File No. S370-37
Order No. GC20-1807-3

IBM Virtual Machine
Facility/370:
System Programmer’s Guide

Systems

| Release 2 PLC 13

This publication is intended for VM/370 system
programmers. A debugging section describes the pro-
cedures, commands, and utilities useful in debugging
and provides guidance in dump reading. A Control
Program (CP) section describes how CP works and
tells how to modify or better utilize CP. A Conver-
sational Monitor System (CMS) section describes
how CMS works, and describes in detail some
special features of CMS. The last two sections de-
scribe teleprocessing support for VM/370: one
section describes the IBM 3704 and 3705
Communications Controllers and the other
describes the Remote Spooling Communications
Subsystem (RSCS).

For the titles and abstracts of related publications,
refer to the latest IBM System/360 and System/370
Bibliography, GA22-6822, and its Virtual Storage
Supplement, GC20-0001.



GC20-1807-3 Page Modified by TNL GN20-2662, March 31,

Fourth Edition (January 1975)

This edition, together with Technical Newsletter GN20-2662 dated March
31, 1975, is a major revision of GC20-1807-2 and makes that edition and
Technical Newsletter GN20-2643 obsolete. This edition corresponds to
Release 2 PLC 13 (Program Level Change) of IBM Virtual Machine

Facility/370 and to all subsequent releases until otherwise indicated in
new editions or technical newsletters.

Changes are periodically made to the specifications herein; before using
this publication in connection with the operation of IBM systenms,
consult the latest IBM System/360 and System/370 Bibliography, Order No.
GA22-6822, and its Virtual Storage Supplement, Order No. GC20-0001, for
the editions that are applicable and current.

Technical changes and additions toc text and illustrations are indicated
by a vertical bar to the left of the change.

Requests for copies of IBM publications should be made to your 1IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. 1If the form has been removed, comments may be addressed to
IBM Corporation, VM/370 Publications, 24 New England Executive Park,
Burlington, Massachusetts 01803. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972, 1973,
1974, 1975

1975



This publication describes how to debug
VM/370 and how to modify, extend or
implement Control Progranm (CP) and
Conversational Monitor Systen (CHMS)
functions. This information is intended
for system programmers, system analysts,

and program personnel.

This publication consists
and two appendixes.

of five parts

"part 1:
discusses the
and procedures to

Debugging with vM/370%
CP and CMS debugging tools
follow when debugging.

This part is logically divided into three
topics. The first section "Introduction to
Debugging" tells you how to identify a
problem and 1lists guidelines to follow to
find the cause. The second section
"Debugging with CP" describes the CP

debugging commands and utilities, debugging
CP in a virtual machine, the internal trace

table and restrictions. A detailed
description of CP dump reading is also
included. The third section "Debugging
with CMs" describes the CMS debugging
commands and utilities, load maps, and
restrictions and tells you what fields to

examine when reading a CMS dump.

"Part 2: Control Program (CP)" contains
an introductory and functional description
of CP as well as guidance in implementing
some CP features.

"Part 3: Conversational Monitor System
{CHS) * contains an introductory and
functional description of CMS including how
CMS handles interrupts and SVC calls,
structures its nucleus and its storage, and
manages free storage. Information on
saving the CMS system and implementing the

Batch Facility is also included.

and 3705
Controllers" describes the
functions and uses of these programmable
units. Information is included on loading,
testing, and updating the control progranm.

“pPart 4. IBN 3704

Communications

"Part 5. Remote Spooling Communications
Subsystem (RSCS)" describes the functions
and uses of the component of VM/370 that
handles the transmission of files between
VM/370 users and remote programmable and

non-programmable stations.

Preface

"Appendix A: System/370 Information'
describes the System/370 extended PSW and
extended control register usage.

MULTI-LEAVINGY provides a
of MULTI-LEAVING:, a

"Appendix B:
detailed description

computer-to-computer communications
technique developed for use by the HASP
system and used by the RSCS component of
vM/370.

In this publication, the term 3330

series is used in reference to both the IBM
3330 pisk Storage, Models 1, 2, and 11, and
the IBM 3333 Disk Storage and Control,
Models 1 and 11. The term 2305 series is
used in reference to the IBM 2305 Fixed
Head Storage, Models 1 and 2. Also, any
reference to the IBM 2741 Terminal is also
applicable to the IBM 3767 Communications
Terminal unless noted otherwise.

The Glossary has been eliminated from
this publication. Amr expanded glossary is
available in the IBM Virtwal Machine
Pacility/370: Glossary and Master Index,
Order No. GC20-1813.

of Asseabler Language and
with programming concepts and
prerequisite to wusing this

Knowledge
experience
techniques are
publication.

References to a standalone dump occur in
several places in this publication. One
such program 1is the BPS Storage Print
program, Program No. 360P-UT-056.

PREREQUISITE PUBLICATIONS

Principles Operation,

Principles of Operation,

IBM 0S/VS and VM/370
Guide, GC33-4021.

Assembler Programmer's

IBM 0S/VS, DOSs/VsS, and VM/370 Assembler
Language, GC33-4010.

Knowledge of the commands and systen
functions of CpP, CHs, and RSCS is
corequisite.

t IBM Unregistered Trademark



CORECUISITE PUBLICATIORS | 0S/VS Data Management Macro Instructions,
| Order No. GC26-3793.
IBM Virtual Machine Pacility/370:
| 0S/¥S Supervisor Service and Macro
Planning and System Generation Guide, | Instructions, Order No. GC27-6979.
Order No. GC20-1801
IBM 2821 Control Unit Component Description
Command Langqugage Guide for General order No. GA24-3312.
Users, Order Ro. GC20-1804
Operator's Guide, Order No. GC20-1806 IBM 3211 printer, 3216 Interchangeable

Terminal Order No.

GC20-1810

User's Guide,

EESS SEZsaS Sm=n=

Remote Spooling Communications Subsystem

(RSCS) Users!'s Guide, Order No.
GC20-1816

Control Progqgram (CP) Program Logic,
order No. SY20-0880

Conversational Monitor System (CMS)

Program Logic, Order No. SY20-0881

Remote Spooling Communications Subsystenm

(RSCS) Proqram Logic, Order No.
SY20-0883
Note: References in text to titles of
corequisite VM/370 publications will be

given in abbreviated form.

Train Cartridqe, and 3811 Printer Control
Unit Component Description and Operator's
Guide, Order No. GA24-3543.

IBM 0S/VS Linkage Editor and Loader, Order

No. GC26-3813.
Introduction to the IBM 3704 and 3705
Communications Controllers, Order No.
GA27-3051.
IBM 3704 and 3705 Communications
Controllers Operator's Guide, Order VNo.
GA27--3055.

If the IBM 3767 Communication Terminal
is used by the system programmer as a
virtual machine console, the IBM 3767
Operator's Guide, Order No. GA18-2000 is

also a corequisite publication.



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

Summary of Amendments
for GC20-1807-3
VM/370 Release 2 PLC 13

VM/370 MEASUREMENT FACILITY Transmission Control Unit, or a
3704/3705 Communications Controller in
emulation mode. The remote 3270 user

New: Program Feature also has the capability of copying an
entire screen display on a 3284, 3286,

A new commmand (INDICATE) and an or 3288 printer at the remote location.

expansion cf the MONITOR command provide

a way to dynamically measure systen The following changes to this manual

performance. The general user can have reflect this new support:

displayed, at his terminal, certain

certain system 1load conditions and his e A new operand, PFnn COPY is added to

virtual system's usage of systen the CP SET command in "“Part 1:

resources. The system analyst can Debugging with VvM/370."

sample and record a wide variety of e The section on "CP Restrictions" is

system load data, I/0 activity, resource updated to include restrictions to

utilization, response data and this new support.

simulation data. e MWFigure 11. CP Control Block

Relationships" is updated.

A new section, "Performance e "part 4: IBM 3704 and 3705
Observation and Analysis" has been added Communications Controllers" is
to "part 2: Control Program (CP)."™ updated to include remote 3270

support.

VM/VS HANDSHAKING FEATURE

NEW OPERANDS FOR SET COMMAND

New: Program Feature
New: Program Feature
The VM/VS Handshaking feature is a

communication path between VM/370 and Two new operands to the SET command
0S/VS1 that makes each system control described in ™"Part 1: Debugging with
program aware of certain capabilities VM/370" allow the virtual machine user
and requirements of the other. The to enable and disablie +the ECHMODE and/or
following changes to this manual reflect ISAME options, dynamically.

this support:

e A new operand, PAGEX, is added to the
CP SET command in “Part 1: Debugging USER FORMATTED ACCOUNTING RECORDS
with VM/370.m

e A new section, "VM/VS Handshaking" is

added to "Part 2: Control Progran New: Program Feature
(CP) .

e A new Diagnose code 0 is added to the A virtual machine user may now initiate
"Diagnose Instruction in a Virtual the punching of an accounting card
Machine" section in "Part 2: Control containing up to 70 bytes of data, the
Program (CP) ." content and format of which he can

determine. The fcllowing changes to

this manual reflect this support:

IBM 3270 REMOTE SUPPORT e "Accounting Records for Virtual
Machine Users" in "Part 2: Control
Program (CP)" is updated to describe

New: Program Feature the implementaticn of this support.

¢ The section "Diagnose Instruction in
VM/370 now supports the TIBM 3270 a Virtual Machine" in "Part 2:
Information Display System as a remote Control Program (CP)" is updated to
virtual machine console attached via expand the function of Diagnose code
nonswitched point-to-point lines to a X'4C*' tc include this new support.

2701 Data Kdapter Unit, 2703



NEW DEVICE SUPPORT

New: Program Feature

The 3340 Direct Access Storage Facility
is now supported by VM/370. This
support includes:

e 3348 Data Module, Models 35 and 70
e Rotational Position Sensing
e PFixed Head Feature

This device support is reflected in the
following changes to this publication:

e "Pigure 12. CP Device Classes,
Types, Models and Features" is
updated.

e The INPUT AND OUTPUT control
statements for the DASD Dump Restore
Progranm, described in "part 2:
Control Program (CP)," are changed.

New: Documentation Only

vM/370 support for the IBM 3767
Communications Terminal (at 300bps) as
an IBM 2741 Communications Terminal is
reflected in an update to "Figure 12. CP
Device Classes, Types, Models and
Features".

New VM/370 Component

New: Program Peature

The Remote Spooling Communications
Subsystem (RSCS) has been 1included as a
component of the VM/370 system. Together
with the Control Program (CP) of VM/370,
it manages telecommunication I/0 devices
and lines used to automatically transfer
files between:

e VM/370 users and remote stations.

s Remote stations and other remote

stations.

e VM/370 users and remote HASP/ASP type
batch systems.

Summary of Amendments
for GC20-1807-3
VM/370 Release 2 PLC 11

e Remote stations and remote HASP/ASP
type batch systenms.

e Remote stations and a CMS Batch
virtual machine.

The addition of this new component is
reflected in the following changes and
additions to this publication:

e The Spooling Punctions" section in
"part 2: Control Program (CP)" has
been updated to include the remote
spooling capabilities of RSCS and the
addition of the spool file tag field
to all output spool files.

e The "Diagnose Instruction in a
Virtual Machine" section in ®Part 2:
Control Program (CP)" has been
updated to include a new subfunction
code X'OFFF' to Diagnose code 14.
RSCS uses this new option to retrieve
spool file block and tag data for
files that it is to process for
transmission.

e The "CMS Batch Facility" section in
"part 3: Conversational Monitor
System (CMS) has been updated to
include remote job entry via RSCS.

e "part 5: Remote Spooling
Communications Subsystem (RSCS)" has

been added to provide the systenm

programmer with pertinent information

on the new component of VM/370.

AN READ DOS FILES

New: Program Feature

CMS now supports the reading of DOS
files as well as O0S data sets. This
support is described in the "0S Data
Management Simulation" section of "Part
3: Conversational Monitor System (CMS)".
The "VM/370: Restrictions" section in
"part 1: Debugging with VM/370% is
updated to remove the restriction
against reading DOS files.



HBANGED

ENHANCEMENTS TO THE VIRTUAL MACHINE PUBLICATION CONTENT

New: Program Feature
Changed: Documentation Only
Programs such as DOS/VS, VS1 and VS2

that use block multiplexer channel Information on planning considerations
operations can now be run under VM/370 and generation of the 3704,/3705 control
in virtual block multiplexer mode. The program, formerly in "Part 4: IBM 3704
mode of operation for all channels, and 3705 Communications Controllers" has
except channel 0 and any channel to been moved to the V¥M/370: Planning and
which a channel-to-channel Adapter System Generation Guide.

(CTCA) is attached, is selectable via a

DIRECTORY option or the DEFINE Command. The information about generating and

testing the standalone program that
controls the 2780 formerly in "Part 5:

This new feature is described under IBM 2780 Data Transmission Terminal" has
“Functional Information® in "Part 2: been moved to the V¥M/370: Planning and
Control Program (CP)"“, System Generation Guide.

MISCELLANEQOUS CHANGES

Two new ABEND codes, PGT008 and PRGO19,
have been added to "Figure 10. CP ABEND
Codes". Many other changes, to numerous
to detail, have also been included in
this publication.



NETHWORK

PARTITIOR

3704/3705 COMMUNICATIONS CONTROLLERS
CONTROL PROGRAM (NCP) AND

ONED EMULATION PROGRAM (PEP)

VM/370 nov supports all three of the
370473705 control prograams:

¢ Emulation Program (EP)
e Network Control Program (NCP)
e Partitioned Emulation Program (PEP)

The following
support:

changes reflect this

e The Preface is updated.

e A new CP ABEND code, NLDOOi, is added
to "Figure 10. CP ABEND Codes" in
"Part 1: Debugging with VM/370".

The following changes to "Part 4: IBM
3704 and 3705 Communications
Controllers" also reflect this support:

e A new section, "VNM/370 Support of the
3704/3705" is added to the "Planning
Considerations" section. This new
section describes the extent to which
VM/370 supports the three 3704/3705
control programs.

e The NAMENCP macro is updated in the
“"planning Considerations" section.

e The required options for the SYSCNTRL
macro are updated in Step 4 of the
"Generating and Loading the 3704,/3705
Control Prograam" section.

Summary of Amendments

for GC20-1807-2

as updated by TNL GN20-2643
VM/370 Release 2 PLC 4

e The considerations for the use of the
Multiple Terminal Access (MTA)
feature with a PEP control progran
are updated in Step 4 of the
"Generating and Loading the 3704,/3705

Control Program" section.

e The "Special Considerations for the
Stage 1 Assembly" section of "“Step 6.
The Stage 1 Generation Procedure" is
updated.

e A new section, "Special
Considerations for Loading the EP
3704/3705 Control Program", is added
to Step 10 of the "Generating and
Loading the 3704/3705 Control
Program" section.

e A new step, "Step 11. Logging On
Through the 3704/3705%", is added to
the "Generating and Loading the
3704/3705 Control Program" section.

e The "Testing the 3704/3705 Control
Program® section is wupdated to add
information about using the NETWORK
command.

MISCELLANEOUS

Changed: Documentation only

A nev section "CMS Interface for Display
Terminals"®, is included in "Part 3:
Conversational Monitor System (CMS) ."

The index is corrected.



NEW DEVICE SUPPORT

New: Program Feature

The following IBM devices are now
supported:

e 1IBM 3330 Disk Storage, Model 11

e IBM 3333 Disk Storage and Control,
Model 11

e IBM 3420 Magnetic Tape Units, Models
4, 6, and 8

e IBM 3272 Control Unit, Model 2 (local
attachment)

e IBM 3277 Display Station, Model 2
(local attachment)

e 1IBM 3066 System Console, Model 2

This device support caused the following
changes to this publication:

CP Device Classes,
Features" is

e "Figure 11.
Types, Models and
updated.

e The SET command described in "Part 1:
Debugging with VM/370" contains
support for the 3270 program function
keys.

e The INPUT AND , OUTPUT control
statements for the DASD Dump Restore
Program, described in "Part 2:
Control Program (CP)," are changed.

e The "DIAGNOSE Code 58 -~ 3270 virtual
console Interface" section of "Part
2: Control Program (CP)" describes
the DIAGNOSE interface for a 3270.

0S/VS2 RELEASE 2 UNIPROCESSOR SUPPORT

New: Program Feature

A new section, "0S/VS2 Release 2
Uniprocessor under VM/370," in “Part 2:
Control Program (CP)," describes this
support.

Summary of Amendments
for GC20-1807-2
VM/370 Release 2 PLC 1

VM/370 SUPPORTS FETCH PROTECTION

HNew: Program Feature

A new section, "Storage Protection," in
"Part 2: Control Program (cp),"
describes both store and fetch storage
protection.

VIRTUAL MACHINE ASSIST FEATURE

New: Program Feature
The virtual machine assist feature is a
combination of a CPU feature and VK/370
programming which improves the
performance of VM/370. The discussion,
"yirtual Machine Assist Feature," in the
"preferred Machines" section of "Part 2:
Control ©Program (CP)," describes this
feature.

Changes for this feature appear in "Part
1: Debugging with VM/370% in the
descriptions of the following CP
commands:

e ADSTOP
e SET

e TRACE
e QUERY

The "Program States" section of "Part 2:
Control Program (CP)" is also updated.

SVC 76 ERROR RECORDING

New: Program Feature

All virtual machines that issue an SVC
76 to record errors signal ¥M/370 to do
the recording for then. SVC 76 support
caused changes to "Part 2: Control
Program (CP)" in

e The "SVC Interrupts" section

e "Pigure 20. SVC Interrupt Handling"



IBM 3704/3705 COMMUNICATIONS
CONTROL PBOGRAM

New: Program Feature

All terminal input and output (not just

the input and output froam the virtual
machine operating systen) is now
spooled. This spooling change is

described in
section of
(CP) .

the "Spooling Facilities"®
"part 2: Control Program

Program Feature

0S data
in the
section
Monitor
list in
is also
restriction

CMS now supports the
sets. This change is described
"Q0S Macro Simulation under CMS"
of "Part 3: Conversational

System (CMS) ." The restriction
"part 1: Debugging with VM/370"
updated to remove the

against reading 0S data sets.

reading of

CMS MACROS DESCRIBED

New: Documentation Only
Four CMS

documented,
publication:

not
this

macros, previously
are described in

e DMSABN is described in the W“CHMS
ABENDs" section of "Part 1: Debugging
with VM/370."

e DMSFREE, DMSFRET, and DMSFRES
described in the "Free
Management" section of
Conversational Monitor
(CHS) .»

are
Storage
"part 3:
Systen

CONTROLLERS

New: Program Feature

This publication is wupdated to describe
the 3704/3705 control program under the
control of VM/370. The changes are:

4: IBM 3704 and
Controllers,"
introduction, planning

e A new chapter, "Part
3705 Communications
contains an

considerations, guidelines for
generating and loading the 3704/3705
control program, and a description of
the commands used for testing the
3704/3705 control prograna.

e Two new abnormal termination codes
(BNHOO1 and RNH0O02) are described in
"Figure 9. CP ABEND Codes."

e M"Figure 11. CP Device Classes, Types,

Models, and Features" is updated.
e A pnew DIAGNOSE code is described in
the U"DIAGNOSE Code 50 -- Save the
3704/3705 Control Progranm Image
(Privilege Class A, B, or C Only)"
section of "Part 2: Control Program
(CP)."

AND CMS INTERNAL CHANGES

New: Program and Documentation
Programming changes have caused control
block changes for both CP and CMS. The
changes to the CP control blocks are
described in:

e The "virtual and Real Control Block
Status" section of "Part 1: Debugging
with vM/370.v

e M"Figure 10. Control Block
Relationships."

e WFjgure 11. CP Device Classes,
Types, Models, and Features."

The changes to the CMS control blocks

are described in:
e M"Figure 15. CMS Control Blocks."
e M"Figure 36. CMS Storage Map."

For CP, the abnormal termination codes
have changed. “Figure 9. CP ABEND
Codes" reflects the following changes:

e Codes CFM001, CNSO01 through CNS008,
PTR006, OQCNOO1, QCNOO2 and VATO001
have been deleted from CP.

e Codes PRG016, PRGO17, PRGO18, PTRO11,
PTRO12, RNHOO1, and RNHOO2 have been
added to CP.

For CP, the internal trace table now
traces machine checks, entry to the
scheduler, and the unstacking of
IOBLOKs and TRQBLOKs. "Pigure 8. CP
Trace Table Entries" reflects these
changes.



ATTENTION HANDLING

New: Program and Documentation

Attention handling has been revised.
Not all terminals have "attention"
keys. The number of attention
interrupts required depends on command
settings and the environment of the
virtual machine. Consequently, the
phrase "signal attention"® is used
instead of ‘"press the attention key
[once|twice]."

COMMAND ENHANCEMENTS

Changed: Program and Documentation
Several CP commands have additional
operands and features. The commands
(bCpP, DISPLAY, DNMCP, and DUMP) are
described in "Part 1: Debugging with
VM/370." Also, "Figure 6. Summary of
VM/370 Debugging Tools" 1is updated to
reflect the command changes.

PUBLICATION CCNTENT CHANGED

Changed: Documentation Only
Information about the Assembler virtual
storage requirements and overlay
structures has been added to "Part 3:
Conversational Monitor System (CMS)."
This information was in the ¥VM/370:

previously.

The information about generating and
testing the standalone program that
controls the 2780 has been moved from
the VM/370: Planning and Systenm
Generation Guide to the "Part 5. IBM
2780 Data Transmission Terminal" section

of this publication.

MISCELLANEOUS CHANGES

Changed: Program and Documentation

Changes to "Part 1: Debugging with

e The VDUMP command has been renamed
the VMFDUMP command.

e The description of the PAGING operand
of the QUERY command contains more
detailed information.

Chapges to #part 2: Control Program

(CR)":

e The description of the PRIORITY
operand of the SET command described
in the "Preferred Machines" section
contains more detailed information.

e The MINIDASD command is no 1longer
supported. The IBCDASDI Virtual Disk
Initialization progranm replaces
MINIDASD.

e The Set Page Boundary (SPB) card is
no longer required for every page
boundary in the 1loadlist. See the
“"CP Loadlist Requirements" section.

e A new section, "Removing Optional
support from the CP Nucleus," has
been added.

Changes to "Part 3: Conversational
Bonitor System (CHS)":
e #Figure 37. CHS Command {(and Kequestj

Processing" has been redrawn to
include more detail.

e The "BATEXIT2: Processing the Batch
Facility /JOB Control Card" section
contains additional information.



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975
Contents
Function Statement . . . . . . . . . 88
PRINT/TYPE Function Statement. . . . 92
PART 1: DEBUGGING WITH VM/370. . . . . . 11 Debugging CP on a Virtual Machine. . . . 93
CP Internmal Trace Tabie. . . « « « . . . 93
INTRODUCTION TO DEBUGGING. . . . . . « . 13 CP Restrictions. . . . ¢« « ¢ ¢ ¢« ¢« « . . 96
How To Start Debugging . . . . . . - « 13 Dynamically Mcdified Channel Programs. . 96
Does a Problem Bxist? . . . . . . . . 14 Minidisk Restrictions. . . . . . . . . . 96
Identifying the Problem. . . . . . . . 16 Timing Dependencies. . . . . . ¢« . . . . 97
Analyzing the Problem. . . . . . . . . 22 CEU Model-Dependent Functions. . . . . . 98
How To0 Use VM/370 Facilities to Debug. . 26 Virtual Machine Characteristics. . . . . 98
ABEND. ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o« o o o« « » o« 26 CMS Restrictions . . « « . « . « « « . 101
CP ABEND . v ¢ ¢ ¢ o o o « « s o« « o« 26 Miscellaneous Restrictions . . . . . . .102
CP Termination without a Dump. . . . 27 ABEND DuUmpS. . « « « e ¢ s e e « o . <103
CMS ABEND. . . . . « e e e . . 28 Using the VMFDUMP Command e o « « . 2103
Virtual Machine ABEND (Other Than How to Print A CP Abend Dump From
CMS) e ¢« ¢ o o o o o o o o « o o « « 31 Tape. « « o « o « e s« e« o o o o« o o104
Unexpected Results . . . « « « « . . . 32 Reading CP ABEND Dumps P )
Unexpected Results inCP . . . . . . 32 Reason for the ABEND . . . . . « « 105
Unexpected Results in a Virtual Collect Information. . . . . . . . . .120
Machine « ¢ ¢« v ¢« 4 ¢ o &« « o & « o 32 Register Usage . . « « ¢« &« « « « .« « .120
Loop . . e e o o e o o ¢ o o & 33 Save Area Conventions. P A |
cp Dlsabled Loop e o o o o e« o o o o 33 Virtual and Real Control Block Status. 122
Virtual Machine Disabled Loop. . . . 34 VMBLOK « ¢ ¢ &+ o « o o o o o o o« o« 2122
Virtual Machine Enabled Loop . . . . 34 VCHBLOK. . . « o « ¢ ¢ ¢ « « « « « +125
WAIT ¢ ¢ o ¢ o o o o « o« o o o « o« « o« 35 VCUBLOK: o« ¢« ¢ o « o o o o » « o « o125
CP Disabled Wait . . . . . . . . . . 35 VDEVBLOK . ¢ &« « ¢ o o « o« o o « « 4126
CP Enabled Wait. . . . . . . . . « . 36 RCHBLOK. . ¢ ¢ « o o « o o o o « « 127
Virtual Machine Disabled Wait. . . . 36 RCUBLOK. « « « ¢ & « « o « « « « - .128
Virtual Machine Enabled Wait . . . 37 RDEVBLOK . . . e e o o o o « o o128
RSCS Virtual Machine Disabled Walt . 37 Identifying a Pageable Module. . . . .133
RSCS Virtual Machine Enabled Wait. . 38
Summary of VM/370 Debugging Tools. . . . 39 DEBUGGING WITH CMS . . . « « o « « « o 134
Comparison of CP and CMS Facilities for CMS Debugging Commands . . . . . . . . .134
DebUgging « « o o o o o o « o o« « o« « o U4 DEBUG:e « « « o o « =« o o « o« o o« » « 135
SVCTRACE e = e s e o o s o e a2 o & 160
DEBUGGING WITH CP. . . . .« e o o o o o U5 DASD Dump Restore Service Program and
CP Commands Used To Debug 1n the Virtual How To Use It . . . « « ¢« « &« « .« . . .164
Machine . . . . ¢ ¢ & ¢« &« ¢« &« &« o o & o U5 Invoking DDR under CMS . . . . . . . .164
ADSTOP ¢ & ¢ o« e o o o o o o o o« « o« « « L6 Invoking DDR as a Standalone Program . 164
BEGIN: o ¢ o « o o o o o « o o o o o o o« U8 Nucleus Load Map . « « « « « « + « » « 165
DISPLAY. v v ¢ ¢ o« o o o o « o « o« « « « 49 Load MAP « « « o o o « ¢ s « o »+ o« « o« +165
DUMP « ¢ ¢ 4« o v o ¢ o« o o« o o« o o o « o« 54 Reading CMS ABEND DUDPS. « « « =« « « o o167
SETe &« o o o o « & e o e o o o o o « o 57 Reason for the ABEND . . . . . . . . .167
STOREe &« ¢ o« o o o o« o o o a « o « o« =« o+ 62 Collect Information. . . . . . . . . 171
SYSTEM ¢ ¢ ¢ « ¢« o ¢« o ¢ o o » o o« o« « o 65 Register Usage . « . « « « o o « « « <173
TRACE. . . . . . e e e o o o s s = « 67
CP Commands for System Programmers and PART 2: CONTROCL PROGRAM (CP) . . . . . .175
System Analysts . . Y 4
DCP. ¢ ¢ 4 ¢ ¢ o ¢ o o o o « o o o o« o « 13 VM/370 « &« ¢ . . . . « . 177
DMCP o ¢ ¢ ¢ o o o 2 o o o o o o « o« « o« 16 Introduction to the VH/370 Control
LOCATE « o o ¢ o o o o o o o o « o o « o« 19 PIOGram « « o = o o o o o o o o o « o 177
MONITOR. &« ¢ ¢ o & o o « o o o « o o« « o 81 Virtual Machine Time Management. . . .178
QUERY. . &« ¢ ¢ ¢ o o « o o o s o « o« « « 82 Virtual Machine Storage Management . .178
SAVENCP. . o ¢ ¢ ¢ ¢ « o o o o o« « « « o 83 Virtual Machine I/0 Management . . . .180
SAVESYS. & 4 ¢ ¢ o o o o o o« « « « « « « 84 Spooling Functions . . . . . . « . . .181
STCP . . . . . . . 85 CP CommandsS. « « « « ¢ o « o« « « « « o182
DASD Dump Restore Program (Standalone
Version) « v v o v ¢ &« 4 o 4 « o« « « « « 86 PROGRAM STATES . « « « « « « « « « « « 183
DDR Control Statements . . . . . . . . 86
I/0 Definition Statements. . . . . . 86 USING CPU RESOURCES. . « « .« . « « « . .184
INPUT/OUTEUT Control Statement . . . 86 QUueue Te & & ¢ o o o o « o « « o o« « o o184
SYSPRINT Control Statement . . . . . 87 CUEUE 2. o o & o o o o o o « « o « « o o184



GC20-1807-3 Page Modified by TNL GN20-2662,

INTERRUPTION HANDLING. . . . . . .
Program Interrupt. . . . . . . . .
Machine Check Interrupt. . . . . .
SVC Interrupt. « « ¢ ¢ o« « o o o+ o
External Interrupt . . . . . . . .

s & s+ & o

FUNCTIONAL INFORMATION . .
Performance Guidelines . .
General Information. . .
Virtual Machine I/0. . .
Paging Considerations. . .
Preferred Virtual Machines . .

. .186
. .186
. .186
. 186
. .187

. .188
. 200
.« 200
. 201
. 202
. .204

The Virtual Block Multiplexer Channel

Ooption. « . &« ¢ & ¢ & ¢« ¢ ¢ o . .

PERFORMANCE OBSERVATION AND ANALYSIS
Load Indicators. « ¢« « o « « o« « o =
The Indicate Command . . « « . « «
The Class G INDICATE Command .
The Class E INDICATE Command .
The MONITOR Command. . « « . « .
Implemented Classes. « « « «
VM Monitor Response to Unusual
Tape Conditions .« . ¢« . ¢« « « & @
VM Monitor Considerations. . . . .
VM Monitor Data Volume and
Overhead. « « « « « . . « e e
Load Environments of VH/370. « o .

ACCOUNTING RECORDS . . . . . « e e

. 210

.210.1
.210.1
.210.1
.210.2
.210. 4
.210.8
210.12

210.14
210.14

210.15
210.16

. 211

Accounting Records for Vlrtual Machine

USELS v v ¢ o o o o o o o a o o o
Accounting Records for Dedicated
DEVICES v ¢ o ¢ ¢ o o o o o o o
User Formatted Accounting Records.
Operational Notes. . . . . . . . .
User Accounting Optiomns. . . . . .

GENERATING NAMED SYSTEMS . . . .

Configuring the NAMESYS Macro (Module

DMKSNT) &« o ¢ ¢ ¢ o o o o « o o o «
Using the SAVESYS Command. . . . . .
Determining When To Save a System. .

Special Considerations for Shared
Segments. . . . 4 ¢ ¢ 4 e 4 6 o .
SavVing O0Se « o o o o ¢ o o o o o o

VM/VS HANDSHAKING. . . .
Closing CP Spool Files .
Pseudo Page Faults . . .
VS1 Nonpaging Mode . . .
Miscellaneous Enhancemen

ts .
0S/VS2 RELEASE 2 UNIPROCESSOR UNDER
VM/370. ¢ v & 4 ¢ o o o o« o o« o o &

DOS UNDER VM/370 . « . . . «
System Generation. . . . . .
Standard label Cylinder. . .
System Residence . . . . . .

o e

-
« o o
-
.

VM/370 OPERATING IN A VIRTUAL MACHINE

ENVIRONMENT . . . ¢ & ¢ & o o o o «
VM/370 Directory Definition. . . . .
Virtual Machine Configuration. . . .

. 211

<211
.212
.212
.213

« o o

. 214

.« <214
. .215
.« 216

. 2216
. 216

.218.1
.218.2
.218.2
.218.2
.218.3

- «219

. 220
. 220
. .220
. <220

. 221
. 221
. 222

Virtual System Residence Considerations.222

Virtual IPL and Operation. . . . . .
Accessing Devices. . « « + « o o

. 223
. <224

March 31, 1975

Spooling Consider
An Example of VM/37
VM/370. & . . . .

TIMERS IN A VIRTUAL
Interval Timer . .
CPU Timer. . . . .
TCD Clock. . . . .
Clock Comparator .
Pseudo Timer . . .
Pseudo Timer Star
Pseudo Timer DIAG

DIAGNOSE INSTRUCTIO
MACHINE . . . . &
DIAGNOSE Code 0 --
Extended-Identific
DIAGNOSE Code 4 --
DIAGNOSE Code 8 --
Function. . . . .
DIAGNOSE Code C --
DIAGNOSE Code 10 --
DIAGNOSE Code 14 --
Manipulation. . .
DIAGNOSE Code 18 --
DIAGNOSE Code 1C --
DIAGNOSE Code 20 --
DIAGNOSE Code 24 --
Features. . . .
DIAGNOSE Code 28 -
Modification. . .
DIAGNOSE Code 2C --
of LOGREC . . . .
DIAGNOSE Code 30 --
LOGREC Data . . .
DIAGNOSE Code 34 --
Spool File. . . .
DIAGNOSE Code 38 --
Table . . . . .
DIAGNOSE Code 3C -
DIAGNOSE Code u4C --
Cards for the Virt
DIAGNOSE Code 50 --
Control Program Im
DIAGNOSE Code 58 --
Console Interface
DIAGNOSE Code 5C: E

CP CONVENTIONS . .
CP Coding Conventio
CP Loadlist Require

HOW TO ADD A CONSOL

PRINT BUFFERS AND F
Adding New Print Bu
UCS Buffer Images
USCB Buffer Image
Forms Control Buffe

PART 3: CONVERSATIO
(CMS) v v v v « .

INTRODUCTION TO CMS
The CMS Command Lan
The File System. .

Program Development

ations. . . . . . . .225
0 Running under
e e« e 4 e & e o o « 4225

. . .236
. . .236
. . .236
.237
. . 2237
e . . .237
t I,0 . . . .238
NOSE. « « « « « . . .238

MACHINE.

D S S S )
¢ o & 8 o
« o e

« s 8 s s s s

.
.

N IN A VIRTUAL

e e o e o s s o < s 2239
Store

ation Code. . . . . .239

Examine Real Storage.240

Virtual Comnsole

e e e o o o o e o o 2200
Pseudo Timer. . . .240.1
Release Pages. . .240.1
Input Spool File

.« e . « o o <2080.2

Standard DASD I/0. .2u41
Clear I/0 Recording.242
General I/0. . . . .242
Device Type and

e e o s e e = o « o <243
Channel Program

e o s « s e e o o o o204
Return DASD Start

e e o o e e o o o o 205
Read One Page of

e e e o o o e o o o <245
Read System Dump

© o o s o o o o o o 245
Read System Symbol

e e o s e e o o o o 2446
VM/370 Directory . .246
Generate Accounting

val User. . . . . . .246
Save the 3704/3705

Age ¢ « ¢ o e e o o LJ2U7
3270 virtual

e e e e = e e & o o 2247

rror Message Editing.248

e o s o e o o o o o 2089
NSe « o o o o o o« « 249
ments . . . . . . . .251

E FUNCTION TO CP. . .253

ORMS CONTROL. . . . .254
ffer Images . . . . .255
e o e o o o o « o « <255
S « o o o o o o o o 257
T o« o o o« o o « « o «260

NAL MONITOR SYSTEM
e e e o s e o o e o 4263

« 265
. <265

guage

.266
.268

* & 0 .
s o &
e o s e
* o o o
« s o 0
o o &



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975
INTERRUPT HANDLING IN CHMS. . . . . . . .269 Estaklishing the Proper Linkage. . . .317
SVC InterruptionS. . « « « « « « « « « <269 An Example of Creating an Auxiliary
Internal Linkage SVCs. . . . . . . . .269 Directory . « « ¢ « ¢ ¢ ¢« & & ¢ + . . .318
Sther SVCS v 4 ¢ o v ¢ o o o o o o o <269
Input/Output Interruptions . . . . . . 270 ASSEMBLER VIRTUAL STORAGE REQUIREMENTS .320
Terminal Interruptions . . . e e . . #2771 Overlay Structures . . . . . « . « « « .320
Reader/Punch/Frinter Interruptlonq - . 27 Prestructured Overlay. . . . . . . . .320
User Controlled Device Interruptions . .271 Dynamic Load Overlay . . . . . . . . .322
Program Interruptions. « . . . . « . . .271
External Interruptions . « . . . . . . .272 PART 4: IBM 3704 AND 3705
Hachine Check Interruptions. . . . . . .272 CCMMUNICATIONS CONTROLLERS. . . . « . .323
FUNCTIONAL INFORMATION . . « « « « « o 4273 INTRODUCTION TO THE IBM 3704 and 3705
Register Usage . « « ¢ o« ¢ &« o o« o « « 273 COMMUNICATIONS CONTROLLERS. . . . . 325
Structure of DMSNUC. . . .+ ¢ ¢« & o « « 273 VH/370 Support of the 3704 and 3705. . .325
USERSECT (User ATea) « « . + o« « o« « 274 Emulation Program (EP) with VM/370 , .32¢
DEVTAB (Device Table). . . . . .« . . .274 Network Control Program (NCP) with
Structure of CMS Storage . . . . . . . .275 VM/370. & o & o o« @ o o o o o o« o« o« 4326
Free Storage Management. . . . e« .« <278 Partitioned Emulation Program (PEP)
GETMAIN Free Storage Management. . .« +278 with VM/370 . . . . . . . e o o o $327
DMSFREE Free Storage Management. . . .279 Generating a VM/370 Systenm that
Releasing Allocated Storage. . . . . .284 Supports the 3704 and 3705. . . . . . .327
DMSFREE Service Routines . . . . . . .284
Error Codes from DMSFRES, DMSFREE, LOADING THE 3704,/3705 CONTROL PROGRAM. .328
and DMSFRET . . . . « ¢« « « « « « « .286 Save the 370473705 Contrcl Program
CMS Handling of PSW Keys . . . . . . .287 Image on Disk . . . . . . . . . . . . .328
CMS SVC Handling . . . « « . . . . . .288 The SAVENCP Command. . « . . . . . . .328
SVC Types and Linkage Conventions. . .288 Execution of the SAVENCP Program . . .329
Search Hierarchy for SVC 202 . . . . .290 Load the 3704,/3705 Control Program . . .330
User and Transient Program Areas . . .291 The NETWORK LOAD Command Line. . . . .330
Called Routine Start-up Table. . . . .294 Execution of the NETWORK LOAD Command.330
Returning to the Calling Routine . . .295 Special Considerations for Loading
CMS Interface for Display Terminals. . .297 the EP 3704/3705 Control Program. . .331
Special Considerations for Loading
HOW TC ADD A COMMAND OR EXEC PROCEDURE the NCP and PEP 3704,/3705 Control
TO CMSe ¢ o o o o o o o o o« o o o « o 299 ProgramsS. . o« « « « o o o« e . . 2331
Logging on Through the 3704/3705 « . . 332
0OS MACRO SIMULATION UNDER CMS. . . . . .300 Turn the Power OD. <« « « « « « « « « 332
0S Data Management Simulation. . . . «300 Check for an Online Message. . . . . .332
Handling Files that Reside on cns Follow the Special Sign-on Procedures
DiSKS 4 o o o ¢ o o o o o o s « « « 2300 for 3704/3705 Lines that Are in NCP
Handling Files that Reside on 0S or Mode and also Have the MTA Feature. .333
DOS DiSkS o & « & o« o o s « o « o« « 301 Logging on After an NCP Control
Simulation Notes . . . . . . . . . . .303 Program Has Abnormally Terminated . .334
Access Method Support. . . . . . . . 307 Arplying PTFs to the 3704/3705 Load
Reading OS Data Sets and DOS Files . .309 LibTary « « « o o o o o« o « o = o« o« « +334
The FILEDEF Command. . . . . . . . . 311 The ZAP Service Program. . . . . . . .334
ZAP Input Control Records. . . . . . .336
SAVING THE CMS SYSTEM. . . . . . . « « .312 Special Considerations For Using
Saved System Restrictions for CMS. . . .312 The ZAP Service Program . . . . . .336.6
CMS BATCH FACILITY . . . . . . . <313 TESTING THE 3704/3705 CONTROL PROGRAM. .337
Resetting Batch Facility System L1m1ts <313 NETWORK. . . « ¢ ¢ ¢ ¢ o o « . e o . +337
Writing Routines To Handle Special How to Use the NETWORK Comnand e o o <337
Installation Input. . . . . . . . . 313 NCPDUMP Service Program and How to Use
BATEXIT1: Processing User-Spec1f1ed Tte ¢ o ¢ o ¢ o o o o o o o o o & o« o <345
Control Language€. « « « « « « « « « <314 Using the NCPDUMP Command. . . . . . .345
BATEXIT2: Processing the Batch
Facility ,/JOB Control Card. . . . . .314 PART 5: REMOTE SPOOLING COMMUNICATIONS
EXEC Procedures for the Batch Facility SUBSYSTEM (RSCS) e o ¢ o« « o o « o o « 347
Virtual Machine . . . . . e« . <314
Data Security under the Batch Pac111ty 315 INTRODUCTION TO RSCS . . . . . . . . . .349
IPL Performance Using a Saved System . .315 Locations And Links. . . . . . . . . . .349
Remote Stations. . . . . . e « « o - 2349
AUXILIARY DIRECTCRIES. . . . « « « « » <316 VM/370 Spool System Interface. e e« o o« 4350
How To Add an Auxiliary Directory. . . .316 RSCS Command Language. . . . . . . . . .350
Generation of the Auxiliary Directory.316
Initializing the Auxiliary Directory .316 STRUCTURE OF RSCS VIRTUAL STORAGE. . . .352



GC20-1807-3 Page Modified by TNL GN20-2662,
RSCS SUpPErvisSor. . « « « « « o« o« « « « 2353
Supervisor Queue Extemsion . . . . . . .353
Free Storage . . < <« ¢« <« ¢ o« &« « « « & 4353
System Control Task. . . . . . . . .« . .354
Free Storage and Line Drivers. . . . . .354
Line Allocation Task . . . . « . « « « .354
Spool File Access Task . . . « . . « . .354
FUNCTIONAL INFORMATION . . . . « « - . 355
Virtual Storage Management . . . . . . .355
Page Allocation. « . .« . . . . . . . .355
Queue Element Management . . . . . . .355
File Management. . . « « « ¢« . « « « . .356
Tag Slot Queues. . « « « « « « « « « .356
Spool File ACCESS. . 4 v« « « « s « « 4356
Task-to-Task Communication . . . . . . .357
RSCS Command Processing. . « « « « « « .357
RSCS Message Handling. . . . . . . . . .358
Interruption Handling. . . . . « o o« o358
External Interruptions . . . . . . . .358
SVC Interruptions. . . . . -« « o 358
I/0 Interruptions. « « « « « . « « « <359

FIGURES
Figure 1. ABEND MeSSAQge€S.ceccescccassces tl
Figure 2. VM/370 Problem TypeS.........18
Figure 3. Does a Problem Exist?........23
Figure 4. Debug Procedures for Waits
ANd LOOPSeceececcscccccccceaesllt
Figqure 5. Debug Procedures for
Unexpected Results and an
ABEND...ceceescocsacnccnaccesld
Figure 6. Summary of VM/370 Debugging
TOOlSeceeceaccacssccccnsnansael’
Fiqure 7. Comparison of CP and CMS
Facilities for Debugging.....44
Figure 8. Annotated Sample of Output
from the TYPE and PRINT
Functions of the DDR
Prograleccceccesccsccccecascsccssd2
Figure 9. CP Trace Table Entries.......95
Figure 10. CP ABEND Co0d€S..cccceccecees.106
Figure 11. CP Control Block
RelationsShipSececeecacacsaas 12U
FPigure 12. CP Device Classes, Types,
Models, and FeatureS........131
Figure 13. Summary of SVC Trace Output
LlineSeecccacssccasacecacannaslb63
Figure 14. Sample CMS Load MapPeecasoeco.166
Figure 15. CMS Control BlockS..........168
Figure 16. CMS ABEND COd€S.ccecacccssas 169
Figure 17. CP InitializatioN...........189
Figure 18. Real I/0 Control Blocks.....190
Figure 19. Virtual I/0 Control Blocks..191
Figure 20. SVC Interrupt Handling......192
Figure 21. External Interrupt Handling.193
Figure 22. Program Interrupt Handling..194

March 31, 1975
LCGGING I/O ACTIVITY . . « « « « « « . 360
AEPENDIX A: SYSTEM/370 INFORMATION . . .363
Control Registers. . . . . +« « « « « o« .363
APPENDIX B: MULTILEAVING . . . . « . . .367
MULTI-LEAVING in VM/370. . . . . . . . .367
MULTI-LEAVING Philosophy . . . . . . . .367
MULTI-LEAVING Control Specification. . .369
Record Control Byte (RCB). . . . . . .370
Sub-Record Control Byte (SRCB) . . . .371
String Control Byte (SCB). . . . . . .373
Block Control Byte (BCB) . . . . . . .373
Function Control Sequence (FCS). . . .374
AEPENDIX C: VM MONITOR TAPE FORMAT
AND CONTENT . . . ¢ ¢ « « « « « « « 2374.1
Header Record. . . « « ¢« « & o « « o« .374.1
Data Records . . ¢« .+ « ¢ o ¢ o « « o .374.2
INDEX. . . e o e s e e e e o o o o o <377
Figqure 23. Pagingecccecccccesccccacscsss 195
Figure 24. Virtual Spooling..ce.ce.ceec...196
Figure 25. Real Spooling......ccece....197
Figure 26. Virtual Tracing.....c.......198
Figure 27. Virtual-to-Real Address
TranslatioN...ceecececaaanaa. 199
Figure 28. Storage in a Virtual=Real
Machin€...cececececcconeaeeseas207
Figure 29. Formats of Pseudo Timer
InformationNeceeceeceseceacssal3?
Figure 30. UCSB Associative Field
ChaTt.eeeceeccnecacancacassss258
Figure 31. CMS File SysteMeccccceccee..267
Fiqure 32. Devices Supported by a CMS
Virtual Machine....ceeeeee..275
Figure 33. CMS Storage MaPe.cececeecceeees277
Figure 34. CMS Command (and Request)
ProcessSingeecececceeeccecase293
Fiqure 35. PSW Fields When Called
Routine StartsS..c.cececeseec.294
Figqure 36. Register Contents When
Called Routine Starts.......294
Figure 37. Simulated OS Supervisor
CallS.eiceceececcccccaccacsasall2
Figure 38. An Overlay Structure........321
Figure 39. RSCS Command Summary........351
Figure 40. RSCS Storage Allocation.....352
Figure 41. Control Register Allocation.363
Figure 42. Control Register
AssignmentS...cceecececese.. 364
Figure 43, The Extended Control PSW
(Program Status Word).......365
Fiqure 44. A Typical MULTI-LEAVING

Transmission BloCk...ceea....368



Part 1: Debugging with Viv/370

This debugging section contains the followiag information:

Introductory Information

Control

How to star* debugging

How to use VM/370 facilities to debug ABENDs,
results, loops, and waits

Summary of VM/370 debugging tools

....... E

Comparison of CP and CHS debugging tools

Program Information

Debugging CP on a virtual machine
Commands useful in debugging

DASD Dump Restore program
Internal trace table

Restrictions

ABEND dumps

Reading CP ABEND dumps

Control block summary

Conversational Monitor Sysiesm Information

Debugging commands

DASD Dump Restore Progran
Nucleus load map

Reading CMS ABEND dumps
Control block summary

unexpected

Part 1: Debugging with VM/370 11






Introduction to Debugging

The VM/370 Control Program manages the resources of a single computer
such that multiple computing systems appear to exist. Bach "virtual
computing system," or virtual machine, is the functional equivalent of
an IBM System/370. Therefore, the person trying to determine the cause
of a VM/370 software problem must consider three separate areas:

1. The Control Program (CP) which controls the resources of the real
machine. '

2. The virtual machine operating system running under the control of
CP, such as CMs, RsCs, 0S, or DOsS.

3. The problem program, which executes under the control of a virtual
machine operating systen.

Once the area causing the problem is identified, the appropriate
person should take all available information and determine the cause of
the problen. Most likely, the IBM Field Engineering Program Systems
Representative or system programmer handles all problems with CP, CHMS,
and RSCS; information that 1is helpful in debugging CP and CMS is
contained in this publication. The application programmer handles all
problem program errors; techniques for application program debugging are
found in the V¥M/370: Command Lanquage Guide for General Users.

If the problem is caused by a virtual machine operating system (other
than CMS and RSCS), refer to the publications pertaining to that
operating system for specific information. However, use the CP debugging
facilities, such as the CP commands, to perform the recommended
debugging procedures discussed in that other publication. The IBM Field
Engineering Program Systems Representative or system programmer most
likely handles problems with virtual machine operating systenms.

If it becomes necessary to apply a PTF (Program Temporary Fix) to a
component of VM/370, refer to the VM/370: Plapnning and System Generation
G 3

w2Aa Farm Aotk ad : : =
uide for detailed information on applying PTPs.

HOW TO START DEBUGGING

Sl S e s am——

Before you can correct any problem, you must recognize that one exists.
Next, you must identify the problem, collect information and determine
the cause so that the problem can be fixed. When running VM/370, you
must also decide whether the problem is in CP, the virtual machine, or
the problem progranm.
A good approach to debugging is:
1. Recognize that a problem exists.
2. Identify the problem type and the area affected.

3. Analyze the data you have available, collect more data if you need
it, then isolate the data that pertains to your problen.

4, Pinally, determine the cause of the problem and correct it.

Part 1: Debugging with VvM/370 13



DOES A PROBLEM EXIST?

There are four types of problems:

1. Loop

2. Wait state

3. ABEND (Abnormal End)
4. Incorrect results

The most obvious indication of a
of a program. Whenever
issued. Figure 1
type of ABEND for these messages.

problem is the abnormal termination
a program abnormally terminates, a
lists the possible ABEND messages

message is
and identifies the

r 1
| Message | Type of ABEND |
i |
| (Alarm rings) |CP ABEND, system dumps to |
| DMKDMP908I SYSTEM FAILURE CODE xxxxxx | disk. Restart is automatic. |
| | l
| Optional Messages: | |
| | i
| DMKDMP90S5W SYSTEM DUMP FAILURE; |If the dump program encoun- |
| PROGRAM CHECK | ters a program check, ma- |
| DMKDMP906W SYSTEM FAILURE; MACHINE | chine check or fatal I/0 i
| CHECK, RUN SEREP | error, a message is issued |
| DMKDMP907W SYSTEM DUMP FAILURE; FATAL | indicating the error. CP |
| I/0 ERROR | enters the wait state with |
i | code 3 in the PSH. |
| | |
| | 1
| DMKCKP900OW SYSTEM RECOVERY FAILURE; | If the checkpoint program |
| PROGRAM CHECK | encounters a program check, |
| DMKCKP901W SYSTEM RECOVERY FAILURE; | a machine check, a fatal 1/0|
| MACHINE CHECK, RUN SEREP | error or an error relating |
| DMKCKP902W SYSTEM RECOVERY FAILURE; | to a certain warm start |
| FATAL I/0 ERROR — NUCL CYL | cylinder or warm start data |
| — WARM CYL | conditions, a message is |
| DMKCKP904W SYSTEM RECOVERY FAILURE: | issued indicating the error |
} INVALID WARM START DATA | and CP enters the wait state]
| DMKCKP910W SYSTEM RECOVERY FAILURE; | with code 7 in the PSW. |
| INVALID WARM START CYLINDER | |
| DMKCKP911W SYSTEM RECOVERY FAILURE; | |
| WARM START AREA FULL | |
| | |
| | |
| DMKWRM902W SYSTEM RECOVERY FAILURE; |If the warm start progranm i
| FATAL I/O ERROR | encounters a severe error, al
| DMKWRM903W SYSTEM RECOVERY FAILURE; | message is issued indicating}|
| VOLID xxxxx ALLOCATION ERROR | the error and CP enters the |
| CYLINDER xxX | wait state with code 9 {
| DMKWRMI904W SYSTEM RECOVERY FAILURE; | in the PSW. |
| INVALID WARM START DATA | i
| DMKWRM909W SYSTEM RECOVERY FAILURE; | |
| VOLID xxxxxx NOT MOUNTED | |
L. 3
Figure 1. ABEND Messages (Part 1 of 3)

14 IBM VM/370: System Programmer's Guide



Message | Type of ABEND

DMKDMP908I SYSTEM FAILURE, CODE xxxxxx |CP ABEND, system dumps to

DMKCKPI960I SYSTEM WARM START DATA SAVED! tape or printer. The systenm

DMKCKP961W SYSTEM SHUTDOWN COMPLETE stops; the operator must IPL
the system to start again.

Optional Messages

PROGRAM CHECK ters a program check, a ma-—
DMKDMP906W SYSTEM DUMP FAILURE; chine check or fatal I/0
MACHINE CHECK, RUN SEREP error, a message is issued
DMKDMP907W SYSTEM DUMP FAILURE; FATAL indicating the error. CP
I/0 ERROR enters the wait state with
| code 3 in the PSH.

|
|
|
|
|
DMKDMP905W SYSTEM DUMP FAILURE; |If the dump program encoun-
|
|
|
|
|

If the dump cannot find a
defined dump device and if
no printer is defined for
the dump, CP enters a dis-
akled wait state with code 4}
in the PSW. |

i

|CP termination with automatic|

| restart. |

i |

DMKMCH610I MACHINE CHECK SUPERVISOR | The machine check handler en-|
DAMAGE | countered a nonrecoverable |

| error with the VM/370 con- |
|

|

e . s S — — —— . — — s —— s

| trol program.

|

DMKMCH6111I MACHINE CHECK SYSTEM |The machine check handler en-—|
INTEGRITY LOST | countered an error that can-—|

{ not be diagnosed; system |

| integrity, at this point, |
| is not reliable. {
J

e

Figure 1. ABEND Messages (Part 2 of 3)

Part 1: Debugging with VM/370 15



1

Message | Type of ABEND

|

|
|CP termination without auto- |

| matic restart. |

| |

DMKCCH603W CHANNEL ERROR, RUN SEREP, |There was a channel check |
RESTART SYSTEM condition from which the |
channel check handler could |
not recover. CP enters the |
wait state with code 2 in |
the PSW. |
|

|

|

|

|

{

(

{

|

|

DMKCPI955W8 INSUFFICIENT STORAGE FOR | The generated system requires
vM/370 | more real storage than is

| available. CP enters the
| disabled wait state with
{ code 00D in the PSHW.

DMSABN148T SYSTEM ABEND xxx
CALLED FROM XxxxxXxX

|CMS ABEND, system will accept
| commands from the terminal.

| Enter the DEBUG command and

| then the DUMP subcommand to |
| have CMS dump storage on the]
| printer.

Ot hers
Refer to 0S and DOS publication
for the abnormal termination machine, the messages issued|

|

| terminates on a virtual

|
messages. | and the dumps taken are the |

|

|

|

. {

|

When 0S or DOS abnormally i
|

same as they would be if 0S |
or DOS abnormally terminatedj

on a real machine. {
]

p-_.—u_-—._-...-._._u_.__.-_u-..-_“_..--_.-“_.-._-_;—H_T

Figure 1. ABEND Messages (Part 3 of 3)

Another obvious indication of a problem is unexpected output. If your
output is missing, incorrect, or in a different format than expected,
some problem exists.

Unproductive processing time is another symptom of a problem. This
problem is not as easily recognized, especially in a time sharing
environment. .

IDENTIFYING THE PROBLEM

Two types of problems are easily identified: abnormal termination is
indicated by an error message, and unexpected results become apparent
once the output is examined. The looping and wait state conditions are
not as easily identified.

When using VM/370, you are normally sitting at a terminal and do not
have the 1lights of the CPU control panel to help you. You may have a
looping condition if your program takes 1longer to execute than you
anticipated. Also, check your output. If the number of output records or
print lines is greater than expected, the output may really be the same
information repeated many times. Repetitive output usually indicates a
program loop.

16 IBM VM/370: System Programmer's Guide



Another way to identify a loop is to periodically examine the current
PSW. If the PSW instruction address always has the same value, or if the
instruction address has a series of repeating values, the program
probably is looping.

The wait state is also difficult to recognize when at the terminal.
Again, the console lights are unavailable. If your program is taking
longer than expected to execute, the virtual wmachine may be in a wait
state. Display the current PSW on the terminal. Periodically, issue the
CP command

QUERY TINE
and compare the elapsed processing time. When the elapsed processing
time does not increase, the wait state probably exists.

Figure 2 helps you to identify problem types and the areas where they
may occur.

Part 1: Debugging with VM/370 17



1 )
|Problem|

Where (

Type |ABEND Occurs|

Distinguishing Characteristics

A

(o e T e T ey S T ey - G S T — T T —— T v —— T — T o— — — " — O — . — T — T — —— " —— — O — o O o —am— —

BEND CP ABEND

DMKDMPI908I

appears on the CPU console.

The alarm rings and the message

SYSTEM FAILURE, CODE xXXXXX
In this instance,

the system dump device is a disk, so the systen

dumps to disk and automatically restarts.
an error occurs in the dunmp,
warmstart program, CP enters the
after issuing one or more of the

messages:
DMKDMPI905W
DMKDMPIY06W

DMKDMPIO7W
DMKCKP90OW

DMKCKP90 W
DMKCKP902W
DMKCKPIOUW
DMKCKP9 10W
DMKCKP9 11W
DMKWRM902W

DMKWRM903W

DMKWRMIO04W

DMKWRMI09W

If
checkpoint, or
wait state
following

SYSTEM DUMP FAILURE;
SYSTEM DUMP FAILURE;
RUN SEREP

SYSTEM DUMP FAILURE;
SYSTEM RECOVERY FAILURE;
CHECK
SYSTEM
CHECK,
SYSTEM
ERROR
SYSTEM RECOVERY FAILURE;

INVALID WARM START DATA

SYSTEM RECOVERY FAILURE;

INVALID WARM START CYLINDER

SYSTEM RECOVERY FAILURE;

WARM START AREA FULL

SYSTEM RECOVERY FAILURE; FATAL I/0
ERROR

SYSTEM RECOVERY FAILURE;

VOLID xxxxxx ALLOCATION ERROR
CYLINDER xxx

SYSTEM RECOVERY FAILURE;
WARM START DATA

SYSTEM RECOVERY FAILURE; VOLID
XXXXXX NOT MOUNTED

PROGRAM CHECK
MACHINE CHECK,

PROGRAM
RECOVERY FAILURE;

RUN SEREP
RECOVERY FAILURE; FATAL I/0

MACHINE

INVALID

FATAL I/O ERROR

CP ABEND
l
|
|

DMKDMP908I
DMKDMP960I
DMKDMPI961W

one Oor more

DMKDMPSO5W
DMKDMPI06W

DMKDMP907W
DMKCKP90OW

DMKCKPI01W
DMKCKPY02W
DMKCKPI10W

DMKCKPI911W

|The following messages appears on the CPU console

SYSTEM FAILURE, CODE XXXXXX
SYSTEM WARM START DATA SAVED
SYSTEM SHUTDOWN COMPLETE

IThe system dumps to tape or printer and stops.
The operator must IPL the system to restart.
| an error occurs in the dump or checkpoint pro—
| grams, CP enters the wait state after issuing

of the following messages:

SYSTENM DUMP FAILURE; PROGRAHM CHECK
SYSTEM DUMP FAILURE; MACHINE CHECK,
RUN SEREP

SYSTEM
SYSTEM
CHECK
SYSTEM
CHECK,
SYSTEM
ERROR
SYSTEM RECOVERY FAILURE;
INVALID WARM START CYLINDER
SYSTEM RECOVERY FAILURE;
WARM START AREA FULL

RECOVERY FAILURE; PROGRAM

RECOVERY FAILURE; MACHINE
RUN SEREP

RECOVERY FAILURE; FATAL I/0

If

DUMP FAILURE; FATAL I,/O ERROR

e o e e . T e s e e s . e P S o ST - S . T . ST — T s SIS P o S M o T S S — — — St — T — — —— —— —— T e

Fi

18

gure 2.

VM/370 Problem Types (Part 1 of 5)

IBM VM/370: System Programmer's Guide



|Proklen | Where

1
[

| Type | ABEND Occurs | Distingquishing Characteristics |
|

ABEND |{CP termination|An unrecoverable machine check error has |
(Cont.) with auto— | occurred. One of the following messages: i

|

matic start

| DMKMCH610I MACHINE CHECK SUPERVISOR DAMAGE
| DMKMCH611I MACHINE CHECK INTEGRITY LOST

| appears on the CPU console. The system is

| automatically restarted.

nn
wvr

termination|An unrecoverable channel check error has
without auto—| occurred. The message:
matic restart| DMKCCH603W CHANNEL ERROR, RUN SEREP,

| RESTART SYSTEM
| appears on the CPU console, and CP enters
| wait state.

Virtual
Machine
ABEND (CHMS)

|The CMS message

| DMSABM148T SYSTEM ABEND xxx CALLED FROM

| XXXXXX

| appears on the terminal. The system stops

| and waits for a command to be entered on

| the terminal. In order to have a dump

| taken, issue the CMS DEBUG command and then
i the DUMP subcommand. ‘

Virtual

(other than

|
(
{
|
|
|
i
|
|
|
{
|
|
|
i
{
|
(
|
|
i
|
{
l
|
| CMS)
|
|
|
l
|
i
{
|
|
|
(
|
|
|
(
|
|

Machine ABEND| virtual machine, the messages issued and

IWhen 0S or DOS abnormally terminates on a

| the dumps taken are the same as they would
| be if 0S or DOS abnormally terminated on a
| real machine.

|VM/370 may terminate or reset a virtual

| machine if a nonrecoverable channel check

| or machine check occurs in that virtual

| machine. One of the following messages:

| DMKMCH616I MACHINE CHECK; USER userid

| TERMINATED

| DMKCCH604I CHANNEL ERROR; DEV xxx; USER

| userid; MACHINE RESET

| to the system operator at the CEU console.

| Also, the virtual user is notified that his
| machine was terminated or reset by one of

| following messages:
{ DMKMCH6191I MACHINE CHECK; OPERATOR
| TERMINATED
| DMKCCH606I CHANNEL ERROR; OPERATOR
| TERMINATED

Unexpected|CP
Results |

(If an operating system, other than CMS,

| executes properly on a real machine, but
{ not properly with CP, a problem exists.

| Inaccurate data on disk or system files
| (such as spool files) is an error.

Machine

(PO mmm TED e SR G e D Gen S — — T — T —— T — O — oy D o S — T — —— O — " — " —— T o — T oy G . — T — — o — — — — —

|
|
|
(
|Virtual
|
(
I
|

|If a program executes properly under the

| control of a particular operating system
| on a real machine, but does not execute

| correctly under the same operating systenm
| with VM/370, a problem exists.

b o S s o . S G — . — S G S —_— —— . — —— — T —— — — T — o — " —— — N — D — . —— G o— N " o - — —

Figure 2. VM/370 Problem Types (Part 2 of 5)

Part 1: Debugging with VM/370 19



| Problen | Where |

Type | ABEND Occurs |

Distinguishing Characteristics

[ T e TR cme S s e TR e G . SR e S e T . - — D — A — T —— — A — — — —— O —— ——— T —— —— — T —— T — T — — — T — O~ ———

=
[+

e
(g

wait

Disabled CP (The CPU wait light is on. Also, pressing

the REQUEST key on the operator's console,
or the equivalent action, leaves the
REQUEST PENDING light on. If the message
DMKMCH612W MACHINE CBECK TIMING PFACILITIES|
DAMAGE, ROUN SEREP |
appears on the CPU console, a machine check]
(probable hardware error) caused the CP
disabled wait state. If the message
DMKCCH603W CHANNEL ERROR, RUN SEREP,
RESTART SYSTEM
appears on the CPU console, a channel check
(probable hardware error) caused the CP
disabled wait state. If the message
DMKCPI955W INSUFFICIENT STORAGE FOR VM/370
appears on the CPU console, the control
program has entered a disabled wait state
with code 00D in the PSW. Either the
generated system is larger than the real
machine size, or a hardware machine mal-
function prevents VM/370 from using the
necessary amount of storage. If the message
DMKPAGY15E CONTINUOUS PAGING ERRORS FROM
DASD xxx
appears on the CPU console, the control
program (CP) has entered a disabled wait
state with code OOF in the PSW. Consecutive
hardware errors are occurring on one or
more VM/370 paging devices.

—— - — ——

|
|
|
|
|
|
|
|
|
[
|
|
(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
|
{
| wait |
|

Enabled CP |IThe CPU console light is on, but the system

accepts interrupts from I/0 devices.

|Disabled |The VM/370 Control Program does not allow a

| virtual |
| machine wait |
|

virtual machine to enter a disabled wait
state or certain program loops. Instead, CP
issues one of the following messages:
DMKDSP4US0OW CP ENTERED; DISABLED WAIT PSW
DMKDSP4S1W CP ENTERED; INVALID PSH
DMKDSPUS2W CP ENTERED; EXTERNAL INTERRUPT
LOOP
DMKDSP453W CP ENTERED; PROGRAM INTERRUPT
LOOP

Enabled
virtual
machine wait

A PSW enabled for I/C interrupts is loaded.

|CMS types a blip character for every 2

Nothing happens if an I/0 device fails to
issue an I/0 interrupt. If a prcgram is
taking longer to execute than expected,
periodically issue the CP command, QUERY
TIME. If the processing time remains un-
changed, there is probably a virtual
machine enabled wait.

seconds of elapsed processing time. If the
program does not end and blip characters
stop typing, an enabled wait state probably
exists.

e o o e - . . T —— S SIS e e e S G . Gmn - e S . T — T - . —— S - S - T — — aan G S —— —

Figure 2. VM/370 Problea Types (Part 3 of 5)

20

IBM VM/370: System Programmer's Guide



L
|Problen | Where
Type | ABEND Occurs | Distinguishing Characteristics

Wait {Disabled RSCS
{cont.} wait

The RSCS operator is notified of the wait
state by CP issuing the message

DMKDSPU4SOW CP ENTERED; DISABLED WAIT PSW
If, in addition, the message
DMTINIYO02T IPL DEVICE READ I/O ERROR

appears on the RSCS console, an unrecover-
able error has occurred while reading the
RSCS nucleus from DASD storage. RSCS
enters a disabled wait state with a code
of 011 in the PSW.

program check handler is activated, RSCS
enters a disabled wait state with a code of
007 in the PSW.

——— e S e S — D — . —— T —— " avm- S e 1 o —— — o

If a program check occurs after the program|
check handler is activated, RSCS enters a |
disabled wait state with a code of 001 in |
the PSWH. One of the following messages mayj
also appear on the RSCS console:

DMTREX090T PROGRAM CHECK IN SUPERVISOR —
RSCS SHUTDOWN
DMTREX091T INITIALIZATION FAILURE — RSCS

|
i
|
{
|
|
|
|
|
|
{
|
|
i
|
| If a program check occurs before the
|
{
|
i
|
|
|
|
|
|
|
|
|
| SHUTDOWN

Enabled RSCS |RSCS has no task ready for execution. A

vwait | PSW, enabled for external and I/O ‘
| interrupts, is loaded with a wait code of
| all zeroes.

|CP disabled |The CPU console wait light is off. The
i loop i problem state bit of the real PSW is off.
| { No I/0 interrupts are accepted.

=
o
o
o

|
|CP enabled | There is no such condition.

| loop |

|

| Virtual |The program is taking longer to execute than|
| machine { anticipated. Signalling attention from the |

| disabled loop| terminal does not cause an interrupt im the|
| virtual machine. The virtual machine opera-|
| tor cannot communicate with the virtual |
| machine's operating system by signalling |
| attention. |

. ]

(O mm S S —— ——— — T — ) p—  p— — — — — — — —— —— — o — — o — a—— " o— O o T mmm — m— —— — g > — —

Figure 2. VM/370 Problem Types (Part 4 of 5)

Part 1: Debugging with VM/370 21



T

{Proklen | Where |

| Type | ABEND Occurs | Distinquishing Characteristics

Loop {Virtual Excessive processing time is often an indi-
(cont.) machine cation of a loop. Use the CP QUERY TIME

|

|
enabled loop | command to check the elapsed processing
{ time. In CMS, the continued typing of the
| blip characters indicates that processing
| time is elapsing. If time has elapsed,
| periodically display the virtual PSW and
| check the instructicn address. If the same
| instruction, or series of instructionms,
| continues to appear in the PSW, a loop
|

|
|
|
|
|
(
|
|
|
| probably exists.

[ o e —— — — — — —
b o e e e e - — — — . —— )

Fiqure 2. VM/370 Problem Types (Part 5 of 5)

ANALYZING THE PROBLEM

Once the type of problem is identified, the cause of it must be
determined. There are recommended procedures to follow. These
procedures are helpful, but do not identify the cause of the problem in
every case. Be resourceful. Use whatever data you have available. If
the cause of the problem is not found after the recommended debugging
procedures are followed, it may be necessary to undertake the tedious
job of desk-checking.

The section, "How To Use VM/370 PFacilities To Debug," describes
procedures to follow in determining the cause cf various problems that
can occur in the Control Program or in the virtual machine. (See the
VM/370: Command Language Guide for General Users for information on

using VM/370 facilities to debug a problem program.)

If it becomes necessary to apply a Program Temporary Fix (PTF) to a
VM/370 component, refer to the VM/370: Planning and System Generation
Guide for detailed information on applying PTFs. Figure 3, Figure 4,

and PFigure 5 summarize the debugging process from identifying the
problem to finding the cause.

22 IBM VM/370: System Programmer's Guide



Does a problem exist? se—

{ ART \

J

Is there an ABEND condition ?

If the message

DMKDMP908! SYSTEM FAILURE, CODE XXX XXX

Gis0lE and
the alarm rings,
this is a CP ABEND.
The system dumps to disk
and automatically
performs IPL, ————"®#

If the messages

DMKDMP908! SYSTEM FAILURE, CODE XXXXXX
DMKCKP9I60! SYSTEM WARMSTART DATA SAVED
DMKCKP961W SYSTEM SHUTDOWN COMPLETE

appear on the console,
this is a CP ABEND.

The system dumps to tape

or printer and stOps, ———ge- @

If the message

DMSABNI148T SYSTEM ABEND XXX,
CALLED FROM YYYYYY

appears on the terminal,

this is a CMS ABEND.———

1f an ABEND message
from the virtual machine appears
on the terminal,
this is an ABEND in the
operating system controlling

this virtual machine. ——@

Otherwise, an ABEND
condition does not exist,

RESULTS

HAS

AMOUNT OF

\ DEBUGGING
YEV ANY
MESSAGES
NO
S~—
YES ANY
UNEXPECTED

AN EXCESSIVE

TIME ELAPSED

No problem exists

YES

Figure 3.

GO TO'w

'

®

Unexp d Results?

1

If an operating system which

executes properly on a real machine

fails to execute properly under VM/370,
there are unexpected results
inCP. ~——oo—

If a program which executes under

the control of an operating system on

a real machine fails to execute correctly
with the same operating system under
VM/370,

there are unexpected results

in the virtua! machine. ———#=
If the program’s output is
inaccurate or missing,

there are unexpected resuits
in the problem program.

P | 5 there a wait or Loop?

If pressing the REQUEST key on the operator’s
console leaves the REQUEST PENDING light on,
a CP disabled wait state exists.

The CPU console light will be on. —— g
2 If the CPU console wait light is on,
the system is in a CP enabled wait state. —= w

3 If the real PSW problem bit is OFF,
there is a CP loop, ———————m v

n If any of the following messages
DMKDSP450W CP ENTERED; DISABLED WAIT PSW
DMKDSP451W CP ENTERED; INVALID PSW
DMKDSP452W CP ENTERED; EXTERNAL INTERRUPT
LoopP
DMKDSP453W CP ENTERED; PROGRAM INTERRUPT
Loop
appears on the terminal,
there is a disabled wait or an interrupt loop in the

virtual machine. ——————w

= If pressing the ATTN key once does not cause
R on interrupt,
there is a disabled loop in the virtual machine. x

<e]

(2F)
n if processing has ceased in the virtual
machine without reaching end-of-job, hd
the virtual machine is in an

enabled wait state and no /O interrupt
has occurred,  ———————————~

7 If processing time exceeds normal expectations,
the virtual machine may have an enabled loop. d

a... %

If the output is redundant
check for a loop. ——am

Qtherwise, check for a wait or

%
®

Does a Problem Exist?

Part 1: Debugging with VM/370

\
®

®= Refer to the /BM Virtual Machine Facility/370:
Command Language Guide for General Users,
GC20-1804.

23




&

Debug Procedures for a Wait

CP Disabled Wait

Press SYSTEM RESTART button to cause a CP ABEND
dump to be taken.

IPL.

nnﬁ

CP Enabled Wait

Use ALTER/DISPLAY console mode (if available), to display real PSW and CSW. Also,
display general and extended control registers and storage locations X"00'—X'100’,

Press SYSTEM RESTART button to cause a

G @
f
-ﬂﬁ

Figure

24

G GG
N

a

CP ABEND dump to be taken.

Use the dump to check the status of each VMBLOK. Also,
check RCHBLOK, RCUBLOK, and RDEVBLOK for each device.

oa

Virtual Machine Disabled Wait

Use CP commands (CMS users may use the CMS DEBUG command) to display
the PSW, CSW, general registers, and control registers.

Use the CP DUMP command {or CMS DUMP subcommand) to
take a dump.

Virtual Machine Enabled Wait

Take a dump.

Debug Procedures for a Loop

CP Loop

Use ALTER/DISPLAY console mode (if available) to
display real PSW, general registers, control
registers, and storage locations X‘00'—-X'100".

Press SYSTEM RESTART button to cause a CP
ABEND dump to be taken.

3 Examine the CP internal trace table to see where the loop is.

Virtual Machine Disabled Loop

Use the CP TRACE command to trace the loop.

Display the general registers and control registers
via the CP DISPLAY command.

w

Hlﬂa

Take a dump using the CP DUMP command.

Examine the source code.

Virtual Machine Enabled Loop

Trace the loop. Display the PSW, general registers,
and extended control registers.

Take a dump.

Examine source code.

ﬂﬂﬁ

Debug Procedures for Waits and Loops

IBM VM/370: System Programmer's Guide



G

Figure

5.

Debug Procedures for Unexpected Results

Unexpected Results in CP

Check that the program is not violating any
CP restrictions.

Check that the program and operating system running
on the virtual machine are exactly the same as those
that ran on the real machine.

Use the CP TRACE command to trace CCWs, SI10s, and interrupts.
Look for an error in CCW translation or interrupt reflection.

If disk 1/0 error, use the CP DDR (DASD Dump Restore)

, use 20 2

program to print the contents of any disk.

T

.

Unexpected results in a virtual

Check that the program executing on the virtual machine is
exactly the same as the one that ran on the real machine.

Make sure that operating system restrictions

are not violated.

Use CP TRACE to trace all /O operations.

Debug Procedures for an ABEND

CP ABEND

Find out why CP abnormally terminated. Examine the
PROPSW, INTPR, SVCOPSW, and CPABEND fields in the PSA
from the dump.

Identify the module that caused the ABEND.

Examine the SAVEAREA, BALRSAVE, and FREESAVE areas of the dump.

If 1/0 operation, examine the real and virtual 1/Q
control blocks.

CMS ABEND

Determine reason for ABEND from code in ABEND
message DMSABN148T.
. Enter debug environment or CP console function mode
to use the commands, to display the PSW, and to examine
low storage areas:
LASTLMOD and LASTTMOD
LASTCMND and PREVCMND
LASTEXEC and PREVEXEC and DEVICE
Look at the last instruction executed.
Take dump if need be.

Virtual Machine ABEND (other than CMS)

——. Examine dump, if there is one.

2 Use CP commands to examine registers and
control words.

3 Use CP TRACE to trace the processing up to
the point where the error occurred.

Debug Procedures for Unexpected Results and an ABEND

Part 1: Debugging with VM/370 25



UW TO USE VM/370 FACILITIES TO DEBUG

Once tite prcblem, and the area where it occurs, is identified, you can
gather the information needed to determine the cause of the problem. The
type of information you want to look at varies with the type of problen.
The tools used to gather the information vary depending upon the area in
which the problem occurs. Por exarple, if the problem is looping, you
will want to examine the PSHW. For a CP loop, ©you have to use the
operator's conscle to display the PSW, but for a virtual machine loop
you can display the PSY via the CP DISPLAY command.

The following sections describe specific debugging procedures for the
various error conditions. The procedures will tell you what to do and
what debug tool to use. For example, the procedure may say dump storage
using the CP DUMP command. The procedure will not tell 7you how to use
the debug tool. Refer to the "CP Commands to Debug the Virtual Machine"
and "CMS Debugging Commands" sections for a detailed description of each
debug tool, including how to invoke it.

ABEND

When a system does not know how to continue, it abnormally terminates.

CP ABEND

When the VM/370 Control Program abnormally terminates, a dump is taken.
This dump can be directed to tape or printer or dynamically allocated to
a direct access storage device. The output device for a CP ABEND dump is
spec’fied by the CP SET command. See the "ABEND Dumps" section for a
description of the SET and VMFDUMP commands.

Use the dump to find what caused the Cortrcl Program to terminate.
First, find why the system abnormally terminated and then see how the
condition can be corrected. See the "Reading CP ABEND Dumps" discussion
for detailed information on reading a CP ABEND dump.

REASON FOR THE ABEND: CP will terminate and take an abnormal

termination dump under three conditions:
1. Program Check in CP

Examine the PROPSW and INTPR fields in the Prefix Storage Area to
determine the failing module.

2. Module Issuing an SVC 0O
Examine the SVC o0ld PSW (SVCOPSW) and ABEND code (CPABEND) fields
in the Prefix Storage Area to determine the module that issued the
SVC 0 and the reason it was issued.
CPABEND contains an abnormal termination code. The first three
characters identify the failing module (for example, ABEND code
TRCO0? indicates DMKTRC is the failing module).

5. Operator Pressing SYSTEM RESTART Button on CPU Console
Exemine the o0ld PSW at location X'08' to find the 1location of the

instruction that was executing when the operatcr pressed SYSTEM

26 IBM VM/370: Svystem Programmer's Guide



RESTART. The operator presses SYSTEM RESTART when CP is in a
disabled wait state or loop.

EXAMINE LOW STORAGE AREAS: The information in low storage tells you the
status of the system at the time CP terminated. Status information is
stored in the Prefix Storage Area (PSA). You should be able to tell the
module that was executing by 1looking at the PSA. Refer to the
appropriate save area (SAVEAREA, BALRSAVE, or FREESAVE) to see how that
module started to execute. The Prefix Storage Area is described in the
VM/370: Control Prograe (CP) Program Logic publication.

Examine the real and virtual control blocks to find the status of I/0
operations. PFigure 11 shows the relationship of CP Control Blocks.

Examine the CP internal trace table. This table can be extremely
helpful in determining the events that preceded the ABEND. The "CP
Internal Trace Table" description tells you how to use the trace table.

The values in the general registers can help you tc locate the
current IOBLOK and VMBLOK and the save area. Refer to "Reading CP ABEND
Dumps"™ for detailed information on the contents of the general
registers.

If the program check old PSW (PROPSW) or the SVC old PSW (SVCOPSHW)
points to an address beyond the end of the resident nucleus, the module
that caused the ABEND is a pageable module. Refer to "Reading CP ABEND
Dumps"™ to find out how to identify that pageable module. Use the CP load
map that was created when the VM/370 system was generated to find the
address of the end of the resident nucleus.

CP Termination without a Dump

Two types of severe machine checks can cause the VM/370 control program
to terminate:

e An uprecoverable machine check in the control progranm
e A machine check that cannot be diagnosed

A machine check error cannot be diagnosed if either the machine check
0ld PSW or the machine check interrupt code is invalid. These severe
machine checks cause the control program to terminate, but no dump is
taken since the error is recorded on the error recording cylinders. The
system is automatically restarted and a message is issued identifying
the machine check error.

If an unrecoverable machine check occurs in the control program, the
message

DMKMCH610I MACHINE CHECK SUPERVISOR DAMAGE

appears on the CPU console. The control program 3is terminated and
automatically restarted.

If the machine check handler cannot diagnose a certain machine check,
the integrity of the system is questionable. The message

DMKMCH611I MACHINE CHECK SYSTEM INTEGRITY LOST

appears on the CPU console, the control program is terminated and
automatically restarted.

Part 1: Debugging with WM/370 27



Hardware errors are probably the cause of these severe wmachine
checks. The system operator should run the CPEREP program and save the
output for the installation hardware maintenance personnel.

CHMS ABEND

——— e e——

When CMS abnormally terminates, the following error message appears on
the terminal:

DMSABN148T SYSTEM ABEND xxx CALLED FROM yyyyyy

where xxx is the ABEND code and yyyyyy is the address of the instruction
causing the ABEND., The DMSABN module issues this message. Then, CHMS
waits for a command to be entered from the terminal,

Because CMS is an interactive system, you will probably want to use
its debug facilities to examine status., You may be able to determine the
cause of the ABEND without taking a dump.

The debug program is 1located in the resident nucleus of CMS and has
its own save and work areas. Because the debug program itself does not
alter the status of the system, you can use its options knowing that
routines and data cannot be overlaid unless you specifically request
it. Likewise, you can use the CP commands in debugging knowing that you
cannot inadvertently overlay storage because the CP and CMS storage
areas are completely separate. )

REASON FOR THE ABEND: First determine the reason CMS abnormally

terminated. There are four types of CMS abnormal terminations:
1. Program Exception

Control is given to the DMSITP routine whenever a hardware program
exception occurs. If a routine other than a SPIE exit routine is in
control, DMSITP issues the message

DMSITP 141T xxxxxxxXx EXCEPTION OCCURRED AT xxxxxx IN ROUTINE
XXXXXXXX

and invokes DMSABN (the ABEND routine). The ABEND code is 0Cx,
where x 1is the program exception number (0-F). The possible
programming exceptions are:

Code Meaning

Inprecise

Operation

Privileged operation
Execute

Protection
Addressing
Specification
Decimal data
Fixed-point overflow
Fixed-point divide
Decimal overflow
Decimal divide
Exponent overflow
Exponent underflow
Significance
Floating-point divide

RHNEHoQOwPOVoOoNOAONEWN=O

28 1IBM VM/370: System Programmer's Guide



&
.

ABEND Macro

Control is given to the LCMSSAB routine whenever a user routine
executes the ABEND macro. The ABEND code specified in the ABEND
macro appears in the abnormal termination message DMSABN148T.

Halt Execution (HX)

Whenever the virtual machine operator signals attention and types
HX, CMS terminates and types "CMS".

System ABEND

A CMS system routine can abnormally terminate by issuing the DMSABN
macro. The first three hexadecimal digits of the system ABEND code
type in the CMS ABEND message, DMSABN148T. The format of the
DMSABN macro is:

(reg) IBALR{ |

| | r r 11
(label] | DMSABN | code |,TYPCALL=|SVC ||

| | [

i I L L 14

P — —— —
o o — —— —

Wwhere:

label is any valid assembler language label.

code is the abnormal termination code (0-FFF) that
appears in the DMSABN149T systenm termination
message.

(reg) is the register containing the abnormal termination
code,

TYPCALL=SVC specifies how control is passed to the abnormal

TYPCALL=BALR termination routine, DMSABN. Routines that do not
reside in the nucleus should use TYPCALL=SVC to
generate CMS SVC 203 1linkage. Nucleus-resident
routines should specify TYPCALL=BALR so that a
direct branch to DMSABN is generated.

If a CMS SVC handler abnormally terminates, that routine can set an
ABEND flag and store an ABEND code in NUCON (the CMS nucleus
constant area). After the SVC handler has finished processing, the
ABEND condition is recognized. The DMSABN ABEND routine types the
ABEND message, DMSABN148T, with the ABEND code stored in NUCON.

WHAT TO DO WHEN CMS ABNORMALLY TERMINATES: After an ABEND, two courses
of action are available in CMS. 1In addition, by signalling attention,
you can enter the CP command mode and use CP's debugging facilities.

1.

Two courses of action available in CMS are:

Issue the DEBUG command and enter the debug environment. After
using all the DEBUG subcommands that you wish, exit from the debug
environment. Then, either issue the RETURN command to return to
DMSABN so that ABEND recovery will occur, or issue the GO command
to resume processing at the point the ABEND occurred.

Issue a CMS command other than DEBUG and the ABEND routine, DMSABN,

performs its ABEND recovery and then passes control to the DMSINT
routine to process the command just entered.

Part 1: Debugging with VM/370 29



The ABEND recovery function performs the following:

1. The SVC handler, DMSITS, is re-initialized, and all stacked save
areas are released.

2. "“FPINIS * * *n jg invoked by means of SVC 202, to close all files,
and to update the master file directory.

3. If the EXECTOR module is in real storage, it is released.
4. 211 link blocks allocated by DMSSLN are freed.

5. All FCB pointers are set to zero.

6. All user storage is released.

7. The amount of system free storage which should be allocated is

computed. This figure is compared to the amount of free storage
that is actually allocated.

8. The console input stack is purged.

When the amount of storage actually allocated is less than the amount
that should be allocated, the message

DMSABN149T xxxX DOUBLEWORDS OF SYSTEM STORAGE HAVE BEEN DESTROYED

appears on the terminal. If the amount of storage actually allocated is
greater than the amount that should be allocated, the message

DMSABN150W nnn (HEX xxx) DOUBLEWORDS OF SYSTEM STORAGE WERE NOT
RECOVERED

appears on the terminal.

A DEBUGGING PROCEDURE: When a CMS ABEND occurs, you will probably want
to use the DEBUG subcommands or CP commands to examine the PSW and
certain areas of low storage. Refer to "CMS Debugging Commands" for
detailed description of how to use the CMS DEBUG subcommands. See "CP
Commands Used to Debug the Virtual Machine" and "CP Commands Used to
Debug CP" for a detailed description of how to wuse the CP commands.
Also refer to Figure 7 for a comparison of the CP and CMS debugging
facilities.

The following procedure may be useful in determining the cause of a
CMS ABEND:

1. Display the PSW. (Use the CP DISPLAY command or CMS debug PSW
subcommand.) Compare the PSW instruction address to the current
CMS load map trying to determine the module that caused the ABEND.
The CMS storage-resident nucleus routines reside in fixed storage
locations.

Also check the interruption code in the PSW.

2. Examine areas of low storage. The information in low storage can
tell you more about the cause of the ABEND.

Field Contents
LASTLMOD Contains the name of the 1last module 1loaded into
storage via the LOADMOD command.

LASTTMOD Contains the name of the last module loaded into the
transient area.

30 IBM VM/370: System Programmer's Guide



Field Contents
LASTCMND Contains the name of the last ccmmand issued.

PREVCMND Contains the name of the next to the last command
issued.

LASTEXEC Contains the name of the last EXEC procedure.
PREVEXEC Contains the name of the next to last EXEC procedure.

DEVICE Identifies the device that caused the last I/0
interrupt.

The'low storage areas examined depend on the type of AREND.

3. Once you have identified the module that caused the ABEND, examine
the specific instruction. Refer to the listing.

4., If you have not identified the problem at this time, take a dump by
issuing the debug DUMP subcommand. Refer +to "Reading CMS ABEND
Dumps" for information on reading a CMS dump. If you can reproduce
the problem, try the CP or CMS tracing facilities.

Virtual Machine ABEND (Other Than CMS)

The abnormal termination of an operating system (such as 0S or DOS)
running under VM/370 appears the same as a like termination on a real
machine. Refer to publications for that operating system for debugging
information, However, all of the CP debugging facilities may be used to
help you gather the information you need. Because certain operating
systems (0S/VS1, 0S/vs2, and DOS/VS) manage their virtual storage
themselves, CP commands that examine or alter virtual storage locations
should be used only in virtual=real storage space with 0S/VS1, 0S/Vs2,
and DOS/VS.

If a dump was taken, it was sent to the virtual printer. 1Issue a
CLOSE command to the virtual printer to have the dump print on the real
printer.

If you choose to run a standalone dump program to dump the storage in
your virtual machine, be sure to specify the NOCLEAR option when you
issue the CP IPL command. At any rate, a portion of your virtual
storage is overlaid by CP's virtual IPL simulation.

If the problem can be reproduced, it can be helpful to trace the
processing using the CP TRACE command. Also, you can set address stops,
and display and alter registers, control words (such as the PSW), and
data areas. The CP commands can be very helpful in debugging because you
can gather information at various stages in processing. A dump is static
and represents the system at only one particular time. Debugging on a
virtual machine can often be more flexible than debugging on a real
machine,

VM/370 may terminate or reset a virtual machine if a nonrecoverable
channel check or machine check occurs in that virtual machine. Hardware

Part 1: Debugging with VM/370 31



errors usually cause this type of virtual machine termination. One of
the following messages:

DMKMCH6161 MACHINE CHECK; USER userid TERMINATED
DMKCCH604I CHANNEL ERROR; DEV xxx; USER userid; MACHINE RESET

appears on the CPU console.

UNEXPECTED RESULTS

The type of errors classified as unexpected results vary from operating
systems improperly functioning under VM/370 to printed output in the
wrong format.

Unexpected Results in CP

If an operating system executes properly on a real machine but does not
execute properly with VM/370, a problem exists. Also, if a program
executes properly under the control of a particular operating system on
a real machine but does not execute correctly under the same operating
system with VM/370, a problem exists.

First, there are conditions (such as time-dependent programs) that CP
does not support. Be sure that one of these conditions is not causing
the unexpected results in CP. Refer to the "CP Restrictions" section for
a list of the restrictions.

Next, be sure that the program and operating system running on the
virtual machine are exactly the same as the one that ran on the real
machine. Check for

e The same job streanm
e The same copy of the operating systemr (and progranm)
e The same libraries

If the problem still is not found, look for an I/0 problem. Try to
reproduce the problem, this time tracing all CCWs, SIOs, and interrupts
via the CP TRACE command. Compare the real and virtual CCWs from the
trace. A discrepancy in the CCWs may indicate that one of the CP
restrictions was inadvertently violated, or that an error occurred in
the Control Program.

Unexpected Results in a Virtuwal Machipe

—— i e e e e i

When a program executes correctly under the control of a particular
operating system on a real machine but has unexpected results executing
under the control of the same operating system with VM/370, a problem
exists. Usually you will find that something was changed. Check that the
job stream, the operating system, and the system 1libraries are the
sanme.

If unexpected results occur (such as TEXT records interspersed in
printed output), you may wish to examine the contents of the system or
user disk files. Non-CMS users may execute any of the utilities
included in the operating system they are using to examine and rearrange

32 1IBM VM/370: System Programmer's Guide



files. Refer to the wutilities publication for the operating system
running in the virtual machine for information on how to use the
utilities.

CMS users should use the DASD Dump Restore (DDR) service program to
print or move the data stored on direct access devices. The VM/370 DASD
Dump Restore (DDR) program can be invoked Lty the CMS DDR command in a
virtual machine controlled by CMS. The DDR program has five functions:

1. DUMP -- dumps part, or all of the data from a DASD device to
magnetic tape.

2. RESTORE -- transfers data from tapes created by DDR DUMP to a
direct access device. The direct access device that the data is
being restored to must be the same type of device as the direct
access device originally containing that data.

3. COPY -- copies data from one device to another device of the same
type. Data may be reordered, by cylinder, when copied from disk to
disk. In order to copy one tape to another, the original tape must
have been created by the DDR DUMP function.

4. PRINT -- selectively prints the hexadecimal and EBCDIC
representation of DASD and tape records on the virtual printer.

5. ZIYPE -- selectively displays the hexadecimal and EBCDIC
representation of DASD and tape records on the terminal.

CMS users should refer to the "Debugging with CMS" section for
instructions on using the DDR command. The "Debugging with CP" section
contains information about executing the DDR program in a real or
virtual machine and a description of the DDR control statements.

LOoOP

The real cause of a loop usually is an instruction that sets or branches
on the condition code incorrectly. The existence of a 1loop can usually
be recognized by the ceasing of productive processing and a continuail
returning of the PSW instruction address to the same address. I1f I/0
operations are involved, and the 1loop is a very large one, it may be
extremely difficult to define, and may even comprise nested 1loops.
Probably the most difficult case of looping to determine is entry to the
loop from a wild branch. The problem in loop analysis is finding either
the instruction that should open the loop or the instruction that passed
control to the set of looping instructions.

CP Disabled Loop

The CPU operator should perform the following sequence when gathering
information to find the cause of a disabled loop.

1. Use the alter/display console mode to display the real PSW, general
registers, control registers and storage locations X*00' - X'100°'.

2. Press the SYSTEM RESTART button to cause an ABEND dump to be
taken.

3. Save the information collected for the system programmer or IBM
Field Engineering Program Systems Representative.

Part 1: Debugging with VM/370 33



After the CPU operator has collected the information, the systen
programmer or Field Engineering representative examines it. If the cause
of the loop is not apparent,

1. Examine the CP internal trace table to determine the modules that
may be involved in the loop.

2. If the cause is not yet determined, assume that a wild branch

caused the 1loop entry and search the source code for this wild
branch.

Virtual Machine Disabled Loop

When a disabled loop in a virtual machine exists, the virtual machine
operator cannot communicate with the virtual machine's operating systen.
That means that signalling attention does not cause an interrupt.

Enter the CP console function mode.

1. Use the CP TRACE command to trace the entire loop. Display general
and extended control registers via the CP DISPLAY command.

2. Take a dump via the CP DUMP command.
3. Examine the source code.

Use the information just gathered, along with 1listings, to try to
find the entry into the 1loop.

Note: You can IPL a standalone dump program such as the BPS Storage
Print to dump the storage of your virtual machine. If you choose to use
a standalone dump program, be sure to specify NOCLEAR on the IPL
comnand. Also, be aware that the CP IPL simulation destroys a page of
storage in your virtual machine and the standalone dump alters your

virtual storage while the CP DUMP command does not.

However, if the operating system in the virtual machine itself
manages virtual storage, it is usually better to use that operating
system's dump progranm. CP does not retrieve pages which exist only on
the virtual machine's paging device.

Virtual Machine Enabled Loop

The virtual machine operator should perform the following sequence when
attempting to find the cause of an enabled lcop:

1. Use the CP TRACE command to trace the entire loop. Display the PSW
and the general registers.

2. If your virtual machine has the Extended Control (EC) mode and the
EC option, also display the control registers.

3. Use the CP DUMP command to dump your virtual storage. CMS users
can use the debug DUMP subcommand. A standalone dump may be used,
but be aware that such a dump destroys the contents of some areas
of storage.

34 IBM VM/370: System Programmer's Guide



4. Consult the source code to search for the faulty instructions,
examining previously executed modules if necessary. Begin by
scanning for instructions that set the condition code or branch on
it.

S. If the manner of loop entry is still undetermined, assume that a
wild branch has occurred and begin a search for its origin.

WAIT

No processing occurs in the virtual machine when it is in a wait state.
When the wait state 1is an enabled one, an I/0 interrupt causes
processing to resune. Likewise, when the Control Program is imn a wait
state, its processing ceases.

CP Disabled Wait

A disabled wait state usually results from a hardware malfunction.
During the IPL process, normally correctable hardvware errors may cause a
wait state Dbecause the operating system error recovery procedures are
not accessible at this point. These conditions are recorded in the
current PSW.

CP may be in an enabled wait state with channel 0 disabled when it is
attempting to acquire more free storage. Examine EC register 2 to see
whether or not the multiplexer channel is disabled. A severe machine
check could also cause a CP disabled wait state.

If a severe machine check or channel check caused a CP disabled wait,
one of the following messages will appear:
DMKMCH612W MACHINE CHECK TIMING FACILITIES DAMAGE; RUN SEREP
DMKCCH603W CHANNEL ERROR, RUN SEREP, RESTART SYSTEM
If the generated system cannot run on the real machine because of
insufficient storage, CP enters the disabled wait state with code 00D in
the PSW. The insufficient storage condition occurs if:

1. The generated system is larger than the real machine size OR

2. A hardvware malfunction occurs which reduced the available amount of
real storage to less than that required by the generated systen.

The message
DMKCPI955W INSUFFICIENT STORAGE FOR VM/370
appears on the CPU console.

If CP cannot continue because consecutive hardware errors are
occurring on one or more VM/370 paging devices, the message

DMKPAG415E CONTINUOUS PAGING ERRORS FROM DASD xxX
appears on the CPU console and CP enters the disabled wait state with

code O0OF in the PSH.

Part 1: Debugging with VM/370 35



If more than one paging device 1is available, disable the device on
wvhich the hardwvare errors are occurring and IPL the system again. If
the VM/370 system is encountering hardware errors on its only paging
device, move the paging volume to another physical device and 1IPL
again.

Note: This error condition may occur if the VM/370 paging volume was not
properly formatted.

The following procedure should be followed by the CPU operator to
record the needed information.

1. Using the alterydisplay mode of the CPU console, display the real
PSW and CSW. Also, display the general registers and the control
registers.

2. Press the SYSTEM RESTART button in order to get a system ABEND
dump.

3. IPL the systen.
Examine this information and attempt to find what caused the wait.

If you cannot find the cause, attempt to reconstruct the situation that
existed just before the wait state was entered.

CP Enabled Wait

If you determine that CP is in an enabled wait state, but that no I/0
interrupts are occurring, there may be an error in CP routine or CP may
be failing to get an interrupt from a hardware device. Press the SYSTEM
RESTART button on the operator's console to cause an ABEND dump to be
taken. Use the ABEND dump to determine the cause of the enabled (and
noninterrupted) wait state. After the dump is taken, IPL the systen.

Using the dump, examine the VMBLOK for each user and the real device,
channel, and control unit blocks. If each user is waiting because of a
request for storage and no more storage is available, there is an error
in CP. There may be looping in a routine that requests storage. Refer to
"Reading CP ABEND Dumps" for specific informaticn on how to analyze a CP
dump.

Virtual Machine Disabled Wait

The VM/370 Control Program does not allow the virtual machine to enter a
disabled wait state or certain interrupt loops. 1Instead, CP notifies
the virtual machine operator of the condition with one of the following
messages:

DMKDSP450W CP ENTERED; DISABLED WAIT PSW
DMKDSPU51W CP ENTERED; INVALID PSW

DMKDSPUS2W CP ENTERED; EXTERNAL INTERRUPT LOOP
DMKDSPU53W CP ENTERED; PROGRAM INTERRUPT LCOP

.

and enters the console function mode. Use the CP commands to display the
following information on the terminal.

36 IBM VM/370: System Programmer's Guide



PSH
CsWw
General registers
Control registers

Then use the CP DUMP command to take a dump.

If you cannot find the cause of the wait or loop from the information
just gathered, try to reproduce the problem, this time tracing the
processing via the CP TRACE command.

If CMS is running in the wvirtual machine, the CMS debugging
facilities may also be used to display information, take a dump, or
trace the processing. The CMS SVCTRACE and the CP TRACE cosmands record
different information. Figure 7 compares the two.

Virtual Machine Enabled Wait

If the virtual machine is in an enabled wait state, try to find out why
no I/0 interrupt has occurred to allow processing to resume.

The Control Program treats one case of an enabled wait in a virtual
machine the same as a disabled wait. If the virtual machine does not
have the "real timer" option and loads a PSW enabtled only for external
interrupts, CP issues the message

DMKDSPU4S0W CP ENTERED; DISABLED WAIT STATE
Since the virtual timer is not decremented while the virtual machine
is in a wait state, it cannot cause the external interrurt. A "real

timer" runs in both the problem state and wait state and can cause an
external interrupt which will allow processing to resume.

RSCS virtual Machine Disabled Wait

Three disabled wait conditions can occur during the operation of the
RSCS component of VM/370. They can result from either hardware
malfunctions or system generation errors. CP notifies the RSCS operator
of the wait condition by issuing the message

DMKDSP450W CP ENTERED; DISABLED WAIT PSW
to the RSCS operator's console., Using CP commands, the operator can

display the virtual machine's PSW. The rightmost three hexadecimal
characters indicate the error condition.

WAIT STATE CODE X'001': If no RSCS message was issued, a program check
interrupt occurred during the execution of the program check handler. A
programming error is the probable cause.

If the RSCS message

DMTREXO091T INITIALIZATION FAILURE -- RSCS SHUTDOWN
was issued, RSCS operation has been terminated due to an error in the
loading of DMTAXS or DMTLAX. A dump of virtual storage is automatically

taken. Verify that the CMS files 'DMTAXS TEXT' and 'DMTLAX TEXT' are
correctly written and resident on the RSCS system-residence device.

Part 1: Debugging with VM/370 37



If the RSCS message
DMTREX090T PROGRAM CHECK IN SUPERVISOR -- RSCS SHUTDOWN

was 1issued, the program check handler has terminated RSCS due to a
program check interrupt in other than a dispatched line driver. A dump
of virtual storage is automatically taken. A prograsming error is the
probable cause.

The wait state code is loaded by DMTREX at RSCS termination or
automatically during program check handling.

If neither of the 1last two messages was issued, use the CP DUNMP
command to dump the contents of virtual storage. Do an Initial Program
Load to restart the systen. If the problem persists, notify the
installation support personnel.

WAIT STATE CCDE X'007': A program check interrupt has occurred during
initial processing, before the progran check handler could be
activated. This may be caused by a programming error or by an attempt
to load RSCS into an incompatible virtual machine. The latter case can
occur if the virtual machine has (1) an incomplete instruction set, (2)
less than 512K of virtual storage, or (3) does not have the required
VM/370 DIAGNOSE interface support. The wait state code is 1loaded
automatically during the initial 1loading and execution of the RSCS
supervisor, DMTINI, DMTREX, DMTAXS or DMTLAX.

Verify that the RSCS virtual machine configuration has been correctly
specified and that the "retrieve subsequent file descriptor" function of
Diagnose code X'14' is supported. Dump the contents of virtual storage
via the CP DUMP command. If the problem persists, notify the
installation support personnel.

WAIT STATE CODE X'011': An unrecoverable error occurred when reading the
RSCS nucleus from DASD storage. This may be caused by a hardware
malfunction of the DASD device. It may also be the result of an
incorrect virtual DASD device definition, an attempt to use a systen
residence device unsupported by RSCS, incorrect RSCS system generation
procedures, or the subsequent overwriting of the RSCS nucleus on the
system residence device. The wait state code is loaded by DMTINI after
an attempt, successful or not, to issue the message:

DMTINI402T IPL DEVICE READ I/O ERROR

Verify that the RSCS system residence device has been rproperly
defined as a virtual DASD device and that the real DASD device is
mounted and operable. If the problem persists, dump virtual storage via
the CP DUMP command and notify +the installation support personnel. The
RSCS system residence device may have to be restored or the RSCS systen
may have to be regenerated.

RSCS Virtual Machine Epnabled Rait

Whenever RSCS has no task ready for execution, DMTDSP loads a masked-on
wait state PSW with a code of hexadecimal zeroes. This occurs during
normal RSCS operation and does not indicate an error condition. An
external interrupt due to command entry or an I/0 interrupt due to the
arrival of files automatically resumes processing.

38 1IBM VM/370: System Programmer's Guide



SUMMARY OF VM/370 DEBUGGING TOOLS

Figure 6 summarizes the VM/370 commands that are useful in debuqgging. The CP and CMS
commands are classified by the function they perform.

r
| Function | Comments | CP Command | CMS Command
|
| Stop execu—|{Set the ad- | ADSTOP hexloc
| tion at a | dress stop |

| specified | before the |

| location. | program |

| reaches the|

| specified
| address.

| CMS allows
| 16 address
|

i

|

|

|

DEBUG

BREAK id {symbol}
{hexloc}

stops to

be active
while CP
allows only
one

DEBUG
GO

Resume |Resume | BEGIN |
execution.| execution | |

| where pro- | |
gram was | |
interrupted| |

Continue } BEGIN hexloc | DEBUG
execution | 1

at a speci-| ! GO {symbol}
fic loca- | | {hexloc}
|

|
|
|
l
|
|
|
| tion |

|DEBUG
| r Tr 2]
|DUMP |symbol1l} |symbol2}
| jhexloc1| |hexloc2]|
I 0

|
L ]

Dump data. |Dump the |

contents of |[DUMP { hexloc1 }
specific l {Lhexloc1}
storage

locations

exloc?2

-———
—
o |
E e

" ———
=
=
(=}

bytecount

}

e}
1=
o
[ R T

e Sk
b e e s —d

rF—==n
|

|
|
|
|
| [ident]
|

o e s e — - — s — " — — T — — — O T — — — o — — — A —— D — = — ]

[ *dumpid ]

Figure 6. Summary of VM/370 Debugging Tools (Part 1 of 5)

Part 1: Debugging with VM/370 39



r 1
| Function | Comments | CP Command | CMS Command |
I |
|Display |Display | r r 11 | DEBUG { r 1} |
| data. | contents of|DISPLAY hexloc1 [{-}lhexloc2|||X {symbol| n 1} |
| | storage lo-—| {{:}1END NN { {length| } |
1 | cations (in| | L 41 { t 4} [
l | hexadeci- | i r At { roooa } 1
| | mal) | {{-} bytecount| || { | n | } |
| | | | |ERD L {hexloc]| 4 | } |
l | | L L 44 ‘ { L 1 } |
| | |
| |Display | r r LR R |
| | contents of {DISPLAY Thexloci1{{—}lhexloc2]]|| |
| | storage I I1{:}IEND N l
| | locations | | L 4] |
[ | (in hexa— | (S Al |
i | decimal and} i-yIbytecount| || |
| | EBCDIC) | | |END 1 |
| | | Lt 44 |
| | |
) IDisplay | r r 1l |
} | storage key|DISPLAY Khexloc1|{-}lhexloc2]|] |
| | of specific| 1{:}I1END I |
| | storage | | L I i
| | locations | 1l r Al |
| | in hexa-— | K-}l bytecount| || |
| | decimal | | IEND 1 |
| i | Lt 444 |
| | |
| | Display | r Q | DEBUG |
| | general |DISPLAY Gregll|{—-}rreg2 | | GPR regl [reg2] |
| | registers | I{:}[EEQ P 1
| | ! | r -1 |
| | | 1{.}lregcount|| | |
| | | | |END [ |
| | | L L 44 |
| | |
| I Display | r 1| I
\ | floating— |DISPLAY Yreg1|{—}[reg2] 1 |
| | point | 1{:}LEND [ |
| | registers | | r Al | |
| | | I{.}lregcount|| | i
| | | | |END [ |
| | | L L 44 |
| | |
| IDisplay | r + 1 1
| | control |DISPLAY Xregl|{-}rreg2 (. |
| | registers | I1{:]}LEND ] [ |
| l | | r Al | |
( | | I{ . }Iregcount|} | |
| | | | |END | |
| | | L L 44 |
| | |
| | Display | DISPLAY PSW | DEBUG |
| | contents of| | PSW |
| | current | | i
| | virtual PSW| | |
| | in hexa- | | |
| | decimal | | |
| | format | | |
[ J
Figure 6. Summary of VM/370 Debugging Tools (Part 2 of 5)

40 1IBM VM/370: System Programmer's Guide



L
| Function | Coaments | CP Command | CMS Command

|
IDisplay IDisplay |DISPLAY CAW | DEBUG

data | contents of| i CAW
(cont.) | CAW | |

|

|

| |

] |Display | DISPLAY CSW | DEBUG
|

(

|

|

| contents of| | CSW
| CSW i |

Store {
specified |STORE Shexloc hexdata...
information|
into con- |
secutive ]
storage |
locations |
|
|

Store data.

DEBUG

STORE {sylbol
hexloc }

hexinfo[ hexinfo[ hexinfo]]}

without
alignment

Store |
specified |STORE { hexloc
words of | {Lhexloc}

information|
into con- | {hexword 1{ hexword2...1}

secutive |
fullword |
storage [
locations |

Store |STORE Greg hexword1l |DEBUG

specified | [ hexword2...] |SET GPR reg hexinfo[ hexinfo]
words of i {

information|
into con- |
secutive |
general |
registers |

Store | STORE Yreg hexword?1
specified | [ hexword2...]
words of i
information|
into con- |
secutive |
floating- |
point |
registers |

e i o o — — D o - S —— BT o S — S . e TR . . G v G g S mm S ey NS A gy S o SRS - S am G amn o S o o

|
|
|
1
|
|
1
|
|
|
|
|
|
|
|
!
l
{
|
|
|
|
|
|
|
{
|
[
|
|
{
|
|
|
(
|
|
L

Figure 6. Summary of VM/370 Debugging Tools (Part 3 of 5)

Part 1: Debugging with VM/370 41



Function | Comments | CP Command | CMS Command

Store
specified
words of

Store data |
|
|

data into |
|
|
|

(cont.)

STORE Xreg hexwordl [ hexword2...]

consecutive
control

|
|
|
{
|
t I
registers |

|Store | STORE PSW [ hexword1] hexword2 | DEBUG

| informationj | SET PSW hexinfo [hexinfo]
| into PSW | |

|

|Store i | DEBUG

| information| |SET CSW hexinfo [hexinfo]
| in CSW | |

|

|Store { | DEBUG
| information| | SET CAW hexinfo
| in CAW | |

Trace all
instruc—
tions,

Trace |
|
|

interrupts,|
|
|

execution.

TRACE ALL

and
branches

Trace SVC | TRACE SVC | SVCTRACE ON

Trace I0 | TRACE 1I/0 I
interrupts | l

Trace | TRACE PROGRAM |
progran | |
interrupts | |

| Trace | TRACE EXTERNAL |
| external | |
| interrupts | i

|
|Trace | TRACE PRIV
| privileged |
| instruc- |
| tioms |

|Trace all | TRACE SIO |
| user I/0 | |

|
|
|
i
|
|
[
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
i
|
|
|
!
|
|
i
|
|
|
|
|
|
|
|
| | operations | |
L

e e o T . . — . — — — T — —— T — —— T ——— — T — — — T —— S — — — A —— D —— - —— — — T — — —— e ]

Figure 6. Summary of VM/370 Debugging Tools (Part 4 of 5)

42 IBM VM/370: System Programmer's Guide



GC20-1807-3 Page Modified by TNL GN20-2662, March 3%, 1975

Function

| Comments |

CP Command

CMS Command

L1l 8 Wkl

Trace i TRACE
virtual and| TRACE
real CCWs |

Trace TRACE
all user
interrupts

|

|

t |
and suc-— i
|

|

branches

BRANCH

Trace { TRACE
all in- |
structions |

End all. | TRACE
tracing |

i

|

|

|

|

|

i

I

| cessful
|

|

|

|

|

|

|

I -

| activity |

END

SVCTRACE OFF

events

(o s G ——— — — — — ——— — — —— —— — —— — —— S — " ——

Trace real
machine

|Trace |
| events in |
| real |

machine |

MONITOR START CPTRACE

Stop tracing| MONITOR STOP CPTRACE

|

|

l .

| events in |
| the real |
| machine |

e e o e e e e e - s - S —

Figure

6.

Summary of VM/370 Debugging Tools (Part 5 of 5)

Part 1: Debugging with VM/370

43



-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

COMPARISON OF CP AND CMS FACILITIES FOR DEBUGGING

If you are debugging problems while running CMS, you can choose the CP
or CMS debugging tools. Refer to Figure 7 for a comparison of the CP
and CMS debugging tools.

A J
Function | cp | CMS |
|
Setting |Can set only one address stop|Can set up to 16 address |
address | at a time. | stops at a time. |
stops. ] | |
|
Dumping |The dump is printed in hexa- |The dump is printed in hexa- |
contents | decimal format with EBCDIC | decimal format. The storage |
of stor- | translation. The storage ad-| address of the first byte of|
age to | dress of the first byte of | each line is identified at |
the | each line is identified at | the left. The contents of |
printer. | the left. The control blocks| general and floating-point |
| are formatted. | registers are printed at thej

|

| beginning of the dump. |
|
Displaying|The display is typed in hexa—|The display is typed in hexa-—|
the con- | decimal format with EBCDIC | decimal format. The CMS com-|
tents of | translation. The CP command

SVC interrupts floating—point registers

|
|
|
I/0 interrupts | before and after a routine
Program interrupts | is called. The parameter
External interrupts | list is recorded before a
Privileged instructions | routine is called.
All user I/0 operations |
Virtual and real CCW's |
|
l
|
I
|

All instructions

The CP trace is interactive.
You can stop and display

ic
|
|
|
l
|
|
|
|
|
|
|
| T
|
| other fields.

[ T e S e - e T e GRS T on S - W ——— S — A — - — —_— — T — — — — — O — —— —— — — ——— ——— ————— —— —— —

|
storage | displays storage keys, | keys, floating-point regis- |
and | floating—point registers and| ters or control registers asj|
control | control registers. | the CP command does. |
registers| | |
at the | | |
terminal. | | |
: |
Storing | The amount of information |The CMS command stores up to |
informa- | stored by the CP command is | 12 bytes of information. CMS|
tion. | limited only by the length | stores data in the general |
| of the input line. The in- | registers but not in the |
| formation can be fullword | floating-—point or control |
| aligned when stored. CP | registers. CMS stores data |
| stores data in the PSW, but | in the PSW, CAW, and CSW. |
| not in the CAW or CSW. How- | |
| ever, data can be stored in | |
| the CSW or CAW by specifying]| |
| the hardware address in the | !
| STORE command. CP also | |
| stores the status of the | |
| virtual machine in the | |
| extended logout area. | |
i
Tracing traces: |CMS traces all SVC inter- |
informa- e All interrupts, instruc- rupts. CMS displays the |
tion. tions and branches contents of general and
|
|
|
|
|
|
|
|
l
|
|
|
) ]

Figure 7. Comparison of CP and CMS Facilities for Debugging

44 IBM VM/370: System Programmer's Guide



Debugging with CP

This section contains information you may want to refer to while
debugging and a discussion of when and how +to use the CP debugging
tools. Also included is a discussion of how to read a CP ABEND dump. .

The first section, "Introduction to Debugging," described the
debugging procedures to follow and this section tells you hcow to use the
debugging tools and commands mentioned in that first section. The
following topics are discussed in this section.

Debugging CP in a virtual machine
CP commands useful for debugging
DASD dump restore progran

CP Internal Trace Table

CP restrictions

ABEND dumps

Reading ABEND dumps

Control block summary

CP COMMANDS USED TO DEBUG IN THE VIRTUAL MACHINE

The VM/370 Control Program has a set of interactive commands that
control the VM/370 system and enable the wuser to control his virtual
machines and associated control program facilities. The virtual machine
operator using these commands can gather much the same information about
his virtual machine that an operator of a real machine gathers using the
CPU console.

The CP commands are eight characters or less in length. The commands
can be abbreviated by truncating them to the minimum permitted length
shown in the format description. When truncation is permitted, the
shortest acceptable version of the command is represented by capital
letters, with the optional part represented by lover case letters.
Note, however, that you can enter any CP command with any mixture of
upper and lower case letters.

The operands, if any, follow the command on the same line and must be
separated from the command by a blank. Lines cannot be continued.
Generally, the operands are positional, but some commands have reserved
words and keywords to assist processing. Blanks must separate the
connand from any operands and the operands from each other.

Several of these commands (for example, STORE or DISPLAY) examine or
alter virtual storage locations. When CP is in complete control of
virtual storage (as in the case of  DOS, MFT, MVT, PCP, CMS, and RSCS)
these commands execute as expected. However, when the operating systenm
in the virtual machine itself manipulates virtual storage (0S/Vst,
0S/Vs2, or DOS/VS), these CP commands should not be used.

Each CP user has one or more privilege classes as indicated in his
VM/370 directory entry. Class G commands useful for debugging are
discussed in the following paragraphs. For a discussion of all the CP
Class G commands and the CP command privilege classes, refer to the
VM/370: Command lLanguage Guide for General Users. The remainder of this
section discusses the CP Class G commands that provide material and
techniques that are useful in debugging.

Part 1: Debugging with VM/370 45



ADSTOP

Privileqge Class: G

Use the ADSTOP command to halt execution at a virtual instruction
address. Execution halts when the instruction at the specified address
is the next instruction to be executed.

When execution halts, the CP command mode is entered and a message is
displayed. At this point, you may invoke other CP debugging commands.
To resume operation of the virtual machine, issue the BEGIN command.
Once an ADSTCP location is set, it may be removed by one of the
following:

e Reaching the virtual storage location specified in the ADSTOP command

e Performing a virtual IPL or SYSTEM RESET

e Issuing the ADSTOP OFF command

e Specifying a different location with a new ADSTOP hexloc command

The format of the ADSTOP command is:

r 1

| ADSTOP | { hexloc } |

| | OFF |

L 3

where:

hexloc is the hexadecimal representation of the virtual instruction
address where execution is to be halted. The specified
address cannot be in a storage segment shared with other
users, since the ADSTOP function modifies storage.

OFF cancels any previous ADSTOP setting.

Notes:

1. Since the ADSTOP function modifies storage (by placing a CP SVC
X'B3*' at the specified location) your program should not examine
the two bytes at the instruction address. CP does not verify that
the location specified contains a valid CPU instruction.

2. Address stops may not be set in an 0S/VS or DOS/VS virtual
machine's virtual storage; address stops may only be set in the
virtual equals real partitions or regions of those virtual
machines.

46 1IBM VM/370: System Programmer's Guide



3. 1If the SVC handling portion of the virtual machine assist feature
is enabled on your virtual machine, CP turns it off when an address
stop is set. After the address stop is removed, CP returns the
assist feature SVC handling to its previous status.

Response

ADSTOP AT XXXXXX

The instruction whose address is xxxxxx is the next instruction
scheduled for execution. The virtual machine is in a stopped
state. Any CP command (including an ADSTOP command to set the next
address stop) can be issued. Enter the CP command BEGIN to resume
execution at the instruction 1location xxxxxx, or at any other
location desired.

Using the ADSTOP Command

Use the ADSTOP command to stop the execution of a program at a specific
instruction location. The address stop should be set after the program
is 1loaded, but before it executes. When the specified location is
reached during program execution, execution halts and the CP environment
is entered. The message

ADSTOP AT XXXXXX

appears on the terminal indicating that program execution has halted.
The virtual machine operator may issue other CP commands to examine and
alter the status of the program at this time.

Set an address stop at a location 1in the program where an error is
suspected. Then display registers, control words, and data areas to
check the program at that point in its execution. This procedure helps
you to locate program errors. You may be able to alter the contents of
storage in such a way that the program will execute correctly. The
detected error is then corrected and the program is compiled, if
necessary, and executed again.

Note: In order to successfully set an address stop, the virtual
instruction address must be in real storage at the time the ADSTOP
command is issued.

Part 1: Debugging with VM/370 47



BEGILN

———

Privilege Class: G

Use the BEGIN command to continue or resume execution in the virtual
machine at either a specified storage location or the location pointed
to be the virtual machine's current PSW. The format of the BEGIN
command is:

r Al
| Begin | [hexloc] |
L ]
where:

hexloc is the hexadecimal storage location where execution is to

begin. When BEGIN is issued without hexloc, execution begins
at the storage address pointed to by the current virtual
machine PSW. Unless the PSW has been altered since the CP
command mode was given control, the location stored in the PSW
is the location where the virtual machine stopped.

When BEGIN is issued with a storage 1location specified,
execution begins at the specified storage location. The

specified address replaces the instruction address in the PSHWH,
then the PSW is loaded.

None. The virtual machine begins execution.

Use the BEGIN command to continue or resume program execution. When
BEGIN is issued without an operand, execution begins at the storage
address pointed to by the current virtual machine PSW. Unless the PSW
has been altered since the CP environment was given control, the
location stored in the PSW is the 1location where the virtual machine
stopped. When BEGIN is issued with a storage 1location specified,
execution begins at the specified storage location. The specified
address replaces the instruction address in the PSW, then the PSW is
loaded.

48 IBM VM/370: System Programmer's Guide



DISPLAY

Privilege Class: G

Use the DISPLAY command to examine the following virtual machine
components:

Virtual storage locations
General registers
FPloating-point regis
Control registers
Program status word (PSW)
Channel address word (CAW)

Channel status word (CSW)

Arac
TLo

o ® 0 0 o 0 o

If a command line with an invalid operand is entered, the DISPLAY
command terminates when it encounters the invalid operand; however, any
previous valid operands are processed Lefore termination occurs.
Storage locations, registers, and control words can be displayed using a
single command line. The format of the DISPLAY command is:

A}
i i [ r Tr r 11\ |
| Display | { | hexloc1| | —}lhexlocZ 1| |
| | | Khexloc 1} l{: |ERD I | |
| | {Lhexloc1]| | L 4 |
| | |Thexloc1| | r 1| |
| | ] | I{.}Ibytecount| | |
| | L 41 |END 1 |
| | L L 4 3 |
| | |
| | r r 1 ) |
I | ( Gregtl | {~}Ire92l | I
| | Yreg1 | :fIEND | 1 |
| | Xreg1 | L 4 | \ |
| { i r a | |
| | ‘ I {.}lregcount| | |
| | | {END I |
' l L [ 8 4 3 l
| | |
| | Psw |
| | CAW / |
| | CSW i
L o |

Where:
hexloc1 is the first, or only, hexadecimal storage location
Lhexloc1 whose contents are to be displayed at the terminal. If
Thexloc1 L is specified, the storage contents are displayed in
Khexloc1 hexadecimal. If T is specified, the storage contents
0 are displayed in hexadecimal, with EBCDIC translation.
If K is specified, the storage keys are displayed in

hexadecimal.

If hexloc1 is followed by a period and is not on a
fullword boundary, it is rounded down to the next
lowest fullword.

If hexloct1 is not specified, the display begins at
storage location 0. If L, T, or K are entered either

Part 1: Debugging with VM/370 49



{ — )hexloc?2
:JEND

{ . }bytecount

END

Gregl

Yreg1

Xreg1

{3

50

j

reg2
END

IBM VM/370:

without any operands, or followed immediately by a
blank, the contents of all storage 1locations are
displayed. 1If L, T, or K are not specified and this is
the first operand, then the default value of zero is
assumed. The address, hexloc1, may be one to six
hexadecimal digits; leading zeros are optional.

is the 1last of the range of hexadecimal storage
locations whose contents are to be displayed at the
terminal. Either — or : must be specified to display
the contents of more than one location by storage
address. If hexloc2 is not specified, the contents of
all storage locations from hexloc1 to the end of
virtual storage are displayed. If specified, hexloc2
must be equal to or greater than hexloc1 and within the
virtual storage size. The address, hexloc2, may be
from one to six hexadecimal digits; leading zeros are
optional.

is a hexadecimal integer designating the number of
bytes of storage (starting with the byte at hexloct) to
be displayed at the terminal. The period, ., must be
specified to display the contents of wmore than one
storage location by byte count. The sum of hexloc1 and
bytecount must be an address that does not exceed the
virtual machine size. If this address is not on a
fullword boundary, it is rounded up to the next highest
fullword. The value, bytecount, must have a value of
at least one and may be from one to six hexadecimal
digits; leading zeros are optional.

is a decimal number from 0-15 or a hexadecimal integer
from O0-F representing the first, or only, general
register whose contents are to be displayed at the
terminal. If G is specified without a register number,
the contents of all the general registers are displayed
at the terminal.

is an integer (0, 2, 4, or 6) representing the first,
or only, floating-point register whose contents are to
be displayed at the terminal. If Y is specified
without a register number, the contents of all of the
floating-point registers are displayed at the
terminal.

is a decimal number from 0-15 or a hexadecimal number
from O-F representing the first, or only, control
register whose contents are to be displayed at the
terminal. If X is specified without a register number,
the contents of all of the control registers are
displayed at the terminal. If Xreg1 is specified for a
virtual machine without extended mode operations
available, only control register 0 is displayed.

is a number representing the last register whose
contents are to be displayed at the terminal. Either -
or : must be specified to display the contents of more
than one register by register number. If reg2 is not
specified, the contents of all registers from regil
through the last register of this type are displayed.

System Programmer's Guide



The operand, reg2, must be equal to or greater than
regl. If Gregl or Xregl are specified, req2 may be a
decimal number from 0-15 or a hexadecimal number from
0-F. If Yreg1l is specified, reg2 may be 0, 2, 4, or
6. The contents of registers regl through reg2 are
displayed at the terminal.

{ . Jregcount is a decimal number from 1 to 16 or a hexadecimal
END number from 1 to F specifying the number of registers
(starting with reg1) whose contents are to be displayed
at the terminal. If the display type G or X is
specified, regcount can Lte a decimal number from 1 to
16 or a hexadecimal number from 1 to F. If display type
Y is specified, regcount must be 1, 2, 3, or 4. The
sum of regi and regcount must be a number that does not
exceed the maximum register pumber for the type of
registers being displayed.

PSW displays the «current virtual machine PSW (progranm
status word) as two hexadecimal words.

CAW displays as one hexadecimal word the contents of
hexadecimal location 48 (channel address word).

CSW displays as two hexadecimal words the contents of the
channel status word (doubleword at hexadecimal location
40).

When multiple operands are entered on a line for location or register
displays, the default display type is the same as the previous explicit
display type. The explicit specification of a display type defines the
default for subsequent operands for the current display function.
Blanks are used to separate operands or sets of operands if more than
one operand is entered on the same command 1line. Blanks must not be
used to the right or left of range or length delimiters (: S

unless it is intended to take the default value of the missing operand
defined by the blank. For example:

display 10 20 Tu40 80 G12 5 L60-100
displays the following:

hexadecimal location 10

hexadecimal location 20

hexadecimal location 40 with EBCDIC translation
hexadecimal location 80 with EBCDIC translation
general register 12

general register 5

hexadecimal locations 60 through 100

One or more of the following responses is displayed, depending upon the
operands specified.

Part 1: Debugging with VM/370 51



Locations

xxxxxXx word1l word2 word3 word4 [key] *EBCDIC TRANSLATION*

This is the response you receive when you display storage
locations; xxxxxx is the hexadecimal storage 1location of wordtl.
Word1 is displayed (vord-aligned) for a single location
specification. Up to four words are displayed on a line, followed,
optionally, by an EBCDIC translation of those four words. Periods
are printed for unprintable characters. Multiple line are used (if
required) for a range of locationms. If translation to EBCDIC is
requested (Thexloc), alignment is made to the next 1lower 16-byte
boundary; otherwise, alignment is made to the next lower fullword
boundary. If the 1location is at a 2K page boundary, the key for
that page is also displayed.

Keys:

Xxxxxx TO XXXXXX KEY = kk

This is the response you receive when you display storage keys;
XXXXXX is a storage location and kk is the associated storage key.

General Registers

GPR n = genregl1 genreg2 genreg3 genregl

This is the response you receive when you display general
registers; n is the register whose contents are genregit. The
contents of the following consecutive registers are genreg2 and so
on, The contents of the registers are displayed in hecadecimal.
Up to four registers per 1line are displayed for a range of
registers. Multiple 1lines are displayed if required, with a
maximum of four lines needed to display all 16 general registers.

Floating-Point Registers

FPR n = XXXXXXXXXXXXXXXX « XXXXXXXXXXXXXXXXX E xXx

52

This is the response you receive when you display floating-point
registers; n is the even-number floating-point register whose
contents are displayed on this line. The contents of the requested
floating-point registers are displayed in both the internal
hexadecimal format and the E format. One register is displayed per
line. Multiple lines are displayed for a range of registers.

IBM VM/370: System Programmer's Guide



Control Registers

ECR n = ctlregl ctlreg2 ctlreg3 ctlregl

This 1s the response you receive when you display control
registers; n is the register whose contents are ctlregi. The
contents of the following consecutive registers are ctlreg2 and so
on. The contents of the requested control registers are displayed
in hexadecimal. Up to four registers per 1line are displayed.
Multiple lines are displayed if required.

PSW = XXXXXXXX XXXXXXXX

The contents of the PSW are displayed in hexadecimal.

CAW = XXXXXXXX

The contents of the CAW (hexadecimal 1location 48) are displayed in
hexadecimal.

CSW = XXXXXXXX XXXXXXXX

The contents of the CSW (hexadecimal location 40) are displayed in
hexadecimal.

Press the Attention key (or its equivalent) to terminate this
function while data is being displayed at the terminal. When the
display terminates, another command may be entered.

Using the Display Command

Use the DISPLAY command to display the contents of various storage
locations, registers, and control words at the terminal. By examining
this type of information during the program's execution, you may be able
to determine the cause of program errors. Usually, an address stop is
set to stop the program execution at a specified point. The systenm
enters the CP environment and you may then issue the DISPLAY command.

The DISPLAY command terminates if an invalid operand is specified
however, all operands preceding the invalid operand are processed before
DISPLAY terminates. To intentionally terminate the DISPLAY console
function, signal attention. The display terminates and another command
may be entered.

Part 1: Debugging with VM/370 53



DUKP

Privilege Class: G

Use the DUMP command to print the contents of various components of the
virtual machine on the virtual spooled printer. The following items are
printed:

e Virtual program status word (PSW)
e General registers
e Floating-point registers

e Control registers (if you have the ECMODE option specified in your
VM/370 directory entry)

e Storage keys
e Virtual storage locations

The DUMP command prints the virtual PSW and the virtual registers
(general, floating-point, and control). If only this information is
desired, at least one virtual address must be specified, such as:

DUMP O

The output format for the virtual storage locations is eight words
per line with EBCDIC translation on the right. Each fullword consists
of eight hexadecimal characters. All the rest of the information (PSW,
general floating-point and storage keys) 1is printed in hexadecimal. If
you have the ECMODE option in your VM/370 directory entry, the control
registers are also printed. To print the dump on the real printer, a
CLOSE command must be issued for the spooled virtual printer. The
format of the DUMP command is:

L ] 1
| DUMP | | ar r 1 (
| | |Lhexloc1||{-—}|hexloc2 I |
| ! \iThexloc1({l :J|IEND [ [*dumpid ] |
| { /1 hexloc1]| L T |
| (Y| 0 H r a | |
| L/ 41{. }ibytecount| | |
| | | |END P |
| | L L J J |
L 3
Where:
Lhexloc1 is the first or only hexadecimal storage location to
Thexloc1 be dumped. If you enter L or T without operands, the
hexloc1 contents of all virtual storage locations are dumped.
0

The address, hexloc1, may be one to six hexadecimal
digits; leading zeros are optional. If hexloc1 is not
specified, the dump begins at storage location 0.

If hexloc!1 is followed by a period and is not on a

fullword boundary, it is rounded down to the next lowest
fullword.

54 IBM VM/370: System Programmer's Guide



{- hexloc2 is the last hexadecimal storage location whose contents

}ggg are to be dumped to the printer. The operand, hexloc2,
must be equal to or greater than hexloc1 and within the
virtual storage size. To dump to the end of storage, you
can specify END instead of hexloc2 or you can leave the
field blank, since the default is END. If you specify
:END or —-END, the contents of storage from hexloc1 to END
are dumped. The contents of storage 1locations hexloc1
through hexloc2 are printed with EBCDIC translation at
the printer. The operand, hexloc2, may be from one to six
hexadecimal digits; leading zeros are optional.

{. }bytecount is a hexadecimal integer designating the number of bytes
END of storage (starting with the byte at hexloct) to be
dumped to the printer. The period, ., must be specified

to dump the contents of more than one storage location by

byte count. The sum of hexloc1 and bytecount must be an

address that does not exceed the virtual machine size.

If this address is not on a fullword boundary, it is

rounded wup to the next highest fullword. The value,

bytecount, must be one or greater and can be no longer

than six hexadecimal digits. Leading zeros are
optional.
*dumpid can be entered for descriptive purposes. If specified,

it Dbecomes the first line printed preceding the dump
data. Up to 100 characters, with or without blanks, may
be specified after the asterisk prefix. No error
messages are issued, but only 100 characters are used,
including asterisks and embedded blanks.

Usage:

Normally, you should define beginning and ending dump locations in the
following manner:

dump Lhexloc1-hexloc2
dump Lhexloc1.bytecount
dump Lhexloc1-hexloc2 hexlocl.bytecount * dumpid

If, however, a blank follows the type character (L or T) or the
character and the hexloc, the default dump starting and ending locations
are assumed to be the beginning and/or end of virtual storage. Blanks
are used to separate operands or sets of operands if more than one
operand is entered on the same command line. Blanks must not be used to
the right or left of range or length delimiters ( : - . ), unless it is
intended to take the default value of the missing operand defined by the
blank. Thus, all of the following produce full storage dumps:

dump 1 dump t: dump O-end
dump t dump 1. dump l:end
dump - dump t. dump t:end
dump : dump O0- dump O:end
dump . dump 0: dump l.end
dump 1- dump O. dump t.end
dump t- dump l-end dump O.end
dump 1: dump ‘t—end

The following produces three full dumps:

dump 1 . t
dump - .

Part 1: Debugging with VM/370 55



DUMPING LOC hexloc
As the dump is processing, the following message is displayed at
the terminal indicating that the dump is continuing from the next
64K boundary: where hexloc is the segment (64K) boundary address
for the dump continuation, such as 020000, 030000, or 040000.
If you press the Attention key, or its equivalent, on the terminal
while the message is being displayed, the dump function is
terminated.

COMMAND COMPLETE

This response indicates normal completion of the dump function.

Using the DUMP Command

Use the DUMP command to dump to the virtual spooled printer the contents
of the specified storage 1locations. 1Issue the CLOSE command to the
spool printer to have the dump print at the real printer.

When debugging, issue the DUMP command to print information you want
to look at after the program executes. Because the real printer may be
at a different location than your terminal, you cannot always 1look at
the printed output while the program is executing.

When you must examine large portions of storage, use the DUMP command
rather than the DISPLAY command. Because the terminal operates at a
much slower speed than the printer, only limited amounts of storage
should be printed (via the DISPLAY command) at the terminal.

The CP DUMP command executes in an area of storage separate from your

virtual machine storage and does not destroy any portion of your
storage.

56 1IBM VM/370: System Programmer's Guide



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

Privilege Class: G

Use the SET command to control various functions within your virtual
system. The format of the SET command is:

T 1
| SET | [ ACNT {ON } h |
| | MSG OFF |
| | WNG |
| | IMSG I
| | RUN |
| ! LINEDit i
| | ECmode |
| i ISAM |
| | NOTRans |
| | PAGEX |
| | |
| | EMSG ON |
| | OFF |
| i CODE |
| | ({ TEXT ) i
| l I
I | | TIMER {gp; } !
| | OFF |
| K REAL y |
| | |
| | I
| | r Tr 1 |
| | ASsist |ON | |SVC | |
| | | | INOSVC| |
I | L 4 L 4 '
| | |
| | OFF |
| I i
| | r 2] |
| | PFnn |IMMed | [pfdatal#pfdata2#...pfdatan] |
| I IDELayed | I
| | t 4 |
| | |
| | PFnn {TAB nt1 n2 ... ] |
| | |
| | \ PFnn COPY [resid] J |
L J
Where:
ACNT {ON } controls whether accounting information is displayed at
OFF the terminal or not (ON and OFF respectively) when the
operator issues the CP ACNT command. When 7you log on
VM/370, ACNT is set on.
HSG{ ON } controls whether messages sent ty the MSG command from
OFF other users are to be received at the terminal. If ON is
specified, the messages are displayed. OFF specifies
that no messages are received. When you 1log on VM/370,
MSG is set on.
WNG {ON } controls whether warning messages are displayed at the
OFF terminal. If ON is specified, all warning messages sent

Part 1: Debugging with VM/370 57



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

IMSG

RUN

{5ee |

{ore

LINEDIT {on }

ECMO

ISAM

OFF

DE {on
OFF

{ore)

NOTRANS {on }

58

OFF

IBM VM/370:

via the CP WARNING command from the system operator are
received at the terminal. If OFF is specified, no
varning messages are received. When you log on VM/370,
WNG is set on.

controls whether certain informational responses issued
by the CP CHANGE, DEFINE, DETACH, ORDER, PURGE, and
TRANSFER commands are displayed at the terminal or not.
The descriptions of these CP commands tell which
responses are affected. If ON is specified the
informational responses are displayed. If OFF is
specified, they are not. The SET 1IMSG ON or OFF command
line has no effect on the handling of error messages set
by the SET EMSG command. When you log on VM/370, IMSG is
set on.

controls whether the virtual machine stops when the
Attention key is pressed. ON allows you to activate the
Attention key (causing a read of a CP command) without
stopping your virtual machine. When the CP command is
entered, it 1is immediately executed and the virtual
machine resumes execution. OFF places the virtual
machine in the normal CP environment, so that when the
Attention key is pressed, the virtual machine stops.
When you log on VM/370, RUN is set off.

controls the line editing functions. ON specifies that
the line editing functions and the symbols cf the VM/370
system are to be used to edit virtual CPU console input
requests. This establishes 1line editing features in
systems that do not normally provide them. OFF specifies
that no character or line editing is to be wused for the
virtual machine operating system. When you 1log on
VM/370, LINEDIT is set on.

controls whether the virtual machine operating
system may use System/370 extended control mode and
control registers 1 through 15. Control register zero may
be used with ECMODE either ON or OFF. When you 1log on
VM/370, ECMODE is set according to the user's directory
option; ON if ECMODE was specified and OFF if not.

Note: Execution of the SET ECMODE {ON|OFF} command always
causes a virtual system reset.

controls whether additional checking is performed
on virtual I/0 requests to DASD in order to support the
use of the 0S Indexed Sequential Access Method (ISAM).
When you 1log on VM/370, ISAM 1is set according to the
user's directory options; ON if ISAM was specified and
OFF if not.

controls CCW translation for CP. NOTRANS can be
specified only by a virtual machine that occupies the
virtual=real space. It causes all virtual I/0O from the
issuing virtual machine to bypass the CP CCW
translation. To be in effect in the virtual=real

System Programmer's Guide



PAGEX {

ON }
OFF

EMSG { OR
OFF
CODE
TEXT

TIMER {

ASSIST

ON
OFF
REAL

ORN

-

( OFF

-
|
|

r

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

environment, SET NOTRANS ON must be issued after the
virtual=real machine is loaded via the IPL command. (IPL
sets the NOTRANS option to an OFF condition.)

controls the pseudo page fault portion of the
VM/VSs Handshaking feature. PAGEX ON or OFF should only be
issued for an 0S/VS1 virtual machine that has the VM/VS
Handshaking feature active. It can only be specified for
a virtual machine that has the extended control mode
(ECMODE) option. PAGEX ON sets on the pseudo page fault
portion of handshaking; PAGEX OFF sets it off. When you
log on to VM/370, PAGEX is set OFF.

controls error message handling. ON specifies that both
the error code and text are displayed at the terminal.
TEXT specifies that only text is displayed. CODE
specifies that only the error code be displayed. OFF
specifies that no error message is to be displayed. When
you log on VM/370, EMSG is set to TEXT.

Note, CMS recognizes EMSG settings for all error (E),
information (I), and warning (W) messages, but ignores
the EMSG setting and displays the complete message (error
code and text) for all response (R), severe error (S},
and terminal (T) messages.

controls the virtual timer. ON specifies that the
virtual timer is to be updated only when the virtual CPU
is running. OFF specifies that the virtual timer is not
be updated. REAL specifies that the virtual timer is to
be updated during virtual CPU run time and also during
virtual wait time. If the REALTIMER option is specified
in your VM/370 directory entry, TIMER is set to REAL when
you log on; otherwise it is set to ON when you log on.

r ]
|SVC |
INOSVC |
L J

)

controls the availability of the virtual machine assist
feature for your virtual machine. The assist feature is
available to your virtual machine when you log on if (1)
the real CPU has the feature installed and (2) the system
operator has not turned the feature off. The SVC handling
portion of the assist feature is invoked when you log on
unless your VM/370 directory entry has the SVCOFF option.
Issue the QUERY SET command line to see if the assist
feature is activated and whether the assist feature or
VM/370 is handling SVC interrupts.

All SVC 76 requests are passed to CP for handling,
regardless of the SVC and NOSVC operands.

If you issue the SET ASSIST command line and specify SVC
or NOSVC while the virtual machine assist feature is
turned off, the appropriate bits are set. Llater, if the
feature is turned on again, the operand you specified
while it was off becomes effective.

Part 1: Debugging with VM/370 59



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

CN sets the assist feature on for the virtual machine;
OFF turns it off. SVC specifies that the assist feature
handles all SVC interrupts except SVC 76 for the virtual
machine; NOSVC means VM/370 handles the SVC interrupts.
See the "virtual Machine Assist Feature" discussion in
"part 2: Control Program (CP)" for information on how to
use the assist feature.

r 1

PFnn | IMMED | [pfdatal#pfdatal#...pfdatan]
i
J

|DELAYED
L

defines a program function for a program function key on
a 3277 Display Station and indicates when that function
is to be executed. See the VM/370: Terminal User's Guide
for a description of how to use the 3277 program function
keys.

The value, nn, is a number from 1 (or 01) to 12 that
corresponds to a key on a 3277. The program function is a
"function"®, or programming capability, you create by
defining a series of VM/370 commands or data you want
executed. This series of commands executes when you press
the appropriate program function key.

IMMED specifes that the program function is executed
immediately after you press the program function key.

DELAYED specifies that execution of the program function
is delayed for a display terminal. When the program
function is entered, it is displayed in the input area
and not executed until you press the Enter key. DELAYED
is the default value for display terminals.

pfdatai#pfdata2#...pfdatan defines the VM/370 command or
data lines that constitute the program function. If more
than one command line is to be entered, the pound sign
(#) must separate the lines. If you use the pound sign
(#) to separate commands that you want executed with the
designated PF key, you must precede the command line with
#CP, turn 1line editing off, or precede ea¢h pound sign
with the 1logical escape character ("). PFor further
explanation, see the "Examples of Setting Progranm
Function Keys" section that follows. If no command lines
are entered, PFnn is a null command. Program functions
cannot be embedded within one another.

PFnn TAB nl1 n2 ...
specifies a program function numker to be associated with
tab settings on a terminal. The number of the PF key, nn,
can be a value from 1 (or 01) to 12. See the VM/370:
EDIT Guide for examples of how this feature is used.

TAB is a keyword identifying the tab setting function.
The tab settings may be entered in any order.

| PFnn COPY [resid]

| specifies that the program function key, numbered nn,
i performs a COPY function for a remote 3270 terminal. nn
| must be a value of 1 or 01 to 12. The COPY function
| produces a printed output of the entire screen display at
| the time the PF key is actuated. The output is printed on
| an IBM 3284, 3286 or 3288 printer connected to the same
| control unit as your display terminal.

60 IBM VM/370: System Programmer's Guide



The resid operand may be specified if more than one
printer is connected to the same conrtrel unit as your
display terminal. It is a three-character hexadecimral
resource identification number assigned to a specific
printer. If resid is entered, the printed copy is
directed to a specific printer; if not, the copy is
printed on the printer with the lowest resid number. The
resid numbers of the printers available to your display
terminal can be obtained from your system operator. If
only one printer is available, resid need not be
specified.

If the command is invalid or if the designated or default
printer is not free (other display terminals may be using
it) or is not connected to the same control unit as your
display terminal, a NOT ACCEPTED message appears on the
screen, If the printer was busy, retry the operation
until the printer honors your request.

You may include your own identification on the printed
output by entering the data into the user input area of
the screen before you press the PF key. The
identification appears in the lower left of the printed

CopYy.

Examples of Setting Program Function Keys

This example shows you how the SET PFnn command is processed if you do
not turn line editing off or use the logical escape character.

Enter one of the following commands while in CMS mode:

SET PF02 IMMED Q RDR#Q PTR#Q PUN

-- Or --

CP SET PF02 IMMED Q RDR#Q PTR#Q PUN

Now press the ENTER key:

1. The ENTER key causes immediate execution,

2. Only the Q PTR and Q PUN commands execute, and

3. Q PTR and Q PUN are stripped from the PF02 key assignment leaving Q

RDR,

which was not executed.

The following examples demonstrate two methods for avoiding the

problem.

Example 1

Enter one of the following commands while in CMS mode:

Part 1: Debugging with VM/370 60.1



#CP SET PF02 IMMED Q RDR#Q PTR#Q PUN
-- or --
CP SET PF02 IMMED Q RDR"#Q PTR"#Q PUN
-~- Oor --
SET PFOZ IMMED Q RDR"#Q PTR“#Q PUN
Now press the ENTER key.
CP assigns the three QUERY commands as functions of the PF02 key.
Pressing the PF02 key executes the three QUERY commands.

Exanmple 2

Enter the following command while in CMS mode:
SET LINEDIT OFF
and press the ENTER key.
Then enter:
SET PF02 IMMED Q RDR#Q PTR#(Q PUN
-— or --
CP SET PFO2 IMMED Q RDR#Q PTR#Q PUN

and press the ENTER key.
CE assigns the three QUERY commands as functions of the PF02 key.

Then enter:
SET LINEDIT ON
and press the ENTER key.

Pressing the PF02 key executes the three QUERY commands.

Response

* PFnn UNDEFINED
This response appears in the user area of the screen on a 3277
Display Station if a PF key that is undefined is pressed.

Using the SET Command

Use the SET command to control various systems options. In particular,
set the MSG, WNG, and EMSG options ON when debugging. The messages
printing at the terminal may provide information that 1is immediately
helpful.

Part 1: Debugging with VM/370 61



Privilege Class: G

Use the STORE command to alter the contents of specified registers and
locations of the virtual machine, The contents of the following can be
altered:

Virtual storage locations
General registers
Floating-point registers
Control registers (if available)
Program status word

The STORE command can also save virtual machine data in low storage.

The operands may be combined in any order desired, separated by one
or more blanks, for up to one full line of input. If an invalid operand
is encountered, an error message is issued and the store function is
terpinated. However, all valid operands entered, before the invaliad
one, are processed properly.

Storage locations, registers, the PSW, and status can be stored using
a single command 1line. When you combine the operands for storing into
storage, registers, the PSW, or the status area on a single command
line, all operands must be specified; default values do not agply in
this case.

The format of the STORE command is:

L} Al
| STore | hexloc 1
| | Lhexloc hexword1 [ hexword2...] |
| | |
| | Shexloc hexdata... |
| | |
| | Greg |
| | Yreg hexword1 [ hexword2...] |
| | Xreg (
| | |
| | Psw [ hexword1] hexword2 i
| | |
| | STATUS |
L )
Where:

hexloc

Lhexloc hexwordl [hexword2...]
stores the specified data (hexword1 [hexword2...]) in
successive fullword locations starting at the address
specified by hexloc. The smallest group of hexadecimal values
that can be stored using this form is one fullword. Alignment
is made to the nearest fullword boundary. Either form (hexloc
or lLhexloc) can be used.

The operands (hexword1 hexword2...) each represent up to eight

hexadecimal digits. If the value keing stored is 1less than a
fullword (eight hexadecimal digits), it is right-—-adjusted in

62 IBM VM/370: System Programmer's Guide



the word and the high order bytes of the word are filled with
zeros. If two or more hexwords are specified, they must be
separated by one or more blanks.

Shexloc hexdata...
stores the data specified (hexdata...) in the address
specified by hexloc, without word alignment., The shortest
string that can be stored is one byte (two hexadecimal
digits). If the string contains an odd number of characters,
the last character is not stored, an error message is sent,
and the function is terminated.

The operand, hexdata, is a string of two or more hexadecimal
digits with no embedded blanks.

Greg hexwordtl [hexword2...]
stores the hexadecimal data (hexword1 [hexword2...]) in
successive general registers starting at the register
specified by reg. The reg operand must be either a decimal
number from 0-15 or a hexadecimal digit from O0-F.

The operands (hexword1 [hexword2...]) each represent up to
eight hexadecimal digits. If less than eight digits are
specified, the string is right justified in a fullword and
left-filled with zeros. If two or more hexwords are specified,
they must be separated by one or more blanks.

Yreg hexword1 [hexword2...]
stores the hexadecimal data (hexword1 [hexword2...]) in
successive floating-—point registers starting at the register
specified by reg. The reg operand must be a digit from 0-6.
If reg is an odd number, it is adjusted to the preceding even
number.

The operands (hexword1l [ hexword2...] each represent up to
eight hexadecimal digits. If less than eight digits are
specified, the string is right justified in a fullword and
left—filled with zeros. If two or more hexwords are specified,
they must be separated by one or more blanks.

Xreqg hexword1 [ hexword2...]
stores the hexadecimal data (hexword1 ([hexword2...]) in
successive control registers starting at the register
specified by reg. The reg operand must either be a decimal
number from 0-15 or a hexadecimal digit from O0-F. If the
virtual machine is in basic control mode, you can store data
in register 0 only.

The operands (hexword1l [hexword2...]) each represent up to
eight hexadecimal digits. If less than eight digits are
specified, the string is right justified in a fullword and
left-filled with zeros. If two or more hexwords are specified,
they must be separated by one or more blanks.

PSW [hexword1] hexword2

stores the hexadecimal data ([ hexword1] hexword2) in the first
and second words of the wvirtual machine's program status word
(PSW). If only hexword2 is specified, it is stcred into the
second word of the PSHW. The operands hexword1l and hexword2
must be separated by one or more blanks. They represent up to
eight hexadecimal digits. If less than eight digits are
specified, the string is right Jjustified and left-filled with
Zeros.

Part 1: Debugging with VM/370 63



STATUS stores selected virtual machine data in certain 1low storage
locations of the virtual machine, simulating the hardwvare
store status facility. These 1locations are permanently
assigned locations in real storage. To use the STATUS
operand, your virtual machine must te in the Extended Control
Mode. The STATUS operand should not be issued for CMS virtual
machines or for DOS virtual machines generated for a CPU
smaller than a System/360 Model 40. The STATUS operand stores
the following data in low storage:

Decimal Hexadecimal Length

Address Address in_Bytes Data

216 D8 8 CPU Timer

224 EO 8 Clock Comparator

256 100 8 Current PSHW

352 160 32 Floating—point registers 0-6
384 180 64 General registers 0-15

448 1co 64 Control registers 0-15

Response

STORE COMPLETE

Using the STORE Command

Use the STORE command to alter the contents of virtual storage
locations, registers, and the PSW. When debugging, you wmay find it
advantageous to alter storage, registers, or the PSW and then continue
execution, This is a good procedure for testing a propcsed change.
Also, you can make a temporary correction and then continue to check
that the rest of execution is trouble-free.

With the STORE command, data is stored either in units of one word
with fullword boundary alignment or in wunits of one byte without
alignment.

The STORE STATUS command stores data in the extended 1logout area.
The STORE STATUS command stores CPU Timer and Clock Comparator values
that may then be displayed at the terminal via the DISPLAY command. The
procedure is the only way to get timer information at the terminal.

One debugging use of STORE STATUS would be as follows:

1. 1Issue the STORE STATUS command before entering a routine you wish
to debug.

2. When execution stops (because an address stop was reached or
because of a failure) display the extended logout area. This area
contains the status that was stored before entering the routine.

3. Issue STORE STATUS again and display the extended logout area

again. You now have the status information before and after the
failure. This information could help you solve your prcblem.

64 IBM VM/370: System Programmer's Guide



SYSTEM

Privilege Class: G

Use the SYSTEM command to simulate the action of the RESET and RESTART
buttons on the real computer console, and to clear storage. The RESET
function and the CLEAR function leave the virtual machine in a stopped
state. An IPL command must be issued after a SYSTEM CLEAR command.
After a SYSTEM RESTART, the virtual machine is automatically restarted
at the location 1loaded into the PSW from the doubleword at virtual
location zero. The format of the SYSTEM command is:

1 A

| SYStem | CLEAR {

| | RESET 1

| ) RESTART |

L o |

Where:

CLEAR clears virtual storage and virtual storage keys to binary
zeros.

RESET clears all pending interrupts and conditions in the virtual
machine.

RESTART simulates the hardware system RESTART function by storing the
current PSW at virtual location eight and lcading, as the new
PSW, the doubleword from virtual 1location zero. Interrupt
conditions and storage remain unaffected.

This response is given if the command SYSTEM CLEAR is entered.

SYSTEM RESET

This response is given if the command SYSTEM RESET is entered.

If the command SYSTEM RESTART is entered, no response is given; the
virtual machine resumes execution at the address in the virtual PSW
loaded from virtual storage location zero.

Using the SYSTEM Command

Use the SYSTEM command to simulate the Reset and PSW Restart buttons on
the computer console. Also, use the SYSTEM command to clear storage and
its associated storage keys. It is a good practice to clear storage to
binary zeros before you IPL a systen.

Part 1: Debugging with VM/370 65



66

After issuing the SYSTEM command with RESET or CLEAR specified,
either STORE a PSW and issue BEGIN or issue BEGIN with a hexadecimal
storage location specified, to resume operation. The virtual machine
automatically restarts at the location specified in the new PSW (which

is loaded from the doubleword at location zero) after the SYSTEM RESTART
command is processed.

IBM VM/370: System Programmer's Guide



Privilege Class: G

Use the TRACE command to trace specified virtual machine activity and to
record the results at the terminal, on a virtual spooled printer, or on
both terminal and printer. If trace output is being reccrded at the
terminal, the virtual machine stops execution and CP command mode is
entered after each output message. This simulates the single cycle
function. To resume operation at the virtual machine, the BEGIN command
must be entered. If the RUN operand is specified, the virtual machine is
not stopped after each output message. If trace output 1is being
recorded on a virtual spooled printer, a CLOSE command must be issued to
that printer in order for the trace output to be printed. Successful
branches to the next sequential instruction and branch-to-self
instructions are not detected by TRACE. Instructions that modify or
examine the first two bytes of the next sequential instruction cause
erroneous processing for BRANCH and INSTRUCT tracing.

When tracing on a virtual machine with only one printer, the trace
data is intermixed with other data sent to the virtual printer. To
separate trace information from other data, define another printer with
a lower virtual address than the previously defined printer. For
example, on a system with OOE defined as the only printer, define a
second printer as 00B. The regular output goes to OOE and the trace
output goes to 00B.

When operation of a shared system 1is being traced, the following
options cannot be used:

e BRANCH
e INSTRUCT
e ALL

I/0 operations for virtual channel-to-channel adapters, with both ends
connected to the same virtual machine, cannot be traced.

The format of the TRACE command is:

svC 1 Printer
1I/0
PROgram
EXTernal
PRIV

|
TRace |
|
|
|
|
| SIO
i
|
i
|
|
|
|

r R b} r a
|TERMinal| |NORun}
| BOTH | |RUN |
L 4 [N 4

CCW
BRanch
INSTruct
ALL

CSW

OFf

o= - ———
e e —— ——

END

1More than one of these activities may be traced by using a single
TRACE command. For example:

TRACE SVC PROGRAM SIO PRINTER

[o O e T S — — —  — ——— — — — —— — —
e o e e s . —— — — — — — ——

Part 1: Debugging with VM/370 67



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 13575

where:
svC traces virtual machine SVC interrupts.
1/0 traces virtual machine I/0 interrupts.

PROGRALM traces virtual machine program interrupts.

EXTERNAL traces virtual machine external interrupts.

PRIV traces all virtual machine non-I/0 privileged instructions.

SIO traces TIO, CLRIO, HIO, HDV and TCH instructions to all
virtual devices. Will also trace SIO and SIOF instructions
for non-console and non-spool devices only.

CCwW traces virtual and real CCWs for non-Spool/non-Console device
I/0 operations. When CCW tracing is requested, SIO and TIO
instructions are also traced.

BRANCH traces all virtual machine interrupts, all PSW instructions,

and all successful branches.

INSTRUCT traces all instructions, virtual machine interrupts and

ALL

CSW

END

successful branches.

traces all instructions, interrupts, successful branches,
privilege instructions, and virtual machine I/0 operations.

provides contents of virtual and real channel status words at
I/0 interrupt.

terminates all tracing activity and prints a termimaticn
message.

PRINTER directs tracing output to a virtual spooled printer.

PRT

TERMINAL directs tracing output to the terminal (virtual machine

console).

BOTH directs tracing output to both a virtual spooled printer and
the terminal.

OFF halts tracing of the specified activities on both the printer
and terminal.

NORUN stops program execution after the trace output to the terminal
and enters CP command mode.
Hote: If a Diagnose code X'008' is being traced, NORUN has no
effect and program execution does not stop.

RUN continues the program execution after the trace output to the
terminal has completed and does not enter CP command mode.

Notes:

1. If your virtual machine has the virtual=real option and NOTRANS set
on, CP forces CCW translation while tracing either SIO or CCW. When
tracing is terminated with the TRACE END command, CCW translation
is bypassed again.

2. If the virtual machine assist feature 1is enabled on your virtual
machine, CP turns it off while tracing SVC and program interrupts

68 IBM VM/370: System Programmer's Guide



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

(SVC, PRIV, BRANCH, INSTRUCT, or ALL). After the tracing is
terminated with +the TRACE END command line, CP turns the assist
feature on again.

The following symbols are used in the responses received from TRACE:

Symbol Meaning

VVVVVY virtual storage address

tttttt virtual transfer address or new PSW address
IrTrrrr real storage address

XXXXXXXX virtual instruction, channel command word, CSW status
YYYYYYYY real instruction, CCW

ss argument byte (SSM-byte) for SSM instruction
ns new system mask after execution of STOSM/STNSM
z2z low order byte of R1 register in an execute instruction

(not shown if R1 register is register 0)
222722222 referenced data

type virtual device name (DASD, TAPE, LINE, CONS, RDR,
PRT, PUN, GRAF, DEV)

vV vadd virtual device address

R radd real device address

mnem mnemonic for instruction

int interrupt type (SvVvC, PROG, EXT, I/0)

code interrupt code number (in hexadecimal)

CCn condition-code number (0, 1, 2, or 3)

IDAL Indirect data address list

¥k virtual machine interrupt

HEH privileged operations

==> transfer of control

TRACE STARTED

This response is issued when tracing is initiated.

TRACE ENDED
D SNolo

This response is issued when tracing is suspended.

IcH, 110, CLRIO, HIO, HDV, SI0, or SIOF
ICH

I/0 vvvvvv TCH xxxxxxxx type vadd CC n

110, CLRIQO, HIO, or HDV

I/0 vvvvvv mnem xxXXxXxx type vadd CC n type radd CSW xxxXx

SIO or SICF

I/0 vVvvvVVv RDnem XXXXxXxxx type vadd CC n type radd CSW xxxx CAW vVvVVVVVV
CCH:

CCW VVVVVV XXXXXXXX XXXXXXXX ILLTTLIT YYYYYYYY YYVYYYYY

CCW 1IDAL vvvvvvvv vvvvvvvv IDAL OOrrrrrr OOrrrrrr
CCW SEEK XXXXXXXX XXXXXX SEEK yyyyyvyyYyY YYYY

Part 1: Debugging with VM/370 69



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

The IDAL or SEEK 1line is included only if applicable. The virtual IDAL
is not printed if the real CCW opcode does not match the real CCH.

INSTRUCTION TRACING:

Privileqed Instruction:

$:: VVVVVV SSHM XXXXXXXX SS (normal SSM)

$:: VVVVVV SSM XXXXXXXX SS tttttt (switch to/from translate mode)
$:: Vvvvvv STOSM XXXXXXXX DS (normal STOSH)

:s: vvyvvv STOSM XXXXXXXX ns tttttt (switch to translate mode)

$:: VVvvvVv STNSM XXXXXXXX NS (normal STNSHM)

::: vvvvvvy STNSM xxxXXxXXXX ns tttttt (switch from translate mode)
22: VVVVVV LPSW XXXXXXXX tttttttt tttttttt (WAIT bit on)

$:: vvvvvv LPSW XXXXXXXX ==> tttttttt tttttttt (WAIT bit not on)
$:: VVVVVV Enem XXXXXXXX (all others)

Executed Instructions:

VVVVVV EX XXXXXXXX ZZ VVVVVV BDel XXXX XXXXXXXX

For an executed instruction, where 2zz (see preceding explanaticn of
symbols) is nonzero, the mnemonic for the executed instruction is given
as if the zz byte had been put into the instruction with an OR
operation.

All Other Instructions:

VVVVVV mnem XXXXXXXX XXXX

SUCCESSFUL BRANCH:

VVVVVV mnem XXXXXXXX ==> tttttt

INTERRUPT (SVC, PROGRAM, or EXTERNAL)

**% yyvvvv int code ==> tttttt

I/0 INTERRUPT (First line given only if "CSW"™ was specified):
CSW V vadd xxxxXxXXXX XXxXXxXxXXx R radd yyyyyyyy yYyyyyyyy
**x% VVvvvv I,/0 vadd ==> tttttt CSW xxxx

BRANCH TRACE: (ALL option selected)
Entry for *‘branch from' instruction
VVVVVV mnem XXXXXXXX tttttt

Entry for 'branch to' instruction

==2 VVVVVV mnem XXXXXXXXXXXX

70 IBM VM/370: System Programmer's Guide



——— memEmee e ———

Use the TRACE command to trace specified virtual machine activity and to
record the results at the terminal, at a virtual printer, or at both.
This command is useful in debugging programs kecause it allows you to
trace only the information that pertains to a particular problenm.

When the terminal is used for the trace output, the virtual machine
stops executing after each output message 1is printed and the systenm
enters the CP environment. At this time, other commands may be issued
to display, dump, or alter storage. Using the terminal for trace output
thus simulates the single cycle execution function of the computer
console. To resume execution, the BEGIN command must be issued.

When the virtual printer is used for trace output, a CLOSE command
must be issued to the virtual printer in order for the trace information

to print at the real printer.

A successful branch to the next sequential instruction and a branch
to self instruction are not traced. Any instruction that modifies or
examines the first two bytes of the next sequential instruction causes
erroneous processing for BRANCH and INSTRUCT tracing.

Part 1: Debugging with VM/370 71



P COMMANDS FOR SYSTEM PROGRAMMERS AND SYSTEM ANALYSTS

CP real machine debugging is reserved for Class C wusers (systen
programmers) and Class E users (system analysts). CP has facilities to
examine data in real storage (via the DCP and DMCP commands) and to
store data into real storage (via the STCP command). There is no
facility to examine or alter real machine registers, PSW, or storage
words.

Remember, real storage is changing even as you issue the CP commands
to examine and alter it.

System programmers and analysts may also want to use the CP internal
trace table. This table records events that occur on the real machine.

72 1IBM VM/370: System Programmer's Guide



Privilege Class: E

Use the DCP command to display the contents of real storage locations at
the terminal.

If an

invalid argument is entered, the DCP command terminates

however, any previous valid arguments are processed before termination

occurs. The format of the DCP command is:
L 1
| l r Ir r IR |
| DCP | {Lhexloc1}{f—)| hexloc2 | | |
| | |Thexloct| I{ : }l END [ |
| | | hexloc1}| L 4 |
| i 0 | | |
| 1 ¢ 41 | l
| 1 ( r 1 | |
| | I{. }Ibytecount| | |
l | | |END i1 |
| | L L 4 J |
[ []
where:
Lhexloc1 is the first or only storage location to be displayed
Thexloc1 in hexadecimal. If hexloct1 is not specified, L or T must
hexloc1 be specified and the display lkegins with storage location
0 0. If hexloct is specified and L or T is not specified,

| END
L

r ]
{.}Ibytecount|

| ~END
L

r a1
{-} {hexloc2|

4

4

the display is the same as if L were specified. If T is
specified, an EBCDIC tramslation is included with the
hexadecimal display.

If hexloct is followed bty a period and is not on a
fullword boundary, it is rounded down to the next lower
fullyord,

specifies that a range of locations is to be displayed.
To display the contents of one or more storage
locations by specified storage address location the "-n
or ":" pust be used. The hexloc2 operand must be 1 to 6
hexadecimal digits; leading zeroes need not be
specified. In addition, The hexloc2 operand must be
equal to hexloct and it should not not exceed the size of
real storage. If END is specified, real storage from
hexloc1 through the end of real is displayed. If hexloc2
is not specified, END is assumed by default. Note that
this occurs only if “-worw;w follows the first operand.

is a hexadecimal integer designating the number of
the number of bytes of real storage (starting with
the byte at hexloc1} to be displayed on the terminal.
The sum of hexloct and the bytecount must be an address
that does not exceed the size of real storage. If this
address is not on a fullword boundary, it is rounded up
to the next higher fullword. The bytecount operand must
be a value of 1 or greater and may not exceed 6
hexadecimal digits.

Part 1: Debugging with VM/370 73



Usage:

Normally, a wuser will or should define the beginning and ending
locations of storage in the following manner:

dcp Lhexloct-hexloc2

dcp Thexloci-hexloc2

dcp hexloc1:hexloc2

dcp hexlocl.bytecount

dcp hexloct:hexloc2 hexloc1.bytecount

Note that no blanks can be entered between the limit or range symbols
(:y -« or .) or any of the operands except for the blank or blanks
between the command name and the first operand. A blank is also
required between each set of operands when more than one set of operands
are entered on one command line.

If, however, a blank immediately follows the designated type
character (T or 1) DCP displays all of real storage. If the next
operand is either a colomn (:), a hyphen (-), or a period (.) followed by
a blank character, the system again defaults to a display of all storage
locations as this operand assumes a second set of operands.

Note: Blanks separate operands or sets of operands if mcre than one
operand is entered on the same command line. Blanks should not occur on
the right or left of range or length symbols, unless it is intended to
take the default value of the missing operand defined by the blank.

The following are examples of DCP entries that produce full storage
displays.

dcp 1 dcp t: dcp O-end
dcp t decp 1. dcp t:end
dcp - dcp t. dcp t:end
dcp : dcp 0- dcp O:end
dcp . dcp 0: dcp l.end
dcp 1- dcp l-end dcp O.end
dcp 1: dcp t-end

The following displays all of storage three times because of the
embedded blanks:

dcpl . t

Response

Requested locations are displayed in the following format:

xxxxxXx = word1 word2 word3 wordi4 [key] *EBCDIC translation*

where xxxxxx 1is the real storage location of wordil. "yord1" is
displayed (word aligned) for a single hexadecimal specification.
Up to four words are displayed on a line. If required, multiple
lines are displayed. The EBCDIC tramslation is displayed aligned
to the next 1lower 16-byte boundary if Thexloc is specified.
Nonprintable characters display as a ".", If the location is at a
2K page boundary the key for that page is also displayed. The
output can be stopped and the conmand terminated by pressing the
ATTN key (or its equivalent).

74 IBM VM/370: System Programmer's Guide



Using the DCP Command

——— s o

Use the DCP command to display real storage locations at the terminal.
The requested locations are typed in the following format:
xxxxxx = WORD1 WORD2 WORD3 WORD4 [EBCDIC translation]
where xxxxxx is the real storage location of WORD1. WORD1 is displayed
(word aligned) for a single hexloc specification. Up to four words are

displayed on a line. If required, multiple lines are printed. The EBCDIC
translation is displayed if Thexloc is specified.

Part 1: Debugging with VM/370 75



Privilege Class: E

Use the DMCP command to print the contents of real storage locations on
the user's virtual spooled printer. The output format is eight words
per line with EBCDIC translation. Multiple storage locations and ranges
may be specified. To get the output printed on the real printer, the
virtual spooled printer must be terminated with a CLOSE command. The
format of the DMCP command is:

3 1
| il r ar r 11 |
| DMCP | ILhexloc1 ||{- | hexloc2 | | [*dumpid] |
| | |Thexloc1 || :}I END I |
| | | hexloc1 || L 4 |
| (. 0 L | |
| It 4 | |
| | | r A (
i | ({.}Ibytecount| | |
| I | |END (. |
| | L L 4 4 |
L J

where:
Lhexloc1 is the first or only storage 1location to be dumped. If
Thexloc1 hexloc1 is not specified, L or T must be specified and
hexloc1 dumping starts with location 0. If hexloc1 is specified
0 and L or T are not specified, an EBCDIC translation is

included with the hexadecimal dump contents. If hexloc1
is followed by a period and is not on a fullword
boundary, it is rounded down to the next lower fullword.

r q
-1 {hexloc2| is a range of real storage locations to be dumped.
{:} | END | To dump to the end of real storage, hexloc2 may be
L 4 specified as END or not specified at all, in which case
END is assumed by default.

r ]
{.}Ibytecount| is a hexadecimal integer designating the number of
| END | bytes of real storage (starting with the by te
L 4 at hexloc1) to be typed at the printer. The sum of
hexloc1 and the bytecount must be an address that does
not exceed the size of real storage. If this address is
not on a fullword boundary, it is rounded up to the next
higher fullword.

If the "," is used for a range, hexloc2 is defined as the
number of hexadecimal storage locations (in bytes) to be
dumped starting at hexlocl. 1If hexloc2 is specified as a
length, it must have a value such that when added to
hexloc1 it will not exceed the storage size.

*dumpid is specified for identification ©purposes. If specified,
it becomes the first line printed preceding the dump
data. Up to 100 characters with or without blanks may be
specified after the asterisk prefix. If dumpid |is
specified, hexloc2 or bytecount must be specified. The
asterisk (*) is required to identify the dumpid.

76 1BM VM/370: System Programmer's Guide



Usage:

Normally, a user would define beginning and ending dump locations in the
following manner:

dmcp Lhexloc-hexloc
or
dmcp hexloc.bytecount

Note that there are no blanks between length or range symbols (-,:,
or .) or between any of the operands except for the blank(s) between
the command and the first operand. A blank is also required between
each set of operands when more than one set of operands are entered.
Note, only one ., :, or - or no delimiter may be used within each set of
operands.

If, however, a blank immediately follows the designated type
character, the default dump starting and ending locations are assumed to
be the beginning and/or end of virtual storage. Similarly, if the range

"or length symbol separates the first character from a blank or END, all
of real storage is dumped.

Note: Blanks separate operands or sets of operands if wmore than one
operand is entered on the same command line. Blanks should not occur on
the right or left of the range or length symtol, unless it is intended
to take the default value of the missing operand defined by the blank.
Thus, all of the followirg produce full storage dumps.

dmcp 1 dmcp 1- dmcp t. dmcp t-end
dmcp t dmcp t- dmcp 0- dmcp 0O:end
dmcp - dmcp 1: dmcp O: dmcp l.end
dmcp : dmcp t: dmcp O. dmcp l.end
dmcp . dmcp 1. dmcp 1-end dmcp 0O.end

Bach of the following produces three full dumps because of the
embedded blanks:

dmcp 1 . t
dmcp - : .

Note: 1In cases where multiple storage ranges or limits are specified on
one command line and the line contains errors, command execution
successfully processes all correct operands to the encountered error.

The encountered error and the remainder of the command line is rejected
and an appropriate error message is displayed.

As the dump proceeds, the follcwing message appears at the terminal
indicating that the dump is continuing from the next 64K boundary:

DUMPING LOC hexloc

wvhere "hexloc" is the segment (64K) address for the dump continuvation,
such as 020000, 030000, 040000.

is displayed, the dump ends.
COMMAND COMPLETE

indicates normal completion of the dump.

Part 1: Debugging with VM/370 77



Using the DMCP Command

Use the DMCP command to dump the contents of real storage locations to
your virtual spooled printer. The output format is eight words per line
with EBCDIC translation. If a dumpid is used, it may be up to 100
characters, including blanks. In order to print the output at the real
printer, the virtual spooled printer must be terminated with a CLOSE.

78 IBM VM/370: System Programmer's Guide



LOCATE

Privilege Class: E

Use the LOCATE command to find the addresses of CP control blocks
associated with a particular user, a user's virtual device, or a real
system device. The control blocks and their use are described in the
VM/370: Control Program (CP) Program Logic. The format of the LOCATE

command is:

L L

{ LOCate | {userid [ vaddr ]\ i

| | raddr J I

L J

Where:

userid is the user identification of the logged on user. The address
of this user's virtual machine block (VMBLOK) is printed.

vaddr causes the virtual channel block (VCHBLOK), virtual control
unit block (VCUBLOK), and virtual device block (VDEVBLOK)
addresses associated with this virtual device address to be
printed with the VMBLOK address.

raddr causes the real channel block (RCHBLOK), real control wunit
block (RCUBLOK), and the real device block (RDEVBLOK)
addresses associated with this real device address to be
printed.

Responses

LOCATE userid

VMBLOK = XXXXXX

LOCATE userid vaddr

VMBLOK
XXXXXX

VCHBLOK VCUBLOK VDEVBLOK
XXXXXX XXXXXX XXXXXX

LOCATE raddr

RCHBLOK
XXXXXX

RCUBLCK RDEVBLOK
XXXXXX XXXXXX

Using the LOCATE Command

Use the LOCATE command to find the addresses of the system control
blocks associated with a particular user, a user's virtual device, or a
real system device.

Part 1: Debugging with VM/370 79



Once you know the location of the system control blocks you can
examine (dump or display) the block you want to see. When you want to
examine specific control blocks, use the commands LOCATE and DUMP or
DISPLAY to examine the control blocks, instead of taking a dump. A
discussion of the most important fields of the VMBLOK, VCHBLOK, VCUBLOK,

VDEVBLOK, RCHBLOK, RCUBLOK, and RDEVBLOK are included in the "Reading CP
ABEND Dumps" section.

80 IBM VM/370: System Programmer's Guide



GC20-1807-3 Page Modified by TNL GN20-2662, Harch 31,

-
[Ye)
~J
v

MONITOR

Use the MONITOR command to initiate or terminate the recording of events
that occur in the real machine. This recording is always active after a
VM/370 IPL (manual or automatic). The events that are recorded in the
CP internal trace table are:

External interruptions

SVC interruptions

Program interruptions
Machine check interruptions
I/0 interruptions

Free storage requests
Release of free storage
Entry into scheduler

Queue drop

Run user requests

Start I/0

Unstack I/0 interruptions
Storing a virtual CSW

Test 1/0

Halt device

Unstack IOBLOK or TRQELOK
NCP BTU (Network Control Program Basic Transmission Unit)

® 0 00 9 0 9 0 9 0 ¢ & 9 ¢ o 0

Use the trace table to determine the events that preceded a CP systenm
failure. Refer to the "CP Internal Trace Table" section of this manual
for information on finding and using the internal trace table. The
format of the MONITOR command for tracing events in the real machine is:

MONitor | { STArt CPTRACE
{ L STOP CPTRACE

[ ——
e

START CPTRACE
starts the tracing of events that occur on the real machine.
The events are recorded on the CP internal trace table in
chronological order. When the end of the table is reached,
recording continues at the beginning of the table, overlaying
data previously recorded.

STOP CPTRACE
terminates the internal trace table event tracing. Event
recording ceases but the pages of storage contaiming the CP
internal +trace table are not released. Tracing can be
restarted at any time by issuing the MONITOR START CPTRACE
command.

COMMAND COMPLETE

The MONITOR command was processed successfully.

Part 1: Debugging with VM/370 81



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

QUERY

Privileqge Classes: A, B, C, D, E, and F

Use the QUERY command to request system status and machine configuration
information. (For 3704 or 3705 Communication Controllers see also the
NETWORK command.) Not all operands are availatle in every privilege
class. Operands available to the specified privilege classes are given
below. The format of the Class A and E QUERY command is:

r 1

| Query | ( PAGing |

| | { PRIORity userid |

| | (sassist I

L |

Wwhere:

PAGING displays the current system paging activity.

PRIORITY userid displays the current priority of the specified
userid. This is established in the VM/370 directory
but can be overridden by the SET PRIORITY nn
command.

SASSIST displays the current status of the Virtual Machine

Assist feature for the VM/370 systen.

PAGING nn, SET mm, RATE nnn/SEC INTERVAL= XX:XX:XX
nn specifies the percentage of time the system was in
page wait during this time interval.
nm is the system paging activity index (threshold
value). This value affects the paging rate and degree
of multiprogramming that VM/370 tries to attain. The
value mm is normally 16.

nnn/SEC is the current CP paging rate in pages per second.

XX:XX:XX is the time interval between the issuance of QUERY
PAGING commands.

82 IBM VM/370: System Programmer's Guide



QUERY PRIORITY userid

userid PRIORITY = nn

nn is the the assigned priority of the specified user. The
lower the value, the higher the priority.

QUERY SASSIST

SASSIST fON }
\orr

ON or OFF is indicative that the Virtual Machine Assist feature
is enabled or disabled from the systen.

Using the QUERY Command

The QUERY command tells you the value of the paging activity index and
the priority. This information can be useful in evaluating the
usefulness of the performance options and in examining dispatching
functions.

SAVENCP

See M"pPart 4. IBM 3704 and 3705 Communications Controllers"™ for a
description of this command.

Part 1: Debugging with VM/370 83



AVESYS

Privilege Class: E

Use the SAVESYS command to save a virtual machine storage space with
registers and PSW as they currently exist. The format of the SAVESYS

conmand is:

LB
| SAVESYS
[N

systemname |

where:

systemnanme

SYSTEM SAVED

must be a predefined name representing a definition of
installation requirements of the named systenm. The
definition indicates the number of pages to be saved, the
DASD volume on which the system is to be saved, and the
shared segments (if any). Refer to the discussion of
named systems in Named Systems®" section of for further
information concerning saved systens.

Using the SAVESYS Command

See the "Generating Named Systems" section of "Part 2. Control Program
(CP)" for a complete discussion of when and how to save a named systenm.

84 IBM VM/370: System Programmer's Guide



SICP

Privilegqe Class: C

Use the STCP command to alter the contents of real storage. The real
PSW or real registers cannot be altered with this command. The format
of the STCP command is:

STCP | hexloc} hexword1 [ hexword2...]
Lhexloc

Shexloc hexdata

e e s e @

l
| |
| |
| |
L

hexloc stores the data given in hexword1 [hexword2...] in successive

Lhexloc fullword 1locations starting at the address specified by
hexloc. The smallest group of hexadecimal values that can be
stored using this specification is one fullword. Data is
aligned to the nearest fullword boundary. If the data being
stored is less than a fullword (eight hexadecimal digits), it
is right-adjusted in the word and the high order bytes of the
word are filled with zeros. Either specification (hexloc or
Lhexloc) may be used.

Shexloc stores the data given in hexdata in the address specified by
hexloc without word alignment. The shortest string that can
be stored is one byte (two hexadecimal digits). If the string
contains an o0dd number of characters, the last character is
not stored. An error message occurs and the function ends.

hexword specifies up to eight hexadecimal digits. If less than eight
digits are specified, the string is right Jjustified in a
fullword and left-filled with zeros. If tvo or more hexwords
are specified, they must be separated by at least one blank.

hexdata specifies a string of two or more hexadecimal digits with no
embedded blanks.

Response

STORE COMPLETE

Using the STCP Command

Use the STCP command to alter the contents of real storage. The real
PSW or real registers may not be altered by this command.

Part 1: Debugging with VM/370 85



The DASD Dump Restore (DDR) program can be run standalone in the real or
virtual machine. To run DASD Dump Restore standalone, IPL an input
device that contains all the necessary control statements. The ccntrol
statements necessary to run the DDR program are:

e I,/0 Definition Statements
e PFunction Statements

DDR CONTROL STATEMENTS

Control statements describe the processing that is to take place and the
I/0 devices that are to be used. I/0 definition statements must be
specified first.

All control statements may be entered from the system console or a
card reader. Only columns 1 to 71 are inspected by the program. All
data after the last possible parameter in a statement is ignored. An
output tape must have the DASD cylinder header records in ascending
sequences; therefore, the extents must be entered in sequence by
recorded cylinders. Only one type of function - dump, restore, or copy -
may be performed in one execution, but up to 20 statements describing
cylinder extents may be entered. The function statements are delimited
by detection of an input or output statement, or by a null line if the
console is used for input. If additional additional functions are to be
performed, the sequence must be repeated. Only those statements needed
to redefine the I/0 devices are necessary for subsequent steps. All
other I/0 definitions remain the same.

To return to CMS, enter a null line (carriage return) in respomnse to
the prompting message (ENTER:).

The PRINT and TYPE statements work differently in that they operate
on only one data extent at a time. If the input is from a tape created
by the dump function, it must be positioned at the header record for
each step. The PRINT and TYPE statements have an implied output of
either the console (type) or system printer (print). Therefore, PRINT
and TYPE statements need not be delimited by an input or output
statement.

I1/0 Definition Statements

The I/0 definition statements describe the tape, DASD, and printer
devices used while executing the DASD Dump Restore progranm.

INPUT/OUTPUT Control Statement

An INPUT or OUTPUT statement describes each tape and DASD unit used.
The format of the INPUT/OUTPUT statement is:

86 IBM VM/370: System Programmer's Guide



L L}

i i r 1 |

| INput | ccu type |volser| [ (optioms...)] |

| oUTput | laltapel options: |

l | L d l

{ | r Tr ) |

| | r + |MOde 6250| |LEave | |

| l |SKip nn| |MOde 1600| |REWind| [

I I ISKip 0 | |Mode 800| |UNload| |

| l L 4 L J L F |

L o |

where:

ccu is the unit address of the device.

type is the device type (2314, 2319, 3330, 3330-11, 3340-35 (3340
access device equipped with a 3348-35 megabyte disk pack),
3340~-70 (3340 access device equipped with a 3348-70 megabyte
disk pack), 2305-1, 2305-2, 2400, 2420, or 3420). There is no
7 track support.

volser is the volume serial number of a DASD device. If the keyword
'SCRATCH' is specified instead of the volume serial number, no
label verification is performed.

altape is the address of an alternate tape drive.
Note: If multiple reels of tape are required and "altape" is
not specified, DDR displays the following at the end of the
reel: "END OF VOLUME CYL xxx HD xx, MOUNT NEXT TAPE." After
the new tape is mounted, LDR continues automatically.

Options

SKIP nn forvward spaces nn files on the tape. nn is any number up to
255. The SKIP option is reset to zero after the tape has been
positioned.

MODE 6250 causes all output tapes that are opened for the first time

MODE 1600 and at the load point to be written or read in the specified

MODE 800 mode. All subsequent tapes mounted are also set to the
specified mode. If no mode option is specified, then no mode
set is performed.

REWIND rewinds the tape at the end of a function.
UNLOAD rewinds and unloads the tape at the end of a function.
LEAVE leaves the tape positioned at the end of the file at the end

of a function.

SYSPRINT Control Statement

Use the SYSPRINT control statement to describe a printer device that is
used to print data extents specified Ly the PRINT statement for the
standalone version of DDR. It is also used to print a map of the
cylinder extents from the DUMP, RESTORE, or COPY statement. If the
SYSPRINT statement is not provided, the printer assignment defaults to
OOE. The SYSERINT control statement is used by the standalone version
of DDR to define the printer device if it is other than O0OE. DDR,

Part 1: Debugging with VM/370 87



running under the control of CMS, ignores this control statement since
the CMS printer is Q00E. The format of the SYSPRINT control statement
is:

l SYsprint | ccu |
[N J
where:

ccu specifies the unit address of the device.

Function Statement

The function statements tell +the DDR program what action to perform.
The function commands also describe the extents to be dumped, copied, or
restored. The format of the DUMP/COPY/RESTORE control statement is:

L 1
| [ | |
| DUnmp i Icyll [To] ([cyl2 [Reorder] [To] [cyl3]]| |
| copy | ICPvol | I
| REstore | |ALl | |
| | |INUcleus | |
i (I 4 |
L J
Where:

DUMP requests the program to move data from a direct access volume

onto a magnetic tape or tapes. The data is moved cylinder by
cylinder. Any number of cylinders may be moved. The format
of the resulting tape is:

Record 1: a volume header record, consisting of data
describing the volumes.

Record 2: a track header record, consisting of a list of count
fields to restore the track, and the number of data records
written on tape. After the last count field the record
contains key and data records to fill the UK buffer.

Record 3: track data records, consisting of key and data
records packed into 4K blocks, with the last record
truncated.

Record 4: either the end of volume or end of job trailer
label. The end of volume 1label contains the same information
as the next volume header record except that the ID field
contains EOV. The end of job trailer label contains the same
information as record 1 except that the cylinder number field
contains the disk address of the last record on tape and the
ID field contains EOJ.

88 1IBM VM/370: System Programmer's Guide



coprPY

RESTO

cyl1

CPVOL

ALL

requests the program to copy data from one device to another
device of the same or equivalent type. Data may be recorded on
a cylinder basis from input device to output device. A
tape-to-tape copy can ke accomplished only with data dumped by
this progranm.

RE requests the program to return data that has been dumped by
this program. Data can be restored only to a DASD volume of
the same or equivalent device type as it was dumped from. It
is possible to dump from a real disk and restore to a
minidisk.

[T0] [cyl2 [REORDER] [TO] [cyl3]

Only those cylinders specified are moved, starting with the
first track of the first cylinder (cyl1), and ending with the
last track of the second cylinder (cyl2). If c¢yl2 is not
specified, only the first cylinder (cyl1) is operated on. The
REORDER operand causes the output to bte reordered, starting at
the specified cylinder (cyl3) or at the starting cylinder
(cyl1) if (cyl3) is not specified. The REORDER operand may
not be used with the CPVOL, ALL, or NUCLEUS operands.

specifies that cylinder 0 and all active directory and
permanent disk space are to be copied, dumped, or restored.
This indicates that both source and target disks should be in
CF format, that is, they must have been formatted by the CP
Format/Allocate program,

specifies that the operation is to be performed on all
cylinders.

NUCLEUS specifies that record 2 on cylinder 0, track 0 and the nucleus

Restr

cylinders will be dumped, copied, or restored.

ictions:
Each track must contain a valid home address, containing the real
cylinder and track location.

Record zero must not contain more than eight key and/or data
characters.

For the IBM 2314, 2319, and 2305, flagged tracks will be treated as
any other track , that is, no attempt will be made to substitute
the alternate track data when a defective primary track is read.
In addition, tracks will not be inspected to determine whether they
were previously flagged when written. Therefore, volumes
containing flagged tracks should be restored to the volume from
which they were dumped. The message DMKDDR715E is displayed each
time a defective track is dumped, copied, or restored, and the
operation continues.

For the IBM 3330, flagged tracks are automatically handled by the
control unit and should never be detected by the program. However,
if a flagged track is detected, message DMKDDR71S5E is displayed and
the operation terminates.

Part 1: Debugging with VM/370 89



Example:

INPUT 191 3330 SYSRES

OUTPUT 180 2400 181 (MODE 800
SYSPRINT OOF

DUMP CPVOL

INPUT 130 3330 MINIO1

DUMP 1 TO 50 REORDER 51

60 70 101

This example sets the mode to 800 bpi, then dumps all pertinent data
from the volume labeled 'SYSRES' onto the tape that is mounted on unit
180. If the program runs out of room on the first tape, it continues
dumping onto the alternate device (181). While dumping, a map of the
cylinders dumped is printed on unit OOP. When the first function is
complete, the volume labeled *MINIO1' is dumped onto a new tape. Its
cylinder header records are labeled 51 to 100. A map of the cylinders
dumped is printed on unit Q0O0F. Next, cylinders 60 to 70 are dumped and
labeled 101 to 111. This extent is added to the cylinder map on unit
O0F. When the DDR processing is complete, the tapes are unlocaded and
the program stops.

If cylinder extents are being defined from the console, the following
is displayed:

ENTER CYLINDER EXTENTS
ENTER:

For any extent after the first extent, the message

ENTER NEXT EXTENT OR NULL LINE
ENTER:

is displayed.

The user may then enter additional extents to be dumped, restored, or
copied. A null line causes the job step to start.

90 IBM VM/370: System Programmer's Guide



Home Addressj__.__.. 00000000 FFFFFFFF
Record 0

Data
(hexadecimal)

Record 0 ID from the
count field

Home Address of track
in hexadecimal format

Cylinder and head
identification for
Record 0

Record | ——f———m= JCYL 019'HD 00 REC 001|COUNT 0013000001 1000 6 |‘° [_f the_dafa l:gth f_iel 4 is_"not Zem_ - ‘|

. e I ® A heading is printed containing the I
Cylinder, head, and Record ID ey |Data data length from the count field first in
record numbers in (hexadecimal) Len Le:ngth decimal, then in hexadecimal
decimal { (hexadecimal) § | ® The data is then printed in hexadecimal l

with graphic interpretation to the right

04096 1000 DATA LENGTH ==

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABQVE ...

1st Half of—‘—-————- CYL 019.HD 00 REC 002 COUNT 0013000002 00]|09A8 Note: Data Length field repeated
Record 2 in heading.
02472 DATA LENGTH

00000 0000 00000000 00000000 00000000 00000000 0000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE ...

ABOVE RECORD WRITTEN USING RECORD OVERFLOW e
1O s satement indicates that this porton. |
I This statement indicates that this portion )
of Record 2 was written using the Write I
Special Count, Key, and Data command. The
I remainder of Record 2 is found on the next I
track as the first record after Record 0.

Home Address 4+———= CYL 019 HD 01 HOME ADDRESS 0000130001 RECORD ZERO 0013000100 00 0008 00000000 00000000
Record 0

2nd Half of —
Record 2 01624 0658 DATA LENGTH

| > CYL 019 HD 01 REC 002 COUNT 0013000102 00 0658~

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE ...

h— — — — — — — — —

e If the key length field is not zero 1

I @ A heading is printed containing the key length l
first in decimal, then in hexadecimal.

I ® The key is then printed in hexadecimal with

y graphic interpretation to the right (not shown here).

Record 3 ——F—— CYL 019 HD 01 REC 003 COUNT 0013000103 80 OF80

00128 0080 KEY LENGTH -

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE ...

03968 OF80 DATA LENGTH

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE ...

Record 4 — ™= CYL 019 HD 01 REC 004 COUNT 0013000104 00 0000 0

END OF FILE RECORD\
e

I Whenever the data length field is zero I
I an end-of-file prints next. |
e — e —— e —_— 4

Figure 8. Annotated Sample of Output from the TYPE and PRINT Punctions of the DDR
Progranm

Part 1: Debugging with VM/370 91



PRINT/TYPE Function Statement

Use the PRINT and TYPE function statement to print or display a
hexadecimal and EBCDIC translation of each record specified. The input
device must be defined as direct access or tape. The output is directed
to the system console for the TYPE function, or to the SYSPRINT device
for the PRINT function. (This does not cause redefinition of the output
unit definition.) The format of the PRINT/TYPE control statement is:

¥ |
| PRint | cci1 [hh1 [rr1]] [To cc2 [hh2 [rr2 ])]] ({ (optionms) ] I
| TYpe | . (
| | options: |
| | [Hex] ([Graphic] ([Count] |
L J
Where:

cct is the starting cylinder.

hh1 is the starting track. If present, it must follow the cc1

operand. The default is track zero.
rr1 is the starting record. If present, it must follow the hh1

operand. The default is home address and record zero.

[TO] cc2 is the ending cylinder. If more than 1 cylinder is to be
printed or displayed "T0 cc2" must be specified.

hh2 is the ending track. If present, it must follow the cc2
operand. The default is the 1last track on the ending
cylinder.

rr2 is the record ID of the last record to print. The default is

the last record on the ending track.

Options:

HEX prints or displays a hexadecimal representation of each record
specified.

GRAPHIC prints or displays an EBCDIC translation of each record
specified.

COUNT prints or displays only the count field for each record
specified.

Examples:
PRINT 0 TO 3

Prints all of the records from cylinders 0, 1, 2, and 3.
PRINT O 1 3

Prints only one record, from cylinder 0, track 1, record 3.

PRINT 1 10 3 TO 1 15 4

92 IBM VM/370: System Programmer's Guide



Prints all records starting with cylinder 1, track 10, record 3, and
ending with cylinder 1, track 15, record 4.

The example in Figure 8 shows the information that would be displayed
at the console (TYPE function) or system printer (PRINT function) by the
DDR progranm. The listing has been annotated to describe some of the
data fields.

DEBUGGING CP ON A VIRTUAL MACHINE

Many CP problems can be isolated without standalone machine testing. It
is possible to debug CP by running it in a virtual machine. In most
instances, the virtual machine system is an exact replica cf the systenm
running on the real machine, To set up a CP system on a virtual
machine, use the same procedure that is used to generate a CP system on
a real machine, However, remember that the entire procedure of running
service programs is now done on a virtual machine. Also, the virtual
machine must be described in the real VM/370 directory. See the "¥yM/370
Operating in a vVirtual Machine Environment" section of "Part II. Control
Program (CP)" for directions for setting up the virtual machine.

CP INTERNAL TRACE TABLE

CP has an internal trace table which records events that occur in the
real machine. The events that are traced are:

External interruptions

SVC interruptions

Program interruptions
Machine check interruptions
I/0 interruptions

Free Storage requests
Release of free storage
Entry into scheduler

Run user requests

start I/0

Unstack I/0 interruptions
Storing a virtual CsSW

Test I/0

Halt Device

Unstack IOBLOK or TRQBLOK
NCP BTU (Network Control Program Basic Transmission Unit)

® 0 00 00 006 p 0 g0 0090 0 o
©
ol
D
=~
D
»7]
1
»)
3

The size of the trace table depends on the amount of real storage
available at IPL time. For each 256K bytes (or part thereof) of real
storage available at IPL time, one page (4096 bytes) is allocated to the
CP trace table. EBach entry in the CP trace table is 16 bytes long.
There are 17 possible types of trace table entries; omne for each type of
event recorded. The first byte of each trace table entry, the
identification code, identifies the type of event being recorded.

The trace table is allocated by the main initialization routine,
DMKCPI. The first event traced is placed in the lowest trace table
address. Each subsequent event is recorded in the next available trace
table entry. Once the trace table is full, events are recorded at the
lovest address (overlaying the data previously recorded there). Tracing
continues with each new entry replacing an entry from a previous cycle.

Part 1: Debugging with VM/370 93



Use the trace table to determine the events that preceded a CP systenm
failure. An ABEND dump contains the CP internal trace table and the
pointers to it. The address of the start of the trace table, TRACSTRT,
is at location X'0C'. The address of the byte following the end of the
trace table, TRACEND, is at location X'10'. And the address of the next
available trace table entry, TRACCURR, is at location X'14'. Substract
16 bytes (X'10') from the address stored at X'14' (TRACCURR) to obtain
the trace table entry for the last event completed.

The CP internal trace table is initialized during IPL. If you do not
wish to record events in the trace table, issue the MONITOR STOP command
to suppress recording. The pages allocated to the trace table are not
released and recording can be restarted at any time by issuing the
MONITOR START command. If the VM/370 system should abnormally terminate
and automatically restart, the tracing of events on the real machine
will be active. After a VM/370 IPL (manual or automatic), CP internal
tracing is alway active.

There are 17 possible types of trace table entries, each uniquely

identified by the value of the first byte. PFigure 9 describes the
format of each type of trace table entry.

94 IBM VM/370: System Programmer's Guide



Identification

Type of Event Module ode Format of Trace Table Entry
(hexadecimal)
External interrupt DMKPSA 01 X017  x:0000000000" Intereupt External Old PSW
0 1 g Code 8 16
SVC interrupt DMKPSA 02 x'02 GR 15 Instruction Interrupt SVC Old PSW
0 1 a Length Code 6 Code 8 15
. " First 3 bytes Instruction interrupt
P t t DMKP! 03 X'03 upt P !
rogram interrupf KPRG l; . of VMPSW 4 Lenath Code |g Code s rogram Oid PSW 5
. First 4 bytes of
Machine Check DMKMCH 04 l;«w I ‘\‘,‘;:;e:;‘:: 8byte Interrupt l Machine Check Old PSW
tmtorsunt lo i 4 Code |8 15
1/0 interrupt DMKIOS 05 X05"|  x'00" Device 1/0 Old PSW + 4 csw
o D 2 Address |4 8 15
Y Addi f
Free Storage (FREE) | DMKFRE 06 X'06 ress 0 GR 0 at entry GR 1 at exit GR 14
VMBLOK
o |1 4 8 12 15|
X f
Return storage (FRET) | DMKFRE o7 X7 Address o GR 0 at entry GR 1 atentry GR 14
| o I VMBLOK 4 8 12 15
Value of VMRSTAT, Value of V
Enter Scheduler DMKSCH 08 x08’ Ao ot VMDSTAT, VMOSTAT, VMCLEVEL, VMTLEVEL, ot Wil
o 1 4 and VMQSTAT 8 and VMPEND 2 14
N Number of Projected Number of Current
Queue drop DMKSCH 09 X09°|  Address of VMBLOK X"0000° Pri;‘?;v Resident Working Referenced Page load
o 4 g Pages 19 Set 12 Pages 1a (PSAl 45
Run user DMKDSP oA X'0A’ X"000000" RUNUSER value RUNPSW value from PSA
o |t 4 fram FSA 8 15
DMKCNS — - ForCC=1,CSW +4
Start 1/0 DMKIOS 08 x'0B’| Condition Device Address of IOBLOK caw otherwisé this field is
DMkvIO o f1 Coor |y Address 8 12 not used 15
Virtual
Unstack 1/Q interrupt OMKDSP oc x‘oc’ X00 Device Address of VMBLOK Virtual CSW
0 1 2 Address |4 8 15
Instruction Virtuat
Virtual CSW store DMKVIO oD X007 Operation Device Address of VMBLOK Virtual CSW
0 |1 code |2 Address a4 8 15
DMKCNS B ) ForCC=1,08W+4
Test 1/O DMKIOS 0E X'0€'| Condition Device Address of I0BLOK CAW otherwise this field is
DMKVIO ° 1 Code , Address 4 s 12 not used 15
DMKCNS N ] ForCC=1,CSW+4
Halt Device DMKIOS OF X'0F’ | Condition Device Address of I0BLOK CAW otherwise this field is
DMKVIO ) 1 Code o Address 4 8 12 not used 15
Unstack Value of VMRSTAT, Address of Interrupt R
10 pt Return
10BLOK or DMKDSP 10 X10°)  Address of VMBLOK VMDSTAT, VMOSTAT, 10BLOK or TROBLOK Address
TROBLOK 0o | 4 and VMQSTAT 8 12 15
CONSYSR
NCP BTU DMKRNH 1" X1 x'00° CONSRID CONDEST CONRTAG CONTCMD CONFUNC CONDCNT
(see note) CONEXTR CONDFLG
o |1 2 a 6 15
Note:  Bytes 2 through 15 of a code 11 trace record represent a Basic Transmission Unit, sent or received by a 3704/3705. |f CONSYSR/CONEXTR are zero,
the BTU was transmitted to the 3704/3705. |f they are non-zero, the BTU was received. If CONTCMD equals X'7700", this is an unsolicited BTU response.
. .
{ Figqure 9. CP Trace Table Entries

Part 1: Debugging with VM/370 95




CP BESTRICTIONS

A virtual machine created by VN/370 is capable of rumning an IBN
System/360 or System/370 operating system as long as certain VN/370
restrictions are not violated. If your virtual wsachine produces
unexpected results, be sure that none of the following restrictions are
violated.

DYNANICALLY MCDIPIED CHANNEL RBOGBANS

In general, virtual wmachines may not execute channel programs that are
dynamically modified (that is, channel programs that are changed between
the time the START I/0 (SIO) is issued and the end of the input/output
occurs, either by the channel program itself or by the CPU). Hovever,
some dynamically modified channel programs are given special handling by
CP: specifically, those generated by the Indexed Sequential Access
Method (ISAM) running under O0S/PCP, OS/MFPT, and OS/MVT; those generated
by ISAM running in an 0S/VS virtual=real partition; and those generated
by the 0S/VS Telecommunications Access Method (TCAM) Level S, with the
VH/370 option.

The self-modifying channel programs that ISAM generates for some of
its. operations receive special handling if VM/370 is generated with the
ISAM option and if the virtual wmachine using ISAM has that option
specified in its VM/370 directory entry. There is no such restriction
for DOS ISAM, or for ISAM if it is running in an 0S/VS virtuval=virtual
partition. If 1ISAM is to run in an 0S/VS virtual=real partition, you
nust specify the ISAM option in the VM/370 directory entry for the 0S/VS
virtual machine.

virtual machines using 0S/VS TCAM (Level 5, generated or invoked with
the VM/370 option) issue a DIAGNOSE instruction when the channel progras
is modified. This instruction causes CP to reflect the change in the
virtual CCW string to the real CCW string being executed by the channel.
CP is then able to execute the dynamically =modified channel progras
properly.

The restriction against dynamically modified channel programs does
not apply if the virtual machine has the virtual=real performance option
and the NOTRARS option has been set on.

MINIDISK RESTRIC

IONS

The following restrictions exist for minidisks:

1. In the case of BRead Home Address with the skip bit off, ¥v4/370
modifies the home address data in user storage at the completion of
the channel program because the addresses must be converted for
minidisks; therefore, the data buffer area may not be dynamically
modified during the input/output operation.

2, on a =minidisk, if a CCW® string uses multitrack search on
input/output operations, subsequent operations to that disk sust
have preceding seeks or continue to use multitrack operationms.
There is no restriction for dedicated disks.

3. O0S/PCP, MFT, and MVT ISAM may be used with a minidisk only if the
minidisk is located at the beginning of the physical disk (that is,

96 IBM VM/370: System Programmer's Guide



7.

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

at cylinder zero). There is no such restriction for DOS or 0S/VS
ISAM.

n an n ~e14dn S
VM/370 does not return an end of cylinder cond

machine that has a virtual 2311 mapped to the t
tracks 0 through 9) of 2314 or 2319 cylinders.

idn To

T a virtuai
op half (that is,

If the user's channel program (CCWs) for a minidisk dc not perform
a Seek operation, then to prevent accidental accessing, VM/370
inserts a positioning Seek operation into the wuser's CCWs. Thus,
certain chanmnel programs may generate a condition code (CC) of zero
on a SI0O instead of an expected CC of one, which 1is reflected to
the virtual machine. The final status is reflected to the virtual
machine as an interrupt.

DASD channel programs directed to minidisks on 3330 or 3340 devices
may give different results than on dedicated drives if the channel
program includes multiple-track operations and depends on a Search
ID High or a Search ID High or Equal to terminate the progranm.
This is because the record 0 count fields on the 3330 and 3340 must
contain the real cylinder number of the track on which they reside;
therefore, a Search ID High based on a low virtual cylinder number
may terminate prematurely if a real record 0 is encountered. This
restriction does not apply to minidisks with a relocation factor of
zero. This restriction does apply to minidisks with a VTOC greater
than one track that are used with 0S (Release 20.6 and later) or
0S/VS (any release), since the VIOC Locate function uses a Search
ID High to stop at the end of the VTOC.

Note: If the *'R' byte of 'CCHHR' is equal to zero at the time a
virtual Start I/0 is issued, but the 'CCHHR' field is read in
dynamically by the channel program before the SEARCH ID CCW is
executed, then the real SEARCH ID CCW uses the relocated 'CCHHR'
field instead of the 'CCHHR' field that was dynamically read in.
This causes erroneous results. To avoid this problem, the virtual
machine should not default the'R' byte of 'CCHHR' to binary zero if
the search arguments are to be read in dynamically and a SEARCH ID
on Record RO is not intended.

The IBCDASDI program cannot assign alternate tracks for a 3330.

TIMING DEPENDENCIES

Timing dependencies in input/output devices or programming do not
function consistently under VM/370:

1.

The following telecommunication access methods (or the designated
option) violate the restriction on timing dependency by using
program-controlled interrupt techniques and/or the restriction on
dynamically modified channel progranms:

e O0S Basic Telecommunications Access Method (BTAM) with the
dynamic buffering option.

e 0S Queued Telecommunications Access Method (QTAM).

e DOS Queued Telecommunications Access Method (QTAM).

e 0S Telecommunications Access Method (TCAM).

e 0S/VS Telecommunications Access Method (TCAM) Level 4 or

earlier, and Level 5 if TCAM is not generated or invoked with
the VM/370 option.

Part 1: Debugging with VM/370 97



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

These access methods may run in a virtual=real machine with CCW
translation suppressed by the SET NOTRANS ON command. (0S BTAM can
be generated without dynamic buffering, in which case no virtual
machine execution violations occur. However, the BTAM reset poll
macro will not execute under VM/370 if issued from third level
storage. For example, a reset poll macro has a NOP effect if
executed from a virtual=virtual storage under VS1 which is running
under VM/370.)

Programming that makes use of the PCI channel interrupt for channel
program modification or processor signalling must be written so
that processing can continue normally if the PCI is not recognized
until I/0 completion or if the modifications performed are not
executed by the channel.

Devices that expect a response to an interrupt within a fixed
period of time may not function correctly because of execution
delays caused by normal VM/370 system processing. An example of
such a device is the IBM 1419 Magnetic Character Reader.

The operation of a virtual block multiplexer channel is timing
dependent. For this reason, the channel appears available to the
virtual machine operating system, and channel available interrupts
are not observed. However, operations on virtual block-multiplexing
devices should use the available features like Rotational Position
Sensing to enhance utilization of the real channels.

CPU MODEL-DEPENDENT FUNCTIONS

On the System/370 Model 158 only, the Virtual Machine 2

sist feature

s
cannot operate concurrently with the 7070/7074 compatibility feature
(Feature #7117).

Programs written for CPU model-dependent functions may not execute

properly in the virtual machine under VM/370. The following points
should be noted:

1.

Programs written to examine the machine logout area do not have
meaningful data since VM/370 does not reflect the machine logout
data to a virtual machine.

Programs written to obtain CPU identification (via the Store CPU ID
instruction, STIDP) receive the real machine value. When the STIDP
instruction is issued by a virtual machine, the version code
contains the value 256 in hexadecimal ("FF") to represent a virtual
machine.

Programs written to obtain channel identification (via the Store
Channel ID instruction, STIDC) receive information from the virtual
channel block. Only the wvirtual channel type is reflected; the
other fields contain zeroes.

No simulation of other CPU models is attempted by VM/370.

VIRTUAL MACHINE CHARACTERISTICS

Other characteristics that exist for a virtual machine under VM/370 are
as follows:

98

IBM VM/370: System Programmer's Guide



—— —— —— — — — — —— — o ——

10.

1.

GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

If the virtual=real option is selected for a virtual machine,
input/output operations specifying data transfer into or out of the
virtual machine's page zero, or into or out of storage locations
vhose addresses are greater than the storage allocated by the
virtual=real option, mnust not occur. The storage-protect-key
mechanism of the IBM System/370 CPU and channels operates in these
situations but is unable to provide predictable protection to other
virtual machines. In addition, violation of this restriction may
compromise the integrity of the systen. The results are
unpredictable.

VM/370 has no multiple path support and, hence, does not take
advantage of the two-channel switch. However, a two-channel switch
can be used between the IBM System/370 running a virtual machine

The DIAGNOSE instruction cannot be issued by the virtual machine
for its normal function. VM/370 uses this instruction to allow the
virtual machine to communicate system services requests. The
Diagnose interface requires the operand storage addresses passed to
it to be real to the virtual machine issuing the DIAGNOSE
instruction. For more information about the DIAGNOSE instruction in
a virtual machine, see the VM/370: System Programmer's Guide.

A control unit normally never appears busy to a virtual machine.
An exception exists when a forward space file or backward space
file command is executed for a tape drive. Subsequent I/0
operations to the same virtual control unit result in a control
unit busy condition until the forward space file or backward space
file command completes. If the real tape control unit is shared by
more than one virtual machine, a control unit busy condition is
reflected only to the virtual machine executing the forward space
file or backward space file command. When a virtual machine
attempts an I/0 operation to a device for which its real control
unit is Dbusy, the virtual machine is placed in I/0 wait
(non-dispatchable) until the real control wunit is available. If
the virtual machine executed a SIOF instruction (rather than SIOQ)
and was enabled for block-multiplexing, it is not placed in I/O
wait for the above condition.

The number of pages used for input/output must not exceed the total
number of user pages available in real storage; viclatiocn of this

restriction causes the real computing system to be put into an
enabled wait state.

The CP IPL command cannot simulate self-modifying IPL sequences off
dedicated wunit record devices or certain self-modifying IPL
sequences off tape devices.

The VM/370 spooling facilities do not support punch-feed-read,
stacker selection, or column binary operations. Detection of
carriage control channels is supported for a virtual 3211 only.

VM/370 does not support count control on the wvirtuwual 1052
operator's console.

Programs that use the integrated emulators function only if the
real computing system has the appropriate compatibility feature.
VM/370 does not attempt simulation. The DOS emulators are not
supported.

The READ DIRECT and WRITE DIRECT instructions are not supported for
a virtual machine.

The System/370 SET CLOCK instruction cannot be simulated and,

Part 1: Debugging with VM/370 99



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

12.

13.

4.

15.

16.

17.

18.

100

hence, is ignored if issued by a virtual machine. The System/370
STORE CLCCK instruction is a nonprivileged instruction and cannot
be trapped by VM/370; it provides the true TOD clock value from the
real CPU.

The 1050/1052 Model 2 Data Communication System is supported only

as a keyboard operator's console. Card reading, paper tape I/O0,
and other modes of operation are not recognized as unique, and
hence may not work properly. This restriction applies only when

the 1050 system is used as a virtual machine operator's console.
It does not apply when the 1050 system is attached to a virtual
machine via a virtual 2701, 2702, or 2703 line.

The pseudo-timer (usually device address OFF, device type TIMER)
does not return an interrupt from a Start I/0; therefore, do not
use EXCP to read this device.

A virtual machine IPL with the NOCLEAR option renders one page of
the virtual machine invalid. The IPL simulator uses one page of
the virtual machine to initiate +the IPL function. The starting
address of the 1invalid page is either the result of the following
formula:

virtual machine size

= starting address of invalid page

or the hexadecimal value 20,000, whichever is smaller.

To maintain system integrity, data transfer sequences to and from a
virtual system console are 1limited to a maximum of 2032 bytes.
Channel programs containing data transfer sequences that violate
this restriction are terminated with an interrupt whose CSW status
indicates incorrect length and a channel program check.

Note: A data transfer sequence is defined as one or more read or
write CCWs connected via chain data. The introduction of command
chaining defines the start of a new data transfer sequence.

If you intend to define more than 73 virtual devices for a single
virtual machine, be aware that any single request for free storage
in excess of 512 doublewords (a full page) will cause the VM/370
system to abnormally terminate (ABEND code PTR007) if +the extra
storage 1is not available on a contiguous page. Therefore, two
contiquous pages of free storage must be available in order to log
on a virtual machine with more than 73 virtual devices (three
contiguous pages for a virtual machine with more than 146 virtual
devices, etc.). Contiguous pages of free storage are sure to be
available only immediately after IPL, before other virtual machines
have logged on. Therefore, a virtual machine with more than 73
devices should be the first to log on after IPL.

When amn I/C error occurs on a device, the System/370 hardware
maintains a contingent connection for that device until a SENSE
channel command is executed and sense data is recorded. That is, no
other I/0 activity can occur on the device during this time. Under
VM/370, the contingent connection is maintained wuntil the SENSE
command is executed, but I/0 activity from other virtual machines
can begin on the device while the sense data is being reflected to
the virtual machine. Therefore, the user should be aware that on a
shared disk, the access mechanism may have moved during this time.

The mode setting for 7-track tape devices is maintained by the
control unit. Therefore, when a virtual machine issues the SET

IBM VM/370: System Programmer's Guide



21.

5C20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

MODE channel command to a 7-track tape device, it changes the mode
setting of all 7-track tape devices attached to that ccntrol unit.

This has no effect on virtual machines (such as 0S or DOS) that
issue SET MODE each time a CCW string is to be executed. However,
it can cause a problem if a virtual machine fails to issue a SET
mode with each CCW string executed. Another virtual machine may
change the mode setting for another device on the same control
unit, thereby changing the mode setting of all 7-track tape devices
attached to that control unit.

0S/VS2 is supported in uniprocessor mode only.

For remote 3270s, VM/370 supports a maximum of 16 binary
synchronous lines, minus the number of 3704,/3705 Conmmunications
Controllers in NCP mode minus one (if there are any 3704,/3705
Communications Controllers in emulation mode).

If an I/0 device (such as a disk or tape drive) drops ready status
while it 1is processing virtual I/O activity, any virtual machine
users performing I/0 on that device are unable to continue
processing or to log off. Also, the LOGOFF and FORCE commands are
not effective because they do not complete until all outstanding
I/0 is finished. The system operator should determine which I/0
device is involved and make that device ready once more.

CMS RESTRICTICNS

The following restrictions apply to CMS, the conversational subsystem of
VM/370:

1.

2.

CMS executes only on a virtual IBM System/370 provided by VM/370.

The maximum sizes of CMS minidisks are as follows:

Disk Maximum Cylinders
2314/2319 203
3330 Series 246
3340 Model 35 349
3340 Model 70 682

Unit record equipment cannot be dedicated to CMS; the spooling
facilities of VM/370 must be used.

Oonly those 0S facilities that are simulated by CMS can be used to
execute CS programs produced by language processors under CMS.

Many types of object programs produced by CMS (and OS) languages
can be executed under CMS using CMS's simulation of OS supervisory
functions. The following functions, although supported in DOS and
0S virtual machines under VM/370, are not supported under CMS:

e The execution of DOS object programs. Although DOS programs can
be assembled under CMS (using the VM/370 Assembler), DOS object
programs cannot execute under CMS.

e The writing or updating of 0S data sets and DOS files.

CMS can read sequential and partitioned 0S data sets and sequential
DOS files, by simulating certain 0S macros.

Part 1: Debugging with VM/370 101



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

The following restrictions apply when CMS reads 0S data sets that
reside on 0S disks:

Read-password-protected data sets are not read.

VSAM, BDAM, and ISAM data sets are not read.

Multi-volume data sets are read as single-volume data sets.
End-of -volume is treated as end-of-file and there 1is no

end-of-volume switching.

Keys in data sets with keys are ignored and only the data is
read.

User labels in user-labeled data sets are bypassed.

The following restrictions apply when CMS reads DOS files that
reside on DOS disks:

No DOS macros are simulated.

Only DOS sequential files can be read. CMS options and operands
that do not apply to 0S sequential data sets (such as the MEMBER
and CONCAT options of FILEDEF and the PDS option of MOVEFILE)
also do not apply to DOS sequential files.

The following types of DOS files cannot be read:
--DOS VSAM, DAM, and ISAM files.

--DOS core image, relocatable, source statement and procedure
libraries.

--Files with the input security indicator on.

--DOS files that contain more than 16 user label and/or data
extents. (If the file has wuser labels, they occupy the
first extent; therefore the file must contain no more than
15 data extents.)

Multi-volume files are read as single-volunme files.
End-of -volume is treated as end-of-file. There is no
end-of-volume switching.

User labels in user-labeled files are bypassed.

Since DOS files do not contain BLKSIZE, "RECFM, or LRECL
parameters, these parameters must be specified via FILEDEF or
DCB parameters, otherwise, defaults of BLOCKSIZE=32760 and
RECFM=U are assigned. LRECL is not used for RECFM=U files.

MISCELLANEQUS RESTRICTIONS

If you intend to run VM/370 Release 1 and Release 2 systems alternately,
apply Release 1 PLC 14 or higher (APAR V1179) to your Release 1 systen,
to provide compatibility and to prevent loss of spool files in case of a
warm start.

102 IBM VM/370: System Programmer's Guide



GC20-1807-3 Page Modified by TNL GN20-2662, ¥arch 31, 1975

ABEND DUMPS

There are three kinds of abnormal termination dumps possible when using
CP. 1f the problem program cannot continue, it terminates and in some
cases attempts to issue a dump. Likewise, if the operating system for
your virtual machine cannot continue, it terminates and, in some cases,
attempts to issue a dump. In the VM/370 environment, both the problem
program and the virtual machine's operating system dumps go to the
virtual printer. A CLOSE must be issued to the virtual printer to have
either dump print on the real printer.

The third type of dump occurs when the CP system cannot continue.
The CP abnormal termination dumps can be directed to a printer or tape
or be dynamically allocated to LASD. If the dump is directed to a tape,
the dumped data must fit on one reel of tape. Multiple tape volumes are
not supported by VM/370. The historical data on the tape is 1in print
line format and can be processes by user created programs or via CMS
commands. Specify the output device for CP ABEND dumps with the CP SET
command. The format of the SET command used is:

L 1

{ | r 1 |

| Set | DUMP AUTC | CP | |

] ] raddr | | ALL | |

| | | | |

| | L 4 i

L J

where:

AUTO automatically directs the ABEND dump to disk.

raddr directs the ABEND dump to the specified unit address (either a
printer or a tape wunit). If the address specifies a tape
device, the dump data must fit on one reel; VM/370 does not
support multiple tape volumes.

cp dumps only the CP storage area.

ALL dumps all of real stcrage.

USING THE VMFDUMP COMMAND

When the CP ABEND dump is sent to a disk, use the CMS VMFDUMP command to
print the dump on the real printer. The format of the VMFDUMP command
is:

VMFDUMP ERASE
NOMAP
NOHEX
NOFORM

NOVIRT

DUMPxx

o ————
| M |
o ————
[ |

(o ————
b e e ———

Part 1: Debugging with VM/370 103



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

Wwhere:

DUMPxX specifies the name of the CP dump file to be formatted and
printed. xx may be any value from 00 to 09. Class D spool
files will contain only CP dump files. These files are
searched for the indicated dump file. When the file is found,
it is used to create a CMS file which, in turn, is formatted
and printed.

ERASE specifies that the CMS file which is being formatted and
printed is to be erased at the conclusion of the program.

NOMAP specifies that a load map is not to ke printed.

NOHEX specifies that a hexadecimal dump is not to be printed.

NOFORM specifies that no formatted control blccks are to be printed.

NOVIRT specifies that only the real machine control blocks are to be

formatted. This option is ignored if NOFORM is also
specified.

Use the VMFDUMP command to format and print a current or previous
VM/370 system ABEND dump. Specify
VMFDUMP
to obtain a complete formatted, hexadecimal printout.
When the dump has been printed, one of two messages will be printed.
DUMP FILE - DUMP xx - PRINTED AND KEPT
-— or --

DUMP FILE - DUMP xx - PRINTED AND ERASED.

HOW TO PRINT A CP ABEND DUMP FROM TAPE
When the CP ABEND dump is sent to a tape, the records are 133 characters
long, unblocked, and contain carriage control characters.

To print the tape, first make sure the tape drive is attached to your
system. Next, define the printer and tape file.

FILEDEF ddname1 PRINTER (RECFM F LRECL 133)

FILEDEF ddname2 {TAPZ} (9-track DEN 1600 RECFM F LRECL 133 BLOCK 133)
TAP1

Then use the MOVEFILE command to print the tape:

MOVEFILE ddname2 ddnamel

READING CP ABEND DUMPS

Two types of printed dumps occur when CP abnormally ends, depending on
the options specified in the CP SET DUMP command. When the dump is

104 1IBM VM/370: System Programmer's Guide



6C20-1807-3 Page #Hodified by TWNL GN20-2662, March 31, 1975

directed to a direct access device, VMFDUMP must be used to format and
print the dump. VMFDUMP formats and prints:

e Control blocks

e General registers

e Floating-point registers
e Control registers

e TOD (Time of Day) Clock
e CPU Timer

e Storage

Storage is printed in hexadecimal notation, eight words to the 1line,
with EBCDIC translation at the right. The hexadecimal address of the
first byte printed on each line is indicated at the left.

If the CP SET DUMP command ditected the dump to tape or the printer,
the printed format of the dump is the same as with VMFDUMP, except that
the control blocks are not formatted and printed.

When the Control Program can no longer continue and abnormally
terminates, you must first determine the condition that caused the
ABEND, and then find the cause of that condition. You should know the
structure and function of the Control Program. "Part 2: Control Program
{(CP) * contains information that will help you understand the major

Part 1: Cebugging with VM/370 104.1



functions of CP. The following discussion on reading CP dumps includes
many references to CP control blocks and control block fields. Refer to
¥M/370: cControl Program (CP) Program Logic for a description of the CP
control blocks. Figure 11 shows the relationships of the CP control
blocks. Also, you will need the current load map for CP to be able to
identify the modules from their locationms.

REASON FOR THE ABEND

Determine the immediate reason for the ABEND. You need to examine
several fields in the PSA (Prefix Storage Area) which is located in low
storage, to find the reason for the ABEND.

1. Examine the program old PSW and prograR interrupt code to find out
if a program check occurred in CP. The program old PSW (PROPSW) is
located at X'28' and the program interrupt code (INTPR) is at
X'8E'. If a program check has occurred in supervisor mode, use the
CP system load map to identify the module. If you cannot find the
module using the load map, refer to "Identifying a Pageable
Module." Figure 43 in wAppendix A: System/370 Information"
describes the format of an Extended Control PSW.

2. Examine the SVC o0ld PSW, the SVC interrupt code, and the ABEND code
to find out if a CP routine issued an SVC 0. The SVC o0ld PSW
(SVCOPSW) is located at X'20', the SVC interrupt code (INTSVC) is
at X'8A', and the ABEND code (CPABEND) is at X'374'.

The modules that may issue an SVC 0 are:

DMKBLD DMKIOS DMKSCH
DMKCPI DMKPGT DMKTDK
DMEKCVT DMKPRG DMKTRC
DMKDRD DMKPSA DMKUDR
DMKDSP DMKPTR DMKVDB
DMKFRE DMKRNH DMKVIO
DMKHVC DMKRPA DMKVSP

The ABEND code (CPABEND) is a fullword in length. The first three
bytes identify the module that issued the SVC 0 and the fourth byte
is a binary field whose value indicates the reason for issuing an
SVC 0. See Figure 10 for the possible values of CPABEND.

Use the CP system load map to identify the module issuing the SVC
0. If you cannot find the module using the CP system 1load map,
refer to "Identifying a Pageable Module". Figure 43 in Appendix 1
describes the format of an Extended Controcl PSHW.

3. Examine the o0ld PSW at X'08°, If the operator has pressed the
System Restart button on the CPU console, the o0ld PSW indicates the
instruction executing when the ABEND (caused by pressing the Systenm
Restart button) was recognized. Figure 43 in Appendix A describes
the format of an Extended Control PSW.

4. Por a machine check, examine the machine check o0l1ld PSW and the
logout area. The machine check 0ld PSW (MCOPSW) is found at X'30'
and the fixed 1logout area is at X'100'. Also examine the machine
check interrupt code (INTMC) at X'E8'.

Part 1: Debugging with VM/370 105



on which the SYSRES
be located, or the IPL

volume. The SYSRES
volume is specified in
the SYSRES macro in the
DMKSYS module.

ABEND |
Code | Reason for ABEND | Action
BLD001 |Register 8 should contain|Verify that general register 8
| a pointer to the points to a RDEVBLOK for a
| RDEVBLOK for the user's | terminal. If it does not, there is
| terminal. This routine | probably an error in the calling
| (DMKBLDVM) attempts to | program. Identify the calling
| create and partially | program by means of the return
| initialize a VMBLOK for | address and the base register in
| a user. DMKBLDVHM | the save area pointed to by
| abnormally terminates if| general register 13. Then, attempt
| general register 8 does | to identify the source of the
| not contain a pointer to| incorrect RDEVBLOK address.
| the user. |
CPI001 |The RDEVBLOK for the LASD|Verify that the volume serial

| number on the SYSRES voclume from

volume is mounted cannot| which the IPL was attempted, is

| the same as that specified in the

volume is not the SYSRES| field DMKSYSVL. If the volume

| serial number is not the same, it
| may have been altered by the CLIP
| utility. or, the image of the same
nucleus saved on the SYSRES may
have been partially destroyed and
the SYSRES specification altered.
Load or restore the nucleus from a
backup copy to the SYSRES volume
and attempt to IPL again.

CPI002 |A valid system directory

| file could not be
| located.

Display the volume labels for all
owned volumes. If the volumes dc
not contain an active directory
pointer, run DMKDIR (the
standalone directory program) to
recreate the systenm directory on
an owned volume. If an active
directory pointer is present in at
least one volume label, verify
that the device on which the
volume is mounted is online and
ready before attempting to IPL the
systen.

CPI003 |The system TOD clock is

| not operational.

o e o — ——— — — mn — ———— O —— —— T — —— — — — — — T — — ——— — — " ——— — - ———— —— — oo,

CVTO001 |The system TOD clock is

| in error or is not
| operational.

|Call your IBM FE representative to
| £fix the clock.

|

l

|

|

9
1
|
|
|
|
|
|
|
!
|
|
|
1
|
|
|
(
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
|
|
|
|
|
|
|
|
|
|

Figure 10.

106

CP ABEND Codes (Part 1 of 14)

IBM VM/370: System Programmer's Guide



ABEND |

L) 1
| |
| Code | Reason for ABEND | Action |
[ {
| DRDOO1 |The device code index in |Verify that the contents and order |
i | the compressed DASD | of the owned list have not been |
| | address for the system | altered since the dump was taken. |
| | dump file points to a | If these fields have not been |
( i RDEVBLOK for an invalid | altered, the SFBLOK for the dump |
| | DASD. The valid DASDs | file may have been destroyed. The |
| | are 2305 series, 3330 | owned list is specified by the [
i i series, or 2314,/231S. i SYSOWN macro in the DMKSYS module. |
| (
| DSP001 |During I/0 Interrupt | The integrity of the user's virtuall
| | Unstack and Reflection, | I/0 confiquration has probably |
i { DMKSCRVU could not i been violated. The unit addresses |
| | locate all of the | or indexes in the virtual control |
| | virtual control blocks | blocks are in error, or the |
| | for the interrupting | virtual confiquration has been |
| | unit. | altered by ATTACH/DETACH while I/0|
| | | was in progress. Check for a {
| | | device reset failure in DMKCFPRD. |
| |
| DSP002 {The dispatcher (DMKDSP) |Most likely, a free storage l
| | is attempting to { violation has occurred. First look|
i i dispatch a virtual i at the DMKPRV and DMKVAT modules. |
| | relocate user whose | Examine the real, virtual, and ]
| | shadow segment tables or| shadow translation tables for |
| | virtual extended control| consistency of entry size and |
| | register 0 are invalid. | format. Also compare page and |
| | | segment size. |
| |
| DSP003 |The interval timer was ICheck the timer fields in real (
| | not incremented | storage. The value of the real |
| | properly. This is most | interval timer is at real storage |
| | likely a hardware error.| location X'50'. The dispatcher |
| | The dispatcher tests for| loads the value of the real |
I | interval timer errors | interval timer in real storage |
| | and abnormally | location X'54' when a user is |
| | terminates if such error| dispatched. The value of the real |
| | occurs. Results would be| interval timer is loaded into realj]
{ | unpredictable if CP | storage location X'4C' when an |
| | continued when the | interrupt occurs. If the value I
i | interval timer was in | stored at X'4C* is not less than |
| | error. | the value stored at X'54¢', the |
| | | dispatcher abnormally terminates. |
{ [ | Check the routines that control |
i | | the value of the time fields at |
| | | Xxtu4ct, X*50', and X*'54°. |
| |
{ DSPO04 |While tracing SIOs or I/O|Examine the operator's console |
| | interrupts, the virtual | sheet and the user's terminal |
| | device was detached. | sheet to see who detached the |
| | Now, the VDEVELOK cannot| device. Warn the person |
| | be found. | responsible that devices should |
| | | not be detached during I/O |
| | | tracing. |
L J
Figure 10. CP ABEND Codes (Part 2 of 14)

Part 1: Debugging with VM/370 107



ABEND |
Code |

Reason for ABEND

Action

FREO0O1

The size of the block
being returned (via GR

0) is less than or equalj|

to 0.

Using FREER14 and FREER12 in the
PSA, identify the CP module
releasing the storage. Check for
an error in calculating the size

to the stored block size for
variable-size blocks.

FRE002

The address of the free

storage block being
returned matches the
address of a block
already in the free
storage chain,

Identify the program returning the
storage by means of the return
address and base registers stored
(FREE14 and FREE12 in DMKFRE's
save area in PSA). The most common}|
cause of this type of failure is aj
module that returns a free storage|
block but fails to clear a pointer|
to the block that has been saved |
elsewhere. All modules that returnj
blocks via a call to DMKFRET |
should first verify that the saved|
pointer is nonzero; then, after
returning the block, any saved
pointers should be set to zero.

]
|
|
|
|
|
i
|
of the block or for a modification|
|
|
|
|
|
|
|

FREOO3 |The address of the free

storage block being
returned overlaps the

| next lower block on the

free storage chain.

A free storage pointer may have
been destroyed. Also, the module
releasing the lower (overlapped)
block may have returned too much
storage. Examine the lower block
and determine its use and former
owner. Or, identify the progranm
returning the storage by means of
the return address and base
registers stored (FREER14 and
FREER12 in DMKFRE's save area in
PSA). The most common cause of
this type of failure is a module
that returns a free storage block
but fails to clear a pointer to
the block that has been saved
elsevwhere. All modules that return
blocks via a call to DMKFRET
should first verify that the saved
pointer is nonzero; then, after
returning the block, any saved
pointers should be set to zero.

FREOO4

(o T o S e S o S G T — — —— S —— - — — ——— — — — T — —— ——— — T — - o————— — —— — o T e S — T ———— —— — — Y

The address of the free

storage block being
returned overlaps the

next higher block on the| block may have returned too much

free storage chain.

A free storage pointer may have
been destroyed. Also, the module
releasing the higher (overlapped)

storage, or the module may be
attempting to release storage at
the wrong address.

b e e S i s G . o S . D . S G T E— . G —— O oy - G a— S — O —

Figure 10.

CP ABEND Codes (Part 3 of 14)

108 IBM VM/370: System Programmer's Guide



WS e G e R — S — T —— — —— o —

r
| ABEND | |

| Code | Reason for ABEND | Action

(

| PREOO5 [A module is attempting to|A module is probably attempting to

| | release storage in the | release location 0. Check for the

| | resident VM/370 nucleus.| module picking up a pointer to a

| | | free storage block without first

i i | testing the pointer for 0. Use

| | | FREER14 and FREER12 in the PSA to

| | | identify the module.

i

{ FRECO6 |A module is requesting a (Using FREER14 and FREER12 in the

| | block of storage whose | PSA, identify the module. Check

| | size (contained in GR 0)| for an error in calculating the

i | is less than or equal to| block size. Improper use of the

{ | zero. | halfword instructions ICM and STCHM|
| | | can cause truncation of high order|
[ | | bits that results in a calculation|
| | | error. |
|

{ FREOO7 |A module is attempting to|Most likely, a free storage pointer|
| | release a block of | has been destroyed. Attempt to |
| | storage whose address | identify the owners of the free |
| | exceeds the size of real| storage blocks adjacent to the one|
i | storage. i containing the pointer that was i
| | | destroyed. Check for moves and |
| | | translation where initial counts |
| { | of zero have been decremented to |
| | | minus 1, thus generating an |
| | | executed length code of X'FF', or |
1 | | an effective length of 256 bytes. |
i {
| FREOO8 |The address of the free |Identify the program returning the |
| | storage block being | storage by means of the return |
| | returned matches the | address and base registers stored |
| | address of the first | (FREER14 and FREER12 in DMKFRE's |
( | block in the subpool | save area in the PSA). The most {
i | for that size, | common cause of this type of |
| | failure is a module that returns aj|
| FREOO9 |The address of the free | free storage block but fails to |
{ | storage block being | clear a pointer to the block that |
| | returned matches the | has been saved elsewhere. 11l |
| | second block in the | modules that return blocks via a |
| | subpool for that size. | call to DMKFRET should first |
| | { verify that the saved pointer is |
| | | nonzero; then, after returning the|
| | | block, any saved pointers should |
| { | be set to zero. ]
| |
| FREO10 |A program is attempting |Examine the EXTSAVE save area in |
| | to extend free storage | DMKFREE to determine which module |
| | while storage itself is | requested an excessive amount of |
| | being extended. | storage. |
L J
Figure 10. CP ABEND Codes (Part 4 of 14)

Part 1: Debugging with VM/370 109



(o T s — — — — — T —— —— —— — — — —— ——— —— —— —— ——— — ———— ———— o———————— ——— —

3
ABEND | | |
Code | Reason for ABEND | Action |

|
FRE011 |A CP module has attempted|Identify the program returning the |
| to return a block of | storage by means of the return |
| storage that is in the | address and base registers stored |
| user dynamic paging | (FREER14 and FREER12 in DMKFRE's |
| area. | save area in the PSA). The most |
| | common cause of this type of |
| | failure is a module that returns aj|
| | free storage block but fails to |
| | clear a pointer to the block that |
| | has been saved elsewhere. All |
| | modules that return blocks via a |
| | call to DMKFRET should first |
| | verify that the saved pointer is |
| | nonzero; then, after returning the|
i | block, any saved pointers should |
| | be set to zero. |
|
HVC001 |The user pointed to by GR|The RDEVBLOK for the SYSRES device |
| 11 issued a DIAGNOSE | was probably destroyed, or a |
| instruction while | volume with the same serial number|
| attempting to format the| as the SYSRES volume was mounted. |
| I/0 Error or Channel | If a volume with the same serial |
| Check/Machine Check | number was mounted,, check the |
| recording areas: the ( ATTACH processing in the DMKVDB |
| SYSRES device type is | routine. |
| unrecognizable. | |
1
I0S001 |The caller is attempting |The IOBLOK may have been returned |
| to reset an active | (via DMKFRET) or destroyed. Verify|
| IOBLOK from the RCHBLOK | that the IOBLOK was valid and use |
| queue, but that IOBLOK | the IOBLOK and RDEVBLOK to |
| contains an invalid | deternine the last operation. |
| address. | i
| |
I0S002 |DMKIOS is attempting to | l
| restart an IOBLOK from | |
| the RCHBLOK queue, but | |
{ that IOBLOK contains an | |
| invalid address. | |
|
I0S003 |DMKIOS is attempting to |Register 2 points to the RCHBLOK, |
| remove an IOBLOK from a | RCUBLOK, or RDEVBLOK from whose |
| queue, but that IOBLOK | queue the IOBLOK is being removed. |
| contains an invalid | Register 10 points to the IOBLOK. |
| address. { Use the CP internal trace table to|
| | determine which module called |
| | DMKIOS twice to start the same |
i | IOBLOK. |
J
Figure 10. CP ABEND Codes (Part 5 of 14)
110 IBM VM/370: System Programmer's Guide



ABEND |

T L]
| (
| Code | Reason for ABEND | Action |
| {
| NLDOO1 |During execution of a [Correct the RDEVICE macro specify- |
| | NETWORK DUMP command, or| ing the 3704 or 3705, reassemble |
| | during an automatic dump{ the DMKRIO module, and regenerate |
| | of a 3704 or 3705, | the VM/370 CP nucleus with the |
i { VM/370 detected that it | corrected module. |
| | had not allocated suffi-j| |
i} | cient spool DASD space | |
! { tc contain the dump in- | i
| | formation from the 3704 | |
| | or 3705. The MODEL oper-—| |
| | and on the RDEVICE macroj i
! | describing the 3704 or | {
| | 3705 was not specified | |
[ | correctly. VM/370 | |
| | determines the storage | |
| | size of a 3704 or 3705 | |
| | by the model specified | |
| | on the RDEVICE macro. | |
| |
| PGT001 |The number of cylinders |[Inspect the chains of paging and i
| | in use stored in the | spooling allocation blocks |
i { allocation block | anchored at RDEVEAGE and RDEVRECS |
| | (ALOCBLOK) is less than | on the RDEVBLOK for the device in |
| | the maximum but the | question, and verify that a |
[ | DMKPGT module was unable| cylinder allocation block |
{ | to £find available | (RECBLOK) exists for each cylinder|
i { cylinders. | marked and allocated in the |
| | | ALOCBLOK. If RECBLOKs for some |
| | { cylinders are missing, it is |
i | | possible that the bit map in the |
| | | ALOCBLOK has been destroyed. If ]
| | | all cylinders are accounted for, |
| | { the updating of the count field |
| | | is in error. |
| I
{ PGT002 |The count of pages in use|If the RECBLOK is question is in |
l | in a page allocation | use for paging, then locate a |
[ | block (RECBLOK) is less | SWPTABLE entry for each page allo—|
| { than the maximum but the| cated on the cylinder. However, if|
| | DMKPGT module was unable| the cylinder is in use for spool- |
| { to find available pages.| ing, it is possible that the |
| [ | RECBLOK itself has been destroyed,|
| | | or that the updating of the use |
| | | count is faulty. |
[ 3
Figure 10. CP ABEND Codes (Part 6 of 14)

Part 1: Debugging with VM/370 111



ABEND |
Code |

|
Reason for ABEBND | Action

PGT003 |The DASD page slot being |Identify the module attempting to
released is not marked | release the page by means of the
allocated. caller's return address and base

register stored in BALR14 and
BALR12 in the BALRSAVE save area
in PSA. Locate the source (control
block or SWPTABLE entry) of the
DASD address being released and
verify that they have not been
inadvertently destroyed. If the
DASD page is in a spool file, it
is possible that the file or the
RECBLOK chain have been incorrect-
ly checkpointed and warastarted
after a system shutdown or a
system crash.

PGTOOU

The dummy RECBLOK indi- |The spool file pointers may have

cating the spooling | been destroyed while the file was
DASD pages on the | being processed, or the allocation
cylinder that are to be | chain may be in error. A cold
released contains a page| start will probably be necessary.
count greater than the | If feasible, use the DASD Dump
nuaber of pages allo- | Restore program to print the DASD
cated on the cylinder. | areas containing the affected

| file, and try to locate the

| incorrect pointers.

PGT005 |A module is attempting to|Use BALR14 and BALR12 in the

release a DASD page slot| BALRSAVE area of the PSA to

on a cylinder for which | identify the module attempting to |

no page allocation block| release the page. Verify that the |

(RECBLOK) exists. | DASD cylinder address is valid for|
{ the device in question. If it is, |
{ and the rest of the DASD address |
{ is valid, verify that the cylinder|
| is in the dynamically allocatable |
{ area. If these restrictions are |
| met, the DASD page slot must have |
{ been used by more than one user.

{
|
|
|
|
|
|
|
|
|
|
|
|
l
l
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
(
|
|
| PGTO006
|

|

|

|

i

(

|

|

|

[

The last DASD page slot |The ALOCBLOK has probably been

{
|
in a RECBLOK has been | destroyed, or the chain pointer in|
deallocated but the bit | the RDEVBLOK is in error. |
representing the cylin- | |
der in the cylinder | }
allocation block | |
(ALOCBLOK) is not cur- | |
rently set to one, indi-| i
cating that the cylinder| |
vas not allocated. | |

) ]

Figure 10.

CP ABEND Codes (Part 7 of 14)

112 1IBM VM/370: System Programmer's Guide



- —— —

| in the control progranm.

PRG002 |Program check (pr1v11eged| program check.

| operation) in the
| control progranm,

PRG003

|Program check (execute)
| in the control program.

PRGOOY

{Program check (protec-
| tion) in the control
| prograam.

PRGOO5

|Program check (address-
| ing) in the control
| progranm.

PRGOO06

|Program check (specifi-
{ cation) in the control
| program.

PRGOO7

|Program check (data) in
{ the control program.

PRGOO8

{Program check (fixed-
{ point overflow) in the
| control prograna.

PRGQO9

|Program check (fixed-
| point divide) in the
| control program.

PRGO10

|Program check (decimal
| overflow) in the control
| program.

PRGO 11

™ o T e T e S . o S T — e T — T — TS G T — . ——  —— — — —— — " — — T — O —— —— —— o — ——— — - — o ——— — )

|Program check (decimal
| divide) in the control
| program.

ABEND | |
Code | Reason for ABEND | Action
PGT007 |A module is attelptlng to{Use BALR14 and BALR12 in the
i reilease a page of vir— | BALRSAVE area of the PSA to iden- |
| tual storage being used | tify the module attempting to re- |
| by the VM/370 control | lease the page. Locate the control|
| program that has not | block containing the virtual page |
| been marked allocated. | address that is being released. It|
| | is possible that the address has
{ | been destrcyed, or a pointer to a
| | virtual page has been retained
[ | after the page was destroyed.
PGT008 |The system's virtual | Request users to close all sgpool
| storage buffers have | files that are no longer active.
| been exhausted because |
| of an excessive number |
| of open spool files. |
PRG001 |Program check (operation) |[Examine the ABEND dump. In partic-

| ular, examine the o0ld PSW and
| identify the module that had the

|
i
|
]
]
]
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
|
|
|
|
J

Figure 10.

CP ABEND Codes (Part 8 of 14)

Part 1: Debugging with VM/370 113



r L]
| ABEND | | |
| Code | Reason for ABEND | Action |
| |
| PRGO12 |Program check (exponen- |Examine the ABEND dump. In partic- |
| | tial overflow) in the | ular, examine the old PSW and |
| | control progranm. | identify the module that had the |
| | program check. |
| PRGO13 |Program check (exponen- | |
| | tial underflow) in the | |
| | control program. | |
| | |
| PRGO14 |Program check (signifi- | |
| | cance) in the control | |
| | program. | :
l |

| PRGO15 |Program check (floating- | |
| | point divide) in the | |
| | control progranm. | |
| | |
| PRGO16 |Program check (segment) | |
| | in the control program. | |
| ( |
| PRGO17 |Program check (paging) | |
| | in the control program. | |
| i |
| PRGO18 |Program check (tramsla- | |
| | tion) in the control i |
| | progranm. | |
| | |
| PRGO19 (Program check (special | |
| | operation) in the { |
| | control prograrm. | |
| (
| PRG254 |A translation specifica— |If the set of translaticn tables |
| | tion exception has been | pointed to by RUNCR1 is correct, aj|
| | received for a virtual | hardware failure has occurred, |
| | machine that is not in | possibly with Dynamic Address {
| | Extended Control Mode. | Translation. Otherwise, call your |
| | { IBM FE representative for software|
| i | support. :
| -

| PRG255 |A PER (Program Event |Retry the program causing the |
| | Recording) has been re- | error; if the problem persists, |
| | ceived for a virtual | call your IBM FE representative. |
| { machine that is running | [
| | with PER disabled in its| |
| { virtual PSW. | |
| |
| PSAOO1 |No free storage is avail-|Try to identify the extreme load |
i | able for save areas. | condition that caused the problem.|
| | | Verify that a routine has not |
| | | requested an inordinate amount of |
| | | storage. If the storage regquests |
| | | are valid and the problem occurs |
| | | regularly, alter the DMKCPI module|
| ( { to allocate more than six pages ofj|
| | | free storage per 256K bytes of |
| | | storage. |
L Jd
Figure 10. CP ABEND Codes (Part 9 of 14)

114 IBM VM/370: System Programmer's Guide



L 1
| ABEND | | |
| Code | Reason for AEBEND | Action |
| l
| PSAO02 |The 'PSW Restart' key on |Examine the resulting ABEND dump !
| the console was activa- | for a dynamic picture cf the sys— |
| | ted to cause this ABEND.| tem's status. |
| | This action is normally | |
| | taken when an unusual | |
} | system condition occurs, | |
| | such as a system loop or| |
i | a slow-running machine. | |
| |
| PSAOO03 |A fatal DASD I/O error [Check the unit address in the I/0 |
| | on a paging device | old PSW to find the paging device |
i i occurred. } in error. This is a hardware |
| | | error. Call your IBM FE Represent-|
| | | ative for service. |
| - |
| PTRO01 |A segment exception or a |Inspect the contents of Control |
| | translation specifica- | Registers 0 and 1, and the format |
| | tion has occurred while | of the Segment Table pointed to by|
| | executing a LRA (Load | CR 1. One or more of these tables |
| | Real Address) instruc- | and registers may contain invalid |
| | tion in the DMKPTR { data. If CR 1 is invalid, check [
| | module. | the contents of the VMBLOK pointed|
| | | to by GR 11, especially the ad- |
| | | dress in the VMSEG field. l
| |
| PTRO02 |A program is attempting |Use BALR14 and BALR12 in the |
| | to unlock a page frame | BALRSAVE area of the PSA to iden- |
| | whose address exceeds { tify the module attempting to |
| | the size of real | unlock the page frame. Check for |
| | storage. | the source of the invalid address.|
| | |
| PTRO03 |A program is attempting | i
| | to unlock a real storage| |
| | page frame whose | |
| | CORTABLE entry is not | |
| | £flagged as locked. | |
! — ———————— {
| PTROO4 [The lock count in the {Check the routines that update the |
| | CORTABLE entry for the | lock count field and CORTABLE |
| | page frame being un- | entry. |
| | locked has been decre- | |
| | mented to a value that | |
| | is less than 0. | |
L ]

Figure 10. CP ABEND Codes (Part 10 of 14)

Part 1: Debugging with VM/370 115



ABEND | |
Code ( Reason for ABEND |

Action

| but DMKPTR determined |
| that there were no pages|
| left in the dynamic
| paging area.

PTRO07 |DMKFRE requested a page |Examine the dump for one of the
| for fixed free storage | following conditions:

1.

Excessive amounts of free stor-
age have been allocated by CP
and not released via DMKFPRET.
Look for blocks of identical
data and determine which mod-
ules built that data.

A block of storage greater than
4096 bytes was requested. Re-
quests for large blocks of free
storage require contiguous
pages from DMEPTR and as a
result have a higher probabil-
ity of failure than requests
for one page or less. If pos—
sible, change the application
to reduce the size cf storage
requests. Otherwise, schedule
the application when storage is
less fragmented.

PTRO08 |A CORTABLE entry on the |
| free list points to a {
| valid PTE (Page Table |
| Entry), but the page is |
{ allocated. |
| |

Pages on the free list should not
contain valid PTEs. Examine the
dump to determine which module
called DMKPTRFR. The mcdule that
called DMKPTRFR probably contains
an error.

PTRO09

The count of the number |The field DMKPTRSC contains the

|

| of resident shared pages|
| was incorrectly decre- |
|- mented so that the count|
| is now less than zero. |
|
|
|

number of resident shared pages
and the field DMKDSPNP contains
the number of pageable pages.
DMKDSPNP must always be greater
than DMKPTRSC. If ABEND PTR009
occurs, check the routines that
update these two count fields.

PTRO10
of resident reserved |
pages was incorrectly |
decremented so that the |
count is now less than |
zZero. |

|

The count of the number |The field,

DMKPTRRC, contains the

- — S ——— — o S —— SN ——— —— — —— G — T — — — — — vy W S — S o m— G gy —— o]

number of reserved pages. DMKPTRRC|
must always be less than DMRDSPNP.|
If ABEND PTRO10 occurs, check the |

routines that update these two
count fields (DMKDSPNP and
DMKPTRRC) .

PTRO11
placed on the free list |

(page table entry), but |
the page is allocated. |
An ABEND occurs trying |
to honor a deferred |
request. |

O e T e e T e S — T — T — O —— T T ——— O — . a— S — T o— — ———— O o — D —— " — T —— ————

A CORTABLE entry to be | Pages to be put on the free list

should not contain valid PTEs.

points to a valid PTE | Examine the dump to determine why

the page was not marked invalid
before the call to DMKPTRFT.

e e e W e e, — - ————

Figure 10. CP ABEND Codes (Part 11 of 14)

116 IBM VM/370: System Programmer's Guide



r 1
| ABEND | ]
| Code | Reason for ABEND | Action i
' !
| PTRO12 |A CORTABLE entry to be |Pages to be put on the free list |
| | placed on the free list | should not contain valid PTEs. |
| | points to a valid PTE | Examine the dump to determine why |
! | {(page table entry), but | the page was not marked invalid |
l | the page is allocated. | before the call to DMKPTRFT. |
| |
| RGF001 |The reflected device |TPL. to restart the system. If the |
| | status in the CSW is not| problem persists, call your IBM FE|
| | supported for certain | representative. |
| | 3270 remote device and | !
| | line protocol I/0 | |
| | operations. Specifi- | |
{ | cally, the returned CS¥W | i
| | contains a device status]| |
| | other than CE, DE, and | |
| | UE; and, the ending CCW | |
| | contains an embedded | |
| | teleprocessing code of | |
l | 02, 03, or 0O6. | |
| | |
| RGF002 |The status flag (BSCFLAG) | |
| | in the BSCBLOK indicates| i
| | a condition that is nct | - ]
| | valid for a 3270 1line | |
| | reset function (tele- | |
| | processing code 09). | |
| |
| RNHOO1 |A fatal I/O0 error |Retry. If the problem persists,

I | occurred during read or | ensure that the 3704,/3705 and |
| | write for the 3704,/3705.| channel hardware are functioning |
| | Status indicates program| correctly. |
| | failure. | |
| l
| RNHOO2 |A response that should | Verify that the 3704,/3705 NCP is |
| | not occur was received | operating correctly. Use the |
| { from the 3704,/3705 | NETWORK TRACE command to determine]
| | control program. | the exact cause of the response. |
| |
| RPAOO1 |The virtual address |The virtual storage belcngs either |
| | supplied to DMKRPAGT is | to the user whose VMBLOK is |
| | outside of the virtual | pointed to by GR 11 or, if GR 2 in|
| | storage being | the SAVEAREA indicates a PARM of |
| | referenced. | SYSTEM, to the system VMBLOK. |
| | Identify the calling program by |
| RPAOO2 |The virtual address | means of the return address and |
| | supplied to DMKRPAPT is | base register saved in the |
| | outside of the virtual | SAVEAREA pointed to by GR 13. If |
| | storage being | the virtual address was obtained |
| | referenced. | from the system's virtual storage, |
| | | examine the virtual page |
| | | allocation routine, DMKPTRVG. If |
| | | the virtual page refers to a |
| | | user's storage, attempt to |
| | | identify the routine that has |
| | | generated the incorrect address. |
| | | Verify that the VMSIZE in the |
| | | relevant VMBLOK reflects the |
| | | correct storage size for the |
| | | system or user being referenced. |
L |
Figure 10. CP ABEND Codes (Part 12 of 14)

Part 1: Debugging with VM/370 117



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1575

r |
| ABEND | | |
| Code | Reason for ABEND | Action |
| !
| RPAOO3 |The user page count in |A module has attempted to release |
l | the VMBLOK became | more pages than it originally |
| | negative. | received. The module that last

I | | called DMKRPA is probably the |
| | | module in error. |
| i
| SCHOO1 |The total number of users|{The field SCHN1 is the count of |
| | (interactive users plus | the number of interactive users |
| | batch users) in the | and the field SCHN2 is the count |
| | scheduler's queue is | of the number of batch users. |
| | less than zero. A | Check the routines that update |
| | counter was probably | these two count fields (SCHN1 and |
| | decremented incorrectly.| SCHN2) to determine why their sum |
| | | was negative. |
| |
| TDK0OO1 |A program is attempting |Verify that GR 8 points to a |
| | to deallocate a cylinder| RDEVBLOK for a CP-owned volume. If]|
| | of T-DISK space for | it does not, the error probably |
| | which no cylinder | originated in the calling progran. |
| | allocation block | Identify the caller by means of

| | (ALOCBLOK) exists. | the return address and base |
| | register in the SAVEAREA pointed |
| TDK0O2 |A program is attempting | to by GR 13, and attempt to |
| | to deallocate | identify the source of the |
| | cylinder(s) of T-DISK | incorrect RDEVBLOK address. If thej|
| | space that are not | RDEVBLOK is valid, it is possible |
| | marked allocated. | that the cylinder number passed isj|
| | | incorrect. The VDEVBLOK for the |
| | | device for which the T-DISK was |
| | | defined may have been destroyed. ]
| | | If the cylinder number appears |
| | | valid, examine the allocation |
| | | record on the real volume by |
| | { running DMKFMT (VM/370 FORMAT |
| | | program), invoking the ALLOCATE |
| | | option without allocating any new |
| | | space. If the output indicates the|
| | | deallocated cylinder falls within |
| | | an area defined for T-DISK |
| | | allocation, the ALOCBLCK chained |
| | | to the RDEVBLOK may have been |
| | | destroyed. |
| |
| UDROO1 {The user directory module|Use the DASD Dump Restore program |
| | is looping trying to | to print the UDIRBLOK page buffersj
| | read all of the UDIRBLOK| from the directory device. |
| | page buffers from the | Determine if the chain pointers |
| | directory device. Or, a | are valid. |
| | directory containing | |
| | over 10,816 users was | |
| | loaded. | i
| |
| VDB002 |The system—owned list has|IPL to restart. If the problenm |
| | an invalid format. | persists, check the SYSOWN macro |
| | | in DMKSYS for validity. If the |
| | | macro is good, print the dump and |
| | | examine it. |
L |
Figure 10. CP ABEND Codes (Part 13 of 14)

118 IBM VM/370: System Programmer's Guide



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

r 1
| ABEND | i I
} Code | Reason for ABEND | Action ]
| |
| VDROO3 |The DASD link chain is | IPL to restart. If the problem |
| | invalid. In the case of | persists, examine the RDEVSYS |
{ | minidisks, attaching a | flag. If the RDEVSYS flag is off, |
! { minidisk that points to | the problem is especially sericus:|
| | an RDEVBLOK whose count | print the dump and examine it. |
| | of users is already zero| Examine the VDEVBLOK and RDEVBLOK |
| | causes this ABEND. | checking the link chain. |
| ]
| VIO002 |DMKSCNVU was unable to |Verify that the unit address in thej
| | locate all of the | £ield IOBVADD in the IOBLOK |
| | virtual I/0 contrcl | pointed to by GR 10 is valid for |
| | blocks for the virtual | the user who 1nitiated the I/0. |
| | unit address associated | The field IOBUSER contains the 1
| | with the interrupt just | address of the user's VMBLOK. If |
| | stacked. | the address is valid, the |
| | | integrity of the user's virtual |
| | | I/0 confiquration has probably |
| | | been destroyed. If the address is |
| | | not valid, the IOBLOK has been i
| | | altered, or was built incorrectly |
| | | in the first place. |
| !
| VIO003 |DMKIOS has returned an |Condition code 2 should never be |
| | IOBLOK indicating a | returned to the virtual I/0 |
| | condition code of 2 was | interrupt handler. Its presence |
| | received from the Start | indicates either a failure in the |
| | I/0 for the operation. | I/O Supervisor (DMKIOS), or that |
| | | the status field in the IOBLOK |
| | | (IOBSTAT) has been destroyed. |
| |
| VSPOO1 |The virtual spooling |Verify that the unit address |
| | manager could not locate| (IOBVADD) in the IOBLOK is valid. |
| | all virtual control | If the address is valid, the |
| | blocks for an inter- | integrity of the virtual I/O |
| | rupting unit. | configuration has probably been |
| | | destroyed. If the address is not |
{ I { valid, the IOBLOK has been altered|
| | | or was built incorrectly. |
1 J
Figure 10. CP ABEND Codes (Part 14 of 14)

Part 1: Debugging with VM/370 119



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975
COLLECT INFORMATION

Examine several other fields in the PSA to analyze the status of the
system. As you progress in reading the dump, you may return to the PSA
to pick wup pointers to specific areas (such as pointers to the real
control blocks) or to examine other status fields.

The following areas of the PSA may contain wuseful debugging
information.

1. CP Running Status Field
The CP running status is stored in CPSTAT at loccation X'348'. The

value of this field indicates the running status of CP since the
last entry to the dispatcher.

Value of

_CPSTIAT_ Compents
X'80! CP is in wait state
X440 CP is running the user in RUNUSER
X120 CP is executing a stacked request

2. Current User

The PSW that was most recently loaded by the dispatcher is saved in
RUNPSW at location X'330*', and the address of the dispatched VMELOK
is saved in RUNUSER at location X'338'. Also, examine the contents
of control registers 0 and 1 as they were when the last PSW was
dispatched. See RUNCRO (X'340') and RUNCR1 (X'344') for the
control registers.

Also, examine the CP internal trace table to determine the events
that preceded the abnormal termination. Start with the last event
recorded in the trace table and proceed backward through the trace table
entries. The last event recorded is the last event that was completed.

The trace table is at least one page (4096 tytes) long. One page is
allocated to the trace table for each block of 256K bytes of real
storage available at IPL time. ©Each trace table entry is 16 bytes long.
The TRACSTRT field (location X'0C') contains the address of the start of
the trace table. The TRACEND field (location X'10') contains the
address of the byte following the end of the trace table. And, the
address of the next available trace table entry is found in the TRACCURR
field (location X'14').

Subtract 16 (X'10') bytes from the value at X'14' (TRACCURR) to find
the address of the last trace table entry recorded. Figure 9, earlier
in this section, describes the format of each of the 16 possible types
of trace table entries.

REGISTER USAGE
In order to trace control blocks and modules, it is necessary to know
the CP register usage conventions.

The 16 general registers have many uses that vary depending upon the

operation. The following table shows the general use of some of the
general registers.

120 IBM VM/370: System Programmer's Guide



Register Contents

GR 1 The virtual address to be translated.

GR 2 The real address or parameters.

GR 6,7,8 The virtual or real channel, control unit, and device
control blocks,

GR 10 The address of the active IOBLOK.

GR 14, 15 The external branch linkage.

The following general registers always contain the same information.

Register Contents
GR 11 The address of the active VMBLOK.
GR 12 The base register for the module executing.
GR 13 The address of the current save area, if the module was

called via an SvC.

Use these registers along with the CP contrcl blocks and the data in
the Prefix storage Area to determine the error that «caused the CP
ABEND.

SAVE AREA CONVENTIONS

There are three save areas that may be helpful in debugging CP. If a
module was called by an SVC, examine the SAVEAREA. SAVEAREA is not in
the PSA; the address of the SAVEAREA is found in general register 13.
If a module was called by a branch and link, the general registers are
saved in the PSA in an area called BALRSAVE (X'240'). The DMKFRE save
area and work area is also in the PSA: these areas are only used by the
DMKFREE and DMKFRET routines. The DMKFRE save area (FREESAVE) 1is at
location X'280' and its work area (FREEWORK) follows at 1location
X'2C0°'.

Use the save areas to trace backwards and find the previous module
executed.

1. SAVEAREA

An active save area contains the caller's return address in
SAVERETN (displacement X'00'). The caller's base register is saved
in SAVER12 (displacement X'04'), and the address of the save area
for the caller is saved in SAVER13 (displacement X'08'). Using
SAVER13, you can trace backwards again.

2. BALRSAVE

All the general registers are saved in BALRSAVE after branching and
linking (via BALR) to another routine. Look at BALR14 for the
return address saved, BALR13 for the caller's save area, and BALR12
for the caller's base register, and you can trace module control
backwards.

3. FREESAVE

All the general registers are saved in FREESAVE before DMKFRE
executes. Use this address to trace module control backwards.

Part 1: Debugging with vM/370 121



Field Contents

FREER15 The entry point (DMKFREE or DMKFRET).

FREER14 The saved return address.

FREER13 The caller's save area (unless the caller was called via

BALR) .
FREER12 The caller's base register.
FREER1 Points to the block returned (for calls to DMKFRET).
FREERO Contains the number of doublewords requested or
returned.

VIRTUAL AND REAL CONTROL BLOCK STATUS

Examine the virtual and real control blocks for more informaticn on the
status of the CP system., Figure 11 describes the relationship of the CP
control blocks; several are described in detail in the following
paragraphs.

VHBLCK

The address of the VMBLOK is in general register 11.
Examine the following VMBLOK fields:
1. The virtual machine running status is contained in VMRSTAT

(displacement X'58'). The value of this field indicates the
running status:

Value of

VMRSTAT Comments
X'80° Waiting -- executing console function
X140 Waiting -- page operation
Xt20 Waiting -- scheduled IOBLOK start
X'10°* Waiting -- virtual PSW wait state
Xr08' Waiting -~ instruction simulation
X'o4¢ User not yet logged on
X102 User logging off
X'01? Virtual machine in idle wait state

2. The virtual machine dispatching status is contained in VMDSTAT
(displacement X'59°'). The value of this field 4indicates the
dispatching status:

Value of

VMDSTIAT Comments
X'80" Virtual machine is dispatched RUNUSER
x40 Virtual machine is compute bound
X*20! Virtual machine in-queue time slice end
Xx*10¢ Virtual machine in TIO/SIO busy loop
xto8" Virtual machine runnable
X'out Virtual machine in a queue

122 IBM VM/370: System Programmer's Guide



L 3Teg

0LE/WA 43TA butbbngaq :

€Tl

*il @anbtyg

sdtysuoTjeray }207d [0IJUOD 4D

PSA (Prefix Storage Area)

ASYSVM VMBLOK
VMOFPNT | VMQBFNT
—— | —-—
VMPNT | VMECEXT
ARIOCH CORTABLE —=
ARIOCU ——F VMSEG
ARIODV ACORETBL /" VMCHSTRT | VMCUSTRT
CORFPNT CORBPNT SEGTABLE ]
SWPTABLE searace|_y VMDVSTRT
DMKPTR SWPVM PAGTABLE|
DVMKPTRET SWPPAG / PAGSWP I
DMKPTRUY CORFPNT CORBPNT = = A . VMTREXT | VMMICRO MiCcBLOK
DMKPTRFL —_— - T T T H -
CORFPNT CORBPNT .EMTRQB'-K VMPXINT
CORSWPNT
CORPGPNT TREXT
XINTBLOK
TRQBLOK
ALOCBLOK\
- ’/md":/‘o‘ik\
10BLOK )
RECBLOK RDEVBLOKS VDEVBLOKs ¢ VCUBLOKs y VCHBLOKs ECBLOK
— RDEVAIOB VDEVREAL
+—RDEVALLN - 10BCAW
\—RDEVPAGE VDEVIOB
_—+—RDEVRECS EXTSHSEG
RECBLOK REWTASK
}— RDEVCUA j——
RCHBLOKs RCUBLOKs [—> Cvorvioen EXTCPTHQ [ EXTCCTRO
CCWs
RCUCHA ; /
RDEVIOER—|___ —_
\ OERBLO VDEVEXTN VSPXBLOK
10ERBLOK TRABLOK
/_\\_/ 1. nicBLok — TROBLOK
RDEVNICL IOERLOC
RCHF 108 /\ NICATRQ VDEVCON
CONTASK VCONCTL /
CONPNT
JOBLOK conpaTA—=| > mpevcon | NICOPNT come VDEVSPL
) CCWs I RDEVBSC VCONBUF | SHADOW SHADOW
> RCUFIOB CONBUF PAGTABLE \ SEGTABLE
| [~ RDEVSPL | 10BLOK L SEGPAGE
- / RDEVFI0B VSPLCTL CONBLF
10BLOK —
¢ RSPLCTL CONTASK VSPSFBLK cows
—_—
RSPSFBLK o
~ SFBLOK Cows TROBLOK SFBLOK
CBLOK
BS NICBLOK
NICBLOK } Bscauser
BSCUCOPY
BSCT MRQ

TRQOBLOK




GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

3. Examine the virtual PSW and the 1last virtual machine privileged
instruction. The virtual machine PSW 1is saved in VMPSW
(displacement X'A8') and the virtual machine privileged or tracing
instruction is saved in VMINST (displacement X'98').

q, Find the name of the 1last CP command that executed in VMCOMND
(displacement X'148').

5. Check the status of 1I/0 activity. The following fields contain
pertinent information.

a. VMPEND (displacement X'63') contains the interrupt pending
summary flag. The value of VMPEND identifies the type of

interrupt.

Value of

" _VMPEND_  Comments
x'40! Virtual PER (Program Event Recording)

interrupt pending

x'20¢ Virtual program interrupt deferred
X*'10¢ Virtual SVC interrupt deferred
Xxro2' Virtual I/0 interrupt pending
X1 Virtual external interrupt pending

b. VMEXTINT (displacement X'68') contains the external interrupt
pending flags. The value of the flag identifies the external
interrupt.

Value of
VMEXTINT Comments
x'08? Clock comparator interrupt pending
X* 04 CPU timer interrupt pending
Value of
VMEXTINT +1 Comments
X80 Interval timer interrupt pending
Xrgo0! Operator's external button interrupt
pending
X'2F* External signals pending

c. VMIOINT (displacement X'6A') contains the I/0O interrupt pending
flag. Each bit represents a channel (0-15). An interrupt
pending is indicated by a 1 in the corresponding bit position.

Value of

VMIOINT Comments

10000000 00000000 Interrupt pending channel 0
01000000 00000000 Interrupt pending channel 1

00000000 00000001 Interrupt pending channel 15
d. VMIOACTV (displacement X'36') 1is the active channel mask. B2n

active channel is indicated by a 1 in the corresponding bit
position.

124 1IBM VM/370: System Programmer's Guide



The address of the VCHBLOK table is found in the VMCHSTRT field
(displacement X'18') of the VMBLOK. General register 6 contains the
address of the active VCHBLOK. Examine the following fields:

1. The virtual channel address is contained in VCHADD (displacement
X'001).

2. The status of the virtual channel is found in the VCHSTAT field
(displacement X7067). The value of this field indicates the virtuval
channel status:

Value of

JCHSTAT Comments

X'80¢ Virtual channel busy

x40 Virtual channel class interrupt pending
X'01! virtual channel dedicated

3. The value of the VCHTYPE field (displacement X'07') indicates the
virtual channel type:

Value of

VCHIYPE Comments

X'80° Virtual selector channel

Xr40! vVirtual block multiplexer
VCUBLOK

The address of the VCUBLOK table is found in the VCUSTRT field
(displacement X'1C') of the VMBLOK. General register 7 contains the
address of the active VCUBLOK. Useful information is contained in the
following fields:

1. The virtual control unit address is found in the VCUADD field
(displacement X'00°').

2. The value of the VCUSTAT field (displacement X'06') indicates the
status of the virtual control unit:

Value of

YCUSTAT Comments

X180! Virtual subchannel busy

xvuor Interrupt pending in subchannel

X120 Virtual control unit busy

Xxv10°* Virtual control unit interrupt pending
xvs:? Virtual control unit end pending

3. The value of the VCUTYPE field (displacement X'07') indicates the
type of the virtual control unit:

Value of

JCUTYEE Comments

X'80°? Virtual control unit on shared subchannel

x40t Virtual control unit is a channel-to-channel

adapter

Part 1: Debugging with VM/370 125



VDEVBLOK

The address of the VDEVBLOK table is found in the VMDVSTRT field
(displacement X'20') of the VMBLOK. General register 8 contains the
address of the active VDEVBLOK. Useful information is contained in the
following fields:

1. The virtual device address is found in the VDEVADD field
(displacement X'00').

2. The value of the VDEVSTAT field (displacement X'06') describes the
status of the virtual device:

Value of

VDEVSTIAT Comments

Xt80°" Virtual subchannel busy

X140°" Virtual channel interrupt pending

x+20¢ Virtual device busy

X*10! Virtual device interrupt pending

X108¢ virtual control unit end

X'04¢ Virtual device not ready

X102 Virtual device attached by console function
X1 VDEVREAL is dedicated to device RDEVBLOK

3. The value of the VDEVFLAG field (displacement X'07') indicates the
device dependent information:

Value of

VDEVFLAG Comments

X'80¢* DASD -- read/only device

X*80! Virtual 2701/2702/2703 device -- line enabled

x40 DASD -- TDISK space allocated by CP

Xor Virtual 2701/2702/2703 device -- line connected
Xr40" Console -- activity spooled

X'20° DASD -- 2311 device simulated on top half of 2314
X'10* DASD ~- 2311 device simulated on bottom half of 2314
X'10¢ Console and spooling device -- processing first CCW
X108 DASD -- executing standalone seek

Xx'o2" RESERVE/RELEASE are valid CCW operation codes,
Xtot Virtual device sense bytes present

4. The VDEVCSW field (displacement X'08') contains the virtual channel
status word for the last interrupt.

5. The VDEVREAL field (displacement X'24') contains the pointer to the
real device block, RDEVBLOK.

6. The VDEVIOB field (displacement X'34') contains the pointer to the
active IOBLOK.

7. For console devices, the value of the VDEVCFLG field (displacement
X'26') describes the virtual console flags:

Value of

YDEVCFLG Comments

X'80° User signalled attention too many times

Xvy4o! Last CCW processed was a TIC

X'20°* Data transfer occurred during this channel prograns
Xv10* Virtual console function in progress

X8 Automatic carriage return on first read

126 IBM VM/370: System Programmer's Guide



8. For spooling devices, the value of the VDEVSFLG field (displacement
X'27') describes the virtual spooling flags:

Value of

YDEVSFLG Comments

X'80¢" Spool reader -- last command was a feed
X' 80! Spool output -- transfered to VSPXXUSR
Xw4o! Spool device -- continuous operation

X1 20! Hold output -- save input

X*10! Spool output -- for user and distribution
X108 Spool input -- set unit exception at EOF
Xx108? Terminal output required for spooled console
X104 Device closed by console function

X102 Spool output ~-- purge file at close

Xro2¢ Spool input -- device opened by DIAGNOSE
Xx'o1 Spool output -- DMKVSP entered via SVC

9. Por output spooling devices, the VDEVEXTN field (displacement
X*'10') contains the pointer to the virtual spool extension block,
VSPXBLOK.

RCHBLOK

The address of the first RCHBLOK is found in the ARIOCH field
(displacement X'3B4') of the PSA (Prefix Storage Area). General register
6 contains the address of the active RCHBLOK. Examine the following
fields:

1. The real channel address is found in the RCHADD field (displacement
X'00').

2. The value of the RCHSTAT field (displacement X'04') describes the
status of the real channel.

value of

RCHSTAT Comments

X80 Channel busy

X0 I0B scheduled on channel
X120 Channel disabled

X101 Channel dedicated

3. The value of the RCHTYPE field (displacement X'05') describes the
real channel type:

Value of

RCHTYPE Comments

X'80! Selector channel

Xe40" Block multiplexer channel

X120 Byte multiplexer channel

xon S/370 type channel (S/370 instruction support)

4. The RCHFIOB field (displacement X'08') is the pointer to the first
IOBLOK in the queue and the RCHLIOB field (displacement X'0C') is
the pointer to the last IOBLOK in the gueue.

Part 1: Debugging with VM/370 127



The address of the first RCUBLOK is found in the ARIOCU field
(displacement X'3B8!') of the PSA. General register 7 points to the
cuorrent RCUBLOK. Examine the following fields:

1. The RCUACLD field (displacement X'00') contains the real control
unit address.

2. The value of the RCUSTAT field (displacement X'04') describes the
status of the control unit:

Value of

RCUSTAT Comments

X180 - Control unit busy

X140 IOB scheduled on control unit
Xt20! Control unit disabled

X001 Control unit dedicated

3. The value of the RCUTYPE field (displacement X'05') describes the
type of the real control unit:

Value of

RCUTYPE Comments

X'80° This control unit can attach to only one subchannel
X0t TCU is a 2701

X102 TCU is a 2702

X'03! TCU is a 2703

4. The RCUFIOB field (displacement X'08') points to the first IOBLOK
in the queue and the RCULIOB field (displacement X'0C') points to
the last IOBLOK in the queue.

RDEVBLOK

The address of the first RDEVBLOK is found in the ARIODV field
(displacement X'3BC') of the PSA. General register 8 pcints to the
current RDEVBLOK. Also, the VDEVREAL field (displacement X'24') of each
VDEVBLOK contains the address of the associated RDEVBLOK. Examine the
following fields of the RDEVBLOK:

1. The RDEVADD field (displacement X'00') ccntains the real device
address.

2. The values of the RDEVSTAT (displacement X'04') and RDEVSTA2
(displacement X'45') fields describe the status of the real device:

Value of

RDEVSTAT  Comments

X*80°" Device busy

Xe40 I0B scheduled on device

X120 Device disabled (offline)

X'10¢ Device reserved

xro8! Device in intensive error recording mode
X0y Device intervention required

X'01 Dedicated device (attached to a user)
Value of

RDEVSTA2  Comments

x'80¢* Active device is being reset

X140 Device is busy with the channel
X'20°¢ Contingent connection present

128 1IBM VM/370: System Programmer's Guide



3.

10.

The value of the RDEVFLAG field (displacement X'05') indicates
device flags. These flags are device dependent.

Value of

RDEVFLAG  Comeents

X'80" DASD -- ascending order seek queuing

X040 DASD -- volume preferred for paging

Xr'20" DASD -- volume attached to systenm

X*10°" DASD -- CP owned volune

xr08? DASD -- volume mounted but not attached

X80 Console -- terminal has print suppress

X0t Console -- terminal executing prepare command
X120 Console -- IOBLOK pending; queue request

X'10¢ Console -- 2741 terminal code identified

xv08" Console -- device is enabled

x'ou? Console -- next interrupt from a halt I,0
x'o02! Console -- device is to be disabled

X'01¢ Console -- 3704/3705 NCP resource in EP mode
x'80" spooling -- device output drained

X'4o" spooling -- device output terminated

X'20* Spooling -- device busy with accounting

Xx*10! Spooling -- force printer to single space
X'08! spooling -- restart current file

X'o4 Spooling -- backspace the current file

X022 Spooling -- print/punch job separator

X001 Spooling -- UCS buffer verified

X*80!' Special -- network control program is active
X'4o! Special -- 2701/2702/2703 emulation program is active
Xr20 Special -- 3704/3705 is in buffer slowdown mode
X110 Special -- automatic dump/load is enabled
X108 Special -- IOBLOK is pending; queue requests
x'ou? Special -- emulator lines are in use by systenm
x'o02' Special -- automatic dump/load process is active
X'01¢* Special -- basic terminal unit trace requested

The value of the RDEVTYPC field (displacement X'06') describes the
device type class and the value of the RDEVTYPE field (displacement
X*07') describes the device type. Refer to Pigure 12 for the list
of possible device type class and device type values.

The RDEVAIOB field (displacement X'24') contains the address of the
active IOBLOK.

The RDEVUSER field (displacement X'28') points to the VMBLOK for a
dedicated user.

The RDEVATT field (displacement X'2C') contains the attached
virtual address.

The RDEVIOER field (displacement X'48') contains the address of the
IOERBLOK for the last CP error.

For spooling unit record devices, the RDEVSPL field (displacement
X*18') points to the active RSPLCTL block.

For real 3704/3705 Communications Controllers, several pointer
fields are defined. The RDEVEPDV field (displacement X'1C') points
to the start of the free RDEVBLOK 1list for EP lines. The RDEVNICL
field (displacement X'38') points to the network control list and
the RDEVCKPT field (displacement X'3C') points to the CKPBLOK for
re-enable. Also, the RDEVMAX field (displacement X'2E') is the
highest valid NCP resource name and the RDEVNCP field (displacement
X'30') is the reference name of the active 3705 NCP.

Part 1: Debugging with VM/370 129



1.

12.

130

For terminal devices, additional flags are defined. The value of
the RDEVIFLG field (displacement X'3E') describes the additional

flags:
Value of
BDEVTFLG  Comments
X'80¢ Terminal -- logon process has been initiated
X140t Terminal -- terminal in reset process
X*20° Terminal -- suppress attention signal
X*80° Graphic -- screen full, in hcld status
x40 Graphic -- screen full, more data waiting
X*'20° Graphic -- screen in running status
Xt10¢ Graphic -- read pending for screen input
X'08: Graphic -- last input not accepted
Xroq Graphic -- timer request pending
X022 Graphic -- CP command interrupt pending

For terminals, an additional flag is defined. The value of the
RDEVTMCD field (displacement X'46') describes the 1line code
translation to be used:

Value of

RDEVINCD Comments

X1 10! UASCII -- 8 level
XtocCe APL correspondence
Xe08:* APL PTTC/EBCD
X'04r" Correspondence
X'00°" PTTC/EBCD

IBM VM/370: System Programmer's Guide



DEVICE CLASS CODES (COLUMN 33 IN ACCOUNTING CARD)

Code Device Class

X'80" Terminal Device

X'40! Graphics Device

X'20° Unit Record Input Device
Xv10! Unit Record Output Device
X'08? Magnetic Tape Device

X104 Direct Access Storage Device
X0z Special Device

DEVICE TYPE CODES (COLUMN 34 IN ACCOUNTING CARD)

Code Device Type

X140 2700 Binary Synchronous Line

x40 2955 Communication Line

Xr20 Telegraph Terminal Control Type II
Xx*20¢ Teletype Terminal

Xx*1o0! IBM Terminal Control Type I

xv18? IBM 2741 Communication Terminal
X¥1igs IBM 3767 Communication Terminal
X114 IBM 1050 Data Communicaticn Systenm
Xx*1ce Undefined Terminal Device

X'00¢* IBM 3210 Console

Xt00¢* IBM 3215 Console

X'00! IBM 2150 Conmsole

X100" IBM 1052 Console

X000 IBM 7412 Console

2. For Graphics Device Class

T
|
|
{
|
|
|
|
|
|
l
i
|
|
|
|
| 1. For Terminal Device Class
l
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|

Code Device Type

x'go! IBM 2250 Display Unit
Xru0! IBM 2260 Display Station
X*20! IBM 2265 Display Station
xr1o! IBM 3066 Console

X'08! IBM 1053 Printer

Xroy IBM 3277 Display Station
X02" IBM 3284 Printer

x'o02 IBM 3286 Printer

(X

be oo o S e S e i S . W . T —— T —— — — — — D — T — T o— . T —— G — T— —— T ——— " — — S — — - a—— )

Fiqure 12. CP Device Classes, Types, Models, and Features (Part 1 of 3)

Part 1: Debugging with VM/370

131



¥ A
| 3. PFor Unit Becord Input Device Class |
l I
I Code Device Type |
| x'80¢ Card Reader |
\ Xxr81 IBM 2501 Card Reader |
| X'82¢ IBM 2540 Card Reader |
i X841 IBM 3505 Card Reader |
| xe88¢ IBM 1442 Card Reader/Punch |
| X*90° IBM 2520 Card Reader/Punch |
{ Xeyoe Timer. |
| X'20" Tape Reader |
| X'21¢ IBM 2495 Magnetic Tape Cartridge Reader |
| X122 IBM 2671 Paper Tape Reader |
| X124 IBM 1017 Paper Tape Reader |
| |
| 4. PFor Unit Record Output Device Class |
( |
I Code Device Type |
| X'80° Card Punch |
| X*82¢ IBM 2540 Card Punch |
| Xegyr IBM 3525 Card Punch |
| X'88¢ IBM 1442 Card Punch |
| X'90¢ IBM 2520 Card Punch |
| X*40! Printer |
1 X141 IBM 1403 Printer |
| X142 IBM 3211 Printer |
| X4y IBM 1443 Printer |
| X*20¢ Tape Punch {
| Xxeay4e IBM 1018 Paper Tape Punch |
| |
| 5. For Kagnetic Tape Device Class |
| |
i Code Device Tape i
{ X'80° IBM 2401 Tape Drive |
| X140 IBM 2415 Tape Drive |
| X120¢ IBM 2420 Tape Drive 1
| X*10°? IBM 3420 Tape Drive |
[ xe08? IBM 3410/3411 Tape Drive |
| |
| 6. For Direct Access Storage Device Class ]
| |
| Code Device Type |
| X'80! IBM 2311 Disk Storage Drive {
| x40 IBM 2314 Disk Storage Facility |
| X140 IBM 2319 Disk Storage Facility {
| X*20° IBM 2321 Data Cell Drive |
| X110 IBM 3330 Disk Storage Facility |
| X*10" IBM 3333 Disk Storage and Control |
{ X108 IBM 2301 Parallel Drum |
| X0y IBM 2303 Serial Drum |
{ X'02¢ IBM 2305 Fixed Head Storage Device |
{ X101 IBM 3340 Disk Storage Facility |
L J

Figure 12. CP Device Classes, Types, Models, and Features (Part 2 of 3)

132 1IBM VM/370: System Programmer's Guide



7. For Special Device Class

Code Device Type

X80 Channel-to-Channel Adapter (CTCA)

Xruot 3704/3705 Programmable Communications Controller
X101 Device unsupported by VM/370

MODEL CODES (CCLUMN 35 IN ACCOUNTING CARD)

As specified in the RDEVICE macro at system generation.

FEATURE CODES (COLUMN 36 IN ACCOUNTING CARD)
1. TPFor Printer Devices

Code Feature
X101 ucs

Code Feature
X'80¢ 7-Track
X'o Dual Density
X 20" Translate

X'10°* Data Conversion
3. Por Direct Access Storage Devices

Code Feature

X'80! Rotational Position Sensing (RPS) installed (3340)
X120¢ Top Half of 2314 Used as 2311

Xx*10¢ Bottom Half of 2314 Used as 2311

X108 35MB Data Module (mounted)

X'04! 70MB Data Module (mounted)

X102 Reserved/Release are valid CCW operation codes

4. For special devices

Code Feature

X*t10! Type I channel adapter for 3704,/3705

r 1
| |
{ |
| |
! I
{ (
| |
| |
| |
( |
| {
| i
| |
{ |
| |
| i
| |
| |
| |
| |
| . . {
| 2. PFor Magnetic Tape Devices |
| i
| |
| |
( |
| |
| |
| |
| |
| |
| {
| |
| |
I |
| |
| {
( |
| |
| |
! !
| |
i |
| Xt20°" Type II channel adapter for 3704,/3705 |
L J

Figure 12. CP Device Classes, Types, Models, and Features (Part 3 of 3)

IDENTIFYING A PAGEABLE MODULE

If a program check PSW or SVC PSW points to an address beyond the end of
the CP resident nucleus, the failing module is a pageable module. The
CP system load map tells you where the end of the resident nucleus is.

Go to the address indicated in the PSW. Backtrack to the beginning
of that page frame. The first eight bytes of that page frame (the page
frame containing the address pointed to by the PSW) contains the name of
the failing module. If wmultirle modules exist within the same page
frame, identify the module wusing the 1load wmap and failing address
displacement within the page frame.

Part 1: Debugging with VM/370 133



Debugging with CMS

This section describes the debug tools that CMS provides. These tools
can be used to help you debug CMS or a problem program. In addition, a
CMS user can use the CP commands to debug. Information that is often
useful in debugging is also included. The following topics are
discussed in this section:

CMS debugging commands
DASD dump restore program
Load maps

Reading CMS dumps

control block summary

CMS DEBUGGING COMMANDS
CHMS provides two commands that are wuseful in debugging: DEBUG and
SVCTRACE. Both commands execute from the terminal.
The debug environment is entered whenever:
s The DEBUG command is issued

A breakpoint is reached
e An external or program interrupt occurs

CMS will not accept other commands while in the debug environment.
However, while in the debug environment, the options of the DEBUG
comrand can:

e Set breakpoints (address stops) which stop program execution at
specific locations.

e Display the contents of the CAW (channel address word), CSW (channel
status word), old PSW (program status word), or general registers at
the terminal.

e Change the contents of the control words (CAW, CSW and PSW) and
general registers.

e Dump all or part of virtual storage at the printer.

e Display the contents of up to 56 bytes of virtual storage at the
terminal.

e Store data in virtual storage locationms.
e Allow an origin or base address to be specified for the program.
e Assign symbolic names to specific storage locations.

e C(Close all open files and I/0 devices and update the master file
directory.

e Exit from the debug environment.

134 1IBM VM/370: System Programmer's Guide



The SVCTRACE command records information for all SVC calls. When the
trace is terminated, the information recorded up to that point is
printed at the system printer.

In addition, several CMS commands produce or print load maps. These
load maps are often used to 1locate storage areas while debugging
programs.

DEBUG

The DEBUG command provides support for debugging programs at a terminal.
The virtual machine operator can stop the program at a specified
location and examine and alter virtual storage, registers, and various
control words. Once CMS is in its debug environment, the virtual
machine operator can request the various DEBUG options. However, in the
debug environment, all of the other CMS commands are considered
invalid.

Any DEBUG subcommand may be entered if CMS is in the debug
environment and if the keyboard is unlocked. The following rules apply
to DEBUG subcommands:

1. No operand should be longer than eight characters., All operands
longer than eight characters are 1left justified and truncated on
the right after the eighth character.

2. The DEFINE subcommand must be used to create all entries in the
DEBUG symbol table.

3. The DEBUG subcommands can be truncated. The following is a list of
all valid DEBUG subcommands and their minimum truncation.

Minimunm
Subcommand Iruncation

BREAK BR
CAW CAW
CSW CSW
DEFINE DEF
DUMP ‘ DU
GO GO
GPR GPR
HX HX
ORIGIN OR
PSH PSH
RETURN RET
SET SET
STORE ST
X X

One way to enter the debug environment 1is to issue the DEBUG
conmmand. The message

DMSDBG728I DEBUG ENTERED

appears at the terminal. Any of the DEBUG subcommands may be entered.
To continue normal processing, issue the RETURN subcommand.

Whenever a program check occurs, the DMSABN routine gains control.

Issue the DEBUG command at this time if you wish CMS to enter its debug
environment.

Part 1: Debugging with VM/370 135



Whenever a breakpoint is encountered, a program check occurs. The
message

DMSDBG7281 DEBUG ENTERED
BREAKPOINT YY AT XXXXX

appears on the terminal. PFollow the same procedure to enter subcommands
and resume processing as with a regular program check.

An external interrupt, which occurs when the CP EXTERNAL command is
issued, causes CMS to enter its debug environment. The message

DMSDBG728I DEBUG ENTEBRED
EXTERNAL INTERRUPT

appears on the console. Any of the DEBUG subcommands may be issued. To
exit from the debug environment after an external interrupt, use GO.

»

While CMS is in its Debug environment, the control words and low
storage locations contain the Debug program values. The Debug program
saves the control words and low storage contents (X'00' - X'100') of the
interrupted routine at location X'CO'.

The following is a detailed discussion of the possible DEBUG
subcommands.

L} a1
| BReak | id symbol} l
| | hexloc |
[ 9 ]
Wwhere:

id is a decimal number, from 0 to 15, which identifies the

breakpoint.
symbol is a name assigned to the storage 1location where the

breakpoint is set. The symbolic name must be previously
assigned to the storage address using the DEF subcommand of
the DEBUG command.

hexloc is the hexadecimal storage location (relative to the current
origin) where the breakpoint is set.

Use the BREAK subcommand to set breakpoints which stop execution of a
program or module at specific instruction locations, called breakpoints.
Issuing the BREAK subcommand causes a single treakroint to be set. 2
separate BREAK subcommand must be issued for each breakpoint desired. A
maximum of 16 breakpoints (with identification numbers 0 through 15) may
be in effect at one time; any attempt to set more than 16 breakpoints is
rejected.

Breakpoints should be set after a program is loaded, but before it
executes. When a breakpoint is encountered during program execution,

136 IBM VM/370: System Programmer's Guide



execution stops and the debug environment is entered. The virtual
machine operator can then use the other DEBUG subcommands to analyze the
program at that particular point. Registers, storage, and control words
can be examined and altered. After the virtual machine operator
finishes analyzing the program at this point in its execution, he issues
the GO subcommand to resume program execution.

Setting Breakpoints

Breakpoints are set before the program executes. They are set on
instruction (halfword) boundaries at locations that contain operation
codes. After setting all the desired breakpoints, issue the RETURN
subcommand to exit from the debug environment. Then issue the CMS START
command to begin program execution.

The first operand of the BREAK subcommand (id) assigns an
identification number (0-15) to the breakpoint. If the identification
number specified is the same as a currently set breakpoint, the previous
breakpoint is cleared and the new one is set.

The second operand of the BREAK subcommand (symbol or hexloc)
indicates the storage location of the breakpoint. If the operand
contains any nonhexadecimal characters, the DEBUG symbol table is
searched for a matching symbol entry. If a match is found, the
breakpoint is set at the storage address corresponding to that symbol,
provided that the storage address is on an even (halfword) boundary. If
no match is found in the DEBUG symbol table (and the operand is a valid
hexadecimal number), the second operand is treated as the hexadecimal
representation of the storage address. When the second cperand is a
valid hexadecimal number, this number is added to the program origin.
If the resulting storage address is on a halfword boundary and is not
greater than the user's virtual storage size, the breakpoint is set.

How Breakpointing Works

When the debug program sets a breakpoint, it saves the contents of the
halfword at the location specified by the second operand of +the BREAK
subcommand. This halfword is replaced by B2Ex, where x 1is the
hexadecimal equivalent of the identification number, specified in the
first operand of the BREAK subcommand. The storage location specified
for a breakpoint must contain an operation code. It is the user's
responsibility to see .that breakpoints are set only at 1locations
containing operation codes. After breakpoints are set and during
program execution, the value B2EQ0 through B2EF is encountered at a
location where an operation code should appear. A program check occurs
because all values B2E0 through B2EF are invalid operation codes and
control is transferred to the debug environment. DEBUG recognizes the
invalid operation code as a breakpoint. The original ofperation code
replaces the invalid operation code, and a message

DMSDBG7281 DEBUG ENTERED
BREAKPOINT yy AT XXXXXX

appears at the terminal. "yy" is the breakpoint identification number
and xxxxxx is the storage address of the breakpoint. After the message
is typed, the keyboard is unlocked to accept any DEBUG subcommands
except RETURN. A breakpoint is cleared when it is encountered during
program execution.

Part 1: Debugging with VM/370 137



It is the responsibility of the user to ensure that breakpoints are
set only at operation code locationms. Otherwise, the breakpoint is not
recognized; data or some part of the instruction other than the
operation code is overlaid. Thus, errors may be generated if
breakpoints are set at locations that do not contain operation codes.

Error Messages

The following error messages mray appear while entering the BREAK
subcommand.

INVALID OPERAND

This message indicates that the breakpoint identification number
specified in the first operand is not a decimal number between 0 and
15 inclusive, or the second operand cannot be located in the DEBUG
symbol table and is not a valid hexadecimal number. If the second
operand is intended to be a symbol, a DEF subcommand must have been
previously issued for that symbol; if not, the operand must be a
valid hexadecimal storage location.

INVALID STORAGE REFERENCE
The location indicated by the second operand is uneven (not on a
halfword boundary) or the sum of the second operand and the current
origin value is greater than the user's virtual storage size. If the
current origin value is unknown, it may be reset to the desired value
by issuing the ORIGIN subcommand.

MISSING OPERAND
The minimum number of operands has not been supplied.

TOO MANY OPERANDS
The user entered more than two operands.

HEXLOC 'hexaddr' IN SHARED STORAGE
A shared system was loaded (via IPL) and an attempt was made to
nodify a storage 1location between X!'10000' and X'20000', the shared

storage. To set a breakpoint in this address range, IPL a nonshared
systen.

138 1IBM VM/370: System Programmer's Guide



The format of the CAW subcommand is:

| CAW |

L 4

The CAW subcommand has no operands.

The CAW subcommand may be issiued whenever the debug enviromment is
entered. Issuing the CAW subcommand causes the contents of the CAW
(channel address word), as it existed at the time the debug environment
was entered, to appear at the terminal. The CAW located at storage
location X'48' is saved at the time the debug environment is entered and
displayed on the terminal whenever the CAW subcommand is issued. If the
subcommand is issued correctly, the contents of the CAW are typed in

hexadecimal representation at the terminal.

The format of the CAW is:

r L}

{ KEY | 0000 | Command Address |

L J

0 34 7 8 31

Bits Contents

0-3 The protection key for all commands associated with Start I/0.
The protection key in the CAW is compared to a key in storage
whenever a reference is made to storage.

y-7 This field is not used and must contain binary zeros.

8-31 The command address field contains the storage address (in

hexadecimal representation) of the first CCW (channel command
word) associated with the next or most recent Start I/0.

The three low-order bits of the command address field must be zeros
in order for the CCW to be on a doubléword boundary. If the CCW is not
on a doubleword boundary or if the command address specifies a location
protected from fetching or outside the storage of a particular user,
Start I/0 causes the status portion of the CSW to be stored with the
program check or protection check bit on. In this event, the I/0
operation is not initiated.

Issue the CAW subcommand to check that the command address field

contains a valid CCW address, or to find the address of the current CCW
SO you can examine it.

Error Mesages

The following error message may appear while entering the CAW
subcommand.

TOO MANY OPERANDS

An operand was entered on the command line; the CAW subcommand has no
operands.

Part 1: Debugging with ¥M/370 139



csW

The format of the CSW subcommand is:

] 1
| CsW |

L 4

The CSW subcommand has no operands.

The CSW subcommand may be issued whenever the debug environment is
entered. Issuing the CSW subcommand causes the contents of the CsW
(channel status word), as it existed at the time the debug environment
vas entered, to appear at the terminal. The CSW indicates the status of
the channel or an input/output device, or the conditions under which an
I/0 operation terminated. The CSW is formed in the channel and stored
in storage 1location X'40* when an I/0 interrupt occurs. If 1,0
interruptions are suppressed, the CSW is stored when the next Start I/0,
Test I/0, or Halt I/0 instruction is executed. The CSW is saved when
DEBUG is entered.

If the subcommand is issued correctly, the contents of the CSW are
displayed at the terminal in hexadecimal representation.

The format of the CSW is:

L ] h )
|KEY 0000 Command Address | Status | Byte Count |
L 4
0 34 78 31 32 47 48 63
Bits Contents

0-3 The protection key is moved to the CSW from +the CAW. It

indicates the protection key at the time the I/O started. The
contents of this field are not affected by programming errors
detected by the channel or ky the condition causing
termination of the operation.

4-7 This field is not used and must contain binary zeros.

8-31 The command address contains a storage address (in hexadecimal
representation) eight bytes greater than the address of the
last CCW executed.

32-47 The status bits indicate the conditions in the device or
channel that caused the CSW to be stored.

48-63 The residual count is the difference between the number of
bytes specified in the 1last executed CCW and the number of
bytes that were actually transferred. When an input operation
is terminated, the difference between the original count in
the CCW and the residual count in the CSW is equal to the
number of bytes transferred to storage; on an output
operation, the difference 1is equal to the number of bytes
transferred to the I/0 device.

Whenever an I/0 operation abnormally terminates, issue the CSH
subcommand. The status and residual count information in the CSW is
very useful in debugging. Also, use the CSW to calculate the address of
the last executed CCW (subtract 8 bytes from the command address to find
the address of the last CCW executed).

140 IBM VM/370: System Programmer's Guide



Error Messages

The following error message may appear when you enter the CSW
subcommand.

TOO MANY OPERANDS

An operand was entered on the command line; the CSW subcommand has no
operands.

Part 1: Debugging with VM/370 141



DEFINE

r 1
| . ( r 1 |
| DEFine | symbol hexloc |bytecount| |
| I | 4 | |
i | t 4 |
L ) |
where:

symbol is the name to be assigned to the storage address derived

from the second operand, hexloc.

hexloc is the hexadecimal storage locaticn, in relaticn to the

current origin, to which the name specified in the first
operand (symbol), is assigned.

bytecount is a decimal number, between 1 and 56 inclusive, which
specifies the 1length in bytes of the field whose name is
specifed by the first operand (symbol) and whose starting
location is specified by the second operand (hexloc). When
the bytecount operand is not specified, a default bytecount
of 4 is assumed.

Use the DEFINE subcommand to assign symbolic names to a specific
storage address. Once a symbolic name is assigned to a storage address,
that symbolic name can be used to refer to that address in any of the
other DEBUG subcommands. However, the symbol is valid only in the debug
environment.

The first operand (symbol) may be from one to eight characters 1long.
It must contain at least one nonhexadecimal character. Any symbolic
name longer than eight characters is left-justified and truncated on the
right after the eighth character.

The second operand (hexloc), a hexadecimal number, is added to the
current origin established by the ORIGIN subcommand. The sum of the
second operand (hexloc) and the origin is the storage address to which
the symbolic name is assigned. In order to assign the symbolic name to
the correct location be sure to know the current origin. The existing
DEBUG symbol table entries remain unchanged when the ORIGIN subcommand
is issued.

The third operand (bytecount), a decimal number between 1 and 56
inclusive, specifies the length of the field whose name is specified by

Issuing the DEFINE subcommand creates an entry in the DEBUG symbol
table. The entry consists of the symbol name, the storage address, and
the length of the field. A maximum of 16 symbols can be defined in the
DEBUG symbol table at a given time.

When a DEFINE subcommand specifies a syrbol that already exists in
the DEBUG symbol table, the storage address derived from the current
request replaces the previous storage address. Several symbols may be
assigned to the same storage address, but each of these symbols
constitutes one entry in the DEBUG symbol table. The symbols remain
defined until a new DEF is issued for them or until an IPL request loads
a new copy of CHMS.

142 1IBM VM/370: System Programmer's Guide



Error Messages

The following error messages may appear when the DEFINE subcommand is
issued:

INVALID OPERAND

This message indicates that the name specified in the first operand
contains all numeric characters, the second operand is not a valid
hexadecimal number, or the third operand is not a decimal number

between 1 and 56 inclusive.

INVALID STORAGE ADDRESS
The sum of the second operand and the current origin is greater than
the user's virtual storage size, If the current origin size is
unknown, reset it to the desired value by issuing the ORIGIN
subcommand and then reissue the DEF subcommand.

16 SYMBOLS ALREADY DEFINED
The DEBUG symbol table is full and no new symbols may be defined
until the current definitions are cleared Ly obtaining a new copy of
CMS. However, an existing symbol may be assigned to a new storage
location by issuing another CEF subcommand for that symbcl.

MISSING OPERAND

The DEFINE subcommand requires at least two operands and 1less than
two were entered.

TOO MANY OPERANDS

Three is the maximum number of operands for the DEFINE subcommand and
more than three were entered.

Part 1: Debugging with VM/370 143



DUHP

The format of the DUMP subcommand is:

L 1
| I r Tr 1 |
| DuUmp | | syamboll | | symbol2 | |
| | | hexloc1 | | hexloc2 | [ident] |
| I | 0 (I * | |
I [ 41 32 | |
{ | + 4 |
L N |
¥here:

symbolt is the name assigned (via the DEFINE subcommand) to the
storage address that begins the dump.

hexloc1 is the hexadecimal storage location, in relation to the
current origin, that begins the dump.

symbol2 is the name assigned (via the DEFINE subcommand) to the
storage address that ends the dump.

hexloc?2 is the hexadecimal storage location, in relation to the
current origin, that ends the dump.

* indicates that the dump ends at the user's 1last virtual
storage address.

ident is the name (up to eight characters) that identifies this
particular printout.

Use the DUMP subcommand to print part or all of a user's virtual
storage on the printer. The requested information is printed offline as
soon as the printer is available. First, a heading:

ident FPRCM starting location TO ending location

is printed. Next, the general registers 0-7 and 8-15, and the
floating-point registers 0-6 are printed. Then the specified portion of
virtual storage is printed with the storage address of the first byte in
the line printed at the left, followed by the alphameric interpretation
of 32 bytes of storage.

The first and second operands specify the starting and ending
addresses, respectively, of the area of storage to be dumped. If DUMP
is issued without the first and second operands; 32 bhvtes of storage are
dumped starting at the current origin. If DUMP is issued without the
second operand, 32 bytes of storage are dumped starting at the location
indicated by the first operand. .

The first and second operands, if specified, must be either valid
symbols or hexadecimal numbers. When a symbol is specified, the DEBUG
symbol table is searched. If a match is found, the storage location
corresponding to that symbol is used as the starting or ending address
for the dump. When a hexadecimal number is specified, it is added to
the current origin to calculate the starting or ending storage address
for the dump. The first and second operands must designate storage
addresses that are not greater than the user's virtual storage size.

1

144 IBM VM/370: System Programmer's Guide



Also, the storage address derived from the second operand must be
greater than the storage address derived from the first operand. An
asterisk may be specified for the second operand. In this case, all of
storage from the starting address (first operand) to the end of storage
is dumped to the printer.

Error Messages

ving error messages may appear vwhen vyon issue the LUMP
.

INVALID OPERAND

This message is issued if the address specified by the second operand
is less than that specified by the first operand, or if the first or
second operands cannot be located in the DEBUG symbol table and are
not valid hexadecimal numbers. If either operand is intended to be a
symbol, a DEFINE subcommand must previously have been issued for that
symbol; if not, the operand must specify a valid hexadecimal
location.

INVALID STORAGE ADDRESS
The hexadecimal number specified in the first or second operand, when
added to the current origin, is greater than the user's virtual
storage size. If the current origin value is unknown, reset it to

the desired value by issuing the ORIGIN subcommand and then reissue
the DUMP subcommand.

TOO MANY OPERANDS

Three is the maximum number of operands for the DUMP subcommand; more
than three operands were entered.

Part 1: Debugging with VM/370 145



GO

The format of the GO subcommand is:

r A
| I r 1 |
| GO | | symbol | |
| | | hexloc | |
| It 4 l
L J
Where:

symbol is the name, already assigned by the DEFINE subcommand, to a

storage location where execution begins.

hexloc is the hexadecimal 1location, in relation to the current

origin, where execution begins.

Use the GO subcommand to exit from the debug environment and begin
execution in the CMS environment. The o0ld PSW for the interrupt that
caused the debug environment to be entered is saved and later loaded to
resume processing. Issuing the GO subcommand lcads the old PSW.

When the GO subcommand is issued, the general registers, CAW
(channel address word), and CSW (channel status word) are restored
either to their contents upon entering the debug environment, or, if
they have been modified while in the debug environment, to their
modified contents. Then the 0ld PSW is loaded and becomes the current
PSW. Execution begins at the instruction address contained in bits
40-63 of the PSW.

By specifying an operand with the GO sukcommand, it is possible to
alter the address where execution is to begin. This operand must be
specified whenever the GO subcommand is issued if the debug environment
is entered by issuing the DEBUG command.

The operand may be a symbol or a hexadecimal location. When a symbol
is specified, the DEBUG symbol table is searched. If a match is found,
the storage address corresponding to the symkol replaces the instruction
address in the old PSW. When a hexadecimal number is specified, it is
added to the <current origin to calculate the storage address that
replaces the instruction address in the o0ld PSW. In either case, the
derived storage address must not be greater than the user's virtual
storage size. Further, it 1is the user's responsibility to make sure
that the address referred to by the operand of the GO subcommand
contains an operation code.

If the debug environment was entered due to a breakpoint, external

interrupt, or program interrupt, then the GO subcommand does not need an
operand specifying the starting address.

Error Messages

The following error messages may appear while entering the GO
subcommand.

INVALID OPERAND

An operand specified in the GO subcommand cannot be located in the
DEBUG symbol table and is not a valid hexadecimal number. If the

146 IBM VM/370: System Programmer's Guide



operand is intended to be a symbol, a DEFINE subcommand must have
been previously issued for that symbol; if not, the operand must
specify a valid hexadecimal storage location.

INVALID STORAGE ADDRESS

The address at which execution is to begin is not on a halfword
boundary (indicating that an operation code is not located at that
address) or the sum of the GO operand and the current origin value is
greater than the user's virtual storage size. If the current value
is unknown, it may be reset to the desired value by issuing the

INCORRECT DEBUG EXIT
The GO subcommand without an operand has been issued +when DEBUG had
not been entered due to a breakpoint or external interrupt. The
RETURN subcommand must be issued if DEBUG had been entered via the
DEBUG command.

TOO MANY OPERANDS

The GO subcommand has a maximum of one operand; more than one operand
was entered.

Part 1: Debugging with VM/370 147



GBR

The format of the GPR subcommand is:

v A
| GPR | regl [reg2] |
[ 8 J
where:

reg1 is a decimal number (from 0-15 inclusive) indicating the first

or only general register whose contents are to be typed.

reg2 is a decimal number (from 0-15 inclusive) indicating the last
general register whose contents are to be typed. This operand
is optional and is only specified when more than one register's
contents are to be printed.

Use the GPR subcommand to print the contents of one or more general
registers at the terminal. When only one operand is specified, only the
contents of that general register are typed at the terminal. When two
registers are specified, the contents of all general registers from the
register indicated by the first operand through the register indicated
by the second operand are typed at the terminal. Both operands must be
decimal numbers from 0-15 inclusive, and the second operand must be
greater than the first.

Brror Messages

The following error messages may appear on the terminal when the GPR
subcommand is entered.
INVALID OPERAND

The operand (s) specified are not decimal numbers between 0 and 15
inclusive, or the second operand is less than the first.

MISSING OPERAND

The GPR subommand requires at 1least one operand, and none was
entered.

TOO MANY OPERANDS

The GPR subcommand has a maximum of two operands, and more than two

nnerande wors andarsd
VEFCLALIMD WTAT TuLTaTue

148 IBM VM/370: System Programmer's Guide



The HX subcommand has no operands.
Use the subcomsand to close all
update the master file directory.
whenever the keyboard is unlocked in

open files and I
This subcommand may be
the debug environment, rega

A

of the reason the debug environment was entered.

Error Messages

nAd + A~

/0 s ~an
/U Gevices, ana <o

issued
rdless

The following error message may appear on the terminal while entering

the HX subcommand.

]
@]
(=}
=
-]
2%
[
(=]
s}
=
=]
-]
@
[=]
w

The HX subcommand has no operands, and one or more operands were

entered.

Part 1: Debugging with VM/370

149



The format of the ORIGIN subcommand is:

ORigin | symhol}
| | hexloc

[ e e—
- e

where:

symbol is a name that was previously assigned (via the DEFINE
subcommand) to a storage address.

hexloc is a hexadecimal 1location within the limits of the user's

virtual storage.

The ORIGIN subcommand sets an origin or lase address to be used in
the debug environment. Use the ORIGIN subcommand to set the origin
equal to the program 1load point, them in all debug subcommands you can
specify instruction addresses in relation to the program 1load point,
rather than to 0. The hexadecimal 1location specified in DEBUG
subcommands then represents a specific 1location within a program, the
origin represents the storage location of the beginning of the prcgram;
and the two values added together represent the actual storage location
of that specific point in the program.

When the ORIGIN subcommand specifies a symbol, the DEBUG symbol table
is searched. 1If a match is found, the value corresponding to the symbol
becomes the new origin. When a hexadecimal location is specified, that
value becomes the origin. 1In either case, the operand cannct specify an
address greater than the user's virtuval storage size.

Any origin set by an ORIGIN subcommand remains in effect until
another ORIGIN subcommand is issued, or until you obtain a new copy of
CMS. Whenever a new ORIGIN subcommand is issued, the value specified in
that subcommand overlays the previous origin setting. If you obtain a
new copy of CMS (via IPL), the origin is set to 0 until a new ORIGIN
subcommand is issued.

Error Messages

The following error messages may appear while you enter the ORIGIN
subcommand.

INVALID OPERAND

The operand specified in the ORIGIN subcommand cannot be located in
the DEBUG symbol table and is not a valid hexadecimal number. If the
operand is intended to be a symbol, a DEFINE subcommand must have
been previously issued for that symbol; if not, the operand must
specify a valid hexadecimal lccation.

INVALID STORAGE ADDRESS

The address specified by the ORIGIN operand is greater than the
user's virtual storage size,

150 IBM VM/370: System Programmer's Guide



MISSING OPERAND
The ORIGIN subcommand requires one operand, and none was entered.
TOO MANY OPERANDS

The ORIGIN subcommand requires only one operand, and more than one
was entered.

Part 1: Debugging with VM/370 151



PSW

The format of the PSW subcommand is:

r 1
| PSW |

[R 4

The PSW subcommand has no operands.

Use the PSW subcommand to type the contents of the o0ld PSW (progranm
status word) for the interrupt that caused DEBUG to be entered. 1If
DEBUG was entered due to an external interrupt, the PSW subcommand
causes the contents of the external old PSW to ke typed at the terminal.
If a program interrupt caused DEBUG to be entered, the contents of the
program old PSW are typed. If LEBUG was entered for any other reason,
the following is typed in response to the PSW subcommand:

01000000 xXXXXXXX

where the 1 in the first byte means that external interrupts are allowed
and xxxxxxxx is the hexadecimal storage address of the DEBUG program.

The PSW contains some information not contained in storage or
registers but required for proper program execution. In general, the
PSW is used to control instruction sequencing and to hold and indicate
the =status of the system in relation to the program currently
executing. Refer to Figqure 43 in "Appendix A: System/370 Information"
for a description of the PSW.

Error Messages

The following error message may appear while entering the PSW
subcommand.

TOO MANY OPERANDS

The PSW subcommand has no operands and one or more was entered.

152 1IBM VM/370: System Programmer's Guide



RETURN

The format of the RETURN subcommand is:

r
{ RETurn |
L

The RETURN subcommand has no operands.

Use the RETURN subcommand to exit from the debug environment to the
CHS command environment. RETURN should be wused only when DEBUG is
entered by issuing the DEBUG command.

When RETURN is issued, the information contained in the general
registers at the time DEBUG was entered is restored or, if this
information was changed while in the debug environment, the changed
information is restored., 1In either case, register 15, the error code
register, 1is set to zero. A branch is then made to the address
contained in register 14, the normal CMS return register. If DEBUG is
entered by issuing the DEBUG command, register 14 contains the address
of a central CHMS service routine and control transfers directly to the
CMS command environment. The Ready message followed by a carriage
return and an unlocked keyboard indicates that the RETURN subcommand has
successfully executed and that control has transferred from the DEBUG
environment to the CMS command environment.

Error Messages

The following error messages may appear while entering the RETURN
subcommand.

TOO MANY OPERANDS
The RETURN subcommand has no operands, and one Or more were
INCORRECT DEBUG EXIT
If DEBUG is entered due to a program or external interrupt, a
breakpoint or an unrecoverable error, this message is displayed in

response to the RETURN subcommand. To exit from the DEBUG
environment under the above circumstances, issue GO.

Part 1: Debugging with VM/370 153



SET

The format of the SET subcommand is:

N 1
| SET | ( CAW hexinfo |
| | JCS®W hexinfo [ hexinfo] |
| | ) PSW hexinfo [hexinfo] |
1 { { GPR reg hexinfo [ hexinfo] |
| ™ ']
where:

CAW hexinfo indicates that the specified information
(hexinfo) 1is stored in the CAW (channel
address word) that existed at the time DEBUG
was entered.

CSW hexinfo [hexinfo]) indicates that the specified information
(hexinfo ([hexinfo]) is stored in the CsW
(channel status word) that existed at the
time DEBUG was entered.

PSW hexinfo [hexinfo] indicates that the specified informaticn

(hexinfo ([hexinfo]) is stored in old PSW
(program status word) for the interrupt that
caused DEBUG to be entered.

GPR reg hexinfo [hexinfo] indicates that the specified information
(hexinfo [hexinfo]) 1is stored in t he
specified general register (regq).

Use the SET subcommand to change the contents of the control words
and general registers which are saved when the debug environment is
entered. The contents of these registers are restored when control
transfers from DEBUG to another environment. If register contents were
modified in DEBUG, the changed contents are stored.

The SET subcommand can only change the contents of one control word
at a time. For example, the SET subcommand must be issued three times:

SET CAW hexinfo
SET CSW hexinfo [hexinfo]
SET PSW hexinfo [ hexinfo]
to change the contents of the three control words.

The SET subcommand can change the contents of one or two general
registers each time it is issued. When four or less bytes of
information are specified, only the contents of the specified register
are changed. When more than four bytes of information is specified, the
contents of the specified register and the next sequential register are
changed. For example, the SET subcommand: '

SET GPR 2 XXXXXXXX

changes only the contents of general register 2. But, the SET
subcommand:

SET GPR 2 XXXXXXXX XXXXXXXX

changes the contents of general registers 2 and 3.

154 IBM VM/370: System Programmer's Guide



Each hexinfo operand should be from one to four bytes long. If an
operand 1is less than four bytes and contains an uneven number of
hexadecimal digits (representing half-byte information), the information
is right-justified and the left half of the uneven byte is set to zero.
If more than eight hexadecimal digits are specified in a single operand,
the information is left-justified and truncated on the right after the
eighth digit.

The number of bytes that can be stored using the SET subcommand
varies depending on the form of the subcommand. With the CAW form, up
to four bytes of information may be stored. With the CSW, GPR, and PSW
forms, up to eight bytes of information may be stored, but these bytes
must be represented in two operands of four bytes each. When two
operands of information are specified, the information is stored in
consecutive locations (or registers), even if one or both operands
contain less than four bytes of information. ‘

The contents of registers changed using the SET subcommand are not
displayed after the subcommand is issued. To inspect the contents of
control words and registers, the CAW, CSW, PSW, or GPR subcommands must
be issued.

Error Messages

The following error messages may appear while entering the SET
subcommand.

INVALID OPERAND
The first operand is not CAW, CSW, PSW, or GPR, or the first operand
is GPR and the second operand is not a decimal number between 0 and

15 inclusive, or one or more of the hexinfo operands does not contain
hexadecimal information. '

MISSING OPERAND

Th
<

[0

minimue number of operands has not been entered.
TOO MANY OPERARDS

More than the required number of operands were specified.

Part 1: Debugging with VM/370 155



STORE

The format of the STORE subcommand is:

L g 1

| STore | {synbol} hexinfo [hexinfo [hexinfo]] i

i { \hexloc |

L J

¥here:

syabol is the name assigned (via the DEFINE éubconnand) to the
storage address where the first byte of specified
information is stored.

hexloc is the hexadecimal 1location, relative to the current
origin, where the first byte of information is stored.

hexinfo is any hexadecimal information, four bytes or less in

length, to be stored.

Use the STORE subcommand to store up to 12 bytes of hexadecimal
information in any valid virtual storage address. The information is
stored starting in the location derived from the first operand (symbol
or hexloc).

If the first operand contains any nonhexadecimal characters, the
DEBUG symbol table is searched for a matching symbol entry. If a match
is found in the DEBUG symbol table, or if the first operand contains
only hexadecimal characters, the current origin is added to the
specified operand and the resulting storage address is used, provided it
is not greater than the user's virtual storage size.

The information to be stored is specified in hexadecimal format in
the second through the fourth operands. Bach of these operands is from
one to four bytes (that is, two to eight hexadeciaml digits) long. If
an operand is less than four bytes long and contains an uneven number of
hexadecimal digits (representing half-byte information), the information
is right-justified and the left half of the uneven byte is set to zero.
If more than eight hexadecimal digits are specified in a single operand,
the information is left-justified and truncated on the right after the
eighth digit. ‘ ‘

The STORE subcosmand can store a maximum of 12 bytes at one time. By
specifying all three information operands, each containing four bytes of
information, the maximum 12 bytes can be stored. If less than four
bytes are specified in any or all of the operands, the inforsmation given
is arranged into a string of consecutive bytes, and that string is
stored starting at the location derived from the first operand. Stored
information is not typed at the terminal. To inspect the changed
contents of storage aftér a STOBE subcommand, issue an X subcommand.

Error Messages

The following error messages may appear on the terminal while entering
the STORE subconmmand.

INVALID OPERAND

The first operand cannot be located in the DEBUG symbol table and is
not a valid hexadecimal number, or the information specified in the

156 1IBM VM/370: System Programmer's Guide



second, third, or fourth operands is not in hexadecimal format. If
the first operand is intended to be a symbol, a DEFINE subcommand
must have been previously issued for that symbol; if not, the
operand must specify a valid hexadecimal storage location.

INVALID STORAGE ADDRESS

The current origin value, when added to the hexadecimal number
specified as the first operand, gives an address greater than the
user's virtual storage size. If the origin value is unknown, reset
it to the desired value using the ORIGIN subcommand and reissue the
STORE sukcomrmand.

MISSING OPERAND

Less than two operands were specified.

TOO MANY OPERANDS

More than four operands were specified.

HEXLOC ‘hexaddr* IN SHARED STORAGE

A shared system has been loaded (via IPL) and an attempt was made to
modify a storage location between X'10000' and X'20000°". To store
into this address range, IPL a nonshared systen.

Note: Data was stored up to the point where the address violation was
detected. Shared storage remains the sanme.

Part 1: Debugging with VM/370 157



X

The format of the X (examine) subcommand is:

] |
| i r ) |
| X | { symbol | n | |
| ! | length | I
| | t 4 |
| | r 2] |
| | [ hexloc | n | |
| { [ i |
| l L 4 |
[ '}
where:
symbol is the name assigned (via the DEFINE subcommand) to the
storage address of the first byte to be examined.
hexloc is the hexadecimal 1location, in relation to the current
origin, of the first byte to be examined.
n is a decimal number from 1 to 56 inclusive, that specifies the

number of bytes to be examined. If a symbol is specified
without a second operand, the length attribute associated with
that symbol in the DEBUG symbol table specifies the number of
bytes to be examined. If a hexadecimal lccation is specified
without a second operand, four bytes are examined.

Use the X subcommand to examine and display the contents of specific
locations in virtual storage. The information is displayed at the
terninal in hexadecimal format.

The first operand of the subcommand specifies the beginning address
of the portion of storage to be examined. If the operand contains any
nonhexadecimal characters, the DEBUG symbol table is searched for a
matching symbol entry. If a match is found, the storage address to
which that symbol refers is used as the location of the first byte to be
examined. If no match is found, or if the first operand contains only
hexadecimal characters, the current origin as established by the ORIGIN
subconmand is added to the specified operand and the resulting storage
address is used as the location of the first byte to be examined. The
derived address must not be greater than the user's virtual storage
size.

The second operand of the X subcommand is optional. If specified, it
indicates the number of bytes (ur to a maximum of 56) whose contents are
to be displayed. If the second operand is omitted and the first operand
is a hexadecimal location, a default value of four bytes is assumed. If
the second operand is omitted and the first operand is a symbol, the
length attribute associated with that symbol in the DEBUG symbol table

is used as the number of bytes to be displayed.

Brror Messages

The following error messages may appear on the terminal when the X
subcommand is entered.

158 1IBM VM/370: System Programmer's Guide



INVALID OPERAND

The first operand cannot be located in the DEBUG symbol table and is
not a valid hexadecimal number, or the second operand is not a
decimal number between 1 and 56 inclusive. If the first operand is

intended to be a symbol, it must have been defined in a previous
DEFINE subcommand; otherwise, the operand must specify a valid
hexadecimal number.

INVALID STORAGE ADDRESS
The hexadecimal number specified in the first operand, when added to
the current origin, is greater than the storage size of the machine
being used. If the current origin value is unknown, reset it to the
desired value by issuing the ORIGIN sutcommand and reissue the X
subcommand.

MISSING OPERAND

No operands were entered; at least one is reguired.

TOO MANY OPERANDS

More than the maximum of two operands were entered.

Part 1: Debugging with VM/370 159



SVCTRACE

The SVCTRACE command traces internal transfers of information resulting
from SVC (supervisor call) instructions. Issuing the SVCTRACE command
causes switches to be set. These switches, in turn, cause information
to be recorded at appropriate times. When the trace is terminated, the
recorded information is printed at the system printer.

The information recorded for a normal SVC call is:

Storage address of the SVC calling instruction

Name of the program being called

Contents of the SVC o0ld PsSW

Storage address of the return from the called progranm
The general registers and floating-point registers
The parameter list at the time the SVC is issued.

The format of the SVCTRACE command is:

|
|SVCTrace | {ou }
| | \OFF

OoN indicates tracing for all SVC calls.

OFF discontinues all SVC tracing.

The trace information is:

e The general registers both before the SVC-called program is given
control and after a return from that progranm.

e The floating-point registers both before the SVC-called program is
given control and after a return from that program.

¢ The parameter list, as it existed when the SVC was issued.

To terminate tracing set by the SVCTRACE command, issue the HO or
SVCTRACE OFF command. Both SVCTRACE OFF and HO cause all trace
information recorded up to the point they are issued to be printed at
the system printer. SVCTRACE OFF can be issued only when the keyboard
is unlocked to accept dinput to the CMS command environment. To
terminate tracing at any other point in system processing, HO must be
issued. If a HX subcommand to the DEBUG environment or a 1logout from
the control program is issued before terminating SVCTRACE, the switches

recorded trace information is printed

vaialatca LAl r~=avcu

are cleared automatically and all

at the system printer.

Interpreting the Output

A variety of information is printed whenever the
SVCTRACE ON

command is issued.

160 IBM VM/370: System Programmer's Guide



The first line of trace output starts with a -, +, or *. The format
of the first line of trace output is:

{ ; } N/D = xxx/d38 name FROM loc OLDPSW = pswi GOES® = pswZ [RC = c]

*

where:

- indicates information recorded before processing the SVC.

+ indicates inforemation recorded after processing the SVC, unless *
applies.

* indicates information recorded after processing a CMS SVC which had

an error return.
N/D is an abbreviation for SVC Number and Depth (or level).
xxx is the number of the SVC call (they are numbered sequentially).
da is the nesting level of the SVC call.
name is the macro or routine being called.
loc 1is the program location from which the SVC was issued.
pswi is the PSW at the time the SVC was called.

psw2 the PSW with which the routine (e.g. RDBUF) being called is
invoked, if the first character of this line is a w®inus sign (-).
If the first character of this line is a plus sign or asterisk (+
or ¥), PSH2 represents the PSW which returns control to the user.

rc is the return code passed from the SVC handling routine in general
register 15. This field is omitted if the first character of this
line is a minus sign (-), or if this is an 0S SVC call. For a CMS
SVC, this field is zero if the 1line begins with a plus sign (+),
and nonzero for an asterisk (*). Also, this field equals the
contents of Register 15 in the "GPRS AFTER" line.

The mnext twvwo lines of output are the contents of the general
registers when control is passed to the SVC handling routine. This
output is identified at the left by "eGPRSB". The format of the output
is: :

®GPRSB hhhhhhhh*3dddddddd*
hhhhhhhh *d3dddddddx

wvhere h represents the contents of a general register in hexadecimal
format and 4 represents +the EBCDIC translation of the contents of a
general register. The contents of general registers 0-7 are printed on
the first line, with the contents of registers 8-F on the second line.
The hexadecimal contents of the registers are printed first, following
by the EBCDIC translation. The EBCDIC translation is preceded and
followed by an asterisk (*).

The next line of output is the contents of general registers 0, 1 and
15 when control is returned to the wuser's program. The output is
identified at the left by "eGPRS AFTER :"., The format of the output is:
eGPRS AFTER : BRO-R1 = h h *dd* R15 = h *d4*
where h represents the hexadecimal contents of a general register and d

is the EBCDIC translation of the contents of a general register. The

Part 1: Debugging with VM/370 161



only general registers that CMS routines alter are registers 0, 1, and
15 so only those registers are printed when control returns to the user
program., The EBCDIC translation is preceded and followed by an asterisk

(*) .

The next two lines of output are the contents of the general
registers when the SVC handling routine is finished processing. This
output is identified at the left by "eGPRSS". The format of the output
is:

*GPRSS

hhhhhhhh *x3adddddddx*
hhbhhhhhh *dddddddd*
where h represents the hexadecimal contents of a general register and d
represents the EBCDIC tramnslation of the contents of a general
register. General registers 0-7 are printed on the first line with

registers 8-F on the second line. The EBCDIC translation is preceded and
followed by an asterisk (*).

The next line of output is the contents of the caller's
floating-point registers. The output is identified at the left by
"eFPRS." The format of the output is:

eFPRS = £ £ £ £ *gggg*

vhere f represents the hexadecimal contents of a floating-point register
and g is the EBCDIC translation of a floating-point register. Each
floating-point register is a doubleword: each £ and g represents a
doubleword of data. The EBCDIC translation is preceded and followed by
an asterisk (*).

The next line of output is the contents of floating-point registers
wvhen the SVC-handling routine is finished processing. The output is
identified by "eFPRSS" at the left. The format of the output is:

oFPRSS = £ £ £ £ *ggqg*

where f represents the hexadecimal contents of a floating~point register
and g is the EBDCIC translation. Each floating-point register is a
doubleword and each f and g represents a doubleword of data. The EBCDIC
translation is preceded and followed by an asterisk (*).

The last two lines of output are only printed if the address in
Register 1 is a valid address for the virtual machine. If printed, the
output is the parameter list passed to the SVC. The output is identified
by "ePARM" at the left. The output format is:

ePARM

£ o

h h *dddddddd*
h h *dd

*3aaadada*

hhhhh
hhhhbh
where h represents a word of hexadecimal data and 4 is the EBCDIC
translation. The parameter list is found at the address contained in
register 1 before control is passed to the SVC-handling program. The
EBCDIC translation is preceded and followed by an asterisk (*).

Fiqure 13 summarizes the types of SVC trace output.

162 1IBM VM/370: System Programmer's Guide



Identification

| Comments

+
- (N/D
* )

eGPRSB

—~— e,

e¢GPRS AFTER

eGPRSS

e FPRS

e FPRSS

ePARM

[P o T ——— — — —— — — i —— —— — v — — — —

{The SVC and the routine which issued the SVC.

|
(
|
{Contents
| the SVC

(of

o+ O

ntents
o S

3
i

e
b ]
i

Contents

|Contents

| SVC-called program is given control and after re-

| turning

|
{Contents

of general registers when control passed to

handling routine.

of general registers 0,
returned tc the user progranm.

o of the general registers when the SVC hand-
ling routine is finished processing.

of floating-point registers before the
from that progranm.

of the floating-point registers when the

| SVC handling routine is finished processing.

|The parameter list, when one is passed to the SVC.

e e e s — - ——— —— — - —— — — - — T — W o — o—

Figure 13. Summary of SVC Trace Output Lines

Part 1: Debugging with VM/370

163



DASD DUMP RESIOR

Use the DASD Dump Restore (DDR) service program to dump, restore, copy,
display, or print VM/370 wuser minidisks. The DDR program may run as a
standalone program, or under CMS via the DDR coamand.

INVOKING DDR UNDER CMS

The format of the DDR command is:

| r 1
CDR | [filename [filetype |filemode| ]
| | * |
|

[§ 4

po w— - ——
b o e e o

Where:

filename filetype [filemode]
is the identification of ¢the file containing the control
statements for the DDR progranm. If no file identification is
provided, the DDR program attempts to obtain control
statements from the comnsocle. The filemode defaults to * if a
value is not provided.

INVOKING DDR AS A STANDALONE PROGRAM

To use DDR as a standalone program, the operator should IPL it from a
real or virtual IPL device as he would any other standalone progranm.
Then indicate where the DDR program is to ottain its control statements
by responding to prompting messages at the console.

See the "DDR Control Statements" discussion in the "Debugging with
CP" section. The control statements for running standalone and under

CMS are identical, except that CMS ignores the SYSPRINT ccntrol
statement.

164 IBM VM/370: System Prograsmer's Guide



NUCLEUS LOAD MAP

Each time the CMS resident nucleus is loaded on a DASD, and an IPL can
be performed on that DASD, a load map is produced. Save this load marp.
It lists the virtual storage locations of nucleus-resident routines and
work areas. Transient modules will not be included in this 1load marp.
When debugging CMS, you can locate routines using this map.

The load map may be saved as a disk file and printed at any time. A
copy of the nucleus load map is contained on the system with file

K A - s s
identification of 'filename NUCMAP!'., Issue the

LISTF * NUCMAP S

command tc determine the filename., Then issue
PRINT filename NUCMAP

to obtain a copy of the current nucleus load map.

Figure 14 shows a sample CMS load map. Notice that the DEBUG work
area (DBGSECT) and DMSINM module have been located.

LOAD MAP

The load map of a disk resident command module contains the location of
control sections and entry points 1loaded into storage. It may also
contain certain messages and card images of any invalid cards or replace
cards that exist in the loaded files. The loadmap is contained in the
third record of the MODULE file.

This 1load map is useful in debugging. When wusing the Debug
environment to analyze a program, use the . program's load map to help in
displaying information.

There are several ways to get a load map.

1. When loading relocatable object code into storage, make sure that
the MAP option is in effect when the LOAD command is issued. Since
MAP 1is the default option, Jjust be sure that NOMAP is not
specified. A 1load map is then created on the primary disk each
time a LCAD command is issued.

2. When generating the absolute image form of files already loaded
into storage, make sure that the MAP option is in effect when the
GENMOD command is issued. Since MAP is the default option, just be
sure that NCMAP is not specified. Issue the MODMAP command to type
the 1load map associated with the specified MODULE file on the
terminal. The format of the MODMAP command is:

MODmap | filename |

filename is the module whose map is to be displayed. The filetype must
be MODULE. -

Part 1: Debugging with VM/370 165



FILE: LOAD CHSHMAP C CONVERSATIONAL MONITOR SYSTEM

INVALID CARD...:READ DMSNUOC TEXT C1 CcMs191 9/21/72 9:01
* UPLIB MACLIB D1 CMS191 9/21/72 8:47
* CMSLIB MACLIB D1 CMS191 9,/21/72 8:u44
* OSMACRO MACLIB Y2 CMS19E 7/19/72 18:11
* DMSNUC ASSEMBLE C1 SOURCE 9,/18/72 23:09

DMSNUC AT 000000
DMSNUCU AT 002800
NUCON AT 000000
SYSREF AT 000600
FEIBM AT 000274
CMNDLINE AT 0007A0
SUBFLAG AT 00O0SE9
IADT AT 000644
DEVICE AT 00026C
DEVTAB AT 000C90
CONSOLE AT 000CS0
ADISK AT 000CAC
DDISK AT 000CDO
SDISK AT 000D10
YDISK AT 000020
TABEND AT 00ODFO
ADTSECT AT 00OLFO
AFTSTART AT 001200
EXTSECT AT 001500
EXTPSWH AT 0015a8
IOSECT AT 0015D0
IONTABL AT 001610
PGMSECT AT 001660
PIE AT 001668
SVCSECT AT 0016F8
DIOSECT AT 001998
FVS AT 001A88
ADTFVS AT 001B48
KXFLAG AT 001C2F
UFDBUSY AT 001C2E
CHMSCVT AT 001C80
DBGSECT AT 001D8Q
DMSERT AT 002098
DMSFRT AT 002208
DMSABW AT 002258
OPSECT AT 002800
DMSERL AT 002935
TSOBLKS AT 0029B0
SUBSECT AT 002A40
USERSECT AT 002ADS
INVALID CARD...:READ DMSINA TEXT Ct1 CMS191 9/19/72 15:37
ABBREV AT 003000
USABRV AT 0030DO0
INVALID CARD...:READ DMSINM TEXT C1 CMsS191 9/18/72 20:36
CMSTIMER AT 003200
GETCLK AT 003200
DMSINM~_AT 003200
INVALID CARD...:READ DMSTIO TEXT C1 CcMs191 9,/19/72 10:33
TAPEIO AT 003308
DMSTIO AT 003308

Figure 14. Sample CHMS Load Map

166 1IBM VM/370: System Programmer's Guide



READING CMS ABEND DUMPS

- —_—

When CMS abnormally terminates, the terminal operator must enter the
DEBUG command and then the DUMP subcommand if an ABEND dump is desired.

The DUHP formats and primts the following:

General registers

Extended control registers

Floating-point registers

Storage boundaries with their corresponding storage protect key
Current PSWH

Selected storage

Storage is printed in hexadecimal representation, eight words to the
line, with EBCDIC translation at the right. The hexadecimal storage
address corresponding to the first byte of each line is printed at the
left.

When the Conversational Monitor sSystem cam no longer continue, it
abnormally terminates. You nmust first determine the condition that
caused the ABEND and then find why the condition occurred. 1In order to
find the cause of a CMS problem, you must be familiar with the structure
and functions of CMS. Refer to "part 3: Conversational Monitor Systenm
(CMs) " for functional information. The following discussion on reading
CMS dumps will refer to several CMS control tlocks and fields in the
control blocks. Refer to the V¥M/370: Comversational Monitor System (CHMS)
Program logic for a description of each CMS control block. Figure 15
shows the relationships of CMS control blocks. You will also need a
current CMS nucleus load map in order to analyze the dump.

REASON FOR THE ABEND

Determine the immediate reason for the ABEND and identify the failing
module. The ABEND message DMSABN148T contains an ABEND code and failing
address. Figure 16 lists all the CMS ABEND codes, identifies the module
that caused the module to ABEND, and describes the action that should be
taken whenever CMS abnormally terminates.

You may have to examine several fields in the WNucleus Constant Area
(NUCON) of low storage.

1. Examine the program old PSW (PGMOPSW) at location X'28!'. Using the
PSW and current CMS load map, determine the failing address.

2. Examine the SVC 01d PSW (SVCOPSW) at location X'20°'.

3. Examine the external old PSW (EXTOPSW) at location X*'18'. If the
virtual machine operator terminated CMS, this PSW points to the
instruction executing when the termination regquest was recognized.

4. For a machine check, examine the machine check old PSW (MCKOPSW) at

location X*30!'. Refer to Figure 43 in “Appendix A: System/370
Information"® for a description of the PSW.

Part 1: Debugging with VM/370 167



SYSREF
600 | A(FVS) A(OPSECT) J
608 | A(DEVTAB) | VIFSTLKP)
610 | V(IDMSINM) V(FSTLKW)
618 | A(PIE) A(IADT)
620 | A(USERSECT) | V(DMSDIOR)
628 | V(IDMSSCNN) | A(0)
630 | A(TABEND) | A(SUBSECT)
638 | V(IDMSSBDFR) | V(IDMSDIOW)
640 | VIDMSSMNST) | A(ADTSECT)
648 | V(FREE) V(FRET)
650 | v(DMSPIOCC) | A(PGMSECT)
658 | ANOSECT) V(DMSDBD)
660 | A(DIOSECT) | V(IOSTABLE)
668 | AIDMSERL) | A(DMSCRD)
670 | VIDMSFREB) | A(SVCSECT}
678 | A(ADTLKP) V(DMSAUDUR)
680 | A(0) V{OSRET)
688 | VICMSRET) V(DMSSCNO)
690 | VIDMSEXC) | V(IDMSLDRA)
698 | V(ADTLKW) | V(USABRV)
6A0 | AIEXTSECT) | A(SCBPTR)
6A8 | A(0) A(0)
6B0 | VIDMSLAF) | V(DMSLAFNX)
688 | VIDMSLAFFE) | V(IDMSLAFFT)
6C0 | VIADTNXT) | VIDMSTRK)
6C8 | VIDMSTRKX) | V(DMSTQQ)
6D0 | viomMsTQQX) | VIDMSERS)
6D8 | VITYPSRCH) | VIDMSAUD)
6E0 | VIKILLEX) V(DMSFNST)
6E8 | VIDMSBRD) | V(DMSBWR)
6F0 | V(DMSFNS) V(DMSSTTE)
6F8 | VIDMSSTTW) | V(POINT)

| Figure 15.

168

CMS Control Blocks

DMSNUC

USERSECT

SUBSECT

TSOBLKS

OPSECT

‘ FCBIO

—Free Storage

DMSABW

DMSFRT

CMSCB

DMSERT

DBGSECT (Debug work area®

10BDCBPT | [ I0BECBPT

CVTSECT(Some fields are filled in
at IPL.)

FVS

DIOSECT

DCB DECB

SVCSECT

PGMSECT

10SECT

EXTSECT

b

AFTSECT (Create when the file is
opened. There is room for 5 AFTs in
DMSNUC, others are in free storage.)

AFT
continued

ADTSECT (Space is allocated when
DMSNUC is assembled, fields are
filled in when ACCESS command is
issued. There is one ADT entry for
each of the 10 possible disks.)

/

DEVTAB

Terminal Buffers and Saveareas

SYSREF

MACDIRC and TXTDIRC

NUCON

CMSAVE LDRST

IBM VM/370: System Programmer's Guide




3

| ABEND| Module | Cause of ABEND | Action

{ Code | | i

|

| 001 | DMSSCT |The problem program encoun— |Message DMSSCT120S

i ] { tered ar input/output error | indicates the possible

{ | | processing an 0S macro. | cause of the error.

| | | Either the associated DCB { Examine the error

| | { did not have a SYNAD routine| message and take the

| | | specified or the I/0 error | action indicated.

| { | was encountered processing |

] | | an 0S CLOSE macro. |

|

| OCx | DMSITP {The specified hardware excep-|Type DEBUG to examine

| { | tion occurred at a specified| the PSW and registers

| | | location. "x" is the type | at the time of the

| | | of exception: | exception.

i i I x Iype |

{ | | O IMPRECISE |

| | | 1 OPERATION |

| | | 2 PRIVILEGED OPERATION |

| | | 3 EXECUTE |

i | { 4 PROTECTION |

| | | 5 ADDRESSING |

| | | 6 SPECIFICATION |

| 1 17 DECINMAL DATA |

| | | 8 FIXED-POINT OVERFLOW |

| | 1 9 FIXED-POINT DIVIDE |

| | | A DECIMAL OVERFLOW |

i | | B DECIMAL DIVIDE 1

| | | C EXPONENT OVERFLOW |

| | | D EXPONENT UNDERFLOW |

| | { E  SIGNIFICANCE |

| | | F FLOATING-POINT DIVIDE |

| ,

| OF1 | DMSITS |An invalid halfword code is |Enter DEBUG and type GO.
{ | | associated with SVC 203. { Execution continues.

|

{ OF2 | DMSITS |The CMS nesting level of 20 |(None. ABEND recovery

| | | has been exceeded. | will take place when

| | | | the next command is

: i i { entered.

| OF3 | DMSITS |CMS SVC (202 or 203) instruc-{Enter DEBUG and type GO. |
| | | tion was executed and no | Control will return to |
| | | provision was made for an | point to which a normal|
| | | error return from the | return would have been |
{ { | routine processing the SVC | made.

| | | call. |

|

| OF4 | DMSITS |The DMSKEY key stack over- |Enter DEBUG and type GO.|
| | | flowed. | Execution will continue]
| | | | and the DMSKEY macro

| | | | will be ignored.

( |

| OFS | DMSITS |The DMSKEY key stack under- |

| | | flowed. |

L

|
|
|
|
|
J

Pigure 16. CMS

ABEND Codes (Part 1 of 2)

Part 1: Debugging with VM/370

169



r Bl
| ABEND| Module | Cause of ABEND | Action |
: Code | | | :
| OF6 | DMSITS |The DMSKEY key stack was not |Enter DEBUG and type GO.|
i | | empty when control returned | Control will return |
| | | from a command or function. | from the coammand or i
| | | | function as if the key |
| | | | stack had been empty. |
| |
| OF7 | DMSFRE |Occurs when TYPCALL=SVC (the (In the case of a system |
| | | default) is specified in the| ABEND, the user may {
| | | DMSFREE or DMSFRET macro. | employ DEBUG to attempt|
| | | | recovery. |
| |
| OF8 | DMSFRE |Occurs when TYPCALL=BALR is |In the case of a systenm |
| | | specified in the DMSFREE or | ABEND, use DEBUG to |
| | | DMSFRET Macro devices. | attempt recovery. |
| |
| 101 | DMSSVN |The wait count specified in (|Examine the program for |
| | | an 0S WAIT macro was larger | excessive wait count |
| l | than the number of ECB's | specification. |
| | | specified. | |
I |
I 155 | DMSSLN |Error during LOADMOD after an|See last LOALMOD (DMSMOD|
| | { OS LINK, LOAD, XCTL, or | error message for error|
[ | | ATTACH. The compiler switch | description. In the |
| } { is on. | case of an I/0 error, |
| | | | recreate the module; if|
| | | | the module is missing, |
| | | | create it. |
| |
| 154 | DMSSLK |Severe error during load |See last LOAD error |
| | | (phase not found) after an | message (DMSLIO) for i
| | | 0S LINK, LOAD, XCTL, or { the error description. |
| | { ATTACH. The compiler switch | In the case of an I/0 |
| | | is on. | error, recreate the |
| | | | text deck or txtlib. Ifj
| | | | either is missing, |
| | { | create it. |
| |
| 240 | DMSSVT |No work area was provided in |Check RDJFCB specifi- |
i | i the parameter list for an 0S| cation. {
| | | RDJFCB macro. | |
| |
| 400 | DMSSVT |An invalid or unsupported |{Examine program for |
| | | form of the 0S XDAP macro | unsupported XDAP macro |
| | | has been issued by the | or for SVC 0. |
| | | problem program. | |
1 |
| AOA | DMSSMN |An 0OS GETMAIN or FREEMAIN | Examine the error |
| { { macro has been issued. | messages and take the |
i i i Either there is not enough | action indicated. |
| | | storage to satisfy the ] |
| | | request, or the free chain | |
| | | has been destroyed, or the | |
| | | parameters passed to GETMAIN| |
| | | or FREEMAIN were invalid. { |
[ ]
Figure 16. CMS Abend Codes (Part 2 of 2)

170 IBM VM/370: System Programmer's Guide



COLLECT INFORMATION

Examine several other fields in NUCON to analyze the status of the CHMS
system. As you proceed with the dump, you may return to NUCON to pick up
pointers to specific areas (such as pointers to file tables) or to
examine other status fields. The complete contents of NUCON and the
other CMS control blocks are described in the VM/370: Conversational

——t e ——— i e e o e e e e i < e

Monitor System (CMS) Program Logic. The following areas of NUCON may

contain useful debugging information.

e Save area for low storage.
Before executing, DEBUG saves the first 160 bytes of low storage in a
NUCON field called LOWSAVE, LOWSAVE begins at X'CO'.

e Register save area.

DMSABN, the ABEND routine, saves the user's floating-point and
general registers.

Field Location Contents

FERLGG X'160° User floating-point registers
GPRLOG X'180° User general registers

ECRLOG Xx'1co? User extended control registers

e Device.

The name of the device causing the last I/0 interrupt is in the
DEVICE field at X'26C*.

e Last Two Commands or Procedures Executed.

Field Location Contents

LASTCMND X*'2A0! Last CMS command issued

PREVCMND X'2A8! Next to last CMS command issued
LASTEXEC X'2B0O! Last EXEC procedure invoked
PREVEXEC X'2B8!¢ Next to last EXEC procedure invoked

e Last module load into free storage and transient area.

The name of the last module loaded into free storage via a LOADMOD is
in the field LASTLMOD (location X'2C0'). The name of the last module
loaded into the transient area via a LOADMOD is in the field LASTTMOD
(location Xt'2C8').

e Pointer to CMSCB.

The pointer to the CMSCB is in the FCBTAB field located at X'5C0°'.
CMSCB contains the simulated 0S control blocks. These simulated 0S
control blocks are in free storage. The CMSCB contains a PLIST for
CMS I/0 functions, a simulated Job File Control Block (JFCB), a
simulated Data Bvent Block (CEB), and the first in a chain of I/0
Blocks (IOBs).

Part 1: Debugging with VM/370 171



[ ]

The Last Commangd.

The last command entered from the terminal is stored in an area
called CMNDLINE (X'7A0'), and its corresponding PLIST is stored at
CMNDLIST (X'8u48°).

External Interrupt Work Area.

EXTSECT (X'1550') is a work area for the external interrupt handler.
It contains:

-~ The PSW, EXTPSW (X'15F8!')
-- Register save areas, EXSAVE1 (X'15B8!¢)
-- Separate area for timer interrupts, EXSAVE (X'1550°')

I/0 Interrupt Work Area.

IOSECT (X' 1620') 1is a work area for the I/0 interrupt handler. The
oldest and newest PSW and CSW are saved. Also, there is a register
save area.

Program Check Interrupt Work Area.

PGMSECT (X'16B0') 1is a work area for the program check interrupt
handler. The o0ld PSW and the address of register 13 save area are
stored in PGMSECT.

SVC Work Area.

SVCSECT (X' 1748') is a work area for the SVC interrupt handler. It

also contains the first four register save areas assigned. The SFLAG
(X*1758') indicates the mode of the called routine.

Value of

-SELAG__ Description
X180 SVC protect key is zero
X140 Transient area routine
X'20" Nucleus routine
X011 Invalid re-entry flag

Also, the SVC ABEND code, SVCAB, is located at X'175A‘.

Simulated CVT (Communications Vector Table).

The CVT, as supported by CMS, is CVTSECT (X'1CC8'). Only the fields
supported Ly CMS are filled in.

Active Device Table and Active File Table.

For file system problems, examine the ADT (Active Device Table), or
AFT (Active File Table) in NUCON.

172 IBM VM/370: System Programmer's Guide



REGISTER USAGE

In order to trace control blocks and modules, it is important to know
the CMS register usage conventions.

Register Contents

GR1 Address of the PLIST

GR12 Program's entry point

GR13 Address of a 12-doubleword work area for amn SVC call
GR14 Return address

GR15 Program entry point or the return code

The preceding information should help you to read a CMS dump. If it
becomes necessary to trace file system control blocks, refer toc Figure
31 in "Part 2: Conversational Monitor System" for more information. With
a dump, the control block diagrams, and a CMS 1load map you should be
able to find the cause of the ABEND.

Part 1: Debugging with VM/370 173






GC20-1807-3 Page Modified by TNL GN20-2€662, March 31, 1975

Part 2: Control Program (CP)

Part 2 contains the following information:

Introduction to VM/370

Program States

Using CPU Resources

Interruption Handling

Functional Information

Performance Guidelines

Performance Observaticon and Analysis
Accounting Information

Generating Named Systems and Saving Systems
VM/VS Handshaking

0S/VS2 Release 2 Uniprocessor under VM/370
DOS under VM/370

Running VM/370 in a Virtual Machine

Timers

DIAGNCSE Instruction

CP Conventions

How to Add a Console Function

How to Add a New Print or Forms Buffer Image

Part 2: Control Program (CP) 175






VM/370

The VM/370 Control Program manages the resources of a single computer in
such a manner that multiple computing systems appear to exist. Each
®virtuval" computing system, or virtual machine, 1is the functional
equivalent of an IBM System/370.

A virtual machine is confiqured by recording appropriate information
in the VM/370 directory. The virtual nmachine configuration includes
counterparts of the components of a real IBM System/370:

A virtual operator's comnsole
Virtual storage

A virtual CPU

virtual I/0 devices

CP makes these components appear real to whichever operating systenm
is controlling the work flow of the virtual machine.

The virtual machines operate concurrently via nmultiprogramming
techniques. CP overlaps the idle time of one virtual machine with
execution in another.

Each virtual machine is managed at two levels. The work to be done
by the virtual machine is scheduled and controlled by some System/360 or
System/370 operating systen. The concurrent execution of multiple
virtual machines is managed by the Control Program.

INTRODUCTION TQ THE VM/370 CONTROL PROGRAM

A virtual machine is «created for a user when he logs on VM/370, on the
basis of information stored in his VM/370 directory entry. The entry
for each user identification includes a list of the virtual input/output
devices associated with the particular virtual machine.

Additional information about the virtual machine is kept in the
VM/370 directory entry. Included are the VM/370 command privilege
class, accounting data, normal and maximum virtual storage sizes,
dispatching priority, and optional virtual machine characteristics such
as extended control mode.

The Control Program supervises the execution of virtual machines by

(1) permitting only problem state execution except in its cwn routines,
and (2) receiving control after all real computing system interrupts.
CP intercepts each privileged instruction and simulates it if the
current program status word of the issuing virtual machine indicates a
virtual supervisor state; if the virtual machine is executing in
virtual problem state, the attempt to execute the privileged instruction
is reflected back to the virtual machine as a program interrupt. 2a1ll
virtual machine interrupts (including those caused by attempting
privileged instructions) are first handled by CP, and are reflected to
the virtual machine if an analogous interrupt would have occurred on a
real machine.

Part 2: Control Program (CP) 177



VIRTUAL MACHINE TIME MANAGEMENT

The real CPU simulates multiple virtual CPUs. Virtual machines that are
executing in a conversational manner are given access to the real CPU
more frequently than those that are not; these conversational machines
are assigned the smaller of two possible time slices. CP determines
execution characteristics of a virtual machine at the end of each time
slice on the basis of the recent frequency of its console requests or
terminal interrupts. The virtual machine is queued for subsequent CPU
utilization according to whether it is a conversational or
nonconversational user of system resources.

A virtual machine can gain control of the CPU only if it is not
waiting for some activity or resource. The virtual machine itself may
enter a virtual wait state after an input/output operation has begun.
The virtual machine cannot gain control of the real CPU if it is waiting
for a page of storage, if it is waiting for an input/output operation to
be translated and started, or if it is waiting for a CP command to
finish execution.

A virtual machine can be assigned a priority of executicn. Priority
is a parameter affecting the execution of a particular virtual machine
as compared with other virtual machines that bhave the same general
execution characteristics. Priority is a parameter in the virtual
machine's VM/370 directory entry. The system operator can reset the
value with the Class A SET command.

VIRTUAL MACHINE STORAGE MANAGEMENT

The normal and maximum storage sizes of a virtual machine are defined as
part of the virtual machine configuration in the VM/370 directory. You
may redefine virtual storage size to any value that is a multiple of UK
and not greater than the maximum defined value. VM/370 implements this
storage as virtual storage. The storage may appear as paged or unpaged
to the virtual machine, depending upon whether or not the extended
control mode option was specified for that virtual machine. This option
is required if operating systems that control virtual storage, such as
0S/VsS1 or VM/370, are run in the virtual machine.

Storage in the virtual machine is 1logically divided into 4096 byte
areas called pages. A complete set of segment and page tables is used
to describe the storage of each virtual machine. These tables are
updated by CP and reflect the allocation of virtual storage pages to
blocks of real storage. These page and segment tables allow virtual
storage addressing in a System/370 machine. Storage in the real machine
is logically and physically divided into 4096 byte areas called page
frames.

Only referenced virtual storage pages are kept in real storage, thus
optimizing real storage utilization. Further, a page can be brought into
any available page frame; the necessary relocation is done during
program execution by a combination of VM/370 and dynamic address
translation on the System/370. The active pages from all 1logged on
virtual machines and from the pageable routines of CP compete for
available page frames. When the number of page frames available for
allocation falls below a threshold value, CP determines which virtual
storage pages currently allocated to real storage are relatively
inactive and initiates suitable page-out operations for then.

Inactive pages are kept on a direct access storage device. If an
inactive page has been changed at some time during virtual machine

178 1IBM VM/370: System Programmer's Guide



GC20-1807-

March 31, 1975

Lo
ny
Y
[Vl
@
=1
O
Su
[
]
(=
[
[1)
o
~
=i
=
L—l
[
=
N
<
]
N
[«
o
[N
-~

execution, CP assigns it to a paging device, selecting the fastest such
device with available space. If the page has not changed, it remains
allocated in its original direct access location and is paged into real
storage from there the next time the virtual machine references that
page. A virtual machine program can use the DIAGNOSE instruction to
tell CP that the information from specific pages of virtual storage is
no longer needed; CP then releases the areas of the paging devices which
were assigned to hold the specified pages.

Paging is done on demand by CP. This means that a page of virtual
storage is not read (paged) from the paging device to a real storage
block until it is actually needed for virtual machine execution. CP
makes no attempt to anticipate what pages might be required by a virtual
machine. While a paging operation is performed for one virtual machine,
another virtual machine <can be executing. Any paging operaticn
initiated by CP is transparent to the virtual machine.

If the wvirtual machine is executing in extended control mode with
translate on, then two additional sets of segment and page tables are
kept. The virtual machine operating system is responsible for mapping
the virtual storage created by it to the storage of the virtual machine.
CP uses this set of tables in conjunction with the page and segment
tables created for the virtual machine at 1logon time to build shadow
page tables for the virtual machine. These shadow tables map the
virtual storage created by the virtual machine operating system to the
storage of the real computing system. The tables created by the virtual
machine operating system may describe any page and segment size
permnissible in the IBM System/370.

Storage Protection

VM/370 provides both fetch and store protection for real storage. The
contents of real storage are protected from destruction or misuse caused
by erroneous or unauthorized storing or fetching by the program.
Storage is protected from improper storing or from both improper storing
and fetching, but not from improper fetching alone.

When protection applies to a storage access, the key in storage is
compared with the protection key associated with the reguest for stecrage
access. A store or fetch is permitted only when the key in storage
matches the protection key.

When a store access is prohibited because of protection, the contents
of the protected location remain unchanged. On fetching, the protected
information is not loaded into an addressatle register, moved to another
storage location, or provided to an I/O device.

When a CPU access is prohibited because of protection, the operation
is suppressed or terminated, and a program interruption for a protection
exception takes place. When a channel access 1is prohibited, a
protection-check condition is indicated in the channel status word (CSW)
stored as a result of the operation.

When the access to storage is inhibited by the CPU, and protection
applies, the protection key of the CPU occupies bit positions 8-11 of
the PSW. When the reference is made by a channel, and protection
applies, the protection key associated with the I/O operation is used as
the comparand. The protection key for an I/0 operation is specified in
bit positions 0-3 of the channel-address word (CAW) and 1is recorded in
bit positions 0-3 of the channel status word (CSW) stored as a result of
the I/0 operation.

Part 2: Control Program (CP) 179



GC20-1807-3 Page Modified by TNL GN20-2662, March 31, 1975

To use fetch protection, a virtual machine must execute the set
storage key (SSK) 1instruction referring to the data areas to be
protected, with the fetch protect bit set on in the key. vM/370
subsequently:

1. Checks for a fetch protect violation in handling privileged and
nonprivileged instructions.

2. Saves and restores the fetch protect bit (in the virtual storage
key) when writing and recovering virtual machine pages from the
paging device.

3. Checks for a fetch protecticn violation on a write CCW (except for
spooling or console devices).

The CMS nucleus resides in a shared segment. This presents a special
case for storage protection since the nucleus must be protected and
still shared among many CMS users. To protect the CMS nucleus 1in the
shared segment, user programs and disk-resident CMS commands run with a
different key than the nucleus code.

Storage and CPU Utilization

The system operator may assign the reserved page frames option to a
single virtual machine. This option, specified by the SET RESERVE
command, assigns a specific amount of the storage of the real machine to
the virtual machine. CP will dynamically build up a set of reserved
real storage page frames for this virtual machine during its execution
until the maximum number "reserved" is reached. Since other virtual
machines' pages are not allocated from this reserved set, the effect is
that the most active pages of the selected virtual machine remain in
real storage.

During CP system generation, the installation may specify an option
called virtual=real. With this option, the virtual machine's storage is
allocated directly from real storage at the time the virtual machine
logs on (if it has the VIRT=REAL option in it's directory). All pages
except page =zero are allocated to the corresponding real storage
locations. 1In order to control the real computing system, real page
zero must be controlled by CP. Consequently, the real storage size must
be large enough to accommodate the CP nucleus, the entire virtual=real
virtual machine, and the remaining pageable storage requirements of CP
and the other virtual machines.

The virtual=real option imprcves performance in the selected virtual
machine since it removes the need for CP paging operations for the
selected virtual machine. The virtual=real option is necessary whenever
programs that contain dynamically modified channel programs (excepting
those of 0S ISAM and 0S/VS TCAM Level 5) are to execute under control of
CP. For additional information on running systems with dynamically
modified channel programs, see "Dynamically Modified Channel Programs"
in "part i: Debugging with VH/370.*"

VIRTUAL MACHINE I/O MANAGEMENT

A real disk device can be shared among multiple virtual machines.
Virtual device sharing is specified in the VM/370 directory entry or by
a user command. If specified by the user, an appropriate password must
be supplied before gaining access to the virtual device. A particular
virtual machine may be assigned read-only or read/write access to a
shared disk device. CP checks each virtual machine input/output

180 IBM VM/370: System Programmer's Guide



operation against the parameters in the virtual machine configuration to
ensure device integqrity.

The virtual machine operating system is responsible for the operation
of all virtual devices associated with it. These virtual devices may ke
defined in the VM/370 directory entry of the virtual machine, or they
may be attached to (or detached from) the virtual machine's
configuration while it remains 1logged on. Virtual devices may be
dedicated, as when mapped to a fully equivalent real device; shared, as
when mapped to a minidisk or when specified as a shared virtual device;
or spooled by CP to intermediate direct access storage.

In a real machine running under control of 0S, input/cutput
operations are normally initiated when a problem program requests 0S to
issue a START I/0 instruction to a specific device. Device error
recovery is handied by the operating system. In a virtual machine, OS
can perform these same functions, but the device address specified and
the storage locations referenced will both be virtual. It is the
responsibility of CP to translate the virtual specificatiomns to real.

In addition, the interrupts caused by the input/output operation are
reflected to the virtual machine for its interpretation and processing.
If input/output errors occur, CP records them but does not initiate
error recovery operations. The virtual machine operating system must
handle error recovery, but does not record the error (if SVC 76 is
used) .

Input/output operations initiated by CP for its own purposes (paging
and spooling), are performed directly and are not subject to
translation.

SPOOLING FUNCTIONS

A virtual unit record device, which is mapred directly to a real unit
record device, is said to be dedicated. The real device is then
controlled completely by the virtual machine's operating systenm.

CP facilities allow multiple virtual machines tc share unit reco:zd
devices. Since virtual machines controlled by CMS ordinarily have
modest requirements for unit record input/output devices, such device
sharing is advantageous, and it 1is the standard mode of system
operation.

Spooling operations cease if the direct access storage space assigned
to spooling is exhausted, and the virtual unit record devices appear in
a not ready status. The system operator may make additional spooling
space available by purging existing spool files or by assigning
additional direct access storage space to the spooling function.

Specific files can be transferred from the spooled card punch or
printer of a virtual machine to the card reader of the same or another
virtual machine. Files transferred between virtual unit record devices
by the spooling routines are not physically punched or printed. With
this method, files can be made available to multiple virtual machines,
or to different operating systems executing at different times in the
same virtual machine.

Files may also be spooled to remote stations via the Remote Spooling
Communications Subsystenm (RSCS), a component of VM/370. For a
description of RSCS and the remote stations that it supports see "Part
5. Remote Spooling Communications Subsystem (RSCS)."

Part 2: Control Program (CP) 181



CP spooling includes many desirable options for the virtual machine
user and the real machine operator. These options include printing
multiple copies of a single spool file, tbtackspacing any number of
printer pages, and defining spooling classes for the scheduling of real
output. Each output spool file has, associated with it, a 136 byte area
known as the spool file tag. The information contained in this area and
its syntax are determined by the originator and receiver of the file.
For example, whenever an output spool file is destined for transmission
to a remote 1location via the Remote Spooling Communications Subsysten,
RSCS expects to find the destination identification in the file tag. Tag
data is set, changed, and queried using the CP TAG command.

It is possible to spool terminal input and output. All data sent to
the terminal, whether it be from the virtual machine, the <control
program or the virtual machine cperator, can be spooled. Spooling is
particularly desirable when a virtual machine is run with its ccnsole
disconnected.

CP COMMANDS

The CP commands allow you to control the virtual machine from the
terminal, much as an operator controls a real machine. Virtual machine
execution can be stopped at any time by use of the terminal's attention
key (for 3066 and 3270 terminals, the ENTER key is wused); it can be
restarted by entering the approrriate CP command. External, attention,
and device ready interrupts can be simulated on the virtuwal machine.
Virtual storage and virtual machine registers can be inspected and
modified, as can status words such as the PSW and the CSW. Extensive
trace facilities are provided for the virtual machine, as well as a
single-instruction mode. Commands are availaktle to invoke the spooling
and disk sharing functions of CP.

CP commands are «classified by privilege classes. The VM/370
directory entry for each user assigns one or more privilege classes.
The classes are primary system operator, system resource operator,
systen programmer, spooling operator, systen analyst, service
representative, and general user. Commands in the system analysts class
may be used to inspect real storage 1locations, but may not be used to
make modifications to real storage. Commands in the operator class
provide real resource control capabilities. System operator commands
include all conmmands related to virtual machine performance options,
such as assigning a set of reserved page frames to a selected virtual
machine. For descriptions of all the CP commands, see the ¥M/370:
Command Lanquage Guide for General Users and the VM/370: Operator's

e —————— ——— eSm S

182 1IBM VM/370: System Programmer's Guide



Program States

When instructions in the Control Program are being executed, the real
computer is in the supervisor state; at all other times, when running
virtual machines, the real computer is in the proklem state. Therefcre,
privileged instructions cannot be executed by the virtual machine.
Programs running on a virtual machine can issue privileged instructicns;
but such an instruction either (1) causes an interruption that is
handled by the Control Program, or (2) is intercepted and handled by the
CPU, if the virtual machine assist feature is enabled and supports that
instruction, CP examines the operating status of the virtual machine
PsW. If the virtual wmachine indicates that it is functioning in
supervisor mode, the privileged instruction is simulated according to
its type. If the virtual machine is in problem mode, the privileged
interrupt is reflected to the virtual machine.

Only the Control Program may operate in the supervisor state on the
real machine. All programs other than CP operate in the problem state
on the real machine. A1l user interrupts, including those caused by
attempted privileged operations, are handled bty either the control
program or the CPU (if the virtual machine assist feature 1is
available). Cnly those interrupts that the user program would expect
from a real machine are reflected to it. A problem program will execute
on the virtual machine in a manner identical to its execution on a real
System/370 CPU, as long as it does not violate the CP restrictions. See
the "CP Restrictions" discussion in "part 1: Debugging with CP" for a
list of the restrictions.

Part 2: Control Program (CP) 183



Using CPU Resources

CP allocates the CPU resource to virtual machines according to their
operating characteristics, priority, and the systen resources
available.

Virtual machines are dynamically categorized at the end of each time
slice as interactive or noninteractive, depending on the frequency of
operations to or from either the virtual system console or a terminal
controlled by the virtual machine.

Virtual machines are dispatched from one of two queues, called Queue
1 and Queue 2. To be dispatched from either queue, a virtual machine
must be considered executable (that is, not waiting for some activity or
for some other system resource). Virtual machines are not considered
dispatchable if the virtual machine:

1. Enters a virtual wait state after an I/0 operation has begun.
2. Is waiting for a page frame of real storage.

3. Is waiting for an I/0 operation to be translated by CP and
started.

4. Is waiting for CP to simulate its privileged instructionms.

5. Is waiting for a CP console function to be performed.

QUEUE 1

Virtual machines in Queue 1 (Q1) are considered conversational or
interactive users, and enter this queue when an interrupt from a
terminal is reflected to the virtual machine. There are two 1lists of
users in Q1, executable and nonexecutable. The executable users are
stacked in a first in, first out (FIFO) basis. When a nonexecutable
user becomes executable, he is placed at the Lottom of the executable
list. If a virtual machine uses more than 50 milliseconds (ms) of CPU
time without entering a virtual wait state, that user is placed at the
bottom of the executable list.

Virtual machines are dropped from Q1 when they complete their time
slice of CPU usage, and are placed in an T"eligible list", Virtual
machines entering CP command mode are also dropped from Q1. When the
virtual machine becomes executable again (returns to execution mode) it
is placed at the bottom of the executable list in Q1.

QUEUE 2

Virtual machines in Queue 2 (Q2) are considered noninteractive users.
Users are selected to enter Q2 from a list of eligible virtual machines
(the %"eligilble 1list"). The list of eligible virtual machines is sorted
on a FIFO basis within user priority (normally defined in the USER
record in the VM/370 directory, but may be altered by the systen
operator).

184 1IBM VM/370: System Programmer's Guide



A virtual machine is selected to enter Q2 only if its "working set"
is not greater than the number of real page frames available for
allocation at the time. The working set of a virtual machine is
calculated and saved each time a user is dropped from Q2 and is based on
the number of virtual pages referred t¢ by the virtual =machine during
its stay in Q2, and the number of its virtual pages that are resident in
real storage at the time it is drorped from the queue.

If the calculated working set of the highest priority virtual machine
in the eligible list is greater than the number of page frames available
for allocation, CP continues through the eligible list in user priority
order.

There are two lists of users in (Q2, executaktle and nonexecutable.
Executable virtual machines are sorted by "dispatching priority". This
priority is calculated each time a user is dropped from a queue and is
the ratio of CPU time used while in the gqueue to elapsed time in the
queue, Infrequent CPU users are placed at the top of the list and are
followed by more frequent CPU users, When a nonexecutable user becomes
executable, he is placed in the executable list Lased on his dispatching
priority.

When a virtual machine completes its time slice of CPU usage, it is
dropped from Q2 and placed in the eligible 1list by user priority. When
a user in Q2 enters CP command mode, he is removed from Q2. When he
becomes executable (returns to virtual machine execution mode) he is
placed in the eligible list based on user priority.

If a user's virtual machine is not in Q1 or Q2, it is because:

1. The virtual machine is on the "eligible list", waiting to be put on
Q2, or

2. The virtual machine execution is suspended because the user is in
CP mode executing CP commands.

To leave CP mode and return his virtual machine to the "eligible
list" for Q2, the user can issue one of the CP commands that transfer
control to the virtual machine operating system for execution (for
example, BEGIN, IPL, EXTERNAL, and RESTART).

In CP, interactive users (Q1), if any, are considered for dispatching
before noninteractive users (Q2). This means that CMS users entering
commands which do not involve disk or tape I/O operations should get
fast respo