

Program Product

SC28-6891-1

IBM VM/370 (eMS) Terminal
User's Guide for FORTRAN IV
Program Products

Program Numbers 5734-F01
5734-F02
5734-F03
5734-LM1
5734-LM3

Page of SC28-6891-0,-1
Revised May 13, 1977
By TNL SN20-922S

Second Edition (April 1975)

This edition, as amended by technical newsletters SN20-9201 and SN20-9225, applies to Release 1.0
of the IBM Virtual Machine Facility/370 (VM/370) (CMS).

This edition is a reprint of SC28-6891-0 incorporating changes released in Technical Newsletters
SN28-0609 (dated March 1, 1973) and SN28-0620 (dated January 3, 1974). Changes are listed
in the Summary of Amendments, Number 3, on the facing page.

Information in this publication is subject to significant change. Any such changes will be published
in new editions or technical newsletters. Before using the publication, consult the latest IBM
System/360 Bibliography, GC20-0360, or IBM System/370 Bibliography, GC20-0001, and the
technical newsletters that amend the particular bibliography, to learn which editions are applicable
and current.

Requests for copies of IBM publications shou'ld be made to your IBM representative or to the
IBM branch office that serves your locality.

Forms for readers' comments are provided at the back of this publication. If the forms have
been removed, address comments to IBM Corporation, P. O. Box 50020, Programming
Publishing, San Jose, California 95150. Comments and suggesti~ns become the property of IBM.

© Copyright International Business Machines Corporation 1972

Summary of Amendments Number 1

Date of Publication: March 1, 1973

Form of Publication: TNL SN28-0609 to SC28-6891-0

CP and CMS Command Abbreviations

Maintenance: Documentation Only

Valid abbreviations have been added to the summary descriptions of significant
CP and CMS commands.

XTENT Option

New: Documentation Only

A description of the XTENT option of the FILEDEF command has been added
for users of direct access files.

Flagging of Data Spill
I

New: Documentation Only

A statement has been added to the description of data spill indicating that
several compilers will flag spill as an error even though they process it correctly.

Reproduction of Command Formats for Internal Use Only

New: Documentation Only

Footnotes have been added to the sections describing the compiler command
formats. These footnotes indicate that users may copy the sections for internal
use only.

H Extended SIZE Option

New: Documentation Only

The description of the SIZE option for the H Extended compiler has been
expanded to reflect the operation of the option and to guide the user in its use.

Asynchronous I/O Message

New: Programming and Documentation

A message indicating that an asynchronous I/O operation has been attempted
has been added to the restriction on asynchronous I/O.

Terminal Listing Sheet Examples

Maintenance: Documentation Only

Examples showing terminal listing sheets have been revised to more accurately
reflect their actual appearance.

Foldout Pages for the Sample Terminal Session

Maintenance: Documentation Only

The terminal listing sheets for the sample terminal session have been printed on
foldout pages for ease of reference.

Editorial changes having no technical significance are not noted here.

Specific changes to the text as of this publishing date are indicated by a vertical bar to the left of
the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments Number 2

Date of Publication: January 3, 1974

Form of Publication: TNL SN28-0620 to SC28-6891-0 as amended by
TNL SN28-0609

CMS Support of FREEFORM Source Programs

New: Programming and Documentation

A description of preparing free form source programs and of the new
filetype FREEFORT has been added.

SI FT Utility

New: Programming and Documentation

A description of the changes made to the SIFT Utility program in support
of free-form source files has been added.

ASA Carriage Control Characters

Modification: Documentation Only

The character + has been removed from the list of supported ASA carriage
control characters.

OS File Compatability

Modification: Documentation Only

Restrictions have been added to the description of file compatability and
conditions under which it can be accomplished are outlined.

Editorial changes having no technical significance are not noted here.

Specific changes to the text of this pUblication are indicated by a vertical bar to the left of
the text. These bars will be deleted at any subsequent repUblication of the page affected.

Summary of Amendments Number 1

Date of Publication: March 1, 1973

Form of Publication: TNL SN28-0609 to SC28-6891-0

CP and CMS Command Abbreviations

Maintenance: Documentation Only

Valid abbreviations have been added to the summary descriptions of significant
CP and CMS commands.

XTENT Option

New: Documentation Only

A description of the XTENT option of the FILEDEF command has been added
for users of direct access files.

Flagging of Data Spill

New: Documentation Only

A statement has been added to the description of data spill indicatmg that
several compilers will flag spill as an error even though they process it correctly.

Reproduction of Command Formats for Internal Use Only

New: Documentation Only

Footnotes have been added to the sections describing the compiler command
formats. These footnotes indicate that users may copy the sections for internal
use only.

H Extended SIZE Option

New: Documentation Only

The description of the SIZE option for the H Extended compiler has been
expanded to reflect the operation of the option and to guide the user in its use.

Asynchronous I/O Message

New: Programming and Documentation

A message indicating that an asynchronous I/O operation has been attempted
has been added to the restriction on asynchronous I/O.

Terminal Listing Sheet Examples

Maintenance: Documentation Only

Examples showing terminal listing sheets have been revised to more accurately
reflect their actual appearance.

Foldout Pages for the Sample Terminal Session

Maintenance: Documentation Only

The terminal listing sheets for the sample terminal session have been printed on
foldout pages for ease of reference.

Editorial changes having no technical significance are not noted here.

Specific changes to the text as of this publishing date are indicated by a vertical bar to the left of
the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments Number 3

Form of Publication: TNL SN20-920 1 to SC28-6891-1

Default Record Format, Logical Record Length, and Block Size

Maintenance: Documentation Only

The default record format, logical record length, and block size when using the
FILEDEF command has been added.

Listing Produced When the PRINT Option is Used

Maintenance: Documentation Only

If the FORTHX command is entered with the PRINT option, a listing is
produced at the offline printer instead of the primary disk.

Base Register Usage When Using the FORTRAN IV (H Extended) Compiler

Maintenance: Documentation Only

A description of base register usage in an object program compiled by the
FORTRAN IV (H Extended) compiler has been added.

Registers Reserved for Branch Optimization

Maintenance: Documentation Only

A description of the registers reserved for branch optimization has been added.

Miscellaneous:

Maintenance: Documentation Only

Various examples have been corrected and/or expanded.

Editorial changes having no technical significance are not noted here.

Specific changes to the text as of this publishing date are indicated by a vertical bar to the left of
the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments Number 2

Date of Publication: January 3, 1974

Form of Publication: TNL SN28-0620 to SC28-6891-0 as amended by
TNL SN28-0609

CMS Support of FREE FORM Source Programs

New: Programming and Documentation

A description of preparing free form source programs and of the new
filetype FREEFORT has been added.

SI FT Utility

New: Programming and Documentation

A description of the changes made to the SIFT Utility program in support
of free-form source files has been added.

ASA Carriage Control Characters

Modification: Documentation Only

The character + has been removed from the list of supported ASA carriage
control characters.

OS File Compatability

Modification: Documentation Only

Restrictions have been added to the description of file compatability and
conditions under which it can be accomplished are outlined.

Editorial changes having no technical significance are not noted here.

Specific changes to the text of this publication are indicated by a vertical bar to the left of
the text. These bars will be deleted at any subsequent republication of the page affected.

Preface

This user's guide is intended for FORTRAN programmers who will be using
the IBM System/360 OS FORTRAN IV (Gl) or Code and Go FORTRAN
IV compiler and the FORTRAN IV Library (Mod I) or the FORTRAN IV
(H Extended) compiler and the IBM FORTRAN IV Library (Mod II) under
the control of the Conversational Monitor System component of the Virtual
Machine Facility /370. It is assumed that the reader is familiar with the
FORTRAN IV Language and the CMS component of VM/370.

This publication is divided into 9 parts as follows:

• Introduction

• What You Need To Know before Using CMS and the FORTRAN IV
Compilers for the First Time

• Sample CMS Terminal Session

• VM/370 Commands for the FORTRAN IV Programmer

• CMS Programming Considerations

• FORTRAN IV Programming Considerations

• Using the FORTRAN IV Compilers

• Loading and Executing FORTRAN TEXT files under CMS

• Appendixes

The "Introduction" briefly describes the operation of CMS and the
relation of the FORTRAN IV compilers and libraries to that system.

The part "What You Need To Know before Using CMS and the
FORTRAN IV Compilers for the First Time" lists information about CMS
and the compilers that a new programmer must obtain from the system
administrator in his computing center before using the system.

The "Sample CMS Terminal Session" illustrates a typical terminal session
and introduces a less experienced user to some of the commands and
techniques necessary to write, compile, and execute a FORTRAN program
under CMS.

The "VM/370 Commands for the FORTRAN IV Programmer" part lists
the system commands that the FORTRAN programmer typically needs or
uses. The list does not include all the VM/370 commands available.

The "CMS Programming Considerations" part describes general concepts
in CMS file management and definition for the FORTRAN programmer. It
describes the creation of source files, the characteristics of compiler output
files, and the creation and use of files during the execution of object
programs.

Page of SC28-6891-0,-1
Revised March 18, 1977
By TNL SN20-9201

The "FORTRAN IV Programming Considerations" part describes
FORTRAN IV language coding techniques that will make most efficient use
of the compilers that you will be using under CMS. In addition, it describes
the use of the FORTRAN IV libraries and special features that are available
to particular compilers.

The part "Using the FORTRAN IV Compilers" provides specific
information on the use of the FORTRAN IV (Gl), Code and Go FORTRAN
IV, and FORTRAN IV (H Extended) compilers by the CMS terminal user. It
describes the commands necessary to invoke these compilers and the various
kinds of output that are available. In addition, it describes the restrictions
placed upon the FORTRAN IV language by the compilers. Each compiler is
treated separately for ease of reference.

The part "Loading and Executing FORTRAN TEXT files under CMS"
presents the commands necessary to load and execute FORTRAN programs.
The commands required for each compiler are treated separately.

The "Appendixes" contain a description of the error messages produced by
CMS for the FORTRAN programmer, information on using assembler
language subprograms with FORTRAN programs, a description of the
FORTRAN IV Debug Facility, a description of the CONVERT utility
program that is available to Code and Go FORTRAN IV programmers who
want to convert free-for source programs to fixed-form, information on
modifying the extended error handling facility option table, and a description
of file characteristics for compatability with OS data sets.

Industry Standards Reflected in this Product

Reference Publications

This product is designed according to the specifications of the American National
Standard (ANS) FORTRAN, X3.9-1966, as understood and interpreted by IBM as oj
December 1972.

Information on the IBM FORTRAN IV Language and the IBM FORTRAN
IV Libraries (Mod I) and (Mod II) can be found in the following
publications:

IBM System/360 and System/3 70
FORTRAN IV Language
Order No. GC28-6S1S

IBM System/3 60
FORTRAN IV Library
Mathematical and Service Subprograms
Order No. GC28-6816

IBM System/360 OS
FORTRAN IV Mathematical and Service Subprograms
Supplement for the Mod I and Mod II Libraries
Order No. SC28-6864

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

Diagnostic messages for the FORTRAN IV (Gl) compiler can be found in
the following publication:

IBM FORTRAN IV (G 1) Processor
and TSO FORTRAN Prompter
for os and VM/370 (CMS)

Installation Reference Material
Order No. SC28-6856

Diagnostic messages for the Code and Go FORTRAN IV compiler can be
found in the following publication:

IBM Code and Go FORTRAN IV Processor
for os and VM/370 (CMS)
Installation Reference Material
Order No. SC28-6859

Diagnostic messages for the FORTRAN IV Library (Mod I) can be found in
the following publication:

IBM FORTRAN IV Library (Mod I)
for os and VM/370 (CMS)
Installation Reference Material
Order No. SC28-6858

Diagnostic messages for the FORTRAN IV (H Extended) compiler and (Mod
II) library can be found in the following publication:

IBM System/360 OS
FOR TRAN IV (H Extended) Compiler
and Library (Mod II)
Messages
Order No. SC28-6865

Information on VM/370 and the command langauge can be found in the
following publications:

IBM Virtual Machine Facility/3 70
Command Language
User's Guide
Order No. GC20-1804

IBM Virtual Machine Facility/370
EDIT Guide
Order No. GC20-1805

IBM Virtual Machine Facility/3 70
Terminal User's Guide
Order No. GC20-1810

Information on using the FORTRAN IV compilers under OS can be found in
the following publications:

IBM System/360 OS
Code and Go FORTRAN and
FORTRAN IV (G1)
Programmer's Guide
Order No. SC28-6853

IBM System/360 OS
FORTRAN IV (H Extended) Compiler
Programmer's Guide
Order No. SC28-6852

Contents

Introduction .
FORTRAN IV (Gl) Compiler.
Code and Go FORTRAN IV Compiler
FORTRAN IV (H Extended) Compiler
FORTRAN IV Library (Mod 1)

FORTRAN IV Library (Mod II) .

What You Need to Know Before Using CMS or the FORTRAN IV Compilers for

.11

.12

.12

.13

.13

.13

the First Time ·14
Information about CMS . 14

For Gaining Access to the System .14
For Your Terminal . . 14
For Your Virtual Machine. .15
For Your FORTRAN Compiler .15

Syntax Conventions Used in this Book . 16

Sample Terminal Session . . 17
Preliminary Procedures and Signing On . 17
Starting the Session . 18

VM/370 Commands for the FORTRAN IV Programmer .28

CMS Programming Considerations .32
FORTRAN Source Files .32

Identification . .32
Characteristics .32

Creating New FORTRAN Source Files .33
Preparing to Compile FORTRAN Source Programs .34
CMS Return Codes Following Compiler Commands . 34
Entering FOR TRAN Source Files From Devices Other than the Terminal . 35

FORTRAN Compiler Output Files. .35
LISTING File . . 36

Obtaining a Printed Copy of your LISTING File . 36
Retaining LISTING Files . . 37

TEXT File . . 38
Identifying Programs in a TEXT File . 38
Retaining TEXT Files . . 39
Contents of the TEXT File . 40

Execution-Time Input and Output Files . 42
Defining Execution-Time Files . 42

Pre-Defined Files. . 43
Pre-Defined Terminal Input Files . 44
Pre-Defined Terminal Output Files . 45
Pre-Defined Punched Card Output Files . 45
User-Defined Files . 45

FILEDEF Command for FORTRAN Programmers. . 47
Specifying FORTRAN Record Formats and Logical Characteristics
Under CMS . 52

Identifying and Using User-Defined Files . . 53
Seq uential Files . . 53

User-Defined Disk Input and Output Files . 53
User-Defined Tape Input and Output Files . 55
User-Defined Terminal Input and Output Files . 56
User-Defined Punched Card Input Files . 57
User-Defined Punched Card Output Files . 62
User-Defined Printed Output Files . 63

Page of SC28-6$91-0,-1
Revised March 18, 1977
By TNL SN20-9201

Direct Ac<!ess Files . .64
Using Disk and Tape Multifiles .65

FORTRAN IV Programming Considerations. . 68
FORTRAN Coding Techniques for Greater Efficiency .68
Language CONsiderations for the FORTRAN IV (G1), Code and Go
FORTRAN IV, and FORTRAN IV (H Extended) Compilers .68

Arithmetic IF Statements . 68
BACKSPACE Statement . 69
FIND Statement . . 69
List-Directed Input and Output . 69
Literals in Data Initialization . 69
Logical IF Statement . 71
PA USE n Statement. . 72
READ Statement . 72
RETURN Statement . 73
STOP n Statement . 73
Unformatted Forms of Input and Output Statements (Not Including
List-Directed) . 73

Language Considerations for the FO RTRAN IV (G 1) and Code and Go
FOR TRAN IV Compilers Only . 74

Array Notation in Input and Output Statements . 74
Language Considerations for the Code and Go FOR TRAN IV Compiler Only 74

Free-Form Input. . 74
Language Considerations for the FORTRAN IV (H Extended) Compiler Only . 75

Array Notation in I/O Statements . 75
BASE Registers . 76
EQUIVALENCE Statement . 76
EXTERNAL Statement .77
GENERIC Statement . 77
Name Handling . 78
OPTIMIZE Compiler Option . 78

Programming Considerations When Using OPTIMIZE1 and
OPTIMIZE2 . 79
Programming Considerations When Using OPTIMIZE2 . 80

Using the FORTRAN Subroutine Libraries . . 81
Library Features Available with the FORTRAN IV MOD I and MOD II
Libraries . 83

List-Directed and Formatted Input/Output . 83
Extended Error Handling . . 85

The Option Table . 86
Features Available with the FORTRAN IV Library (MOD II) Only . 90

Automatic Function Selection . 90
A utomatic Precision Increase Facility . 90
Precision Conversion Process . . 91

Promotion . .91
Effect of the AUTODBL and ALC Options on Automatic
Precision Increase

AUTODBL Option .
ALC Option

Programming Considerations with API.
..

Effect on COMMON or EQUIVALENCE Data Values
Effect on Literal Constants
Effect on Programs Calling Subprograms .
Effect on FORTRAN Library Subprograms
Effect on CALL DUMP or CALL PDUMP Statements
Effect on Direct-Access Input/Output Processing
Effect on Unformatted Input/Output Data Sets
Effect on the Storage Map.

Extended Precision .
EXTERNAL Statement Extension

Using the FORTRAN IV Compilers
FORTRAN IV (Gl) Compiler

FORTGI Command.

.92

.92

.97

j: .98
.98

I' .98
.99

'I. .99
100

'\- 100
100
100
101
101

102
102
102

Page of SC28-6891-0,-1
Added May 13, 1977
By TNL SN20-9225

Output from the FORTRAN IV (G1) Compiler.
FORTRAN I,Y (G1) LISTING File.
FOR TRAN IV (G 1) TEXT File .

Compiler Language Restrictions for FORTRAN IV (G1) .
Code and Go FORTRAN IV Compiler.

GOFORT Command Format. .
Output from the Code and Go FORTRAN IV Compiler

Code and Go FORTRAN IV LISTING File .
Code and Go FORTRAN IV TEXT File .

Compiler Language Restrictions for Code and Go FORTRAN
FORTRAN IV (H Extended) Compiler

FORTH X Command Format.
Changing Compiler Options with a *PROCESS Statement
Output From the FORTRAN IV (H Extended) Compiler

FORTRAN IV (H Extended) LISTING File.
FORTRAN IV (H Extended) TEXT File .

Compiler Restrictions for FORTRAN IV (H Extended)

Loading and Executing FORTRAN Object Programs Under eMS.
Command Procedure for FORTRAN IV (G1)
Command Procedure for Code and Go FORTRAN IV (with the GO Option)
Command Procedure for Code and Go FORTRAN IV (with the NO GO
Option) .
Command Procedure for FORTRAN IV (H Extended)

Appendix A: FORTRAN Compilation Debug Facility
DEBUG Statement

TRACE.
SUBTRACE
INIT .
SUBCHK

DISPLA Y Statement
Special Considerations

Appendix B: Assembler Language Subprograms
Subroutine References

Argument List
Save Area .
Calling Sequence

Coding the Assembler Language Subprogram
Coding a Lowest Level Assembler Language Subprogram
Higher Level Assembler Language Subprogram
In-Line Argument List
Sharing Data in COMMON
Retrieving Arguments from the Argument List
RETURN i in an Assembler Language Subprogram

Object-Time Representation of FORTRAN Variables.
Integer Type .
Real Type .
Complex Type
Logical Type .

Appendix C: SIFT Utility
Converting Free Form Input to Fixed Form
Invoking the SIFT Utility .

Appendix D: Subprograms for the Extended Error Handling Facility
Accessing and Altering the Option Table Dynamically
User-Supplied Error Handling

User-Supplied Exit Routine
Option Table Considerations

Considerations for the Library Without Extended Error Handling
Facility .

105
106
111
111
112
112
114
115
116
118
119
119
125
125
126
134
134

136
136
137

137
139

141
141
141
141
142
142
142
143

145
145
145
146
147
148
148
149
151
151
152
154
155
155
156
158
158

161
161
161

165
165
168
172

180

180

Figures

Appendix E: Defining Execution-Time Files for Compatibility with OS

Appendix F: Error Messages.
· 181

· 191

197

199

Glossary

Index

1.
2.
3.
4.
5.
6.
7.

8.

9.

10.
11.
12.

13.
14.

15.

16.

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

35.
36.
37.

38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.

Sample Instruction Sheet for a Hypothetical Terminal
VM/370 Commands Frequently Used by FORTRAN Programmers
CMS Return Codes for FOR TRAN Compilations .
Producing a LISTING File with Various Compilers
Producing a TEXT File with Various Compilers.
Types of ESD Card Formats in FORTRAN TEXT Files

18
29-31

35
36
38
40

TEXT File Structure Produced by the FORTRAN IV (Gl) and Code and Go
Compilers . 41
Object Module Deck Structure Produced by the FORTRAN IV (H Extended)
Compiler . .
Summary of Data Set Reference Numbers, Input/Output Statements, and
Record Formats Used for Pre-Defined Files .
ASA Carriage Control Characters
General Form of the FILEDEF Command for FOR TRAN Programmers

41

· 44
· 45

47
Tape Recording Technique Specification Available for the TRTCH Option of
the FILEDEF Command 49
Record Formats Available for the RECFM Option of the FILEDEF Command. 50
Control Character Specifications Available for the RECFM Option of the
FILEDEF Command
Criteria for Determining a Value for theLRECL Option of the FILEDEF
Command.
Criteria for Determining a Value for the B LOCK Option of the FILEDEF
Command.
FILEDEF Command for User-Defined Sequential Disk Files
FILEDEF Command for User-Defined Tape Files .
FILEDEF Command for User-Defined Terminal Files.
FILEDEF Command for One User-Defined Punched Card File.
FILEDEF Command for User-Defined Sequential Disk Files
FILEDEF Command for User-Defined Punched Card Files .
FILEDEF Command for User-Defined Printed Files
FILEDEF Command for User-Defined Direct Access Files .
Contents of the FORTRAN Libraries (Mod I) and (Mod II) .
Option Table Preface
Option Table Entry Format .
OptiO}l Table Default Values .
Built-In Functions--Substitution of Simple and Double Precision
Library Functions--Substitution of Single and Double Precision

50

51

51
54
55
56
58
61
62
63
65
82
87
88
89

· 93
93

· 102 Format of the FORTG1 Command for the FORTRAN IV (G1) Compiler .
. The Effect of Various Compiler Options on Compiler Output (Gl) . · 106

109-110 FORTRAN IV (Gl) LISTING File.
Format of the GOFORT Comman-d for the Code and Go FORTRAN IV
Processor
The Effect of Various Compiler Options on Compiler Output (Code & Go)
Code and Go FORTRAN Compiler LISTING File (Default Options) .
Format of the FORTHX Command for the FORTRAN IV (H Extended)
Compiler

112
115
117

· 120
The Effect of Various Compiler Options on Compiler Output (H Extended) · 126

128 H Extended Storage Map Variable Classifications
FORTRAN IV (H Extended) LISTING File.
Save Area Layout and Word Contents .
Linkage Registers .
Linkage Conventions for Lowest LevelSubprograms
Linkage Conventions for Higher Level Subprograms
In-Line Argument List .
Dimension and Subscript Format
Assembler Subprogram Examples
Free-Form Fixed-Form SIFT Output Listing
Sample Program Using Extended Error Handling Facility
Corrective Action After Error Occurrence
Corrective Action After Mathematical Subroutine Error Occurrence
Corrective Action After ProgJ:am Interrupt Occurrence
Maximum BLKSIZE by Device Types.

131-133
146
147
148

· 150
· 151
." 153
· 154
· 163

171-172
· 174

175-178
179

· 182

Introduction

As a FORTRAN programmer your are probably familiar with batch
processing, punching a card deck, sending it to your computing center, and
waiting several hours or overnight to get your results back. This arrangement
works well for large production programs that are run on a recurring basis, for
programs that handle large amounts of card or tape files and produce
voluminous printed listings, and for programs in which time is not a vital
factor. However, for problem solving, quick retrieval of information, or
system maintenance and modification, batch processing does not always fill
your needs. Often, for example, a small error in an urgently needed program
will keep it from running successfully and the time you spent waiting and
rerunning the program was wasted. When time is critical, a different type of
processing is necessary.

A time-sharing system is the answer. It allows you to sit at a terminal, use
simple commands, enter your program, run it, and get your results back in a
matter of minutes at the same terminal. The Conversational Monitor System
(CMS), operating in the time-sharing environment produced by the Control
Program (CP) component of the Virtual Machine Facility/370, offers you,
the terminal user, an extensive range of computer functions: console control,
creating and managing files, compiling and executing programs, performing
input and output operations, and system development and maintenance.

The control program component of VM/370 creates a simulated (that is,
virtual) computer and makes it available on a shared-time basis. Each user
has his own simulated computer and, shares with you, the time and facilities
of the real computer in your computing center. Your terminal becomes the
operator's console for your virtual computer. The CP command language
permits you to control the operation and status of your virtual computer in
the same way that a computer operator controls the real machine. With some
of the commands available, you can initialize control programs, manipulate
devices and data, and communicate with other users or with the system
operator, who runs the real computer to which your terminal is attached.

As a real computer functions most efficiently under the control of an
operating system, so too does a virtual machine. The Conversational Monitor
System is an operating system that you, can execute under CP to control your
virtual computer. CMS permits you to use your terminal as the primary
means for entering data and writing programs. The CMS command language
simplifies file and data handling through the CMS editor and its various
subcommands, and minimizes your concern with system functions and
elaborate data management procedures. CMS is. primarily, disk oriented.
Most files are kept on disks and are always available to you through your
terminal. CMS allows you to create files that contain virtual card decks,
printed listings, and magnetic tapes. This means that you can, for example,
create a virtual card deck at your simulated card punch, use CMS commands
to transfer iLto your simulated card reader,and read it back in without having
to handle actual cards. Of course, you can read actual cards and tapes, and
create real card decks, printed listings, and tape files off-line on real devices in
your computing center or a remote entry system. In addition, you may group
a series of related or often used CMS commands together and execute them
as a unit, thus simplifying your use of the command language.

II

With the addition of the FORTRAN compiler commands to the CMS
command language, you can compile FORTRAN source programs and use
the FORTRAN library subprograms. The TEXT files created by the
FORTRAN compilers under CMS can be loaded and executed under CMS or
link edited and executed under OS. In addition object programs created
under OS can be loaded and run under CMS. The FORTRAN compilers and
library that are available as program products under CMS are:

• FORTRAN IV (Gl) Compiler

• Code and Go FORTRAN IV Compiler

• FORTRAN IV (H Extended) Compiler

• FORTRAN IV Library (Mod I) (for Gland Code and Go)

• FORTRAN IV Library (Mod II) (for H Extended)

FORTRAN IV (GI) Compiler

The FORTRAN IV (Gl) compiler is invoked under CMS with the FORTGI
command. FORTRAN IV (Gl), offers the capabilities of directing error
diagnostics and/or compiler output to a terminal and of using list-directed
input/output. Additionally, the processor supports FORTRAN Interactive
Debug.

Code and Go FORTRAN IV Compiler

12

The Code and Go FORTRAN IV compiler is invoked under CMS with the
GOFORT command. Code and Go FORTRAN, as a time-sharing tool, has
been designed to meet the specific needs of two types of users: (1) the
problem solving programmer, who writes, debugs, and executes relatively
short programs at the terminal, and (2) the production programmer who
debugs components of a large program on-line before running the program
through a production-oriented processor, such as FORTRAN IV (H
Extended). Thus, design emphasis has been placed on rapid
compilation-execution turnaround and on ease of use. Code and Go supports
free-form input format -- which considerably reduces the programmer's
concern with terminal-typing tasks, such as tab settings and margin stops -
and includes options for obtaining short- or long-form diagnostic messages.
Support is also provided for FORTRAN Interactive Debug and for the use of
list-directed input/output, which frees the programmer from having to code
FORMAT statements.

FORTRAN IV (H Extended) Compiler

The FORTRAN IV (H Extended) compiler is invoked under CMS with the
FORTHX command. FORTRAN IV (H Extended), besides providing
extended language capability for computational power, is a true production
compiler, utilizing advanced optimization technology to produce efficient
object code. The extended language capabilities of FORTRAN IV (H
Extended) include:

• Support for extended precision arithmetic via REAL * 16 and
COMPLEX*32 data types or via use of a compiler option.

• Automatic function selection to simplify references to built-in and
library functions.

As a compilation-time option, the user may specify automatic precision
increase, allowing for conversion of floating-point calculations from single to
double and double to extended precision. The FORTRAN IV (H Extended)
compiler requires the FORTRAN IV Library (Mod II), or its equ~valent, for
compiling and executing source programs.

FORTRAN Library (Mod I)

The FORTRAN IV (Mod I) library is made available for use under CMS with
the GLOBAL TXTLIB command specifying from one to eight installation
designated library names. Code and Go and Glare supported by the
FORTRAN IV Library (Mod I), which provides mathematical, service, and
input/ output routines needed by the processors. Additionally, the Mod I
library and the processors incorporate the same data conversion routines,
which round real constants and real data items on input rather than truncate
them. This provides finer resolution and greater accuracy of results.

FORTRAN IV Library (Mod II)

The FORTRAN IV (Mod II) library is made available for use under CMS
with the GLOBAL TXTLIB command specifying from one to eight
installation designated names. FORTRAN IV (H Extended) compiler is
supported by the FORTRAN IV Library (Mod II), in addition to specifically
providing routines required by the processor, encompasses all of the functions
of the Mod I library; thus, an installation equipped with the Mod II library
does not need the Mod I library to support Code and Go or G 1.

13

What You Need To Know before Using CMS or the FORTRAN· IV Compilers for
the First Time

Information About CMS

Before you use CMS or the FORTRAN IV compilers for the first time, you
should obtain the following information from the system administrator in your
computing center:

For Gaining Access to the System

For Your Terminal

14

• What is your user identification code?

These are unique names that identify you and authorize your use of
VM/370.

• What is your log-in procedure?

The log-in procedure may vary depending on the type of terminal that
you will be using and the way it is connected to the real computer in
your computing center. This information can also be found in the
publication IBM VM /370 Terminal User's Guide, Order No.
GC20-1810.

• What is the character-delete character?

You must determine which character you will use for deleting a
character from a line.

• What is the line-delete character?

You must determine which character you will use for deleting an entire
line.

For Your Virtual Machine

• What is the line-end character?

You must determine which character you will use for logically ending
an input line.

Note: This information is also available through the QUERY
TERMINAL command.

• What is the configuration of your virtual machine?

The needs of your work and the type of programs you will be using
should help your system administrator decide on the best configuration
for your virtual machine.

• What disk is normally assigned as your primary (A) disk?

Your primary disk is normally assigned to you at the beginning of each
terminal session. It is usually identified as 191. Your system may
require a different disk and you may have to issue an ACCESS
command for it at the start of your session.

For Your FORTRAN Compiler

• Which FORTRAN IV compilers and libraries are available?

You will need to know which FORTRAN IV compilers, libraries, and
optional features are available in order to select the compiler that is
best suited to your needs.

• What defaults have been established for the compiler and library you
are going to use?

You should determine what defaults have been established for: the
compiler options, the maximum number of FORTRAN data set
reference numbers permitted, the data set reference numbers that have
been pre-defined for the READER, PRINTER, and PUNCH files, and
the names of the files in which your library is available. Some of the
defaults in use at your computing center may differ from those
described in this book and may require different techniques than those
described. The defaults in use may differ, since your system
administrator has the ability to tailor his system to better meet the
needs of his users.

15

Syntax Conventions Used in This Book

16

The syntax conventions used to illustrate eMS commands and FORTRAN
statements throughout this book are:

• Lower-case letters, digits, and special characters represent information
that you must type exactly as shown.

• Upper-case letters digits and special characters represent information
that is typed out by the system.

• Italics represent information that you must supply.

• Information contained within brackets [] is optional and may be
omitted. Where a list is given any number of the items listed may be
included.

• The appearance of braces {} indicates that a choice must be made
between the items contained in the braces.

• The appearance of the vertical bar I indicates that a choice must be
made between the item to the left of the bar and the item to the right
of the bar.

• An ellipsis (a series of three periods) indicates that the preceding
syntactical unit may be used one or more times in succession.

• A list whose length is variable is specified by the format: xl,~, ... ,xn'
This format indicates that a variable number of items may be specified,
but that at least one is required (commas must separate the items).

Sample Terminal Session

This section describes a hypothetical terminal session using the FORTRAN
IV (G 1) compiler; however, any of the other FORTRAN compilers that are
available could be used. You will be introduced to many of the features of
VM/370 and CMS and how they interact with you. You are invited to sit at
your terminal and work along as the sample session is described. If you
follow the session closely, you will begin to develop a facility for
programming at a terminal under the control of CMS. This sample session
does not illustrate all the commands that are available to you, only those that
are directly related to creating, compiling, and executing a FORTRAN
program. An explanation of all the commands is contained in the publication
IBM VM/370 Command Language User's Guide, Order No. GC20-l804.
It is assumed throughout that you are using an IBM 2741 Communications
Terminal; if you are not, refer to the publication IBM VM /370 Terminal
User's Guide, Order No. GC20-l8l0 for information on your terminal.

As you work through the session, remember that with CMS there is usually
more than one way to achieve a desired result. The techniques and
commands outlined here may not be the ones that you will eventually decide
to use; however, they serve as a guide and represent a usable programming
tool.

A printout of the sample session, as it would appear at your terminal, is
included on foldout charts that follow the descriptive text. Turn to the first
chart now and keep it open as you read about the sample session. The circled
numbers in the left-hand margin of the printout indicate important points in
the session. Each number has a corresponding explanation in the text. In this
session, all of the commands and codes that you will type are printed in
lowercase letters and all the systems responses are printed in uppercase letters
(this convention is followed for all the illustrations in this book).

Preliminary Procedures and Signing On

• The first thing you must do to start a termi~al session is to turn on
your terminal according to the instructions provided by your
installation. In many cases an instruction sheet, such as the one shown
in Figure 1, will be attached to your terminal. In the example shown,
steps 1 through 8 must be done to turn on the power and establish a
connection with the system. The meaning of step 9 will become
evident in the description of the sample session that follows. If an
instruction sheet is not available at your terminal, consult the
publication IBM VM/370 Terminal User's Guide, Order No.
GC20-l8l0 or your computing center.

17

Starting the Session

18

Terminal #7

(Available from 9:00 a.m. - 3:00 p.m. For additional time call E. Souse at extension 7801)

I. Turn the ON/OFF switch to ON.

2. Make sure that the COM/LCL switch is set to COM.

3. Remove the handset from the attached telephone (data set).

4. Press the TALK button on the telephone.

5. Dial extensions 5555, 5556, or 5557.

6. Wait for the high-pitched tone. When you hear this tone. you are in contact with
the computer. If you get a busy signal or no answer, hang up and repeat this
procedure starting frop."! step (3) trying another extension.

7. Upon hearing the high-pitched tone, push the DATA button on the telephone. If
the DATA button light goes off at any point during the session. repeat this
procedure from step (3).

8. Replace the handset on the cradle.

9. Enter the LOGIN command.

Note: When you are finished with your terminal session, enter the LOGOFF command,
and turn the ON/OFF switch to OFF. The DATA button light will go out.

Figure 1. Sample Instruction Sheet for a Hypothetical Terminal

'.

•

The first entry on the printout of the sample session is the system's
response to your call, notifying you that you have been successfully
connected to the system and that VM/370 is available. The format of
the VM/370 ONLINE response varies slightly depending upon the
type of terminal you are using. (See the publication IBM VM/370
Terminal User's Guide, Order No. GC20-1810 for the exact response
that your terminal types out.) Once you have received the ONLINE
response, you are ready to identify yourself to the system .

To do so, hit the ATTN key. When the keyboard unlocks, type a
LOGIN command. The system recognizes authorized users by an
identifier and a password that are entered separately. As you can see,
you begin by typing your identifier (here, EUSTACE) as part of the
LOGIN command. The system will then ask for your password.
Depending on your terminal, the password either will not be printed or
will be typed over and obscured. This is a safeguard to protect your
user identification from unauthorized use. If the system recognizes
you as an authorized user, it will type out a LOGIN message and any
messages from the system operator or other users. The LOGIN

•
message indicates that your virtual computer is available and you may
now initialize an operating system in it.

Initializing an operating system, in this case CMS, is simple: type the
abbreviation IPL followed by at least one blank and CMS. CMS
responds, indicating that it has been successfully initialized. At this
point you are no longer directly connected to the control program
component of VM/370, but are now in communication with CMS. All
the CMS commands are now available to you. Should you wish to
return to the control program environment you need only hit the
ATTN key twice or type the letters CPo To go back to CMS again,
type BEGIN. There is a mechanism that provides an easy check to
determine which component you are communicating with. Simply
enter a null line (that is, a line containing no characters or blanks) by
hitting the RETURN key CR (representing carrier return). The
system will identify the component you are communicating with by
typing the message CP or CMS.

It is assumed for this terminal session, that you already have a
PROFILE EXEC procedure available that contains a GLOBAL
TXTLIB command specifying the entire FORTRAN IV Library that
you are going to use. If you do not have such a procedure, it is
advisable to create one, now, before you continue on. A PROFILE
EXEC procedure that has been filed on your A disk is executed
automatically when you issue the first command. The procedure
usually contains CP and CMS commands that you would need each
time you initialized CMS and that would be required for the type of
work you are going to do. For example, a typical PROFILE EXEC
procedure might contain the following:

ACCESS commands - to obtain disks other than A 191

SET commands to establish a terminal environment

GLOBAL commands - to make text and macro libraries available

To create a PROFILE EXEC procedure now, use the EDIT facility enter
the commands that you want the procedure to contain, and reinitialize CMS.
See the publication IBM VM /370 Command Language User's Guide,
Order No. GC20-1804 and IBM VM/370 EDIT Guide, Order No.
GC20-1805. For detailed information on creating an EXEC procedure.
Remember, if you do not have a PROFILE EXEC procedure on your A disk,
you must issue any of the required commands listed above at the beginning of
each terminal session. To use this terminal session you will require one
GLOBAL TXT LIB command specifying the entire FORTRAN IV library
you are going to use.

e Now that you have a computer and an operating system at your
disposal, you are ready to begin work. Since you will not be using
punched cards, and all your data will be kept in the system's internal
storage, you must identify your collection of data, called files, to the
system (your collection of data in this case is a program). To do so,
you need only choose a unique name (one that does not already exist
on any of your disks) for it. Strictly speaking, a CMS file is properly
identified by filename, filetype, and filemode. The filename identifies
the file; the file type indicates the contents of the file, and the filemode
determines on which of your disks the file is to be placed. Only the
filename and file type are required for the purposes of this example.

19

20

•

•

The default file mode of Al is accepted throughout. To avoid the use
of duplicate filenames, type a LISTFILE command. CMS will type a
list of all the files that are being kept on your disks .

You will notice that the system types the characters R; after the list of
files. This is a ready message that indicates the system has successfully
completed your request and is ready for the next command. Should
the system fail to operate properly after the message was typed out, all
of the informationpreceeding it will be available. This means that if
you are in the midd!e of a long and complicated series of commands
and code, you do not have to start over should the system fail; you can
begin, after reinitializing the system, immediately following the last
ready message .

After choosing a name for your file, in this case MAGICSQ, you can
use the EDIT command to identify it to the system. By entering the
filename (and, since this will be a FORTRAN source program, a
file type of FORTRAN,) the new file will be created under the
filename of MAGICSQ. The filetype, FORTRAN, tells the CMS
editor that your program statements are to be recorded in a
FORTRAN format. (There are other file types that you will encounter
later in this book.) Since this is a new file, the CMS editor responds
with NEW FILE and enters the EDIT mode. In the EDIT mode, all
the editor subcommands are now available to you. Before you can
begin writing your program, however, you must issue an INPUT
subcommand. This command causes the editor to enter the INPUT
mode, in which all subsequent lines will be treated as input data and
will become part of the file MAGIC SQ. Since the editor recognizes
the FORTRAN filetype, an internal set of tabs is established. By
depressing the TAB key editor will automatically begin entering the
line in column 7; thereby, saving you the trouble of spacing to column
7 .

• You are now ready to begin writing your FORTRAN program. The
program that you Will write generates a magic square for a number that
you provide from the terminal. The magic square for a number
consists of a set of numbers (none of them repeated) that are arranged
into a square, so that each row, column, and diagnonal add up to the
original number.

Example:

This is the magic square for the number 45.

18 11 16

13 15 17

14 19 12

To keep this program relatively simple, the magic square produced is
limited to 3-by-3 and the numbers, for which the square can be
generated, must be greater than 15 and divisible by 3. In accordance
with good programming practice comments have been included that
describe what the program does and how it works. Additional
comment lines, containing the letter C, have been included to highlight
the text of the comments and make them easier to read. The program

•
has been purposely written with errors built-in to demonstrate some of
the facilities of the CMS context editor .

The first contrived error occurs at this point in the sample program.
The right parenthesis has been purposely omitted and a carriage return
CR has been entered to complete the line.

e To correct the error in the middle of your program, you must go from
the INPUT mode to the EDIT mode. A null line (that is, CR only)
entered at the terminal does this switching of modes for you. Simply
strike the CR key and a null line is entered. The editor responds with
EDIT: and the system is back in the EDIT mode ready to receive
editor subcommands.

• The TYPE subcommand is used to verify the position of the editor's
"pointer" at the line that contained the error.

e To make the correction, enter the CHANGE subcommand with a
unique portion of the text that contains the error and the same portion
of text repeated but with the error corrected. The portion of text you
specify must be unique. If not, later portions of your program that
contain the same combination of characters may be inadvertantly
changed also. It is assumed that verification is in effect and that the
system will retype the corrected line as an additional check. (If you do
not have verification in effect, you may issue a VERIFY ON command
before you correct this error.)

• To resume writing your program, enter the INPUT subcommand and
the editor reenters the input mode, as the response INPUT: indicates.

• This statement exceeds 72 characters, the maximum length permitted
for FORTRAN source statements. To enter it within the confines of a
72-character line, you must continue the additional portion on the next
line preceded by a continuation character (in this case an X) in column
6. You cannot use the TAB key in this situation; you must use the
SPACE bar to position the carrier in column 6. In handling literal data
of this type, avoid writing, in one statement, a string of characters that
will exceed the maximum length of the terminal's printed line, 132.

CD This repetition of the same FORTRAN statement is the second error
in the program. It will be corrected after the program is complete but
before it is compiled. Continue on.

e This statement contains an erroneous statement label. It is the last
error that has been included in the source program. It has been left
uncorrected for the time being so that it will cause the compiler to
generate an error message when you attempt to compile this program.

• With the END statement, you have finished writing your program.
Before compiling it, though, check through it for mistakes. Assume
that you find only the error mentioned in item 15 above. To correct
this error, you must enter the EDIT mode. As you have done before,
hit the CR key to enter the edit mode.

• Issue a TOP subcommand to position the editor's pointer at the
beginning of the file. You can now use the FIND subcommand to
position the pointer at a line near the one in error. In this situation,
the FIND subcommand saves you time since you do not have to

21

22

identify each WRITE statement that preceded the one you want, as
would be required with the LOCATE subcommand (described later in
this section). The line found by the subcommand is typed out for you.

• The UP subcommand again can be used to move the pointer up to the
line you want.

e The DELETE subcommand removes the extra WRITE statement from·
your program.

• Before you can compile this program you must file it (that is, store it)
on one of your disks. The FILE subcommand will do this for you.
Once your source program is filed on one of your disks under the name
MAGICSQ, the ready message signals that you have returned to CMS
and you may enter a compiler command.

• You are now ready to compile your program. A FORTRAN compiler
command (in this case FORTGI) specifying the file name MAGICSQ
is all that is needed.

• As you can see, the error that was left uncorrected caused a compiler
error message to be typed out and a CMS return code (00008) to be
included in the ready message. The return code, in this case, indicates
that errors were detected during compilation that may prevent the
program from executing. The return code corresponds to the severity
code of the compiler error message. message to appear as predicted.
The normal compiler error message is typed out, and, in addition, a
CMS return code accompanies it.

• Of course, you must correct the error before the program can be
recompiled. Since the file is already on a disk, the EDIT command
must be used to regain access to its contents. In response to the
command, the CMS enters the EDIT mode and responds with EDIT:.

• The LOCATE subcommand causes the editor to search your text until
a match is found for the character string that you specify. Here, you
are searching for the IF statement that contains the undefined label.
As you can see, in this case, the first match is not the line you want.
Enter the LOCATE subcommand again. The second match is also not
the line you want. Enter the subcommand again. The third match
locates the right statement. Both the CHANGE and FILE
subcommands are used as described previously: CHANGE corrects
the error, and FILE replaces the old copy of the program on your disk
with the new, corrected copy.

• Recompile the program using the FORTGI command a second time.
This time the compilation is successful and a ready message appears
without a return code indicating that no errors were detected in your
program.

• If you would like to test the program and actually produce a magic
square, enter the LOAD command and specify the name of the
program, MAGICSQ. The program will begin executing. From then
on, follow the instructions that are typed out by the magic square
program.

• Since the compiler generates a default name of MAIN for the
executable code produced for your program, enter a START MAIN
command.

When the program has finished executing', a ready message will appear.
At this point you may continue using eMS and try some programming
on your own or you may log off the system by entering the LOGOUT
command. The system responds again with a summary of the time
your session used and breaks the connection between your terminal
and the computer. The DATA light on the telephone (data set) goes
out and your terminal session is over.

23

24

Pages 25, 27, 27.2, 27.4, and 28 are foldout

pages and have been assembled inside the back

cover. These pages should be removed and

placed following this page in your manual.

I
o
•
o •
o

Dial into vm/3 70
VM/370 ONLINE
login eustace
ENTER PASSWORD:

CP WILL BE UP 24 HOURS A DAY

XXXXXXXXXX

LOGON AT 11 .02.09 EST ON THURSDAY 11/30/72

ipl cms
CMS ... VERSION 1.0 11/30/72

listfile
FILENAME FILETYPE FM
INDIAN FORTRAN A1
DUMPREST ASSEMBLE A1
SUPERSCR ASSEMBLE A1
MY FORTRAN A1
INDIAN TEXT Al
FORTCLG EXEC Al
DUMPREST LISTING A1
INDIAN LISTING A1
R· I

edi t magicsq fortran
NEW FILE.
EDIT:
input
INPUT:

ccCCCCCCCCCCCCC
C C
c
c
c
c

magicsq

this is a program for generating a 3-by-3 magic square

c
c
c
c

c this section of the program requests the name of the user that wants to gener:ate the C
C mag i c square. c.
CCC

@

wri te (6,5)
format (, please enter your name preceded by a blank')
read (5,10 @

EDIT:
type

READ (5,10
change /10/10)/

READ (5,10)
input
INPUT:
10 format ('name ')

CCC
C this section of the program requests the number for which the user wants the magic C
C square generated. C

CCC
15 wr i te (6,20)

wr i te (6,22)
wr i te (6, 24)

• 20 format (I enter an integer number of up to 8 digi ts that is greate
xr than 14 and divisible by 3')

25

•

•

22 format (, you must precede it with enough blanks to make up 8 digi
xts')

24 format (, for example - if your number is 3 digi ts long precede it
x with 5 blanks')

25 read (5,30) number
30 format (i8)
CCC
c this section of the program tests the number selected by the user to see if it is C
C larger than 14 - if not, a message is typed out and the user is asked to enter a new C
Cnumber. C
CCccccccccccccc

if (number-15) 35, 45, 45
35 write(6,40)
40 format (, sorry, your number is too small')

go to 15
ccc
cthis section of the program tests the number to see if it is divisible by 3 - if not, a C
Cmessaae is typed out and the user is asked to enter a new number. C
ccc
45 if (mod(number, 3)) 50 I 60, 50
50 write(6,55)
55 format (I sorry, your number is not divisible by 3 I)

go to 15

CCccccccccccccc
C if the number the user has selected survives the two tests this section of the C
C program calculates the magic square. C
ccCCCCCCCCCCCCC
60 ib = number/3-4

ia == ib + 7
ic == ib + 5
id = ib + 2
ie == ib + 4
if = ib + 6
ig = ib + 3
ih = ib + 8
ii == ib..j. 1

CCC
C this section of the program prints out the magic square. C
CCC

wr i te (6, 10)
wr i te (6, 1 0)
wri te (6,65) number

65 format (, here is the magic square for the number' , i8)
write (6,70) ia, ib, ic
write (6,70) id, ie, if
write (6,70) ig, ih, ii

70 format (3(ilO))

CCCCCGCCC
C this section of the program asks the user if he wants to enter a new number - if he C
C answers yes, he is asked to enter a new number - if he answer no, tf.ie program ends. . C
CCc

wri te (6,75)
75 format (, want to try again? type in yes or no I)

read (5,80) noqui t
80 format (a4)

data nos top/ 'yes '/
if (noquit.eq.nostop) go to 14
write (6,85)

27

G)
G)

I

• •

•
• •

85 format (, thank you for playing - good day I)

stop
end

@
EDIT:
TOP
TOF:
find 65
65 FORMAT (, HERE IS THE MAGIC SQUARE FOR THE NUMBER' ,18)
up 2

WRITE (6,10)
delete
file
R;

fortgi magicsq
G 1 COMPILER ENTERED
IGI022I UNDEFINED LABEL

14
SOURCE ANALYZED
PROGRAM NAME = MAIN
*001 DIAGNOSTICS GENERATED, HIGHEST SEVERITY LEVEL IS 8
R(00008) ;

edit magicsq
EDIT:
locate lifl

IF (NUMBER-15) 35, 45, 45
locate lifl

IF = IB + 6
locate lifl

IF (NOQUIT. EQ. NOSTOP) GO TO 14
change Igo to 14/go to lSI

IF (NOQUIT. EQ. NOS TOP) GO TO 15
file
R;

fortgi magicsq
G 1 COMPILER, ENTERED
SOURCE ANALYZED
PROGRAM NAME = MAIN
* NO DIAGNOSTICS GENERATED
R;

load magicsq
R;

start main

27.2

6)

EXECUTION BEGINS ...
PLEASE ENTER YOUR NAME PRECEDED BY A BLANK
EUSTACE MCGARGLE
ENTER AN INTEGER NUMBER OF UP TO 8 DIGITS THAT IS GREATER THAN 14 AND DIVISIBLE BY 3
YOU MUST PRECEDE IT WITH ENOUGH BLANKS TO MAKE UP 8 DIGITS
FOR EXAMPL - IF YOUR NUMBER IS 3 DIGITS LONG PRECEDE IT WITH 5 BLANKS

45

EUSTACE MCGARGLE
HERE IS THE MAGIC SQUARE FOR THE NUMBER 45

18 11 16

13 15 17
14 19 12

WANT TO TRY AGAIN? TYPE IN YES OR NO

no
THANK YOU FOR PLAYING - GOOD DAY

R;

logout
CONNECT= 00: 55: 00 VIRTCPU= 000: 11 .91 TOTCPU= 000: 31 .40

LOGOUT AT 11.23.43 EST ON THURSDAY 11/30/72

27.4

VM/370 Commands for the FORTRAN IV Programmer

28

The commands listed in Figure 2 represent only a part of the entire VM/370
command language, which is described in the publications IBM VM/370
Command Language User's Guide, Order No. GC20-1804 and IBM
VM/370 EDIT Guide, Order No. GC20-180S.

These commands were selected because they best meet the typical needs of
the FORTRAN IV programmer. System commands thatare not normally
required or that would be used only by system programmers, system
operators, or system maintenance personnel have been omitted. The
commands are presented alphabetically, and the underlined portion of the
command word identifies the shortest valid abbreviation for that command.
Should you require detailed information about the commands listed here, or
should the needs of your work require commands that are beyond the scope
of this section, consult the publications mentioned above.

CP Commands CMS Commands and Function
Subcommands

ACCESS Activates a virtual disk for the user.

BEGIN Returns the system to the CMS environment and resumes execution of a
program.

CONVERT l Invokes the SIFT utility.

CP Transmits CP commands to the control program without leaving the CMS
environment.

EDIT Enters the EDIT mode and makes the following subcommands available to -
the user for file creation and alteration. Entering a null line puts the editor
into the INPUT mode.

BOTTOM Moves the editor's pointer to the last line of a file.

CHANGE Replaces a string of characters with another in one or more lines.

DELETE Deletes one or more lines from a file.

DOWN Moves the editor's pointer to a subsequent line.

FILE Places a file on the user's disk and leaves the EDIT mode.

FIND - Performs a string search, which is column-dependent, for the specified group
of characters. The search begins with the next line or the top of the file if the
pointer is at the end of the file.

FMODE Changes the filemode of a file.

FNAME Changes the filename of a file.

QETFILE Includes a part of an existing file in the file being created.

INPUT Enters the input mode and accepts subsequent lines as part of the file being
created.

1.0CATE Performs a string search, which is not column-dependent, for the specified
group of characters. The search begins with the current position of the
editor's pointer.

NEXT Moves the editor's pointer to the next line of a file.

QUIT Terminates the operation of the editor without effecting any modifications.

Figure 2. VM/370 Commands Frequently Used by FORTRAN Programmers (Part 1 of 3)

29

B,EPLACE Replaces a line with one or more lines.

TOP Moves the editor's pointer to the null line at the beginning of a file.

LYPE Types all or part of a file being created.

UP Moves the editor's pointer to a previous line of a file.

YERIFY Controls the typing of (lOY lines that have been changed or replaced.

ERASE Deletes a file from the user's read/write disk.

gEC Executes a file containing one or more CMS commands.

FILEDEF Specifies input and output devices and file characteristics to be used by a
program during execution.

FORTGI1 Invokes the FORTRAN IV (GO Compiler.

FORTHX1 Invokes the FORTRAN IV (H Extended) Compiler.

GLOBAL Specifies text libraries to be searched in resolving external references in a
program that is being loaded.

GOFORT1 Invokes the Code and Go FORTRAN IV Compiler.

IPL Simulates an initial program load for the user's virtual machine.

HT Suppresses the typing of output at the user's terminal.

HX Stops the execution of any CMS command and returns the user to the CMS
environment.

lliCLUDE Permits the inclusion of additional TEXT files for use during the execution of a
program.

!;:,ISTFILE Provides a list of all the files that exist on disks that the user has access to
during a terminal session.

LOAD Loads a TEXT file into storage and establishes the proper linkages for it to be
executed.

Figure 2. VM/370 Commands Frequently Used by FORTRAN Programmers (Part 2 of 3)

30

LOGIN Identifies the user to VM/370. -
lQ,g0UT Terminates the terminal session.

~INT Prints a file on the off-line printer in the user's computing center.

.!!1!NCH Punches a card deck for a file on an offline card punch unit in the user's
computing center.

.2,UERY .2.UERY Types out the status of the user's virtual configuration and user-defined
parameters.

READCARD - Transfers a virtual card deck from the spooled reader to a disk file.

RENAME Changes the filename, filetype, or filemode of a file. -
RT Restores typing of output, previously suppressed by HT command.

RUN Initiates processing, loading, and execution of a source file.

SET SET Sets operational characteristics for the user's virtual machine. -
SORT Sorts the contents of a file.

START Begins execution of a previously loaded file.

STATE Verifies the existance of a file.

I TERMINAL - Sets operational characteristics for the user's terminal.

I

TESTFORT1 Invokes FORTRAN Interactive Debug.

TYPE Types all or a part of a file at the user's terminal. -
IThese commands are available only as program products

Figure 2. VM/370 Commands Frequently Used by FORTRAN Programmers (Part 3 of 3)

31

eMS Programming Considerations

A vital aspect of FORTRAN programming under CMS is the creatkln and
management of CMS files. You must create files to hold your FORTRAN
source programs. The compiler, in processing your programs, creates files
that contain its listing and the executable code it produces~ Some of your
programs, during their execution, may process or create files containing data.
This section describes files in a FORTRAN context. Additional information
on CMS file management can be found in the publication IBM VM /370
Command Language Guide for General Users, Order No. GC20-1804.

FORTRAN IV Source Files

Before you can invoke the FORTRAN IV (G 1), Code and Go FORTRAN
IV, or FORTRAN IV (H Extended) compiler, you must have a FORTRAN
source program available in a CMS file on one of your disks. The source
program is usually created using the CMS EDIT facilities, and may be written
in either fixed-form or free-form language format, depending upon the
compiler you will be using to compile it. Fixed-form source is acceptable to
all the compilers, while free-form source is acceptable to only the Code and
Go compiler. You may create these files at your terminal just prior to
compiling them or they may be old files, created some time ago, which you
want to recompile. In either case, all FORTRAN source files must have a
CMS file identifier and file characteristics that conform to the requirements of
the compilers.

Identifying FORTRAN Source Files

32

Every FORTRAN source file that you intend to compile, requires a file
identifier with the following format:

filename {FORTRAN} [filemode]
FREEFORT

where:

filename is any valid CMS filename. A valid name consists of
from one to eight alphameric characters, which may
be any combination of the following:

• Upper Case Letters A through Z

• Lower Case Letters a through z

FORTRAN

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-920 1

• Numbers 0 through 9

• National Characters $, #, or @

is the filetype for a CMS file that contains
fixed-length, fixed-form FORTRAN IV records. A
FORTRAN record consists of a card image or a line
entered at the terminal. Fixed-form records observe
the standard column alignment of the FORTRAN IV
language (see the publication IBM System/360 and
System/370 FORTRAN IV Language, Order No.
GC28-6515, for a complete description of the
FORTRAN language). For example:

Column 7
c sample text

10 d = 10.5
go to 56

150 a b + c*(d + e**f +
xg + h - 2.*(g + p))

c = 3

Note: Files with a file type of FORTRAN can also contain fixed-length
free-form records, similar in form to these described below under the heading
"FREEFORT." However, the use of the FORTRAN filetype for free-form
records is not recommended, since it requires inefficient use of disk space and
these source files are not acceptable to FORTRAN Interactive Debug.
Information on converting these files to variable length files with a filetype of
FREEFORT can be found in "Appendix C: SIFT Utility."

FREEFORT -

filemode

is the filetype for a CMS file that contains
variable-length free-form FORTRAN IV records.
Here, too, a FORTRAN record consists of a card
image or a line entered at the terminal. Free-form
records need not observe any column alignment (see
the section "Free-Form Input" for a detailed
description of preparing free-form FORTRAN
statements). For example, the portion of a
FORTRAN program shown above in fixed-form
would appear like this in free-form:

" " sample text
10d=10.5
go to 56
150 a = b + c*(d + e**f +
g+h-2.*(q+p))
c = 3

is any valid CMS filemode. A valid file mode consists
of two characters. The first is alphabetic and
corresponds to the name of the disk on which the files
resides or is to be placed. The second is numeric and
indicates the way in which the disk is to be accessed,
that is, read/write, read only, read and erase, or OS
simulation. See the publication IBM VM /370
Command Language Guide for General Users,
Order No. GC20-1804 for detailed information on
filemodes.

33

Characteristics 0/ FORTRAN Source Files

Fixed-Form Files (Filetype of FORTRAN)

Fixed-form FORTRAN files contain records that are 80 characters long. You
may type FORTRAN statements or con~inuation lines of up to 72 characters,
including statement numbers. The remaining 8 characters are filled in by
CMS with a sequence number.

Free-Form Files (Filetype of FREEFORT)

Free-form FORTRAN files contain variable length records that are a
maximum of 81 characters long. The first 8 characters are line numbers
supplied by the CMS editor. You may type your FORTRAN statements or
continuation lines, including statement numbers, in the remaining 73
characters.

Creating New FORTRAN Source Files

You can easily create new FORTRAN source files at your terminal in either
fixed- or free-form using the facilities of the CMS editor.

Creating Fixed-Form Files (Filetype of FORTRAN)

34

To create a fixed-form source file, type in the EDIT command; specify a
unique filename, and assign it a filetype of FORTRAN.

Example:

edit newprog fortran
NEW FILE:
EDIT:
input
INPUT:

The CMS editor responds to the new filename. The editor recognizes the
file type FORTRAN and will align the subsequent input lines- in a fixed
FORTRAN format by setting its internal tabs at the correct locations (that is,
columns 7 and 10). Striking the TAB key on your keyboard will
automatically position the text internally in column 7, regardless of the
mechanical tab positions that are set for your terminal. You should, however,
set the mechanical tabs on your terminal accordingly, or the terminal listing
sheet may not appear as expected or be unreadable. Enter an INPUT
subcommand to indicate that you are entering source statements. You may
enter your source statements as follows, where the symbols (!), @, and @
represent a TAB, SPACE, and RETURN:

")

1000
00
00
@@@@@x
2000
00
00
00
@

EDIT:
file@
R;

format@(3f8. 2)@
read@(5, 10)@p,r,t@
a=p*(l+r/@
100)**t@
format@(f8. 2)@
write@(6,20)@a@
stop@
end@

Page of SC28-6891-0, -1
Added May 13, 1977
By TNL SN20-9225

Note: For continuation lines, do not tab to column 7 and backspace to
column 6. Use the space bar to space to column 6 from the beginning of the
line.

The statements shown above are arranged by the editor into the following
fixed FORTRAN format.

10 FORMAT (3F8.2)
READ (5 , 1 0) P , R , T
A = p*(1 + R/

X 100)**T
20 FORMAT (F8.3)

WRITE (6,20) A
STOP
END

When you have completed your program or when you need to make
corrections, be sure to hit two carrier returns. The first return ends the line
you are entering, and the second indicates that you have reached the end of
your input and want to enter editor subcommands. If you do not hit the
second return, any subsequent editor subcommands that you may enter will
be treated as additional lines in your program. The full range of editor
subcommands can be used to modify your source code. When you have
completed your program, it must be filed using the FILE subcommand before
you can enter the command required by the FORTRAN compiler you are
going to use. See the sections in this book that describe how to use your
particular compiler.

Creating Free-Form Files (Filetype of FREEFORT)

To create a free-form source file, type in the EDIT command; specify a
unique filename, and assign it filetype of FREEFORT.

Example:

edit newprog2 free fort
NEW FILE:
EDIT:
input
INPUT:
00000010

34.1

The CMS editor responds to the new filename and recognizes the file type of
FREEFORT. Enter an INPUT subcommand to indicate that you are entering
source statements. The editor prompts you with a line number. This line
number can be used to locate a line when editing your file and is acceptable to
FORTRAN Interactive Debug, a program product that is available for
debugging Code and Go programs. Do not confuse this number with the
FORTRAN statement number. You must still supply a statement number for
any statements that require them (for example, FORMAT statements, target
statements of a GO TO or IF statement, and the end of range statements in
DO loops). You may enter your FORTRAN statements immediately after
the CMS-supplied line number, as follows without regard for column
alignment or tab settings:

00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000100

EDIT:
file
R;

""sample program
1 0 forma t (3 f 8 . 2)
read (5 , 1 0) p, r, t
a=p*(l+r/-
100)**t
20 forma t (f 8 . 2)
write(6,20)a
stop
end

Note: The space between the line numbers and the FORTRAN statements
has been inserted for clarity; it is not required and can be omitted. Since the
CMS escape character is a quote, a second quote is required at the beginning
of the comment line. An alternative would be to change the escape character.

When you have completed your program or when you need to make a
correction, be sure to hit two carrier returns. The first return ends the line
you are entering, and a new line number will be typed out. The second
return, immediately after the line number, indicates that you have reached the
end of your input and want to enter editor subcommands. If you do not hit
the second return, any subsequent editor subcommands that you may enter
will be treated as additional lines in your program. The full range of editor
subcommands can be used to modify your source code. When you have
completed your program, it must be filed using the FILE subcommand before
you can enter the GOFORT compiler command for the Code and Go
compiler. See the section of this book that describes how to use the Code and
Go compiler.

Preparing to Compile FORTRAN Source Programs

34.2

If you have an existing FORTRAN source program that is already filed in
your system, and you wish to compile it, first, -make sure that it has a filetype
of FORTRAN or FREEFORT. (Remember, that only Code and Go accepts
both FORTRAN and FREEFORT filetypes.) Use the LISTFILE command
specifying the name of the file you want. This will type a list of the file

Page of SC28-6891-0,-1
Added May 13, 1977
By TNL SN20-9225

identifiers that you have already used. If necessary, change the filetype, as in
the example below, with the RENAME command and then issue the
appropriate command (in this case FORTGI) to begin compilation.

Example:

1 istf i le oldprog *
FILENAME FILETYPE MODE
OLDPROG
R;

SOURCE Al

rename oldprog source * oldprog fortran *
R;

fortgi oldprog
Gl COMPILER ENTERED
SOURCE ANALYZED
PROGRAM NAME = MAIN
* NO DIAGNOSTICS GENERATED
R;

If you have just created your FORTRAN program and assigned it the
file type FORTRAN or FREEFORT in your EDIT command, you need only
issue the appropriate compiler command.

Example:

If all the defaults are acceptable:

fortgi newprog

or, if any of the defaults are to be changed:

fortgi newprog (bcd print id list)

CMS Return Codes Following Compiler Commands

eMS produces a return code following the execution of a FORTRAN
compiler command. It appears in the ready message and corresponds to the
highest diagnostic message severity level encountered during the compilation.

Example:

R(00004);

The meaning of the return codes are shown in Figure 3.

34.3

Code

00000

00004

00008

00012

00016

Meaning

No errors were detected. There may be warning messages,

however. If a warning message is produced, check your program

for possible errors, as the reliability of your results may be in doubt.

Possible errors were detected or warning messages were issued.

Execution of your program should be successful, but the result may
not be reliable.

Errors were detected. Compilation continues but execution may

fail. If specified, an object module will be created but you may not

be able to execute it.

Severe errors were detected. Compilation may not continue; if it

does, execution of the program is impossible.

Extremely severe errors were detected. Compilation terminates at
the point at which the error was detected.

Figure 3. CMS Return Codes for FORTRAN Compilations

Entering FORTRAN Source Files from Devices other than the Terminal

You may have FORTRAN source files on tape or punched cards. To make
these files known to the system, you must issue a FILEDEF command whose
ddname is FORTRAN and which specifies the appropriate device type.

Examples:

To use a source file on tape, issue the following FILEDEF:

filedef fortran tapl

where:

n is a number from 1 through 4 that corresponds to virtual tape units
181 through 184.

To use a source file on a deck of cards, issue the following FILEDEF:

filedef fortran reader

FORTRAN Compiler Output Files

As a result of a compilation, two files may be produced with filetypes of
LISTIN G and TEXT. These files are placed on the same disk as your
FORTRAN source file. If this source disk is read only (R/O), the system
determines if the disk containing your source program is a read only (R/ 0)
extension of a read/write (R/W) disk. If it is an extension, the system will
attempt to put the LISTING and TEXT files on the R/W parent disk. If this
alternative fails, the system will try to put the output files on your primary

35

Page of SC28-6891-0,-1
Revised March 18, 1977
By TNL SN20-9201

LISTING File

(A) disk. Should that also fail, an error condition exists, and a message is
typed at your terminal. You must either issue an ACCESS command to make
available a disk on which the system can place the compiler output files or
specify compiler options that will not produce these files before you can
reissue a compiler command.

The LISTING file is a CMS disk file that can be optionally produced by your
compiler. The file contents depend upon the compiler command options
specified. Figure 4 below indicates how the LISTING file can be created for
your particular compiler.

Compiler When a LISTING File is Produced

FORTRAN IV (G 1) Always produced, unless the NOPRINT option
is specified with the FORTGI command.

Code and Go FORTRAN IV Produced for error messages or when the
SOURCE option is specified with the GOFORT
command.

FORTRAN IV (H Extended) Always produced unless the NOPRINT option
is specified with the FORTHX command.
Produced on the offline printer, instead of
the primary disk, when the PRINT compilation
option is specified.

Figure 4. Producing a LISTING File with Various Compilers

When produced, CMS gives the LISTING file the same filename as your
source program but a file type of LISTING. This file collects all the
information that is usually included in a compiler output listing.

Obtaining a Printed Copy of Your LISTING File

36

Normally, the LISTING file is written on a disk (since DISK is the default
option for the compiler commands). Should you wish a printed copy of this
file, you need only issue a PRINT command to obtain a listing on the off -line
printer in your computing center. You can, in addition, issue a TYPE
command to examine the contents of the file at your terminal.

Example:

print newprog listing

or:

type newprog listing

Retaining LISTING Files

If you do not want to place a copy of your LISTING file on disk and only
want a printed copy, you must specify the PRINT option with your compiler
command.

Example:

fortgi newprog (list print)

All LISTING files are placed on one of your accessible read/write disks
unless the PRINT or NOPRINT options are in effect. These files will remain
there until you delete them or they are replaced by the new LISTING file
when you recompile the same source program. (When the options specified
for the new compilation do not produce a LISTING file on disk or when the
program abnormally terminates, the old LISTING file may not be replaced.)
If you want to keep a permanent copy of old LISTING files on your disks, it
is advisable to rename them with any unique filetype before the next
compilation is begun. You can use the RENAr"fE command for this.

Example:

fortgi newprog (list)
G 1 COMP I LER ENTERED

SOURCE ANALYZED
PROGRAM NAME = MAIN
* NO DIAGNOS'rICS GENERATED

Ri

listfile newprog '*
FILENAME
NEWPROG
NEWPROG
NEWPROG

Ri

FILETYPE
FORTRAN
TEXT
LISTING

rename newprog listing * newprog oldlist *
Ri

fortgi newprog (list)
G 1 COMPILER ENTERED

SOURCE ANALYZED
PROGRAM NAME = .MAIN
* NO DIAGNOSTICS GENERATED

Ri

listfile newprog *
FILENAME
NEWPROG
NEWPROG

NEWPROG
NEWPROG

FILETYPE
FORTRAN
OLDLIST
TEXT

LISTING

FM
A1
A1
A1

FM
A1
A1
A1
A1

37

TEXT File

The TEXT file is a CMS disk file that can be optionally produced by your
compiler depending upon the options specified with the compiler command.
Figure 5 below indicates when the TEXT file is created for your partic1uar
compiler.

Compiler When a TEXT File is Produced

FORTRAN IV (Gl) Always produced unless the NOLOAD
option is specified with the FORTGI
command

Code and Go FORTRAN IV Whenever the DECK or TEST option is
specified with the GOFORT command

FORTRAN IV (H Extended) Always produced unless the NOOBJECT
option is specified the the FORTHX
command

Figure 5. Producing a TEXT File with Various Compilers

When produced, CMS gives the TEXT file the same filename as your source
program but a file type of TEXT. The file contains the executable code that is
created from your FORTRAN source program. The TEXT files produced
under CMS are identical to object programs produced under OS. The code
contained in the TEXT file may be loaded and executed under CMS or
transferred, link edited, and executed under OS.

For more information on loading and eX,ecuting TEXT files under CMS,
refer to the appropriate section in this book describing your compiler; for
information on link editing and executing object programs under OS, see the
OS programmer's guide appropriate for your compiler.

Identifying Programs in a TEXT File

38

The entry point name for a main program in a TEXT file is the name you
specified for the NAME option of the compiler command or its default.
Subprograms have the entry point name that you specified in the fORTRAN
SUBROUTINE statement. A main program that follows a subprogram has
the name MAIN.

The copy of the TEXT file pseudo-assembler listing that is included in your
LISTING file contains an identification for the programs in it. Columns
73-76 of each line of code contain four characters that identify whether that
code was generated for a main program or subprogram as follows:

• Main Programs -- The first four characters of the name specified by
the compiler NAME option or the letters MAIN.

Retaining TEXT Files

• Subprograms -- The first four characters of the name specified in the
SUBROUTINE statement.

All Tt:XT files are placed on one of your accessible read/write disks. The
criteria to determine which disk will be used is the same as that for the
LISTING file. These files will remain there until you delete them or they are
replaced by the new TEXT file that is produced when you recompile the same
source program. (When the options specified for the new compilation do not
produce a TEXT file on disk or when the program abnormally terminates, the
old TEXT file may not be replaced.) Therefore, if you want to keep a copy
of old TEXT files on your disks, it is advisable to rename them with any
unique filetype before the next compilation is begun. You can use the
RENAME command for this.

Example:

fortgi newprog (load)
G 1 COMP I LER ENTERED
SOURCE ANALYSED
PROGRAM NAME = MAIN
* NO DIAGNOSTICS GENERATED
R;

listfile newprog *
FILENAME
NEWPROG
NEWPROG
NEWPROG
R;

FILETYPE
FORTRAN
LISTING
TEXT

rename newprogtext * newprog oldtext =
R;

fortgi newprog (load)
G 1 COMPI LER ENTERED
SOURCE ANALYSED
PROGRAM NAME = MAIN
* NODIAGNOS'I'ICS GENERATED
R;

listfile newprog *
FILENANE FILETYPE
NEWPROG FORTRAN
NEWPROG OLDTEXT
NEWPROG TEXT
NEWPROG LISTING
R;

FM
Al
A1
A1

FM
A1
Al
A1
A1

39

Contents of the TEXT File

40

A TEXT file can be produced by the FORTRAN IV (Gt), Code and Go
FORTRAN IV and FORTRAN IV (H Extended) compilers. The file
contains the executable codes in 80 column card format. There are four types
of 80 column card formats. These are identified by the characters ESD,
RLD, TXT, or END in columns 2 through 4. Column 1 of each card format
contains a 12-2-9 punch. Columns 73 through 80 contain the first four
characters of the program name followed by a four-digit sequence number.
The remainder of the card contains program identification.

ESD CARD: ESD cards describe the entries of the External Symbol
Dictioriary, which contains one entry for each external symbol defined or
referred to within a module. For example, if program MAIN calls
subprogram SUBA, the symbol SUBA will appear as an entry in the Symbol
Dictionaries of both the program MAIN and the subprogram SUBA. CMS
matches the entries in the dictionaries of other included subprograms, and
when necessary, to the library.

ESD cards are divided into four types, and are identified by the digits 0, 1,
2, or 5 in column 25 of the first entry in the card, column 41 if a second
entry, and column 57 is a third entry (there can be 1,2, or 3 external symbol
entries in a card). The ESD types are described in Figure 6.

ESD Contents

0 Name of the program or subprogram, and indicates the beginning
of the module. It will assume the FORTRAN default value of
MAIN if you have not specified a name in the compiler command.
The name of a subprogram will come from the SUBROUTINE,
FUNCTION, or BLOCK DATA statement.

1 Entry point name appearing in an ENTRY statement of a
subprogram

2 Name of a subprogram referred to by the source module through
CALL statements, EXTERNAL statements, and explicit and
implicit function references. (Some usages of FORTRAN are of
such complexity, that they call in a function subprogram instead of
generating in-line coding; these are implicit function references)

5 Information about a COMMON block.

Figure 6. Types of ESD Card Formats in FORTRAN TEXT Files

TXT CARD: TXT cards contain the constants and variables used by the
programmer in his source module, any constants and variables generated by
the compiler, coded information for FORMAT statements, and the machine
instructions generated by the compiler from the source module.

RLD CARD: RLD cards describe entries in the Relocation Diclionary
which contain one entry for each address that must be resolved before a
module can be executed. The Relocation Dictionary contains information
that enables absolute storage addresses to be established when a module is
loaded into main storage for execution. RLD cards contain the storage
address of subprograms called by ESD type 2 cards.

END CARD: The END card indicates the end of the object module, the
relative location of the main entry point, and the length (in bytes) of the
object module.

Figures 7 and 8 show typical deck structures for the FORTRAN compilers
under eMS.

Figure 7. TEXT File Structure Produced by the FORTRAN IV (Gt) and Code and Go
Compilers

Figure 8. Object Module Deck Structure Produced by the FORTRAN IV (H Extended)
Compiler

41

Execution-T~me Input and Output Files

In using TEXT files to do your work, it may be necessary to provide them
with information or have your programs create data. Information can be
presented to and retrieved from your programs through these execution-time
files.

There are two methods by which execution-time files can be organized and
processed: sequential and direct access. Sequential files, as the name implies,
store records in sequential order. The first record that is written into the file
occupies the first position in the file. Each succeeding record follows in
order. The need for sequential files is usually dictated by the type of input
and output devices that you are using. Devices such as terminals, tape units,
printers, and card punches can, by design, only handle sequential records.
Disk units can also accept records in a sequential order; however, their design
is more suited for direct access records. Moreover, direct-access units are the
only devices that can accept direct access files. In direct access files, records
are not positioned in a sequential order. The first record written in the file
may not be in the first position, since records are placed in any available
space, and pointers are kept to indicate where the parts of the file reside.

Whether a file is sequential or direct access will, to a great extent,
determine how a record is defined, the way it is identified, and how it is
referred to in a FORTRAN program. The following discussion describes how
files are defined through the use of the CMS FILEDEF command, and how
they are identified to the system through the use of file identifiers and
FORTRAN input and output statements.

Defining Execution-time Files

42

All execution-time files that you want to use must be defined to CMS with a
FILEDEF command. Three files are pre-defined for you. They are:

Sequential

• Terminal Input

• Terminal Output

• Punched Card Output

An initialization routine supplies the FILEDEF for these files. You must
define all the other files that you want to use. They include:

Sequential

• Disk Input

• Disk Output

Pre-defined Files

• Tape Input

• Tape Output

• Punched Card Input

• Printed Output

Direct Access

• Disk Input

• Disk Output

You must supply your own FILEDEF command for any of these files used by
your program. In addition, you may change or replace the three pre-defined
files by supplying FILEDEF commands of your own for them. Regardless of
the type of file you are using, there are several general guidelines that must be
followed in defining and using files.

• Each file that you use in your program must be defined to the system
(either through a system-supplied definition or one that you supply).

• Do not use the same definition for more than one file.

• Do not use the same file on more than one type of device in the same
program.

• You may refer to the same file from more than one program through
different devices and access methods, if you change the file and its
definition appropriately before using it.

Three pre-defined files are provided for you by the FORTRAN initialization
routine. These files are recognized by CMS when you refer to them in
FORTRAN input or output statements with the FORTRAN data set
reference number that has been assigned to them. Since they are pre-defined
you do not have to supply a FILEDEF command for them, unless you want
to change their definition or create new files to replace them. (See the section
"User-defined Files" for more information.) Figure 9 summarizes the data
set reference numbers that are assigned to pre-defined files, the FORTRAN
input and output statements in which they can be used, the devices utilized,
and the maximum lengths of the records in the file.

, 43

FORTRAN Used in the FoUowing Requires Records of
Data Set FORTRAN Input and the FoUowing Fonnat
Reference Output Statements and Maximum Length
Numbers Identifies

5 READ (5,b) list Terminal Input Fixed-length, unblocked
READ (5,*) list (F), 130 characters long

6 WRITE (6,b) list Terminal Output Fixed-length, unblocked
WRITE (6,*) list (F), 131 characters long

7 WRITE (7,b) list Punched Card Fixed-length, unblocked
Output (F), 80 characters long

Notes: In the input and output statements the variables are:
b - FORI\'1A T statement number
list - series of variables and array names

Figure 9. Summary of Data Set Reference Numbers, Input/Output Statements, and Record Formats Used for Pre-Defined Files

Pre-defined Terminal Input Files

44

You can use the FORTRAN list-directed or sequential READ statements to
read data from your terminal. Data set reference number 5 is available as the
default for terminal input. If you use list-directed input and output, refer to
the section "List-directed Input and Output" for more information. If you
use formatted or unformatted input and output, you should construct a
mechanism (caned self-prompting) in your program to notify yourself that the
program is ready to read data from the terminal. Add, to your program, a
FORMA T statement with a literal field that reminds you what data to enter.
Following the FORMAT statement, include a WRITE statement that will
type the literal at your terminal. Both these statements should precede the
Jist-directed or sequential READ statement that will actually read the data
you want to enter. When your program executes, it will first type out your
reminder at the terminal; it will then wait until you enter your data before
continuing. Remember, if you use formatted input, you mllst type in your
data so that it corresponds to the specifications of the FORMAT statement
that controls it.

Example:

The following statements and the following produce the following
in your program data entered at results at the terminal

your terminal

VJRITE (6, 10) A:::'?

10 FORMP.T (, A='? ')

READ (5, 20) A 00003.4
20 FORMAT (F8.3)

A=A**2
WR I'I'E (6,.3 0) A A=11.S60

30 FORMAT (, A=' ,F8. 3)

Pre-defined Terminal Output Files

You can use FORTRAN list-directed or sequential WRITE statements to
type at your terminal, data created by your FORTRAN program. Data set
reference number 6 is available as the default for terminal output.

Example:

These statements in produce the following
your program at your terminal

'20 FORMAT (F8. 3)
A=1/.+.2
WRITE (6, 2U) A 14.200

All terminal output operations include ASA carriage control characters. Each
output line must be preceded by either a blank or a special character or a
FORMAT statement must supply the required character. Figure 10 illustrates
the variety of terminal printer positions that are available.

Character Printed Format Printer A('tion
blank Single spaced lines The ~alTier i" advanced one lil1L

A line is printed

0 Double spaced lines The carrier is advilnced one line

The carrier is advanced a second line
A Ijnt.~ is printed

Figure 10. ASA Carriage Control Characters

Pre-defined Punched Card Output Files

User-defined F'iles

You may have data created by your program punched into a card deck with
the FORTRAN sequential WRITE statement. Data set reference number 7 is
available as the default for punched output. The data to be punched will be
placed on a spooled punch file and subsequently punched into a deck of cards
on an off-line card punch device. The system identifies your card deck with a
header card that contains your user identification.

User-defined files may already exist in your system, containing data that you
will want your program to process. Conversely, you may want your program
to create a file to hold data that was generated during its execution. Since
they are not pre-defined, they cannot be identified by CMS and associated
with your program. You must define all files, whether new or old, that use
the following access methods and devices:

45

46

Sequential

• Disk Input

• Disk Output

• Tape Input

• Tape Output

• Punched Card Input

Direct Access

• Disk Input

•. Disk Output

You may, in addition, define the following files to be used in place of the
system's pre-defined files or change them to suit your own needs:

Sequential

• Terminal Input

• Terminal Output

• Punched Code Output

To make user-defined files accessible to your programs, you must establish
links to them through the eMS FILEDEF command used in conjunction with
the data set reference numbers in your FORTRAN input and output
statements and the identifier of the file that you want to use or create.

FILEDEF Command for FORTRAN Programmers

Type the Identify
Command the File
Word to be

Used or
Created

FILEDEF ~ ~~name f

*

II

Figure 11 illustrates the general form of the FILEDEF command of interest
to you, the FORTRAN programmer.

Designate the Type of SeleCI Appropriate Options, if Required

Device on which the
File Resides or is to Insert Indicate Device S ta te the Record Indicate
be Created a Left Dependent Options Format and the Whether the

paren· for Terminal, Logical Charac· File is to
thesis Disk, and Tape teristics for be Redefined

Devices Tenninal, Disk,
or Tape Files

TERMINAL (
18UPCASE }] \ LEeFM H \[~J [~~ [PERM]

LOWCASE

[CHANGE ~ ~ DISK
([II II Ifm)) (~TENT I;Q~ NOCHANGE

[LRECL nnJ

{DUMMY ~
DISP MOD ~ BLOCK f "j BLKSIZE

TAP III
,.. -

II l~ I TRACK)

n
TRTCH ~ g~ (

(~T ~
DEN roo 1 556

800
1600

- -I
PRINTER

PUNCH

READER

, CLEAR

Figure 11. General Form of the FILEDEF Command for FORTRAN Programmers

Command Word

FILEDEF

Options

This is a required part of the command and must always
be typed. If you do not include any options after the
command word, all current FILEDEF commands in
effect will be typed at your terminal.

• Establishing a Link Between Input/output Statements and Files

ddname The data definition name provides the link between your
FORTRAN input and output statements and the file that
you want to process or create. The standard FORTRAN
data definition name has the following format:

FTxx Fyyy

47

48

xx

where:

xx is a FORTRAN data set reference number. You
must use this number in any FORTRAN input or
output statements that refer to the fite being
defined. You may not specify 00 as a data set
reference number. This number may range from
01 to a maximum value that was determined for
your system when it was installed. Consult with
your system administrater for the maximum
number available to you.

y'yy is a sequence number (ranging from 001 to 999)
that identifies multiple files under the same data
set reference number. For direct access files this
number is always 001. For sequential files this
number will vary depending upon the order in
which the file is referrerl to in your program. See
the section "Using Multiple Sequential Files" for
more information.

A FORTRAN data set reference number used alone
performs the same function as the ddname; however, it
cannot be used for multifiles, since it generates a default
ddname of FTxxFOOl. The data set reference number
specified must be used in your FORTRAN input and
output statements referring to the file being defined.

• Describing the II 0 Device on Which Your File is to Reside

TERMINAL This option specifies that your user-defined file is to be
read or written at the terminal. By using this option, you
can either change the characteristics of the system's
pre-defined file or create an entirely new file for the
terminal.

UP CASE

Specifies that the data entered at the terminal will appear
on the printout in upper case characters. This is the
default for the option.

LOWCASE

Specifies that the data entered at the terminal will appear
on the printout in lower case characters.

PRINTER This option indicates that your user-defined file is to be
written on an off-line printer. Files defined as
PRINTER may only be used for output.

PUNCH This option indicates that your user-defined file is to be
punched into a card deck. Files defined as PUNCH may
only be used for output.

READER This option indicates that you want to read a
user-defined file consisting of a deck of cards. Files
defined as READER may only be used for input.

DISK

DUMMY

TAPn

This option indicates that you want to usc an existing
disk file or want to create a new one.

in it [im]

If you are reading an existing file you must include its
file identifier. If you are creating a new disk file, you
may supply your own file identifier for it; if you do not,
the system will supply the following default file
identifier:

FILE FTxxr:~YY Al

For files that are defined as spanned (YS or YBS) the
file mode must be specified as 4.

XTENT{nn ISO}

This option must be included in each FILEDEF
command that defines a FORTRAN direct access file
(that is, a file that requires a FORTRAN DEFINE FILE
statement). The variable nn should correspond to the
number of records that you specified in the DEFiNE
FILE statement. If you do not include this option, a
value of 50 records is assumed.

DISP MOD

This option indicates that the read/write pointer is to be
positioned after the last record in the disk file.

This option may be used in place of the DISK option
only. It indicates that no real input or output operation
is to be performed for a disk file. You may also specify
any of the disk options; however, they will be ignored.

This option indicates that you want to use an existing
tape file or create a new one. The variable n represents
the symbolic tape number and can range from 1 through
4. The numbers correspond to tape units attached to
your virtual machine addresses 1 X 1 through 1 X4.

nTRACK

This option indicates the type of tape device being used. n
represents the number of tracks that the tape device
records on. Specify either 7 or 9 for the variable 11.

TRTCH (1(J

This option is used for seven track tapes to indicate the
recording technique that is being used. The variable (1(1

is a code that specifies the parity, converter, and
translator settings. Figure 12 lists the possible technique
specifications that are available for this option.

49

Page of SC28-6891-0,-1
Revised March 18, 1977
By TNL SN20-9201

50

aa parity converter translator

OC odd on off
OT odd off on
0 odd off off
ET even off on
E even off off

Figure 12. Tape Recording Technique Specification Available for the TRTCH Option of
the FILEDEF Command

DEN nnnn

This option indicates the density of the tape being used.
The variable nnnn may specify one of the following
densities: 200, 556, 800, or 1600. If the nTRACK
option has not been included, a density of 200 or 556
assumes a default of 7TRACK and a density of 800 or
1600 assumes a default of 9TRACK.

• Specifying the Format and Logical Characteristics of Your File

aaa

F
FB
V
VB
U
FS
FBS
VS
VBS

RECFM aaa[alThis option indicates the format of the records being
read or written and whether they contain carriage and
print control characters. The variables aaa and a are
codes that represent the possible record formats and
control characters. Figures 13 and 14 list the possible
record formats and control characters available for this
option. The default RECFM is fixed-length records.

Record Format

fixed-length records
fixed-length, blocked records
variable-length records
variable-length, blocked records
undefined-length records
fixed-length, standard block records
fixed-length, blocked, standard block records
variable-length, spanned records
variable-length, blocked, spanned records

Figure 13. Record Formats Available for the RECFM Option of the FILEDEF Command

a Control Characters

A ASA carriage control characters
M machine control characters

Figure 14. Control Character Specifications Available for the RECFM Options of the
FILEDEF Command

See the section "Specifying FORTRAN Record Formats and Logical
Characteristics under CMS" for information on using the RECFM option.

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

LRECL nn This option indicates the length, in bytes, of the logical
records in a user-defined file. The record format, which you
specified in RECFM above, determines. how you must
specify LRECL. Figure 15 lists the criteria for determining
logical record lengths. The default LRECL is 80.

For RECFM LRECL Must

F, FB, FS, or FBS Specify thl! actual size of the records

V, VB, VS, or VBS Specify the size of the longest record

U Be omitted

The maximum LRECL that can he specified is 65 K hytes.

Figure 15. Criteria for Determining a Value for the LRECL Option of the FILEDEF

Command

See the section "Specifying FORTRAN Record Formats and Logical
Characteristics under CMS" for information on using the LRECL option.

{
BLOCK} nn
BLKSIZE This option indicates whether records are to be read or

written individually or in groups. It also establishes the

For RECFM

For FS

FB or FBS

V or VS

VB or VBS

size of the group of records. Here, too, the record
format specified in RECFM and the value specified in
LRECL determine the value you must specify for
BLOCK. Figure 16 lists the criteria for determining
block sizes. The default BLOCK is 80.

BLOCK must

specify the same value as LRECL

specify a multiple of LRECL

specify the value of LRECL plus four hytes for a segment

descriptor word.

specify the value of LRECL plus fOllr hytes for the seqment

descriptor word of each record that can he contained in the hlock

plus four hytes for a hlock descriptor word.

U specify the greatest amount of space required to hold all the

records that are to he grouped together.

The maximum BLOCK value that can he specified is 65K hytes.

Figure \6. Criteria for Determining a Value for the BLOCK Option of the FILEDEF

Command

. 5\

Page of SC28-6891-0,-1
Revised March 18, 1977
By TNL SN20-9201

See the section "Specifying FORTRAN Record Formats and Logical
Characteristics under CMS" for information on using the BLOCK or
BLKSIZE option.

PERM

CHANGE

This option indicates that the file characteristics
specified in a FILEDEF command are to remain in
effect until they are either explicitly cleared or changed
with a new FILEDEF command that has the CHANGE
option.

This option indicates that if a file definition exists for the
ddname that is specified in this command, the options
that are included will replace the corresponding options
in the old FILEDEF command. This is the default if
PERM, CHANGE, or NO CHANGE are not specified.

NOCHANGE This option indicates that if a file definition exists for the
ddname specified in this FILEDEF command, the
options that are included will not replace the
corresponding options in the old FILEDEF command.

Specifying FORTRAN Record Formats and Logical Characteristics under CMS

The following options of the FILEDEF command describe the format and
logical characteristics of FORTRAN records that are read from or written
into a CMS file during the execution of your program:

• RECFM - indicates the format of a set of FORTRAN records.

• LRECL - indicates the maximum length of a FORTRAN record.

• BLOCK or BLKSIZE indicates the maximum amount of space
required by one or more FORTRAN records that are to be read or
written by a single input or output statement.

I:"ORTRAN records whose format and logical characteristics are described by
the above FILEDEF options can be transferred into and out of virtual storage
under the control of a FORMAT statement (formatted I/O) or without a
FORMAT statement (unformatted I/O, including NAMELIST and
list-directed input and output).

For formatted I/O, it is advisable under CMS to define your files as fixed
block (FB) record format, with a logical record length of 80, and a block size
of 800. This is advantageous as it makes your execution-time files acceptable
to the CMS editor. For unformatted I/O, you must define your files as variable
length, spanned (VS) or variable-length, blocked, spanned (VBS). In addition,
the filemode for these files must be x4. If you are using unformatted I/O or
should you need to define files for use on an OS system, see Appendix E for
more information.

Identifying and Using User-defined Files

Sequential Files

User-defined Disk Input and Output Files

Each sequential disk file, whether it is used as input or output for a
FORTRAN object program, requires a file identifier with the following
format:

filename filetype [filemodeJ

where:

filename - is any valid CMS filename.

filetype - i~ any valid CMS file type. It is recommended that you also
use the ddname for the filetype. The ddname is the default
file type for FORTRAN execution-time files and will remind
you what data set reference number has been defined for the
file.

filemode - is optional, but may specify any user disk (A through G).
These disks may be any available mode on input (1 through
5); however, they can only be modes 1,4, or 5 for output. If
no mode is specified, A 1 is assumed. Files that contain
spanned records (that is, RECFM is VS or VBS) must have a
mode of 4.

Sequential disk files are associated with your program through the ddname,
device specification of DISK, and file identifier that you specified in the
FILEDEF command that defines them. To define your own sequential disk
files you must issue, for each file, a FILEDEF command with the following
format:

FILEDEF FT xx F yyy DISK filename filetype UilemodeJ[options]

where:

xx is any FORTRAN data set reference number acceptable to your
system.

53

FORTRAN Program

READ (7,20) list

yyy - is any valid sequence number, 001 if you are not using mUltiple
files or any number form 001 to 999 if you are using multiple
files. (See the section "Using Multiple Files" for more
information.)

filename - the name of the file to be used or created. If you omit the
filename, the system assumes FILE.

filetype - the type of the file to be used or created. If you omit the
filetype, the system assumes the ddname of FT xx F yyy .

filemode - is optional, but if specified is the filemode of the file to be
used or created.

options - are any valid FILEDEF options for sequential disk files.

Figure 17 illustrates how the FILEDEF command associates sequential disk
file with the input and output statements in your FORTRAN programs.

U
N
I
T

Figure 17. FILEDEF Command for User-defined Sequential Disk Files

54

For input operations, the system searches for the file identifier specified.
For output operations into an existing file, the system places new data at the
end of the file. For output operations into a new file, the system places the
new data onto your disk and creates for it the file identifier that you specified
in the FILEDEF command.

User-defined Tape Input and Output Files

READ (8,20) list

Tape files are associated with your program through the ddname and device
specification of TAP n in the FILEDEF command that defines them. To
define your own tape files, you must issue, for each file, a FILEDEF
command with the following format:

FILEDEF FT xx F yyy TAP n [options]

where:

xx is any FORTRAN data set reference number acceptable to your
system.

yyy is any valid sequence number, 001 if you are not using multiple
files or any number from 001 to 999 if you are using multiple
files. (See the section "Using Multiple Files" for more
information.)

n is any valid tape unit (1 through 4).

options - are any valid FILEDEF options for tape files.

Figure 18 illustrates how the FILEDEF command associates tape files with
the input and output statements in your FORTRAN program.

V
I
R
T
U
A
L

T
A
p
E

U
N
I
T

2

Figure 18. FILEDEF Command for User-defined Tape Files

55

For input and output operations, the system uses the tape that is mounted on
the tape unit specified in the FILEDEF command.

User-defmed Terminal Input and Output FUes

10 FORMAT (' ENTER DATA')
WRITE (9,10)
READ (9,20) LIST

Terminal files are associated with your program through the ddname and
device speCification of TERMINAL in the FILEDEF command that defines
them. To define your own terminal files, you must issue, for each file, a
FILEDEF command with the following format:

FILEDEF FT xx FOOl TERMINAL [options]

where:

xx is any FORTRAN data set reference number acceptable to your
system.

options - are any valid FILEDEF options for terminal files.

Figure 19 illustrates how the FILEDEF command associates terminal files
with the input and output statements in your program.

Your Terminal

I NULL END CANCEL I
~~mDDmQmQWWGm~8

A~~~~~~~~~~~~'B Fl
Wa;;oGJGJGJGJGJGJGJLJowl ISHIFTI IlJ

I SPACE BAR I

Figure 19. FILEDEF Command for User-defined Terminal Files

56

For input operations the system waits until you enter data at your terminal.
This means that your programs must provide a means for notifying you when
to enter data. See the section "Predefined Terminal Input Files" for
information on self-prompting. For output operations, data is written at your
terminal.

User-defined Punched Card Input Files

Punched card files are associated with your program in one of two ways
depending upon the number of card decks to be read.

• Reading One Card Deck

If your program is going to read only one card deck, that deck is
associated with your program through the ddname and device
specification of READER in the FILEDEF command that defines it.
To define only one punched card input file, you must issue a FILEDEF
command with the following format:

FILEDEF FT xx FOOl READER [options]

where:

xx is any FORTRAN data set reference number acceptable to your
system. Be sure that you do not assign the same data set
reference number to both the card reader and punch in the
same program.

options - are any valid FILEDEF options for punched card files.

Figure 20 illustrates how the FILEDEF command associates one punched
card input file with the input statements in your FORTRAN program.

57

Page of SC28-6891-0 -1
Revised March 18, 1977
By TNL SN20-9201

FORTRAN Progrom

READ (10,20) list

VIRTUAL CARD READER

Figure 20. FILEDEF Command for One User-defined Punched Card File

58

For input operations, you must send the card deck you want read to your
computing center or enter it through a remote entry system (if available)
before you attempt to execute your program. The system operator will read
the card deck into a eMS reader file. Your input statement will read data
from this spooled reader file and not from the actual cards. The deck of cards
must be identified as follows:

Page of SC28-6 891-0, -1
Revised March 18, 1977
By TNL SN20-9201

10 userld

I: 001000 J. 0 00000000000000.00000 , 00 0 0 0 00 0 00 0 .. 0 .. 0 0 .. 00 0000 0000 00 01 00" 00 0 .. " 0 0
I 231 S 6 1 8 910111113;' IS1611 11191021 1121112SIC212829 lOll II ll:IlSl617JIJ9'041 12'lUISIliH 0191011 525311111611111110111113111111111111707172737011177717110

11

2 22 2 2 2 2 2 2 2 2 2 2 2 2 22

331333 3.3 3 3 3 3 3 333333333333333333333

4144 4

I 55 5 5 5 5 5

66

11111171117171111111711111111117111117117117717771111H1711111111111111111111111

8888888888888888888888888888888868888808888888888888888ti888888888888888888888888

99999999999999999999999999999999999999~9999999999~999999999999999999999999999999
'231 II 7 1 910~12IJ"11111111112011!213212121171!21JOJI121JlIJIII17Jijj'H"211"11<""'191011125311515(1151111011111]111111111111707112737017177711110

where:

ID must appear beginning in column 1.

userid must appear beginning in column 10.

• Reading More than One Card Deck

If your program is going to read more than one deck of cards they
must be converted into disk files with a READ CARD command
before they can be associated with your program. Each card deck to
be read must be preceded by a :READ card with the following format:

• RE~!t filename filetype fm

0: ::: 0 J 0 0 0 0 0 oJ. 0 0 0" 0.1, 00 0 0 0 0" 0 0 0 0 0 0 0 0 0 0 0.0000 0 00 0000 0000 0 0 0 0 0 00 0000 000 0000
1 2 l , ~ 6 1 8 9 I~ 1112 lJ \4:S 1611 i~ 19 202: 22 d ~4 :~~~ 2: 282, l03112 j):4 j~ 361: lqj~ 4~41 424J4~4S'6 47';"~ 5051515354 S5S6S7seS960616Z61USS66 616869101,12 7J i41S16 i/ 18 7S90

111111111111111111 111 111111111

1222 2 2 2 2 2 2 2 2 2 2 2 22222222222222222

33

4 4 4 414 4 4 4 4 ~ 4 ~ 4

551555555 555555 5 5 5 5 555 5 5 ~ 5 555 5 5 5 5 5 5 5 555555555555555555555555

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 a 6 S 6 S 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 b 6 G 6 6 G 6 & 5 b 6 6 6 6 6 6 S 6 6 6 6 6 6 6 6S S 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

71177117177117171771777171117171111171771177711111111H7771171111711111711711111

188888888888B8888888388888888888888888888863888868888888888888888888888888888888

91999999999999999 9 ~ S 9 9 99999999939999999 9 ~ ~ 8 9 9 9 9 9 J 9 9 9 9 9 9!' ~ 9 9 9 9 9 gg 9999999999999999
I 2 J 4 ~ 6 1 lSI J 11 12 lJ 1 ! ~ ~ g ~ 1 I ~ j 2 .. Z: 2, :l 2(2S IS ~T !~ 2' lO 11 12 13 lJ J~ 36 ! ~ J8 ,H ~'; ~ 1 42 4) 4~ ,~, 46 41 4a (3 so !II :: ~J 54 SS ~I ~1 51 ~9 60 61 &2 '3 54 rs &6 Sf 61 &9 10 11 711 J 1 .. 75 16 l11B I! sa

where:

:READ - must appear beginning in column 1

filename - is any valid CMS filename. It must begin in column 8.

filetype - is any 'valid CMS filetype. It is recommended that you use the
ddname for the filetype. The ddname is the default filetype
for FORTRAN execution-time files and will remind you what
data set reference number has been defined for the file. It
must begin in column 17

59

60

fm - is optional, but may specify any user disk (A through G).
These disks may be any available mode on input (1 through
5). If no mode is specified, A 1 is assumed. Files that contain
spanned records (that is, RECFM is VS or VBS) must have a
mode of 4. If specified, the filemode must begin in column 26.

Multiple punched card files are associated with your program through the
ddname, device specification of DISK, and file identifier that you specified in
the FILEDEF commands that define them. To define more than one card file
you must issue, for each file, a FILEDEF command with the following
format:

FILEDEF FT xx F yyy DISK filename filetype [filemode] [options]

where:

xx is any FORTRAN data set reference number acceptable to your
system.

yyy - is any valid sequence number, 001 if you are not using mUltiple
files or any number form 001 to 999 if you are using multiple
files. (See the section "Using Multiple Files" for more
information.)

filename - is the same filename that you specified on the :READ card for
this file. If you omit the filename, the system assumes FILE.

filetype - is the same filetype that you specified on the :READ card for
this file. If you omit the filetype, the system assumes the
ddname. of FT xx F yyy .

filemode - is optional, but if specified is the same filemode that you
specified on the :READ card. If you omit the filemode, the
system assumes A 1.

options - are any valid FILEDEF options for punched card files.

Figure 21 illustrates how the READ CARD command converts each punched
card deck into a disk file, and how the FILEDEF command associates the
disk file thus created with the input statements in your FORTRAN program.

READ (10,20) list

D
I
5
K

U
N
I

Page of SC28-6891-0, "1
Revised March 18, 1977
By TNL SN20-9201

Figure 21. FILEDEF Command for Mutliple User-defined Punched Card Files

For input operations, you must send your card decks you want read (with the
appropriate :READ cards) to your computing center or enter them through a
remote entry system (if available) before you attempt to execute your
program. The system operator will read the card decks into a CMS spooled
reader file. The entire set of card decks must be identified with the same
header card described previously for only one card deck. When you are ready
to run your program, enter a READ CARD command for each card deck to
be read. The READCARD command has the following format:

READCARD filename filetype ffilemode]

61

Page of SC28-6891-0,-1
Revised March 18, 1977
By TNL SN20-9201

where:

filename - is the same filename that you specified on the :READ card.

filetype - is the same filetype that you specified on the :READ card.

filemode - is optional, but if specified it is the same filemode that you
specified on the :READ card.

Each :READ card will transfer the appropriate deck of cards to a disk file
with the file identifier that you specified on the :READ card. Once
converted, the deck of cards is processed as a disk file.

User-defined Punched Card Output Files

FORTRAN Program

WRITE (11,20) list

Punched card output files are associated with your program through the
ddname and device specification of PUNCH in the FILEDEF command that
defines them. To define your own punched card output files, you must issue,
for each file, a FILEDEF command with the following format:

FILEDEF FTxxFOOl PUNCH [options]

where:

xx - is a FORTRAN data set reference number acceptable to your
system. Be sure that you do not assign the same data set
reference number to both the card reader and punch in the
same program.

options - are any valid FILEDEF options for punched card files.

Figure 22 illustrates how the FILEDEF command associates punched card
output files with the output statements in your FORTRAN program.

Figure 22. FILEDEF Command for User-defined Punched Card Files

62

User-defined Printed Output Files

FORTRAN Program

WRITE (12,20) list

Each printed output file is associated with your program through the ddname
and device specification of PRINTER in the FILEDEF command that defines
them. To define your own printer files, you must issue, for each file, a
FILEDEF command with the following format:

FILEDEF FT xx FOOl PRINTER [options]

where:

xx -is any FORTRAN data set reference number acceptable to your
system.

options -are any valid FILEDEF options for printed files.

Figure 23 illustrates how the FILEDEF command associates printed files with
the output statements in your FORTRAN program.

VIRTUAL PRINTER

Figure 23. FILEDEF CommanQ,.for User-defined Printed Files

For output operations, the data you want written is placed by the system in a
spooled printer file from which the actual printing will be done. Your WRITE
statements do not directly control the printer in the computing center.

63

Direct Access Files

64

Each direct access file, whether it is used as input or output, for a FORTRAN
object program, requires a file identifier with the following format:

filename filetype [filemode]

where:

filename - is any valid CMS filename.

filetype - is any valid CMS filetype. It is recommended that you use the
ddname in the FILEDEF for the filetype. The ddname is the
default file type for FORTRAN execution-time files and will
remind you what data set reference number has been defined
for the file.

filemode - is optional, but may specify any user disk (A through G).
These disks may be in any available mode (I through 5) on
input; however, they can only be in modes I, 4, or 5 on
output. If no mode is specified A 1 is assumed.

Direct access disk files are associated with your program through the ddname,
device specification of DISK, and the file identifier that you specified in the
FILEDEF command that defines them. To define your own direct access
files, you must issue, for each file, a FILEDEF command with the following
format:

FILEDEF FT xx FOOl DISK filename type [filemode] [options]

xx - is any FORTRAN data set reference number acceptable to
your system.

filename - is the name of the file to be used or created. If you omit the
filename, the system assumes FILE.

filetype - is the type of the file to be used or created. If you omit the
filetype, the system assumes the ddname of FTxxFOO I.

filemode - is optional, but if specified, is the file mode of the file to be
used or created. If you omit the filemode, the system assumes
AI.

options - are any valid FILEDEF options for direct access files.

Figure--24 illustrates how the FILEDEF command associates direct access
files with the input and output statements in your FORTRAN program.

DEFINE FILE 14(10,50, E, ID)

ID = 3
READ (14' ID,20) list

D
I
S
K

U
N
I
T

Figure 24. FILEDEF Command for User-defined Direct Access Files

For input and output operations, the system searches for the file identifier
specified. If the file exists, data will be read or written from the point
specified in the associated variable of the corresponding DEFINE FILE
statement. If the file cannot be found, the system will create a file with the
file identifier specified in your FILEDEF command and fill it with blanks.

You must be certain that the FORTRAN DEFINE FILE statement
accurately describes the file to be used. In addition, you must provide some
mechanism within your program to specify the relative record number for
multiple files created under the same data set reference number. The number
of files specified in the DEFINE FILE statement should be realistic for your
needs. For files being created, the number of records that you specify will be
blanked out on the disk before actual data is read into it. If you have
specified an unnecessarily large number, disk space will be wasted.

CMS supports the FIND statements, although its use slows down the
execution of a FORTRAN TEXT file in a time-sharing environment. Input
and output overlap is achieved through the sharing of CPU time among the
virtual machines that are operating at one time.

Using Disk and Tape Multifiles

It is possible to create sequential disk and tape multifiles under CMS. A
multifile contains several CMS files that are created under the same
FORTRAN data set reference number by the same program. The use of
multifiles involves the sequence number in the ddname of the FILEDEF
command. Sequence numbers are associated with sets of input and output
statements in your program depending upon their position and how they are
used.

65

The first set of input or output statements for a specific data set reference
number refers to the first file in the multifile. The sequence number for this
file is 00 t. When the end of the first file is reached (either because of an

. END FILE statement or an END= parameter) the next set of input or output
statements for the same data set reference number refers to the second file,
which has a sequence number of 002. When the end of the second file is
reached, the third file is processed, and so on until the last file has been
processed. A FILEDEF command is required for each file (that is, sequence
number) in the multifile. The REWIND statement "repositions" the
sequence number back to 001.

The BACKSPACE statement can be used to extend a file, that is, add
additional data. With a multifile, an end of file condition followed by a
BACKSPACE does not position the sequence numbers to refer to the next
file. The last file processed remains available. The BACKSPACE statement
should not be used with list-directed input and output statements.

Example:

66

FORTRAN Program Statements CMS FILEDEF Commands Required

10 read (7, 100) b
..t. ,,;.::,.-; ~ .. "" . ',"", :-:.~. ," .. -~ ... ",

filedef ft07fOOI tapl :

20 end file 7

30 read (7,100 ,end =40) b ·"rL·:}· :JC.)W! . <Cuu

fi ledef ft07fOO2 tap 1

40 backspace 7

50 write (7,100) b "" ...

60 end file 7

70 read (7, 100) b
..... .. .,

fi ledef ft07f003 tap 1

80 rewind 7

90 read (7, 100) b
... ."

....

At the beginning of the program ~he sequence number is001. Statement 10 reads the first file in the multifile, FTOlF001.
Statement 20 sets the sequence number to 002, and statement 30 reads the second fi Ie, FT07F002, setti n9 the sequence
number to 003. When the END = condi tion is reached statement 40 resets the sequence number back to 002, and ~tatement
50 adds data to the file. Statement 60 sets the sequence number to 003 again. Statement 70 reads the third file, FT07F003.
Statement 80 resets the sequence number back to 001, and statement 90 rereads the first file.

Data can be read or written in the first file (sequence number 001) simply
by supplying a FILEDEF command for the first file. Care should be
exercised in adding new data to an existing file. The new data is placed at the
end of the file and will cause the succeeding files to be written over or lost.
The procedure for reading or writing into a file with a sequence number
greater than 001 is more complex. You must do the following:

1 Perform some input or output operation and include an END FILE
statement for each file preceding the one you want.

OR

Read each preceding file supplying an END= parameter that points to
the next read.

2 Read or write into the file you want. The same caution about adding
data to the first file is applicable here for the following files.

Note: If you execute a REWIND statement before the end of the file
is reached, and data that is written into the first file (001) will overlay
the data already there. (There is no way to write over the data in a
single file with a sequence number greater than 001. All new data
added to it is automatically placed after any existing data.) Writing
over the data in the first file will not shorten it, if the new data is not
as long as the original data. It may, however, lengthen the file, thus
eliminating all the original information. Before you write over all the
information in the file, first erase the previous information with the
ERASE command, since old data that is not written over remains
untouched.

67

FORTRAN·IV Programming Considerations

FORTRAN Coding Techniques for Greater Efficiency

In FORTRAN, as with programming in general, there are usually several
ways to approach a problem and code a program. However, not all the
methods will. produce equally efficient or accurate results. Of the techniques
listed below, all have been included because they take advantage of the
compilers capabilities and produce efficient and accurate executable code.
The FORTRAN statements and topics are presented in alphatetical order.
Additional information about the FORTRAN IV language is available in the
publication IBM System/360 and . System/ 370 FORTRAN IV Language,
Order No. GC28-6515.

Language Considerations for the FORTRAN IV (Gl), Code and Go FORTRAN
IV, and' FORTRAN (H Extended) Compilers

Arithmetic IF Statements

68

When using arithmetic IF statements, avoid making tests that depend on the
real floating-point zero. Many real numbers must be represented
approximately (although to a high degree of accuracy) in the internal code of
the computer. Slight errors resulting from computation with these numbers
may prevent an anticipated value of zero from being obtained, and, hence
invalidate any test for zero.

A fixed-point overflow condition in an arithmetic IF statement results in
the following action for Gland Code and Go:

• If the integer is positive, a negative branch is taken, that is, the first
branch.

• If the integer is negative, a positive branch is taken, that is, the third
branch.

For H Extended, if the integer equals zero the second branch is taken.

BACKSPACE Statement

FIND Statement

The BACKSPACE statement can be used to extend a file, that is, add
additional data to it. With a multifile, an end of file condition followed by a
BACKSP ACE statement does not position the sequence number to point to
the next file. The last file processed remains available. The BACKSPACE
statement should not be used with the LIST -directed input and output
statements.

CMS supports the FIND statement, although its use slows down the execution
of a FORTRAN TEXT file in a time-sharing environment. Input and output
overlap is achieved through the sharing of CPU time among the virtual
machines that are operating at one time.

List-Directed Input and Output

The following rules affect the use of list-directed input and output:

• List-directed output statements can be used to create FORTRAN data
files that are acceptable as input to PL/I processors, provided that
these data files do not contain COMPLEX data types.

• The block size must be large enough to contain the largest data item
other than a complex number. For a complex number, the block size
should be larger than half the length of the item plus a comma. If the
block size is not large enough the remainder of the input or output list
is ignored.

For a complete description of list-directed input and output see the section
"Library Features Available with the FORTRAN IV Mod I and Mod II
Libraries. "

Literals in Data Initialization

In initializing an array, you should consider the following:

69

Page of SC28-6891-0,-1
Revised March 18, 1977
By TNL SN20-9201

70

• Any element of an array may be initialized by subscripting the array
name. Only one element is initialized; if excess characters are
specified, they are not placed into the next element. An array element
that is partially filled is padded on the right with blanks. The example
below illustrates how individual array elements are initialized.

Example:

DIMENSION A(10)
DATA A(1), A(2) ,A(4) ,A(5) /' ABCD' , 'QRSTUVW' , ' 123' , '666666' /

The array elements contain the following:

A(1) A(2) A(3) A(4) A(5) A(6) A(7) A(8) A(9) A(10)

ABCD QRST 123 6666

• Several consecutive elements of an array may be initialized with a
single literal constant by specifying the array name without a subscript.
Data spill occurs over as many elements as are necessary to insert the
entire constant (as long as the constant does not exceed the limits of
the array). The example below illustrates how several array elements may be
initialized with a single literal constant.

Example:

DIMENSION ARRAY (9)
DATAARRAY/'ABCDEFGHIJKLMNOPQRSTUVWXYZ'/

The array elements contain the following:

A(1) A(2) A(3) A(4) A(5) A(6) A(7) A(8)

ABCD EFGH IJKL MNOP QRST UVWX YZ

A(9)

Using this method, initialization always begins with the first element of
the array. To begin initialization with an element other than the first
you can use an EQUIVALENCE statement.

Example:

DIMENSION ARRAYA(10), ARRAYB(5)
EQUIVALENCE(ARRAYA(6),ARRAYB(1))
DATAARRAYB/'ABCDEFGHIJKLMNOPQRST'/

The arrays will be initialized as follows:

A(1) A(2) A(3) A(4) A(S) A(6) A(7)

B(1) B(2)

ABCD EFGH

A(8) A(9) A(10)

B(3) B(4) B(5)

IJKL MNOP QRST

• Individual elements of an array may be initialized after initializing
several elements with an unsubscripted array name. Each constant
must follow the array name that is to be initialized. The example

Logical IF Statement

Page of SC28-6891-0,-1
Revised March 18, 1977
By TNL SN20-9201

below shows how the two methods may be combined into one
operation.

Example:

DIMENSION ARRAY(5)
DATAARRAY/'ABCDEFGH'I,ARRAY(4)/'4444'I,ARRAY(5)/'5555' I

The array will be initialized as follows:

A(1) A(2) A(3) A(4) A(5)

ABCD EFGH 4444 5555

If each constant that is to initialize a part of the array is not specified
immediately after the elements that will contain them, data that has
overflowed into subsequent array elements may be replaced by data that was
incorrectly specified. The example below illustrates one possible
unintentional result.

Example:

DIMENSION A(3)
DATA A, xl' ABCDEFGHIJKL' ,10.01

The array will be initialized as follows:

A(1) A(2) A(3) X

ABCD 10.0 IJKL

As you can see the compiler assumes that the second constant is intended for
the second array element. The correct way to code this array is shown in the
example below.

Example:

DIMENSION A(3)
DATA AI' ABCDEFGHIJKL' I, X/l 0.01

This would result in the following initialization:

A(1) A(2) A(3) X

ABCD EFGH IJKL 10.0

The FORTRAN IV Gl, Code and Go FORTRAN, and H Extended compiler
will flag truncation and spill in data initialization as an error; however,
executing the TEXT file will produce the expected results described above.

Use of the logical IF statement rather than a comparable arithmetic IF
statement can result in a more efficient compilation. Statement 5 below is
more efficient than statement 6.

71

PAUSE n Statement

READ Statement

72

Example:

5 IF (A. GT . B) GO TO 20
6 IF(A-B) 10,10,20

20 CONTINUE

Each set of logical comparisons occurring in a logical IF statement is
analyzed separately by the compiler.

Example:

(A. LT. B . OR. C . GT . F. OR. NOT. L) GO TO 10

This statement is analyzed as though it were written:

IF (A . LT . B) GO TO 1 0
IF (C.GT.F) GO TO 10
IF (.NOT.L) GO TO 10

Therefore, if A is less than B, the remainder of the statements are not
evaluated. You can affect the efficiency of your execution by the order in
which you specify the logical comparisons. For example, if you expect C to
be greater than F more often than A is less than B, test for C being greater
than F first.

The PAUSE statement message or number will be displayed at your terminal
and execution of your program halted. To restart your program, hit the
ATTN key.

The ERR= parameter in the READ statement causes a branch to another
statement if an input or output error is encountered. The READ statement
that encountered the error does not make the data available to your program.
A second READ statement is necessary to do this. Thus, you can direct the
ERR= parameter to an error processing routine that rereads in the error and
disposes of it before returning to normal processing.

Example:

5 READ (8, 100, ERR=200)A
100 FORMAT(Il0)

GOT0300
200 READ(8,100)AX
300 CONTINUE

RETURN Statement

STOP n Statement

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

If the ERR= parameter is not included, an input or output error causes the
program to stop processing.

The RETURN statement is used in subprograms to return control to the
program that called it. If this statement is included in a main program, it
returns control to the operating system. As a note to assembler programmers,
the RETURN statement issues the following codes in register 15:

o If the RETURN statement was executed in a normal fashion in
either a main program or subprogram.

4*i If a RETURN i statement was executed in a subprogram.

16 If a terminal error was detected during execution in a library
subprogram.

The number specified in the the STOP n statement should not be larger than
4095, since a large number causes an overflow into a system return code field.
The return code that will be issued is n modulo 4096, that is, the remainder
after dividing n by 4096. However, the number you specified will be
displayed at your terminal. To restart processing, hit the ATTN key.

Unformatted Forms of Input and Output Statements (Not Including List-Directed)

The unformatted form of an input or output statement results in a faster data
transfer rate into and out of storage, since no data conversions are performed.
When operations are being performed on intermediate data files, (those which
are used internally by the program and which you never see) the use of
unformatted data increases program efficiency. In the example below,
statement 11 is more efficient than statement 10. .

Example:

DIMENSION A(100)
1 0 WRI TE (20 , 9) A, B

9 FORMAT (100E13.3)
11 WRITE (20) A,B

73

Language Considerations for the FORTRAN IV (Gl) and Code and Go
FORTRAN IV Compilers Only

Array Notation in Input and Output Statements

The use of array notation is more efficient than an implied DO. In the
example below, statement 4 is more efficient than statement 3.

Example:

3 READ (9) (A (I) , 1= 1 , 1 0)
4 READ (9) A

Language Considerations for the Code and Go FORTRAN Compiler Only

Free-Form Input

74

The following rules govern the use of free-form input format:

• Maximum statement length: 1320 characters, excluding statement
number and statement break characters.

• Maximum Line Length: 81 bytes including statement numbers and
statement break characters.

• First line of statement: This may start in any typing position.

• Statement numbers: The first line of a statement may contain, as the
first non-blank characters of that line, a statement number consisting
of from one through five decimal digits. Blanks and leading zeros in a
statement number are ignored as are any blanks preceding the
statement number. A blank need not separate a statement number
from the first nonblank character that follows the statement number.

• Continued line: A line of a statement to be continued is indicated by
terminating the line with a hyphen.

• Continuation line: A line following a continued line. A continuation

line can begin in any typing position except where a literal constant is
being continued, in which case the line must begin in position 1. A
continuation line may also be continued; up to 19 continuation lines
are permitted in a single statement.

• Comment line: Any noncontinuation line with an asterisk (*) or a
double quote (") as its first non-blank character. A comment line
cannot be continued, but multiple comment lines may be used.

Note: The default line escape character under CMS is also a double quote
("). You must change this escape character to a character other than a
double quote before entering free-form source comments.

• End line: An end line consists of the characters END preceded by,
interspersed with, or followed by a maximum of 63 blanks (that is, it
may not be continued on a subsequent line).

The standard form statements:

Typing Position: 1 7
c sample text

10 d=10.5
goto 56

150 a=b+c*(d+e**f+
cg+h-2. *(g+p))
c=3.

could be written in free form as the following:

Typing Position: 1 7
, , sample text
10 D=l 0.5
go to 56
150 a=b+c*(d+e**f+
g+h-2. *(g+p))
c=3/

A sift utility is provided with the Code and Go processor that will produce
fixed-length standard-form FORTRAN input records from free-form
statements. Fixed-length records may be submitted to other compilers for
processing. You can invoke the sift utility with the CONVERT command.
The GOFOR T compiler command allows you to specify whether your source
statements are fixed- or free-form. See Appendix D for more detailed
information on using the sift utility.

Language Considerations for the FORTRAN IV (H Extended) Compiler Only

Array Notation in I/O Statements

Array notation is the preferred method for coding I/O lists. Under all levels
of the OPTIMIZE option, whenever possible, implied DO statements are

75

Page of SC28-6891-0,-1
Revised March 18, 1977
By TNL SN20-9201

BASE Registers

treated as arrays. In the example, below, statement 4 implementation would
be substituted for statement 3:

DIMENSION A(100)
3 READ (9) X(A(I),I=I,100)
4 READ (9) A

for a nest of implied DOs, array notation is implemented if the following
conditions are met:

1. Only one list item is included in the range of any of the implied DO
levels; this list item is not a DO variable.

2. A list item which is an array does not have variable dimensions.

3. The initial, test, or increment value of an inner DO loop is not the DO
variable of any outer DO loop.

4. The DO variable does not occur as a subscript for an element of the
subscript.

5. The DO variable does not occur as a subscript for an element of the
subscript.

6. An array subscript contains only constants or variables as operands.

7. Each arithmetic term occurring in an expression of an array subscript
meets all the following conditions if that term contains a DO variable:

a. No exponentiation or division occurs.

b. All operands except the DO variable are integer constants.

c. No DO variable occurs more than once.

8. The maximum iteration for each DO level of an implied DO with
constant DO limits is 224 (16,777,216) times.

Register 13 is the primary base register. The following must be addressable
using register 13: 18 words for the save area, 1 word for the adcon for
register 12, branch tables for all computed GaTOs, and parameter lists for
all call statements and external functions. Register 12 is the secondary base
register. If register 13 does not reach the end of the parameter lists or if
register 12 and register 13 are both exceeded, a level 16 error is issued and
the compilation is deleted. This may occur in a program with many branch
tables or parameter lists.

EQUIVALENCE Statement

76

To reduce compilation time for equivalence groups, the entries in an
EQUIVALENCE statement should be specified in descending order
according to displacement.

EXTERNAL Statement

GENERIC Statement

Example:

Page of SC28-6891-0,-1
Revised March 18, 1977
By TNL SN20-9201

EQUIVALENCE (VARA,ARAYA(3),ARAYB(5),ARAYC(10))

This statement would be compiled faster by reversing the order.

Example:

EQUIVALENCE (ARAYC(10),ARAYB(5),ARAYA(3),VARA)

To reduce compilation time and save internal table space, equivalence groups
should be combined where possible.

Example:

EQUIVALENCE (ARRA(10, 10) , VAR 1), (ARRB(5,5) , VAR 1)

This statement could be recoded more efficiently.

Example:

EQUIVALENCE (ARRA(10,10) ,ARRB(5,5), VAR 1)

By placing an ampersand before a function name in an EXTERNAL
statement, the programmer "detaches" that name, that is, declares it to be the
name of a user-supplied function even though the name may be the same as a
function or subroutine appearing in the FORTRAN IV Library (Mod II). If
the function name following the ampersand is not the same as a library
function, it is still considered detached; no diagnostic action is taken.

Also, by specifically typing a subprogram name, the programmer detaches
the name from the library.

Example:

REAL*8 SIN

SIN will be automatically detached from the library.

The GENERIC statement requests the use of the Automatic Function
Selection facility of the FORTRAN IV Library (Mod II). As a result, the
appearance of the generic name in a program causes the appropriate function
name to be substituted according to the length and type of the arguments
specified. For example, the generic name COS, specified with arguments of
REAL*8 causes the function DeOS to be substituted.

77

Name Handling

To avoid conflict with specific references to functions, the function names
substituted as a result of automatic function selection are aliases, which you
cannot otherwise specify. Aliases beginning with the characters IH$$ refer to
function names three characters in length, and IH$ to names four to six
characters in length. N ames six characters in length are automatically reduced
to five characters by deleting the next to last characters before prefixing the
name with IH$. For example, the function DCOT AN substituted for
COTAN would appear to have the name IH$DCOTN.

The compiler places names for variables, arrays, and subprograms into a table
and searches the table whenever a reference is made to a name. The table is
divided into six strings. N ames that are one character long are placed into the

. second string; and so on. For faster compiling, allocate names as evenly as
possible among the sizes.

OPTIMIZE Compiler Option

78

The OPTIMIZE option of the FORTHX compiler command improves
execution-time and reduces the amount of the executable code produced.

OPTIMIZE(1) causes the entire program to be treated as a loop, with
individual sections of coding, headed and terminated by labeled statements,
treated as blocks. The executable code is made more efficient by:

• Improving local register assignment. (Variables that are defined and
used in a block are retained where possible in registers during the
processing of the block. Time is saved because the number of load and
store instructions are reduced.)

• Retaining the most active base addresses and variables in registers
across the whole program. (Retention in registers saves time because
the number of load instructions are reduced.)

• Improving branching by the use of RX format branch instructions in
the executable code. (An RX branch instruction saves a load
instruction and reduces the number of required address constants.)

OPTIMIZE(2) performs optimization beyond that performed with
OPTIMIZE(1) by~

• Assigning registers across a loop to the most active variables,
constants, and base addresses within the loop.

• Moving outside the loop many computations which need not be within
the loop.

• Recognizing and replacing redundant computations.

• Replacing, where possible, multiplication of induction variables by
addition of those variables. (An induction variable is one that is only
incremented by a constant or a variable whose value remains constant
in the loop.)

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

• Using, where possible, the BXLE assembler instruction for loop
termination. (The BXLE instruction is the fastest conditional branch;
time and space are saved.)

Registers 0, 1, and 12-15 are required by the system. The remaining
registers, 2-Il, are available for use by optimization techniques. Branch
optimization reserves registers 11,10, and 9, if needed and as needed,
for object program instructions in large source programs.

Programming Considerations When Using OPTIMIZE(1) and OPTIMIZE(2)

Although these options can result in more efficient code, they place additional
responsibilities on you the programmer and require additional programming
considerations.

Using COMMON Statements: Variables in COMMON are normally not
stored unless an input/output statement or a subroutine call using them is
issued.

Using Subprograms: If a user-defined subprogram is given the same name as
a FORTRAN-supplied subprogram (for example, SIN, ATAN), errors may be
introduced during optimization. To avoid these errors, specify the
subprogram name in an EXTERNAL statement (with an ampersand
preceding the subprogram name).

If the extended error handling facility is specified and a user-supplied
subroutine uses program variables, there is no assurance that correct values
will be available.

If a subprogram is called at one entry point for the purpose of initializing
arguments and at another entry point for computations, the latter call must
include an argument list to ensure that the subprogram will receive current
values for the arguments. This rule applies when the subprogram refers to the
arguments by name (that is, accesses them in their locations in the calling
routine rather than through local variables).

In the following example, the updated value of N will be correctly stored
and transmitted to the subprogram. If the call to the subprogram did not
include the argument list, N would be updated in a register but not in storage.

Example:

CALL INIT(N)

10 CALLCOMP(N)

N=N+1

GOTO 10
SUBROUTINEINIT(/J/)

ENTRY COMP (/J/)

79

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

Using COMMON Blocks: Because each COMMON block is an
independent program unit, it is independently relocatable, and thus requires a
base address that specifies its beginning point in storage. Each base address
must be stored into a register in order to be accessible. If many COMMON
blocks are defined, the need to load base addresses slows down processing
time. If multiple blocks can be combined into one block of less than 4096
bytes in length (the maximum number that can be accommodated in a
register) one base register can serve to address each variable.

Using the Assigned GO TO Statement: If the list of statement numbers is
incomplete in an assigned GO TO statement, errors that were not present in
the unoptimized code may appear. Hence, you should be sure that all GO TO
statements have complete lists of statement numbers.

Programming Considerations When Using OPTIMIZE(2)

80

OPTIMIZE(2) evaluates expressions and eliminates common expressions.
For example, if an expression occurs more than once, and the program path
always passes through the first occurrence of that expression to reach a
second occurrence without changing the value of the expression, the first
value of the first occurrence is saved and used instead. This is done for
both full expressions and intermediate results within expressions.

Example:

The common expression C + D is saved after its first evaluation in A and
is used in F without repeating the computation.

Using Subprograms: If a FORTRAN library function is called, the
computational reordering performed during optimization may cause
unexpected results.

Example:

DO 11 1= 1 , 10
DO 12 J=1 ,10

9 IF (B (I) . LT . 0) GO TO 1 1
12 C(J)=SQRT(B(I))
11 CONTINUE

The optimization technique moves the library function call before statement
9, causing the square root computation ot occur before the test for zero. To
avoid this situation, the program should be rewritten as follows:

DO 11 1= 1 , 10
9 IF (B(I) • LT. 0) GO TO 11

DO 12 J= 1 , 10
12 C(J)=SQRT(B(I))
11 CONTINUE

Using the FORTRAN Subroutine Libraries

The FORTRAN IV Library (Mod I) or the FORTRAN IV Library (Mod II)
can be used under CMS. The libraries are available in up to three CMS disk
files that were determined when the library was installed in your system.
These files are searched whenever a reference to a subroutine is encountered
after a LOAD or INCLUDE command has been issued. Figure 25 outlines
the contents of the library files depending upon the number of files and the
availability of the Extended Error Handling Facility.

The files you choose to use must be identified in a GLOBAL command
before their contents can be referred to. You can identify them in a
PROFILE EXEC procedure or with individual GLOBAL commands prior to
executing your FORTRAN programs. See the VM /370 Command
Language User's Guide, Order No. GC20-1804 for a description of these
commands. In addition, you may refer to the publications IBM System/360
OS FORTRAN IV Mathematical and Service Subprograms, Order No.
GC28-6816andIBM System/360 OS FORTRAN IV Mathematical and
Service Subprograms Supplement for l\1od I and Mod II Libraries, Order
No. SC28-6864 for a complete description of the library routines and their
functions.

Before attempting to use any of the FORTRAN libraries. determine from
the system administrator in your computing center, the number of library
files. the names of the files, and the availability of the Extended Error
Handling Facility.

If you have the Code and Go compiler with either the Mod I or Mod II
library. you will need to include an entry in your GLOBAL command for the
text library TSOLIB, which contains CMS system routines that support the
operation of the compiler.

If you have the H Extended compiler and Mod II library and will be using
extended precision arithmetic, you will also need to include in your GLOBAL
command an entry for the text library CMSLIB, which contains the extended
precision simulation routines.

Note: You may substitute a routine of your own for any of the FORTRAN
library subprograms and give it the same name as the library subprogram.
However. in resolving references, CMS searches through libraries specified in
your GLOBAL command. Therefore, care should be exercised in executing
programs that use a FORTRAN library subprogram for which you also have a
TEXT file with the same filename. If you do not want your TEXT file used,
you must rename it prior to executing your program.

81

00
N

-

Library One File

File 1 File 1
Contains Contains

Mod I and • Initialization • Initialization
Mod II with and Termination and Termination
the Extended Routines Routines
Error Handling • Math and Service • Math and Service
Facility (EEH) Routines Routines

• I/O Routines • I/O Routines
• Conversion • Conversion

D n+1't' .. "~" Routines
.l,-vuUJ.I.\,..;..) - -- .

• Error Handling • Error Handling
Routines with Routines with
EEH EEH

Mod I and • Initialization • Initialization
Mod II without and Termination and Termination

the Extended Routines Routines

Error Handling • Math and Service • Math and Service
Facility (EEH) Routines Routines

• I/O Routines • I/O Routines
• Conversion • Conversion

Routines Routines
• Error Handling

Routines without
EEH

Figure 25. Contents of the FORTRAN Libraries (Mod I) and (Mod II)

Available in

Two Files llvee Files
- --_._- -- -- - -

File 2 File 1 File 2 File 3
Contains Contains Contains Contains

• Initialization • Initialization • Error Handling • Error Handling
and Termination and Termination Routines with Routines without
Routines Routines EEH EEH

• Ma th and Service • Math and Service
Routines Routines

• I/O Routines • I/O Routines
• Conversion • Conversion

Routines Routines

I
• EiivI Ha!!d!ing

Routines without I
EEH

• Error Handling
Routines without
EEH

I

Library Features Available With the FORTRAN IV Mod I and Mod n Libraries

The following features are supported by the Gl, Code and Go, and H
Extended compilers.

List-directed and Formaned Input/Output

If your installation has the FORTRAN IV Library (Mod I) or (Mod II) you
can use the list-directed input and output (often called "list I/O") facilities
which are provided by the interface between the FORTRAN IV Compilers
and the Libraries. List-directed input and output is simpler to use than
formatted FORTRAN I/O and is particularly useful for terminal input and
output.

With formatted I/O you must write a FORMAT statement to specify to
the compiler the format of your input and output data. When you list I/O
statements refer to the terminal, the compiler prompts you for data and then
recognizes the format of each data item as you enter it from the terminal. It
also creates its own format for output data to the terminal.

To enter data using list-directed I/O, make a list of data items in the
sequence in which they are to be read. Separate individual items by commas,
blanks, tabs, or carrier returns. Write individual entries in real, integer,
complex, or double-precision formats. When you wish to use list-directed
input/ output, omit the FORMAT statement, and replace the FORMAT
statement number in your READ or WRITE statement with an asterisk. The
data set reference number remains the same and represents whatever device
your installation has assigned to that number.

For example, suppose you have a program that reads in five input values
for variables A, B, C, D, and E. You may now supply the values using the
terminal as your input device. Assume that 5 is the data set reference number
for reading data from the terminal. Code a READ statement as follows:

for list-directed I/O

50 read (5,*) a,b,c,d,e

for formatted I/O

50 read (5,10) a,b,c,d,e

Now execute your program. In both cases, your program will execute up to
statement 50, the READ statement. The program now needs input data from
you. The values to be supplied are 2.3, 6.74 2.1E+7, 6.4E03, 0.44432. In
the list-directed I/O case, the following happens:

83

84

The system prompts you for the data with a question mark and the READ
statement number. The interchange between you and the system is:

terminal: ? 00050
you: 2.3, 6. 74 2. le+ 7

6.4e-03
9.44432

You could just as well have strung the five values out on one line, all
separated by commas, or all separated by one or more spaces, or you could
have entered each value on a separate line.

If you decide to omit an input value (leaving a variable unchanged from its
previous value)· use successive commas. In the above example, if you wanted
to leave c without a new input value, you might enter:

2.3,6.7 4,,6.4e-03, 9 .44432

If the value or values you are leaving out are the last ones in the list, end the
list with a slash. For example, to read in just A,B and C, you would enter

2.36.74,2.1e+7/

In the formatted case, you would have to write a FORMAT statement similar
to:

1 0 format (2 f 3 . 2 , 2 e 1 0 . 1·, f 7 . 5)

No prompting is provided for this data. The terminal keyboard unlocks, and
you can type in the data required. The data must be typed in exactly as it
would be punched on a card:

230674000002.1e70000.64e-30944432

Since no prompting is provided, you should make a list of your data in the
order and form that it is needed, so that you can enter it correctly. An
alternative and recommended method of entering data is to issue prompts
yourself: insert a WRITE before each READ, with a literal message to
yourself to enter the data. In the above example, the statement immediately
preceding statement 50 might be:

write (6,5)

where statement 5 is:

5 format ('enterdatafora,b,c,d,e,')

Note that the WRITE statement uses 6 as the data set reference number
where the READ statement used 5. Even though the terminal is the I/O
device in both cases, FORTRAN requires different data set reference
numbers for reading and for writing. Data set reference numbers 5 and 6 are
the defaults used in this book for terminal input/output. Check to be sure
what the terminal data set reference numbers for read and write are at your
own installation.

You can mix conventional and list-directed I/O in your program. This may
be necessary since list-directed I/O cannot handle the writing of literal data.

Page of SC28-6891-0,-1
Revised March 18, 1977
By TNL SN20-9201

The following is an example of mixed list-directed and formatted I/O as it
might occur in a simple program to average three numbers.

Your program reads as follows:

50 read(5,*)x,y,z
sum=xx+Y+z
avg=sum/3
write(6,100)

100 format (, the average of the three numbers is: ')
write(6,*)avg

When your program runs, the I/O at your terminal looks like this:

Extended Error Handling

system:
you:
system:
system:

? 00050
70,105,91
the average of the three numbers is:
88.666

The extended error handling facility is an optional feature of the FORTRAN
libraries that may be incorporated into your installation. If it is, you will have
additional diagnostic information available to you for errors occurring during
load module execution. Check with your system administrator to see if your
installation has extended error handling. If it does not, this section does not
apply to you.

When extended error handling is incorporated, it provides you with the
following features:

• execution-time error messages that are more precise than those issued
with standard execution-time diagnos~ic facilities.

• the ability to continue execution after an error occurs.

• the opportunity to examine errors and to use either standard or
user-supplied corrective action. (If you are a typical CMS user, you
will be using the corrective actions that are built into your installation's
system. More experienced system programmers can use the methods
described later on to modify existing ones.)

Extended error handling is superior to standard error handling in a number
of ways. Both types of error handling produce messages identifying any
errors that are found when a program is executed, and produce a summary
error count at the end of the job indicating the number of times each error
occurred. Extended error handling, however, allows your installation to
exercise control over the action performed by the system when an error is
encountered. With extended error handling, it is possible to direct the system
to perform standard corrective action and continue processing, or have the
system transfer control to an installation-supplied routine, which can perform
any type of corrective action desired. Your installation also has control over

85

The Option Table

86

the number of times a particular error is allowed to occur before program
termination, the maximum number of times each message may be printed, and
whether or not a traceback map is to be printed for the error.

Your installation controls these features by means fo a collection of
instructions stored in a list called the "option table". When the FORTRAN
IV Library is installed, there are standard IBM -supplied entries in the option
table; however, your installation can modify these entries to suit its own
needs. These modifications include adding error conditions, changing aspects
of handling particular error conditions, or substituting an installation's own
corrective routine for the IBM-supplied corrective action for a particular
error. The result is a permanent option table tailored to your installation.
Occasionally, a programmer may wish to change features of the option table
temporarily to suit his own needs. He can do this from the terminal. Changes
made this way last only as long as the session in which they are made; after a
programmer logs off, the system reverts to the permanently stored option
table.

As a CMS user you will normally not be concerned with making changes of
any type in the option table. You can find out from your system
administrator what provisions for error handling are contained in your
installation's option table.

The general form of the option table and the kind of things in it are given
in Figures 26, 27 and 28. For the majority of applications, this description
together with the error messages produced by the extended error handling
facility (presented in the "Diagnostic Messages" section of this book) will be
sufficient so that the extended error handling will present no problems for you
in your terminal sessions. You need not bother with the sections describing
alterations to the option table.

The option table consists of two sections; a preface and a number of entries
which describe error conditions. The preface is a double word entry
describing program handling characteristics, such as whether extended error
handling has been specified. Each error condition entry is a double word entry
describing characteristics of a particular error condition. For example, an
error condition entry will define the number of occurrences of the error
encountered, or whether an installation-supplied routine is provided for
handling the error. IBM provides a standard set of error conditions. Your
installation may have additional entries of its own. Figures 26 and 27
describe the fields of the option table and list the values supplied for each
entry when your installation is set up. Figure 28 lists the option table defaults
values for the available error codes.

Systems programmers who want to make temporary changes to the extended
error handling option table can find more detailed information in Appendix
D.

Format

~(~---4Bytes--~)~

Number of entries

Boundary alignment I Extended error handling I Alignment count I Reserved

Description

Field Length
Contents in Bytes Field Description

Number of 4 Number of entries in the Option Table. The default setting is 95.
entries

Extended 1 Indicates whether extended error handling facility was chosen at installation time.
error FF(hexadecimal) = EXCLUDE
handling OO(hexadecimal) = INCLUDE

The default s~tting is FF.

Alignment 1 Maximum number of boundary alignment messages when extended error handling
count facility is not chosen. The default setting is 100

--

Reserved 1 Reserved for future use.
--

Figure 26. Option Table Preface

87

Field
Contents

Number of error
occurrences
allowed

Number of mes
sages to print

Error count

Option bits

User exit

Field
Length

in Bytes

4

o

42
(hexa-

decimal)

Field Description

Number of times this error condition should be allowed to occur.
When the value of the error count field (below) equals this value,
job processing is terminated. The number may range from 0 to 255.
A value of 0 means an unlimited number of occurrences3

• A value
greater than 255 sets the field to O.

The number of times the corresponding error message is to be printed
before message printing is suppressed. A value of 0 means no message
is to be printed.

The number of times this error has occurred. A value of 0 indicates
that no occurrences have been encountered.

Eight option bits defined as follows:

Bit

0

1

2

4

5

6

7

Setting

0

1

0

1

0

1

o

I

o
o

o
1

o

Default

0

1

0

o

o
o

I

o

Explanation

No control character supplied
for overflow lines.

Control character supplied to
provide single spacing for over
flow lines.

Table entry cannot be mod
ifieds.

Table entry can be modified.

Fewer than 256 errors have oc
cured.

More than 256 errors have oc
cured. (Add 256 to error count
field above to determine the
number.)

Do not print buffer contents
with error message.

Print buffer contents.

Reserved.

Unlimited printing of error mes
sages not requested; print only
default number of times.

Unlimited printing requested;
print for every occurrence of
error.

Do not print traceback map.

Print traceback map.

Reserved.

Indicates where a user corrective routine is located. A value of I indicates
that no user-written routine is available. A value other than 1 specifies
the address of the user-written rou tine.

1 The default values shown apply to all error numbers (including additional user entries) unless excepted by a footnote.

2 Errors 208, 210, and 215 are set as unlimited, and errors 217 and 230 are set to 1.

3 An unlimited number of errors may cause the FORTRAN job to loop indefinitely until the operator intervenes.

4 Error 210 is set to 10, and errors 217 and 230 are set to 1.

sThe entry for error 230 cannot be modified.

6The entry is set to 0 except for errors 212,215,218,222,223,224, and 225.

Figure 27. Option Table Entry Format

88

Number Number
of of Print Standard

Error Errors Messages Print Modifiable Buffer Traceback Corrective User
Code Allowed Allowed Control Entry Content Allowed Action Exit7

206 10 5 NA Yes NA Yes Yes No

207 10 5 NA Yes NA Yes Yes No

208 Unlimited 5 NA Yes NA Yes Yes No

209 10 5 NA Yes NA Yes Yes t No 1

210 Unlimited 10 NA Yes NA Yes Yes1 No

211 10 5 NA Yes NA Yes Yes No

212 10 5 N02 Yes Yes Yes Yes No

213 10 5 NA Yes NA Yes Yes No

214 10 5 NA Yes NA Yes Yes No

215 Unlimited 5 NA Yes Yes Yes Yes No

216 10 5 NA Yes NA Yes Yes3 No

217 14 1 NA Yes NA Yes Yes No

218 105 5 NA Yes Yess Yes Yes No

219 106 5 NA Yes NA Yes Yes No

220 10 5 NA Yes NA Yes Yes No

221 10 5 NA Yes Yes Yes Yes No

222 10 5 NA Yes Yes Yes Yes No

223 10 5 NA Yes Yes Yes Yes No

224 10 5 NA Yes Yes Yes Yes No

225 10 5 NA Yes Yes Yes Yes No

226 10 5 NA Yes NA Yes Yes No

227 10 5 NA Yes NA Yes Yes No

228 10 5 NA Yes NA Yes Yes No

229 10 5 NA Yes NA Yes Yes No

230 1 1 NA No NA Yes No No

231 10 5 NA Yes NA Yes Yes No

232 10 5 NA Yes NA Yes Yes No

233-237 10 5 NA Yes NA Yes Yes No

240 1 1 NA No NA Yes No No

241-301 JO 5 NA Yes NA Yes Yes No

1 No corrective action is taken except to return to execution. For boundary alignment, the corrective action is part of the support
for misalignment.

21f a print control character is not supplied, the overflow line is not shifted to incorporate the print control character. Thus, if the
device is tape, the data is intact, but if the device is a printer, the first character of the overflow line is not printed, but instead is
treate. as the print control. Unless the user has planned the overflow, the first character would be random and thus the overflow
print line control can be any of the possible ones. It is suggested that when the device is a printer, the option be changed to single
space supplied.

3Corrective action consists of return to execution for SLITE.

4It is not considered an error if the END parameter is present in a READ statement. No message or traceback is printed and the
€?rror count is not altered.

sFor an I/O error, the buffer may have been partiallY filled or not filled at all when the error was detected. Thus, the buffer con
tents could be blank when· printed. When an ERR parameter is specified in a READ statement, it is honored even though
the error occurrence is greater than the amount allowed.

6The count field does not necessarily mean that up to 10 missing FILEDEF commands will be detected in a single debugging run,
since a single WRITE performed in a loop could cause 10 occurrences of the message for the same missing FILEDEF command.

7Tbe system generation process cannot create option table entries with user-exit address specified. A user exit must be specified
at a later time.

Figure 28. Option Table Default Values

89

Features Available with the FORTRAN IV Library (MOD II) Only

The following features are supported by the H Extended compiler only.

Automatic Function Selection

The automatic function selection facility provides a concise set of generic
names for built-in and library functions, which are used in place of the larger
set of specific (data-type dependent) function names. Automatic function
selection is requested by a new specification statement, GENERIC. The
user's task of referring to built-in and library-functions is now simplified
because the same name can always be used for a function, even though the
type of the function and the type of its arguments may vary with each use.
Without automatic function selection, different names would have to be
coded, depending upon the type of the function and its arguments.

Automatic Precision Increase Facility

90

The Automatic Precision Increase facility of the FORTRAN compiler
automatically converts single precision floating point calculations to double
precision and/or double precision to extended precision. It is designed to be
used with programs originally written for earlier computers that offered
greater precision than that available with System/360; the conversion facility
may be used to convert programs where this extra precision may be of critical
importance.

The facility is not meant to be used with new programs (those written for
System/360 compilers). If such programs require operations with greater
precision, they should be coded using the convert new programs, the cost in
programmer and compilation time and the increase in storage space makes its
use for this purpose inefficient.

No recoding of source programs is necessary to take advantage of the
facility. Conversion is requested through the FORTHX command
AUTODBL option at compilation time. The automatic precision increase
facility should be considered as a tool for precision conversion; use of the
facility does not assure that every FORTRAN source program, so converted,
will execute correctly at the higher precision.

Page of SC28·6891·0, ·1
Revised March 18

6
1977

By TNt SN20·92 1

Precision Conversion Process

Promotion

The conversion process comprises two functions: promotion and padding.
Promotion is the process of converting items from one precision to a higher
precision, for example, from single precision to double precision. The
promotion function is described in greater detail below. Padding is the
process of doubling the storage size of non-promoted items. Padding helps
the user preserve the size relationships between promoted and non-promoted
items sharing storage.

The user may request either or both of the following conversions:

1. Single precision items to be promoted to double precision items, that
is, REALJjl4 to REALJjlS and COMPLEXJjlS to COMPLEXJjl16.

2. Double precision items to be promoted to extended precision items,
that is, REALJjlS to REALJjl16 and COMPLEX*16 to COMPLEX*32.

Note that single precision items cannot be increased directly to extended
precision items.

Constants, variables, and functions are promoted as follows:

Constants: Single-precision real and complex constants are promoted to
double precision. Double-precision real and complex constants are promoted
to extended precision. Logical and integer constants are not affected.

Examples of promoted constants are:

Constant

3.0
4.24E5
4.24D5
(3.2,3.1416EO)

Promoted Form
of Constant

3.0no
4.2405
4.24Q5
(3.2DO, ~.1416DO)

Variables: REALJjl4 and COMPLEX*S variables are promoted to REAL*S
and COMPLEXJjl16, respectively.

91

Examples of promoted variables are:

Variable

REAL STAR,
MOON, PLANET
IMPLICIT
REAL*8(S, T, U)

COMPLEX*8
A,B,C,D

Promoted Form
of Variable

REAL*8 STAR,
MOON, PLANET
IMPLICIT
REAL*16(S,T,U)

COMPLEX*16
A,B,C,D

Functions: The correct FORTRAN-supplied functions are substituted when a
program is converted. For example, a reference to SIN causes the DSIN
function to be substituted if double precision calculation is to be preformed; a
reference to DINT causes QINT to be substituted if extended precision
calculation is performed. Figure 29 lists FORTRAN-supplied built-in
functions that are substituted. Figure 30 lists FORTRAN-supplied library
functions that are substituted. Function values are promoted in the same
manner as constants; that is, single precision values are promoted to double
precision, double precision values are promoted to extended precision.

Previously compiled subprograms must be recompiled to be converted to
the correct precision. For example, if a user-supplied subprogram accepts
only single precision arguments and is to be used with a program being
converted to double precision, it must be recompiled using API to accept
double precision arguments.

Effect of the AUTODBL and ALe Options on Automatic Precision Increase

AUTODBL Option

92

The programmer requests automatic precision increase and padding through
the AUTODBL and ALC options of the FORTHX command.

The AUTODBL option to indicates the form that the conversion will take
and the ALC subparameter to indicate whether storage alignment is to take
place.

The AUTODBL option has the following format:

{AUTODBLIAD} NONE
DBLPAD
DBLPAD4
DBLPAD8
DBL
DBL4
DBL8
abcde

Corresponding Corresponding
Single Precision Function Double Precision Function Extended Precision Function

Argument Function Argument Function Argument Function

Name Type Value Type Name Type Value Type Name Type Value Type

AMOD REAL*4 REAL*4 DMOD REAL*8 REAL*8 QMOD REAL*16 REAL*16

ABS REAL*4 REAL*4 DABS REAL*8 REAL*8 QABS REAL*16 REAL*16

INT REAL*4 INT*4 IDINT REAL*8 INT*4 IQINT REAL*16 INT*4

AINT REAL*4 REAL*4 DINT REAL*8 REAL*8 QINT REAL*16 INT*
AMAXOI INT*4 REAL*4
AMAXI REAL*4 REAL*4 DMAXI REAL*8 REAL*8 QMAXI REAL*16 REAL*16
MAXI I REAL*4 INT*4
AMINO I INT*4 REAL *4
AMINI REAL*4 REAL*4 DMINI REAL*8 REAL*8 QMINI REAL*16 REAL*16
MINII REAL*4 INT*4
FLOAT INT*4 REAL*4 DFLOAT INT*4 REAL*8 QFLOAT INT*4 REAL*16
IFIX REAL*4 INT*4 IDINT REAL*8 INT*4 IQINT REAL*16 INT*4
HFIXI REAL*4 INT*2
SIGN REAL*4 REAL*4 DSIGN REAL*8 REAL*8 QSIGN REAL*16 REAL*16
DIM REAL*4 REAL*4 DDIM REAL*8 REAL*8 QDIM REAL*16 REAL*16
REAL COMPLEX*8 REAL*4 DREAL COMPLEX*16 REAL*8 QREAL COMPLEX*32 REAL*16
AIMAG COMPLEX*8 REAL*4 DIMAG COMPLEX*16 REAL*8 QIMAG COMPLEX*32 REAL*16
CMPLX REAL*4 COMPLEX*8 DCMPLX REAL*8 COMPLEX*16 QCMPLX REAL*16 COMPLEX*32
CONJG COMPLEX*8 COMPLEX*8 DCONJG COMPLEX*16 COMPLEX*16 QCONJG COMPLEX*32 COMPLEX*32

IThe corresponding double precision function does not exist by name, but the single precision function is expanded as though the
double precision function existed.

Figure 29. Built-In Functions - Substitution of Single and Double Precision

Corresponding Corresponding
Single Precision Function Double Precision Function Extended Precision Function

Argument Function Argument Function Argument Function
Name Type Value Type Name Type Value Type Name Type Value Type

EXP REAL*4 REAL*4 DEXP REAL*8 REAL*8 QEXP REAL*16 REAL*16
CEXP COMPLEX*8 COMPLEX*8 CDEXP COMPLEX*16 COMPLEX*16 CQEXP COMPLEX*32 COMPLEX*32
ALOG REAL*4 REAL*4 DLOG REAL*8 REAL*8 QLOG REAL*16 REAL*16
CLOG COMPLEX*8 COMPLEX*8 CDLOG COMPLEX*16 COMPLEX*16 CQLOG COMPLEX*32 COMPLEX*32
ALOGIO REAL*4 REAL*4 DLOGIO REAL*8 REAL*8 QLOGIO REAL*16 REAL*16
ARSIN REAL*4 REAL*4 DARSIN REAL*8 REAL*8 QARSIN REAL*16 REAL*16
ARCOS REAL*4 REAL*4 DARCOS REAL*8 REAL*8 QARCOS REAL*16 REAL*16
ATAN REAL*4 REAL*4 DATAN REAL*8 REAL*8 QATAN REAL*16 REAL*16
ATAN2 REAL*4 REAL*4 DATAN2 REAL*8 REAL*8 QATAN2 REAL*16 REAL*16
SIN REAL*4 REAL*4 DSIN REAL*8 REAL*8 QSIN REAL*16 REAL*16
CSIN COMPLEX*8 COMPLEX*8 CDSIN COMPLEX*16 COMPLEX * 16 CQSIN COMPLEX*32 COMPLEX*32
COS REAL*4 REAL*4 DCOS REAL*8 REAL*8 QCOS REAL*16 REAL*i6
CCOS COMPLEX*8 COMPLEX*8 COCOS COMPLEX*16 COMPLEX*16 CQCOS COMPLEX*32 COMPLEX*32
TAN REAL*4 REAL*4 DTAN REAL*8 REAL*8 QTAN REAL*16 REAL*16
COTAN REAL*4 REAL*4 DCOTAN REAL*8 REAL*8 QCOTAN REAL*16 REAL*16
SQRT REAL*4 REAL*4 DSQRT REAL*8 REAL*8 QSORT REAL*16 REAL*16
CSQRT COMPLEX*8 COMPLEX*8 CDSQRT COMPLEX * 16 COMPLEX*16 CQSQRT COMPLEX*32 COMPLEX*32
TANH REAL*4 REAL*4 DTANH REAL*8 REAL*8 QTANH REAL*16 REAL*16
SINH REAL*4 REAL*4 DSINH REAL*8 REAL*8 QSINH REAL*16 REAL*16
COSH REAL*4 REAL*4 DCOSH REAL*8 REAL*8 QCOSH REAL*16 REAL*16
ERF REAL*4 REAL *4 DERF REAL*8 REAL*8 QERF REAL*16 REAL*16
ERFC REAL*4 REAL*4 DERFC REAL*8 REAL*8 QERFC REAL*16 REAL*16
GAMMAI REAL*4 REAL*4 DGAMMA1 REAL*8 REAL*8
ALGAMA1 REAL*4 REAL*4 DLGAMAI REAL*8 REAL*8
CABS COMPLEX*8 REAL*4 CDABS COMPLEX*16 REAL*8 CQABS COMPLEX*32 REAL*16

IThe extended precision equivalences of these functions do not exist. In promoting REAL*8 to REAL*16, the double precision
function will be used.

Figure 30. Library Functions - Substitution of Single and Double Precision

93

94

where:

NONE - indicates no conversion. This is the default condition.

DBLPAD - indicates promotion and padding of single and double
precision items. REAL*4, REAL*8, COMPLEX*8 and
COMPLEX * 16 types are converted. Items of other types are padded
if they share storage space with converted items.

DBLP AD4 - indicates promotion of single precision items only, and
padding of other items that share storage with promoted items.

DBLPAD8 - indicates promotion of double precision items only, and
padding of other items that share storage with promoted items.

Note: The promotion and padding options, DBLPAD, DBLPAD4, and
DBLPAD8 ensure that the storage-sharing relationship that existed prior to
conversion is maintained. Note, however, that padding reduces the efficiency
of input/output operations for padded arrays.

DBL - indicates promotion (but no padding) of both single and double
precision items. Items of REAL*4 and COMPLEX*8 types are
converted to REAL*8 and COMPLEX*16 types are converted to
REAL*16 and COMPLEX*32.

DBL4 - indicates promotion of single precision items only.

DBL8 - indicates promotion of double precision items only. If
AUTODBL is specified, and an error in coding the parameter is
detected, the compiler substitutes the option DBLPAD8 as a default.

Note: For most programs, one of the above forms is sufficient. The following
form offers greater flexibility to the user who wishes to tailor the conversion
process to a particular program; however, it also increases the chance of error
and should be used with care.

abcde - indicates that the program is to be converted according to the
value of abcde, a five-position field. Each posision is coded with a
numeric value that specifies how a particular conversion function is to
be performed.

The leftmost position (a) describes the promotion function, that is,
whether promotion is to occur and, if so, which items are to be
promoted. The second position (b) describes the padding function,
that is, whether p~dding is to occur and, if so, the sections in the
program (such as COMMON or argument lists) where padding is to
take place. The third, fourth, and fifth positions describe whether
padding is to occur for particular types (LOGICAL, INTEGER, and
REAL, respectively) within the program sections specified in position
b.

All five positions must be coded; if a function is to be omitted, the
corresponding position is coded with a zero. The values for each position are
as follows:

• Position a, the promotion function:

Value Meaning

o No promotion

Promote REAL*4 and COMPLEX*8 items only

2 Promote REAL*8 and COMPLEX*16 items only

3 Promote all real and complex items

• Position b, the padding function:

Value Meaning

o No padding

Pad COMMON statement and argument list variables

2 Pad EQUIVALENCE statement variables equivalenced to promoted
variables

3 Pad COMMON and EQUIVALENCE statement variables and argument

list variables

4 Pad EQUIVALENCE statement variables that do not relate to variables in

COMMON statements

5 Pad all variables

The code sp~cified in this position determines in which areas of a program the
padding requested by positions c to e is to take place.

• Position c, padding logical variables in program sections specified in
position b:

Value Meaning

o Pad no logical variables

Pad LOGICAL*t variables only

2 Pad LOGICAL*4 variables only

3 Pad all logical variables

• Position d, padding integer variables in program sections specified in
position b:

Value Meaning

o Pad INTEGER*2 variables only

95

96

2 Pad INTEGER*4 variables only

3 Pad all integer variables.

• Position e, padding real and complex variables in program sections
specified in position b:

Value Meaning

o Pad no real or complex variables

Pad REAL*4 and COMPLEX*8 variables

2 Paq REAL*8 and COMPLEX*16 variables

3 Pad REAL*4, REAL*8, COMPLEX*S, and COMPLEX*16 variables

4 Pad REAL*16 and COMPLEX*32 variables

5 Pad REAL*4, COMPLEX*8, REAL*16, and COMPLEX*32 variables

6 Pad REAL*8, REAL*16, COMPLEX*16, and COMPLEX*32 variables

7 Pad all real and complex variables

Note that promotion overrides padding. For example, if the first position
specifies promotion to occur for single precision items, REAL *4 and
COMPLEX*8 items are promoted regardless of the padding function
specified in position e.

Examples:

The AUTODBL (abcde) settings that correspond to the mnemonic options
are:

abcde Setting

(00000)
(30000)
(10000)
(20000)
(33334)
(13336)
(23335)

Co~respond to the Mnemonic

NONE
DBL
DBL4
DBL8
DBLPAD
DBLPAD4
DBLPAD4

The following examples illustrate other possible combinations of the
AUTODBL (abcde) format.

Example 1:

AUTODBL(12330)

Promotion is performed and padding is performed for all EQUIV ALENCE
statements, logical variables, and integer variables.

Example 2:

AUTODBL(OlOOl)

ALe Option

No promotion is performed, but padding is performed for all REAL *4 and
COMPLEX*8 variables in common blocks and argument lists. This code
setting permits a program not requiring double precision accurracy to link
with a subprogram compiled with the option AUTODBL(DBL).

Example 3:

AUTODBL(01337)

No promotion is performed, but padding is performed for all integer,
logical, real, and complex variables that are in COMMON or are used as
subprogram arguments. This code setting permits a non-converted program
to link with a program converted with the option AUTODBL(DBLPAD4).

The ALC option is used to specify storage alignment. It has the following
format:

{
ALC }
,NOALG

where:

ALC - indicates that storage alignment is to take place.

NOALC - indicates that storage alignment is not to take place. This is
the default.

Ordinarily, to increase execution-time efficiency, COMMON statements are
coded so that variables in COMMON blocks are aligned on proper
boundaries: double word variables on double word boundaries, fullword
variables on fullword boundaries, and half word variables on halfword
boundaries. When the conversion facility is used, these alignments may
become altered. The ALC option restores alignment.

The ALC option should be used with care for it may cause previously
mathced COMMON blocks to become mismatched. Consider the two
COMMON statements below where the variable INTER is to be shared.

Program t

REAL*8 R8
COMMON/X/A, R8, INTER

Program 2

REAL*4 R4
COMMON/X/Z,I,R4, INTER

With neither the AUTODBL nor the ALC option specified, both
occurrences of the variable INTER will be at an offset of 12 bytes from the
start of COMMON block X.

If ALC alone is used, INTER would be 16 bytes from the start of
COMMON X in Program 1 since R8 would have been placed on a double
word boundary. COMMON X in Program 2 would have been unaffected.

97

If AUTODBL(DBL4) and ALC are specified, INTER would be 16 bytes
from start of block X in Program 1 and 24 bytes from start in Program 2.
(This is because of the promotion of REAL *4 to REAL *8 and subsequent
alignment.)

It is recommended that ALC be used only when the COMMON variables
are identical in type.

Programming Considerations with API

This section provides a brief discussion of how use of the Automatic Precision
Increase facility affects program processing.

Effect on COMMON or EQUIVALENCE Data Values

Effect on Literal Constants

98

Promotion and padding operations preserve the storage sharing relationships
that existed before conversion. However, in items that share storage data
values are preserved only for the following:

Variables having the same length

2 Real and complex variables having the same precision

The following items retain value sharing relationships:

LOGICAL *4 and INTEGER *4 (same length)

REAL *4 and COMPLEX*8 (same precision)

The following items do not retain value sharing relationships:

INTEGER*2 and INTEGER*4 (different lengths)
REAL*8 and COMPLEX*8 (different precisions)

Care should be exercised when specifying literal constants as data
initialization values for promoted or padded variables, as subprogram
arguments, or in NAMELIST input. For example, literals should be entered
into arrays on an element by element basis rather than as one continuous
string.

Example:

DIMENSION A(2), B(2)
DATAA/'ABCDEFGH'/,B(1)/'IJKL'/,B(2)/'MNOP'/

Array B will be initialized correctly but not array A, because padding takes
place at the end of each element.

Effect on Programs Calling Subprograms

FORTRAN main programs and subprograms must be converted so that
variables in COMMON retain the same relationship to guarantee correct
linkage during execution. The recommended procedure is to compile all
program units using AUTODBL (DBLPAD). If an option other than
DBLP AD is selected, care must be taken if the COMMON variables in one
program unit differ from those in another; COMMON variables that are not
to be promoted should be padded.

Any non-FORTRAN external subprogram called by a converted program
unit should be recoded to accept padded and· promoted arguments.

Effect on FORTRAN Library Subprograms

If a call to a FORTRAN library subprogram contains promoted
arguments, the next higher precision subprograms are substituted for
the original ones. The external symbol dictionary, used by the CMS
loader to resolve references between program units, will contain the
double and extended precision names for each single and double
precision library program promoted.

2 If you have supplied your own function for a FORTRAN-supplied
function, but has neglected to detach the name through an
EXTERNAL statement, the wrong function may be executed.

Example: AUTODBL(DBL4)

REAL*4X,Y
4 Y=SIN(X)

STOP
END

FUNCTION SIN(X)

RETURN
END

In this example, because the compiler cannot recognize SIN as a user-supplied
function, it substitutes the name of the FORTRAN-supplied function DSIN in
the statement labeled 4. However, the compiler does not change the function
definition statement; the name remains SIN. At execution time the

99

user-supplied function SIN is ignored and the FORTRAN-supplied function
DSIN is executed in its place.

The programmer can avoid this confusion either by making sure he
detaches the name SIN, preceded by an ampersand, in an EXTERNAL
statement or by changing the name of the function to DSIN.

Effect on CALL DUMP or CALL PDUl\tP Statements

If a ,CALL DUMP or CALL PDUMP statement specifies a dump format of
either REAL *4 or COMPLEX*8, output from a promoted or padded
program is displayed as two single precision numbers rather than as one
double precision number.

For variables that are promoted, the first number is approximately the
value of the stored variable; the second number is meaningless.

The variables that are padded, the first number is exactly the value of the
stored variable; the second number is meaningless.

Effect on Direct-Access Input/Output Processing

When a DEFINE FILE statement has been specified, any record exceeding
the maximum specified record length causes record overflow to occur. For
converted programs, the programmer should check the record size coded in
the statement to determine if it can handle the increased record lengths. If
not sufficient, the size should be increased appropriately.

Effect on Unformatted Input/Output Data Sets

Effect on the Storage Map

100

Unformatted input/output data sets that have not been converted are not
acceptable to converted programs if the I/O list contains promoted variables.

The storage map produced by the MAP option of the FORTHX command
contains the following codes:

Code Meaning

D Promoted variable

P Padded variable

* Promoted library function name

Extended Precision

Through its extended-precision cabability, the compiler can recognize and
process two additional data types in the FORTRAN source language:
REAL * 16 and COMPLEX*32. As a result, programs that were heretofore
limited by insufficient precision can now be run using these data types. For
real and complex data items, the maximum number of storage locations that
can be allocated per data item is twice the previous maximum. Also, the
FORTRAN-supplied functions required to support the extended-precision
data types are provided, with two more exceptions. Extended-precision
equivalents of the GAMMA and ALGAMA functions are not included.

External Statement Extension

An extension to the EXTERNAL statement enables the user to "detach" the
names of FORTRAN library subprograms. Detachment of a subprogram
name causes that name to be dissociated with the FORTRAN-supplied library
subprogram of the same name; instead, it is considered to be the name of
user-supplied subprogram. This extension is provided when you prefix the
special character & to a subprogram name when it appears in the
EXTERNAL statement. The extension enables you to supply your own
subprograms in place of identically named FORTRAN library subprograms,
with the assurance that the compiler will interpret all subprogram references
correctly.

101

Using the FORTRAN IV Compilers

FORTRAN IV(Gl) Compiler

The FORTGI command invokes the IBM FORTRAN IV (G1) compiler,
which will compile the FORTRAN source program contained in the CMS file
that you identify in the command. The FORTGI command allows you to
specify a set of options governing compiler operation and output; however,
should you omit one or all of the options, defaults are assumed for you. If
you include options that are not valid for the FORTRAN IV (G1) compiler or
if you misspell any options, a diagnostic message is typed out at your terminal
(see Appendix F for more information). In the following illustrations and
descriptions all defaults for the compiler default options are underlined.

FORTGI Command Format l

FORTGI filename

Figure 31 shows the format of the FORTGI command the options that are
available.

([BCD I EBCDIC] [DECK I NODECK] [ID I NOID] [LINECNT(nn 150)]
[LISTINOLIST] [LOAD I NOLOAD] [MAP I NOMAP] [NAME(name IMAIN)]
[DISKIPRINTINOPRINT] [SOURCE I NOSOURCE] [TERM I NOTERM]
[TEST I NOTEST])

Figure 31. Format of the FORTGI Command for the FORTRAN IV (GO Compiler

102

• Identifying the Compiler to be Used

FORTGI -- The word FORTGI identifies the command and must be
typed as shown.

• Specifying a File for Compilation

filename -- Specified the name of the file to be compiled. The file
specified must have afiletype of FORTRAN or it will not be
recognized as input for the FORTRAN IV (G 1) compiler.

Note: You must insure that the file named does not contain any statements
that are not acceptable to the FORTRAN IV (G1) compiler (for example,
GENERIC statements).

• Character Code of the Source Program

BCD -- The source program to be compiled is written in BCD.

lThe material in this section may be reproduced for internal use; it may not be offered for
resale.

Note: The CMS COPYFILE command with the EBCDIC option
can be used to convert a file containing BCD code to a file in
EBCDIC, thus eliminating the need for this option.

EBCDIC -- The source program to be compiled is written in EBCDIC.

If you omit this option, the compiler will assume that your source
program is written in EBCDIC.

• Producing a Card Deck for Your TEXT File

DECK -- The executable code produced by the compiler will be
punched into a card deck in your computing center.

NODECK -- The executable code produced by the compiler will not
be punched into a card deck.

If you omit this option, the compiler assumes NODECK.

• Producing a Listing File for Your Program

DISK -- The compiler will place a copy of your LISTING file on a
disk.

PRINT -- The compiler will print your LISTING file on an offline
printer.

NOPRINT -- No LISTING file will be produced.

If you omit this option, the compiler assumes DISK.

• Internal Statement Numbers (ISN)

10 -- The compiler will generate internal statement numbers for
statements that call subroutines or contain external function
references. The ID option allows the translate function of the Mod
I library to display the internal statement numbers of the linkages
that are in effect at the time of an error.

NOlO -- The compiler will not generate internal statement numbers.

If you omit this option, the compiler assumes NOID.

• Number of Lines to be Printed on Each Listing Page

LINECNT nn -- The source listing for your program is to be printed
with a maximum of nn lines per page. You may specify any
number for nn from 1 to 99.

If you omit this option, the compiler assumes 50 lines per page.

• Producing a Listing of Your Object Module

LIST -- The compiler will include, in the LISTING file, a
pseudo-assembler listing of the translated statements contained in
the TEXT file.

103

104

NOLIST -- The pseudo-assembler listing for your program will not be
included in the LISTING file.

If you omit this option, the compiler assumes NOLIST.

• Producing Executable Object Code for Your Program

LOAD -- The compiler will create a TEXT file which contains the
executable code of your FORTRAN source program.

NOLOAD -- No TEXT file is produced.

If you omit this option, the compiler assumes LOAD.

• Producing a Storage Map for Your Source Program

MAP -- The compiler will generate tables showing the name and
location in your program of any array, COMMON,
EQUIVALENCE, and scalar variables and FORMAT,
NAMELIST, and subprogram statements. These tables will be
included in your listing.

NOMAP -- The compiler will not create the storage tables for you.

If you omit this option, the compiler will assume NOMAP.

• Naming Your Program

NAME name -- The name represented by name will be assigned by
the compiler to the executable code it produces. You may specify
from 1 to 6 characters for name.

If you omit this option and the NOTEST option is in effect, the
compiler assigns the filename as the name of your executable code. If
the TEST option has been specified, MAIN is assumed.

• Producing a Source Program Listing

SOURCE -- The compiler will include a copy of your FORTRAN
source program in the LISTING file that it produces for you.

NOSOURCE -- A copy of your source program will not be included in
the LISTING file.

If you omit this option, the compiler assumes SOURCE.

• Typing Compiler Error Messages at Your Terminal

TERM -- Any erroneous statements detected in your FORTRAN
program and the corresponding messages will be typed at your
terminal.

NOTERM -- Errors and messages will not be typed at your terminal,
but will appear in your listing as usual.

If you omit this option, the compiler assumes TERM.

• Making Your Programs Acceptable for Use with FORTRAN
Interactive Debug

TEST -- The object code produced for your program will contain
additional linkages to make it acceptable to execute under
FORTRAN Interactive Debug. When this option is specified, the
LOAD option is assumed. See the publication IBM FORTRAN
Interactive Debug for OS(TSO) and VM /370 (eMS) Terminal
User's Guide, Order No. SC28-6885 for information on using
FORTRAN Interactive Debug.

NOTEST -- The object code does not include additional linkages for
FORTRAN Interactive Debug.

If you omit this option, the compiler assumes NOTEST.

Output from the FORTRAN IV (Gl) Compiler

The FORTRAN IV (Gl) compiler may produce a LISTING file that contains
any errors detected during compilation, and informative and diagnostic
messages. It may include a copy of your source statements, a storage map of
the variables that you used in your program, and a pseudo-assembler listing of
the code that was produced for your program by the compiler. In addition,
you can direct that any error messages included in the LISTING FILE by
typed at your terminal. You can use CMS commands to print the LISTING
file either on a printer or at your terminal. A second file, the TEXT file, may
also be produced that will contain the actual executable code. The
FORTRAN IV (Gl) compiler can produce a printed listing or a punched card
form of your TEXT file. See Figure 32 for a summary of the FORTRAN IV
(G 1) compiler options and their effect on output.

105

FORTRAN IV (Gt) Listing File

106

Option LISTING File TEXT File Terminal
Response

MAP Includes address tables of
FORTRAN variables, and
NAMELIST and
FORMAT statements

DECK Punches a copy of this file
offline

LIST Includes a
pseudo-assembler listing
of the TEXT file

SOURCE Includes the source code
from the CMS
FORTRAN source file

PRINT Creates this file and prints
a copy offline

..........................
DISK Creates this file and

writes a copy on an
available disk

TERM Prints
error
messages
at the
terminal

LOAD Creates this file

Figure 32. The Effect of Various Compiler Options on Compiler Output (Gl)

A LISTING file is produced by the FORTRAN IV (G 1) compiler unless the
NOPRINT option is specified. It contains the following:

• Informative messages that indicate the status of the compilation.

• Any errors detected during compilation and the corresponding
diagnostic messages. For a detailed description of the diagnostic
messages produced by the FORTRAN IV (G 1) compiler, refer to the
publication IBM FORTRAN IV (GJ) Processor and TSO
FORTRAN Prompter for os and VM/370 (eMS) Installation
Reference Material, Order No. SC28-6856.

• Optional output as determined by the options you can specify with the
FORTGI command or their defaults.

Informative Messages

The informative messages included in your listing identify the compiler used,
the name of your program, the Julian date, and the time of day (based on a
24-hour clock) that the compilation was begun. A list of the options in effect
and the compiler statistics are also provided. See the part of Figure 33,
labeled A for an illustration of the compiler informative messages.

Error Messages

Error mess.ages produced by the FORTRAN IV (Gl) compiler have two
formats, depending on when the error was detected. Statements in which an
error, such as syntax, is detected as the statement is being processed, are
followed by a, line that contains a $ sign positioned beneath each point at
which an error is detected. This pointer line is followed by a line containing
the number of the error (IGI xxxI) and the text of the diagnostic message.
When more than one error occurs in a single course statement, the error
messages following it are numbered consecutively from left to right.

Example:

0009
0010

$

106 IF (L*K-I)l ,2,4
CONTINUE

******** 01) IGI002I LABEL

If an error, such as an undefined label, is not detected until all the statements
have been processed, the error message follows the source program and
includes a list of any unresolved items.

Example:

IGI022I UNDEFINED LABEL
4

See the part of Figure 33, labeled B for the format of the error messages
produced by the compiler. In addition to the diagnostic messages produced
by the compiler, the eMS ready message indicates the highest severity level
detected.

Printing Error Messages at Your Terminal

Since it is helpful in correcting your source program to get a copy of any
errors and messages at your terminal as they are produced, the TERM default
option types them out automatically for you. You may suppress these
messages by specifying the NOTERM option with the FORTGI command.

107

108

Optional Output

Additional information can be included in your LISTING file depending on
the defaults in effect or the options you specify with the FORTGI command.
You can include the following:

• A list of your source statements

• A storage map.

• A pseudo-assembler listing of the executable code produced for your
program.

Obtaining a Copy of Your Source Statements

Since the SOURCE option is the default for the FORTGI command, a copy
of your source statements is included in the LISTING file automatically. See
the part of Figure 33 labeled C for the format of the source listing. If you
do not want your source statements included, you must specify the
NOSOURCE option.

Obtaining a Storage Map

The storage map is a table that contains entries generated by the compiler for
each of seven classifications of variables that you may have used in your
program. The classifications are:

• Array Variables

• COMMON Variables

• EQUIVALENCE Variables

• FORMAT Statements

• NAMELIST Statements

• Scalar Variables

• Subprogram Statements

See the part of Figure 33 labeled D for the format of the map. It lists by
classification each variable and its internal location. If you want the storage
map inclu~ed in the LISTING file, you must specify the MAP option with the
FORTGI command.

Obtaining a Pseudo-assembler Listing of Your Executable Code

The pseudo-assembler listing contains your FORTRAN source statements
after they have been translated into an executable form by the FORTRAN IV
(G 1) compiler. This listing represents the executable code in an assembler
language format. It indicates the relative locations (in hexadecimal format),
the compiler generated sequence numbers, the assembler language codes
showing labels, op-codes and operands, and the BCD operands, which
identifies any significant items (variables, entry points, or labels) referred to
by the instruction. See the part of Figure 33 labeled E for the format of the
object code listing. If you want a copy of your object code included in the
LISTING file, you must specify the LIST option with the FORTGI command.

FORTRAN IV Gl RELEASE 2.0

0003F ..
0003FS
0003FC
000400
COO .. 04
00040e
Oo.040C
CCC41 C
000414
00041S

11

13

25
BAL
L
BAl
DC
DC
BAL
CC
BAL
L
S

MA IN DATE. 72305 11/26/21

14,16(0,151
15,140(0,131 IBCOM.
14,0(0,151
(0000005
0000022 C
14,S(0,151
045000';(
14,16 (0, 151
0,156(0,131 ~UMB(R
C, SOC(O, 1~1

l FOR TRAN I V Gl RE LEASE 2. (I MAIN DATE· 72305 11/26/21

A LOCATI CN STA NUl' LAeEL OP

- COOOOO BC
000004 DC
OOCOOS OC
OOOOOC ST"
000010 LM
C00014 Lil
000016 L
OOOOlA ST
COCC1E SH

FORTRAN IV Gl RELEASE 2.0

IGI0221

MAIN

OPERAND
15,12 (0,151
0604C lC~
05404040
14,12,121131
2,3, "O(151
4,13
13,36(0,151
13,S(0,41
3,,,,01131

DATE. 72305

UNOEF IN ED LAB EL

e SUBPROGRAMS CAllED
SYMBOL
IBCOM.

LeCATlCN
BC

SY"eOL LeeAT ICN SYMBOL LOCAT ION
IBERHN CO

seAL~R M~P

FORT R AN IV Gl R EL E AS E 2. 0 MAIN DA TE • 72305

0044
0045
OC46

85 FORMAT (. THANK YCU FOR PLAY ING - GOOD DAY' I
STOP
END

BCD OPERAND

11/26/21

SYMBOL LOCATION

11/26/21

MAG OC<;7C
MAG0098C
MAGOOC;90

PAGE 0006

PAGE 0005

PAGE 000"

SYI'BCL LCCATION

PAGE 0003

FORTRAN IV" Gl RELEASE 2.0 DATE = 72305 11/26/21 PAGE 0002

0017
001S
(1019
CC20

(ASKEC TO ENTER A NEW NUMBER el'AG00490
C CMAG00500
eeecc eeeeeeeeeeeeceeeee e eeece eecee eeeeeeccceeeceee ccccceec ceceeeeeeeee e eMAGOO 510
45 IF IMGDINUI'BER ,311 50, 60, 50 "AG0052C
~O WRITE 1 6,551 MAGOO~30
5~ FORMAT I' SORRY, YOUR NUMBER I S NOT 01 VI SIBLE BY 3'1 MAG00540

GO TC 15 MAG ce55C
eeecceeceeeee eee ecce ecce eee ceee eeeeccce ecceeeece ceecececee ceceeeeeee eee eMAGOO ~ t c
(el'AG00570

i ... ~I-.. ________ e.;...-..;,I_F _T_H ... E_~_U ... M_B..;,E_R _T_H..;,E_U;..;S ... E_R_H_A ... S.-;.S E;;.;L;.,;E ... e_T ... E c.....;.S ... U R_V_I_V..;,ES.;.....T_H_E_T_W_O_T_E_ST_S_T_H_I_S __ C_M_A_G ... C_C ~ e_c ________,

~D crJRTRAN IV

0001
C002
0r:03
0004

OC05
0(106
0007
0008

0009

0010

0011
0012

0013
(1014
0015
0016

Gl RELEASE 2.0 MAIN OATE = 7230~ 11126/21 PAGE 0001

A ceeee eeeceececee cccccccccccccccccc cceccceeeeeeee cceeecccee ec ceeeecee cec eMAGOOO 10
• C Cl'AG00020

C "'AGICSQ CMAGCOC3C
C CMAGOOC40
C HoIS IS A PROGRAM FOR GENERATING A 3-flY-3 MAGIC SQUARE Cl'AG00050
e eMAGCOC6C
e -- e ... A GO 00 7 0
C e ... AGOOO so
e THI S SEeTlOf'.l CF THE PflCGRAI' REQUESTS THE NAME OF THE USER THAT eMAGOOCC;O
e WANTS TO GEf'.lEIWITE THE MAGIC SQUARE eMAG00100
e eMAGCOllO
ecce c c ecce ecce cc cec ecce e eec ee e ecce e eecc eececee ce ee e ecce ecc ee e ec cecee ee c eM AG co 120

WRITE (6,51 "AG00130
5 FORMAT I' FlEASE ENTER YCUR NAME PRECEDEC BY A BLANK'I MAGOC14C

READ 15.101 "AG0015C
10 FORMAT C'NAME 'I MAG00160
cccee eeeeecceccc cee cececeeeeee ec eececeecceeeeeec eeccecccce ee ceececeeee e c "AGOO 1 70
e eMAGOOl eo
c THIS SECTION OF THE PROGRAM REQUESTS THE NUI'BER FeR WHICH THE CMAG00190
C USER WANTS THE MAGIC SQUARE GENERATED eMAG00200
c eMAG00210
cee ee ecce cee ee C e eec c cc e ee eec e e ecce eee c ce e ee e ec ee ee c ce ee e cc ce e eccecee ce e c MAGOO 2 20
15 WRITE 16,201 "AG0023C

WRITE 16,221 MAG00240
WR ITE 16,241 MAG00250

20 FOR"AT C' ENTER AN INTEGER NUMBER OF UP TO S DIGITS THAl IS :;REATEI'AGCOUC
XR THAN 14 AND 01 VI SI BLE BY 3' I MAG0027C

22 FORMAT I' YOU MUST PREeEOE IT WITH ENOUGH BLANKS Te "AKE UP 8 01GII'AG0021l0
XTS'I MAGOC2t;0

24 FORMAT I' FOR EXAMPLE - IF YOUR ~UI'BER IS 3 CIGITS LCNG PRECEDE lTMAG00300
X WITH 5 BL ANKS' 1 MAG003l0

2~ READ (5,301 ~UMBER MAG00320
3C FORMAT 1 IS I ... AG00330
C eccc ceeccccc ececceeece eeeeeeceececeee eeeeeeeceece eeeee eee ee ceececce c: e c I'AG C034C
C eMAG00350
C TI'IS SECTION OF TH~ PROGRAM TESTS THE NUMBER SELECTED BY THE USER CI'AG00360
C TO SEE IF IT IS LARGER THAN 14 - IF NOT, A MESSAGE IS TYPEO OUT AND CMAGOC37C
e THE USER IS ASKEO TO ENTER A ~EM NUI'BER eMAG003S0
c Cl'~G00390
eceeeecc eeeeeeec ceecceeecceee cceceeeeeeeeee eeeeeeeecececcc ce cececeee e: e c MAG OC4 CO

IF INUMBER-151 35, 45, 45 MAG00410
35 WRITE 16,401 I'AG00420
40 FORMAT (. SORRY, YOUR NUMBER IS TCO SMALL' I "'AGOC430

GO TO 14 MAG00440
ecce ecce eee ee ee ecce eeec e eccc ec c e c ecce ecce e ecce ee ec e e e eeece cc e ec eee: c e: e e MAG C 04 50
e CMAG004l:0
e Tt'lS SECTION OF THE PROGRAM TESTS THE NUMBER TO SEE IF IT IS el'AG00470
e DIVISIBLE BY 3 - IF NOT, A MESSAGE IS TYPED OUT AND THE USER IS eMAG!l04eC

Figure 33. FORTRAN IV (GO LISTING File (Part 1 of 2)

-

109

FOR'TRAN IV Gl RELEASE 2.0 MAIN DATE" 72305 11/26/21 PAGE 0009 e .STATISTICS. 001 DIAGNOSTICS GENERATED, HIGHEST SEVERITY CODE IS 8

FORTRAN IV G1 RELEASE 2.0 MAH DATE" 72305 11/26/21 PAGE 0008

000560 eAL 14,810,15 I
000564 CC 0450COlle
000568 8AL 14,810,151
00056C CC 045000BO
000570 BAL 14,810,151
000574 DC C45000B4
oeO,578 Bill 14,1610,15 I
00ll57C 35 L 15,14010,131 I BCCMII
000580 BAL 14,4IC,151
00C584 ce 00000006

FORTRAN IV Gl RELEASE 2.0 MAIN DATE .. 72305 11/26/21 PAGE 0007

0004A2 ST 0,164(0,131 lA
0004A6 23 L 0,160(0,131 I B
0004 AA A 0,8161 C, 131
0004AE ST 0,16810,13 I Ie
00Q482 24 L 0,16010,131 1 B
0004B6 II 0,820(0,131
00048A ST 0,17210,131 10
00048E 25 L 0, 160(C, 131 I B
0004C2 II 0,808(0,131
0004C6 ST 0,176(0,131 IE
0004eA 26 L 0, HoOI C, 131 18
00C4CE A 0,824(0,131
000402 ST C,180(0,131 1 F
000406 27 L C, 160(0, 131 18
00040A A 0,80410,131
0004CE ST 0,le4(C,131 IG
0004E2 28 L 0.160(0,131 IB
0004E6 A 0,828(0,131
0004EII ST 0, 18el C, 131 IH
0004EE 29 L 0,160 (0, 13 I IB
0004F2 A 0,832(0,131
0004F6 ST C,192(0,131 II I--C004FA 30 L 15,140(0,131 IBCOMII
0004FE BCR 0,0
000500 BAL 14,4(0,151
000504 DC 00000006
000508 DC COOOO 12B
COC50C BAl 14,16(0,151
000510 31 L 15,140(0,131 I BCC"'II
000514 BAL IIt,41 C, 151
00C,518 CC 00000006
00051C DC COOO0282
000520 BAL lit, 16(0, 151
000524 33 L 15,140(0,131 IBCDMII
000528 BAL 14, 4(0, 151
00052C ce 00000006 I--000530 DC C00002 B1
000534 BAL 14, e(0, 151
00C538 CC 0450 CO 114
00053C BAL 14, 8(a ,lSI
000540 CC 045000AO
000544 BAL 14,8(0,15 I
000548 DC 0450DCAe
00054C BAL 14,16 (0, lSI
000550 34 L 15,140(0,131 IBCOMII
000554 BAL 14, 4(C, 151
00055e CC 00000006
00055C DC COOO02B1

Figure 33. FORTRAN IV (00 LISTING File (Part 2 of 2)

110

FORTRAN IV (GO TEXT File

A TEXT file is created by the FORTRAN IV (G 1) compiler whenever the
LOAD default option is in effect. The file contains the compiled FORTRAN
IV program that is identical to the object program produced by the
FORTRAN IV (G1) compiler under OS.

The TEXT file contains the version of your program that can be executed by
CMS or link edited by OS. You can issue a RUN command, a LOAD and a
START command, or an EXEC command that specifies a file containing
these commands and your program will begin executing. (Any additional
FILEDEF commands required for the execution of the program must be
issued before you can enter a START command.)

Obtaining a Punch Card Deck of Your Object Program

To have your TEXT file punched into a card deck, you must specify the
DECK option with the FORTGI command. An alternate method is to use
the PUNCH command specifying the filename of your file and a filetype of
TEXT. This will punch the TEXT file that was created and placed on a disk
by the LOAD option when specified during a compilation.

Example:

punch newprog text

Compiler Language Restrictions for FORTRAN IV (Gl)

The following limitations are placed upon the FORTRAN IV language by the
FORTRAN IV (G1) compiler:

• The maximum level of nesting for DO loops and implied DO
statements is 25.

• The maximum level of nested references in an arithmetic statement
function definition to other statement function subprograms is 25.

• The maximum number of expressions that can be nested is 100.

• The maximum number of continuation cards for a single statement is
19.

• The repetition field (a) for format codes in a FORMAT statement, if
present, must be an unsigned integer constant less than 256.

• In literal constants in the source program, any valid card code is
permissible, except a 12-11-0-7-8-9 punch (hexadecimal 'FF' or
binary (integer) minus one, (-1)).

Refer to the publication IBM System/360 and System/3 70 FORTRAN IV
Language, Order No. GC28-6515 for a complete description of the
statements involved.

III

Code and Go FORTRAN IV Compiler

The GOFORT command invokes the IBM Code and Go FORTRAN IV
compiler, which will compile the FORTRAN source program contained in any
eMS files that you identify in the command. The Code and Go Compiler will
accept free-form FORTRAN source code with 80-character lines and it
allows you to execute your programs immediately after compilation without
the necessity of issuing CMS commands to load and execute. You may
include a set of options in the GOFORT command that govern compiler
operation and output; however, should you omit one or all of the options,
defaults are assumed for you. If you include options that are not valid for the
Code and Go FORTRAN compiler or if you misspell any options, a
diagnostic message is typed out at your terminal (see Appendix F for more
information). In the following illustrations and descriptions all defaults for
the compiler options are underlined.

GOFORT Command Format 1

GOFORT filename

Figure 34 shows the format of the GOFORT command and the options that
are available.

([BCDIEBCDI<=:J [DECKI~_ODECK] [FIXEDIFREE] [GOINOGO]
[LINECNT (nn I 50)] [LMSG I SMSG] [P_ISK I PRINT I NOPRINT]
[SOURC~ I NOSOURCE] [TEST I !i0TEST])

Figure 34. Format of the GOFORT Command for the Code and Go FORTRAN TV Processor

112

• Identifying the Compiler to be Used

GOFORT -- The word GOFORT identifies the Code and Go
FORTRAN IV compiler and must be typed as shown.

• Specifying a File for Compilation

, filename -- Specifies the name of the file to be compiled. The file
specified must have a filetype of FORTRAN or FREEFORT or it will
not be recognized as input for the Code and Go FORTRAN IV
compiler. If the file has a filetype of FREEFORT, the FREE option
must be specified.

Note: You must insure that the file named does not contain any
statements that are not acceptable to the Code and Go compiler (for
example, GENERIC statements).

1 The material in this section may be reproduced for internal use; it may not be
offered for resale.

• Character Code of the Source Program

BCD -- The source program to be compiled is written in BCD.

Note: The CMS COPYFILE command with the EBCDIC option can
be used to convert a file containing BCD code to a file in EBCDIC,
thus eliminating the need for this option.

EBCDIC -- The source program to be compiled is written in EBCDIC.

If you omit this option, the compiler will assume that your source
program is written in EBCDIC.

• Producing a TEXT File for your program

DECK -- A TEXT file containing the executable code for your
program is to be produced by the compiler

NODECK -- A TEXT file will not be produced for your program

If you omit this option, the compiler assumes NODECK. When the
TEST option is in effect, DECK is assumed.

• Producing a Listing for Your Program

DISK -- The compiler will place a copy of your LISTING file on a
disk.

PRINT -- The compiler will print your LISTING file on an offline
printer.

NOPRINT -- No LISTING file will be produced.

If you omit this option, the compiler assumes DISK.

• Executing a TEXT file Immediately after Compilation

GO -- The compiler will generate a TEXT file that is to be executed
immediately after compilation without issuing additional CMS
commands to load or execute it.

NOGO -- The TEXT file produced will not be executed automatically.
Additional CMS commands will be required to load and execute it.

If you omit this option, the compiler assumes GO. When the TEST
option is in effect, NOGO is assumed.

• Fixed of Free Form of the FORTRAN Source Code

fIXED -- The source code is written in fixed-form format.

FREE -- The source code is written in free-form format.

If you omit this option, the compiler assumes that your source code is
written in fixed-form format.

113

• Number of Lines to be Printed on Each Listing Page

LINECNT nn -- The source listing for your program is to be printed
with a maximum of nn lines per page. You may specify any
number for nn from 1 to 99.

If you omit this option, the compiler assumes 50 lines per page.

• Format of Compiler Error Messages

LMSG -- The compiler will print error messages in a long and detailed
form.

§.MSG -- The compiler will print error messages in a short and concise
form.

If you omit this option, the compiler assumes SMSG.

• Producing a Source Program Listing

SOURCE -- The compiler will include a copy of your FORTRAN
source program in the listing that it produces for you.

NOSOURCE -- A copy of your source program will not be included in
the listing.

If you omit this option, the compiler will assume SOURCE.

• Making Your Programs Acceptable for Use with FORTRAN
Interactive Debug

TEST -- The object code produced for your program will contain
additional linkages to make it acceptable to run under FORTRAN
Interactive Debug. When this option is specified, the DECK and
NOGO option is assumed. See the publication IBM FORTRAN
Interactive Debug for OS(TSO) and VM / 370 (eMS), Order No.
SC28-6885 for information on using FORTRAN Interactive Debug.

NOTEST -- The object code does not include additional linkages for
FORTRAN Interactive Debug.

If you omit this option, the compiler assumes NOTEST.

Output from the Code and Go FORTRAN IV Compiler

114

The Code and Go FORTRAN IV compiler produces a LISTING file
whenever errors are detected during compilation. It contains diagnostic
messages. It may optionally include a copy of your source statements. A
second file, the TEXT file, may be produced. The Code and Go compiler can
produce a punched deck of cards of your TEXT file. See Figure 35 for a
summary of the Code and Go FORTRAN IV compiler options and their
effect on output.

Option LISTING File TEXT File Terminal
Response

SOURCE Creates this file and
Includes the source code
from the CMS
FORTRAN source file

DECK Creates this file

PRINT Creates this file and prints
a copy offline

DISK Creates this file and All error and
writes a copy on an diagnostic
available disk. This file is messages are
created whenever errors always typed at
are detected. the terminal

Figure 35. The Effect of Various Compiler Options on Compiler Output (Code & Go)

Code and Go FORTRAN IV LISTING File

A LISTING file is produced by the Code and Go FORTRAN IV compiler
unless the NOPRINT option is in effect. It contains the following:

• Informative messages.

• Any errors detected during compilation and the corresponding
diagnostic messages. For a detailed description of the diagnostic
messages produced by the Code and Go FORTRAN IV compiler,
refer to publication IBM Code and Go FORTRAN IV Processor
for os and VM /370 (CMS) Installation Reference Material, Order
No. SC28-6859.

• Optional output as determined by the options you can specify with the
GOFORT command or their defaults.

Informative Messages

The informative messages included in your listing identify the compiler used,
the Julian date, and the time of day (based on a 24-hour clock) that the
compilation was begun. See the part of Figure 36 labeled A for an
illustration of the compiler informative message.

Error Messages

Error messages produced by the Code and Go FORTRAN IV compiler are
listed in a group. They contain the error number (IGK xxx I) and the text of
the message. When a message refers to a specific source statement, an
internal sequence identification number is included to identify the statement
in error. This number is printed after the message identification number and
before the message text. The number is a system-assigned line number. All
compiler messages include this number except the following: IGK192I
through IGK200I, IGK405I, IGK412I through IGK418I, IGK475I through

115

IGK477I, and IBK586I. These messages refer to general conditions affecting
compilation and not to specific source statements; therefore, sequence
numbers are not relevant in these cases.

The text of the messages has two forms, long and short. The short form is
automatically provided, since SMSG is the default for the GOFORT
command. You can request a longer, more detailed form of the error message
by specifying the LMSG option.

Examples:

Short form of the message

IGK420I 00000123 NO STMT NMBR

Long form of the message

IGK420I 00000123 STMT FOLLOWING A TRANSFER OF CONTROL
HAS NO S TMT NMBR

See the part of Figure 36 labeled B for an illustration of the error messages.

Optional Output

You may inClude in the LISTING file a copy of your source program.

Obtaining a Copy of Your Source Statements

Since the SOURCE option is the default for the GOFORT command, you
will have a copy of your source statements included in the LISTING file
automatically. See the part of Figure 36 labeled C for the format of the
source listing. If you do not want your source statements included, you must
specify the NOSOURCE option.

Code and Go FORTRAN IV TEXT File

116

A TEXT file is created by the Code and Go FORTRAN IV compiler,
whenever the DECK option is in effect. The file contains the compiled
FORTRAN IV program that is identical to the object program produced by
the Code and Go compiler under OS.

The text file contains the version of your program that can be executed by
CMS. When the NOGO option of the GOFORT command is in effect, you
can issue a RUN command, a LOAD and a START command or an EXEC
command that specifies a file containing these commands, and your program
will begin executing. (Any additional FILEDEF commands required for the
execution of the program must be issued before you can enter a START
command.) When the GO option is in effect, the compiled program will be
loaded and executed automatically without any additional CMS commands.
(FILEDEF commands must be issued before compilation.)

•

CODE A~D GO FOHPA~ RELE~SE 2.0

IGK4761 MAGCO~9C UNDEFINED LABELS
14

DATE • 723C~ 11/29/04

CODE AND GO FORTRAN RELEASE 2.0 DATE = 72305

MAG00540
MAGOO 550

FORM~T (' SORRY, YOUR NUMBER IS NOT DIVISIBLE BY 3'1 MAG00540
GO TO 15 IolAG00550

eeeee e ee ee e eeeee e ec cee c ccc ecce ee c ecce ecce eee ee ecce ee ec ee ee e e e ee e ee ee ee e eMA G005 60
e eMAGCC57e
e IF THE NUMBER THE l,SER HAS SELECTEe SURVIVES HE TWO TESTS THIS elolAG00580
C SEeTIrlN OF THE PROGRAM CALCULATES THE MAGIC SQUARE eMAG00590
e elolAGeC60C
ceecce ee e c ecce e ecce ceeee e eeeee ee e ecce eee ecce eee eeeeee eee ecce e ce e eeeeeee elol A G006 10

MAGOC~2C 60 Ie = ~u~eER/3-4 MAGCC~2e
IolAGC0630 IA = IB + 7 "'AG00630
MAGOC640 Ie = IB + 5 MAGC0640

~'eODE AND GC FORTRAN RELEASE 2.0 DATE = 723C5 11/29/04

a eeeeeeee e eeeeeeeeee eeeeeeeceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeceecec ee eeeee e~ A GOOO 10

MAG00130
MAG00140
PlAG00150
MAG0016C

.. AG00230
MAG00240
MAGCD250
MAG00260

MAGC0280

MAGCC3CC

MAGIJ0320
MAG'oo330

MAG~041C
MAGIJ0420
MAG0043(1
MAGC(l440

MAG00520
MAG00530

• e eMAG00020
e MH I eso e~A GCC03C
e elolAG00040
e HIS IS A PROGRAM fOR GENERATING A 3-BY-3 MAGIC SQUARE eMAG00050
e e~AG00060
e-- eM A GOOO 7 0
C eMAGCOOeC
e THI S SEC liON OF THE PReGRA~ RE~UESTS THE NAME Of HE USER THAT e~AG00090
e WANTS TO GENERAT E THE MAG Ie SQUARE eMAG00100
e elolAGCCll C
ec eeec ecce e eeeeeeee ecce eeeee eeeeeee ee eee e ecce ee ecce e ecce ee ee ecce ee eeeee elol A GOO 1 20

WRITE (6,5) MAG00130
FORMAT (' PLE_SE ENTER yeUR ~AME PREeEDec BY A BLANK ') HGC0140
READ (5,10) MAGOOl50

10 fORMAT ('NAH ') MAGOOHC
ee eeeeee ece eeeeeeee eeeeeceeeeeeeeeeeceeeeececeeceeeeeeeeeeeeeeeeee eee: e e~ AGOO 1 7 C
e eMAG00180
C THI S SECTION Of THE FReGRAM REQUESTS T~E NUMBER FOR WHICH THE eUGCC1C;C
e USER WANTS THE MAGIC SQUARE GENERATED C' G00200
e eMAG002l0
eeeeeeeee eeeeeeceee ecce eeeeeceeeeeeceeeeeeeeeee eceeeeceee ecce eeeee eee:: e MA G C02 2C
15 ·WR ITE (6,20) MAG00230

WRITE (6,22) MAG00240
IoRlTE (6,24) UG002~0

20 FORMAT (' ENTER AN INTEGER NUMBER OF UP TO 8 DIGITS THAT IS GREATEMAG00260
XR THAN 14 A~D DIVISIBLE ey 3') MAGC027e

22 fORMAT (' YOU MUST PRECEDE IT WITH ENOUGH BLANKS TO MAKE UP 8 DIGI~AG00280
XTS') MAG00290

24 FORPIAT (' FeR EXAHLE - If YOUR NUMBER IS 3 DIGITS LONG PRECEDE IT~AG0030C
X WITH 5 BLANKS') '"'A G003l0

25 REA[(5,30) NUMBER MAG00320
30 fORMAT (I B) '4AG00330
ceeeeeeeeee ceeeeeee eeeeeeeeeeeeeeeeeeeceeeeee ecce ceeeeeeeeeeeee c ee eeeee eMA G00340
e eMAGeC3SC
c THIS SEe1l0N OF THE FRGGRA~ TESTS THE IoiUMBER SELEeTEO BY HE USER elolAGC036C
e TO SEE IF IT IS LARGER THAN 14 - IF NOT, A MESSAGE IS TYPED OUT AND OUG00370
e THE USER IS ASH[TC ENTER _ NEW NUMBER e'4AGCG3eC
e C'4A G003'10
ec ec (cee ec c cc. ecce c c (c C c ecce c eeeeee e ee eee ecce eee ee ecce ecce eee ecce ee ecce c eM A G 004 00

35
40

IF (NUMBER-IS) 35, 45, 45 UG00410
WRITE (~,4C) IolAG00420
FORMAT (' SORRY, YOUR NUMB ER IS TOO SMALL' I .. II G00430
GO TO 14 ~IIG0044C

ce eceeeec ee eec eee ee eec eeeeeeeeee ee eee eeeceeeec e ecce eeeee ecce ecce ee ecce e e .. A G004 50
e e .. AGeC46C
e THIS SECTION OF THE PRCGRAM TESTS THE ~U"BER TC SEE If IT IS e,",AG00470
e CIVISIBLE BY 3 - If NOT, A MESSAGE IS TYPED OUT AND THE USER IS eMAG00480
e ASKED TCl ENTER ~ ~EW ~UMBER CMAGCC4C;C
C e .. AG00500
ceeeeceeeec (eeceecc ceeceeeeeeeeeeeeeeeeceecee eeeecceeeeeeeceecc ceeeee:: eMA GOOS 10
45 IF (MODINUMBER,311 50, 60, 50 '4AG00520
50 WRITE (6,551 MAG00530

Figure 36. Code and Go FORTRAN Compiler LISTING File (Default Options)

PAGE 0003

PAGE 0002

PAGE 0001

-

-

117

Obtaining a Punch Card Deck of Your Object Program

To have your TEXT file punched into a card deck, you must specify the
DECK option with the GOFORT command and use the PUNCH command.

Example:

punch newprog text

Compiler Language Restrictions for Code and Go FORTRAN

118

The language restrictions for Code and Go FORTRAN are as follows:

• The maximum number of arithmetic expressions that can be nested is
30 in a minimum CMS configuration. This limit increases as additional
storage is made available.

• The maximum level of nested references from within an arithmetic
function definition statement to another statement function or function
subprogram is 10 in a minimum CMS configuration. This limit
increases as additional storage is made available.

• The maximum number of source statements for one compilation is
dependent upon the amount of storage available to the compiler. A
minimum CMS configuration will allow up to a maximum of 230
statements or the equivalent.

• There is no restriction on the number of comments or connective
comments in the source program. The maximum size of a statement is
1320 bytes exclusive of labels or sequence numbers but including any
embedded blanks. This is equivalent to 19 fixed form continuation
cards to a statement.

• The repetition field (a) for format codes in a FORMAT statement if
present, must be an unsigned integer constant less than 256.

• The FORMAT statement specification w, indicating the number of
characters of data in the field, must be an unsigned integer constant
less than 256.

• In literal constants in the source program, any valid card code is
permissible, except a 12-11-0-7-8-9 punch.

• In free form source, literal constants may be continued on a new line if
the continuation begins in the first position of the new line.

• In the format statement no separator is required between H. type
format code strings or between X format codes and H format codes.

FORTRAN IV (H Extended) Compiler

Before you can use the H Extended compiler under CMS you must make sure
that suffici~nt storage is available for it. The r "'llpiler requires a minimum of
600K bytes of storage, which is sufficient to compile small programs. You
must issue a DEFINE STORAGE command specifying at least 600K prior to
entering the IPL CMS command. The format of the DEFINE command is as
follows:

DEFINE STORAGE nnnK

where:
nnn must be a minimum of 600. This value may be increased, in multiples

of 4 up to the maximum allowed by CMS. The letter K represents
1024 bytes.

The compiler statistics can be used as a guide in calculating the most
economical value for nnn (see part A of Figure 40). It lists the amount of
space a particular program requires. As a guide a value of SOO will permit
compilation of very large programs.

The FORTRAN command invokes the IBM FORTRAN IV (H Extended)
compiler, which will compile a FORTRAN IV source program (see the
publication IBM System/360 and System/370 FORTRAN IV Language,
Order No. GC2S-6S1S for extensions to the FORTRAN IV language that the
FORTRAN IV (H Extended) compiler will accept). Your source program
must be contained in the CMS file that you identify in the command. You
may include a set of options governing compiler operation and output;
however, should you omit one or all of the options, defaults are assumed for
you. If you include options that are not valid for the FORTRAN IV (H
Extended) compiler or if you misspell any options a diagnostic message is
typed out at your terminal (see "Appendix F" for more information). In the
following illustrations and descriptions, all defaults for the compiler options
are underlined.

FORTHX Command Format t

Figure 37 shows the format of the FORTHX command and the options that
are available.

tThe material in this section may be reproduced for internal use; it may not be offered for
resale.

119

FORTHX filename ([ALC I NOALC] [ANSF I NOANSF] [{AUTODBL I AD} (value)]

[BCD I {EBCDIC I EB}] [DECK I NODECKj· [DISK I PRINT I NOPRINT]

[DUMP I NODUMP] [FLAG (II E IS)]

[{FORMATIFMT} I {NOFORMATINOFMT}] [GOSTMTI NOGOSTMT]

[(LINECOUNT I LC}(nn 160)) [LIST I NOLIST] [MAP I NOMAP]

[NAME (name I MAIN)] [{OBJECT I OBJ} I {NOOBJECT I NOOBJ}]

[{OPTIMIZEIOPT}(Qll 12)1 {NOOPTIMIZEINOOPT}]

[SIZE(nnnnKIMAX)] [{SOURCEI§) I {NOSOURCEINOS}]

[TERMINOTERM] [XREFINOXREF])

Note: If you specify more than 100 characters in the string of options, you will create an error condition and a message will be
printed at your terminal. To correct this condition, reissue the command using abbreviations, where permitted, or specifying
fewer options.

Figure 37. Format of the FORTHX Command for the FORTRAN IV (H Extended) Compiler

120

• Identifying the Compiler to be Used

FORTHX -- The word FORTHX identifies the FORTRAN IV (H
Extended) compiler and must be typed as shown.

• Specifying a File for Compilation

filename -- Specifies the name of the file to be compiled. The file
specified must have a file type of FORTRAN or it will not be
recognized by the FORTRAN IV (H Extended) compiler.

Note: You must insure that the file named does not contain any
statements that are not acceptable to the FORTRAN IV (H Extended)
compiler (for example, free form source statements).

• Specifying Boundary Alignment of Data Items

ALC -- Data items are to be aligned on proper storage boundaries. It
may be used with the AUTODBL option to restore proper storage
boundaries when a conversion is performed. (For more detailed
information on the ALC option, see the section Automatic Precision
Increase Facility).

NOALC -- Data items will not be aligned on proper boundaries.

If you omit this option, the compiler will assume NOALC.

• Library and Built-in Function Recognition

ANSF -- The compiler will recognize only those library and built-in
functions specified by American National Standard, (ANS)
FORTRAN, X3.9-J966. See the table of functions shown in the
publication IBM System/360 and System/3 70 FORTRAN IV
Language, Order No. GC28-6515 for a list of the ANS library and
built-in functions. When this option is specified, any function that
is not supported by ANS is assumed to be supplied by the user.

NOANSF -- The compiler will recognize the entire range of
IBM-supplied library and built-in functions tb.at are listed in the
FORTRAN IV language manual.

If you omit this option, the compiler assumes NOANSF.

• Using the Automatic Precision Increase Facility

AUTODBL (value) -- The compiler will call the Automatic Precision
Increase (API) facility. See the section "Automatic Precision
Increase Facility" for more detailed information on the AUTODBL
option. This option can be abbreviated AD(value.)

If you omit this option, the compiler will not perform any precision
increase.

• Character Code of the Source Program

BCD -- The source program to be compiled is written in BCD.

Note: The CMS COPYFILE command with the EBCDIC option can
be used to convert a file containing BCD code to a file in EBCDIC,
thus eliminating the need for this option.

EBCDIC -- The source program to be compiled is written in EBCDIC'
code. This option can be abbreviated EB. If you omit this option,
the compiler assumes EBCDIC.

• Producing a Card Deck for Your TEXT File

DECK -- The executable code produced by the compiler will be
punched into a card deck in your computing center.

NODECK -- The executable code produced by the compiler will not
be punched into a card deck.

It you omit this option, the compiler assumes NODECK.

• Producing a LISTING File for Your Program

DISK -- The compiler will place a copy of your LISTING file on a
disk.

PRINT -- The compiler will print your LISTING file on the offline
printer.

NOPRINT -- No LISTING file will be produced.

If you omit this operand, 'the compiler assumes DISK.

121

122

• Requesting a Dump

DUMP -- The contents of registers, storage, and the files associated
with the compiler are to be printed if an abnormal termination
occurs.

NODUMP -- No dump will be produced if an abnormal termination
occurs.

If you omit this option, the compiler assumes NODUMP.

• Specifying the Level of Diagnostic Messages to be Printed

FLAG(level) -- Diagnostic messages, of the level indicated will be
printed at your terminal and included in the LISTING file. A level
of I indicates that informative messages, warning messages (those
generating a return code of 4), error messages (those generating a
return code of 8), and severe error messages (those generating a
return code of 12) are to be printed. A level of E indicates that
only error messages and severe error messages are to be printed. A
level of S indicates that only severe error messages are to be
printed.

If you omit this option, the compiler assumes FLAG (I).

• Producing a Structured Source Program

FORMAT -- A structured source program listing indicating the loop
structure and logical continuity of your source program is included
in the LISTING file produced by the compiler. This option can be
abbreviated FMT.

Note: This option is useful only when the OPTIMIZE 2 option is in
effect.

NOFORMA T -- A structured source program listing will not be
produced. This option can be abbreviated NOFMT.

If you omit this option, the compiler assumes NOFORMAT.

• Generating Internal Statement Numbers

GOSTMT -- Internal Sequence Numbers (ISN) are to be generated for
the calling sequence to subroutines for a traceback map.

NOGOSTMT -- Internal Statement Numbers will not be generated.

If you omit this option, the compiler assumes NOGOSTMT.

• Number of Lines to be printed on Each Listing Page

LINECOUNT(nn) -- The source listing for your program will be
printed with a maximum of nn lines per page. You may specify any
number for nn from 1 to 99. This option can be abbreviated LC.

If you omit this option, the compiler assumes a line count of 60.

• Producing a Listing of Your Object Module

..
\

LIST -- The compiler will include, in the LISTING file, a
pseudo-assembler listing of the translated statements contained in
the TEXT file.

NOLIST -- The pseudo-assembler listing for your program will not be
.- included in the LISTING file.

If you omit this option, the compiler assumes NOLIST.

• Producing a Variable and Label Map for Your Source Program

MAP -- The compiler will generate a table of variable names and
statement labels. This table will be included in your LISTING file.

NOMAP -- The compiler will not generate tables for variable names
and statement labels.

If you omit this option, the compiler will assume NOMAP.

• Naming Your Program

NAME (name) -- The name represented by name will be assigned by
the compiler to the executable code it produces. You may specify
from one to 6 characters for name.

If you omit this option, the compiler assigns the name MAIN to your
executable code.

• Producing an Object Module

OBJECT -- The compiler will create executable code from the
FORTRAN source code in your program. This code will be placed
in the TEXT file. This option can be abbreviated OBJ.

NO OBJECT -- The compiler will not produce executable code or a
TEXT file. This option can be abbreviated NOOBJ.

If you omit this option, the compiler assumes OBJECT.

• Specifying the Level of Optimization for Your Compilation

OPTIMIZE (level) -- The compiler will perform the type of
optimization indicated by the level. A level of 0 indicates that no
optimization is to be performed. A level of 1 indicates that each
source module is to be treated as a single program loop and is to be
optimized without regard for register allocation or branching. A
level of 2 indicates that each source module is to be treated as a
collection of program loops and that each loop is to be optimized
with regard for register allocation, branching, common expression
elimination, and replacement of redundant computations.
Optimizing techniques are discussed further in the "Programming
Considerations" sections. This option can be abbreviated OPT.

NOOPTIMIZE -- The compiler will not perform any optimization.
This option is equivalent to specifying OPTIMIZE (0). This option
can be abbreviated NOOPT.

If you omit this option, the compiler assumes NOOPTIMIZE.

123

124

• Specifying the Amount of Main Storage for Your Compilation.

SIZE (MAX) -- The compiler will use all available storage, except for
approximately3K bytes, which are left for system routines.

SIZE (nnnnK) -- The amount of storage occupied and used by the
compiler is limited to the value indicated by (nnnnK). The value of
nnnn can be any number from 460 to 9999. This capability is not
intended for normal compiler operation. Its use should be restricted
to only those applications in which a problem program invokes the
compiler through a CALL, A TT ACH, or LINK macro instruction
and, therefore, must limit the amount of storage available to the
compiler. As a guide to establishing a SIZE, remember that the
compiler is usually loaded into storage beginning at 128K. The
length of the compiler is 460K plus the amount of storage occupied
by the CMAJOR and ADCON compiler tables. In addition, the
compiler requires at least 12K of workspace. Your application will
determine the exact amount of additional workspace that the
compiler will use. The compiler diagnostics will indicate the amount
of unused workspace. The SIZE you choose must account for the
length of the compiler plus tables and workspace. Storage at
addresses higher than SIZE is available for your application. This
storage may be extended with the DEFINE STORAGE command.
Be aware that limiting the amount of storage available to the
compiler may adversely affect its performance.

If you omit this option, the compiler assumes SIZE (MAX).

• Producing a Listing of Your Source Program

SOURCE -- The compiler will include a copy of your source program
in the LISTING file it produces for your program. This option can
be abbreviated S.

NOSOURCE -- A copy of your source program will not be included in
the LISTING file. ~This option can be abbreviated NOS.

If you omit this option, the compiler assumes SOURCE.

• Typing Compiler Error Messages at Your Terminal

TERM -- Any erroneous statements detected in your FORTRAN
program and the corresponding messages will be typed at your
terminal.

NOTERM -- Errors and messages will not be typed at your terminal.

If you omit this operand, the compiler assumes TERM.

• Producing a Cross-Reference Listing of Variables and L:'bels

XREF -- A cross-reference listing of variable names and labels used in
your program will be included in the LISTING file produced for
your program. If XREF is specified, ISNs are generated (regardless
of whether GOSTMT was specified) for each statement in which a
variable or label was used.

NOXREF -- A cross-reference listing will not be included in your
FORTRAN IV (H Extended) LISTING file.

If you omit this option, the compiler assumes NOXREF.

Changing Compiler Options with a *PROCESS Statement

The H Extended compiler permits a source program to set the compiler
options that it will require regardless of the defaults or the options that you
specified in the FORTHX command. The compiler accepts a *PROCESS
statement which may contain any of the compiler options that you want to
use in place of the corresponding compiler defaults. This facility permits you
to specify a different set of options for each source program in a file that
contains more than one source program. The options used will be either the
compiler defaults or the options specified in the *PROCESS statement. You
do not need to place a *PROCESS statement in the first program since its
options are set by the FORTHX command.

To code a *PROCESS statement, type an asterisk (*) in column 1 (starting
at the left hand margin indicator); type the word PROCESS in columns 2
through 8, and leave column 9 blank. You may place the compiler options
that you want anywhere after column 9 but before column 72, which must be
left blank indicating the end of the statement. When used in a source
program, the *PROCESS statement must be the first statement in the
program.

Example:

*process deck, optimize(2)

You may use all the options shown in Figure 37 except SIZE, DISK, PRINT,
or NOPRINT.

Output from the FORTRAN IV (H Extended) Compiler

The FORTRAN IV (H Extended) compiler produces a LISTING file that
contains any errors detected during compilation and diagnostic messages. It
may also include a copy of your source program, a map of variable names and
labels, a cross-reference list of variable names and labels, a pseudo-assembler
listing of the executable code produced, a dump in the event of abnormal
termination, an edited source program, and internal statement numbers in the
source program. In addition, all erroneous statements and diagnostic
messagt ' included in the LISTING file will be printed at your terminal. A
second file, the TEXT file, can also be produced that will contain the actual
executable code. The FORTRAN IV (H Extended) compiler can also
produce a punched card form of your TEXT file. See Figure 38 for a
summary of the FORTRAN IV (H Extended) compiler options and their
effect on output.

125

Option LISTING File Text File Ternminal
Response

SOURCE Includes the source code
from the CMS
FORTRAN source file

OBJECT Creates this file

XREF Includes a cross reference
list of variables and labels

LIST Includes a
pseudo-assembler listing
of the executable code
produced

FORMAT Includes an edited copy of
the source code

MAP Includes address tables for
variables and labels

DECK Punches a copy of
this file off line

PRINT Creates this file prints a
copy offline

DISK Creates this file and
writes a copy on an
available disk

TERM Prints all error
and diagnostic
messages at the
terminal

Figure 38. The Effect of Various Compiler Options on Compiler Output

FORTRAN IV (H Extended) LISTING FOe

126

The LISTING file is always produced by the FORTRAN IV (H Extended)
compiler unless the NOPRINT option is in effect. It contains the following:

• Informative messages that indicate the status of the compilation.

• Any errors detected during the compilation and the corresponding
diagnostic messages. For a detailed description of the diagnostic
messages produced by the FORTRAN IV (H Extended) compiler refer
to the publication IBM System/360 Operating System: FORTRAN
IV (H Extended) Compiler and Library (Mod II) Messages, Order
No. SC28-6885.

• Optional output as determined by the options you can specify with the
FORTHX command or their defaults.

Should you need to edit the LISTING file you must include the option
(LRECL 133) with your EDIT command.

Informative Messages

The informative messages included in your listing identifies the compiler used,
the Julian date, and the time of day (based on a 24-hour clock) that the
compilation was begun. A list of the compiler options requested, all the
options that were in effect, and the compiler statistics are also provided. See
the part of Figure 40 labeled A for an illustration of the compiler
informative messages.

Error Messages

The error messages produced by the FORTRAN IV (H Extended) compiler
are listed in a group. They contain the error number (IFExxx I), its severity
level, and the text of the message. When the message refers to a specific
source statement, an internal sequence number is included to identify the
statement in error.

Messages with a severity level of 4 permit you to execute your program.
Severity levels higher than 4 prevent execution from taking place. See the
part of Figure 40 labeled B for an illustration of the compiler error messages.

Optional Output

Additional information can be included in your LISTING file, depending on
the defaults in effect and the options you specify with the FORTHX
command. You can include the following:

• A list of your source statements.

• A source program map.

• An edited list of your source program.

• A cross-reference listing of your source program.

• A list of the object code produced for your source program.

Obtaining a Copy of Your Source Statements

Since the SOURCE option is the default for the FORTHX command, you will
have a copy of your source program included in your LISTING file
automatically. See the part of Figure 40 labeled C for the format of the
source listing. If you do not want your source statements included, you must
specify the NOSOURCE option.

Obtaining a Source Module Map

The first part of the source module map is a table that contains entries
generated by the compiler for each of eleven classifications of variables that
you may have used in your program. The first .line of the map gives the name
of the program and its size in hexadecimal format. The column labeled TAG

127

128

indicates the classification of each variable. Figure 39 explains the
classifications.

Classification Meaning

A A variable that was used as an argument in a parameter list

ASF An arithmetic statement function

C A variable that appeared in a COMMON block

D A promoted (doubled) variable

E A variable that appeared in an EQUIVALENCE block

F A variable that appeared to the right of an equal sign (that is, a
variable whose value was manipulated during some operation)

p A padded variable

S A variable that appeared to the left of an equal sign (that is, a
variable whose value was stored during some operation)

XF An external function

XR An external reference to an array or a variable

* A promoted library function

Note: The combination code ASF should not be confused with the individual A, S, and
F. When a variable has been used for these several purposes, the individual codes will
appear as SFS to avoid confusing it with the arithmetic function code is always ASF.

Figure 39. H Extended Storage Map Variable Classifications

The column labeled TYPE indicates the type and length of each variable
listed.

The column labeled ADD indicated the relative address assigned to the
variable name. (Functions, arithmetic statement functions, subroutines, and
external references have a relative address of 00000.) For variables that you
have not referred to, the letters NR will appear instead of a relative address.

The second part of the source module map is a table of statement numbers.
This label map shows each statement number that you used in your source
program and any labels that the compiler generated. The relative address
assigned to each label is also shown. Any unreferenced symbols are indicated
by the letters NR instead of a relative address.

If the source module contains COMMON or EQUIV ALENCE statements,
a third part of the source module map is included. The map for COMMON
blocks contains the same kind of information as for the main program. Any
variable that is made equivalent to a variable in a COMMON block is listed
along with its displacement (offset) from the beginning of the block. See the
part of Figure 40 labeled D for the format of the source module map. If you
want the map included in your LISTING file, you must specify the MAP
option with the FORTH X command.

Obtaining an Edited Copy of Your Source Program

The edited copy of your source program is independent of the usual source
listing; it indicates the loop structure and logical continuity of the program.

Each loop in your program is assigned a unique 3-digit number. The
entrance to each loop is indicated bya left parenthesis followed by a 3-digit
number; the exit from that loop is indicated by the same 3-digit number
followed by a right parenthesis.

The logical continuity of your program is shown through the dominance
relationships among executable source statements. A statement dominates
another if all logical paths to the second statement go through the first. The
first statement is called the dominator and the second is called the dominee.
By this definition, a statement can have only one dominator, but a dominator
may have several dominees. For example, a computed GO TO statement is
the last statement through which control passes before reaching three other
statements. The GO TO statement is a dominator with three dominees.

Example:

Statement B
dominates E B

E

A

c

o

F

Statement A
dominates Band C

Statement C
dominates 0

Statement 0
dom j nates F and G

G

129

130

In the listing, a dominee is indentend from its dominator unless it is the only
dominee or the last dominee of that dominator. The indention may be broken
by intervening statements; this is dominance discontinuity and is indicated by
a C--- on a separate line above the dominee.

Comments and non-executable statements are not involved in dominance
relationships. Their presence never causes a dominance discontinuity;
Comments are aligned with the last preceding non-comment line and
non-executable statements are aligned with the last preceding executable
statement or the first one following. See the part of Figure 40 labeled E for
the format of the edited source listing. If you want a copy included in the
LISTING file, you must specify the FORMAT and OPTIMIZE2 options with
the FORTHX commannd.

Obtaining a Cross-reference Listing

The cross-reference listing shows the symbols and statement labels that you
used in your source program with the internal sequence numbers of the
statements in which they appeared. Symbols, which define variables, are
listed by name, alphabetically. Statement labels are listed in numeric
sequence. The internal sequence number of the statements that define and
reference each symbol and label are shown after them. See the part of Figure
40 lableled F for the format of the cross-reference listing. If you want a copy
of the listing included in the LISTING file, you must specify the XREF option
with the FORTHX command.

Obtaining a Copy of Your Pseudo-assembler Listing of Your Executable
Code

The pseudo-assembler listing contains your FORTRAN source statements
after they have been translated into an executable form by the FORTRAN IV
(H Extended) compiler. This listing represents the executable code in an
assembler language format. The following items are shown:

• The column labeled 1 indicates the relative address (in hexadecimal
format) of the assembler language instruction.

• The column labeled 2 indicates the storage representation (in
hexadecimal format) of the instruction.

• The column labeled 3 indicates the statement numbers you used in
your program or which the compiler generated (6-digit numbers).

• The column labeled 4 indicates the pseudo-assembler language code
for each statement.

• The column labeled 5 indicates any significant items referred to by the
instruction, such as, entry points of subroutines or other statement
numbers.

See the part of Figure 40 labeled G for the format of the object code listing.
If you want a copy of this listing included in the LISTING file, you must
specify the LIST option with the FORTHX command.

l~ VE L 2 (OCT 24 72 I MAI~

47 F 0 F COC
07

OS/360 FORTRAN H EXTENDED DUE 72. 305/11. ~3. ee
MAl N BC 15,12 (0,151

DC XLI '07'
CCCOCO
00COr.4
or~"n5

~06
00(;014
C00018
COOOIC

D4Cl.~ ·~404040
GO . COC
98" 02e
50 3C 0 CC8
50 CO 3 004
C7 F2

e CC
C_IN ' • ST" 1 ~ ·121131

L" 2. :1 (151
ST 3,81131
ST 1~,4(C, 31
BCR 15,2

CCNSTANTS
OOOZ'IO 00000001 nr XI ,,'nnnnnntll'

LEV EL Z (OCT 24 72 I G MAIN OS/3~C FORTRAN H EXTENDED DATE 7Z.305/11.53.08

LAIlEL
5

1C
14
15
20
2Z
Z4
Z~
30

DEF INED
0003
COOS
UNDEF
(1006
GCOG
001~
0011
0012
C013

*****F
REFERENCES
OCOZ
CON 0031
CC17
00~1 0')43
CC06
CCC?
cee 8

0012

ORTRAN C R 0 S S REFERENCE LIS TIN G •••• *

LFVEL 2 I OCT 24 72 I G MAl ~ OS1360 FOPTRAN H EXT ENDED DATE 72.305/1l.~3.ee

SYMBOL
IA
IB
IC
10
IE
IF
IG
IH
II

"'**HF 0 R T R
INTERNAL STATE~ENT ~UIIAERS
0023 0034
0022 0023 002" 0025 oeu
002" 0034
0025 1)035
0(126 0035
oe27 0035
0028 ceH
0029 0036
0030 ')036

A N C R 0 S S REFERENCE LIS TIN G."' •• *

0027 ce28 CC29 0030 0034

lEVEl. 2 (OCT 24 72 I MAIN OS/3~C FORTRAN H EXTENDED DATE 72.305/11.53.08 PAGE

ISN 0020
ISN 0021

ISN 0022
ISN 0023
ISN 00210

55 FORMAT (' SORRY, VOlR NUMBER IS NCT DIVISIBLE BV 3'1 MAGD054D

--:c""'c-=-CC""C'""C';':~~:;'C'''''='~~C~ ~cc CCCCCCCCC CCCC C CCC C C CC C C CC CC C C e CCC C CC C CC ccc ec C cc CC CC C CC C C ~~~ ~~ ~ ~~
C C"'~GD0570
C IF THE ~UMBER THE USER ~AS SELECTEC SURVIVES THE TWO TESTS THIS CMAGCC5EC
C SECTION OF THE PROGRAM CALCULATES THE MAGIC SQUARE CMAG005'l0
C C~~G00600
CCCCC CCCCCCCCC CC cccccc e C eec cc ec Ccc(ccceceee ecccccccccccccccc ccc cccc c c: c c MAG cet: 1 C
~O I B = NUMBER 13-4 IIAG00620

U = Ie • 7 IIAGD0630
IC = I B + 5 MAGOO~4C

L~VEL 2 1 OCT 24 72 I OS/360 FORTRAN H EXTENDED DUE 72.305/11.53.ce

_REOUESTED OPTIONS: FMT GOSTMT LIST MAP XREF TERM

OPTIONS IN EFFECT: ~bMEI MAINItNOOPTIMIZE,LINEeOUNTl601,SIZEIMAXI,AUTODBLCNONEI,

ISN 0002
ISN 0003
ISN 00010
ISN 0005

ISN 0006
ISN 0007
ISN 0008
ISN 0009

ISN 0010

ISN 0011

ISN 0012
ISN 0013

ISN 00110
ISN 0015
ISN 0016
ISN 0017

ISN 0018
ISN 0019

NO SO URce, EBCDIC, LI ST ,NODECK, CBJ ECT ,MAP, NDFORMAT, GOSTMT, XR EF, NOALe, '10A'I SF, TER M, FLAGI SI

a ccecc ecceeccce cc ecc ecce ce eceececeeecceececccc ccccccc cccccccc eec cccc cc: e CM~G coo 1 C V C CMAG00020
C MAGICSQ C~AG00030
C CMAG'COC40
C TI-IS I S A PROGRA" FOR GEHRATING A 3-BV-3 "~GIC SQUARE C"'AG00050
C CMAG00060
e--CMAGOOC7C
C eMAGOOOeO
c lHI S SECTIC~ CF THE FROGRAM REQUESTS THE NAME OF THE USER THAT CMAGeCeSO
c WANTS TO GENERATE THE MAGIC SQUARE CMAGOOI00
(C~~GOOllO

CCCCC cccccc ece ecec C eeecce C eeccc e cc ccceecccc cccecccecccccce cc cccccce c e: c c MAG CO 12C
WR IT E 1 ~ , ~ I ~ A GOO 130
FORMAT (' PLEASE ENTER YOUR NAME PRECEDED BY A BLANK'! IIAG00140
READ 1 5,1 0 I . MAGOO 1 ~O

10 FORMAT ('NAME 'I "AG00160
C ccerccc ecceccce cccc cecee cc ccce cec ccceeecccccccccccceccccccc c cc ccce C c: c c MAG ac 1 7 C
C CMAGOOleO
c THIS SECT ION OF HE PROGRAM REQUESTS THE NU~BER FCP WHICH THE eliAG00190
c USER WANTS THE MbGIC SQUARE GENERATEC CMAG00200
e CMbG00210
ceece ce cecccceccccceccccccccccc cccccccccccccccccccccccccccceccecec:ec:e c ~AG00220
l~ WRITE 16,2el MAG00230

WR ITE (6,2 21 M~G00240
WRITE (6,241 MAGCC2~C

2C FORMAT I' ENTER ~~ H1EGEP NUMBER CF UP TO 8 DIGITS THAT IS GREAT EMAGOOUO
XIl THbN 14 AND DIVISIBLE BY 3'1 MbG00270

22 FDPMAT (I VCU MUST PHCECE IT WITt- ENOUGH ELANKS TO MAKE UP e DIGIMAGeC2EC
XT S 'I MAG0029D

24 FO~MH I' fOR EXAMPLE - IF YOUR NUMBER IS ~ DIGITS LCNG PRECEDE ITI'AG00300
X WITH 5 eUNKS' I MAGOC?10

2~ READ (5,301 NUMBER II~G00320
30 FOPMAT (18 I "AG00330
ceecceccccc ccccc ccccccccccc ecccc ccecc ccccecce ccccccc c e cecc cc ccc ccccc ce c c MAG OO~ 4C
e CMAG00350
e THIS SEeTlCf' CF HE FReGRAM TESTS HE NUMBER SELECTED B' THE USER C~AGCe~~C
c TO seE IF IT IS LARGER THAN 14 - IF NOT, A MESSAGE IS TVPED OUT AND CMAG00370
e HE USER I S ASKED TO ENTER A NE W NUMBER e"'~G003eo
c CMAGOC3S0
eccecccc ecccccececccccccccc ceccccc c eccc ccecccccccc ceccccc c cc ccccccecccc CMAG00400

~5
40

IF lNUMEER-151 35, 45, 45 "~G00410
"RITE (6,4CI MAGCC42C
FORMAT I' 5ORRV, VOLR NUMBER IS Tce Sf/ALL'! MAG00430
GO TO 14 IIAG00440

ccccc ccceecccc cc ccccccccccc ccccccc ecce c ccec c ec cc ccccc cccce ce cccccceeccc c MAG 0010 50
C CM~G00460

e HIS SECT IC~ CF HE PReGRAM TESTS Tf<E NUMBER TO SEE IF IT IS CIIAGCC"'C
C DIVISIBLE BV 3 - IF NCT, A MESSAGE IS TVPEC OUT AND THE USER IS CMAG00480
C bSKEr TO ENTER b NEW NUMBER C"~G00490
C CMAGCC5CO
cccccccecccccccc cccccc ccccc ccccccccc'cc ccccccccccccccceece e eceecceecc cce CMAGOO 510
45 IF (MCD(NUMBER,311 50, 60, 5t IIAG00520
~C WRITE (6,551 MAG0053C

Figure 40. FORTRAN IV (H Extended) LISTING File (Part 1 of 3)

PAGE 1

PAGE

P~GE 5

PAGE

-

-

131

'.

LEVEL 2 I OCT 24 72 I MAIN OS1360 FORTRAN H EXTEfIlDEC OAT E 72.305/11.53.08 PAGE 10

SOURCE STATE"ENT LAeELS

LABEL I SN AOOR LABEL I SfI AOOR LABEL ISN ACCR LABEL ISN AOOR
15 6 000338 25 12 000374 NR 35 15 00C3~E 45 1A 0003138
50 19 0003CC 60 22 0003 E6

COMPILER GENERATEC LABELS

LABEL ISf\ AOCIl LABEL ISN AOOR LABEL ISN AOOR LABEL .1511 AOOP
100000 1 000310 100001 45 000542

LEVEL 2 , OCT 24 72 I MAIN OS/360 FORTRAN H EXTENOEC OAT E 72.305/11.53.08 PAGE 9

CD
1 MAIN I SI ZE OF PROGRAM 000586 HEXAOECiI'AL BYTES

NAME TAG lYPE ADD. fIA"E TAG TYPE ACO. NAME TAG TV PE ACO. NAME TAG TYPE ADD.
IA SF 1*4 00l)2B4 IB SF 1*4 00C2BB IC SF 1*4 00028C 10 SF 1*4 ooozeo
IE SF 1*4 0002C4 IF SF 1*4 0002C8 IG SF 1*4 oe02CC IH SF 1*4 000200
II SF 1*4 000204 IBCOMII F XF 000000 NCQUIT S 1*4 00C2D8 NnSTOP 1*4 00C20C

f\U"BER SFA 1*4 0002EO

LEVEL 2 I OCT 24 72 I MAl N OS/3(:0 FORTRAN H EXTENDED D4TE 72.305111.53.0e PAH 8

OC0554 45 EO F (1 C BAl 14, 161 0.151
000558 58 FO C OBO L 15 ~ 11(:1 C,131 I BC(IIIII
CC(55C 45 EO F 034 eAL 14, 52 I 0,151
C(0560 C5 DC XLl'05'
000561 40 CC XL 1'4C'
(C0562 40 CC XU'40'
000563 40 DC XLl'40'
000564 40 CC XL 1'40'
00C565 FC DC XLl'FO'

ADDRi:'5S CF EPJLCGUE
(CC566 58 FO C CBO L 15, 17(:1 0,131

LEVEL 2 I OCT 24 72 I HAIN 05/3(:0 FORTRAN H EXTENDED DATE 72.305/11.53.08 PAGE 7

C(0470 45 EO F 004 eAL 14, 41 0,151
(00474 CCOCOOC(: DC XL4' 00000006' 6
000478 OOOOOlAE DC XL4'OCCCCIAE'
((C47C 45 EO F CI0 BAL 14, 1610,151
CC0480 58 FO 0 OBO L 15, 1761 0,131 IBCOMII
000484 45 EO F 004 BAL 14, 41 0,151
CC0488 CC((00C6 CC X L4' 00000006' (:

00048C 00000 ICO DC XL4'OOOOOlOO'
000490 45 EO F 008 BAL 14, 81 0,151
00C494 C45C0074 DC XL4'0450C074' IA
000498 45 EO F 008 BAL 14, 81 0,151

LEVEL 2 I OCT 24 72 I HAl t; OS/360 FORTRAN H EXTENDED DUE 72.305/11.53.C8 PAGE 6

00C394 5B OC 0 C7(S 0, Il21 0.131 15
000398 58 50 C OCO L 5, 1<;21 0,131 45
0003'lC C7 B5 8CR 11, 5
00039E 58 fO 0 CBO 35 L 15, 1761 0,131 IBCOHII r--
0003A2 18 00 LR 0, 0
((C3A4 45 EO f 004 BAL 14, 41 0.151
0003A8 00000006 DC XL4' 00000006' 6
0003AC 00000150 CC XL4'OOCC0150'
eCC3BO 45 EO F C1C BAL 14, 16 I 0,151
0003B4 47 FO 0 000 BC 15. 01 0, 01
00031\8 58 OC 0 OAC 45 L 0, 160 I 0,131 NUMBER
0003BC 8E 00 0 C20 SROA 0, 32
0003CO 50 00 0 058 0 C. SSI C,131 3
C003C4 12 CO LTR 0, 0
00C3C6 SS 50 0 eC8 L 5, 2COI 0,131 60
0003CA 07 95 BCR S, 5
C(03CC 58 FO 0 OBO 50 l 15, 176 I 0,131 IBCOMII
000300 45 EO F 004 BAL 14, 4(0,151 -
C00304 00000006 CC XL4'OOOOOO06' 6
000308 COOOOlSl DC XL4'OOOOO181'
00030C 45 EO F 010 BAL 14, IH C,151
0(03EO 58 50 0 CB8 L 5, 1841 0.131 15
0003E4 C7 f5 BCR 15, 5
0003E6 58 00 0 OAO 60 L C, l~C(0.131 ~U~BEfI

CC03EA EE 00 C C2C SROA 0, 32
OC03EE 50 00 C 058 0 C, 881 0,131 3
0003F2 5B 10 0 C5C S 1, 921 0,131 4
0003F6 50 10 0 078 ST 1, 1201 0,131 IB
0003FA SA 10 0 068 A 1, 104(C.131 7
CCC3FE 5C 10 0 074 ST 1, ll61 0,131 IA
000402 58 CO 0 060 L 0, 96(0,131 5
000406 SA 00 0 078 A C, 12CI 0,131 I B -
CCC4CA 50 CO 0 C7C ST 0, 1241 0,131 IC
00040E 58 00 C 078 L C, 1201 0,131 IB
000412 SA 00 D 054 A 0, 84(0,131 2
000416 50 OC 0 C8C ST 0, 128 1.0,131 10
00041 A 58 00 C 078 L C, 12CI 0,131 I B
CCC41E 5A 00 0 05C A 0, 9210,131 4
000422 50 00 0 OB4 ST 0, 1321 0,131 IE
OC0426 58 00 D 064 L C, lCC(0,131 6
CCC42A ~A 00 0 C78 A 0, 1201 0,131 IB
00042E 50 00 C 088 ST C, 1361 0,131 IF
000432 58 00 0 C58 L 0, 881 0,131 3
000436 SA 00 0 C18 A 0, 1201 0,131 IB
00043A 50 00 C 08C ST C, 14C(0.131 IG -CCC43E 58 00 0 C78 L 0, 1201 0.131 IB
OCC442 SA 00 0 06C A C. 1081 0,131 8
000446 50 00 0 090 ST O. 1441 C,131 IH
((C44A 58 00 0 C50 L 0, 80 I 0,131 1
00044E 5A 00 0 018 A 0, 1201 0,131 Ie
((0452 ~O CC 0 C<;4 ST 0, 1481 0,131 II
000456 58 FO C CBO L l!::, IHI C,131 IBCO~II
00045A 18 00 LR 0, 0
OC045C 45 EO F CC4 BAl 14, 41 0,151
000460 00000006 DC XL4'OCOOOO06' 6
C00464 (0000057 CC XL4'OOOOO057'
000468 45 EO f 010 BAL 14, 161 0,151
OC046C 58 fO 0 080 L 1 ~, 1161 C,131 18ceMlil

Figure 40. FORTRAN IV (H Extended) LISTING File (Part 2 of 3)

132

MAIN A OS/3~O FORTRAN H EXTENDEO OAf E 72 .305/ll. 53 .08

lEVE L 2 , eCT

C~tNUMBER LEVEL

I~E3321 12 (S I

lEVEL 2 I OCT 24 '72 I

(003 I SN 0002
ISN 0003 1

ISN 0004
(002 ISN 0005

ISN 0006
(001 ISH 0007

ISN 0009 2
001)

ISN 0010
ISN 0011 3
ISN 0012 4

002)
ISN 0013
ISN 0014 5
ISN 0015

003)
ISN 0016

24 72 I lolA IN

LABEL 14

• / STRUCTURED SOURCE LISTING /
C PRIME NUMBER GENERATOR

~~~~~~~~~OLLOWING IS A LIST OF PRIME NUMBERS FROM 2 TO 1000'/19X, 
"IH2/19X,lH3) • 

DO 4 1:5,1000,2 
K=SQRT(FLOAT( I» 

~(~o~g:~S~EQ.O) GO TO 4 
CONT I NUl! 
C 
WR ITE(6, 3)1 
FORMAT (J 20) 

CONTINUE 
C 

~~~~~~~5?H1s IS THE END OF THE PROGRAM') 
STOP
C
END

OS/360 FORTRAN H EXT ENDED

FC'RTRAN H EXTENDED Ek~eR·. MESSAHS

DUE 72.305/11.53.08

THE STATEMENT NUMBER I S UNDEFINED. CPTlillZATI ON I S DOw~(R~CEC.

nPTlONS IN EFFEC 1 ~A"E (~AI ~I • NeOPTI "'I ZE .LI HCCU~ T (6C I. SIZE ,'MAX I. AUTOCBL (NONE I.

*OPT I eNS IN EFFECT *NOSOURCE. EBCD IC. LIST .NOOECK. UBJEC T. ~A F. ~CF CR~AT .GOSTMT. XREF. NCA LC .NOANS F.T ER~. FL AG(S I

STATISTICS ~OLRCE STATEf'lENTS D 47. PRO(RAM SIZE = 141'4. SUBPROGRAM NAME = ~AIN

.STATIST ICS* 1 DIAGNOSTICS GEMRATED. HIGHEST SEVERITY CCCE IS 12

.**.*. END OF cnFIlATION *.* •• * leeK BHES OF CORE NOT USEe

Figure 40. FORTRAN IV (H Extended) LISTING File (Part 3 of 3)

00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080

00000090

00000100
00000110

00000120

00000130
00000140
00000150

00000160

p~GE 11

PAGE

133

P*lge of SC28-6891·0, -1
Revised. March 18, 1977
By TNL SN20-9201

FORTRAN IV (H Extended) TEXT File

A TEXT file is created by the FORTRAN IV (H Extended) compiler
whenever the OBJECT option is in effect. This file contains the compiled
FORTRAN IV object program that is identical to the object program
produced by the FORTRAN IV (H Extended) compiler under OS.

The TEXT file contains the version of your program that can be executed
by CMS or link edited under OS. You can i~sue a RUN command, LOAD
and a START command, or an EXEC command that specifies a file
containing these commands and your program will begin executing. (Any
additional FILEDEF commands required for the execution of the program
must be issued before you can enter a START command.)

Obtaining a Punch Card Deck of Your Object Program

To have your object program punched into a card deck, you must specify the
DECK option with the FOR THX command. An alternate method is to use
the PUNCH command specifying the filename of your file and a filetype of
TEXT. This will punch the TEXT file that was created and placed on a disk
by the OBJECT option when specified during a compilation.

Example:

punch newprog text

Compiler Language Restrictions lor FORTRAN IV (H Extended)

134

The compiler language restrictions for the FORTRAN IV (H Extended)
compiler are as follows:

• The maximum number of nested open DO statements is 25.

• The maximum number of implied DOs per input/output statement is
20.

• The maximum value for a repetition field (a) in a FORMAT statement
is 255.

• The maximum value for the character specification field (w) in a
FORMAT statement is 255.

• The maximum number of arguments in a statement function definition
is 20.

• Within a statement function definition, the maximum number of nested
references to other statement functions is 50. .

• Within a statement function reference, the maximum number of nested
references to other statement functions is 50.

• The maximum number of arguments in a CALL statement is 196; any
argument containing a subscript is counted as two.

• The maximum number of characters permitted in a PAUSE statement
is 255.

• The maximum number of characters permitted in literal constants is
255; this restriction applies to literal constants specified in list-directed
input and output statements (statements with no corresponding
FORMAT statement).

• The asynchronous input and output facility is not available under
CMS. This feature is designed to make input and output more
efficient under OS, in a batch environment. Since input and output are
handled differently under CMS, in a time-sharing environment,
programs using this feature may be compiled but not executed under
CMS.

If you attempt to load and execute a program that uses asynchronous
I/O, the message:

THE FOLLOWING NAMES ARE UNDEFINED:

IN#

OUT#

WAIT#

will be produced, indicating the type of asynchrounous operation
specified.

• The compiler options SIZE, DISK, PRINT, and NO PRINT
may not be specified in an *PROCESS statement.

135

Loading and Executing FORTRAN Object Programs Under CMS

Once a TEXT file has been created by your compiler, you are ready to load
and execute it (unless, you are using the Code and Go compiler witlt the GO
option, which will load and execute the object program automatically after
compilation). The following examples illustrate CMS command procedures
for compiling a FORTRAN source program, loading the resultant TEXT file,
and executing it using the following compilers:

• FORTRAN IV (GO

• Code and Go FORTRAN IV (with the GO option)

• Code and Go FORTRAN IV (with the NOGO option)

• FORTRAN IV (H Extended)

The commands shown can be placed in an EXEC procedure that will
automatically perform all the functions whenever the name of the procedure
is entered. See the publication IBM VM /370 Command Language User's
Guide, Order No. GC20-1804 for more detailed information on preparing
EXEC procedures and supplying filenames as arguments.

Command Procedure for FORTRAN IV (Gl)

136

Example:
~~f-o-r-t-g-i-fi-i-k-n-a-m-e--(l-O-a-d--)----------------------------~

• • I

R;

global txtlib library names
R;

load filename
R;

filedef ftxxfyyy device
start main

R;

An explanation of the numbered statements follows:

~ Supply the name of the file that contains the FORTRAN source
program you want to compile. The FORTGI command invokes the
FORTRAN IV (GI) compiler. The LOAD option specifies that a
TEXT file is to be created.

8 J If you do not have a PROFILE EXEC procedure with a GLOBAL
TXTLIBcommand for the files that contain the Mod I library, enter a
GLOBAL TXTLIB command here specifying the names your
installation has assigned to the Mod I Library.

•
o

•

Specify the filename that you used in step O. The LOAD command
invokes the CMS loader, which loads the TEXT file produced by the
compiler and prepares it for execution. The CMS loader produces a
MAP file that contains the names of the modules loaded and the
locations at which they were loaded. You can use the TYPE or
PRINT commands, specifying LOAD MAP or use the TMAP and
TYPE options of the LOAD command to obtain a copy for use as a
debugging aid.

If your program requires any user-defined execution-time files, issue
the FILEDEF commands for them at this point. See the section of this
book "User-defined Files" for more information.

Specify the default name MAIN that is assigned by the compiler unless
you specified a name with the NAME option (see the section
"Identifying Programs in a TEXT File" for more information) and
execution of your program begins.

Command Procedure for Code and Go FORTRAN IV (with the GO Option)

Example:

O global txtlib tsolib library names
R;

• filedef fuxfyyy device
R;

• gofort filename (GO)

R· ,

An explanation of the numbered statements follows: o If you do not have a PROFILE EXEC procedure with a GLOBAL
TXTLIB command for the files that contain the Mod I library, enter a
GLOBAL TXTLIB command here, specifying TSOLIB and the names
that your installation has assigned to the Mod I Library. TSOLIB
contains system routines necessary for input and output operations.

8

•
If your program requires any user-defined execution-time files, issue
the FILEDEF commands for them at this point. See the section of this
book "User-defined Files" for more information.

Supply the name of the file that contains the FORTRAN source
program you want to compile. The GOFORT command invokes the
Code and Go FORTRAN IV compiler. The GO option indicates that

137

you want the object code loaded and executed automatically after
compilation. If the file that you named contains free-form source
statements, be sure to include the FREE option.

Command Procedure for Code and Go FORTRAN IV (with the NOGO Option)

138

Example:
~--~ o gofort filename (nogo deck)

R;

•
global txtlib tsolib library names
R;

•
8

load filename
R;

filedef ftxxfyyy device
start main

R;

An explanation of the numbered statements follows:

o Supply the name of the file that contains the FORTRAN source
program you want to compile. The GOFORT command invokes the
Code and Go FORTRAN IV compiler. The DECK option specifies
that a TEXT file is to be created. The NO GO option indicates that
you do not want the TEXT file loaded and executed automatically
after compilation. If the file that you named contains free-form source
statements, be sure to include the FREE option .

• If you do not have a PROFILE EXEC procedure with a GLOBAL
TXTLIB command for the files that contain the Mod I library, enter a
GLOBAL TXTLIB command here specifying TSOLIB and the names
that your installation has assigned to the Mod I Library. TSOLIB
contains system routines necessary for input and output operations .

• Specify the filename that you used in step O. The LOAD command
invokes the CMS loader, which loads the object code in the TEXT file
produced by the compiler and prepares it for execution. The CMS
loader produces a MAP file that contains the names of the modules
loaded and the locations at which they were loaded. You can use the
TYPE or PRINT commands, specifying LOAD MAP, or use the MAP
and TYPE options of the LOAD command to obtain a copy for use as
a debugging aid.

• If your program requires any user-defined execution-time files, issue
the FILEDEF commands for them at this point. See the section of this
book "User-defined Files" for more information .

• Specify the default name MAIN that is assigned by the compiler unless
you specified a name with the NAME option (see the section
"Identifying Programs in a TEXT File" for more information) and
execution of your program begins.

Command Procedure for FORTRAN IV (H Extended)

Example:

•
forthx filename (object)
R;

• global txtlib cmslib library names
R;

•
load filename
R;

f i ledef ftxxfyyy device 8 start main

R;

An explanation of the numbered statements follows:

• Supply the name of the file that contains the FORTRAN source
program you want to compile. The FORTHX command invokes the
FORTRAN IV (H Extended) compiler. The OBJECT option specifies
that a TEXT file is to be created .

•
If you do not have a PROFILE EXEC procedure with a GLOBAL
TXTLIB command for CMSLIB and the files that contain the Mod II
library, enter a GLOBAL TXTLIB here, specifying CMSLIB and the

•
name that your installation has assigned to the Mod II Library.
CMSLIB contains the extended precision simulation routines.

Note: You do not need to include CMSLIB if you are not using
extended precision .

Specify the filename that you used in step O. The LOAD command
invokes the CMS loader, which loads the object code in the TEXT file
produced by the compiler and prepares it for execution. The CMS
loader produces a MAP file that contains the names of the modules
loaded and the locations at which they were loaded. You can use the
TYPE or PRINT command, specifying LOAD MAP, or use the MAP
and TYPE options of the LOAD command to obtain a copy for use as
a debugging aid.

139

140

• If your program requires any user-defined execution-time files, issue
the FILEDEF commands for them at this point. See the section of this
book "User-defined Files" f6r more information .

• Specify the default name MAIN that is assigned by the compiler unless
you specified a name with the NAME option (see the section

Appendix A: FORTRAN Compilation Debug Facility

DEBUG Statement

TRACE

SUBTRACE

The FORTRAN DebugFacility statements (DEBUG, AT, DISPLAY,
TRACE ON, and TRACE OFF) are described in the IBM System/360
and System/370 FORTRAN IV Language, Order No. GC28-65t5. This
section describes the output produced when these statements are used in a
FORTRAN source module submitted to the Code and Go FORTRAN or
FORTRAN IV (Gt) compilers. These statements are not available if you
specify the TEST option with either the FORTGI or GOFORT commands.

The options UNIT, TRACE, SUBTRACE, INIT, and SUBCHK may- be
specified in the DEBUG statement. The UNIT option indicates the unit on
which the DEBUG output is to be written. If the UNIT option is omitted,
DEBUG output is written in the LISTING file.

Trace output is written only when TRACE is on as a result of the TRACE
ON statement. For each labeled statement that is executed, the line:

-DEBUG-TRACE statement-label

is written.

SUBTRACE is used to trace program flow from one routine to another. For
each subprogram called, the line:

-DEBUG-SUBTRACE subprogram-name

is written on entry to the subprogram, and the line:

-DEBUG-SUBTRACE * RETURN *

is written on exit from the subprogram.

141

INlT

SUBCHK

DISPLAY Statement

142

The output produced as a result of the INIT option is written regardless of
any TRACE ON or TRACE OFF statements in the source module. Each
time a value is assigned to an unsubscripted variable li!?ted in the INIT option,
the line:

-DEBUG- variable-name = value

is written, with the value given in the proper format for the variable type.
When a value is assigned to an element of an array listed in the INIT option,
the line:

-DEBUG- array-name(element-number) = value

is written, with the format of the value determined by the type of the array
element. The single element number subscript is used regardless of the
number of dimensions in the array.

SUBCHK output is not affected by TRACE ON or TRACE OFF statements
in the source module. When a reference to an array listed in the SUBCHK
option includes subscripts such that the reference is outside the array, the
line:

-DEBUG-SUBCHK array-name(element-number)

is printed. If the element number is negative, the number printed in the line is
the arithmetic sum of 16,777,216 and the negative element number. For
example, if the element number is -1, the number printed in the output line is
i6,777,21S. An attempt will be made, using the invalid subscripts, to execute
the statement.

DISPLAY statement output is identical to NAMELIST WRITE output. The
first line written is the name of the NAMELIST created by the compiler for
the DISPLAY statement, preceded by the ampersand character:

&DBGnn#

Special Considerations

where:

nn is the 2-digit decimal value assigned to the DISPLAY statement; this
value begins at 01 for the first DISPLAY statement in the source
module and increases by one for each subsequent DISPLAY
statement.

The NAMELIST name is followed by the DISPLAY list, in NAMELIST
FORMAT. The output is terminated with the line:

&END

Any DEBUG output which 'is produced during an input/output operation is
saved in storage until the input or output operation is complete. It is then
written out. Saving this information may require additional storage space
from the system. If the request cannot be satisfied, some of the DEBUG
output may be lost. If this situation occurs, the message:'

-DEBUG-SOME OUTPUT MISSING

is written after the output which was saved.

If a subscript appearing in an input/output list includes a function
reference, and the FUNCTION contains a DISPLAY statement, the
DISPLA Y cannot be performed. In this case the message:

-DEBUG-DISPLA Y DURING I/O SKIPPED

is written in the DEBUG output.

143

Appendix B: Assembler Language Subprograms

Subroutine References

Argument List

If you are an experienced FORTRAN programmer you can use assembler
language subprograms with your FORTRAN main program. This section
describes the linkage conventions that must be used by the assembler
language subprogram to communicate with the FORTRAN main program.
To understand this appendix, the reader must be familiar with the Assembler
Language publication, Form GC28-6514 and the appropriate assembler
language programmer's guide.

You can refer to a subprogram in two ways: by a CALL statement or a
function reference within an arithmetic expression.

Example:

CALL MYSUB(X, Y, Z)
I=J+K+MYFUNC(L,M,N)

For subprogram reference, the compiler generates:

I. A contiguous argument list; the addresses of the arguments are placed
in this list to make the arguments accessible to the subprogram.

2. A save area in which the subprogram can save information related to
the calling program.

3. A calling sequence to pass control to the subprogram.

The argument list contains address of variables, arrays, and subprogram
names used as arguments. Each entry in the argument list is four bytes and is
aligned on a fullword boundary. The last three bytes of each entry contain
the 24-bit address of an argument. The first byte of each entry contains
zeros, unless it is the last entry in the argument list. If this is the last entry,
the sign bit in the entry is set to 1.

145

AREA
(word I) ------... _- This word is used by a FORTRAN compiled routine to store its epilogue address and may not be

used by the assembler language subprogram for any purpose.

AREA+4
~word 2} ------I.~ If the program that calls the assembler language subprogram is itself a subprogram, this word

contains the address of the save area of tl-e calling program; otherwise, this word is not used.

AREA+8
(word 3) ------I ... ~ The address of the save area of the ca' . ,-,program.

AREA+12
(word 4) ------.... The contents of register 14 (the return address). When the subprogram returns control, the first

byte of this location is set to ones.

AREA+16
(word 5) ------.... The contents of register 15 (the entry address).

AREA+20
(word 6) ------..... The contents of register O.

AREA+24
(word 7) -----...; ~. The contents of register 1.

AREA+68
(word 18) -----...... ._The contents of register 12.

Figure 41. Save Area Layout and Word Contents

Save Area

146

The address of the argument list is placed in general register 1 by the
calling program.

The calling program contains a save area in which the subprogram places
information, such as the entry point for this program, an address to which the
subprogram returns, general register contents, and addresses of save areas
used by programs other than the subprogram. The amount of storage
reserved by the calling program is 18 words. Figure 41 shows the layout of
the save area and the contents of each word. The address of the save area is
placed in general register 13.

The called subprogram does not have to save and restore floating-point
registers.

Calling Sequence

Register Number

0

1

2

13

14

15

A calling sequence is generated to transfer control to the subprogram. The
address of the save area in the calling program is placed in general register 13.
The address of the argument list is placed in general register 1, and the entry
address is placed in general register 15. If there is no argument list, then
general register 1 will contain zero. A branch is made to the address in
register 15 and the return address is saved in general register 14. Figure 42
illustrates the use of the linkage registers.

Register Name Function

Result Register Used for function subprograms only. The result is returned in general or
floating-point register O. However, if the result is a complex number, it is
returned in. floating-point registers 0 (real part) and 2 (imaginary part).
Note: For subroutine subprograms, the result(s) is returned in a
variable(s) passed by the programmer.

Argument List Register Address of the argument list passed to,the called subprogram.

Result Register See Function of Register O.

Save Area Register Address of the area reserved by the calling program in which the contents
of certain registers are stored by the called program.

Return Register Address of the location in the calling program to which control is returned
after execution of the called program.

Entry Point Register Address of the entry point in the calling subprogram.
Note: Register 15 is also used as a condition code register, a RETURN
code register, and a STOP code register. The particular values that can be
contained in the register are

16 - a terminal error was detected during execution ofa
subprogram (an IHCxxxI message is generated)

4*i- a RETURN i statement was executed
n - a STOP n statement was executed
0 - a RETURN or a STOP statement was executed

Figure 42. Linkage Registers

147

Coding the Assembler Language Subprogram

Two types of assembler language subprograms are possible: the first type
(lowest level) assembler subprogram does not call another subprogram; the
second type (higher level) subprogram does call another subprogram.

Coding a Lowest Level A.ssembler Language Subprogram

Name
deckname

*

*
*
*

Operation
start
bc
dc
dc

stm

balr
using

1m
mvi
bcr

For the lowest level assembler language subprogram, the linkage instructions
must include:

1. An assembler instruction that names an entry point for the
subprogram.

2. An instruction(s) to save any general registers used by the subprogram
in the save area reserved by the calling program. (The contents of
linkage registers 0 and 1 need not be saved.)

3. An instruction(s) to restore the "saved" registers before returning
control to the calling program.

4. An instruction that sets the first byte in the fourth word of the save
area to ones, indicating that control is returned to the calling program.

5. An instruction that returns control to the calling program.

Figure 43 shows the linkage conventions for an assembler language
subprogram that does not call another subprogram. In addition to these
conventions, the assembler program must provide a method to transfer
arguments from the calling program and return the arguments to the calling
program.

Operand Comments
o
1 5 , m+ 1 +4 (1 5)
x'm'
clm' name'

14,r, 12(13)

b,G
*,b

branch around constants in calling
sequence m must be an odd integer to insure
that the program starts on a halfword
boundary. The name can be padded wi th
blanks.
the contents of registers 14, 15, and 0
through r are stored in the save area
of the calling program. r is any
number from 2 through 12.
establish base register (2 b 12)

(use1-written source statements)

2,r,28(13)
12(13),xff'
15, 14

restore registers
indicate control returned to calling program
return to call ing program

Figure 43. Linkage Conventions for Lowest Level Subprograms

148

Higher Level A.ssembler Language Subprogram

A higher level assembler subprogram must include the same linkage
instructions as the lowest level subprogram, but because the higher level
subprogram calls another subprogram, it must simulate a FORTRAN
subprogram reference statement and include:

1. A save area and additional instructions to insert entries into its save
area.

2. A calling sequence and a parameter list for the subprogram that the
higher level subprogram calls.

3. An assembler instruction that indicates an external reference to the
subprogram called by the higher level subprogram.

4. Additional instructions in the return routine to retrieve entries in the
save area.

Note: If an assembler language main program calls a FORTRAN subprogram,
the following instructions must be included in the assembler language program
before the FORTRAN subprogram is called as follows:

L 15, =V(IBCOM#)
BAL14,64(15)

These instructions cause initialization of return coding, interruption
exceptions, and opening of the error message data set. If this is not done and
the FORTRAN subprogram terminates either with a STOP statement or
because of an execution-time error, the data sets opened by FORTRAN are
not closed and the result of the termination cannot be predicted. Register 13
must contain the address of the save area that contains the registers to be
restored upon termination of the FORTRAN subprogram. If control is to
return to the assembler language subprogram, then register 13 contains the
address of its save area. If control is to return to the operating system, then
register 13 contains the address of its save area.

Figure 44 shows the linkage conventions for an assembler subprogram that
calls another assembler subprogram.

149

Name Operation

deckname start

*

*
*
*

*
*
*

*

*

*
*
*
area

*
prob l

*

*

*

*

extrn
bc
dc
dc

stm

balr
using
lr

la

st

st

bc
ds

la
1
balr

1

1m
1
mvi
bcr

adcon dc

*
arglist dc

dc
dc

Operand

o
name 2

15, m.+ 1 +4 (15)
x'm'
cl m ' name t '
save routine
14,r,12(13)

b,O
*,b
q,13

13,area

1"3, 8(0, q)

q,4(O,13)

15, prob t

Comments

name of the subprogram called by this
subprogram

the contents of register 14, 15, and 0
through r are stored in the save area of the
calling program. r is any number from 2
through 12.
establish base register

loads register 13, which points to the save
area of the calling program, into any
general register ,q, except 0, 11, 13, and
15.
loads the address of this program's save
area into register 13.
stores the address of this program's save
area into register 13.
stores the address of the previous save
area (the save area of the calling
program) into word 2 of this program's
save area

18f reserves 18 words for the save area
end of save routine
(user-written program statements)

calling sequence
1 , arglist load address of argument list
15,adcon
14, 15
(more user-written program statements)
return routine
13,area+4 loads the address of the previous save

area back into register 13
2,r,28(13)
14,12(13)
12(13),x'ff'
15,14

a(name 2)

argument list
a14(ai'g 1)

x'80'
a13(arg n)

loads the return address into register 14

return to calling program
end of return routine

address of first argument

indicate last argument in argument list
address of last argument

Figure 44. Linkage Conventions for Higher Level Subprogram

ISO

In-Line Argument List

Sharing Data in COMMON

In coding your assembler program, you may establish an in-line argument list
instead of an out-of-line list. In this case, you may substitute the calling
sequence and argument list shown in Figure 42 for that shown in Figure 45.

adeon

return

de

ia
1
enop
bair
de
de

de
de
be

Figure 45. In-Line Argument List

A(prob.)

14,return
15,adeon
2,4
1,15
a14(arg.)
a14(arg 2)

x'80'
a13(arg n)

0, x' isn '

Both named and blank COMMON in a FORTRAN IV program can be
referred to by an assembler language subprogram. To refer to named
COMMON, the V-type address constant is used.

Example:

name dc v(name-of-COMMON)

If a FORTRAN program has a blank COMMON area and blank
COMMON is also defined (by the COM instruction) in an assembler
language subprogram, only one blank COMMON area is generated for the
output load module. Data in this blank COMMON is accessible to both
programs.

To refer to blank COMMON, the following linkage may be specified:

com
name ds Of

----------------------------> cname eseet

1 11 , =a(name)
using name, 11

151

Retrieving Arguments From The Argument' List

152

The argument list contains addresses for the arguments passed to a
subprogram. The order of these addresses is the same as the order specified
for the arguments in the calling statement in the main program. The address
for the argument list is placed in register 1.

Example:

call mysub(a,b,c)

When this statement is compiled, the following argument list is generated.

00000000 address for A

00000000 address for B

10000000 address for C

For purposes of discussion, A is a real *8 variable, B is a subprogram name,
and C is an array.

The address of a variable in the calling program is placed in the argument
list. The following instructions in an assembler language subprogram can be
used to move the real * 8 variable A to location V AR in the subprogram.

I q, O(1)
mvc var(8),O(q)

where

Q is any general register except O.

For a subprogram reference, an address of a storage location is placed in
the argument list. The address at this storage location is the entry point to the
subprogram. The following instructions can be used to enter subprogram B
from the subprogram to which B is passed as an argument.

I q,4(1)
I 15,O(q)
balr14,15

where

Q is any general register except O.

For an array, the address of the first variable in the array is placed in the
argument list. An array [for example, a three-dimensional array C(3,2,2)]
appears in this format in main storage.

C(1,I,l) C(2,1,l) C(3,1,l) C(1,2:?

~_C(~3~'2~'1~)_C(~1~'1~'2~)C~(~2~,1~'2;'
<C(3,1,2) C(1,2,2) C(2,2,2) C(3,2,2)

Figure 46 shows the general subscript format for arrays of 1, 2, and 3
dimensions.

Array A Subscript Format

A(DO A(Sl)

A(01,D2) A(S1,S2)

A(01,D2,D3) A(Sl,S2,S3)

D1, 02, 03 are integer constants used in the DIMENSION statement. SI,

S2, and S3 are subscripts used with subscripted variables.

Figure 46. Dimension and SUbscript Format

The address of the first variable in the array is placed in the argument list. To
retrieve any other variables in the array, the displacement of the variable, that
is, the distance of a variable from the first variable in the array, must be
calculated. The formulas for computing the displacement (DISPLC) of a
variable for one, two, and three dimensional arrays are

where:

DISPLC=(SI-l)*L
DISPLC=(SI-1)*L+(S2-1)*DI *L
DISPLC=(SI-1)*L+(S2-1)*Dl *L+(S3-1)*D2*DI *L

L is the length of each variable in this array.

Example:

The variable C(2,1,2) in the main program is to be moved to a location
ARVAR in the subprogram. Using the formula for displacement of integer
variables in a three-dimensional array, the displacement (DISP) is calculated
to be 28. The following instructions can be used to move the variable,

1 q, 8(1)
1 r,disp
1 s,O(q,r)
st s,arvar

where:

Q and R are any general register except O.

S is any general register. Q and R cannot be general register O.

153

Name

addarr
b

index
var

Operation

start
equ
bc
de
de
stm
balr
using
1
mve
1
mve
1

1m
mvi
bcr
ds
ds
ds

Example: An assembler language subprogram is to be named ADDARR, and
a real variable, an array, and an integer variable are to be passed as arguments
to the subprogram. The statement

call addarr (X, Y ,J)

is used to call the subprogram. Figure 47 shows the linkage used in the
assembler subprogram.

Operand

° 8
15,12(15)
x'7'
e17'addarr'
14,12,12(13)
b,O
*,b
2,8(1)
index(4),0(2)
3,0(1)
var(4),0(3)

move 3rd argument to location called
index in assembler language subprogram.
move 1st argument to location called var
in assembler language subprogram.

4,4(1) load address of array into register 4.
(user - written statements)

.
2,12,28(13)
12(13),x'ff'
15,14
Of
1f
1f

Figure 47. Assembler Subprogram Examples

Return I in an Assembler Language Subprogram

154

When a statement number is an argument in a CALL to an assembler
language subprogram, the subprogram cannot access the statement number
argument.

To accomplish the same thing as the FORTRAN statement RETURN i
(used in FORTRAN subprograms to return to a point other than that
immediately following the CALL), the assembler subprogram must place 4* i
in register 15 before returning to the calling program.

Example:

When the statement

call sub (a,b, &10, &20)

is used to call an assembler language subprogram, the following instructions
would cause the subprogram to return to the proper point in the calling
program:

la 15,4 (to return to 10)
ber 15, 14

la 15,8 (to return to 20)
ber 15,14

Object-Time Representation of FORTRAN Variables

Integer Type

The programmer who uses FORTRAN in connection with assembler language
may need to know how the various FORTRAN data types appear in the
computer. The following examples illustrate the object-time representation of
FORTRAN variables as they appear under eMS.

INTEGER variables are treated as fixed-point operands by all the compilers
and are governed by the principles of System/370 fixed-point arithmetic.
INTEGER variables are converted into either fullword (32 bit) or halfword
(16 bit) signed integers.

Example:

integer*2 item/76/,value
integer*4 f, f64/1 00/
f = 15
value = -2

The value of the variables ITEM, VALUE, F, F64 appear in storage as
follows:

ISS

Real Type

156

• 2 Bytes •
ITEM I 0 1

0000000 1010011001

S 15

... 2 Bytes •
VALUE 11 1111111 111111110 I

S 15

• 4 Bytes •
I 0 I 0000000 I 00000000 I 00000000 I 00001 111 I

31

... 4 Bytes •
F64 I 0 I 0000000 I 00000000 I 00000000 I 01100100 1

31

where S in bit position 0 represents the sign bit. All negative numbers are
represented in two's complement notation with a one in the sign-bit position.

All REAL variables are converted into short (32 bit) or long (64 bit)
floating-point numbers by all the compilers. In addition, the H Extended
compiler converts extended-precision REAL variable into extended (128 bit)
floating-point numbers. The length of the numbers is determined by
FORTRAN IV specification conventions.

Example:

real*4 hold,r/100./
real*8 a,rate/-8./
real*16 x
hold = -4.
a = 8. OdO
x = 2. OqO

The value of the variables HOLD, R, A, RATE, and X appear in storage as
follows:

II(4 Bytes •
C F

HOLOl1 1000001 I 01000000 I 00000000 00000000 I
a 7 8 31

II(4 Bytes ~

C F

I a I 1000010 101100100 I 00000000 00000000 I
a 7 8 31

II(8 Bytes ~

A 10000
1

a 7 8 63

.. 8 Bytes ~

RATE ~O a a 01

a 7 8 63

.. 16 Bytes •
S C S C F

X I 0 I 1000001 I 00100000 I 00000000 I 000 ~~ 00 I a I 01100 11 10000B
where:

0 7 8 63 64 65 71 72

s (sign bit) occupies bit position O.

c (characteristic), or exponent, occupies bit positions 1 through 7.

f (fraction) occupies either bit positions 8 through 31 for a short,
floating-point number, or bit positions 8 through 63 for long,
floating-point number, or bit positions 8 through 63 and 72 through
127 for an extended-precision floating-point number (bit positions 64
through 71 represent a sign plus a characteristic having a value 14 less
then the data represented in bits 0 through 7.

Note: Floating-point operations in System/360 may sometimes produce a
negative zero, i.e., the sign bit of a floating-point zero will contain a one.
FORTRAN IV compilers consider all floating-point numbers having a
fraction of zero as equivalent. The setting of the sign bit is unpredictable in
floating-point zeros computed by an object program. (A detailed explanation
of floating-point operations can be found in the publication IBM
System/360: Principles of Operation, Order No. GA22-6821.)

157

127

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

Complex Type

Logical Type

158

A COMPLEX variable has two parts (real and imaginary) and is treated as a
pair of Real numbers. The COMPLEX parts are converted into two short,
long, or extended floating-point numbers, depending upon the compiler.

Example:

complex d/(2.1,4.7)/,e*16,z*32
e = (55.5, -55.5)
z = (2. OQ 0, 4. OqO

The value of the variables D, E, and Z appear in storage as follows:

D

z

0

0

o ..

c

1000001

1000001

7

4 Bytes

00100001 10011001

01001011 00110011

8

4 Bytes

....... l------------ 8 Bytes

a

1

a
..

a

a

a

c

1000010

1000010

7

c

1000001

1000001

7

00110111 10000000

00 110 111 10000000

8

8 Bytes

16 Bytes

00100000 000

01000000 000

8 63

16 Bytes

10011001

00110011

31

•

00000000

00000000

31

c

2.1

4.7

OOOOJ

0000

B
B

63

•

01100110000

0110011 0000

64 65 71 72

FORTRAN IV LOGICAL variables may specify only 2 values:

.TRUE. or .FALSE.

55.5DO

-55.5DO

2.0QO

4.0QO

These logical values are assigned numerical values of '1' and '0', for .TRUE.
and .FALSE., respectively.

Example:
logical*l 11,12/.true./
logical *4 13,14/. false. /
1 1 = . false.
13 = . true.

The value of the variables Ll, L2, L3, L4 to be assigned the following values
(using hexadecimal notation):

+-1 Byte~

L1 00

-+-1 Byte ~

L2 01

lilt 4 Bytes •
L3 I 00 I 00 I 00 I 01

~ 4 Bytes ..
L4 00 00 00 00

Note: The values shown above for Logical variables are those assigned for the
current implementation of the G l, Code and Go, and H Extended compilers.
The assembler language programmer should not assume these values for
future versions of these compiler, since they are subject to change.

The DUMP or PDUMP subroutine can also be used as an additional tool
for understanding the object-time representation of FORTRAN data. ReFer
to the "Use of DUMP and PDUMP" publication IBM System/360
Operating System: FORTRAN IV Library - Mathematical and Service
Subprograms, Order No. GC28-6818.

159

Appendix C: SIFT Utility

You can use the SIFT utiiity program to convert source programs written in
free-form to fixed-form and vice versa. Since the Code and Go compiler can
compile either fixed-form or free-form source programs, it is possible to
convert free-form source programs written for Code and Go to fixed-form
making them acceptable to the other FORTRAN IV compilers.

Converting Fixed-Form Input to Free-Form (Flletype of FORTRAN to Filetype of
FREEFORT)

Fixed-form input to the SIFT utility program consists of fixed length 80-byte
records. The last eight bytes of the fixed-form input record may optionally
contain sequencing information. (The SIFT utility will ignore this sequencing
information and place a unique sequence number in t,he first eight positions of
the free-form line.)

When the SIFT utility is converting from fixed-form into free-form, it
performs the following functions:

• Creates a variable-length, free-form record from each fixed-length,
fixed-form record.

• Inserts a statement break character (-) at the end of each continued
free-form line and deletes the continuation character from column 6 of
the fixed-form continuation line.

• Changes any comment line by replacing the character C in column 1
with an asterisk (*).

• Creates a unique sequence number in columns 1 through 8 and places
the statement number, text and break character in columns 9 through
81.

Converting Free-Form Input to Fixed-Form (Filetype of FREEFORT or
FORTRAN to Filetype of FORTRAN)

Free-form input to the SIFT utility program consists of fixed-length, 80-byte
records (filetype of FORTRAN) or variable-length records with a maximum
length of 81 bytes (filetype of FREEFORT). The last eight bytes of
fixed-length, free-form records may optionally contain sequencing
information. If the input record is variable-length, the first eight bytes of the
record must contain sequencing information. (The SIFT utility will ignore
existing sequencing information and generate a new unique sequence
number.)

161

When the SIFT utility is converting from free-form in to fixed-form, it
performs the following functions:

• Creates one or more fixed-length, 80-byte records from each free-form
line.

• Deletes the statement break character (-) at the end of each continued
free-form line and inserts a continuation character in column 6 of each
fixed-form continuation line.

• Changes any free-form comment line by replacing the asterisk (*) or
double quote (") with the character C in column 1.

• Begins any statement label in column 1 and begins the text of the
FORTRAN statement in column 7 of the output record.

• Creates a unique sequence number in columns 73 through 80 of the
fixed-form record.

• Combines free-form continuation lines, if possible.

Invoking the SIFT Utility

162

The SIFT utility is invoked by the CONVERT command. The format of the
command follows:

CONVERT filenamel filename2 GOFORT ([FIXED I FREE] [NOLIST])

where:

CONVERT

filenamel

filename2

is a required part of the command and must always
appear.

specifies the filename of the file to be converted. If you
want to convert a free-form file to fixed-form, filenamel
must have a file type of either FREEFORT or
FORTRAN, and you must specify the FIXED option.
(If both a FREEFORT and FORTRAN file exist, then
the FREEFORT file will be converted.) If you want to
convert a fixed-form file to free-form, filenamel must
have a file type of FORTRAN, and you must specify the
FREE option.

specifies a unique filename (that is, one that does not
already exist). You must supply this name, which will be
assigned to the output file that will contain the converted
records. If the file created for filename2 has the same
file identifier as a file that already exists, the existing file
will be replaced by the new file. If filename 1 has a
filetype of FREEFORT or FORTRAN, contains
free-form records, and the FIXED option is specified,
filename2 will be created with a file type of FORTRAN
and will contain fixed-form records. If filename 1 has a
filetype of FORTRAN, contains fixed-form records, and

\.

/

GOFORT

FIXED

FREE

NOLIST

the FREE option is specified, filename2 will be created
with a filetype of FREEFORT and will contain
variable-length, free-form records.

is a required part of the command and must always be
typed.

indicates that you want to convert a file with a file type
of FREEFORT or FORTRAN containing free-form
records to a file with a file type of FORTRAN containing
fixed-form records. This is the default if no option is
specified.

indicates that you want to convert a file with a file type
of FORTRAN containing fixed-form records to a file
with a file type of FREEFORT containing
variable-length free-form records. If you omit this
option, FIXED is assumed.

is optional; however, if specified, the listing of the
converted program that is normally typed at your
terminal is not produced. If specified, this option must
be placed last in the command.

Note: To convert fixed-length, free-form records to variable-length,
free-form records, you have to use the CONVERT command twice. First,
you must convert from free-form to fixed-form, and then you convert the
newly produced fixed-form records back into free-form. The free-form
source thus created will consist of variable length records.

Figure 48 shows a sample free form source program, and the resultant fixed
form program that is created from it by the SIFT utility.

162.1

FORTRAN SIFT UTILITY

C PR IME NUMBER GENERATOR
WRITE 16 ,11
FORMATI'lFOLLOhlNG I SAlt Sl CF PRI ~E ~U"BERS FPCI' 2 TO

.11012119)(,110131
DC 4 1-5,10CO,2
K- SQRTI FLOA TIll!
00 2 J-3,K,2
IFIMODII,JI.E'.OI GC TC 4
CONT INUE
WRITEI6,311
FORMAT 1 1201
CONTINUE
WR1TEI6,~ 1
FORMATI' THI SIS THE E~D CF HE FPCGPAM'I
STOP
END

1111 PRIME NUMBER GENERATOR
WRITE(6,1)
1 I'ORMAT('l1'OLLOWING IS A LIST OF PRIME -
NUMBERS FROM 2 TO -
1000 '/19X, lH2/19X, lHn

~~s~R~ck~~ni h
~~(~~(~~~S~EQ.O) GO TO 4
2 CONTINUE
WRITE(6,3)1
3 I'ORMAT(120)
4 CONTINUE
WRITE(6,S)
5 I'ORMAT(' THIS IS THE END OF THE PROGRAM')
STOP
END

Figure 48. Free-Form Fixed-Form SIFT Output Listing

C0000010
CCCCCC2 0

1000 '/1 9X, 00000030
00000040
COOOOC50
00000060
00000070
OOOOOCBO
00000090
00000100
00000110
00000120
00000130
00000140
00000150
00000160

FAGE 001

-

163

Appendix D. Subprograms for the Extended Error Handling Facility

The following information is for the use of systems programmers who need to
make temporary changes to the extended error handling option table. As
such changes are not the concern of most programmers, no attempt is made to
explain the material on an elementary level. If you do not need to modify the
option table, skip this appendix entirely.

IBM provides four subroutines for use in extended error handling:
ERRSA V, ERRSTR, ERRSET, and ERRTRA. These subroutines allow
access to the option table to alter it dynamically. (Certain option table entries
are protected against alteration when the option table is set up. If a request is
made by means of CALL ERRSTR or CALL ERRSET to alter such an
entry, the request is ignored. See Figure 15 to determine which IBM-supplied
option table entries cannot be altered.) Changes made dynamically are in
effect for the duration of the session in which the change was made. Only the
current copy of the option table in main storage is affected; the copy in the
FORTRAN library remains unchanged. All passed parameters, unless
otherwise indicated, are 4-byte (fullword) integers.

Accessing and Altering the Option Table Dynamically

o The CALL ERRSAV statement, described below, can be used for
temporarily modifying an entry. This statement causes an option table
entry to be copied into an 8-byte storage area accessible to the
FORTRAN programmer. The format is:

CALL ERRSA V (ierno, tabent)

where:

ierno

is the error number to be referenced in the option table. Should
any number not within the range of the option table be used, an
error message will be printed.

tabent

is the name of an 8-byte storage area where the option table
entry is to be stored.

Example:

call errsav(215, al terx)

• To store an entry in the option table, the following statement is used:

165

•

166

CALL ERRSTR (ierno,tabent)

where:

ierno

is the error number for which the entry is to be stored in the
option table. Should any number not within the range of the
option table be used, an error message will be printed.

tabent

is the name of an 8-byte storage area containing the table entry
data.

Example:

call errstr (215,alterx)

The CALL ERRSET statement permits the user to change up to five
different options in an option table entry. It consists of six parameters.
The last parameters are optional, but each omitted parameter must
have its place noted by a comma and a zero if succeeding parameters
are specified. (Omitted parameters at the end of the list require no
place notation.) CALL ERR SET has the format:

CALL ERR SET (ierno, inoal, inomes, itrace, iusadr, irange)

where:

ierno

is the error number to be referenced in the option table. Should
any number not within the range of the option table be used, an
error message will be printed. (Note that if ierno is specified as
212, there is a special relationship between the ierno and irange
parameters. See the explanation for irange.)

inoal

is an integer specifying the number of errors permitted before
execution is terminated. If inoal is specified as either zero or a
negative number, the specification is ignored, and the
number-of -errors option is not altered. If a value of more than
255 is specified, an unlimited number of errors is permitted.

inomes

is an integer indicating the number of messages to be printed. A
negative value specified for inomes causes all messages to be
suppressed; a specification of 0 indicates that the
number-of -messages option is not to be altered.

itrace

is an integer whose value may be 0, 1, or 2. A specification of 0
indicates the option is not to be changed; a specification of 1
requests that no traceback be printed after an error occurrence; a

specification of 2 requests the printing of a traceback after each
error occurrence. (If a value other that 1 or 2 is specified, the
option remains unchanged.)

iusadr specifies one of the following:

a. the value 1, as a 4-byte integer, indicating that the option
table is to be set to show no user-exit routine (that is,
standard corrective action is to be used when continuing
execution).

b. the name of a closed subroutine that is to be executed after
the occurrence of the error identified by ierno. The name
must appear in an EXTERNAL statement in the source
program, and the routine to which, control is to be passed
must be made available via a GLOBAL TXTLIB command,
or in the source program itself.

c. The value 0, indicating that the table entry is not to be
altered.

range

serves a double function. It specifies one of the following:

a. An error number higher than that specified in ierno. The
number indicates that the options specified for the other
parameters are to be applied to the entire range of error
conditions encompassed by ierno and range. (If irange
specifies a number lower than ierno, the parameter is
ignored, unless ierno specifies the number 212.) ,

b. A print control character if ierno specified 212. The value 1
is specified to provide single spacing for an overflow line
(standard fixup for WRITE statements). If a value other
than 1 is specified, no print control is provided.

The default value 0 is assumed if the parameter is omitted (i.e.,
no print control is provided, and the values specified for all
parameters apply only to the error condition in ierno).

Examples:

call errset (310, 20,5, 0, myerr, 320)

call errset (212, 10,5,2, 1, 1)

call errset (212, 0, 0, 0, 0, 1)

The first example specifies the following:

a. error condition 310 (ierno)

b. the error condition may occur up to 20 times (inoal)

c. the corresponding error message may be printed up to 5
times) (inomes)

167

•

d. the default for traceback information is to remain in effect
(itrace)

e. the user-written routine MYERR is to be executed after each
error occurrence (insadr)

f. the same options are to apply to all error conditions from
310 to 320 (irange)

The second example specifies:

a. error condition 212

b. the condition may occur up to 10 times

c. the corresponding message may be printed up to 5 times

d. traceback information is to be displayed after each error
occurrence

e. standard corrective action is to be executed after an error

f. print control is to be employed

For purposes of illustration, this example explicitly specifies all
default options except in requesting print control.

The third example illustrates an alternative method of specifying
exactly the same options as the second example. It states that no
changes are to be made to default settings except in requesting
print control.
"

The CALL ERRTRA statement permits the user to dynamically
request a traceback and continued execution. It has the format:

CALL ERRTRA

The call has no parameters.

User-Supplied Error Handling

168

The user has tht}-ability of calling, in his own program, the FORTRAN error
monitor (ERR-MON) routine, the same routine used by FORTRAN itself
when it detects an error. ERRMON examines the option table for the
appropriate error number and its associated entry and takes the actions
specified. If a user-exit address has been specified, ERRMON transfers
control to the user-written routine indicated by that address. Thus, the user
has the option of handling errors in one of two ways: (1) simply by calling
ERRMON -- without supplying a user-written exit routine; or (2) by calling
ERRMON and providing a user-written exit routine.

In either case, certain planning is required at the installation level. For
example, error numbers must be assigned to error conditions to be detected

by the user, and additional option table entries must be made available for
these conditions. The routine that uses the error monitor for error service
should have the status of an installation general-purpose function similar to
the IBM-supplied mathematical functions. The number of installation error
conditions must be known when the FORTRAN library is created at program
installation, so that entries will be provided in the option table. The error
numbers chosen for user subprograms are restricted in range.
IBM -designated error conditions have reserved error codes from 000 to 301.
Error codes for installation-designated error situations must be assigned in the
range 302 to 899. The error code is used by FORTRAN to find the proper
entry in the option table.

To call the ERRMON routine, the following statement is used:

CALL ERRMON (imes,iretcd,ierno,datal,data2, .. .)

where:

imes

is the name of an array aligned on a fullword boundary, which contains,
in EBCDIC characters, the text of the message to be printed. The
number of the error condition should be included as part of the text,
because the error monitor prints only the text passed to it. The first
item of the array contains an integer whose value is the length of the
message. Thus, the first four bytes of the array will not be printed. If
the message length is greater than the length of the buffer, it will be
printed on two or more lines of printed output.

iretcd

is an integer variable made available to the error monitor for the setting
of a return code. The following codes can be set:

o - The option table or user-exit routine indicates that standard
correction is required.

1 - The option table indicates that a user exit to a corrective routine
has been executed. The function is to be re-evaluated using
arguments supplied in the parameters datal,data2.... For
input/ output type errors, the value 1 indicates that standard
correction is not wanted.

ierno

is the error condition number in the option table. Should any number
not within the range of the option table be specified, an error message
will be printed.

datal,data2, ...

are variable names in an error-dectecting routine for the passing of
arguments found to be in error. One variable must be specified for each
argument. Upon return to the error-detecting routine, results obtained
from correCtive action are in these variables. Because the content of the
variables can be altered, the locations in which they are placed should
be used only in the CALL statement to the error monitor; otherwise,
the user of the function may have literals or variables destroyed.

169

170

Because datal and data2 are the parameters which the error monitor
will pass to a user-written routine to correct the detected error, care
must be taken to make sure that these parameters agree in type and
number in the call to ERRMON and in a user-written corrective routine,
if one exists.

Example:

call errmon (mymsg, icode, 315, d 1 ,d2)

The example states that the message to be printed is contained in an
array named MYMSG; the field named ICODE is to contain the return
code, the error condition number to be investigated is 315, and
arguments to be passed to the user-written routine are contained in
fields named D 1 and D2.

Figure 49 illustrates the use of the CALL ERR SET and CALL
ERRMON statements in a program using a user-supplied subprogram to
handle divide-by-zero conditions.

c main program that uses the subroutine divide
common e
external fixdiv

c set up option table with address of user exit
C

call errset(302,30,5,1,fixdiv)
c

e=O
c get values to call divide with

read(5,9) a,b
if(b) 1,2,1

2 e =1.0
call divide(a,b,c)
write(6,10)c

9 format(2e20.8)
10 format(, 1 ' , e20. 8)

stop
end
subroutine divide(a,b,c)

c routine to perform the calculation c=a/b
c if b=O then use error message facility to service error
c provide message to be printed

dimension mes(4)
data mes(1)/12/,mes(2)/' dov'/,mes(3)'302i/,mes(4)/' b=O'/
data rmax/z7fffffff/

c message to be printed is
c div302i b=O
c error code 302 is available and assigned to this routine
c step 1 save a, b in local storage

d=a
e=b

c step2 test for error condition
100 if(e) 1,2,1
c normal case -- compute function
1 c=d/e

return
c step3 error detected call error monitor
c
2 call errmon(mes,iretcd,302,d,e)
c
c step4 be ready to accept a return from the error monitor

if(iretcd) 5,6,5
c if iretcd=O standard result is desired
c standard result will be c=largest number if d is not zero
c cr c=O if e=O and d=O
6 if(d) 7,8,7
c c=O.O

go to 9
7 c=rmax
9 return
c user fix up indicated. recompute with new value placed in e
5 go to 100

end
subroutine fixdiv(iretcd,ino,a,b)

Figure 49. Sample Program Using Extended Error Handling Facility (Part 1 of 2)

171

c
c
c
C

G

c
1

--" ~

this is a user exit to serve the subroutine divide
the parameters in the call match those used in the call to
errmon made by subroutine divide
step1 is alternate value for b available -- main program
has supplied a new value in e. if e=O no new value is available
common e
if(e) 1,2,1
new value available take user correction exit
b=e
return
new value not available use standard fix up
iretcd=O
return
end

Figure 49. Sample Program Using Extended Error Handling Facility (Part 2 of 2)

User-supplied Exit Routine

172

When a user-exit address is supplied in the option table entry for a given error
number, the error monitor calls the specified subroutine for corrective action.
The subroutine may be user-written and is called by the assembler language
code equivalent to the following statement:

CALL x (iretcd,ierno,datal,data2 ...)

where:

x is the name of the routine whose address was placed into the option
table by the iusadr parameter of the CALL ERRSET statement.
(Interpretation of the other parameters -- iretcd,ierno,datal,data2 -- are
the same as those for the CALL ERRMON statement.) If an input/output
error is detected (that is, an error for codes 211 to 237), subroutine x
must not execute any FORTRAN I/O statements, that is, READ, WRITE,
BACKSPACE, END FILE, REWIND, PAUSE, or any calls to PDUMP or
ERRTRA. Similarly, if errors for codes 216 or 241-301 occur, the
subroutine x must not call the library routine that detected the error or any
routine which uses that library routine. For example, a statement such as

r = a**b

cannot be used in the exit routine for error 252, because the FORTRAN
library subroutine FRXPR# uses EXP, which detects error 252.

Note that although a user-written corrective routine may change the setting of
the return code (iretcd), such a change is subject to the following restrictions:

1. If iretcd is set to 0, then datal and data2 must not be altered by the
corrective routine, since standard corrective action is requested. If
datal and data2 are altered when iretcd is set to 0, the operations
that follow will have unpredictable results.

2. Only the values 0 and 1 are valid for iretcd. A user-exit routine must
ensure that one of these values is used if it changes the return code
setting. Note too, that the user-written exit routine can be written in
FORTRAN or in assembler language. In either case, it must be able to
accept the call to it as shown above. The user-exit routine must be a
closed subroutine that returns control to the caller.

If the user-written exit routine is written in assembler language, the
end of the parameter list can be checked. The high-order byte of the
last parameter will have the hexadecimal value 80. If the routine is
written in FORTRAN, the parameter list must match in length the
parameter list passed in the CALL statement issued to the error
monitor.

When the extended error handling facility encounters a condition or a request
that requires user notification, an informational message is printed.

The error monitor is not recursive: If it has laready beeri called for an
error, it cannot be re-entered if the user-written corrective routine cuases any
of the error conditions that are listed in the option table.

Actions the user may take if he wishes to correct an error are described in
Figures 50, 51, and 52.

173

PulUlleten '
Error PasIecl to
Code Va Standard Corrective Action V..suppliecl Corrective Action

206 A,B,I I = low order part of number for input too large. Vser may alter I (see note 3).

211 A,B,C Treat format field containing C as end of (a) If complled FORMAT
FORMAT statement. statement, put hexadecimal character

in C (see note 1).
(b) If variable format, move EBCDIC

character into C (see note 1).

212 A,B,D Input: Ignore remainder of I/O list. See note 2.
Output: Continue by starting new output
record. Supply carriage control character
if required by option table.

213 A,B,D Ignore remainder of I/O list. See note 2.

214 A,B,D Input: Ignore remainder of I/O list; ignore If user correction is requested, the remainder
I/O request for ASCU tape. of the I/O list is ignored.
Output: If unformatted write initially request·
ed, change record format to vs. If formatted
write initially requested, ignore I/O request.

215 A,B,E Substitute zero for the invalid character. The character placed in E will be substituted
for the invalid character.
I/O operations may not be performed
(see note 1).

217 A,B,D Increment FORTRAN sequence See note 2.
number and read next me.

2184 A,B,D,F Ignore remainder of I/O list. See note 2.

2195.224 A,B,D Ignore remainder of I/O list. See note 2.

225 A,B,E Substitute zero for the invalid character. The character placed in E will be substituted
for the invalid character (see note 1).

226 A,B,R R = 0 for input number too small.
R = 1063 - 1 for input number too large.

User may alter R (see note 3).

227 A,B,D Ignore remainder of I/O list, See note 2.

228 A,B,D Ignore remainder of I/O list. See note 2.

229 A,B,D Move 256 characters and resume processing See note 2.
with the next constant beyond the count
given.

231 A,B,D Ignore remainder of I/O list. See note 2.

232 A,B,D,G Ignore remainder of I/O list. See note 2.

233 A,B,D Change record number to list See note 2.
maximum allowed (32,000),

234·236 A,B,D Ignore remainder of I/O list. See note 2.

237 A,B,D,F Ignore remainder of I/O list. See note 2.

238 A,B,D Ignore remainder of I/O list. See note 2,

239 A,B,D Ignore remainder of I/O Ust. See note 2.

MEANINGS:

A-Address of return code field (INTEGER ·4)
8-Address of error number (INTEGER ·4)

F-Address of DECB

C-Address of invalid format character (LOGICAL ·1)
D-Address of data set reference number (INTEGER ·4)
E-Address of invalid character (LOGICAL ·1)

NOTES:

G-Address of record number requested (INTEGER ·4)
I-Result after conversion (IllfTEGER·4)

R-Result after conversion (REAL·4)

1. Alternatively, the user can set the return code to 0, thus requesting a standard corrective action.

2. The user can do anything he wishes except perform another I/O operation - i.e., issue a READ, WRITE, BACKSPACE, END
FILE, REWIND, PAUSE, PDUMP, or ERRTRA. On return to the library, the remainder of the I/O request will be ignored.

3. The user exit routine may supply an alternative answer for the setting of the result register. The routine should always set an
INTEGER·l, variable and the FORTRAN library will load fullword or halfword depending on the length of the argument
causing the error.

4. If error condition 218 (I/O error detected) occurs while error messages are being written on the object error data set, the
message is written on the console sheet and the job is terminated.

5. If no FlLEDEF command has been supplied for the object error data set, error message IHN2191 or IH02191 is written on
the console sheet and the job is terminated.

Figure 50. Corrective Action After Error Occurrence

174

Error
Code

216

216

241

242

243

244

245

246

247

251

252

253

254

255

256

Variable

Invalid
FORTRAN Argument
Reference Range

CALL SLITE (I) 1>4

CALL SLITET I> 4
(1,1)

K=I**J 1=0, J~O

Y=X**I X=O, I~O

DA=D**I D=O,I~O

XA=X**Y X=O, Y~O

DA=D**DB D=O, DB~O

CA=C**I C=O+Oi, I~O

CDA=CD*I C=O+Oi, I~O

Y=SQRT (X) X<O

Y=EXP (X) X> 174.673

Y=ALOG (X) X=O
X<O

Y=ALOG10 (X) X=O
X<O

Y=COS (X) IXI;;;..2 18 *1T
Y=SIN (X)

Y=ATAN2 (X,XA) X=O, XA=O

Y=SINH (X) IXI~175.366

Y=COSH (X)

Type

Variables of INTEGER *4
Variables of REAL *4
Variables of REAL * 8
Variables ofCOMPLEX*8

Options

Standard
Corrective

Action

The call is treated as a no opera-
tion

J=2

K=O

If 1=0, Y= 1
IfI<O,Y=*

IfI=O, Y=1
If 1 <0, Y=*

XA=O

DA=O

IfI=O, C= 1 +Oi
Ifl<O, C=*+Oi

IfI=O, C= 1 +Oi
IfI<O,C=*+Oi

Y=IXII/2

Y=*

Y=*
Y=loglXI

Y=-*
Y=loglolxl

Y=~'
2

Y=O

Y=(sign x)*
Y=*

I, J
X,XA,Y
D,DA,DB
C,CA
Z,X1,XZ

CD
Complex variables to be given the length of the functioned argument when they appear.
Variables of COMPLEX * 16

User Supplied
Corrective Action

(See Note 1)

1

I

I, J

X, I

D, I

X,Y

D,DB

C, I

CD,I

X

X

X
X

X
X

X

X,XA

X

Notes: 1. The user-supplied answer is obtained by recomputation of the function using the value set by the user routine for
the parameters listed.

2. The largest number that can be represented in floating point is indicated above by *.

3. The value e=approximately 2.7183.

Figure 51. Corrective Action After Mathematical Subroutine Error Occurrence (Part 1 of 4)

175

Options

/'

Invalid Standard
Error FORTRAN Argument Corrective
Code Reference Range Action

257 Y=ARSIN (X) IXI>l If X> 1.0, ARCSIN (X)=~
~~~' ,. 

.' -. 
If X <-1.0, ARCSIN (X)=-~ 

25~,\;·· 

259 

260 

261 

262 

263 

264 

265 

266 

Variable 

I, J 
X,XA,Y 
D,DA,DB 
C,CA 

Z,Xl'~ 
CD 

Y=ARCOS (X) 

Y=TAN (X) IXI;;;a: (2 18)*11' 

Y=COTAN (X) 

Y=TAN (X) X is too close to an 

odd multiple of ~ 

Y=COTAN (X) X is too close to a 
multiple of r; 

DA=DSQRT (D) D<O 

DA=DEXP (D) D>176.673 

DA=DLOG (D) I D={} 
D<O 

DA=DLOG10 (D) D~O 

D<O 

DA=DSIN (D) IDI;;;a: 250 *11' 
DA=OCOS (D) 

DA=DATAN2(D,DB) D=O, DB=O 

DA=DSINH (D) IDI;;;a:175.366 
DA = OCOSH (D) 

Type 

Variables of INTEGER *4 
Variables of REAL *4 
Variables of REAL * 8 
Variables ofCOMPLEX*8 

If X> 1.0, ARCOS=O 
If X<-1.0, ARCOS =11' 

Y=* 

Y=* 

DA=IDll!2 

DA=* 

DA=-* 
DA=loglXI 

DA=-* 
DA=loglo IXI 

DA=vf 
2 

DA=O 

DA=(sign X)* 
DA=* 

Complex variables to be given the length of the functioned argument when they appear. 
Variables of COMPLEX * 16 

User-Supplied 
Corrective Action 

(See Note 1) 

X 

X 

X 

X 

D 

D 

D 
D 

D 

D 

D,DB 

D 

Notes: 1. The user-supplied answer is obtained by recomputation of the function using the value set by the user routine for 
the parameters listed. 

2. The largest number that can be represented in floating point is indicated above by *. 

3. The value e=approximately 2.7183. 

Figure 51. Corrective Action After Mathematical Subroutine Error Occurrence (Part 2 of 4) 

176 



Invalid 
Error FORTRAN Argument 
Code Reference Range 

267 DA=DARSIN (D) IDI>1 

DA=DARCOS (D) 

268 DA=DTAN(D) IXI;;;,.25h1T 
DA=DCOTAN (D) 

269 DA=DTAN (D) D is too close to an 
odd multiple of 21T 

DA=DCOTAN (D) D is too close to a 
multiple of 1T 

For errors 271 through 275, C=XI+iX2 

271 Z=CEXP (C) Xl> 174.673 

272 Z=CEXP (C) 1X:z I;;;" 218
*1T 

273 Z=CLOG (C) C=O+Oi 

274 Z=CSIN (C) IX11"21h1T 
Z=CCOS (C) 

275 Z=CSIN (C) X2 >174.673 

Z=CCOS (C) 

Z=CSIN (C) X2 <-174.673 

Z=CCOS (C) 

For errors 281 through 285, CD=XI+iX2 

281 

Varillble 

Z=CDEXP (CD) Xl >174.673 

Type 

Variables ofINTEGER*4 
Variables of REAL*4 
Variables of REAL*8 
Variables of COMPLEX * 8 

Options 

Standard 
Corrective 

Action 

If X> 1.0, DARSIN (X)=~ 

If X<-1.0,DARSIN (X)=-~ 

If X> 1.0, DARCOS=O 
IfX<-1.0, DARCOS=1T 

DA=l 

DA=* 

DA=* 

Z= * (COS X:z+SIN X z) 

Z=ex1 +O*i 

z=-*+Oi 

Z=O+SINH (X,) *i 
Z=COSH <X,)+O*i 

* Z="2(SIN XI+iCOS Xl) 

* Z="2(COS X1-iSIN Xl) 

* 
Z="2(SIN XI-iCOS Xl) 

* 
Z="2(COS XI+iSIN Xl) 

I, J 
X,XA.Y 
D,DA,DB 
C,CA 

Z,Xl'~ 
CD 

Complex variables to be given the length of the functioned argument when they appear. 
Variables of COMPLEX* 16 

User-SuppHed 
Corrective Action 

(See Note 1) 

D 

D 

D 

C 

C 

C 

C 

C 

C 

C 

C 

CD 

Notes: 1. The user-supplied answer is obtained by recomputation of the function using the value set by the user routine for 
the parameters listed. 

2. The largest number that can be represented in floating point is indicated above by·. 

3. The value e=approximately 2.7183. 

Figure 51. Corrective Action After Mathematical Subroutine Error Occurrence (Part 3 of 4) 

177 



Invalid 
Error FORTRAN Argument 
Code Reference Range 

282 Z=CDEXP (CD) IX21~250*1I' 

283 Z=CDLOG'(CD) CD=O+Oi 

284 Z=CDSIN (CD) IXII~250*1I' 
Z=CDCOS (CD) 

285 Z=CDSIN (CD) X2> 174.673 

Z=CDCOS (CD) 

Z=CDSIN (CD) X2<-174.673 

Z=CDCOS (CD) 

290 Y=GAMMA(X) X", 2-252 or 
X~57.5744 

291 Y = ALGAMA (X) X<;O or 

300 

301 

Variable 

I, J 
X,XA,Y 
D,DA,DB 
C,CA 

X~4.2937 * 1073 

DA = DGAMMA (D) D<; 2-252 or 
D~ 57.5774 

DA = DLGAMA (D) D",Oor 
D~4.2937 * 1073 

Type 

Variables ofINTEGER*4 
Variables of REAL*4 
Variables of REAL*8 
Variables ofCOMPLEX*8 

Options 

Standard 
Corrective 

Action 

Z=e I+O*i 

Z=-*+Oi 

Z=O+SINH (X2)*i 
Z=COSH (X2)+ O*i 

* 
Z="2(SIN XI+iCOS Xl) 

* 
Z="2(COS Xl -iSIN Xl 

* 
Z="2(SIN XI-iCOS Xl) 

* 
Z="2(COS XI+iSIN Xl) 

. 
Y=* 

Y=* 

DA=* 

DA=* 

Z, XI,:x, 
CD 

Complex variables to be given the length of the functioned argument when they appear. 
Variables ofCOMPLEX*16 

User-Supplied 
Corrective Action 

(See Note 1) 

CD 

CD 

CD 

CD 

CD 

CD 

CD 

X 

X 

D 

D 

Notes: 1. The user-supplied answer is obtained by recomputation of the function using the value set by the user routine for 
the parameters listed. 

2. The largest number that can be represented in floating point is indicated above by *. 

3~ The value e=approximately 2.7183. 

Figure 51. Corrective Action After Mathematical Subroutine Error Occurrence (Part 4 of 4) 

178 



'\ 
\ 

Error 
("..ode 

207 

20B 

209 

Variable 

D 

Program Interrupt Messages Options 

Parameters User-8upplied 
Passed to Conective 
User Exit Reason for Interrupti Standard Conective Action Action 

D,I Exponent Overflow (Interrupt Result register set to the largest pos- User may ;alter D? 
Code 12). sible floating point number. The 

sign of the result register is not 
altered. 

D,I Exponent underflow (Interrupt The result register is set to zero. User may alter D.2 
Code 13) 

None Divide check: Integer divide None. See Note 4. 
(Interrupt code 9), Decimal 
divide (Interrupt Code 11), 
Floating point divide (Interrupt 
Code 15).3 

Type Description 

A variable REAL*B This variable contains the contents of the result register after the interrupt. 

A variable INTEGER *4 The variable contains the "exponent" as an integer value for the number in D. 
It may be used to determine the amount of the underflow or overflow. The 
value in I is not the true exponent, but what was left in the exponent field of 
a floating point number after the interrupt. 

1 A program interrupt occurs asynchronously. 

2The user exit routine may supply an alternate answer for the setting of the result register. This is accomplished by placing 
a value for D in the user-exit routine. Although the interrupt may be caused by a long or short floating-point operation, 
the user-exit routine need not be concerned with this. The user-exit routine should always set aREAL *B variable and the 
FORTRAN library wi1l10ad short or long depending upon the floating-point operation that caused the interrupt. 

3For floating-point divide check, the contents of the result register is shown in the message. 

4The user-exit routine does not have the ability to change result registers after a fixed-point divide check. 

Figure 52. Corrective Action After Program Interrupt Occurrence 

179 



Option Table Considerations 

Figures 26, 27, and 28 in the section "Extended Error Handling Facility" 
describe the fields of the option table and list the default values for the 
contents of these fields. 

When a user-written exit subroutine is to be executed for a given error 
condition, the programmer must enter the address of the routine into the 
option table entry associated with that error condition. 

Addresses for user-exit subroutines cannot be entered into the option table 
entries during program installation. An installation may, however, construct 
an option table containing user-exit addresses and place that option table into 
the FORTRAN library. (Each address must be specified as a v-type address 
constant.) Use of this procedure, though, results in the inclusion in the load 
module of all such user-exit subroutines. 

If the user-exit address is not specified in advance through the use of 
v-type address constants the programmer must issue a CALL ERRSET 
statement at execution time to insert an address into the option table that was 
created during program installation. 

The programmer should be warned that altering an option table entry to 
allow "unlimited" error occurrence (specifying a number greater than 255) 
may cause a program to loop indefinitely. 

Considerations for the Library Without Extended Error Handling Facility 

180 

When the extended error handling facility is not chosen, execution terminates 
after the first occurrence of an error, unless it is one caused by divide check, 
exponent underflow, or exponent overflow. The messages for errors 215, 
216, 218, 221-225, and 240-301 are the same as those with the extended 
error handling facility. The other error messages are of the form IHN xxx or 
IHO xxx with no text. 

Without the facility, ERRMON becomes an entry point to the traceback 
routine. User programs that call the error monitor do not have to be altered. 
The error message will be printed with a traceback map and execution will 
terminate. 

Note, too, that if the facility is not selected, the ERRTRA, ERRSET, 
ERRS A V, and ERRSTR subprograms are assumed to be user supplied if they 
are called in a FORTRAN program. 



~ \ Appendix E: Defining Execution-Time Files for Compatibility with OS 

Your FORTRAN programs, running under CMS, can create files that are 
acceptable to as or use files that were originally created under as. For 
sequential, unlabelled tape files, this transfer can be made directly without 
any intervening conversion of storage medium. For sequential and direct 
access disk files the files must first be placed onto tape and then placed on the 
disks of the system that is to receive them. To make use of such files, you 
must use the RECFM, LRECL, and BLKSIZE options of the FILEDEF 
command as they would be used in the DD statement under as. The 
information presented below is designed as an aid in understanding as data 
set formats and, so, ease the conversion process. 

The type of device you are using for your file and the way it is organized 
limit your choice of record format and, as a result, the way in which you 
specify logical record lengths and blockofiizes. 

The value of LRECL for all fixed-length (F and FB) and undefined (U) 
records on all devices except tape is in the following range: 

1 ~ LRECL ~ device-capacity 

The value of LRECL for all variable-length (V, VB, VS, and VBS) records 
on all devices except tape is in the following range: 

5 ~ LRECL ~ device-capacity 

The value of LRECL for all types of records on a tape device is in the 
following range: 

18 ~ LRECL ~ 32760 

The value of BLKSIZE for fixed-length, unblocked (F) and undefined (U) 
records is determined as follows: 

BLKSIZE = LRECL 

The value of BLKSIZE for fixed-length, blocked (FB) records is determined 
as follows: 

LRECL • number-oJ-records = BLKSIZE ~ device-capacity 

The value of BLKSIZE for all variable-length (V, VB, VS, and VBS) records 

(LRECL • number-oJ-records) + 4 = BLKSIZE ~ device-capacity 

The values for device-capacity are listed in Figure 53. 

181 



182 

Device Type Device Capacity (Maximum BLKSIZE) 

Terminal l 133 

Direct Access 
2301 20483 

c 2302 4984 
2303 4892 
2305 

Mod I 14136 
Mod II 14660 

2311 3625 
2314 7294 
2319 7294 
3330 13030 

Card Reader 80 

Card Punch l 81 

Printer l 

120 chars. 121 
132 chars. 133 
144 chars. 145 
150 chars. 151 

1 For variable-length records, add 8 to the values shown. 

Figure 53. Maximum BLKSIZE by Device Types 

The description below outlines how these options are used in an OS 
environment and what effect they have on your files. Should you need more 
information, refer to the appropriate OS programmer's guide for your 
compiler. These books are listed in the preface of this book. 



Formatted Records (Sequential and Direct Access) 

• F (fixed-length, unblocked records) 

All the records to be read or written are the same length, and a single 
READ or WRITE statement affects only one record at a time. The 
RECFM option specifies F and the BLOCK option specifies the length 
of the records. LRECL is not required. 

Example: Assume that all records are 80 bytes. RECFM is F and 
BLOCK is 80. 
,- - - - - - - - - - - - - --BLOCK -- - - - - - - - - - - -- --, 
I I 
I I 
I I 
I 

a 80 

If a FORTRAN record is encountered that is smaller than the block 
size, the unused portion of the block size is filled with blank 
characters. 

Example: Assume that a record is 50 bytes. RECFM is F and 
BLOCK is 80. 
r---- - -- -- - --- - ---BLOCK-- - - - -- - - - - - - --, 
I I 
I I 
I I 
I I 

Blanks 
(30 bytes) 

o 50 80 

If a FORTRAN record is encountered that is longer than the block 
size, the additional portion of the record is truncated and lost. 

Example: Assume that a record is 100 bytes. RECFM is F and 
BLOCK is 80. 
r------ - - - - ----BLOCK---- - - -- -------1 
I I 
I I 
I I 
I I 

-,~:~; - ~,-'" - ~.~ 
,--I 

" ,I 
-.>' -',I 

~O ~~~~-<--L..4.--'---'-"...<..£..<~~'-'-L..'-L.L."-L.LL..£..L.LLLLLL~80------'O:-'-lod 

See the section "Using and Identifying Files" for more information on 
using sequential and direct access files. 

Formatted Records (sequential only) 

• U (undefined-length records) 

The length of the records to be read or written is not defined; 
however, you must account for the longest record that' may be 
encountered as specified by your FORMAT statement. A single 
READ or WRITE statement affects only one record at a time. The 
RECFM option specifies U and BLOCK specifies the length of the 
longest possible record. LRECL is not required. Any unused space is 
not read or written, and records that are too long are truncated. 

183 



184 

Example: Assume that the longest record that can be encountered is 
400 bytes. RECFM is U and BLOCK is 400. 
,-------------- ---- -- BlOCK--- ------ ----- --- - - - - - --I 
I 1 

, ~ 
400 

See the section "Identifying and Using Execution-time Files" for more 
information on using sequential files. 

• FB (fixed-length, blocked records) 

All the records to be read or written are the same length; however, a 
single READ or WRITE statement affects a group of records (that is, 
as many fixed-length records as will fit in the block size specified). 
The RECFM option specifies FB, LRECL specifies the size of the 
records, and BLOCK will determine the number of records in the 
group. It must be an exact multiple of LRECL . 

. Example: Assume that all the records are 20 bytes and that 5 records 
are to be grouped together. RECFM is FB; LRECL is 20, and 
BLOCK is 100. 
,-- ----------- -- ---BlOCK--- - ---------------, 
I I 
1-- lRECl-- -1- --lRECl - -r ---lRECl-- - T ---lRECl-- -1- --lREcl---1 
I I 1 1 I 

As with fixed-length unblocked records, any FORTRAN records that 
are shorter or longer than LRECL or that do not meet the 
requirements of BLOCK are padded with blanks or truncated. See the 
section "Identifying and Using Execution-time Files" for more 
information on using sequential files. 

• FBS/FS (fixed-length, blocked and unblocked records with standard 
blocks) 

All records are to be contained in standard blocks (that is, only the last 
record may be padded with blanks or truncated if it does not fit the 
block exactly). The FILEDEF options are specified in the same way 
as fixed-length, blocked and unblocked records. 

• V (variable-length, unblocked records) 

All the records to be read or written are not the same length. A single 
READ or WRITE statement affects only one record at a time. The 
RECFM option specifies V, LRECL specifies the length of the longest 
record plus 4 bytes for a segment control word, and BLOCK specifies 
the value of LRECL plus an additional 4 bytes for a block control 
word. Since the records are varying lengths the segment and block 
control words inform the system of the length of the records involved. 
Each record has a segment control word and each block has a block 



control word. For all file modes except 4 the block and segment 
control words are removed before the block is written. 

Example: Assume that the longest record is 50 bytes. RECFM is V; 
LRECK is ,54, and BLOCK is 58. 
,- - - - - -- ---BLOCK---- - -- ---I 
1 1 : r - - - - - - - - - - LRECL - - - - - - - - - - i 
1 1 1 

B S 
C C 
W W 

o 4 8 58 

If a FORTRAN record is encountered that is shorter than the length 
specified in LRECL, the unused portion is ignored. 

Example: Assume that a record of 20 bytes is encountered. RECFM 
is V; LRECL is 54, and BLOCK is 58. 

j- - - - - - - ---BLOCK-- - - - - - --l 
1 r - - - - - - - -LRECL -- - - - - - -- - -l 
1 1 1 

1 I --------1 

B S 
C C 
w w 

Unused 
(30 bytes) 

I 
I 
I 
I 

Only the space required for the record is used since the block and 
segment control words contalft information on the length and position 
of the record. The next record to be written will begin immediately 
after the record, not the block; the unused portion of the previous 
record is used for the following record. 

Example: Assume the next record to be written is 40 bytes. RECFM 
is V; LRECL is 54, and BLOCK is 58. 

B S 
C C 
w w 

,---- -- ---- BLOCK -- - --- - ---, 
I 1 
I j--------- LRECL -----------1 
I 1 I 

-----1 

I 
Unused I 

(10 bytes) I 

I 
~~~~~~~~~~LU~~~WLWL~----~ 

76 86

If a record exceeds the size of the block it is truncated. See the section
"Identifying and Using Execution-time Files" for more information on
using sequential files.

• VB (variable-length, blocked records)

All records to be read or written are not the same length. A single
READ or WRITE statement affects a group of records (that is, as
many variable-length records as will fit in the block size specified).
The RECFM option specifies VB; LRECL specifies the length of the
longest record plus 4 bytes for a segment control word, and BLOCK
specifies a value longer than LRECL plus 4 additional bytes for a
block control word. Remember, each record placed in the block
requires 4 bytes for its segment control word. Since the block and
segment control words contain information about the length and

185

186

position of the records each record occupies only the space it requires.
Unused space at the end of the block is ignored. For all file modes,
except 4, the block and segment control words are removed before the
block is written.

Example: Assume that there are to be three records of 20,40, and 60
bytes in a block. RECFM is VB; LRECL is 64, and BLOCK is 136
(the block size specifies the exact amount of space required to contain
the records).
1- BlOCK- ---,

I I
I r - - - - - -- - -lRECl - - - - - - - - - - i
I I I

B S
C C
w w

o 4 8

For efficient use of storage when you are using VB records, always do
the following:

1. Specify a value for LRECL. If LRECL is omitted, only one record
will be contained in each block

2. Determine, in advance whenever possible, the exact size for the
BLOCK option. Any unused space in the block is lost and any
records that exceed the block size are truncated.

See the section "Identifying and Using Execution-time Files" for more
information on using sequential files.

Unformatted Records (sequential only)

• VS (variable-length, spanned records)

All the records to be read or written are not the same length. A single
READ or WRITE statement affects only one record at a time. The
RECFM option specifies VS, and the BLOCK option specifies a
pseudo-block size. LRECL is not required. The pseudo-block size
may be smaller than, larger than, or equal to the length of any of the
records used. Block and segment control words contain information
on the length and position of a record or parts of a record in a block.
For a record and its associated segment control word that is smaller
than or equal to the block size minus its block control word, a single
record occupies one block. Unused space is ignored. Spanned records
can only be placed in a file with a file mode of 4.

Example: Assume that a record of 50 bytes is equal to the
pseudo-block size. RECFM is VS, and BLOCK is 58.

,- - - - - - - --BLOCK--- - - - - - - - -,
I I
I I

58

For a record that is larger than the block size minus it block control
word, the record occupies (that is, spans) as many blocks as are
necessary to contain it. Any unused space is ignored.

Example: Assume that a record of 130 bytes is larger than the
pseudo-block size. RECFM is VS, and BLOCK is 58.

r---- --BLOCK -- -----1 ,--- - -- BLOCK--------, r-- ----- BLOCK-------,
I I I I I I

I I : I : :
I I I I I I

B 5
C C
W W

116 120 124

Unused
(20 bytes)

154

See the section "Identifying and Using Execution-time Files" for more
information on using sequential files.

• VBS (variable-length, blocked, spanned records)

All records to be read or written are not the same length; however, a
single READ or WRITE statement may affect more than one record at
a time, depending upon the length of the records. The RECFM option
specifies VBS; the LRECL option specifies the length of the longest
record that may be encountered, and the BLOCK option specifies a
value larger than the value of LRECL but not necessarily a multiple.
The block size specified will contain as many records as will fit and
may span the last record into the next block. Although block and
segment control words are used, they need not be specifically
accounted for in LRECL and BLOCK. Any unused space in a block
containing the last record is ignored. Spanned records can only be
placed in a file with a file mode of 4.

1$7

174

188

Example: Assume that there are two records of 70 and 60 bytes in a
block. RECFM is VBS; LRECL is 70, and BLOCK is 110.

r- -- ------- - -- - - - - --BLOCK-- - - - - --- - -- - - -- ---,
I I
r r- --- -- - ---LRECL-- -- - - --- ---, I
1 : I I

B 5
C C
W W

B 5
C C
W W

Unused if last record
(70 bytes)

110

See the section "Identifying and Using Execution-time Files" for more
information on using sequential files.

Unformatted Records (direct access only)

• F (fixed-length, unblocked records)

The length of the records to be read or written is determined by the
FORTRAN DEFINE FILE statement and cannot be changed with the
LRECL option. A single READ or WRITE statement affects only one
record at a time. The RECFM option specifies F, and BLOCK
specifies a pseudo-block size, which may be smaller than, equal to, or
larger than the length of the record specified in the DEFINE FILE
statement. LRECL is not required. There are no block or segment
records. Records that are smaller than or equal to the block size,
occupy one block. Unused space is ignored.

Example: Assume that a record of 80 bytes is equal to the block size.
RECFM is F, and BLOCK is 80.
,-- - - - - - - - - - - - - -- BLOCK--- - - -

I
I
I

---------1

1

1

I

80

If the record is larger than the block size, the record occupies as many
blocks as are required to contain it.

Example: Assume that a record of 130 bytes is larger than the block
size. RECFM is F, and BLOCK is 50.

-------BLOCK ------l
I I
: I

r-- -- --BLOCK -------
I I
I I
I I

I I I I

50 100

r-- .---- BLOCK---------,
I I
I I
I I
I I

Unused
(20 bytes)

ISO

See the section "Identifying and Using Execution-time Files" for more
information on using direct access files.

189

Appendix F: Error Messages

The following meSsages are produced in response to entering an incorrect
FORTRAN compiler command or when the command cannot be executed.
The format of,the messages is:

OMS xxxnnn E text of the message

where:

xxx - indicates the compiler in use

IGI ... FORTRAN IV (GO Compiler

IGK - Code and Go FORTRAN IV Compiler

IFE - FORTRAN IV (H Extended) Compiler

CON- SIFT Utility

nnn - is the message number

DMSxxxOOlE

DMS,xxx 002E

DMSxxx003E

NO FILENAME SPECIFIED

Explanation: You have not included a filename in the
compiler command.

System Action: None

Programmer Respo.nse: Reissue the appropriate compiler
command and specify a filename.

FILE' filename FORTRAN' NOT FOUND

Explanation.~ The filename that you included in the compiler
command does not correspond to the names of any of the
files. on your disks.

Supplemental Information: The variable filename in the text
of the. message indicates the name of the file that could not
be found.

System Action: None

Programmer Response: Reissue the compiler command with
an appropriate filename.

INVALID OPTION' option'

Explanation: You have included an invalid option with your
compiler command.

Supplemental Information: The variable option in the text
of the message indicates the invalid option.

191

DMSIFEOO4W

DMSxxx005E

DMSxxxOO6E

DMSxxx007E

192

System Action: None

Programmer Response: Check the format of the appropriate
compiler command and reissue the command with the correct
option.

WARNING MESSAGES ISSUED

Explanation: The compiler has detected errors in your
program and issued diagnostic messages whose highest
severity level is 4.

System Action: None

Programmer Response: Check your terminal listing for any
compiler diagnostic messages. Correct the errors in your
program and recompile it.

NO option parameter SPECIFIED

Explanation: You did not supply a required parameter for an
option that was included with your compiler command.

Supplemental Information: The variable option parameter
in the text of the message indicates the option that requires
the parameter.

System Action: None

Programmer Response: Check the format of the appropriate
compiler command and reissue the command with the correct
parameter.

NO READ/WRITE DISK ACCESSED

Explanation: Your virtual machine configuration does not
include a read/write disk for this terminal session or you
failed to specify a read/write disk in your ACCESS
command following LOGIN.

System Action: None

Programmer Response: Issue an ACCESS command
specifying a read/write disk.

FILE' filename FORTRAN' IS NOT FIXED, 80 CHAR.
RECORDS

Explanation: The FORTRAN source file that you specifie~
in the compiler command does not contain fixed length
records of 80 characters. The command cannot be executed.

Supplemental Information: The variable filename in the text
of the message indicates the name of the FORTRAN file that
is in error.

System Action: None

DMSIFE008W

DMSIFE012W

DMSIFE016W

DMSxxx034E

DrdSxxx038E

Programmer Response: You must reformat your file into the
correct record length.

ERROR MESSAGES ISSUED

Explanation: The compiler has detected errors in your
program and issued diagnostic messages whose highest
severity level is R.

System Action: None

Programmer Response: Check your terminal listing for any
compiler diagnostic messages. Correct the errors in your
program and recompile it.

SEVERE ERROR MESSAGES ISSUED

Explanation: The compiler has detected errors in your
program and issued diagnostic messages whose highest
severity level is 12.

System Action: None

Programmer Response: Check your terminal listing for any
compiler diagnostic messages. Correct the errors in your
program and recompile it.

UNRECOVERABLE ERROR MESSAGES ISSUED

Explanation: The compiler has detected errors in your
program and issued diagnostic messages whose highest
severity level is 16.

System Action: None

Programmer Response: Check your Terminal listing for any
compiler diagnostic messages. Correct the errors in your
program and recompile it.

FILE 'filename FORTRAN' IS NOT FIXED LENGTH

Explanation: The file that you specified in the compiler
command does not have fixed length records.

Supplemental Information: The variables filename and in
the text of the message indicates the name of file in error.

System Action: None

Programmer Response: You must reformat your file into the
correct record length.

FILE ID CONFLICT FOR DDNAME 'ddname'

Explanation: You issued a FILEDEF command that
conflicts with an existing FILEDEF for the ddname
specified.

193

194

Supplemental Information: The variable ddname in the text
of the message indicates the ddname in error.

System Action: None

Programmer Response: Reissue the FILEDEF command
with an appropriate ddname.

DMSIGKE04SE PROGRAi NOT EXECUTED DUE TO SEVERITY
CODP"

DMSx:x.x{)S2E

DMSxxxD70E

DMSx:x.x{)7 SE

Explanation: This message applies only to the Code and Go
FORTRAN IV processor. Errors of sufficient severity to
prevent compilation or a successful execution were present in
your source program.

System Action: The compilation was terminated or the
compilation was completed but execution was- not begun.

Programmer Response: Correct the errors in your source
program and recompile and execute it.

MORE THAN 100 CHARS, OPTIONS SPECIFIED

Explanation: The string of options that you specified with
your compiler command exceeded 100 characters in length.

System Action: None

Programmer Response: Reissue your compiler command
with fewer options specified.

INVALID PARAMETER 'parameter'

Explanation: You specified an invalid parameter for an
option in the compiler command.

Supplemental Information: The variable parameter in the
text of the message indicates the invalid parametef.

System Action: None

Programmer Response: Check the format of the option with
its appropriate parameters and reissue the command with the
correct parameter.

DEVICE device name ILLEGAL FOR
INPUT/OUTPUT

Explanation: The device specified in your FILEDEF
command cannot be used for the input or output operation
that is requested in your program. For example, you have
tried to read data from the printer.

;

Supplemental Information: The variable device name in the
text of the message indicates the incorrect device that was
specified. In addition, the text will indicate whether an input
or an output operation was requested.

System Action: None

Programmer Response: Reissue your FILEDEF command
specifying an appropriate device for the desired input or
output operation.

DMSCON300E GOFORT MISSING OR MISSPELLED

Explanation: You omitted or misspelled to GOFORT
portion of the CONVERT command.

System Action: None

Programmer Response: Reissue the CONVERT command
with GOFORT spelled correctly.

DMSCON301E FILENAME NOT FOUND

Explanation: The input filename that you included in the
CONVERT command does not correspond to the names of
any of the files on your disks.

System Action: None

Programmer Response: Reissue the CONVERT command
with an appropriate filename.

DMSCON302E FILENAME' filename' WRONG RECORD LENGTH

Explanation: The output file that you identified in the
CONVERT command does not have a RECFM of F or a
BLOCK of 80.

Supplemental Information: The variable filename in the text
of the message indicates the filename in error.

System Action: None

Programmer Response: Reissue the CONVERT command
with a filename that has the appropriate characteristics or
redefine the filename that you specified.

DMSCON303E FILENAME FOR SIFT OUTPUT OMITTED

Explanation: You did not specify an output filename in the
CONVERT command.

System Action: None

Programmer Response: Reissue the CONVERT command
specifying an output filename.

195

196

DMSCON304E OUT FILE CANNOT BE THE SAME AS IN

Explanation: You specified the same filename for the input
and output files in the CONVERT command.

System Action: None

Programmer Response: Reissue the CONVERT command
specifying appropriate filenames for your input and output
files.

DMSCON305E NO READ/WRITE DISK ACCESSED

Explanation: Your virtual machine configuration does not
include a read/write disk for this terminal session or you
failed to specify a read/write disk in your ACCESS
command following LOGIN.

System Action: None

Programmer Response: Issue an ACCESS command
specifying a read/write disk.

DMSCON306E FILE CONFLICT FOR DDNAME 'ddname'

Explanation: You issued a FILEDEF command that
conflicts with an existing FILEDEF for the ddname
specified.

Supplemental Information: The variable ddname in the text
of the message indicates the ddname in error.

System Action: None

Programmer Response: Reissue the FILEDEF command
with an appropraite ddname.

DMSCON307E DEVICE device name ILLEGAL FOR INPUT

Explanation: The device specified in your FILEDEF
command cannot be used for the input operation that is
requested by the CONVERT command.

Supplemental Information: The variable device name in the
text of the message indicates the incorrect device that was
specified.

System Action: None

Programmer Response: Reissue your FILEDEF command
specifying an appropriate input device for the CONVERT
command.

Glossary

Batch processing. A method of using a computer system that enters sets of
programs or data sequentially. One set is processed before the next is begun.

Dominance relationships. The logical relationships that exist in a program
where parts of the program dominate other parts. That is, logic always flows
to a part of a program through another part.

Pre-defined files. Files that are defined by the system for the user and are
available anY-lime the user wants them.

Problem solving programmer. A programmer who writes, debugs, and executes
relatively short programs at a terminal.

Production Programmer. A programmer who debugs components of a large
program on-line before running the program through a production-oriented
processor.

Self-prompting. A method of coding programs whereby a user notifies
himself at the terminal that the program is ready to accept input from the
terminal.

System administrator. The person in the computing center who is responsible
for the system or who assists terminal users in their use of the system.

Time-sharing. A method of using a computing system that allows a number of
users to execute programs concurrently and to interact with the programs
during their execution.

User-defined files. Files that are used or created by a user's program and
which the user defines for himself.

Virtual machine. A simulated computer created by VM/370 that offers the user all
the facilities of a real computer and that operates on a shared-time basis with the other
users of the system.

197

+ (plus) 45
("or" symbol) 16

* classification 128
* PROCESS statement

description of 125
exceptions to 125

} (braces) 16
[] (brackets) 16
:READ card 59

(elipsis) 16

A classification 128
A control character 50
A disk 15
abcde subparameter 94
ACCESS command 29,38
AD option (see AUTODBL option)
ALC option

with automatic precision increase
facility 97

format of 120
ANS library functions 120,121
ANSF option 120,121
arithmetic IF statement 68
array notation

for Code and Go 74
for Gl 74
for H Extended 25,76

ASA control character
+ (plus) 45
o (zero) 45
blank 45
in FILEDEF command 50
for terminal output 45

ASF classification 128
assembler language subprograms

coding o.f 148
with COMMON data 151
general 145
high level subprograms

coding of 149
linkage conventions 150

in-line argument lists 151
linkage registers 147
lowest level subprograms

coding of 148
linkage conventions 148

representation of FORTRAN variables
COMPLEX type 158
INTEGER type 155
LOGICAL type 158,159
REAL type 156

retrieving arguments 152
subroutine references

argument lists 145
calling sequence 147
description of 145
save area 146

asynchronous I/O restriction 135
attention interrupt 19
AUTODBL option 92,121

Automatic Function Selection 90
Automatic Precision Increase
Facility 90,121

BACKSPACE statement 66,69
BCD option

for Code and Go 113
for Gl 102
for H Extended 121

BEGIN command 29
blank (see ASA control characters)
BLKSIZE, OS files 181
BLKSIZE option (see BLOCK option)
BLOCK option

description of 52
format of 51
use under CMS 52

BOTTOM subcommand 29
boundary alignment 120

C classification 128
ChLL ERRSAV statement lb5
CALL ERRSEl' statement 166
CALL ERRSTK statement 165,166
CALL ERRTRA statement 168
CALL ERRMON statement 168
card deck, TEXT file

for Gl 103
for H Extended 121

card source files 35
CHANGE option 52
CHANGE subcommand

defined 29
use in sample terminal sess)'.on 21,22

changing compiler options 125
character code, source program

for Code and Go 113
for Gl 102
for H Extended 121

character-delete character 14
CMS

commands
ACCESS command 29
CONVERT command 29
CP command 29
EDIT command 29
EDIT subcommands

BOTTOM subcommand 29
CHANGE subcommand 29
D~LETE subcommand 29
DOWN subcommand 29
FILE subcommand 29
FIND subcommand 29
FMODE suocommand 29
FNAME subcommand 29
GETFILE subcommand 29
INPUT subcommand 29
LOCATE subcommand 29
NEXT SUbcommand 29

Index 19j

QUIT subcommand 29
REPLACE subcommand 30
TOP subcommand 30
TYPE subcommand 30
UP subcommand 30
VERIFY subcommand 30

ERASE command 30
EXEC command 30
FILEDEF command 30
FORrGI command 30
FORTHX command 30
GLOBAL command 30
GOFORT command 30
HT command 30
HX command 30
INCLUDE command 30
introduction 11
LISTFILE command 30
LOAD command 30
PRINT command 31
PUNCH command 31
QUERY command 31
READCARD command 31
RENAME command 31
RT command 31
RUN command 31
SET command 31
SORT command 31
START command 31
STATE command 31
TESTFORT command 31
TYPE command 31

description of 11
diagnostic messages

for compiler commands 191-195
for CONVERT command 195,196

editor
creating source files 33
description 20

introduction 11
prerequisite information 14
primary (A) disk 15
programming considerations 32-67
return codes

description of 34
used in sample session 22

virtual machine configuration 15
CMSLIB library, for Mod II 81
Code and Go compiler

200

description of 112
GOFORT command

BCD option 113
DECK option 113
DISK option 113
EBCDIC option 113
filename for 112
files for compilation 112
FIXED option 113
format of 112
FREE option 113
GO option 113
identifying 112
LINECNT option 114
LMSG option 114
NODECK option 113
NOGO option 113
NOPRINT option 113
NOSOURCE option 114

~OTEST option 114
PRINT option 113
S~SG option 114
SOURCE option 114
TBST option 114

introduction 12
language restrictions 118
LISTING file for 37
output from

description of 114
LISTING file

description of 115
error messages 115
informative messages 115
optional output 116
source statements 116

summary of 115
TEXT file 38,116

Code and Go FORTRAN IV compiler
(see Code and Go compiler)

command procedure
for Code and Go

under GO option 137
under NOGJ option 138

for Gl 136
for H Extended 139

compiler
availability 15
defaults

for Code and Go 102
determining 15
For Gl 102
for hExtended 120

error messages 26
optimization 123
output

from Code and Go 114
from G1 105
from H Extended 126

output files
ACCESS command ~or 35
LISTING 35-36
placement on disks 35
TEXT 38-41

compiling programs
with Code and Go

under GO option 137
under NOGO option 138

with Gl 136
with H Extended 139

compiling source files 34
configuration, CMS 15
continuation lines 21
Control Program (see CP)
Conversational ~onitor System (see C~S)
CO~VERT command 29,195
CP

commands
BEGIN command 29
introduction to 11
IPL command 30
LOGIN command 31
LOGOUT command 31
QUERY command 31
SET command 31
TERMINAL command 31

introduction to 11
CP command 29

creating files 19
~reating source files 33
cross-reference iis~ing 124,110

D classification 128
dat~ set reference numbers

for ddname 48
f~r punched card output 45
for terminal input 45
f~r terminal ou~put 45

DBL subparameter 94
DBL4 subparameter 94
DBLA subparameter 94
nBLP~D subparameter 94
DBLP~D4 subparameter 94
DBLPAD8 subparameter 94
(ldname 47
DERUG st: atement 141
DEC K. opti on

for Code and Go 113
for G 1 103
for H Ex tended 121

defaults
for Code and Go 112
for G 1 102
for H Extended 120
for option table 89

DEFINE FILE statement 65
DE~INE STORAGE command

format. of 119
for E Extended 119

DELETE subcommand 22,29
OEN option 50
a.evi~e capacities (OS) 182
diagnostic message levels 122
diagnostic messages

for compiler commands 191-195
for CONVERT command 193-195

direct access files 42
direct access input/output

OEFIN~ ~ILE statp.ment 65
FILEDEF command for 64
operation of 65
user-1efine files 64

DISK option
for Code and Go 113
for FILEDEF command 49
for G 1 103
for H Extended 121

disk input/output
FILBDEF command f~r 53
operation of 54
user defined files 53

DISP MOD option 49
displaying program variables 142
DISPLAY statement 142
dominance relationships 129
dominator 129
dominee 129
DOWN subcommand 29
dsrn (see data set reference n~mber)
DUMMY option 49
DUMP option 122
dump requests 122

E ~lassification 128
E TRTCH value 49
EB option (see EBCDIC option)
EBCDIC option

for Code and Go 111
for G1 103
for H Extended 121

EDIT command
creating source files 33
defined 29
usel in sample terminal session 20

EDIT mode 20
EDIT subcommands 2q,~0

edited source program 129
END card format 41
END FILE statement 66
END= parameter 66
entry points 38
EQUIVALENCE statement 76
ERASE command 30
error messages

for Code and Go
format of 114
at the terminal 115

for G1
format of 107
at the terminal 104

for H Extended
format of 127
at the terminal 124

errors, correcting 123
ESD card format 40
ET TRTCH value 49
EXEC command 30
executing programs

from Code and Go
under GO option 113,137
under NOGO option 118

from G1 138
from H Extended 139

execution-time files
direct access 42
FILEDEF command for 42
guidelines for defining 41
identifying 42
in trod uc tf:,on 42
predef ined' 42
sequential 42
user-defined 42

Extended Error Handling Facility
description of 85
library without 180
modifying option table

CALL ERRSAV statement
CALL ERRSET statement
CALL ERRSTR statement
CALL ERRTRA statement
description of 165

option table
defaults 89
description of 86
preface for 87

165
166
165, 166
168

standard correctiYe action 180
user-supplied error handling 168,169
user-supplied exit routine 172

extended precision 101
EXTERNAL statement 77,101

Index 201

F classification 128
F records

defining 50
description of 183,188

FB records
defining 50
descri ption of 184

PBS records
def ini nq .50
description of 184

file characteristics 32
FILE subcommand

defined 29
for source files 33
used in sample terminal session 22

file identifier
for FILEDEP DISK option 49
for source files 32

FILEDEF command

202

BLKSIZE option 51
BLOCK option

description of 51
relation to RECFM option 51

CHANGE option 52
ddname for 48
def~ult ddname 41
defined 30
for direct access files 64
DISK opt ion

default file identifier 49
description of 49
DISP MOD option 49
file iden ti fier for 49
filemode for spanned rec~rds 49

DUMM Y option 4q
for execution-time files 42
for fixed-length, blocked records 50
for fixed-length, blocked, standard

blOCK records 50
for fixed-length records 50
for fixed-length, standard bl~ck
records 50

LOWCASE option 48
LRECL option

description of 50
rela tion to R EC FM opt ion 51

NOCHANGE option 52
PERM option 52
PRINTER option 48
PUNCH option 48
READER option 48
RECFM option

A control characters 50
jescription of 50
F records 50
FB records 50
FBS records 50
FS records 50
M con trol character 50
V recor ds 50
V B records 50
VBS records 50
VS records 50
U records 50

for sequential disk files 53
for sequential printed files 63
for sequen tial card files

input 60,51

output 62
for sequential tape files 55
for sequential terminal files 56
TAPn option

DEN option 50
description of
nTRACK option
TRTCH option

TERMINAL option
syntax of 41
UPCASE option 48

49
49

49
48

for user-defined files 41
filemo.de 32
filename

for LISTING file 31
for source files 32
for TEXT files 38

filetype
for FORTRAN files 20
for source files 32

PIND subcommand 21,29
FIN D statement

lanquaqe considerations 69
restrictions on 65

fixed-form source code 113
fixed-Ienqth, blocked records 50
fixed-length, blocked, standard block

records 50
fixed-length records 50
fixed-length, standard block records 50
FIXED option 113
fixed-form output 161
FLAG option 122
FM)DE subcommand 29
FMT option (see FORMAT option)
FNAME subc~mmand 29
PORMAT option 122
FORMAT statement, self-prompting 44
FORTGI command

defined 30
format of 102
used in sample terminal session 22

FORTH! command
defined 30
format of 120

FORTRAN compile-time debug facility
(see FORTRAN debug)

FORTRAN debug
DEBUG statement

description of 141
INIT option 142
SUBCHK option 142
SUI3TRACE option 141
TRACE option 141

description of 141
DISPLAY statement 142
messages 143

FORTRAN file type 32
FORTRAN Interactive Debug

for Code and Go 114
for G1 105

FORTRAN IV (G1) compiler (see G1 compiler)
FORTRAN IV (H Extended) compiler

(see H Extended compil~r)
FORTRAN libraries

contents of 82
description of 81
GLOBAL command for 82

with INCLUDE command 81
with LOAD command 81
Mod I Ii br ary

con tents of 82
introduction to 13
TSOLIB text library for 81

/'Iod II library
CMSLIB text library for 81
con ten ts of 82
i nt roduction to 13

PROFILE EXEC procedure for 81
restriction on use of library names 81

FORTRAN IV Library (Mod I)
(see Mod I library)

FORTRAN IV Library (Mod II)
(see Mod II library)

free-form input
for Code and Go 32,74
identifying 32
for SIFT utility 161

free-form source code 113
FREEFORT filetype 32
FREE option 113
FS records

defining 50
description of 184

!Txxpyyyddname 47

G1 compiler
description of 102
FO RTGI command

BCD option 102
DECK option 103
DISK option 103
EBCDIC option 103
filename for 102
files for compilation 102
format of 102
ID option 103
identifying 102
LINBCNT option 103
LIST option 103
LOAD option 104
MAP option 104
MUtE option 104
NODECK opt.ion 103
NOlO option 103
NOL 1ST option 104
NOLOAD option 104
NOMAP option 104
NOPRINT option 103
NOTEST opti on 105
NOTERM option 104
NOSOURCE option 104
PRINT option 103
SOURCE option 104
TERM option 104
TEST option 105

introduction to 12
LISTING file 37
language restrictions 111
output

description of 10S
LISTI NG file

description of 106
error messages 107
informative messages 107
optional output 108

pseudo-assembler listing 108
source statements 108
storage map 108
terminal messages 101

sum ma ry 0 f 1 06
TEXT file 38

descript ion of 111
execution under CMS 111
execution under OS 111
punched card deck for 111

GENERIC statement 77
GET FILE subcommand 29
GLOBAL command

defined 30
for FORTRAN libraries 81
for Code and Go

under GO option 137
under NOGO option 138

for G1 136
for H Extended 139
use1 in sample terminal session 19

GO option 113
GOFORT command 30,112
GOSTMT option 122

H Extended compiler
*PROCESS statement 125
changing compiler options 125
DEFINE STORAGE command for 119
description of 119
FORTHX command

ALC option 120
ANSF option 120,121
AUTODBL option 121
BCD option 121
DECK option 121
DISK option 121
DU[1P option 124
EBCDIC option 121
filename for 120
files for compilation 120
FLAG option 122
forma t of 120
FORMAT option 122
GOSTMT option 122
identifying 120
LINECOUNT option 122
LIST option 123
MAP option 121
NAME option 121
NOA LC opt ion 120
NOANSF option 121
NODECK option 121
NODUMP option 122
NOFORMAT option 122
NOGOSTMT option 122
NOLIST option 123
NOMAP option 123
OBJECT option 123
NOOBJECT option 123
NOOPTIMIZE option 121
NOPRINT option 121
ROSOURCE option 124
NOTERM option 124
NOXREF option 124
OPTIMIZE option 123
PHI NT option 121

Index 203

SIZE option 124
SOORCE option 124
TERM option 124
XREF option 124

in trod uc tion to 13
LISTING file 37
language restrictions 134
output

description of 125
LISTING file

description of 126
cross-reference listing 130
edited source program 129
error messages 127
informative messages 127
optional output 127
pseudo-assembler listing 130
source module map 127
source statements 127

summary of 126
TEXT file 38,134

HT command 30
R X command 30

10 option 103
identifying execution-time files 42
INt 135
INCLUDE command

defined 30
with FORTRAN libraries 81

informative messages
from Code and Go 115
ft;om G1 107
from H Extended 127

INIT option 142
INPUT subcommand 20,29
input/out pu t

direct access 64
sequential disk

disk 53
printed 63
punched card 57,62
tape 55
terminal 56

unformatted 73
interactive debug

(see FORTRAN Interactive Debug)
internal statement numbers

for G1 103
for H Extended 122

internal tabs 20
introduct ion

to CMS 11
to CMS commands 11
to Code and Go compiler 12
to CP commands 11
to execution-time files 42
to G1 compiler 12
to H Extended compiler 13
to Mod I library 13
to Mod II library 13
to sample terminal session 17
to VM/370 11

IPL command 19,30
ISMs (see internal statement numbers)
italics 16

204

language considerations
for Code and Go only

free-form input 74
for Code and Go and G1 only

array notation 14
for Code and Go, G1, and R Extended

arithmetic IF statements 68
BACKSPACE statements 69
FIND statements 69
list-directed input/output 69
literal data initialization 69
logical IP statements 71,72
READ statements 12
RETURN statements 13
STOP n statements 73
unformatted input/output 13

for R Extended only
array notation 75,76
EQUIVALENCE statements 76
EXTERNAL statements 11
GENERIC statements 77
name handling 18
OPTIMIZE(1) and (2) options

with assigned GOTO statements 80
with COMMON blocks 80
with COMMON statements 19
description of 78
with subprograms 79

OPTIMIZE(2) option
description 80
with subprograms 80

LC option (see LI NECOUNT opt ion)
library

availability 15
defaults 15
features

of Mod I anci Mod II
extended error handling 85-89
list-directed input/output 83

of Mod II only
automatic function selection 90
automatic precision increase
facility 90,100

extended precision 101
EXTERNAL statements 101

line-delete character 14
line-end character 15
LIN ECNT opt ion

for Code and Go 114
for G1 103

LINECOUNT option 122
lines per listing page

for Code and Go 114
for G1 103
for H Extended 122

listed-directed input/output 69,83
list items 16
LIST option

for G1 103
for H Extended 122

LISTFILE command 20,30
LISTING file

description of 36-41
filename 37
from Code and Go 113,115
froll G1 103,106
from H Extended 113,126
obtaininq a copy of 31

retaining copies of 37
when produced 37

literal data 21,69
L~lSG option 114
LOAD command

defined 30
with FORTRAN libraries 81
used in sample terminal session

LOAD option 104
loading programs

from Code and Go
under NOGO option 138

from Gl 136
from H Extended 139

loading TEXT files 136
LOCATE subcommand

defined 29
used in sample terminal session

logical IF statements 71,72
logical record length 50
LOGIN command 18,31
login procedure 14
LOGOUT command 23,31
LOWCASE option 48
lower case characters 16
LRECL option

description of 52
format of 50
use under CMS 52
use under OS 181

M control character 50
HAP option

for Gl 104
for H Extended 123

messages, FORTRAN debug 143
Mod I library

contents of 82
GLOBAL command for 81
introduction to 13
TSOLIB text library for 81

Mod II
CMSLIB text library for 81
contents of 82
GLOBAL command for 81
introduction to 13

multifiles
BACKSPACE statement for 66
description of 65
END= parameter 66
END FILE statement for 66
example of 66
FILEDEF command for 66
operation of 67
REWIND statement for 66

name handling 78
NAME option

for Gl 104
for H Extended 123
for TEXT files 38

naming programs
for Gl 104
for H Extended 123

22

22

NEXT subcommand 29
NOALC option 120
NOANSF option 121
NOCHANGE option 52
NODECK option

for Code and Go 113
for Gl 103
for H Extended 121

NODUMP option 122
NOFMT option (see NOFORMAT option)
NOFORMAT option 122
NOG:) option 113
NOGOSTMT option 122
NOlO option 103
NOLIST option

for G1 1C4
for H Extended 123

NOLO AD option 104
Nm~AP option

for Gl 104
for H Extended 123

NONE subparameter 94
NOOBJ option (see NOOBJECT option)
NOOBJECT option 123
NOOPT option (see NOOPTIMIZE option)
NOOPTIMIZE option 123
NOPRINr option

for Code and Go 113
for Gl 103
for H Extended 121

NOS option (see NOSOURCE option)
NOSOURCE option

for Code and Go 114
for G1 104
for H Extended 124

NOTERM option
for Gl 104
for h Extended 124

NO'rEST option
for Code and Go 118
for Gl 105

NOTYPE option 161,162
NOXREF option 124
nTRACK option 49
null line 19

o TRTCH value 49
OBJ option (see OBJECT option)
OBJECT option 123
OC TRTCH value 49
ONLINE response 18
OPT option (see OPTIMIZE option
OPTIMIZE option

with COMMON blocks 80
with COMMON statements 79
format of 123
with GO TO statements 80
with subprograms 79,80

option table
defaults 89
entry formats 88
preface 88

optional output
fI~m Code and Go 116
f 1.. ()(11 Gl 108
fr0ill H Extended 127

Index 205

os file compatibility 181
OT TRTCH value 49
OUT# 135
output

from Code and Go 114
from G1 105
from H Extended 125

P classification 128
password 14
PERM option 52
predefined files

characteristics 43
description 43
general 42
punched card output
terminal input file
terminal output files

prerequisite information
primary disk 15
PRINT corr@and 31,37

45
44

45
14

print control characters 50
PRINT option

for code and Go 113
for Gl 103
for H Extended 121
LISTING file 37

printed output
FILEDEF command for 63
operation of 63

PRINTER option 48
PROFILE EXEC procedure

for Code and Go
under GO option 137
under NOGO option 138

commands in 19
for Gl 131
for H Extended 139
for FORTRAN libraries 81
used in sample terminal session

promotion 91
pseudo-assembler listing

for G1 103,108
for H Extended 123,130
for TEXT file 38

PUNCH command 31
PUNCH option 48
punched card deck

for Code and Go 118
for Gl 111
for H Extended 134

punched card input
multiple decks

FILEDEF command for 60
operation of 61

one deck
FILEDEF command for 57
operation of 58

punched card output
FILEDEF command for 62
operation of 62
spooled files for 45

QUERY command
QUIT subcommand

206

31
29

19

Ri (see ready message)
READ card S9
READ statement 72
READCARD command 31,61
READER option 48
ready message 20
RECFM option

description of 52
format of 50
relation to BLOCK option 51
relation to LR~CL option 51
for unformatted input/out~ut
use under CMS 52
use under os 181

record format 50
RENAME command

defined 31
for LISTING file 37
with source files 34

REPLACE sUDcommand 30
restrictions

for Code and Go 118
for G1 111
for H Extended 134
on library names 81

return code 22
RETURN key 21
RETURN statement 73
RE~IND statement 66
RLD card format 40
RT command 31
RUN command 31
running TEXT files 136

S classification 128
S option (see SOURCE option)
sample terminal session

attention interrupt 19
CHANGE subcommand 21,20
CMS editor 20
CMS files 19
CMS return code 22
compiler error message 22
compiler output files

LISTING 22
TEXT 22

DELETE subcommand 22
description of 17
EDIT command

correcting errors 22
creating files 20

EDIT mode 20
FILE subcommand 22
filetype, FORTRAN 20
FIND subcommand 21
FORTGI command 22
FORTRAN source statements

continuation lines 21
maximum line length 21

GLOBAL command 19
illustration 17-24
INPUT subcommand 20,21
introduction 17
IPL CMS command 19
LISTFILE command 20
LOM) command 22

52

literal data 21
LOCATE subcommand 22
LOGIN command 18
LOGOUT command 23
null line 19
preliminary procedures 17
PROFIL£ EXEC procedure

cornmands in 19
creating 19
description of 19

ready message (R;) 20
RETURN key 21
SPACE bar 21
START command 22
TAB key 20,21
TOP subcommand 21
TYPE command 22
TYPE subcommand 21
UP subcommand 22
VERIFY command 21
VM/370 ONLINE response 18

self-prompting, at terminal 44
sequential files

defining 42
disk input/output 53
printed output 63
punched card input 57
punched card output 62
tape input/output 55
terminal input/output S6

SET command 31
SIFT utility

CONVERT command 161,162
description of 161
fixed-form output 161
free-form input 161
invoking 161,162

signing-on 17
SIZE option 124
S~SG option 114
SORT command 31
source files

on cards 35
compiling 34
creating 33
description of 32-35
existing 34
file characteristics 32
file identifier 32
filename 32
filemode 32
filetype 32
TAB positions 33
on tape 35
using FILE command 33

source module map
* classification 128
A classification 128
ASF classification 128
C classification 128
D classification 128
E classification 128
F classification 128
from H Extended 127
? classification 128
S classification 128
XF classification 128
XR classification 128

SOURCE option
for Code ana Go 114
for Gl 104
H Extended 124

source program listing
for Code and Go 114
for G1 104
for H Extended 124

SPA.CE bar 21
spanned records, filemode 49
spooled file 45
START command 22,31
STATE command 31
STOP n statement 73
storage for H ~xtended 124
storage map

for G1 104
for H Extended 123

structured source program 122
SUBCHK option 142
SUBROUTINE statement 38
SUBTRACE option 141
syntax conventions

{ } (braces) 16
[] (brackets) 16

(elipsis) 16
I (" or" symbol) 16
description of 16
italics 16
list items 16
lOwer-case characters 16
upper-case characters 16

TAB key 20,21
TAB positions 33
tape input/output

FIL£DEF command for 55
operation of 56
user-defined files 55

tape source files 35
TAPn option 49
TERM option

for Gl 104
for H Extended 124

terminal input/output
FILEDEF command for 56
operation of 56
self-prompting for 44
user$efined files 56

TERMINAL command 31
TERMINAL option 48
terminals

character-delete character 14
line-end character 15
prerequisite information 14

Tf:..ST option
for Code and Go 114
for G1 105

TESTFORT command 31
TEXT file

from.Code and Go 113,116
contents 40
END card format 41
entry points 38
ESD card format 40
executing under OS 38

Index 207

filename for 38
from Gl compiler 104,111
general description 35
from H Extended compiler 123,134
producing a copy of 38
pseudo-assembler listing for 38
retaining 39
RLD card format 40
TXT card format 40

time-sharing system 11
TOP subcommand 21,30
TRACE option 141
tracing source compilation

output 141
subprograms 141
subscripts 142
variables 142

TRACK option 49
TRTCH option 49
TSOLIB text library 81
TXT card format 40
TYPE command 31,36
TYPE subcommand 21,30

'u records
defining 50
description of 183

undefined-length records 50
unformatted input/output 73
UP subcommand 22,30
UPCASE option 48
upper-case characters 16
user-defined files

208

direct access
DEFINE FILE statement for 65
file identifier for 64
FILEDEF command for 64
operation of 65
restriction on FIND statement 65

description of 45,46
FILEDEF command for 47
general 42
with OS

BLKSIZE for 181
description of 181
device capacities 182
F records 183,188
FB records 184
FBS records 184
FS records 184
LRECL for 181
U records 183
V records 184
VB records 185
VBS records 187
VS records 186

sequential
disk input/output

file identifier for 53
FILEDEF command for 53
operation of 54

printed output 63

punched card input
:READ card for 59
FILEDEF command for 57,60
identifier for 59
operation of 58,61
READCARD, command for 61,62

punched card output 62
tape input/output 55,56
terminal input/out~ut 56

user-identifier code 14

V records
defining 50
description of 184

variable-length, blocked records
(see VB records)

variable-length, blocked, spanned records
(see VBS records)

variable-length records (see V records)
variable-length, spanned records (aee VS
records)

VB records
defining 50
description of 185

VBS records
defining 50
description of 187

VERIFY subcommand 21,30
virtual computer 11
Virtual Machine Facility/370 (see v~/370)
VM/370

commands 28-31
introduction to 11
login procedure 14
password 14
terminals for

line-delete character 14
prerequisite information 14

user-identification code 14
VS records

defining 50
description of 186

WAIT# 135

XF classification 128
XR classification 128
XREF option 124

o (zero) control character 45
7TRACK option 49
9TRACK option 49
200 DEN value 50
556 DEN value 50
600 DEN value 50
1600 DEN value 50

IBM VM/370 (CMS) Terminal User'~ Guide

for FORTRAN IV Program Products
SC 28 -68 91-1

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, job title, and business
address (including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

Reader's
Comment
Form

SC28-6891-1

®

Fold and Staple

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

I BM Corporation
System Development Division
LDF Publishing-Department J04
1501 California Avenue
Palo Alto, California 94304

Fold and Staple

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017

(International)

IIII First Class Permit

Number 439

Palo Alto, California
(")

~
en
--I
C
G)

" o
::0
--I
:c » z
<:
"'tI

""' o co
""' Q)

3
"'tI

""' o c.
c:
(")
r-t
VI

CJ)
(")
I\)
00 m
00
(0
.:..

