccnsole. iTOR 
displays a .essage at the operator's console, waits 
for a reply, moves the reply to the specit~ed area, 
sets a co.pletion bit in the specified ECB, and 
returns. 

The EXTRACT routine in CftS is essentially a NOP. The 
user provided answer area is set to zeros and control 
is returned to the user with a return code of 4 in 
register 15. 

The IDENTIFY routine in CftS 
the load request chain for 
address. 

adds a RPQUEST block to 
the requested name and 

All the options of ATTACH are supported in CftS as in 
OS PCP. The following options are ignored by CftS: 
DCB, LPftOn, DPftOD, HIARCHY, GSPV, GSPL, SHSPV, SHSPL, 
SZEBO, PURGE, ASYNCH, and TASKLIB. ATTACH passes 
control to the routine specified, fills in an ECB 
co.pletion bit if an ECB is specified, passes control 
to an exit routine if one is specified, and returns 
control to the instruction following the ATTACH. 

Since CftS is not a multitasking system, a phase 
requested by the ATTACH .acro must return to CftS. 

The CHAP routine in CftS is a NOP. It returns control 
to the user. 

All the options of TTlftER are supported. 

All options of STIftER are supported except for TASK 
and WAIT. The TASK option is treated as if the REAL 
option had been specified, and the WAIT option is 
treated as a NOP; it returns control to the user. 

The DEQ routine in CftS is a NOP. 
to the user. 

It returns control 

All the options of SNAP are supported except for the 
DCB, SDATA, and PDATA options, which are ignored. SlAP 
always dumps output to the printer. The dump contains 
the PSW, the registers, and the storage specified. 

The EIQ routine in CftS is a NOP. 
to the user. 

It returns control 

All the options of FREEDBUF are supported. FREEDBUF 
returns a buffer to the buffer pool assigned to the 
specified DCB. 

are supported except for the 
set to XCTL=YES; the PURGE 
HALT; and the ASYICH option, 
STAE creates, overlays, or 

All the options of STAE 
XCTL option, which is 
option, which is set to 
which is set to NO. 
cancels a STAE control 
is not supported. 

block as requested. STAE retry 

The DETACH routine in CftS is a NOP. 
control to the user. 

It returns 

Part 3: Conversational ftonitor System (CftS) 305 



ftacro-SVC No. 
ciiiPT-SVC63--

RDJFCB-SVC64 

SYNADAF-SVC68 

SYNADRLS-SVC68 

BSP-SVC69 

TGET/TPUT­
SVC93 

TCLEARQ-SVC94 

STAX-SVC96 

NOTE 

POINT 

CHECK 

DCB 

Q.E~!:~.!!.9 
BFALN 
BLKSIZE 
BUFCB 
BUFL 
BUFNO 
DDNAftE 
DSORG 
EODAD 
EXLST 
KEYLEN 
LlftCT 
LRECL 
ftACRF 
OPTCD 
RECFM 
SYNAD 
NCP 

306 IBft Vft/370: 

~iii~~~gf~2_i]_!!]le!gB!~!!2B 
The CHKPT routine is a NOP. It returns centrol to the 
user. 

All the options of RDJFCB are supported. RDJFCB 
causes a Job File Control Block (JFCB) to be read from 
a CftS Control Block (CftSCB) into real storage for each 
data control block specified. CftSCBs are created by 
FILEDEF commands. 

All the options of SYNADAF are supported. SYNADAF 
analyzes an I/O error and creates an error message in 
a work buffer. 

All the options of SYNADRLS are supported. SYNADRLS 
frees the work area acquired by SYNAD and deletes the 
work area from the save area chain. 

All the options of BSP are supported. BSP decrements 
the item pointer by one block. 

TGET and TPUT operate as if EDIT and WAIT were coded. 
TGET reads a terminal line. TPUT writes a terminal 
line. 

TCLEARQ in CftS clears the input terminal queue and 
returns control to the user. 

Updates a queue of CftTAXEs each of which defines an 
attention exit level. 

All the options of NOTE are supported. NOTE returns 
the item number of the last block read or written. 

All the options of POINT are supported. POINT causes 
the control program to start processing the next read 
or write operation at the specified item number. The 
TTR field in the block address is used as an item 
number. 

All the options of CHECK are supported. 
the I/O operation for errors and 
conditions. 

The following fields of a DCB may be 

CHECK tests 
exceptional 

specified, 
relative to the particular access method indicated: 

BDA!1 J1g!!1 J12!~ 22111 
F,D F,D F,D F,D 
n (number) n n n 
a (address) a a a 
n n n n 
n n n n 
s (symbol) s s s 
DA PO PS PS 

a a a 
a a a a 
n n 
n 

n It n 
R,W R,W R,W, P G,P,L,ft 
A,E,F,R 
F,V,U F,V,U F,V,B,S,A,ft,U F,V,B,U,A,ft,S 
a a a a 

n n 

System programmer's Guide 



ACCESS METHOD SUPPORT 

The manipulation of data is governed by an access method. To facilitate 
the execution of OS Code under eMS; the processing program must see data 
as as would present it. Por instance, when the processors expect an 
access method to acquire input source cards sequentially, CMS invokes 
specially written routines that simulate the OS sequential access method 
and pass data to the processors in the format that the OS access methods 
would have produced. Therefore, data appears in storage as if it had 
been manipulated using an OS access method. For example, block 
descriptor words (BDi), buffer pool management, and v~riable records are 
updated in storage as if an OS access method had processed the data. 
The actual writing to and reading from the I/O device is handled by CMS 
file management. 

The essential work of the Volume Table of contents (VTOC) and the 
Data set Control Block (DSCB) is done in CMS by a Master Pile Directory 
(MFD) which updates the disk contents, and a File Status Table (PST) 
(one for each data file). All disks are: formatted in physical blocks 
of 800 bytes. 

CMS continues to update the OS format, within its own format, on the 
auxiliary device, for files whose filemode number is 4. That is, the 
block and record descriptor words (BDi and RDi) are written along with 
the data. If a data set consists of blocked records, the data is 
written to, and read from, the I/O device in physical blocks, rather 
than logical records. CMS also simulates the specific methods of 
manipulating data sets. 

To accomplish this simulation, CMS supports certain essential macros 
for the following access methods: 

• BDAM (direct) -- identifying a record by a key or by its relative 
position within the data set. 

• BPAM (partitioned) -- seeking a named member within data set. 

• SAM (sequential) -- accessing a record in a sequence relative to 
n~o~o~;nn np ~~"n~~~~ ~~~~~~~ 
r~~~~u~u~ V~ ~v~~v.~"~ ~~~v~u~. 

CMS also 
needed by 
execution. 

updates those portions of the 
the OS simulation routines to 

OS control blocks 
support a program 

that are 
during 

Most of the simulated supervisory OS control blocks are contained in 
the following two CMS control blocks: 

CMSCVT 
simulates the Communication Vector Table. Location 16 contains 
the address of the CVT control section. 

CMSCB 
is allocated from system free storage whenever a FILEDEF command 
or an OPEN (SVC19) is issued for a data set. The CMS Control 
Block consists of a File Control Block (FCB) for the data file, 
and partial simulation of the Job File Control Elock (JPCB), 
Input/Output Block (lOB), and Data Extent Block (DEB). 

The Data Control Block (DCB) and the Data Event Control Block (DECE) 
are used by the access method simulation routines of CMS. 

Part 3: Conversational Monitor System (CMS) 307 



The GET and PUT .acros are not supported for use with spanned 
records. READ and WRITE are supported for spanned records, provided the 
file.ode number is 4, and the data set is Physical sequential (BSAM) 
format. 

GET (OSAM) 
All the OSAM options of GET 
handled the sa.e as .ove mode. 
number is 4, and the last block 
(X'61PPPP61') must be present 
record. 

GET (OISAM) 
OISAM is not supported in CMS. 

PUT (OS AM) 

are supported. Substitute mode is 
If the DCBRECPM is PB, the file.ode 
is a short block, an EOP indicator 

in the last blo~k after the last 

All the QSAM options of PUT are supported. Substitute mode is 
handled the same as .ove mode. If the DCBRECPM is PB, the file.ode 
number is 4, and the last block is a short block, an BOP indicator is 
written in the last block after the last record. 

PUT (QISAM) 
OISAM is not supported in CMS. 

PUTX 
PUTX support is provided only for data sets opened for QSAM-UPDATE 
with simple buffering. 

READ/WRITE (BISAM) 
BISAM is not supported in CMS. 

READ/WRITE (BSAM and BPAM) 
All the ESAM and BPAM options of READ and WRITB are supported except 
for the SE option (read backwards). 

READ (Offset Read of Keyed EDAM dataset) 
This type of READ is not supported because it is only used for 
spanned records. 

READ/WRITE (BDAM) 
All the EDAM and BSAM (create) options of READ and WRITB are 
supported except for the Rand RU options. 

The four methods of accessing EDAM records are: 

1. Relative Block R~~ 
2. Relative Track TTR 
3. Relative Track and Key TI!ey 
4. Actual Address MBECCBBR 

The restrictions on those methods are as follows: 

• Only the EDAM identifiers underlined above can be used to refer to 
records, since CMS files have a two-byte record identifier. 

• CMS BDAM files are always created with 255 records cn the first 
logical track, and 256 records on all other logical tracks, 
regardless of the block size. If BDAM methods 2, 3, or 4 are used 
and the RECPM is U or V, the BDAM user must either write 255 records 

308 IBM VM/310: System Programmer's Guide 



on the first track and 256 records on every track thereafter, or he 
must not update the track indicator until a NO SPACE FOUND message is 
returned on a write. For method 3 (WRITE ADD), this message occurs 
when no more dummy records can be found on a WRITE request. For 
methods 2 and 4i this will not occur i and the track indicator viII be 
updated only when the record indicator reaches 256 and overflows into 
the track indicator. 

• Two files of the same filetype, which both use keys, cannot be open 
at the same time. If a program that is updating keys dces not close 
the file it is updating for some reason, such as a system failure or 
another IPL operation, the original keys for files that are not fixed 
format are saved in a temporary file with the same filetype and a 
filename of $KEYSAVE. To finish the update, run the program again. 

• Once a file is created using keys, additions to the file must not be 
made without using keys and specifying the original length. 

• The number of records in the data set extent must be specified using 
the FILEDEF command. The default size is 50 records. 

• The minimum LRECL for a CMS BDAM file with keys is eight bytes. 

READING OS DATA SETS AND DOS FILES 

CMS users can read, but not write or update, OS sequential and 
partitioned data sets that reside on OS disks. The CMS MOVEFILE command 
can be used to manipulate those data sets, and the OS QSAM, BPAM, and 
BSAM macros can be executed under CMS to read them. 

The CMS MOVEFILE command and the same OS macros can also be used to 
manipulate and read DOS sequential files that reside on DOS disks. No 
DOS macros are simulated; the OS macros handle the DOS data as if it 
were OS dat a. 

The following os Release 20.0 BSAM, BPAM, 
with CMS to read OS data sets and DOS files: 

BLDL 
BSP 
CHECK 
CLOSE 
DEQ 
DEVTYPE 

ENQ 
FIND 
GET 
NOTE 
POINT 
FOST 

RDJFCB 
READ 
SYNADAF 
SYNADRLS 
WAIT 

and QSAM wacros can L _ .. ___ .!I 

Ut::l U:::it::lU 

CMS supports the following disk formats for the OS and OS/VS 
sequential and partitioned access methods: 

• split cylinders 
• user labels 
• track overflow 
• alternate tracks 

As in OS, the CMS support of the BSP macro produces a return code of 
4 when attempting to backspace over a tape mark or when a beginning of 
an extent is found on an OS data set or a DOS file. If the data set or 
file contains split cylinders, an attempt to tacks pace within an extent 
resulting in a cylinder switch, also produces a return code of 4. 

Part 3: Conversational Monitor System (CMS) 309 



Before CMS can read an OS data set or DOS file that resides on a non-CMS 
disk, you must issue the CMS ACCESS command to make the disk on which it 
resides available to CMS. 

The format of the ACCESS command is: 

ACCESS cuu moder/ext] 

You must not specify options or file identification when accessing an OS 
or DOS disk. 

you then issue the FILEDEF command to assign a CMS file 
identification to the OS data set or DOS file so that CMS can read it. 
The format of the FILEDEF command used for this purpose is: 

r-------------------------------------------------------------------------, 
FILEDEF {dd;:me} r r " r , 

I DISK fn ft I fmll IDSN ? I 
I IA111 IDSN q1 [q2···]1 
L L .J.J L .J 

r r " DISK Ifn ft Ifm II 
IFILE ggJ}~'!!!~ IAjl1 
L L .J.J 

DUMMY 
r , 

~~1~1ed ~E!i9~: IMEMBER membernamel 
ICONCAT I 
L .J 

If you are issuing a FILEDEF for a DOS file, note that the OS program 
that will use the DOS file .ust have a DCB for it. For "ddname" in the 
FILEDEF command line, use the ddname in that DCB. with the DSN operand, 
enter the file-id of the DOS file. 

Sometimes, CMS issues the FILEDEF command for you. Although the CMS 
MOVEFILE command, the supported CMS program product interfaces, and the 
CMS OPEN routine each issue a default FILEDEF, you should issue the 
FILEDEF command yourself to be sure the appropriate file is defined. 

After you have issued the ACCESS and FILEDEF commands for an OS 
sequential or partitioned data set or DOS sequential file, CMS commands 
(such as ASSEMBLE and STATE) can refer to the OS data set or DOS file 
just as if it were a CMS file. 

Several other CMS commands can be used with OS data sets and DOS 
files that do not reside on CMS disks. See the VMLll~: ~Qm!~g b~~g~~g~ 
Q~!g~ !Q! §~~~!~1 Q§~!§ for a complete description of the CMS ACCESS, 
FILEDEF, LISTDS, MOVEFILE, QUERY, RELEASE, and STATE commands. 

For restrictions on reading OS data sets and DOS files under eMS, see 
the "VM/370 Restrictions" in "Part 1. Debugging with VM/370". 

310 IBM VM/370: System Programmer's Guide 



THE FILEDEF CCMMAHD 

The CMS FILEDEF command allows you to specify 
file characteristics to be used by a program 
conjunction vith the OS simulation scheme, 
functions of the Data Definition JCL statement. 

the I/O device and the 
at execution time. In 
FILEDEF simulates the 

FILEDEF may be used only with 
functions. For example: 

programs using OS macros and 

filedef filel disk proga data al 

After issuing this command, your program referring to FILEl would access 
PROGA DATA on Jour A-disk. 

If you wished to supply data from your terminal for FILE1, you could 
issue the command: 

filedef filel terminal 

and enter the data for your program without recompiling. 

fi tapein tap2 (recfm fb lrecl 50 block 100 9track den 800) 

After issuing this command, programs referring to TAPEIH will access a 
tape at virtual address 182. (Each tape unit in the CMS environment has 
a symbolic name associated with it.) The tape must have been previously 
attached to the virtual machine by the VM/370 operator. 

The AUXPROC option can only be used by a program call to FILEDEF and not 
from the terminal. The CMS language interface programs use this feature 
for special I/O handling of certain (utility) data sets. 

The AUXPROC option, followed by a fullword address of an auxiliary 
processing routine, allows that routine to receive control from DftSSEB 
before any device I/O is performed. At the completion of its processing, 
the auxiliary routine returns control to DMSSEB signalling whether I/O 
has been performed or not. If not, DMSSEB performs the appropriate 
device I/O. 

GPR15 is used by the auxiliary processing routine to inform to DMSSEB 
of the action that has been or should be taken with the data block as 
follows: 

GPR15=0 

GPR15(0 

GPR15)O 

Ho I/O performed by AUXPROC routine; DMSSEB will perform I/O. 

I/O performed by AUXPROC routine and error was encountered. 
DMSSEB will take error action. 

I/O performed by AUXPROC routine with residual count in GPR15; 
DMSSEB returns normally. 

Part 3: Conversational Monitor System (CMS) 311 



Saving the eMS System 

Only named systems can be saved. The BAMESYS macro must be used to name 
a system. A discussion on creating a named system is found under 
"Generating Bamed System" in "Part 2: Control Program (CP)". 

The DMKSBT module must have been configured (by coding the BAMESYS 
macro) when CP was generated. The DMKSNT module contains the system 
name, size of the system, and its real disk location. The CMS system 
aay be saved by entering the command 'SAVESYS name' as the first command 
after the IPL command (that is, after the CMS version identification is 
displayed), where 'name' is the name to be assigned to the saved 
system. 

The CMS S, D, and Y disks (and, optionally, the A disk) should be 
mounted and attached to the virtual machine creating the saved system 
before the SAVESYS command is issued. This ensures that the CMS file 
directory is saved correctly. 

The status of the saved system proceeds, upon a subsequent IPL, as if 
an IPL of a specific device had occurred, with the single exception that 
the file directory for the system disk is part of the nucleus. 

There are several coding restrictions that must 
is to run as a Saved system. 

The first and most obvious one is that 
segment 1. The shared segment runs with a 
although the virtual storage key equals F. 

he imposed on CMS if it 

CMS may never modify 
real storage key of 0, 

A less obvious, but just as important, restriction, is that CMS may 
never modify, with a single machine instruction (except MVCL), a section 
of storage which crosses the boundary between two pages with different 
storage keys. This restriction applies not only to SS instructions, 
such as MVC and ZAP, but also to RS instructions, such as STM, and to RX 
instructions, such as ST and STD, which may have nonaligned addresses on 
the System/370. 

It also applies to I/O instructions. If the key specified in the CCW 
is zero, then the data area for input may not cross the boundary between 
two pages with different storage keys. 

It is not advisable to use the CMS DEBUG command or the CP commands 
to debug a named system with shared pages because it is impossible to: 

• store into shared pages. 
• Address stop in shared pages. 

IPL a CMS system with no shared pages and then use the VM/370 debug 
tools while executing. 

If you intend to modify a shared eMS system, be sure that all code 
that 1S to he shared resides in the shared segment, CMS Nucleus 
(X'10000'-X'20000'). To make room for additional code in the CMS 
Nucleus, you may have to move some of the existing code. You can use 
the USERSECT area of DMSNUC to contain nonshared instructions. 

312 IBM VM/370: System Programmer's Guide 



eMS Batch Facility 

The CftS Batch Facility is a Vft/370 programming facility that runs under 
the CftS subsystem. It allows Vft/370 users to run their jobs in batch 
mode by sending jobs either fro. their virtual machines or through the 
real (system) card reader to a virtual machine dedicated to running 
batch jobs. The Batch Facility then executes these jobs, freeing user 
machines for other uses. 

If both CftS Batch Facility and the Remote spooling Communications 
subsystem (RSCS) are running under the same Vft/370 system, job input 
streams can be transmitted to the Batch Facility from remote stations 
via communication lines. Also, the output of the batch processing can be 
transmitted back to the remote station. For additional information, see 
"Remot~ Job Entry to CftS Batch" in the !1!Ll1Q: .!!~~2~ .§2QQ!!!!g 
~2~!~i~~ti~!§ ~!bSI§!~! (R~£~) Us~£~ Q~!de. 

The Batch Facility virtual machine is generated and controlled on a 
userid dedicated to execution of jobs in tatch mode. The system 
operator generates the "batch machine" by loading (via IPL) the CftS 
subsystem, and then issuing the CftSBATCB command. The CftSBATCB module 
loads the DftSBTP TEXT S2 file which is the actual Batch processor. 
After each job is executed, the Batch Facility will IPL itself, thereby 
providing a continuously running batch machine. The Batch Processor 
will IPL itself by using the PARft option of the CP IPL command, followed 
by a character string which CftS recognizes as peculiar to a batch 
virtual machine performing its IPL. Jobs are sent to the batch 
.achine's virtual card reader from users' terminals and executed 
sequentially. When there are no jobs waiting for execution, the Batch 
Facility remains in a wait state ready to execute a user job. See the 
!1!L.J1.Q: Q.E~~!!.Q~..!.§ §!i,g~ for more information about controlling the 
ba tch machine. 

The Batch Facility is particularly useful for compute-bound jobs such 
as assemblies and compilations and for execution of large user programs, 
since interactive users can continue working at their terminals while 
their time=consu.ing jobs are run in another virtual machine. 

The System Programmer controls the Batch Facility virtual machine 
environment by resetting the Batch Facility machine's system limits, by 
writing routines that handle special installation input to the Batch 
Facility, and by writing EXEC procedures that make the Batch Facility 
facility easier to use. 

Each job running under the Batch Facility is limited by default to the 
maximum value of 32,767 seconds of virtual CPU time, 32,767 punched 
cards output, and 32,767 printed lines of output. You can reset these 
limits by modifying the BATLIftIT ftACRO file, which is found in the 
CftSLIB macro library, and reassembling DftSBTP. 

The Batch Facility can handle user-specified control 
special installation Batch Facility /JOB control cards. 

language and 
These handling 

Part 3: Conversa tional ftoni tor System (CftS) 313 



mechanisms are built into the system in the form of user exits from 
Batch; you are responsible for generating two routines to make use of 
them. These routines must be named BATEXITl and BATEXIT2, respectively, 
and must have a filetype of TEXT and a filemode number of 2, if placed 
on the system disk or an extension of the system disk. (See the !ftL37Q: 
~Q!!~n~ 1~ngy~g~ ~Y!~~ !Q£ ~~n~~!! ~~I§ for infor,ation on how to write 
and use Batch Facility control cards.) The routines you write are 
responsible for saving registers, including general register 12, which 
saves address ability for the Batch Facility. These routines (if aade 
available on the system disk) are included with the Batch Facility each 
time it is loaded. 

BATEXIT1: PROCESSING USER-SPECIFIED CONTROL LANGUAGE 

BATEXITl is an entry point provided so that users may write their own 
routine to check non-CftS control sta~ements. For example, it could be 
written to scan for the OS job control language needed to compile, link 
edit, and execute a FORTRAN job. BATEIITl receives control after each 
read from the Batch Facility virtual card reader is issued. General 
register 1 contains the address of the Batch Facility Read Buffer, which 
contains the card image to be executed by the Batch Facility. This 
enables BATEXITl to scan each card it receives as input for the type of 
control information you specify. 

If, after the card is processed by BATEIIT1, general register 15 
contains a nonzero return code, the Batch Facility flushes the card and 
reads the next card. If a zero is returned in general register 15, the 
Batch Facility cQntinues processing by passing the card to CftS for 
execution. 

BATEXIT2: PROCESSING THE BATCH FACILITY /JOB CONTROL CARD 

BATEXIT2 is an entry point provided so that users can code their own 
routine to use the /JOB card for additional information. BATEXIT2 
receives control before the VK/370 routine used to process the Batch 
Facility /JOB card begins its processing, but after CftS has scanned the 
/JOB card and built the parameter list. When BATEIIT2 is processing, 
general register 1 points to the CftS parameter list buffer. This buffer 
is a series of a-byte entries, one for each item on the /JOB card. If 
the return code found in general register 15 resulting from BATEXIT2 
procesing of this card is nonzero, an error message is generated and the 
job is flushed. If general register 15 contains a zero, normal checking 
is done for a valid userid and the existence of an account number. 
Finally, execution of this job begins. 

You can control the Batch Facility virtual 
procedures. For example, you can use: 

machine using EXEC 

• An EXEC to produce the proper sequence of CP/CftS commands for users 
who do not know CftS com.ands and controls. 

• An EXEC to provide the sequence of 
most common jobs (assemblies and 
installation. 

commands needed to 
compilations) in a 

314 IBK Vft/370: System Programmer's Guide 

execute the 
particular 



For information on how to use the EXEC facility to control the Batch 
Facility virtual machine, see the !ALJIQ: ~!~~ y§~~!§ GU~g~. 

After each job, the Batch Facility will IPL itself, destroying all 
nucleus data and work areas. All disks linked to during the previous 
job are detached. 

At the beginning of each job, the Batch Facility work disk is 
accessed and then immediately erased, preventing the current user job 
from accessing files that might remain from the previous job. Because 
of this, execution of the PROFILE EXEC is disabled for the Batch 
Facility machine. YoU may, however, create an EXEC procedure called 
BATPROF EXEC and store it on any system disk to be used instead of the 
ordinary PROFILE EXEC. The Batch Facility will then execute this EXEC 
at initialization time. 

Part 3: Conversational Monitor System (CMS) 315 



Auxiliary Directories 

When a disk is accessed, each module that fits the description specified 
on the ACCESS command is included in the resident directory. An 
auxiliary directory is an extension of the resident directory, 
containing the name and location of certain CftS modules that are not 
included in the resident directory. These modules, if added to the 
resident directory, would significantly increase its size, thus 
increasing the search time and storage requirements. An auxiliary 
directory can reference modules that reside on the system (S) disk; or, 
if the proper linkage is provided, reference modules that reside on any 
other read-only CftS disk. To take advantage of the saving in search 
time and storage, modules that are referenced via an auxiliary directory 
should not also be in the resident directory. The disk on which these 
.odules reside should be accessed in a way that excludes these modules. 

To add an auxiliary directory to CftS, the system programmer must 
generate the directory, initialize it, and establish the proper 
linkage. Only when all three tasks are completed, can a module 
deicribed in an auxiliary directory be properly located. 

GENERATION OF THE AUXILIARY DIRECTORY 

An auxiliary directory TEXT deck is generated by assembling a set of 
DftSFST macros, one for each module name. The format of the DftSFST macro 
is: 

, 
I DftSFST modulename [,aliasname] 
I 

.odulename is the name of the module whose File status Table (FSi) 
information is to be copied. 

aliasname is another name by which the module is to be known. 

INITIALIZING THE AUXILIARY DIRECTORY 

After the auxiliary directory is generated via the DftSFST macro, it must 
be initialized. The CftS GENDIRT command initializes the auxiliary 
directory with the name and location of the modules to reside in an 
auxiliary directory. By using the GENDIRT co.mand, the file entries for 
a given module are loaded only when the module is invoked. The format 
of the GENDIRT command is: 

316 IBft Vft/370: System Programmer's Guide 



GENDIRT directoryname [targetmode] 

wh~I~: 

directoryname is the entry point of the auxiliary directory. 

targetmode is the mode letter of the disk containing the modules 
referenced in the auxiliary directory. The letter is the 
mode of the disk containing the aOdules at execution 
time, not the mode of the disk at the initialization of 
the directory. The default value for targetmode is S, 
the system disk. It is your responsibility to determine 
the usefulness of this operand at your installation and 
to inform users of programs utilizing auxiliary 
directories of the proper accesses. 

ESTABLISHING THE PROPER LIIKAGE 

The CMS module, DMSLAD, entry point DMSLADAD, must be called by a user 
program or interface to initialize the directory search order. The 
subroutine, DMSLADAD, must be called via an SVC 202 with register 1 
pointing to the apropriate PLIST. The disk containing the modules 
listed in the auxiliary directory must be accessed as the mode 
specified, or implied, with the G!IDIRT command before the call is 
issued. If it is not, the user will receive messages indicating either 
'file not found' or 'error reading file'. 

The coding necessary for the call is: 

LA R1,PLIST 
SVC 202 
DC AL4(error return) 

This call must De eXecuted Defore the call to any module that is to 
be located via an auxiliary directory. 

The PLIST should be: 

PLIST DS 
DC 
DC 
DC 

OF 
CLS'DMSLADAD' 
v (directoryname) 
F'O' 

The auxiliary directory is copied to nucleus free storage. The 
Active Disk Table (ADT) for the targetmode expressed or implied with 
GENDIRT is found and its file directory address chain (ADTFDA) is 
modified to include the nucleus copy of the auxiliary directory. A 
flag, ADTPSTM, in ADTFLG2 is set to indicate that the directory chain 
has been modified. 

The address of the nucleus copy of the auxiliary directory is saved 
in the third word of the input parameter list and the high order byte of 
the third word is set to X'80' to indicate that the directory search 
chain was modified and that the next call to DMSLADAD is a clear 
request. 

Part 3: Conversational Monitor System (CMS) 317 



To reset the directory search chain, a second call is made to 
O"SLADAO using the modified PLIST. D"SLADAD removes the nucleus copy of 
the auxiliary directory from the chain and frees it. DMSLADAD does not, 
however, restore the caller's PLIST to it initial state. 

An error handling routine should be coded to handle non-zero return 
codes in register 15. When register 15 contains 1 and the condition 
code is set to 2, the disk specified by the targetmode operand of the 
GENOIRT command was not accessed as that mode. 

When register 15 contains 2 and the condition code is set to 2, the 
disk specified by the target mode operand of the GENOIRT command has not 
previously had its file directory chains modified, therefore a call to 
D"SLADAD to restore the chain is invalid. 

Consider an application called PAYROLL consisting of several modules. 
It is possible to put these modules in an auxiliary directory rather 
than in the resident directory. It is further possible to put the 
auxiliary directory on a disk other than the system disk. In this 
example, the auxiliary directory will be placed on the Y disk. 

First, generate the auxiliary directory TEXT deck for the payroll 
application using the D"SFST macro: 

PAYDIRT 

DIRTBEG 

DIRTEND 

START 
DC 
DC 
EQU 
DMSFST 
DftSFST 
DMSFST 
D"SFST 
DMSFST 
DftSFST 
DMSFST 
D"SFST 
DMSFST 
D"SFST 
DMSFST 
DC 
EQU 
END 

o 
F'40' LENGTH OF FST ENTRY 
A (DIRTEND-DIRTBEG) SIZE OF DIRECTORY 

* PAYROLL1 
PAYROLL2 
PAYROLL3 
PAYFICA 
PAYFEDTX 
PAYSTATE 
PAYCITY 
PAYCREDU 
PAYOVERT 
PAYSICK 
PAYSHIFT 
2A(0) POINTER TO NEXT FST BLOCK 

* 

In this example, the payroll control program (PAYROLL), the payroll 
auxiliary directory (PAYDIRT), and all the payroll modules reside on the 
194 disk. 

In the payroll control module (PAYROLL), the subroutine D"SLADAD must 
be called to establish the linkage to the auxiliary directory. This 
call must be executed before any call is made to a payroll module that 
is in the PAYDIRT auxiliary directory. 

318 IB" V"/370: System Programmer's Guide 



LA R1, PLIST 
SVC 202 
DC AL4(ERRTN) 

PLIST DS OP 
DC CLS'DMSLADAD' 
DC V (PAYDIRT) 
DC P'O' 

Next, all payroll modules must have their absolute core-image files 
generated and the payroll auxiliary directory must be initialized. In 
the example, the payroll control module (PAYROLL) is given a mode number 
of 2 while the other payroll modules are given a mode number of 1. When 
the PAYROLL program is finally executed, only the files on the 194 disk 
with a mode number of 2 will be accessed. This means only the PAYROLL 
control program (which includes the payroll auxiliary directory) will be 
referenced from the resident directory. All the other payroll modules, 
because they have mode numbers of 1, will be referenced via the payroll 
auxilary directory. 

The following sequence of commands will 
core-image files for the payroll modules and 
auxiliary directory. 

create the absolute 
initialize the payroll 

ACCESS 194 A 
LOAD PAYROLL PAYDIRT 
GENMOD PAYROLL 

LOAD MOD PAYROLL 
INCLUDE PAYROLL1 
GENMOD PAYRCLL1 

LOADMOD PAYROLL 
INCLUDE PAY SHIFT 
GENMOD PAYSHIFT 

LOAD50D PAYROLL 
GENDIRT PAYDIRT Y 

(now the auxiliary directory is included in the 
payroll control module, but it is not yet 
initialized.) 

(this sequence of three commands is repeated for 
each payroll module called by PAYROLL.) 

GENMOD PAYROLL MODULE A2 

When it is time to execute the PAYROLL program the 194 disk must be 
accessed as the Y disk (the same mode letter as specified on the GENDIRT 
command). Also, the 194 disk is accessed in a way that includes the 
PAYROLL control program in the resident directory but not the other 
payroll modules. This is done by specifying a mode number of 2 on the 
ACCESS command. 

ACCESS 194 Y/S * * Y2 

NOw, a request for a payroll module, such as PAYOVERT, can be 
successfully fulfilled. The auxiliary directory will be searched and 
PAYOVERT will be found on the Y disk. 

Note: A disk referred to by an auxiliary directory must be accessed as a 
read-only disk. 

Part 3: Conversational Monitor System (CMS) 319 



Assembler Virtual Storage Requirements 

The minimum size virtual machine required by the assembler is 
bytes. However, better performance is generally achieved if 
assembler is run in 320K bytes of virtual storage. This size 
recoamended for medium and large assemblies. 

256K 
the 
is 

If more virtual storage is allocated to the assembler, the size of 
buffers and work space can be increased. The amount of storage 
allocated to buffers and work space determines assembler speed and 
capacity. Generally, as more storage is allocated to work space, larger 
and aore complex macro definitions can be handled. 

You can control the buffer sizes for the asseabler utility data sets 
(SYSUT1, SYSUT2, and SYSUT3) and the size of the work space used during 
macro processing, by specifying the BUlSIZI assembler option. Of the 
storage given, the assembler first allocates storage for the ASSEMBLE 
and CMSLIB buffers according to the specifications in the DD statements 
supplied by the FILEDEF for the data sets. It then allocates storage 
for the modules of the assembler. The remainder of the virtual machine 
is allocated to utility data set buffers and macro generation 
dictionaries according to the BUlSIZE option specified: 

BUlSIZE (STD): 37 percent is allocated to buffers, and 63 percent to 
work space. This is the default chosen, if you do not 
specify any BUFSIZE option. 

BUFSIZE(MIN): Each utility data set is allocated a single 790-byte 
buffer. The remaining storage is allocated to work 
space. This allows relatively complex macro definitions 
to be processed in a given virtual machine size, but the 
speed of the assembly is substantially reduced. 

An overlay structure can be created in CMS in two different ways, 
although CMS has no overlay supervision. 

See the !AL.J70: ~.Q!!!.!!g l!!.!!g'y~~ 2'y!g!! !Q! Q!!!!!t~! y~!:§ for 
descriptions of all the CMS commands mentioned. 

PRESTRUCTURED OVERLAY 

1 prestructured overlay program is created using the LOAD, INCLUDE and 
GENMOD commands. Each overlay phase or segment is a nonrelocatable 
core-image module, created by GENMOD. The phases may be brought into 
storage with the LOIDMOD command. 

320 IBM VM/370: System Programmer's Guide 



A (Root Phase) 

~------------------_I(-------------Location xxxxxx 

III au 
I 
I 
I 

I 
I 
IC 

rei -------1 (.----Location yyyyyy 
ID I 
I IE 

Figure 38. An overlay structure 

The overlay structure shown in Figure 38 could be prestructured using 
the following sequence of commands (Programs A, B, C, D, and E are the 
names of TEXT files; the overlay phases will be named Root, Second, 
Third, etc.): 

LOAD A B 
GENftOD ROOT (FROft A TO B STR) 
GENftOD SECOND (FROft B) 
LOADftOD ROOT 
INCLUDE C D 
GEliftOD THIRD (FROft C TO D) 
GEliftOD FOURTH (FROft D) 
LOADftOD THIRD 
INCLUDE E 
GENftOD FIlTH (FROft E) 

The programmer need not know the storage address where each phase 
begins. A TEXT file can be made to load at the proper address by 
reloading earlier phases. In the foregoing example, the command 
sequences, "LOADftOD ROOT/IRCLUDE C D" and "LOADftOD THIRD/INCLUDE E," 
cause TEXT files C, D, and E to load at the proper addresses. 

If the root phase contains address constants to the other phases, one 
copy of the root must be kept in storage while each of the other phases 
is brought in by LOAD or INCLUDE without an intervening GENftOD. The 
root phase is then processed by GENftOD after all address constants have 
been satisfied. In this case, the programmer must know the address 
where nonroot phases begin (in Figure 38, locations xxxxxx and yyyyyy). 
The following sequence of commands could be used: 

LOAD A B 
GENftOD SECORD (FROft B) 
INCLUDE C D (ORIGIN xxxxxx) 
GENftOD THIRD (PROft C TO D) 
GENftOD FOURTH (FROft D) 
INCLUDE E (ORIGIN IYYYYY) 
GENftOD FIFTH (FROft E) 
LOAD A B 
INCLUDE C D (ORIGIN xxx xxx) 
INCLUDE E (ORIGIN yyyyyy) 
GENftOD ROOT (FROft A TO C STR) 

Part 3: Conversational ftonitor System (CftS) 321 



The ORIGIN option of the INCLUDE command is used to cause the 
included file to overlay a previously loaded file. The address at which 
a phase begins must be a doubleword boundary. For example, if the root 
phase were X'2BD' bytes long, starting at virtual storage location 
X'20000', then location xxxxxx would be the next doubleword boundary, or 
X'202CO'. 

The STR option, which is specified in the GENMOD of the root phase, 
specifies that whenever that module is brought into storage with the 
LOADMOD command, the storage Initialization routine should be invoked. 
This routine initializes user free storage pointers. 

At execution time of the prestructed overlay program, each phase is 
brought into storage with the LOADMOD command. The phases can call 
LOADMOD. The OS macros LINK, LOAD, and XCTL normally invoke the INCLUDE 
command, which loads TEXT files. These macros will invoke LOADMOD if a 
switch, called COMPSWT, in the CMS Nucleus Constant area, NUCON, is 
turned on. 

with COMPSWT set, overlay phases that use LINK, LOAD, and XCTL must 
be prestructured MODULE files. 

DYNAMIC LOAD eVERLAY 

The dynamic load method of using an overlay structure is to have all the 
phases in the form of relocatable object code in TEXT files or members 
of a TEXT library, filetype TXTLIB. The os macros, LINK, LeAD, and XCTL 
may then be used to pass control from one phase to another. The XCTL 
macro causes the calling program to be overlayed by the called program 
except when it is issued from the root phase. When issued from the root 
phase, CMS treats XCTL as a LINK, adding the new code at the end of the 
root phase. 

The COMPSWT flag in OSSFLAGS must be off when the dynamic load method 
is used. 

322 IBM VM/370: System Programmer's Guide 



Part 4: IBM 3704 and 3705 Communications Controllers 

Part 4 describes the procedures a system programmer must follow to load, 
test and run a 3704/3705 control program with Vft/370. Part 4 includes 
the following information: 

• 

• 
• 

Introduction 
trMJ"l,() c::.,nn,..r+ ,..~ +'-0 "l,()IIJ"l,()~ 
.u,~.v ~wr~v~~ ~4 ~u~ v'V~'J'VJ 

Loading the 3704/3705 Control Program 
Testing the 3704/3705 Control Program 

Part 4: IBft 3704 and 3705 Communications Controllers 323 





GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

Introduction to the IBM 3704 and 3705 Communications Controllers 

The IBM 3704 
units. One of 
storage: 

and 3705 Communications Controllers are programmable 
three programs can be generated to execute in 3704/3705 

1 • The Net work Control Program (HCP) performs ma ny of the 
teleprocessing line control and line servicing functions previously 
performed by the central processing unit. 

2. The Emulation program (EP) permits existing teleprocessing systems, 
including VM/370, that use the IBM 2701, 2702, or 2703 Transmission 
Control units or the Integrated Communications Adapter (ICA) of the 
System/370 Model 135, to run without change on the 3704/3705. 

3. The Partitioned Emulation Program (PEP) allows the 3704/3705 to be 
divided so that both the NCP and EP can execute in one 3704/3705. 

In this publication, the term "3704/3705 control program is used to 
refer to any of the three types of control programs: NCP, EP, or PEP. 

VM/370 supports both the: 

• IBM 3704 Communications Controller, Models A1-A4 
• IBM 3705 Communications Controller, Models A1-D8 

when attached to an IBM System/370 Model 135, 145, 155 II, 158, 165 II, 
or 168. Four terminals are supported: 1050, 2741, CPT-TWX 33/35, and 
3270. You can generate any of three kinds of 3704/3705 control programs 
(NCP, EP, or PEP) to run under VM/370. The 3704/3705 must use emulation 
mode for the 3270 Information Display Systems. 

The minimum amount of 3704/3705 storage required for a NCP or PEP 
control program is 48K and the minimum required by an EP control program 
is 16K. 

The IBM 3704/3705 Communications Controllers can support: 

• Up to 352 low-speed start-stop lines 
• Up to 60 medium-speed synchronous lines 
• Line speeds from 45.2 baud to 50.0K baud 
• Modem capability within the 3704/3705 
• Limited-distance "hard-wire" capability. 
• 16K to 240K internal storage 

VM/370 supports all three versions of the 3704/3705 control programs: 

• Emulation Program (EP) 
• Network Control Program (NCP) 
• Partitioned Emulation Program (PEP) 

VM/370's support of the 3704/3705 does not include: 

• Remote 3704/3705 Communications Controllers 

Part 4: IBM 3704 and 3705 Communications Controllers 325 



GC20-1807-3 Page Modified by TNL GN20-2662; March 31, 1975 

I. Bisynchronous terminals if attached to lines in other than emulation 
I mode. 

EMULATION PROGRAM (EP) WITH VM/370 

The EP 3704/3705 control program under VM/370: 

• Emulates 2701, 2702, and 2703 operations 
• Attaches to a System/370 byte-multiplexer channel 
• supports up to 255 start-stop lines 
• supports up to 50 medium-speed sychronous lines 

This support is equivalent to that provided in Release 1 of VM/370. 
However, Release 2 of VM/370 provides additional support: 

• Service programs and special CMS commands allow you to easily 
generate the EP control program in a CMS virtual machine. 

• The CP NETWORK command allows you to load or dump the 3704/3705 and 
provides for automatic dumping and reloading if a fatal error 
occurs. 

NETWORK CONTROL PROGRAM (NCP) WITH VM/370 

The NCP 3704/3705 control program under VM/370 provides: 

• A device-independent EBCDIC interface 

• Communications line control handling 

• Attachment to a System/370 byte-multiplexer, block-multiplier, or 
selector channel 

• Block and character checking 

• Block and message buffering 

• Assembly and disassembly of multiple-block transmissions 

• Line error recovery procedures 

• Checkpoint/restart switching to a back-up processor 

• User-written message processor routines 

However, when an NCP 3704/3705 control program is under the control 
of VM/370: 

• The CP DIAL command is not supported. 

• The CP TERMINAL APL ON or APL OFF command line is not supported. If 
you issue the TERMINAL APL ON command at a terminal that is connected 
to VM/370 on a 3704/3705 line in NCP mode, you will not be able to 
execute your program and may have to IPL again to continue. 

• NCP resources cannot be shared between VM/370 
and the virtual machines. A virtual 3704/3705 
not supported. 

326 IBM VM/370: system Programmer's Guide 

(the Control Program) 
or 2701/2702/2703 is 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

• Special sign-on procedures are required (1) if you have the Multiple 
Terminal Access feature generated for your NCP control program and 
(2) if you have a 2741 terminal on an NCP-mode line. These 
procedures are described 1D "step 
3704/3705 Control Program" of the 
3704/3705 Control Program" section. 

11. Logging 
"Generating 

un 
and 

Through 
Loading 

the 
the 

A VM/370 nucleus that supports the NCP version of the 3704/3705 
control program is smaller than one that supports the EP or PEP 
versions. Each line in NCP mode requires 48 bytes of free storage while 
each line in ewulator mode requires 80 bytes of nucleus storage. 

PARTITIONED EMULATION PROGRAM (PEP) WITH VM/370 

The PEP 3704/3705 control program under VM/370: 

• Combines the 2701/2702/2703 Emulation Program and the Network Control 
Program 

• Allows for the concurrent use of NCP and emulator interfaces 

• Provides for programmable switching of lines between NCP mode and 
emulator mode 

If you execute a PEP control program under the control of VM/370, you 
should know that: 

• The CP DIAL command is supported for lines generated as emulator 
lines and lines generated to vary between emulator mode and NCP 
mode. If the DIAL command is issued for a line that may be varied 
(and, if that line is currently in NCP mode), that line is 
automatically varied to emulator mode. 

• The TERMINAL APL ON or APL OFF command line is supported only for 
lines currently in emulator mode. 

• Only 3704/3705 lines in emulator mode may be dedicated. 

The VM/370 system that will run the 3704/3705 control program must be 
generated with: 

• An RDEVICE macro describing the 3704/3705. 

• One or more entries for the 3704/3705 control program in the system 
Name Table (DMKSNT). 

• Space reserved on a CP-owned volume for a page-format copy of the 
3704/3705 control program. 

A detailed discussion on coding the RDEVICE macro, creating an entry 
in the system name table, and reserving DASD space for the 3704/3705 
control program image can be found in the !~Lll~: g!~nning ~ng ~I21~! 
g~~~!~1iQn ~~ig~· 

Part 4: IBM 3704 and 3705 Communications Controllers 327 



Loading the 3704/3705 Control Program 

There are several commands and EXEC procedures to generate and load the 
3704/370S control program. These commands and EXEC procedures run in a 
CMS virtual machine. The commands are a part of the VM/370 system and 
are distributed with it. 

A special version of the IBM 3704/370S Network Control Program 
support Package for OS/VS, Order No. S744-EA1, is available from PID for 
use under VM/370. This version of the 3704/370S package contains two 
CMS EXEC procedures for generating and loading the 3704/370S control 
programs that are ~Q! available in the standard OS/VS 3704/370S support 
package, Order No. S744-AN1. 

A step-by-step procedure for generating the 3704/370S control program 
can be found in the !~L~lQ: E!~~~!~g ~~g §I2!~! ~~~~!~!l2~§ Guig~. Each 
EXEC procedure and command is described as it is used. The action 
required at each step is first summarized and then explained in detail. 

If the SAVE operand on the GEN370S command was specified during system 
generation, the SAVENCP command is automatically executed for you. If 
you did not specify SAVE on the GEN370S command, you must issue the 
SAVENCP command yourself. 

Note: The VM/310 command privilege class A, S, or C is required to use 
the-SAVENCP command. 

THE SAVENCP COMMAND 

Use the CMS SAVENCP command to read a 3704/37C5 control program load 
module created by the LKED command, and to load it into virtual storage 
in the CMS user area. Once the load has been performed, SAVENCP scans 
the control program image and extracts the control information required 
by CP. The control information is accumulated in one or more 4096-byte 
pages in the CKS user area. When all of the necessary control 
information has been extracted, SAVENCP builds the Communications 
Controllers Parameter List (CCPARK) and issues the DIAGNOSE X'SO' 
instruction to create the page-format copy of the control program on a 
CP-owned volume. The format of the SAVENCP command is: 

328 IBK VM/370: System Programmer's Guide 



r-----------------------------------------------------------------------~ 
SAVENCP 

fname 

fname [ (options •• [) ]] 

.QE!!Q!l§: 

r ENTRY co ... "'" ~lrI1!!I 
, 

L ... ~_...,v ... J 

[ BAftE ncpnallel fna.!~ ] 

[ LIBE librarynalle I I!l!]!!! ] 

is the filename of the LOADLIB file where the 3704/3705 
control program load module resides; unless LIBE is specified, 
in which case, it specifies the mellber name of the illage 
within the LOADLIB. This name is used as the 'ncpnaae' for 
the DIAGIOSE instruction, unless the IAftE option is also 
specified. 

ENTRY sYllbol 
is the external symbol of the entry point in the 3704/3705 
control program load module. The default, CXFINIT, is the 
entry point of the standard NCP or PEP control programs. (The 
standard entry for the Eaulation prograll is CYASTART.) If the 
SAVE option of the GEN3705 command is specified, this symbol 
is set in the output EXEC file according to the Stage 2 input 
file. 

BAftE ncpnalle 
is the 'ncpnalle' to be used when the DIAGNOSE parameter list 
is built. The ncpname specified IIUSt match an entry in the 
systea nalle table. These entries are created with the IAftEICP 
macro when Yft/370 is generated. 

LIBE librarynaae 
is ~De filename of a load module library file, 
LOADLIB, which contains the control program image 
'fname' • 

EXECUTION OF THE SAVEICP PROGRAft 

The DIAGNOSE X'50' instruction invokes the CP aodule DftKSIC to: 

• Interpret the parameter list (CCPARft) built by SAVEICP. 

filetype 
as member 

• Check the paralleter specifications against the NAftENCP aacro for the 
3704/3705 control program. 

• write the page-format image of 
appropriate CP-owned volume. 

the control program onto the 

The paraaeter list for the DIAGNOSE instruction must start on a 
4096-byte boundary. See the Yft/l1Q: ~~I!!£!! jQY!!!l~ Rrogr~ 1Q3~~ for 
a description of the CCPARft control block. 

Part 4: IBft 3704 and 3705 Communications Controllers 329 



When the DIAGBOS! X'50' instruction is executed, the module D~KSBC 
searches the DMKSBT module for a NAMENCP macro of the same 'ncpname' as 
the one in the CCPAR~ parameter list. The values specified in the 
parameter list are compared to those specified in the BAMENCP macro. If 
any parameters conflict, an error message is displayed at the terminal. 
If no error conditions are detected, DftKSNC starts to transfer the 
control program image from CMS virtual storage to the CP-owned volume 
specified in the NAMENCP macro. Successful completion of this process 
completes the generation of a 3704/3705 control program for Vft/370 use. 

The 3704/3705 control program is automatically loaded each time the 
VM/370 system is loaded, if the CPBAft! operand was specified on the 
RDEVICE macro when VM/370 was generated and if the 3704/3705 is online. 
If the CPBA~E operand was not coded, you must issue the CP BETWORK LOAD 
command line to load a 3704/3705 control program into the 3704/3705 
Communications controllers' storage. 

THE NETWORK LOAD COMMAND LINE 

Use the NETWORK LOAD command to initiate the loading of an NCP, PEP, or 
EP control program into a 3704/3705 Communications Controller. The 
format of the BETWORK LOAD command line is: 

NETwork 

LOAD 

raddr 

ncpname 

LOAD raddr ncpname 

initiates the control program load operation. 

is the real address of the 3704/3705 to be loaded. 

is the name, defined by a NAftENCP macro, of the 
control program image to be loaded into the 
specified by 'raddr'. 

EXECUTION OF THE BETWORK LOAD COMMAND 

3704/3705 
3704/3705 

The NETWORK LOAD command accesses the control program image using the 
information in DMKSBT created by the BAMENCP macro. If the 3704/3705 
specified in the co.mand is not in an "IPL Required" state at the time 
the command is issued, the message: 

DMKNET461R CTLR raddr IPL NOT REQUIRED; ENTER "YES" TO CONTINUE: 

appears at the terminal. If the reply to the message is other than 
"YES", the command terminates without loading the 3704/3705. Otherwise, 
the loader bootstrap routines are written to the 3704/3705 and loading 
starts. Vft/370 does not run the "bring-up" test routines as a part of 
the load process. If these tests are to be made they must be run from a 
virtual machine with the 3704/3705 dedicated. 

330 IBM VM/370: System Programmer's Guide 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

When the load of the control program image is complete, the command 
processor verifies that the 3704/3705 configuration described by the 
control program can be serviced by the VM/370 CP control blocks in 
storage. In the case of CPTYPE=NCP (or PEP), this involves creating (or 
refreshing) the control list associated with the 3704/3705 RDEVBLOK. 
The information necessary to do this is contained in the system pages at 
the beginning of the control program image on secondary storage. 

SPECIAL CONSIDERATIONS FOR LOADING THE EP 3704/3705 CONTROL PROGRAM 

If a 3704/3705 Emulation Program is automatically reloaded after a 
3704/3705 failure, the system may loop after the restart. The message 

DMKRNH463! CTLR raddr UNIT CHECK; RESTART IN PROGRESS 

and two responses 

CTLR raddr DUMP COMPLETE 
CTLR raddr ncpname LOAD COMPLETE 

indicate that the 3704/3705 has been reloaded. If the system loops 
after tbe second response, you must reset all emulator lines from the 
3704/3705 control panel. 

If the automatic dump feature is not enabled, one of the messages 

DMKRNH462I CTLR raddr UNIT CHECK; IPL REQUIRED 
DMKRNH464I CTLR 'raddr' CC=3; DEPRESS 370X "LOAD" BUTTON 

indicates a 3704/3705 abnormal termination. The 3704/3705 Emulation 
Program must be reloaded via the NETWORK LOAD command. If the system 
loops when an attempt is made to enable the lines, you must reset all 
emulator lines from the 3704/3705 control panel. 

The IBM 3704 and 3705 Communications Controllers QE~~~!2f~ ~B1Q~ 
describes-the-procedure-for-resetting--emulator-lines-from the 3704/3705 
control panel in its "Generating Channel End/Device End with Emulator 
Program" section. 

SPECIAL CONSIDERATIONS FOR LOADING THE NCP AND PEP 3704/3705 CONTROL 
PROGRAMS 

While the 3704/3705 Emulation Program may be loaded at any time, special 
care must be taken when loading a Network Control Program or Partitioned 
Emulation program. The NETWORK LOAD command should not be used to load 
either an NCP or PEP except at VM/370 system IPL time, unless that same 
3704/3705 control program was active just prior to the load (that is, 
unless it is reloaded immediately). A VM/370 system abnormal 
termination (code PTR007) may result if the 3704/3705 is loaded, for the 
first time, during normal operation with an NCP or PEP program. 
However, if an NCP or PEP 3704/3705 control program must be loaded 
during system operation, all resources must first be freed. 

If there are active resources, the resources must be disabled and the 
NETWORK SHUTDOWN command must be issued before the operator can 
successfully issue the NETWORK LOAD command. 

Part 4: IEM 3704 and 3705 communications Controllers 331 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

Because a 3704/3705 can support emulator-mode lines, NCP-mode lines, and 
lines that can be varied to either mode, and can also suppcrt a variety 
of terminals, the procedure for logging on is sometimes complicated. 
Use the following procedure to log on to VM/370. 

TURN THE POWER ON 

First, turn the power on for your terminal and wait 15 to 30 seconds. 

CHECK FOR AN ONLINE MESSAGE 

Second, look for an online message at your terminal. 

If one of the following messages appears at your terminal 

vm/370 online xxxxxx xxxxxx 

or 

xxxxxx xxxxxx vm/370 online 

your terminal is a 2741 connected to VM/370 via a 2701/2702/2703 line or 
via a 3704/3705 line in emulation mode. You can then proceed with the 
normal logon procedure for your type of terminal, as described in 
!~L1IQ: !~~~i~~l Us~£~§ ~~i£g· 

If the messsage 

vm/370 online 

appears at your terminal, it is a 2741 connected to VM/370 via a 
3704/3705 line in NCP mode without the Multiple Terminal Access feature, 
or it is a 1050, or CPT-TWX (Model 33/35) terminal in EP mode. You can 
proceed with the normal logon procedure for your terminal type. This 
procedure is described in the !~L1IQ: 1~~~iD~1 Q2~~~§ QYi~~· 

If you receive a message at your terminal in the form 

xxxxxx xxxxxx 

where the XiS indicate that the message is unintelligible, your terminal 
is most likely connected to a 3704/3705 line in NCP mode that is defined 
for a different terminal type. For example, you may have an EBCD 
terminal on a line defined for Correspondence terminals. Use the m (at 
sign) character to determine what kind of terminal you are using. If 
the m character is an uppercase 2, your terminal is a Correspondence 
2741; otherwise, it is an EBCD 2741. 

If a 2741 terminal is connected to VM/370 via a 3704/3705 line in NCP 
mode, you must press the Return key before the "vm/370 online" message 
will appear at the terminal. If a terminal is connected to VM/370 via a 
3704/3705 line in NCP mode, and with the Multiple Terminal Access (MTA) 
feature, the "vm/370 online" message does not appear at the terminal 
and, after approximately 15 seconds, the terminal locks and unlocks. 
You must perform a special sign-on procedure tefore continuing with the 
normal logon procedure. 

332 IBM VM/370: System Programmer's Guide 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

The sign-on procedures for the terminals supported for use with the 
3704/3705 under the control of VM/370 are summarized in the following 
paragraphs. If you have any further difficulties accessing VM/370 
throuah a 3704/3705. see the VM/370~ Terminal User's Guide and the 3704 
and 3705 Gener~tion'andUtiiitI;s-~~lg~-for-complete-descrIptions of-the 
procedures-summarized-here:------

SPECIAL SIGN-ON PROCEDURES FOR LINES IN NCP MODE WITH MTA FEATURE 

Three sign-on procedures are described: the 2741, 1050, and TWX sign-on 
procedures for terminals on lines with thp MT! feature. Once the 
sign-on procedure is completed, the message 

vm/370 online 

should appear at your terminal. You can then proceed with the normal 
logon procedure described in the !~L]l~: !er~lB~l Q~~!~~ ~~lg~. 

1. Dial the telephone number of the MTA line to be used for 
communicating with the controller. 

2. When the keyboard unlocks, enter I". 

3. Press the Return key. 

If the "vm/370 online" message appears at your terminal, you have signed 
on successfully and may proceed with the normal logon. If no message 
appears at your terminal but your terminal unlocks, press the Return key 
in an attempt to get the "vm/370 online" message. However, if the type 
element moves back and forth, the sign-on procedure was unsuccessful; 
you must repeat steps 2 and 3 of the sign-on procedure. 

1. Dial the telephone number of the MTA line to be used for 
communicating with the controller. 

2. When the Proceed light comes on, enter I". 

3. Press the Return key. 

4. Enter EOB. 

If the "vm/370 online" message appears at your terminal, you have signed 
on successfully and may proceed with the normal logon. If no message 
appears at your terminal but your terminal unlocks, press the Return key 
in an attempt to get the "vm/370 online" message. However, if the type 
element moves back and forth, the sign-on procedure was unsuccessful; 
you must repeat steps 2, 3, and 4 of the sign-on procedure. 

Part 4: IBM 3704 and 3705 Communications Controllers 333 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

1. Dial the telephone number of the MTA line to be used for 
communicating with the controller. 

2. Press the WRU (Where Are You) key within three seconds after the 
audible data tone begins. 

If the typing mechanism does not "jump" within a few seconds, you have 
signed on successfully and may proceed with the normal logon. If the 
typing mechanism does jump, the sign-on procedure was unsuccessful; 
press the WRU key again or repeat both steps of the sign-on procedure. 

LOGGING ON AFTER AN NCP CONTROL PROGRAM HAS ABNORMALLY TERMINATED 

If an NCP 3704/3705 control program (with the automatic dump and reload 
options previously set) abnormally terminates but VM/370 continues to 
run, VM/370: 

1. Disconnects all the 3704/3705 users 

2. Dumps the contents of 3704/3705 storage 

3. Reloads the 3704/3705 control program 

4. Enables the lines again 

At this point, each user must log on again. Any user that does not log 
on within 15 minutes is logged off the system. 

If necessary, it is possible to apply 
directly to the 3704/3705 load library 
Program. 

I THE ZAP SERVICE PROGRAM 

Program Temporary Fixes (PTFs) 
using the VM/370 ZAP Service 

ZAP is a CMS command that modifies or dumps MODULE, LOADLIB, or TITLIB 
files. It is for use by system support personnel only. 

Input control records control ZAP processing. They can be submitted 
either from the terminal or from a disk file. Using the VER and REP 
control records, you can verify and replace data or instructions in a 
control section (CSECT). Using the DUMP control record, you can dump 
all or part of a CSECT, or an entire member of a LOADLIB or TITLIB file, 
or an entire module of a MODULE file. 

The format of the ZAP command is: 

334 IBM VM/370: System Programmer's Guide 



GC20-1807-3 Page Modified by TNL GN20-2662, March ...... 
.J I, 1975 

r---------------------------------------------.-----------------------------, 
, '{ MODULE } , 
,ZAP , LOADLIB [libname 1 ••• libname 3 ][ (option ••• [) ]] , 

! \. TXTLIB ; , , options: , , r , r , , , 
I I 

'I~~~ "PRINT , 
IINPUT filename, I NOPRINT I , , L J L J 

L --------' 

MODULE 
LOADLIB 
TITLIB 

jnd'cates the type of file that is to be modified or dumFed. 

libname is the library name containing the member to be modified or 
dumped. You can specify one to three library names. The 
libname is valid only for LOADLIB and TITLIB files. 

r , 

IJHH1 I RR!!I , 
I NOPRINT I 
L J 

indicates that input to the ZAP service program is 
submitted through the terminal. If you specify TERM, the 
prompting message ENTER: is issued, and you can then 
enter input control records up to 80 characters long. 

If you specify PRINT with TERM, all output prints on the 
printer, but only error messages display at the 
terminal. 

If you specify 
printer. All 
the terminal. 

r , 

NOPRINT with TERM, nothing prints on the 
output except control records displays at 

INPUT filename !PRJ!l ! 
,NOPRINTI 
L J 

specifies that input is submitted from a disk file, 
filename. This file must have a filetype of ZAP, and 
must be a fixed 80-byte sequential file residing on any 
accessible device. 

If you specify PRINT with INPUT filename, all output 
produced by the ZAP service program prints on the 
printer. In addition, commands and control records in 
error and error messages display at the terminal. 

If you specify 
prints on the 
terminal. 

NOPRINT with 
printer. All 

INPUT filename, 
output displays 

nothing 
at the 

Part 4: IEM 3704 and 3705 Communications Controllers 335 



GC20-1807-3 Page Modified by TNL GN20-2662. March 31. 1975 

The following table shows the resulting output of valid option 
combinations: 

IOPTIONS 
I 
I 
I 
IINPUT 
I 
I 
I 
I 
I 
ITERM 
I 
I , 

PRINT 

Commands and control 
records in error and 
error messages on the 
terminal. Everything 
to printer. 

Only error messages on 
the terminal. 
Everything on the 
printer. 

I ZAP INPUT CONTROL RECORDS 

NOPRINT 

Everything on the 
terminal. Nothing 
on the printer. 

Everything except 
control records 
on the terminal. 
Nothing on the 
printer. 

Seven types of ZAP control records exist: NAME, DUMP, BASE, VER or 
VERIFY, REP, comment, and END. 

ZAP control records are free form and need not start in position one 
of the record but the ZAP program can accept only 80 characters of data 
for each control record. Separate all information by one or more 
blanks. All address fields including disp (displacement) fields in VER 
and REP control records must contain an even number of hexadecimal 
digits, to a maximum of six digits (OD, 02C8, 014318). Data fields in 
VER and REP control records must also contain an even number of 
hexadecimal digits, but are not limited to six digits. 

If you wish, you 
example, 83256482 or 
opera tion. 

may separate 
8325,6482). 

the data anywhere 
The commas have no 

by commas 
effect on 

(for 
the 

The program sets the NOGO switch on if a control record is found to 
be in error. A file cannot be modified once the NOGO switch is turned 
on. The next valid NAME record turns the NOGO switch off. This means 
that if the control record is the NAME record, all succeeding records 
are ignored until the next NAME, DUMP, or END record. For any other 
error, only REP control records that follow are ignored. 

The DUMP control record resets the NOGO switch off. The DUMP control 
record must not immediately precede a BASE, VER, or REP control record. 
A NAME control record must precede the BASE, VER, and REP control 
records (if any) that follow a DUMP control record. 

The DUMP control record allows you to dump a portion or all of a 
specified control section, or the complete member or module. The format 
of the output of the dump is hexadecimal with an EBCDIC translation of 
the hexadecimal data. 

The DUMP control record is optional. 
record is: 

336 IBM VM/370: System Programmer's Guide 

The format of the DUMP control 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

r-------------------------
I 

r , I 
IDUMP {membernamet Icsectname [startaddress [endaddress]] 

lmodulenamef IALL 
I 
I I 

I 
I 
L 

membername 

modulename 

csectname 

ALL 

startaddress 

endaddress 

L ~ 

is the name of the member to be dumped, or the member 
that contains the CSECT(s} to be dumped. This member 
must be found in one of the libraries specified in the 
ZAP command line. However, if the library is a CMS 
TXTtlB, its directory does not contain member names. 
Therefore, the program ignores the member name (although 
you must specify it), and the program searches for the 
csectname (which you must specify). 

is the name of the module to be dumped, or the module 
that contains the CSECT(s) to be dumped. If you specify 
a module that has no loader table, the program dumps the 
entire module. 

is the name of the control secticn that is to be dumped. 
If you do not specify csectname, the program dumps only 
the first CSECT. 

The csectname is required for CMS TXTLIBs, optional for 
OS TXTLIEs, LOADLIBs, and MODULE files. (See the 
discussion of csectname under "Name control Record.") 

You must not specify csectname for a module created with 
the NOMAP option. 

specifies to the program to dump all CSECTs within the 
specified member or module. You can specify ALL for 
MODULE files, LOADLIBs, and OS TEXTLIBs, but not for CMS 
TXTLIBS. If you wish to dump all the CSECTs in a member 
of a CMS TXTLIB, you must issue a separate DUMP control 
record for each CSECT. 

is the location within the specified CSECT where the dump 
is to begin. This must be two, four, or six hexadecimal 
digits. 

The start address is the displacement from the beginning 
of the CSECT. For example, if you wish to start dumping 
at address 08 in a CSECT that begins at location 400, you 
specify start address or 08, not 0408. 

is the last address to be dumped. This must be two, 
four, or six hexadecimal digits. If you specify no 
address, the program dumps the rest of the CSECT. Note 
that start and end addresses apply only when you specify 
a csectname. 

If the file to be dumped contains undefined areas (such 
as a DS in a TXTLIB member), the hexadeGimal portion of 
the dump contains blanks to indicate that the 
corresponding positions are undefined. 

Part 4: IBM 3704 and 3705 Communications Controllers 336.1 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

The NAME control record specifies the member or module and CSECT that 
contain the data to be verified or replaced by the ZAP operation. The 
format of the NAME control record is: 

r 
I 
I NAME 
I 
I 
L 

{ 
membername } [csectname] 
modulename 

{ 
membername } 
modulename 

csectname 

is the member or module that you want to be searched for the 
desired CSECT. 

is the name of the desired control section. You must 
specify csectname if the CSECT you wish to modify is in a 
CMS TITLIB (that is, TITLIB created by the TITLIB command 
from CMS TEIT decks that do not have a NAME card following 
the END card). 

The directory of a CMS TITLIB contains only CSECT names and 
no member names. The CSECT name specified in the NAME 
record is compared with CSECT names in the directory. If a 
CSECT match is found and no member name match is found, the 
member selected is the one that contains the CSECT name. 

The csectname is optional if the CSECT you wish to modify 1S 
a LOADLIB or an OS TITLIB (that is, a TITLIB created by the 
TITLIB command from CMS TEIT decks that have a NAME card 
after the END card). The dictionaries of the specified 
libraries are searched for the member name and the member is 
then searched for the CSECT name, if you specified one. If 
you do not specify csectname for a LOADLIB or an OS TITLIB, 
the program uses the first control section. 

The csectname is optional for a MODULE file. The module 
named in the NAME control record is located and, if you 
specified csectname, the first record is read to determine 
the number of records in the module and the availability of 
a loader table, which the program can then search for the 
csectname. 

If you do not specify csectname, the program uses the 
beginning location of the module. You are not allowed to 
specify csectname if the module was created with the NOMAP 
option. 

The NAME control record must precede the EASE, VER, and REP 
control records. If it does not, the program sets the NOGO 
switch on. 

The BASE control 
or REP control 

record adjusts displacement values for subsequent VER 
records for a CSECT whose starting address is not 

336.2 IBM VM/370: System Programmer's Guide 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

location zero in an assembly listing. 
record is: 

The format of the BASE control 

r-----------------------------------------
I 
I BASE address 
I 
'-------

address is the starting address of the CSECT. 
two, four, or six hexadecimal digits. 

The -..::11..::11----
d.UU!"~::>::> must be 

For example, for a CSECT starting at location 400, you would 
specify the BASE 0400 in the BASE control record. If a 
subsequent VER card requests verification of location 0408, 
the BASE of 0400 is subtracted from 0408, and the program 
verifies lecation 08 in the CSECT. This example applies if 
you specify TITLIB, LOADLIB, or MODULE and the module map is 
present. 

However, if no module map is present for a MODULE file (that 
is, the module was generated with the NOMAP option), then all 
operations are performed as if the BASE address is location O. 
For example, if you specify a BASE of 400 and the address you 
wish to inspect or modify is 408, then you must specify 08 and 
not 408 in REP and VER control records. The address in this 
case is from the start of the module. If you do not specify 
csectname in the NAME control record, you cannot specify any 
BASE value other than 00. 

The BASE control record is optional. See the discussion under 
"VER or VERIFY Control Record." If specified, the BASE 
control record must follow the NAME record, but it need not 
follow the NAME record immediately. For example, you could 
have the following sequence of control records: NAME, VER, 
REP, BASE, VER, REP. 

The VER control record requests verification of instructions or data 
within a CSECT. If the verification fails, the program does not perform 
a subsequent REP operation until it encounters another NAME control 
record. 

The VER control record is optional. More than one VER record can 
follow a single NAME record. 

The format of the VER control record is: 

r-
I 
I 
I 
I 

{
VERIFY} 
VER 

'------_. 

disp data 

------------------------------- ------------, 
I 
I 
I 
I 

Part 4: IBM 3704 and 3705 Communications Controllers 336.3 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

disp 

data 

is the hexadecimal displacement of the data to be inspected 
from the start of the CSECT, if you did not submit a BASE 
control record for this CSECT. If you did submit a BASE 
control record, then disp is the actual location of the data. 
The disp must be two, tour, or six hexadecimal digits. This 
displacement does not have to be aligned on a fullword 
boundary. If this displacement value is outside the limits of 
the CSECT specified by the preceding NAME control record, the 
VERIFY control record is rejected. 

is the data against which the data in the CSECT is to be 
compared. This must be an even number of hexadecimal digits. 

For example, if the location you wish to verify is 3CC, and 
the CSECT begins at location 2BO, you can either issue: 

BASE 02BO 
VER 03CC data 

or you can omit the BASE control record, subtract the CSECT 
start address from the address of the data, and issue: 

VER 011C data 

This also applies to the disp operand of the REP control 
record. 

The REP control record modifies instructions or data at the specified 
location within the CSECT that you specified in a preceding NAME control 
record. The data specified in the REP control record replaces the data 
at the CSECT location specified by the disp operand. This replacement 
is on a "one-for-one" basis; that is, one byte of data defined in the 
control record replaces one byte of data at the location that you 
specified. If the replacement fails, the program does not perform 
additional REP operations until it encounters another NAME control 
record. 

The REP control record is optional. More than one REP record can 
follow a single NAME record. 

336.4 IBM VM/370: System Programmer's Guide 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

The format of the REP control record is: 

, 
I 
I REP disp data 

I 
I 
! I I L ____________ _ 

-J 

disp 

data 

is the hexadecimal displacement of the data to be replaced 
from the start of the CSECT, if you did not submit a BASE 
control record for this CSECT. If you did submit a BASE 
control record r then disp is the actual location of the data. 
The disp must be two, four, or six hexadecimal digits. This 
displacement need not address a fullword boundary. If this 
displacement value is outside the limits of the CSECT being 
modified, the program does not perform the replacement 
operation. 

is the data that is to replace the data in the CSECT. This 
must be an even number of hexadecimal digits. 

~Q!g: Although you do not have to 
aata, you should do so to make sure 
you expect it to be. 

verify a location before replacing 
that the data being changed is what 

The ZAP program ignores comment control records. If the PRINT option is 
in effect, the program prints the comments. The format of a comment 
record is: 

r----------
I 
I * comment 

You must follow the asterisk with at least one tlank. 

The END control record ends ZAP processing. The END record is required 
and must be the last control record. The format of the END control 
record is: 

r----------
I 
I END 
I L-________ __ 

Part 4: IBM 3704 and 3705 Communications Controllers 336.5 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

I SPECIAL CONSIDERATIONS FOR USING THE ZAP SERVICE PROGRAM 

Before you use the ZAP command against MODULE files, you can use the 
MODMAP command to determine whether a module map exists and what it 
contains. 

When a ZAP input file has more than one pair of VER and REP control 
records and a VER control record (other than the first) fails, you must 
remove the records prior to the failing record and correct the error 
before you 1ssue the ZAP command again. Otherwise, the file being 
modified returns to its original status. 

If you issue REP control record against a file that 
undefined area (for example, a Define storage area) within 
field and do not issue a VER control record prior to the 
record, the bytes prior to the undefined area, if any, are 
all the bytes after the undefined area are not modified. 
prints warning message DMSZAP248W. 

336.6 IBM VM/370: System Programmer's Guide 

contains an 
the REP data 

REP control 
modified and 

The program 



Testing the 3704/3705 Control Program 

After you have generated a 3704/3705 control program, loaded it, and 
logged on, you aay want to test the 3704/3705 control program. Several 
CP commands are provided to control the operation, check the status, and 
dump the contents of the 3704/3705. The NETWORK command loads and dumps 
any 3704/3705 control program. It also controls the operation of NCP 
and PEP 3704/3705 control programs, while the existing CP commands 
(ENABLE, DISABLE, QUERY, DISPLAY, VARY, and BALT) provide similar 
support for EP 3704/3705 control programs. The NCPDUMP command formats 
and prints a dump of 3704/3705 storage. ijse these commands to test the 
3704/3705 control program. 

The CP NETWORK command loads, dumps, and controls the operation of a 
3704/3705 control program in the VM/370 environment. NETWORK: 

• Causes 3704/3705 dump operations 

• Initiates 3704/3705 load operations 

• Enables or disables terminal resources 

• Varies resources on or offline 

• Alters the operating mode of a Partitioned Emulation Program line 
resource 

= Halts a particular resource 

• Ceases all 3704/3705 operations 

• Queries and displays 3704/3705 resource status and storage 

• Traces line activity to and from a 3704/3705 resource 

BOW TO USE THE NETWORK COMMAND 

When using the NETWORK command to control the operation of the 3704/3705 
Network Control Program (ICP), or the NCP portion of the Partitioned 
Emulation Program (PEP), the operator must be aware of the different 
classes of resources which are defined at generation time for the 
3704/3705 control program. 

When operating with a 2701/2702/2703 or an Emulation Program (EP), 
there is only a single reference for each logon device, and that is the 
physical subchannel address for the telecommunications line. When 
operating with the NCP, the line is a separate entity, and the actual 
logon device is the terminal, which is also separately addressable. For 

Part 4: IBM 3704 and 3705 Communications Controllers 337 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

a simple leased line configuration, there is one resource 10 for each 
line, and one resource ID for each terminal (one terminal per line), 
alternating in numeric value. 

The majority of the NETWORK command operations are performed for 
terminal resources. For example, NETWORK ENABLE, DISABLE, QUERY, HALT, 
VARY ONLINE, and VARY OFFLINE all operate for terminals. The NETWORK 
QUERY command line can be used to display the status of a line resource, 
but only when the 'NETWORK QUERY resource' command format is used. The 
possible states of a line resource are: 

• OFFLINE (that is, inactive) 
• ACTIVE 
• EP-MODE (PEP only) 

While the NETWORK VARY ONLINE and VARY OFFLINE command lines may be used 
for a line resource, they are primarily intended for use with terminal 
resources, because the state of the line changes automatically if the 
terminal is enabled or disabled. Also, NETWORK VARY EP and VARY NCP are 
valid only for line resources, and in this case the terminal resources 
change state when the line changes state. 

The only way to tell which resources are lines and which are 
terminals is to examine the output from the first stage of the 3704/3705 
control program generation. The installation system programmer (or 
whoever performs the 3704/3705 control program generation), should 
prepare a cross-reference list of resource IDs and their characteristics 
(such as, line or terminal, type of line, location, and so on) for the 
operations personnel. In summary, use 

NETWORK ENABLE 
NETWORK DISABLE 
NETWORK QUERY ACTIVE 
NETWORK QUERY FREE 
NETWORK QUERY OFFLINE 
NETWORK QUERY ALL 

for terminals only. Use 

NETWORK VARY EP 
NETWORK VARY NCP 
NETWORK TRACE resource 

for lines only. And, use 

NETWORK QUERY resource 
NETWORK HALT 
NETWORK VARY ONLINE 
NETWORK VARY OFFLINE 

for lines or terminals. 

The format of the class A NETWORK command is: 

r 
I NETWORK HALT resource 
I r , 

I SHUTDOWN Iraddrl 
I I !11 I 
I L J 

338 IBM VM/370: System Programmer's Guide 

---, 
I 
I 
I 
I 
I 



GC20-1807-3 by March 31, i975 

HALT resource attempts to terminate any active channel prcgram on the 
specified resource (line or terminall _ "resource" 1S a 
4-digit hexadecimal identity of a 3704/3705 resource. 
The last three digits are the actual NCP resource ID. 
The first digit is a device sequence number associated 
with a particular 3704/3705. This device sequence number 
designates the relative position of the device in the 
DMKRIO module: the first 3704/3705 listed has a device 
sequence number 0, the second listed has a device 
sequence number 1, and so on. 

r , 
SHUTDOWN Iraddrl 

I !11 I 

ceases all telecommunications on 3704/3705 Communications 
Controllers. "raddr" is the real address of a 3704/3705. 
When "raddr" is specified, telecommunications are stopped 
on only the specified 3704/3705. When ALL is specified, 
telecommunications are stopped on all 3704/3705s. 

No attempt is made to preserve line status or messages in 
the 3704/3705. Any virtual machines that depend on a 
3704/3705 for which the SHUTDOWN command is issued are 
placed in a disconnected state. 

The normal response is: 

DEVICE HALTED 

This response indicates that VM/370 has attempted to reset status and 
halt the device. 

The normal response is: 

COMMAND COMPLETE 

Part 4: IBM 3704 and 3705 Communications Controllers 339 



GC20-1807-3 Page Mooified by TNL GN20-2662, March 31, 1975 

The format of the class A and B NETWORK command is: 

r­
NE'IWORK 

L-. ____ _ 

LeAD raddr ncpname 
r , 

DUMP raddr I!~~~~I 
10FF I 
IAUTO I 
L .J 

r , 
ENable 1!11 1 

Iresource [resource ••• ]1 
L J 

r , 
DISAble IALL I 

Iresource [resource ••• ]1 
L 

r 
Query 1!~l!Y~ 

.J 

, 
I 
I 
I 
I 

1 OFF line 
IFREe 
IALL 
Iresource 
L 

[resource ••• ]1 
.J 

r r " 
Display raddr hexloc 1 I{ -} I hexloc 2 I I 

I : I]!!] I I 
I L .J I 
I r , I 
I{ • 11 bytecount I I 
I I]!!] I I 
L L .J .J 

VARY l ONline ) 
OFFline) 
EP 

resource [resource ••• ] 

NCP 

r , 
POLLdlay nnnn 1!11 I 

Iraddrl 
L .J 

LOAD raddr ncpname 
loads an NCP, PEP, or EP 3704/3705 control program. 
"raddr" is the real address of the 3704/3705 to be 
loaded. "ncpname" is the name, previously defined by a 
NAftENCP macro and saved on a CP volume, of the 3704/3705 
control program image to be loaded into the 3704/3705 
specified by "raddr". 

r , 
DUftP raddr I!~~~]I 

10FF I 
IAUTO I 
L .J 

dumps the contents of 3704/3705 storage for NCP, PEP, or 
EP 3704/3705 control programs. "raddr" is the real 
address of the 3704/3705 to be dumFed. 

IMMED specifies 
immediately. See 

that the 3704/3705 
the "NETWORK Dump 

340 IBM VM/370: System Programmer's Guide 

is to be dumped 
Operations" section 



GC20-1807-3 Page Modified by 

in the !~LJ1Q: Q~~I~!QI~§ 
information. 

,.,.,')(\_')!t:!t:') 
Ul1LV-LUUL, March "l1 

oJ I, 1975 

for additional 

OFF specifies that the 3704!170S is not to be dumped 
automatically if the 3704/3705 control program abnormally 
terminates. 

AUTO specifies the automatic dumping and reloading of the 
3704/3705 if the 3704/3705 control program abnormally 
terminates. 

r , 
ENABLE IALL I 

,resource [resource ••• ]1 
L J 

activates 3704/3705 resources (terminals only) and remote 
3270 resources for use by VM/37C. ALL enables all the 
available resources. Resources may be enabled 
selectively by specifying the 4-digit hexadecimal 
identity of the terminal resource to be enabled. The 
last three digits are the actual KCP resource ID. The 
first digit is a device sequence number associated with a 
particular 3704/3705. This device sequence number 
designates the relative position of the device in the 
DMKRIO module: the first 3704/3705 listed has a device 
sequence number 0, the second listed has a device 
sequence number 1, and so on. 

The resource specified must be a terminal device and 
formats the display station screen for remote 3270 
terminals. The NETWORK ENABLE command first ensures that 
the associated line resource is activated, and then 
enables the terminal device. Response from the enabled 
terminal devices causes the "vm/370 online" message to 
appear on the terminal. 

r , 
DISABLE 1!11 I 

,resource [resource ••• ], 
L J 

disables 3704/3705 resources (terminals only) and remote 
3270 resources. ALL disables all 3704/3705 terminals. 
To disable selective resources, specify the 4-digit, 
hexadecimal identity of the terminal resources to be 
disabled. The last three digits are the actual NCP 
resource ID. The first digit is a device sequence number 
associated with a particular 3704/3705. This device 
sequence number designates the relative position of the 
device in the DMKRIO module: the first 3704/3705 listed 
has a device sequence number 0, the second listed has a 
device sequence number 1, and so on. 

If any of the resources specified on the NETWORK DISABLE 
command are in use at the time the command is issued, 
they are not immediately disabled. However, as scon as 
the resource becomes free (usually after a LOGOFF command 
is issued), the resource is automatically disabled. 

Part 4: IEM 3704 and 3705 Communications Controllers 341 



GC20-160,-3 Pdy~ MoJified Ll TNL GN20-2662, MarcL ...... 
J I , 

QUERY 
r 
1!£1!!1 
IOFFLINE 
IFREE 
IALL 
Iresource 
L 

, 
1 
1 
1 
1 

[resource ••• ] 1 
.J 

displays the status of 3704/3705 resources (lines or 
terminals) and remote 3270 resources. 

ACTIVE displays only the resources (terminals, display 
and printer staticlls) that are active (those being used 
by VM/370 users). 

OFFLINE displays only resources (terminals, 
pr inter stations) tha tare not available 
users. 

display and 
to VM/370 

FREE displays only resources (terminals, display 
printer stations) that are not offline and also 
currently in use. 

and 
not 

ALL displays all the resources (terminals only) of all 
the 3704/3705s and all the resources (display and printer 
stations) of all the 3271/3275 control units. 

"resource" displays only the resources (lines or 
terminals) whose 4-digit, hexadecimal identity is 
specified. The last three digits are the actual NCP 
resource ID. The first digit is a device sequence number 
associated with a particular 3704/3705. This device 
sequence number designates the relative position of the 
device in the DMKRIO module: the first 3704/3705 listed 
has device sequence number 0, the second listed has 
device sequence number 1, and so on. 

DISPLAY raddr hexloc1 
r r " 
1 {- }I hexloc21 1 
1 : I]ND 1 1 
1 L .J I 
1 r , 1 
1 {. } 1 bytecount 1 1 
1 I~!~ I I 
L L .J .J 

displays the contents of 3704/3705 storage. The data is 
displayed in full words. No EBCDIC translation is 
provided. 

"raddr" is the real address of the 3704/3705 whose 
storage is to be displayed. "hexlocl" specifies the 
hexadecimal address of the start of the display and must 
be specified. To display more than one fullword, -, : or 
• must be specified. "hexloc2" specifies the hexadecimal 
location of the end of the display. "bytecount" 
specifies the number of bytes to be displayed. END 
indicates that the display will continue until the end of 
storage is reached and is the default if "hexloc2" or 
"bytecount" are not specified. 

342 IBM VM/370: System Programmer's Guide 



VARY 

GC20-1807~3 Page Modified by TNL GN20-2662, March 31, 1975 

\ 
\ 

ONLINE 
OFFLINE ( ) :~p ( 

\ ) 

resource [resource ••• ] 

varies the status of specified 3704/3705 resources or 
changes the operational mode of a PEP 3704/3705 control 
program. ONLINE places a resource (line or terminal) 
online; OFFLINE places a resource (line cr terminal) 
offline. EP changes the operational mode of the PEP 
3704/3705 resource (line only) to emulation mode. NCP 
changes the operational mode of the PEP 3704/3705 
resource (line only) to NCP mode. 

"resource" is a 4-digit hexadecimal identity. The last 
three digits are the actual resource ID~ The first digit 
is a device sequence number associated with a particular 
3704/3705. This device sequence number designates the 
relative position of the device in the DMKRIO module: the 
first 3704/3705 listed has a device sequence number 0, 
the second listed has a device sequence number 1, and so 
on. 

r , 
POLLDLAY nnnn IALL 1 

jraddrj 
L .J 

changes the duration of the polling delay interval for 
the bisync line to the value of nnnn. The address of the 
bisync line is raddr and nnnn is the decimal number in 
tenths of a second (not to exceed 9999) for the polling 
delay interval. If ALL is specified, the polling delay 
interval is set for all the 3270 remote lines. 

The polling delay interval that is defined at system 
generation is two seconds. 

!Q!~: The polling delay interval is that period of time 
from the time a bisync line receives a negative response 
from a general polling sequence until the polling delay 
interval expires, or a message is sent to the station on 
the bisync line. 

The polling delay interval minimizes unproductive polling 
and CPU meter time. In general, if no data or other 
communications is being received from the stations on the 
bisync line, the polling delay interval is started and 
control is given to the dispatcher. 

Part 4: IBM 3704 and 3705 Communications Controllers 342.1 



!~!l!QBK I!Q!~ 

CTLR raddr ncpname LOAD CO"PLETE 

The 3704/3705 'raddr' was successfully loaded with the control 
program 'ncpname'. 

!~!]QBK ~JHH~ 

CTLR raddr DUMP COMPLETE 

The 3704/3705 'raddr' was successfully dumped. 

The normal response is: 

The normal response is: 

DEVICE HALTED 

!~!j.Q!L~ .2.!!I~.! 

DEV 
DEV 
DEV 
DEV 

LINE 
LINE 
LINE 

DEV 
DEV 
DEV 

rid LOGON AS userid 
rid DISABLE 
rid ENABLED 
rid OFFLINE 

rid ACTIVE 
rid EP-"ODE raddr 
rid OFFLINE 

ridl ENABLED, DEV rid2 ENABLED, DEV rid3 ENABLED, ••• 
... ..: ~ 1 
.L..L.U I 

n'T~"''"''"r.I 
JJ..L~alJJ...D, DEV rid2 DISABLE, DEV rid3 DISABLE, ••• 

ridl OFFLINE, DEV rid2 OFFLINE, DEV rid3 OFFLINE, ••• 

LOGON indicates that the resource is in use as a virtual 
machine operator console, by 'userid'. 

DISABLE 

ENABLED 

ACTIVE 

EP-MODE 

OFFLINE 

indicates that the resource is 
available for access to V"/370. 

online but is not 

indicates that the resource is available for user access 
to V"/370. 

indicates that the line resource is online and has been 
activated. Terminals on the line mayor may not be in 
use. 

indicates that the line resource is a PEP line currently 
in emulation mode at real address 'raddr'. 

indicates that the resource is inactive and unavailable 
for use. 

rid is the real resource identifier. 

Part 4: IB" 3704 and 3705 Communications Controllers 343 



userid is the user identifier. 

raddr is the real device address. 

The for.at of the class F NETWORK command is: 

NETwork TRICE {BTU raddr} 
resource 
END L-________________________________________________________________________ _ 

TRACE BTU raddr 
formats (in hexadecimal) each BTU (~asic Iransmission ~nit) 
sent to the specified 3704/3705, and each one received 1n 
response. The trace output is spooled to a virtual printer on 
the virtual machine of the user issuing the command. Each BTU 
is tiae-stamped at the time when it is traced, and the trace 
record consists of the 14-byte BTU header plus the first 4 
bytes of the BTU data area. 

"raddr" is the real address of the 3704/3705 to be traced. 

TRACE resource 
activates the BCP line trace facility for the specified 
resource (lines only). This facility provides a response BTU 
to the host whenever I/O activity for the specified resource 
exists. These responses are formatted in a manner similar to 
the BTU trace output, and they are likewise spooled to a 
virtual printer. 

"resource" is a 4-digit hexadecimal identifier of a specific 
telecom.unication line. The last three digits are the actual 
resource ID. The first digit is a device sequence number 
associated with a particular 3704/3705. This device sequence 
number designates the relative position of this device in the 
DMKRIO module. The first listed 3704/3705 would be designated 
as 0, the second 3704/3705 listed in the DMKRIO module would 
be designated as 1, and so on. 

TRICE END terminates the trace operation. 

Note: NETWORK TRICE can be set active for only a single physical 
3704/3705 at anyone time. 

TRACE STIRTED 

is the response given to the BTU and the resource operand. 

COMMIBD COMPLETE 

is the response given to the END operand (trace termination). 

344 IBM VM/370: System Programmer's Guide 



BCPDUftP is a CftS com.and that processes CP spool reader files created by 
3704/3705 dump operations. 

The NCPDUftP command: 

• creates the CMS NCPDUMP file from the spool file. 
• Formats the dump. 
• Prints the dump. 
• Erases the eMS BCPDUftF file (if specified) after printing it. 

Although NCPDUftP is a CMS command, its effective use is restricted to 
a specific user identified by the SYSDUftP operand of the SYSOPER macro 
in DMKSYS. The operation of NCPDUftP is similar to VMFDUMP operations. 
A general description of the NCPDU~P operation follows the command 
description. 

The NCPDUMP command has the following format: 

NCPDUMP 

DUMPxx 

ERASE 

NOFORft 

r 
[DUftPxx] I 

I 
I 
L 

r , 
IERASE I 
INOFORM I 
IMNEMONICI 
L ~ 

, 
I 
I 
I 
~ 

is the filename of the CMS file containing a 3704/3705 control 
program dump. This dump was created by a previously invoked 
NCPDUftP command with the ERASE option not specified. 

erases the current dump file or a previously created CMS dump 
file (DU ftPxx) • 

suppresses the formatting of the control block. 

MNEftONIC includes the 3705 Assembler mnemonic operation codes in the 
printed output. 

This command is also described in the VM/370: Oper~!~!§ §yi~~. 

USING THE NCPDUftP COMftAND 

The NETWORK command invoked with the DUMPxx operand produces CP files. 
These CP files contain the 3704/3705 storage dump and are spooled reader 
input assigned to a system-designated user. The CMS NCPDUftP command 
invoked by this user formats (optionally) and prints the contents of 
these files. 

A CftS file, with a filename DUMPxx, and a filetype of NCPDUftP, is 
created and the original spooled dump reader file (created when the 
NETWORK DUftP com.and was issued) is deleted. If ERASE was specified on 
the NCPDUftP command line, the CftS dump file is also erased; otherwise, 
it is saved. 

Part 4: IBft 3704 and 3705 Communications Controllers 345 



A maximum of ten dumped spooled files can be processed and saved, and 
later recalled if necessary, by the system assignment of the xx suffix 
to the CftS-created DUftPxx filename. 'xx' is a decimal number from 00 to 
09, depending on any existing files of similar name. For example, if 
the files 'DUftPOO BCPDUftP' and 'DUftP01 BCPDUftP' already exist, the new 
file is called 'DUftP02 NCPDUftP'. The file thus created is retained for 
later use unless the ERISE option is specified, in which case the file 
is erased immediately following the dump printing. 

346 IBM VM/370: system Programmer's Guide 



Part 5: Remote Spooling Communications Subsystem (RSCS) 

Part 5 contains the following inforaa tion: 

• Introduction to Rses 

• structure of Rses virtual storage 

• Functional inforaation 

• Logging I/O activity 

Part 5: Reaote Spooling eoa.unications Subsystem (RSeS) 347 





Introduction to RSCS 

The Remote Spooling Communications subsystem (RSeS), a component of 
Vft/370, provides telecommunication facilities for the transmission of 
bulk files between Vft/370 users and remote stations. Rses is a single 
purpose operating system for a virtual machine, dedicated to the 
management of files spooled to it by Vft/370 users or transmitted to it 
by remote stations via communication lines. Remote stations can submit 
files to a Vft/370 user or efts Batch facility for processing and receive 
printer and punch output in return. Vft/370 users can submit job streams 
to a remote HASP- or ASP-type batch processor. Remote stations can send 
printer and punch files to other remote stations. 

Under RSeS, all remote locations as well as the local Rses virtual 
machine are assigned a one- to eight-character alphameric location 
identification. The transmission path between the Rses virtual machine 
and any single remote station is defined as a link. A link has certain 
attributes that make up a link definition and these attributes are 
assigned at system generation time or dynamically via the Rses DElINE 
command. A link definition consists of a linkid (the location 
identifier of the remote station), the type of remote station, the line 
address to be used or transmission, the class of files to be processed, 
and other information unique to the link. Rses maintains a table of link 
definitions (link table) in the module DftTSYS. A maximum of 64 links may 
be defined of which any 16 may be active at anyone time. 

! remote station, in the context of RSCS, ~s QUI ter.inal or system on 
the other end of the link from the Rses virtual machine. The Rses 
virtual machine is also referred to as the local Rses station. Rses 
supports two general types of I/O configurations used as remote 
stations. 

Nonprogram.able remote terminals, such as the IBft 2780, are I/O 
configurations where the line protocol necessary for them to function as 
remote stations is provided by the hardware. These devices are managed 
by the Nonprogrammable Terminal (NPT) line driver of Rses. 

Programmable remote stations, such as the IBft system/3 and 
System/360, are IBft processing systems with attached binary synchronous 
communications adapters. These systems must be programmed to provide a 
ftULTI-LEAVIIG line protocol necessary for their devices to function as 
remote stations. For a detailed description of ftULTI-LEAVING, see 
"Appendix B: ~ULTI-LEAVING." This programming support is provided by a 
Remote Terminal Processor (RTP) program generated according to HASP 
workstation protocol and tailored to the system's hardware 
configuration. certain programmable remote stations like the System/3 
can only be programmed to function as remote terminals. Others, like the 
System/360 and System/370, can function either as remote terminals or as 
host batch systems using Rses as a remote job entry workstation. Both 
of these types of remote stations are managed by the spool ~ULTI-LEAVING 
(SftL) line driver of Rses. 

Part 5: Remote Spooling communications Subsystem (RSeS) 349 



Rses uses the VM/370 spool system to interface with V"/370 users. 

When a user generates a file to be transmitted to a remote location 
by RSeS, he aust coaply with two require.ents. The file must be spooled 
to the Rses virtual machine and the spool file tag associated with the 
file must contain, as the first entry, the linkid (location identifier) 
of the remote station to which the file is being transmitted. 

When a remote station transmits a card file to RSeS, the file must be 
preceded by an ID card containing the userid of the virtual machine that 
is to receive the file. Rses punches the file on a virtual punch and 
spools it to the appropriate virtual machine. If the userid is that of 
the Rses virtual machine and the ID card also contained valid tag data, 
Rses will retrieve the file from the VM/370 spool system and forward it 
to the remote station designated by the linkid in the tag data. 

The RSeS command language provides the Rses virtual machine operator 
with the following capabilities: 

I. Manipulate the status, transmission priority, class and order of 
I files owned by the Rses virtual machine. 

I. Initialize, suspend or terminate transmission of files to remote 
I terminals or stations. 

I. Reposition or restart files currently being transmitted. 

I • Send or forward messages and commands to remote terminals and 
I stations. 

I • Query file, link or system information. 

I. Monitor link activity for any remote location. 

A summary of the RSeS commands is shown in Figure 
description and format, refer to "Appendix A: 
Communications Subsystem Commands" in the VM/370: 
Communications SubsjL~t~~ l~SS~l g~~~~ Q~i_de. ------

350 IBM VM/370: Syste. Prograaaer's Guide 

39; for a full 
Remote Spooling 
Re~~e ~E~~~~~~ 



Command 
lame 

BACKS PAC 

CHAIGE 

CMD 

DEFINE 

DELETE 

DISCONN 

DRAIN 

FLUSH 

FREE 

FWDSPACE 

HOLD 

MSG 

ORDER 

PURGE 

QUERY 

START 

TRACE 

Function 

Restart Qr reposition in a backward direction the file 
currently being transmitted. 

Alters one or more attributes of a file owned by RSCS. 

Control certain functions performed by a remote system, 
or control the logging of I/O activity on a specified 
link. 

Temporarily add a new link definition to the RSCS link 
table or temporarily redefine an existing link. 

Temporarily delete a link definition from the RSCS link 
table. 

place RSCS in disconnect mode and optionally direct 
output to another virtual machine. 

Deactivate an active communication link. 

Discontinue processing the current file on the specified 
link. 

Resume transmission on a communication link previously 
in HOLD status. 

Reposition in a forward direction the file currently 
being transmitted. 

Suspend file transmission on an active link without 
deactivating the line. 

Send a message to a local or remote station. 

Reorder files enqueued on a specific link. 

Remove all or specified files from a 

Request system information for a link, a file, or for the 
system in general. 

Activate a specified communication link. 

Monitor line activity on a specified link. 

Figure 39. RSCS Command Summary 

A subset of the RSCS commands is available to the remote station 
operators. In general, the remote operator can issue only these commands 
that offset his specific link. The commands are punched, one per card, 
and entered at the remote card reader. Commands from remote stations are 
only accepted before the ID card of an input card file or after the file 
has been completely processed (end-of-file generated). 

Part 5: Remote spooling Communications Subsystem (RSCS) 351 



I Structure of RSCS Virtual Storage 

RSCS virtual storage is made up of fixed address storage areas, 
supervisor service routines, syste. service .odules, line driver 
modules, and available free storage for active tasks. Figure 40 shows 
how RSCS storage is allocated. 

Or,---------------------------------, 
1 Df!TVEC 

2701--------------------------------
1 Df!TfUP 
1----------------------------------
1 

1000 

2000 
/ 
/ 
/ 
/ 
/ 
/ 
/ , 

Df!TEXT 

Df!TSVC 

Df!TIOf! 

Df!TCRQ 

Df!TDSP 

Df!TilT 

Df!TPST 

Df!TASK 

Df!TSTO 

Df!TASY 

Df!TSIG 

Df!TGIV 

Df!T1KE 

Supervisor Queue Extension 

Free Storage 
(allocatable) 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
I 

10000
1 

Note 1 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

700001 
1 

740001 
1 

780001 
1 

7COOOI 
1 

7DOOOI 
t 

80000' 

Df!TREX 

Df!TCf!X 

Df!Tf!GI 

Df!TCRE 

Df!TCOf! 

Df!Tf!SG 

Df!TSYS 

Df!TINI (Note 2) 

Free Storage 

Third Line Driver 

Second Line Driver 

First Line Driver 

Df!TLlX 

Df!T1IS 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

Note 1: The Df!TSYS module can vary in 
when the RSCS system was generated. 
following the end of Df!TSYS. 

size depending on the number of macros specified 
Free storage starts on the first page boundary 

Bote 2: The Df!TINI module is loaded at the beginning of the free storage area. After 
initialization, the storage it occupied is freed and becomes part of free storage. 

Figure 40. RSCS Storage Allocation 

352 IBft Vft/310: System Programmer's Guide 



The first 4K bytes of storage contain hardware and supervisor-defined 
constants, control areas. and supervisor service routines~ 

DftTVEC - The first 512 bytes of DftTVEC are defined by System/370 
architecture and contain hardware-defined constants. This area is 
initialized by the DftTIRI routine at initial program load time. 

The rest of DKTVEC, 112 bytes, contains supervisor-defined addresses 
and constants used for dispatching, storage mapping, queue management, 
and task management. 

DftTftAP - The supervisor storage area contains the main storage map and 
the first extent of the supervisor queue. 

The main storage map is a table comprising one byte for each page in 
accessible main storage. Each byte displacement in the table implies an 
associated main storage number. 

The supervisor queue is a chain of 16 byte elements, formatted during 
initialization, maintained by the DKTORQ routine, and containing the 
status information for all system tasks running or waiting to be 
dispatched. The length of this chain is such that-the service routines 
that follow are located at the end of the page of storage. 

supervisor service Routines - the rest of the 
service routines that provide services to other 
thirteen routines and their functions are: 

DftTEXT - Handle external interruptions 
DftTSVC - Handle SVC interruptions 
DftTIOft - Handle I/O interrupts and requests 
DKTORO - Manage the supervisor status queue 
DftTDSP - Dispatch eligible tasks 
DKTWAT - Suspend task execution 
DftTPST - Signal completion of an event 
DKTASK - create and delete system service tasks 
DHTSTO - Reserve and release main storage ~Qy~~ 
DKTASY - Provide asynchronous task-to-task exits 

supervisor contains 
system tasks. The 

DKTSIG - Interrup~ a task, immediately, for an ALERT request 
DKTGIV - Enqueue a GIVE request element for another task 
DftTAKB - Process a GIVB request element 

The supervisor queue extension is a chain of 16 byte elements that 
provide an extension to the supervisor queue located in DKTftAP. 

This area of free storage is managed by the DKTSTO module. System tasks 
reserve and release virtual storage in full page increaents as 
required. 

Part 5: Remote Spooling Communications Subsystem (RSCS) 353 



The system control task consists of five 
non-executable modules. Their functions are: 

executable and two 

DftTREX - Handle console I/O; process request elements for service 
routines; terminate system service and line driver tasks. 

DftTCRE - start a line driver task and create the DftTIXS and DMTLIX tasks 
during initialization. 

DftTCftX - Handle all console functions. 

DftTftGX - Build and forward message request elements. 

DftTCOft - Perform miscellaneous system service functions. 

DftTftSG - Table of message texts and codes. 

DftTSYS - Link table, file tag storage area, tag queue pointers, and 
switched line port table. 

This area of free storage is also managed by DftTSTO. In addition to 
providing storage for system tasks, it is used for line driver storage. 
For each active link that is initialized by DftTCRB, a copy of a DftTSftL 
or DftTNPT line driver is brought into virtual storage~ Line driver 
storage is assigned downward from X'7COOO', in four-page increments. 
Free storage for system tasks is assigned upwards from the page boundary 
following DftTSYS, in one-page increments. 

The DftTLAX module allocates a line port to a link when its line driver 
task is started. If a line address has been previously assigned in the 
link definition or is specified in the START command, D"TLAX verifies 
that the line is for a valid device type and is not already in use. If 
a line address has not been previously assigned and is not specified in 
the START command, DMTLAX scans the table of switchable line ports for 
an available line and assigns it to the link's line driver task. If a 
line is not available or is incorrectly specified, an error message is 
issued to the RSCS operator. 

The DftTAXS module accepts files from the Vft/370 spool system and 
maintains the queues of main storage file tag slots; executes the ORDER, 
CHANGB, and PURGB commands; and opens and closes input and output V"/370 
spool files. 

354 IBM Vft/370: System Programmer's Guide 



Functional Information 

The RSCS virtual machine performs certain basic functions as it manages 
the transmission of files between the host VM/370 and remote locations. 
These functions include: 

• Virtual storage management 
• File management 
• Task-to-task communication 
• RSCS co •• and processing 
• RSCS message handling 
• Interruption handling 

The RSCS supervisor controls virtual storage in blocks of either 4096 
bytes (page size) or in 16 byte queue elements. Tasks running under the 
supervisor obtain their working storage area in page size blocks and 
then allocate variable size blocks as their functions require. 

I PAGE ALLOCATION 

Page allocation is performed by the supervisor service routine, DMTSTO. 
A storage allocation map, 256 bytes in length, is located in the 
supervisor area and is pointed to by MAINMAP in the DMTVEC data area. 
Each byte represents a page of virtual storage and contains X'OO' if the 
page is free. MAINSIZE, also in DMTVEC, contains the total number of 
pages defined for the particular RSCS virtual machine. 

When a task requires a page of storage, it first searches the storage 
allocation map for a free page (X'OO'). The page number is placed in 
register 1 and a call to DMTSTO reserves the page. DMTSTO replaces the 
storage map byte with the one-byte TASKID assigned to the calling task 
by the supervisor. To release storage, a task has only to clear the 
appropriate bytes in the storage map. 

QUEUE ELEMENT MANAGEMENT 

with the exception of a few words of low address storage used by the 
dispatcher, the rest of the supervisor status information is stored in 
chains of 16-byte queue elements managed by DMTQRQ. The first extent of 
these queues is in the supervisor and occupies the area between the main 
storage allocation map and DMTEXT. A supervisor queue extension area, 
one page in length, is located at X'1000'. Queue elements are dequeued 
from the free element queue pointed to by FREEQ in DMTVEC and enqueued 
on one of the active queues (TASKQ, MPXIOQ, SELIOQ, IOEXTQ, EXTQ, ALERTQ 
or GIVEQ). When the queue element is released, it is returned to the 
free element queue. 

Part 5: Remote Spooling Communications Subsystem (RSCS) 355 



RSCS uses the V~/370 spool file system to interface with V~/370 users. 
A user who generates a file intended for transmission to a reaote 
location must spool the file to the RSCS virtual machine via the CP 
SPOOL com.and. In addition, he must also enter the identification of 
the remote location into the spool file tag area via the CP TAG 
command. 

A remote station submitting a file to RSCS for transmission to 
another remote location must meet the same requirements as a V~/370 
user. The ID card that precedes the input card file being transmitted 
to RSCS must include the userid of the RSCS virtual machine and a tag 
field containing the location identifier of the remote station that is 
to receive the file. 

A remote station submitting a file destined for a V~/370 user need 
only specify that user's use rid on the ID card. 

When the BSCS virtual machine is initially logged on, one of the 
first tasks that is started is the Spool File Access task, D~TAXS. Two 
main functions of D~TAXS are: to provide access to the VM/370 spool file 
system, and to manage the queues of tag slots used by RSCS to control 
the status and flow of files through the system. 

TAG SLOT QUEUES 

The D~TAXS task in RSCS manages a file tag storage area pointed to by 
TTAGQ in D~TVEC. This area is made up of a fixed number of tag slots, 
each containing iOa bytes. The total nuaber of slots is determined, at 
the time RSCS is generated, by the value specified in the GEBTAGQ macro. 
The number of slots reserved for each link is part of the link 
definition stored in the RSCS link table. The contents of each file tag 
include file attributes from the file's SFBLOK and transmission 
destination and priority from the associated spool file tag. 

File tags are chained on one of four types of queues: 

I. The active input queue, pointed to by TAGACIN in TAGAREA, contains 
I the tags for those files that are currently being processed for 
I transmission to remote locations. 

I • The active output queue, pointed to by TAGACOUT in TAGAREA, contains 
I the tags for those files that are currently being received from 
I remote locations. 

I • 
I 

An inactive file queue exists for each 
files waiting to be transmitted. Each 
pointed to by the LPOINTER field in the 
entry. 

link that has one or more 
link's file tag queue is 

corresponding link table I 
I 

I. The free slot queue, pointed to by TAGAFREE in TAGAREA, is made up of 
I all the slots not currently on any of the other tag slot queues. 

SPOOL PILE ACCESS 

The Spool File Access task, DMTAXS, uses the "retrieve subsequent file 
descriptor" option of the CP DIAGNOSE X'014' command to access the spool 

356 IBft VM/370: System program.er's Guide 



file block (SFBLOK) and spool file tag for each of the files enqueued on 
the RSCS virtual reader. 

Using the location identifier in the spool file tag, DftT1IS 
interrogates the link table entry for the specified link to determine if 
a tag slot is available. If so, a tag is built, using information in 
the SFBLOK and spool file tag, and then enqueued on the link's chain of 
inactive files pointed to by LPOINTER in the link table entry. If a tag 
slot is not available, the file is placed in a pending status and the 
link table entry count of pending files (LPENDING) is incremented by 
one. Pending files are added to the inactive file queues as slots 
become available. 

When a line driver task is started for a link via the RSCS START 
command, the highest priority file on that link's inactive queue 
(LPOINTER) is dequeued and placed in the system's active input queue 
(TAGACIN). The file's tag and first spool buffer are then passed to the 
line driver task for transmission. Any additional spool buffers for 
that file are directly obtained by the line driver task. 

RSCS provides two methods of task-to-task communications: GIVE/TAKE 
requests, and ALERT requests. 

GIVE/TAKE requests are issued by lower priority tasks, such as line 
drivers, to request a service from a higher priority task, such as a 
supervisor service routine. The requesting task builds a request table 
containing the name of the task that is to perform the service, along 
with pointers to a request buffer containing the data required for the 
service. If appropriate, a pointer to a response buffer is also 
supplied. This information is passed to the DftTGIV module. DftTGIV 
builds a GIVE element that points to the requestor's request table and 
chains it on the GIVE element queue for execution. 

Service tasks pass control to DftTAKE whenever they coaplete the 
execution of a particular service. DftTAKE locates the GIVE element for 
the service that was just completed: passes any response data back to 
the requestor via the response buffer, locates the next GIVE element for 
that service task, and passes the corresponding request table data to 
the service task for execution. 

ALERT requests are issued by high priority tasks for services to be 
performed by a lower priority task. These requests are not queued; the 
lower priority task is executed as soon as it is received. ALERT 
requests are handled by the DftTSIG module. 

The primary command processor in RSCS is the DftTCMX module of the system 
control task. DMTCMI receives commands either as a result of a ccnsole 
read started by the DftTREI module in response to attention interruption 
from the RSCS operator console, or through a GIVE request pointer to a 
command element, provided by an active line driver task. 

The DEFINE, DELETE, DISCONN, QUERY and START commands are processed 
entirely by the system control task, as they may involve the referencing 
and updating of the system status tables (DMTSYS). 

Part 5: Remote Spooling Communications Subsystem (RSCS) 357 



For the CHANGE, PURGE and ORDER commands, DMTCMX 
table called a command element and passes it, via an 
the £MTAXS task for execution. 

builds a formatted 
ALERT request, to 

The BACKSP1C, CMD, DRAIN, FLUSB, FREE, Pi£SPACE, BOLD, MSG, and TRACE 
commands are passed to the line driver task for the associated active 
link via a command element and ALERT request. 

Messages can occur in response to a command or ~pontaneously as a result 
of a system malfunction. 

The task that originates the message passes the message number and 
the variable portion of the message text to the message handler, DMTMGX. 
DMTMGX obtains the fixed portion of the message text and routing 
information from the DMTMSG module and issues the message to the 
appropriate operator. 

Messages can be addressed to the local RSCS operator, remote station 
operator, local VM/370 virtual machine, VM/370 system operator, or 
combinations of these. 

Messages directed to the VM/370 system operator or VM/370 user are 
issued via the CP MSG command using the Virtual Console Function of the 
Diagnose interface. Messages for the local RSCS operator are enqueued 
for output by DMTREX. Messages for the remote station operator are 
presented to the line drivers for the associated links via an RSCS MSG 
command element and ALERT request. 

Three types of interruptions are handled 
routines: external interruptions, SVC 
interruptions. 

by the supervisor service 
interruptions, and I/O 

I EXTERNAL INTERRUPTIONS 

External interruptions are handled by the DMTEXT module. Each bit of 
the external interruption code (bytes 16-31 of the external old PSi in 
low storage) is inspected. ihen a bit is set to one, a scan of the 
external exit request queue is made to locate the first requested exit 
for the bit that was set. If one is found, the exit is taken; 
otherwise, processing continues until the entire interruption code has 
been inspected. 

I SVC INTERRUPTIONS 

The DMTSVC module receives control directly 
RSCS uses the SVC interruption to "freeze" the 
it is waiting for the results of some service 
another task. The left half of the SVC old 
half of the resume PSi in the task's save area; 

358 IBM VM/370: System Programmer's Guide 

on an SVC interruption. 
execution of a task while 
that it has requested of 
PSi is moved to the left 
the right half is loaded 



with the contents of register 14 (resume PSi address). The register 
contents at interruption time are also stored in the task's save area. 

D"TSVC returns control to the caller by setting register 14 to the 
address of the task element of the "frozen" task and loading a PSi with 
all mask bits set off (except machine eheekj and execution address as 
stored in the SVc old PSi. 

I/O IBTERRUPTIOBS 

I/O interruptions are handled by the D"TIO" module at entry point 
D"TIC"IN. D"TIOft first searches for an active I/O request element on 
the appropriate queue (ftPXIOQ or SELIOQ). If one is found, the I/O 
request table is updated to reflect the new status. If this is net the 
final interruption, control is immediately returned to the dispatcher. 
If the I/O has completed without unit check, ,the synch lock in the I/O 
table is posted; and, if there is no further I/O enqueued for that 
subchannel, control is passed to the dispatcher. If I/O is enqueued for 
that subchannel, it is started. 

If the I/O has completed, but there was a unit check and automatic 
sense was requested, the sense channel program is built in a new element 
and the new element is chained to the request element. The sense 
operation is started and if not completed immediately, control is passed 
to the dispatcher. 

If an active I/O request element was not found, the asynchronous I/O 
exit queue (IOBXITO) is scanned for a matching device address. If found, 
the asynchronous exit is taken. 

If neither an active I/O request element nor an asynchronous exit 
request element is found, the interrupt is ignored and control is passed 
to the dispatcher. 

Part 5: Remote Spooling communications subsystem (RSCS) 359 



I Logging I/O Activity 

The RSCS component of V"/370 contains a facility for logging all I/O 
activity on a particular teleprocessing link. This logging feature can 
be utilized if a problem arises where tracing I/O activity on a line 
becomes a necessity. 

The RSCS operator can turn the feature on and off by issuing the RSCS 
C"D command with the LOG or BOLOG operand. The format of the CftD 
command, when used to control logging, is as follows: 

CftD 

linkid 

LOG 

BOLOG 

linkid { LOG } 
BOLOG 

is the location identifier for the link on which logging is to 
be perforlled. 

is the keyword that starts the logging of I/O activity. 

is the keyword that stops the logging of I/O activity. 

The logging output is a printer spool file containing a one-line 
record for each I/O transaction on the teleprocessing line. A 
transaction is defined as any read or write of a teleprocessing buffer. 
When logging is turned off, the output is automatically spooled to a 
printer. The distribution code on the printer output is the linkid that 
was specified in the CftD cOllmand. 

The output log record is printed in hexadecimal notation except for 
the rightmost field which is an alphabetic character. 

The contents of the log record are as follows: 

21 bytes The first 21 bytes of the teleprocessing buffer, including BSC 
bytes, ftULTI-LE1VIBG bytes (for SftL only), and enough initial 
bytes of data to fill the field. 

7 bytes For read I/O: the last seven bytes of the CSW. 
For SftL write I/O: The first seven bytes of the 

header that is used internally 
not transmitted. 

For BPT write I/O: Bot applicable. 

S"L buffer 
by S"L but 

3 bytes The first three bytes of the RSCS I/O synch lock for this 
transaction. 

3 bytes The first three sense bytes, if any. 

1 byte "R" for read I/O; "W" for write I/O. 

The fields of the record are separated by blanks. The following are 
sa.ples of read and write log records for SftL: 

360 IBft Vft/3JO: System Programmer's Guide 



1070808FCFOOC161SCD2C9C7DSD6DS404040404040 0346!80EOOPDE6 800000 020000 R 
--------------- --- -----....."... --- '-v-'" ~ '-v-" ~ '-v-" t 
BSC and ftULTI- Data Addr t Count Synch Sense Read 
LEAVING Bytes Status Lock Bytes 

Bytes 
...... --........ --~ ---........ --~~ -------------- ~ -

TP Buffer CSW 

1070808FCPOOC161SCE2C9C7DSD6DS404040404040 00037338000602 000000 000000 i 

--- ------------ '-v-'" '-v-'" t 
BSC and ftULTI­
LEAVING Bytes 

Data 

~~----.... --~~~----.... --~~ 
TP Buffer 

SftL Internal Synch Sense Write 
Buffer Lock Bytes 

Part 5: Remote Spooling Communications Subsystea (RSCS) 361 





Appendix A: System/370 Information 

The control registers are used to maintain and manipulate 
information that resides outside the PSi. There are sixteen 
registers for control purposes. The control registers are not 
addressable storage. 

centrol 
32-bit 

part ef 

At the time the registers are loaded, the information is not checked 
for exceptions, such as invalid segment-size or page-size code or an 
address designating an unavailable or a protected locaticn. The 
validity of the information is checked and the errors, if any, indicated 
at the time the information is used. 

Figure 41 is a summary of the control register allocation and Figure 
42 lists the facility associated with each control register. 

Figure 43 is a description of the EC (Extended Control) PSi. 

<--------------------------- 32 bits -----------------------------> 
o SYSTEM CONTROL ITRANSL. CONTROLI EXTERNAL-INTERRUPTION MASKS 

SEGM-TBL LENGTHI SEGMENT-TAELE-ORIGIN-ADDRESS 

2 CHANNEL MASKS 

3 

4 

5 

6 

7 

8 MONITOR MASKS 

9 PER EVENT MASKSI PER GR ALTERATION MASKS 

10 PER STARTING ADDRESS 

11 PER ENDING ADDRESS 

12 

13 

14 ERROR-RECOVERY CONTROL & MASKSI 

15 MCEL ADDRESS 

Figure 41. Control Register Allocation 

Appendix A: System/370 Information 363 



WordlBits Name of Pield 

o 0 IBlock-Multiplexing Mode 
o 1 155M Suppression 
o 8-9 IPage Size 1 

o I 101 Reserved 
o 111-12lSegment size 1 

o I 20lClock Comparator Mask 
o I 211CPU Tiaer Mask 
o I 241Interval Timer Mask 
o I 251Interrupt Key Mask 
o I 261External Signal Mask 

1 
1 

2 

0-7 ISegment Table Length 
8-25lSegment Table Address 

I 

0-31lChannel Masks 

8 I 16-31 I Monitor Masks 
I I 

9 I 0-7 IPER2 Event Masks 
9 116-311PER GR Alteration Masks 

10 

11 

8-311PER starting Address 
I 

8-311PER Ending Address 
I 

o 
1 
2 

ICheck-Stop Control 
ISynchronous MCEL3 Control 
11/0 Extended Logout Control 
IRecovery Report Mask 
IDegradation Report Mask 
IExternal Damage Report Mask 

IBlock-Multiplexing Control 
IExtended Control 
IDynamic Addr. Translation 
IDynamic Addr. Translation 
IDynamic Addr. Translation 
IClock Comparator 
I CPU Timer 
IExternal Interruption 
IExternal Interruption 
IExternal Interruption 

IDynamic Addr. Translation 
IDynamic Addr. Translaticn 
I 

11/0 Interruptions 

I Monitoring 
I 

IProgram-Event Recording 
IProgram-Event Recording 

IProgram-Event Recording 
I 

IProgram-Event Recording 
I 

I Machine-Check 
IMachine-Check 
I Channel-Check 
I Machine-Check 
I Machine-Check 
I Machine-Check 
I Machine-Check 

14 
14 
14 
14 
14 
14 
14 
14 
14 

4 
5 
6 
7 
8 
9 

IWarning Mask 
I Asynchronous 
IAsynchronous 

MCEL Control IMachine-Check 
Pixed Log Ctrl.IMachine-Check 

Handling 
Handling 
Handling 
Handling 
Handling 
Handling 
Handling 
Handling 
Handling 

15 8-28IMCEL Address IMachine-Check Handling 

~xpla.!!~!io.!!: 

Initial Value 

1 
o 

10 
o 

00 
1 
o 
1 
1 
o 

ISet by CP. Value 
varies with the type 
of virtual machine. 

PPPPPPPP 

IValue depends on 
I virtual machine. 

IValue depends on 
I virtual machine. 

IValue depends on 
I virtual machine. 

I Value depends on 
I virtual machine. 

Value depends on 
machine check 
handler for the 
virtual machine. 

IThe fields not listed are unassigned. 
IThe initial value of unassigned register positions is unpredictable. 
I 
11 
I 
12 
13 
I 

The initial value varies depending on whether virtual storage is supported in the 
virtual machine. 
PER means program-event recording. 
MCEL means machine-check extended logout. 

Pigure 42. Control Register Assignments 

364 IBM VM/370: System Programmer's Guide 



I 

ISystem Mask I Key I EftWP I 
I I I 

o cc I Program I o 
I I Mask I 
I 

o 7 8 11 12 15 16 17 18 19 20 23 24 3i 

r-----------------------------------------------------------------------, 
I 0 Instruction Address 
I 

32 33 63 

The fields of the PSW are: 

o 
1 
2-4 
5 
6 
7 
8-11 

12 
13 

14 

15 

16-17 
18-19 

20-23 

24-32 
33-63 

Figure 43. 

Must be zero. 
PER (Program Event Recording) enabled. 
Must be zero. 
Address translation. 
Summary I/O mask. 
Summary extension. 
The protection key determines if information can be stored 

or fetched from a particular location. 
Extended control mode. 
The machine check flag is set to 1 whenever a machine check 

occurs. 
The wait state flag is set to 1 when the CPU is in the wait 

state. 
The problem state flag is set to 1 when the CPU is 

operating in the problem rather than the supervisor 
state. 

Must be zero. 
The condition code reflects the result of a previous 

arithmetic, logical, or I/O operation. 
The program mask indicates whether or not various program 

exceptions are allowed to cause program interrupts. 
Must be zero. 
The instruction address gives the location of the next 

instruction to be executed for program interrupts or of 
the instruction last executed for external interrupts. 

The Extended Control PSi (Program Status Word) 

Appendix A: System/370 Information 365 





Appendix B: MULTI-LEAVING 

MULTI-LEAVING is a term that describes a computer-to-computer 
communication technique developed for use by the HASP system and used by 
the RSCS component of VM/370. MULTI-LEAVING can be defined as the fully 
synchronized, pseudo-simultaneous, bidirectional transmission of a 
variable number of data streams between two or more computers using 
binary synchronous communications facilities. 

The following sections outline the specifications of a ccmprehensive, 
MULTI-LEAVING communications system (as is used in HASP/ASP). While the 
VM/370 support for programmable BSC remote stations is completely 
consistent with the MULTI-LEAVING design, it does not use certain of the 
features provided in MULTI-LEAVING: 

• The transmission of record types other than print, punch, input, 
console, and control is not supported. 

• The only general control record type used is the terminal sign-on 
control. 

• Only SCB count units of 1 are used. 

• No support is included for column binary cards. 

The basic element for multileaved transmission is the character string. 
One or more character strings are formed from the smallest external 
element of transmission, the physical record. These physical records 
are input to MULTI-LEAVING and may be any of the classic record types 
(card images, printed lines, tape records, etc.). For efficiency in 
transmission, each of these data records is reduced to a series of 
character strings of two basic types: 

1. A variable-length nonidentical series of characters. 

2. A variable number of identical characters. 

An eight-bit control field, termed a String control Byte (SCB), 
precedes each character string to identify the type and length of the 
string. Thus, a string of nonidentical characters (as in 1 above) is 
represented by an SCB followed by the nonduplicate characters. A string 
of consecutive, duplicate, non blank characters (as in 2 above) can be 
represented by an SCB and a single character (the SCB indicates the 
duplication count, and the character following indicates the character 
to be duplicated). In the case of an all-blank character string, only an 
SCB is required to indicate both the type and the number of blank 
characters. A data record to be transmitted is segmented into the 
optimum number of character strings (to take full advantage of the 
identical character compression) by the transmitting program. A special 
SCB is used to indicate the grouping of character strings that compose 
the original physical record. The receiving program can then 
reconstruct the original record for processing. 

Appendix B: MULTI-LEAVING 367 



r----------------------------------------------------------------------------, 
control 

Characters 

DLE 
STX 
BCB 
FCS 
FCS 
RCB 
SRCB 
SCB 
DATA 
SCB 
DATA 
SCB 
RCB 
SRCB 
SCB 
DATA 
SCB 
RCB 
OCE 
ETB 

Figure 44. 

Usage 

BSC Leader (SOH if no transparency feature) 
BSC Start-of Text 
Block Control Byte 
Function Control Sequence 
Function Control Sequence 
Record Control Byte for record 1 
Sub-Record Control Byte for record 
String Control Byte for record 1 
Character String 
string Control Byte for record 
Character string 
Terminating SCB for record 1 
RCB for record 2 
SRCB for record 2 
SCB for record 2 
Character string 
Terminating SCB for record 2 
Transmission Block terminator 
BSC Leader (SIN if no transparency feature) 
BSC Ending Sequence 

A Typical MULTI-LEAVING Transmission Block 

In order to allow multiple physical records of various types to be 
grouped together in a single transmission block (see Figure 44), an 
additional eight-bit control field precedes the group of character 
strings representing the original physical record. This field, the 
Record Control Byte (RCB), identifies the general type and function of 
the physical record (input stream, print stream, data set, etc.). A 
particular RCB type has been designated to allow the passage of control 
information between the various systems. Also, to provide for 
simultaneous transmission of similar functions (that is, multiple input 
streams, etc.), a stream identification code is included in the RCB. A 
second eight-bit control field, the Sub-Record Control Byte (SRCB), is 
also included immediately following the RCB. This field is used to 
supply additional information concerning the record to the rece1v1ng 
program. For example, in the transmission of data to be printed, the 
SRCB can be used for carriage control information. 

For actual MULTI-LEAVING transmission, a variable number of records 
may be combined into a variable block size, as indicated previously 
(that is, RCB,SRCB,SCB1,SCB2, ••• ,SCBn, RCB,SRCB,SCB1, ••• ,etc.). The 
MULTI-LEAVING design provides for two (or more) computers to exchange 
transmission blocks, containing multiple data streams as described 
above, in an interleaved fashion. To allow optimum use of this 
capability, however, a system must have the capability to control the 
flow of a particular data stream while continuing normal transmission of 
all others. This requirement becomes obvious if one considers the case 
of the simultaneous transmission of two data streams to a system for 
immediate transcription to physical I/O devices of different speeds 
(such as two print streams). To provide for the metering of the flow of 
individual data streams, a Function Control Sequence (FCS) is added to 
each transmission block. The FCS is a sequence of bits, each of which 
represents a particular transmission stream. The receiver of several 
data streams can temporarily stop the transmission of a particular 
stream by setting the corresponding FCS bit off in the next transmission 
to the sender of that stream. The stream can subsequently be resumed by 
setting the bit on. 

368 IBM VM/370: System Programmer's Guide 



Pinally, for error detection and correction purposes, a Elock Control 
Byte (BCB) is added as the first character of each block transmitted. 
The BCB, in additional to control information, contains a hexadeciaal 
block sequence count. This count is aaintained and verified by both the 
sending and receiving systems to exercise a positive control over lost 
or duplicated transmission blocks. 

In addition to the normal binary synchronous text control characters 
(STX, ETB, etc.) ftULTI-LEAVIIG uses two of the BSC control characters, 

ACKO and NAK. lCKO is used as a "filler" by all systems to maintain 
communications when data is not available for transmission. N1K is used 
as the only negative response and indicates 
transmission was not successfully received. 

that the previous 

This section describes the bit-by-bit definitions of the various 
ftULTI-LEAVIIG control fields and includes notes concerning their use. 

lppendix B: MULTI-LE1VING 369 



RECORD CONTROL BYTE (RCB) 

-------
OIIITTTT 
o 7 

M§~E~: To identify each record type within a transmission block 

OIIITTTT 
--or--

o 
1110000 

III 

--or-­
o 
IIITTTT 

TTTT 

00000000 

000 
001 

010 

011 
100 
101 
111 

1 

0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000-1100 
1101-1111 

End of transmission block 

lon-EOT RCB 
III is control information: 
Reserved 
Request to initiate a function 

transmission (prototype RCB for 
function in SRCB ) 

Permission to initiate a function 
Transmission (RCB for function 
contained in SRCB ) 

Reserved 
Reserved 
Available for location modification 
General control record (Type 

indicated in SRCB) 

Non-EOT RCB 
III is used to identify streams 

of multiple identical functions 
(such as multiple print streams 
to a multiple printer terminal). 

TTTT is the record type identifier. 
Operator message display request 
Operator command 
Normal input record 
Print record 
Punch record 
Data set record 
Terminal message routing request 
Reserved 
Available to user 

370 IBK VK/370: System Programmer's Guide 



SUB-RECORD CONTROL BYTE (SRCB) 

Y§~E~: To provide supplemental information about a record 

~!i~: The contents of this control block depend upon the 
record type. Several types are shown below • 

•• CHAR •• 
o 7 

~§~g~: To identify the type of generalized control record 

~!!§: 
CHARACTER 

OMCCCCCC 
o 7 

A 
B 
C 
D 
E 
F 

G 
H 
I-R 
S-Z 

Initial terminal sign-on 
,inal terminal sign-off 
Print initialization record 
Punch initialization record 
Input initialization record 
Data set transmission 

initialization 
System configuration status 
Diagnostic control record 
Reserved 
Available to user 

~§~E~: To provide carriage control information for print records 

o 
M 

CCCCCC 

1 
o 
1 
000000 
000011 
01NINN 
1000 II 
111HHN 

Normal carriage control 
Reserved 
Suppress space 
Space nn lines after print 
Skip to channel nnnn after print 
Space immediate nn spaces 
Skip i.mediate to channel nnnn 

Appendix B: MULTI-LEAVING 371 



------OfU!BBBSS 
o 7 

Y2~~: To provide additional information for punch records 

B 

BR 
SS 

OftftBRBBR 
o 7 

1 
00 
01 
10 
11 
o 
1 
00 
II 

SCB count units = 1 
SCB count units = 2 
SCB count units = 4 
Reserved 
EBCDIC card image 
Column binary card image 
Reserved 
stacker select information 

us~~~: To provide additional information for input records 

~!i2: 
o 
ftM 

B 

RRRR 

OTTTTTTT 
o 7 

1 
00 
01 
10 
11 
0 
1 
0000 

SCB count units = 1 
SCB count units = 2 
SCB count units = 4 
Reserved 
EBCDIC card image 
Column binary image 
Reserved 

Y2~g~: To indicate the destination of a terminal message 

Bit§: 
o 
TTTTTTT 

1 
0000000 
IIIIIII 

Broadcase to all remote systems 
Remote system number (1-99) or 

remote system group (100-127) 

372 IBft VM/370: System Programmer's Guide 



STRING CONTROL BYTE (SCB) 

OKLJJJJJ 
o 7 

~§~g~: Control field for data character strings 

~i!§: 
OKLJJJJJ 
--or-­

OKLJJJJJ 

o 
K 
L 

--or--

JJJJJ 
--or--

o 
K 
LJJJJJ 

00000000 

10000000 

1 
o 
o 
1 

NNNNN 

1 
1 
NNNNN 

End of record 

Record is continued in next 
transmission block 

Non-EOR SCB 
Duplicate character string 
Duplicate character is blank 
Duplicate character is nonblank 

and follows seB 
Duplicate count 

Non-EOR SCB 
Nonduplicate character string 
Character string length 

Note: Count units are normally 1 but may be in any other units. 
the units used may be indicated at function control sign-on 
or dynamically in the SRCB. 

BLOCK CONTRCL BYTE (BCB) 

oxxxccce 
o 7 

~§~3~: transmission block status and sequence count 

~ii2: 
o 
xxx 

CCCC 

1 
000 
001 
010 

011 
100 
101 
110 
111 
NNNN 

Reserved 
Bypass sequence count validation 
Reset expected block sequence count 

to ecec 
Reserved 
Reserved 
Available to user 
Available to user 
Reserved 
Module 16 block sequence count 

Appendix B: MULTI-LEAVING 373 



FUNCTION CONTROL SEQUENCE (FCS) 

----------------OSRRABCDORRRWXYZ 
o 7 8 15 

Us~~~: To control the flow of individual function streams 

O ••• 0 
S 

RR ••• RRR 
ABCD 
WXYZ 

1 ••• 1 
o 
1 

00 ••• 000 
NNBN 
NNNN 

Normal processing 
Suspend all stream transmission 

(wait-a-bit) 
Reserved 
print or input stream identification 
punch stream identifiers 

Note: These function stream identifiers are oriented only to the 
recipient. Presence of a bit indicated that function 
transmission is to be continued; its absence indicates that 
function transmission is to be suspended. 

374 IBM VM/370: System Programmer's Guide 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

Appendix C: VM Monitor Tape Format and Content 

Each time a monitor call interrupt occurs, VM Monitor receives control 
and collects data appropriate for the particular class and code of 
MONITOR CALL. (Or, for USER, PERFORM or DASTAP classes, VM Monitor 
gets control at periodic intervals to collect data.) The data is 
formatted into records which are collected sequentially in the order 
that each interrupt occurred. The tape data format is standard Variable 
Blocked (VB) format. Data is written at the default tape drive 
density. The formats and contents of all the kinds of data records for 
the currently implemented classes and codes of MONITOR CALL are listed 
below. 

All values described in the following records are binary unless 
otherwise noted. 

I lIndicates that the field is EBCDIC. 

2Indicates that the field is in special timer format described below. 

3See CP PLM for field format definition. 

Every data record is preceded by the following 12 byte header: 

Total bytes ~n record 
Zeros (standard V format record) 
MONITOR CALL class number 
MONITOR CALL code number 
Time of Day 

Number 
Of 
].Y!~'§ 

') 
L. 

2 
1 
2 
5 

DSECT 
Variable 
!!!.!!~ 

MUUD1U"C''7 
LJ &'1,U Ll.&.;l'- tJ u 

MNHCLASS 
MNHCODE 
MNHTOD 

!2!~: Time of day occupies 2 full words in storage, with the right hand 
12 bits zeros. The right hand 2 bytes and the leftmost byte are ignored 
giving 16 microsecond accuracy instead of 1 microsecond. 

The first 4 bytes of this header are the standard variable-format 
record-length field. 

Appendix B: MULTI-LEAVING 374.1 



GC20-1807-3 Page Modified by TNL GN20-2662, Mdrch 3i, 1~75 

Monitor 
Code 

97 

98 

99 

Data 
Item 

Tape header record 
CPU serial/model number 
Software version number 1 

Date of data collection session 1 

Time of data collection session 1 

USERID of monitor controller1 

CR8 mask of enabled classes 

Tape trailer record 
USERID of user shutting down monitorl 

Tape write suspension record 
TOD at suspension 2 

Count of write suspensions 

Class Zero - PERFORM 

Number 
of 
Bytes 

8 
8 
8 
8 
8 
4 

8 

5 
4 

CP 
Variable 
Name 

CPUID 
DMKCPEID 
tod clock 
tod clock 
VMUSER 
DMKPRGC8 

VMUSER 

Number CP 
Monitor 
Code 

00 

Data 
Item 

of Variable 
Bytes Name 

Interval statistics 
Total system idle time 3 8 
Total system page wait 3 8 
Total system time I/O wait3 8 
Total system problem time 3 8 
Total paging start I/O's 4 
Total page I/O requests 4 
Current page frames on free list 4 
Pages being written, due for free list 4 
Total pages flushed, but reclaimed 4 
Number of reserved pages 4 
Number of shared system pages 4 
Total number of times free list empty 4 
Total number of calls to DMKPTRFR 4 
Total pages stolen from in Q users 4 
Number of pages examined in stealing pages 4 
Number of pages swapped from the flush 
list 4 

Number of full scans done in stealing 
pages 4 

Total real external interrupts 4 
Total calls to DMKPRVLG 4 
Total calls to DMKVIOEX 4 
Total calls to CCWTRANS from DMKVIO 4 
Total Virt Interval Timer Ints reflected 4 
Total Virt CPU Timer Ints reflected 4 

IDLEWAIT 
PAGEWAIT 
IONTWAIT 
PROBTIME 
DMKPAGPS 
DMKPAGCC 
DMKPTRFN 
DMKPTRSW 
DMKPTRPR 
DMKPTRRC 
DMKPTRSC 
DMKPTRFO 
DMKPTRFC 
DMKPTRSS 
DMKPTRFF 

DMKPTRRF 

DMKPTRC S 
DMKPSANX 
DMKPRVCT 
DMKVIOCT 
DMKVIOCW 
DMKDSPIT 
DMKDSPPT 

374.2 IBM VM/370: System Programmer's Guide 

DSECT 
Variable 
Name 

MN097CPU 
MN097LEV 
MN097DAT 
MN097TIM 
MN097UID 
MN097CR8 

MN098UID 

MN099TOD 
MN099CNT 

DSECT 
Variable 
Name 

MNOOOWID 
MNOOOWPG 
MNOOOWIO 
MNOOOPRB 
MNOOOPSI 
MNOOOCPA 
MNOOONFL 
MNOOOPSN 
MNOOOPRC 
MNOOORPC 
MNOOOSPC 
MNOOOFLF 
MNOOOCPT 
MNOOOSS 
MNOOOPFF 

MNOOOPRF 

MNOOOPCS 
MNOOONXR 
MNOOOCPR 
MNOOOCVI 
MNOOOCCW 
MNOOOITI 
MNOOOPTI 



Monitor 
Code 

~~20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

Number CP 
Data 
Item 

of Variable 
Bytes Name 

Total Virt Clock Comparator Ints reflected 4 
Total virtual SVC interrupts simulated 4 
Total virtual program interrupts handled 4 
Total I/O interrupts handled 4 
Total calls to dispatch (main) 4 
Total fast reflects in dispatch 4 
Total dispatches for new PSi's 4 
Total calls to schedule 4 
COUll of virtual machine SSK'& simulated 4 
Count of virtual macnine SKiS simu:~ted 4 
Count of virtual machine S3M's simulated 4 
Count of virtual machine LPSW's sim~lated 4 
Cndnt of virtuaJ machine f3iagnose in.st 4 
CO~Lt of ~irtual machine SIO's simulated 4 
count of virtual machine SIOF's simulated 4 
Count of virtual machine TIO·s simulated 4 
Count of virtual machine CLElO's simulated 4 
Count of virtual machine HIO's simulated 4 
Count of virtual machine HDV's simulated 4 
Count of virtual machine TeH's simulated 4 
Count of virtual machine STNSM's simulated 4 
Count of virtual machine STOSM's simulated 4 
Count of virtual machine LRA's simulated 4 
Count of virtual machine STIDP's simulated 4 
Count of virtual machine STIDC's simulated 4 
Count of virtual machine SCK's simulated 4 
Count of virtual machine SCKC's simulated 4 
Count of virtual machine STCKC's simulated 4 
Count of virtual machine SPT's simulated 4 
Count of virtual machine STPT's simulated 4 
Count of virtual machine SPKA's simulated 4 
Count of virtual machine IPK's simulated 4 
Count of virtual machine PTLB's simulated 4 
Count of virtual machine RRB's simulated 4 
Count of virtual machine STCTL's simulated 4 
Count of virtual machine LCTL's simulated 4 
Count of virtual machine CS's simulated 4 
Count of virtual machine CDS's simulated 4 
Count of virt machine diagnose disk I/O's 4 
Number of users dialed to virtual machines 4 
Number of users logged on 4 
Number of page reads 4 
Number of page writes 4 
Number of system pagable pages 4 
Sum of working sets of in-Q users 4 
Number of users in interactive queue (Q1) 4 
No. of users in compute bound queue (Q2) 4 
Number of users eligible to enter Q1 2 
Number of users eligible to enter Q2 2 
Monitor sampling interval (seconds) 2 
Count of cylinders allocated on primary 

paging device 2 
Cylinder capacity of primary paging device 2 

DMKDSPCK 
PSASVCCT 
DMKPRGCT 
DMKIOSCT 
DMKDSPCC 
DMKDSPAC 
DMKDSPRC 
DMKSCHCT 
DMKPRVEK 
DMKPI:'(VIK 
D MK P Ify f'13 
DMKPRVI,P 
DMKPRVDI 
.iJMKiiiOSI 
r~KVIOSF 

DMKVIOTI 
DMKVIOCJ_ 
DMKVIOHI 
DMKVIOHD 
DMKVIOTC 
DMKPRVMN 
DMKPRVMO 
DMKPRVLR 
DMKPRVCP 
DMKPRVCH 
DMKPRVTE 
DMKPRVCE 
DMKPRVCT 
DMKPRVPE 
DMKPRVPT 
DMKPRVEP 
DMKPRV IP 
DMKPRVPB 
DMKPRVRR 
DMKPRVTC 
DMKPRVLC 
DMKPRVCS 
DMKPRVCD 
DMKHVCDI 
DMKSYSND 
DMKSYSNM 
PGREAD 
PGWRITE 
DMKDSPNP 
DMKSCNPU 
DMKSCHN1 
DMKSCHN2 
DMKSCHW1 
DMKSCHW2 
DMKPRGTI 

ALOCUSED 
ALOCMAX 

DSECT 
Variable 
Name 

MNOOOCKI 
MNOOOCSV 
MNOOOCPG 
MNOOOCIO 
MNOOOCDS 
MNOOOCDA 
MNOOOCDB 
MNOOOCSC 
MNOOOEK 
i<lNtY,OIK 
1':; uO(~t 

«IOL P 
",NOLODI 
r! f~ () ;.1 \J S I 
MN0U::SF 
~NOOO'rl 

MNOOUI.:I 
MNOOOHI 
MNOOOHD 
MNOOOTC 
MNOOOMN 
MNOOOMO 
MNOOOLR 
MNOOOCP 
MNOOOCH 
MNOOOTE 
MNOOOCE 
MNOOOCT 
MNOOOPE 
MNOOOPT 
MNOOOEP 
MNOOOIP 
MNOOOPB 
MNOOORR 
MNOOOTCL 
MNOOOLCL 
MNOOOCS 
MNOOOCD 
MNOOOHDI 
MNOOONDU 
MNOOONAU 
MNOOOPRD 
MNOOOPWR 
MNOOONPP 
MNOOOSWS 
MNOOOQ1N 
MNOOOQ2N 
MNOOOQ1E 
MNOOOQ2E 
MNOOOI NT 

MNOOOPPA 
MNOOOPPC 

Appendix B: MULTI-LEAVING 374.3 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

Class One - RESPONSE 

Monitor 
Code 

Data 
Item 

00 Read cOII.and sent to terminal 
USERID 
Line address 

01 Terminal output line 
USERID 
Line address 
Byte count 
Line of data 

02 Edited terminal input line 
USERID 
Line address 
Byte count 
Line of datal 

Number CP 
of Variable 
Bytes Name 

8 VMUSER 
2 

8 VMUSER 
2 
1 
Variable 

8 VI1USER 
2 
1 
Variable 

DSECT 
Variable 
Name 

MN10XUID 
MN10XADD 

MN10XUID 
MN10YADD 
MN10YCNT 
MN10YIO 

MN10XUID 
MN10XADD 
MN10YCNT 
MN10YIO 

Note that the line addresses for the 370X in NCP mode appear as the base 
address. 

These records are created at the time that DMKQCN handles the console 
I/O request. This may reflect a slightly different time than that of the 
SIO or the I/O interrupt. If DMKQCN is called to write a line that is 
longer than Terminal line size, more than one MC is issued resulting in 
more than 1 record. Input and output terminal data collected is limited 
to 128 bytes. Longer lines are truncated. 

Class Two - SCHEDULE 

Monitor 
Code 

02 

Data 
Item 

User dropped from dispatch queue 
USERIDI 
Number of system pageable pages 
Sum of working sets of in queue users 
Number of users in interactive queue Q1 
No. of users in compute bound queue (Q2) 
Number of users eligible for Q1 
Number of users eligible for Q2 
User new projected working set size 
Queue being dropped from (lor 2) 
Reserved 

Accumulated user CP simulation time 3 

Accumulated user virtual time 3 

Externally assigned dispatch priority 

374.4 IBM VM/370: System Programmer's Guide 

Number CP 
of Variable 
Bytes Name 

8 
4 
4 
4 
4 
2 
2 
2 
1 
1 

8 
8 
4 

VMUSER 
DMKDSPNP 
DMKSCHPU 
DMKSCHN1 
DMKSCHN2 
DMKSCHW1 
DMKSCHW2 
VMWSPROJ 
Q1DROP 

VMTTIME 
VMVTIME 
VMQPRIOR 

DSECT 
Variable 
Name 

MN20XUID 
MN20XNPP 
MN20XSWS 
MN20XQ1N 
MN20XQ2N 
MN20XQ1E 
MN20XQ2E 
MN20XWSS 
MN20XQNM 
MN2RSV1 

MN20YTTI 
MN20YVTI 
MN20YPRI 



GC20-1807-3 Page Modified by TNt GN20-2662, March 31, 1975 

Number CP 
Moni tor 
Code 

Data 
Item 

of Variable 
Bytes Name 

Pages read while in queue 2 
Sum of pages resident at all reads 2 
Number of pages referenced while in Q 2 
Current number of pages resident 2 
Number of pages stolen while in queue 2 
User total virt non-spool device SIO count 4 
User total virtual cards punched 4 
User total virtual lines printed 4 
User total virtual cards read 4 

03 User added to dispatch queue 
USERID 8 
Number of system pageable pages 4 
Sum of working sets of in queue users 4 
Number of users in interactive queue (Q1) 4 
No of users in compute bound queue (Q2) 4 
Number of users eligible for Q1 2 
Number of users eligable for Q2 2 
User's projected working set size 2 
Queue being added to 1 
Reserved 1 

04 User added to eligible list , 
USERID 8 
Number of system pageable pages 4 
Sum of working sets of in queue users 4 
Number of users in interactive queue (Q1) 4 
No. of users in compute bound queue (Q2) 4 
Number of users eligible for Q1 2 
Number of users eligible for Q2 2 
Users projected working set size 2 
Queue being added to 1 
Reserved 1 
Accumulated users CP sumulation time 8 
Accumulated users virtual time 8 
Eligible list priority 2 

VMPGREAD 
VMPGRINQ 
gen reg 4 
VMPAGES 
VMSTEALS 
VMIOCNT 
VMPNCH 
VMLINS 
VMCRDS 

VMUSER 
DMKDSPNP 
DMKSCHPU 
DMKSCHN1 
DMKSCHN2 
DMKSCHW 1 
DMKSCHW2 
VMWSPROJ 
gen reg 15 

VMUSER 
DMKDSPNP 
DMKSCHPU 
DMKSCHN1 
DMKSCHN2 
DMKSCHW 1 
DMKSCHW2 
VMWSPROJ 
VMQ1 

VMTTIME 
VMVTIME 
VMEPRIOR 

Class Four - USER 

Moni tor 
Code 

00 

Data 
Item 

Interval user resource utilization 
statistics 

USERIDI 
Accumulated user CP simulation time 
Accumulated user virtual time 
Total page reads 
Total page writes 
Total non-spooled I/O requests 
Total cards punched 
Total lines printed 
Total cards read 
User running status 
User dispatch status 

Number CP 
of Variable 
Bytes Name 

8 VMUSER 
8 VMTTIME 
8 VMVTIME 
4 VMPGREAD 
4 VMPGWRIT 
4 VMIOCNT 
4 VMPNCH 
4 VMLINS 
4 VMCRDS 
1 VMRSTAT 
1 VMDSTAT 

DSECT 
Variable 
Name 

MN202PGR 
MN202APR 
MN202REF 
MN202RES 
MN202PST 
MN202IOC 
MN202PNC 
MN202LIN 
MN202CRD 

MN20XUID 
MN20XNPP 
MN20XSWS 
MN20XQ1N 
MN20XQ2N 
MN20XQ1E 
MN20XQ2E 
MN20XWSS 
MN20XQNM 
MN2RSV 1 

MN20XUID 
MN20XNPP 
MN20XSWS 
MN20XQ1N 
MN20XQ2N 
MN20XQ1E 
MN20XQ3E 
MN20XWSS 
MN20XQNM 
MN2RSV 1 
MN20ITTI 
MN20IVTI 
MN20IPRI 

DSECT 
Variable 
Name 

MN400UID 
MN400TTI 
MN400VTI 
MN400PGR 
MN400PGW 
MN400IOC 
MN400PNC 
MN400LIN 
MN400CRD 
MN400RST 
MN400DST 

Appendix B: MULTI-LEAVING 374.5 



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975 

Monitor 
Code 

User 
User 
User 
User 
User 
User 
User 
User 

Data 
Item 

operating status 
queuing status 
processing status 
control status 
tracing control 
message level 
queue level 
command level 

User timer level 
Interrupt pending summary 
User's externally assigned priority 
Reserved 
Current number of pages resident 
Current working set size estimate 
Page frames allocated on drum 
Page frames allocated on disk 
Monitor sampling interval (seconds) 

Class Five - INSTSIM 

Monitor 
Code 

00 

Data 
Item 

start of PRIVOP simulation 
USERIDI 
The privileged instruction 
virtual storage address of PRIVOP 
Total user CP simulation time at start 

of simulation 

Class Six - DASTAP 

Monitor 
Code 

Data 
Item 

00,01 Device activity data for all Tape and DASD 
devices 

Number CP 
of Variable 
Bytes Name 

1 VMOSTAT 
1 VMQSTAT 
1 VMPSTAT 
1 VMESTAT 
1 VMTRCTL 
1 VMMLEVEL 
1 VMQLEVEL 
1 VMCLEVEL 
1 VMTLEVEL 
1 VMPEND 
1 VMUPRIOR 
1 
2 VMPAGES 
2 VMWSPROJ 
2 VMPDRUM 
2 VMPDISK 
2 DMKPRGTI 

Number CP 
of Variable 
Bytes Name 

8 
4 
4 

8 

VMUSER 
VMINST 
VMPSW 

cpu timer 

Number CP 
of Variable 
Bytes Name 

Number of device blocks recorded 2 

For each device -
Device address 

VM/370 type codes 
Volume serial number 1 

Device accumulated I/O count 

2 
2 
6 
4 

RDEVADDR+ 
RCUADDR+ 
RCHADDR 
RDEVTYPC 
RDEVSER 
RDEVIOCT 

DSECT 
Variable 
Name 

MN4000ST 
MN400QST 
MN400PST 
MN400EST 
MN400TST 
MN400MLV 
MN400QLV 
MN400CLV 
MN400TLV 
MN400PND 
MN400UPR 
MN4RSV 1 
MN400RES 
MN400WSS 
MN400PDR 
MN400PDK 
MN400INT 

DSECT 
Variable 
Name 

MN500UID 
MN500INS 
MN500VAD 

MN5000VH 

DSECT 
Variable 
Name 

MN600NUM 

MN600ADD 
MN600TY 
MN600SER 
MN600CNT 

Note: The monitor code zero record is collected when the MONITOR START 
TAPE command is entered. Thereafter, all DASTAP records are collected 
with a monitor code of one. 

374.6 IBM VM/370: system Programmer's Guide 



GC20-1807-3 Page Modified by TNL GN20-2662, March 3i, i975 

Class Seven - SEEKS 

Monitor 
Code 

00 

Data 
Item 

DASD I/O request record 
USERIDI 
Device address 

Seek cylinder address 
Current arm position 
Number of queued I/O tasks 
Number of queued I/O tasks 
Number of queued I/O tasks 
Current seek direction 

Number CF 
of Variable 
Bytes Name 

8 

2 
2 
2 

on device 1 
on control unit 1 
on channel 1 

1 

VMUSER 
n'" 't:It7 .. T\ T\ n ___ 
UJJ.I:IWt1JJJJllT 

RCUADDR+ 
RCHADDR 
IOBCYL 
RDEVCYL 
RDEVQCNT 
RCUQCNT 
RCHQCNT 
RDEVFLAG 

!21~: Current seek direction value is 

X'OO' seeking to lower cyl addr 
X'Ol' seeking to higher cyl addr 

Class Eight - SYSPROF additional data for system profile class 

Monitor 
Code 

02 

Data 
Item 

Additional data at add Q drop Q times 
Number of 4 byte device block counts 

which follow 

For each device ••• count of I/O's 

After device counts ••• 
Current number of users legged on 
Total system page reads 
Total system page writes 
Current number of pageable pages 
Total system idle time 
Total system page wait time 
Total system I/O wait time 
Total system problem time 

Number CP 
of Variable 
Bytes Name 

2 

4 RDEVIOCT 

4 DMKSYSNM 
4 PGREAD 
4 PGWRITE 
4 DMKDSPNP 
8 IDLEWAIT 
8 PAGEWAIT 
8 IONTWAIT 
8 PROBTIME 

DSECT 
Variable 
Name 

MN700UID 

MN700ADD 
MN700CYL 
MN700CCY 
MN700QDV 
MN700QCU 
MN700QCH 
MN700DIR 

DSECT 
Variable 
Name 

MN802NUM 

MN802NAU 
MN802PGR 
MN802PGW 
MN802NPP 
MN802WID 
MN802WPG 
MN802WIO 
MN802PRB 

Appendix B: MULTI-LEAVING 374.7 



A 
ABEND (~~~ abnormal termination (ABEND» 
ABEND macro 304 
ABEND, system 29 
abnormal termination (ABEND) (see ~J&Q 

problem types) 
abnormal te rmina tion (ABEND) 14 

action for CMS ABEND 169 
CMS ABEND code 169 
CMS ABEND recovery 30 
CMS module 169 
collect information 120,171 
CP dump 102 
dump (§~~ CMS dump) 
dUllp (§~~ CP dump) 
dump 102,104,167 
in CMS 16 
in CP 14 
in DOS 16 
in os 16 
internal trace table 120 
messages 14,15 
program check in CP 26 
program interrupt 186 
reason for 26,28,105,167 
reason for CMS ABEND 169 
register usage 120 
save area conventions 121 
SVC 0 26,105 
SYSTEM RESTART button 26 

abnormal termination of a system routine 
29 

ACCESS command, accessing OS data sets 310 
access method, OS, support of 307 
accounting cards, generating 246 
accounting records 

format for dedicated devices 211 
format for virtual machines 211 
when to punch 212 

accounting 
ACCTOFF routine 213 
ACCTON routine 212 
user options 212 

Active Disk Table 317 
address translation 

example 199 
virtual-to-real 199 

ADSTOP command 
format 46 
summary 39 
use 47 

ADT (Active Device Table) 172 
AFT (Active File Table) 172 
allocating storage 282 
Assembler virtual storage requirements 320 
assist feature, virtual machine 47 
ASSIST operand, of CP SET command 57 
ATTACH macro 305 
attaching virtual devices 181 
auxiliary directories 

creating 316 
error handling 318 

B 

establishing linkage 317 
example 318 
generating 316 
initializing 316 
saving resources 316 

Index 

BALRSAVE (BAL register save area) 27,121 
Batch Facility 

BATEXIT1 314 
BATEXIT2 314 
BATLIMIT MACRO file 313 
data security 315 
EXEC procedures 314 
installation input 313 
/JOB control card 314 
remote input 313 
resetting system limits 313 
system limits 313 
user control cards 314 

BATEXIT1 314,314 
BATEXIT2 314,314 
BATLIMIT 313 
BDAM 

restrictions on 308 
support of 307 

BEGIN command 
format 48 
summary 39 
when to use 48 

BLDL macro 304 
BPAM, support of 307 
BREAK subcommand 

error messages 138 
format 136 
use 136 

BSP macro 306 
buffers 

C 

forms control 254 
print 254 

calculating, dispatching priority 185 
CAW (channel address word), format 139 
CAW subcommand 

error messages 139 
format 139 
use 139 

CAW, virtual machine, displaying 49 
channel program, modification 244 
CHAP macro 305 
CHECK macro 306 
CHKPT macro 306 
class (device) 131 
clock comparator 237 
CLOSE command, use 31,102 
CLOSE/TCLOSE macros 304 
CMNDLINE (command line) 172 

Index 375 



CIlS (Conversational Ilonitor System) (§~~ 
!!§9 virtual lIachine) 

ABEND macro 29 
ABEND recovery 30 
abnormal termination 19,25 
abnormal ter.ination messages 16 
abnormal termination procedure 

28,30,167 
auxiliary directories 316 
Batch Facility 313 
called routine table 294 
command language 265 
command processing 293 
commands (§g~ CIlS commands) 
commands 134 
control blocks relationships 168 
devices supported 275 
DEVTAB (Device Table) 274 
display the PSW 30 
DIlSABN macro description 29 
DIlSFREE 275 
DIlSFREE free storage management 279 
DIlSFREE macro description 279 
DIlSFREE service routines 284 
DIlSFRES macro description 285 
DIlSFRET macro description 283 
DIlSFST macro description 316 
DIlSITS 288,296 
DIlSNUC 275 
examine low storage 30 
file system 266,266 
free storage management 279 
function table 299 
functional information 273 
GETIlAIN free storage management 278 
Hal t Execution (HX) 29 
how to approach a problem 13 
how to save it 312 
interrupt handling 269 
introduction 265 
language processors 101 
load map 30,165 
loader tables 276 
nucleus 276 
nucleus load map 165 
program development facilities 268 
program exception 28 
register usage 173,273 
restrictions 101 
returning to calling routine 295 
sample load map 166 
saved system restrictions 312 
storage dump 31,167 
storage map 277 
storage structure 275 
structure of DIlSNUC 273 
SVC handling 288,296 
symbol references 273 
system ABEND 29 
system save area modification 295 
transient area 276,291 
user area 291 
user program area 276 
USERSECT (User Area) 274 

376 IBIl VIl/370: System Programmer's Guide 

CIlS cOllllands 
BREAK subcommand 136 
CAW subcollmand 139 
CSW subcommand 140 
DDR 164 
DEBUG 134 
DEFINE subcom.and 142 
DUIlP subcoaaand 144 
PILEDEP 311 
GO subcommand 146 
GPR subcolllland 148 
how to add one 299 
HX subcommand 149 
LISTF 165 
1l0DIlAP 165 
ORIGIN subcomlland 150 
PRINT 165 
PSi subcommand 152 
RETURN subcommand 153 
SET subcommand 154 
STORE subcommand 156 
SVCTRACE 134,160 
X (Examine) subcommand 158 

CIlS dump 
at abnormal termination 167 
examine low storage 167 
format 167 
message 167 
register usage 173 

CIlS function table, reserved names 299 
CMS interface with display terminals 297 
CMS low storage 30 
CMSCB (OS control blocks) 171 
coding conventions 

addressing 250 
constants 249 
CP 249 
error messages 251 
load list requirements 251 
module names 250 
register usage 249 

cold start 189 
column binary 99 
command language 

(CMS) 265 
(RSCS) 350 

commands (§~~ CMS commands) 
commands (§~~ CP commands) 
COIlND macro 253 
completion code X'OOB' 186 
considerations 

for virtual=real performance option 207 
paging 202 

console function (§~~ CP commands) 
console function 45 

how to add one to CP 253 
J.t'L 99 
privilege classes 182 

CONSOLE operand, of ZAP command 335 
control blocks 

CMS 168 
CP 122 

Control Program (~CP (Control Program» 
control program, for 3704/3705 

Communications Controller 325 
control records, for ZAP command 335 
control registers 

allocation 363 



assignment 364 
conversational Monitor System (~~~ CMS 

(Conversational Monitor system» 
COpy function statement 88 
CP (Control Program) 

abnormal termination 25 
abnormal termination messages 14,15 
abnormal termination procedure 

26,27,105 
abnormal termination with automatic 
restart 19 

abnormal termination without automatic 
restart 19 

coding conventions 249 
commands (see CP commands) 
commands 45~182 
concurrent execution of virtual machines 

177 
control block relationships 123 
debugging CP on a virtual machine 93 
disabled loop 21 
disabled loop procedure 33 
disabled wait 20 
disabled wait procedure 24,35 
enabled loop 21 
enabled wait 20 
enabled wait procedure 24,36 
enabled wait state 99 
errors encountered by the warmstart 

program 14 
examine low storage 27 
how to approach a problem 13 
identifying a pageable module 133 
initialization 189 
internal trace table (~~g !!2Q CP trace 

table) 
internal trace table 27,81,93,120 
I/O management on virtual machine 181 
load map 27 
looping condition 24 
low storage 27 
machine check 27 
page zero handling 180 
privileged instruction simulation 177 
problem state execution 177 
program check 26 
program check in the checkpoint program 

14 
program check in the dump program 14 
PSA 27 
real control blocks 27 
real I/O control blocks 190 
register usage 120 
restrictions 32,96 
RMS (Recovery Management Support) 186 
save areas 121 
spooling 181 
storage dump 26,104 
SVC interrupt handling 192 
SVC 0 26 
SYSTEM RESTART button 26,36 
trace table entries (~~~ ~l~g CP trace 

table) 
trace table entries 95 
unexpected results 19,25 
unexpected results procedure 32 
virtual control blocks 27 
virtual I/O control blocks 191 

virtual machine interrupt handling 
wait state status messages 14 

CP ABEND code 
BLD001 through CVTOOl 106 
DRD001 through DSP004 107 
FREOOl through FRE004 108 
FRE005 through FREO 10 109 
FRE011 through IOS003 110 
NLDOOl through PGT002 111 
PGT003 through PGT006 112 
PGTOO7 +l.. ..... "" .... ,..L nn,..n ...... ... ..... 

"U.Lvut::fU rllUV I I I I~ 

PRG012 through PSA 001 114 
PSA002 through PTR004 115 
PTR007 through PTR 011 116 
PTRO 12 through SCHOOl 117 
table 106 
TDKOO 1 through VDB002 118 
VDB003 through VSPOOl 119 

CP commands 
ADSTOP 46 
BEGIN 48 
DCP 73 
DISPLAY 49 
DMCP 76 
DUMP 54 
FILEDEF 104 
for system programmers and system 
analysts 72 

format 45 
how to add a command 253 
LOCATE 79 
MONITOR 81 
MOVE 104 
operands 45 
privilege classes 45 
QUERY 82 
SAVENCP 83 
SAVESYS 84 
SET 57 
STCP 85 
STORE 62 
SYSTEM 65 
TRACE 67 
VMFDUMP 103 

CP dump 
at abnormal termination 104 
examine ABEND code 105 
examine low storage 105 
format 104 
on disk 103 
on" printer 103 
on tape 103 
printing disk dump 103 
printing tape dump 103 

CP trace table 27,81 
allocation 93 
entries 95 
restarting tracing 94 
size 93 
terminating tracing 94 
when to use 94,120 

CPABEND (ABEND Code) 105 
CPEREP program 28 
CPSTAT (CP running status) 120 
CPU resources 184 
CPU timer 236 
CPU utilization 184 
creating an NCPDUMP file 345 

177 

Index 377 



CSW (channel status word), format 140 
CSW subcommand 

error messages 141 
format 140 
use 140 

CSW, virtual machine, displaying 49 
CVTSECT (CMS Communications vector Table) 

172 

o 
DASD DDR program (~gg DASD Dump Restore 

program) 
DASD Dump Restore program 33,86 

COpy statement 88 
DUMP statement 88 
function statements 88 
INPUT statement 86 
I/O definition statements 86 
OUTPUT statement 86 
PRINT statement 92 
RESTORE statement 88 
restrictions 89 
sample output 91 
standalone version 86 
SYSPRINT statement 87 
TYPE statement 92 
use 164 

DASD I/O function 241 
data security, batch 315 
Data set control block (DSCB) 307 
DCB macro 306 
DCP command 

format 73 
how to use 74 
responses 74 
when to use 75 

DDR (§gg DASD Dump Restore program) 
DDR command 

COPY function statement format 88 
DUMP function statement format 88 
INPUT control statement format 87 
OUTPUT control statement format 87 
PRINT function statement format 92 
RESTORE function statement format 88 
SYSPRINT control statement format 88 
TYPE function statement format 92 
use 33 

DDR control statements 86 
DEBUG command 

BREAK subcommand 136 
summary 39 

CAW subcommand 139 
summary 41 

CSW subcommand 140 
summary 41 

DEFINE subcommand 142 
DUMP subcommand 144 

summary 39 
use 34 

GO subcommand 146 
summary 39 

GPR subcommand 148 
summary 40 

HX subcommand 149 
messages 135 
ORIGIN subcommand 150 

378 IBM VM/370: System Programmer's Guide 

PSW subcommand 152 
summary 40 
use 30 

RETURN subcommand 153 
rules for using 135 
SET CAW subcommand, summary 42 
SET csw subcommand, summary 42 
SET GPR subcommand, summary 41 
SET PSW subcommand, summary 42 
SET subcommand 154 
STORE subcommand 156 

summary 41 
subcommands 136 
use 29 
X (Examine) subcommand 158 

summary 40 
debugging 

analyzing the problem 22 
applying a PTF 13,22 
comparison of CP and CMS facilities 44 
how to start 13,23 
identifying 

a looping condition 23 
a looping condition in the virtual 

machine 16 
a wait 23 
a wait state in the virtual machine 

17 
an abnormal termination 23 
the problem 16 
unexpected results 23 

introduction 13 
on a virtual machine 31 
procedure 

for abnormal termination 25 
for CMS abnormal termination 28 
for CP ABEND without dump 27 
for CP abnormal termination 26 
for CP disabled loop 33 
for CP disabled wait 35 
for CP enabled wait 36 
for CP unexpected results 32 
for looping condition 24 
for RSCS virtual machine disabled 

wait 37 
for unexpected results 25 
for virtual machine abnormal 
termination 30 

for virtual machine disabled loop 34 
for virtual machine disabled wait 36 
for virtual machine enabled loop 34 
for virtual machine enabled wait 37 
for virtual machine unexpected 
results 32 

for wait 24 
recognlzlng a problem 14 
summary of VM/370 debugging tools 39 
unproductive processing time 17 
with VM/370 facilities 26 

dedicated device 101 
DEFINE subcommand 

error messages 143 
format 142 
use 142 

DELAYED operand, of CP SET command 57 
DELETE macro 304 
demand paging 179 
DEQ macro 305 



DETACH macro 305 
detaching virtual devices 181 
DEV ICE 31 
device sense information 1C~ 

IUU 

device types, models, features, table of 
131 

device 
class codes 131 
feature codes 133 
model codes 133 
type codes 1j1 

devices, CMS supported 275 
DEVTAB (Device Table) 274 
DEVTYPE macro 304 
DIAGNOSE instruction 239 
DIAGNOSE instruction restrictions 99 
DIAGNOSE instruction 

channel program modification 244 
clear I/O recording 242 
DASD I/O function 241 
device type function 243 
error message editing 248 
examine real storage 239 
general I/O function 242 
generate accounting cards 246 
input spool file manipulation 240 
page release function 240 
pseudo timer 240 
read LOGREC DATA 245 
read system dump spool file 245 
read system symbol table 246 
save 3704/3705 control program 247 
start of LOGREC area 245 
update user directory 246 
virtual console function 239 
3270 virtual console interface 247 

directory, VM/370 in a virtual machine 221 
DISABLE operand, of the NETWORK command 

341 
disk dump program 164 
disk restore program 164 
dispatching priority, calculating 185 
dispatching scheme, for virtual machines 

184 
dispatching virtual machines 

from queue 1 185 
from queue 2 185 

dispatching 
interactive users 184 
non interactive users 184 

display CAW 
CAW subcommand of DEBUG command 41 
DISPLAY command 41 

DISPLAY command 
format 49 
responses 51 
summary 40 
use 30,34,53 

display control registers, DISPLAY command 
40 

display CSW 
CSW subcommand of DEBUG command 41 
DISPLAY command 41 

display floating-point registers, DISPLAY 
command 40 

display general registers 
DISPLAY command 40 
GPR subcommand of DEBUG command 40 

DISPLAY operand, of the NETWORK command 
342 

display PSW 
DISPLAY command qU 
PSW subcommand of DEBUG command 40 

display storage 
DISPLAY command 40 
X subcommand of DEBUG command 40 

display terminals, CMS interface 297 
DISPSW macro display terminals, DISPSW 

macro 297 
DMCP command 

format 76 
responses 77 
usage of 77 
when to use 78 

DMKCFM (console function) support 253 
DMKCKP 189 
DMKCPI 189 
DMKSAV 189 
DMKSNT (system name table) 214 
DMSABN (ABEND routine) 171 
DMSABN macro 29 

operands 29 
DMSEXS 287 
DMSFREE 275 

allocating nucleus free storage 283 
allocating user free storage 282 
error codes 286 
operands 279 
service routines 284 
storage management 279 

DMSFRES 285 
error codes 286 
operands 285 

DMSFRET 283 
error codes 286 
operands 283 
releasing storage 283 

DMSINA 291 
DMSINT 291 
DMSIOii 27i 
DMSITE 272 
DMSITI 270 
DMSITP 271 
DMSITS 269,288,296 
DMSKEY 287 
DMSLADAD, entry for auxiliary directory 

317 
DMSNUC 273,275 
DOS (Disk Operating system) 

abnormal termination messages 16 
abnormal termination procedure 31 
generating 220 
standard label cylinder 220 
system residence 220 
use with VM/370 220 

DSCB 307 
dump (2~~ ~!2Q CMS dump) 
dump (2~~ ~!2Q CP dump) 
dump 26 
DUMP command 

define print limits 55 
format 54 
responses 56 
summary 39 
use 34,37,56 

DUMP function statement 88 

Index 379 



DUMP operand 
of NCPDUMP command 345 
of the NETWORK command 340 

dump program 164 
dump spool file, reading 245 
dump storage 

DUMP command 39 
DUMP subcommand of DEBUG command 39 

DU MP su bcolllland 
error messages 145 
format 144 
use 144 

dump 
storage 

at the printer 44 
at the terminal 44 

dumping to a real printer 103 
dumps 

from 3704/3705 
erasing 345 
formatting 345 
printing 345 

dynamic load overlay 322 
dynamically modified program restrictions 

96 

E 
EC (Extended Control) mode 34 
EC (Extended Control) PSW 365 
ECMODE directory option 237 
ECRLOG (con trol registers) 171 
editing error message 248 
efficiency, of VM/370 performance options 

200 
Emulation Program (EP) 

with VM/370 326 
3704/3705 325 

emulators 
DOS 99 
integrated 99 

ENABLE operand, of the NETWORK command 341 
ENQ macro 305 
EBTRY option, of SAVEBCP command 329 
EP (2~~ Emulation Program) 

special considerations for loading 331 
ERASE option, of BCPDUMP command 345 
erasing 3704/3705 dump files 345 
error codes 286 

DMSFREE 286 
DMSFRES 286 
DMSFRET 286 

error message, editing 248 
executing, self-modifying channel programs 

204 
Extended Control mode (§gg EC (Extended 
Control) mode) 

extended control register, virtual machine, 
printing 54 

extended control registers, virtual 
machine, displaying 49 

external interrupt 
BLIP character 272 
external console interrupt 187,193 
HBDEXT macro 272 
in CMS 272 
interval timer 187,193 

380 IBM VM/370: system Programmer's Guide 

timer 272 
TOO clock comparator 193 

EXTOPSW (external old PSW) 167 
EXTRACT macro 305 
EXTSECT (external interrupt work area) 172 

F 
favored execution performance option 204 
FCB (File Control Block) 273 
FCBTAB (file control block table) 171 
feature (dev ice) 133 
fetch storage protection 179 
File Status Table 316 
file system 266 
FILEDEF command 311 

defining OS data sets 310 
when to use 104 

files, OS format, support of 307 
FIBD macro 304 
floating-point registers 

virtual machine 
displaying 49 
printing 54 

formatting 3704/3705 dumps 345 
forms control buffer 

FCB 254 
FCB examples 260 
FCB macro 260 
index feature 260 

example 261 
FPRLOG (floating-point registers) i7i 
FREEDBUF macro 305 
FREEMAIN macro 303 
FREEPOOL macro 304 
FREESAVE (DMSFRE register save area) 
27,121 

G 
GENDIRT command 

creating an auxiliary directory 316 
format 317 

general registers 
virtual machine 

displaying 49 
printing 54 

GET macro 308 
GETMAIB 278 
GET MAIN macro 303 
GETMAIB, free element chain 279 
GETMAIN/FREEMAIN macros 304 
GETPOOL macro 304 
GO subcommand 

error messages 146 
format 146 
use 146 

GPR subcommand 
error messages 148 
format 148 
use 148 

GPRLOG (general registers) 171 



H 
HALT operand, of NETWORK command 338 
HX subcommand 

I 

error messages 149 
format 149 
use 149 

IDENTIFY macro 305 
IMMEDIATE operand, of CP SET command 57 
initialization 189 
INPUT control statement 86 
input/output interrupt, in CMS 270 
interrupt handling 186 

CMS input/output interrupts 270 
CMS SVC interrupts 269 
CMS terminal interrupts 271 
DMSITS 269 
external interrupts 187,272 
in CMS 269 
I/O interrupts 181 
machine check interrupts 186,272 
program interrupts 186,271 
reader/punch/printer interrupts 271 
SVC interrupts 186 
user controlled device interrupts 271 

interval timer 236 
INTSVC 288 
I/O control blocks 

real 190 
relationship 190,191 
virtual 191 

I/O function 
DASD 241 
general 242 

I/O management 181 
I/O overhead, CP, reducing 201 
I/O recording, clear 242 
IOBLOK 27 
IOSECT (I/O interrupt work area) 172 
IPL, NO CLEAR restriction 99 

L 
LASTCMND 
LASTEXEC 
L1STLMOD 
LASTLMOD 
LASTTMOD 

171 

(last 
(last 
(last 
(last 
(last 

command) 31,171 
EXEC proced ure) 31,171 
module in free storage) 
module loaded) 30 
module in transient area) 

LASTTMOD (last transient loaded) 30 
LIBE option, of SAVENCP command 329 
LINK macro 303 
load library 

applying PTFs to 334 
updating 334 

LOAD macro 303 
load map 

CMS 165 
how to print CMS load map 165 

LOAD operand 
of NETWORK command 330 
of the NETWORK command 340 

load operations, for a 3704/3705 control 
program 337 

loader tables, (CMS) 276 

171 

loading 3704/3705 EP, considerations 331 

loading 3704/3705 NCP, considerations 331 
loading 3704/3705 PEP, considerations 331 
loadlist requirements 

Cp 251 
SPB card 251 

LOCATE command 
format 79 
responses 79 
when to use 79 

locked pages performance option 202 
LOGREC area 

getting starting address 245 
reading 245 

loop (~gg !!§2 problem types) 
loop 33 

CP disabled loop 33 
virtual machine disabled loop 34 
virtual machine enabled loop 34 

LOWSAVE (DEBUG save area) 171 

M 
machine check during start-up 186 
machine check interrupt 186 

in CMS 272 
machine check 

CP 27 
not diagnosed 27 
unrecoverable 27 

macros, OS (§gg OS macros) 
MCKOPSW (CMS machine check old PSW) 167 
minidisk 181 
Minidisk restrictions 96 
minidisk, maximum size for CMS 101 
MNEMONIC option, of NCPDUMP command 345 
model (device) 133 
model dependencies restrictions 98 
MONITOR command 

CP internal trace table 81 
format 81 
responses 81 
summary 43 
use 81 

MOVE command, when to use 104 
MULTI-LEAVING 

block control byte (BCB) 373 
character string 367 
control fields 

record control byte (RCB) 370 
string control byte (SCB) 373 
sub-record control byte (SRCB) 371 

description of 367 
function control sequence (FCS) 374 
in VM/370 367 
transmission block 368 

multiple path support restrictions 99 

N 
NAME option, of SAVENCP command 329 
named systems 

allocating DASD space 214 
generating 214 

NAMESYS macro 214 
SPB card 214 

saved system 214 
SAVESYS command 214 
shared segments 214 
system name table (DMKSNT) 214 

Index 381 



NAMESYS macro 214 
NCP (§~~ Network Control Program) 

special considerations for loading 331 
ICPDUMP command 

described 345 
DUMP operand 345 
use 345 

NCPDUMP file, creating 345 
NETWORK command 

described 330,337 
DISABLE operand 341 
DISPLAY operand 342 
DUMP operand 340 
ENABLE operand 341 
execution described 330 
format 

class A 338 
class A and B 340 
class F 344 

HALT operand 338 
LOAD operand 330,340 
QUERY operand 341 
SHUTDOWN operand 338 
TRACE operand 344 
VARY operand 342 

Network Control Program (ICP) 
with VM/370 326 
3704/3705 325 

NOFOR! option, of NCPDUMP command 345 
NOSVC operand, of CP SET command 57 
10TE macro 306 
nucleus (CMS) 276 
NUCON (nucleus constant area) 171 

o 
OPEN/OPENJ macros 304 
operator's console, count control 99 
ORIGIN subcommand 

error messages 150 
format 150 
use 150 

OS (Operating system) 
abnormal termination messages 16 
abnormal termination procedure 31 
saving OS 216 

OS data management simulation 300 
OS data sets, reading 309 
OS format files 307 
OS macros 

ABEND 304 
ATTACH 305 
BLDL 304 
BSP 306 
CHAP 305 
CHECK 306 
CHKPT 306 
CLOSE/TCLOSE 304 
DCB 306 
DELETE 304 
DEQ 305 
descriptions of 303 
DETACH 305 
DEVTYPE 304 
ENQ 305 

382 IBM VM/370: System Programmer's Guide 

EXTRACT 305 
FIND 304 
FREEDBUF 305 
FREEMAIN 303 
FREE POOL 304 
GET 308 
GETMAIN 303 
GETMAIN/FREEMAIN 304 
GETPOOL 304 
IDENTIFY 305 
LINK 303 
LOAD 303 
NOTE 306 
OPEN/OPENJ 304 
POINT 306 
POST 303 
PUT 308 
PUTX 308 
RDJFCB 306 
READ 308 
SNAP 305 
SPIE 304 
STAE 305 
STAX 306 
STIMER 305 
STOW 304 
SYNADAF 306 
SYNADRLS 306 
TCLEARQ 306 
TGET/TPUT 306 
TIME 304 
TTl MER 305 
under CMS 300 
WAIT 303 
WRITE 308 
WTO/WTOR 305 
XCTL 303 
XDAP 303 

OS/VS2 Uniprocessor under VM/370 219 
OUTPUT control statement 86 
overhead, CP, reducing for I/O 201 
overlay structures under CMS 320 
overlays 

P 

dynamic load 322 
example 321 
prestructured 320 

page exceptions, effects of 202 
page frame 178 

reserved 180,203 
page release 240 
page selection 195 
page table 178 
page zero restrictions 99,180 
page, SPB (Set Page Boundary) card 251 
pageable module, identifying 133 
pages, locking 202 
paging 178 

address translation 195 
by demand 179 
considerations 202 
lock page 195 
page selection 195 

paper tape 100 



partitioned Emulation Program (PEP) 
with VK/370 327 
3704/3705 325 

PEP (§~~ Partitioned Bmulation Proqram) 
specIal considerations for loading 331 

performance 200 
performance options 

favored execution 204 
locked pages 202 
priority 206 
reserved page frames 203 i 206 
virtual machine 204 
virtual=real 207 

performance 
avoiding IPL 
virtual=real 

PFnn operand, of 
PGKOPSW (program 
PGKSECT (program 

172 

214 
180 
CP SET command 
old PSW) 167 
check interrupt 

PLIST (parameter list) 273 
POIBT macro 306 
POST macro 303 
preferred virtual machine 204 

57 

work area) 

Prefix storage Area (§gg PSA (prefix 
storage Area» 

prestructured overlays 320 
PREVCKBD (previous command) 31,171 
PREVEXEC (previous EXEC procedure) 31,171 
print buffers 

adding new images 255 
LOADBUF command 255 
print chain image 255 
UCB macro 257 
UCBCCW macro 259 
UCS examples 256 
UCS macro 255 
UCS, 1403 254 
UCSB associative fields 258 
UCSB examples 259 
UCSB, 3211 254 
UCSCCW macro 255 

PBIBT function statement 92 
printer interrupt 271 
printing 3704/3705 dumps 345 
priority of execution 178 
priority performance option 206 
privilege classes 182 
privileged instructions 200 
problem programs, unexpected results 25 
problem types 

abnormal termination 18 
loop 21 
unexpected results 19 
wai t 20 

program check 
in the checkpoint program 14 
in the dump program 14 

program function keys 60 
delayed execution of 59 
immediate execution of 59 

program interrupt 194 
in CMS 271 
problem state 186 
supervisor state 186 

program states 183 
Program Status Word (§gg PSW) 
PROPSW (pro gr am old P SW) 105 

protection keys 179 
PSA (Prefix storage Area) 27 
PSA 

ARIOCH (address of first RCHBLOK) 127 
ARIOCU (address of first RCUBLOK) 128 
ARIODV (address of first RDEVBLOK) 128 

pseudo timer 237,240 
PSW 120 
PSW keys, CKS 287 
PSW subcommand 

PSW 

error messages 152 
format 152 
use 152 

interruption code 30 
virtual machine, displaying 49 

PTF application 13,22 
PTFs, applying to 3704/3705 load library 

334 
punch interrupt 271 
punch-feed-read 99 
PUT macro 308 
PUT X macros 308 

Q 
QUERY command 

forma t 82 
operands 82 
responses 82 
use 83 

QUERY operand, of the NETWORK command 341 
queue 1, dispatching virtual machines from 

185 
queue 2, dispatching virtual machines from 

185 
Q 1 (§gg queue 1) 
Q2 (§gg queue 2) 

R 
RCHBLOK 127 

RCHADD (address) 127 
RCHFIOB (first IOBLOK pointer) 127 
RCHSTAT (status) 127 
RCHTYPE (type) 127 

RCUBLOK 128 
RCUADD (address) 128 
RCUFIOB (first IOBLOK pointer) 128 
RCULIOB (last IOBLOK pointer) 128 
RCUSTAT (status) 128 
RCUTYPE (type) 128 

RDEVBLOK 128 
RDEVADD (address) 128 
RDEVAIOB (IOBLOK pointer) 129 
RDEVATT (attached virtual address) 129 
RDEVCKPT (address of enable CKPBLOK) 

129 
RDEVEPDV (address of EP free list) 129 
RDEVFLAG (device dependent flags) 128 
RDEVIOER (address of IOERBLOK) 129 
RDEVMAX (highest valid NCP name) 129 
RDEVNCP (reference name of active 3705 

NCP) 129 
RDEVNICL (address of network control 
list) 129 

RDEVSPL (RSPLCTL pointer) 129 
RDEVSTAT (status) 128 

Index 383 



RDEVTPLG (flags) 130 
RDEVTMCD (ter lIinal flags) 130 
RDEVTYPC (class) 129 
RDEVUSER (dedicated user) 129 

RDEVICE macro, CPNAME operand 330 
RDJPCB macro, 306 
READ macro 308 
reader interrupt 271 
reading OS data sets 309 
real address 199 
real printer dumping to 103 
real spooling 197 
real storage 

examine 239 
optimizing use of 178 

REAL TIMER option 236 
reduction 

of CP overhead, for virtual machine I/O 
201 

of paging activity 202 
of SIO operation 201 

reenterable code, use of 202 
register usage, CMS 273 
releasing allocated storage 284 
releasing storage 283 
remote Spooling communications subsystem 

(RSCS) 349 
reserved page frame 180 
reserved page frames performance option 

203,206 
resources, CPU 184 
responses 

DCP command 74 
DISPLAY command 51 
DMCP command 77 
DUMP command 56 
LOCATE command 79 
MONITOR command 81 
QUERY command 82 
SAVESYS command 84 
STCP command 85 
STORE command 64 
SYSTEM command 65 
TRACE command 69 

RESTORE function statement 88 
restore program 164 
restrictions for reading OS data sets 310 
restrictions 

BDAM 308 
CMS 101 
CMS minidisk 101 
CMS saved system 312 
column binary 99 
count control 99 
CP 96 
dedicated device 101 
DIAGNOSE instruction 99 
DOS emulator 99 
DOS object programs 102 
dynamically modified program 96 
integrated emulators 99 
I PL command 99 
IPL with NOCLEAR option 99 
language processors under CMS 101 
minidisk 96 
model dependencies 98 
multiple path support 93 
page zero 99 

384 IBM VM/370: system Programmer's Guide 

paper tape 100 
punch-feed-read 99 
SET CLOCK command 99 
stacker selection 99 
STORE CLOCK command 99 
timing dependency 97 

resume execution 
BEGIN command 39 
GO subcommand of DEBUG command 39 

RETURN subcommand 
error messages 153 
format 153 
use 153 

RSCS (Remote Spooling Communications 
subsystem) 

command language 350 
command processing 357 
command summary 351 
DMTMAP 353 
DMTVEC 353 
external interruptions 358 
file management 356 
free storage 353 
functional information 355 
interruption handling 358 
I/O interruptions 359 
I/O logging output 360 
I/O logging record 360 
line allocation task 354 
line driver storage 354 
link definition 349 
link table 349 
links 349 
locations 349 
logging I/O activity 360 
message handling 358 
nonprogrammable remote terminals 349 
page allocation 355 
programmable remote stations 349 
queue element management 355 
remote stations 349 
spool file access 356 
spool file access task 354 
storage allocation 352 
storage, structure 352 
supervisor 353 
supervisor queue 353 
supervisor queue extension 353 
supervisor service routines 353 
SVC interruptions 358 
system control task 354 
tag slot queues 356 
task to task communications 357 
virtual storage management 355 
VM/370 spool system interface 350 

RSCS virtual machine 
disabled wait 
disabled wait 
disabled wait 
disabled wait 
disabled wait 
enabled wait 

RUNUSER (current 

S 

2i 
procedure 
X'001' 37 
X'007' 38 
X'011' 38 
21,38 
user) 120 

37 

SAM (sequential access methods), support of 
307 



save area 
BALBSAVE 27 
CMS system 296 
CMS system save area format 296 
FREESAVE 27 
SAVEABEA 27 
user save area format 296 

save areas 
BALBSAVE 121 
FBEESAVE 121 
Sl VEl BEl 121 

SlVEABEl (active save area) 27,121 
saved systems 214 
saved systems CMS 312 
saved systems 

how to save DOS 220 
how to save OS 216 
SlVESYS command 215 
using a saved OS 218 
when to save a system 216 
when to save OS 216 

SlVENCP command 83 
described 328 
ENTBY option 329 
execution described 329 
LIBE option 329 
~lME option 329 

SlVESYS command 214 
format 84 
responses 84 
use 84 

segment table 178 
SET CLOCK command 99 
SET command 

lSSIST operand 57 
format 57,103 
NOSVC operand 57 
operands 57 
SVC operand 57 
when to use 61,103 

SET BESERVE command 180 
SET subcommand 

error messages 155 
format 154 
use 154 

setting address stops 44 
setting program function keys 60 
setting tabs on your terminal 60 
shared segments 214 
SHUTDOWN operand, of the NETWOBK command 

338 
simulated OS supervisor 
simulation 200 
single instruction mode 
SIO (§gg Start I/O) 
SN1P macro 305 
spanned records, use of 
SPB (Set Page Boundary) 
SPIE macro 304 
spool file, manipulation 
spooling 181 
spooling terminal input 
spooling terminal output 
spooling via BSCS 181 
spooling 

considerations 225 
real 197 
virtual 196 

calls 302 

182 

308 
card 251 

240 

182 
182 

stacker selection 99 
ST1E macro 305 
Start I/O (SIO) instruction, reducing 201 
Start I/O (SIO) instructions, handling 201 
STAX macro 306 
STCP command 

format 85 
responses 85 
when to use 85 

STIMEB macro 305 
stop execution 

lDSTOP command 39 
BBE1K subcommand of DEBUG command 39 

stop tracing 
SVCTR1CE command 43 
TB1CE command 43 

storage dump 
CMS 31 
CP 26 

storage keys, virtual machine, printing 54 
storage locations 

real machine 
displaying 74 
printing 77 

virtual machine 
displaying 49 
printing 54 

storage protection 
fetch 179 
store 179 

storage requirements, Assembler 320 
storage 

allocation 282 
CMS 277 
releasing 283 

STOBE CLOCK command 99 
STOBE command 

format 62 
operands 62 
responses 64 
summary 41,42 
when to use 64 

store data into CAW, SET CAW subcommand of 
DEBUG command 42 

store data into control registers, STOBE 
command 42 

store data into CSW, SET CSW subcommand of 
DEBUG command 42 

store data into floating-point registers, 
STOBE command 41 

store data into general registers 
SET GPB subcommand of DEBUG command 41 
STOBE command 41 

store data into PSW 
SET PSW subcommand of DEBUG command 42 
STOBE command 42 

store.data 
STOBE command 41 
STOBE subcommand of DEBUG command 41 

store storage protection 179 
STOBE subcommand 

error messages 156 
format 156 
use 156 

storing information 44 
STOW macro 304 
STBINIT macro 278 
structure of BSCS storage 352 

Index 385 



SVC handling 
by user 290 
commands entered from the terminal 291 
invalid SVCs 290 
linkage 288 
os SVC simulation 290 
type of SVC 288 

SVC interrupt 
CMS internal linkage SVCs 269 
handling 192 
other CMS SVCs 269 
problem state 186,192 
supervisor state 186,192 

SVC operand, of CP SET command 57 
SVC 202 289 

search hierarchy 290 
SVC 203 289 
SVCOPSW (SVC old PSW) 167 
SVCSECT (SVC interrupt work area) 172 
SVCTRACE command 134 

format 160 
FPRS output line 162 
FPRSS output line 162 
GPRS AFTER output line 161 
GPRSB output line 161 
GPRSS output line 162 
interpreting the output 160 
N/D output line 161 
PARM output line 162 
summary 42 
summary of output 163 
use 37,160 

SYNADAF macro 306 
SYNADRLS macro 306 
SYSPRINT control statement 87 
system ABEND 29 
SYSTEM command 

format 65 
responses 65 
when to use 65 

system dump spool file, reading 245 
system name table (DMKSNT) 214 
system routine, abnormal termination of 29 
system symbol table, reading 246 
systea/370 information 363 

T 
TAB operand, of CP SET command 57 
tabs, setting for your terminal 60 
TCLEARQ macro 306 
terminal interrupt, in CMS 271 
terminal, setting tabs on 60 
TGET/TPUT macros 306 
TIME macro 304 
time management 178 
Time of Day (TOD) clock 237 
time slice 184 
timers 

clock comparator 237 
CPU timer 236 
interval timer 236 
pseudo timer 237 
Time of Day (TOD) clock 237 

timing dependency restrictions 97 

386 IBM VM/370: System Programmer's Guide 

TRACCURR (current trace table entry) 120 
TRACE command 

format 67 
operands 67 
responses 69 
summary 42 
use 31,32,34,37,71 

TRACE operand, of NETWORK command 344 
trace 

all user I/O operations, TRACE command 
42 

branches 
TRACE command 42 
TRACE command 43 

CCWs, TRACE command 43 
external interrupts, TRACE command 42 
instructions 

TRACE command 42 
TRACE command 43 

interrupts, TRACE command 42 
I/O interrupts, TRACE command 42 
privileged instructions, TRACE command 

42 
program interrupts, TRACE command 42 
real machine events, MONITOR command 43 
SVC interrupts 

SVCTRACE command 42 
TRACE command 42 

user operations, TRACE command 43 
TRACEND (end of trace table) 120 
tracing information 44 
tracing line activity, for a 3704/3705 
control program 337 

tracing 
CP trace table 93 
interrupts 93 
I/O 93 
NCP BTU 93 
queue drop 93 
run user requests 93 
scheduling 93 
storage management 93 
virtual 198 

TRACSTRT (start of trace table) 
transient area (CMS) 276 
TTIMER macro 305 
type (device) 131 
TYPE function statement 92 

U 
unexpected output 16 

120 

unexpected results (§ee ~!§Q problem 
types) 

reason for 32 
unit record device, sharing 181 
unproductive processing time 16 
user controlled device interrupts 271 
user directory 

reading 246 
updating 246 

USERSECT (User Area) 274 



V 
VARY operand, of the NETWORK command 342 
VCHBLOK 125 

VCHADD (virtual channel address) 125 
vCHSTAT (status; 125 
VCHTYPE (type) 125 

VCUBLOK 125 
VCUADD (virtual control unit address) 

125 
VCUSTAT (status) 125 
VCUTYPE (type) 125 

VDEVBLCK 126 
VDEVADD (virtual device address) 126 
VDEVCFLG (virtual console flags) 126 
VDEVCSW (virtual CSW) 126 
vDEVEXTN (virtual spool extension) 127 
VDEVFLAG (device dependent information) 

126 
VDEVIOB (active IOBLOK pointer) 126 
VDEVREAL (real device block address) 

126 
VDEVSFLG (virtual spooling flags) 127 
VDEVSTAT (status) 126 

virtual address 199 
virtual block multiplexer channel option 

210 
virtual console function 239 
virtual CPU 177 
virtual I/O devices 177 
virtual machine 177 
virtual machine assist feature 47 

described 208 
querying status of 82 
restrictions for use of 209 
use 59 
used to reduce real supervisor state 
time 208 

using 209 
with TRACE command 68 

Virtual Machine Facility/370 (§~~ VM/370) 
virtual machine 

ABEND dump 31 
abnormal termination 19,25,31 
CAW, displaying 49 
creation 177 
CSW, displaying 49 
directory 177 
disabled loop 21 
disabled loop procedure 34 
disabled looping condition 24 
disabled wait 20 
disabled wait procedure 24,36 
dispatching scheme 184 
enabled loop 22 
enabled loop procedure 34 
enabled looping condition 24 
enabled wait 20 
enabled wait procedure 24,37 
enabled wait with "real timer" option 

37 
enabled wait without "real timer" option 

37 
extended control registers 

displaying 49 
printing 54 

floating-point registers 
displaying 49 
printing 54 

general registers 
displaying 49 
printing 54 

interrupt handling by CP 177 

dedicated devices 181 
directory 180 
shared devices 181 
spooled devices 181 

I/O operation 201 
operating system 177 
performance options 204 
preferred 204 
PSW 183 

di~pl~ying 49 
prl.ntl.ng 54 

storage keys, printing 54 
storage locations 

displaying 49 
printing 54 

storage management 
directory 178 
virtual storage 178 

time management 
conversational user 178 
nonconversational user 178 
priority of execution 178 

unexpected results 19,25 
unexpected results procedure 32 
virtual storage locations, printing 54 

virtual operator's console 177 
virtual spooling 

card reader 196 
printer 196 
punch 196 

virtual storage 177 
virtual tracing 198 
virtual=real performance option 180,207 
virtual-to-real address translation 199 
VMBLOK 27,36,122 

VCUSTRT (address of VCUBLOK table) 125 
VMCHSTRT (address of VCHBLOK table) 125 
VMCOMND (last command) 122 
VMDSTAT (dispatching status) 122 
VMDVSTRT (address of VDEVBLOK table) 

126 
VMEXTINT (external interrupts) 124 
VMIOACTV (active channel mask) 124 
VMIOINT (I/O interrupts) 124 
VMPEND (interrupts pending) 124 
VMPSW (virtual PSW) 122 
VMRSTAT (running status) 122 

VMFDUMP command 103 
when to use 104 

VM/370 in a virtual machine 
accessing devices 224 
configuration 222 
devices, accessing 224 
directory definition 221 
example 225 
I.PL 223 
operation 223 
systems residence volume 222 
using DASD Dump Restore 221 
virtual disks 225 

VM/370 
control program 177 
Conversational Monitor System 265 

Index 387 



device types in 243 
DIAGNOSE instruction in 239 
directory 177,221 
in a virtual machine 221 
program states 183 
Remote Spooling Communications Subsystem 

349 
Volume Table of Contents (VTOC), support of 

307 

W 
wait (~~~ ~!~2 problem types) 
wait 35 
WAIT macro 303 
wait 

CP disabled wait 35 
CP enabled wait 36,99 
RSCS virtual machine disabled wait 
procedure 37 

RSCS virtual machine enabled wait 38 
virtual machine disabled wait messages 

36 
virtual machine enabled wait procedure 

37 
warm start 189 
WRITE macro 308 
iTO/iTOR macros 305 

I 
I (Examine) subcommand 

error messages 158 
format 158 
use 158 

388 IBM VM/370: System Programmer's Guide 

ICTL macro, 303 
IDAP macro 303 

Z 
ZAP command 

3 

CONSOLE operand 335 
control records 

* 335 
BASE 335 
END 335 
NAME 335 
REP 335 
VERIFY 335 

described 334 

3270, virtual console interface 247 
3704/3705 Communications Controllers 

generating a VM/370 system to support 
327 

introduction 325 
planning considerations 327 

3704/3705 control program, saving 247 
3704/3705 control programs 

controlling resources of 337 
dumping 337 
image saved on disk 328 
loading 328,337 
testing 337 

3704/3705 Emulation Program CEP) 325 
3704/3705 Network Control Program CNep) 

325 
3704/3705 Partitioned Emulation Program 

(PEP) 325 



~rn~ heChnical Newsletter 
I 

This Newsletter No. 

Date 

GN20-2662 

March 31, 1975 

Base Publication No. GC20-1807-3 

File No. S370-37 (VM/370 

Reiease 2 PLC 13) 

iBlVi Virtuai lViachine Faciiityi370: 
System Programmer's Guide 

fr) TD 1t...I ro~_ 1 n"'~ 
~ LUlU '-'VIp • .l7/J 

Previous Newsletters None 

This Technical Newsletter, a part of Release 2 PLC 13 of IBM virtual 
Machine Facility/370, provides replacement pages for your publication. 
These replacement pages remain in effect for subsequent VM/370 releases 
unless specifically altered. Pages to be removed and/or inserted are 
listed below. 

Title page;2 
Summary of 

Amendments 
Contents (4 pps) 
43,44 
57-60.1 
67-70 

81;82 
97-104.1 
117-120 
123,124 
175 
179,180 
189,190 

209-214 
218.1-218.3 
239-240.2 
245-246.1 
265-266.1 
271,272 

297,298 
315,316 
325-328 
331-336.6 
337-342.1 
374.1-374.7 

Changes or additions to the text and illustrations are indicated by a 
vertical line to the left of the change. 

SUMMARY OF AMENDMENTS 

This Technical Newsletter incorporates changes reflecting support for 
the following program features: 

- Vn/VS Handshaking 
• VM/370 Measurement Facility (new class G command, INDICATE; new 

operands to MONITOR command) 
• Support of IBM 3270 as a remote virtual machine console 
• Two additional options to the class G SET command (SET ECMODE, SET 

ISAM) 
• User formatted accounting records 

Note: Please file this cover letter at the back of your publication to 
provide a record of changes. 

IBM Corporation, VM/370 Publications, 24 New England Executive Park, Burlington, Massachusetts 01803 

Printed in U.s.A 



READER'S COMMENTS 

Title: ! 8M Virtual Machine 
Faci lity 1370: 

Order No. GC20-1807-3 

System Programmer's Guide 

Piease check or fiii in the items; adding expianations/ comments in the space provided. 

Which of the following terms best describes your job? 

o Customer Engineer o Manager o Programmer o Systems Analyst 
o Engineer o Mathematician o Sales Representative o Systems Engineer 
o Instructor o Operator o Student/Trainee o Other (explain below) 

How did you use this publication? 
o Introductory text o Reference manual o Student/ 0 Instructor text 
o Other (explain) ___________________________ _ 

Did you find the material easy to read and understand? 0 Yes 

Did you find the material organized for convenient use? 0 Yes 

Specific criticisms (explain below) 
Clarifications on pages 
Additions on pages 
Deletions on pages 
Errors on pages 

Explanations and other comments: 

o No ( explain below) 

o No (explain below) 

Thank you for your cooperation. No postage necessary if mailed in tht U.S.A. 



GC20-1807-3 

YOUR COMMENTS PLEASE . .. 

This manual is one of a series which serves as a reference source for 
systems analysts, programmers, and operators of I BM systems. Your 

comments on the back of this form will be carefully reviewed by the 
persons responsible for writing and publishing this material. All com­
ments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in 
utilizing your IBM system should be directed to your IBM representative 

or to the IBM sales office serving your locality. 

FOLD 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

POSTAGE WI LL BE PAID BY 

IBM CORPORATION 
VM/370 PUBLICATIONS 

24 NEW ENGLAND EXECUTIVE PARK 

BURLINGTON, MASS. 01803 

FOLD 

FIRST CLASS 

PERMIT NO. 172 

BURLINGTON, MASS. 

:~ 
: 3' 
:l> 
'0' 
• :::I ·tC 
: -i 
.;r 
• iii' 
:r 
·3' 
• III 

.co 

.~ 

.< · ..., .-+ 

.~ 

Ql 
(") · ~ . ." 
Ql 

.(") 

:~ 
• -..J ·0 · ., 
'Cf) 

:~ 
."tI 

: 0 
• (Q 
• VI' 

'G) ......•.........................................................•..•..•......•...•........................................ c 
FOLD FOLD : c.: 

: CD 

International Bu.lne .. Machine. Corporation 
Data Proce •• lng Dlvl.lon 
1133 We.tche.ter Avenue, White Plalnl, New York 10804 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Natlonl Plaza, New York, New York 10017 
(International) 

.~ 
::::I 
.-+ 

.CD 

.0. 

:::::1 
·c 
:(1) 

:?> 

G) 
n 
N 

·9 
..a 
OQ 
o 
" 'w 


	001
	002
	003
	004
	004a
	004b
	004c
	004d
	004e
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060.0
	060.1
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104.0
	104.1
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210.00
	210.01
	210.02
	210.03
	210.04
	210.05
	210.06
	210.07
	210.08
	210.09
	210.10
	210.11
	210.12
	210.13
	210.14
	210.15
	210.16
	210.17
	210.18
	211
	212
	213
	214
	215
	216
	217
	218.0
	218.1
	218.2
	218.3
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240.0
	240.1
	240.2
	241
	242
	243
	244
	245
	246.0
	246.1
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266.0
	266.1
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336.0
	336.1
	336.2
	336.3
	336.4
	336.5
	336.6
	337
	338
	339
	340
	341
	342.0
	342.1
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374.0
	374.1
	374.2
	374.3
	374.4
	374.5
	374.6
	374.7
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	replyA
	replyB

