
Program Product

c

Licensed Material- Property of IBM
L Y20-8032-3
File No. S370-22

VS APL Program Logic

Program Number 5748-AP1

Release 4

---- ------ -----~--- -. ---- - ------------ _.-

Licensed Material--Property of IBM

This'publication was produced using the
IBM Document Composition Facility

(program number 5748-XX9)
and the master was printed on the

IBM 3800 Printing Subsystem.

Fourth Edition (AugUst 1981)

This is a major revision of, and makes obsolete, LY20-8032-2.

This edition applies to Release 4 of VS APL, Program Product
5748-AP1, and to any subsequent releases until otherwise
indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of
Amendments" following the preface. Because the technical changes
in this edition are extensive and difficult to localize, they
are not marked by vertical bars in the left margin.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, Ge20-0001, for the editions that are applicable
and current.

It is possible that this material may contain reference to, or.
information about, IBM products (machines and programs),
programming, or services that are not announced in your country.
Such references or information must not be construed to mean
that IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality.

A form for reader's comMents is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

e COPYI'lght International Business Machines Corporation 1976,
1981

J

J

J

l

l

PREFACE

This book contains information for programming support.
representatives and system programmers who maintain VS APl. When
used with VS APL source-program listings, it enables them to
understand the internal operation of VS APl and to maintain the
system.

The book is divided into six sections:

• "Section 1. Introduction," is an overview of the VS APL
program product.

• "Section 2. Method of Operation," contains Hierarchy Input
Process Output (HIPO) diagrams that describe the functions
performed.

• "Section 3. Program Organization," lists the entry points to
routines in alphabetic order. It contains, for each entry
point, a description of the function of its routine, the
name of the module in which it is contained, the names of
entry points from which it is called, and the names of entry
points that it calls.

• "Section 4. Directory," lists the entry points in alphabetic
order with the names of their containing modules and the.
number of the HIPO diagram referring to that module, if any.
It also contains the same information in alphabetic order by
module name.

• "Section 5. Data Areas," describes the VS APl workspace and
the functions performed by the VS APl interpreter, and shows
the formats of control blocks.

• "Section 6. Diagnostic Aids." describes serviceability aids
and other information helpful in reading the program
listings, and in detecting, tracing, and documenting
problems in VS APl.

PREREQUISITE KNOWLEDGE

The prerequisite knowledge for using this publication isa basic
understanding of VS APl concepts and other related information
found in the VS APl General Information, VS APl for CICS/VS:
Termin.!!l User's Guide, VS APl for cns: Terminal User's Guide, II
APl for T50: Terminal User's Guide, and VS APl for VSPC:
Terminal User's Guide.

PREREQUISITE PUBLICATIONS

• VS APl

• VS APl·

• VS APL

• VS APL

• VS APl

• VS T~IQ

Qen!lral Infotmatign, GH20-9064

for CICS/VS: TerminS!l US!lI:':a Guid!l, SH20-9167

for CMS: Terminal User's Guid!l, SH20-9067

for T~!:P TgrmicS!l Usgr's Guide, SH20-9180

f91: VSeC: Terminal Usgr's Guid!l, SH20-9066

Guid!l S!nd Ref!lr!lnj;;e, SH20-9107

licensed Material--Property of IBM
.. Preface· i'i i

RELATED PUBLICATIONS

• VM/370: Planning and System Generation Guide, GC20-180!

• OS/VS2 System Programming library: System Generation
Reference, GC26-3792

• Customer Information Control System/Virtual storage
(CICS/VS) Version I. Release 5 General Information,
GC33-0066

• ~stomer Information Control System/Virtual Storage
(CICS/VS) Version I. Release 5 Application Programmer's
Reference Manual, GC33-0077

• Customer Information Control System/Vidual Storage
(CICS/VS) Version 1. Release 5 Problem Determjnation Guide,
SC33-0089

• VS APl for CICS/VS: Installation Reference Material,
SH20-9181

• VS APl for CICS/VS: Writing Auxiliary Processors, SH20-9168

• VS APl for CMS: Installation Reference Material, SH20-9182

• IBM Vjrtual Machine/System Product logic and Problem
,Determination Guide

Vol.l: Control Program (CP), lY20-0892

Vol.2: Conversational Monitor System (eMS), lY20-0893

• VS APl for CMS and TSO: Writing Auxiliary Processors,
SH20-9068

• VS APl for TSO:lnstallation Reference Material, SH20-9183

•
•

OS/VS2 TSO Terminal User's Guide, GC28-0645

VS Personal Computing (VSPC) for OS/VS and DOS/VS: General
Information, GH20-9070

• OS/VSI and OS/VS2 MVS VS Personal Computing (VSPC) logic.
lY20-8072

• DOS/VS VS Personal Computing (VSPC) logic, lY20-8039

• VS APl for VSPC: Installation Reference Material, SH20-~184

• VS Personal Computing (VSPC): Writing Processors, SH20-9074

• IBM Virtual Machine Facility/370: CP Command Reference for
General Users, Ge20-1820

• A Guide to Writing a Terminal Monitor and Program Command
Processor, GC28-0648 '

• OS/VS? System Programming library: Supervisor, GC28-0628

• IBM System/370 Principles of Operation, GA22-7000

licensed Material--Property of IBM
i v VS APl Program logi c

J

L

L

SUMMARY OF AMENDMENTS

RELEASE 4, AUGUST 1981

VS APl SESSION MANAGER

New programming Feature

The VS APL Session Manager com~onent of the ~rogram ~roduct is
now available under CICS/VS.

AUXILIARY PROCESSORS

New programmihg Feature

New auxiliary ~rocessors have been added to VS APL under CICS/VS
and VSPC as follows:

AP 120: VS APL Session Manager Command, for CICS/VS
AP 126: GDDM, for CICS/VS and VSPC

VSA~ Auxiliary Processor Enhancements

MAINTENANCE

The functions of AP 123 are now available under CICS/VS and
VSPC.

As reflected in the Table of Contents, the Data Areas section
has been restructured for ease of use as follows: Interpreter
Data Areas, Executor Data Areas and Control Block Formats. Under
Control Block F6rmats, data areas (and the system components
which employ them) are ordered alphabetically.

RELEASE 4. MARCH 1981

VS APL UNDER TSO

New programming Feature

VS APL under TSO (Time Sharing Option) is now included in the
program product. Information about VS APL under TSO has been
added to this book.

VS APL SESSION MANAGER

New programming Feature

The VS APL session manager is a new component of the program
product, and is available for users under CMS and TSO. It
provides a set of commands by which the user may control the VS
APL session, produces a record of the session (called a "session
log"), and enables the user to scroll through the session log. A
Method of Operation diagram has been added for it.

Licensed Mated al-Pro'Perty of. IBM
Summary of Amendments v

AUXILIARY PROr.~SSORS

New programming Feature

Hew auxiliary processors have been added to APl under CMS and
TSO. The 1 i sts of auxi 1 i ary processors and the Metho'd of
Operation diagrams have been amended to reflect these additions.
The new processors are:

AP 120: VS APl Session Manager Command, for CMS and TSO
AP 121: APl Data File, for CMS
AP 126: GDDM, for CMS and TSO

VSAM Auxiliary Processor Enhancements

AP 123 will now support the following functions under CMS and
TSO:

Record Search by generic key
Record search by key greater than or equal to
Access to relative record data sets
Direct access to entry-sequenced data sets
Direct query for record identification
Alternate indexing with duplicate key support
Reusable files

Documentation Change

WORKS PACES

The names of several auxiliary processors have been changed to
reflect more clearly their functions as well as to provide
consistency among subsystems. The following table gives the old
and new names of each renamed auxiliary processor, by subsystem.

Subsystem Old Name New Nar.:e

CICS/VS APl Format APl Data File
Command CICS/VS Command
Main Storage Access Storage Display

CMS CMS stack Input Alternate Input
eMS FIlEDEF I/O QSAM
CMS VSAM VSAM

VSPC APl Format APl Data File
EBCDIC Format: EBCDIC Data File
Workspace Access Storage Display

References to "distributed workspaces" have been changed to
"workspaces," to avoid any confusion with the concept of
distributed systems.

Specification Change

Several new workspaces have been added to VS APL, and some
previously provided workspaces have been removed. The list of
workspaces provided has been revised accordingly.

li censed Materi aI-Property of IBM
vi VS APL Program log; c

J

J

RELEASE 3. AUGUST 1978

VS APL SUPPORT FOR CICS

Under Release 3 of VS APl, support is now provided for the
CICS/DOS/VS and CICS/OS/VS (VSl and MVS) environments (in
addition to the CMS and VSPC environments) as follows:·

• CICS executor provides environment-dependent services for
interpreter/translator.

• CICS shared storage manager (an integral component of CICS)
m~nages communication between interpreter/translator and
auxiliary proces~ors~

• Extension of current auxiliary processor (command auxiliary
processor, VSAM/ISAM file auxiliary processor, APL format
auxiliary processor, and the full screen manager auxiliary
processor) support to CICS.

• Addition of four new auxiliary processors [main storage
access auxiliary processor, DL/I access auxiliary processor,
transient data auxiliary processor, and the alternate input
auxiliary processor) for the CICS environment.

• Addition of a new CICS APL library service program
facilitates conversion of libraries and functions.

• Addition of three new distributed workspaces CDL/I support
workspace, file support works~ace, and an administrative
workspace) for the CICS environment.

RELEASE 2, SEPTEMBER 1976

VSAM SUPPORT UNDER CMS

Under Release 2 of VS APL, support is now provided for VSAM when
using eMS auxiliary processors.

DOS/VS SUPPORT FOR VSPC

VS APL ASSIST

MAINTENANCE

Hew modules have been added to allow VSPC to run under DOS/VS.
These new modules are similar in function to those for OS/VS
VSPC. Modules in OS/VS are prefixed by the letters APlO; the new
DOS/VS modules are prefixed by the letters APlO. Thus, unless
explicitly indicated oth~rwise, modules indicated in this
pUblication as beginning with APLO should be interpreted as if
they began with APlO when working with VSPC under DOS/VS.

The "Diagnostic Aids" section explains how to handle possible
problems with the VS APL Assist.

A number of technical errors have been corrected in this
edition. The "Program Organization" and the "Data Areas"
sections have been updated considerably.

licensed Material--Property of IBM
Summary of Amendments vii

J

J

J

CONTENTS

section 1. Introduction
VS APL Processor Overview

VS APL Component Functions
VS APL Envi ronment•

Purpose and Function of the VS APL Processor
Translator
Interpreter ...••.
Executor
Cross-System Executor Services
VS APL Sessi on Manager
CMS/TSO Shared Storage Manager
CICS/VS Shared Storage Manager
Auxiliary Processors
APL Service Program Library
Workspaces•.
Workspace Libraries

Physical Characteristics of the VS APL Processor
Object Modules
Load Modules
Flow of Control

Operational Considerations
Data Sqt Information
Installat i on
Control Information

System Configuration
Processors
Access tlethods
Termi nals ...
Supervisor Service Calls

Error HiJndl i ng
Customer Information Control System (CICS/VS)
Conv~rsation~l Monitor System (CMS)
Time Sh.:lring Option (TSO)
VS Personal Computin~ (VSPC)

Component and Module Naming Conventions

section 2. Hathod of O~~ration ••••
Diagram 0.0: VS APL Processor Overview
Diagram 1.1: Communication with VSPC
Diagram 1.1.1: Shared Variable Processing (VSPC)
Diagram 1.2: Communication with CMS
Diagram 1.2.1: Shared Storag~ Manager (CMS and TSO)
Diagram 1.2.2: Auxiliary Processors (CMS)
Diagram 1.3: Communication with CICS/VS
Diagram 1.3.1: Shared Storage Manager (CICS/VS)
Diagram 1.3.2: Auxiliary Processors (CICS/VS)
Diagram 1.4: Communication with TSO
Diagram 1.4.1: Auxiliary Processors (TSO) •...
Diagram 2.0: Input Recognition, Translation, and Routing
Diagram 3.0: Function Definition and Edit
Diagram 3.1: Function Editing
Diagram 3.2: Function Definition • ••..
Diagram 4.0: Statement Execution ••...
Diagram 4.1: Statement Scan, Syntax Analysis, and Execution
Diagram 4.1~1: Function Call and Function Exit Processing
Diagram 4.1.2: Branch Processing
Diagram 4.1.3: Primitive Function Processing
Diagram 4.1.4: Miscellaneous Processing
Diagram 4.1.5: Shared Object Processing
Diagram 4.2: Return Code Processing
Diagram 5.0: System Command Executlon
Oi agram 6.0: Workspace Conversi on . . • •••
Diagram 7.0: CICS/VS Library Service Program ••.
Diagram 8.2: VS APL Session Manager Executor Scheduler
Diagram 8.2.1: VS APL Session Manager Executor Processor
Diagram 8.3.1: Common Auxiliary Processor Services Under

C/,,'S and TSO

1 ,,"
1 ..
1
2
3
3
3
4
4
5
5
6
6
8
9
9

10
10
10
11
13
13
13
13
13
13
14
14
14
15
15
15
15
16
16

18
22
24
27
32
36
39
43
46
48
50
53
57
59
61
64
67
69
74
77
80
84
87
91
94
96

101
104
106

108

Licensed Material--Property of IBM
Contents ix

Diagram 8.3.2: Common Auxiliary Processor Services Under
CICS/VS ..•..••.•................•

Diagram 8.4.1: VS APl Session Manager Auxiliary Processor
for CICS/VS, CMS, ~nd TSO••.......

Diagram 8.4.2: GDDM Auxiliary Processor for CICS/VS, CMS,
and TSO

Diagram 8.4.3: VS APl Data File Auxiliary Processor for.
Cr-IS/TSO

section 3. Progr~m organization

111

113

115

117

119

section 4. Directory ••.•••••••••••••• 207
Entry Points and Module Names Sorted by Entry Points 207
Entry Points and Module Names Sorted by Module Names 213

section 5. Data Areas
Interpreter Data Areas

VS APl Workspace
Buffer ..•••••
Executor Transient Area
Translator Transient Area

Program Check On-Vectors
Saved Workspaces•
Workspace Relocation

Interpreter Transient Area
Current Operator
Argument Blocks
.Resul t Block
Exarch/Appendage Communication ..
Interpreter/Translator Communication

Address Table
Internal and External Names .
Permanent and Temporary Objects
Immediate and Remote Objects
Syntax Classes
Primary Descriptor
Address Table Sections
Address Table Management

Operation Stack .•...•...
Source of Operation Stack Entries
Use of the Operation Stack
Items on the Operation Stack
Operation Stack Management

Free Space•
Format of Blocks in Free Space
Free Space Management

R13 Stack
VSPC Workspace •....

Executor Data Areas
CMS Executor Global Table
TSO Executor Global Table .
VS APl Executor Stack for CICS
CICS/VS Executor Data Area Interrelationships
VS APl Common Executor Stack

Control Block Formats
APC (XSYS, AP)
APFT (VSPC)
APM (CICS, XSYS)
ATW (CICS, AP)
BND (XSYS, AP)
CIT (CICS, SERV) .
CMSGl (CMS, XSYS, AP)
DESC (CICS, XSYS, AP)
DIB (CICS, XSYS)
DIR (CleS, SERV) .•
DMP (CICS, XSYS, AP)
DRB erso, XSYS)
ECA (VSPC)•
FAB (CICS, XSYS, AP)
FB (CONV, HTRP)
FEB (CICS, SERV)
FFlD (VSPC)
FHED (CONV, NTRP)

Licensed Material---Property of IBM
x VS APL Program Log; c

219
219
219
220
220
220
220
221
221
221
222
222
222
222
223
223
223
223
224
225
226
227
228
229
229
230
231
239
240
240
247
248
248
249
249
249
249
251
253
254
255
257
262
263
265
267
269
286
287
289
291
293
295
298
301
302
304
309

J

J

FSP (CICS,
GBL (CICS,
GOC (VSPC,
GDM (XSYS,
LSC (CICS,
MAl (XSYS,
OPS (CICS,
PCV (ALL>

SERV)
XSYS,
XSYS,
AP)
SERV)
AP)
AP)

. .
AP)
AP)

PRO (XSYS, AP) ..•.
PRM (CICS, XSYS, AP)
PRO (CICS, SERV)
PTH (ALL)
PTK (CICS, XSYS, AP)
PTX (ALL) ..•..
SCV (ALL)
SGN (CICS, XSYS, AP)
SHVAB (XSYS)
STK (CICS, XSYS, AP)
TBL (VSPC, AP)
TCD (CICS, AP)
TRD (XSYS, AP)
TRQ (CICS, XSYS) .
TSOGl (TSO, XSYS, AP)
VCT (ALL>
VRD (XSYS, AP)
WSM (ALL>
WSX (ALL>

section 6 .. Diagnostic Aids
Component Linkage Conventions
1. VS APL TntprDr~t~r Llnk~~e

Regi ster Usage ...•.•

. ~

...

Save Areas •....•••
Calling Macros .•.....••

2. APL library Service Program Linkage
Register Usage•.•..
Save Areas ...•..........

3. Nonstandard linkage to and within Exarch
Register Usage
Save Areas•.
Call i ng Macros

4. CMS/TSO Executor Linkage
Reg; ster Usage
Save Areas ...•....
Calling Macros (CMS and TSO)

5. VSPC Executor Linkage
Regi ster Usage
Save Areas
Calling Macros (VSPC)

6. CICS/VS Executor Linkage
Reg; ster Usage
Save Areas ..•. • • • •
Calling Macros•...

7. Service Request Calls (CICS/VS, CMS, TSO, or VSPC)
Regi ster Usage _. . • . • • • . •
Save Areas •
Calling Macros••
Values, Parameters, and Return Codes for Service

Requests
8. Conversion Program Linkage

Save Areas •..•....•
Calling Macros .•.....

9. eMS/TSO Shared Storage Manager
Save Areas ...•.....

10. CICS/VS Shared Storage Manager
Register Usage
Save Areas•.

11. Common Executor Linkage
Regi ster Usage
Save Areas •
Calling Macros

Diagnosing Errors

310
311
314
317
319
320
322
323
324
325
329
332
334
342
345
348
349
351
352
353
355
356
358
387
389
390
394

395
595
397
397
397
397
401
401
401
401
401
401
402
403
403
404
404
405
405
406
406
407
407
407
408
416
416
416
417

417
428
428
428
431
431
432
432
432
432
433
433
433

437

licensed Material-Property of IBM
Contents xi

Error Message to Module Cross-Reference Information
UGH Codes•.......•..•..•..••
Abnormal Termination and Dumps Under Common Services or APS
Program Checks and Dumps under CICS/VS •..••...•

Dump s•...••.••..•.•••.
APLU Dumps with CICS/VS Abnormal Termination Codes
APlU Dumps with a HXIT Dump Code
APlU Dumps wi th an EXEC Dump Code
APLU Dumps with an NTRP Dump Code
APLU Dumps wi th a REGS Dump Code
APLU Dumps wi th a Knnn Dump Code
APlU Dumps with an nnnS Dump Code
Other Dump Codes .•....•.

CICS/VS Trace Information •.•.
Program Checks and Dumps under eMS ••..•

During Initialization of the VS APL Processor
Contents of the Dump•.......
Additional Information for Program Check

After Initialization •....•..•..•.
System Error in the Interpreter or Translator
Program Check in the Executor
Program Interrupt in the Shared Storage Manager or
Auxiliary Processor•....

Abnormal Termination in the Executor
Program Check Loop in the VS APL Processor

How to Produce a Dump
Full System Dump .•......•..
Snapshot Workspace Dump
Sample Prompting Sequence ..•...

How to Interpret the Terminal Mini-Dump
How to Determine the Type of VS APl System Error ..

How to Interpret the Snapshot Workspace Dump Produced at
the Pri nter•..•..........

Where to Find Information in the Snapshot Workspace
Dump and the Mini-Dump ..•.•......••

Program Checks and Dumps under TSO ••.....•..•
Abnormal Termination/System Error/Program Check under VSPC
VS APL Microcode Assist•........
DeBUG Operand of the APL Command•.
Information Needed for Problem Determination and Diagnosis

Index .

licensed Material--Property of IBM
xi i VS APl Program logi c

437
450
454
455
455
457
457
457
457
457
458
458
458
459
469
469
469
470
470
470
470

471
471
471
471
472
472
473
474
474

475

475
475
475
476
476
476

478

FIGURES

L

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure It.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Fi gure 2t.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Fi gure 3t.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Fi gure 4t.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.

Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.·
Figure 53.
Figure 54.
Figure 55.
Figure 56.

Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.

VS APL Processor Communication Overview . ~
Object Module Component Name Identification
Table of Components
Graphic Symbols Used in Method of Operation
Diagrams
VS APL Workspace . ..
Format of Immediate Object
Syntax Classes
Primary Descriptors
Combination of Syntax Classes and Primary
Descriptor Bits •....
A Chain of Available Names
The Op~ration Stack ... •.
Tokens on th~ Operation Stack
General Literal Descriptor Format
Scalar literal Descriptor Format
Short Literal Descriptor Format
Operator Bit Mean i ngs ...•.
Operator Hexadecimal Representations
Separator Hexadecimal Representations
Fast Branch Special Operator Format .
Secondary Decode Special Operator Format
Function Control Block (FCB) Format
Operation Stack Levels
Suspended Function Stop Word Format
ON-Word Bit r1eanings
Active Block Descriptor Conventions
Active Block Format of Variables
A Synonym Cha in. . ..
Funct i on H~ader
Format Clnd Content of a Stack Entry ..•.
CICS/VS Executor Data Area Interrelationships
Component Linkage Conventions
VS APL Processor R~gister Usage
APLCAlL and APLEXIT: Generated Code
APLENTRY: G~nerated Code •...•
APL Library Service Program Register Usage
NonstClndard Exarch Register Usage
APLXCAL L: Generated Code .,.
APLXtHRY: Generated Code .. ,
Executor Linkage Register Usage (CMS or TSO)
APLCENTR: Generated Code
APLCCAL L: Generllted Code . "
APLCEXIT: Generated Code ...
Executor linkage Register Usage (VSPC)
APLPEtHR: Generated Code. . .
APLPEXIT: Generated Code
Executor Register Usage (CICS/VS)
APLKSTAK and APLKPROC: Generated Code for
External Routi nes
APLKPOP: Generated Code
APLKPROC: Generated Code for Internal Routines
APLSVCC: Generated Code
Conversion Program Register Usage
ACENTRY: Generated Code
ACENTRY2: Generatnd Code •
ACCALL: Generated Code .. .
ACEXIT: Generated Code • . .•.. ..
Shared Storage Manager and Auxiliary Processor
Regi ster Usage..
Shared Storage Man~ger Register Usage
APlCALLS: GenQr~ted Code
APLXEND: Generated Code . . .
APLXPROC: Generated Code "
Message Identifiers and Sources
Mess~ge-to-Module Cross-Reference
Hexadec i ma 1 UGH Codes •••.

12
17
19

21
219
224
225
226

226
229
230
231
232
232
233
234
235
236
237
237
238
239
240
241
242
242
244
246
251
252
396
397
399
400
401
401
402
402
403
404
405
405
405
406
407
407

409
409
410
417
428
429
429
430
430

431
432
434
435
436
437
438
451

Licensed Material---Property of IBM
Fi gures xii i

Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.

Abends Intentionally Generated by VS APL
Common Dump Services Dumps and Issuing Modules
Codas from DFHDC or DFHPC
Format of CICS/VS Trace Table
VS APL Abend Codes
Sample Prompting Sequence .
VS APL Processor System Errors

Licensed Material--Property of ISM
xi v VS APL Program Log; c

454
455
458
459
470
473
474

J

SECTION 1. INTRODUCTION

The VS APl processor is an interactive program product that runs
under the following systems:

• Customer Information Control System (CICS/VS)

• Conversational Monitor System (CMS)

• Time Sharing Option (TSO)

• Virtual Storage Personal Computing System (VSPC)

VS APl analyzes. stores. and ex~cutes source statements written
in the VS APl language. In addition. it provides a facility for
converting various workspaces to VS APl format.

VS APL PROCESSOR OVERVIEU

The VS APl processor consists of the following components:

• The translator

• The interpreter: exarch and appendage routines

• Four ~xecutors--VS APl CICS/VS. VS APl CMS. VS APl TSO. and
VS APl VSPC

• The CMS/TSO shared storage manager

• The CICS/VS shared storage manager

• Auxiliary processors

• The APL Service Program Library

• Workspaces

• Workspace libraries

• Cross-system executor services

• VS APl session manager

VS APL component Functions

The translator analyzes VS APl source state~ents entered at the
terminal. and translat€s them into internal codes. either
building them into defined functions for later exe~ution or
passing them immediately to the interpreter for execution.

The interpreter, comprising exarch and appendage routines.
scans, analyzes, and executes tokenized statements. Exarch is
available either as microcode or as assembler language modules.
Appendage routines, available only as assembler language
modules. run in conjunction with exarch.

The executor handles initialization ofVS APl. and receives
control from, and returns control to CICS/VS. CMS. TSO, or VSPC.
It also issues supervisor service requests to CICS/VS, eMS, TSO,
or VSPC as required by the VS APL processor and handles
asynchronous events such as program checks, attention. and other
interrupts.

Licensed Material-Property of IBM
Section 1. Introduction '1

The shared storage manager builds control blocks. sets shared
memory. and issues system service requests in association with
the shared variable facility of VS APL.

The auxiliary processors provide functions outside of the APL
workspace ell.vironment by communication with the operating system
access methods.

The conversion programs convert APL/360. APL/eMS. and APL Shared
Variable (APLSV) worksp~ces to the VS APL format as required by
eICS/VS. CMS. TSO, or VSPC.

In addition to thes~ general conversion utilities, a
CICS/VS-only library service program uses conversion output to
import the converted workspaces from APL5V, APL/eMS, or APL/360
to VS APl format; a TSO internal APl file service program
manages the import and export of APL object files to and from
the APL user's T50 system; and a T50 converted workspace import
program processes output from APL converted programs, and
imports loadable workspaces for TSO.

Certain workspaces are provided with VS APl to aid the user in
migration from APl/360, to help him in learning VS APL. and to
do certain commonly-needed functions. They are tools to assist t
users in the use of VS APL. ~

The cross-system executor services represent a set of components
whi.ch provides equivalent services to the CMS. TSO. or CICS/VS
executor.

The VS APL session manager (optionally available to the APL
user) provides common session support, for use with terminals of
th~ IBM 3270 Information Display System under CMS. TSO. or
CICS/VS.

VS APL Environm~nt

UNDER CICS/VS: VS APl runs as a series of CICS/VS transactions.
The following is a list of transactions by transaction 10.

• APL Specifies the APL 'oJ ser sign-on transaction

• APlU Specifies the user session transacti on

• APLl Specifies the library access transaction

• APLT Specifies the non-GDDM terminal 110 transar:tion

• APLH Specifies the hardcopy processing transaction

• APlO Specifies the auxiliary processor 100 transaction

• APlX Specifies the GODM terminal 110 transaction

Note that although these default transaction IDs are used
throughout this book. an installation can define different
transaction IDs.

UNDER eMS: The VS APL translator. interpreter. executor. and
shared storage manager run as a eMS module.

UNDER ISO: The VS APl translator. interpreter. and executor run
as a TSO command processor.

UNDER VSPC: The VS APl translator. interpreter. and executor run
as a VSPC foreground processor.

Licensed Material--Property of IBM
2 VS APl Program Logi c

J

PURPOSE AND FUNCTION OF THE VS AP~ PROCESSOR

Translator

Interpreter

The translator receives VS APL source statements as input,
directs system commands to the proper routines, converts VS APL
source statements to internal codes (tokens), and builds VS APL
functions as required. The functions of the translator are to:

• Initialize the user's workspace

• Receive terminal input and determine its type and
destination within the processor

• Prepare VS APl statements for execution

• Isolate and execute system commands

• Perform sequencing and control functions for the processor

The translator is divided into the following modules:

• Initialize workspace: APLITIHI

• Input/output: APLITIHP

• System commands: APLITCMC, APLITCMD, APLITCME. APLITCMF,
APLITCMG, APLITCMI, APLITCML, APlITCMS, APlITCMT, APLITCPI,
APlITCPO.

• statement conv~rsion: APlITFUN, APlITIDS, APLITLXS,
APLITNCV, APLITPRL.

• Function definition: APlITFDC, APLITFDE, APLITFDH, APlITFDO,
APLITHDR.

•
•

Execution control: APLITERR, APLITEX.

Subroutines: APLITFCH, APLITSUB, APLITUSG.

• Message text and default workspace values: APlITMSG

• Mark end of load module: APLITIHI

• Copyright statement: APLCOIBM

The interpreter r~ceives tokenized VS APl statements as input.
Its functions are to:

• Rec~ive control from the translator; return control when
input is exhausted or when a translator service is required

• Scan, analyze, and execute tokenized statements

• Format terminal output; request executor output

• Communicate with the shared storage manager when a shared
variable is encountered

The interpreter is divided into the following modules:

• Exarch: APLIECMX, APLIEFCH, APlIEFHM, APLIEIDX, APlIEMHD,
APLIEPSI, APLIEREV, APLIERHO, APLIESCA, APlIESPA, APLIETAK,
APLIEXAR, APLIEXFR.

Licensed Material--Property of IBM
Section 1. Introduction ·3

Executor

• Appendage Routiries: APLIACHK. APLIACIR, APLIADEC. APLIADOM,
APLIAENC, APLIAFOR. APLIAGFM, APLIAGOU, APLIAGRD, APLIANAM,
APlIAPRD, APlIAQFH, APlIARED, APlIAROT, APLIASCH, APlIASHF,
APLIASHV, APLIASYV, APLIATAK, APLIATBC, APLIATRN, APlIATRS,
APLIATSP.

The executor is used for communication between the VS APL
processor and the CICS/VS, CMS, TSO, or VSPC system. Such
services include terminal input and output and access to
libraries. The individual executor module configurations differ
from one another, depending on the system under which the
processor is operating, but all four executors perform similar
functions. These are:

• Establish the VS APL processor environment

• Manage asynchronous events; for example, attention signal
from the terminal

•

The

•

Execute VS APL processor service requests, including
terminal I/O requests

executors are divided into the following modules:

. CICS/VS: APLKADEF, APLKADSP, APLKAGBL, APLKAHST, APlKASON,
APlKASTB, APlKDOPS, APLKEHCP, APLKE~iGR , APlKLIBR, APlKAMIX,
APlFXIIM, APlKIFIX, APlKISVI, APLKLIBA, APlKLIBB, APlKLIBC,
APLKLIBF, APLKLIBG, APlKLIBU, APLKLIBV. APLKLTAB, APlKMSCA,
APLKMSCB, APLKSSVP, APlKSSUB, APLKTCTL , APlKTRAH, APLKTREQ,
APlKTRQO, APLKTSRV, APLKVOPS

• CNS: APLSCERR, APLSCFXI, APlSCINI, APLSCLIB, APLSCOPY,
APlSCTIO, APLSCDAC, APlSCSSI, APLSCMSG, APLSCMSC, APlSCSHV,
APlSCSVI, APlSCTBL, APlSCTYP, APLSCDPY

• TSO: APlYUCMD, APLYUDOC, APLYUDPY, APlYUERR, APLYUFXI,
APLYUEXC, APLYUHSH, APLYUIIM, APLYUINI, APLYULIB, APlYULNE,
APlYUMSC, APlYUMSG, APLYUOPT, APLYUPFK, APLYURVC, APLYUSCN,
APlYUSHS, APLYUSHV, APLYUSSH, APLYUSVI, APLYUTIO, APLYUTRH,
APLYUTYP, APLYUUSR, APLYUTBL

• VSPC: APLPAPAB, APLPAPCD, APLPAPFS APLPAPGB, APLPAPGC,
APLPAPGD, APLPCOAP, APLPCOEX, APLPCTBL, APLPFXIM, APLPLIBS,
APLPMISC, APlPSERR, APlPSHVR, APLPTYIO

cross-system Executor services

These services comprise the following components:

• GDDM Interface Services (GDDX)--provides a set of services
for communication with the Graphic Data Display Manager
(GDDM) when it is used in the session. GDDX is made up of
the foll~wing modules: APLXGCOM (common), APlXGCHC (common),
APLXGCAT (common), APLXGS (CMS), APLXGY (TSO), APLXGKU
(CICS/V!), APlXGKT (CICS/VS), APLXGKR (CICS/VS), APLXGKRQ
(CICS/VS), APLXGKRR (CICS/VS), and APlXGKOH (CICS/VS).

• Main Storage Services--provides the calling routine with a
system-independent interface for requesting GETMAIN and
FREEMAIH services. There are three separate modules:
APLXMYSG (TSO), APlXMSSG (CMS), and APLXMKSG (CICS/VS).

• Stack Management Services--provides a cross-module workstack
facility which performs register saving and supplies
module-level work areas. The module is APLXSTAK.

Licensed Material--Property of IBM
4 VS APL Program Logi c

• APl Print Services--provides APl print (open. write. and
close) support for CMS/TSO, and acts as an APl print support
interface for CICS/VS. There are three separate modules:
APlXPK (CICS/VS). APLXPS (CMS). and APlXPY (TSO).

• File System Services--processes file processing requests for
the auxiliary processor AP 121 and the scrolling code in the
executor. There are three separate modules: APLXFYFl (TSO),
APLXFSFL (CMS). and APLXFKFL (CICS/VS).

• Common AP Services--provides a set of services between an
auxiliary processor and the shared storage manager with a
system-independent interface. There are four modules: APLXAC
(eMS/TSO). APLXAK (CICS/VS). APLXASD (CMS) and APLXAYD
(TSO).

• Wait-Post Services--provides wait-post services to CMS and
TSO executor tasks, and acts as a system-independent
interface to CICS/VS executor processes. There are three
separate entry points: APlXWYWP (TSO). APlXWSWP (eMS). and
APlXWKWP (CICS/VS).

• Abend Services--allows CMS, TSO, and CICS/VS tasks to
attempt to recover from abends and program checks. There are
three separate entry points: APLXBYAB (TSO), APLXBSAB (CMS).
and APLXBKAB (CICS/VS).

• Dump Services--provides for caller-selected areas of storage
to be printed to a particular destination in a eMS. TSO. or
CICS/VS environment. There are two separate entry points:
APlXDUMP (CMS and TSO) and APLXDKMP (CICS/VS).

• Translation Services--provides various supported translation
services, as well as descriptions of request blocks for
translation. The module is APlXTRAN.

• Conversion Services--provides data type conversions for
numeric objects. The module is APLXVERS.

VS APL session Manager

The VS APL session manager comprises the following executable
modules which are used to process terminal tables requests from
the CICS/VS. CMS. or TSO executor. or from an auxiliary
processor:

APLACCBE. APLACDSL. APLACHLP, APLACHDP, APLACMSG. APLACMDX,
APLACOPY. APLACPRM. APLACPRO. APLACQRY, APLACQUE, APlACRDA,
APLACRSA. APLACSF. APLACXCM, APLADMSG. APLADTTM, APLAK, APLAKP,
APLALINE, APLAS, APLASA, APLASP. APLAUSRX, APLAY, APLAYA, APLAYP

CHS/TSO Shared storage Manager

For VS APl under CMS and TSO. the shared storage manager is
logically a part of the respective executor. (In the case of VS
APL under VSPC. it forms an integral component of VSPC.) The
shared storage manager's principal function is to manage
communication between the interpreter/translator and the
auxiliary processors. The tasks performed are:

• Initialization for shared variable processing

• Processing of shared variable commands

• Termination of processing when the shared variable facility
is no longer required

Licensed Material--Property of IBM
Section 1. Introduction 5

A common set of shared storage manager modules is employed for
the CMS and TSO ex~cutors.

• APLSHACC. APLSHBrB, APLSHBVB, APlSHCPV, APlSHGET, APLSHOFR,
APLSHPUT. APlSHQUE, APLSI/REF, APlSHRET, APlSHSOF, APLSHSON,
APLSHSPC, APlSHSRD, APLSHSUB

eIes/vs Shared storage "an~ger

The shared storage manager for the CICS/VS executor is logically
a part of the executor. It is composed of two modules.

• APlKSSUB, APlKSSVP

Auxiliary Processors

Auxiliary processors are non-APl programs that operate outside
the APl environm~nt. The auxiliary proc~ssor concept provides a
method of extending the capability of the APL environment.

U~DER eIeS/VS: Auxiliary processors provide selected data
management services for APl files, VSAM and ISAM files, and Dl/J
data bases; allow a user to request a subset of CICS/VS
services, display certain areas of main storage, read/write date
in CICS/VS transient data destinations, ~pecify an APl command
or statement, provide for application control of thg IBM 3270
display facilities, and to display alphameric and graphic data
(including color and extended highlighting) via the graphic data
display manager (GOOM). These auxiliary processors are:

Auxiliary
Procc!>sors

AP 100 (CICS/VS Command)

AP 102 (storage Display)

AP 120 (VS APl Session Manager

AP 121 (APl Data File)

AP 123 (VSAM)

AP 124 (Full Screen Management)

AP 125 (Ol/I)

AP 126 (GODM)

AP 132 (Transient Data)

AP 139 (Alternate Input)

Licensed Material--Property of IBM
6 VS APl Progrilm logi c

Modules

APLlOOK, APllOOKU,
APLlOOKO

flPLlO2K

Command) APl120

APL121K

APl123K

APL124K, APL124KO

APl125K. AP1l25KD.
APL125KO

APL126, APL126T

APLl32K

APLl39K

J

J

UNDER eMS: Auxiliary processors provide select~d data management
services for eMS files. VSAM files. and OS files supported by
QSAM. They also allow an APL application t~ specify terminal
input data. to pass commands to CP or eMS. to specify an APL
command or an APL statement that will be executed when terminal
input is next requested. and to display alphameric and graphic
data (including color and extended highlighting) via the graphic
data display manager (GDDM). These auxiliary processors" are:

Auxiliary
Processors Modules

AP 100 (CMS Command) APLlOO

AP 101 (Alternate Input) APLlOl

AP 110 (eMS File) APL 11 0

AP 111 (QSAM) APLlll

AP 120 (VS APL Session Manager Command) APL12C

AP 121 (APL Data File) APLl21

AP 123 (VSAM) APL123

AP 126 (GDDM) APLl26

UNDER TSO: Auxiliary processors provide selected data management
services for VSAM files. as files supported by QSAM, and
unkeyed. relative record, fixed-length files supported by BDAM.
Thay also allow an APL application to specify an APL command or
an APL statement that will be executed when terminal input is
next requested. to issue 1S0 interactive commands. and to
display alphameric and graphic data (including color and
extended highlighting) via the graphic data display manager
(GDDM). These auxiliary processors are:

Auxiliary
Processors Modules

AP 100 CTSO Command) APLYUI00

AP 101 (Alternate Input) APLYU101

AP 102 (Storage Display) APLYUI02

AP 111 (QSAM) APL YUIll

AP 120 (VS APL Session Manager) APL120

AP 121 (APL Data

AP 123 (VSAM)

AP 126 (GDDM)

AP 210 (BDAM)

F i 1 e) APLl21

APLl23

APLl26. APL126T

APLYU210

Licensed Material--Property of IBM
Section 1. Introduction 7

UNDER VSPC: Auxiliary processors provide selected data
management services for VSPC library files and VSAM files
maintained by the operating system, and provide for application
control of the IBM 3270 display facilities. Under VSPC. the ..)
auxiliary processors are contained within the executor. and
operate through modules APlPAPAB, APlPAPCD, APlPAPFS. APlPA?GB,
APlPAPGC, APlPAPGD, APlPCOAP, and APlP126T. The auxiliary
proce~sors are:

Auxiliary
PrOC~5=>ors Modules

AP 100 (VSPC Command) APlPAPAB

AP 101 (Alternate Input) APlPAPAB

AP 102 (storage Display) APlPAPAB

AP 121 (APl Data File) APlPAPAB, APlPAPCD

AP 122 (EBCDIC Data Fi Ie) APlPAPAB. APlPAPCD

AI' 123 (VSAM) APlPAPAB, APlPAPCD

AP 124 (Full Screen Management) APlPAPAB, APlPAPFS

AP 126 (GDDM) APlPAPAB, APlPAPGB.
APlPAPGC. APlPAPGD,
APlP126T

APl Service pro9ra~ Library

THE CONVERSION PROGRAMS: These members of the service program
library construct VS APl workspaces from APl/360, APlSV. and
AP1/CMS dump tapes for CICS/VS, CMS, TSO or VSPC. They also
provide user profile and directory information for VSPC.

The configuration of the conversion programs is as follows:

• cns (ArL/360 ~nd APLSV): APlCCUll, APlCDISP. APlCFUNC.
APlCGRUr, APlCIBNM, APlCIHIT, APlClEAR, APlCMISC, APlCPARM,
APlCRPRT. APlCSAVE, APlCSHIP, APlCS?IE, APlCTBCD, APlCVARB,
APlCWKSP, APlCWSFH.

• Ct1S tArL/CIIS): AFlODISP, APlQFUHC,· APlQGRUP, APlQIBHM,
APlQINIT. APlQlEAR, APlQMISC, APlQPAP.11, APlQRPRT, APlQSAVE,
APlQVARB, APlQWKSP, APlQSPIE.

• CICS/VS, TSO, VSPC (OS/VSl and OS/VS2): APlOCUll, APlODIRE,
APlODISP, APlOFUHC. APlOGRUP, APlOIBNM. APlOINIT. APlOlEAR,
APlOMISC. APlOPARM. APlORPRT, APlOSAVE, APlOSHIP, APlOSlST,
APlOSPIE, APlOTBCD, APlOTIDY, APlOVARB, APlOWKSP. APlOUSFN.

• CICS/VS (DOS/VS): APlDCULl, APLDDIRE, APLDDISP, APLDFUHC.
APLDGRUP, APLDIBNM. APLDINIT, APLDlEAR, APLDMISC, APlDPARM,
APLDRPRT, APLDSAVE. APLDSHIP. APLDSLST, APlDSPIE, APLDTIDY,
APLDTBCD, APLDVARB, APLDWKSP. APLD~SFN.

In addition to the above modules. each version of the conversion
proQram also contains these translator and interpreter modules:
APLIEREV, APlIESPA. APLITFDC, APLITHDR, APLITIDS, APLITlXS,
APLITNCV and APlCOIBM.

When used with CICS/VS, TSO, or VSPC, the conversion program
runs in the batch environment of the host operating system
(OS/VS1, OS/VS2, or DOS/VS). Under CMS. it runs as a se~arate
program invoked from a CMS EXEC procedure and under control of
the eMS nucleus.

Licensed Material--Property of IBM
8 VS APl Program logi c

J

L

Workspaces

OTHER SERVICE PROGRAMS.: Other members of the service program
library are the following:

FO~ CICS/VS: An APl library service program i~ports and exports
workspace and auxiliary processor 121 files, copies APl user
libraries and initializes APl data sets during CICS/VS
installation. This program comprises the following modules:

APLKDALD, APLKDAUT, APLKDCMD, APLKDCPY, APLKDDOS, APLKDDSI,
APLKDDSO, APLKDEXP, APLKDIMP, APLKDINT, APLKDLBI, APLKDLBO,
APLKDr1SG, APLKDPIN, APLKDSPG, APLKDTPO, APLKDTRr1, APLKDSCN,
APLKDEXC, APLKDFMT, APlKVALD, APLKVCMD, APLKVOPI, APlKVDSI,
APLVDSO, APLKVEXP, APLKVIMP, APLKVINT, APLKVLBI, APLKVLBO,
APlKVMSG, APLKVPIN, APlKVSPG. APLKVTPO, APLKVTRM, APLKVSCN,
APLKVEXC, APLKVFMT

FO~ TSO: A workspace manages importing (addition) and exporting
(off loading) of APL objects to and from the APL user's library
under TSO. The workspace. WSINFO, contains additional
information on this workspace.

In addition to the workspace. there is an APL TSO converted
workspace import program which processes output from APl
converted programs and imports loadable workspaces for the TSO
system. This single load module is invoked as a batch job; its
name is APLYUCNV.

The environment for VS APL is established by an area of storage
called a workspace. The size of the workspace is determined by
the installation and the limits of tho host system (CICS/VS,
CMS, TSO, or VSPC). The workspace contains the user's programs,
the values of variables, the user status, and the current input
to or output from the interpreter. The workspace, therefore, is
the moans of communication between the executor. the translator,
and the interpreter.

Workspace Librartes

Three libraries of workspaces are provided with VS/APl, as
follows:

• Library 1: (workspaces of general usefulness for all
systems)

•
•

WSINFO--summary of all workspaces.

Library 2: (auxiliary processor workspaces)

Library 314159: (special workspaces--CICS/VS only)

ADMIN--monitors and controls use of the APl system under
CICS/VS, and maintains the APL directory.

Each of these workspacQs has three functions or variables that
describe what it contains and how it is used. They are:

• ABSTRACT--brief description of workspace contents.

• DESCRIBE--what the workspace contains, in detail.

• HOW--hgw to use the workspace.

Licensed Materi al--Property of IBM
Section 1. Introduction 9

PHYSICAL CHARACTERISTICS OF THE VS·· APL PROCESSOR

Object Modules

Load Modules

The VS APL processor is distributed in the form of separate
object modules as described under "Purpose and Function of the
VS APL Processor" in this section.

UNDER CICS/VS: VS APL (except for the library service and
conversion programs) is stored in the CICS/VS load library as a
set of independent load modules. Each load module is identified
to CICS/VS by an entry in the CICS/VS processing program table
(PPT) .

The following load modules are built from multiple source
modules:

APLINTRP

APLKADSP

APLKASON

APLKLIBG

APLKEHCP

APLKTCTL

APLKSPRG

APLXGKT

APLIOOK

APLl20

APL124K

APL12SK

APLl26

APLKASTB

contains the interpreter modules (APLlxxxx),
APLFXIIM and APLCOIBM

contains the CICS/VS executor modules APLKAMIX,
APLASCHD APLKADSP, APLKIFIX, APLKLIBC, APLKLIBU,
APLKMSCA, APLKMSCB. APLKISVI, APLXGCHC, APLXGCOM,
APLXGKON. APLACRCP, APLACC8E, APLACDSL, APlCCHLP,
APLACMDX. APLACMSG, APLACNDP, APLACOPY, APlACPRM,
APLACPRO, APLACQRY, APLACQUE, APLACRDA, APLACRSA,
APLACSF, APLACXCM, APLADMSG, APLADTTM, APLAK,
APLAKP. APLAlINE and APlAUSRX

contains APLKMIX and APLKASON

contains APLKLIBA, APLKLIBG, APLKlIBV and APLKlTAB

contains APlKEHCP and APLKTRAN (also included in the
APLKASTB load module)

contains APLKTCTl and APLKTCWR

contains the library service program modules listed
under the section entitled "Purpose and Function of
the VS APL Processor." Note that modules beginning
with APLKV are in a load module for OS/VS only, and
that modules beginning with APlKD are in a load
module for DOS/VS only.

contains APLXGKT and APLAKP

contains APL100K and APLlOOKU

contains APL120, APlASCHD, APLAK and APLAKP

contains APL124K and APL124KO

contains AP1l25K and APL125KD (or APL125KV)

contains AP1l26, APl126T

contains APlKASTB, APLKAGBL, APLKDOPS (or APLKVOPS),
APLKEMGR. APLKLI8B, APLKLIBR, APlKLIBF, APlKSSUB,
APLKSSVP, APLKTRAN, APLKTREQ, APLKTRQO, APlKTSRV,
APLXAK, APLXDKMP, APLXFKFL. APlXMKSG, APLXSTAK,
APLXTRAN, APlXVERS, APlXGKU, APLXPK, APlASCHD,
APlAKP, APLXGKRQ, APLXGKR, and APlXGKRR

licensed Material--Property of IBM
10 VS APl Program logic

J

Flow of Control

All other modules are stored as separate load modules (APLKADEF,
APLKAHST, APLIOOKO, APLI02K, APL121K, APL123K, APL132K, APL139K,
and APLKPARM).

UNDE~ CMS: The executor, translator, interpreter, and shared
storage manager object modules are link-odited and loaded as one
load module (VSAPL). Optionally, auxilinry processors may also
be included in this load module. A second load module (~tartup
module APL) is generated for discontiguous segment
determination.

The conversion program object modules are link-edited and loaded
as one load module for each of the conversion programs. The load
module names are: APLCVCMS (convert APL/360 and APLSV workspaces
under eMS), APLCVRPQ (convert APL/CMS workspacos under eMS),
APLCVOS (convert APL/360 and A?LSV work~paces undQr OS/VSl or
OS/VS2), and APLDVDOS (convert APL/360 and APLSV workspaces
under DOS/VS).

UNDE~ TSO: The executor, translator, interpreter, and shared
storage manager object modules are link-edited and loaded as one
load module with the name VSAPL.

UNDER VSPC: The executor (which includes the auxiliary
processors), translator, and interpreter object modules are
link-edited and loaded as one load module.

Flow of control among VS APL modules is d~termined by the VS APL
source statements received at th~ terminal or co~tained within
the workspace as function definitions that are to be executed.

The major flow of communication bet~J~en components is shown in
Figure 1. The flow of communication to the auxiliary processors
and shared storage manager is not applicable. Ur,dar VSPC, where
the auxiliary processors are containad t~ithin the executor, the
shared storage manager is a component of the host system (VSPC).

Licensed Material--Property of IBM
Section 1. Introduction 11

Service
Programs

1·lost
System -

St:ssion
Executor

!\t.1I1ag~r

T ransla tur

Appendag~s FX;Jrch

\tkrocodc

Figure 1. VS APL Processor Communication Overview

licensed Material--Proparty of IBM
12 VS APl Program Logi c

Auxiliary
Proccssor~

Shared
Storage
Managt:r

OPERATIONAL CONSIDERATIONS

Data set Infor~~tion

Insta llat i on

IN CICS/VS: For DOS/V5. the ~x~cutor modules r~5id~ in the
syst~m or private core image library; for OS/I/Sl, th~y rcsid~ in
LINKlIB or in u CICS/V5 10i1d lib",ry: for 05/1152. th0V r(':;ic!-:: in
LPALIB or in a CICS/V5 lo~d lib~ry. Us~r works~aC~5 rpsid~ in
the APLLIB VSAM entry s~quenc~d dnt~ set for 005/1/5. OS/VSl, and
Os/V52.

IN cns: In CMS. VS APL modules. files. and wark5n~ces pxist as
individu~l files on 11M mini-disks. If VS APL is u9~d in a
discontiguous shnr~d se~mpnt (DCSS). thon the module imagms also
reside in the CP 5ystom storag~.

IN TSO: Load modules ~un reside in LPALIB or in another lo~d
libary. User worksnnces reside in sequential (BS~~) d~ta ~~ts.

IN vsrc: The proc~~sor rasides in the V5 syst~m library; in
as/VSI it residt's on th£l SYSl.LINKLIB libr('lq'; in OS/VS2 it
rosides in the SYSl.LPALIB library. User w~rkspaC~5 reside on
the SYSLIB2 VSAM entry sequenced data set (OS/VSl and OS/V52).

VS APL under eMS. CICS/VS. TSO. or VSPC is installe~ by st~ndDrd
cperatir'9 5ystc'" insti'lllntion tools. These are S~'P tf-o!'" 0::·/V5
s~'stems). MSHP (for DOS/V5 Syst~'"s), and PLC (for' Cl1S system'».

Control Information

Processors

UN~ER CICS/VS: ihe 'IS APL processor is stnrted eith~r from a
terminal or from enothor tran~~ction.

U'~OER C~:S: 1 he V5 APL processor ; S E'nter~d by f"!Nlt1S of <' COl"'rnund
gi v~" from the t€rmi n<ll or from Dn EXEC pro("pdurc. Thp. ,'\f'l
initialization routine, after uIHIl~';:ing thn cOI:"'~i.lt~d pur~·-c:::':~r~.
uses CI Ct':S EXEC c<llled APLEXIT to e5tabli~h the AP~ ("~\Vircnm-:-:>nt.
APLEXIT EXEC i~ invoked a~ain nt termination.

U~OER TSO: The VS APL prOCEssor is started by a T50 cor~nnd
prOCI;?S50r i nvokcd b~, entE'r i ng its name (APL i throtl,~h th~
terminal or from a ClIST.

U~OER VSPC: The US APL procp~sor is started at U50r logon time
by the '1SPC online r~a9r~m if the user's profilv specifies 1f5
APL, or by the "ENTER ArL" comrnund issued at CI later ti~e during
the us~r's session.

UUOER CICS/VS: 1/5 APl oP('r<ltes on all compatible processors
supported by CICS/~S undRr DOS/VS, OS/VS1, or MVS.

m!DE~ C~lS: \IS A?L operCltns on Edl ,:o~oi:ltibl~ processors
supportt'd by eMS under the Virtui:ll Machine Fi:lcility/370
(V;1/370).

W!DE~ TSO: V5 APl operat<e's on all comoi"lt i blra pr"ocessors
sunport~d by TSO under the MVS operating SY5t~m.

U~lD!::f.! VSPC: VS APL o~",r1.)tps on Elil Co."r..:ltible proc~ssors
support~d by vsrc undnr as/V51 or MVS.

Lice"sed Materi<:lI-PrOPl'!rty of HM
S~ction 1. Introd~ction 13

Access Methods

Terminals

UNDER CICS/VS: VSAM and SAM are the only required access
methods. although access to ISAM files through the CICS/VS
interface is also supported. VSAM requirements include control
interv~l processing as well as essentially all of the VSAM
support available under CICS/VS.

UtlDER eMS: The standard eMS file access macros are used to
access CMS files. Access to VSAM is also supported. For a
description of these macros see IBM Virtual Machine
Facility/370: CP Command Reference for Gpneral Users.

UNDER TSO: VS APL employs BSAM. BPAM, VSAM, QSAM, and BDAM files
for APL applications.

UNDER VSPC: VS APL uses the VSPC library management function,
based on the Virtual Storage Access Method (VSAM), for all
library support. It supports all DASD devices supported by VSAM.
Auxiliary processors may also provide other access method
support.

Refer to the following manuals for a description of the
terminals supported under VS APL:

• VS APL for CICS/VS: Terminal User's Guide

• VS APL for CMS: Terminal User's Guide

• VS APL for TSO: Terminal User's Guide

• VS APL for VSPC: Terminal User's Guide

supervisor Serv;ce Calls

UNDER CICS/VS: Most APL supervisor services are requested
through CICS/VS interfaces. VSAM control interval processing is
performed using operating system services directly. In some
cases, VS APL uses CICS/VS control blocks and macros that are
not a part of the CICS/VS external interface.

U!IDER CHS: The VS APL executor routines issue CP and CMS
commands; CMS macros, such as DMSFREE and DMSFRET; and simulated
OS macros, such as WAIT. POST. STIMER, and STAX. The executor
also makes use of some CMS routines whose address constants are
found in the CMS HUCOH macro. Hexadecimal location 440 in the

J

eMS HUCOH macro is reserved for a pointer to the VS APl global J ..
table (GLBLTABL). .

UNDER TSO: VS APL makes use of the services described in A Guide
to Writing a T~rminal Monitor ~nd Program Comm~nd Processor. The
primary TSO services used are DAIR and TGET/TPUT. MVS operating
system services are also used.

UNDER VSPC: VS APl makes use of the service calls provided
through the defined foreground interface to VSPC. These calls
are described ~n "Method of Operations" (Diagram 1.1:
"Communic~tion with VSPC").

Licensed Material--Property of IBM
14 VS APL Program logic

Custom2r Information Control System (CICS/VS)

U~:t'lER CICS/VS: The i ntE!9r i ty of the VS APl user's var i abIes and
functions is protect~d by the VS APL executor itself. Errors of
a single user or prograM errors witl,in a procpssor cannot
interfere with another user. VS APL pxpcutor ~nd interpreter
routines operate in problem pr~gram state.

VS APl under CICS/VS provides an int~rnal dump f~cility for the
user's workspace and tl\~ ar~ns associ~trd with it. A dump is
r~qu~sted automatically by the VS APl prOC~S50r to provide
information about certain types of processor-related system
errors,

VS APl under CICS/VS intercepts both procp.ssor paqe faults and
program checks. Program ch~cks llre PClssf'd bilck to thQ proces:;or
to take appropriate action and to issue appropriate diagnostic
and error messages.

Conversational Monitor syst~m (C~S)

U~!1)ER C:'S: The i ntegr i ty of VS APl is protected by the V i dual
Machine Facility/370 (VM/370). CMS, and the VS APL executor
rotlti·n~s. VrV370 ~n5ures that no errors of a si ngle u;,cr i)nd no
errors of the VS APL interpreter or e~ecutor routines can affect
any other user.

VS APL executor and interpreter routines orprat~ in the virtual
sun~rvisor state. The executor routines provid. th~ir own
storil~e protpction as well as dnt~ protecticn for
non-interpreter routines. Pr"gr"'n chpcks are interC9ptcd by the
VS ArL pxpcutor routinRS and Pil5Spd b~ck to thp int~rprpt~r
tllt'ough th9 defined intorf<'!ce. lhis Cl110l;JS the interpreter to
issue ~ppropriate di~gnostic and ~rror M~ssilges.

VS APL ex~cutor routines check VM/370 syste~ messng~s and r~turn
codes after issuing system service requests.

A STAE exit is provided to allow du~ping of storage for proble~
detC':!rmil1<'!tion. The STAE exit stops the '!irtU<11 r.'I;1chine so that
the user Ci:ln enter CP cornmunds to display storClge ~nd help
isolote problems.

For nonc<'!tnstrODhic errors. diagnostic infor~atian is printed Clt
the user's terminal and the activ~ workspace is cleured.

Ti~e Sharing option (lSO)

U~,~~ T50: The integrity of VS APL is protected by both the
Multiple Virtual Storage (MVS) Clnd th~ VS APL executor routines.
MVS ensures that no errors of a sint::le user and no errors of the
VS APl interpreter or executor ~outin~s can ~ffect any other
user.

VS A~L ~~plcys ESTAE. SPIE, and ATTACH with the ESTAI option to
g~in contr·ol when MVS detects lI., el'ror. In ll<'dition, the
auxi liary proce"sors s\'!t \IP tho DCB f..BEND ex; ts. Progru'"1 checks
are intercepted by the VS APL e~ecutor routine~ and ~nss~d back
to the intcrpret~r through the defined interf~ce; this allows
the interpreter to issue appropriate diagnostic ~nd error
messages.

The basic thrust of error r~covery in VS APl under TSO is to get
the active workspnce saved in the CO~TINUE work~pace, and to
cause T50 to reinvoke ~ clean coPy of VS APL which will in turn
reload the CONTItlUE workspacE! <)I,d COl1tinu~ processing. There are
hJO principal kinds of abends: 1) X22 m,d X3E <:lbcl1ds brought
Clbout by operator cancel, timing, TC~M error, ~tc. In these

Licens<;Id MatE'lrial-Property of 'IBM
S~ction 1. Introduction 15

instances. the CONTINUE workspace is saved normally; 2) all
other abends constitute error situations in which the CONTINUE
workspacp. is marked nonloadable.

VS Personal comput;ng (VSPC)

UHDER VSPC: The integrity of the VS APl user's variables and
functions is protected by VSPC itself. Errors of a single user
or program errors within a processor cannot interfere with
another user.

VSPC provides an internal dump facility f~r the user's workspace
and the areas associated with it. A dump IS requested
automatically by the VS APl processor to provide information
about certain types of processor-related system errors.

VSPC intercepts both processor page faults and program checks.
Program checks are passed back to the processor through the
defined interface to allow the processor to take appropriate
action and issue appropriate diagnostic and error messages.

COMPONENT AND MODULE N~"ING CONVENTIONS

Objp.ct modules are identified by 5- to 8-character names that
describe them by component and function.

Object module names. except for the shared storage manager,
conform to the following convention:

• A 3-character prefix of: APL

•

•

Followed by a component identification. described in
Figure 2.

Followed by an abbreviation identifying the function of the
module.

Entry point names conform to the same convention as module
names. except that. in some cases. the 3-character 'APl' prefix
is omitted.

The conversion modules for DOS/VS differ from those for OS/VS.
These modules are functionally the same. but the OOS/VS modules
are designed to interface with DOS/VS and the OS/VS modules with
OS/VS. The OS/VS modules begin with the characters APlO; the
OOS/VS modules begin with the characters APlO. To avoid
unnecessary repetition in this publication. only the OS/VS names
are used in this publication wherever possible. Unless
e~plicitly noted otherwise, substitute the prefix APlO for APlO
when using this pUblication for DOS/VS VS APL.

licensed Material--Property of IBM
16 VS APl Program logic

<....

Identification

A

C

D

I

IA

IE

K

KD

KV

0

P

Processor Number ennn)

Processor Number (nnn
follom:d by K)

Processor Number (nnn)

Q

SC

SH

X

cor.:ponent

Session Manager

Conversion Program (CMS and TSO-APL.l360 and 'APLSV
worksPclces)

Conversion Program (DOS/VS)

Interpreter

Appendage Routines

Exarch

Executor (CICS/VS) with shared storage manager, and
library service program

DOS/VS system-dependent code (CICS/VS DOS/VS)

OS/VS system-dependent code (CICS/VS OS/VS)

Conversion Program (OS/VSl and OS/VS2)

Executor (VSPC) with auxiliary processors

Auxiliary Processors (CMS and ISO)

Auxiliary Processors (CICS/VS)

Auxiliary Processors (Common)

Conversion Program (CMS-APL/eMS workspaces)

Executor (CMS)

eMS and TSO shared storage manager

Common Services

XA

XB

XD

XF

XG

XM

XP

XS

Xl

XV

XW

Common AP Services

Common Abend Services

Common Dump Services

File System Services

GOOM Interface Services

Main Storage Services

APL Print Services

stack Management Services

Translate Services

Conversion Services

Wait Post Services

YU Executor (lSO)

Figure 2. Object Module Component Name Identification

Licensed Material-Property of IBM
Section 1. Introduction 17

SECTION 2. METHOD OF OPE~ATIO~

In this section, Hierarchy Input Processing Output (HIPO)
diagrams are used to describe the functions of VS APL.

HIPO is a method for graphically describing th~ int~rnal
functions of a program without regard for the way in which the
functions are impl~ment~d or for the phY5ical organization of
the program. A HIPO package contains a vi~u81 table of
co~ponQnts and a set of method of operation diagrams
illustrating the functions of a progr~~, in this case, the VS
APL processor. The visual table of components (see Figure 3)
shows th~ contents of each diagram and how it is related to the
oth~r diagr~ms in the set. The graphic symbols used in M~lhod of
Operation diagrams are identified in Figure 4. The method of
operation diagrams are grouped by function.

The method of operation diagrams themselves are divided into
four distinct ar~as of information: input, process, output, and
extended description (diagram notes). The input information, on
the left side of the diagram, describes the input to the process
cr function being described. The process infor~ation, the
central portion of the diagram, describes precesses that make up
the function. Th~ output information, on the right sida of the
di~gram, illustrates the output from the proce5S. The extended
description information following the diagram is used to provide
additional detail or to outline how the function was
i~pln~0ntcd. This section also contains references to the module
th~t performs all or part of the function involved, ~nd any
ref~rcnccs within the r~m~ind~r of this publication where
addition~l inforMation "ay be found.

Licensed Material--Property of IBM
18 VS APL Program. Logic

J

J

L

0.0: VS APl Processor Overview

1.0M: Host System Communication

1.1: Communication with VSPC

1.1.1: Shared Variable Processing (VSPC)

1.2: Communication with CMS

1.2.1: Shared storage Manager (CMS and TSO)

1.2.2: Auxiliary Processors (CMS)

1.3: Communication with CICS/VS

1.3.1: Shared storage Manager (CICS/VS)

1.3.2: Auxiliary Processors (CICS/VS)

1.4: Communication with TSO

1.4.1: Auxiliary Processors (TSO)

1.4.2*: Shared Storage Manager (TSO) (see Diagram 1.2.1)

2.0: Input Recognition. Translation. and Routing

3.0: Function Definition and Editing

3.1: Function Editing

3.2: Function Definition

4.0: Statement Execution

4.1: Statement Scan. Syntax Analysis, and Execution

4.1.1: Function Call and Function Exit Processing

4.1.2: Branch Processing

4.1.3: Primitive Function Processing

4.1.4: Miscellaneous Processing

4.1.5: Shared Object Processing

4.2: Return Code Processing

5.0: System Command Execution

6.0: Workspace Conversion

M No diagram is provided for this component.

Figure 3 (Part 1 of 2). Table af Components

licensed Material--Property of IBM
Section 2. Method of Operation 19

7.0: CICS/VS Libr~ry Service Program

8.0*: Host-Ind~pendent Executor Services

8.1*: APl GDDM Interface Services Subcomponent (GDDX)

8.2: VS APl Session Manager Executor Scheduler

8.2.1: VS APl Session Manager Executor Processor

8.3*: Common Auxiliary Processor Services

8.3.1: Common Auxiliary Processor Services Under CMS & TSO

8.3.2: Common Auxiliary Processor Services Under CICS/VS

8.4*: Common Auxiliary Processors

8.4.1: VS APl Session Manager Command auxiliary processor
for CICS/VS. CMS. and TSO

8.4.2: GDDM Auxiliary Processor for CICS/VS, CMS, and TSO

8.4.3: APl Data File Auxiliary Processor for CMS and T50

8.4.4*: VSAM Auxiliary Processor (see Diagram 1.2.2 or 1.4.2)

* No diagram is provided for this component.

Figure 3 (Part 2 of 2). Table of Components

Ucens9d MClterial-Property of IBM
20 V5 APl Program logi, c

J

J

L

L

o

"I

Data Reference, Movement, or Modification

Control Flow

Terminal

Disk

Magnetic Tape

Listing or Document

Card Deck

Off·chart Connector for a Change of Control Flow
to Diagram 2.0

Shared Storage Manager (eMS and TSO)

Change of Control Flow to and from "Communication
from CMS" for a Specific Function Detailed on Diagram 1.2.1

Figure 4. Graphic Symbols Used in Method of Operation Diagrams

licensed Material--Property of ISM
Section 2. Method of Operation 21

DIAGRAM 0.0: VS A~l PROCESSOR OVERVIEW

I rom CJeS{VS, eMS, TSO, or VS ..
I. Initialize workspace.

.1 • 1.\,1.2

c:fl
;--- 2. Recognize and route

'" input statements.

~. -1'1 2.0
Workspal'c

D
a. Define :lnd edit

VS APL functions.

.1 1 3.0

b. Execute VS APL
ex pressions. r

,t-t I 4.0

:> c. Execute syste,m
Library commanJs. r

B t .•. 1 5.0

)OFF or CONTINUE
command:

To CKS{VS, C'MS,
TSO, or VSPC'

~J. Convert VS APL
Source Workspaces workspaces. r

0 ,t .• 1

Licensed Material--Property of IBM
22 VS APL Program Log; c

6.('

I

I
~ r:::fJ ') ...

I
J

Workspace

D ~
I

Library

I
B

.......,
. .,/ V.S APL Workspaces

I 0

Notes for Diagram 0.0

EXECUTOR

1. When control is received from the
host system (VSPC. CICS/VS. TSO.
or eMS) the workspace is
initialized.

TRANSLATOR

2. Input is received from the
terminal. The contents of the
input line and the status of the
workspace determine the
destination of the line.
[Executorl

B. If the first nonblank
character in the line is a
del. or if the workspace is
in function edit status. the
line is routed to the
function definition and edit
routines.

b. If the workspace is not in
function edit status, and the
first nonblank character of
the line is neither a del nor
a right parenthesis. the line
is routed to the statement
execution routines.
[Interpreter]

c. If the workspace is not in
function edit status. and the
first nonblank character of
the line is a right
parenthesis, the line is
routed to the command
processor routines.

The above process is continued
until an)OFF or)CONTINUE
command is input. The control is
returned to the host system.

3. The conversion program, run as a
batch job, converts source
workspaces (APl/360, APLSV, or
APl/CM5) to VS APL workspaces.

licensed Material--Property of IBM
Section 2. Method of Operation 23

DIAGRAn 1.1: COnnUNICATION WITH VSPC

IWSH

SFN
II'TH

SRN
I ECA

IWSM

Frum AI'LFXIlM

I WSM Address

PTe

I. Initialize PTH and
workspace fields.-_____ -L. ___ .r-..

2. Handle asynchrono;:u::..s _____ ...1-.--1

events, as follows:

3. Attention

b. Double attention L.... ____ ---.

c. Force off

d. Cancel output L _____ _--I

e. Program check L.... _____ ,.-..,

3. Handle service

requests. C========~=;J
a. Non shared variable requests
~ ..

Execution Routines
b. Shared variables

... ..
..... .. Shared Variable

Processing

1.1.1

Llcensed Material--Property of IBM
24 VS APL Program Logi c

Register 11

PTHYYCOD

I'THSRCOD

PTHQVAR

I'THWIDTH

PTHWSLJo:N

PTHACONO

PTHASYNC

PTHUSTAT

PTHMICRO

WSM

WSMPCPSW

I WSMPTHPT

WSH

WSM

WSMPCPSW

WSMREGSV

WSMSURGS

WSM
WSMREGSV

WSMNSI

WSMASYNC

WSH

PTH

J

J

Notes for Diagram 1.1

APLPCOEX

1. For initialization, the executor
receives a default size workspace
from VSPC. The length is
indicated in PTCWSLEN and pointed
to by PTCWSPAD. The executor
takes the top 2K bytes for its
own use and always informs the
interpreter that the workspace ;s
after this 2K byte area.
[APLPCEHTl

The executor. within the 2K byte
block, sets fields in the
executor control area (ECA); that
is, it initializes the ECADUMP
field to 0, sets the ECASTAT
field to indicate that the
executor has been called, sets
the ECAPTC field to the address
of the PTC area, and initializes
ECAMICRO for microcode assist.

The executor then initializes
fields of the PTH and sets the
WSMPTHPT field to the address of
the PTH. It initializes
WSMPCPSW=O. It then places the
servIce request YYON in PTHYYCOD
and passes control to the
interpreter at its entry point
APLIINIT.

2. For asynchronous event handling.
the executor receives an
indication from VSPC, determines
the type of event, and processes
it as follows:

a. Attention--sets PTHATTN on,
except if already on, then
sets PTHDATTH on, sets type
ele~ent to zero position,
PTHCURSR field to 0, and

"WSHPFLG1.WSHPATH to 1. Sets
WSMASYHC fields
correspondingly and returns
to VSPC to be dispatched at
the point of interrupt.

b. Double attention--sets type
element to :ero position,
PTHATTH.PTHDATTN bits to 1,
WSHPFLG1.WSHPDATN bit to 1,
and PTHCURSR field to O. Sets
WSMASYHC fields
correspondingly and returns
to VSPC to be dispatched at
the point of interrupt.

c. Force off--sets PTHFOFF bit
to 1 for logoff by the
interpreter and sets
WSHPFLG1.WSHPSTRM to 1. Sets
WSMASYHC fields
correspondingly and returns
to VSPC to be dispatched at
th~ point of interrupt.

d. Cancel output--sets PTHNOOUT
on, sets WSMSASYHC fields,
PTHCURSR field to 0, and
returns to VSPC to be
redispatched at the point of
interrupt, with
WSHPFLG1.WSHPCNCL=1.

e. Program check--saves
registers in WSMSURGS field
and PSW in WSHPSWSV field.
For interpreter program
check, registers and the PSW
are moved from the WSHREGSV
and W5HPSWSV fields,
respectively, to the WSMREGSV
and WSMPCPSW fields,
respectively. The proyram
check is acknowledged
(WSHPFLGI.WSHPPCHK=l). the
YYPRGX command is simul~ted,
and control is passed to the
APLIIHIT routine (the
interpreter). (See Diagram
2.0: "Input Recognition.
Transl~tion, and Routing.")
For microcode assist
initialization error, when
microcode is not installed.

APLPFXIH

tho program check is .
acknowledged, the PTHMICRO
bit is set, and control is
returned to VSPC for
rcdispatch at the point of
intQrrupt. For executor
program checks or program
check loops in the
int~rpreter, messages are
is~ued, a dump is taken, and
the WEHDR error exit is
taken.

3. For service requests.
addressability to the PTH, WSH,
SFN, and ECA is set up by backing
up 2K bytes from the address of
the WSM. The interpreter's
registers are saved (except for
YYDUMP request), the address of
the next sequential instruction
is saved in WSMHSI, and the
request coce is entered in the
PTHYYCOD field. Control ;s then
passed to the appropriate request
handling routine. [APLFXIIMJ

The execution routine returns
with the service request return
code set in PTHSRCOD. Control is
passed to the interpreter at its
entry point, APLIINIT, where the
interpreter's environment is
restored and control is returned
to the instruction following the
service request.

For a description of the service
request codes and the names of
the VSPC executor routines that
handle them, see "Values,
Parameters. and Return Codes for

Licensed Material--.Property of IBM
Section 2. Method of Operation "25

Service Requests" under "Service
·Request Calls" in "Section 6.
Diagnostic Aids."

F'or shared varhlble processi ng,
control is passed to APLPSHVR to
route the request to the VSPC

Licensed Material--Property of IBM
26 VS APL Program Logi c

shared storage manager or to the
internal auxiliary processors.
(See Diagram 1.1.1: "Shared
Variable Processing (VSPC).") J

J

DIAGRAM 1.1.1: SHAP.ED VARIABLE PROCESSING (VSPC)

WSMSVI.RQ

APFT

WS\tS\,l.RQ

I, It' Si)!Il')Il, issu,' VS»C
sl!rvk.: r<'qlh'S\. r---------'-----"...... WSlfPARMJ

, It'si)!ll<lt'f:

a, Tl'l'l11l11all'l'OIlIlt'l'lion'<
wilh illll'rrwi auxiliary
prth.:Ir.'SS(H".

h, Is~ul' VSPC sl'rvil:e
reqllest, .--~~-----..I...-..1

b
,', It' qlh'ry, iSSUl' VS»C'

Sl'l'\ i"l' r,'qlll'SI. c======:;::::;:-;:=~) WSJIPAR'11

b a, If l',rrtlwr b nOI ,Ill

inlern;t1 auxiliary
I'rOl'l'SSllr, i~sut' VSPC
,ervi<'l' r~quesl, c=====~~~

I', If r..:l ral'lion, issue VSPC
s":I'\'i<'.' r"'qll,'sl, .-______ L-...J

l', It' "t'kr, build AI'F,. elll
APFT

and issue VSS~P~c~~~"~r~vl~'l'~e~~~~§§~==:::!:) r ... qu ... ';!, [r-----..,
1..-_----'

d, If 'l't ae':"',s L:untrol.
lIpdal,' SCV, r-------....... ----..,...,., ~~--..;...-..,

e, If sp:ify, rder~nce. or
copy, transf.::r data
b ... t ween file and
workspace for file
handling auxiliary
proc.::ssors, For FSM
and GDDM auxiliary
prOL:essors. data is
transf.::rred b ... tween
the workspa.:e and the
AP's work area-----------..........

1'1) l>ia~r:"l1 1,1

L; censed Mated ai-Property of I,BM
Section 2_ Method of Operation 27

Notes for DIagram 1.1.1

Return and reason codes for each
request are passed to the interpreter
in PTHSRCOD.

APLPSHVR

1. For sign-on, the user's ID,
shared variable quota, and space
quota are placed in the PCV. A
VSPC service request SSOH is
issued. [PCSOH]

APLPAPAB

2. For sign-off, each active APFT
entry is cleared. If the VSAM
file is oppn, a VSPC service
request VClOSE is issued. If FSM
was active, a TFSCRN EXIT request
is issued. If GDDM was active,
GDDMSOFF is called. [APlPAPSF]

APLPSHVR

The user's ID is placed in the PCV,
and a VSPC service request SSOF is
issued. [PCSOFF]

APLPSHVR

3. For a query, the user's ID is
placed in the SCV, and a VSPC
service request SQRY is issued.
(PCSQUERY]

APLPSHVR

4. For set access control. copy,
reference, retract, or specify.
the APFT entries are searched to
determine if the partner is an
internal auxiliary processor (one
distributed as part of VS APl).
[IHTAPCHK)

For offer, SCVPART in the SCV is
chp.cked to determine if the offer
is to an internal auxiliary
processor. [PCSOFFER]

a. If the partner is not an
internal auxiliary processor,
the user's ID is placed in
the SCV. and the appropriate
VSPC service request is
issued. [PCSACC, PCSCOPY,
PCSREF. PCSRET, PCSSPEC,
PCSOFFERJ

APLPAPAB

b. Retraction when partner is an
internal auxiliary processor.
If varIable CTl: If file is
open, a VSPC service request
VClOSE or DClOSE is issued;
for FSM auxiliary processor.
a TFSCRH EXIT is issued; for
GDDM auxiliary processor.
GDDMCRET is called, and if no
more paths remain. then

licensed Material--Property of IBM
28 VS APl Program logic

GDDMSOFF is also called.

An SCV is built, including
flag SCVFDOFR, which
indicates that both partners
have retracted, and a VSPC
service request SRET is
issued. The APFT entry is
updated if the other variable
for a connection is active;
the entry is cleared if it is
not. [APlPAPRTJ

APLPAPAB

c. Offer to internal auxiliary
processor. The APFT entries
are searched to determine if
this is a new connection or
the second variable for an
existing connection.
Accordingly, a new APFT entry
is built, or the existing
APFT entry is modified. For
offers to the FSM internal
auxiliary processor, only one
connection is allowed at any
one time. For offers to the
GDDM internal auxiliary
processor, a maximum of seven
connections are allowed at
anyone time. In addition,
concurrent sharing with the
FSM and GDDM internal
auxiliary processors is not
allowed. An SCV is built,
including flag SCVFDOFR,
which indicates that both
partners have offered, and a
VSPC service request SOFR is
issued. [APlPAPOF)

For the VSPC command and
alternate input auxiliary
processors, the initial value
of the variable (if any) is
checked and the return code
is set in the APFT (in case
the user references the
variable).

APLPAPAB

d. Set access control when
partner is an internal
auxiliary processor. SCVACV
in the SCV is set to binary
'1111'. [APlPAPAC]

APLPAPAB

e. Copy when partner is an
internal auxiliary processor.
The return and reason codes
that indicate that the latest
value is in the workspace are
placed in PTHSRCOD.
[APlPAPPRJ

Reference or specify when
partner is an internal
auxiliary processor (finite
state machine logic. driven

J

J

J

by APFIFO action stack in
APFT): If an interlock
exists. a VSPC service
request TWAIT is issued.
[APlPAPPR]

User specifies the CTl: When
partner is file-handling
auxiliary processor, and the
VSPC file is open for
sequential input. then if the
value is null. a VSPC service
request DClOSE is issued;
otherwise. the value is
ignored. [APUSCTl]

If the APFIFO action stack in
the APFT contains a pending
"AP references CTl" action
(the usual case). the finite
state machine logic in
APlPAPPR will proceed to call
the APARCTl subroutine
immediately after the APUSCTl
subroutine. The APARCTl
subroutine contains the
entire processing logic of
the VSPC command. alternate
input. and storage display
auxiliary processors. For the
VSPC command auxiliary
processor. the VSPC service
request WCMD is issued; for
the alternate input and
storage display auxiliary
processors, the processing
consists of analyzing the
request in the user's
variable and then copying
data from one place to
another within the workspace.
For the other internal
auxiliary processors. the
APARCTl subroutine analyzes
the user's request and calls
the appropriate routine to
process it. Routines in
module APlPAPCD are called to
handle requests for the APl
data file. EBCDIC data file
and VSAM auxiliary
processors. Routines in
module APlPAPFS are called to
handle requests for the FSM
auxiliary processor. The
routine GDDMRCTl in module
APlPAPGC is called to handle
requests for the GDDM
auxiliary processor.

APLPAPCD

User specifies CTl and VSPC
file is open for sequential
output. If the value is null.
a VSPC service request DClOSE
is issued. Otherwise, data is
transferred from the
workspace to the I/O buffer,
and a VSPC service request
DWRITE is issued. [PWRITEJ

User specifies CTl and the
VSPC file is open for direct
input or update. If the value
is null. VSPC service request
DClOSE is issued; otherwise,
the value is examined to
determine whether the request
is to read or write. [APIO]

If the request is to read, a
VSPC service request DREAD
for specified record is
issued. Data is left in I/O
buffer until the user
references DAT. [PRDDIR]

If request is to write. data
is transferred from the
workspace to the I/O buffer,
and a VSPC service request
DWRITE for a specified record
is issued. [PWRITE]

User specifies CTl and the
VSPC file is not open. An
appropriate VSPC service
request corresponding to the
user's request is issued.
[APCREATE. APFIlSIE. APSHARE,
APPASSWD. APOPEN, APDROP]

User specifies CTl and
partner is VSAM file
auxiliary processor. An
appropriate VSPC service
request corresponding to the
user's request is issued. If
the request ;s to write. data
is first transferred from the
workspace to the I/O buffer.
If the request is to read.
the data is left in the I/O
buffer until the user
references DAT. [APVIO]

User references CTl and the
VSPC file is open for
sequential input. VSPC
service request DREAD is
issued. and data is
transferred from the I/O
buffer to the workspace.
[PRDSEQl

APLPAPFS

User specifies CTl and
partner is FSM auxiliary
processor. If not already
obt~ined in previous
connections, FSM auxiliary
processor obtains storage out
of user's VSPC workspace
quota. size depending on
number and characteristics of
FSM fields defined, for use
as FSM work area. [FSMFORMT]

If user issues request to
read from display screen.
VSPC TSFSM READ service
request is issued. For read
and read-format requests,

licensed Material--Property of IBM
Section 2. Method of Operation 29

data is transferred to
workspace when user next
references OAT. [FSMREAD,
FSMGET, FSMRFORM]

If user issues a request to
write to display screen, data
is transferred to FSM work
area and VSPC TSFSM WRITE
service request is issued.
[FSr1!.JRITEJ

If user issues a request to
format, modify field
characteristics, modify field
intensity, set cur~or
position, or sound alarm, the
request data is recorded in
FSM work area to be
co~municated to VSPC at the
next display screen read or
wr i te request. [FSI1FORf1T,
FSm~TYPE, FSMMINT, FSMSETC,
FS~mUZZJ

If request is to make hard
copy of display screen data,
V5PC T5FSM PAGE service
request is issued. [FSMHCOPY]

APLPAPGC

If this is the first
invocation of GDDMRCTl for
this path (connection via a
CTl-DAT pair), the GDDXINIT
routine in module APlPAPGD is
called to initialize the
path.

If OAT variable was specified
by the user, it is
referenced; the CTl variable.
The CTl variable specified by
the user is analyzed, and the
appropriate series of GOOM
requests are built. The GODX
routine in module APlPAPGD is
called to issue each GDOM
request that is built. The
output paramet~rs from all
the GDDM requests are
accumulated and formatted
into numeric and character
output buffers, which are
later transferred into the
user's workspace by the
GDDMSCTL and GDDMSDAT
routines (in module
APlPAPGB), respectively.
Certain GDDM auxiliary
processor requests are
internal to the auxiliary
processor and do not involve
issuing a GDDM request; these
internal requests are handled
entirely within the GDDMRCTL
routine. [GDDMRCTLJ

Licensed Material--Property of IBM
30 VS APl Program Logi c

APLPAPGD

A path control block index is
allocated. If this is the
first path to be allocated,
GDOM is initialized by
issuing SPINIT and FSQERR
requests to GOOM via the VSPC
service request TGODM.
[GDDXINITl

Request built by the caller
is analyzed for "pass
through" or "special case"
processing. Special
processing is performed for
page, query error, and
hardcopy requests. If the
request built by the caller
requires a "page select"
operation, then a GOOM FSPSEL
request is chained to the
front of the caller's
request. The VSPC service
request TGODM is issued to
pass the required request(s)
to GOOM, and the VSPC return
and reason codes are analyzed
and converted to standard
GODM return and reason codes.
[GDOX]

APLPAPAB

User references CTl Call
other cases). Return and
reason codes from prior
request are transferred to
the workspace. For GDDM
auxiliary processor the
GDDMSCTL routine is called if
return code vector buffer
exists. [APURCTLJ

User specifies DAT. Event is
recorded in APFT entry. No
further action is taken until
the user issues a write
request. [APUSDAT]

User references OAT. Data
from prior read request is
transferred from the I/O
buffer or FSM work area to
the workspace. For GDDM
auxiliary processor, the
GDDMSOAT routine is called.
[APURDAT]

APLPAPGB

CTl variable data in the GDDM
numeric output buffer is copied
into the user's workspace and is
converted to VS APL "variable
descriptor" format in the
process. The GDDM numeric output
buffer is deallocated. [GDDMSCTl]

J

J

L
DAT variable data in the GODM
character output buffer is copied
into the user's workspace and is
converted to VS APl "variable
descriptor" format in the
process. The GDOM character
output buffer is deallocated.
[GDOMSDATl

licensed Material--Property of IB~
Section 2. Method of Operation 31

DIAGRAM 1.2: COMMUNICATION WITH CMS

I'rum ('MS

1.111 Tahk'

I. Load API..

2. Initialize fur
eOl1ll1lunil'at ion wit h
(,\15. as f"llows:

a, Build executllr
glohal t'lhle, ;:.;.... _______ L._---I

(;L8L1',\8L

(aohat 'I':lhl.

h. '\':4 I1ir,' ,.w_"_'r_k_sp:..,a_c_·l_' ------:------1' ,. _____ ...,
stllrage. 1----------4----_ ;::====~

,-'th'llli.,n
Ih'ndkr

l'r,.)!r;1I11 ,,'Iw,:~
I\andl~r

:\ IWN II Itamll,',

('''nlinu~ WS

c. Build lihrary tabh:-, L-____ ____ -,/

d. Initia,"".r:-~~~_. ____ -L. ____ ..J

e. Initialize for
aSYI1l.:hrollllus cvcnt~

r. Start VS AI'!. interpreter .--_______ . .L. ____ -'"

Ttl IIl1crpl\,,'h .. '!

lIandk' a~yn.:hronllus
events, as f"llllws:

a.)'wl;!ralll
interrupl

h. Attention signal

To IlIkq'll'II.'l

I.· ('\\S "" HR ! ~

" ... \hnorillal
lermination

lIandk ~crvi.: ...
r ... qllt'~ts,-_______ ..L..._-..I

a. ""nshared
variable relluests.

Licensed Material-Property of IBM
32 VS APL Prograln Logi c

....... _----'

PERTER~

Glubal Table

Address of
Execution
Ruutine

Workspace

WSMREGSV

WS'MNSI

PERTERM

PTHYYCOD

PTHSRCOD

J

J

L

Notes for Diagram 1.2

APLSCINI

1. Attempt to locate a VM DCSS for
APl.

If a suitable DCSS is found, load
it using Diagnose 64, and
transfer to it.

If DCSS is not to be used, then
perform a LOADMOD VSAPL and
transfer to it.

APLSCINI

2. The initialization process
(module APLSCIHI) performs the
following functions at VS APl
startup:

a. Gets space for and
initializes the executor
global table. This table
(mapped by the APlCMSGL
macro) contains the PERTERM
terminal buffers and key
switches and pointers. It is
always pointed to from
location X'440' (GlBlTABl).

Scans the startup parameter
list. loads text files for
any auxiliary processors.

After the parameter list is
scanned. the APLEXIT user
EXEC is invoked to establish
the VM environment.

Sets STAE and STAX exits.

b. Allocates space for shared
memory, auxiliary processor
work areas (512 bytes per
auxiliary processor), and the

·workspace. Gives back free
space to CMS.

c. Reads the library table file
(APLIBTAB APlIBTAB) and
builds the incore library
table.

Determines if VS APl
microcode assist is to be
used.

Calls the shared storage
manager to initialize any
auxiliary processors.

Initializes pointers and keys
in the incore workspace.

d. Initializes executor services
for the stack manager, the
file subsystem, and the
ses~ion manager.

Determines if the CONTIHUE
workspace is to be
auto-loaded.

Determines if terminal is
display or typewriter and
initializes accordingly.

e. Sets SPIE exit.

f. Places service request YYON
in PTHYYCOD and passes
control to SCAPl. From there,
control is passed to the
interpreter at its entry
point APlIIHIT.

APLSCERR, APLSCTYP

3. Asynchronous handling applies to
program checks, attention exits,
and abends.

Progr2m checks (SPIE exit):
[SCSPIEl

These are handled in module
APLSCERR, routine SCSPIE (except
during VS APl startup, when it is
handled by routine SPIEXIT in
module APlSCIHI).

Routine SCSPIE does the
following:

•

•

•

•

Saves the program check
registers and P5W in WSMSURGS
~nd WSMSUPSW (in the
workspace).

If the program check occurred
in supervisor code, prints
messages 5631S, 56331, 56341,
S635I, and abnormallY
terminates VS APl with the
user code lxx, where xx is
the program check code in
decimal.

If the program check occurred
in the shared storage manager
or an auxiliary processor,
prints message APl1l41 and
handles the check as an
interpreter program check.

If the program check occurred
in the interpreter, checks to
see if the interpreter is in
a program check loop (prints
message APLI0!1 and ABEND if
so). If not in a loop, moves
the registers from WSMSURGS
to WSMREGSV and the P5W from
W5MSUPSW to W5MPCPSW and
WSMHSI.

licensed Material--Property of IBM
Section 2. Method of Oper~tion 33

If a program check loop occurs,
the registers and the PSW for the
next-to-Iast program check will
be in WSMREGSV and WSMPCPSW/NSI
and the registers and PSW for the
last fatal program check will be
in WSMSURGS and WSMSUPSW.

Attention exits (STAX exit):

The STAC exit is in APlXGCAT.
APLXGCAT saves information about
the attention and transfers
control to the address in
PTXATTN. This will point either
to a session manager routine or
to SCA TTN.

Asynchronous interrupts for the
active workspace are handled by
routine SCATTN in module
APlSCTYP, which does the
following:

• Sets attention bitCs) in the
PERTERI'1.

• If attention is pressed
during wait for message
response, completion of time
delay, or shared variable
request, posts an EeB.

• If attention is pressed
during terminal output and/or
function execution, returns
the print element to position
O.

• Returns to point of
interrupt.

Abends (STAE exit):

There are two types of STAE
exits. The subsystem STAE exit
is established by processors
calling APLXBSXT (in APLSCSVI).
When a subsequent abend occurs,
the subsystem exit CBSXTSTXE)
schedules a retry routine and
then passes control to it with
diagnostic information in the
BND.

If no exit has been requested,
message APLS620E is issued, and
the processor is marked
nondispatchable.

These are handled in module
APlSCERR by routine SCSTAE, which
does the following:

a. Prints messages S644E and
S632D.

b. Address stops the virtual
machine to allow the user to
dump storage and do problem

licensed Material--Property of IBM
34 VS APl Program logi c

APLSCFXI

determination in CP mode. At
the time of the address stop,
the following information is
relevant:

Reg. contents

R2

R8

RIO

Rll

Contains the address of
the I04-byte STAE work
area.

Contains the ABEND
code.

Contains the address of
the VS APl supervisor
global table.

Contains the address of
the VS APL incore
workspace slot. (If the
ABEND code is lxx, then
the workspace has the
program-check PSW and
registers.)

4. Service request handling:
[routine APlFXIIM]

Service requests allow the
interpreter to interact with its
environment (for example, type a
line, load a w~rkspace). Any
module in the interpreter may
issue a service request. The
linkage is:

L
BALR
DC

RI, =VCAPlFXIIM)
RO,Rl
AL2CYYCODE)

Routine APlFXIIM is in executor
module APlSCFXI. It does the
following for every service
request:

a. Saves the general registers
in WSMREGSV (except for
YYDUMP, for which we want to
preserve the contents of
WSMREGSV), the floating
registers in WSMREGFO, F2,
F4. F6, and the address of
the caller's resume point
CRO+2) in WSMNSI. CAll WSM
fields are in the workspace.)

b. Changes the protect key in
the PSW from X'D' (the
interpreter protect key) to
X'E' (the executor key).

Changes the storage key of
the first 4K bytes of the
workspace from key X'D' to
X'E' so the executor can
store data thera.

J

J

J

c. Adds the processor time used
by the interpreter to an
accumulated-processor-time
field (CMSCPUAC) for the
quad-AI system variable.

d. Stores the YYCODE (which
determines the type of
request) in the PERTERM
(field PTHYYCOD).

e. looks up the request type in
YYTABl (module APlSCFXI) and
gets the address of the
execution routine.

f. Calls the execution routine
to execute the service
request. The execution
routine will return with the
service request return code
set in PTHSRCOD.

g. Updates the WSMASYHC bits in
the workspace to reflect the
latest status of asynchronous
events (for example,
attention).

h. Changes the storage key of
the first 4K bytes of the
workspace from X'E' back to
X'D' 50 the interpreter can
stot'e data there.

i. Sets the current time in
CMSHOlDT so that proces?9.r
time for the interpreter can
be accumulated for quad-AI.

j. Goes back to interpreter in
PSW key X'D' at its entrY
point, APlIIHIT. There, the
interpreter's environment is
restored, and control is
returned to the instruction
following the service
request.

For a description of the service
request codes and the names of
the CMS executor routines that
handle them, see "Values,
Parameters, and Return Codes for
Service Requests" under "Service
Request Calls" in "Section 6.
Diagnostic Aids."

For shared variable processing,
control is passed to ASVPSRVC and
then to ASVPSERV to route the
request to the appropriate
routine in the shared storage
manager. (See Diagram 1.2.1:
"Shared Storage Manager.") After
control returns to ASVPSERV, each
auxiliary processor whose wait
has been satisfied receives
control. Control is then returned
to the interpreter.

Licensed Material--Property of IBM
Section 2. Method of Operation l5

DIAGRAM 1.2.1: SHARED STORAGE MANAGER (eMS AND TSO)

hom ASVPSERV KMS): Diagram 1.2
or APLYl'SFRV (TSO): Diagram 1.4

~----------~--------------~
Register 0

L.-____ -..JJ.rlll1l :\SVPSERV
Diagram I. 2

Register 0

SCV

St"VV,\LUE

VAB

VABDATA

scv

pev

I. Initialize for shared
variahle processing. ,------"'------.... "

Process shared variable
commands as follows:

a. Act'ess control-_____L ____ --'

b. Offer shared
varia hIe. ,---------""-------'

c. Shared variable
specifica tion

d. Shared variable
reference

c. Query shared
variable status.

f. R.:tract shared
variable.

IJpdate value of
shared variable.

4. Terminate shared
variable processing. ,------"------...........

Return

L;censed Mater;al--Property of IBM
36 VS APL Program Logi c

J

PARSON
'-----------'

Register 2

J
VABPIJ)J

VABACV

VABACVI

VABFLAGS

VABECEI

VABDATA

VABDSIZE

VABNAMEL

VABNAME

VAB

VABDATA

SCVVALUE

Sl"VFLAGS

J

PARSON

L
Notes for Diagram 1.2.1

Return codes from each step are
passed in registers 15 and O.

APLSHGET

1. This function occurs as a result
of an explicit request for the
shared ~ariable processor or
implicit request through a shared
variable command. Sp~ce is
obtained from shared memory for
the processor control block.
[PRS]

APLSHEPB

The PRSID, PRBSPACQ, PRBVARSQ,
and PRBECB fields of the PRB are
set with data from the processor
control vector. [PCV]

APLSHSOU

The count of processors using the
shared variable facility is
updated in the PARSON field of
the shared memory data area.

2. Shared variable commands are
processed as follows:

APLSHSRD

a. Access control [0 SVC]. The
address of the field in the
VAB data area that
corresponds to the SCV fields
of the offered shared
variable is returned in
register 2.

APLSliACC

The ACV, VABACV, and SCVACV
fields of the VAS area are
·set to allow access control.

APLSHGET

b. Offer [0 SV01. Space is
obtained from shared memory
for the variable control
block. [VAB]

APLSHBVB

Fields of the VAB are set for
initial offer.

APLSHOFR

For counter offer or general
offer, the fields are
updated.

c. Specification of a shared
variable. A new value for a
shared variable is processed
as follows:

APLSHSRD

The address of the VAB field
corresponding to the SCV
fields of the shared variable
is returnQd in register 2.

APLSHPUT

Space used by the previous
value is freed.

APLSHGET

Space required for the new
value is acquired.

APLSCSVI (CMS), APLSH5PC,
APLYUSVI (TSO)

The new value ;s entered in
the VABDATA field of the VAS.
If necessary, the shared
variable partner is posted.

APLSHSRD

d. Reference. The address of·the
VAB field corresponding to
the SCV fields of the shared
variable is returned in
register 2.

APLSHREF

The latest value of the
variable is moved from shared
memory to the buffer.

APLSCSVI (CMS), APLYUSVI
(TSO)

If necessary, the shared
variable partner is posted.

The storage block for the
data is freed if both
partners of the shared
variable have obtained the
data.

e. Query [0 SVQ]. For request for
partner identification and
offer numbers or for variable
names and offer numbers, a
list is constructed in the
buffer whose address is in
the SCVVALUE field. For
request for single variable,
information is entered in the
SCV fields.

APLSHSRD

f. Retract. The address of the
VAB field corresponding to
the SCV fields of the shared
variable is returned in
register 2.

Licensed Material--Property of IBM
Section 2. Method of Operation 37

APLSHSRD

APLSHRET

SCVFLAGS are updated to
reflect the degree of
coupling.

APLSHSUB

VAB and PRB fields are
updated to reflect
retraction.

APLSHPST

If necessary, the shared
variable partner is posted.

APLSHPUT

Shared memory used by the VAS
is returned.

3. The address of the VAB field
corresponding to the SCV fields
of the shared variable is
returned in register 2.

Licensed Material--Property of IBM
38 VS APl Program Logi c

APLSHCPV

The value of the data is moved
from shared memory to the buffer
whose address is in SCVVAlUE.

4. For logoff from the shared
variable processor, processing
occurs, as follows:

APLSHSOF

The number of processors in the
PARSON field of shared memory is
decremented.

APLSHSUB

Each variable offered by the
processor is retracted.

APLSHPUT

Shared memory used by the PCV
block is released.

L

DIAGRAM 1.2.2: AUXILIARY PROCESSORS (CMS)

FeR

, rlll1\ Dia~lalll l.~.'

\ 1.1 1'(IS·' man ••

I. Iniliali/l' (01111"01 hlock~ anu
si)!.n Ilil II' shutl'u storage
'll:lIlagcr. 1·.lltl'r wait stal~.

~ hn PC\" ITB. process
shu red '·ariahle. Pcri"urm
(lperatilltb specific II) tit"
particulm auxiliary proc,'SSOI".

3. hll sev LeB. examine post
~oJ~ al1J take action
appl"llpriat~ to the particulal
auxiliary processor. _-----L---l

scv

L._-----'
SVPFC8L.

scv

Licensed Material--Property of IBM
Section 2. Method of Operation 39

Notes for Diagram 1.2.2

1. Inititaltzatton

Initialization is performed as
follows: The process control vector
is completely filled in. The SCVID
and SCVECB fields of the shared
control vectors are filled in. The
addresses of the ECBs are p1ace~ in
SVPECBl. The PCV ECBSW switch is set
in SVPECBl to identify the PCV ECB.
The auxiliary processor signs on to
the shared storage manager.

The auxiliary processor waits for an
ECB to be posted. (WAIT]

APLI00: eMS eOHHHAND

2. For PCV ECB

When control is returned from the
wait state and the PCV ECB is posted,
the following occurs:

An SCV is assigned to be used by the
shared variable. [SCVlOOP]

A query is issued to find the
variable's name. [DOQUERY]

A counter-offer is issued to complete
the sharing of the variable.
[QUERYSUBl

The variable is referenced.
(GETNXVAR]

The type of command to be executed
(CP or CMS) is determined. [REFOKl

The auxiliary processor waits for an
ECB to be posted. [WAITl

3. For SCV ECB

When control is returned from the
wait state and an SCV ECB is posted.
the post code is examined. [CHKPSTCD]

Processing then occurs as follows:

If the partner referenced the
variable, the return code is
specified. [RCODE]

If the partner set the access control
vector, this event is ignored.
[ClRPSTCDl

If the partner retracted the
variable, the variable is retracted
and the SCV is made available for
another variable. [RETRACT]

If the partner specified the
variable, the variable is referenced
and the command is executed.
[GETNXVAR, TRANZCOD]

The return code is specified. [RCODE]

Licensed Materia1-----Property of IBM
40 VS APl Program logic

The auxiliary processor waits for an
ECB to be posted. [WAIT]

APLI01: ALTERNATE INPUT

2. For PCV ECB

When control is returned from the
wait and the PCV ECB is posted,
processing occurs as follows:

An SCV is assigned to be used by the
shared variable. [SCVLOOP]

A query is issued to find the
variable's name. (DOQUERY]

A counter-offer to complete the
sharing of the variable is issued.
[QUERYSUB]

The variable is referenced.
[GETNXVAR]

The stacking and conversion options
are determined. [REFOK]

The auxiliary processor waits for an
ECB to be posted. [WAIT]

3. For SCV ECB

When control is returned from the
wait state and an SCV ECB is posted,
the post code is examined. [CHKPSTCD]

Processing occurs as follows:

If the partner referenced the
variable, the return code is
specified. [RCODE]

If the partner set the access control
vector, this event is ignored.
[CLRPSTCDl

If the partner retracted the
variable, the variable is retracted
and the SCV is made available for
another variable. [RETRACT]

If the partner specified the
variable, it is referenced and
converted. The line is stacked
according to the options determined
in step 2 above. [GETNXVARl

The return code is specified. (RCODE]

The auxiliary processor waits for an
ECB to be posted. [WAIT]

APLII0: eMS FILE

2. For PCV ECB

When control is returned from the
wait and the PCVECB is posted,
processing occurs as follows:

An SCV is assigned to be used by the
shared variable. [SCVlOOP]

J

J

A query is issued to find the
variable's name. [DOQUERY]

A counter-offer to complete the
sharing of the variable is issued.
[QUERYSUBJ

The variable is referenced.
[GETNXVAR]

The conversion option is determined,
and the file name is placed in the
FSCB. [INIT]

Whether the file exists or not is
determined, and th~ rest of the FSCB
is filled in. [TRYFILEJ

The auxiliary processor waits for an
ECa to be posted. [WAIT] 3. For SCV
ECB

When control is returned from the
wait and an SCV ECB is posted, the
post code is examined. [CHKPSTCD]

Processing continues8s follows:

If the partner referenced the data
variable, the file is read and the
data converted according to the
options determined in step 2 above.
[PARTREFl

The converted data is then specified.
[SPECll

If the partner referenced the control
variable, the return code from the
last operation involving the data
variable, the read-pointer, the
write-pointer, and the number of
records to be processed are specified
as a 4-element integer vector.
[RCODE]

If the partner set the access control
vector, this event is ignored.
[CLRPSTCOl

If the partner retracted the
variable, the file is closed, the
variable is retracted, and the SCV is
made available for another variable.
[RETRACT]

If the partner specified the data
variable, it is referenced and
converted according to the options
determined in step 2 above.
[GETNXVAR,CONVERTl .

The converted data is then written to
the CMS file. [WRITE1]

If the partner specified the control
variable, the read and write pointers
and number of records to be processed
are altered as specified. [SETCTL]

The auxiliary processor waits for an
ECB to be posted. [WAIT]

APLlll: QSAt1

2. For PCV ECB

When control is returned from the
wait and the PCV ECa is posted,
processing occurs as follow's:

An SCV is assigned to be used by the
shared variable. [SCVlOOP]

A query is issued to find the
variable's name. [DOQUERY]

A counter-offer to complete the
sharing of the variable is issued.
[QUERYSUB]

The variable is referenced.
[GETNXVAR]

The conversion option is determined
and the file name is placed in the
DCB. [CHKPARMJ

The auxiliary processor waits for an
ECB to be posted. [WAIT]

3. For SCV ECa

When control is returned from the
wait and an SCV ECa is posted, the
post code is examined. [CHKPSTCOJ

Processing continues as follows:

If the partner referenced the data
variable, the file is read and the
data converted according to the
options determined in step 2 above.
[PARTREFJ

The converted data is then specified.
[SPEClJ

If the partner referenced the control
variable, the return code from the
last operation involving the data
variable is specified. [RETHCODEJ

If the partner set the access control
vector, this event is ignored.
[CLRPSTCOl

If the partner retracted the
variable, the file is closed, the
variable is retracted, and the SCV is
made available for another variable.
[RETRACT]

If the partner specified the data
variable, it is referenced and
converted according to the options
determined in step 2 above.
[GETNXVAR,CONVERT]

The converted data is then written to
the OS file. [WRITE]

If the partner specified the control
variable, it is referenced and
ignored. [CLRPSTCOl

licensed Material--Property of IBM
Section 2. Method of Operation 41

The auxiliary processor waits'for an
ECB to be posted. [WAIT]

APL123: VSAH

2. For PCV ECB

When control is returned from the
wait and the PCV ECB is posted,
processing occurs as follows:

An SCV is associated with the
variable. [SCVlOOP]

A query is issued to find the
variable's name. [DOQUERY]

If the name does not begin with CTl
or OAT or if it is greater than 11
characters or if the name is already
shared, the offer is not accepted.

A counter-offer to complete the
sharing of the variable is issued.
[INIT]

After a counter-offer, the auxiliary
processor waits. [WAIT]

3. For SCV ECB

When control is returned from the
wait and an SCV EeB is posted, the
post code is examined. [CHKPSTCD]

Processing continues as follows:

If the partner retracted the
variable, the sharing of the variable
is terminated, the file is closed (if
it was opened), and the SCV is made

licensed Material--Property of IBM
42 VS APl Program logic

available for another variable.
Processing of any outstanding offer
is attempted. [RETRACT]

If the partner specified the control
variable, an appropriate action is
performed:

a. For an OPEN request, the file
is opened if available but
not opened if already open.
[VOPEN]

b. For a CLOSE request, the file
is closed. [VClSJ

c. For READ, the file is read.
and the data is specified
into the OAT variable.
[FllREAD]

d. For WRITE. the OAT variable
is referenced, and its data
written to the file.
[FIlWRITE]

e. For ERASE and POSITION, the
appropriate action is taken.
[VERASE, VPOS]

f. For KEYFEEDBACK, the key of
the record last processed is
specified in the OAT
variable. [KEYFDBK]

The control variable is
specified with a 2-element
return code for all
operations.

J

J

L

DIAGRAM 1.3: COMMUNICATION WITH CICS/VS

FromCICS ..

Sign-on messagl! and
Jirectory record

Workspace containing
YY code

User perterm

1. Sign user on to system.

"1 Handle requests from the
~ ____________ -L __ ~~

interpreter.

3. Handle input when terminal
is in listen state.

4. Sign user off system.

User pcrterm and sign-on
table

Workspace, user perterm,
terminal input and output

Dirllc\ory record and
si~n-I)n table

Return

licensed Material Property of IBM
Section 2. Method of Operation 43

Notes for Diagram 1.3

APLKASON, APLKAGBL, APLKLIBB

1. APLKASON calls APLKAGBL which
determines whether the global
table is active and. if not.
loads the global modules and
calls APLKLIBB to initialize the
library control blocks.

Using the sign-on message as
input. APLKASON initializes a
perterm for the user.

Using the user profile directory
record as input. APLKASON then
performs user and terminal
verification. attaches the user
task (APLKADSP), and exits.
Output is the user perterm (PTH.
PTX. PTK, and PRO control
blocks).

APLKADSP, APLKIFIX

APLKADSP sets up the user task
environment. including APLKWAIT
and APLKEXIT macro services and
dependent process control.
APLKADSP then starts the
interpreter process by calling
APLKIFIX, which sets up the
interpreter interface and calls
APLASCHD and APLKLIBC.

APLASCHD

Initializes the terminal.

APLKIFIX

2. Accepts requests from the
interpreter in the form of YY
codes passed in the workspace
and, based on the type of
request, routes control as
follows:

Module Entry Point(s) Function

APLASCHD TYO. TYI. TYOI Terminal
Services
for I/O

APLKISVI SON, SOFFER.
SRET, SQUERY.
SACC, SSPEC,
SREF, SCOPY,
SOFF

APLKLIBU COPI, COPO,
COPZ, LOAD.
COPA, SAVE,
DROP. LIB,
CLEAR. WSID,
PASS

Shared
variable
services

Library
services

Licensed Material--Property of IBM
44 VS APL Program Logi c

Module Entry PoinUs) Function

APLKMSCA TIME, QAI. Time and
DELAY, DUMP, error
SYSER, CMD services

APLKMSCB QZ, ATOFF, Mi scella-
TABS. WIDTH. neous
MBL. TRAN. local and
QUOTA, OFF unsup-

ported
services

APLASCHD

Performs terminal 1/0.

APLKEMGR, APLKEHCP

The destination manager. Provides
an interface to CICS transient
d~ta and to 3270 printer
terminals.

APLKLIBU, APLKLIBF, APLKLIBG,
APLKLIBV, APLKLIBA. APLKLIBB,
APLKLIBR

The library manager. Provides.
access to VS APL worKspaces and
files. all of which are stored in
the APL library. In performing
these operations. these modules
calIon CIes file services and
DOS/VS or OS/VS VSAM services.

APLKISVI, APLKSSVP, APLKSSUB,
APLKADEF

The shared storage manager and
the interpreter interface to the
shared storage manager. Provides
communication between auxiliary
processors and APL users and
manages the use of shared memory.

APLKMSCA, APLKHSCB

Performs miscellaneous services
for the interpreter. In
performing these services, the
eICS dump sorvices and global
task timer services may be
called.

APLKDCPS. APLKVOPS, APLKASTB

Performs services dependent on
use of the operating system.
Modules APLKDOPS (for DOS/VS) and
APLKVOPS (for OS/VS) provide VSAM
macros. handling of VSAM and ISAM
return codes, and timer support
for time slicing. APlKASTB
provides support for DOS/VS page
fault overlap condi~ion5.

Note: The following information
applies to both steps 1 and 2 of
diagram 1.3.

J

J

APLKLIBO, APLKLIBV, APLKLIBA

Services a library request made
by APLXlIBF or APlKLIBU. These
modules execute as separate
CICS/VS tasks started by
APlKASTB. APlKLIBG gains control
first, and performs most of the
services for APLKlIBU. For
APlKlIBF services, it calls
APlKlIBV. Either APLKlIBG or
APlKLIBV may call APlKlIBA to
allocate or deallocate space in
the library.

APLKASON, APLKTCTL, APLKTCUR, APLXGKT

3. APlKASOH is initiated as a
sign-on attention transaction if
the user sends input when the
terminal is in listen state (in
other words, when APl has more
work to do for the user, but no
terminal read or write operations
are outstanding).

If the APl user. is already signed
on, APlKASON give control to the
APlXGKT if GDDM is being used,
control is given to APlKTCTl.

APLKLIBC, APLASCHD, APLXHSCB

4. APlXMSCB controls sign-off
processing, calling on library
and session manager termination
routines to assist in sign-off
processing. APLKlIBC cle~ns up
the workspace storage and
APlASCHD initiates session
manager and terminal cleanup as
described in diagrams 8.1 and
8.2.

APLKIFIX, APLKADSP, APLKAGBL

When APlKIFIX receives control
from APlKMSCB after a YYOFF
request, it exits to APlKADSP;
APlKADSP then terminates any
processing being done by
dependent auxiliary processors,
deletes the user's sign on entry
from the sign on table, and, if
no other users are signed on to
the system, causes the global
task to terminate processing
(unless independent auxiliary
processors are ~till using the
shared storage manager).

licensed Material--Property of IBM
Section 2. Method of Operation 45

DIAGRA" 1.3.1: SHARED STORAGE "ANAGER (CICS/VS)

I rom VS APL nestvs
L\l','Ulor

Rl

I, Initialize for Shared Variable
Manager.

2, Clear shared memory.
Terminate shared variable
processing.

3. Perform a) SIGNON and b)
SIGN OFF.

4. Process shared variable
processing.

a) Set Access Control

b) Retract shared variable

d OFFER

d) COpy

e) QUERY

Ii REFERENCE

g) SPECIFICATION

licensed Material--Property of IBM
46 VS APl Program logic

Return

Return

Return

Return

. Shared
Memory

j

J

J

L
Notes far Diagram 1.l.1

The return code and the reason code
are passed in R15 and in RO. For
tasks 2, 3, and 4 on entry, RO has
the request code.

APLKSSUB

1. Obtains space for and initializes
the shared memory (SM). The
CICS/VS service DFHSC TYPE =
GETMAIN, CLASS = PROGRAM is
employed to derive the storage.
[APLKSIHI]

APLKSSVP

2. Storage used by the shared
variable processor (SM) is
released and shared variable
processing is terminated.
[APLKSSR]

APLKSSVP [APLKSSRJ

3. Options when the terminal is in
listen state:

a. SIGN-ON: A processor control
block (PERPROC) is obtained
from SM for the user. The
user 10, shared variable
number quota, and space quota
are placed in the PERPROC.

b. SIGH-OFF: All of this user's
shared variables are
retracted, and PERPROC is
released.

APLKSSVP [APLKSSRJ

4. Options when the user signs off
the system:

a. SET ACCESS CONTROL: The
access control vector (ACV)
for a shared variable is
altered. The effective ACV is
returned.

b. RETRACT: Retracts the sharing
of a single variable. If the
partner has already
retracted, the PERSHARE for
this variable is released.

c. OFFER: Offers to share a
single variable with another
processor. If it is not a
counter-offer, a share entry
(PERSHARE) for this variable
is obtained from the SM.

d. COPY: Copies the latest value
of a shared variable. The
access state of the variable
is not changed.

e. QUERY: Obtains information
about shared data items.

f. REFERENCE: References the
latest value of a shared
variable.

g. SPECIFICATION: Specifies a
new value for a shared
variable.

Licensed Material--Property of IBM
Section 2. Method of O~eration47

DIAGRAM 1.3.2: AUXILIARY PROCESSORS (CICS/VS)

I-rom
modul~ A.PLKAl>SI'

SCVand
work area

Perfnrlll the services assodated with
one of the following auxiliary
processors (AI's):

,.. -I. ('J(,SIVS ('nllll11anJ

2. Storage Display

J. VS APL Session Manager
('ommand

4. APL Data File

5. VSAM

6. full Scrt:cn Management

7 DI..:'I

x. (lDml

l). Transienl Data

10. Altcrna Ie I npu t

Licensed Material--Property of IBM
48 VS APL Program Logi c

J

-~
Return

I .

J

Notes for Diagram 1.3.2

APLI00K, APLIOOKO

1. APl100K issues CICS/VS commands,
and attaches APlI00KO, which
starts CICS/VS transactions.

API02K

2. Displays storage for the user.

AP120

3. See Notes for Diagram 8.4.1.

APL121K

4. Creates, writes. updates, reads.
and/or deletes APl object files.
Uses library services (part of
the CICS/VS executor) to access
the APl library.

APL123K

S. Using CICS/VS file services.
reads from and writes to VSAM and
ISAM data sets.

APL124K

6. Permits APl functions to format
and control the user display
terminal. Calls the terminal

manager (part of the CICS/VS
executor) to provide physical
terminal services.

APLI02K

7. Displays storage for the user.

APL125K

8. Provides an interface to CICS
DL/I services for the CICS/VS
user.

APL126

9. See Hotes for Diagram 8.4.2.

APL132K

10. Accesses CICS/VS transient data.
including both intrapartition and
extrapartition destinations (for
example, sequential devices>.
Communicates with transient
destinations through the
destination manager (part of the
CICS/VS executor).

APL139K

11. Passes user-supplied data from
the shared storage manager to the
session manager.

licensed Material--Property of IBM
Section 2. Method of Operation 49

DIAGRA" 1.4: CO""UNICATION WITH TSO

From TSO

MVS Catalo~

A'--· I

: ... --.---,.~

Addresses

ContinueWS

Via SPIJ-: exit

). Initialize for communication
with TSO. as follows:

a. Build executor
global table

h. Build MVS catalog list. '----T-"---..........

c. Acquire workspace w;;;k;;;;;~-l storage-_~ _____ -L. ____ .r-....I L. '_--= __ ~

d. Initialize for
asynchronous events

e. Start VS APL PERTERM
interpreter ...-______ .1.-___ --3,

To Interpreter
2. Handle asynchronous events.

as follows:

a. Program interrupt

b. Attention signal
To TSO via

c. Abnormal tClmination

3. Handle service requests. ...-________ "-_--J

a. ~on shared variable
requests

b. Shared variables and
session manager

~==.".."....--I

licensed Material--Property of IBM
50 VS APl Program logi c .

L

L

L

t~otes for D t agram 1.4

APLYUINI .
J. • The initialization process

(module APlYUINI) performs the
following functions at VS APl
startup:

Gets space for and initializes
the executor global table. This
table (mapped by the APLTSOGl
macro) contains the PERTERM,
terminal buffers, switches and
pointers. It is always pointed to
from all VS APl tasks from each
task's TCBFSA field.

Scans the invocation parameters
and sets session values. Loads
any auxiliary processor modules.

Allocates space for shared
memory, atixiliary processor work
areas (512 bytes per auxiliary
processor), and the workspace.
Gives back FREESIZE amount to
TSO.

Determines if VS APl microcode
assist is to be used.

Calls the shared storage manager
to initialize any auxiliary
processors, including the session
manager task and the GDDM task.

Initializes pointers and keys in
the incore workspace.

Determines if the COHTINUE
workspace is to be auto-loaded.

Determines if terminal i9 display
(with or without session manager)
or typewriter and initializes
accordingly.

S~ts SPIE, STAE. STAX (attention)
exi·ts.

Places service request YYON in
PTHYYCOD and passes control to
SCAPl. From there, control is
passed to the interpreter at its
entry point APLIINIT.

APLYUERR

2. Asynchronous handling applies to
program checks, attention exits,
and abends. .

Program checks (SPIE exit):
[SCSPIEl

These are handled in module
APlYUERR. routine SCSPIE (except
during VS APL startup, when it is
handled by routine SPIEXIT in
module AP~YUINI).

Routine SCSPIE does the
followi n9:

Saves the program check registers
and PSW in WSMSURGS and WSMSUPSW
(in the workspace).

If the program check occurred in
supervisor code, prints messages
APlI02I, APlI04I, APlI05I,
APLI06I, and abnormally
terminates VS APl with the user
code lxx, where xx is the program
check code in decimal.

If the program check occurred in
the shared storage manager or an
auxiliary processor, prints
message APl114I and handles the
check as an interpreter program
check.

If the program check occurred in
the interpreter, checks to see if
the interpreter is in a program
check loop and prints message
APlI0!I and ABEND if in a loop.
If not in a loop, moves the
registers from WSMSURGS to
WSMREGSV and the PSW from
WSMSUPSW to WSMPCPSW and WSMHSI.

If a program check loop occurs,
the registers and the PSW for the
next-to-Iast program check will
be in WSMREGSV and WSMPCPSW/NSI,
and the registers and PSW for the
last fatal program check will be
in WSMSURGS and WSMSUPSW.

Attention exits (STAX exit):
[SCATTN]

These are handled by routine
SCATTN in module APlYUERR, which
does the following:

Sets attent'i on bi H s) in the
PERTERM.

If the attention is pressed while
an auxiliary processor is
exe~uting, the auxiliary
processor is terminated. (The
purpose is to break endless or
uncontrolled loops.)

If the attention is pressed while
auxiliary processors and VS APL
are in deadlock, the deadlock is
broken. (An auxiliary processor
has issued a wait without first
posting any other auxiliary
processor or VS APl for work.>

Returns to point of interrupt.

Abends (STAE exit): [SCSTAEl

These are handled in module
APLYUERR by routine SCSTAE, which
does the following:

Licensed Material-----Property of IBM
Section 2. Method of Operation 51

•

•

Prints messages APLllSr and
APLI03D.

Attempts to save a CONTINUE
workspace.

• Terminates VS APL.

APLYUFXI

3. Service request handling:
[routine APLFXIIMl

Service requests allow the
interpreter to interact with its
environment (for example, type a
line, load a workspace). Any
module in the interpreter may
issue a service request. The
linkage is:

L
BALR
DC

Rl,=V(APLFXIIM)
RO,Rl
AL2(YYCODE)

Routine APLFXIIM is in executor
module APLYUFXI. It does the
following for every service
request:

• Saves the general registers
in WSMREGSV (except for
YYDUMP, which preserves the
contents of WSMREGSV), the
floating registers in
WSMREGFO, F2, F4, F6, and the
address of the caller's
resume point (RO+2) in
WSMNSI. (All WSM fields are
in the workspace.)

• Adds the processor time used
by the interpreter to an
accumulated-time field
(CMSCPUAC) for the quad-AI
system variable.

• Stores the YYCODE (which
determines the type of
request) in the PERTERM
(field PTHYYCOD).

• Looks up the request type in
YYTABL (module APLYUFXI) and
gets the address of the
execution routine.

Licensed Material--Property of IBM
52 VS APL Program Logic

•

•

Calls the execution routine
to execute the service
request. The execution
routine will return with the
service request return code
set in PTHSRCOD.

Updates the WSMASYNC bits in
the workspace to reflect the
latest status of asynchronous
events (for example,
attention>.

• Sets the current time in
CMSHOLDT so that processor
time for the interpreter can
be accumulated for quad-AI.

• Goes back to interpreter in
PSW key X'D' at its entry
point, APLIINIT. There, the
interpreter's environment is
restored and control is
returned to the instruction
following the service
request.

For a description of the service
request codes and the names of
the TSO executor routines that
handle them, see "Values,
Parameters, and Return Codes for
Service Requests" under "Service
Request Calls" in "Section 6.
Diagnostic Aids."

For shared variable processing,
control is passed to AP1YURVC and
then to ASVPSERV to route the
request to the appropriate
routine in the shared storage
manager. See Diagram 1.2.1:
"Shared Storage Manager (CMS and
TSO)." After control returns to
ASVPSERV, each auxiliary
processor whose wait has been
satisfied receives control.
Control is then returned to the
interpreter.

J

J

L
pIAGRAH 1.4.1: AUXILIARY PROCESSORS (TSO)

ECB

From Diagram 1.2.1
\ia ASVPOST macro

I. Initialize control blocks and
sign on to shared storage
manager. Enter wait state.

2. For PC'V EC'B, process shared
variable. Perform operations
specific to the particular
auxiliary processor. ,.--___L._..,

3. For SC'V ECB. examine post
code and take action
appropriate to the
particular auxiliary processor.

Return

PCV

scv

SVPECBL

SCV

Licensed Material--Property of IBM
Section 2. Method of Operation .53

Notes for Dfagram 1.4.1

1. Initfa1fze

Initialization is performed as
follows: The process control vector
is completely filled in. The SCVID
and SCVECB fields of the shared
control vectors are filled in. The
addresses of the ECBs are placed in
SVPECBL. The PCY ECBSW switch is set
in SYPECBL to identify the PCY ECB.
The auxiliary processor signs on to
the shared storage manager.

The auxiliary processor waits for an
ECB to be posted. (WAIT]

APLYU100: TSO COMMAND

2. For PCV ECB

When control is returned from the
wait state and the PCV ECB is posted,
the following occurs:

An SCV is assigned to be used by the
shared variable. (SCVLOOPl

A query is issued to find the
variable's name. [OOQUERY]

A counter-offer is issued to complete
the sharing of the variable.
[QUERYSUB]

The variable is referenced.
[GETNXVAR]

The type of command to be executed
eTSO) is determined. [APLYUCMO]

After verifying the command, a call
is made to CMDAPO (entry point in
APLYUUSR) to confirm authority for
user to execute command.

The TSO command is ATTACHed.

The auxiliary processor waits for an
ECB to be posted. [WAIT]

3. For SCV ECB

When control is returned from the
wait state and an SCV ECB is posted,
the post code is examined. (CHKPSTCD]

Processing then occurs as follows:

If the partner referenced the
variable, the return code is
specified. [RCODE]

If the partner set the access control
vector this event is ignored.
[ClRPSTCOl

If the partner retracted the
variable, the variable is retracted
and the SCV is made available for
another variable. [RETRACT]

licensed Material--Property of IBM
54 VS APL Program Logic

If the partner specified the
variable, the variable is referenced
and the command is executed.
[GETNXVAR, TRANZCOD]

The return code is specified. [RCODE]

The auxiliary processor waits for an
ECB to be posted. [WAIT]

APLYU101: ALTERNATE INPUT

2. For PCV ECB

When control is returned from the
wait and the PCV ECB is posted,
processing occurs as follows:

An SCV is assigned to be used by the
shared variable. [SCVLOOP]

A query is issued to find the
variable's name. [DOQUERY]

A counter-offer to complete the
sharing of the variable is issued.
[QUERYSUBJ

The variable is referp.nced.
[GETNXVARl

The stacking and conversion options
are determined. [REFOK]

The auxiliary processor waits for an
ECB to be posted. [WAIT]

When control is returned from the
wait state and an SCV ECB is posted,
the post code is examined. [CHKPSTCDl

Processing occurs as follows:

If the partner referenced the
variable, the return code is
specified. [RCODE]

If the partner set the access control
vector, this event is ignored.
[CLRPSTCO]

If the partner retracted the
variablp., the variable is retracted
and the SCV is made available for
another variable. [RETRACT]

If the partner specified the
variable, it is referenced and
converted. The line is stacked
according to the options determined
in step 2 above. [GETNXVAR]

The return code is specified. [RCODE]

The auxiliary processor waits for an
ECB to be posted. [WAIT]

If remaining items are in the stack.
a GETMAIN is issued followed by
invocation of the STACK macro for TSO
execution after APL has completed
sign-off processing.

APLYU102: STORAGE DISPLAY

2. For PCY ECB

When control is returned from the
wait state and the PCY ECB is posted,
the following occurs:

If PCVESOFF was posted, APl102 signs
off. [SIGH-OFF]

If SCVEOFFR was posted, then an offer
is processed as follows: [OFFER]

If there is no free SCV, then
APl102 returns to the wait state.

If the offered name is not of the
form OAT ••• or CTl ••• , the offer
is ignored. [REFUSE]

If the offered name is of the
form CTl ••• , the access control
is set. If the offered name is of
the form OAT ••• , processing
continues with the next step.

If a match to the offered name
exists, the pair of variables
(OAT ••• and CTL •••) are
cross-connected. [CHKPAIR]

If this is a CTl .•• variable, its
initial value is referenced. If
the reference is successful, the
variable is processed at SPECOl
as if a partner had been
specified. [OFFEROK]

Following this, APLl02 returns to the
wait state.

3. For SCY ECB

When control is returned from the
wait state and an SCV ECB is posted,
the following occurs:

If the partner is retracted, the
current variable is retracted.
[RETRACT]

If the partner is specified,
processing takes place as
follows: [SPECIFY]

If the variable is of the
form OAT .•• , it is ignored
and APLl02 returns to the
wait state.

If the variable is of the
form CTl ... , it is checked to
see if it is paired, its
value is referenced, a~d the
main storage display is
processed as requested.
Storage display data is
returned in DAT by the
routine RETDATA.

Finally, a return code is set in
CTl and SSM is called to specify
CTl and DAT.

If the partner is referenced,
processing occurs as follows:
[REFER]

If CTl is referenced, the
last return code is given.
[REFERl]

If OAT is referenced, the
return code is set to 5 (OAT
referenced out of sequence).
[REFERl]

The return code is specified and
APLl02 returns to the wait state.

APLYU111: QSA"

2. For PCV SCB

When control is returned from the
wait and the PCV ECB is posted,
processing occurs as follows:

An SCV is assigned to be used by the
shared variable. [SCVLOOPl

A query is issued to find the
variable's name. [DOQUERY]

A counter-offer to complete the
sharing of the variable is issued.
[QUERYSUBl

The variable is referenced.
[GETHXVARl

The conversion option is determined
and the file name is placed in the
DCB. [CHKPARMl

The auxiliary processor waits for an
ECB to be posted. [WAIT]

3. For SCY ECa

When control is returned from the
wait and an SCV ECa is posted, the
post code is examined. [CHKPSTCD]

Processing continues as follows:

If the partner referenced the data
variable, the file is read and the
data converted according to the
options determined in step 2 above.
[PARTREFJ

The converted data is then specified.
[SPEClJ

If the partner referenced the control
variable, the return code from the
last operation involving the data
variable is specified. [RETNCODEJ

If the partner set the access control
vector, this event is ignored.
[ClRPSTCDJ

Licensed Material--Property of IBM
Section 2. Method of Operation ·55

If the partner retracted the
variable, the file is closed, the
variable is retracted. and the SCV is
made available for another variable.
[RETRACT]

If the partner specified the data
variable, it is referenced and
converted according to the options
determined in step 2 above.
[GETNXVAR,CONVERT]

The converted data is then written to
the OS file. (WRITE]

If the partner specified the control
variable. it is referenced and
ignored. [CLRPSTCDJ

The auxiliary processor waits for an
ECB to be posted. [WAIT]

APLYU210: IDAM FILES

2. For PCV ECa

When control is returned from the
wait and the PCV ECB is posted,
processing occurs as follows:

An SCV is assigned to be used by the
shared variable. [SCVlOOP]

A query is issued to find the
variable's name. [DOQUERY]

A counter-offer to complete the
sharing of the variable is issued.
[QUERYSUB]

The variable is referenced. [GETNXll

The conversion option is determined,
and the file name is placed in a DCB.
[GETDCD]

The auxiliary processor waits for an
ECB to b~ posted. [WAIT]

3. For SCV ECB

licensed Material---Property of IBM
56 VS APl Program logic

When control is returned from the
wait and an SCV ECB is posted, the
post code is examined. [CHKPSTCDl

Processing continues as follows:

If the partner referenced the data
variable, the file is read and the
data converted according to the
options determined in step 2 above.
[PARTREFJ

The converted data is then specified.
[SPECl]

If the partner referenced the control
variable, the return code from the
last operation involving the data
variable, the read-pointer, the
write-pointer, and the number of
records to be processed are specified
as a 4-element integer vector.
[RETNCODE]

If the partner set the access control
vector, this event is ignored.
[ClRPSTCDJ

If the partner retracted the
variable, the file is closed. the
variable is retracted, and the SCV is
made available for another variable.
[RETRACT]

If the partner specified the data
variable, it is referenced and
converted according to the options
determined in step 2 above.
[GETNXVAR,COHVERT]

The converted data is then written to
the BDAM file. [WRITE]

The auxiliary processor waits for an
ECD to be posted. [WAIT]

APL123: VSAH

See Diagram 1.2.2. The same code is
used for CMS and TSO.

J

DIAGRAM 2.0: INPUT RECOGNITION. TRANSLATION, AND ROUTING

I'mlll D;:I)!ram, 1.1. J.O. 4.0.5.0

WSMBUFE

I. Process spedal
conditions.

1. Output prompt and
ohtain terminal input. ,..-----"-____ ..1'.,

3. Analyze input and
rout..: to appropriate
routine:

... ...
... ...

...

... ...

FUllction Edit

J.O

Statement
Exe<.:ution

Command
Prol:cs~or

4.0

S.O

Licensed Material--Property of IBM
Section 2. Method of Operation 57

Notes for Diagram 2.0

APLITINP

1. Before terminal input is
requested, special conditions are
checked for and processed as
follows: (ITINPUT]

If workspace is newly loaded and
quad-LX is not null, the
statement "execute quad-LX" is
placed in WSMBUFF. Control is
passed to the. statement execution
routine. [DOQLX]

If force-off (PTHFOFF=l), a
continue command is placed in
WSMBUFF and control is passed to
the command processor. [ITFORCOF]

If the user's keyboard is
normally locked, the YYRWAIT
service request is issued.
[DOL~AITDJ

If attention or cancel-output is
pending (PTHATTN=l, PTHDATTN=l,
or PTHNOOUT=l), the YYATOFF
service request is issued before
terminal input is obtained.
[DOATTNJ

APLITIHP

2. The user prompt is output, and
input is obtained as follows:
(GETINP]

If workspace is in function
definition mode (FDOPEN=l), a
bracketed line number is built in
WSMBUFF. The YYTYOI service
request is issued to output the
prompt ~nd obtain input.

If workspace is in quad-prime
input mode (STQPBIT=l), WSMBUFF
is filled with blanks UP to the
position indicated by PTHCURSR.
The YYTYI service request is
issued to obtain input.

If workspace is in qUad-input
mode (STQBIT=l). a quad, colon.
and new line character are placed
in WSMBUFF. The YYTYO service
request is issued to output the
prompt.

In all other cases. ~nd following
the output of the quad-input
prompt, six blanks are placed in
WSMBUFF. The YYTYOI service
request is issued to output the
prompt and obtain input.

Licensed Material--Property of IBM
58 VS APl Program logic

APLITIHP

3. The result of the YYTYI or YYTYOI
is analyzed and processed as
follows: [CHKINPUT]

If input exceeded size of
WSMBUFF, SPACE NOT AVAILABLE
message is output, and processing
is resumed at step 1. [ITTYIZ]

If entry error. ENTRY ERROR
message is output. Then YYTYOI is
issued to output the line up to
the point of error and obtain
input. Processing is resumed at
step 3. [ITTYIZ]

If input is O-U-T. an interrupt
exit is taken. [ITTYIZ]

If any other error return from
service request, a system error
exit is taken. [ITTYIZ]

If quad-prime input, control is
returned to caller with input
length in register 7.

If input is null or all blanks,
processing is resumed at step 1.

If in function definition mode or
if first non-blank is a del, the
function edit and definition
routine is called. (See Diagram
3.0: "Function Definition and
Edit.")

If the first non-blank is a right
parenthesis, command processor is
called. (See Diagram 5.0: "System
Command Execution.")

If input is a comment, processing
is resumed at step 1.

For all other cases, ITEMPFUN is
called to build an immediate
execution temporary function
whose single statement is the
tokenized input line. See Diagram
3.2, step 2. for a description of
tokenizing. The internal name of
the function is returned in
register 4. If quad-input,
control is returned to the
caller; otherwise. the statement
execution routine is called. (See
Diagram 4.0: Statement
Execution.)

Note that function definition and
edit, statement execution
routine, and command processor
(Diagrams 3.0, 4.0, and 5.0) are
called as subroutines. When they
return control, processing is
resumed at step 1.

J

J

L
DIAGRAH 3.0: FUNCTION DEFINITION AND EDIT

WSMBLTF

1 Input Line

WSMFlhxx

Fum'lion Edit
Glubals

FBLlST
(Arl!um~llt List to
Function.
Definition)

From J>ialtram 2.0

~--------------------~

From Diuj!rams
;\.t. 4.1.;\.5.0

1. Receive new function
definition or edit
existing function

WSMFDxxx

definition. -----------'------'" Function Edit
(jlnhals

-- --. Fum:tion Editing
..... ,... 3.1

2. Build internal tokens
for defined function.

.... .. Function Definition

.... .. 3.2

To Caller

Workspace

Internal Text of
Function

licensed Material--Property of IBM
Section 2. Method of Operation 59

Notes for Diagram 3.0

APlITFDO

1. When a request to edit a function
is received, the function-open
routine receives a
character-string beginning with a
del or pdel character. [ITFDOPEN,
ITLINEO]

The routine validates the
request; and if it is valid, puts
the user's workspace in edit mode
by setting a flag in WSMFDTOG,
and a prompt-line number value in
WSMFDLIN. If the function is a
new one, APlITHDR is called to
check its syntax. The header line
is s~ved in character form.

APlITINP

While in edit mode, the user is
prompted with a bracketed
line-number. [ITINPUT]

APlITF1JE

Once in definition mode,
subsequent input strings are
passed to the function edit
routine. It performs the

licensed Materi lll-Property .of IBM
60 VS APL Program Logic .

requested action and, assuming
the definition is still open,
sets a new value in WSMFDLIH.
[ITFDEDIT]

APLITFDC

New or replace~ statements are
saved in character form. If the
edit request calls for closing
the definition, the function
close routine builds the internal
text of the function and takes
the user workspace out of edit
mode. [ITFDCLOS]

APLITHDR

2. The function definition process
is generalized so it may be
clllled from function edit, from
the COpy system command, or from
the quad-FX appendage routine.

Line 0 of the function is
converted to internal form by
APLITHDR. Each body line is
tokenized by module APLITLXS.
Module APLITFDC gets space for
the function object and builds a
tail entry for each statement in
it.

J

DIAGRAM 3.1: FUNCTION EDITING

L From Diagram 3.0 ..
I. Validate runt'lion

headcr line and open
the definition. I

> 2. Pro,'css edit mod,'
Deci~ion IV

input. a~ follows:

rl Add new fun,·tion a.
Rules linc

~
,

b. Display Ii nt's.

WS\IFDHED

rl
c. Delett' ~ linc.

Lines ..
d. Modify ex i~ting

line .

....

WSMFDTOG ~
3. ("los,' definition.

I I
WSMFDHED

rl

H v~ AI'L Sourc~ I .'

Lme

., VS AJ>L Source
Line

.., VS AI'L Source
Line

WSM

:> WSMI·!)

WS;\11'1) I()(;

WSM 1'1)1.111.

WSMI'I)S(T

WSMFIlI.MX

WS~1 FDH EI>

WSMHrJAI.

I'DVI'CTOR
.... ...

~

.....

I ~t'\\ f)~nniti"n

~.

licensed Material--Property of IBM
Section 2. Method of Operation 61

Nates far Diagram 3.1

1. The content of the header line is
examined:

APLITFDO

The syntax is checked; the
function name is isolated and
converted to the internal name.
[ITFDOPEN. ITlINEOl

If the name is not glob~il~
defined. it is processed as a new
definition: the line-zero syntax
is checked (and rejected with
DEFN ERROR if erroneous); the
taxt of the line is saved in an
FDVECTOR obj~ct; FDNEWFUH and
FDOPE~ are set in WSMFDTOG; and
the edit globals are set to their
initial values. For an existing,
unlocked function. the definition
is opened by setting FDOPEH in
the WSMFDTOG flag to 1. and the
edit globals to the values of the
existing definition.

2. The function beinq edited
consists of a set of specially
formatted character vectors
(FDVECTORS) in a chain whose head
is named in the WSMFDHED field
and whose taii is named in the
WSMFDTAl field. Each input line
is passed to APlITFDE in WSMBUFF,
exactly as it appears at the
terminal; that is, the prompt
line-number forms part of the
input.

APLITFDE

The input is scanned and each
component of the edit syntax
(bracketed line numbers. quad or
delta symbols. closing del) noted
in the EDSCANOI byte of DECISION.
a field in the R13 stack used by
APlITFDE. [ITFDEDITl If a new
statement is encountered, it is
collec~ed and stored in an
FDVECTOR. [ITFDNWlN. APlITFDNl
The presence of a label is noted
and all names used are entered in
the symbol table. [ITSTSRCH]

DECISION now contains a value
between 0 and 63. indica~ing the
action to be taken.

APLITFDE

a. A new line is added, as
follows: If the line number
to be processed is higher
than the line number in
WSMFDLMX. the new line is
entered at the. end o~:the
chain. [ITFDEDIT~

licensed Material--Property of IBM
62 VS APl Program logic·

APLITHDR

If the line number is zero
(header line). the header
syntax is. validated. previous
header line is deleted. and
the new line inserted.
[ITlINEOl

APLITPRL

b. 'Function lines indicated by
the user are displayed. If
the function being edited
exists only as an internal
function object and not in
display format. the ITPRlINE
routine is called to put the
lines in the display buffer.
In this case. the line
numbers exist only as
integers. [RULE09J

If the function is in display
format. the text vectors are
moved to the buffer from the
beginning number indicated
until a line number exceeding
the end number is found.
[R9Al

c. The indicated line is
deleted. [RULEIOl

d. The line is modified, as
follows: The specified line
is found and displayed.
Blanks are displayed to
position the cursor as
requested: the edit mask is
saved; and the edited line
built in the buffer.
Backspaces are built to
position the cursor to the
first inserted blank (if
any). Buffer contents are
then displayed and the input.
overstruck on the display, is
obtained. The new line is

. then processed as in step b
above.

APLITFDC

3. If the edit request calls for
closing the definition. the
function close rootine builds the
internal text of the function and
removes the workspace from edit
mode. [ITFDClOS. CL2l

Internal text is built, as
follows: The FBlIST parameter
block is prepared and each line
is passed to the function
definition routines (see Diagram
3.2: "Function Definition"). The
WSMFDHED field contains the name
of the function header text
vector (FDVECTOR DSECT), and each
line has the name of the next
line. The last step of function

definition retu~ns a temporary
internal name of the new function
object. Note that text vectors
are not deleted until the
function has been completely
created. [CL4Al

Changing line 0 of a suspended
function or any part of a pendant
function causes damage to the
ope~ation stack. In either case,
a message is issued. Any existing
function definition corresponding

to the edited one, is freed. The
new function object is assigned a
permanent name. [CL4Bl

The temporary address table entry
is copied to the permanent one
named by WSMFDOLD; the object
DH-word is updatE'd; ond the
temporary entry is freed. Edit
mode is ended; all text vectors
are freed and the WSMFDTOG flog
is set to zero.

Licensed Material--Property of IBM
Section 2. Method of Operation 63

DIAGRAM 3.2: FUNCTION DEFINITION

FBUST
(Arj!uI1lCnl
Lisl 10 Fum:lion
Definition)

FBSRCE

FBUILD

FBDNWORD

FHEDDN

I,'rom Diag~am 3.0

r-------------------~

). Process header line of
function by building

a function header. c=====~====:::::~

2. Process each line of
the function body, as
follows:

3. Identify lexical
units.

h. Translate quad
names.

c. Convert numeric
input.

d. Convert names.

3. Complete the
function ohject.

Licensed Mater;al--Pro~erty of IBM
64 . VS APl Program Log; c

FBDNWORD

'-------'

Header
Information

FBTHISLB

I Label

FBUILD

Output Lines

Register 4

New Address Table
Entry

j

j

Note~ for Diagram 3.2

APLITHDR

1. Input is in or pointed"to by the
FBLIST DSECT prepared by the
caller and addressed by register
2. The value in FBUILO is used to
set the ON-word address of the
function. The internal names for
"function-name," "result," and
"arguments" are entered in the
function header. [ITlINEO]

The number of internal ~ames
found determines th~ function
syntax. The FBSYNT field is set
to the values of the SBITFUNO,
SBITFUN1, and SBITFUN2,
respectively. [HOOVER]

APLITHDR

Local variable names are
converted [ITSTRCH, APlITIDS] and
are appended to the function
header. [lOCALOOPJ

Operation stack"space required to
call the function is computed and
entered in the function header.
The offset from the beginning of
the function to the first label
position js set i~ the FBLBlOFF
field. [LABElS]

Four bytes are reserved for each
label that will be encountered
later, as given in FlABElS.
[DONE]

The end-of-Iocals mark is X'0002'
or any halfword whose low-order
bits are set to 10. If errors are
found, register 0 is set to an
abnormal termination code, and
the ERROR 1 exit to the caller is
taken. [OEFNERR]

The FBUILD and FBUIlDL fields are
set to reflect the space used by
the header. [DONE]

APLITFDC, APLITLXS

2. As input, register 2 contains the
address of the FBlIST DSECT
prepared by the caller and
updated as in step 1 above.
[ITFOCLOS, ITOKENIZl

The string addressed "by the
FBSRCE field is examined and
identified as either: identifier,
numeric scalar, numeric vector,
character scalar, character
vector, primitive operator, or
label. [SCAN]

These are processed as follows:

Identifier: an initial alphabetic
signals a name. The symbol table
is searched and an internal name
is returned as follows: [IDENT]

Internal names are found by the
symbol table search: the ITBLDID
routine isolates the name string,
calculates its length, and enters
these in the WSMNEWIO field.

"[ITBLOIDl

APLITIDS

Initial hashing to the symbol
table index [WSMSYMX] combines
the first 8 bytes of the name,
its length value, and some prime
.number~ to get an index between
zero and the value in the
WSMSYMBlfield. [ITSTSRCH]

Each symbol table entry is a pair
of adjacent address table
entries, one for the name of an
object, the other for its current
value. The symbol table is
searched for a match to the name
in the WSMNEWIO field. If a match
is found, the internal name of
this entry is returned via
register 4. If a match is not
found and the caller wants the
name entered in the table
(WSMISC.STCREATE=l), the
riamestring is put in the free
space as a character vector. If
WSMISC.STCREATE=O, a code of 0 is
returned. If entry of the
namestring causes the symbol
table to become full, or, if
there is not enough space in the
workspace for the character
vector containing the namestring,
an error code is returned (that
is, register 0 is set to ABSTFU
or ABWSFU).

Initial T or S causes a test for
the diagnostic trace and stop
vectors. [SDLETA, TDElTA]

APLITIDS

If an initial quad starts a
distinguished name (shared
variable or primitive system
function, APLITLXS), the
character part of the name is
entered in the WSMNEtoJID field and
the APlITQVB table is searched
for a match. [ITBlDQD]

Internal names corresponding to
system variables and operation
tokens corresponding to primitive
system functions (as defined in
the APLIOPERC macro), are
returned in register 4.

Licensed Material--Property of IBM
Section 2. Method of Operation 65

APlITlXS

A quad symbol not beginning a
distinguished n~me is treated, as
a primitive. [QUAD]

APlITNCV

Numeric scalar: An initial
numeric signals the start of a
numeric literal. The literal 1S

scanned and co~verted to internal
form by the numeric input
conversion routine. The routine
h~s three entry points: ITININT
for conversion from typed integer
constant; ITFDCVT for conversion
of a'typed line number from a
function definition; ITNUMCVT for
conversion of numeric constant
character strings. Each entry
point sets the WSMNCVSW switch to
indicate the kind of output
needed, that is, integer or
floating point. [ITNUMCVT]

APlITlXS

If the absolute value of the
literal exceeds 65K bytes or is
real, a general scalar is built
consi5ting of a halfword header
folloL~ed by the value. (SCALAR,
S5CALI, 55-CALF)

Small integer values are encoded
as immadiClte scal<Jrs in the
format of Cln addr~ss-table
im·nediClte value. [S16BITJ

Numeric Vector: When a numeric is
followed by another numeric, a
vector numeric literal is built.

The first integer is examined for
size: for 1 or 0, CI boolean
vector is begun. For greater than
1. a~ integer vector is begun.
[VECTOR3,VECTORJ

For flo<Jting-point, a floating
point vector is be~un. Successive
integers are converted to
internal format ~s with a numeric
scalar provided that they are of
the same type as the initial one.
(STORE]

If a value appears that requires
more space than the previous
ones, all values are converted to
the larger size. (VTEST, eVTl]

Hote: An invalid numeric literal
(ITNUMCVT returns
WSMNCVSW.NCVFAIL) causes the

Licensed Material--Property of IBM
66 VS APL Program Logi c

statement to be encoded as an
ill-form~d line. Numeric literals
that are larger than 7E75
(ITNUMCVT returns
WSMNCVSW.NCVOFlOW or
W3MNCVSW.NCVUFLOW) are specially
encoded to cause a VALUE ERROR at
execution. [NERRORJ

Character scalar and character
vector: An initial quotation mark
denotes a char~cter literal.
[CHARL IT]

The null character is replaced by
the internal hame for a constant
null string. [CEND]

For a I-byte character scalar, an
imm~diate character literClI is
built. [CEND2J

Primitive operators: Primitive
operators are replac~d by their
internal codes found by indexing
into the OPTAB table, using the
g,'aphi c byte value. [PRIMITIVE]

Tests are made for correct use of
the branch arrow Clnd for
balancing of parentheses and
brackets. [OOTO, LBRACKET,
RBRACKET, LPAREN, RPAREN)

LClbels: ~Jhen a colon is found,
the namR preceding it is put in
the FBTHISLD field for later
movement to the hnader line.
[COLON]

The,line is then inverted so that
it can be scanned right to left
~or execution. [ENDLIHEJ

The FBUILD and FBUILDL fields are
updated to reflect the space
used. [EXtTR2J

APlITFDC

3. Finall~', the FHEOT field of
FHEDDN i s ~;~t to the di splacement
from the b~ginning of the
function of each end-of-statement
tok8n of each line of the
function. [ITCLOSETJ

APLIESPA

Duplicate locClI vClriable names
are markrd. Sp~ce is obtained for
the F8UILD and FBDHWORD fields
and a te~porary name for thc
function is =reated. [IESFIND]

DIAGRAH 4.0: STATEHENT EXECUTION

From Diagram 2.0

Register 4

Function Obj<:ct

WSMABTYP

1. Set up immediate
execution temporary
funCtion and
operation stack. r-------... ---.l"".

2. Scan statement.
analyze syntax. and
execute function.

Statement scan,
syntax analysis,
and execution

3. Process return codes
from execution
routines.

Return code
processing

4.1

4.2

WSMFUNCT

WSMNXINS

WSMTSADR

Licensed Material--Property of IBM
Section 2. Method of Operation 67

APLITEX

Notes for Dfagram 4.0

1. The n~me of the immediate
execution temporary function is
placed in field WSMFUHCT. The
address of the first token is
placed in WSMNXIHS. A null token
is placed on the operation stack,
and WSMTSADR is set so that the
null is the top token. [ITEXECUT]

2. Control is passed to the
interpreter for statement scan
syntax analysis and execution.

Licensed Material--Propertyof IBM
68 VS APL Program Logi c

The interpreter processes the
function and any invoked
functions, statement by
statement. Control remains in the
interpreter until a translator
service is required. (See Diagram
4.1.)

3. The service indicated by the
return code in WSMABTYP is
provided (see Diagram 4.2).
Control then is either returned
to ITINPUT to obtain terminal
input or again passed to the
interpreter to resume statement
execution. (See Diagr~m 4.1.)

J

DIAGRAH 4.1: STATEHENT SCAN. SYNTAX ANALYSIS. AND EXECUTION

From l>iagr'

I.

2.

WSMNXINS

l'ok~1I

3.

WSMTSADR

Tuken

"rinr Token

4.

RIJ Slack

Save translator's
t'lwironml!nt.

Build operation stack
for VS APL statemt'nt.
as follows:

a. Determine ..:lass of
next input token.

b. Entl!r tokt!n and
ne.:essary
information on WSMTSADR

operation stack.

OPSTACK

Execute VS APL Token
statement. as follows: Token

a. EX3minl! two top
tokens on
operation stack
and identify
syntax class for
each.

b. Take required
action llsing syn tax
decision tabll! .

..... Function Call and Exit
4.1.1

....... Branching
....- -... 4.1.2

..... ---.. Primitive

.... ... Function 4.1.3

....... M iscellan~Qus
.... Processing

4.1.4

.... - .. Shar~d Obj!:ct

.....- --.... Processing 4.1.5

Continul! statement
scan until translator
service is required.

licensed Material--Property of IBM
Section 2. Method of Operation 69

Hotes for Diagram 4.1

APLIEXAR

1. Save translator's environment:
The translator's on-vector ~nd
registers lZ through 15 are saved
in the R13 stack. (See "R13
Stack" in "Section 5. Data
Areas".) The syntax of the top
token on the operation stack
determines the processing that is
to occur. If the token is null,
statement scan occurs (step Z).
For other cases, syntax analysis
occurs using the top two tokens
on the operation stack (step 3).
[IEXARCH]

Reentry conditions to the
interpreter are as follows:

a. An escape exit for an
ill-formed line. an error
exit, or a "nothing to do"
exit to the translator was
t~ken and terminal input was
obt~ined. The top token on
the operation stack is a null
token. The WSMHXIHS field
contains the address of the
first token of an
immediate-execution temporary
function whose body is the
tokenized terminal input.

b. A stoP. trace, print, or
attention exit to the
translator was taken at the
end of the prior statement;
o~ an escape exit for
assignmnnt to a trace or stop
vector was taken and the next
token was EOS. The top token
on the operation stack is a
null token. The WSMNXINS
field contains the address of

.the first token of the next
statement in the current
function.

c. The end of the only statement
of a quad-input or execute
t€mporary function caused
exit to the translator.
because the trace bit is
always set, to 1 in the EOS
token of these functions. At
exit, the operation stack
was: EOS, result of
quad-input or execute, null,
function call block (FCB) for
temporary function, prior
token. The operation stack is
now: result, prior token. The
WSMNXINS field contains the
address of the token
following the quad or execute
in the calling (now current)
funct ion. '

Licensed Material--Property of IBM
70 VS APL Program Logi c

d. A branch in a quad-input or
execute temporary function
caused exit to the
translator. For quad-input:
Tne translator took an error
exit and reentry is as in a
above. For execute. the
branch is to be evaluated in
the context of the pendant
function. At exit. the
operation stack was: EOS,
fast or normal branch'
operator (tne argument of a
normal branch), null, FCB for
execute temporary function,
prior token(s), FCB for
pendant function. The
operation stack is now:
normal branch. argument of
branch, prior token (null),
FCB for pendant (now current)
function. The WSMNXINS field
contains the address of the
token following the execute
token in the calling
fund ion. [EOS]

e. Assignment to a trace or stop
vector caused exit and the
next token ;s not EOS. The
operation stack was! escape
token, left arrow, right
argument, prior token. The
operation stack is now: right
argument, prior token. The
WSMNXINS field contains the
address of the token
following the escape token in
the current function.

f. Initial entry from the
translator is as in step a
above.

APLIESCA

2. Build operation stack for VS APL
statement:

a. The token whose address is in
the WSMNXINS field is
identified as one of the
following: internal name,
operator or separator,
literal, fast branch, escape
special operator, indirect
special operator, comment, or
system function. [IESCANG,
ACTIOHO]

b. The token is entered on the
op~ration stack, that is, it
is placed in the word whose
address is in WSMTSADR. (See
"Operation Stack" in "Section
5. Data Areas".) Entering
takes place as follows:

J

J

L

Internal name: The name is
placed in the right half of
the stack word. The syntax
and primary descriptor from
the address table are placed
in the left half. [ACTO]

Operator or separator: The
token is put on the operation
stack duplicated in the left
and right halves of the stack
word. If the operator is
overstruck with a hyphen, the
operator index value of 0 is
placed in the fourth byte of
the stack word. [ACT01]

literal: For 16-bit literal,
the token is put on the stack
as a stack immediate
variable. For other literals,
a temporary internal name and
a block of free space are
obtained; the descriptor and
value are put in the block;
and the internal name is put
on the stack with the syntax
of a temporary remote
variable. [ACTOLIT]

Fast branch: The token and
the following token
(end-of-statement) are put on
the stack and the branch
processing routine is called.
(See Diagram 4.1.2: "Branch
Processing.") [ACTOSP]

Escape special operator: This
token indicates an ill-formed
line or assignment to a stop
or trace vector. The token is
put on the operation stack as
a stack immediate variable.
An escape exit to the
translator is tak~n.
[ACTOSP2]

Indirect special operator:
This operator is used in
embedded VS APl functions.
The next token containing the
internal name of a primitive"
operator is obtained. The "
operator is then obtained
from the address table. and
put on the stack duplicated
in the left and right halve~
of the stack word. [ACTOSP3l

Comment: The WSMNXINS field
is set to the address of the
token following the comment.
Statement scan is resumed at
step 2a. [ACTOSPS]

System function: The token 1S
put on the stack in the right
half of the word. The quad-q
operator is put in the left
half of the word. [ACTOSP6]

APLIESCA

l. Execute VS APl statement:

a. The WSMNXINS field is set to
the address of the token
following the one processed.
The WSMTSADR field is
decremented by four. The
token just entered on the
operation stack now becomes
the top token or the current
token. [DECIDE]

b. The action to be done is
selected according to the
syntax class of the two top
tokens on the operation
stack. (DECIDE2]

Syntax class codes are as
follows:

Code Meaning

o Null

1 Operator

2

3

4

5

6

7

8

Variable

Dyadic function

Right parenthesis or
bracket

Left parenthesis or bracket

Semicolon

Assignment (left arrow)

Right operator index
bracket

9 Niladic function

A

B

C

D

End of statement (EOS)

Monadic function

Shared object (quad,
quote-quad, system
variable, shared variable)

Not used

E Not used

F System object (group,
printname)

The syntax decision table which
follows is used to determine the
appropriate action.

licensed Material----Property of IBM
Section 2. Method of Operation 71

Current Token Syntax .A.-... _______ _
Classr"'-------", ,

Codes 3 4 5 6 7 8 9 ABC 0 E F

p
r
i
o
r

T
o
k
e
n

o

2

3

4

5

1 1 0

I 3 2

1 0 1

1 1 5

1 1 0

I 12 6

I 1 0

1 0 1 1 1

4 17 4 4 4

0 1 8 16 0

1]7 I 1 1

1 o 14 14 1

l' 17 1 1 1

1 o 14 14 1

1 510111 1 I 1

4 18 4 4 19 1 1 1

9 1 10 5 1 1 1 1

I 18 I I 19 1 I 1

1 5) I I 1 1) 1

1 18 1 I 19 1 1 I

1 5 1 1 1 1 I 1 I 6

7 1 1 7 1 13 1 1 1 ·1 1 1 1 15 1 1 1

Explanation: The actions
symbolized by the action codes
are as follows:.

Code Action

o

1

2

3

4

5

6

Continue statement scan.
[IESCANG, ACTIONO]

Syntax error. Exit to
translator. [IESCANG,
ACTIONI J

Do dyadic operation (see
Diagram 4.1.3: "Primitive
Function Processing").
[IESCANG, IEDYAD]

If the prior token is a
slash or backslash, do
reduction or scan operation
(see Diagram 4.1.3:
"Primitive Function
Processing"). For other
cases, do Action 4.
[IESCANG, ACTION31

If the current token is a
period, do inner or outer
product,operation; for
other cases do monadic
operation (see Diagram
4.1.3: "Primitive Function
Processing"l. [IESCANG,
ACTION4]

Do function call (sea
Diagram 4.1.1: "Function
Call and Function Exit
Processing"). [IEFUNNl

Do subscripting operation'
(see Diagram 4.1.4: .
'~Mi scellaneous
Processing"). [IEINDDl

,l:icensed Mated aI-Property of IBM
72 VS APl Program logi c

7

8

9

10

11

12

Do assignment (see Diagram
4.1.4: "Miscellaneous
Processing"). [IESCANG.
ACTION7]

If current token is left
bracket, continue state~ent
scan. If current token is
left parenthesis, operation
stack is: left parenthesis.
variable (result of
parenthesized expression),
right parenthesis. prior
token. Modify operation
stack so that it is:
variable, prior token.
Select next action (see
step 3b above). [IESCANG,
ACTIONS]

Change syntax class of
current token from 8
(operator index bracket) to
4 (right bracket). Then do
Action 16. [IESCANG,
ACTION9]

Process end of statement
(see Diagram 4.1.4:
"Miscellaneous
Processing"). [IESCANG,
ACTIONI01

Do shared object reference
(see Diagram 4.1.5: "Shared
Object Processing").
[IESCANG, ACTIONll]

Operation stack is:
operator. left bracket.
variable (operator index).
right bracket, prior token.
Get value of operator index
and put it in fourth byte
of stack word containing
operator; set explicit
indexed operator bits
(OPHASIND and OPEXIHD).
Modify operation stack so
that it is: operator. prior
token. Continue statement
scan. [IESCANG, ACTION12]

13 Operation stack is: right
separator, left arrow. Set
SSASGN bit'to 1 in right
separator to indicate
subscripted assignment.
Then do Action 17.
[I~SCANGj ACTION131

14 . Oper-ati o~st~ck is:
seini colon>or 'left 'bracket,
semicol~~"or right bracket.
Modify operation stack so
that ~t is: semicolon or
left bracket, empty
!iubscript marker" semicolon
or right bracket. Continue
statement scan. [IESCANG,
ACTION141

J

J

J

J

J

L

15 Do shared object
specification (see Diagram
4.1.5: "Shared Object
Processing"). [IESCANG.
ACTION151

Note: Actions 16 through 19 are
done when the current and prior
tokens are such that there may be
a named permanent variable on the
operation stack that has not yet
been evaluated. Before it is
evaluated. a new value may be
assigned to the name. To provide
consistent right-to-Ieft
execution. the value of a named
variable when it is encountered
in the statement scan must be
preserved. If the variable in
question is temporary or stack
immediate, nothing is done. In
any other case, a copy or synonym
of the value with a temporary
internal name is made; the
permanent name on the stack is
replaced with the temporary name.

16

17

Copy prior token (see note
above). Then continue
statement scan. [IESCANG.
ACTION161

Copy third token (see note
above). Then continue
statement scan. [IESCANG.
ACTION17]

4.

18 Copy third token (see note
above). Then do function
call. [IESCANG, ACTIONI8]

19 If current token is other
than quad. do Action 11.
For other cases,· copy third
token (see note above).
Then do Action 11.
[IESCANG, ACTION19]

Continue statement scan until
translator service is required.

All actions described above
eventually terminate in one of
three ways:

With a return to the translator
for one of the following reasons:
an error is discovered; stop,
trace, print, or attention
service is required; or the
operation stack is exhausted. The
reason code is passed in field
WSMABTYP (see Diagram 4.2).

With control passed to
IESCANG-ACTIONO to continue
statement scan (step 2).

With control passed to
IESCANG-DECIDE2 to do syntax
analysis (step 3).

Licensed Material--Property of IBM
Section 2. Method of Operation 73

DIAGRAM •• 1.1: FUNCTION CALL AND FUNCTION EXIT PROCESSING

From niagram 4. I -.
1. At function call,

process as follows:
WSMTSADR ..

rOPSTACK

a. Copy function .. arguments.

...

...
...
Prior Token

..
b. Build function call ...

block (FCB) on
Called Function

operation stack Object
and shadow local

WSMFUNCT variables.

r1 arguments, and
labels. L

~ Calling Function
Object c. Begin execution of

I GWSMNXINS
called function.

Address Table

I I

WSMTSADR -. From Diagram 4.1. 2

COPSTACK

2. At function exit,
process as follows:

... "> a. Give result a new temporary name.
Null Token

----J'-
b. Activate shadowed FCB r-r-::- result, arguments, :;.> locals, and labels. Prior Token

Address Table

r- _-J'
c . Restore pointers to calling function.

d. Enter result on
operation stack.

e. Resume execution
of calling function.

l;censed Mater;al--Property of IBM
74 VS APl Program Log; c

WSMTSADR

I
OPSTACK

to.

~ " .
Null Token

H':B

Prior Tok~n

WSMFUNCT

Called Function
Object

WSMNXINS

I
Address Table

4.1 I

Address Table
...
..

WSMFUN(T

---r>f
Calling Function
Object

WSMNXlNS

WSMTSADR

I
OPSTACK - ...

Result

Prior Token ,........,.....
"4.1 -

J

IJ

-.:J
I

I
J

--

~

J

L
Notes for Diagram 4.1.1

1. At function call, the operation
stack is in one of the following
conditions:

left argument, dyadic function,
right argument, prior token.

Monadic function. right argument.
prior token.

Niladic function, prior token.

APLIEFNH

a. A copy is made of the
arguments, giving them
temporary internal names.
This is done so that
references to the arguments
within the function are to
their local values and not to
their global values. [IEFUNN,
FUNN1J

b. A function call block (FeB)
is built on the operation
stack overlaying the input
tokens. The space required
for the FeB is obtained from
the FHEDK field in the called
function header. The FeB is
built as follows:

The internal name of the
calling function is obtained
from the WSMFUNCT field and
entered in the FCB; the
internal name of the called
function is entered in the
WSMFUNCT field. (FUNN3]

The offset to the next token
in the calling function is
computed and entered in the
FCB. [FUNN3)

The active referent of each
variable named in the
function header (that is,
FHEDZ through FHEDLOCLn
fields) is shadowed (that is,
the global value is saved in
the FCB, and an initial local
value is assigned). Shadowing
occurs as follows (FClOOP]:

The internal name and address
table entry are entered in
the FeB. .

The internal name in the
value block and any
associated synonym blocks are
changed to that of the
address table entry saved in
the FeB.

For system variables, the
no-value and implicit-error
bits CATIMHOVl and ATIMERR)

in the address table entry
are set to 1. For quad-IO and
quad-CT system variable, the
implicit-error bits (SWQIOIMP
and SWQCTIMP) in WSMASYNC are
set to 1. For quad-HT system
variables, null tab settings
are sent to the executor.

For labels, the statement
number is entered in the
address table entry with a
syntax descriptor of X'2FlI'
(indicating a read-only
variable with immediate
integer value).

For all other local names,
X'2700 0000' (indicating a
variable with no value) is
entered in the address table
entry.

Translator flags, obtained
from the FHEDBITS field, and
the length of the FeB, are
entered in the FCB. [FUNN4)

Function arguments are
activated by changing their
address table entries from
"no value" to the specified
values using the copies
described in step a above.
The temporary names of the
copies are discarded. [FUNN5l

A null token is entered on
the operation stack, and the
WSMTSADR field is set to make
the null the top token on the
operation stack. (FUNN6]

The WSMNXINS field is set to
the address of the first
token of statement 1 of the
called function. (FUNN6J

c. Execution of the function is
begun as follows:

If the stop bit (EOSTPBIT) is
not set for state~ent 1,
control ;s passed to IESCANG,
ACTIONO to resume statement
scan. [FUNNXIT J

APLIESCA

If the stop bit is set. the
WSMNXINS field ;s set to the
address of the EOS token of
statement O. The EOS token is
placed on the stack, and the
WSMTSADR field is set to make
the EOS the top token on the
operation stack. A "stop"
exit to the translator is
taken. (IESCANG. ENTRY12J

licensed Material--Property of IBM
Section 2. Method of Operation 75

APLIEFNtI

2. Function exit processing is as
follows:

a. If the function has a result.
the result is given a new
temporary internal name. and
its real address table entry
is set to "no value." This is
done so that the shadowed
referent can be activated
without destroying the
result. [IEUHFN, UHFi'll

b. The shadowed referent of each
local variable named in the
function call block (FCB) is
activated. [UHlOOP]

Processing occurs as follows:

For a system variable: the
IAUNSHAD routine is called to
un shadow the system variable.
[Called by IASHRPSTl

For a shared variable: the
IARTRACT routine is called to
retract the shared variable.
[Called by IASHRPSTJ

For a remote value: the value
block is freed.

The address table entry saved
in the FCB is reentered in
the address table. The
internal name 1S reentered in
the value block and in any
associated synonym blocks.

licensed Material--Property of IBM
76 VS APl Program logi c

c. The calling function is set
as the current function by
moving its internal name from
the FCB to the WSMFUNCT
field. [UHFH3]

If the WSMFUHCT fi~ld
indicates that damage has
been done to the calling
function. an SI DAMAGE error
exit to the translator is
taken. For other cases, the
input pointer is set to the
address of the token
following the function call
by obtaining the offset to
the next token from the FCB,
computing the address of the
token, and entering the
address in the WSMHXIHS
field. [UHFtl4]

d. The function result is placed
on the op~ration stack
following the token that
preceded the FCB. The
WSMTSADR field is set to make
the function result the top
token on the operation stack.
If the function has no
result, the constant WSMHOVAL
(variable with no value) is
used as the result. [UNFHS]

e. Execution of the calling
function is resumed with a
syntax analysis of the result
and prior token. [IESCANG,
EHTRYll]

J

J

J

DIAGRAM 4.1.2: BRANCH PROCESSING

WSMTSADR

OPSTACK

Stop Word or

1-'(.'

WSMFUNtT

Current
Function

OPSTACK

Suspended
l-'unction

From l)iagram 4.1

I. Locate target
statement number. r------....... -----~

2. Determine which
function contains the
target statement. r--------'-------i"-

3. Exit function if target
statement is out~ide
its range.

4. ResullIe stlltement
scan with t

statement, C==::=====~=====:!)

WSMTSADR

Stop Word or
FCB

WSMFUNCT

Current
Function Object

WSMNXINS

'--____ -l

licensed Material--Property of IBM
Section 2. Method of Operation 77

Notes far Diagram 4.1.2

APLIEFNH

1. For permanent functions with
trace re~uested (OPTEMPGO=O and
EOSTRBIT=1) or quad-input or
execute temporary functions
(OPTEMPGO=1 and E05TRBIT=I),
control is passed to the
translator, where all processing
occurs. [IEGOGOMN, PRINT]

Target statement is determined,
as follows:

For fast branch operator:
Operation stack consists of these
tokens: E05, operator, null, stop
word, or beginning of function
call block (FCB). Target
statement number is bits 1
through 11 of the branch
operator. The W5MT5ADR field is
set to make the null the top
token on the operation stack.
[IEGOGOSC]

For normal branch operator:
Operation stack consists of E05,
operator, right argument, null,
stop word or beginning of FCB.
Processing is as follows:

For permanent function with null
argument: End-of-statement
processing occurs (see Diagram
4.1.4).

For immediate-execution temporary
function with user-coded branch
(OPTEMPGO=1 and E05TRBIT=O) with
null argument: The suspended
function statement number in the
stop word is the target statement
number. [GOGOMN3]

For.all other cases: The target
statement number is the first or
only element of the argument.
[GOGOMN4]

If the argument is temporary, its
internal name and block of free
space are freed. [GOGOMNS]

The W5MT5ADR field is set to make
the null token the top token on
the operation stack. [GOGOMN6]

2. The internal name of ·the current
function is obtained from the
WSMFUNCT field, and the current
function is located. If it is a
~ermanent function, it contains
the target statement. If it is an
immediate execution temporary
function, the function that
contains the target statement is
located as follows:

licensed Material--Property of IBM
78 VS APL Program logic

The temporary internal name of
the immediate-execution temporary
function and its block of free
space are freed. [GOGO]

If there is no suspended function
(that is, the stop word indicates
the end of stack condition),
control is returned to the
translator. [NORMEX]

If there is a suspended function
but it is damaged (indicated as
such by the stop word), the 51
DAMAGE error exit is taken.
[GOTOEX]

If there is a suspended function
(not damaged), the internal name
of the suspended function is
obtained from the stop word and
entered in the WSMFUHCT field;
the suspended function is now the
current function. The stop word
is replaced with a null token,
and the WSMTSADR field is set to
make the null the top token on
the operation stack. [GOGOJ

3. If the target statement is not
within the range of statements in
the current function, processing
is as follows:

If· there is no pendant function
(operation stack item preceding
the null token is a stop word),
control is returned to the
translator. [NORMEX]

If there is a pendant function
(operation stack item preceding
the null token is the beginning
of a function call block),
control is passed to the function
exit routine (see Diagram 4.1.1:
"Function Call and Function Exit
Processing"). [GOG04]

4. If the target statement number is
greater than 0 and no greater
than the number of statements in
the current function, processing
is as follows:

APLIESCA

If stop has been requested
(EOSTPBIT=1), the WSMNXIHS field
is set to the address of the
end-of-statement (E05) toke~ of
the statement preceding the
target statement. The EOS token
is put on the operation stack,
and the W5MT5ADR field is set to
make the E05 the top token on the
operation stack. Control is
passed to the translator via the
stop exit. [IESCANG, ENTRYI2]

J

J

APLIEFNH

If attention has been signalled.
the WSMNXINS field is set to the
address of the EOS token of the
statement preceding the target
statement. Control is passed to
the translator via the attention
exit. [ATTNEX]

For other cases. the WSMNXINS
field is set to the address of
the first token of the target
statement. Control is passed to
IESCANG, ACTIONO to resume
statement scan. [GOGOXIT]

Licensed Material--Property of IBM
Section 2. Method of Operation 79

DIAGRAM 4.1.3: PRIMITIVE FUNCTION PROCESSING

WS~1TSADR

OPST·H"K

.'rinr "uk,,"n

WSMTS,\DR

L\!ft :\r!!Uflll..'nt

Opcratnr

R i~h' .-\q;llI1"·'"

Prior Tok,,·u

\\S~ITS'\DR

OPST.KK

(','"ralClr ,

Op\!ratur ..!

Itil.'ht :\rl.'lIIn~nt

Prior Tuk~n

WS~tTS.\DR

L.~ ft ,.\rj!u me n (

Catenated
Op~ratnrs

Right Argument

Prior fnken

From llial!ram 4.1
~------------------------

I. Sct up arglllllcnl\s)
i1nu opcriltor
accoruing to type of
fundion:

a. MOllilUil' functions

h. Dyadk fundions

c. R"liuction and
scan r---------------------L-------~

U. Inner and out.:r
prod lIcl

WSMRGETV

I
WSMOPWD

WSML<;HV

WSMRGETV

WSMOPWD

WSMRGETV

WSMLGETV

I
WSMOPWD

WS~ll.GETV

WS~IRGETV

I
WSMOPWD

2. I:x<'~'ute primitive WSMRSULT function. ...--__________ -L. ______ ..J", r;.:.;.~;;..;.;~-..,
WS~IRGF.TV

WS\tRSt:I.T
.J. Process rcsult.

4. Free argumcnts.

S. Resume statement scan.

licensed Material--Property of IBM
80 VS APl Program logi c

WSMTSADR

OPSTACK

Prior Token

J

J

J

Nates far Dfagram 4.1.3

APLIESCA, APLIEMND

1. The argument(s) and operator are
processed as follows according to
the type of primitive function:

2.

Monadic functions: The right
argument entry is obtained from
the operation stack, and the
IEGETV routine is called to set
up the right argument block
(WSMRGETV) for data fetching. The
primitive function (operator) is
obtained from the operation stack
and placed in field WSMOPWD.
[IEMONADl

Dyadic functions: The left
argument entry is obtained from
the operation stack. and the
IEGETV routine is called to set
up the left argument block
(WSMLGETV) for data fetching. Tne
right argument and operator are
processed as described above.
[IEDYADJ

Reduction and scan functions: Tne
right argument is processed as
described above. The reduction or
scan operator (OP2) is obtained
from the operation stack and
placed in field WSMOPWD. The
primitive function (OP!) is
obtained from tne operation stack
and placed in tne left argument
block. [IESCANG, ACTION3]

Inner and outer product
operations: Tne operators are
catenated into one word on the
operation stack. For inner
product. the stack word contains
(in bytes): dot (period), dot,
OP1, OP2. For outer product tne
stack word contains: dot, jot
(small circle), OP2, OP2. Then
statement scan and execution
continue until the operation
stack contains: left argument,
catenated operators, right
argument. These are then
processed as described above for
routine IEDYAD. (IESCANG,
ACTION4]

Control is passed to some routine
(see below) to perform the
function. In general, an operator
routine computes tne shape and
size of the result, obtains a
temporary internal name and a
block of free space, builds tne
result, enters the syntax and
internal name of the result in
the WSMRSULT field, and passes
control to a result-processing
routine (see step 3)~ Exceptions
to this .re:

Normal branch operator: exit to
routine IEGOGOMN; see Diagram
4.1.2.

Operations that are completed by
subscripting: <l>B, t!1B, and AlI/B,
whcm 8 is an array; and' A <I> B, when
A is scalar are performed as B[R]
where R is a subscript list built
by the operator routine. In these
cases, the routine builds a
subscript list in free space, and
enters its descriptor and
internal name in the right
argument block.

Operations that return a function
as the result: the result of the
execute operation is a temporary
niladic function whose body is
the tokenized rignt argument. The
result of certain cases of encode
and decode is a dyadic embedded
VS APt function. (See "Operation
Stack" in "Section 5. Data
Areas".) The result of certain
cases of scan is a monadic
embedded VS APL function.

The processing of all monadic
functions begins in routine,
IEMONAD. The monadic functions
and the routines tnat perform
them are:

Function Routine

+B IEMOHAD, PLUS

-B

XB

fB

L B

r B

*8

IB

! B

?B

014

-n

pH

IEMONAD, NEG; performed
as 0-8

IEMOHAD, SIG

IEMONAD, RECIP;
performed as 1 + B

IEMONAD, FLCl

IEMOHAD, FLel

IEMONAD, EXPi performed
as e*8

IEMOHAD, EXP; performed
as _8

IEMOHAD, MAG

IEMONAD. FACT

IEMOHAD, ROll

IEMONAD, PI; performed
as pix B

IEMONAD, NOT; performed
as O"'B

IEMONAD. SIZE

licensee Material--Property of IBM
Section 2. Method of Operation 81

Function Routine

• R IEMOHAD, RAVEL

1 1\ IEMONAD, IOTA

is IAGRADE

'fn IAGRADE

<t>n IEMOHAD, REV;

e<t>n IAREVARY if argument is
an array

~Il IAMTRAH

ffin IAMDOM

~B IAEXECTE

'ill IAMFORM

OX XR (System functions):
lADS HARE

The processing of all dyadic
functions begins in routine
IEDYAD. The dyadic functions and
the routines that perform them
are:

All dyadic scalar operations:
(t--x+Lr*el :ol\v""¥<$>~==):IEDYB

Function Routine

A?B IADEAl

ApB IERsHP

A.B IECOMMA

AlB IEEPsIOT

A€B IEEPSIOT

AtB IETKDP; IA TKDP if A
nonscalar

A+B IETKDP; IATKDP if A
non scalar

A/B IECMEX

A\B IECMEX

A<t>B IAROTA

AlQ8 IADTRAH

A.18 IADECODE

AT8 IAENCODE

AIIIB IADDOM

A~B IADFORM

AOxxB (System functions):
IADSHARE

licensed Material--Property of IBM
82 Vs APl Program logi c

is

is

3.

The composite functions and the
routines that perform them are:

Function Routine

"p / II

"p \ II

.\ 0 • liP B

IAREDU

IASCAH

IEDYB

The outer product function is
executed in one of two ways
according to the shape of the
arguments. If either argument is
scalar, the function is done as
an ordinary dyadic scalar
function. Otherwise, the function
is done as a series of dyadic
scalar functions using the right
argument and successive elements
of the left argument for each
iteration. The latter case is
identified by bit OPISMIX = 1 in
WsMOPWD.

A opl.op2 B IAIPROD

The inner product function is
executed in one of two ways
according to the shape of the
arguments. If one argument is a
vector and the other is an array,
or if both arguments are arrays,
the function is done by routine
IAIPROD. Otherwise the function
is done in two steps. First the
dyadic scalar function A op2 8 is
performed by routine IEDYB. Then
the opl reduction of the result
is performed by routine IAREDU.

Processing of the result varies
according to its type. Exarch
operator routines pass control
directly to the appropriate
result-processing routine.
Appendage operator routines set
WSMAFLG2 to indicate exceptional
result types, and then return
control to their calling routine
(IEMONAD; IEDYAD; or IEsCANG,
ACTIOH3). Control is then passed
to the appropriate
result-processing routine.

Various types of results are
processed as follows:

Operation is to be completed by
subscripting
(WsMAFlG2=AFLG2MOR+AFLG2TSP):
exit to subscripting routine
IEIHDB (see Diagram 4.1.4).

Result is a niladic function
(syntax class is 9): The syntax
and internal name are transferred
from WSMRSUlT to the operation
stack, replacing the right
argument entry, and the WSMTsADR
field is set to make it the top

J

J

J

token on the operation stack.
Exit to function call routine
(see Diagram 4.1.1). [IESCANG,
ENTRY5AJ

Result is a monadic function
(syntax class is B): The syntax
and internal name are transferred
from WSMRSULT to the operation
stack, replacing the operator
entry, and the WSMTSADR field is
set to make it the top token on
the operation stack. Exit to
function call routine (see
Diagram 4.1.1). [IESCANG,
ENTRY5AJ

Result is a dyadic function
(syntax class is 3): The syntax
and internal name are transferred
from WSMRSULT to the operation
stack replacing the operator
entry. Exit to function call
routine (see Diagram 4.1.1).
[IESCANG. ENTRY2Bl

Result equals right argument
(WSMAFlG2=AFlG2MOR+AFlG2RT): If
the right argument isan address
table immediate value, it is
placed on the operation stack as
a stack immediate value. If the
right argument is a remote value,
it is marked as permanent. and
the operation stack is left as
is. [IESCANG, ENTRY9]

Result is a logical or integer
scalar returned in register 2 by
exarch operator routines: If the
result is logical or a small
integer, it is placed on the
operation stack as a stack
immediate value. replacing the
right argument entry. If the
result is a large integer. a
temporary internal name and a

blo~k of free space are obt.ined;
the value block is filled in; the
syntax and internal name are
placed on the operation stack
replacing the right argument
entry. [IESCANG, ENTRY3 or
ENTRY61

Result is a real scalar returned
in floating-point register 4 by
exarch operator routines: a
temporary internal name and a
block of free space are obt.ined;
the value block is filled in; the
syntax and internal name ar.
placed on the operation stack
replacing the right argument
entry. [IESCANG, ENTRY4 or
ENTRY7]

Result is a variable whose name
or value ;s returned in field
WSMRSULT: the syntax and intQrnal
name or immediate value are,
placed on the operation sta~k
replacing the right argument
entry. [IESCANG, ENTRY2 or
ENTRYS]

For all cases in which the result
is a variable. the WSMTSADR field
is set to make the result e~try
the top token on the operat~on
stack. [IESCANG, PUSHDOWN]

4. If the operation was dyadic 'and
the left argument is temporary,
its internal name and value block
are freed. If the right arg~ment
is temporary, its internal name
and value block are freed.
[IESCAHG, LFREE]

5. Control is passed to routine
IESCAHG. ACTIONO to resume .
statement scan.

licensed Material--Property of IBM
Section 2. Method of Operation 83

DIAGRAH 4.1.4: HISCELLANEOUS PROCESSING

WSMTSADR

WSMUiF.T\·

l.dt :\r~um~nt

WSMRGETV

SuhSl'rif'ls

WSMLGF.TV

l.eft Ar~ument

WSl\IRGETV

Suhscripts

ZZBLOCK

Rir:ht Argument

WSMTSADR

OPSTACK

From Diagram 4. I

~----------------------~

I. Pro,css suhscripling
as follows:

a. Sci up arguments
and suhscripts. .--_____ -' ____ ..r-...

h. Process suhscripted
reference as
follows:

Build result.

Do syntax analysis.

c. Process subscripted
assignment as
follows:

Modify left
argument.

Check for
end-of
statcment.

2. Pro.:.:ss assignment
as follows:

a. Assign value of
right argulllcnt to

WSMLGETV

WSMRGF.TV

I
ZZBLOCK

Left Argument

WSMTSADR

OPSTACK 1]
...
Right Iiracket

Left Arrow

Right Argument

Left Argument

Left Arro

left argument. ,..-______ L-____ ..r-.... ,....-----,
Left Argument

KighrArgument

Frolll Diajliram 4.1

WSMASYNC

h. l).) .:nu-of·
~tatcmcnt

proct'ssing or
resume statement
Sl·an.

Process end-of
statement as
follows:

a. Exit to translator
if service required.

b. Else n:su me

WSMTSADR

OPSTACK

Right Argument

WSMTSADR
statt"ment scan. ,-----......;1.-----"....", ,.;-..;;..;;,;..;.::.:.:.._-.,......,

OPSTACK

licensed Material--Property of IBM
84 VS APL Program logi c

Null Token

J

J

J

Nates far Diagram 4.1.4

APLIEIDX

1. The subscripting routine is
called either to do ordinary
subscripting or to complete a
transpose or rotate operation.

a. The arguments are set up as
follows for each case:

For ordinary subscripting:

The operation stack contains
the left argument followed by
one or more subscripts. Each
subscript is either a stack
immediate value. the syntax
and internal name of a remote
value. or an empty subscript
marker (indicating that all
elements of the corresponding
left argument dimension are
selected) .

The left argument entry is
obtained from the operation
stack. and the IEGETV routine
is called to set up the left
argument block (WSMLGETV) for
fetching of data. [IEINDD.
SECTION!]

If the left argument is a
vector. there can be only one
subscript. The subscript
entry is obtained from the
operation stack. and the
IEGETV routine is called to
set UP the right argument
block (WSMRGETV) for fetching
of subscript data. If the
subscript is an empty
subscript marker. a temporary
internal name and a block of
free space are obtained. and
~ subscript in the form of an
arithmetic progression (AP)
vector is built. [IEINDD,
SECTION41

If the left argument is an
array. there is one subscript
for each of its dimensions. A
temporary internal name and a
block of free space for a
subscript list are obtained;
the right argument block
(WSMRGETV) is set up to
address it. Each subscript
entry is obtained from the
operation stack, and the
appropriate data is placed in
the subscript list. The
format of the subscript list
is described in the listing
of routine IEINDD. [IEINDD,
SECTION2 and SECTIONS]

If the operation is a
subscripted assignment, the
operation stack also contains

a right argument. Its ~ntry
is obtained, and the IEGETV
routine is called to s~t up
an argument block (ZZBlOCK)
for fetching of data.
[IEINDD, SECTIONS]

For subscripted assignment.
the left and right arguments
must be the same data type;
the left argument must not be
a synonym or arithmetic
progression (AP) vector. If
necessary, a copy of the left
or right argument is m~de
with the elements converted
to the required data type.
[IEINDD, SECTION6]

For completion of transpose
or rotate:

The transpose or rotate
operator routine has built a
subscript list and pladed its
internal name in the right
argument block (see Diagram
4.1.3 step 2). The IEGeTV
routine is called to set UP
WSrlRGETV for fetch; ng of
subscript data. The le~t
argument entry is obtained
from the operation staok. and
the IEGETV routine is called
to set up the left argJment
block (WSMLGETV) for f~tching
of data. [IEINDS]

b. Subscripted reference is
processed as follows:

A tempora ry i nterna 1 nalme and
a block of free space for the
result are obtained. The name
is placed in WSMRSULT.
[IEINDD, SECTIONS]

The result is built by
fetching elements of the left
argument as indicated b~ the
subscript(s) and placing them
in the result block. (IEINDD,
SECTIOH9 and SECTIO]

APLIESCA

The syntax and name of the
result are transferred from
WSMRSULT to the operati~n
stack. replacing the r;~ht
bracket entry. The WSMTSADR
field is set to make the
resulting entry the top token
on the operation stack.
[IESCANG, ENTRYI0]

Control is passed to IE$CANG,
DECIDE2 to do syntax an.lysis
using the result and the
prior token. tIESCAHG.
ENTRYlOB)

Licensed Material--Property of IBM
Section 2. Method of Operation 85

APLIEIDX

c. Subscripted assignment is
processed as follows:

Element,s of the left
argument as indicated by the
subscript(s), are replaced by
successive elements of the
right argument. [IEINDD,
SECTION9 and SECTIO]

If the left argument is a
shared or system variable,
control is passed to the
IASHRPST routine. The
remainder of the processing
is described in Diagram
4.1.5, step 3. [IEINDD, EXIT]

APLIESCA

The WSMTSADR field is set so
that the right bracket is the
top token on the operation
stack. The result of the
subscripted assignment is the
right argument, not the
modified left argument. A
check is made for end of
statement as described in
step 2b below. [IESCANG,
ENTRYIOB]

2. Assignment is processed as
follows:

a. For assignment, left and
right arguments are examined:
If the left argument is
temporary, a SYNTAX ERROR
exit is taken. If it is
read-only (a label), a DOMAIN
ERROR exit is taken. If the
left argument has a remote
value, the space for its
value block is freed.

. [IESCANG, ACTION7]

The value of the right
argument is assigned to the
left argument, as follows:

If the left and right value
blocks are the same size and
neither argument is a
synonym, the right block is
copied into the left block.
[ACTION7]

If the right argument has an
immediate value, an address
table immediate value is

licensed Material--Property of IBM
86 VS APl Program logic

built for the left argument.
[ACT7C]

For other cases, a copy or
synonym of the right argument
is made and is given the
internal name of the left
argument. [ACT7E]

b. If the next input token is
EOS, control is passed to the
end-of-statement processing
routine.

For other cases the WSMTSADR
field is set 50 that the
right argument is the top
token on the operation stack.
Control is passed to IESCANG,
ACTIONO to resume statement
scan. [ACT7X]

3. End-of-statement processing
occurs as follows:

a. An exit to the translator is
taken if any of the following
conditions are true:

Trace is requested; in EOS
token, EOSTRBIT=I. [IESCANG,
ENTRY3 or ACTIONIO]

Stop is requested; in EOS
token, EOSTPBIT=I. [IESCANG,
ENTRY3 or ACTIOHIO]

There is something to be
printed; on the operation
stack, the token preceding
the EOS is a variable that is
not the result of the
assignment. [IESCANG,
ACTIONIO]

The user has signalled
attention; in WSMASYNC,
SWATTN or SWDATTN=I.
[IESCANG, ACTIOA]

b. For other cases, the WSMTSADR
field is set so that the null
token that precedes the EOS
token or the result of
assignment is the top token
on the operation stack.
Control is p~ssed to IESCANG,
ACTIONO to resume statement
scan. [IESCANG, ACTIOCl

J

J

J

DIAGRAH ~.l.S: SHARED OBJECT PROCESSING

WSMTS..\DR

WSMTSADR

WSMTSADR

hom Diagram 4. I r-------------------------

). Process shared objecl
rdercn..:c as follows:

a. Ohtain (urrent
vallie of sh~lred
ohjed. r.-----------L-----........

b. Enter re~uh un
opera tion stack. ,..-_____ .L.. ____ ...J'

c. Do syntax analysis.

2. I'nh:ess shared ohjt'c!
spcdfi..:ation as
folll1ws:

a. Assign value of
right argumcnt to
shan'd object. r--------1-----..r-...

b. Do end-of-
s! atcmcnt
proccssing or
resume statement
s..:an.

3. Pro..:<'ss shared obje..:t
su bscriph:d
spcdfkation as
follows:

a. Obtain c'uTrcnt
value of shared
ob.kct and enter
result on operation
sta..:k.

b. Do subsqipt.:d
assign ment. r---------L.......---,

c. Pru.:ess new valuc
ul shared obj.:.;!.

d. Do end-of-
stat~nH!nt

pro..:essing or
resume statement
scan.

WSMRSCLT

L-__ -=-.--I

WS~TSADR

OPSTACK

Right Argument

WSMTSADR

Licensed Material--Property of IBM
Sect;on 2. Method of Operation 87

Notes for Diagram 4.1.5

APLIESCA

1. Processing for the shared object
reference is as follows:

a. The token for the shared
object is obtained from the
operation stack, and entered
in the left argument block
(WSMLGETV). [IESCANG,
ACTIONll]

APLIATRN

The type of shared object is
determined by the IAQUADS
routine, and processed as
follows:

For quad: The ITINPUT routine
is called to obtain input
from the terminal. The
ITEMPFUN routine is then
called to build a temporary
niladic function in free
space; the body of the
function is the tokenized
terminal input. The syntax
and internal name of the
function are then entered in
the WSMRSULT field. [IAQUADS,
CALLIN]

For quote-quad: the ITINPUT
routine is called to obtain
terminal input. If the input
is null, the syntax and
internal name of the null
character vector (WSMNULCH)
are entered in the WSMRSULT
field. If the input is
scalar, it is entered in the
WSMRSULT field as a stack
immediate value. For other
input, a temporary internal
name and a block of free
space are obtained, the input
is entered in the block as a
character vector, and its
syntax and internal name are
entered in the WSMRSULT
field. [IAQUADS,QUADP]

APLIASYV

For system vari~ble: The
value of the variable is
'either computed (quad-WA and
quad-LC), obtained from the
executor (quad-AI and
quad-TS), or obtained from
the variable's address table
entry or value block (all
other system variables>. If
the value is logical or a
small integer scalar, it is
entered in the WSMRSULT field
as a stack immediate value.
For other cases, a temporary
internal name and block of

Licensed Material--Property of IBM
88 VS APL Program Logic

free space are obtained. The
current value of the system
variable is entered in the
block, and its syntax and
internal name are entered in
the WSMRSULT field.
[IASYSREF]

APLIASHV

For shared variable: The
YYSREF service request is
issued to transmit the
current value of the shared
variable from shared memory
to the unallocated block. A
temporary internal name is
obtained and given to the new
value block. The IACHK
routine is called to validate
the data. The internal name
of the new value block is
entered in the variable's
share-ID block. The old value
and its internal name are
freed. The syntax and
internal name of the new
value block are entered in
the WSMRSULT field. [IASCOPY]

APLIESCA

b. The syntax and internal name
or immediate value of the
result is obtained from the
WSMRSULT field and entered in
the operation stack in place
of the shared object entry.
[IESCANG. ACTlIC]

c. Control is passed to IESCANG,
DECIDE2 for syntax analysis
using the result and prior
token.

APLIESCA

2. Processing for shared object
specification is as follows:

a. The entries for the shared
object and right argument are
obtained from the operation
stack and entered in the left
and right argument blocks
CWSMLGETV and WSMRGETV).
[IESCANG, ACTION15]

The type of shared object is
determined by the IAQDSPEC
routine, and processed as
follows:

APLIATRN

Quad or quote-quad: the
IAGOUT routine is called to
transmit the value of the
right argument to the
terminal. [IAQDSPEC,
CALLGOUT]

J

J

J

J

J

APLIASYV

System variable: Fo~ a
read-only system variable,
the specification is ignored.
For other cases, the right
argument value is entered in
the system variable'S address
table entry or value block.
If the value is invalid, the
implicit error bit (ATIMERR)
is set to 1 in the system
variable'S address table
entry. If the system variable
is quad-PW or quad-HT, the
new value (if it is valid) is
transmitted to the executor.
[IASYSPEC]

APLIASHV

Shared variable: A temporary
internal name and block of
free space are obtained and
the right argument is copied.
The internal name is entered
in the WSMRSULT field. The
YYSSPEC service request is
issued to transmit the new
value to shared memory. The
internal name of the new
value block is entered in the
shared variable's share-ID
block. The old value block
and its internal name are
freed. [IASHSPEC]

APLIESCA

b. If the next input token is
EOS, control is passed to the
end-of-statement processing
routine (see Diagram 4.1.4>.
For any other case, the
WSMTSADR field is set so that
the right argument is the top
token on the operation stack.
Control is passed to IESCANG,
ACTIONO to resume statement
scan. [IESCANG. ACT7X]

3. Processing for shared object
subscripted specification is as
follows:

a. The token for the shared
object is obtained from the
operation stack and entered
in the left argument block
(WSMlGETV). In the right
bracket token, the ·SHRASGN
bit is set to 1 to indicate
subscripted assignment to a
system or shared variable.
[IESCANG, ACTION!!]

APLIATRN

The type of shared object is
determined by the IAQUADSA
routine, and the current
value is obtained as follows:

APLIASYV

System variable: For system
variables with an immedi~te
value, a RANK error exit. is
taken. For read-only system
variables, a copy of the!
variable's current value is
made; the syntax and internal
name of the copy is plac,d in
the WSMRSUlT field. For ~ther
cases, the syntax and
internal name of the
variable's value block ate
entered in the WSMRSUlT
field. [IASYSREF]

APLIASHV

Shared variable: The curtent
value of the shared vari~ble
is obtained as described in
la above. [IASCOPY]

APLIESCA

The result is processed .s
described in step Ib above.
Then control is passed t,
IESCAHG, DECIDE2 for syntax
analysis. [IESCANG, ACTliC]

b. Since the current token ~n
the operation stack is now an
ordinary variable, and t~e
prior token is a left
bracket, the subscriptin~
routine (IEINDD) is call.d.
(The subscripted assignm.nt
is done as described in '
Diagram 4.1.4, step 1). At
completion, WSMLGETV contains
the internal name of the
shared object's new valu,;
that is, its current val~e as
modified by subscripting,

c. The type of shared object is
determined by the IASHRP$T
routine, and the new value is
processed as follows:

APLIASYV

System variable: For
read-only system variabl$s,
the new value and its
internal name are freed. For
quad-HT, the new value (if it
is valid) is transmitted to
the executor. For other .
cases, no processing of the
new value is needed.
[IASYSPSTl

APLIASHV

Shared variable: The YYSPEC
service request ;s issued to
transmit the new value t9
shared memory. [IASHSPECl

Licensed Material-Property of IBM
Section 2. Method of Operation 89

APLIESCA

The WSMTSADR field is set 50
that the right bracket is the
top token on the operation
stack. [IESCAHG, EHTRY10B]

d. If the next input token is
EOS, control is passed to the
end of the statement

licensed Material--Property of IBM
90 VS APL Program Logic

processing routine (see
Diagram 4.1.4).

For other cases, the WSMTSADR
field is set so that the
right argument is the top
token on the operation stack.
Control is passed to IESCAHG,
ACTIOHO to resume statement
scan. [IESCAHG, ACT7X]

J

J

DIAGRA" 4.2: . RETURN CODE PROCESSING

hom Piallram 4, I -.
1. Normal ~nd

WSMABTYP

I I
WS~1 Fl'N("

I I I ..
.-~ ~, 1':\l','lItinn ~rr"r

WS)INXI~S

I I
WSMTSADR

CuPSTACK

., .

...

., , 3, Print ()f I :';le"l' I

A"nurmal
Termination
("od~

...
WSMTSADR 4. El\l:ar,· loken

rl
OPSTA('K

~ 00 I
WS~INXINS

r1 I

I.j Error Code 5. s.top (11 aU,'ntion

6. EnJ . ..1" quad input or
C~C,UIl' evaluation I

WSMNXINS ..
I'mpty Value ..

Ern.r M ~s5a~t:

.... r-1

J
)

~

"
..

Trae<'

) I
J J
I (
\

If dia!!nllstk trace
or stop: 'SYNTAX .. or DOMAIN
ERROR'mes.uge

r---\

1

U ..
If stup ...
OPSTACK

!.ine Numher

,. unction Name

" ,

WSMNXINS ..
. .,

Quad

If execute ",ithout
value

WSMABTYP

4,0 I Value Error I

Licensed Material--Property of IBM
Section 2. Method of Operation 91

Hotes for Diagram 4.2

APLITEX

1. At normal end, the null token is
deleted, and the temporary
function is freed. [ITEXECUT,
EXHORMl

If the statement that was
executed was a branch ~o line
zero and the operation stack was
empty, the temporary function is
erased before control returns to
this routine. On exit from this
module, the WSMNXINS and WSMFUHCT
fields are set to empty values.

APLITERR

2. Execution error is signalled by
an abnormal termination code
greater than the value of ABE5CA.
Error processing occurs in a
loop. Each time that the calling
function is made the active
function, processing returns to
step a below. Termination
conditions are: An unlocked
function is found and suspended;
an end-of-stack condition is met;
a qUad-temporary is found and
execution is restarted.
Ordinarily, control passes to the
ITERRORS routine. where
processing is as follows:

a. The operation stack contains
entries representing the
state of the expression being
evaluated when the error
occurred. These include:
primitive functions.
temporary results.
separators. subscript lists.
etc. Each operation stack
entry is deleted and remote
temporary variables are
freed. until a suspended
function or end-of-stack
condition. or a function call
block (FCB) is met. The FCB
is for the function named in
the WSMFUNCT field; suspended
functions and end-of-stack
conditions indicate that the
function named in the
WSMFUNCT field is an
immediate execution function.
[ITERRORS, ERLOOP11

b. Subsequent processing depends
on the type of the active
function: If the active
function is locked. the error
indicated as RANK. VALUE,
etc. in the WSMABTYP field ;s
changed to a DOMAIN ERROR.
[ERLOCK]

ThQ caller of this function
is made active; the FeB for
the function is deleted from

Licensed Material--Property of IBM
92 VS APL Program Logic

the operation stack by the
IESUNFUN routine.

Note: The calling function
may be damaged (that is,
erased, or modified by an
edit command). Damage to a
function is discovered during
type determination. The
function is then treated as
locked and the error is
changed to 5I DAMAGE.

c. If the function is an execute
temporary function. the
temporary function is freed.
and the trouble report
(prefixed by the execute
symbol) is displayed.
[EREXECl

The IESUNFUH routine is
called to del€te the function
call block of this function
and the caller of the deleted
function is made the active
function.

d. If the function is a quad
temporary function, the error
message is displayed, the
temporary function is freed,
and its caller is made active
(see step b above). The
WSMNXINS field is decremented
by two so that it addresses
the quad token for
reexecution and the
interpreter is recalled.

e. If the active function is
defined and not locked, the
error message is displayed
and the function is
suspended. [ERHOLOCK]

f. If the function is an
immediate execution function,
the error m~ssage is
displayed and the temporary
function is freed. [ERIMEX]

g. If the caller of the ITERROR5
routine is a system command
processor (see Diagram 1.1)
requesting an interrupt after
a save comm~nd during
quad-input. control is
returned to the system
commDnd processer. [EXITl

h. If the caller of the ITERRORS
routine is the ITeXECUT
routine, and the error is not
such as to reinvoke a quad
function, registers 13 and 14
are set to the bottom of the
R13 stack. (EXIT] Control is
passed to the input routine.
[ITINPUTl

J

J

J

J

If the error occurred in
quad-input, control is
returned to the caller
(ITEXECUT) to reinvoke the
interpreter. [EXIT]

APlITERR, APLITSUB

3. If the line is to be traced, the
ITPRFNLN routine is called to
enter the function name and line
number in the buffer. If the line
is a branch statement, a
right-arrow graphic is entered in
the buffer. [ITPRFNLN]

APLITEX

For end-of-line printing, or for
tracing, the value on top of the
operation stack is passed to
IAGOUT to be formatted and placed
in the buffer (to follow the
trace output, if any).

If an attention signal is
received, part of the display may
be built but printing does not
occur.

4. The escape token signals either
an ill-formed line or the
assignment to a trace or stop
vector. The escape token is in
the right half of the word at the
top of the operation stack. If
its high-order byte contains
zero, this signals the head of an
ill-formed line. The WSMNXINS
field contains the address of the
error code (ABSYNT or ABDOMAJ,
followed by the text of the line.
The ITERRORS routine is called to
display a SYNTAX or DOMAIN ERROR
message. [ITEXECUT,ESCAPEl

If the escape token signals a
diagnostic trace or stop vector,
processing is done by the TSTEST
routine as follows:

a. The ITFETCH routine is called
to validate the value given
and to procure its element~.
(TSBOTHl

b. For each integer value, a
trace or stop bit is set in
the named function. .

APLITEX

5. For attention signal only,
processing is as follows:

The buffer is cleared. If the
current function is locked,
execution continues. (A locked

i

'functr~n is never suspende.,)
(ATTN] ,

If the function is an
immediate-execution function, the
function is freed and the
ITEXECUT routine returns to its
caller.

If the current function is'a
temporary function built f~om a
quad-input statement or th.
execute primitive, processing
occurs as in step 6. '

For the defined, unlocked
function, processing occurs as
for stop, described below. I

[ATTPERM] I

For stop or attention, the
function is suspended. That is,
the number of the next lin. to be
executed, the name of the
function, and a bit to indicate
that the function is not d~maged,
are placed on the operation stack
(in place of the initial null and
adjacent to the FCB for this
function). Control is then
returned to the caller. [stoPP]

6. The temporary function created
from quad-input or the arg~ment
of execute is deleted from the
operation stack. The value
resulting from its evaluation is
placed on top of the operaiion
stack and the calling function is
made the active one. [UNQUEXl

If there was no value. the
position in the calling furiction
is checked: If at end of line,
execution continues; if not,
ITERRORS is called to caus, a
VALUE error. In any case, ~f the
calling function is at I

end-ot-statement, a test i$ made
for the presence of condit~ons 1
through 5, .

Note: Any combination of
conditions 1 through 6 can ioccur
together, or recursively. When
all conditions have been cleared,
one of three cases obtains:
Execution is over; control is
returned to ITINPUT to pro~pt the
user; an error exists, ITERRORS
is called to handle it; ex~cution
continues, and IEXARCH is dalled
to resume execution.

Licensed Material--Property of IBM
Section 2. Method of Operation 93

DIAGRAM 5.0: SYSTEM COMMAND EXECUTION

Register PT

Length of
Command Text

WSMBUFF

Command
Text

Workspace
Storage

WKSP Files

From Diagram 2.0

I. Prol.!ess VS APL
system commands.

Communication with System

• VSPC Diagram 1.1
• ••••• CMS Diagram 1.2
• ••••• CICS/VS Diagram 1.3
• ••••• TSO Diagram 1.4

Licensed Material--Property of IBM
94 VS APL Program Logi c

Workspace

PDSO

WSMCMFLG

WSMPARMI

WSMPARM2

Register PT

Parameter tist is
Command Text

Register CT

Length of
Parameter List

Error Message

I
I I

Report

J

J

J

J

Notes for Diagram 5.0

APLITCttD

1. The type of command is determined
and the corresponding verb is
located in the VERBTABL table.
The command syntax is analyzed
and execution parameters are
built. Control is passed to a
routine (see below) to execute
the command. [ITSYSCMD]

The commands and the routines
that execute them are listed
below. For commands that affect
the system outside the active
workspace, service request calls
to the executor are issued by the
routines.

Command Rout;ne

CLEAR ITCMCLEA

CONTINUE ITCMCONT

COpy ITCMCOPY

DROP ITCMDROP

ERASE ITCMERAS

FNS ITCMFNS

GROUP ITCMGROU

GRP ITCMGRP

Command Routine

GRPS ITCMGRPS

LIB ITCMLIB

LOAD ITCMLOAD

MSG ITCMMSG

OFF ITCMOFF

OPR ITCMOPR

PCOPY ITCMPCOP

QUOTA ITCMQUOr

SAVE ITCMSAVE

51 ITCMSI

5IHL ITCMSIHl

STACK ITCMSTAC

SYMBOLS ITCMSYMB

VAR5 ITCMVAfl~

WSID ITCMWSID

WSSIZE ITCMW5S1

Any other syntactically-val~d
command will be passed to
ITCMCMD.

licensed Material--Property of IBM
Section 2. Method of Operation 95

DIAGRAM 6.0:

Dump Tape

@
X~16WS (PRPO WSl

API./lbO I'I.SV
l>ir~cl .. ry Clr
\Vurkspact!'s: ,'r
I'RP() Work.pa~ ... s

SELIST

Default "rofiJ~
Information

DIRSLOT

.... '·L/360
Workspace

SI LIST

WORKSPACE CONVERSION

From eMS Clr VSI'C

1. Initialize.
~---------------.r----'

2. Cd dirc\."lory
inJormation.

a. Rc~onstru~t APL/360
directory. r---------"'-----~

b. BUild ahbn:viat~d
direl'tory, ,....--------"-----,

3. Rc.:nnslrllct APL/3bO
wQrk spa .. 'l', ,....----------"'--1

4, Constrlld VS APL.
worksr~ ... e:

a. Initialize
workspace,

h. Convert workspace
t.:ontcnts. r---------...... ..J

5. Writ<' olltput a,
tollows:

a. User profile
inform<ltion for
VSPC IIser. ,.....---------"-----.........

b. Converted
dHcdory
informatIOn for
VSpc.

c. VS APL
w0rkspacl:.

Licensed Material--Property of IBM
96 VS APL Program Logi c

Swragc

A"L/360. AI'LSV
Directory fir
Wurkspaces: or
I'IU'() W"rksl'a~"

VS AI'('
Workspace

CNVTFlAG

I Options

SELIST

List of Workspaces
10 he CClnvened

XM6WS

AI'L/360
Directory

XM6WS

XM6 Workspace

DIRSLOT

Short Dire(lory

U.erflo\\l

VSWS

\'S APL
Worksl'u".

PRPQ Import Tape
VSPC Copy Tape

o
eMS A-disk

B

J

J

J

J

Notes for Diagram 6.0

APLCINIT (CnS), APLOINIT (VSPC)

The three versions of the VS APL
conversion program described are:

• CMS under CMS, conversion from
APl/360 or APLSV to VS APL.

• VSPC under OS/VS or DOS/VS,
conversion from APL/360 or APLSV
to VS APL.

• PRPQ under eMS, conversion from
APl/CMS (PRPQ) to VS APl.

1. CHVTFlAG consists of bits that
are set to indicate options
specified in the convert command
(CMS) or specified by convert
command cards (VSPC). The SElIST
is built from select parameters
(APLCPARM, APLOPARM). Then
storage is obtained (by GETMAINs)
for:

a. The APL/360 or APlSV
workspace or directory

b. The VS APl workspace

c. The display buffer

The tape label and first data
record on the tape are read to
compute buffer si~e. The tape is
then repositioned to the first
data record. Also, the printer
data set is opened. The XM6WS
pointer is set to point to the
start of the APL/360 workspace.
The VSWS pointer is set to point
to the start of the VS APL
workspace. The BUFFSTRT pointer
is set to point to the display
buffer.

2. The input tape is now read,
workspace by workspace. However.
there are two types of workspaces
that are very similar in
structure: directories and
workspaces proper. If there are
directories on the tape, they all
precede the workspaces proper.
There may be any number from 0 to
n of directories. Therefore, the
directory (if any) is read and
reconstructed from its condensed
tape form into the APL/360 slots
(APLCINIT and APLOINIT).

If APlCINIT or APlOINIT
identifies this workspace as a
directory, it calls APlCDIRE or
APlOOIRE to process it. In CMS,
APLCDIRE is a dummy routine which
prints the message "DIRECTORY" at
the terminal. In VSPC, APLODIRE
extracts.data from each PERlIB of
interest, and saves the extracts
in OIRSlOT. It is saved until the

.workspace and account to which it
pertains is finally found. later
on the tape. If full conversion,
extracts from all PERLIBs are
saved. If select conversion. only
those PERlIBs pertaining to
workspace and accounts in SElIST
are saved. If resume co~version,
only those of PERLIBs pertaining
to the workspace at which
conversion is to resume. and all
following workspaces are saved.

DIRSlOT holds extracts for ~p to
400 accounts (there is one PERLIB
per account). If there are more
accounts, DIRSlOT overflows; it
is written as a block to a
temporary data set (APLDIRE) to
make the slot available for 400
more accounts. Tha first word in
DIRSLOT is a high water mark
pointer which points to the next
available position for an
extracted PERLIB. The data
extracted is:

APl/360 library (account number)

PASSWORD

WORKSPACE QUOTA

SHARED VARIABLE QUOTA (if any)

MA~ TIME BETWEEN INTERACTIONS

If the account is ~mpty (no
workspace for this library), the
PERLIB is ignored. Later, when a
workspace proper is converted,
thes9 saved extracts will be used
to create the VSPC user profile
record and directory entry
record.

3. Eventually, APLCINIT or APLOIHIT
reconstructs the first of the
workspaces. When this happens,
there are no more directories
because a directory cannot follow
a workspace on a VS APl dump
tape. Upon identifying the
workspace as a workspace,
APLCIHIT or APlOINIT calls
APLCCUlL (CMS) or APlOCULl (VSPC)
to d€termine if the workspaoe
should be converted. APlCCULL or
APLOCUll checks (if select
conversion) if the workspac~ is
in SElIST. If not and if sel~ct
conversion, the workspace is
ignored and APLCINIT or APlOIHIT
gets the next workspace. APlCCULL
and APLOCULL also validate the
library number and workspace
name. If VSPC, and either is
inv~lid and not renamed in
SELIST, the workspace is
rejc:.!cted. If cns and either is
invulid, APlCCUll or APlOCUlL
requ~sts a new number and/or a
new workspace name from the

Licensed Material--Property of IBM.
Section 2. Method of Operation 97

terminal. If resume conversion,
workspaces are ignored until the
one specified in the resume
command is encountered.
Thereafter. conversion reverts to
full conversion logic. If the
workspace passes culling. control
is returned to APlCINIT or
APlOINIT, which calls APlCWKSP
(CMS) or APlOWKSP (VSPC) to
manage workspace conversion.

4. Construct VS APl workspace:

a. The VS APl slot is
initialized. This is a clear
workspace (APlClEAR.
APlOlEAR, or APLQlEAR) with
the workspace environment
converted by CLEAR. APLCWKSP,
APLOWKSP, or APlQWKSP then
calls APlCIBHM, APlOIBNM, or
APlQIBHM to provide a unique
name for the IBEAM simulator
function which may have to be
added to the workspace as a
result of idiom conversions.
Then APlCWKSP, APlOWKSP, or
APlQWKSP un shadows global
names so that each active
symbol table or address table
entry points to its most
global value (if any).

b. At this point. conversion of
workspace objects begins. For
the rest of this workspace,
APLCWKSP, APlOWKSP, or
APLQWKSP is driven by the
symbol table or address table
through which it loops
looking for variables,
groups, and functions which
have values. APlCVAR8 (CMS),
APlOVAR8 (VSPC), or APlQVARB
(PRPQ) is called to validate
and convert variables.
APLCGRUP (CMS), APlOGRUP
(VSPC). or APLQGRUP (PRPQ) ;s
called to convert groups. The
converted objects (variables,
groups) are entered into the
VS APL workspace symbol table
by APlITIDS. Space for the
objects in the sink workspace
free space is obtained by
calling APlIESPA. These are
VS APL interpreter routines
borrowed by conversion and
require VS APL linkage
(APlCAll, APlEXLT macros).

Upon encountering a function
in the symbol table, WKSP
calls APlCFUNC (CMS),
APlOFUNC (VSPC), or APLQFUHC
(PRPQ) to manage the
conversion of the function.
It is here that idiom
(context) conversion takes
place.

Li censed Materi aI-Property of IBM
98 VS APL Program Logi c

Functions are converted line
by line from internal tokens
to display format by
APlCDISP. APlODISP, or
APlQDISP. First. FUHC calls
DISP to display the header
line. Syntax errors are not
tolerated here; if any are
found, the function is
ignored. If no errors are
found in the header. FUNC
calls VS APl interpreter
routine APlITHDR to tokenize
the function header into the
VS APl workspace. Also,
APlITHDR enters the name of
the function into the VS APl
symbol table along with any
declared locals. results, and
arguments. Then FUHC calls
DISP to display and make
idiom conversions for each
line. DISP returns with a
summary of idioms found which
FUNC places in the summary
table with the function line
number to which it pertains.
FUHC enters each displayed
(converted) line into VS APl
by calling APlITLXS. Finally.
all function lines are
processed; FUNC formalizes
the converted function by
calling APlITFDC. Then FUNC
analyzes the summary table,
calling APlCRPRT (CMS),
APLORPRT (VSPC), or APlQRPRT
(PRPQ) to print a summary of
idioms found and the lines in
which the idioms occurred.
There is no printing if no
idioms occurred. The summary
table is reset for the next
function, and control is
returned to WKSP for the next
object.

FUHC does not go through this
process. however, for
identifiable workspace
functions: ORIGIN, SETLINK,
SETFUZZ, WIDTH, DELAY, and
DIGITS (from distributed
library 1 in XM6). If FUHC
detects a locked, two-line
function, it calls APlCWSFH
(CMS) or APlOWSFH (VSPC)
only. This routine checks the
function bit by bit for a
match with one of the WSFHS
functions listed above. If it
does not match, control is
returned to FUNC, which
processes the function in the
normal way. If it does match,
WSFH returns to FUNC with a
"hit" return code and a
pointer to a function that is
the VS APl equivalent. FUNe
then calls APlCSHIP (CMS and
PRPQ) or APlOSHIP (VSPC) to
process the substitute. SHIP
enters the substitute by

J

.J

calling in turn APLITHOR,
APLITLXS, and APLITFDC. FUHC
then prints the message
"REPLACED" on the conversion
report via RPRT. Eventually,
WKSP exhausts the XM6 symbol
table. At this point, WKSP
adds the IBEAM simulator
function to the VS APL
workspace if appropriate. It
does this by calling APLCSHIP
or APlOSHIP with a pointer to
the VS APL definition of the
simulator fUnction. APLCSHIP,
or APLOSHIP enters the
simulator in the same way it
entered the workspace
functions. Conversion of the
workspace ;s now completed.
WKSP then calls APLCSAVE
(CMS), APLOSAVE (VSPC), or
APlQSAVE (PRPQ) to write out
the converted workspace.

5. In CMS, APLCSAVE writes the VS
APl workspace to the user's
A-disk and calls RPRT to print
the eMS file identification of
workspace. In VSPC, saving is
more complex. If the workspace is
the first encountered in an
account (THIS LIBNO ¢ LASTLIBHO),
SAVE creates a user profile
record which it writes to tape
(APlOUT). To do this, it
retrieves the extracted PERlIB
from OIRSLOT by calling GETDIRE
in APLOOIRE. If there were no
directories, SAVE uses default
values to create the user
profile. This logic occurs only
for the first workspace
encountered in each library. For
all workspaces, SAVE creates and
writes to tape a VSPC directory
entry record describing the
workspace. Finally, SAVE writes
the workspace on APlOUT as 16K
byte control intervals as if the
workspace were a member of a VSAM
data set. Control then returns to
WKSP, which returns control to
INIT to get the next workspace.
PRPQ APLQSAVE writes the
workspace either to VSPC input
tape or to the user's eMS A-disk.

A. CHS and VSPC

Tape structure. An example of tape
structure is shown below: .

a. Tape label, one or two
80-byte records.

First record is optional VOLI
record

Second (or first if no VOlI)
is HDRI record; contains
record size in bytes 57, 58.

APL LIBRARY DUMP
APL SVS LIBRARIES RECORD SIZE

1 4 5 21 57 58

b. Data: directories and
workspaces, variable length
records. Each directory or
~orkspace:

1st record 144 bytes from
workspace (or
directory)

n records

n records

ori gi n through
SVl.

of variable
length from
PARREL through
m-entri es to
beginning of
free spac~.
last record may
be padded with
a few byt~s of
free space if
too short for a
tape record.

of variable
length from top
of execution
stack (low
core) thrCj)ugh
bottom (hi
core) of Iti3
stack.

Sequence is: directory 0
through directory n followed
by workspaces in directory
and PERLIB order (entry.
sequence, not collating
sequence). In APl/360 tapes,
workspaces are in PERSAVEW
order; that is. entry
sequenced.

c. Trai ler label

EOFI if end of file

EOVI

m

APLQINIT (PRPQ)

if end of volume

columns 1 through 4

1. APLFlAGS consists of bits
describing conversion options.
These bits are set by APLQPARM
from execution parameters and
terminal input.

APLQINIT establishes the first
values for most other modules.
APLQINIT takes all of virtual
storage with the CMS macro

Licensed Material--Property of IBM
Section 2. Method of Operation 99

DMSFREE. Conversion cancels if
there is not at least 64K bytes
available. APlQINIT then returns
to CMS, 16K bytes at the low end
and 16K bytes at the high end of
the area taken. This is to
provide CMS with free space for
implicit GETMAINs and DMSFREEs.
The remaining storage is then
allocated for the VS APl
workspace and the APl/CMS (PRPQ)
workspace. The display buffer
comprises the PRPQ R13 stack and
the VS APl WSMBUFF.

2. No directory for PRPQ.

3. APlQINIT builds APl/CMS (PRPQ)
workspaces in the PRPQ slot from
a eMS dump tape input. On the
tape, the workspaces are
compacted, thus they have to be
properly constructed in storage.
Also, internal workspace pointers
are relocated. If the option is
resume, APlQINIT checks the
fileid for a match with the
resume point fileid and bypasses
further processi~g of this
workspace if there is no match.
When the match is found, APlQINIT
processes that workspace and all
subsequent workspaces on the
input tape.

4. Same as numbers 4 and 5 for CMS
and V5PC.

A

CMS dump tape structure for APL/CMS
(PRPQ) workspaces 80S-byte physical
records as shown below.

L.

______ p_re_fl_1X ______ ~_Da __ t.:~BY"S I

02 CMS 40 I:

Rel,;ords
I tun-I

Prefix File Re~ord 800 Bytes
Re~O/d n

L..,;;O.::.2 __ ..;;,CM;.;.;;.S_N;...-JL....-,;6;...4....;;B;.::;y_te_s~, < I File ID I I
, .. 18 Bytes~

Licensed Material--Property of IBM
100 VS APl Program logi c

However, the data portion represents
logical disk records as shown below.

~ Work Length Length d
:!3 space Thru SV I . fl =

.e.e HDR By~eS Length MX to End UTse H '80'

... 82 Bytes ~

1. One or more logical records
containing workspace from origin
to beginning of free space.

2. One or more logical records
containing end of free space to
end of R13 stack as shown in the
example that follows.

p ~ \ \liS PtCln

L I • Il.dt ... d lclllltil "I lu"." .. 1 fe" .. rJ II. t))le\

l: ~ U"UVI'utJ 11:11)1110 ·.1 1.'IlI 1 '('~I ... '" 110 h)ole,

L

L

L

DIAGRAM 7.0: CICS/VI LIBRARY SERVICE PROGRAM

From
Operllting Syste m

System input
data set

OS or APL
DATA SET

I

...
-.

c

... ~

~ ...

I. Initialize global communication
area (SPG) and open system .
data sets., Register 11 poin L~ to the SPG

I
., Read ~ontrol statements. I

1
3. Analyze control statements. r

4. Open the input and output
data sets required to process
each control statement.

5. Process the control statement
(AUnt FORMAT COPY.
IMPORT. or EXPORT).

6. When all control statements
have been processed. close
all data sets. Return

-po

Licensed Material--Property of IBM
Section 2. Method of Operation 101

Notes for Diagram 7.0

The APL library service program runs
as a batch job, separate from the VS
APL online subsystem. The library
management commands are control
statements for the service program.
These commands are COPY, EXPORT,
IMPORT, FORMAT, AUTH, and
ENVIRONMENT. The commands are
contained in the SYSIN data set.

The service program executor module,
APLKVEXC, is the first-level module.
It controls the execution of the
second-level subroutines: APLKVINT
and APLKVTRM, which initialize and
terminate each service program
request, and APLKVCMD, which analyzes
each control statement request.
Another set of second-level routines
act~ally process the control
statements. Input and output are done
by a set of third-level modules
called by the second-level routines.

The message processor module,
APLKVMSG, writes output to SYSPRINT
in response to calls from all three
module levels. Communication among
the service program modules is made
using a global work area, the SPG. It
is addressed using register 11.

The APL data sets used by the service
program are either the APL directory
data set. a key-sequenced VSAM data
set, or the APL library
(entry-sequenced VSAM data set that
contains the library data).

APLKVEXC

1. Initializes the SPG and calls
ALKVPIN to read the JCL input
parameters and open the required
data sets.

2. Reads and scans the next control
statement and moves it to the
buffer in the SPG. Calls APLKVMSG
to print the control statement
(passwords are converted to
blanks). If the control statement
is continued, the remaining data
is read, a card image at a time,
and printed. Continuation marks
are removed, and a complete
statement is prepared in the
buffer. [READCOMMJ

APLKVCMD

3. This module contains the syntax
tables defining the valid control
statements. When called by
APLKVEXC, it calls APLKVSCN.
APLKVSCN processes the control
statement against the tables in
APLKVCMD and returns the encoded
control,statement in SPGPARMA. A

Licensed Material--Property of IBM
102 VS APL Program Logic

code representing the control
statement type is placed in
SPGCOMM.

APLKVINT

4. APLKVEXC passes input ~o this
routine in the SPGPARMA and
SPGOPENA fields. This routine
checks for invalid data set names
in a TO or FROM operand.

This routine then completes DCBs
with default values for
parameters not specified by the
user's JCL. and an end-of-data
exit address. Initialization
procedures, by control statement,
follow:

• AUTH - none

• COpy - Open the data sets
named TO and FROM operands.
If TO and FROM aren't both
named, open APLLIB and
APLDIR. If the COPY statement
is to the APL library, open
the APL library for output.

• FORMAT - Ensure that the APL
directory and library data
sets are open.

•

•

EXPORT - Open the output data
set and ensure that the APL
library is present.

IMPORT - Open the input data
set, and open the APL library
for output.

5. APLKVEXC calls the second-level
modules that follow to process
the control statements. Note that
IMPORT accesses an OS data set as
input; EXPORT produces one as
output. COpy can accept
COPY-produced sequential dAta
sets in lieu of an APL input
library; COPY can produce an OS
output data set.

APLKVAUT - AUTH Control statement

If user level authorization is
requested, reads the user profile
from the APL library. Compares
the password passed with the AUTH
control statement with the user
log-on password. The user's
identification from the AUTH
control statement is saved in the
SPGUSID field. If system level
authorization is requested,
checks the password against that
in APLKPASS (APL directory update
password). The privilege level of
APL library access is saved in
SPG-PRIVA.

J

J

APLKVFMT - FORMAT Control
statement

Requires complete library level
authority over the APL library
and an unformatted library.
Formats the APL library data set
into 4K blocks. Builds a free
space profile and writes it to
the APL directory. If USERS is
requested on the FORMAT control
statement, writes the user
profiles for libraries 1, 2, and
314159.

APLKVCPY - COpy Control statement

Requires a system level authority
over libraries being accessed
when a range of libraries are to
be copied. Searches the input
library or FROM data set over a
range of one or more user
identifications, calling APLKVLBI
for I/O. For each user profile
read, either ignores (for the
REMOVE option) or writes profile
to output librar.y or TO data set
calling APLKVLBO or APLKVTPO for
I/O. If copying to the APL
library, calls APLKVALD to
allocate space for the files. For
each user written library,
inspects directory records for
all files owned and writes files
matching the TYPE attribute.

. APKLVEXP - EXPORT Control
statement

Calls APLKVLBI to read directory
entry from input data set. Calls
APLKVLBI to read each control
interval of the member from the
APL library and calls APLKVDSO to
deblock and write the contents of
the control intervals to the
operating system data set.

APLKVIHP - IMPORT Control
statement

Checks input parameters for
consistency. Calls APLKVlBI to
read the library profile of the
library being imported to. Calls
APlKVALD to allocate space for
the file. Creates a new directory
entry and calls APlKVLBO to write
the entry to the output library.
Calls APLKVDSI to read the input
data set being imported and block
its records into a control
interval. Calls APlKVlBO to write
each control interval to the APL
library.

APLKVTRM

6. Checks the SPGOPEHD field to
determine whether there are open
OS data sets. If so, issues a
CLOSE macro instruction to close
the data sets whose DCBs are
identified in the SPGRDDCB and
SPGWQDCB.

licensed Material--Property of IBM
Section 2. Method of Operation 103

DIAGRAM 8.2: VS APL SESSION MANAGER EXECUTOR SCHEDULER

WS\I

I Will ClCS/\'S. ('\IS. (lr TSO
l"Cc'Ulllr "r ,\ r 12n

For subroutine call during normal
task entry. call the appropriate
module to:

,. Display an errt)r message

, Start a VS APL $ession
manager session ...-___ --JL-______ -J'

3. Prompt flH P~ssw()rd

4. End a VS APL session
manager sc~sion

:" Get :I line of input ror the
illlerpret er ,.--___ -JL-. ______ --'

(" Write a line of lIutput from
t hr interpreter

." Write a lin'~ and get a line (}f

llutpll!

:,'. Execute a cI)mmand

RClll!11

licensed Material--Property of IBM
104 VS APl Program logi c

J

'-------'

J
WSM

Notes for Diagram 8.2,

APLASCHD

1. The purpose ;s to request the VS
APL session manager to display an
error message for an abending
executor, an auxiliary processor,
or for any other reason. It also
waits for the message to be
displayed before returning.
(APLAERRM]

2. Tells the VS APL session manager
to start the session. then waits
for the session to start before
returning. [APLAIHIT]

3. Requests that the VS APL session
manager prompt the user for a
password. [APLAPASS]

4. Shuts down the session, waits,
then returns. [APLATERM]

5. Tell~·the VS APL session manager
to put a line of text in the WSM.
[APLATYIl

6. Tells the VS APL session manager
to take a line of text from the
WSM. [APLATYO]

7. Tells the VS APL session manager
to write a line of output from
the WSM, get a line of input from
the terminal, and put it in the
WSM. [APLATYOIl

8. A text string is passed as an
argument, and the entry point
tells the VS APL manager session
manager to process this string as
a VS APL sess;on manager command.
[APLAXCMD]

Licensed Material--Property of IBM
Section 2. Method of Operation 105

DIAGRAM 8.2.1: VS APl SESSION MANAGER EXECUTOR PROCESSOR

From CICS/VS, c:o.[S
or TSO initialization

Process VS APL Session
Manager request.

1. Take the request off the
DSM request chain.

'l ('all the appropriate module to:

A. prompt for input.

B. queue input lines.

C'. execute a command.

D. redetine the display screen.

E. redefine the line column or
user specified field.

F. refresh the display input area.

G. add a line to the display
input area.

H. display a message.

I. update the sessil'n log.

Licensed Material--Property of IBM
106 VS APL Program logi c

Return

J

J

Notes for Dfagram 8.2.1
APLACRCP

1. Takes a single request off the
DSM chain and calls
APlACPRO to process it.

APLACPRO

2. Determines the type of request
and calls one of the modules
listed below to process it.

APLACPRH

a. Prompts user for input.

APLACQUE

b. Queues and dequeues a series
of commands or input
lines.

APLACXCM

c. Verifies the syntax of a
command passed by APlACPRO,
and, if valid, tries to
execute it. If the command
is invalid, it returns a
message.

APLACNDP

d. Defines the position and size
of the VS APl session manager
display in the user's screen.

APLACRSA

e. Defines or redefines the line
column and user-specifiable
area when the displ~y size or
position has changed, or
there has been an error
message for some session
manager error.

APLACRDA

f. Redefines condition of
display input area after the
user has changed the display
column or line setting, or
the setting of the display
command.

APLACDSl

g. Either is called repeatedly
by APlACRDA to define each
line of the display area, or
is called by APLACPRO to add
a single line to the display
area.

APlADHSG

h. Displays an informational or
error message.

APLACSF

i. Maintains the session log.

licensed Material--Property of IBM
Section 2. Method of Operation 107

DIAGRAM 8.l.1: COMMON AUXILIARY PROCESSOR SERVICES UNDER CMS AND TSO

,\so

I'rolll ,\»1.110.
AI'!. J:! I.
AP1.l26

~rkspacc

I. Validate iJlv\l~at ion
parametel list allJ !(CI
storU!(c. if necessary.

ANC

., Initialize anchor block. .====>1 ------'

A:-';(.· ,CMS. ISO)

APe

I
I I
I
I

I
!

j I

i
I

I I

I
L

3. Establish anend exit
loutine.

4. Initialize I>(V and si!!n
on til shared st(llage
manager in eMS or TSO.

5. (jet storage for AI' control
area and initialize that area.

('. Issul: a 'Nait III Ihl: shared
storage manager and interpret
Ihe evenl that satist1ed !he
w~it.

;to I"" PCY. l.eB. d~termin" whctlt.:r
thh ,..; :t ,i~n",'!1 ~'r ;.1n ~'ff~r and
la kl..' :th: Ih.'\""·".ll ~ Jl..'1lon.

h.)"'r S("\·. H ·B. ,·:>o.:II11in" the
r'}~t ,:nth., 3nd uk~ th~ Ih'I..·t..·~!\~.H~

JL'tiull. ..~~~~~~!I ~
-. I'rl."e-;s AlTIICHECK. COPY.

GET. \'! PLT.

If the request is ABORT,
deterll1ine which oplion to
usc and process it. Then
call the retral't exit rOll tine

in the auxiliary pruccssor ~

:', Pr,lcess ABE:"/).

Licensed Materlal--Property of IBM
108 VS APL Program Logi c

Return to Call~r's
Offer I:.xit Routine

APe

R.:turn to Callc:r

Call Call.:r", R.:tra.:t
EXit ROll!in~

C.II AP's Abend
I-.:>o.it Routine

APe

J

Notes for Diagram 8.3.1

APLXASD(CMS), APLXAYD(TSO)

1. In CMS, APLXASD scans the
invocation parameter list until
the end-of-list marker is
reached. The DMSFREE macro is
invoked to 6btain storage. The
parameter is copied to the new
storag~, and a pointer to the
storage is returned to APLXAC.
The back size of storage obtained
is also passed to APLXAC.
[APLXAINP] .

APLXAMSG routes messages from
APLXAC to the terminal.

In TSO, APLXAYD picks up the
parameter count from the
parameter list, invokes macro
GETMAIN, and moves these
parameters to the new storage. A
pointer to the storage and the
back size of storage obtained arQ
passed to APLXAC. [APLXAINP]

APLXAMSG routes messages from
APLXAC to the termin~l.

APLXAC(CMS/TSO)

2. Every auxiliary processor has an
anchor block known as ANC. This
contains information passed by
the auxiliary processor at
sign-on, as well as additional
data needed by APLXAC.

APLXAC(Ct1S/TSO)

3. Calls APLXBEND to establish an
abend exit for these modules.

APLXAC(Ct1S/TSO)

4. PC~ is a process control vector.
APLXAC sets fields, as requested,
in the auxiliary processor
sign-on request block for CMS and
TSO. It then issues a sign-on to
the shared storage manager (SSM).
If the sign-on'" fails. the
auxiliary processor is
terminated.

APLXAC(CHS/TSO)

5. GETMAIN;s invoked for the
auxiliary processor control ~rea.
This area will contain the ECa
list, the SCV ECBs, and the SCVs.
The SCV is the shared control
vector; there is one SCV per
shared variable.

The addresses of ECBs are now put
in the address list. In each SCV
is placed the address of the
corresponding ECB. In each ECB is
placed the index to the SCV list
of the corresponding ECB.

.;.', - .,
APLX'AC{CI1S/TSO)

6. Passes the address of th~ ECB
list. Wh~n th~ w~it is s~t13fied,
one of two events can take place:

a. PCV ECS h~s been po~t~d.

b.

Determine if sign-6ff request
or offer is received. If
sign-off roquest, free the
storapQ, r~tract any shared
variables (callin~ th~
auxiliary proces~or retract
exit fer e~ch set of
variables), and issue a
sign-off to the shared
storage m<:lnager.

If offer is received, and it
was th" prim~ry variable,
counter-offer that variable,
and initiate an offer for
each m~nber of the shared
variable set. Get storage for
an APe ~nd Sgt the
a~pro~ri~te fields. Transfer
contre: to the auxili~ry
proce~sor's offer exit
rou~in~.

If 5CV ECB h~s been posted,
one of two evcnt~ c~n tak~
place:

The u~~r has retracted a
variable. If this is a
primary variable, retr0ct the
s~t of variables, and call
thQ au~i liary processor
retr~ct exit routine. If it
is not the primary variable,
ignore it.

Or if the interlock is
broken, shared storage is now
availabl~, or tho U5~r has
specified a value. ta~e
appropriate action;
othQrwiSQ, isnore and
continue to wait.

APLXAC (C!'!S/TSO)

7. There are five available service
reques-::s:

AUTHCHECK: Set =ero return and
reason codes.

COpy: Issue a COpy re~uest for
the variable to the shared
storage manag~r. If there is a
temporary rejoct condition. enter
a wait state and try the COpy
again if the AP has so requested.
If the translate option is set,
translate character data.

licensed Mater i aI-Property of IB~1
Section 2. Method of Oper~tion 109

GET: Issue a reference for the
variable to the shared storage
manager, and proceed as for COPY.

PUT: If the translate option is
set, translate character data.
Issue a specification to the
shared storage manager. If there
is a temporary reject condition,
enter a wait state and try the
reference again if the AP has so
requested.

ABORT: There are two
options--abort and abort all. For
abort, retract the set of
variables, pass control to the
invoking auxiliary processor's
retract exit routine, and free

Licensed Material--Property of IBM
110 VS APL Program Logic

the storage for this set of
variables.

For abort all, pass control to
the invoking auxiliary
processor's retract exit routine,
once for each set of variables,
to retract all sets; then issue a
sign-off to the shared storage
manager (CMS or TSO).

If an abend occurs in the
auxiliary processor, restore the
processor's registers and call
the processor's abend exit, if
there is one. Then retract "the
variables in the set and enter a
wait state. "

J

J

DIAGRAM 8.3.2: COMMON AUXILIARY PROCESSOR SERVICES UNDER CXCS/ys

From APL120. APL126

I
ASO

I I u:::
..

SCV

I I

1. Validate offered variables.

2. Get storage for AP work area,
shared variable work area,
and APC, and initialize SCVs,
ANK, and APC.

3. Establish abend exit.

4. Counter offer primary
variable and initiate offer for .. Return to Caller's
remaining variables. Offer Exit Routin e

APe ...
I I

S. Process AUTHCHECK, ..
COPY, GET, or PUT. Return to Caller

APe ..
I I .)I

If request is ABORT,
determine which option to
use and process it. Then call
the retract exit routine in the
auxiliary processor. Call AP's Retract

Exit Routine

6. Process abend. Then call the
abend exit routine in the --. Call AP's Abend
auxiliary processor. Exit Routine

APe ...
J I

licensed Material--Property of IBM
Section 2. Method of Operation III

Notes for Diagram 8.l.2

APLXAKICICS/VS)

1. Validate that the shared variable
offered is a valid primary
variable as defined by the AP in
the AP sign-on block CASO). If
not, do not counter-offer. but
return.

APLXAK(CICS/VS)

2. Every auxiliary processor has an
anchor block known as an ANC.
This contains the address of the
auxiliary processor sign-on
block, 8S well as additional data
needed by APLXAK. Every set of
shared variables has an
associated APC employed as a
communications block between the
AP and common auxiliary processor
services.

APLXAK(CICS/VS)

3. Calls APlXBEND to establish an
abend exit.

APLXAK{CICS/VS)

4. Counter offer. through the shared
storage manager. the primary
variable, and initiate an offer
for each member of the shared
variable set.

Transfer control to the auxiliary
processor's offer exit routine.

APLXAK{CICS/VS)

5. There are five available service
requests:

AUTHCHECK: Issue an AUTHCHECK to
the shared storage manager.

Licensed Material--Property of IBM
112 VS APL Program Logic

COpy: Issue a COPY request for
the variable to the shared
storage manager. If there is a
temporary reject condition, enter
a wait state and try the COpy
again if the AP has so requested.
If the translate option is set.
translate character data.

GET: Issue a reference for the
variable to the shared storage
manager. and proceed as for COPY.

PUT: If the translate option is
set. translate character data.
Issue a specification to the
shared storage manager. If there
is a temporary reject condition.
enter a wait state and try the
PUT again if the AP has 50
requested.

ABORT: There are two options:
abort and abort all. For abort,
retract the set of variables.
pass control to the invoking
auxiliary processor's retract
exit routine. and free the
storage for this set of
variables.

For abort all. pass control to
the invoking auxiliary
processor's retract exit routine.
once for each set of variables,
to retract all sets.

6. If an abend occurs in the
auxiliary processor, restore the
processor's registers and call
the processor's abend exit, if
there is one. Then retract the
variables in the set and enter a
wait state.

DIAGRAH 8.~.1: VS APL SESSIONHANAGER AUXILIARY PROCESSOR FOR CICS/VS, CHS, AND
ill

WORK AREA

hom APLKA()SP
APLYL'SVI
APLSCSVI

...

1. Sign on to shared storage
manager through common
auxiliary processor
services

2. As long as the VS APL
session manager is active.
receive the request through
common auxiliary processor
services, and pass it to r-----'-----......... "

ASO

APC

VS APL session manager '------.....
executor scheduler for
execution. r-------~-----....

3. 00 cleanup for this variable

4. Enter abend exit routine for
error recovery

Return

CPB

L-____

Li censed Mater; al-Property of IBM
Section 2. Method of Operation 113

Notes for Dfagram 8.~.1

APL120

1. Invokes common auxiliary
processor services (CAPS) to
issue a sign-on to shared storage
manager. Control is returned to
one of three entry points:
OFF120, RET120, ABEI20. [APlI20]

2. A variable has been successfully
offered and counter-offered.
local initialization (via main
storage services) is done, and
the eTl variable is referenced
through common auxiliary
processor services. If the
partner specified CTl with a VS
APl session manager request, the
request is passed to the session
manager for execution, using the
CPB request block.

licensed Material---Property of IBM
114 VS APl Program logic

The CTl variable is specified
with a 2-element return code. Any
text produced as a result of the
execution of the request is
returned as a character matrix in
the OAT variable. [OFF1211

3. Control returns here from common
auxiliary processor services if
the partner has retracted the
variable. Necessary cleanup is
performed for this variable
instance. [RET120]

4. This is the entry point for the
occurrence of en abend. Dump
services is called to dump the
local work areas and registers.
All variables shared with this
auxiliary processor are retracted
and control returns to common
auxiliary processor services.
[ABEI20]

J

J

J

'--

'--

<....

DIAGRAM 8 ••• 2: GDDM AUXILIARY PROCESSOR FOR CICS/VS, CMS. AND ISO

APe

From APL Yl!SVI
APLSCSVI
APLKADSP

1. Issue a sign on to common auxiliary
processor services. ,..----L ______r

2. Establish addressability to storage
and code.

a) If first offer. initialize the
AP communication area.

h) Issue a GET to common auxiliary
processor services for the control
variahle .

....

.).

to initialize a path for the set of
shared variables.

4. Interpret the request and perform
appropriate action.

S. Issue a PUT to common auxiliary
processor services for the DA T
variable to return all character
data to the user.

6. Issue a PUT to common auxiliary
processor services to return the
return code vector and any
numeric data in the control
variable.

7. Repeat steps 2b·6 until the set
of variables is retracted.

8. If a retract or signoff request has
occurred, free storage and terminate
the path to GDDX.

ASO

APe

GDM

APe

APe

licensed Material--Property of IBM
Section 2. Method of Operation 115

Notes for Diagram 8.~.2

APL126 (CICS/VS, CMS, and TSO)

1. Creates a sign-on block and calls
APlXAC (CMS/TSO) or APLXAK
(CICS/VS) to establish the
environment, and sign-on to the
shared storage manager (SSM).

APL126 [OFFl26l

2. This entry point is entered when
a control variable has been
offered by a user. The address of
the auxiliary processor work area
is in the APC, and is used to
establish the addressability for
APL126.

a. The GDM request block is for
requesting services to GDDM.
This block is built by
analyzing an entry in the
GDDM call table. The
auxiliary processor
co~munication area is
initialized to contain the
number of active paths to
r,onx.

b. I~sues a GET to common
auxiliary processor services
(CAPS) to wait for the first
user request.

3. There is a single path for each
pair of shared variables. This
call to APLXGDDX establishes a
path, and returns a unique path
ID to APL126.

4. There are three categories of
requests:

licensed Material--Property of IBM
116 VS APl Program Logi c

a. AP Control Request: Request
to the auxiliary processor to
either establish an
environment, or perform
functions exclusive of GDDM.

b. Zero Request: No-ops result
in no action.

c. Hormal.GDDMRequest: Passed
to GDDM, in some cases with
special procossing first.

5. Any character returned by GDDM is
put into vector form in the OAT
variable, and translated. as
determined by th~ user.

6. The CTL variable returned is in
vector form, with the first
element representing the highest
severity of any error incurred in
the processing string.

This is followed by a
four-element return code and any
numeric data for each request in
the string.

7. ContInue to perform tasks 2b
through 6 until the user retracts
or signs off, or an abnormal
termination occurs.

APL126 [RETl261

8. Control is passed to this label
when a shared variable set is
retracted by common auxiliary
processor services (CAPS). Frees
storage associated with this
5hared vuriable pair, and calls
APLXGDDX to terminate this path,
and returns to common auxiliary
processor services (CAPS).

J

J

J

J

J

DJAGRAH 8,~.3:VS APL DATA FILE AUXILIARY PROCESSOR FOR CH$/TSO'

From APLYUSVI
APLSCSVI

WORK AREA

512 Bytes 1. Sign on to shared storage
manager through common
auxiliary processor services.

2. Initialize control blocks. issue
GET to common auxiliary
processor services and call
appropriate subroutine to
process request, and pass
con trol to file services to
process file.

3. "Close the file and release
buffers.

4. In case of abend, take dump
and retract shared variables.

ASO

APe

FAB

Licensed Mater;al--Property of IBM
Sect;on 2. Method of Operation 117

Notes for Diagram 8.4.3

APL121

1. Invokes common auxiliary
processor services (CAPS) to
issue a sign-on to the shared
storage manager. Control will
return to one of three entry
points: OFFI21X, REl12lX,
ABE12lX. [APl12lXl

2. Control comes here from common
auxiliary processor services when
a shared variable has been
successfully offered and
counter-offered. local
initialization is done, and the
ell variable is referenced
through common auxiliary
processor services. If the

. partner specified eTl with a
re~uest, the appropriate action
is executed. The FAB control
block is used in communicating
I-lith file services. [OFF12lXl

For the se~uenti~l read re~uesti
the file is opened, each record
is read se~uentially and
specified in the Cll variable.
[SRFILEJ

For the sequential write re~uest,
the file is opened, the CTl
variable is continuously
referenced and written into the
file. [SLolFILEl

For the create re~uest, a new
file is created if it doesn't
already exist. [CFIlEJ

For a drop request, the specified
file is deleted. [DFIlEJ

licensed Material--Property of IBM
118 VS APL Program log; c

For the file size change re~uest,
the size is changed according to
the specified value. [FSFILEl

For the direct update request,
the file is opened for direct
processing, the DAT variable is
referenced, and the corresponding
record is updated. [DIRUPRD]

For the direct read request, the
file is opened for direct
processing, the record is read,
and specified in the DAT
variable. [DIRUPRD]

For the change share status
re~uest, an error is returned in
CMS/TSO. [SHFIlEl

For the password change request,
an error is returned in CMS/TSO.
[PFILEl

The control variable is specified
with a I-element return code for
all operations.

3. If the partner retracted the
variable, control comes from
common auxiliary processor
services to this ~ntry point
wbere the file is closed and
buffers are released. [RET121X]

4. This entry point is invoked by
common auxiliary processor
services if an abend occurs. A
dump is then taken and all shared
variable instances of this
auxiliary processor are
retracted. [ABEI2lX]

SECTION 3. PROGRAM ORGANIZATION

Entry points are listed in alphabetic
order in this section.

FOR DOS/VS: The conversion module~
for DOS/YS differ from those for
OS/YS. The modules are functionally
the same. but the DOS/YS modules are
designed to interface with DOS/VS and
the OS/VS modules with OS/VS. For
CMS, the OS/VS modules begin with the
characters APlO; the DOS/YS modules
begin with the characters APlD. For
CICS/VS, the OS/VS modules begin with
the characters APlKV; the DOS/VS
modules begin with the characters
APlKD. To avoid unnecessary
repetition in this publication, only
the OS/VS names are used in. this
publication wherever possible.

APCREATE

Module: APlPAPCD

Called Bv: APlPAPPR

DescriptioQ: Executes service request
to internal auxiliary processors
AP121 and AP122 to create a VSPC
file.

fKi1: Returns; ERSAVEAR (Error),
EREHDEX (Error)

APDFN

Module: APlPAPCD

~~: APCREATE, APDROP,
APFIlSIZ, APSHARE, APPASSWD, APOPEH,
APVIO

Description: Converts file
identification in service requests to
internal auxiliary processors to VSPC
standard file name.

~: Returns; ERSAVEAR (Error)

APDROP

Module: APlPAPCD

Called By: APlPAPPR

Description: Executes service request
to internal auxiliary processors
AP121 and A~122 to drop a VSPC file.

~: APDFH, ERMSGRTH

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

APFIL·SIZ

Module: APlPA~CD

Called By: APlPAPPR

~cription: Executes service request
to internal auxiliary processors
AP121 and AP122 to change the size of
a VSPC file.

Calls: APDFH, ERMSGRTN

fxi!: Returns; ERSAVEAR (Error),
ERENDEX. (Error)

APIO

Module: APlPAPCD

Called By: APlPAPPR

Dp.scription: Validates request to
internal ~uxiliary processors AP121
and AP122 to read or update a VSPC
file directly.

~: Returns; ERSAVEAR (Error)

APL

Module: APl

Called By: CMS

~scription: locates VS APl under
cr1S.
Exit: To APl DeSS or module VSAPl

APL

Module: APlYUINI

Called By: Operating system (initial
entry)

Description: Initializes VS APL under
TSO.

Calls: APlAHHT, APlXDUOP, APLXGYOH,
APlYUFXI, APlYULNE, APLYUTIO,
APLYUUSR, SeeONT, SCSUPIHI

Licensed Material--Property of IBM
Section 3. Program Organization 119

Exit: Returns

APLACCBE

Module: APlACCBE

Called By: APLACPRM, APLACQRY,
APLACRDA, APLACRSA

Description: Converts a binary number
to EBCDIC.

fill: Returns

APLACDSL

Module: APLACDSL

Called By: APLACPRO, APLACRDA

Description: Displays a single line
on the screen.

Calls: Macro APlXG .

Exit: Returns

APLACHLP

Module: APLACHLP

Called By: APlACXCM

Description: Executes the APL session
manager HELP command.

Ca~: APlACMSG.

Exit: Returns

APLACHDF

Modul~: APLACNDP

Called By: APlACPRM, APlACPRO, and
APlADNSG

Description: Part of the session
manager new display position routine.
It updates the contents of the
command field, and saves a copy of
the contents in DSMCMTXT.

~: APlACREA, APlACRDA, APlADMSG.
Macro APLXG

Exit: Returns

APLACHDX

Module: APlACMDX

U censed Materi aI-Property of IBM
120 VS APL Program logi c

Called Bv: APLACXCM

Description: Contains a default exit
that approves all commands passed to
the APL session manager.

Calls: Macro APlPATCH

w..:t: Returns

APLACHER

Module: APLACQRY

Called By: APlACPRO, APlACOPY, and
APlACXCM

Description: Part of the session
manager command query module. For a
given error number, it inserts the
message, return code, and return
status into the CPB, and, if
appropriate displays the error
message and command on the session
manager screen.

Calls: APlADMSG. APLADSON

~: Returns

APLACNDP

Module: APlACNDP

Called By: APlACRPO, APlACXCM,
APLADNSG

Description: Part of the session
manager new display routine. Defines
the APl session manager display at a
new position on the screen.

Calls: APlXG

Exit: Returns

APLACOPL

Module: APlACOPY

Called By: APlACPRO

Description: Copies a single line to
the copy destination when continuous
copy of the session log is on. Called
every time, a new line is added to
the session log while copy is on.

CalJUa: APLACMER. APlADMSG. Macro
APLXG

APLACOPY

Module: APLACOPY

J

Called By: APLACXCM

Qgscription: Processes the 'COPY'
session manager command.

~2: APLACMER, APLACMSG, APLACSF,
APlADMSG, APLAMODE, APlAUCAE,
APLAUHCO. Macro APlXG

APLACPRI1

Module: APLACPRM

~~: APLACPRO when the VS APL
session manager requires to get input
from the terminal.

pescrietion: This module performs a
read from the terminal and enters the
running mode. It then restores the
screen, if necessary, and, based on
user action, stacks input for APl and
the VS APl session manager command
processor.

Cal~: APLACCBE. APlACMSG. APLACQUE,
APlACSF, APlXGDDM. APlACMDF.
APLACRSA, APlADSON. Macro APLXG

Exit: Returns

APLACPRD

Module: APLACPRO

Callp.d~: APLACRCP

Dp.scription: Processes a request from
the TSQ. CMS, or CICS/VS executor or
from any auxiliary processor, calls
APLACXCM when a VS APL session
manoger command is to be executed,
and calls APlACPRM whenever input is
needed "from the terminal.

Calls: APLACDSL, APLADTTM, APLACMSG,
APLACHDP, APlACPRM, APlACOPL,
APLADSOH, APLAMODE, APlAUALT,
APLAUATH, APLACQUE, APLACRDA,
APLACRSA, APLACSF, APLACXCM,
APlADMSG, APLAUSRX. Macro APLXG

Exit: Returns

APLACQRY

Module: APLACQRY

Called By: APLACXCM

Descrjption: Part of session manager
command query module. Formats the
message returned to a query command.

~~~: APLACCBE, APLACMSG, APLACQRY, 
APLAUPRO, APLXGDDX, APLADMSG, 
APLADSOH. Macro APLXG 

hii: Returns 

APLACQUE 

Module: APLACQUE 

~ilJ..l§.!;LJb!: APLACPRO, APlACPRM, 
APLACXCH 

~~fription: Maintains queues of 
ch~racter strings for the APL session 
manager, and performs the create, 
add, remove, purge, and delete 
functions on the queue. 

Exit: Returns 

APLACRCP 

Module: APLACRCP 

Called By: VS APL dispatcher 

Description: This is the ",ain entry 
point in the VS APL session manager 
request chain processor which runs as 
the top routine in a process separate 
from the TSO, eMS, or CICS/VS 
executor and frm the AP120. The 
processor functions by removing 
requests, one at a time. from the VS 
APL session manager request chain, 
and passing them to APlACPRO. It 
posts the reques~or when each request 
is completed, and then waits until 
the chain is empty for a new request 
to be generated. It also contains an 
abend exit for the task. 

Calls: f'lain storage services. Macro 
APlACPRO 

j:xi-t:: Returns 

APLACRDA 

Modu~: APlACRDA 

Call~~: APLACHDP, APLACPRO, 
APLACXCM, AFLALIHE 

D~scription: Refreshes the APL data 
are~ on the screen. 

Cal.12: APLACCBE, APLACDSL. APLACMSG, 
APlACSF. Mucro APLXG 

Exit: Returns 

APLACRSA 

Module: APLACRSA 

Licensed Material--Property of IBM 
Section 3. Program Organization 121 



Called By: APLACHDP, APlACPRM 

Description: Defines the line, 
status, and USA fields on the APL 
session manager screen. 

~: APLACCBE, APLACMSG. Macro 
APlXG 

flti.!: Returns 

APLACSF 

Module: APLACSF 

Called By: APLACPRO, APLACPRM, 
APLACRDA, APlACXCM 

Description: Maintains the APl 
session manager's session log. 

~: Files and maintains yia VCT. 

fXi!: Returns. Macros APlPATCH, 
APLSFID, APLXDMP, APlXEHD, APLXFAB, 
APLXMAI, 

APLACXCH 

Module: APLACXCM 

Called By: APLACPRO 

Description: Executes APL session 
manager commands. 

~: APlACHlP, APLACMDX, APLACMSG, 
APLACNDP, APlACQRY, APlACRDA, 
APlACSF, APLAUPRO, APLACMER, 
APLACOPY, APlACQUE, APLADSMG, 
APLADSON, APLALIHE, APLAMODE, 
APLAPAGE. Macro APLXG 

Exi t: Returns 

APLAD 

Module: APLAD 

Called By: APLYUSVI 

Descrjption: Signs on to the shared 
storage manager and initiates a 
session manager task. 

w.,u: APLACRCP 

~: The subtask terminates when a 
sign-off is requested. 

APLADI1SG 

Module: APlADMSG 

licensed Material--Property of IBM 
122 VS APl Program Log; c 

Called By: APLACPRO, APLACHDP, 
APLACQRM, APLACXCM 

Description: Displays an APL session 
manager error or informational 
message. 

Calls: APLACNDP, APLACMDF, APLACPRM. 
Macro APLXG 

Exit: Returns 

APLADSDN 

Module: APLACRDA 

Called By: APLACPRO, APLACOPY, and 
APLACXCM 

Description: Part of the session 
manager module to refresh the 
display/input area. It turns the 
display on, and moyes the data area 
to the latest (new) line as part of 
the process. 

~: APLACDSL, APLACSF. Macro 
APLXG 

Exit: Returns 

APLADTTH 

Module: APlADTTM 

Called By: APLACPRO 

Descri.ption: Formats an elapsed time 
in APL standard format. 

Exit: Returns 

APLAERRH 

Module: APLASCHD 

Called By~ TSO, CMS, or CICS/VS 
executor or by AP120. 

Description: Requests ~S APl session 
manager processing subcomponent to 
display an error message. 

Exit: Returns 

APLAESTK 

Module: APLAESTK 

Called By: APLKIFIX, APLSCFXI, 
APLYUFXI 

Description: Sets up the executor 
stack for the APl session manager and 
makes whatever calls are necessary to 

J 



stacked protocol entry points. 

~: APLATYI. APLATYO. APLATYOI. 

f2U.t.: Returns 

APLAlHIT 

Module: APLASCHD 

~~: TS'O. CMS. or CICSI'VS 
executor 

Description: Requests VS APL session 
manager processing subcomponent to 
perform initialization processing. 

~: Returns 

APLALlHE 

Module: APLALIHE 

Called Bv: APLACXCM 

pescrir~ion: P~rt of the sQssion 
manager line and page commands 
module. It executes a line command. 

~: APLACMER. APLACRDA. APLACSF 

Exit: Returns 

APLAt10DE 

Module: APlACHDP 

Called By: APLACOPY. APLACPRO. 
APLACXCM 

Description: Part of the session 
manager" new display position routine. 
It moves the cursor to the mode 
field. updates the mode, and forces 
the display of updated fields. 

~: Macro ,APLXG 

Exit: Returns 

APLAPAGE 

Module: APLAlIHE 

Called By: APlACXCM 

pescrjption: Part of the session 
manager line and page commands. It 
executes a page command. ' 

Calls: APlACMER. APLACRDA. APlACSF 

~: Returns 

APLAPASS 

Module: APlASCHD 

Called By: TSO. CMS, or CICSI'VS 
executor or by AP120. 

Description: Requests VS APL session 
manager processing subcomponent to 
prompt for a password. 

w..:t.: Return's 

APLATERt1 

Module: APLASCHD 

Called By: TSO, CMS. or CICSI'VS 
executor 

Description: Requests VS APl session 
manager processing subcomponent to 
terminate session. 

Exit: Returns 

APLATYI 

Module: APLASCHD 

Called By: TSO. CMS. or CICSI'VS 
executor 

Description: Requests VS APl session 
manager processing subcomponent to 
perform a TYI. 

~: Returns 

APLATYO 

Module: APLASCHD 

Called By: TSO. CMS, or CICSI'VS 
executor 

Description: Requests VS APl session 
manager processing subcomponent to 
perform a TYO . 

.Elti..t.: Returns 

APi-ATYOl 

Module: APlASCHD 

Called By: TSO, CMS, or CICSI'VS 
executor 

Descriptlon: Requests VS APl session 
manager processing subcomponent to 
perforni a TYOI. 

licensed Material--Property of IBM 
Section 3. Program Organization 123 



Exit: Returns 

APLAUALT 

Module: APLASA 

Called By: APLACPRO 

Description: Returns a line of 
alternate input if it exists, or 
purges the alternate input stack. 

Calls: HUCOH (CMS nucleus). Macros 
APLXPROC, APLDEFH, APLPATCH, HUCOH, 
RoTERM, APLXSTK 

Exit: Returns 

APLAUALT 

Module: APLAYA 

Called By: APLACPRO. 

Description: Returns a line of 
alternate input if it exists, or 
purges the alternate input stack. 

Calls: Macros APLXPROC, APLDEFN, 
APLPATCH 

Exi t: Returns 

APLAUALT 

Module: APLAK 

Called By: APLACPRO (common session 
manager module) 

Description: Part of the session 
manager"CICS/VS-dependent, SP-entry, 
routines. It is called by the 
session manager to determine if the 
subsystem has any alternate input 
available. Alternate input may be 
generated by the input invocation 
option or by AP139. 

Exit: Returns 

APLAUATN 

Module: APLAKP (CICS/VS) 

Called By: APLXGKT 

Description: Main and only entry 
point to the session manager 
system-dependent, non-stack-processor 
entry, CICS/VS routines. It handles 
asynchronous terminal activity by 
analyzing t~e asynchronous input to 
determine if it is a "real" attention 
or an asynchronous input to the 

Licensed Material--Property of IBM 
124 VS APL Program Logi c 

session manager. 

Exit: Returns 

APLAUATN 

Module: APLASP (CMS) 

Called By: APLXGKT 

Description: Main and only entry 
point to the session manager 
system-dependent, non-stack-processor 
entry, CICS/VS routines. It handles 
asynchronous terminal activity by 
analyzing the asynchronous input to 
determine if it is a "real" attention 
or an asynchronous input to the 
session manager. 

Exit: Returns 

APLAUATH 

Module: APLAYP (TSO) 

Called By: APLXGKT 

Description: Main and only entry 
point to the session manager 
system-dependent, non-stack-processor 
entry, CICS/VS routines. It handles 
asynchronous terminal activity by 
analyzing the asynchronous input to 
determine if it is a "real" attention 
or an asynchronous input to the 
session manager. 

Exit: Returns 

APLAUCAE 

Module: APLAK (CICS/VS) 

Called By: APLACOPY (session manager 
command module) 

Description: Part of the session 
manager CICS/VS-dependent. stack 
processor-entry, routines. It is 
called by the session manager to 
determine if using a copy 10 would 
destroy data in any copy files which 
had previously been created within 
the same 10. 

w..!.: Returns 

APLAUCAE 

Module: APLAS (CMS) 

Called By: APLACOPY (session manager 
command module> 

J 

J 



L 

Description: Part of 'the session· 
manager CICS/VS-dependent, stack 
processor-entry, routines. It is 
called by the session manager to 
determine if using a copy 10 would 
destroy data in any copy files which 
had previously been created within 
the same ID. 

Ex;t: Returns 

APLAUCAE 

Module: APlAY elSO) 

Call~d By: APlACOPY (session manager 
command module) 

Descript-jon,: Part of the session 
manager CICS/VS-dependent, stack 
processor-entry, routines. It is 
called by the session manager to 
determine if using a copy ID would 
destroy data in any copy files which 
had previously been created within 
the same 10. 

.E2U.1: Returns 

APLAUNCO 

Module: APlAK (CICS/VS) 

Called By: APlACOPY 

Description: Part of the session 
manager CICS/VS-dependent, SP-entry, 
routines. It is called by the session 
manger to determine if the SUbsystem 
supports opening the same ID multiple 
times. 

Exit: Returns 

APLAUNCO 

Module: APLAS (CMS) 

Called By: APlACOPY 

Descriptjon: Part of the session 
manager CICS/VS-dependent, SP-entry, 
routines. It is called by the session 
manger to determine if the subsystem 
supports opening the same'ID multiple 
times. 

Exit: Returns 

APLAUNCO 

Module: APlAY (150) 

Called By: APlACOPY 

Description: Part of the session 
manager ~ICS/VS-dependent, SP-entry, 
routines. It is called by the session 
manger to determine if the SUbsystem 
supports opening the same 10 multiple 
times. 

Exit: Returns 

APLAUPRO 

Module: APlAS 

Called By: APlACXCM, APlACQRM 

Description: Opens a file and writes 
or reads records for an APl session 
manager profile (CMS only). 

Calls: APlSCOP1. Macros FSOPEN, 
FSClOSE, FSREAD, FSWRITE, FSS1ATE 

~: Returns 

APLAUPRO 

Module: APlAY 

Called By: APlACXCM 

Description: ~pens a file and writes 
or reads records for an APl session 
manager profile (150 only). 

Calls: APlYUUSR, APlYDAIR. Macros: 
OPEN, PUT, CLOSE, GET 

Exit: Returns 

APLAUPRO 

Module: APlAK eCICS/VS) 

Called By: APlACQRY (common session 
manager module), APlACXCM (common 
session manager module which calls 
APlACQRY) 

Description: Part of the session 
manager CICS/VS-dependent stack 
processor~entry, routines. It 
provides· session manager support 
(open a file, read records from a 
file, close a file). These actions 
~re passed via the PRB (profile 
request) control block. 

Calls: APlXFKFl 

Exit: Returns 

APLAUSRX 

Module: APlAUSRX 

Called By: APlACPRO 

licensed Material--Property of IBM 
Section 3. Program Organization 125 



Description: Contains a user 
authorization exit to allow optional 
rejection of the use of the session 
manager for some users. 

Exit: Returns 

APLAXCtfD 

Module: APLASCHD 

Called By: APl20 

Description: Requests the VS APL 
session manager to process a text 
string as a command. 

Exit: Returns 

APLFXIItf 

Module: APLKIFIX 

Called By: APLFXIIM 

Description: Part of the interpreter 
interface provided by the CICS/VS 
executor. Serves as an entry point 
from the interpreter to the executor 
to handle service requests. 

Calls: Entry points KRSTEX, KCQZ, 
APLKFDPY, KCATOFF, KCTIME, KCQAI, 
KCDELAY, KCTA8S, KCWIDTH, KCMBL, 
KCTRAN, KCOPI, KCOPO, KCOPZ, KCDUMP, 
KFOFF, KCSYSER, KCQUOTA, KLOAD, 
KCOPA, KSAVE, KDROP, KlIB, KClEAR, 
KWSID, KPASS, APlKISVI. Macros 
APLKHIST, DFHKC, APLKWAIT, DFHTR 

Exit: KTOIHTER, KADSP8. 

APLFXIItf 

Module: APLPFXIM 

Called By: Many interpreter and 
translator routines 

pescription: Sale entry point from 
interpreter to VSPC executor; saves 
interpreter's environment and calls 
routine to handle service request. 

Calls: pce ... ): routines. 

Exi t: APlIINIT 

APLFXUH 

Module: APlSCFXI 

Called By: .Many interpreter and 
translator routines 

Licensed Material--Property of IBM 
126 VS APL Program Logic 

Descriptjon: Sole entry point from 
interpreter to CMS executor; saves 
interpreter's environment and calls 
routine to handle service request. 

Calls: SCC ... ): routines 

Exit: APLIINIT 

APLFXIIH 

Module: APlYUFXI 

Called By: VS APL interpreter, shared 
storage manager (SSM) 

Description: Executes a service 
request for the VS APL interpreter or 
shared storage manager (SSM). Its 
main tasks are 1) preserve the 
caller's environment, 2) determine 
the type of request by table lookup, 
3) call supervisor routine that 
handles service request, and 4) 
always return control to APLIIHIT in 
interpreter (TSO). 

~: Service Request Execution 
Routine 

Exit: Returns to APLIINIT in module 
APLITINI of interpreter 

APLFXIIH 

Module: APLYUIIM 

Called By: Many interpreter and 
translator routines. 

Description: This is the TSO/VSPC 
executor call switch. It intercepts 
all calls from the VS APL interpreter 
and routes control to either the TSO 
or VSPC executor. This module is used 
only when VS APL/TSO and VS APL/VSPC 
have been link-edited into a single 
load module. 

Calls: APlVSPC, APLTSO 

~; Control passed to the 
appropriate executor 

APLFXUH 

Module: APlFXIIM 

Called By: Many interpreter and 
translator routines. 

Description: In a CICS/VS 
environment, APLFXIIM intercepts 
executor calls from the interpreter, 
and passes them to the CICS/VS which 
is pointed to by PTHPARM1. 



fKi1: Returns 

APLIINIT 

Module: APLITIHI 

Called By: APLPCEHT, APLFXIIM 

Description: Sole entry point to 
interpreter from executor; receives 
control after executor has handled 
service request; restores 
interpreter's environment including 
changes resulting from workspace 
relocation. 

~: APLFXIIM, ITLIBMSG, IATABREF, 
IASVOFF, ITSHV 

Exit: If sign-on, APLFXIIM with 
YYCLEAR service request or ITCMLOAD; 
if load or clear, ITIHPINI; if copy 
source, ITCMCOPO; if error, ITSYSERR; 
also to next instruction after 
service request (address in WSMHSI). 

APLKADEF 

Modula: APlKADEF 

Called By: Entry points APLKEMGR, 
APlKSSR 

Description: Part of the CICS/VS 
executor. Determines if the user of 
the auxiliary processor is authorized 
to access the named resource in the 
requested fashion. 

~: Returns 

APLKADSP 

Module: APLKADSP 

Called By: Entry point APLKASON 

Description: Part of the CICS/VS 
executor. Controls the user task. 

Calls: Entry points APLKIFOH, KADSP8. 
KYYOFF. APLACRCP. APLKISVE, APLACRCP, 
APLXGKON, KMARCO. CICS/VS macros 
DFHKC (WAIT), DFHSC (GETMAIN). DFHPC 
(SETXIT), APLKSON, APlKSOF 

~: DFHPC (RETURN) 

APLKAGBL 

Module: APlKAGBL 

Called By: Entry points APLKASON, 
KABOOTS 

Description: Part of the CICS/VS 
executor. Initializes and shuts down 
the global table. 

~~: Entry points APlKLIBI, 
APLKLIBT, KINIEX, APLKSSMR. KDPFAB, 
KAPFXIT. Macros APLKTOFF .. CICS/VS 
macros DFHPC (LOAD, DELETE), DFHKC 
(ENQDEQ) 

Exit: DFHPC (RETURN) 

APLKAHST 

Module: APLKAHST 

Called By: APLKHST macro 

Descrjption: Part of the CICS/VS 
executor. Records a histogram event. 

~: Returns 

APLKAHIX 

Module: APLKAMIX 

Called By: CICS/VS. Used when 
APLKASOH attaches APLU task. 

Description: Provides a CICS/VS mixed 
mode (command level/macro level) 
environment. It may be employed as 
the primary entry point for any 
CICS/VS task. 

Calls: Entry point APLKMIX in 
APLKADSP. 

~: Returns 

APLKASON 

Module: ALPKASON 

Called By: CICS/VS 

Description: Part of the sign-on 
process performed by the CICS/VS 
executor. Initiates a user APl 
session. 

~: Entry points APLKADSP, 
APLKAGBL, APLKAGBL, APLKLIBR. Macros 
APLKT (TRAN). CICS/VS macros DFHKC 
(ATTACH, WAIT), DFHPC (RETURN, ABEND, 
LOAD, XCTL, SETXIT), DFHDC, DFHIC 
(GET, GETIME), DFHSC (GETMAIN), DFHTC 
(PUT, GET), DFHFC (RELEASE) 

~: DFHPC (RETURN) to APLKTCTL, or 
to APLXGKT. 

licensed Material--Property of IBM 
Section 3. Program Organization 127 



APLKEHCP 

Module: APLKEHCP 

~S!.l1.£..g.Jb{: Entry point APLKEMGR via 
CICS/VS macro DFHIC (PUT) 

DRscription: Part of the destination 
managQm~nt services provided by the 
CICS/VS executor. Provides support 
for the 3270 printer. 

C~IJ~: Entry point KTRTRAN. CICS/VS 
macros DFHSC (GETMAIN, FREEMAIN), 
DFHPC (RETURN, ABEND, SETXIT, LOAD), 
DFHIC (GET), DFHTC (PUT) 

Exit: DFHPC (RETURN) 

APLKEMGR 

~q9ulfl: APLKEMGR 

~S'!J..£'!;L~.Y.: Ent ry po i nts APLXGKU, 
KTSlINE, APL132K, KTRHC 

Qgp~riptio~: Part of the destination 
~Dnagc~nnt sarvices provided by the 
CICS/VS ~xecutor. This is the initial 
entry point for all destination 
manQgement service requests. Based on 
request, routes control to the 
appropriate service routine. 

~?!il?: Entry points APLKEHCP, 
APlKADEF, KETW~ITE. Macros APLKT 
(TRAN), CICS/VS mncros DFHPC (LOAD), 
DFHIC (PUT), DFHKC (ENQ, DEQ), DFHSC 
(GETMAIN, FREEMAIH), DFHTC (LOCATE), 
DFHTD (PUT, GET, LOCATE) 

~xit: Returns 

APLKIFON 

~9s.1IIe: APLKIFIX 

~all~Q~: Er.try point APLKADSP 

.(l.f.~cr i et ion: Part of the ; nterpreter 
interface provided by the CICS/VS 
executor. Sets up a stack for the 
int~rpreter interface modules to use 
and an abend exit for the user 
transaction. 

~gJ,.!'~: ·Entry poi nts APlK.LUIT, 
APLAIMT. Macros APLKIST, APlKEXIT, 
APLKMAIN (GET). CICS/VS macros DFHPC 
(ABEND) 

Exit: KTOIHTER, caller (error) 

APLKISVI 

Module: APlKISVI 

Licensp.d Material--Property of IBM 
128 VS APL Program log; c 

Description: Part of the CICS/VS 
executor shared storage manager 
interface. Executes the following 
YYCODE service requests: YYSACC (set 
access control vector); YYSCIOY 
(copy); YYSOFF (sign off); YYSOFFER 
(offer); YYSON (sign on); .YYSQUERY 
(query); YYSREF (reference); YYSRET 
(retract); YYSSPCE (specification). 

~: Entry point KADEPON. Macros 
APlKSSMR, APLKWAIT, APLKMAIH 

Exit: Returns 

APLKLIBF 

Module: APlKLIBF 

CC!lle~: Entry points AP1l21K, 
APLXFKFl 

Dp.~ripti2n: Part of the library 
management services provided by the 
CICS/VS executor. Manuges the data to 
and from d~ta buffers for internal 
APL files under execution of the user 
task. 

~.£U.a: Entry po i nt APLKLIBR, Macros 
APLKEXIT, APLKHIST, APLKG (LIBSERV, 
TYPE=WLIB, WDIR, UDIR, RLIB, CFILE, 
DFILE, UFILE) APLKWAIT 

!=xit: Returns 

APLKLIBG 

Modul~: APLKLIBG 

~"lled B~: Entry pointLI8START 

Description: Part of the library 
m~nagernent services provided by the 
CICS/VS executor. Routes control to 
the appropriate subroutine for all 
synchronous I/O library requests. 

,g.al...u: Entry points KGWDIR, KGUDIR, 
KGLOAD, KGSAVE, KGDROP, KGCFILE, 
KGDFIlE, KGRLIB, KGUFILE, KGWLI8. 
CICS/VS macros DFHPC (SETXIT, RETURN, 
ABEND), DFHKC (ENQ, DEQ, WAIT) 

Exit: Returns 

APLKLIBI 

Module: APlKLI8B 

Called By: Entry point APLKAGBL 

Description: Part of the library 
management services provided by the 
CICS/VS executor. Prepares the APl 
library data set for processing, 
defines storage for and loads the 

J 

J 



free space bit maps from the library, 
and initializes the global table 
fields owned by the library. 

Calls: Entry points KLGET, KLOPEN. 
CICS/VS macros DFHOC (CLOSE), DFHFC 
(GET, RELEASE), DFHSC (GETMAIN) 

Exit: Returns 

APLKLIBR 

Module: APLKLIBR 

Calle~: APLKlIBU, APlKASON, 
APLKLIBF and APLKLIBG (all via 
GBlRDIR) 

.Description: Main and only entry 
point to the CICS/VS APL library 
services-read directory. It performs 
the synchronous 1/0 to read a record 
from the APL directory. 

Calls: Macro DFHFC 

Exit: Returns 

APLKLIBR 

Module: APlKLIBG 

Called By: Entry points APlKASON, 
APLKlIBF, KCOPA. KLOAD, KGCFIlE 

Description: Part of the library 
management services provided by the 
CICS/VS executor. Reads an APl 
directory record from the APl 
directory data set. 

Calls: CICS/VS macro DFHFC (GET) 

Exit: Returns 

APLKLIBT 

Module: APLKLIBB 

Called By: Entry point APlKAGBl 

Description: Part of the library 
management services provided by the 
CICS/VS executor. Closes the APl 
library data set for APl·processing 
and reopens it as a CICS/VS data set. 

Calls: Entry point KLCLOS. CICS/VS 
macro DFHOC (OPEN) 

Exit: Returns 

APLKlUIT 

Module: APlKlIBC 

Called By: Entry point APLKIFON 

Description: Part of the library 
management services provided by the 
CICS/VS executor. Provides the user 
with workspace when he initially 
signs on. Defines the initial 
workspace and reads the HI message 
records from the APL directory. 
Requests by a call to entry point 
KYYTYOI that the HI message records 
by displayed. 

~~: Entry points APLKSPEH. 
APLXERRM, KYXTYOI. Macros APlKEXIT. 
APLKPROC, APlKPOP. CICS/VS macro 
DFHSC (GETMAIN) 

Exit: Returns 

APLKlUTt1 

Module: APLKlIBC 

Called By: Entry point KFOFF 

Description: Part of the library 
managem~nt services provided by the 
CICS/VS executor. Returns workspace 
storage to CICS/VS when the user logs 
off APl. 

Calls: Macro APlKEXIT. CICS/VS macro 
DFHSC (FREEMAIH) 

Exit: Returns 

.PLKPFAP 

Module: APLKASTB 

Called By: DOS/VS page supervisor 

Description: Part of the CICS/VS 
e~ecutor. For DOS/VS only. Allows 
overlap of page faults that occur 
during execution of the interpreter. 

§xit: APlKPFOH 

APLKPFOH 

Module: APLKASTB 

Called By: Entry point APLKPFAP 

Description: Part of the CICS/VS 
executor. For DOS/VS only, puts the 
current user into a wait state so 
CICS/VS can dispatch other users. 

licensed Material-Pr.operty of IBM 
Section 3. Program O~ganization 129 



:' :. "~. ' .. 

~~~: Entry points KRSTEX. KSETEX. 
.CICS/VS macro DFHKC (WAIT)

Ex,t: To interpreter at point of page
fault

APLKSPRG

Modul~: APlKVEXC

Called By: The operating system.
(This is the service program's entry
point. It is specified on the EXEC
statement.)

Dpscription: Part of the APl library
service program for CICS/VS. Drives
the utility. Does initialization;
calls KSPPIN to open the print and
reader data sets; reads a command.
calls KSPCMD to analyze it; calls
KSPINT to open the KSPINT to open the
necessary data sets; calls the proper
command processor (KSPAUT, KSPCPY,
KSPFMT. KSPIMP, OR KSPEXP); and calls
KSPTRM to close the unique data sets
associated with the command. This
process is repeated until there is no
more data. It then closes the system
data sets.

~~lls: Entry points KSPAUT, KSPCMD,
KSPCPY, KSPDOS. KSPEXP, KSPIMP.
KSPINT. KSPMSG, KSPPIN. KSPTRM.
KSPFMT. OS macros GET, PUT, CLOSE,
FREEMAIN. DOS macros CLOSE, EXCP,
PUT. WAIT, FREEVIS

Exit: Returns

APLKSSR

Modul~: APlKSSVP

~~~le~~: Entry point BOOTSTR Macros 
APlKSON, APlKSOF, APlKREF, APlKSPC, 
APlKCPY, APlKQRY. APlKOFR, APlKRET, 
APlKACHK, APlKACC 

~scription: Part of the CICS/VS 
shared storage manager. Handles all 
shared variable requQsts issued by 

'~~dule APlKISVI and the auxiliary 
processors. 

Calls: Entry points APlKADEF, 
KCASE2Q, KCASE3Q, KClEANU~, KFREESP, 
KGCOl, KGETSPAC. KIDSETUP, KPOSTWAI, 
KPPSEARC, KPROCOFF, KRETSUB, KSEIZE, 
KSINGAl 

.&ld1: Returns 

APLKSSUB 

Module: APlKSSUB 

li censed Materi al-Property of IBM 
·130 VS APl Program log; c 

Called By: Entry point KABOOTS 

D~~~ription: Part of the CICS/VS 
shared storage manager. Obtains space 
for and initializes the shared 
memory. 

Calls: CICS/VS macro DFHSC (GETMAIN) 

Exit: Returns 

APLKTCTL 

Module: APlKTCTl 

~ll~g~y: CICS/VS macros DFHIC 
(INITIATE) or DFHPC (XeTl) 

Description: Part of the terminal 
management services provided by the 
CICS/VS executor. Handles terminal 
input operations and routes output 
operations to module APlKTCWR. Runs 
under the terminal transaction, a 
separate transaction from the APl 
user transaction. Processes requests 
originally initiated by the APlKTERM 
macro (type=requests of READ, WRITE, 
or RESTORE) issued in the APl user 
transaction. Also handles any input 
received when no APlKTERM request is 
being processed (when the terminal is 
in listen state). 

CaJ~~: Entry point APlKTCNR. Macros 
APlKT (lOCREQ. FINDF, TRAN), 
APlKTRCE. APlKHIST. CICS/VS macros 
DFHPC (RETURN), DFHTC (READ, WRITE), 
DFHSC (GETMAIN), DFHPC (SETXIT, 
ABEND, RETURN, lOAD) 

~: DFHPC (RETURN) 

APLKTCWR 

Module: APlKTCWR 

Call~d By: APLKTCTl 

Descrietion: Part of the terminal 
management services provided by the 
CICS/VS executor. Handles terminal 
output operations. Runs under the 
terminal transaction, a separate 
transaction from the APl user 
transaction. 

Calls: Macros APlKT (TRAN), APlKTRCE. 
CICS/VS macros DFHSC (GETMAIN, 
FREEMAIN), DFHTC (WRITE) 

~: APlKPOP 

APLPAPAC 

Module: APlPAPA8 

J 

J 

J 



Called By: PCSACC 

Description: Sets access control 
vector for a variable shared with an 
internal auxiliary processor. 

Exit: Returns; ERSAVEAR (Error) 

APLPAPOF 

Module: APlPAPAB 

Called By: PCSOFFER 

O~scription: Processes offer to share 
a variable with an internal auxiliary 
processor. 

~: ERMSGRTH 

Exit: Returns; ERSAVEAR (Error) 

APLPAPPR 

Module: APLPAPAB 

Called By: PCSCOPY, PCSREF, PCSSPEC 

Description: Processes copy. 
reference. and specification of a 
variable shared with an internal 
auxiliary processor. 

k21~: APCREATE, APDROP, APFILSIZ, 
APIO, APOPEH, APPASSWD, APSHARE, 
APVIO, PRDDIR, PRDSEQ, PWRITE, 
ERMSGRTH, FSMFORMT, FSMWRITE, 
FSMREAD, FSMGET, FSMFORM, FSMSETC, 
FSMBUZZ FSMSU83, FSMMTYPE, FSMMIHT, 
FSMHCOPY, GDD~RCTL, GDDMSCTL, 
GDDMSDAT 

fKi!: Returns; ERSAVEAR (Error), 
EREHDEX (Error) 

APLPAPRT 

Module: APLPAPAB 

Called By: PCSRET 

Description: Processes retraction of 
a variable shared with internal 
auxiliary processor. 

Calls: ERMSGRTH, GDDMCRET, GDDMSOFF 

Exit: Returns; ERSAVEAR (Error), 
EREHDEX (Error) 

APLPAPSF 

Module: APLPAPAB 

Called By: PCSOFF 

Description: Retracts variables 
shared with internal auxiliary 
processors when user signs off. 

~: ERMSGRTH, GDDMSOFF 

~xit: Returns; ERSAVEAR (Error), 
EREHDEX (Error) 

APLPCENT 

Module: APlPCOEX 

Called Bv: VSPC Foreground Interface 

De~cription: Serves as the sole entry 
point from VSPC to VS APL; checks for 
purpose of entry: for initialization, 
initializes control areas and VS APl 
workspace area; for asynchronous 
event, checks attentions, cancel 
output, program checks, forceoffs, 
line drop, and other termination 
situations. 

~: ERTIMDAT 

Exit: APLIIHIT with a YYOH service 
request (initialization); returns to 
VSPC (asynchronous events). 

APLPCOAP 

rtodule: APLPCOAP 

Called.-fu!: VS'PC executor modllies 
APlSHVR and APlPAPAB reference this 
module 

Description: list of auxiliary 
processors, relating the VSPC 
identification number to its 
corresponding VS AFL VSPC 
auxiliary-processor name. Contains no 
executable code. 

APLSCSSI 

Module: APLSCSSI 

Called By: CMS (original entry) 

Description: This module executes in 
the CMS transient area. It locates 
the proper VS APl processing module 
and passes control to it. 

Calls: Macros DMSEXS, DMSKEY, DIAG, 
FSSTATE, WRTERM, LIHEDIT, HUCOH, 
REGEQU, APLPATCH 

Exit: Either to a shared segment or 
to the disk-resident VSAPL module. 

licensed Material--Property of IBM 
Section 3. Program Organization 131 



APLSHACC 

Module: APLSHACC 

Called BM: ASVPSERV 

Description: Resets access control 
vector for one partner; creates new 
combined access control vector for 
both partners. 

Calls: APLSHSRD, APLSHPST 

£ill: Returns 

APLSHBPB 

Module: APlSHBPB 

Called BM: APlSHSON 

Description: Constructs processor 
block in shared memory when a 
processor signs on to the shared 
variable processor. 

Calls: APlSHGET 

W . .!: Returns 

APLSHBVB 

Module: APLSHBVB 

Called B~: APlSHOFR 

Qgscription: Constructs variable 
block in shared memory when a new 
variable is successfully offered to 
the shared variable processor. 

Calls: APLSHGET 

Exi t: ·Returns 

APLSHCPY 

Modulg: APLSHCPY 

Called 8M: ASVPSERV 

Dgscription: Provides latest value of 
a shared variable regardless of the 
current access state. 

Calls: APLSHPUT, APLSHSRD 

£ill: Returns 

APLSHGET 

Module: APLSHGET 

Licensed Material--Property of IBM 
132 VS APL Program Logi c 

Calle~: APLSHBPB, APLSHBVB, 
APLSHOFR 

Description: Gets a block of virtual 
storage fram shared memory. 

Calls: APlSHPUT 

Exit: Returns 

APLSHOFR 

Module: APLSHOFR 

Called ~: ASVPSERV 

Dgscription: Processes a request to 
share a single variable; finds VAB 
for offer and fills other partner; 
constructs new VAB for new offer. 

C~lls: APlSHBVB, APLSHGET, APLSHSRD, 
APLSHPST 

~: Returns 

APLSHPST 

Module: APLSCSVI 

~~lled~: APLSHREF, APLSHACC, 
APlSHOFR, APLSHSPC, APlSHSUB, 
APlSHPUT 

Description: Posts ECB for auxiliary 
processor associated with shared 
variable. 

Exit: Returns 

APLSHPUT 

Module: APlSHPUT 

Calleg~: APLSHCPY. APLSHREF, 
APLSHSOF, APlSHSPC, APlSHSUB, 
APLSHGET 

Description: Returns block of virtual 
storage to shared memory; fills area 
with zeros. 

Calls: APLSHPST 

Exit: Returns 

APLSHQUE 

Modulg: APLSHQRE 

Called 8M: ASVPSERV 

Description: Provides information 
about a shared variable; fills in 
fields of SCV. 

J 

J 



fill: Returns 

APLSHREF 

Module: APlSHREF 

Called By: ASVPSERV 

Description: Provides latest value of 
a shared variable if not interlocked; 
moves value to buffer whose address 
is in SCVVAlUE. 

Calls: APlSHSRD, APlSHPST, APlSHPUT 

Exit: Returns 

APLSHRET 

Module: APlSHRET 

Called By: ASVPSERV 

Description: Terminates offer'of 
shared variable by calling processor 
of variable described in SCV. 

Calls: APlSHSRD, APlSHSUB 

Exit: Returns 

APLSHSOF 

Module: APLSHSOF 

Called By: ASVPSERV 

Descrjption: Disconnects processor 
from shared variable processor; 
retracts all variables offered under 
processor's 10. 

Calls: APlSHPUT, APlSHSUB 

~: Returns 

APLSHSON 

Module: APlSHSON 

Called By: ASVPSERV 

Description: Connects a pr.ocessor to 
the shared variable processor. 

Calls: APlSHBPB 

gu: Returns 

APLSHSPC 

Modyle: APlSHSPC 

Call~d By: ASVPSERV 

Description; Specifies a new value 
for a shared variable or informs 
caller that value specified by a 

,partner is waiting. 

Calls: APlSHPUT, APlSHSRD, APlSHPST 

Exit: Returns 

APLSHSRD 

Module: APLSHSRD 

~~~: APLSHCPV, AP.~~HRET, 
APlSHSPC, APlSHREF, APlSHACC,
APlSHOFR

Description: Searches index block for
variable block with offer number
equal to offer number in SCV; returns
with pointer to block or error
indication.

Exit: Returns

APLSHSUB

Module: APLSHSUB

Called By: APLSHRET, APLSHSOF

Description: Terminates an offer for
calling routine of a variable.

Calls: APlSHPUT, APlSHPST

~: Returns

APLXACSO

Module: APlXAC

Called By: APL120, APl121, APll26

Descriptjon: Establishes the
environment for the AP and sign-on to
the shared storage manager (CMS/TSO).

Calls: Main storage management
services, shared storage manager, and
abend exit services. Macros: APlXSON,
APlXMAIH, APlXADUM, APLXSFRE

Exjt: Calls the offer exit return in
the auxiliary processor.

APLXACSV

Module: APLXAC (CMS)

Called Bv: APl120, APl121, APl126

licensed Material--Property of IBM
Section 3. Program Organization 133

Description: Provides the services
GET. PUT. COPY. AUTHCHECK. and ABORT
betwe~n an auxiliary processor and
the shared storage manager.

~: Main storage management
services. shared storage manager. and
abend exit services. Macros APLXMAIH.
APLXSOH

all: Returns

APLXACSV

Module: APLXAC (TSO)

Called By: APL120. APL121. APL126

Description: Provides the services
GET. PUT. COPY. AUTHCHECK. and ABORT
between an auxiliary processor and
the shared storage manager.

~: Main storage management
services. shared storage manager. and
abend exit services·. Macros APLXMAIH.
APLXSON

futij';: Returns

APLXAKSO

Module: APLXAK

Called Bv: APL120. APL126

Description: Establishes the
environment for the AP (CICS/VS).

~: Main storage management
services. shared storage manager.
abend exit services. and dump
services. session manager message
services and stack services.

fKi!: Calls the offer exit return in
the auxiliary processor.

APLXAKSV

Module: APLXAK

Called Bv: APl120. APL126

Description: Part of common AP
services for CICS/VS. It provides the
following services between an
auxiliary processor and the shared
storage manager in the CICS/VS
environment: GET (reference the data
that the user has specified in a
shared variable). PUT (specify the
data from the auxiliary processor
buffer to shared sotrage), COPY
(obtain the latest value of a shared
variable without altering the setting
of the current access state),

licensed Material--Property of IBM
134 VS APL Program Logi c

AUTHCHECK (search the authorization
table to locate the authorization
code associated with the resource
named. and ABORT (retract the
variables in this set and pass
control to the auxiliary processor's
retract exit routine.

~: Main storage services. shared
storage manager. ABEND exit services,
dump services, session manager
message routine. and stack management
services. Macros APLKACHK. APLXMAIN.
APLXBXIT, APlXDUMP, APLKOFR, APLKCPY.
APLKREF. APLKSPC. APLKWAIT, APLKSCZ.
APLXSTK

gw: Returns

APLXAINP

Module: APLXASD (CMS)

Called By: APLXAC

Description: Analyzes input
parameters for common AP services.

~: APLXMSSG (CMS) Macro APlDEFN

.L;ill: Returns

APLXAINP

Module: APLXAYD (TSO)

Called By: APLXAC

Description: Analyzes input
parameters for common AP services.

~: APLXMYSG eTSO) Macros APLXMAIN

.ElU.!: Returns

APlXAMSG

Module: APLXASD (eMS)

Called By: APLXAC

Description: Displays messages for
common AP services.

~: APLYUlHE Macros APlXEDIT.
APLXSTK. APLXMAIN, APlXAFRE

w..t: Returns

APLXAP1SG

Module: APLXAYD elSO)

Called By: APLXAC

J

J

J

Description: Displays messages for
common AP services.

Calls: APlERRM, (TSO) Macros
APlKEDIT, APlXSTK, APlXMAIN, APlXAFRE

APLXBACK

"odule: APlXSTAK

Called By: All stack processor entry
points

pescription: Returns to caller of SP
module.

Calls: Common main storage services

Exit: Returns to instruction
following call in calling program

APLXBSAB

Module: APlSCSVI

Called By: Various executor routines.

Description: Provides
system-independent interface for
abend services to the CMS executor
and auxiliary processors.

~~: Macro ABEND

~~: Abnormal termination

APLXBSXT

Module: APlSCSVI

Called By: Many executor routines.

Description: Provides an abend exit
service through a system-independent
interface.

Calls: Macro STAE

APLXBYAB

Module: APLYUSVI

Called By: Various executor routines
and auxiliary processors

Description: The caller requests that
a particular abend be issued on his
behalf by placing a binary abend code
in register 1. This routine provides
an abend request service through a
system-independent interface (TSO).

~: . M"acro ABEND

Exit: Abnormal termination

APLXBYXT

Module: APlYUSVI

Called B~: Various executor routines
and auxiliary processors

Description: The caller requests that
a particular routine be given control
when an'abend occurs. This ioutine
provides an abend exit service
through a system-independent
interface; it also contains the ESTAE
exit and retry routines (TSO).

~: Macros APlPTRGT, APlXXPTX,
APtTSOGl, ESTAE. IHASDNA, SETRP

Exit: Returns

APLXCALL

Module: APLXSTAK

Called By: APlXSTAK stub code

Description: Calls an SP module.

C~lls.: Common main storage services

Exit: Returns to requested entry
point

APLXDKI1P

Module: APLXDKMP

Called By: Available for general use
by any VS APL module

Description: Main and only entry
point to the VS APl CICS/VS dump
services module. It provides a
system independent int~rface to the
CICS/VS executor (and auxiliary
processo rs) for' common dump ,serv ices.
The "CICS/VS' executor command is
employed for each range of addresses
to be dumped.

~: Macro' DFHDC
, '; .

Exit: Returns""

APLXDUCL

Module: APLXDUMP

Called By: APlYUINI, APLSCINI

licensed Material--Property of IBM
Section 3. Program Organ~zation 135

OescripHon':Closes DUMP data set at
term; nat ion. '.

~: APlXM5SG'.APi.XMYSG. Macros
IHADC'B ,.DC8·, OPE!,(, CLOSE, SNAP,
APLXMAIH

Exit: Returns

APLXDUftP

Module: A,pt~DUf"lP.
. ~:."' ,

Called BY: Various executor routines
.

Descr; pt,i.on:.·Pr:ovi des.
system-independent interface for dump
serv ice,s to ·the CMS and TSO executors
and auxiliary processors. The SNAP
macro is :used ·to request a range of
addres~e..$';. 1:-.0 . ;b.~ dumped to the AP l DUMP
DO file.:' ;..: .

~i!.lb :MA,tti~·~Ma~~o·~APLPATCH.
IHADCB~l)C:8.0PEN. CLOSE. SNAP,
APlXMAIN,. Dl::A.G

.fill: R!!turn:s .'
....

APLXDUOP
.. , "

Modu 1 e:APlX1>l1MP

Called8Y:-APly'UlHI~ APLSCIHI

Descri pti.o~n:·>Ca.UQd.~t in jot i al i zat ion
to open the. ·DUMP dat.a set.

~: Maero!l .A1?·lPATCH. IHAOCB, DCB,
OPEN, CL.OSE •. SNAP,.APLXMAIN

Ex i t:· Returns· ..

APLXFIHT.

Module: APLXFSFL<

~: APl}CMSSG~· .Macros APlPATCH,
APlSFID, APlXDMP, APLXEND, APlXFAB,
APlXMAI, APlXMAI·N, APLXMOD, APlXPROC,
APlXPTH~ APL~STAK, FSREAD, FSWRITE

' ...

.Em: Ret"!Jrns

APLXFINT

Module: AP.LXFYFl·

Li censed .Material-Property of IBM
136 VSAPl Program LoO; c

Called By: APLYUINI

~ription: Initializes buffers for
AP 121 files and scrolling (TSO
only) .

Cal~: APlXMYSG. Macros ACB,
APLXMAIN, APLXMOD, APLXSTAK, FSREAD,
FSWRITE

ll.il: Returns

APLXFKFL

Module: APLXFKFL

Called~: APLACSF

Description: This module provides a
map, for the CICS/VS file system,
from release 4 stack processors to
release 3 register requirements and
stack usage.

Calls: APlKLIBF

llil: Returns

APLXFSFL

Module: APLXFSFl

Called By: APlSCINI, APL121, APlACSF

Description: Manages the movement of
data to and from buffers for AP 121
files and scrolling (eMS only).

Calls: APLXDUMP, APLXMSSG, APLSCFID.
Macros APLSFID. APlXMAIN, APLXMOD.
CLOSE, EHDREQ. ERASE, FREEMAIN, GET,
GETMAIN, IFGACB, IFGRPL. PUT, RPL

llil: Returns

APLXFTRM

Module: APLXFSFL

Called By: APlSCINI, APl121. APLACSF

~cription: Terminates a buffer
service request for AP 121 files and
scrolling (eMS only).

Calls: APLXDUMP, APLXMSSG. Macros
APlSFID, APlXMAIH, APlXMOD, APLXSTAK,
FSREAD, FSWRITE

.t2ti.1: Returns

APLXFTRM

Module: APLXFYFL

J

J

Called By: APLYUINI

Description: Terminates a buffer
service request for AP 121 files and
scrolling (TSO only).

~.~!.U..2: APLXMYSG. Macros ACB, APLXFAB,
APLXMAIN, APlXMOD, APLXSTAK, CLOSE,
ENOREQ, ERASE, FREEMAIN, GET,
GETMAIN, IFGACB, IFGRPL, PUT, RPL

.Exit: Returns

APLXFVFL

Module: APLXFYFL

~nlled By: APLYUINI~ APl121. APLACSF

pp.scription.: Manages the movement of
data to and from buffers for AP 121
files and scrolling (lSO only).

~~_~s: APLXMYSG. Macros ACB. APLXMOD.
APlX5TAK, CLOSE, ENDREQ, ERASE,
FREEMAIN, GET, GETMAIN, IFGACB,
IFGRPL, PUT, RPL

.Ex it! Returns

APL.XGCAT

Mod~: APLXGCAT

Called By: Operating system or GDDM

D~scr;P1;on: Th;s is ~he attention
proces~ing module for eMS and lSO.

~)(it: To routine in PTXATTN

APLXGCHC·

Module: APlXGCHC

Called By: APLXGCOM

Jl~~s:r;ption: This ;s the common
APLXGDOM hardcopy request processing
module which handles the following
APlXG requests! FSOPEN, FSCLS,
FSCOPY, FSLOG, GSCOPY, and QOEST.

~~: GODM APL print services. main
storage services, APLXGOD~
system-depend~nt modules (APLXGKU,
APlXGS, or APLXGY). Macro APlXSTK

Exit: Returns

APLXGCOH

Module: APLXGCOM

Called By: APL session manager, AP126

Description: This ;s the GODM
interface module. APlXGCOM ;s the
main entry point for all APlXG macro
processing, and contains all
processing routines common across all
systems, except for hardcopy request
support and attention support. Three
typos of requests are processed: APl
special requests, GODM requests with
special considerations and
pass-through requests.

Calls: APLXGCHC, ADMASP (GODM entry
pOint), and the following entry
points defined through the VCT:
GDDXE, DUMPX, MAINS. STKAB.

Exit: Returns

APlXG~ON

Modl!ig: APLXGKON

CaJJp.d B-y: APlKADSP (VS APL
dispatcher)

D~scription: Contains CICS/VS-only
support for the startup of the
CICS/VS GDDX process, the
synchronizution of requests from the
session manager, and instances of
AP126.

CClJ.Js: APLXGCOM

Exit: Returns to dispatcher

APLXGKR

Modulg: APLXGKR

Call~d By: APLXGKRR

D~scrietion: Main and only entry
point in the GODX CICS/VS terminal
manager retrofit module that converts
GDDM calls made by the session
manager into release 3 terminal
manager calls, thus allowing the
session man~ger to run when GODM is
not available.

~AJ~: Macros APLKEXIT, APLKMAIN,
APLKIER~, DFHPC TYPE=ABENO and DFHIR
TYPE=ENTRY

Exit: Returns

APLXGKRQ

Module: APLXGKRQ

~~ll~d By: Macro APlXG and APl126
(the session manager modules)

licensed Material--Property of IBM
S~ction 3. Program Organization 137

Description: Part of GDDX
CICS/VS-only user transaction I/O
support. It is invoked in CICS/VS
via the VCTGDDX pointer when a
request for APlXGDDM service is
issued (through the APlXG macro). It
then signals the APlXGKON routine to
perform the request under a GDDX task
and waits for it to do so.

~: Returns

APLXGKRR

Module: APlXGKRR

Called By: APlXGCOM, APlXGCHC

Description: Main and only entry
point to the GDDX T.M. retrofit
router module. It routes requests
from APlXGCOM or APlXGCHC to APlXGKU
if GDDM is to be used in the
session, or to APlXGKR if the Release
3 terminal manager is to be used.

Calls: APlXGKR, APlXGKU

Exit: Returns

APLXGKT

Module: APLXGKT

Call~d By: CICS/VS as a result of an
EXEC CICS/VS start command in
APlXGKU, or an XCTl in APlKASON,
(CICS/VS sign on module)

Description: Main and only entry
point to the root CICS/VS terminal
transaction support module for GDDX.
It contains CICS/VS-only routines for
APlXG ~equests which must be executed
from the terminal transaction. These
comprise the following: SPINIT,
FSFRCE, ASREAD, and FSSHOW. APlXGKT
notifies the user transaction, as
needed, of request completion, and
synchronizes with the user
transaction to avoid overlapping of
calls to GDDM. APlXGKT also supplies
the attention-handling support for
CICS/VS.

Calls: ADMASP,APlAUATN. CICS/VS
command level: ABEHD,ADDRESS,
ASSIGN, ENTER, HANDLE, POST, RECEIVE,
RETURN, RETRIEVE and WAIT

~: Returns to CICS/VS

APLXGKU

Module: APlXGKU

licensed Material--Property of IBM
138 VS APl Program logi c

Called By: APLXGCOM. APLXGCHC

Description: This is the mainline of
the GDDX CICS/VS-only user
transaction I/O support containing
routines for the following: a)
startup of CICS/VS GDDX task, b)
synchronization of requests from
session manager and APl26, c) GDDM
path initialization. d) GDDM path
termination, e) open a hardcopy
destination (FSOPEN), f) passthrough
request to GDDM under user
transaction with proper
synchronization. and g) I/O request
to schedule a terminal transaction
and wait for its completion.

Ca,lls: ADMASP, KADEF via GBL.
CICS/VS command level: FREEMAIN,
RELEASE and SORT

Exit: Returns

APLXGS

Module: APLXGS

Called By: APlXGCOM. APlXGCHC

Description: This is the eMS-only
support for APlXGDDM and contains
routines that perform first-time
initialization and hardcopy open
register for APLXGDDM. It also
provides the last-path CMS-only
termination function.

Calls: ADMASP (GDDM entry point).

Exit: Returns

APLXGY

Module: APlXGY

Called By: APLXGCOM, APlXGCHC

Description: This is the entry point
in module APlXGY. Its routines
perform first path initialization and
hardcopy open register for APLXGDDM.
as required by system-dependent
modules in all environments.

~: ADMASP (GDDM entry point).

Exit: Returns

APLXGYON

Module: APLXGY

Called By: APLYUINI

J

J

Description: This is ~he APL
initialization entry from AP startup.
It causes the AP task to gain control
at routine GYCALL. which will invoke
APLXGCOM when notified of a request
and post the caller when the task is
completed.

~: APLXGCOM (GDDM entry point).
Macros APLXWAIT. APLXWPST

Exit: Signs off shared storage
manager.

APLXGYRQ

Module: APlXGY

Called By: AP126. APL session manager
(in TSO via VCTGDDX)

Description: This is the request
processing entry point which receives
control via the VCT when macro APLXG
is issued. It causes a task switch to
the APLXGYTA routine. waking up to
return to caller when notified by
APLXGYTA.

~: Macros APLXWAIT. APlXWPST

Exit: Returns

APLXHKSG

Module: APlXMKSG

Called By: Various executor routines.

Descrietion: This is the main and
only entry point to the storage
management services module for
CICS/VS which provides
GETMAIH/FREEMAIN services to the
caller (CICS/VS) through a
system-independent interface.

Calls: Macros DFHSC. DFHSAADS

Exit: Returns

APLXHSSG

Module: APlXMSSG

Called By: Various Qxecutor routines.

~5cription: Provides
GE1MAIH/FREEMAIH services through a
system-independent interface to the
caller (CMS).

~: Macros DMSFREE. DMSFRET

. Els..i.t: Returns·

APLXHYSG

Module: APlXMYSG

Call~d By: Available as a service
routine

Description: This is the storage
management services module for T50
which provides GETMAIN/FREEMAIN and
associated ser~ic~s to the caller
through a system-independent
interface.

Calls: Macros GETMAIN. FREEMAIN

.fls..i.:t: Returns

APLXPK

Module: APlXPK

Called By: Available for general use
via pRTX label in VCT

Description: Main and only entry
point to common executor print
support in CICS/VS. It provides
print requests OPEN. WRITE, and
Cl~SE. and transforms each request
into an aepropriate APLKEMGR call.

~: KEDEST via GBL

Exit: Returns

APLXPY

Module: APLXPY

Called By: APLXGDDM via APLCALLS

De~cription: This is the main entry
point to the APl print module for TSO
which satisfies the following TSO
print requests: OPEN, WRITE, and
CLOSE.

Calls: 150 QSAM file support. APL
main storage services. LOAD/DELETE.
and APl translation services. Macros
OPEN. CLOSE. PUT, IHADCB. LOAD

Exit: Returns

APLXSTAK

Module: APlXSTAK

Called By: All stack protocol stack
owners

Description: Create or destroy a
stack .

Licensed Material--Property of IBM
Section 3. Program Organization 139

Calls: Common main storage services.

Exit: Returns

APLXTRAN

Module: APLXTRAN

Called By: VS APL session manager.
common AP services

Description: Provides various
translation services.

Calls: Macros APLKZTOS. APLKSTOZ

Exit: Returns

APLXTREZ

Module: APLXTRAN

Called By: VS APL session manager.
common AP services

Description: Translates a table from
extended EBCDIC to ZCODE.

~: APLSCODE, APlKZTOS. APlKSTOZ

Exit: Returns

APLXTRZE

~odule: APLXTRAN

Called By: VS APL session manager,
common AP services

Description: Translates a table from
ZCODE to extended EBCDIC.

Exit: Returns

APLXVERS

Module: APLXVERS

Called By: Any auxiliary processor.
Common AP services.

Description: Provides various
conversion services to ~onvert one or
more elements of a vector of values
into another form.

Exit: Returns

APLXWKWP

Module: APLXWKWP

Licensed Material--Property of IBM
140 VS APL Program Logic

Called By: Attention, VS APL session
manager separate task

De:icription: This is the main entry~"
point to the VS APL CICS/VS wait/post" ""
services module which provides a
system-independent interface for wait
or post services to the CICS/VS user.
Each request is transformed into an
appropriate APLKEMGR call (CICS/VS).

~: APLKADSP (wait and post
routines)

.Eti.i: Returns

APLXWSWP

Module: APLSCSVI

Called By: Many executor routines.

Description: Provides J'
system-independent interface for wait
or post services to the CMS executor.

~: APLSHPST

Exit: Returns

APLXWVWP

~odule: APLXWYWP

Call~~~: APLYUMSC, various executor
routines and auxiliary processors.

De5cripti9~: Provides
system-independent interface for wait
or post services to the TSO executor.

~: APLYUSVI (wait and post
routines)

Exit: Returns to caller from post
services; exits to dispatcher from
wait.

APLXWYWP

Module: APLYUSVI

Called By: Various executor routines
and auxiliary processors

Description: Provides wait and post
services for system-independent task
control. It i n,cludes a courtesy
dispatch with a wait request of ECB
pointer of zero (TSO).

Calls: APlSHPST. Macros APLPTRGT,
APL1SOGL

~xit: Returns

J

J

APLYDAIR

Module: APLYDAIR

CollQd By: APLAM, APLXFYFL

Description: Allocates, frees. or
deletes a data set. or checks its
status.

Exit: Returns

APlYUCMD

Module: APLYUCMD

C~lled By: APlYUIOO

Q/?,Jicrlption: Initializes all control
blocks. calls the command scan. and
builds the command name. The command
module is now attached; it is passed
a CPPL constructed by copying the
CPPL passed to VS APL. but
substituting the address of the built
CBUF. The CMSECB is ~sed as the EeB
in the ATTACH because it is post~d by
the STAX exit. The TSOCMDAT bit is
set to distinguish APLYUI00 waiting
from waiting caused by DELAY or MSG.
When posted. the command subtask has
either terminated normally or has
been rendered nondisDatchable by
STAX. DAIR is now called with a
request code of '2C' to mark the
command subtask; the subtask can
subsequently be detached. The line
delete and character delete functions
are resuppressed. and the QUAD-PW
value is reestablished before
returning to APLYUI00.

For a full explanation of T50 command
linkage and Terminal Monitor Program
service routines. see 9,uid@ to
~riting a T~rminal Monitor Program
and Command Proc~ssor.

Calls: Macros ATTACH. BLOL. LINK.
STCC. STSIZE, WAIT. GETMAIN, FREEMAIH

Exit: Returns

APLYUCNV

Module: APLYUCHV

Called By: Various executor routines

Description: Imports into a VS
APL/TSO sequential data set a VS APL
workspace from a file created by one
of the VS APl conversion programs
CTSO) .

Exit: Returns

APLYUEXC

Module: APLYUEXC

Call~~~: APLYUCMD

D'?-llcription: Routine used fo execute
CLlSTs.

.Ex; t: Returns

I\PlYUFXI

Module: APLYUFXI

~~: APLYUIHI (VS APL
initialization)

De2cription: Receives control after
initialization and reacts to the
success or failure of initialization
(TSO) •

~s.lls: Macros APLDEFH. YYCODE
(local), ESTAE, APLEDIT

~is: YYEXIl in APLFXIIM;
EXREQUESCError)

APLYUHSH

Mod~~: APLYUHSH

~~lled~: APLYUlIB

Description: This is the
hasher/unhasher module which examines
a lock and its key to determine if
the workspace was saved by VS
APL/lSO, and, if so. what the TSO
owner userid is.

Exit: Returns

APLYULNE

Modulg: APLYULHE

Call~~: Invocations produced by
the 'APLEDIl' macros

Description: This is the interface
module to the LINEDIT macro in the
T50 environment. At entry. the PLIST
code is decoded and expanded inside
the work area 50 that it will be
pos5ibl~ to easily access all its
fields. The message header is then
constructed and the message text is
scanned. byte by byte. Whenever an
ellipsis is found in the message
text. an argument is taken from the
'SUBS' parameter list. the
appropriate conversion is performed.
and the result is substituted for the
ellipsis. The resulting message is

Licensed Material--Property of IBM
Section 3. Program Organization 141

then copied into the specified
buffer, the 'DISP' field is examined,
and the appropriate action is taken.

Calls: APLYUTIO

Exit: Returns

APLYURVC

Module: APLYURVC

Called By: Auxiliary processor or
module APLYUSHV using 'ASVP '
",aero

Description: Links to shared storage
manager (also called shared variable
processor) from an auxiliary
processor or the T50 executor on a
shared variable service request.

Exit: Branches to entry point
ASVPSERV in module APLYU5VI

APLYUTBL

Module: APLYUTBL

Called By: None (data only)

llescription: This contains all
translate tables for terminals.

Exit: None

APLYUTIO

Module: APLYUTIO

Called By: APlYUTYP

Description: This is the T50
nondisplay terminal interface which
simUlates CMS SVC 202 terminal
input/output functions (TSO).

Calls: SCOTRT. Macros TPUT, TGET.
APlDEFN

Exit: Returns

APLYUUSR

Module: APlYUUSR

Callqd By: APlYUINI

Description: This constitutes a.
sample installation-written
initialization exit routine. It 1)
allows any user with operator
authority to save into or drop from
public workspaces, and 2) scans for

Licensed Material----Property of IBM
142 VS APl Program logi c

the ownership operand, and, if
provided, forces the specification of
a password.

~: Returns at +0 (Error--user is
not authorized to continue); +4 (user
is authorized to proceed with APL
session).

APLIOO

Module: APlYUIOO

Called~: Control passed directly
from shared variable processor

Description: Executes a T50 command.

~11~: APLYUSCN. Macros APlWSM,
A5VPSON, A5VPQRY, ASVPOFR, ASVPREF,
A5VPWAIT, A5VPRET, A5VP5PC, ASUSCV,
APLPCV, APl5H5VP, ASVP50F, APLEDIT,
ABEND

fKi!: TSO ABEND (Error)

APLIOO

Module: APLIOO

Called By: A5VPSERV; via Post on ECB

DllcriRtion: Auxi liary processor
APIOO; executes CMS and CP commands
while obeying the search rules for
IMPEX and IMAP.

Calli: ASVPSRVC. Macros APLWSr1,
ASVPSON, ASVPQRY. ASVPOFR, ASVPREF,
ASVPWAIT, ASVPRET, ASVPSPC, ASUSCV.
APlPCV, APLSHSVP. ASVPSOF. LINEDIT,
ABEND. NUCON, TSOBlKS. DMSFREE,
DMSFRET, APLXBXIT

Exit: ASVPSRVC with wait request; CMS
ABEND (Error)

APL100K

Module: APllOOK

Called By: Entry point KMACRO

Description: Part of the CICS/VS
command auxiliary processor. Issues
CIC5/VS commands and starts CICS/VS
transactions.

~: Entry point APLIOOKO. Macros
APLKOFR. APLKREF. APLKSPC. APLKWAIT,
APLKEXIT, APlKRET. APlKACHK, APLKG
(lIBSERV). CICS/VS macros OFHIC (PUT,
INITIATE), DFHKC (ATTACH). DFHSC
(GETMAIN, FREEMAIN). DFHSP

Exit: Returns

J

J

J

APLlOOKO

Module: APLIOOKO

Called By: Entry point APllOOK

Description: Part of the CICS/VS
command auxiliary processor. Connects
eICS/VS transactions. to the user
terminal.

~~: Any CICS/VS transaction.
CICS/VS macros DFHPC (LOCATE, LINK,
RETURN), DFHSC (GETMAIN)

Exit: DFHPC (RETURN)

APL101

Module: APlYUIOI

~Jled By: Shared variable processor
APLYUSVI

Description: This is lSD's auxiliary
processor APIOl, who~e function is to
stack an APl input line.

Cal~: APLYUSCN. Macros APlWSM,
ASVPSON, ASVPQRY, ASVPOFR, ASVPREF,
ASVPWAIT. ASVPRE1. ASVPSPC, APlSCV,
APLPCV, APlSHSVP, ASVPSOF, APlCCVO.
APlEDIT, ABEND

Exit: Signs off to the TSO SSM

APL101

Module: APllOl

Called By: ASVPSERV; ~ia Post on ECB

D~scription: Auxiliary processor
APlOl; stacks lines to be used at
next request for terminal input. In
VM/SP sy~tems. an attempt to stack
'HT' or 'RT' will result in the SET
CM~TYPE commandbeing issued.

Calls: ASVPSRVC

~l!: ASVPSRVC with wait request; CMS
ABEND (Error)

APLl02

Module: APLYUI02

Called By: Shared variable processor

Description: This is the TSO main·
storage accass auxiliary processor.
It displays storage for the user.

~~: Macros APLIBITS. APlCMSGl,
APLWSM. ASVPWAIT, ASVPSOF, ASVPSON.
ASVPQRY. ASVPREF, ASVPSVP. ASVPRET.
ASVPSPEC, ASVPSOFR, APlSHSUP,
APlFSMP. APLFSMW. APLDFNUC, APLSYSTP,

APLGLPTR. FREEMAIN. GETMAIN. SAVE.
RETURN, IHAPSA. CVT, IKJTCB

Exit: Returns

APL102K

Module: APLl02K

Called By: Entry point KMACRO

Description: The CICS/VS main storage
access auxiliary processor. Displays
storage for the user.

Cal~: Macros APlKOFR, APLKREF,
.APLKWAIT, APLKSPC, APLKRET, APLKEXIT.

APlKACHK

.fJ!ti: Returns

APLll0

Moduh: APlllO

Called By: ASVPSERV via Post on ECB

Qg,cription: Auxiliary processor
APIIO; reads and writes CMS disk
files.

Calls: ASVPSRVC

~: ASVPSRVC with wait request; CMS
ABEND (Error)

APL111

Module: APlYUlll

Called By: Shared variable processor
APLSC5VI

Description: This is the T50
auxiliary processor APlll which reads
and writes QSAM files.

Cal~: APlYUSCN. Macros APLCCVI.
AP1CCVO, APLIREGS, APLWSM. APLZCODE.
APLPCV, APlSCV, ASUSCV, APlSHSVP,
ASVPOFR, ASVPQRY, ASVPREF, ASVPRET,
ASVPSOF. ASVPSON. ASVPSPC, ASVPWAIT,
ABEND, CLOSE, DCB. DCBD, FREEPOOl,
GET, GETMAIN. APLEDIT, OPEN, PUT,
FREEMAIN, OHABEND (LOCAL)

Exit: Signs off to ·the TSO SSM

APL111

Module: APlll1

Called By: ASVPSERV via Post on ECB

li censed Materi 81-. _. Property of IBM
Section 3. Program Organization 143

Description: Auxiliary processor
APlll; reads and writes files using
CMS simUlation of OS QSAM.

Calls: ASVPSRVC

S~: ASVPSRVC with wait request; CMS
ABEND (Error)

APLl20

Module: APL120

Called By: Initialization (CMS and
TSO), shared storage manager
(CICS/VS)

Description: Communicates between the
VS APL session manager commands and
auxiliary processors.

Calls: APLASCHD, APLXAC

Exit: Returns

Art121

Module: APLl21

Cal1e~: CMS/TSO initialization

Description: This is the main entry
point to the VS APL data file which
creates, writes, updates, reads,
and/or deletes VS APL object files.

Calls: APLXFYFL, APLXFSFL, APLXAC,
APLXDUMP, APLXMSSG, APLXMYSG. and
APLXSTAK. Macros APLXASO. APLXMAIN,
APLXCAPS, APLCALLS

Exit: Returns

APLl2lK

Module: APL121K

Called By: Entry point KMACRO

Description: The CICS/VS APL format
auxiliary processor. Creates. writes,
updates, reads, and/or deletes APL
object files.

Call~: Entry point APLKLIBF. Macros
APLKOFR, APLKRET, APLKREF, APLKSPC,
APLKEXIT, APLKWAIT, APLKACHK. CICS/VS
macro DFHSC (GETMAIN, FREEMAIN)

Exit: Returns

APL123

Module: APL123

Licensed Material--Property of IBM
144 VS APL Program Logi c

Called By: Control directly passed
from shared variable processor

Description: This is the TSO/CMS
auxiliary processor 123 which reads
and/or writes VSAM files.

Calls: APLXMSSG, APLXMYSG.· Macros
APLCCVI, APLCCVO. APLSHSVP, ASVPACC,
ASVPOFR, ASVPQRY, ASVPREF, ASVPRET,
ASVPSOF, ASVPSON, ASVPSPC. ASPWAIT,
ABEND, CLOSE. GET. PUT, OPEN, POINT,
ERASE, MODCB. GENCB, TESTCB, SHOWCB,
APLXMAIN. APLEDIT, APlXMAIH

Exit: Returns

APLl23K

Module: APL123K

Called By: Entry point KMACRO

De~cr;ption: The CICS/VS VSAM/ISAM
file auxiliary processor. Reads from
and writes to VSAM and ISAM data
sets.

CCJJJ~: Macro s API.KO FR, APLKRET,
APlKSPC, APLKREF, APLKWAIT, APlKEXIT.
APLKACHK. CICS/VS macros DFHSC
(GETMAIN, FREEMAIH), DFHFC (GET, PUT,
DELETE, GETAREA. RELEASE, SETL.
GETHEXT, RESETL, ESETL)

Exit: Returns

APL124K

Module: APL124K

Called By: Entry point KMACRO

Description: The CICS/VS full screen
manager auxiliary processor. Uses
terminal manager routines, which are
a purt of the CICS/VS executor to
handle all valid user requests

Calls: Macros APLKOFR. APLKRET,
APLKREF. APLKSPC, APLKWAIT, APLKEXIT,
API.KTERM (INIT, FORMAT, WRITE. READ,
GETDATA, SETCUR, FLDATTR. GETFORM,
HCOPY, ALARM, FINAL). CICS/VS macros
DFHSC (GETMAIN, FREEMAIN)

Exit: Returns

APL12SK

Moduh: APL125K

Called By: Entry point KMACRO

Description: The CICS/VS OL/I access
auxiliary processor. Provides a DL/I
interface for the CICS/VS user.

J

J

J

J

C~lls: Macros APLKOFR, APLKRET.
APlKSPC, APlKREF, APLKEXIT, APLKWAIT,
APlKACHK, CAlLDlI. CICS/VS macro
DFHSC (GETMAIN. FREEMAIN)

APL126

Module: AP1126

C~lled By: Initialization (CMS and
TSO), shared storage manager
(CICS/VS)

Description: This is the main entry
pOln~ to the GDDM auxiliary processor
which processes requests from a user
(CMS. TSO. or CICS/VS) to be passed
on to GDDX. and allows the user to 1)
control the screen format of his
terminal, 2) write to and read from
the formatted screen. 3) erase screen
fields. 4) copy screen images to a
printer, 5) condition screen fields
for light pe~ usage. and 6) read
program function and attention keys.
It also allows a user to specify a
request (to AP126) that is not a GDDM
call. but controls the AP options.

Calls: GDDM interface services
(APlXGDD~), common AP SERVICES
CAPLXCAPS), conversian services
CAPlXVERS), stack management
services, storage management
services. abend services and dump
servicas. Macros APlXAEAT, APLG,
APLXMAIN, APLXASO. APlXBXIT. APlXCAPS

~~: In CMS/TSO. stays active until
the shared variable processor
terminates. In CICS/VS, terminates
when user signs off.

APL126T

Module: APL126T

~alled By: GDDMRCTl

Dpscription: This is the main entry
namQ of the GDDM auxiliary processor
table module which ~xpands the m~cro
APlI26TB, once for each AP 126 GDD~
request. to define entries in a GDDM
request table set.

Calls: Macro APl126TB

APL132K

Module: APL132K

Call~d By: Entry point KMACRO

Description: ~he CICS/VS transient
d~ta auxiliary processo~. Accesses
CICS/VS transient d~ta including both

intrapartition queues and sequential
devices.

Calls: Entry point APlKEMGR. Macros
APlKOFR, APlKRET. APlKREF, APlKSPEC,
APlKWAIT, APlKEXIT. CICS/VS macros
DFHSC (GETMAIN, FREEMAIN)

Exit: Returns

APL139K

Module: APLl39K

Called By: Entry point KMACRO

Description: The CICS/VS alternate
input processor. Pas~es user-supplied
data from the shared storage manager
to the session manager.

Calls: Macros APlKOFR, APLKRET,
APLKREF, APLKWAIT

Exit: Returns

APL210

Module: APLYU210

Called By: Shared variable processor
APlYUSVI

Descriotion: This is the BDAM
auxiliary processor for TSO which
reads and writes EDAM files.

Calls: APlYUSCN. Macros APLCCVI.
APLCCVO, APlIREGS. APlWSM, APlZCODE,
APlPCV, APlSCV, A~lSHSVP, ASVPOFR,
ASV?QRY, ASVPREF, ASVPRET. ASVPSOF,
ASVPSON, ASVPSPC, ASVPWAIT, ABEND.
CLOSE, DCB, DCBD, FREEPOOL, GET,
GETMAIN, APLEDIT, OPEN, PUT. FREEMAIN

Exit: Signs off to the TSO SSM

APOPEN

Modul~: APlPAPCD

Called By: APlPAPPR

D~scription: Executes service request
to internal auxiliary processors
AP121 and AP122 to open a VSPC file
for input, output, or update.

Calls: APDFN. ERMSGRTN

Exit: Returns; ERSAVEAR (Error).
ERENDEX CErro:")

licensed Material-Property of IBM
Section 3. Prd~ram Organization 145

APPASSWD

Module: APLPAPCD

Called By: APLPAPPR .

Description: Executes service request
to internal auxiliary processors
AP121 and AP122 to change the
password of a VSPC file.

Calls: APDFN. ERMSGRTN

~: Returns; ERSAVEAR (Error).
ERENDEX (Error)

APSHARE

Module: APLPAPCD

Called By: APLPAPPR

Description: Executes service request
to internal auxiliary processors
AP121 and AP122 to change the share
status of a VSPC file.

Calls: APDFN. ERMSGRTH

Exit: Returns; ERSAVEAR (Error).
EREHDEX (Error)

APVIO

Module: APLPAPCD

Called By: APLPAPPR

Description: Executes all service
requests to internal auxiliary
processor AP123.

Calls: APDFH. ERMSGRTN

Exit: Returns; ERSAVEAR (Error).
EREHDEX (Error)

ASVPSERV

Module: APLSCSVI

Called By: ASVPSRVC

llescription: Determines type of
sh~red variable request· and calls
routine to handle it. On return.
schedules the next auxiliary
processor that is ready to run; if
none. returns to the interpreter at
the instruction following its last
shared variable service request.

&AIls: APLSHACC. APLSHCPY. APLSHOFR.
APLSHQUE. APLSHREF, APLSHRET,
AP L SHSOF. 'AP LSHSOH, APL SHACC.
Auxiliary Processors

Licensed Material--Property of IBM
146 VS APL Program Logic

Exit: See description

ASVPSERV

Module: APlYUSVI

Called By: Various executor routines
and auxiliary processors

Description: Determines the type of
request and invokes the proper shared
variable processor routine (TSO).

C~115: APlSHACC. APLSHCPY. APLSHOFR.
APLSHQUE, APLSHREF, APLSHRET.
APLSHSOF, APLSHSON. APLSHSPC. Macro
APLSHPAR.

Exit: Returns

ASVPSRVC

Module: APLYURVC (lSO), ASVPSRVC
(C~lS)

Called By: User-written auxiliary
processors or dynamically-loaded
auxiliary processors

Description: Entry point to shared
storage manager for VS APL.

&AIls: (for TSO) APLYUSVlj Macros
APLDEFH. APLPTRGT. (for CMS)
APLSCSVli Macros HUCOH, APlPATCH.

Exit: ASVPSERV

BEXIT

Module: APLKASTB

Called By: Various executor routines.

Description: This is the main entry
point to the VS APl CICS/VS abend
services module which provides a
system-independent interface for
abend services to the CICS/VS
executor and auxiliary processors
CCICS/VS).

Calls: APLKADSP. Macro APLKEDIT

Exit: Returns

COIBH

Module: APLCOIBM

Called By: CMS

Description: Copyright notice and
entry point from CMS to VS APL.

J

Exit: APL

CVCULL

Module: APLCCULL, APLOCULL

Called By: CVIHIT

De~cription: Calls workspaces for
selective conversion; gives CMS
fileid to workspace for selected
workspace; resolves filename
conflicts. Re;ects invalidly named
workspaces ~hich cannot be resolved.

Calls: CVRPRT

~: Returns

CVDATE

~~: APLCMISC, APLOMISC (only for
OS/VS), APlQMISC

~alled By: CVINIT

nescription: Gets date from system.

Exit: Returns

CVDIRE

Module: APlCMISC, APlODIRE

Called By: CVIHIT

Descrjption: Builds shortened form of
directory; dummy routine under CMS.

~: CVSlST

Exit: Returl1s

CVDISP

Modul~: APLCDISP, APLODISP, APLQDISP

Called By: CVFUNC

Description: Converts APl~360
codestring to VS APl copy
transmission codes; for content
conversion, converts or fl~gs APl~360
idioms to VS APl equivalents.

~: CVTBCD

fls.i..1: Returns

CVFUHC

Module: APlCFUHC, APlOFUNC, APLQFUNC

Called By: CVWKSP

Description: Converts format for all
functions; converts content or
replaces function.

Calls: CVDISP, CVRPRT, CVWSFN,
CVSHIP, ITlINEO, ITOKEHIZ, ITClOSET

Exit: Returns

CVGDIR

Module: APlODIRE

Called By: CVSAVE

DPoscription: Looks for PERlIB in
shortened form of directory.

Exit: Returns

CVGRUP

Module: APlCGRUP, APlOGRUP, APlQGRUP

Called By: CVWKSP

Description: Enters an XM6 group name
and its members' names into VS APL
workspace.

Calls: ITSTSRCH, IESFIHD

Exit: Returns

CVIBNr1

Module: APLCIBNM, APlOIBHM, APlQIBHM

Called By:CVWKSP

Description: Generates uniQue
three-character alphabetic
underscored name for IBEAM simulator
function.

Exit: Returns

CVIHIT

Module: APLCIHIT, APLOIHIT, APLQIHIT

Called By: Host operating system

Description: Sole entry and exit
point for conversion program. Sets up
and initializes conversion parameters
and flags; establishes buffers and
storage spaces for APl~360 workspace
and directory (input) and VS APl
workspace (output); reads workspace
and directory from tape.

licensed Material--Property of IBM
Section 3. Program Organization 147

~: CVPARM, CVDATE, CVSPIE,
CVCULL, CVWKSP, CVDIRE, CVRPRT,'
CVTBCD, CVIOER

Exit: Returns

CVIOER

Module: APLCMISC, APLOMISC

Called By: CVIHIT

Description: Prints permanent
input/output error messages.

Calls: CVPRTR

Exit: Returns

CVLEAR

Module: APLCLEAR, APLOLEAR, APLQLEAR

Called By: CVWKSP

Description: Initializes VS APL
workspace.

Calls: CVTBCD, CVRPRT

Exit: Returns

CVPARti

Module: APLCPARM, APLOPARM, APLQPARM

Called By: CVIHIT

Description: Sets conversion flags
according to parameters; for
selective conversion, builds
selection list in SELIST.

Calls: CVPRTR

Exit: Returns

CVPRTR

Module: APLCMISC, APLOMISC, APLQMISC

Calle~: CVRPRT, CVIOER, CVSPIE,
CVPARM

Description: Prints conversion
information on SYSPRIHT (SYSLST).

Exit: Returns

CVRPRT

Module: APLCRPRT, APlORPRT, APlQRPRT

Licensed Material--Property of IBM
148 VS APl Program Log; c'

Called By: CVVARB, CVFUHC, CVWKSP,
CVlEAR, CVIHIT, CVSAVE, CVCULL

Description: Prints a detail line of
conversion report; takes care of
pagination.

Calls: CVPRTR

Exit: Returns

CVSAVE

Module: APLCSAVE, APlOSAVE, APLQSAVE

Called By: CVWKSP

Description: Saves converted VS APl
workspace as a CMS file whose name is
provided by. APlCCULL routine. Saves
as control intervals on APLOUT for
VSPC.

~: CVRPRT, CVGDIR

Exit: Returns

CVSHIP

Module: APLCSHIP, APLOSHIP

Called By: CVWKSP, CVFUNC

Des~r;ption: Tokenizes a multiline VS
APl function into VS APL workspace.

Calls: ITlIHEO, ITOKENIZ, ITClOSET

Exit: Returns

CVSlST

~dule: APLOSLST

Called By: CVDIRE

Description: Looks for given library
number and workspace name in
selective conversion list.

llil: Returns

CVSPIE

Module: APLCSPIE, APlOSPIE, APlQSPIE

Called By: CVINIT, Host operating
system

Description: Sets SPIE exit when
called by CVINIT; when exit taken,
prints error message, time stamp,
PSW, and registers.

~: CVTBCD, CVPRTR

fKi!: Returns;. CVINIT (Recoverable
Error); ABEND (Error)

CVTBCD

Module: APLCTBCD, APLOTBCD

Called By: CVLEAR, CVDISP, CVINIT,
CVLEAR

Description: Determines internal type
of data element; converts to Z-code
representation to given format and
data type.

Exit: Returns

CVTIDV

Module: APLCMISC, APLOTIDY, APLQMISC

Calle.d By: CVWKSP

Description: Collects discarded
material from VS APL workspace.

Exit: Returns

CVVARB

Module: APLCVARB, APLOVARB, APLQVARB

Called By: CVWKSP

Description: Enters APL/360 variables
in VS APL workspace; for character,
translates to VS APL Z-codes; for
Boolean, reverses bits in every byte.

Calls: CVRPRT, IESFIND, ITSTSRCH

Exit: Returns

CVWKSP

Module: APLCWK5P, APlOWK5P, APLQWKSP

Called By: CVINIT

Description: Finds global objects in
source workspace; calls appropriate
routine to convert objects for VS APl
workspace.

~: CVIBHM, CVLEAR, CVSHIP,
CVRPRT, CV5AVE, CVGRUP, CVVARB,
CVFUNC, CVTIDY

Exit: Returns

CVWSFN

Module: APlCW5FN, APlOWSFH

Called By: CVFUHC

Description: Replaces APl/3~O WSFH
with VS APl equivalent in VS APL
Z-codes (copy transmission format).

Exjt: Returns

DHSSCND

Module: APlYUSCH

Called By: Various T50 ~xecutor
modules

Description: This is the entry point
of the old parameter list format. It
transforms an input command line into
a series of 8-byte parameters.

Exit: Returns

DHSSCNN

Modul~: APlYU5CN

Called By: Various T50 executor
modules

Description: This is the entry point
of the new parameter list format. It
transforms an input command line from
a string of arguments into a series
of 8-byte parameters.

Exit: Returns

ERENDEX

Module: APLPCOEX

Called By: VSPC service request and
internal auxiliary processor routines

Description: Writes error messages to
terminal and VSPC online log; ends

~: ERTIMDAT

Exit: Returns to VSPC (Error)

ERHSGRTN

Module: APlPSERR

Called-1v: All VSPC service request
handling routines

licensed·Material--Property of IBM
Section 3. Program Organization 149

Description: Writes error message to
VSPC online log.

Exit: Returns

ERSAVEAR

Module: APLPCOEX

Called By: All VSPC service request
routines

Description: Writes error messages to
terminal and VSPC online log and ends
execution, when save area block is
full.

Calls: ERTIMDAT

Exit: Returns to VSPC (Error)

ERTIMDAT

Module: APLPSERR

Calle~: PCSYSER, APLPCEHT,
ERSAVEAR, ERENDEX

Description: Places time and date in
VSPC executor work area.

Exit: Returns

FREESTOR

Module: APLPAPGD

Called By: GDDMCRET, GDDMRCTL,
GDDMSCTL, GDDMSDAT

Description: Frees storage blocks
allocated for buffers by the VSPC
version of AP 126.

Calls: Macros APLPEHTR, ASUSRQ,
APLPAPER, and APLPEXIT

Exit: Returns; ERSAVEAR (Error)

FSM!lUZZ

Module: APlPAPFS

Called By: APLPAPPR

Description: For FSM internal
auxiliary processor (VSPC), notes
user request to sound the ,audible
alarm at the display termfnal at the
next display screen read or write
request.

Exit: Returns

Licensed Material--Property of IBM
~50 VS APL Program Logic

FSMFORMT

Module: APLPAPFS

Called By: APlPAPPR

Description: Validity checks user's
FSM field definitions and builds
FSMFLD entries in FSM auxiliary
processor work area for FSM internal
auxiliary processor (VSPC).

Calls: FSMSUBl, ERMSGRTH, FSMSUB3

~: Returns; ERSAVEAR (Error),
ERENDEX (Error)

FSI1GET

Module: APlPAPFS

Called By: APLPAPPR

Description: For FSM internal
auxiliary processor (VSPC), processes
user request for data read from
display screen.

,£:alls f ERMSGRTH" FSMSUBl, FSMSUB3

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

FSMHCOPY

M6dule: APLPAPFS

Called By: APlPAPPR

pescription: For FSM internal
auxiliary processor (VSPC), processes
user request to make a hard copy of
the current display screen.

Calls: FSMSUB1, ERMSGRTH

~xi~: Returns; ERSAVEAR (Error),
EREHDEX (Error)

FSMMINT

Module: APLPAPFS

Called By: APLPAPPR

Description: For FSM internal
auxiliary processor (VSPC), notes
user request to modify display
intensity of defined display screen
fields.

Call ... : FSMSUB3

Exit: Returns

FSI'II'ITYPE

Module: APLPAPFS

Called By: APLPAPPR

Description: For FSM internal
auxiliary processor (VSPC), notes
user request to modify type of
defined display screen fields.

~: FSMSUB3

Exits: Returns

FSI'IREAD

Module: APLPAPFS

Called By: APLPAPPR

Description: For FSM internal
auxiliary processor (VSPC), formats
display screen if necessary, reads
from display screen, and returns
description of user's input.

~: FSMSUBl, FSMSUB2, ERMSGRTN

fKi!: Returns; ERSAVEAR (Error),
EREHDEX (Error>

FSHRFORI'I

Module: APLPAPFS

Called By: APLPAPPR

Description: For FSM internal
auxiliary processor CVSPC), processes
user request for the format of the
currently defined FSM fields.

Exit: ~eturns

FSMSETC

Module: APLPAPFS

Called By: APLPAPPR

Description: For FSM internal
auxiliary processor CVSPC), notes
user request to set cursor at a given
locati on on subsequent d.i splay screen
write requests.

£!!..lli: FSMSUB3

~: Returns

FSMSUBI

Module: APLPAPFS

Called By: FSMFORMT, FSMREAD, FSMGET,
FSMHCOPY .

Description: Allocates additional
storage from user's VSPC workspace
quota for FSM internal auxiliary
processor (VSPC).

Call s: ERMSGRTH

Exit: Returns; ERSAVEAR CError),
ERENDEX (Error)

FSHSUB2

Module: APLPAPFS

Called By: FSMWRITE, FSMREAD

Description: Builds VSPC display
screen service request to define
display screen fields and to write
data to display screen.

~: FSMSUB1, ERMSGRTN

Exit: Returns; ERSAVEAR (Error),
EREHDEX (Error)

FSMSUB3

Module: APLPAPFS

Called By: FSMFORMT, FSMWRITE,
FSMGET, FSMMTYPE, FSMMIHT, FSMSETC,
APLPAPPR, GDDMRCTL

Description: Converts floating point
to integer, and flags negative
values.

.tlU.!: Returns

FSMWRITE

Module: APLPAPFS

Called By: APLPAPPR

Description: For FSM internal
auxiliary processor (VSPC), formats
display screen j"f necessary and
writes to display screen.

~: FSMSUB2, ERMSGRTN, FSMSUB3

~: Returns; ERSAVEAR (Error),
ERENDEX (Error)

GDDMCRET

Module: APLPAPGB

Called By: APLPAPRT

Licensed Material--Property of IBM
Section 3. Program Organization 151

Description: VSPC executor routine
used to perform cleanup when an AP
126 CTl variable is retracted.

Calls: FREEST OR

Exit: Returns; ERSAVEAR (Error)

GDDI1RCTL

Module: APlPAPGC

Called By: APLPAPPR

Dftscription: Main entry point to the
GDDM auxiliary pr~cessor for VSPC.
User requests are interpreted,
processed, and passed to GDDM. For
more information, see description of
entry point APL126, which has similar
logic.

Calls: APlP126T. FREESTOR, FSMSUB3,
GDDXINIT, GETSTOR Macro APlPAPSR

Exit: Returns; ERSAVEAR CError)

GDDI1SCTL

Module: APlPAPGB

Called By: APlPAPPR

Description: Entry point used to
specify the c.ontrol variables for the
previous AP 126 request by moving it
to the user's workspace.

Calls: FREESTOR

Exit: Returns; ERSAVEAR (Error)

GDDI1SDAT

Module: APlPAPGB

Called~: APlPAPPR

Description: Entry point for VSPC AP
126 to specify OAT variable by moving
character data to the user's
workspace.

Call~: FREESTOR·

Exit: Returns; ERSAVEAR (Error)

GDDttSOFf.

Module: APlPAPGB

Called By: APLPAPSF, APLPAPRT

licensed Material--Property of IBM
152 VS APl Program logi c

Description: Terminates GDDM after
last path is retracted or during SSM
sign-off.

Calls: ERMSGRTH. Macro ASUSRQ

Exit: Returns; ERSAVEAR (Error),
ERENDEX (Error)

GDDX

Module: APlPAPGD

Called By: GDDMRCTl

Description: Issues the GDDM request
for GDDM and GDDX operations in a
VSPC environment.

~: ERMSGRTH. Macro ASUSRQ

Exit: Returns; ERSAVEAR (Error),
ERENDEX CError)

GDDXINIT

Module: APlPAPGD

Called By: GDDMRCTl

Description: Initializes the GDDX
path for GDDM and GDDX operations in
a VSPC environment.

Calls: ERMSGRTH. Macros ASUSRQ,
APlPAPER, and APlEXIT

Exit: Returns; ERSAVEAR (Error),
EREHDEX (Error)

GETSTOR

Module: APlPAPGD

Called~: GDDMRCTl

Descriptign: Allocates storage blocks
required for buffers by the VSPC
version of AP 126.

Calls: ERMSGRTH. Macro ASUSRQ

~: Returns; ERSAVEAR (Error),
EREHDEX (Error)

IABt~tt

Module: APlIATRH

~!lJL~: lEDYB, IACAl370, lAlPROD,
IAREDU

Des~tion: Calculates generalized
combinations using floating-point
arguments.

J

Calls: IAFACT

Exit: Returns; IEABEND (Error)

IACALl70

Module: APLIEXFR

C~lled By: Microcode

Dpscription: Provides a table of
one-word branches; each corresponds
to one service; passes control to
routines to process service or call
appropriate appendage routine.

Ca~: IATIDY, IAFLCL. IAFACTRL,
IAROLL. IAIROLL, IAPOW, IALOG,
IACIRClE, IARESIDU, IABNM, IADEAl,
IAQUADS, IAQUADSAi IAQDSPEC,
IASHRPST, IASHADO, IAEHCODE,
IADECODE, IAGRADE. IATKDP. IAREDU,
IASCAN, IAIPROD, IADYB, IAMDOM,
IADDOM, IAMFORM, IADFORM, IAMSHARE,
IADSHARE, IAEXECTE, IAROTA, IAMTRAH,
IADTRAH, IACOMMA, IACMX, IESTOSTK,
IElDSTK, IEINDB

Exit: Returns; IEABEND (Error)

lACHK

Modula: APLIACHK

Called ~: IASCOPY

Description: Verifies that data
passed to the interpreter via the
shared storage manager is correct.

Exit: Returns

IACIRCLE·

Module: APLIACIR

Calle~: IEDYB, IAIPROD, IAREDU.
IACAL370

Description: Computes trigonometric
functions (dyadic circle).

Calls: IALOGR, IAEXPR, IASQRT

Exit: Returns; IEABEHD (Error)

IACMX

Module: APlIECMX

Callp-d By: IACAL370

Description: Provides access to
compress and· expand routines for
microcode.

w..u: IECMEX

Exit: Returns; IEABEND (Error)

IACOMMA

Module: APLIERHO

Called By: IACAL370

Description: Provides access to
laminate and catenate routines for
microcode.

Ca 11 s : I ECOMMA

Exit: Returns; IEABEND (Error)

IADDOM

Module: APLIADOM

Called By: IEDYAD, IACAl370

Qgscription: Performs matrix
division.

Calls: IESFIND. IESGINIT, IESGETH.
IASQRT

Exit: Returns

IADEAl

Module: APLIATRH

Called By: IEDYB, IACAL370

Description: Calculates a dyadic
random value.

C<lll.,:i: IESFIND, IESGINIT

Exit: Returns; IEABEND (Error)

IADECODE

Module: APLIADEC

~~lle~: IEDYAD. IACAL370

Description: Performs decode
operation .

. ~~: IESFIND, IESGINIT, IESGETN,
IESFREE, IESGETV, IAPLFUN

Exit: Returns; IEABEND (Error)

Licensed Material--Property of IBM
Section 3. Program Organization 153

IADFORI1

Module: APLIAFOR

Called By: IEDYAD. IACAL370

Description: Performs dyadic format
operation.

Calls: IAGFMT2, IATOBCD2. IESFIND,
IESFREE, IESGETN, IESGINIT

Exit: Returns; IEABEND (Error)

IADSHARE

Module: APLIATRN

C81led By: IACAL370, IEDYAD

Description: Processes dyadic system
functions; if the function deals with
shared variables, the appropriate
routine in APLIASHF is called,
otherwise the pertinent routine in
APLIAQFH is called~

Calls: IAQSVO. IAQSVQ. IAQSVC. IAQNL

Exit: Returns; IEABEND (Error)

IADTRAN

Module: APLIATSP

Cailed By: IEDYAD, IACAL370

Description: Performs dyadic
transpose operation.

Calls: IESFIND. IESGIHIT. IESGETN.
IESFREE

fxii: ~eturns; IEABEND

IADYB

Module: APLIEFCH

Called By: IACAL370

Description: Provides access to outer
product routine for microcode.

Calls: IEDYB

~: Returns; IEABEND (Error)

IAENCODE

Module: APLIAENC

Called By:. IEDYAD, IACAl370

Licensed Material--Property of IBM
154 . VS APL Program Logi c

Description: Performs encode
operation.

Calls: IESFIND, IESGINIT. IAPlFUN.
IESGETH. IESGETV. IARESIDU

Exit: Returns; IEABEHD (E.rror)

IAEXECTE

Modul~: APLIATRN

Called~: IACAL370, IEMONAD

Description: Executes the execute
primitive operation.

Calls: ITEMPFUN. IATIDY. IESFREE

Exit: Returns; IEABEHD (Error)

IAEXNAHE

Module: APLIATRN

Called By: IENAME

Description: Extends the address
table in the operation stack.

Exit: Returns

IAEXPR

Module: APlIATRS

~alled By: IACIRCLE. IAPOW

Dqscription: Calculates the value of
E raised to the specified power.

f~l!: Returns; IEABEND (Error)

IAEXSTCK

Module: APlIATRN

~led By: IESCANG. IEFUNN. IESTOSTK,
IEXARCH, ITEXECUT

Description: Extends the operation
stack.

Exit: Returns

IAFACT

Module: APlIATRS

Called By: IABNM. IAFACTRl

J

Description: Computes the factorial
of the indicated argument.

Exit: Returns; IEABEND (Error)

IAFACTRL

Module: APlIATRN

Called B~: IEMOHAD, IACAl370

Description: Calculates the factorial
of a floating-point argument.

Calls: IAFACT

Exit: RetUrns

IAFCH~IAM

Module: APlIANAM

Called B~: IAQCR, IAQHC, IAQEX,
IAQSVR, IAQSVC, IAQSVO

Description: Returns the internal
name that is indicated by the
specified row of the character item
identified in WSMRGETV.

Calls: IATIDY, ITSTSRCH

Exit: Returns

IAFl.CL

Module: APlIATRH

Called B~: IEMOHAD, IACAL370

Description: Calculates the value of
the floor or ceiling of a
floating-point argument.

Exit: Returns; IEABEHD (Error)

IAGFHT

Module: APLIAGFM

Called B~: IAGOUT, IAMFORM

Description: Determines ~ata type of
a given variable and returns the
output format field width according
to the type.

~: IAlOGR, IAT08CD

~: Returns

IAGFMT2

Module: APLIAGFM.

Cnlled B~: IADFORM

~?~cription: Determines data type of
a 9 i van va r i abl e and scan s ever'y n,t!:!
element (n is user specified) for its
sign and the maximum Magnitude
information according to the data
type.

Calls: IAlOGR, IATOBCD

Exit: Returns

IAGOUT

Module: APLIAGOU

Called B~: IAQ05PEC, ITEXECUT

Des~~i~: Converts elements of a
variable to Z-code representation in
WSMBUFF for terminal output; issues
YYTYO service request.

Calls: IAGFMT, lATOBeD, APLFXIIM

Exit: Returns; ITSYSERR (Error)

IAGRADE

Module: APlIAGRD

Call~~: IEMOHAD, IACAl370

Description: Performs grade-up and
grade-down operations.

Calla: IESFIHD, IESGINIT, IESGETH,
IESFREE

Exit: Returns; IEABEHD (Error)

IAHTSPEC

Module: APlIASYV

CalIJLg~~: IASYSPEC, IAUHSHAD,
IASYSPST

Description: Validates specified tab
settings; sends valid ~ettings or
null settings to executor.

Ca~~: IESGIHIT, IESGETH. APlFXIIM,
IARTOI

Exit: Returns

Licensed Material--Property of IBM
Section 3. Program Organization 155

IAIPROD

Module: APLIAPRD

C~lled By: IACAl370, IEDYAD

Description: Performs the inner
product (m~trix product) operation
with the following combinations of
arguments: vector/array,
array/vector, array/array.

C('\l!s:IESFIHD, IESFREE, IARESIDU,
IABNI1, IAPOW, IAlOG, IACIRCLE

Exit: Returns; IEABEHD (Error)

IAIROLL

M~dule: APLIATRH

Call~d By: IEMOHAD, IACAL370, IAROLL

D~~cription: Calculates a monadic
random from an integer argument.

Exit: Returns; IEABEHD (Error)

IALor;

M~dule: APLIATRN

~c'IJJ:>.JLfu!: IEDYB, IACAL370, IAIPROD,
IAREDU

n:~scription: Calculates the logarithm
of a floating-point argument.

Calls: IALOGR

Exit: Returns

IALOGR

Module: APLIATRS

~nll~~~: IACIRCLE, IAPOW, IALOG,
IAGF~1T, IAGF~1T2

De5cription: Calculates the value of
the natural logarithm of the
~rgument.

Exit: Returns; IEABEND (Error)

IANDOM

Module: APLIADOM

C~lled B~: IEMOHAD, IACAL370

Description: Performs matrix
inversion operation.

Licensed Material--Property of IBM
156 VS APL Program Logic

Calls: IESFIHD, IESGETH, IESGINIT,
IASQRT

Exit: Returns

IAHFORM

Module: APLIAFOR

Called By: IEMOHAD, IACAL370

Description: Performs monadic format
operation.

C~lls: IAGFMT, IATOBCD, IESFIHD

Exit: Returns; IEABEHD (Error)

IAHSHARE

Module: APLIATRN

Called By: IACAL370, IEMOHAD

Description: Processes monadic system
functions; if the function deals with
shared variables, the appropriate
routine in APLIASHF is called,
otherwise the appropriate routine in
APLIAQFH is called.

Calls: IAQSVO, IAQSVC, IAQSVR, IAQFX,
IAQSVQ~ IAQCR, IAQEX, IAQDL, IAQHL,
IAQHC

Exit: Returns; IEABEND (Error)

IAHTRAN

Module: APlIATSP

Called By: IEMOHAD, IACAL370

Description: Performs monadic
transpose operation.

Calls: IE5FIND, IESGINIT, IESGETH,
IESFREE

Exit: Returns; IEABEND

IAPLFUH

Module: APl!ATRH

Called By: IASCAH, IADECODE, IAEHCODE

Description: Finds the internal name
for internal embedded VS APL
functions.

Ca 11 s: I ESHAME

Exit: Returns; IEABEND, ITSYSERR'
(Error)

J

IAPOW

Module: APlIATRN

Call~~: IEDYB. IACAl370. IAIPROD,
IAREDU

Description: Performs exponentiation
for a floating-point argument.

C~lls: IAEXPR. IAlOGR. IASQRT

Exit: Returns; IEABEND (Error)

IAQCR

Module: APLIAQFN

Called By: IAMSHARE

Description; Produces the canonical
form of a function.

Calls: IAVAlNAM, IAFCHNAM. IESFIND,
ITPRlINE. IESFREE

sxit: Returns; IEABEND, ITSYSERR
(Error)

IAQDL

Module: APlIAQFN

Called By: IAMSHARE

Description: Delays the proc~ssing of
a function for a specified interval;
issues YYDElAY service request.

Calls: IESGINIT, IESFIND, APLFXIIM

Exit: Returns; IEABEND (Error)

IAQDSPEC

Module: APLIATRN

Called By: IACAl370. IESCANG

Description: Processes the following
kinds of output: quad. quad prime;
shared variable specifications, ~nd
system variable specifications.

Call~: IAGOUT, IASHSPEC, ,IASYSPEC

Exit: Returns; IEABENP (Errcr)

IAQEX

Module: APlIAQFH

Called By: IAMSHARE

D~scription: Performs the Quad-EX
function; that is, it erases the
local value of names.

C~lls: IAVAL~AM, IAFCHNAM, ITDELETE,
TISFIHD

Exi~: Returns; IEABEND (Error)

IAQFX

Mod~l~: APlIAQFN

Called By: IAMSHARE

Dp~9~pt'io~: Establishes a function
definition from the function's
canonical form.

~f}D_!2: ITLINEO, ITOKENIZ. ITCLOSET,
IESFIND, ITDElETE, LHIDY

sxit: Returns; IEABEND, ITSYSERR
(Error)

IAQNC

Module: APlIAQFN

Called~: IAMSHARE

DescriptiQ..!l: Classifies the currC!nt
t~/~'es of name.

C<llls: IAVAUI"',M, IAFCHNAM, IESFIND

Exit: R~turns; IEABE~ID (Error)

IMNL

t1odUH: APLI AQFII

C~_~~~v: IAMSHARE, IADSHARE

D~~LJEjlio~: Performs the quad-NL
system function; th~t is, returns a
ch~ract~r m~trix of variable n~~~s.

CaUs: IESGIN:::T, IESGETH, lESFIND

Ex; t: Returns; ! EABPW (Error)

IAQSVC

Modul~: APLIASHF

C~l~~: IAMSHARE, IADSHARE

D(>scription: Executes both the
mon~dic and dyadic Quad-SVC
functions.

££ll~: APLFXIIM, IAVAlHAM, IAFCHNAM,
IESFIND, IESGINIT. IESGETN

U censed Mater i aI-Property of IBM
Section 3. Progr~m Organization 157

Exit: Returns; IEABEND. ITSYSERR
(Error)

IAQSVO

Module: APLIASHF

Callp.d By: IAMSHARE. IADSHARE

Dp.scription: Executes both the
monadic and dyadic quad-SVO
functions.

CallA: IESGETN. APLFXIIM, IAVALHAM.
IAFCHNAM, IASVON, IASFIND, IESGINIT.
IESFREE. IESGETV, IESFIND, IARTRACT

fxit: Returns; IEABEND, ITSYSERR
(Error)

IAQSVQ

Modulp.: APlIASHF

Called By: IAMSHARE, IADSHARE

Description: Executes both the
monadic and dyadic quad-SVQ
functions.

~alls: APLFXIIM, IASVON, IATIDY,
!ESGINIT. IESGETN, IESFIHD, JESFREE

.Exit: Returns; IEABEND. ITSYSERR
(Error)

IAQSVR

Module: APLIASHF

Called By: IAMSHARE

~escriPtion: Executes the monadic
quad-SVR function.

Calls: IAVAlHAM, IAFCHNAM, IASCOPY,
IARTRACT, IESFIHD

Exit: Returns; IEABEND (Error)

IAQUADS

Module: APlIATRH

Called By: IACAl370. IESCANG

Dpscription: Processes the following
kinds of input: quad, quad prime;
shared variable reference, and system
variable reference.

Calls: IASCOPY, IASYSREF, IESFIHD,
ITIHPUT

licensed Material--Property of IBM
158 VS APl Program Logi c

fxi1: Returns; IEABEND, ITSYSERR
(Error)

IAQUADSA

Module: APlIATRN

Called By: IACAl370, IESCAHG

Description: References shared or
system variables for subscripted
specification.

Calls: IASCOPY. IASYSREF

Exit: Returns; IEABEHD (Error)

IAREDU

Module: APlIARED

Called By: IESCAHG, IACAL370

Description: Performs reduction
operation.

gA1l2: IAPOW, IARESIDU, IABNM, IALOG,
IACIRClE, IESFIND, IESGETN, IESGINIT,
IESFREE. IESGETV

fxi!: Returns; IEABEND (Error)

IARESIDU

Modulg: APLIATRN

Call~~: IEDYB, IAREDU, IAIPROD,
IACAL370, IAEHCODE

~cription: Calculates residue for
floating-point arguments.

Exi t: Returns

IAREVARY

~odule: APLIAROT

Callp.d By: IEMONAD

Description: Handles reversal of
arrays by either performing the
operation or by returning with a
request for subscripting.

Calls: IESFIHD, IESGIHIT, IESFREE,
IESGETH

Exit: Returns; IEABEND, ITSYSERR
(Error)

IAROLL

Module: APlIATRN

Called By: IEMONAD# IACAl370

Description: Calculates monadic
random value from a floating-point
argument.

~: IAIROll

Exit: Returns; IEABEND (Error)

IAROTA

Module: APLIAROT

CaiiAd By: IEDYAD# IACAl370

DAscription: Handles all cas@~ Qf
rotation of variables by eitha~
performing the operation or ~y
returning with a request for
subscripting.

Ca~: IESFIND# IESGINIT# IEIFREE.
IESGETN

,&xit: Returns; IEABEHD# ITSYSERR
(Error)

IARTOI

Module: APlIASYV

Cal~9~: IASYSPEC. IAHTSPEC,
IAUNSHAD

Description: Converts real v~lue to
integer.

W..!: Returns

IARTRACT

Module: APlIASHV

~~~: IAQSVR. IASHRPST~ lAQSVO. 
ITDElETE 

Description: Retracts or "y~shares" a 
shared variable; issues YYiRET 
service request. 

Calls: APlFXIIM, IAUNSHR 

Exit: Returns; ITSYSERR (error) 

IASCAN 

Module: APlIASCN 

Called By: IESCANG. IACAL~10 

Description: Performs scan operation. 

~: IAPlFUN. IESFIND. IESFREE. 
IESGINIT, IESGETN 

Exit: Returns; IEABEND (Error) 

IASCOPY 

Mo~Y1-~: APlIASHV 

Called By: IAQSVR, IAQUADS. IAQUADSA. 
ITSHV 

Description: Ref~rences a shared 
variable by issuing YYSREF service 
request. 

Call~: APlFXIIM, IACHK. IESFIND. 
IESFREE. IATIDY. IESNAME. IASFIND 

Exit: Returns; ITSYSERR (Error) 

IASFItID 

Module: APlIAHA~ 

~~~~: IASYSPEC, IASYSREF. 
IASHSPEC. IAQSVO, IASCOPY

Dp.scription: Creates a named
temporary copy of a value described
by a stack entry argument.

Calls: IESNAME. IESFIHD. IESFREE

W..!: Returns

IASHADO

Module: APlIASYV

~led By: IEFUHN, IACAl370

Description: Sends null tab settings
to executor when quad-HT is
localized.

Call..ll: APl FXIIM

Exit: Returns

IASf.lRPST

Module: APLIATRN

Called By: IACAL370. IEUNFN. IEINDD

Dp.~cription: Performs one of the
following actions: complete shared
vari~ble SUbscripted sp~cification.
completes system variable subscripted
specification. retracts and unsharAs
shared variable locals. or unshadows
system variable local to a defined

licensed Material---Property of IBM
Section 3. Program Organization 159

function.

Calls: IASYSPST, IAUNSHAD, IARTRACT,
IASHSPEC

Exit: Returns

IASHSPEC

Module: APlIASHV

Called By: IAQDSPEC, IASHRPST

Description: Specifies a shared
variable by issuing YYSPEC service
request.

Calls: APlFXIIM, IASFIND, IESFREE

Exit: Returns; IEABEND, ITSYSERR
(Error)

IASQRT

Module: APlIATRS

~§!l,,~: IACIRClE, IAPOW, IAMDOM,
IADDOM

Description: Calculates the square
root of an argument.

Exit: Returns; IEABEND (Error)

IASVOFF

Module: APlIASHV

Called By: ITCMOFF, APLINIT

Description: Issues a YYSOFF service
request to sign off from the shared
variabl~ processor.

Calls: APLFXIIM

Exit: Returns; ITSYSERR (Error)

IASVON

~odule: APLIASHV

Call~: IAQSVO, IAQSVQ

Descri~qn: Issues a YYSON service
request to access the shared variable
processor. .

Calls: APLFXIIM

Exit: Returns; ITSYSERR (Error)

Licensed Material--Property of IBM
160 VS APL Program Logi c

IASYSPEC

Module: APlIASYV

Called By: IAQDSPEC

Description: Assigns a new value to a
system variable.

~: IAHTSPEC, IASFIND, IARTOI,
APlFXIIM, IESGETV, IESGINIT, ESFIND,
IESFREE

Exit: Returns; IEABEND (Error)

IASYSPST

Module: APLIASYV

Called By: IASHRPST

Description: Completes subscripted
specification of a system variable.

Calls: IESGETV, IAHTSPEC, IESFREE

gu: Returns

IASYSREF

Module: APlIASYV

Called By: IAQUADS, IAQUADSA

Description: Processes system
variable references; obtains current
value of system variable.

Calls: APlFXIIM, IASFIND, IATIDY,
IESFIND, ITTIMSUB, ITFNLNO, USASH

Exi!: Returns; IEABEND (Error)

IATABREF

Module: APLIASYV

Called By: APlI!NIT

Description: Gets current tab
settings from executor; assigns value
to quad-HT.

Calls: IESFREE, IESFIND, APlFXIIM

Exit: Returns

IATIDY

Module: APlIATRN

~§l~~: IEFIND, IACAl370,
IAEXECTE, IAFCHHAM, IAQFX, IAQSVQ,
IASCOPY, IASYSREF, ITCMGROU,

J

J

J

ITCMSYMB, ITSAVWS, ITCOPIH, ITIHPUT

Description: Collects active value
blocks in the low address end of free
space to maximize the size of the
unallocated block in free space; it
adjusts the address table entries to
reflect the change.

Exit: Returns; ITSYSERR (Error)

IATKDP

Module: APlIATAK

Calle~: IETKDP, IACAl370

Description: Handles cases of take
~nd drop where the left argument is
either a vector of zero, or a vector
containing more than one element.

~: IESGINIT, IESGETN~ IESFREE,
IESFIND

Exit: Returns; IEABHID (Error)

IATO!CD

!'1odule: 'APLIATBC

~2llR~: IAGOUT, IAMFORM, ITCMQUOT,
ITCMWSSI, ITPRWSID, ITCMSTAC,
ITCMSYMB, IAGFMT, ITEXECUT, ITlIBMSG,
ITPRlINE, ITPRNUM, IAGFMT2

Description: Determines internal type
of a given data element; converts the
element to Z-codes according to its
format and data type.

Exit: Returns

IATOBCD2

Modul~: APlIATBC

Called Bv: IADFORM

Description: Accepts a floating-point
value as input and converts it to
decimal representation according t~ a
given format; determines the number .
of significant digits in the decimal
exponent and returns this value to
the calling routine.

Exit: Returns

IAUNSHAD

Module: APLIASYV

Called By: IASHRPST

Description: Un shadows a system
variable; discards local value;
restores shadowed value.

Calls: APlFXIIM, IESFREE, IESGETV,
IAHTSPEC. IARTOI

Exit: Returns

I AUt'.SHR

Module: APlIASHV

Called By: IARTRACT, ITSHV

Descriptiou: Removes the shared
status from variable.

Calls: IESFREE

Exit: Returns

IAVALNAH

Module: APLIANAM

Called By: IAQHC, IAQEX, IAQCR,
IAQSVO, IAQSVR, IAQSVC

Description: Validates the right
argument of the following quad
functions: CR, EX, NC, SVC, SVR, SVO.

E)(it: Returns

IEABEHD

Module: APLIEXAR

Calle~: Exarch and appendage
routines

Description: Processes abnormal
termination or request for translator
service.

Exit: IEXlT

IECHIX

Module: APlIEMND

Called By: IECMEX, IEMONAD, IESCANG

pescription: Checks index of indexed
operator.

Exit: Returns; IEABEHD (Error)

IECMEX

Module: APlIECMX

Licensed Material--Property of IBM
Section 3. Program OrganiZation 161

Called By: IACMX, rEDYAD

Description: Carries out compr~ss or
expand primiti~e.

£al~: IEGINITL. IEGETNI. IEGTSPAC,
IECHIX

Exit: IESCANG. IEABEND (Error)

I ECOMMA

Module: APLIERHO

Callp.d~: IACOMMA, IEDYAD

Description: Performs the catenate
Dnd l~minate operations.

Calls: IEGTSPAC. IECOPY

Exit: IESCANG. IEABEND (Error)

I ECOHVR

felle~: IEGINITI. IEGINITL,
IEGETNI, IEGETNl, IESCANG

De~cription: Converts a real value to
an int~ger.

Exit: Returns; IEABEND (Error)

IECOPY

~od~JL~: APlIERHO

~alled By: lECOMMA, IEINDD, IERSHP,
IETKDP

Descripti~n: Co~ies elements from one
free space entry to another with data
conversion if necessary.

Calls: IEGIIHTR, IEGETNR. IEGETNI

Exit: Returns

lEDATTN

M~dule: APLIEFXR

Called By: Microcode

Description: Handles double attention
or quantum end discovered by
microcode.

Ex; t: IEABEND

licensed Material--Property of IBM
162 VS APL Program logi c

IEDYAD

~dllle: APlIESCA

Called By: IEMOHAD. lESCANG

Description: Sets up arguments for
dyadic operations. Calls or exits to
routine that performs them.

Ca)~,: lEGETV, lAENCODE, lAROTA.
IADSHARE, IADTRAN, IADDOM, IADFORM.
IADECODE, IAlPROD

fxit: IEDYB, IERSHP, IETKDP,
IEEPSIOT. IECMEX, IECOMMA, l~INDB,
IEABEND (Error)

IEDYB

Module: APlIEFCH

Called By: IEDYAD, IADYB

Description: Performs dyadic scalar
Dnd outer product operations.

~~ls: IEGETV, IEGINITI, IEGINITL,
IEGINITR, IEGETNI. IEGETNL, IEGETNR,
IAPOW, IACIRClE, IEGTSPAC, IESPACST,
lEFlHD, IEFREE, IADEAl, IARESlDU,
IABNM, lAlOG

~: IESCAHG, IEABEHD (Error)

I£EP510T

!12.9ule: APLIEPSI

C~lled By: IEDYAD. IADYB

Description: Carries out membership
and "index of" operations.

Calls: IESPACST, IEGINITR, IEGETNR

Exit: IESCANG. IEABEND (Error)

IEFIND

Module: APlIESPA

~alled By: IEGTSPAC. IESFIND. IEDYB,
IEINDD. IEMONAD. IESCAHG. IESYNN

Description: Allocates a block of
free space and the next available
internal name. Input is length in
bytes.

~: IENAME. IATIDY

Exit: Returns; IEABEHD (Error)

J

J

J

IEFREE

Module: APLIESPA

Called By: IESFREE, IEDYB, IEGOGOMH,
IEGOGOSC, IEINDD, IEMOHAD, IESCANG,
I EUNFH

Destription: Frees an object. Frees
internal name if temporary, and block
of free space if remote.

fuU.1: Returns

IEFUNH

Module: APLIEFNM

Called By: IESCAHG

Description: Builds a function call
block on the operation stack and
prepares to execute a function.

Calls: IEGETV, IESYHN, IAEXSTCK,
IASHADO

Exit: IESCANG. IEABEND (Error)

IEGETNI

Module: APLIEFCH

Called By: IESGETN. IECMEX. IECOPY,
IEDY8, IEINDD, IEMOHAD. IERSHP

Description: Gets the next element of
a multi-element argument, or the only
element of a single-element argument
and returns the integer value for
that argument.

Call s: IECONVR

Exit: Returns; IEABEHD (Error)

IEGETNL

Module: APLIEFCH

Called By: IESGETN, IEDY8

Description: Gets the next element of
a multi-element argument, or the only
element of e single-element argument
and returns the integer value for
that argument.

~: IECONVR

Exit: Returns; IEABEND (Error)

IEGETNR

Module: APlIEFCH

~alled By: IESGETN, IECOPY, IEDYB,
IEEPSIOT, IEMONAD

Description: Gets the next element of
a multi-element argument, or the only
element of a single-element argument
and returns the integer value for
that argument.

Exit: Returns

IEGETV

Module: APLIEFCH

~ed By: IESGETV. IEDYAD. IEDY8.
IEFUHH, IEINDD, IEMOHAD, IERSHP,
IESCANG

Description: Sets up argument block
for fetching ~f elements.

~xit: Returns; IEABEND (Error)

IEGINITI

Module: APLIEFCH

~~: IESGIHIT, IEDYB, IEGOGOMH.
IEIHDD,IEMOt~AD, IERSHP, IETKDP

Description: Gets the first element
of an argument, and returns the
integer value for that element.

~: IECONVR

~: Returns; IEABEHD (Error)

IEGINITL

Module: APLIEFCH

Called By: IESGINIT, IECMEX, IEDYB

~scrietion: Gets the first element
of an argument. and returns the
logical value for that argument.

Calls: IECOHVR

~: Returns; IEABEHD (Error)

IEGIHITR

~odule: APLIEFCH

Called By: IESGIHIT. IECOPY. IEDYB.
IEEPSIOT. IEINDD. IEMOHAD

Licensed Material--Property of IBM
Section 3. Program Organization 163

De5cription: Gets the first element
of an argument. and returns the real
value for that element.

Exit: Returns; IEABEND (Error)

IEGOGOMN

Module: APLIEFNM

Call~: IEMONAD

Description: Processes a normal
branch operation.

Calls: IEFREE. IEGINITI

,fxit: IESCANG, IEUNFN, IEXIT. IEABEND
(Error)

IEGOGOSC

Modul~: APLIEFNM

CaIJLr.~: IESCANG

~escrie1l~: Processes fast branch
operation.

CeLli..!: I EFREE

f~il: IESCANG. IEUNFN, IEXIT, IEABEND
(Error)

IEGTSPAC

Modulp.: APLIESPA

~sll~Q...Jt~: IESPACST, IECMEX, IECOMMA,
IEDYB, IEINDD, IEMONAD, IERSHP,
IETKDP

Description: Allocates a block of
free space and the next available
internal name. Input is descriptor,
element count. and rank.

Calls: IEFIND

Exit: Returns; IEABEND (Error)

IEINDB

Modul~: APLIEIDX

Called By: IACAL370. IEDYAD. IEMONAD

Description: Completes the transpose
and rotate operations.

Calls: IEHIDD

Exit: IESCANG. IEABEND (Error)

Licensed Material--Property of IBM
164 VS APL Program Logi c

IEINDD

Module: APLIEIDX

CRlled By: IEINDB, IESCANG

Dp.~cription: Performs subscripted
ref~rence and SUbscripted assignment
type of subscripting.

Calls: IEGETV, IEGINITI. IEGETNI,
IEGINITR, IEFIND. IEGTSPAC, IESPACST,
IEFREE, IECOPY. IASHRPST

Exit: IESCANG, IEABEND (Error)

IELDSTK

Module: APLIEXAR

Called By: IACAL370, JEXARCH

Description: Loads microcode stack
registers from operation stack.

Exit: Returns

IEMONAD

Module: APLIEMND

CaIJL~: IESCANG

Dp.scrietion: Performs some monadic
operations. Calls or exits to
routines that perform other monadic
operations.

Calls: IESPACST, IEGTSPAC, IEFIND,
IESYNN, IECHIX. IENAME. IEFREE,
IEGETV, IEGINITI, IEGIHITR, IEGETNI.
IEGETNR, IAREVARY, IAIROLL, IhROLL,
IAFACTRL, IAFLCL, IAGRADE, IAEXECTE,
IAMTRAN, IANDOM, IAMFORM, IAMSHARE

Exit: IEDYAD (monadic operations done
as dyadic), IEGOGOMH (branch), IEINDB
(reverse. transpose). IESCAHG
(operation completed). IEABEND
(Error)

IEHAME

Module: APLIESPA

CCl.ll.p:.Q.Jh!: IEFIND, IESFIND, IESNAME,
IEMOHAD. IEOHFN. IESCAN

~cription: Finds.the next available
entry in the address table.

Calls: IAEXtiAME

Exit: Returns; IEABEND (Error)

J

J

J

L

IERSHP

Module: APlIERHO

Called By: IEDYAD

Description: Performs the reshape
operation.

~: IEGETV, IEGIHITI, IEGETHI,
IEGTSPAC, IECOPY

Exit: IESCAHG, IEABEND (Error)

IESCANG

Module: APlIESCA

~plled By: IEXARCH, IECMEX, IEINDD,
IEMONAD, IEEPSIOT, IECOMMA, IERSHP,
IETKDP, IEDYB, IEFUNN, IEGOGOMH,
IEGOGOSC, IEUNFH

Description: Basic interpreter
module; receives control when there
is a function statement to be scanned
and executed; scans the statement;
does syntax analysis; selects next
action to be performed; processes
result of an operation; resumes
statement scan.

~§~: IEFIHD, IEFREE, IEGETV,
IECHIX, IECONVR, IESYHN, IEHAME.
IAEXSTCK. IAREDU. IASCAH. IAQUADS,
IAQUADSA. IAQDSPEC

~: IEDYAD (dyadic operations).
IEMONAD (monadic operations), IEINDD
(subscripting), IEFUNN (function
call), IEGOGOSC (branch). IEXIT (end
of input). IEABEHD (Error)

IESFIND.

Module: APlIESPA

Called By: Appendage and translator
routines

Description: Provides access to
IENAME and IEFIND for non-exarch
routi nes ..

~: IENAME. IEFIND

Exit: Returns

IESFREE

ModulE>: APLIESPA

Calle~: Appendage and translator
routines

Description: Provides access to
IEFREE for non-exarch routines.

Calls: IEFREE

.£Js..i.!: Returns

IESGETN

Module: APlIEFCH

Called By: IADECODE,. IA~NCODE.
IASYSPEC. IASYSPST. IAUNSHAD. IAQSVO.
IAREDU

~e5cription: Provides access to
IEGETNI. IEGETNl. and IEGETN for
non-exarch routines.

Calls: IEGETNI, IEGETHl, IEGETNR

Exit: Returns; IEABEHD (Error)

IESGETV

Module: APlIEFCH

Called By: IADECODE, IAENCODE.
IASYSPEC. IASYSPST. IAUHSHAD. IAQSVO,
IAREDU

Description: Provides access to
IEGETV for non-exarch routines.

~: IEGETV

~: Returns; IEABEND (Error)

IESGINIT

Module: APlIEFCH

Called By: Appendage routines

Description: Provides access to
IEGINITI. IEGINITl. and IEGIHITR for
non-exarch routines.

~: IEGINITI. IEGINITl, IEGINITR

~: Returns; IEABEND (Error)

IESNAME

Module: APLIESPA

Called By: IASFIND. IAPlFUN. IASCOPY

Description: Provides access to
IENAME-ror-use of non-exarch
routines.

Calls: IENAME

Licensed Material--Property of IBM
Section 3. Program Organization 165

Exit: Returns

IESPACST

Module: APLIESPA

~~JJ~~~: IEDYS, IEEPSIOT, IEINDD,
I Etl0N.4D

D~scr;pticn: Allocates a block of
free space and the next available
intornal name. Inpu.t is descriptor
and model variable.

~<:.lJI5: IEGTSPAC

Exit: Returns; IEABEND (Error)

IESTOSTK

MO~ULI~: APlIEXAR

C""lled By: IAC.l\l370, IEXAI"CH

Deas.:riptioQ: Stores tnicrocode
register stack items in operation
stack.

ClIlls: IAEXSTCK

Exit: Returns; IEABEND (Error)

IESUHFUN

Moduig: APLIEFNM

~llp.~: ITERRORS

Q~scripticn: Removes function call
block from the operation stack.

Call'S: IEUHFN

Exit: Returns

IESYNN

Modlile: APLIESPA

Called By: IEFUHH, IEMOHAD, IESCAHG

Description: Makes a copy or a
synonym of a variable.

Calls: IEFIHD

Exit: Returns; IEABEHD (Error)

IETKDP

Module: APLIETAK

Licensed Material-Property of IBM
166 1.15 APl Program Logi c

Called By: IEDYAD

Description: Performs take and drop
operations; if the left argument is
greater than one element, or is a
vector of zero elements, IAlKDP is
called.

Ca~ls: IEGINIlI, IEGTSPAC, IECOPY,
IATKDP

Exit: IESCANG, IEABEND (Error)

IEUNFN

Module: APLIEFNM

~~J 1 ecLful: I ESUtlFUN, I EGOGOMN,
IEGOGOSC

~~scription: Removes a function call
block from the operation stack;
restores the workspace to its status
at the time the function was called.

Calls: IEFREE, IENAME, IASHRPST

Exit.! IESCANG, IEABEND (Error)

IEXARCH

Module: APLIEXAR

Called By: ITEXECUT

D~scription: Sets up operation stack
for exarch or microcode, calls one.
If microcode called, handles return
to translator.

~~lls: IAEXSTCK, IESTOSTK, IELDSTK,
Microcode

.~xit: IESCAHG (Exarch), IEXIT (End of
input), IEABEND (Error)

lEXlT

Module: APLIEXAR

Calle~: IESCAHG, IEABEND,
IEGOGOSC, IEGOGOMN, IEXARCH

Description: Returns to translator
when error is found, for services
(print, trace, stop, escape,
attention), or end of operation
stack.

Exit: Returns to ITEXECUT

ITBFTYO

Module: APLITSUB

~alled Bv: ITERRORS, ITFDEDIT,
ITCMSI, ITCMSINL

Description: Prints via YYTYO service
request, the contents of WSMBUFF.

Calls: APLFXIIM

Exit: Returns

ITBLDID

Module: APLITIDS

~9 __ ~: ITSTSRCH. ITBLDQD,
ITSYSCMD

D~scription: Isolates a printn~me
string and determines its length;
those characters beyond the m~ximum
length are ignored.

Exit: Returns

ITBLDQD

Modu 112: APL ITIDS

Called By: ITLINEO. ITOKENIZ.
ITFDNWLN

Des~r;etion: ·Validates a name
beginning with a QUAD. and translates
it to a token.

.kalli: I.TBLDID

Exit: Returns

ITCKALPH

Module: APLITSUB

Called By: ITCMGROU, ITCMERAS

Descrietion: Checks a string of
characters for initial alphabetic.
followed by alphameric.

Exit: Returns

ITCLOSET

Module: APLITFDC

Called By: ITFDCLOS. ITCOPIN, IAQFX,
CVFUNC, CVSHIP, ITFDOPEN

Description: Finds space for a
function object, and returns a
temporary name.

~: IESFIND

Exit: Returns

ITCf1ClEA

Module: APLITCML

C~lled B~: ITSYSCMD

D~5cription: Executes the)CLEAR
conlll1und.

c~: APLFXIIM. ITLtBMSG

E)dt: Returns

ITCMCDNT

Module: APLITCMT

Culled By: ITSYSCMD

Oes9£i£tion: Executes the)CONTINUE
command.

Calls: ITSAVWS. ITCMOFF

Exit: Returns: ITINPIN! (command
ISSUed in quad-input), ITSYSERR
(Error)

ITCMCOPO

Module: APLITCPO

Called By: APLIINIT

Description; Transmits objects from a
copy source workspace to a copy sink
workspace via a YYCOPO service
request.

~: ITPRLIHE, ITSTSRCH, APLFXIIM,
ITUSAG

~: Returns; ITSYSERR (Error)

ITCMCOPY

~ule: APLITCMC

C~lled By: ITSYSCMD

Q~5cription: Initiates and terminates
)eOPY command processing.

Calls: ITCOPIN, ITlIBMSG, APlFXIIM

Exit: Returns: ITSYSERR (Error)

ITCf1DDST

Module: APlITCMS

Licensed Material--Property of IBM
Section 3. Program Organization 167

Called By: ITCMSTAC, ITCMSYMB

Description: Relocates the pointers,
and moves the stack area or symbol
table area around when a change in
size has been indicated.

Calls: ITSQUIRT

Exit: Returns

ITCMDROP

Module: APLITCML

Called By: ITSYSCMD

Dp.scr;pt;on: Executes the)DROP
com::1and.

C~lls: APLFXIIM, ITLIBMSG

Exit: Returns

ITCMERAS

Module: APLITCME

Called By: ITSYSCMD

D~scription: Prepares for execution
of)ERASE command; calls ITDELETE
routine to complete processing.

Call~: ITSTSRCH. ITNAMINI. ITUSAG.
ITSQUIRT, ITDELETE. ITPRINTC. ITLOUT,
IESFREE. APLFXIIM, ITCKALPN

Exit: Returns; ITSYSERR (Error)

ITCMFNS

Module: APLITCMF

Called By: ITSYSCMD

Description: Calls ITCMFVG to print c
)FNS report.

~: ITCMFVG

Exit: Returns

ITCMFVG

Module: APLITCMF

Called By: ITCMFNS, ITCMVARS,
ITCr'lGRPS

Description: Executes the)FNS,
)VARS, and)GRPS commands; it finds,
sorts, and prints the object names.

Licensed Material--Property of IBM
168 VS APL Program Log; c

Calls: ITUSAG, ITXBLNL, ITSQUIRT,
InOUT

Exit: Returns

ITCMGROU

Module: APLITCMG

Called By: ITSYSCMD

Description: Executes the)GROUP
command.

Calls: ITSTSRCH, ITUSAG, IESFIND,
ITLOUT, APlFXIIM, IATIDY. IESFREE,
ITSQUIRT, ITPRINTC, ITCKAlPN

Exit: Returns

ITCMGRP

Module: APLITCMG

Called By: ITSYSCMD

Description: Executes the)GRP
command.

Calls: ITPRINTC, ITUSAG, ITSTSRCH,
ITPRNAME, ITlOUT

Exit: Returns; ITSYSERR (Error)

ITCMGRPS

Module: APLITCMF

Called By: ITSYSCMD

Des~r;ption: Calls ITCMFVG to print a
)GRPS report.

Calls: ITCMFVG

Exit: Returns

ITCMLIB

Module: APLITCMl

Calle~: ITSYSCMD

Description: Executes the)LIB
command.

Calls: APlFXIIM, ITlOUT, ITLIBMSG

Exit: Returns

J

J

J

ITCI1LOAD

Module: APlITCML

Called By: ITSYSCMD. APLIINIT

Descript.ion: Executes the)lOAD
command.

~: APlFXIIM. ITlIBMSG

Exit: Returns

ITCMI1SG

Module: APlITCMT

Called By: ITSYSCMD

Description: Executes the)MSG
commZlnd.

Call s: APl FXIIM

Exit: Returns; ITFORCOF

ITCI10FF

Module:· APliTCMT

~alled By: ITCMCONT. ITSYSCMD

Description: Executes the)OFF
cOl'1mund.

Cnlla: IASVOFF. APlFXIIM. ITlIBMSG

Exit: Returns; ITSYSERR (Error)

ITCt10PR

Module:· APlITCMT

Called Bv: ITSYSCMD

Description: Executes thp)OPR
command.

Calls: APLFXIIM

Exit: Returns; ITFORCOF

ITCHPCOP

Module: APlITCMC

C81Ie~: ITSYSCMD

Des~ription: Initiates and terminates
)PCOPY command processing.

Calls: ITCOPI~. ITllBMSG. APLFXIIM

Exit: Returns; ITSYSERR (Error)

ITCI1QUOT

Module: APLlTCMl

Called By: ITSYSCMD

Dp§cription: Executes the)QUOTA
command.

Call~: lATOBCD. ITlOUT. APlFXIIM

hi t: ;;eturns

ITCHSAVE

Module: APLITCMl

Called By: ITSYSCMD

pescription:Executes the)SAVE
command.

W..1Ja: ITSAVWS

Exit: Returns; ITINPIHI (command
issued in quad-input)

ITCt1SI

Module: APlITCMI

C~lled By: ITSYSCMD

Description: Executes the lSI
command.

Call-!!: ITPRINTC, ITPRNAME. ITPRHUM.
IIXBlHl, ITFNlNO. ITSQUIRT. ITUSASH.
ITBFTYO .

Exit: Returns; ITSYSERR (Error)

ITCt1SINL·

Module: APlITCMI

~ed By: ITSYSCMD

Dp.scr;ption: Executes the)SIHl
coml1land.

Calls: ITPRINTC. ITFNLNO. ITPRHUM.
ITXBLHl, ITPRHAME. ITSQUIRT. ITUSASH,
ITBFTYO

Exi t: Returns; ITSYSERR (Error).

ITCt1STAC

Module: APlITCMS

licensed Material--Property of IBM
Section 3. Program Organization 169

Called By: ITSYSCMD

Description: Executes the)STACK
command.

~: IATOBCD, ITCMDOST, ITLOUT,
ITSQUIRT

au: Returns

ITCr1SYf'tB

Module: 4PLITCMS

Called By: ITSYSCMD

Description: Executes the)SYMBOLS
command.

Calls: ITCMDOST, IATOBCD, ITLOUT,
ITSQUIRT, IATIDY, APLFXIIM

~: Returns; ITSYSERR (Error)

nCr1VARS

Modul e: APL ITCMF

Called By: ITSYSCMD

Description: Calls ITFCMFVG to print
a)VARS report.

Call s: ITCMFVG

.E2U.1: Returns

nCr1"'SID

Module: APLITCML

Called By: ITSYSCMD

Description: Executes the)WSID
command.

Calls: APLFXIIM, ITPRWSID, ITLIBMSG

~: Returns

ITCr1"'SSI

Module: APLITCML

Called By: ITSYSCMD

Description: Executes the)WSSIZE
command.

~: ITLOUT, IATOBCD

.GlU.!: Returns

Licensed Mater; ai-Property of IBM
170 VS APL Program log; c

ITCOPIN

Module: APLITCPI

Called av: ITCMCOPY, ITCMPCOP

Description: Receives data from a
copy source workspace via YYCOPI
service request; defines it in the
active workspace.

Calls: ITSTSRCH, ITUSAG, IESFIND,
ITLINEO, ITCLOSET, ITPRNAME,
ITPRINTC, ITSQUIRT, ITOKENIZ, ITLOUT,
APlFXIIM, IESFREE, ITDElETE. IATIDY

Exit: Returns; ITSYSERR (Error)

ITDELETE

Module: APlITCME

Called By: ITCMERAS, IAQEX, IAQFX,
ITCOPIN

Descripjion: Erases the variable,
function, or group.

Calls: IESFREE, ITUSADF, ITFDKIlL,
IARTRACT

Exit: Returns; ITSYSERR (Error)

ITEMPFUN

Module: APLITFUH

Called By: ITINPUT, IAEXECTE

Dp.scription: Builds a temporary
function in free space for immediate
execution, for quad-input, or for the
primitive function execute.

Calls: ITOKEHIZ, I.ESFIHD

Exit: Returns

ITERRORS

Module: APlITERR

Called By: ITEXECUT, ITSAVWS,
ITIHPUT, ITTYIZ

Description: Handles execution time
errors; cleans up the operation
stack, as required.

~: IESUNFUH, IESFREE, ITFNlHO.
ITPRLINE, ITPRFNlH, ITBFTYO, ITLOUT,
ITXBlNl, ITSQUIRT, APLFXIIM

Exit: Returns, if error in
quad-input; ITIHPIHI, ITSYSERR
(Error>

J

J

J

J

L

IT EXECUT

Module: APLITEX

Called By: ITINPUT

Description: Establishes an
envjronment for the interpreter and
then uses APLCALL to call lEXARCH; it
handles normal or exceptional
ret:urns.

Calls: lTFNLNO, ITFETCH, IESFREE,
lTPRFNLN, lAGOUT. lTPRlNTC. lAEXSTCK,
lTERRORS. lEXARCH, lTSQUlRT, lATOBCD,
ITXBLNL, ITLOUT, APLFXllM

Exjt: Returns; lTSYSERR (Error)

ITFDCLOS

Module: APllTFDC

Called By: ITFDEDIT

Description: Closes a function
definitjon by converting source to
internal text.

Calls: lTlINEO, ITOKENIZ, ITClOSET.
ITUSADF, lESFREE, lTUSAG, ITFDTSOF,
APLFXIlM, lTFDKlLL

Exit: Returns

ITFDCVT

Module! APllTNCV

Called By: lTFDEDlT

Description: Converts function line
numbers to internal form.

Ca 11 s: I TNUMCVT

Exit: Returns

ITFDEDIT

Module: APlITFDE

Called By: ITFDOPEN, ITlNPUT

Description: Processes an input line
entered in function definition mode;
performs editing actions.

Ca~: ITBFTYO, ITUSAG, ITlOUT,
ITXBlNl, lTPRLlNE, ITTYlZ, ITLINEO,
lTFDCLOS, IESFREE, lESFIND, ITFDCVT,
lTPRNUM, ITFDKILl, ITFDNWLH, APLFXIIM

fl£.il: Returns

ITFDKILL

Module: APLITFDC

Call~~: lTFDEDIT, ITDELETE,
ITFDCLOS

Description: Takes the user out of
function definition mode.

~: IESFREE

Exit: Returns

ITFDNWLN

Module: APLlTFDN

Called By: ITFDEDIT

Description: Stores a new
function-statement in free space;
enters names occurring in it in the
symbol table.

Calls: IESFIND, ITSTSRCH, ITBLDQO

Exit: Returns

ITFDOPEN

Modulp:: APLITFDO

Called By: ITlNPUT

Description: Examines a function open
request, and either rejects it or
sets the edit globals to enter
function definition mode.

~~~: lTUSAG, ITLlNEO, lTFDEDIT, 
ITCLOSET, ITFOTSOF, IESFIND 

Exit: Returns 

ITFDTSOF 

Module: APlITFDC 

Called By: ITFDCLOS. ITFDOPEN 

Description: Turns off all trace and 
stop bits in a function that is being 
locked. 

Exit: Returns 

ITFETCH 

Module: APlITFCH 

Called By: ITEXECUT 

Description: Gets an integer value 
from the ravel of an M-entry and 
returns an element count. 

Licensed Meterial--Property of IBM 
Section 3. Program Organization 171 



Exit: Returns 

ITFHLHO 

Module: APLITSUB 

Called By: ITEXECUT, IASYSREF, 
ITCMSI, ITCMSINL, ITERRORS 

Description: Returns a line number 
corresponding to a given offset into 
a function. 

Exit: Returns; ITSYSERR CError) 

ITFORCOF 

Modul~: APLITIHP 

~alled-P-y: ITIHPUT, ITTYIZ, ITCMOPR, 
ITCMt'ISG 

Description: Forces a terminal user 
off VS APL when the executor so 
indicates by issuing a )CONT command. 

Exit: ITSYSCMD 

ITIHWT 

Modul'!: APLITNCV 

Called By: ITSYSCMD 

Descripticn: Converts an integer 
const~nt to internal form. 

CII 11 s: ITNUMCVT 

Exit: Returns 

ITINPINI 

Module: APLITIHP 

~alle~: APLIIHIT, ITCMSAVE, 
ITCMCONT, ITERRORS 

Description: Provide~ an entry point 
to ITINPUT to begin execution of a 
newly loaded workspace or to resume 
execution after an error. 

Exi t: ITINPUT 

ITINPUT 

Module: APLITINP 

Called By: ITINPIHI, IAQUADS 

Licensed Material--Property of IBM 
172 VS APL Program logi c 

Description: Prompts and receives 
terminal input. 

Calls: ITTYIZ, ITSYSCMD, ITFDEDIT, 
IfF1)OPEH, ITEMPFUN, ITEXECUT, 
ITTYERR, ITPRNUM, APLFXIIM, ITLOUT, 
IATIDY 

ITlIBMSG 

ModJ~: APLITCML 

~tl.l.!"!=Ub!: IT CMPCOP. ITCMCOPY, 
ITCtlCLEA, !TeMOROP, !TCMLIS, 
ITCMLOAD, ITSAVWS, ITCMWSID, ITCMOFF, 
APLI INIT 

~~cription: Prints message after 
library service requQst processing. 

C~lls: ITLOUT, APLFXIIM, ITPRWSID, 
IffIHE, IATOBCD 

Ex it: Returns 

ITLINEO 

Module: APLITHDR 

£9_lJ.~~~: ITFDOPEN, ITFDEDIT, 
ITFDCLOS, ITCOPIN, IAQFX, CVSHIP, 
CVFUHC 

O~~£ription: Inspects line zero of a 
function for correct syntax, and then 
constructs the function header 
codestring. 

Calls: ITSTSRCH, ITBlDQD 

Exit: Returns 

ITLOUT 

Module: APlITSUB 

C~llp.d B~: ITCMERAS, ITCMFVG, 
ITCr1GROU, ITCNUB, !TERRORS, 
ITEXECUT, ITFDEDIT, ITCMSTAC, 
ITCMSVMB, ITlIBMSG, ITPRWSID, 
ITCMWSSI, ITCMGRP, ITCMQUOT, ITCOPIN, 
ITINPUT 

Description: Drops trailing blanks 
from data in WSMBUFF; appends a new 
line, and prints the line. 

Cal1~: .APlFXIIM 

.Ex;t: Returns 

ITNAHINI 

Module: APlITCME 

J 

J 

J 



Called B~: ITCMERAS 

Description: Initializes the name 
list printout for "Objects Hot. Found" 
and "Objects Not Copied" me~~ages. 

~: Returns; ITSYSERR (Error) 

ITNUMCVT 

Module: APlITHCV 

Called B~: ITFDCVT, ITOKEHIZ, ITINIHT 

Description: Converts numeric 
constant character strings into 
internal form. 

E,<it: Returns 

ITOKENIZ 

Module: APlITLXS 

Calle~: ITEMPFUN, ITFDClOS, 
ITCOPIH, IAQFX, CVSHIP, CVFUNC 

Description: Scans a string of text 
and converts it to a codestring. 

~: ITNUMCVT, ITSTsRCH, ITBLDQD 

Exit: Returns 

ITPRFNLN 

Module: APlITSUB 

Called By: ITEXECUT, ITERRORS 

Description: Takes the internal n~me 
of a fun.ct i on and an offset into it 
and puts the printname and line 
number in WSMBUFF. 

~: ITPRNAME, ITXBLHL, ITSQUIRT 

Exit: Returns 

ITPRINTC 

Module: APlITSUB 

Called B~: ITCOPIH, ITCMERAS, 
ITCMGROU, ITCMGRP, ITCMSI, ITCMSIHl, 
ITEXECUT, ITPRNAME 

DAscriptio~: Takes a single character 
and catenates it to the current line 
in WSMBUFF. 

~: APLFXIIM 

gu: Returns 

ITPRLINE 

Module: APlITPRl 

Called By: ITFDEDIT, ITERRORS, 
ITCrtCOPO, IAQCR 

Description: Takes the internal name 
of a function and a line number 
within that function, and displays 
the line in the workspace area 
requested by the caller. 

Calls: IATOBCD 

Exit: Returns; ITSYSERR (Error) 

ITPRNAME 

Module: APLITSUB 

Called B~: ITCMGRP. ITCMSI, ITCOPIH, 
ITCMSIHl. ITPRFNlH 

Description: Takes the internal name 
of an object and catenates its 
printname to current line in WSMBUFF. 

Calls: ITPRINTC, ITSQUIRT 

sxit: Returns 

ITPRNUM 

Module: APlITSUB 

~led By: ITFDEDIT. ITCMSINl. 
ITeMSI, ITIHPUT 

DP'$cription: Takes the function 
editor's representation of a line 
number and puts the bracketed line 
number in WSMBUFF. 

Calls: IATOBCD 

Exit: Returns 

ITPRWSID 

Module: APlITCML 

Calle~: ITCMWSID, ITlIBMSG 

D~scription: Converts a workspace 
identifier as defined in PDSD to 
printable form, puts it in WSMBUFF, 
and prints i+.. . 

Calls: IATOBCD, ITlOUT 

licensed Material--Property of IBM 
Section 3. Progr~m Organization 173 



Exit: Returns 

ITSAVWS 

Module: APlITCML 

Called By: ITCMSAVE, ITCMCONT 

Description: Saves a workspace. 

Ca,lUi:ITSHV, lATIDY, ITERRORS, 
APlFXIIM, ITlIBMSG 

Exit: Retur'ns 

ITSHV 

Module: APlITCMl 

Callp.d By: ITSAVWS, APlIINIT 

Description: Copies or retract~ each 
shared variable in the workspace. 

Calls: IASCOPY, APlFXIIM, IAUNSHR 

Exit: Returns; ITSYSERR (Error) 

ITSQUIRT 

Module: APLITSUB 

~~jl~~: ITCOPIN, ITCMDOST, 
ITCMERAS, ITCMFVG, lTCMGROU, 
ITCMSTAC, ITCMSYMB, ITEXECUT, ITCMSl, 
ITCMSINl, ITERRORS, ITPRNAME, 
ITPRFNlN 

Dp-scription: Takes a string of 
characters and concatenates them with 
the current line in WSMBUFF. 

CClll s: "APt FXIIM 

Exit: Returns 

ITSTSRCH 

Module: APlITlDS 

Called By: ITlIHEO, ITCMGRP. 
ITCMGROU. ITCMCOPO, IAFCHNAM, CVGRUP, 
CVVARB, ITCOPIH, ITCMERAS, ITFDHWlH, 
ITOKEHIZ " 

Description: Finds or enters a 
printname in the symbol table and 
returns its inte~nal name. 

Calls: lTBlDID, IESFIHD 

Exit: Returns. ITSYSERR (Error) 

licensed Material--Property of IBM 
174 VS APl Program logi c 

ITSYSCHD 

Module: APlITCMD 

C.lled By: ITIHPUT. ITFORCOF 

Description: Analyzes syntax of 
system commands and executes those 
commands by calling the proper 
translator routine. Before executing 
each command, the executor is called 
(YYCMO) • 

~~: ITBlDID, APlFXIIM, ITIHIHT, 
ITCMClEA, lTCMCONT, ITCMCOPY, 
ITCMDROP, ITCMERAS, ITCMFHS, 
ITCMGROU, ITCMGRP, ITCMGRPS, ITCMlIB. 
ITCMlOAD, ITCMMSG, ITCMOFF, ITCMCPR. 
ITCMPCOP, ITCMQUOT, ITCMSAVE, ITCMSI, 
ITCMSIHl, ITCMSTAC, ITCMSYMB, 
ITCMVARS, ITCMWSID, ITCMWSSI 

Exit: Returns 

ITSYSERR 

Module: APLITlHI 

Called By: Interpreter and translator 
routines. 

Dp-scription: Builds system error 
information; requests executor to 
type information on user terminal and 
~ystem log; takes dump of workspace. 

~: APlFXIIM 

Exit: APlFXIIM with YYClEAR service 
request. 

ITTIHE 

Module: APLITSUB 

Called By: ITlIBMSG 

Description: Formats the date and 
time in the output buffer when it 1S 
given a time value. 

Calls: ITTIMSIJB 

~: Returns 

ITTIHSUB 

Module: APlITSUB 

Called By: ITTlME, IASYSREF 

De5cri~tion: C.lculates the year, 
month, day, hour, minute, second. and 
millisecond values in WSMITSTR from a 
time value. 

J 

J 

J 

J 



~: Returns 

ITTVERR 

Module: APlITSUB 

Called By: ITINPUT, ITTYIZ 

Description: Prints the error report 
for an error discovered during 
initial string processing. 

Calls: APlFXIlM 

Exit: Returns 

ITTYIZ 

Module: APlITINP 

Called By: ITINPUT, ITFDEDIT 

Description: Handles possible errors 
occurring after YYTYI" and YYTYOI. 

~: APlFXIIM, ITTYERR 

Exit: Raturns; ITFORCOF, ITSYSERR, 
ITERRORS (Error) 

ITUSADF 

Module: APLITUSG 

Called By: ITDElETE, ITFDClOS 

Description: Marks all pendant and 
suspended occurrences of a name as 
damaged. 

Exit: Returns 

nUSAG 

Module: APlITUSG 

~lled By: ITFDOPEN, ITFDEDIT, 
ITFDClOS. ITCMGRP, ITCMFVG. ITCMERAS. 
ITCMGROU. ITCOPIN, ITCMCOPO 

Description: Gets the most global 
referent of an internal name by 
examining the operation stack. 

Exit: Returns 

ITUSASH 

Module: APLITCMI 

Called By: IASYSREF, ITCMSI, ITCMSINL 

Description: Shows an object as it 
was "defined when a pendant or 
suspended function was active. 

Exit: Retur~s; ITSYSERR (Error) 

ITXILNL 

Module: APlITSUB 

Called By: ITEXECUT, ITPRFNLN, 
ITCMFVG, ITCMSI, ITCMSINL, ITFDEDIT, 
ITERRORS 

Description: Deletes trailing blanks 
from a line in the buffer, and 
appends a new line character. 

Calls: APLFXIIM 

Exit: Returns 

KABEXIT 

Module: APlKADSP 

Called By: CICS/VS on program checks 
or abnormal termination 

Description: Part of the control of 
the user session task performed by 
the CICS/VS executor. Handles 
abnormal terminations. 

~~~: Entry points KYYOFF, KPCREG, 
KIFONEXT. Macro APLKEXIT. CICS/VS
macros DFHDC, DFHPC (RESETXIT),
DFH1R, DFHSC (GETMAIN)

~: Any process abend exit routine;
IFONEXT, APlKADSP

KAIOOTS

Module: APlKASTB

Called By APLKSON macro

Description: Part of the CICS/VS
executor. Initializes th9 global
table and/or the shared storage
manager.

~llA: Entry points APLKAGBL,
APLKSSUB. CICS/VS macros DFHSC
(GETMAIN, FREEMAIN), DFHPC (ABEND,
LOAD), DFHKC (ATTACH. WAIT)

Exit: Returns or APlKSSR

KADEPON

Module: APlKADSP

licensed Material--Property of IBM
Section 3. Program Organization 175

Cnlled By: Entry point APlKSVI

D~~cription: Part of the CICS/VS
executor. Initiates dependent
auxiliary processors.

~aL~3: CICS/VS macros DFHSC
(GE1MAIH), DFHPC (LOAD)

Exit: Returns

KCASE2Q

Mod~~: APLKSSUB

CaI1p~: Entry point APlKSSR

DI?~.cription: Part of the CIC.S/VS
ex~cutor shared storage manager
interface. Handles queries for all
itams related to caller.

Ex i.J.: Returns

KCASE3Q

Mo~~~: APLKSSUB

Called By: Entry ~oint APlKSSR

D~~~riptjon: Part of the CICS/VS
eXDcutor shared storage manager
interface. Handles queries for all
items related to caller and listed
partners.

Exit: Returns

KCATOFF

Mod~~: APLKMSCB

~Allp~: Entry point APlFXIIM

Q2.~cription: Pa:-t of the interpreter
;nterf~ce provided by the CICS/VS
executor. Executes the YYATOFF
service request (a request to tUrn
off the asynchronous bits in the
PERTERM header);

Exit; Returns

KCDELAY

Module: Entry point APlKMSCA

~Cllled~: APlFXIIM

D~scription: Part of the interpreter
interface provided by the CICS/VS
executor. Executes the YYDELAY
service request (a request to delay
processing for ~ seconds).

Licensed Material--Property of IBM
176 VS APL Program logic

~: Macros APlKEXIT, APlKG
(CANCEL, DELAY), APlKWAIT

j:xit: Returns

KCDUttP

Module: APlKMSCA

Called By: EntrY point APlFXIIM

Dp2cription: Part of the interpreter
interface provided by the CICS/VS
executor. Executes the YYDUMP service
request (a request to dump the user's
workspace and PERTERM header).

C~!l3: Macro APlKEXIT. CICS/VS macro
Df-HDC (PARTIAL)

Ex it: Returns

KCLEAt~UP

Mo~y-~@: APLKSSUB

CaL~~g~: Entry points KPROCOFF,
APLKSSR

Description: Part of the CICS/VS
executor shared storage manager
interface. Retracts all variables
wh~n a parproc entry in the processor
t~ble is marked for deletion.

Cvlls: Entry point KRETSUB

F,xit: Returns

KCLEAR

Module: APlKlIBU

~alled By: Entry point APlFXIIM

De5cript;on: Part of the library
management services provided by the
CICS/VS executor. Processes the
user's)CLEAR request.

Calls: Macro APLKEXIT. CICS/VS macro
DFHSC (GETMAIN, FREEMAIN)

Exit: Returns

Kcr1BL

ModulQ: APlKMSCB

~~lled By: Entry point APlFXIIM

Dpscriotion: Part of the interpreter
;ntQrface provided by the CICS/VS
ax~cutor. Indicates that the YYMBl
service is not supported.

J

J

J

J

Exit: Returns

KCDPA

Module: APlK(IBU

Called By: Entry point APlFXIIM

Description: Part of the library
managemnnt services provided by the
CICS/VS executor. Processes the
user's)COPY and)PCOPY requests.

Ca~: Entry points APlKlIBR,
APlKSPEH, APlAPASS. Macros APlKG
ClIBSERV, TYPE=lOAD), APlKHIST,
APlKWAIT. CICS/VS/VS macro DFHSC
(GETMAIN), DFHFC (GET, RELEASE)

Exit: Returns

KCDPI

Module: APlKLIBU

Called By: Entry point APlFXIIM

Description: Part of the library
management services provided by the
CICS/VS executor. Assists in
processing of the user's)COPY and
)PCOPY requests by moving data into
the sink workspace.

Exit: Returns

KCDPD

Module: APlKLIBU

Called By: Entry point APlFXIIM

Description: Part of the library
management services provided by the
CICS/VS executor. Assists in
processing of the user's)COPY and
)PCOPY requests by accepting data
objects from the source workspace.

Exit: Returns

KCDPZ

Module: APlKLIBU

Called By: Entry point APlFXIIM

Description: Part of the library
management services provided by the
CICS/VS executor. Gains control.
during processing of a user's)COPY
or)PCOPY request when either the
source or sink workspace has n~ m~re
data to provide or copy. When the
terminating YY code YYCOPZ is pntered

for the source workspace, the address
space of the source workspace is
returned to CICS/VS.

Calls: Macro APlKHIST. CICS/VS macro
DFHSC (FREEMAIH)

Exit: Returns

KCQAI

Module: APlKMSCA

Callpd By: Entry point APlFXIIM

~cription: Part of the interpreter
interface provided by the CICS/VS
executor. Exec·utes the YYQAI serv ice
request (a request for terminal time
information).

Calls: Macro APlKHIST (CALC)

Exit: Returns

KCQUDTA

Module: APlKMSCB

Called By: Entry point APlFXIIM

Dp.scription: Part of the interpreter
interface provided by the CICS/VS
executor. Executes the YYQUOTA
service request (a request for user
quota information) .

. Exit: Returns

KCQZ

Module: APlKIFIX

Called By: Entry point APlFXIIM

Dg~cription: Part of the interpreter
interface provided by the CICS/VS
executor. Executes the YYQZ service
request (a request for quantum end
handUng) .

~J~: KRSTEX. Macros APlKHIST,
DFHKC (CHAP, WAIT)

Exit: Returns

KCSYSER

Modulg: APlKMSCA

Called By: Entry point APlFXIIM

Description: Part of the interpreter
interface provided by the CICS/VS
executor. Executes the YYSYSER

licensed Material--Property of IBM
Sec~ion 3. Program Organization 177

service request (a request to write
the system error message).

~.,-,1l~: Macros APLKEXIT, APLKT <TRAN,
G). CICS/VS macro DFHDC (PARTIAL)

Exit: Returns

KCTABS

Module: APlKMSCB

Call~~~: Entry point APLFXIIM

Dp.::;?cription: Part of the interpreter
interface provided by the CICS/VS
executor. Executes the YYTABS service
request (a request to set or retrieve
previously set tab settings).

Exit: Returns

KCTIt1E

Module: APlKMSCA

£fill~~: Entry point APLKMSCA

'p~.~cription: Part of the interpreter
interface provided by the CICS/VS
executor. Executes the YYTIME service
request (a request for the time of
dCl~t) .

Eill: Returns

KCTRAH

!1odule: APlKMSCB

CClII~d By: Entry point APLFXIIM

!?_I!~~r i pt ion: Part of the interpreter
interface provided by the CICS/VS
executor. Indicates that the YYTRAN
service is not supported.

Exit: .Returns

KCWIDTH

Module: APLKMSCB

Called By: Entry poi nt APlFXIIM

Description: Part of the interpreter
interface provided by the CICS/VS
executor. Executes the YYWIDTH
service request (a request to set the
width of output to th~ terminal)·.

gu: Returns

licensed Material--Property of IBM
178 VS APL Program Logic

KDPCREG

Module: APLKDOPS or APlKVOPS

Called By: Entry point ABEXIT

Description: The operatin~ system
dependent interface provided as part
of the CICS/VS executor. Gets program
check registers from CICS/VS control
blocks.

Exit: Returns

KDPFAB

Mod~le: APLKVOPS

Called By: APLKAGBL

Dp.scription: Part of the CICS/VS
executor for OS/VS systems. Takes no
action in this environment.

Exit: Returns

KDPFAP

Module: APLKDOPS

Called By: Entry point APLKAGBl

Qescription: The operating system
dependent interface provided as part
of the CICS/VS executor. For DOS
only, removes the page fix exit, and
restores the CICS/VS timer.

£g!1A: DDSNC. Macros PFIX, SETPFA,
STXIT, SETIME, APl macros, APlKTRCE

Exit: Returns

Kt'tROP

Module: APlKlIBU

.~..!i..ful: Ent ry po i nt AP l FXIIM

Dpscription: Part of the library
management services provided by the
CICS/VS executor. Processes the
user's)DROP requests.

Calls: Entry point APLKlIBG (through
use of the APlKG macro). Macros
APLKG (LIBSERV, TYPE=DROP), APlKWAIT

W,i: Returns

KFREESP

Module: APlKSSUB

J

J

Cal1§~: Entry points APlKSSR,
KRETSUB

p~scription: Part of the CICS/VS
executor shared storage manager
interface. Marks a given area in
shared storage free for use.

Ex.J.1: Returns

KGCFILE

~Qdul~: APlKlIBV

~Ql1~Q~~: Entry point APlKlIBG (by
APlKlIBF through APlKG macro)

De~cription: Part of the library
m~nagement services provided by the
r.ICS/VS executor. Provides the global
library service of cre~ting a file in
the APl library.

~~J~~: Entry points K~AllOC.
APLKlIBR, KLDEALOC, KLPUT. CICS/VS
macro DFHFC (GET, PUT, RELEASE,
GETAREA) .

Ex...i.1: Returns

KGCOL

Module: APLKSSUB

£~lled By: Entry points APlKSSR,
KGETSPAC

D~.~c.L.i.ej: ion: r~rt of the CICS/VS
executor shared storage man~ger
interface. Cleans up shared memory by
packing it.

1,d t: Return::.

KGDFILE

Module: APLKlIBV

Gt!;'.l.~\L~Y: Entry point APlKLIBG (by
~,F'lKLIBF thr'ollgh APLKG macro)

Qe~cription: Part of the library
management servic~s provided by the
CICS/VS executor. Provides the global
library service of deleting ~u)(iliary
processor 121 files. .

~'!IJ~: Entry poi nts KlDEALOC, KlPUT.
CICS,VS macros DFHFC (GET, PUT,
DELETE), DFHSP (USER)

KGDROP

Module: APlKlIBG

Called By: APlKlIBG

Dp.scription: This provides a
workspace drop service for KDROP.

Calls: KlRDBITM, KLPUT, KlDEAlPC.
M,~s (CICS/VS) DFHFC {GET, FUT, gnd
REl EASE)

Exit: Returns

KGETSPAC

Mo9llI~: APlKSSUB

C~JLled By: Entry point APLKSSR

Description: Part of the CICS/VS
executor shared storag~ ma~ager
interface. Gets space in shared
storage for the value or name of a
shared variable.

Ca~: Entry point KGCOl

cx.i1: Returns

KGLOAD

tl£dlil~: APlKtIBG

Cvl1p.9~~: ArLKlIBG

.I2r::;cription: This provides a
workspace load s~rvice for KLCAD.

Calls: KlGET. Macros (CICS/VS)
DFHFC (GET)

f.xit: Returns

KGSAVE

r.!.2 r!'.JJ . .il: A P l K L r B G

~~J~~~: APlKlIBG

Description: This provides a
work5pace service for KSAVE.

C~Ll~.: KLRDBITM, KlAllOC, KLPUT,
KLDEALOC. Macros (CICS/VS; DFHFC
(GET, PUT, and GETAREA)

Exit: Returl"s

KGUDIR

Module: APlKLIBG

licensed Material--Property of IBM
S~c~ion 3. Progr~m Organization 179

Called By: APLKLIBG

Description: This updates directory
records.

Calls: GRELPRM2 exit routine defined
by the c~ller of APLKLIBG. CICS/VS
macros DFHFC (GET. PUT)

.&xit: Returns

KGUFILE

!1od.!!~: AP LKLIBV

~llJ.!:>~: Entr~/Point APLKLIBG (by·
APLKLIBF through APLKG macro)

Dp.scriptinn: Part of the library
manage~ent services provided by the
CICS/VS executor. Provides the gl~bal
library service of file extend
support for auxiliary processor AP121
files.

~i'_H~: E:1tr~: pC'dnts· KLALLOC,
KLDEALOC, KLPUT. M~cro APLK;;Y.IT.
CICS/VS macro~ DFHFC (GET. PUT,
~EL~ASE), DFHSC (GEIMAIN, FRZEMAIN)

';::xit.: Returns

KG!.!DIR

~pllod ov: ArLKLIBG

!2~"r:..iotiQ.D.: Thi!.; (·n-i'te5 a directory
re-:-:·:~~t~.

. G.{'J...l2.: M;'"!cros (C.ICV\'S) O!=HC
(GET.~RE~.,PUi)

KGULIB

Mcdu l,g: APLKLIBV

~!llled B~: Entry poi nt APLKLIBG (by
A?LKLIBF through APLKG macro)

D."scrlptio.,: Part of the librarv
r"('In<lga:nent !:Qr'J 1 cos pro v i ded bV t!·."
eIeS/VS executor. Provides ~he global
librnry service of writi~a ~ contrQl
: r, t " r v Cll tot h <=l M· t 1 i bra ~ y .

Cells: Entry point KLPUT. CICS/US
;;ac;-;.--; DCHFC (GE:. PUT, RELEASE)

g~it.' Returns

L i ce"lsed M,:d:(\lr i al-Prop~rt·y o'f 113M
18C Vf-.. APL ProgrEll11 I.og; c

KIDSETUP

Module: APLKSSUB

CaU_~: Entry poi nt APLKSSR

D~scLL~~~: PElrt of the eICS/VS
executor sh~r~d ~toraga m~nElger
interface. Sets UP EI double~ord ID
for the two ~h~rcd p~rtners.

Exit: Returns

KIFCNEXT

Module: APLKIFIX

Called By: Entry point KABEXIT

Description: Part of the interpreter
interface providad by the CICS/VS
executor. H~ndJes abnormal conditions
occ.·~,rring in the user t:ransClction.

Calls: Entry points KPGMCHK, KRSTEX.
~ APlK'=XIT. eICS/VS macro DFHDC

E~it: Caller, KTOINTERP, KIQUENJ,
;.VIKFXIIM

KINIEX

.~cl)'.!~Il..1!: Entry po i nt APlKAGBl

J~?-!'::rioti"'r1: ThE! oper~t;ng system
(,el)end€nt interface PI'ovided as pari::
of th~ CI~S/VS ~xacutor. S~ts up a
~~R~ ~auit exit, and repl~ces the
CICS/VS timer with an APL timer .

K!NIE~

r:-:od.:..!J.R: APL KVQPS

.<;E1tl~: Entry po~ nt APlKAGBL

Description: Part of the ercs/vs
~xecutor for OS/VS svstems. Takes no
action in this environment.

E;.;it.; Returns

KLALLOC

~~dLl1~: APLKLIBA

~.e0.J_t'!d By: Ent ry po i nt s KGSAV E,
KGC~ILE, KGUFIlE

J

L

Description: Part of the library
management services provided by the
CICS/VS executor. Allocates the
requested number of control intervals
from the free space bit maps that
describe the. allocation status of the
library.

Exit: Returns

KLCLOS

Module: APLKVOPS

Called By: Entry point APLKLIBT

Description: The op~~ating system
dependent interface provided as part
of the CICS/VS executor. Issues VSAM
CLOSE requests against the APl
library.

k~~: CICS/VS macros DFHFC (LOCATE),
DFHTR (USER). Operating system macro
OPEN (VSAM)

flU.!; Returns

KLDEALOC

r10dule: APLKLIBA

Called By: Entry points KGSAVE,
KGDFILE, KGCFILE, KGUFILE, KG DROP

n.~ri pt ion: Part of the library
management services provided by the
CICS/VS executor. Deallocates the
workspaces allocated to CICS/VS from
the fr~e space bit maps.

F-xil: Return s

KLGET

Module: APLKVOPS, APLKDOPS

~allp.9_~: Entry points KGLOAD,
APlKllBI, KGRLIB

De5cription: The operating system
dependant interface provided as part
of the CICS/VS executor. Issues VSAM
GET requests against the ~Pl library.

£~: CICS/VS macros DFHTR (USER),
DFHKC (WAIT)~ Operating system macros
GET (VSAM), CHECK (VSAf'l-isslied b~/
APLKVOPS only)

Ex; t: Returns

KLIB

Module: APLKLIBU

~alled By: Entry point APLFXIIM

Description: Part of the library
management services provided by the
CICS/VS executor. Processes the
user's)LIB requests.

Calls: CICS/VS macro DFHFC (GETNEXT,
ESETl, SETl)

Exit: Returns

KLOAD

Module: APlKLIBU

C~ll~: Entry point APLFXIIM

De.:;cription: Part of th~ librarll
managem~nt servic~s provided by the
CICS/VS executor. Processes the
interpreter)LOAD request.

Calls: Entry points APLKLIBR,
APLKSPEN, APlAPASS. Macros APLKG
(lIBSERV, TVPE=LOAD), APlKWAIT,
APLKHIST, APlKEXIT. CICS/VS mdcros
DFHFC (RELEASE), DFHSC (GETMAIN
(ClASSPROGRAM), FREEMAIN)

f-xit: Returns

KLOPEN

Modul~: APLKVOPS

Called By: Entry point APLKLIBI

De~;ription: The operating system
dependent interface provided as parT.
of the CICS/VS expcutor. Issues V5AM
OPEN requests against the APl
library.

C<lll.A: CICS/VS macros D!=HFC <LOCATE),
DFHTR (USER) Operating system macro
OPEN (VSAM)

Exit: Returns

KLPUT

MQ~: APLK\lOPS

C~lle~~: Entry points APLKLIBG,
KGWLIB, KGCFILE, KGDFIlE, KGUFILE

Descriptiou: The operating system
dependent interface provided as part
of the CICS/VS executor. Issues VSAM
PUT requests for APl library updates.

licensed Material--Property of IBM
Se~tion 3. Pro9r~m Organization 181

Calls: CICS/VS macros DFHKC (WAIT),
DFHTR (USER) Operating system macros
PUT eVSAM), CHECK (VAM--;ssued by
APlKVOPS only)

Exit: Returns

KLRDBITtt

Modul9.: APlKlIBV

Called By: APlKlIBV

D~~~.~tjon: This .reads thQ
allocation bit map into storage.

~: KlGET

Exit: Rp.turns

KttACRD

IModule: APlKADSP

Cal.1..El~--D.v.: APLKADSP

.Q.~cri pt i on: Part of the control of
the user session task performed by
the CICS/VS executor. Dispatches
processes within the user task.

Cal~: APlKIFON, APLXGKON, APLACRCP,
any IBM or user-writtem depend"nt
auxiliary proces~or. Macros APlK50N,
APLKSOF. CICS/VS macro~ DFHTR, DFHSC
(GETMAIN. FREEMAIH), DFHKC (WAIT)

Exit: Returns

KPASS

Module: APLKlIBU

C~lled By: Entry point APlFXIIM

D~script;on: Part of the library
management services provided by the
CICS/VS executor. Processes the
user's roquest to change the sign on
password.

~: APlAPASS, APlKSPEH

Exit: Returns

KPG~1CHK

Module: APlKIFIX

Called By: Entry point KIFONEXT

Description: Part of the interpreter
interface provided by the eICS/VS
executor. Handles program checks
occurring in the interpreter.

Licensed Material--Property o~ IBM
182 VS APl Program Logi c

~: Returns

KPDSTIoIAI

Module: APlKSSUB

~alled By: Entry point APLKSSR

Description: Part of the CICS/US
executor shared storage manager
interface. Posts all ECBs that are
waiting on space.

Cal~: Entry point KSINGAl

Exit: Returns

kPPSEARC

Module: APlKSSUB

Called By: Entry point APlKSSR

Descripti~n: Part of the CICS/VS
executor shared storage manager
interface. Searches perproc entries
in the processor table for a given
user.

Exit.: Returns

KPRDCDFF

Module: APLKSSUB

Called B~: Entry point APlKSSR

.Q.e.:i..1O!" i pt ion: Part of thl? CICS/VS
eXl?cutor shared stur~ge ma~ager
interT8ce. S;gns off all processors
with the same specified external !D.

Cftlls: Entry point KCLEAHUP

Exll: Returns

KRETSUB

Module: APlKSSUB

Called By: Entry points APlKSSR,
KClEAtWP

Description: Part of the CICS/VS
executor shared storage manager
interface. Retracts a shared
variable.

~alls: Entry point KFREESP

Exit: Returns

J

J

J

J

;(RSTEX

:'~Qdu is: APLKDOPS

,;~11~Q~: APLFXIIM, KIFONEXT,
{IQUEND. KASUSPND

.;a:!..c;.ription: Part of the CICS/VS
~x~cutor for DOS/VS systems. Cancels
-::hp. APL til:1e-slice timer and restores
~he eICS/VS times previously
:ancelled by the KSETEX routine.

.: .. ~lls· Mlicros TTIMER, SETIME

!,.RSTEX

~:~cll!i'1' APLKVOPS

;,i'.l1..!In.Ji:!: Ent:~' poi nb APLFX!IM,
(IFONEXT, KYQUEND

P~J..£.!;'i2.!.~' The ope!"':l ti rig S~/st~m
(;'·.PQr1c1cIH ; ntcI"face pro v i decl ~-:s part
~",;, the CICS/VS executor". Res'lcres the
~ysta~'~ tl~er exit when the
"nterpreter is not in control.

i;~b: Macros STIMER, TrIMER

f~.~.i.i: Retu rn s

~~SAVE

i;.:Jlled B.J!: Er.try poi nt AF'LFXUM

,~5crir:d:1Qn: Fart of the library
::~<.r1c:g~;:'1~ntserv ices prov i ded by the
ercs/vs execut~r. ProcQsses ~he
'J~er' 5)ShVE or)CONTINUE request~.

;~i~: Enhy poi "Its APLKSPfN.
,.?LA?ASS. ~Clcros APLKG (LIeSERV,
~YPE=SAVE), A?lKWAIT. APLKH1S'

E:<it: Returns

rSEIZE

~!,dule: APLKSSUB

~alle~: [~try point APLKSSR

~~i~tion: P~rt of thQ CI~S/VS
executor sh~rQd storage manager
interface. Gets control of a sh~red
,ariable.

h.i.,i: Returns

KSETEX

Module: APLKDOPS

~~llP~~: KIQUEND, KTOINTER,
KASUSPND

Description: Par~ of the CICS/VS
executor for DOS/VS systems. Sots up
the APL time-slicQ timer.

Cidls: M.:,cros SETIME, TTIMER

Ex 1..1: Returns

KSETEX

Module: APLKVOPS

~~1.lL~~: Entry point KIQUEND,
"TOINTER

Doscription: Tbe operating system
dcp~ndent interface providQd DS part
of the CICS/VS e)(ecuto.~. Set!'; Ul" the
~imer exit for thQ interpretgr and
tho self-contain~d yycode service
r(.ll!tine.

Cq1J.2: Macros TTIMER, STIMER

Exit: ~e'lurn

KSINGAL

Module: APLKSSUB

Called ~~: Entry points APLKSSR.
KPOSTWAI

Description: Part of the CICS/VS
ixecutor sbmred storage manager
interface. Posts a given ECB.

,fxit: Returns

KSPALD

~~dule: APLKVA~D

Called By: Entry points KSPCPY,
K !i P HiP

p~.scription: Part of the APL library
service program for CICS. Alloc~tes
~nd deallocates control intervals in
4~ block from the APL library data
~et by turning bits in the freespace
descriptor map on and off.

Exit: Returns

l.icensed Material-Property of IBM
SQ',~i::o,,~. Progr<lfn Organization 183

--

KSPAUT

Module: APlKVAUT

Called By: Entry point APLKSPRG

Description: Part of the APl library
service program for CICS. Processes
the AUTH control statement and checks
the validity of the user by reading
his profile from the APl directory
(for user level authorization) or by
accessing the directory update
password in module APlKPASS (for
library level authorizat~on).

Calls: Entry points KSPMSG, KSPlBI

Exit: Returns

KSPCMD

Modulg: APlKVCMD

Cal~~~~: Entry point APlKSPRG

Description: Part of the APl library
ser~~ce-program for CICS. Calls entry
point KSPSCH to scan the command
collected by module APlKSPRO (entry
point APLKVEXC) and convert it to a
set of parameters in SPGPARMA (part
~f the service program globDl table).
This part of the module also contains
the syntax tabl~5 for the service
grogram control statements.

Calls: Entry points KSPMSG, KSPSCN

Exit: Returns

KSPCPY

~od.lLt.i·: APLKVCPY

Call ~LO.l-:: Entr}I poi nt APlKSPRG

De~crip-tio~: Implements the COpy
comm~nd for the APL library service
program for CICS/VS. Mcves a range of
file names from th~ ownership set of
each us~r of an input d~ta set to an
output data set. Either of these data
sets may be the APl library and
directory. Also processes the t~pe
L~ritten b~· the conversion utility.

C~~: Entry points KSPLBI. KSPLBO,
KSPMSG, KSPTPC, KSPAllOC. KSPD~ALC

Exit: Returns

KSPDOS

~odule: APlKDDOS (DOS only)

Licensed Material--Prop~rty oT IBM
184 VS APL Progr~m Logi r:

Called By: Entry points KSPDSO,
KSPINT, APlKSPRG, KSPDSI, KSPlBI,
KSPMSG, KSPTRM, KSPTPO

Description: Part of the APL library
service program for CICS/VS.
Simulates OS/VS QSAM sup~ort in the
DOS/VS environment. Processes the
ENVIRONMENT command.

CalJs: DOS modules IJFSZZWZ,
IJFUZZZZ, IJGUIZZZ, IJGUOZZZ,
IJGQOZZZ; VSAM modules IKQVlAB,
IKQVDTPE. Macros GETVIS, FREEVIS,
WAIT, CDLOAD, CNTRl, OPEN, CLOSE,
BTWAIT, EXCP

Exit: Returns (If end-of-file
condition, returns to caller's EODAD
exit.)

KSPDSI

ModVl~: APlKVDSI

Call~d ~: Entry point KSPIMP

Dp.scription: Part of the APl library
~ervice program for CICS/VS. Reads
records from the APl input data set
for KSPIMP to process.

Call~: Entry point KSPDOS CDOS only).
Macro GET (QSAM, OS only).

ExU.: Returns

KSPDSO

Module: APlKVDSO

faIled ~: Entry point KSPEXp

Descrietion: Part of the APL library
service program for CICS/VS. Writes
records from the APl library to a
batch data set.

~a~~~: Entry points KSPMSG, KSPDOS
(~OS only). Macro PUT (QSAM, 05 only)

Exit: Returns

KSPEXP

Modul~: APLKVEXP

C~11ed B~: Entry point APlKSPRG

Description: Pert of the APl library
service program for C!CS/VS.
Processes the EXPORT command. Checks
Buthoization and converts workspaces
and data files in the APl library to
a format acceptable for import to VS
APL under other supported
environments.

J

J

J

J

J

Calls: Entry points KSPDSO, KSPlBI,
KSPMSG.

Exit: Returns

KSPFI1T

~odule: APlKVFMT

~alled By: Entry point APlKSPRG

~escription: Part of the APl library
sp.rvice program for CICS/VS.
Imple~ents the format co~mand.
Formats the library into 4K blocks.
Writes the free space profile record
in the APl directory. If USERS is
specified on the FORMAT command,
writes directory entries for
libraries 1, 2, and 314159.

CallS: Entry point KSPMSG. Macros
OPEN, CLOSE, PUT, GET

Exit: Returns

KSPII1P

~odulg: APlKVIMP

~alled By: Entry point APlKSPRG

pescription: Part of the APl library
service program for CICS/VS.
Processes IMPORT control statements.
Converts exported APL files and
werksp~ces to the format of the APl
library, calling entry point KSPAllOC
to allocate space, entry point KSPDSI
to read the batch data set, and entry
point KSPLBO to write the files and
workspaces to the library.

Calls: Entry points KSPlBO, KSPMSG,
KSPDSI, KSPlBI. KSPAlLOC. KSPOEAlC

fx.il: Returns

KSPINT

Modulq: APlKVINT

~JLL~: Entry point APLKSPRG

)escription: Part of the APL library
~ervice program for CICS/VS. Performs
initialization.for each command and
ensures that data sets required by
the command being processed are open.
Opens the APl library and directory
nnd checks the validity of the
library data set to ensure that it
belongs to the APl directory data
set.

Call~: Entry points KSPDOS CDOS
only), KSPMSG. Macros OPEN, GET,
GETMAIN, SHoweB, PUT, CLOSE. RDJFCB
(OS only); OPEN. GET, GETVIS, SHoweB,
PUT, CLOSE, VERIFY (DOS only)

Exit: Returns

KSPLBI

Module: APlKVLBI

Called By: Entry points KSPAUT,
KSPCPY. KSPEXP, KSPIMP

Description: Part of the APl library
service program for CICS/VS.
Retrieves records from either an APl
backup/archive tape or APl library
for the processors of the AUTH.
EXPORT, and COPY control statements.

~; Entry points KSPDOS (DOS only)
Macros GET, PUT

Exit: Returns

KSPLBO

Module: APLKVlBO

~alled By: Entry points KSPCPY.
KSPIMP

Q~scription: Part of the APl library
service program for CICS/VS. !nserts
or updates profiles. directory
entries, and data sets in the APl
library.

Calj~: Entry point KSPMSG. Macros
GET, PUT, ENDREQ

.Eti.!: Returns

KSPI1SG

Modul~: APlKVMSG

~~lled By: Entry points KSPCPY,
KSPOSO, KSPAUT, APlKSPRG. KSPEXP,
KS?IMP, KSPINT, KSPlBO, KSPPIN,
KSPTPO, KSPCMD, KSPFMT

Description: Part of the APl library
~ervice program for CICS/VS. Puts all
output messages and data from the APl
library service program modules on
the SYSPRINT (for OS) or SYSlIST (for
DOS) data set.

Calls: Entry point KSPDOS <DOS only).
Macros PUT (OS only); GETIME and
COMRG (DOS only)

Licensed Material--Property of IBM
Section 3. Program Organization 185

.fxi!: Returns

KSPPIN

Module: APLKVPIH

Called By: Entry point APLKSPRG

I!!,scription: Part of the APL library
service program for CICS/VS. Opens
the as d~ta sets required to run the
utility job step.

Calls: Entry point KSPMSG ~acros
OPEN, GET, SHOWCB (OS only); OPEN,
GET, SHOWCB, VERIFY (DOS only)

Ex it: . ~eturns

KSPSCN

Module: APlKVCMD

C~lled ~y: KSPCMO·

De.~crlption: Parses the command
collected by module APLKSPRG (entry
point APLKVEXC) according to tables
in module APLKVCMD (entry point
KSPCMO).

Exit: Retu.rns

KSPTPO

Module: APLKVTPO

Called By: Entry point KSPCPY

Description: Part of the APL library
service program for for crcs/us.
Used by the COPY command to create a
backup or archive sequential data set
from a APL library.

C~l!s: Entry points KSPMSG, KSPDOS
(DOS on!}"

Exit: Returns

KSPTRM

Module: APLKVTRM

Called By: Entry point APLKSPRG

Description: Part of the APL library
service program for CICS/VS. Closes
OS data sets and releases temporary
space.

Calls: Entry point KSPDOS (DOS only)
Macros CLOSE. FREEPOOl (OS only)

Licensed Material--Property of IBM
UH VS APL Program Log i c

Exit: Returns

KTIHEREX

Module: APLKDOPS

Called By: DOS/VS supervisor

Description: Part of the CICS/VS
executor. Sets quantum end indicator
for the interpreter.

Calls: Macro EXIT(!T)

Exit: To CICS/VS timer exit or
returns via DOS/VS exit

KTIMEREX

Module: APLKVOPS

Called B~: OS/VS supervisor

Description: The operating system
dependent interface provided as part
of the CICS/VS executor. Handles
end-of-time-slice situations while
th~ interpreter is executing. This is
an exit routine that has been defined
to OS/VS by the SETEX routine. Sets
quantum end indi~ator for the
interpreter.

Exit: Returns

KTOINTER

Module:. APLKIFIX

Called By: Entry points APLKIFOH,
KIFOHEXT

Description: Part of the interpreter
interface provided by the CICS/VS
~xecutor. Sets up the timer exit and
the registers to be used by the
interpreter and then passes control
to the interpreter.

Calls: Entry point KSETEX. Macro
APLKTRCE

Exit: Interpreter (APLIIHIT)

KTRAL

Module: APLKTRQO

Called By: Entry poin~ KTRRT

Description: Part of the terminal
management services provided by the
CIeS/VS executor. Handles APLKTERM
~acro TYPE=ALARM minor requests if
the request is not specified in

J

J

combination with other requests.

Calls: Macro APLKT (SCHED)

Exit: Returns

KTRCU

Module: APLKTRQO

~alle~: Entry points KTRFA. KTRFM,
KTRRT. KTRWR. Macro APLKT (SETCUR)

Description: Part of the terminal
management services provid~d by the
CICS/VS executor. Handles APLKTERM
macro TYPE=SETCUR minor requests
whether the request is specified
alone or in combination with other
requests.

Calls: Macro APLKT (SCHED, FIHDF)

Exit: Returns

KTRFA

Module: APLKTRQO

Called By~ Macro APLKTERM (FLDATTR)

Descrietion: Part of the terminal
~anag€ment services provided by the
CICS/VS executor. H~ndles APLKTE~M
macro TYPE=FLDATTR mnjor requests.
Minor TYPE= requests of SETCUR and
ALARM may be combined with this
request.

Calls: Entry point KTRCU. Macros
APLCTRCE, APLKT (SCHED).

Exit: Returns

KTRFI

Module: APLKTREQ

Called By: Macro APLKTERM (Final)

Description: Part of t~e terminal
m~nagemcnt services provided by the
CICS/VS executor. Handles APLKTERM
macro TYPE=FIHAL m~jor requests. No
minor requests may be combined with
this request. Clears PTK pointers and
resets PTK flags to indicate that the
specified screen interface is
inactive (the standard APL screen
interface or, if the APLKTERM macro
parameter OPT=AlT is specified~ the
alternate interface). Frees storage
associated with the interface. If the
interface associated KTSCHED entry
point is cal1ed to co~municate with
the terminal transaction if
necessary.

C~~: Macros APLKTRCE, APLKT (SCHEO)
CICS/VS macros DFHSC (FREEMAIN),
DFHIC (INITIATE from entry point
APLKTCTl)

Exit: Returns

KTRFH

Module: APLKTRQO

Callpd By: Macro APLKTERM (FORMAT)

De~crieti9n: Part of the terminal
managamont services provided by the
CICS/VS executor. Handles APLKTERM
macro TYPE=FORMAT major requests.
Minor TYPE= requests of ALARM and
SETCUR may be combined with this
request. Format requests may be for a
full format or, ,if the OPT=REFORM
earameter is specified on the
APLKTERM macro, a partial reformat.

Calls: Entry point KTRCU. Macros
APTi<TRCE, APLKT (FCHECK, SCHED,
CLEAR). CICS/VS macro DFHSC (GETMAIN,
FR EEr1A IN)

Exit: Returns

KTRGD

ttodul~: APLKTREQ

Called 8y: Macro APLKTERM (GETDATA)

Dpscription: Part of the terminal
m~na9~m~nt services provided by the
CICS/VS executor. Handles APLKTERM
macro TYPE=GETDATA major requests.
Returns data from specified fields
unl~ss OPT=~OTDATA is specified on
th9 APLKTERM macro, in which case the
length of the field is returned for
each field specified.

Calls: Macros APLKTRCE, APLKT (CLEAR.
TRiiH)

Exit: Returns

KTRGF

Module: APLKTREQ

C~lled By: Macro APLKTERM (GETFORM)

Description: Part of the terminal
manage~ent services provided by the
CICS/VS executor. Handles APLKTERM
macro TYPE=QETFORM major requests. No
minor requests may be combined with
this request. Returns a description
of the current screen format to the
caller.

Licensed Material--Property of IBM
Sect~on 3. Program Organization 187

~: Macros APLKTRCE. APLKT (CLEAR)

.ElU..t: Returns

KTRHC

Module: APLKTRQO

Called~: Entry point KTRRT or KTRWR
if APLKTERM macro specifies
TVPE=HCOPV

Descriptjon: Part of the terminal
management services provided by the
CICS/VS executor. Handles APlKTERM
macro TVPE=HCOPV requests whether the
request is specified alone or in
combination with a TVPE=WRITE
request.

~: Entry point APlKEMGR. Macros
APLKT (SCHED. CLEAR. HlINE)

~: Returns

KTRIM

Module: APlKTREQ

Called By: Macro APlKTERM (INIT)

Description: Part of the terminal
management services provided by the
CICS/VS executor. Handles APLKTERM
macro TVPE=INIT major requests. No
minor requests may be combined with
this request. Gets storage for and
initializes control blocks and
buffers for the standard APL screen
interface or, if the OPT=ALT
parameter was specified on the
APlKTERM macro. for the alternate APl
screen interface. Provides the
default screen format for the
specifled screen interface.

Calls: Macro APlKTRCE. CICS/VS macros
DFHSC (GETMAIN)

~: Returns

KTRRD

Module: APLKTREQ

Called By: Macro APLKTERM (READ)

pescription: Part of the terminal
management services provided by the
CICS/VS executor.' Handles APLKTERM
macro TVPE=READ major requests. Minor
TVPE= requests of ALARM. SETCUR, and
RESTORE may be combined with this
request. Uses the KTSCHED routine to
shcedule t~rminal read requests. When
the read operation is completed.
returns a description of the input to

Licensed Material-Property of IBM
188 VS APL Program Logi c

the caller.

~: Macros APlKTRCE. APLKT (SCHED;
~LEAR, SETCUR, FINDF)

f.Kil: Returns

KTRRS

Module: APlKTRQO

Called By: Entry point KTRRT

Description: Part of the terminal
management services provided by the
CICS/VS executor. Records APLKTERM
macro TVPE=RESTORE minor requests if
the request is not specified in .
combination with other requests.

Calls: Macro APlKT (SCHED)

Exit: Returns

KTRRT

Module: APLKTREQ

Calle~: Macro APLKTERM (ALARM.
SETCUR. HCOPY. or RESTORE) when
APlKTERM is not used in combination
with a major request

Description: Part of the terminal
management services provided by the
CICS/VS executor. A routing routine
that calls the appropriate terminal
manager routines when the APlKTERM
macro is used without specifying a
major request type. All routing is
done using the APLKTREQ address
table'.

Calls: Entry points KTRAl, KTRCU,
KTRHC. KTRRS. Macro APlKTRCE

Exit: Returns

KTRTRAN

Module: APlKTRAN

Called By: Entry point APLKEHCP.
Macro APlKT (TRAN)

~5cription: Part of the terminal
management services provided by the
CICS/VS executor. Also linked to as
part of hard copy print transactions.
Translates data and. optionally,

. moves the data to wherever the caller'
specifies.

.E2U1: Returns

J

J

J

KTIUIR

Module: APLKTRQO

£alle~: Macro APLKTERM (WRJTE)

Description: Part of the terminal
m~nagement services provided by the
CICS/VS executor. Handles APLKTERM
macro TYPE=WRITE major requests.
Minor TYPE= requests of SETCUR,
ALARM, HeOPY, and RESTORE mDY be
combined with this request. Causes a
write operation to be shceduled but,
if the OPT=WAIT p~rametor o~ the
APLKTERM macro is omitted. may return
to the caller hefore the write
operation has completed.

~.i-21il: Entry points KTRCU, KTRHC.
Macros APLKTRCE, APLKT (SCHED, CLEAR,
lRAH)

Exit: Returns

KTSCHED

lli'.,Q.ule: APLKTSRV

C~~~: Macro APLKT (SCHED)

Q~~cription: Part of the terminal
management services provided by th~
CICS/VS executor. Synchroni=es
reque~ts. If required, schedules
terminal transaction. May wait for
completion of request.

£~~: Macros APLKWAIT, APlKPOST.
eICS/VS Macro DFHPC (ABE~D, DUMP,
IHITIATE for entry point APLKTCTL)

.Exi..!,: Returns or DFHPC (ABEND)

KTSCLEAR

~odule: APLKTSRV

Called By: Macro APLKT (CLEAR)

Description: Part of the term;nal
manag~ment services provided by the
CICS/VS executor. Clears the logical
screen buffer and resets data
lengths.

Exit: Returns

KTSFCHK

liodul,R: APLKTSRV

Called By: Macro APLKT (FCHECK)

Description: ·Part of the terminal
management servic~s provided by the
CICS/VS executor. Performs a validity

check of the screen format.

Exit: Returns

KTSFNDF

Module!: APLKTSRV

C~lled By: Macro APLKT (FIHDF)

D~~~r;ption Part of the terminal
management services provided by the
CICS/VS ~xecutor. Givp.n a row and
column address, finds the associated
field.

Exit: Returns

kTSLINO

Moc~lle: APLKTSRV

Called b: Macro APLKT (HLINE)

Q~criptiol"l: Part of the terminal
managempnt services providp.d by the
CICS/VS executor. Prepares a line of
full screen copy.

~alls: Entry point APLKEMGR

Exit: Returns

KTSLOCID

Module: APLKTSRV

Called ~, Macro APLKT (LOCID)

De~cription: Part of the terminal
management services provided by the
CICS/VS executor. Locates the TSF
(terminal screen status) for a
specified field 10 if the field ;s
defined.

.li1ll..t: Returns

KTSLOCR

ModY1ll: APLKTSRV

Calle~~: Macro APLKT (LOCREQ)

De?cription: Part of the terminal
managem~nt services provided by the
crcs/vs executor. Executing under the
terminal transaction, locates the
next request to be proce5sed.

Exit: RE'turns

Licensed ~aterial--Property of IBM
Section 3. Program Organization 189

KUSID

Module: APLKLIBU

Called By: Entry point APLFXIIM

Description: Part of the library
management services provided by the
CICS/VS executor. Processes the
user's)WSID requests.

Calls: APlAPASS

Exit: Returns

KYYTYOI

Module: APlKIFIX

Called By: APLKXIIM

Description: Provides an terface to
the session manager for the terminal
I/O requests (YYTYO, YYTYI, YYTYOI)
made by the interpreter code.

~: APlKSPEN, APLATYO, APLATYI,
APlAnOI

Exit: Returns

IC.YVOFF

Module: APLKMSCB

Call~~: Entry points APlFXIIM,
ABEXIT

Description: Part of the interpreter
interface provided by the CICS/VS
executor. Executes YYOFF service
requests (a request to terminate the
sessi on) .

Calls: Entry points APLATERM,
APLKLUTM. Macros APLKEXIT, APlKHIST.
APlKG (LISSERV>.

Exit: Returns

OFF121X

Module: AP1l21

Called By: APlXAC

Description: This is the offer exit
routine.

Calls: Macros APlXAEAT, APlXCAPS

~: Returns

Licensed Material--Property of IBM
190 VS APl Program logi c

PCATOFF

Module: APlPMISC

Called By: APlFXIIM

Description: Executes YYATOFF service
request (VSPC).

~: Normal; ERSAVEAR (Error)

PCCLEAR

Module: APlPlIBS

Called By: APlFXIIM

Description: Executes YYClEAR service
request (VSPC).

W,.il: ERMSGRTN

~: Returns; ERSAVEAR (Error)

PCCI'1D

Module: APlPMISC

Called By: APlFXIIM

Description: Executes YYCMD service
request for the VSPC executor (issues
the VSPC service request WCMD).

Calls: ERMSGRTN. Macro ASUSRQ

Exit: Returns; ERSAVEAR (Error)

PCCOPA

Module: APlPLIBS

Called By: APlFXIIM

~cription: Executes YYCOPA service
request (V5PC).

~: ERMSGRTN

Exit: Returns; ERSAVEAR (Error)

PCCOPI

Module: APLPMISC

Called By: APLFXIIM

Description: Executes YYCOPI service
request (VSPC).

~: Returns; ERSAVEAR (Error)

J

J

PCCOPD

Module: APlPMISC

Called By: APlFXIIM

pescription: Executes YYCOPO service
request (VSPC).

Exit: Returns; ERSAVEAR (Error)

PCCOPZ

~odule: APlPMISC

Called By: APlFXIIM

Description: Executes YYCOPZ service
,"equest (VSPC).

£.a 11 s: ERMSGR l'N

~: Returns; ERSAVEAR (Error)

PCDELAY

Modul~: APlPTYIO

Called By: APlFXIIM

Description: Executes YYDElAY service
request (VSPC).

£'~"l.u!: ERMSGRTN

~: Returns; ERSAVEAR (Error)

PCDROP

~odule: APLPLIBS

C~lled By: APLFXIIM

DescriDtion: Executes YYDROP service
request (VSPC).

~: ERM!;GRTH

~~: Returns; ERSAVEAR (Error)

PCDTYI

Module: APlPTYIO

Called By: APLFXIIM, PCDTYOI

Description~ Executes YYTYI serv~ce
request for display terminal (VSPC).

~: ERMSGRTN

Exit: Returns; ERSAVEAR (Error)

PCDTYO

Module: APlPTYIO

Called By: APLFXIIM

Description: Executes YYTYO ,service
request for display terminal (VSPC).

Calls: ERMSGRTH

Exit: Returns; ERSAVEAR (Error)

PCDTYOI

Module: APLPTYIO

Called By: APLFXIIM

Description: Executes YYTYOI service
request for display terminal (VSPC).

Calls: rCDTYI

Exit: Returns; ERSAVEAR (Error)

PCDUHP

Module: APlPSERR

Called B~: APLFXIIM

~5cription: Executes YYDUMP service
request (VSPC).

Exit: Returns

PCLIB

Module: APLPLIBS

Called By: APlFXIIM

Q9scription: Executes YYLIB service
request (VSPC).

Calls: ERMSGRTH

Exit: Returns; ERSAVEAR (Error)

PC LOAD

Modul~: APlPlIBS

Called By; APLFXIIM

Description: Executes YYlOAD service
request (VSPC).

Calls: ERMSGRTH

,Exit: Returns; ERSAVEAR (Error)

Licensed Material--Property of IBM
Section 3. Program Organi:ation 191

PCMBL

Module: APLPTYIO

Called By: APLFXIIM

Description: Executes YYMBL service
request (VSPC).

Called By: APLFXIIM

D~scription: Executes YYQZ service
reqtlest (VSPC).

Exit: Returns; ERSAVEAR (Error)

Calls: ERMSGRTN PCRWAIT

Exit: Returns; ERSAVEAR (Error)

PCOFF

Module: APlPMISC

Called By: APlFXIIM

Description: Executes YYOFF service
request (V5PC).

Exit: Returns to VSPC

PCPASS

Module: APLPMISC

Called By: APLFXIIM

Description: Executes YYPASS service
request (VSPC).

Calls: ERMSGRTH

Exit: RE'turns; ERSAVEAR (Error)

PCQAI

Mot!!,!.lg: APLPMISC

Callp.~~: APLFXIIM

Descr~ption: Executes YYQAI service
request (VSPC).

Exit: Returns; ERSAVEAR (Error)

PCQUOTA

Mod~le: APLPMISC

Called By: APLFXIIM

Description: ExecutesYYQUOTA service
request (VSPC).

Exit: Returns; ERSAVEAR (Error)

PCQZ

Module: APlPMISC

L; censed Mater; aI-Property of IBM
192 VS ~PL Program Logic

Module: APLPTYIO

Called By: APlFXIIM

Description: Executes YYRWAI~ servic~
request (VSPC).

Calls: ERMSGRTH

Exit: Returns; ERSAVEAR (Error-)

PCSACC

Mod!JJJl: APLPSHVR

Cellf!d ~: APLFXIIM

P3.5criptioU: Executes YYSACC service
request (VSPC).

Calls: APLPAPAC. ERMSGRTN

Exit: Returns; ERSAVEAR (Error)

PCSAVE

Modll~.,.g: AFLPLIBS

Called By: APLFXIIM

Description: Executes YYSAVEse~vice
request (VSPC).

Calls: ERMSGRTN

Exit: Returns; ERSAVEAR (Error)

PCSCOpy

Modul~: APLPSHVR

Called By: APLFXIIM

Des~ription: Executes YYSCOPY service
request (V5PC).

Calls: APLPAPPR, ERMSGRTH

Exi~: Returns; ERSAVEAR (Error)

PCSOFF

Module: APLPSHVR

J

J

J

J

Called By: APLFXIIM

Des~ion: Executes YYSOFF service
request (VSPC).

fonlls: APLPAPSF, ERMSGRTN

J~: Returns; ERSAVEAR (Error)

PCSOFFER

~odule: APLPSHVR

~allp~: APLFXIIM Descrptio~:
Executes YYSOFFER service request
(V5PC).

,Calls: APLPA~OF, ERMSGRTH

fxit: Returns; ERSAVEAR (Error)

PCSON

,Modu.l§: APlPSliVR

Called By: APLFXIIM

Descriptio~: Executes YYSON service
request (V5PC).

.CaJ...l.a: ERMSGRTH

~x;t Returns; ERSAVEAR (Error)

PCSQUERV

Mod\lh: APlPSHVR

~.lli~: APLFXIIM

p~£t:.i.e...t ion: Executes YY5QUERY
service request (VSPC).

CI:! 11 s: ERM5GRTN

;~it: Returns; ERSAVEAR (Error)

PCSREF

~odule: APLPSHVR

~all~d By: APlFXIIM

Descriptign: Executes YYSREF service
request (VSPC).

Calla: APlPAPPR. ERMSGRTN

Exit: Returns; ERSAVEAR (Error)

PCSRET

Module: APLPSHVR

Calle~: APLFXIIM

Description: Executes YYSRET service
request (VSPC)'

Ca..l.llz: APLPAPRT, ,ERMSGRTN

Exit: Returns; ERSAVEAR (Error)

PCSSPEC

Modul~: APLPSHVR

~lled-1~: APLFX!IM

Dei.cripJ:ion: Executes YYSSPEC se"vice
,-equest (V5PC).

Calls: APLPAPPR, ERMSGRTN

ExLt: Returns; ERSAVEAR (Error)

PCSYSER

Module: APLPSERR

f,alled By: APLFXIIM

Description: Executes YYSYSER service
request (VSPC).

C~lls: ERTIMDAT. ERMSGRTN

Exi~: Returns; ERENDEX (Error)

PCTABS

Modu_l~: APLPTYIO

Cnlleq ___ ~: APLFXIIM

Dq5C~eticn: Executes YYTABS service
request (VSPC)_

Calls: ERMSGRT~

~xit: Returns; ERSAVEAR (Error)

peTINE

Modu.l§: APLPMISC

C~l~ed By: APLFXIIM

Description: Executes YYTIME service
reque~t (VSPC)_

Exit: Returns; ERSAVEAR (Error)

Licensed Mater;al--Property of IBM
Section 3. Program Organi~ation 193

PCTRAN

Module: APlPTYIO

Called By: APlFXIIM

Description: Executes YYTRAH service
request (VSPC).

Call s: ERMSGRTH

Exit: Returns; ERSAVEAR (Error)

PCTn

Module: APlPTYIO

Called By: APlFXIIM, peTYOl

Description: Executes YYTYI service
request for typewriter terminal

. (VSPC).

Calls: ERMSGRTN

Exit: Returns; ERSAVEAR (Error)

PCTVO

Module: APlPTYIO

Called By: APlFXlIM, PCTYOl

Description: Executes YYTYO service
request for typewriter terminal
(VSPC) .

Calls: ERMSGRTH

~: Returns; ERSAVEAR (Error)

PCTVOI

Module: APlPTYlO

Called By: APlFXIIM

Description: Executes YYTYOl service
request for typewriter terminal
(VSPC).

~:PCTYl, peTYO

Exit: Returns; ERSAVEAR (Error)

PCWIDTH

Module: APlPTYlO

Called By: APlFXIIM

Description: Executes YYWIDTH service
request (VS~C).

11 c.ensed Materi aI-Property of IBM
194 VS APl Program logi c

Exit: Returns; ERSAVEAR (Error)

~.

t
PCWSID

Module: APlPlIBS

Called By: APlFXIIM

Description: Executes YYWSID service
request (VSPC).

Calls: ERMSGRTH

Exit: Returns; ERSAVEAR (Error)

PRDDIR

Module: APlPAPCD

Called By: APlPAPPR

~scription: Does direct read from a
VSPC file for internal auxiliary
processor AP121 and AP122.

~: ERMSGRTH

Exit: Returns; ERSAVEAR, EREHDEX
(Error)

PRDSEQ

Modu~~: APlPAPCD

Called By: APlPAPPR

Description: Does sequential read
from a VSPC file for internal
auxiliary processors AP121 and AP122.

Ca 11 s: ERMSGRTH

Exit: Returns; ERSAVEAR, EREHDEX
(Error)

PWIUTE

Module: APlPAPCD

. Called By: APlPAPPR

Description: Does sequential write
and direct update to a VSPC file for
internal auxiliary processors AP121
and AP122.

&.alli: ERMSGRTH

~: Returns; ERSAVEAR, EREHDEX
(Error)

J

J

J

RET lUX

Module: APL121

Called By: APlXAC

Description: This ;s the retract exit
procedure which issues a close for
the FAB, freemains any CTlBUF or
DATBUF storage areas, and discards
the stack. The eTl and OAT variables
are retracted.

Calls: Macro APlXSTAK

Exit: Returns

SCAPL

Module: APlSCFXI

~lled By: SCSPIE, APL

p'~scription: Establishes an entry
point to APlFXIIM at startup or after
program check (CMS).

SCATOFF

~odule: APlSCTYP

Called By: APlFXIIM

Description: Executes YYATOFF service
request (eMS).

~xit: Returns; SeSAVOFl(Error)

SCATOFF

~odule: APlYUTYP

C~lled By: SCFXI via macro APlCCAlL

Description: This entry point turns
ott attention and cancels output bits
in PERTERM (TSO).

~~: Macros APlDEFH, APLCEHTR,
APLCEXIT

Exit: Returns

SCATTN

Module: APLSCTYP

~alled By: CMS, STAX Exit Routine

Description: Performs system
tunctions in response to attention
signa I (CMS) .

Exit: Returns to CMS.

SCATTN

Module: APlYUTYP

Calle2-Q~; Host system via STAX edit
routine by user

D~scription: This entry point
providp.s supervisor support for
attention (1S0),

Calls: APl YUTRM. Macros STATUS,
APlDEFN, POST, ESTAE, TClEARQ,
APLYUPRG, APlPTRGT

Exit: Returns

SCCLEAR

Module: APlSCMSC

Call~~: APLFXIIM

De~cription: Executes YYClEAR service
ret;uest (CtlS).

Exit: Returns; SC5AVOFl

SCCLEAR

Mod~~: APLYUMSC

ClIllp.d fu!: ~.PlYUFXI

Description: Executes the YYClEAR
service request (TSO). YYClEAR resets
the si:e of thQ active workspace to
either a specified size (PD5SIZE) or
a default size (CMSMAXWS). It also
changes the !D ot the active
workspace to that ot a clear
I-Jcrkspace.

g~it: Returns; SCSAVOFl(~rror)

SCCHD

tlpdule; APLYUMSC

C~'LU_~: APlYUFXI

Description: This executes the vYCMD
in TSO.

gxit: Returns

licensed Material--Property of IBM
Section 3. Program Organ;~atl0n 195

SCCI1D

Module: APLSCMSC

Called By: APLSCFXI

Description: Executes the YYCMD
service request in CMS.

Exit: Returns.

SCCOPA

Module: APLSCOPY

Called By: APlFXIIM

Description: Executes YYCOPA service
request (CNS).

Calls: SCLOAD

Exi!: Returns; SCSAVOFL(Error)

SCCOPl

Modul~: APLSCOPY

Called By: APlFXIIM

Description: Executes YYCOPI service
request (CMS).

Exit: Returns; SCSAVOFlCError)

SCCOPO

Module: APlSCOPY

~alled By: APlFXIIM

Description: Executes YYCOPO service
request" (CNS).

Exit: Returns; SCSAVOFUEr"ror)

SCCOPZ

Module: APLSCOPY

Called By: APlFXIIM

Descriptio~: Executes YYCOPZ service
reqtJest (CMS).

~: Returns; SCSAVOFlCError)

SCDELAY

Module: APLSCMSC

Called By: ~PLFXIIM

li censed Materi aI-Property of IBM
196 VS APl Program logi c

Description: Executes YYDElAY service
request (CMS).

~xit: Returns; SCSAVOFlCError)

SCOELAY

Module: APlYUMSC

Called By: APLYUFXI

Description: Executes the YYDElAY
service request (T~O). YYDElAY sets
the timer for the time period given
in WSMPARMl/2, and puts the virtual
machine into an ~nabled wait state
until either the timer goes off or
the user signals attention.

Exit: Returns: SCSAVOFl(Error)

SCOPA2

Module: APLSCDPY

Called By: JCEXTINT on PA2

D~~~tion: Handles cancel-output
signal for display terminal under
CMS.

Exit: Returns to eMS

SCDROP

~ndule: APlSClIB

Call~9~: APlFXIIM

Description: Executes YYDROP service
request C eMS).

Calls: SCFID. Macro APlSFID

Ex it: Retur'ns; SCSAVOFU EI'ror)

SCtROP

~odulp.: APlYUlln

~~lled By: APlYUFXI

Dp.scription: Executes the YYDROP
service request (TSO). Drop
processing involves the following
steps:

•

•

Allocate DISP=OlD to verify data
set handling conditions.

Deallocate OISP=KEEP since a
protect cannot be issued while
allocated. "

J

J

J

J

J

•

•

•

Issue PROTECT SVC to unprotect
the data set.

Issue PROTECT SVC (PURGE) to
scratch the data set.

Issue CATALOG SVC to uncatalog
the data set.

Calls: SC5AVOFL (via macro APLCENTR)

Exit: Returns; SCSAVOFLCError)

SCOTYI

Module: APLSCDPY

Called By: SCDTYOI, APLFXIIM

Description: Executes YYTYI s~rvice
request for display ~erminal (eMS).

~: Returns; SCSAVOFLCError)

SCDTVI

~odule: APLYUDPY

~alled By: APLFXIIM, SCDTYOI

Description: Executes the YYTYI
service request for display terminal
(TSO),

~: Returns; SCSAVOFL(Error)

SCDTYIO

Module: APLYUDPY

Called By: APLFXIIM

J2sscri pt", on: Executes the YYTYOI
service request for display terminal
(TSO) .

~: SCDTYO, SCDTYI, STCKPOP,
SCSAVOFL

~: Returns; SCSAVOFLCError)

SCDTVD

Module: APLSCDPY

Callad By: SCDTYOI, APLFXIIM

Description: Executes YYTYO service
request for display terminal (CMS).

Exit: Returns; SCSAVOFL(Error}

SCOTYD

Module: APLYUDPY

Called By: APLFXIIM, SCDTYOI

Description: Executes the YYTYO
service request for display terminal
(ISO),

Exit: Returns; SCSAVOFLCError)

SCDTYDI

Module: APLSCDPY

Called By: APLFXIIM

Dp.scription: Executes YYTYOI service
request for display terminal input
(CMS) .

Calls: SCDTYO, SCDlYI

Exit: Returns; SCSAVOFlCError)

SCDUI1P

Module: APLSCERR

Called By: APLFXIIM

Description: Executes the YYDUMP
service request (eMS).

Exit: Returns; SCSAVOFLCError)

SCOUI1P

Modul~: APLYUERR

Called By: APLYUFXI

Description: Executes the YYDUMP
service request (lSO).

Exit: Returns; SCSAVOFl(Error)

SCENDAPL

Modul~: APlSCINI

Cc;lli~: SCOFF

Description: Terminates VS APL under
ens.
Exit: To CMS or logoff from VM/370

licensed Material--Property of IBM
S~ction 3. Program Organi=ation 197

SCENDAPl

ModY..!.g: APLYUIHI

Callpd By: APLYUMSC

Dpscription: Termin~tes VS APl under
150;

fxit! Returns to TSO.

SCEXTINV

Module! APLSCVI

Cal.led By: CMS on ~n external
interrupt

Des~'iption: This scans shared memory
to look for ~n ICB describing the
interrupt code, and calls the exit
routine.

Call!:!: ICSADDR routine if interrupt
is found

Exit: Returns to eMS after calling
el':it. If no exit i::. call~d, il goes
to address in CHSEIOLD.

SCFID

~~duJ~: APLSCFID

t~lip~: APLSCLIB, APlXFSfl.
~PLSCMSC, APLSCIHT

Descrip~LQn: Given a name ~nd library
number, this routine gener~tes ft eMS
file identifier and a~cesses the eMS
disk.

Call-3: CP LIHK and DETACH, Cf1S STATE,
DMSlAD. Macros APLPATCH, APlDEFH,
APLSFIDi APLSOPT, FSCBD, FSTD. ACT,
HUCOH, FSSTATE, DIAG

Exit: Returns

SClIB

Module: APLSCLIB

Called S~: APLFXIIM

pes=riDtion: Executes YYlIB service
request (CrwIS).

Ca~: APLSCFID. Macros APLSFID,
APLSOPT

Exit: Returns; SCSAVOFL(Error)

Licensed Material--Property of IBM
198 VS APl Proqram Logi c

SClIS

Modul~: APL YULIB

C·!lUed BV: APL YUFXI

Description! Ex~cutes the YYlIB
service request (TSO). An lnternal
routine, LIBDSN, is called to bu;id
an OS data set name for this library;
an indicator will be returned if the
libr~ry definition entry doe~ not
exist in the catalog. The hi~her
lev~l qualifiers ore moved to the DSi
buffer for aDAIR DAP14 p~rame+,-r
block, and DAIR is callpd ~o return
all the qualifiers in CMSBUFF. ThesR
qual i fi ers are converted to Z"c:ode
and passed back to the inte~~rQt~r :~
WSMBUFF. New lin~s are inserted
according to the current va]u~ of
PTHWIDTH.

Call s: IKJDA IR

fill: Returns; SCSA'JOFltError)

SCLOAD

Mo~~n: APLSCLIB

~all~g_~y: SCCOPA, APlFXIIM

!t1:~scriptio'1: ExecutF·s YYlOAI) servic:::
"'('quest (eMS).

I;.x it : Retu rn s; SCSAVOFL (Error)

SCLOAD

~Q£tl'LI? : A P l 'f LJ LI B

~.;!..1J..rs.LJ..Y.: A?L YUFXI or APl YUGf)"

De~criotion: EXQcutps ~h~ YYLOAD
service request (TSO). An internal
routine, LIBDSN, is inVOKed to bude!
a~ OS data set name and validate
~ccess authority to the library.
LIBALLDC ;s then called to allocate
the workspace with DISP=SHR. A
prototype DCB is copied to th~ global
work area and opened for BSAM chained
scheduled aCC2SS. To ensure t~at the
)LOAD request is successful, various
ch~cks are ~ade to ensure workspace
fit and validity of workspace
security code. If the BLKSIZE is
smaller than the size of WSMBUFF,
that area will be used to temporarily
hold the first block of the
worksp·ace. A buffer wi 11, otherwi se,
be GETMAINed from free space and used
to hold the block. If all validity
checks are met, the data portion of
the first block is copied to its
proper location in the workspace. Th~
remaining blocks are read in using

J

J

J

J

J

chained scheduled BSAM. When the last
block has been read, a check is made
to determine if the workspace did not
have a recorded ownership code. If
50. it is assumed to have been
recently imported from CMS or VSPC;
if this is true and if the workspace
is not trom someone else's shareable
library. it is closed, reopened for
output. and the first block is
rewritten with the correct ownership
code. Finally, the data set is
closed. treed by a call to lIBFREE.
and. it a buffer has been obtained,
it is FREEMAINed.

Calls: IKJDAIR

Exit: Returns

SCHBl

Module: APlSCMSG

Called By: APLFXIIM

Description: Execute~ YYMBl service
request (eMS).

Exit: Returns

SCHBL

Module: APLYUMSG

Calle~: SCFXI via macro APlCCALl
when interpreter issues APl5VCC YYMBl

Description: This is the message
blocking and unblocking routine. It
executes STeOM requests to block and
unblock messages (TSO). The ')MSG
ON/OFF' function is provided by
employing the 'STCOM YES/NO' macro to
invoke T5·0 SVC 94.

~: Macros APLDEFN. APlCENTR,
APlCEXIT. STCOM

.f.2sll: Returns

SCHICRO

Module: APlSCINI

Called By: An entry card is included
to determine the instruction address
from the load m~p.

Description: Identifies an
instruction to patch when it is
desired to disable the VS APL
microcode assist (TSO).

~: Hot applicable

SCHICRO

Module: APlYUIHI

Called By: An entry card is included
to determine the instruction address
from the load map.

Description: Identifies an
instruction to patch when it is
desired to disable the VS APl
microcode assist (lS0).

Exit: Hot applicable

SCOFF

Module: APlSCMSC

Called By: APLFXIIM

Description: Executes SCOFF service
request (CMS).

Exit: SCENDAPl

SCOFF

Module: APlYUINI

Called By: APlYUFXI

Description: Executes the SCOFF
service request (TSO).

~: SCENDAPl

SCPASS

Module: APlSCMSe

~UL~: APlFXIIM

Description: Executes YYPASS service
request in CMS.

Exit: Returns

SCPASS

Module: APLYUMSC

Called h: APL YUFXI

Qescription: Executes the YYPASS
(change sign-on password) service
request (TSO).

Exit: Returns

licensed Material--Property of IBM
Section 3. Program Organization 199

SCQAI

Module: APLSCMSC

Called B~: APLFXIIM

Description: Executes YYQAI service
request (CMS).

Exit: Returns

SCQAI

Module: APLYUMSC

Called By: APLYUFXI

Dess::ription: Executes the YYQAI
service request (TSO). YYQAI supplies
current values related to the
distinguished variable QUAD-AI to the
interpreter. These values comprise
user's accumulated CPU usage.
terminal connect time. keying time.
and default account number (1001).

Exit: Returns

SCQUOlA

Module: APLSCMSC

Call~~: APLFXIIM

Description: Executes Y~QUOTA service
request CCr1S).

Ex; t: Returns

SCQUOTA

Module:. APlYUMSC

Calle~: APLYUFXI

Description: Executes the YYQUOTA
service request (TSO). YYQUOTA puts
information about quotas fer library
space. workspace size, and shared
variable sizes into workspace fields
so that the interpreter can print
them.

SCQZ

Module: APLSCMSC

Calle~: APLFXIIM

Description: Executes YYQZ service
request (Cr1S).

licensedMaterial----Pr~perty of IBM
20(' VS APl Program Log; c

Exit: Retu'rns

SCRUAIT

Modul~: APLSCMSG

~alled~: APLFXIIM

Description: Executes YYRWAIT service
request (eMS).

Exit: Returns

SCR~IAIT

Module: APlYUMSG

S;alled~: SCFXI via macro APLCCHl
when interpreter issues YYRWAIT

Description: Waits until a user
presses attention to unlock the
keyboard after sending a message.
This function is not provided for
display t~rminals. to prevent lockout
when TCAM has no read pe~ding on the
terminal. Instead, an immediate
return ;s made with a normal return
code.

Cal~: Macros APLDEFN, APLCEHTR,
WAIT. APlCEXIT

SCSAVE

Modul~: APLSClIB

Ccllled By: APLFXIIM

D~~iption: Executes YYSAVE service
request (eMS).

SCSAVE

Module: APLYULIB

~ll~~: APLYUFXI

D~script;on: Executes the YYSAVE
sQrvice reauest (TSO). An internal
routine. lIBDSH, is invoked to build
the OS data set name and to determine
password ownership of the library. An
attempt is now made to allocate the
d~ta set with' DISP=OLD. If the data
s~t is now fou~d. it Is allocated
with a DISP=HEW. and space determin~d
by the current data in the active
workspace. The data set is opened. To
write the file to disk. the file is
prefixed with an 3D-byte header.

J

J

L

Output is written directly from the
workspace to the data set using
chained scheduled BSAM output. When
all the data is written, the LIBLSN
is called to close and free the data
set and the 80 bytes are restored to
WSMBUFF.

Exit: Returns

SCSAVOFL

Module: APlSCERR

Call~: CMS executor routines.

Description: Handles overflow of
executor save area stack (CMS).

Exit: ABEND

SCSAVOFL

Modula: APLYUERR

~a ll...f"('L.Il.~: Macro APlCEN1 R

Dt'!5C r i.e.li.Q..o.: HC'ndl e s over f I 010) 0 f
supervisor save area stack (TSO).

Exit: ABEND

SCSPIE

Module: APlSCERR

Callp.d B~: CMS, SPIE Exit

Dp.s£LiE1l9~: For interpreter,
auxiliary processor, or shared
variable processor program check.
returns to CMS with PIE PSW altered
so tha~ control is passed to SCAPl
~Ith a YYPRGX service request; for
supervisor progr~m check, issues
ABEND mC'cro.

f~it: See description

SCSPIE

Module: APlYUERR

~~ll~~: MVS Program Interrupt
H.mdler

Description: SPIE exit routine for
interpreter and supervisor (TSO).

Exit: For interpreter or shared
variable processor program check.
returns to MVS with PIE PSW altered
to resume at 'DOYYPRGX' in this

module. DOYYPRGX will then exit to
the interpreter by giving control to
its main nntry point, APLIINIT. For
supervi program check, issues
ABEND macro with system code 'OCX'.

SCSRETR

Module: APlYUSHV

Called B~: APlYUFXI

D<;!scr..i.n.tion: This entry point
execut~5 the YYSRET service request
erSO) .

C~lJs: ASVPSRVC, SCSAVOFl. Macros
APlCENTR. APlCEXIT, ASVPON, ASVPOFR,
ASVPRET. ASVPQRY, ASVPACC. ASVPSPC,
ASVPREF, ASVPCPY, ASVPSOF, ASVPWAIT,
WAIT

Exit: Returns

SCSTAE

Moq~lle: APlSCERR

Cilllp.d __ ~j!: eMS STAE Exit

Description: Address stops virtual
~~chine to allow u~er to use CP
commands to take storage dump or
p~rform other problem determination
act ions (CMS >.

Exit: Return to CMS ABEND Hondle~

SCSTAE

r1orlule: APLYUERR

CilJLled B~: MVS ABEND Handl~r

De~~rip~~~: This is the ABEND (STAE}
~xit routine which receives control
for all abends. The basic thrust of
error recovery is to get the active
wor"kspace saved in CONTINUE, and then
to cause T50 to reinvoke a clean copy
of VS APL which will reload the
CONTINUE workspace and continue
processing. There are two principal
kinds of abends: 1) X22 and X3E
~bends brought about by opp.rator
cancel, timing, TeAM error, etc. In
the~e instances, the CONTINUE
workspace is saved normully; 2) all
other abends constitute error
situations in which the CONTINUE
workspace is marked nonloadable.

Exit: Returns to MVS ABEND Handler

Licensed Material--Property of IBM
Se~tion 3. ¥rogram Organization 201

SCSVACC

Module: APlSCSHV

Called By: APlFXIIM

Description: Executes YYSACC service
request (CMS).

Calls: ASVPSRVC

~: Returns; SCSAVOFl(Error)

SCSVACC

Module: APlYUSHV

Called By: APlYUFXI

Description: This entry point
executes the YYSACC service request
CTSO >.

Calls: ASVPSRVC. Macros API.CENTR,
APLCEXIT, ASVPOH, ASVPOFR, ASVPRET,
ASVPQRY, ASVPACC, ASVPSPC, ASVPREF,
ASVPCPY, ASIJPSOF, A'SVPWAIT, WAIT

Exit: Returns

SCSVCDPY

Module: APlSCSHV

~9~: APLFXIIM

D~scription: Exacutes YYSCOPY service
request (et1S).

Calls: ASIJPSRVC

Ex, t: Returns: SCSA\lOFLC Error)

SCSVCDPY

Moduli: APlYUSHV

C~l~d ~: APLYUFXI

Description: This entry point
executes the YYSCOPY service request
CTSO)'

C~lls: ASVPSRVC, SCSAVrFL. Macros
AP"LCENTR. Af'lCEXIT, ASVPON, ASVPOFR,
ASVPRET, ASVPQRY, ASVPACC, ASVPSPC,
ASVPREF, ASVPCPY, ASVPSOF, ASVPWAIT.
WAIT

Exit: Returns

SCSVOFF

Module: APlSCSHV

Licensed Material--Property of IBM
202 VS APL Program Logi c

Cal!~~~: APlFXIIM

Descr; pt i P.Q :·Executes YYSOFF serv i ce
request (CMS).

Calls: ASVPSRVC

Exit: Returns; SCSAVOFl(Error)

SCSVOFF

Modul~: APlVUSHV

Call~d By: APlYUFXI

Descripti~n: This entry point
executes the YYSOFF service request
CTSO)'

Ca~: ASVPSRVC, SCSAVOFl. Macros
APLCENTR, APLCEXIT, ASVPON, ASVPOFR,
ASVPRET, ASVPQRY, ASVPACC, ASVPSPC.
ASVPREF, ASVPCPY, ASVPSOF, ASVPWAIT,
!1M IT

Exit: Returns

SCSVDFFR

tlodule: APlSCSHV

CilUssL1U!: APlFXIIM

O~~.d..£t i on: Executes YYSO FFER
ser~ice reqUest (CMS).

~alls: ASVPSRVC

f.xit: Returns; SCSAVOFLCEr-ror)

SCSVOFR

M~(~/le: APLYUSHV

C~lJed B~: APLYUFXI

p~_c;cription: This entr·y point
ex€cutes the YYSOFFER service request
("l so >.

~!'!J.J. s: A SVPSRVC. SCSAVOFl. Macro s
APLCENTR, APlCEXIT. ASVPCN, ASVPOFR,
ASVPRET, ASVPQRY, ASVPACC, ASVPSPC.
ASVPREF, ASVPCPY, ASVPSOF, ASVPWAIT,
WAIT

Exit: Returns

SCSVDN

Modul~: APLSCSHV

Ci!1~led h: APLFXIIM

J

Description: Executes YYSON service
request (CMS).

Calls: ASVPSRVC

Exit: Returns; SCSAVOFLCError)

SCSVON

~9dulp.: .APLYUS~JV

Callp.~: APLYUFXI

Description: This entry point
executes the YYSON service request
CTSO).

~lli: ASVPSRVC, SCSAVOFL. Macros
APLCEHTR, APLCEXIT, ASVPON, ASVPOFR,
ASVPRET, ASVPQRY, ASVPACC. ASVPSPC,
ASVPREF, ASVPCPY, ASVPSOF, ASVPWAIT,
WAIT

Exit: Returns

SCSVPINI

Modul._til: APLSCSVI

Called Bv: APL

Description: Initializes shared
memory Dnd a task block for thp
interpreter and for each auxiliary
processor running with VS APL under
eMS.

Calls: CMS to establish external
interrupt handler and each auxiliary
processor to initialize. Macro
HHDEXT.

Exit: To first auxiliary processor; as-a result of its sign-on requp.st,
control is passed to ASVPSERV which
exits to the next auxiliary
processor; when all auxiliary
processors have bepn called, contre]
returns to routine APl.

SCSVQUER

Module: APlSCSHV

Ca~led By: APLFXIIM

Description: Executes YYSQUERY
service request (eMS).

Calls: ASVPSRVC

.fill: Retu,'ns; SCS.I\VCFl(Error)

SCSVQUER

t.'b:?_cLY.,1 e: APl YUSHV

c?U_?-!i...Jb!: APL YUFXI

PBal<.ripti_Q.Q: This entry point
rx~cutes the YYSQUERY service request
(TSO)'

Calls: ASVPSRVC, SCSAVOFL. Macros
t'lTcENTR, APLCEXIT, ASVPON, ASVPOFR,
ASVPRET, ASVPQRY, ASVPACC, ASVPSPC,
A5VPREF, ASVPCPY, ASVPSOF, ASVPWAIT,
l-lA 1 T

Exi.!: Returns

SCSVREF

t'L!liLu 1 e: APL SC S H V

~..!'J 11?£L.~~: APL fXIIM

~.r:L"Lc..r..i.e..tLQ.Q: Ex~cutes YYSREF serv ice
rACjuesl: (cr'1S) ,

C<>-lJ.1!: AS\lPSRVC

f~..Li: Rp.i:'Ji'n s; SCSAVO r L (Error)

SCSVREF

~~Qul~: APLYUSHV

£ill-2_~:LJ!.ll: AP L YUFXI

DpscriJ:u..LQ..!l: 1his entry point
e~ecutes the YY~REF service request
CTSO) .

.~~Jl:!: ASVPSRVC, SCSA\lOFl. Macros
AFlCENTR, APLCEXIT, ASVPOH, ASVPOFR,
ASVPRET, AS\lPQRY, ASVPACC, ASVPSPC,
ASVPREF, ASVPCPY, ASVPSOF. ASVPWAIT,
l·):\I T

.~.Lt: Returns

SCSVRETR

Mods,-lp.: APLSCSHV

C"l..UerL.ful: APLFXIIM

pp.scription: Executes YYSRET service
r' equ I?st (CI·1S).

£:"lll~: ASVPSRVC

Exit: Returns; SCSAVOFl(Error)

Licensed Material--Property of IBM
Section 3_ Program Crg~nizQtion 203

SCSVSPEC

Module: APlSCSHV

Called 8y: APlFXIIM

Description: Executes YYSSPEC service
request (CMS).

Ca 11 s: ASVPSRVC

Exit: Returns; SCSAVOFlCError)

SCSVSPEC

Module: APlYUSHV

Called 8y: APLYUFXI

D~ption: This entry point
executes the YYSSPEC service request
OSO).

Calls: ASVPSRVC, SCSAVOFl. Macros
APlCENTR, APLCEXIT, ASVPOH, ASVPOFR,
ASVPRET. ASVPQRY. ASVPACC, ASVPSPC.
ASVPREF, ASVPCPY, ASVPSOF, ASVPWAIT,
WUT

Exit: Returns

SCSYSER

Module: APLSCERR

Call~: APlFXIIM

Description: Executes the YYSYSER
service request (CMS).

~x~t: Returns; SCSAVOFlCError)

SCSYSER.

Module: APLYUERR

Called By: AFlYUFXI

Description: Executes tho YYSYSER
service request (TSO).

Ex it: Returns; SCSAVOFU Error)

SCTABS

Module: APLSCTYP

Called By: APlFXIIM

Description: Executes YYTA8S service
request (CI"IS).

Exit: Returns; SCSAVOFlCError)

licensed Material--Property of IBM
204 VS APl Program Logi c

SCTABS

Module: APLYUTYP

Called By': SCFXI via macro APlCCAll

Description: This entry point
provides supervisor support for
QUAD-HT (lSO).

Calls: Macros APlDEFH. APLCEHTR,
APlCEXIT

Exit: Returns

SCTIHE

Module: APlSCMSC

Called By: APlFXIIM

Description: Executes YYTIME service
request (CMS).

Exit: Returns; SCSAVOFl(Error)

SCTIHE

Module: APlYUMSC

Called~: APlYUFXI

Description: Executes the YYTIME
service request (TSO). YYTIME finds
the current time and date in VS APl
stc.ndard time format and returns it
in the first eight bytes of WSMSVlRQ.

~: Returns; SCSAVOFlCError)

SCTRAN

Moq~L~: APlSCMSG

Calle~: APlFXIIM

O~scription: Executes YYTRAH service
request (CMS).

Exit: Returns; SCSAVOFLCError)

SCTRAN

Module: APlYUMSG

Callpd 8y: SCFXI via macro APlCCAll
when interpreter issues APLSVCC
YYTRAN

Description: Executes WTO or TPUT to
transmit a message to operator or
user (TSO). The message is translated
from Z-code to lowercase EBCDIC. If
it is to go to the operator. a 4-byte

J

WTO prefix is generated. and the WTO
macro is used to send it. TPUT is
used. otherwise. to send the message
to the T50 user specified in the
command. For MVS. the 'USERIDl' form
of TPUT is issued.

Calls: Macros APlOEFN, APlCENTR.
APlCEXIT, APlCCVO, JPUT, WTO

Exit: Returns; SCSAVOFlCError)

SeTYI

Modulg: APlSCTYP

Callp,d 8y: SClYOI, APlFXlIM

Description: Executes YYTYI service
request f~r typewriter terminal
C CMS) .

~: Returns; SCSAVOFl(Error)

SeTYI

Module: APlYUTYP

Calle~: 5CFXI via macro APlCCALL

~scription: This entry point
performs terminal input (T50).

~: APLYUlRM. Macros APlDEFH.
APLCEHTR, APLCEXIT

Exit: Returns

servo

Module: APlSCTYP

£<I11tad B.J!: SCTYOI, APlFXIIM

Description: Executes YYTYO service
request for typewriter terminal
(CMS).

Exit: Returns; SCSAVOFL(Error)

seTVO

Modul~: APlYUTYP

Called By: SCFXI via macro APlCCAll

Description: This entry point
performs terminal output (TSO).

~; APlYUTRM. Macros APlDEFN,
APLCENTR, CHKSIHK (LOCAL macro),
APLCEXIT

seTVOI

Module: APlSCTYP

CaJ)tad By: APlFXIIM

Dp.scription: Executes YYTYOI service
request for typewriter terminal and
read input (CMS).

Calls: SCTYO, SCTYI

Exit: Returns; 5C5AVOFLCError)

SCTVOI

Module: APlYUTYP

£.alled By: SCFXI via macro APlCC.'\Ll

Dpscription: This entry point
tr~n!irnits a prompt to a terminal,
then performs terminal :nput (T50).

CMlls: APlYUTIO, SCTYO, SCTYI.
M.:lcrOs APLDEFN, ft,PLCENTR, APlCCAll.
CHKS!NK, APLCEXIT

,Exit: Returns

SCIIIDTH

M~1ule: APLSCTYP

.C<"ll~d ~.J!: APlFXlIr1

Q5ta.<;.!:.lpt i ~!l: Exec'J tes YYWIDTH serv i ce
r~qtlest (eMS).

~~it: Returns; SCSAVOFL (Error)

SCJ-lIDTH

~'o~i9.: APLYUTYP

£~l~d_~: SCFXI via macro APLCCALl

Q!'.~~r..ietio!l: This entry point
provid~s 5unervisor support for
QUAD-PI.oJ (TSO),

Ca)....!Jl: Macros Af'LDEFN, APLCENTR.
APLCEXIT

SClJSID

Module: APLSCMSC

Licensed Material--Property of IBM
Section 3. Program Org~n:~ation 205

CoIled By: APLFXIIM

De~cri~tion: Executes YYWSID service
request (CnS).

Exit: Returns: 5CSAVOFL(Error)

SC!.JSID

Module: APlYUMSC

Celll f'd B~: AP L YUFXI

De~cription: Executes the YYWSID
service request (TSO). In res~onse to
a)WSID co~~~nd, YYWSID either
changes the active workspace 10 or
returns the current 10.

~nlls: HELPENQ

f,xit: Returns; SCSAVOFlCError)

SSSATACH

Module: APLSCTYP

Called~: APlFXIIM

D?~cri..p.tion: Executes YYWIDTH service
req..iest (C:1S).

Exit: Returns; SCSAVOFL(Err'or)

licensed Material--Property of IBM
206 IJS APl Program log; c··

SSSATACH

Module: APlYUSSH

Cfilled By: Operating system

Op'~criptio~: This entry point
intercepts the ATTACH 5VC s~ that
those IQE~ that are needed can be
propagated to the new TCB (TSO).

Exit: Returns

SSSROUTR

Module: APlYUSSH

C~lled By: Operating system

De5~LlP.tion: This SVC intercept is
called when an intercepted SVC is
issued under the current TCB (T50).

Exit: Returns

SSSSVC

Module: APlYV5SH

Caj~~: APlYUINI

De!j.!;ri"tion: This entry point .creates
or deletes SVC subscreens and their
associated intercept routines (TSO).

~£!~~: Macros FESTAE. FREEMAIN.
GErMAIN, SETLOCK. TESTAUTH. MODESET

Eill: Returns

J

J

SECTION 4. DIRECTORY

This section includes two lists of entry points and the names of
the modules in which they appear. The first list is given
alphabetically by pntry point: the second is given
~lphabetically by module name. In each list, column 3 gives the
numbers of diagrams from Section 2 of this book in which the
entry point or modUle is referred to.

FOR DOS/VS: The conversion modules for DOS/VS differ from thoSQ
for OS/VS. These modules are functionally the sam~, but the
DOS/VS modules are designed to interface with DOS/VS and the
OS/VS modules with OS/VS. The OS/VS modules begin ~lith the
characters APLO; the DOS/VS modules begin ~Iith the charact~rs
APLD. To avoid unnecess~ry repetition in this publication, only
the OS/VS names are used in this publication wherever possible.
Unless explicitly noted otherwise, substitute the prefix ArlO
for APlO when using this publication for DOS/VS VS APL.

ENTRY POINTS A~D MODULE NAMES SORTED BY ENTRY POINTS

Entry
point
or
Routine
Nair"!

APCREHF.
APDFN
APDROP
APFIlSIZ
APIO
APL

APlACC8E
APLACDSl
APLACHlP
APL.~cr-iDF
APlACMDX
APLACMER
APLACNDP
APLACOPl
APLACOPY
APLACPRM
APlACPRO
APlACQRY
APLACQUE
APlACRCP
APLACRDA
APLACRSA
APLACSF
APlACXCI'1
APlAD
APlADMSG
APLADSON
APLADTTM
APLAERRM
APLAESTK
APLAItHT
APlALINE
APLAMODE
APLAPAGE
APLAPASS
APLATERM
APLATYI

Module
Micro
fich!!
Name

APlPAPCD
APLPAPCD
APLPAPCD
APLPAf'CD
APlPAf'CD
APL
APlYUINI
t.PLACCBE
APlACDSL
APL/lCHLP
APLACNDP
APLACMDX
APLACQRY
APlACHDP
APlACOPY
APlACOPY
APLACPRM
APlACPRO
APlACQRY
APlACQUE
APlACRCP
APL.fl.CRDA
APLACRSA
APlACSF
APLACXCM
APLAD
APLADMSG
APLACRDA
APLADTTM
APlASCHD
APlAESTK
APlASCHD
APLALINE
APLACtlDP
APlALINE
APLASCHD
APLASCHD
APLASCHD

Method of
op-eration
Diagram

1.1. 1

1.1. 1
1. 1. 1
1.1. 1

1.4

8.2.1
8.2.1

8.2.1

8.2.1

8.2.1
8.2.1
8.2.1
8.2.1
8.2.1
8.2.1
8.2.1
8.2.1
8.2.1

·8.2.1

8.2

8.2

8.2
8.2
8.2

'.

Entry
Point
or
Routine
tIt'! ~'!

APlATYO
APLATYOI
APLIIU/I.L T

APLAUAlN

APLAUCAE

APlAUNCO

APLAUPRO

APlAUSRX
APlAXCMD
APLFXIIM

APLIINIT
APlKADEF
APl.KADSP
APlKAGBL
APlKAHST
APlKAMIX
APLKASON
APlKEIiCP
APLKEMGR
APLKIFOH
APLKISVI
APlKLIBF
APLKLIBG

M~dule
Micro
fiche
U~r'"'!

APLASCHD
APLASCHD
APLAK
APLASA
APlAYA
APlAKP
APLASP
APlAYP
APLAK
APlAS
APlAY
"PLAK
APlAS
APLAY
APLAK
APLAS
APLIIY
APlAUSRX
APLASCHD
APLFXIIM
APLKIFIX
APlPFXIM
APLSCFXI
APLYUFXI
APL YUII"!
APlITINI
APlK.~.DEF
APLKADSP
APLKAGBL
APLKAHST
APLKflMIX
APlKASON
APlKEHCP
APlKEMGR
APLKIFIX
APlKISVI
APLKLI8F
APLKLIBG

Method of
o"p.r~tion
Diagr<ll~

8.2
8.2

8.2

1.3
1.1
1.2
1.4

1.3
1.3
1.3

1.3
1.3
1.3
1.3
1.3
1.3
1.3

Licensed Material--Property of IBM
Section 4. Directory 207

Entry Entry
Module Point Module Point

Dr Micro- Method of Dr Micro- Hethod of
Routine fiche Operation Routine fiche Operation
Name Name Diagram Name Nal:19 Diagram ..)
APlKLIBI APlKLIBB 1.3 APlXGKON APlXGKON
APlKLIBR APlKLIBG 1.3 APlXGKR APlXGKR

APlKLIBR 1.3 APlXGKRQ APlXGKRQ
APlKLIBT APlKLIB8 1.3 APlXGKRR APlXGKRR
APlKlUIT APlKLIBC APlXGKT APlXGKT
APlKlUTM APlKLIBC APlXGKU APlXGKU
APlKPFAP APlKASTB 1.3 APlXGS APlXGS
APlKPFOH APlKASTB 1.3 APlXGY APlXGY
APlKSPRG APlKVEXC 7.0 APlXGYON APlXGY
APlKSSR APlKSSVP 1. 3, 1. 3.1 APlXGYRQ APlXGY
APlKSSUB APlKSSUB 1. 3. 1. 3.1 APlXMKSG APlXMKSG
APlKTCTl APlKTCTl 1.3 APlXMSSG: APlXM5SG
APlKTCWR APlKTCWR 1.3 APlX~1YSG APlXMYSG
APlPAPAC APlPAPAB 1.1.1 APlXPK APlXPK
APlPAPOF APlPAPAB 1.1.1 APlXPY APlXPY
APlPAf'PR APlPAPAB 1.1.1 APlXSTAK APlXSTAK
APlPAPRT APlPAPAB 1.1.1 APlXTRAN APlXTRAH
APlPAPSF APlPAPAB 1.1.1 APlXTREZ APlXTRAN
APlPCENT APlPCOEX 1.1 APlXTRZE APlXTRAH J APlPCOAP APlPCOAP APlXVERS APlXVERS
APlP126T APlP126T APlX~IKWP APlXWKL-JP
APlSCSSI APlSCSSI APlXWSL·JP APlSCSVI
APlSflACC APlSHACC 1.2.1 APlXWYWP API.XWYWP
APlSHBPB APlSHBPB 1. 2.1 APlYUSVI 1.2.1. 8.4.1.
APlSIiBVB APlSHBVB 1. 2.1 8.4.3
APlSHCPY APlSHCPY 1. 2.1 APl YOUR APlYDAIR
APlSHGET I>.PlSHGET 1. 2.1 APlYUCMD AP,l YUCMO
APlSHOFR APlSHOFR 1. 2.1 APlYUCNV APlYUCNV
APlSHPST APlSCSVI 1. 2.1 APlYUEXC APlYUEXC
APlSHPUT APlSHPUT 1. 2.1 APlYUFXI APlYUFXI 1.4
APlSHQUE APlSHQRE APlYUffSH APlYUHSH
APlSHREF APlSHREF 1.2.1 APlYUlNE APlYULNE

~ APlSHRET APlSHRET 1.2.1 APlYURVC APlYURVC
APlSliSOF APlSHSOF 1. 2.1 APlYUTBL APlYUTBl
APlSHSON APlSHSON 1.2.1 APlYUT'IO APl YUTIO
APlSHSPC APlSHSPC 1. 2.1 APlYUUSR APlYUUSR
APlSHSRD APlSHSRD 1. 2.1 APlIOO APlYUI00
APlSHSua APlSHSUB 1. 2.1 APllOO 1.2.2. 1. 4.1
APLXACSO APlXAC 8.3 APllOOK APll OOK 1. 3.2
APlXACSV APlXAC APLlOOKO APllOOKO 1. 3.2
APlXAKSO APlXAK 8.3 APLl 0 1 APlYUI01
APLXAKSV APlXAK 8.3 APllOI 1.2.2. 1. 4.1
APLXAINP APlXASD 8.3 APlI02 APlYUI02 1. 4.1

APlXAYD 8.3 APl102K APll 02K 1.3.2
APlXAMSG APlXASD 8.3 APlllO APllI0 1. 2.2

J APlXAYD 8.3 APlIll APlYUl11
APlXBACK APlXSTAK APUll 1.2.2. 1. 4.1
APlXBSAB APlSCSVI APU20 APLl20 8.4.1
APlXBSXT APlSCSVI APLl21 APl121
APlXBYAB APLYUSVr 1.2.1. 8.4.1, AP1121K AP1121K 1.3.2. 8.4.3

8.4.3 APU23 AP1123 1.2.2. 1. 4.1
APLXBYXT APlYUSVI 1.2.1. 8.4.1, 1. 3.2

8.4.3 AP1123K AP1123K 1. 3.2
APlXCAll APlXSTAK AP1124K AP1124K 1. 3.2
APlXDKr1P APlXDKMP APLl2SK AP1l2SK 1. 3.2
APlXDUCl APlXDUMP AP1126 AP1126 8.4.2. 8.4;3
APlXDUMP APlXDUMP AP1126T AP1126T
APlXDUOP APlXDUMP AP1l32K AP1132K 1. 3.2
APlXFINT APlXFSFl APlU9K AP1l39K 1. 3.2

APlXFYFl APL210 APlYU210 1. 4.1
APLXFSFL APlXFSFl APOPEN APlPAPCD 1.1.1
APlXFTRM APlXFSFl APPASSWD APlPAPCD 1.1.1

APlXFYFl APSHARE APlPAPCD 1.1.1
APlXFYFl APlXFYFl APVIO APLPAPCD 1.1.1
APlXGCAT APLXGCAT ASVPSERV APlSCSVI 1.2.1. 8.4.3
APlXGCHC APlXGCHC APlYUSVI 1.2.1. 8.4.1.
APlXGCOt1 APLXGCOM ·8.4.3 J
licensed Material--Property of IBM
208 VS APl Program Logic

Entry Entry
point Hodule

"ethod of
Point Hodule

or "icro- or Hicro- Hethod of

\..
Routine fiche oJ)eration Routine fiche O,:eration
Name Narr.'! Diagram N<lne Na~a Diagram

ASVPSRVC APlYURVC ERSAVEAR APlPCOEX 1.1
A5VPSRVC ERTlMOAT APlPSERR

BEXIT APlKASTB FREESTOR APl.PAPGO
COIBM APlCOIBt1 FSMBUZZ APlPAPFS 1.1.1
CVCULl APlCCUll FSMFORMT APlPAPFS 1.1.1

APlOCUll FSf1GET APlPAPFS 1.1.1
CVDATE APLCMISC FSfiHCOPY APlPAPFS 1.1.1

APlOMISC FSMMIIH APlPAPFS 1.1.1
APl QMlSC FSMMTYPE APlPAPFS 1.1.1

CVOIRE APlCMISC FSI1READ APlPAPFS 1.1.1
APlOD!RE FSMRFORM APlPAPFS 1.1.1

CVCISP APlCDISP FSf'lSETC APlPAPFS 1.1.1
APLODISP FSMSUB1 APlPAPFS 1.1.1
APlQDISP FSMSU82 APlPAPFS 1.1.1

CVFUNC APlCFUNC FSMSUB3 APlPAPFS 1.1.1
APlOFUrlC FS~il~RIT E APlPAPFS 1.1.1
APlQFUtlC GDDMCRET APlPAPGB 1.1.1

CVGD!R APLODIRE GDDMRCTl APL?APGC 1.1.1
CVGRUP APlCGRUP GDDr1SCTL APlPAPGB 1.1.1

APLOGRUP GDDI1SDAT APlPAPGB 1.1.1
APLQGRUP GDDr150FF APlPAPGB 1.1.1

CVIBHM APlCIBNM GODX APlPAPGD 1.1.1
APlOIE}NM GDDXWIT APlPAPGD 1.1.1
APl.QIBNM GETSTOR APLPAPGO 1.1.1

CVIIUT APlCHIIT 6.0 IAB~IM APLIATRN 4.1. 5
APLOHIIT 6.0 lAU.L370 APLI EXFR
APLQINIT 6.0 IACHK APLIACHK

CVIOER APtO'lISC IACIRClE APllACIR
APLOilISC IACMX APLIECMX

CVL EAR APlCI.EAR I ACOF1MA APLIERHO
APLOlEAR IADOOM APLIADOM 4.1. 3
.t.PLQl EAR IADEAL APLIATRN 4.1.5

CVPARM AP:'CFARM rADECODE APLIADEC 4.1. 3
APLOPAR~1 I A.Dr-ORM APLIAFOR 4.1. 3
APLQPARM !AD5Hf.RE APLIATRN 4.1. 5

CVPRTR APlCMI~,C I AD T R.t Ii APLIATSP
APLOMISC I A O'V B APLIEFCH
APLQMISC l~E~CODE APLIAENC 4.1. 3

CVRPRT APLCRPRT IAEXECTE APLIATRN 4.1. 5
APlORPRI I A EXN/,.'·1E ~.PLIATRN 4.1. 5
APLQRPRT IAEXPR APLIATRS

CIJSAVE APlCSAvE UEXSTCK APLIATRN 4.1. 5
APlOSAVE lA~ACT APLIATRS
APLQSAVE IA!='ACTRl APLIATRU 4.1. 5

CVSHIP I.PlCSHIP I A FCfi!~AM APlIANAM
APlOSHIP HFlCL APLIATRH 4.1. 5

CVSLST APlOSlST 1 AGr!1T APLIAGFM
CVSPIE APLCSPIE IAGFMT2 APLIAGFM

APLOSPIE rAGOUT APLIAGOU 4.1. 4.1. S
APlQSPIE IAGPADE APLI AGRD 4.1. 3

ClJrBCD APLCTBCD IAHT5PEC APLIASYV 4.1. 5
APlOTBCD IAIPROD APlIAPRD 4.1. 3

CVTIDY APlcmsc T.AIROlL A~LIATRH 4.1. 5
APlOTIDY I'd. 00 APLIATRN 4.1. 5
M'LQMISC IALOGR APLIATRS

CVVARB APlCVARB I t,MOON APLIADOM 4.1. 3
M'!,OVARB I Af"lF-ORM API.IAFOR 4.1. :5
APlQVARB If>.M5HARE APLI.HRN 4.1.5

CVWKSP APLWI(SP If>.MTRAH APLIATSP
AP l Ot~KSP IAPLFUN APl!ATRN 4.1. 5
AP L Q!·JK SP IAPOW APLIATRN 4.1. 5

CVWSFH APlCWSFN IAQCR APLIAQFN
APLOl:SFN rAQDl APLIAQFN

OMSSCND A?lYUSCN IAQDSPEC APLIATRH 4.1. 5
DMSSCHH APl YUSCli IAQEX APLIMFH
EREHOEX APLPCOEX 1.1 IAQFX APLIAQFH
ERMSGRTH APLPSERR IAQNC APLIAQFH

Licensed Material--Property of IBM
Section 4. Directory 209

Entry
Foint Module

Entry
Point Module

or Micro- Method of or Micro- Method of
Routine fiche O::reration Routine fiche Operation

,J Ha~e Ham~ Diagram Harr.1! H<lrn~ Diagriam

I A Q ~IL APLIAQFN ~.1.4, 4.1. 5
IAQSVC APLIASHF IESFTND APLIESPA 3.2
IAQSVO APLIASHF IESFR!:E APLIESPA 3.2
IAQSIIQ f.PlIASHF IESGETN />.PLIEFCH
IAQSVR APllASHF IESGETV APLIErCH
IAQUADS APLIATRH 4.1. 5 IESGINIT APLIEFCH
IAQUA.DSA APLIATRN 4.1. 5 I ESNMIE APLI ESPA 3.2
IAREDU APLI ARED IESPACST APLIESPA 3.2
IARESIDU APLIATRN 4.1. 5 IESTOSTK /I P LI EXAR 4.1
ltl.REVARY APLIAROT IESUNFUH APLIEFNM 4.1. L 4.1. 2
IAROLL APlIATRN 4.1. 5 IESYNN APLIESPA 3.2
lAROTA APLIAROT IETKDP APLIETAK
IARlO! APLI ASYV 4.1. 5 I EUNfN APLIEFNM 4.1.1, 4.1. 2
IARTRACT APLII',SHV 4.1. 5 IEXARCH APLIEXAR 4.1
IASCAN APLIASCN IEXIT APLIEXAR 4.1
IASCOPY APLIASHV 4.1. 5 ITBFTYO APL ITSUB 4.2
IASFIND APLIAHAM ITBLDID AHITIDS 3.2
IASHADO APLI ASYV 4.1. 5 !TBLDOD APLITIDS 3.2
IASHRPST APLIATRN 4.1. 5 ITCKAlPN APLITSUS 4.2 J !ASHSPEC APLIAS~IV 4.1. 5 ITClOSET APl.IHDC 3.0, 3.1, 3.2
IASQRT APLIATRS IT WC l [A APl ITCML
IASVOFF APlIASHV 4.1.5 ITCMCONT APLITCMT
IASVON APLIASHV 4.1. 5 ITCMcopn :.:-:.. IT .:r:O
IA::)y5PEC APLIASYV 4.1.;; lTCMCOPY APLITCrlC
IASYSPST APLIASYV 4.1. 5 ITCMDOST APLITCMS
IASYSREF APlIASYV 4.1. 5 I TCr1DROP APlITCML
IATABREF APlIASYV 4.1.5 ITCMERAS APL ITCME
rAllDY APLIATRN 4.1. 5 ITCMFNS APL ITCMF
1A TKDP APLIAT AK ITCMFVG APL ITCMF
IATOBCD APLIAlBC ITCMGROU ArL ITCMG
IA TCBCD2 APLIATBC I rcr-lGR? APLITCr1G
IAtHlSHAD APLIASYV 4.1.5 IiCM0~PS APLITCMF J IAUNSHR APLIASHV (t. 1. 5 lT01LIB APLITcr1L
HVALNAM AP LIAHAf1 ITCMLOAD APLITCflL
IEABJ:ND APLIEXAR 4.1 I TCM~1SG APL !TCMT
IECHIX APLImND 4.1. 3 IT Ct10FF AF'llTCMT
IECMEX APLIECMX ITCI'10F'R APL !TeMT
IECOMMA APLIERHO ITCt1PCOP 6.PllTCMC
IECONVR APLIEFCH ITCWWOT APLITCMl.
IeCOpy AP LI ERHO ITCrlS/.VE APL ITCI'IL
I EDA TTN APLIEFXR ITCMS I Af'LITCMI
IEOYAD APLIESCA 4. 1 t 4.1.1, ITCM5IHL APL ITCMI

4.1.2. 4.1.:5 , ITCMS T AC APlITCMS
4.1.4, 4.1. 5 ITCMSyr1D APLI TCt1S

IEDYB .~PLIEFCH ITCMVAR:) APL ITCMF
IEEPSIOT APL!E!"SI !TCMt'IS 10 APLITCML
IEFIND APLIESPA 3.2 ITC;~l·13S1 APLI TCML
IEFREE AP LI ESP A 3.2 IleOFIN APLITCPI
IEFUNN APLIEFNM 4.1. L 4.1. 2 ITOEl HE APLITCflE
I E'.3ETtII APLIEFCH ITEf1PFUN APLITFUN
IEGETNL APLIEFCH !TERRORS APLITERR 4.2
IEGETtIR APLIEFCH ITEXECUT APLITEX 4.0, 4.2
IEGETV APLIEFCH ITFDCLOS . APlITFDC :5.0, 3. 1 , 3.2
I EGINJTI APLIEFCH ITFDCVT APLIH~CV 3.2
IEGINITL APLIEFCH ITFDEDIT APLITFDE 3. 0 , 3.1
IEGINITR APLIEFCH ITFDKILL APLI TFDC 3.0, 3.1, 3.2
IEGOGOMN APLIEFNM 4.1.l. 4.1.2 I TFDN!.olLN APLITFDN
IEGOGOSC APLIEFNM 4.1.1, 4.1. 2 ITFDOPEN APlITFDO 3.0, 3.1
IEGTSPAC APLIESPA 3.2 ITFDTSOF APLITFDC 3.0, 3.1, 3.2
IEItWB APLIEIDX 4.1. 4 ITFETCH APLITFCH
IEINDD APLIEIDX 4.1. 4 ITFNUlO APLITSUB 4.2
IElDSTK APLIEXAR 4.1 ITFORCOF APLITINP 2 . !) , 3.0
IEMONAD AP LI EtlND 4.1.3 ITININT APLIHlev 3.2
IENAME APLIESPA 3.2 ITINPlNI APLITlNP 2.0, 3.0
IERSHP APLIERHO I TINPUT APL ITINP 2.0, 3.0
IESCANG "APLIESCA 4.1. 4.1.1, ITLIBMSG APLITCML

4.1.2, 4.1.3, !TUNEO APLITHDR 3.0, 3.1, 3.2

lic~ns~d Material--Property of IBM
210 VS APl Program Logic

En~r¥
POln "odule

Entry
Point "odule

Dr Micro- Hethod of or Micro- Hethod of
Routine fiche operation Routine fiche operation
Name Name Diagram Name Name Diagram

InOUT APLITSU8 4.2 APlKVOPS 1.3
ITHAMINI APlITCME KLALLOC APLKLIBA 1.3
ITHUMCVT APLITNCV 3.2 KLClOS APLKVOPS 1.3
ITOKENIZ APLITlXS 3.2 KLDEALOC APLKLIBA 1.3
ITPRFNLN APLITSUB 4.2 KLGET APLKDOPS 1.3
ITPRINTC APLITSUB 4.2 APLKVOPS 1.3
ITPRL tHE APLITPRL 3.1 KLIB APlKLIBU 1.3
ITPRHAME APLITSUB 4.2 KLOAD APLKLIBU 1.3
ITPRHUM APLITSUB 4.2 KLOPEN APLKVOPS 1.3
ITPRWSID APLITCML KLPUT APLKVOPS 1.3
ITSAVWS APLITCML KLRDBITM APLKLIBV
ITSHV APLITCMl KMACRO APLKADSP 1.3
ITSQUIRT APLITSUB 4.2 KPASS APlKLIBU 1.3
ITSTSRCH APLITIDS 3.2 KPGMCHK APLKIFIX 1.3
ITSYSCMD APL ITCMD 5.0 KPOSTWAI APLKSSUB 1. 3, 1. 3.1
ITSYSERR APLITINI KPPSEARC APLKSSUB 1. 3, 1. 3.1
ITTIME APLITSUB 4.2 KPROCOFF APLKSSUB 1.:3 , 1.3.1
ITTIMSU8 APLITSUB 4.2 KRETSUB APLKSSUB 1. 3. 1.3.1
ITTYERR APLITSUB 4.2 KRSTEX APLKDOPS 1.3
ITTYIZ APLITINP 2.0, 3.0 APLKVOPS 1.3
ITUSADF APLITUSG KSAVE APLKLIBU 1.3
ITUSAG APLITUSG KSEIZE APLKSSUB 1.:3 • 1.3.1
ITUSASH APLITCMI KSETEX APLKDOPS 1.3
ITXBlNL APLITSU8 4.2 APLKVOPS 1.3
KABEXIT APLKADSP 1.3 KSINGAl APLKSSUB 1.:3 • 1. 3.1
KABOOTS APLKASTB 1.3 KSPALD APLKVAlD
KADEPON APLKADSP 1.3 KSPAUT APLKVAUT 7.0
KCASE2Q APLKSSU8 1. 3, 1. 3.1 KSPCMD APLKCVMD
KCASE3Q APLKSSUB 1. 3. 1. 3.1 KSPCPY APLKVCPY 7.0
KCATOFF APlKMSCB 1.3 KSPDOS APLKDDOS
KCDELAY APlKMSCA 1.3 KSPDSI APLKVDSI
KCDUMP APLKf'lSCA 1.3 KSPDSO APLKVDSO
KCLEANUP APLKSSUB 1. 3. 1. 3.1 KSPEXP APLKVEXP 7.0
KClEAR APLKLIBU 1.3 KSPFMT APLKVFMT 7.0
KCMBL APlKMSCB 1.3 KSPIMP APLKVIMP 7.0
KCOPA APLKlIBU 1.3 KSPIHT APLKVIHT 7.0
KCOPI APlKLIBU 1.3 KSPLBI APLKVLBI
KCOPO APLKLIBU 1.3 KSPLBO APLKVlBO
KCOPZ APLKLIBU 1.3 KSPMSG APLKVMSG
KCQAI APLKMSCA 1.3 KSPPIH APlKVPIH
KCQUOTA APLKMSCB 1.3 KSPSCN APLKVCMD 7.0
KCQZ APLKIFIX 1.3 KSPTPO APLKVTPO
KCSYSER APlKMSCA 1.3 KSPTRM APLKVTRM 7.0
KCTABS APLKMSCB 1.3 KTIMEREX APLKDOPS 1.3

\.., KCTIME APLKMSCA 1.3 APLKVOPS 1.3
KCTRAH APlKMSCB 1.3 KTOIHTER APLKIFIX 1.3
KCWIDTH APLKMSCB 1.3 KTRAl APLKTRQO 1.3
KDPCREG APLKDOPS 1.3 KTRCU APLKTRQO 1.3

APLKVOPS 1.3 KTRFA APlKTRQO 1.3
KDPFAB APLKVOPS KTRFI APLKTREQ 1.3
KDPFAP APlKDOPS 1.3 KTRFM APLKTRQO 1.3
KDROP APlKLI8U 1.3 KTRGD APlKTREQ 1.3
KFREESP APLKSSUB 1. 3, 1. 3.1 KTRGF APLKTREQ 1.3
KGCFILE APlKLIBV 1.3 KTRHC APLKTRQO 1.3
KGCOL APLKSSUB .1. 3, 1. 3.1 KTRIH APlKTREQ 1.3
KGDFIlE APLKLIBV 1.3 KTRRD APLKTREQ 1.3
KGDROP APLKLIBG KTRRS APLKTRQO 1.3
KGETSPAC APLKSSUB 1. 3, 1. 3.1 KTRRT APlKTREQ 1.3
KGLOAD APLKLIBG 1.3 KTRTRAH APLKTRAH 1.3
KGSAVE APLKL18G 1.3 KTRI4R APLKTRQO 1.3
KGUDIR APlKLIBG 1.3 KTSCHED APlKTSRV 1.3
KGUFIlE APLKLIBV 1.3 KTSCLEAR APlKTSRV 1.3
KGWDIR APLKLIBG KTSFCHK APLKTSRV 1.3
KGWLIB APlKLIBV 1.3 KTSFNDF APlKTSRV 1.3
KIDSETUP APLKSSU8 1. 3, 1. 3.1 KTSLIHO APlKTSRV 1.3

~
KIFOHEXT APLKIFIX 1.3 KTSlOCID APlKTSRV 1.3
KIHIEX APLKDOPS 1.3 KTSlOCR APLKTSRV 1.3

Licensed Materia1--Property of IBM
Section 4. Directory 211

Entry
point Module

Entry
Point Module

or Micro- Method of or Micro- Method of
Routine fiche Operation Routine fiche o~eratfon
Name Nar.le· Diagram Nams Nair:! Diagram

KWSID APLKLIBU 1.3 SCDTY! APLSCDPY
KYYTYOI APLKIFIX APLYUDPY
KYYOFF APlKMSCB 1.3 SCOTYIO APlYUDPY
OFF121X AP1121 SCDTYO APLSCDPY
PCATOFF APlPMISC APLYUDPY
PCCLEAR APlPLIBS SCDTYOI APlSCDPY
PCCMD APLPMISC SCDUMP APlSCERR 1.2
PCCOPA APLPLIBS APLYUERR 1.4
PCCOPI APlPMISC SCENDAPl APlSCINI 1.2
PCCOPo APlPMISC APLYUIHI 1.4
PCCOPZ APlPMIse SCEXTINY APLSCSVI
PCDELAY APlPTYIO SCFID APlSCFIO
PCDROP APlPLIBS SClIB APlSCLIB
PCDTYI APLPTYIO APL YULlB
PCDTYO APlPTYIO SCLOAD APLSCLIB
PCDTYOI APlPTYIO APl YULlB
PC DUMP APLPSERR SC~'BL APLSCt1SG
PClIB APLPLlBS APlYUMSG
PClOAD APlPLlBS SCMICRO APlSCINI 1.2
PCMBL APLPTYIO APlYUINI 1.4
PCOFF APLPMISC SCOFF APL SCt1SC
PCP ASS APLPMISC APlYUINI
PCQAI APLP~tISC SCPASS APlSCMSC
PCQUOTA APLPMISC APLYUMSC
PCQZ APLPMISC SCQAI APLSCMSC
PCRWAIT APLPTYIO APl YUttsc
PCSACC APLPSHVR 1.1.1 SCQUOTA APLSCMSC
PCSAVE APlPLlBS APLYUMSC
PCSCOPY APlPSHVR 1.1.1 SCQZ APLSCMSC
PCSOFF APLPSHVR 1.1.1 SCRWAIT APLSCMSG
PCSOFFER APLPSHVR 1.1.1 APLYUMSC

J PCSOt! APlPSHVR 1.1.1 SCSAVE APlSCLlB
PCSQUERY APlPSHVR 1.1.1 APl YULlB
PCSREF APlPStiVR 1.1.1 SCSAVOFL APlSCERR 1.2
PCSRET APLPStiVR 1.1.1 APlYUERR 1.4
PCSSPEC APlPSHVR 1.1.1 SCSPIE APlSCERR 1.2
PCSYSER APLPSERR APLYUERR 1.4
PCTABS APlPTY!O SCSRETR APLYUSHV
PCTIME APlPMISC SCSTAE APlSCERR 1.2
PCTRAN APLPTYIO APlYUERR 1.4
PCTY! APLPTYIO SCSVACC APlSCSHV
PCTYO APLPTYIO APlYUSHV
PCTYOI APlPTYIO SCSVCOPY APlSCSHV
PCWIDTH APLPTYIO APlYUSHV

J PCWSID APlPLIBS SCSVOFF APlSCSHV
PRDDIR APlPAPCO 1.1.1 APlYUSHV
PRDSEQ APLPAPCD 1.1.1 SCSVOFFR APLSCSHV
PWRITE APlPApCD . 1.1.1 SCSVOFR APLYUSHV
RET121X AP1121 SCSVON APLSCSHV
seAPl APLSCFXI 1.2 APLYUSHV
SCATOFF APlSCTYP 1.2 SCSVPINI· APLSCSVI 1.2.1, 8.4.3

APLYUTYP SCSVQUER APlSCSHV
SCATTN APlSCTYP 1.2 APLYUSHV

APLYUTYP SCSVREF APLseSHV
seClEAR APLSCMSC APLYUSHV

APLYUMSC SCSVRETR APLSCSHV
SCCMD APLSCMSC seSVSPEC APlSCSHV

APLYUMSC APLYUSHV
SCCOPA APLSCOPY SCSYSER APLSCERR 1.2
SCCOPI APLSCOPY APlYUERR 1.4
sccoro APLSCOPY SCTABS APlSCTYP 1.2
sccoPZ APLSCOPY APLYUTYP
SCDELAY APLSCMSC SCTIME APlSC~tSC

APLYUMSC APlYUMSG
SCDPA2 APLSCDPY SCTRAN APLSCMSG
SCOROP APLSCLIB APLYUMSC J APlYULIB SCTYI APLSCTYP 1.2

Licensed Material--Property o~ IBM
212 VS.APl Program logic

Entry
Paint Module

Entry
Paint Module

or Micro- Method of or Micro- Method of

~
Routine fiche operation Routine fiche operation
Name Name Diagram Name Name Diagram

APlYUTYP SCWSID APlSCMSC
SCTYO APlSCTYP 1.2 APlYUMSC

APlYUTYP SSATACH APlSCTYP
SCTYOI APlSCTYP 1.2 APlYUSSH

APlYUTYP SSSROUTR APlYUSSH
SCWIDTH APlSCTYP 1.2 SSSSVC APlYUSSH

APlYUTYP

ENTRY POINTS AND MODULE NAMES SORTED BY MODULE NAMES

Entry Entry
Module Paint Module Paint
Microf- or Method of M;crot- or Method of
fiche Routine operation fiche Routine operation
Name Name Diagram Name Name Diagram

APl APl APLASP APlAUATH
APlACCBE APlACCBE APLAUSRX APlAUSRX
APlACDSL APlACDSl 8.2.1 APLAY APLAUCAE
APlACHlP APlACHlP 8.2.1 APlAUNCO
APLACMDX APlACMDX 8.2.1 APLAUPRO
APlACHDP APlACNDP 8.2.1 APLAYA APlAUAlT

APLACMDF 8.2.1 APlAYP APLAUATN
APlAMODE 8.2.1 APlCCUll CVCUll

APlACOPY APlACOPl APLCDISP CVDISP
APlACOPY APLCFUNC CVFUNC

APlACPRM APlACPRM 8.2.1 APlCGRUP CVGRUP
APLACPRO APlACPRO . 8.2.1 APlCIBNM CVIBHM
APLACQRY APlACMER 8.2.1 APlCINIT CVIHIT 6.0

APlACQRY 8.2.1 APlClEAR CVlEAR
APlACQUE APlACQUE 8.2.1 APlCMISC CVDATE
APlACRCP APlACRCP 8.2.1 CVDIRE
APlACRDA APlACRDA 8.2.1 CVIOER

APlADSOH 8.2.1 CVPRTR
APlACRSA APlACRSA 8.2.1 CVTIDY
APLACSF APlACSF 8.2.1 APlCOIBM COIBM
APlACXCM APlACXCM 8.2.1 APlCPARM CVPARM

~
APlAD APlAD APlCRPRT CVRPRT
APlADMSG APlADMSG 8.2.1 APlCSAVE CVSAVE
APlADTTM APlADTTM APLCSHIP CVSHIP
APlAESTK APLAESTK APlCSPIE CVSPIE
APlAK APlAUAlT APlCTBCD CVTBCD

APlAUCAE APlCVARB CVVARB
APlAUNCO APlCl"KSP CVWKSP
APlAUPRO APLCWSFN CVWSFH

APlAKP APlAUATN APlFXIIM APlFXIIM
APlALINE APlALINE APLIACHK IACHK

APLAPAGE APLIACIR IACIRCLE
APlAS APLAUCAE APLIADEC IADECODE 4.1.3

APLAUNCO APLIADOM IADDOM 4.1.3
APLAUPRO IAMDOM 4.1.3

APLASA APLAUAlT APLIAENC IAENCODE 4.1.3
APlASCHD APlAERRM 8.2 APLIAFOR IADFORM 4.1.3

APlAINIT 8.2 IAMFORM 4.1. 3
APLAPASS 8.2 APlIAGFM IAGFMT
APLATERM 8.2 IAGFt1T2
APlATYI 8.2 APLIAGOU IAGOUT 4.1, 4.1.5
APlATYO 8.2 APLIAGRD IAGRADE 4.1.3
APlATYOI 8.2 APlIAHAM IAFCHHAM

~
APlAXCMD 8.2 IASFIND

licensed Material--Property of IBM
Section 4. Directory 213

Entry Entry
"odule Point Module point
"icro- or . "ethod of "icro- or "ethod of
fiche Routine Operation fiche Routine O~eration J Name Name Diagram Name Name Diagram

IAVALNAM IEGETV
APLIAPRD IAIPROD 4.1. 3 IEGINITI
APLIAQFN IAQCR IEGINITL

IAQDL IEGINITR
IAQEX IESGETN
IAQFX IESGETV
IAQNC IESGINIT
IAQNL APLIEFHM IEFUNN 4.1.1, 4.1. 2

APLIARED IAREDU IEGOGOMN 4.1.1, 4.1.2
APLIAROT IAREVARY IEGOGOSC 4.1.1, 4.1. 2

IAROTA IESUNFUN 4.1.1, 4.1.2
APLIASCN IASCAN IEUNFN 4.1.1, 4.1. 2
APLIASHF IAQSVC APLIEFXR IEDATTN

IAQSVO APLIEIDX IEINDB 4.1. 4
IAQSVQ IEItIDD 4.1. 4
IAQSVR APLIEMND IECHIX 4.1. 3

APLIASHV IARTRACT 4.1.5 IEMONAD 4.1. 3
IASCOPY 4.1.5 APLIEPSI IEEPSIOT J IASHSPEC 4.1. 5 APLIERHO IACOf'1MA
IASVOFF 4.1.5 IECOr1MA
IASVON 4.1. 5 IECOPY
IAUNSHR. 4.1.5 IERSHP

APlIASYV IAHTSPEC 4.1. 5 APLIESCA IEDYAD 4.1, 4.1.1,
IARTOI 4.1.5 4.1.2, 4.1.3,
IASHADO 4.1.5 4.1.4, 4.1.5
IASYSPEC 4.1.5 IESCANG 4.1, 4.1.1,
IASYSPST 4.1. 5 4.1.2, 4.1.3,
IASYSREF 4.1. 5 4.1.4, 4.1.5
IATABREF 4.1.5 APLIESPA IEFIND 3.2
IAUNSHAD 4.1.5 IEFREE 3.2

APLIATAK IATKDP IEGTSPAC 3.2 J APLIATBC IATOBCD IENAME 3.2
IATOBCD2 IESFIND 3.2

APLIATRN IABMM 4.1.5 IESFREE 3.2
IADEAL 4.1. 5 IESNAME 3.2
IADSHARE 4.1. 5 IESPACST 3.2
IAEXECTE 4.1. 5 IESYNN 3.2
IAEXNAME 4.1. 5 APlIETAK IETKCP
IAEXSTCK 4.1. 5 APLIEXAR IEABEND 4.1
IAFACTRl 4.1. 5 IELDSTK 4.1
IAFLCL 4.1. 5 IESTOSTK 4.1
IAIROLl 4.1. 5 IEXARCH 4.1
IAlOG 4.1. 5 IEXIT 4.1
IAMSHARE 4.1. 5 APLIEXFR IACAl370

J IAPLFUN 4.1. 5 APlITCMC ITCMCOPY
IAPOW 4.1.5 ITCt1PCOP
IAQDSPEC 4.1. 5 APlITCMD ITSYSCMD 5.0
IAQUADS 4.1. 5 APLITCME ITCMERAS
IAQUADSA 4.1. 5 ITDElETE
IARESIDU 4.1.5 ITUAMIHI
UROLL 4.1. 5 APLITCMF ITCMFNS
IASHRPST 4.1. 5 ITCMFVG
IATIDY 4.1. 5 ITCMGRPS

APLIATRS IAEXPR lTCt1VARS
IAFACT APllTCMG ITCMGROU
IAlOGR lTCMGRP
IASQRT APLITCMI ITCMSI

APLIATSP IADTRAH lTCMSIHl
IAMTRAN ITUSASH

APLIECMX IACMX APlITCML ITCMClEA
IECMEX ITCMDROP

APLIEFCH IADYB ITCMUB
IECOt~VR ITCMLOAD
IEDYB lTCMQUOT

. I EGETNI ITCMSAVE
IEGETNL ITCM~-JSID
IEGETUR ITCMWSSI

Ucensed Material-Property of IBM
214 VS APL Program Logic

Entry Entry
Module Point Module Point
Miero- or Method of Micro- or Method of
fiche Routine operation fiche RQutine o~::r"tion
Name Name Diagram Name u;)~!! Diagram

ITLIBMSG APLKDDOS KSPOOS
ITPRloJSID APLKDOPS KDPCREG 1.~
ITSAVI·JS KItH EX 1.3
ITSHV KLGET 1.3

AP L ITeMS ITCMDOST KRSTEX 1.3
ITcrtSTAC KSETEX 1 .3
ITCMSYI'lB KTrnEp.EX 1.3

APLITCMT I rCMCOtH APLKEHCP APLKEIICP 1.:::
ITCM~lSG APLKEMGR APLKEii'.?R 1 .,.

...... I

ITCJll0FF APLKIFIX APLFXIH1 ' 7 .1 .. oJ

ITCMOPR AP L K Hl1t~ 1.3
APL ITCPI ITeOPIN KCQZ
APL ITCPO ITCMCOPO KI fONEXT 1.3
APLITERR !TERRORS 4.2 KPGrlCIIK 1 "'
APLITEX ITEXE:::UT 4.0, 4.2 !(ropn tR 13
APL ITfCH ITFETCH K '!"flOI
APL ITFOC ITCLOSET 3.0, 3.1, 3.2 APLKISVI APLKISVI 1.3

ITFDCLOS 3.0, 3.1, 3.2 APLKLIBA KLALLOC 2.. ::>
ITFOKILL 3.0. ~ . 1, 3.2 KLDEALOC
ITFOTSOF 3.0, 3. 1. 3.2 APLKLI88 APl KLIB I 1.3

APLITFOE ITFDEOIT 3.0, 3. ! APLKLIBT 1.3
APL ITFDN IT FOtH.JUI APLKLI Be APLKl UIT
APL ITFDO ITFDOPEN 3.0, 3.1 Af'LKLUTM
APLITFUH ITE:1PFUN APLI(LI8F M'lKUBF 1.3
APLITHDR ITLINEO 3. C. 3,1. 3.2 APLKL!BG :, l' l I(LI B G 1.3
APLITIDS ITBlDIO 3.2 APt KLIBR

ITBLDQO 3.2 KGLOAD
ITSTSRCH 3.2 KGSAVE

APl ITINI APLIItHT KGUOIR
ITSYSER'R K G!ID I R

~
APLITIHP ITFORCOF 2.0, 3.0 APLKlIBR APLKLIBR ???

ITItfPINI 2.0, 3.0 APlKLIBU KCLEAR 1.3
ITItIPUT 2.0, 3.0 KCOPI\ 1.3
ITT'r'IZ 2.0, 3.0 KCUPI 1.3

APlITlXS ITOKEtHZ 3.2 !(coro 1.3
APlITN\';V ITFDCVT 3.2 KCOPZ 1.3

ITINIHT 3.2 KCROP 1.3
ITtlU~ICVT 3.2 KllB 1.3

APLITPRl ITPRLIHE 3.1 Kf.OAD 1.3
APlITSUB ITBFTYO 4.2 KPAS~ 1.3

ITCKALPH " " ' ,c. K5AVE 1.3
ITFNLNO 4.2 K~'JS I D 1.3
I Tl OUT 4.2 APl.KLIBV Y-GCFrLE 1.3
ITPRFNlN 4.2 KGDF IL E 1.3
ITPRINTC 4.2 KGUFlLE 1.3
ITPRt~AME 4.2 KrL~L IS 1.3
ITPRtWM 4.2 KLRDBITI"
ITSQUIRT 4.2 APLKMSCA KCDELAY 1.3
ITTIME 4.2 KCDurlP 1.3
ITTII'ISUB 4.2 KCQAI 1.3
ITTYERR {!.2 KCS'r'SER 1.3
ITXBLNl 4.2 KeTInE 1.3

APLITUSG ITUSACC: APLKMSCB KCATOfF 1.3
ITUSAG KC~lBL 1.3

APLKADEF APlKADEF '1.3 KCQUOTA 1.3
APlKADSP APlKAOSP 1.3 KCTA13S 1.3

KABEXIT 1.3 KCTPAN 1.3
KADEPON 1.3 KCt-nOTH 1.3
KMACRO 1.3 KYYOFF

APLKAGBl APLKAGBL 1.3 APlKSSUB APlKS~UB 1.3, 1. 3.1
APLKAHST APlKAf-IS T KCASE2Q 1.. 3. 1.3.1
APlKAMIX APlKAMIX KCf,SE3Q 1.3, 1. 3.1
APlKASON APlKASON 1.3 KCl EfltWP 1 .3, 1. 3.1
APlKASTB APlKPFAP KFRI:ESP 1.3, 1. 3.1

APlKPFOH KGCOl 1.3, 1. 3.1
KABOOTS 1.3 KGETSPAC 1.3, 1. 3.1

APlKCVMD Kspcrm KIDSETUP 1 .3, 1. 3.1

Licensed Mata"i aI-Property of IBM
Sect i on 4. Oire<:tory 215

l10dule
Entry
Point Module

Entry
Point

l1iero- or Method of Mtero- or Method of

J fiche Routine Operation fiche Routine OJ:'eration
Naw:e Name Diagram Narr.e Hat:'l'! Diagram

KPOSTWAI 1. 3, 1. 3.1 CVIOER
KPPSEARC 1. 3, 1. 3.1 CVPRTR
KPROCOFF 1. 3, 1. 3.1 APLOPARM CVPARM
KRETSUB 1. 3, 1. 3.1 APLORPRT CVRPRT
KSEIZE 1. 3, 1. 3.1 APLOSAVE CVSAVE
KSINGAL 1. 3, 1. 3.1 APLOSHIP CVSHIP

APlKSSVP APLKSSR 1 .3, 1. 3.1 APlOSlST CVSlST
APlKTCTl APLKTCTl 1.3 APlOSPIE CVSPIE
APlKTCWR APlKTCWR 1.3 APlOTBCD CVTBCD
APlKTRAH KTRTRAH 1.3 APLOTIDY CVTIDY
APLKTREQ KTRFI 1.3 APlOVARB CVVARB

KTRGD 1.3 APlOWKSP CVl·JKSP
KTROF 1.3 APlOWSFH CVt.ISFN
KTRIH 1.3 APlPAPAB APlPAPAC 1.1.1
KTRRD 1.3 APLPAPOF 1.1.1
KTRRT 1.3 APlPAPPR 1.1.1

APlKTRQO KTRAl 1.3 APlPAPRT 1.1.1
KTRCU 1.3 APlPAPSF 1.1.1 J KTRFA 1.3 APlPAPCD APCREATE 1.1.1
KTRFM 1.3 APDFN
KTRHC 1.3 APDROP 1.1.1
KTRRS 1.3 APFIlSIZ 1.1.1
KTRWR 1.3 APIO 1.1.1

APlKTSRV KTSCHED 1..3 APOPEH 1.1.1
KTSClEAR 1.3 APPASSWD 1.1.1
KTSFCHK 1.3 APSHARE 1.1.1
KTSFHDF 1.3 APVIO 1.1.1
KTSLINO 1.3 PRDDIR 1.1.1
KTSlOCID 1.3 PRDSEQ 1.1.1
KTSLOCR 1.3 PI.JRITE 1.1.1

APLKVALD KSPALD APlPAPFS FSrmUZZ 1.1.1 J APLKVAUT KSPAUT 7.0 FSl'lFORMT 1.1.1
APLKVCMD KSPSCH 7.0 FSMGET 1.1.1
APLKVCPY KSPCPY 7.0 FSMHCOPY 1.1.1
APLKVDSI KSPDSI FSMiHNT 1.1.1
APLKVDSO KSPDSO FSMMTYPE 1.1. 1
APLKVEXC APlKSPRG 7.0 FSMREAD 1.1.1
APlKVEXP KSPEXP 7.0 FSMRFORM 1.1.1
APlKVFMT KSPFMT 7.0 FSMSETC 1.1.1
APLKVIMP KSPIMP 7.0 FSMSUB1 1.1.1
APLKVIHT KSPINT 7.0 FSMSUB2 1.1.1
APlKVLBI" KSPLBI FSr'lSUB3 1.1.1
APLKVLBO K'SPLBO FSnL.JRITE 1.1.1
APlKVMSG KSPMSG APlPAPGB GDD~lCRET 1.1.1
APLKVOPS I(DPCREG GDDMSCTl 1.1.1

KDPFAB GDDMSDAT 1.1.1
KINIEX 1.3 GDDMSOFF 1.1.1
Kl.ClOS 1.3 APlPAPGC GDL'~lRCTl 1.1.1
KlGET 1.3 APlPAPGD FREESTOR
KLOPEH 1.3 GDDX 1.1.1
KLPUT 1.3 GDDXIHIT 1.1.1
KRSTEX 1.3 GETS TOR 1.1.1
KSETEX 1.3 APlPCOAP APlPCOAP
KTIMEREX 1.3 APLPCOEX APlPCENT 1.1

APlKVPIN KSPPIN ERENDEX 1.1
APlKVTPO KSPTPO ERSAVEAR 1.1
APlKVTRM KSPTRM 7.0 APLPFXIM APL FXIIM 1.1
APlOCULL CVCUlL APLPLIBS PCCLEAR
APlODIRE CVDIRE PCCOPA

CVGDIR PCDROP
APLODISP CVDISP PCLIB
APLOFUNC CVFUNC PClOAD
APlOGRUP CVGRUP PCSAVE
APlOIBNM CVIBNM PCWSID
APLOINIT ' CVINIT 6.0 APLPMISC PCATOFF
APlOlEAR CVLEAR PCCMD J APlOMISC CVDATE PCCOPI

Licensed Materia1--Property of IBM
216 VS APl Program Log;c

Entry Entry
Module Point tf~dule Point
"'icro- or Method of "'icro- or Method of
fiche Routine operation fiche Routine· Operation
Name Name Diagram Name Name Diagram

PCCOPO APLSCMSC seCLEAR
PCCOPZ SCCMD
PCOFF SCDElAY
PCPASS SCOFF
PCQAI SCPASS
PCQUOTA SCOAI
PCQZ SCQUOlA
PCTIME SCQZ

APlPSERR ERMSGRTH SC'Tlt':E
ERTHtDAT seLlS 10
PCDur1P APLSCMSG SC~1B l
PCSYSER SCRWAIT

APlPSHVR PCSACC 1.1.1 SCTRAN
PCSCOPY 1.1.1 APLSCOPY SCCOPA
PCSOFF 1.1.1 seCOPI
PCSOFFER 1.1.1 secopo
peSON 1.1.1 SCCOPZ

~
PCSQUERY 1.1. 1 APlSCSHV SCSVACC
PCsREF 1.1.1 sCSVCOPY
PCSRET 1.1.1 SCSVOFF
PCSSPEC 1.1.1 SCSIjOFFR

APlPTYIO pcen A Y SCSVON
peDlY! SCSVQUER
PCDTYO SCSVREF
PCDTYOI :,\..SvREfR
PCMBl SCSVSPEC
PCRWAIT APlSCSSI APlSCSSI
PC lABS APlSCSVI APlsHPST 1. ? . 1
PCTRAN .I\PI.XBSAB
PClY! ftPlXBSXT
PCTYO APlXl~SIA!P
PCTYOI ASVPSERV 1.2.1, 8.4.3
PcmOTH SCSVPINI 1.2.1, 8.4.3

APlP126T APLP126T SCEXTINY
APlQOISP CVDISP ApLSCTYP SCAT OfF 1.2
APlQFUUC CVFUNC SCAliN 1.2
APlQGRUP CVGRUP SCTABS 1.2
APlQIBNM '::VIBNM SCHI 1.2
APlQINIT CVIHIT 6.0 SCTYO 1.2
APlQLEAR CVLEAR SCHOI 1.2
APLQMISC CVDATE SetH DHi 1.2

CVFRTR SSt·.TACH
CVTIDY APlSHACC .tPLSHACC 1.2.1

APl~PARM CIJPARM APlSH8PB 6.PlSHePB 1. 2.1
APlQRPRT CVRPRT APLSHBVB API. SIHWB 1. 2.1
APlQSAVE CVSAVE APl'5HCPY .tPlSIlCPY 1. 2.1
APlQSPIE CV5Plf. APlSHGET APlSHGET 1. 2.1
APLQVARB CVVARB APlSHOFR APlSHOFR 1. 2.1
APlQWKSP CVWKSP APLSHPUT APl.SHPUT 1.2.1
APLSCDPY SCDPA2 APL5HQRE APlSHQUE

SCOT n: ~,Pl SHREF APLSHREF 1. 2.1
SCDTYO APLSHRET API. SHRF.T 1.2.1
SCDTYOI APLSHSOF' APL~HSOF 1.2.1

APlSCERR SCDUMP 1.2 APlSHsON APL'5HSON 1. 2.1
SCSAVOFl ·1.2 APLSHSPC APlSHSPC 1. 2.1
SC~PIE 1.2 APlSHSRD APlSH5F:D 1 .2.1
SCSTAE 1.2 APLSHSUB APLSHSUB 1. 2.1
SCSYSER 1.2 APLXAC APlXACSO 8.3

APlSCFID seFID APLXACSV 8.3
APLSCFXI APLFXIIM 1.2 APLXAK APlXAKSO

SCAPL 1.2 .APlXAKSV
APlSCItH SCENDAPl 1.2 APlXASD APLXAINP 8.3

SCMICRO 1.2 APlXAMSG 3.3
APlSCLIB SCDROP APLXAYD APLXAINP 8.3

sellS APi.XAf·lSG 8.3
SCLOAD APlXDKMP APlXOKr·1P
SCSAVE APlXDUMP APlXDUCL

li cansed 1'1atari a1-ProJ:)arty of IBM
Section 4. Directory 217

Entr~ Entry
Module Poin Module Point
Mtcro- or Method of Mtcro- or Method of
fiche Routine operation fiche Routine operation ;; Name Name Diagram Name Name biagram

APLXDUMP SCRWAIT
APlXDUOP SCTRAN

APlXFSFl APlXFINT SCl~SID
APlXFSFl APlYUMSG SCMBL
APlXFTRM SCTIME

APlXFYFl APlXFINT APlYURVC APlYURVC
APlXFTRM ASVPSRVC
APlXFYFL APLYUSCH DMSSCND

APlXGCAT APLXGCAT DMSSCHN
APLXGCHC APlXGCHC APlYUSHV SCSRETR
APlXGCOM APlXGCOM SCSVACC
APlXGKON APlXGKOH 1.3 SCSVCOPY
APlXGKR APlXGKR SCSVOFF
APlXGKRQ APlXGKRQ 1.3 SCSVOFR
APlXGKRR APLXGKRR 1.3 SCSI/ON
APlXGKT APlXGKT 1.3 SCSVQUER
APlXGKU APLXGKU 1.3 SCSVREF
APLXGS APlXGS SCSVSPEC

J APLXGY APLXGY APLYUSSH SSATACH
APLXGYON 8.1 SSSROUTR
APLXGYRQ 8.1 SSSSVC

APlXMKSG APlXMKSG APlYUSVI APlXBYAB 1.2.1, 8.4.1,
APlXMSSG APLXMSSG 8.4.3
APLXMYSG APLXMYSG APlXBYXT 1.2.1. 8.4;1,
APlXPK APlXPK 8.4.3
APLXPY APlXPY APlXWYWP 1.2.1, 8.4.1,
APlXSTAK APlXBACK 8.4.3

APLXCALl ASVPSERV 1.2.1, 8.4.1.
APlXSTAK 8.4.3

APlXTRAN APLXTRAN APlYUTBL APlYUTBL
APlXTREZ APLYUTIO APL YUTIO ;; APLXTRZE APlYUTYP SCATOFF

APlXVERS APLXVERS SCATTN
APLXWKWP APlXWKWP SCTABS
APLXWYWP APLXWYWP SCTYI
APLYDAIR APL YDAIR SCTYO
APlYUCMD APlYUCMD SCTYOI
APLYUCNV APLYUCNV SCWIDTH
APlYUDPY SCDTY! APLYUUSR APLYUUSR

SCDTYIO APLYUI00 APLl 00
SCDTYO APLYUI0l APLlOl

APlYUERR SCDUMP 1.4 APLYUI02 APLl 02 1.4.1
SCSAVOFL 1.4 APl YUlll APLlll
SCSPIE 1.4 APLYU210 APl210 1. 4.1

J SCSTAE 1.4 APLl 0 0 APLlOO 1.2.2, 1. 4.1
SCSYSER 1.4 APLlOOK APLl OOK 1. 3.2

APlYUEXC APLYUEXC APLlOOKO APLlOOKO 1. 3.2
APLYUFXI APl FXIIM 1.4 APLlOl APLlOI 1.2.2. 1. 4.1

APLYUFXI 1.4 APLlO2K APLlO2K 1.3.2
APlYUHSH APLYUHSH APLlI0 APLlI0 1. 2.2
APL YUIIM APLFXIIM APLlll APLlll 1.2.2, 1. 4.1
APlYUIHI APL 1.4 APl120 APLl20 8.4.1

SCENDAPL 1.4 AP1121 APLl21
SCMICRO 1.4 OFF121X
SCOFF . 1.4 RET121X

APl YULIB SCOROP APLl21K APL121K 1.3.2, 8.4.3
SCLIB AP1123 APLl23 1.2.2, 1. 4.1
SClOAD APLl23K APLl23K 1. 3.2
SCSAVE APl124K APL124K 1. 3.2

APLYUlNE APlYULHE AP1125K AP1125K 1. 3.2
APLYUMSC SCClEAR APl126 AP1126 8.4.2, 8.4.3

SCDELAY APLl26T APL126T
SCPASS APL132K AP1132K 1.3.2
SCQAI APL139K APL139K 1. 3.2
SCQUOTA ASVPSRVC ASVPSRVC

;;
Licensed Material-Property of IBM
218 VS APl Program logi c .

SECTION S. DATA AREAS

INTERPRETER DATA AREAS

VS APL WORKSPACE

The VS APL processor uses as a data ure~ un areu of virtual
storage called an active VS APL workspace. An ~ctive VS APL
workspace contains VS APt. functions (user prograrr.s), datil vC)lut'!'.
developed during function execution, V5 APL pro-::(?ssor i::rc7,1'\5ief'~:
data, and a communicDtions ~re~ for use of the VS APL
components. A saved VS APL workspace is that part of an active
workspace that is transferred from virtual storage to a library
when a user issues a SAVE or a CONTINUE command or when a linu
disconnect or force-off occurs.

Only the active workspace is immediately available to a user tor
program execution and modification. A saved workspace is
activated (transferred from a library to virtual storage) when a
user issues a LOAD command. A clear workspace (one that contains
no functions or data values) is activated when a user issues a
CLEAR command.

The minimum and maximum sizes of an active workspace are defined
by the host svstem. Within these limits. the default size of a
user's active workspace is defined by the installation. A user
may modify the size of the active work~pace when issuing a LOAD
or CL~AR command. The size specified must be large enough to
contain the functions and data values in the workspace to be
loaded; it may not exceed the maximum defined by the
installation.

An active workspace is function~lly divided into eight areas.
These areas, in ION to high virtual storage address sequence,
are shown in Figure 5 and in the sections that follow.

Area

Buffer
Executor transient area
Translator tr~nsient area
Interpre.ter transient area
Address table
Operation stack
Free space
R13 stack

Fi gure 5. VS APl W'lrkspace

Bytes

1024
268
756
240

Variable
Variable
Variable
1024

Regardless of the size of the wor~space. the first four areas
and the !~st one are fixed in size. A user may increase or
decrease the si ze of the address table L.ai th the SYf1BOLS :.ommand
and the size of the operation stack with the STACK comma~d.
These actions cause a corresponding decrease or increase in the
size of free space.

In the following sections, the general function of each area and
the format and use of some of the information are described. For
a detailed description of the entire workspace. see "WSM"
control bl~ck format. All symbolic ~ames used in the following
sectIons are as defined in the APlWSM macro.

licensed Material--Prcperty of IBM
Section 5. Data Areas 219

BUFFER

This area is used to hold data being tr&n9mitted to and from the
user's terminal. Output strings are built in WSMBUFF until it is
full or until termin~l input is required, then they ~re dumped
to the terminal with a YYTYO 5~rvice request. Input is placed in
WSMBUFF as a result of a YYTYI service requp.st. Copy data is
transferred through WSMBUFF with YYCOrO and YYCOPI requests.

EXECUTOR TRANSIENT AREA

This area is used for communication between the executor and the
translator/interpreter. The area extends from WSMSUPSW through
WSMRSV03. It includes a save area for use by the executor
(WSMSUPSW, WShSURGS). pointers delimiting the active data in
WSMBUFF (WSMCURSR. WSMBFPTR). param~ter ~reas for service
requests (WSMPARMI, WSMPARM2, WSMSVLRQ). and a 5ave area for
interpreter registers (WSMREGSV). WSMPCPSW contains part of the
interpreter PSW when it is given control to handle a program
check (see "Progr~m Check On-Vectors" below). WSMHSI contains
th~ restart address after any service request. or +'h~ rest of
the program ch~ck PSW. WSMPTHPT always addresses the PERTERM
control block. WSMWCRK contains the offset to the Rl3 stack
area. WS~UHDTH has the current termi nal wi dth sett i ng.

TRANSLATOR TRANSIENT A~EA

This area contains a 156-word scratch area (WSMXXX) and various
control words and switches that are used primarily by the
translator part of the VS APL processor. This are~ ~nd the n~xt
one are described sep~rately only because the microcoded exarch
does not use any part of this area. The area extends from
W~1FDTOG through WSMTOGXX.

Included in this ar~~ is information which controls the handling
of program checks, the writing of the active workspace to a
library, and the relocation of a workspace.

Program Check On-vectors

Four types of program-check ;n~errupts may be intercepted:
fixed-point overflow. exponent overflow, fixed-point divide, and
floating-point divide. An on-vector is a 4-word li;t of the
addresses of routines to handle those interrupts.

Execution of the APLON macro causes the current on-vector
information (two words at WSMON) to be saved at the specified
location. Then the address of the specified on-vector is stored
in WSMOHADR; the offset to the current Ril stack level is stored
in WSMONR13; and the propram ma~l(is set as specifled and stored
in WSMOHSPM. In the progr~m mask, exponent underflow and
significance are always disabled; decim~l overflow is always
enabled; fixed-point overflow is enabled or disabled as
specified.

Execution of the APlOFF macro restores WSMON and the program
mask to their prior state (as they were before APLON was
executed).'

When one of the four interceptible program checks occurs,
registers 12thrbugh 15 are reset as they were when the APLON
macro was executed, and control is passed to the routine whose
address is in the corresponding on-vector element. If the
on-vector element is zero (no intercept routine specified), a
system error occurs.

While the translator is executing. the program mask and
on-vector are set so that all four program checks cause a system
error. While the interpreter is executing, the program mask and
on-vector are set as a default so that fixed-point overflow

Licensed Material-Property of IBM
220 VS APL Program Logi c

J

J

causes a system error and the other three program checks cause a
DOMAIN ERROR; some interpreter routines use the APLON and APLOFF
macros to change and restore this default.

Saved Workspaces

In an active workspace. there is transient information; there
may also be unused free space (unallocated block) and data in
free space that has been discarded (inactive blocks). There is
no need to save any of this information when the active
workspace is transferred to a library. Before writing the
workspace to disk, all inactive blocks are freed, and all active
blocks are collected into the low-address end of free space. The
remaining free space (if any) ;s the unallocated block.

The WSMFREEA control word contains the offset to the low-address
end of the unallocated ~lock. After the inactive blocks have
been freed, the offset encompasses all of the active data in
free space. The part of the active workspace written to disk
begins at WSMFREEA and extends through the offset contained in
it.

Workspace Relocation

A particular workspace may be transferred into any virtual
storage location. Relocation may occur when a saved workspace is
activated or when a swappable service request (exit to a VS APL
executor routine) has been made. A workspace contains both
relative and absolute addresses; the absolute addresses must be
adjusted when the workspace is relocated.

Absolute addresses are contained in registers 13 and 14
(pointers to the R13 stack); saved reg;sters 13 and 14 in all
levels of the R13 stack; WSMFREEU (address of low end of
unallocated block of free space); LADDR, RADDR. and ZADDR
(argument and result addresses); and ~ome address table and
operation stack entries beginning at WSMIRElO. All of these are
located in other areas of the workspace and are described more
fully in subsequent sections.

When the VS APt processor receives control, register 11 (MR)
contains the virtual storage address of the active workspace.
When a clear workspace is activated, MR is simply saved in
WSMOLDMR. In all cases. the relocation factor (difference
between MR and WS~OLDMR) is computed before MR is saved. If the
relocation factor is nonzero, it is applied to all absolute
addresses in the workspace.

INTERPRETER TRANSIENT AREA

This area contains a 24-word scratch area (WSMEXTMP) and various
control words and switches that are used primarily by the
interpreter part of the VS APL processor including the
microcoded exarch. The area extends from WSMASYHC through
WSMMINUB. The scratch area is reserved for the exclusive use of
exarch (whether microcoded or not).

Included i~ this area is information about the current operation
(VS APL primitive function). The statement scan and syntax
analysis routine of exarch (IeSCANG) passes information about
the operator and its arguments to operator routines (both exarch
and appendage routine,,). The operator routines pass information
about the result to the result-processing routine of exarch
(IESCANG).

Licensed Material--Property of IBM
Section S. Data Areas 221

Current operator

During statement scan and syntax analysis, all information about
the current operator is collected into one word on the operat i on J"
stack. Before an operator routine is called, IESCA~G places this .
word in the WSMOPWD field. The operator itself is in the left.

Argument Blocks

half (OPBYTEO and OPBYTEl) of the field. If the operator is
neither indexed nor composite, it is duplicated in the right
half of the WSMOPWD field. If the operator is indexed (either
implicitly or explicitly), the index value is in the fourt!l byte
(OPINDEX); the index bit (OPHASIND) is set; the explicit index
bit (OPEXIND) is set if the index was explicitly specified; the
fractional index bit (OPFRIND) is set if a nonintegral index was
specified. The contents of WSMOPWD for composite function5
(reductIon, scan, inner product, outer product) is described in
"Method of Operation" (Diagram 4.1.3: "Primitive Function
Processing"). The format of operator codes is described under
"Operators and Separators."

During statement scan and syntax analysis. the operator
arguments are placed on thp- operation stack. Before an operator
rout i ne is calle-d, I ESCANG pillces the entry for the ri ght J"
argument in the right argument block (WSMRGETV) and calls the
IEGETV routine to set up the argument block for f~tching of
data. If the operation is dyadic, the same thing is don~ for the
left argument using the WSMLGETV block.

Each argument block is three words long. The first word (lVAlUE
or RVALUE) is used to hold argument elements as they are
fetched. The next byte (Ol or DR) contains descriptor bits
PBITIMME. PBITPERM, DBITSYNO, and DBITAPVE (see "Prim~ry
Descriptor" below and "Format of Blocks in Free Space," l~ter in
this section). The next byte COLI or DRl) contains the argument
shape and data type. The next halfword (NL or NR) contains the
internal name of the argument if it has a remote value. The J.
third word CLADDR or RADDR) is used to hold addresses of
argument elements as they are fetched.

Result Block

The operator routines use the information in the argument blocks
to fetch argument elements. Data fetch routines IfGrNITL,
IEGINITI. IEGINITR. IEGETNI, IEGETNL, and IEGETNR m~y be used ~o
do this. Exarch operator routines call the data f~tch routines
directly; appendage operator routines communicate with th~m
through service routines IESGINIT and IESGETN or the AP~GETH
macro. See the prolog~es of IEGETV and tho data fetch routines
for additional information about the contents and use of the
argument blocks.

There is a third block CW5MRSULT) that has the sa~e format as
the argument blocks. Operator routines place the result in the
second word of this block (RESULT) either as an immediate value
or the internal name of a re~ote value. When used for this
purpose, the contents of the other two words (ZVALUE and ZADDR)
are irrelevant.

The entire block may be used as the re~ult ;s developed.
Operations that have a third argument (for example, subscripted
assignment) use it in the same manner as the argument blocks.

Exarch/APpendage Communication

Before appendage routines return to exarch, they place a return
code in WSMAFLGS that indicates how the result should be
processed; the codes are definQd in the APLWSM macro. The return
code that indicates no special processing for the result
(AFLG20K) is preset by exarch.

Licensed Material--Property of IBM
222 VS APL Progrl'lTI Log; c

J

:.; ~~ ~,' : s;.'

The IASHRPS T appendage rou't-1 nEt pri,v-1'C:1'~i9·gs<evl{~al servi ces
involving shared or system variables. Before calling IASHRPST,
exarch setsWSMA.Ff:~Sto·indi~~te -Whichs~rJice is required.

Interpreter'Translator Communication

ADDRESS TABLE

Before the interpreter returns to the translator, it places a
reason code in the fourth byte of WSMABTYP; the codes are
defined in the APlIERRC macro. If the reason for exit is an
error, the address of the point where the abnormal termination
routine (IEABEND) was called is placed in WSMABlOC. This is of
no interest to the translator, but is useful for diagnostic
purposes.

For each object (that is, for each function, group, named
variable, temporar~ variable, etc.) in the workspace, the
address table contains either the object itself or its address.
The address table is a series of fullword entries extending from
WSMATAAA through the addres~tontained in WSMBDATS.

The operation stack (the area after the address table) may be
considered as part of the address table. The two areas are used
for different purposes, but the format of their entries is
similar. and they both contain as entries workspace objects
th~mselves or their addresses.

Internal and External Hames

Each object in the workspace is known to the VS APl processor by
an internal name. An internal name is a 16-bit ~ffset from
WSMATAAA to an address table (or operation stack) entry. In
other words, the i~ternal name of an object is its location in
the address table. An internal name is always a multiple of
four; it can be distinguished from other items because its
rightmost two bits are zerQ.

Some objects are also known by an external name--the name given
to a function or variable by the user. External names are never
used by the interpreter. They are used by the translator in its
input routine and when names are to be printed. External names
are generally referred to as printnames.

Permanent and Temporary Objects

A permanent variable is one which has a printname. A permanent
variable has two address table entries--one for the printname
and one for the value assigned to that name. (For a further
description of the permanent variable, see "Symbol Table.") A
permanent variable is not discarded until the workspace is
cleared. When 0 permanent variable is erased, its value block in
free space is discarded and its second address table entry is
set to indicate that the printname has no value; the first entry
and the printname itself are unchanged.

A temporary variable is one that has no printname. Temporary
variables result from user input and from the execution of
primitive or defin~d functions. A temporary variable is
discarded as soon 6sit is no longer needed; both its internal
name (its address table entry) and its value block in free sp~ce
are discarded. For example, when executing the statement

A+23p16

four temporary variables occur: tl, t2, tl, and t4. tl is the
scalar 6. t2 is the vector 2 3. tl is the result of the iot~
function; at its completion, tl is discarded. t4 is the result
of the rho function; at its completion, t2 and tl are discarded.

licensed Material--Property of IBM
Section 5. Data Are~s 223

The internal name t4 is discarded when its value is assigned to
the permanent variable.

Functions are also either permanent or temporary. A permanent
function is one defined by the user. As with permanent. \ ...
variables, a permanent function may be erased; but its printname ~
is not discarded until the workspace is cleared. A temporary
function is one that is built by the translator to implement
immediate execution, quad input, or the execute primitive. A
temporary function has one main statement--one line typed by the
user in immediate execution, the response to quad input, or the
argument of execute; it also has the branch-to-line-zero
statement that is the last statement of every function. When
execution of a temporary function is completed, both its
internal name and it~ function block in free space are
discarded.

Immediate and Remote Objects

An immediate object is one whose value is contained in (rather
than addressed by) an address table or operation stack entry.
Immediate entries are used for objects that have no shape and
whose value can be represented in 16 bits or less: character.
logical, or small integer scalars and one-character printnames.
The format of an immediate objec~ is shown in Figure 6.

Byte Bits

0

1 0

1

2

3

4

5-7

contents

Syntax class and primary descriptor

Sign bit of an integer value
(A TIMSIGH)

ON indicates variable is result of
assignment (ABITASGN)

Unused

ON indicates a read-only
object--a label CATIMLBL)

Unu'5Qd

Data type of the object:

100 (OSITCHAR) = character;
001 (OBITIHTE) = integer;
000 (DBITLOGI) = logical.

2-3 Value, right-justified

Figure 6. Format of Inrmedial:e Object

There are a few immediate address table entries whose format is
different than those described above (see "System Variables").

A remote object is one whose value is contained in free space.
All .function~, all groups, nonimmediate variables. and
printnalRes are remote objects. Byte 0 of the address table entry
contains the object's syntax class and primary descriptor; bytes
1 through 3 contain the absolute address of the ON-word (see
"Free Space," l~ter in this section) of the object's free space
block. It is th~se entries that must be modif;ed when the
workspace is relocated.

Licensed Material--Property of IBM
224 VS APL Program Logic

J

J

When a remote object is placed on the operation stack. its
relative rather than its absolute location is stored. Byte 0 of
the operation stack entry for a remote object contains its
syntax class and primary descriptor; b.yte 1. bit 1 is as
described in Figure 4 (the rest of byte 1 is irrelevant); bytes
2 and 3 contain its internal name.

syntax Classes

Class

o

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Bits 0 through 3 of byte 0 of all address table and operation
stack entries define the syntax class. As noted in Figure 7,
some syntax classes occur only on the operation stack.

symbol

SBITl-IUll

SBITOPER

SBITVAR

SBITFUN2

SBITRPBR

SBITlPBR

SBITSEMI

SBITlARR

SBITRBRO

SBITFUNO

SBITEHD

SBITFUNI

SBITSHAR

SBITSYST

Description

In address table, an unused entry; on the stack.
a null value or the beginning of a level

Operator (stack only)

Variable

Dyadic function

Right parenthesis or bracket (stack only)

Left parenthesis or bracket (stack only)

Semicolon (stack only)

Left arrow (stack only)

Right operator index bracket (stack only)

Niladic function

End of statement (stack only)

Monadic function

Shared object (shared variable. system variable,
and (on stack only) quad, quote-quad)

Unused

Unused

System object (group, printname)

Figure 7. Syntax Classes

licensed Mater; al-Pro·perty of IBM
Sp.ctio~ 5. Data Areas 225

primary Descriptor

Value

27

29

2B

2.E

2F

3B

99

95

BB

CO

C7

CB

CF

FB

FF

Figure 9.

For variables, functions. groups, and printnames (synt~x classes
2. 3. 9, B, C, F), bits 4 through 7 of byte 0 of an address
table or operation stack entry contain the object's primary
descriptor as described in Figure 8.

Bit symbol Deser; pt i 011

4 PBITVAlU Object has a value

5 PBITIMME Object is immediate

5 PBn ABS Object is not to be relocated

6 PBITPERM Object ; s permanent

7 PBITIHUS In address table. en~ry is in use

7 PBITHAME On stack, object i5 named
(has an addr~ss table entry)

Figure 8. Primary Descriptors

The valid combination of syntax clas~es and primary descriptor
bits is as rlescribed in Figure 9.

Dt!scription

Object with no value

Remote. tempor~ry variable

Remote. permanent vari~ble

ImmQdi~te, temporary variable on operation stack (stack immediate)

I~m~di~te, permanent variable In address t~ble

Permanent dyadic function

Temporary niladIc funct.ion

Permanent niladic function

Permanent monadic function

Quad or quote-quad (sta~k only)

Unused entry (reserved for system variable)

Shnred variable (always remote)

System var;abl~ (entry is immediate although variable may not
be S~; see "System Variables")

Group or remot~ printname

Combination of Syntax Classes and Primary Descriptor Bits

li censed Mater i al-Propert~/ of IBM
226 VS APl Program logic

J

Address Table sections
The address tabl~ is functi~nally div1dedinto four sections.

RESERVED ENTRIES: The first 27 ent~ies in the address table
(from WSMATAAA up to WSMADTAB) are used for reserved temporary
entries, default system variable~, corist~nts, and four "control
words.

The entr~es for defa~lt system ~arlables and ~ome of the
constants are remote. The values addressed by these entries are
in module APLITMSG rather than in the workspace. These entries
precede WSMIRELO, and are not ex~mined during workspace
relocation.

The four control word5 are:

• WSMFUNCT: byte 0 = X'2F' (bit 0 = 1 if the current function
is damaged); byte 1 = 0; bytes 2 and 3 contain the internal
name of the function curre~tly being ex~cuted.

• WSMNXIHS: byte 0 = X'2B'. bytes 1 through 3 contain the
absolute address of the next token in the function currently
being executed.

• WSMTSADR: byte 0 = X'2B'; bytes 1 through 3 contain the
absolute address of the top of tl'e operat i on stack (see
"Operation Stack")

• W5MBDATS: hyte 0 = X'2B': bytes 1 through 3 contain the
absolute address of the last word of the ~ddress table (se~
"Address·Table M~nagement").

SYSTEM VARIABLES: The next 20 entries in the address table (from
WSMADTAB to WSMISTHM) "are used for system var-iables (quad-IC,
quad-WA, etc.), These entries are all immediate
(syntax/descriptor=X'CF'). Byte 1 contains various flag bits
including one that indicates whether the value of the system
variable ,s immediate or remote. See the APLWSM macro
description in "Data Areas" under WSM co~trol block, at ~ymbol
ATIMNOVL for a descri~t;on of the flag bits.

An" entry for a syst~m v3riable th~t has an immediate value
contains the value in b~tes 2 and 3. An entry for a system
variable that has a remota value contains the internal name of
another ~ddress table entry in bytes 2 and 3. The referenced
entry may be either the reserved one in the first part of the
address table that addresses the default value of the system
variable; or a tempor~ry one that ~ddresses the user-specified
value i~ free space.

SYMBOL TABLE: The next part of the address table (beginning at
WSMlSTNM) i5 known a~ the symbol table and is reserved for
permanent objects. Its length, in words, is twice the value of
the SYMBOLS command. This value is contain~d in WSMSYMBL, a
control word in the translator trdnsient ar~a.

Entries in the symbol table a~e used in pairs. The first entry
of a pair contains or addresses the printname. The second entry
contains or addresses t~e value assigned to the printnamei it
m~y contain no value, an immediatQ variable, or the address of a
function block, group definitiun block, or remote variable block
in free space.

Symbol table entrias are selec~~d ~t random by means of a
hashing algorithm that uses the printname as input.

TEMPORARY ENTRIES: The remainder of the address table is used
for temporary cbj~ctsl both immedi~te a~d remote. The length of
this part of the address table varies dynamically.

LiCQnsed M~ter;al--Property of IBM
Section 5. Data Areas 227

Address Table Management

Management of the ~ddress table is concerned only with the last
part-that used for ternporciry objects. In this section. the term
"address table" is used to me~n the last part only of the full
address ~able. Ther~ ~r~ three aspect~ of ~ddress table
manag~ment: varying the size: getting an internal nam~; and
freeing an internal name.

The address table and the operation stack are cDr'!tiguous. In a
clear wor'kspace, the corn.~it.~!d :;i;,~e of t:he h·lO ~r,:ClS is 515
~-lords-257 .. c1dres<:; table entrir~s .;;Ind 258 OP("ration stack
entries. However, the boundnry hetween t~~m (it~ address is
ml'lilltained in WSt'1BDflT5) ;s dvn<.llnl~. The addres:.; t<:lbl'J 9r01.o13 from
low" i rtu<:ll storagE"! up. LIller'! ",or("~ nddr"l'.'e,!.'.' tabie space is
r·emJired· ~~iLlf of tht> UI".IMHi on~r()tion 5':.:H.:I\ e:'trtes are
allocClted to the cH!d~·e:.\~ tabl!'!, find th~ "ddross in IolSMBDATS is
i ncrernented. Th~ op~rat i ~n ~t<l(':k gro~·,sfro!:1 hi 9h v,i rtU<.ll stor~"Je
dOI"n. When 1110re stack SP;lce is requir'nd, h;;l!f 0-1' th" ~Jnuse~
~ddress table ~ntries ar~ ~Ilocat~d to the 0per~tion stftck, nnd
the <:lddress in WSr1BDATS is decr~lnented. In either case, if no
sp<lce is available, a 5TACK FULL erro~ occurs. These functions
are PQrformed by routines IAEXHAME and IAEXSTCK.

The sl:!e of the operation stack and. i,..directly. the address
t"ble can n.lso be variod by the user with the STACK COl'1mnrld. J"
EMecution of the commnnd C~USDS the oper~tion s~Dck ~Qace to be ""
i,..c~&asqd or decreas~d; tho active part of the stack to b~ moved
down or up; and free sp~ce to be decreas"d or increa~ed.
WSMBDATS and the current size of th~ ~cidre5s t~ble are not
1'lffected.

When ~xamining ~ ward bet~een thR botla~ of the address tnbla
and the tot' of t t.e operc..t i on stack. there are hlo ways of
det<;!rrnining th~ ara'l to !-lhic;, it belongs. The first is to
co'r.nttr i.11~) addre!·s of the ~Jcrd and thn address in ~IS~lBDATS; the
secund is to examin~ byt~ 0 of the ~nrd. Byte 0 ~f unus~d
en t r i e5 .;)t the bo+.tom of ":hQ ad·Jress tilbl ~ ; s zero; the last
entry is never USQd. Byte 0 of 5t~ck nntries (used or not) is
n::",::(,:t·o.

In the address t~ble, in addition to entries that have never
b~en us~d. there ~ay be entri~s thnt have been used and freed.
Thf;! latte.r art;> forr.-cd into ':' chain of avai lablp. n~m~s th<:lt
bagins at WSM~XNMW (n control w~rd In the interpreter transient
elr<?n). The format ~f ent~I?., In th2 c!v";n (;~·.cll.1dil'g I-ISMHXW1W)
is: !::..t~ 0 :~i X'OC:" bvt~:; 1 IS unused; !wt~c. 2 '"Hld.3 is the
internDl n~me o~ the "8~t ~r'!try in t~~ chmin.

~n exC\mple of iHl ",.v<1il"t!:,·"" I";':"~ ch<lin is sho~,Jn ";n Figure 10.
Wher, :In i ntern~ll t'!aln~ is r"SQll,:·5"led. t5 is gi ',len '.lnd -I:he n"me in

J

th\"! t~) entr-y i s p!.::?;:'~rJ in WSMNXtH"i-!j thus. t2 becomes the next J'
aV<I;I<:lola ncll"E'. When i:lnothe'" ,'"me i~, ;-equested. t2 is given und
t6 becomes thr,' npxt ava i 1 . .sblQ tl,~m;!. When a thi rd nllme is
reQuested, t6 l~ giv~n; 3incQ t6 is not a link in the chain, the
next se~uenti~l entry (t7) becomes th~ ~ext availablQ name. If
the next sequential entry is not ~n address t~ble entry. the
address teble is extended, if p05sibl~, ~s ~lready d9scribecl.
The rENAME routine is called to got an Internal name.

An intern~l ~ame is fr~ed by outting the n~xt available name
(the on~ in ~SMNXNMW) in the freed entry. ~nd then putting the
fregd nama in W~MNX~MW.

L i cen sed Mi'd:e: j fll--'? rc~)crty :-f ~ S:'!
228 VS APL Program Logi c

J

OPERATION STACK

WSMHXNMW

t1

t2

t3

Vt

ts

t6

t7

•
•
•
tn

r-->

'---

04 · . t5 ~

in use I
04 · . t6

in use

in use --_.
04 · . t2 <---_. -_._--
00 · <-

'-'---
00 · _._-----_._-

00 .•]
Figure 10. A Chain of Ava.lable Ha~es

The operation stack is a pushdown stack that is used to hold
input to and output from interpreter routines as VS APL
statements are scanned and executed. It is a series of fullword
entries extending from the end of the address table to the
beginning of free space. It grows fr~m high to low virtual
storage as shown i~ Figure 11. The address of the next ~vailable
stack entry is maintained in WSMTSADR. The following entr~,
referred to as the top token on the operation stack, contains
the last item put on the stack. The address in WSMTSADR is
decremented as items are entered on the stack; it is incremented
as items are taken off the stack.

Source cf operation stack Entries

Tokenized function statements are the primary source of
operation stack entries. The process of tokenizing a statement
(converting an external statement to its internal form) is
described in Diagram 3.2: "Function Definition." In its internal
form, a function statement consists of a series of tokens in
inverted external sequence. Each ~oken is a halfword in length.
There are four general classes of tokens: ;nternal names,
operators and separators, descriptors of literals, and special
operators. The format of these tokens ~nd how they are put on
the stack are described in the following sections.

The input to the interpreter's statement scan and syntax
analysis routine is always a function statement. The statement
may be part of a permanent function (one def1ned by the user), a
temporary function <immediate execution, qu~d input, or execute
primitive), or an embedded VS APL function. An embedded VS APl
function is one that is defined within the interpreter and is
used to perform certain VS APl primitive functions (see "Method
of Operations" Diagram 4.1.3: "Primitive Function Processing").
The body of an embadded VS APl function ;5 contained in an
interpreter module, rather than in a function block in free
space. There is no difference in the format of the statements in
the various typas of functions. During statement scan and
execution, the function type is irrelevant.

Licensed Material--Property of IBM
Section 5. Data Areas 229

Address Table

Available
Stack
Entries

St2!ck Entries
in Use

Free Space

// 1/

~------.--------
00 <---WSMBDATS

It-----i
< // II

l. ______ ·_ <:--WSMTSADR 1_______ <--lop o·f ShIck

< 1'/ //

l '0.00""-; ~2l--End of Stack

-~~o 00 00 0> 1

r--- J
1/ /1

Figure 11. The Oper~tion Stack

A second source of operation stack entries is the execution of
primitive and defined functions. The result of execution may be
~ temporary variable. either remote or immediate; a temporary
niladic function resulting from quad ihPut or execute; or an
embedded VS APl function.

Finally, there are cert~in operation stack entries that are
generated internally: nulls, stop wcrds, and function call
blocks.

Use of the operation stack

J

DUring statement sean, WSMNXINS contC'lins the address of a token l
in a function statement. The token is put on the operation stack ~
in the entry who~~ address is in WSMTSADR. Then WSMNXINS is
incremented 50 that it points to the next token, and WSMTSADR is
decremented 50 that it points to the next available stack entry.
The syntax classes of the top two tokens on the stack are
analyzed to determIne if there is some action to be performp.d.
If not, the next token is fetched and stacked. When there is
some action to be performed, the items on the stack are used as
input. As a result of the action, items o~ the stack may be
modified; items may be taken off the stack; a result may be put
on the stack. At completion, the statement scan is resumed.

For example, in performing a dyadic operation, tokens ere
fetched ~nd stacked until the operation stack is as describe.d in
Port A of Figure 12.

The appropriate dyadic operator routine is called. On return,
the top three stock items are discarded, and the result is put
on the. stack as describ~d in Part B of Figure 12.

licen!!led Mate/·il:l·-Pro;)p.rty of IBM
2;;0 VS APl Progr·::-.~1 log; c

A: Just before a dyadic operation

WSMTSADR > .
argo,,""" ~ vilr i able:: (left

operCltor

variable (right fi rgUl-:~n t)

Iprior t c!< ~.:r"
" -

B: After the operation

r-- J WSMTSADR----> l-
~bl::' (_r_e_c;_-_ll_l_t_) ____ '~~=~I:
I prior token ,

Figure 12. Tokens an the Oppration Stack

The use of the oper'ation stacl< is dQscribed in "Method of
Operations" Diagram 4.1: "Statement &can, Syntax Analysis, and
Execution."

Items on the oper'ation stack

The first four bits of ev~ry operation ~tack entry define the
syntax class of thG IteM; all syntax clas~es may appear on the
~tack. The remilinder of the entry varies according to the type
of item.

INTERNII.L HAMES: The intermd nClme of a function, c;roup, or
rp-!~ote variable (rathe~ thaI"! the object itself) is er.tered on
the operation stack. Byte 0 contains tile syntClx class and
::>r1m~iry descriptor; byte 1 is unused; bytes 2 and 3 cont.:!)in the
internill nai.!C?

An intern~l name appears in a function 5tatement as a token
~"hose rightmost tl'JO b;ts al"e '00'. The nc~lne is entered on the
stack, and the syntax/descriptor Clre obtained from the address
table,

When the result of executing a rrimitive or defined function is
a remote vClri~bie or c: function, it~ syntax, priman: descriptor,
und ; n ~ern<il name! ar'e returned in the result: block <l.JStiRSUL i).
The entry is movQd tram there to the operation ~tack.

LITERALS: A literal appear~ in a function statement as a
doscrlPtor to!um folll)wl-~,:j by th~ v.:.lue of the litco:ral. The
rightmost two bits of the descriptor token are '10'. There are
four types of lit~ral5 that ~re distinguished by bits 12 and 13
of the descriptor token.

A General Literal: Is used for vectors. The format of the
descriptor appears in Figure 1~.

l;ce~sed Material--Property of IBM
Section 5. Data Areas 231

Bit Description

0-3 Shape

Value

0101

4-7 Data type

Value

8-11

12-15

0000
0001
0011
0100

Unused

1010

vector

Meaning

logical
integer
real
character

general literal

Figure 13. General Literal Descriptor Format

The token following the descriptor contains the free-space byte
count: length of values plus 12 for count word, ON-word, and
element count. The tokens that follow contain the values. The
last two tokens contain the element count. The values are padded
to a full word, but are not necessarily aligned on a word
boundary. The statement scan routine gets a temporary internal
name and a block of free space. It enters the shape, data type.
name, values, and element count in the block. It enters the
internal name on the operation stack with a syntax/descriptor of
X'29'.

A Scalar Literal: Is used for large integer and real scalar
values. The format of the descriptor appears in Figure 14.

Bit DescriPtion

0-3 Shape

yalue Ml!SU'!in.9

0000 !lcalar

4-7 Data type

ValUE! Melning

0001 integer
0011 real

8-11 Unused

12-15 0010 scalar U teral

Figure 14. Scalar Literal Descriptor Format

The two or four tokens following the descriptor contain the
value. A scalar literal is entered on the operation stack as a
temporary remote variable as described for general literals.

Licensed Material--Prop~rty of ISM
232 VS APl Program Logi c

J

J

J

A Short Literal: Is used for logical, character, and small
i~teger scalar values. The format of the descriptor appears in
Figure 15.

Btt Description

o Sign of integer value; else 0

1-3 000

4-7 Data type

8-11

12-15

0000
0001
0100

Unused

0110

logical
il1tegt;lr
character

shori: literal

Figure 15. Short Literal Descriptor Format

The token following the dp.scriptor contains the value. A short
literal is entered on the operation stack as an immediate value
(d~~cribed below).

An Invalid Literal: Is used to indicate a value that is too
large or too sm~ll to be represented. Bits 12 through 15 of the
descriptor are 1110. When an invalid literal is encountered, a
VALUE error exit is taken.

IMMEDIATE VALUES: The value of a temporary immediate variable is
placed directly on the operation stack; it does not appear in
the address table. Such an item is referred to as a stack
immediate valu~. Byte 0 contains the syntax class and primary
de~criptor (X'2E'); byte 1 contains the sign bit and data type:
bytes 2 and 3 contain the value. Nota that the format is the
sa~e as that of nn address table immediate entry except that the
primary descriptor is 'E' rather than 'F'.

A stack immediate ~~lue is built when a short literal is found
in a function statement or when the result of executing a
primitive function is an immediate variable.

OPERATORS AND SEPARATORS: An operator (VS APL primitive
function) or separator appe~rs in a function statement as a
token whose rightmost two bits are '01'. The token is duplicated
in bytes C and 1 and 2 and 3 of an operation stack entry.

The bit patterns of individual operator~ is such that the
operators fall into various functional groups. The meaning of
the operator bits appears in Figure 16.

Licensed Material--Property of IBM
Section S. Data Areas 233

Bit

0-3

4

4

5

6

7

8

9

10-11

12-13

14-15

symbol

SBITOPER

OPEQNE

OPTEMPGO

OPRED

OPHASIND

OPISMIX

OPINDBl

OPGRP

OPCOMPR

OPLOGGR

OPSARTH

OPCARTH

Description

Syntax class (0001)

1 = dyadic operator is "equal" or "not equal".

I = monadic operator is "right arrow" entered
by user in a temporary function

1 = operator may be part of a composit operator
(reduction, scan, inner product, outer product)

I = operator has implicit index of 0 (is overstruck with
a hyphen). This bit is also set subsequently by the
interpreter if the operator is explicitly indexed.

o = sc~lar operator (result shape same as argument
shapes)

1 ~ mixed operator

No functional significance

1 = operator may be indexed. This bit is also set by
the interpreter (using the symblic name OPREAL) when
a real floor or ceiling is required.

Defines class of scalar operators:

00 = comparison

01 = logical

10 = sim~le arithmetic (done as either integer or real
according to argument type)

11 = complex arithmetlc (generally done as real
regardless of argument type)

No functional significance

Always 01

Figure 16. Operator Bit Meanings

Licensed Mater; ai-Property of I.BM
2 34 V 5 A P L Pro 9 rilll! Log i c

J

Figure 17 shows the hexadecimalrepre5~ntation of all operators.

1009 < 1031 • lOBI • 1181 l\l 1555 /

1000 S 1035 ? 10B9 f- 1185 ... 1591 •

1011 v 1039 0 1101 p. 1189 £ 1505 \

1015 " 1089 ~ 1105 t 1180 T 1755 f
1019 .., 1080 > 1109 \ 1190 , 1705 ,
1010 '1'< 1095 -+1 1100 .1. 11Al \I) 1805 =
1021 + 1090 1111 0 11A9 l' 1885 ~

1025 x 10Al - 1110 • llBD EI' 1895 -+2

1059 r 10A5 1129 ! 1109 • COOl OJ

1020 lOA9 L 1159 ~ 1259 e C005 I!IJ

Hotes:

1. Entered in a permanent function.

2. Entered in ~ temporary function.

3. Used to identify a system function; is encoded by the
interpreter, not by the userj see "Special Operators."

4. Cannot properly be called operators, since syntax class is
shared object. However, the rightmost two bits place them in
the class of operators and separators, and they are included
here for reference.

Figure 17. Operator Hexadecimal Representations

Licensed Meterial--Property of IBM
Section 5. Data Areas 235

Value

4001

4005

4405

4C05

5001

5005

500D

6001

6201

7101

8005

AOx1

The hexadecimal representati~n of separators appears in
Figure 18.

DescrfptiDn

Right parenthesis

Right bracket (subscripting) as encoded by the translator

Right bracket as modified by the interpreter to indicate subscripted
assignment

Right bracket as modified by the interpreter to indicate subscripted
assignment to a shared or ~ystem variable

Left parenthesis

Left bracket (subscripting or operator (index)
as encoded by the translator

Left bracket as encoded in an embedded VS APL function to allow a
scalar or array to be subscripted ~5 if it had been revelled

Semicolon

Empty subscript marker; generated by the interpreter to indicate
an omitted ~ubscript

Left arrow (assignment)

Right operator index bracket

End of statement (EOS), generated by the translator as the last
token of every function statement. Bit 10 (EOSTPBIT) is 1 if the
if the stop vector contains the number of the next statement.
Bit 11 (EOSTRBIT) is 1 if the tr~ce vector contains the number of
this stateme~t.
Bit 11 is always on in the EOS token of the main statement
of a quad-input or execute temporary function.

Figure 18. Separator Hexadecimal Representations

SPECIAL OPERATORS: A special operator ~ppe~rs in a function
statement as a token whose rightmost tw~ bits are '11'. There
are five types of special operators distinguished by bits 11
through 13 of the token.

A Fast Branch special operator: Is encoded by the translator
when the argument of the branch ;s input as a positive integer
scalar. The fast branch operator is also used for the branch to
zero which the translator generates as the last statement of
every function. The format of the fast branch token appears in
Figure 19. The fast branch is put in bytes 2 and 3 of an
operation stack entry; bytes 0 and 1 are set to X'1000'.

Bit Description

o OPTEMPGO (see "Operators and Separators")

1-11 Target statement number (argument of bra~ch)

12-15 0011

Figure 19. Fast Branch Special Operator Format

licensed Material--Property of IBM
236 VS APl Program logic

J

An Escape Special operator: Is encoded by the translator when it
encounters an ill-formed statement or assignment to a stop or
trace vector. The escape token Tor an ill-formed statement is
X'0007'. The next token contains the error code (ABSYNT or
ABDOMA). The next two tokens contain the byte count of the
ill-formed statement. The following tokens contain the statement
text as entered. The escape token for assignment to stop and
trace vectors is X'ccF7' where cc is the Z-code for S or T. The
next token contains the internal name of the function. The
escape special operator is put in bytes 2 and 3 of an operation
stack entry; byte 0 is set to X'2E'; byte 1 is unused. The
following tokens are processed by the translator rather than by
the interpreter, and they are not entered on the operation I

stack.

A Skip special operator: Is encoded by the translator when it
encounters a comment. The skip token is X'OOlB'. The next token
contains the byte count of the comment plus four. The following
tokens contain the comment text. The skip token is not entered
on the operation stack. The count token is used to increment
WSMNXINS. and the statement scan is resumed with the token
following the comment.

An Indirect Special Operator: Only in embedded VS APl function
statements. The indirect operator token is X'OOOB'. The next
token is the inter~al name of a scalar operator. The rightmost
operator byte is obtained from the address table entry and
catenated to X'10' or to X'18' if the operator is equal or
not-equal. The resultant halfword is put in bytes 0 and 1 and 2
and 3 of an operation stack entry.

A secondary Decode special operator: Is encoded by the
translator when it encounters the external name of a system
function (quad-EX, quad-NL. etc.). The format of the secondary
decode token appears in Figure 20.

Bit

0-7

8-11

12-15

Description

Internal code that identifies the system function

Flag bits tha~ classify the system function

1111

Figure 20. Secondary Decode Special Operator Format

The secondary decode special operator is put in bytes 2 and 3 of
an operation stack entry; bytes 0 and 1 are set to X'llBD'
(quad-q operator).

FUNCTION CALL BLOCK (FCB): A function call block is used to save
info,!imation about the state of the workspace when a function is
invQ~ed. At function eXlt, the information is used to restore
the workspace to its prior state. The information that is saved
is the current value of the called function locals, the internal
name of the' calling function (that is. the currently active
function), and the location within the calling function of the
token following the function call.

An FCB is built on the operation stack when a permanent
function, a quad-input or execute temporary function. or an
embedded VS APL function is invoked (see Diagram 4.1.1:
"Function Call and Function Exit Processing"). There is no way
in which immediate execution statements can be nested or
invoked. hence an FeB is not built for immediate execution
temporary functions.

Licensed Material---Property of IBM
Section 5. Data Areas 237

contents

OF .. kkkk

2Fxx0002

aaaaaaaa

2F .. nnnn

• • •
OF .. cccc

An FCB is removed from the stack at function exit (see Diagram
4.1.1: "Function Call and Function Exit Processing") or when an
error occurs in a temporary function or a locked permanent
function or when a branch with no argument is entered (see
Diagram 4.2: "Return Code Processing").

The length of an FCB varies according to the number of local
variables and labels; its minimum l€ngth is ten words. Its
format from top to bottom as it appears on the stack appear~ in
Figure 21.

Meaning

k = length of FeB in bytes (40 + 8 * number of locals)

Marks end of variable entries. Byte 1 contains translator
flags:

~guate

X'10'
X'30'
X'Ol'
X'02'

Meaning

locked function
embedded VS APL function
quad-input temporary function
execute tQmporary function

Three or more pairs of variable entries as follows:

a = copy of variable's address table entry; X'27000000'
if a dummy entry

n = variable's internal name; rightmost bi~ is 1
if dum~y entry

c = internal name of calling function. If the function is
subsequently damagod. bit 0 is set to 1.

OF .. iiil i = offset within calling function of token following
function call (displacement from DN-word of function block
in free space)

Figure 21. Function Control Block (FCB) Format

Following the first two entries is a pair of ent.ries for (in
sequence) each label. each local variable, right argument, left
argument. result; that is, for each entry in the called function
header. FHEDLOCLn through FHEDZ. A dummy entry in the function
he~der results in a dummy entry in the FeB; these occur when the
function has no result. right argument. left argument. or when
local names are duplicated.

STACK LEVELS A~D STOP WO~DS: At a~y point during execution. the
operation stack is subdivided into on~ or mo~e levels. A level
is the set of operation stack entries that deflne the state of a
function whose execution has not be~n completed. Thus. there is
a stack level for the current function. for each pendant
function (ore which has invoked a funct~on). and for each
suspended function (one whose execution has been suspended
because an error occurred. because attention was signaled. or
because of a stop request).

Going from the top of the stack down. each level except the
active current one begins with a stack entry whose first five
bits are '00001'. Thus. the top entry in an FCB delimits a
level. The other type of entry th~t delimits a level is a stop
word. A stop word itself is a one-entry level. When a function
is susp~nded, any current statement tokens that have been ~
stacked but not yet executed are discarded, and a stop word is ~

licensed Material--Property of IbM
238 VS APL Progra~ logic

put on the stack. The bottom entry on the st~ck is always a stop
word; it delimits the st~ck itself, rather than a level.

Figure 22 shows the contents of the operation st~ck, level by
level, after the following ~vents have occurred (the term "scan
block" is used to identify a series of statement tokens that
have been stacked but not yet executed). The user types a
statement that is formed into a temporary function Tl. tl calls
function AAA; statement 5 of AAA calls function BBB; and an
err"or occurs in statement 7 of BBB. When the keyboard unlocks
after the error message, the user types a ~tatement that is
formed into a tempor~ry ~unction T2. 12 calls function eec, and
statement a of eee is now being executed.

WSMTSADR

Iscan block for eC[al

ICD for call ~f cec
Scan block forT2[1]

lstop word for BBB[7]

FCB for call of BBB

Scan block for AAA[S]

FCB for call of AAA

Scan block for Tl[l]

IErid of stack stop word

Figure 22. Operation Stack Levels

When a function~s pendant, the restart information (the
internal name of the function and the address of the next token)
is contained in the FeB in its level. When a function is
suspended, the restart in~ormation is contained in the stop
word. The format of a stop word for a suspended function appears
in Figure 23.

The end-of-stack stop word is x'oa000002'. Note that the top
entry in an FeB can be distinguished from a s~op word because
its last two bits are always '00'.

HULLS: A null is X'07000000'. A null is always put on the
operation stack as the first entry in a level. Its purpose is to

. serve as the prior token when just one statement token has been
stacked and the syntax classes of the top two tokens are
analyzed.

operation stack Management

When a token is put on the stack, the address in WSMTSADR is
decremented by four. If the new address is less than or equal to
that contained in WSMBDATS, or if byte 0 of the entry pointed to
is 0, an attempt is made to extend the stack as described in
"Address Table Management" earlier in this section.

Lic~nsed Material--Property of IBM
Section 5. Data Areas 239

Bit

0-4

5-15

16-29

30-31

Description

Level identifier (00001)

Statement number at which execution is suspended

Bits 0-13 of internal name of suspended function

Status of suspended function:

01

11

Meaning

Damaged

Good

Figure 23. Suspended Function stop Word Format

Items are taken off the stack by incrementing the address in J ..
WSMTSADR by a multiple of four. The stack itself is not
modified.

FREE SPACE

Free space extends from the bottom of the operation stack to the
beginning of the R13 stack. It contains the values of the remote
objects in the workspace--variables, functions, printnames,
groups. Free space is divided into blocks of words. There are
four types of blocks--dummy, unallocated, inactive, and active.

Format of Blocks in Free Space

Each block of free space begins and ends with a count word. The
interior of a block varies depending on the type of block and
type of object. A count word contains the length of the block in
bytes including the length of one of its count words. The
rightmost two bits of a count word are used as a block type
flag:

Bits

00

01

10

Meaning

Inactive

Active or dummy

Unallocated

Thus a 100-word block contains 98 interior words; the value of
each count word is:

Value

396

397

398

Meaning

For an inactive block

For an active block

For the unallocated block

The format and purpose of dummy, unallocated~ and inactive
blocks are described under "Free Space Management." All active
.blocks have a common second word known as .the "ON-word." Bytes 0
and 1 of a ON-word contain the object's descriptor. The bit
meanings appear in Figure 24.

licensed Material--Property of IBM
240 VS APl Program logic

J

L Bit

D-3

4

5-6

7

8

9-11

12

13-15

Figure

symbol

OBIT APVE

OBITSYNO

DBITESCA

DBll SeAL

OBITVLl

DBITARRY

DBITARLl

DBITVECT

DBITARRA

DBITNSCA

DBITlOGI

DBITINTE

DBITREAL

DBITNUM

DIHTCHAR

24. DH-Word

Description

Not used; al~ays 0

1 = object is an arithmetic progression
vector; bit 8 also = 1

Not used; always 0

1 = object is a synonym; bit 8 elsa equal~ 1

1 = object ;s a special case: bit 4 or bit 7 also
equals 1

Shape descriptor:

coo = scali'lr

001 = vector containing one element

xIx = array of any length; bit 9 and/or
bit 11 also eQua15 1

011 = array containing one element

101 = vector, length not 1; either an empty or
a multi-el~m~nt vector

111 = array, length not 1; either an empty or a
~ulti-e1ement array

lxx = object is neithor a scalar nor a pseudosceler
(a one-element vector or array)

Not used; always 0

Data type descript~p, corresponds to bits 13 through
15 of an immediate ~~dre~s table ~ntry:

000 = logi 1-: a 1

001 = integer

011 = r~al
Ox} = I"l'.'",er i r. of some sort

1(10 = c;har'acter'

Bit Meanings

Bytes 2 and 3 of a ON-Word contain the object's internal name.
The address of the object's address table or operation stack
entry is obtain~d by addin~ the internal name and the value of
WSMATAAA.

The address contained in a remote address table or operation
stack entry i~ th~t of the DN-word of the object's active block.

The remnining words in a~ active block for various types of
objects ~re descrir.ed ;n tho following sections. In the
descriptions, the conventions appear in Figure 25.

The rea~on fo~ the p~dding is that free space block~ are aligned
on ~ doublewcrd boundary tb speed up the fetching and storing of
real values. The DClddil.g OCCtlrs, when necessary, to fill out a
block to a multiple of eight bytes.

Licensed Material--Property of IBM
Section 5. Data Areas 241

Code

CCCC

DONN

Meaning

Denotes a count word

Denotes a ON-word

x. .. '" x Denotes an item (x) that occurs any number of
times, always as some number of fullwords

UU Denotes an unu~ed halfword

XXXX Denotes an unused word of padding that mayor may
not occur

Figure 25. Active Block Descriptor Conventions

ORDINARY VARIABLES: An ordinary variable is one that is neither
an arithmetic progression vector nor a synonym. The format of an
active block for various shapes of ordinary variables appears in
Figure 26.

Variable Format

integer eeee DDNN VVVV eccc
scalar

real ceec DDNN VVVV VVVV XXXX eece
scalar

vector cece DDNN V V XXXX NELM ecee
array ecce DONN V ••• . . . v XXXX R ••• ••• R RANK NELM eece
Figure 26. Active Block Format of Variables

The element values (V) are stored in the wordCs) following the
DN-word. Integers are stored in raveled sequence, one word per
element. Real values are stored in raveled sequence, two words
per element. Characters are stored in raveled sequence, one byte
per element, and may be padded on the right with undefined bytes
to complete a word. Logical values are stored one bit per
element; the bytes are in raveled sequence, but the bits within J ..
a byte are reversed; the byte containing the last element may be
padded on the left with undefined bits. Thus, the elements of a
19-element logical vector are stored in one word in this
sequence with an undefined fourth byte:

7 ,6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 x x x xx 18 17 16

For vectors and arrays, the element count (HELM) ;s stored as a
fullword. For arrays, the rank (RANK) is stored as a fullwordi
the dimeQsion vector (R •..) is stored one fullword per
dimension. An empty vector or array has an element count of zero
and no value words.

The elements of an ordinary variable are accessed by stepping
forward from the ON-word or beginning count word. The shape and
size information is accessed by stepping backward from the
ending count word.

Licensed Material---Property of IBM
242 VS APL Program logi c

ARITHMETIC PRO~RESSIONVECTOR: An arithmetic progression CAP)
vector is a vector of integers that form an arithmetic
progression. For example.

1 2 345

10 13 16 19 22 25 28

17 3 -11 -25

Any AP vector may be represented in a compressed form: initial
element. step between elements, number of elements. An AP vector
is represented in frp-e space by a six-word block:

ecce DDNN IN!T STEP HELM eeee

The translator does not examine vectors to determine if they are
arithmetic progressions. AP vectors are generated by the monadic
iota operator routine whe~ the argum~nt is greater than one.
They are preserved across many operations such as addition or
subtraction of a scalar. mUltiplication by a scalar, take. and
drop.

Storing AP vectors in their compressed form saves space. It also
saves processing time for operations with AP vector arguments.

SYNONYMS: Synonyms are variables whose value and size are the
same; .their shape is usually, but not necessarily, the same. To
save space, the value, shape, and size are stored just once in a
value block whose format is as de~cribed for ordinary variables;
a temporary internal name is obtained for this value bloc~(. The
address table entry for each synonymous variable contains the
address of a synonym block. The synonym blocks are formed into a
chain. ~nd each one points to the value block. The format of a
synonym block is:

ecce DDNH UUVV PPSS xxxx ecce
VV is the internal name of the value block; PP is the internal
name of the predecessor in the chain; SS is the internal name of
the successor in the chain. Since the rightmost two bits of an
internal name are always 0, the rightmost bit of PP is set to 1
in the first synonym of a chain, and the rightmost bit of SS is
set to 1 in the last synonym of a chain. In practice, the start
of chain and end of chain are indicated by a value of -1
(X'FFFF').

Synonyms may be set up in the following cases: assignment, ravel
of an array, invocation of a monadic or dyadic function (the
arguments are copied), during statement scan ~nd syntax analysis
(see Diagram 4.1: "Statement Scan, Syntax Analysis, ~nd
Execution"). A synonym is made only if the argument is per~a~ent
and its value block is large (in pr~ctice, more than 40 bytes
long). If the argument is temporary, its value block is simply
used for the result. If the argument is permanent and small, a
copy of it rather than a synonym is made for the result. The
maki.ng of synonyms and copies is done by the IESYHN routine.

licensed Material--Property of IBM
Section~. D~ta Areas 243

Figure 27 shows the setting up and extending of a synonym chain
that occurs when the following statement is executed.

A+-.B+-C+-3 4 P \ 1?

Address Table Free Space

II
IEntry for C 1-->1 0071 C Values, sh<lpe, size

/1

IEntry for S-.J > 10 IF-I -"-S L tl I c -] I
IEntry for {J >~- C -I tl I -1 BI

>10071
II

IEntry I til for t1 Values, shape, size
/1

IEntry for A >[OIDl A tl B -11 -
IEntry f~ >IOIFI B tl C AI

IEntry for C > I OlFl C tl -I s]
tllvalues,

/1
[Wry tlJ >10071 for shape, size

II

Figure 27. A Synonym Chain

Note that the descriptor in each free space block is shown in
hexadecimal; the remaining information is shown symbolically and
the count words are omitted for simplicity.

The top part shows the addre~s table and free space following
assignmQnt to C; ot this point C is an ordinary variable.

The middle part shows the new synonym chain following assignment
to B.

The bottom part shows the extended synonym chain following the
ravel of B and assignment to A and illustrates that the shape
descriptors in the synonym blocks and value block are different
if the ravel of an array has occurred. A is correctly described
as a vector in its synonym block; the dimension and rank
information in the value block is ignored when A is accessed. B
and C are correctly described as arrays in their synonym blocks.
When synonyms are acce~sed, the shape descriptor in the value
block is i"gnored.

When a synonym is freed, it is removed from the chain by
modifying the synonym blocks of its predecessor and successor.
When a synonym chain is reduced to one link, the remaining
variable is made an ordinary variable by discarding its synonym
block and the internal name of the value block; putting the
address of the value block in the variable's address table
entry; and putting the variable's descriptor and internal name
in the value block's DN word.

Licensed Material--Property of IBM
244 VS APL Program Logi c

J

J

Although a value block has .an entry in the temporary part of the
address table. the entry is ·flagged as permunent. This is done
to prevent the internal name and the value block from being
discarded during recovery from a user error.

SHARED VARIABLES: The address table entry for a shared variable
contains the address of a share.IO block. The share IO block
points to a value block. The format of the v~lue block is as
described for an ordinary variable. As with synonyms, the value
block has a temporary internal name, but its address table entry
is flagged as permanent.

The format of a share 10 block is:

eeee OONN UUVV 1111 XXXX eeee

VV is the internal name of the value block. 1111 is the offer
sequence number (also known as the share 10 number); this is an
integer that uniquely identifies the variable to the shared
storage manager.

GROUPS: The format of the free space block for a group is:

ccee DONN eTMM MM MM XXXX eeec

The block is described as a character vector (X'0054'). The
first halfword following the ON-word (eT) is a count of the
number of members. The following halfwords (MM ..) contain the
internal names of the members.

PRINTNAMES: The format of the free space block for a printname
is:

ecce DODD CV .. V XXXX ecee

The block is described as a character vector (X'0054'). The
first byte following the ON-word (C) is a count of the number of
characters in the printname less one. The following bytes are
the printname as a character string; there may be undefined
bytes on the right to complete a word.

FUNCTIONS: The interior of a function block in free space is
divided into three sections--head, body, tail. In the following
description, the term "offset" means the displacoment from the
ON word of the function block.

The function header is a series of halfwords, as described in
Figure 28. The symbols are as defined in thG FHEO macro (see
Data Areas "FHED"). Since the rightmost two bits of an internal
name are always 00, bit settings of 01, 10. 11 are used to
indicate something other than a name;

The body of the function block contains the internal text of the
function statements. Where Sn indicates the text of statement n
and EOSn indicated the end-oi-statement token for statement n,
the body contains:

EOSO 51 EOSI S2 E052 Sn EOSn branch-to-zero EOSx

The last two tokens of the body are those generated by the
translator to enable function exit when the last statement (Sn)
has been executed.

Licensed Material--Property of IBM
Section 5. Data Areas 245

The first part of the teil of the function block contains the
offset to each end~of-statement token in the body--EOSO through
EOSx. Each offset is a halfword. Following the offsets, there
may be a word of padding. The next word (RANK if this were an J
ordinary variable) contains a value that is equal to or greater .
than the number of bytes used when displaying the longest

Halfword

0-1

2

3

4

5

6

7

8

9-n

statement in the function. The next and last word (HELM if this
were an ordinary variable) contains:

Bytes

0-1

2-3

Syrr.bol

FHEDDN

FHEDM

FHEDT

FHEDS

FHEDlOCK

FHEDMAG

FHEDQtJAD

FHEDEXEC

FHEDK

FHEDZ

FHEDl

FHEDR

FHEDLOCl

contents

A count of the number of labels

Offset to the first label in the head
of the function block

Description

DN-word; descriptor is X'0054'

Number of last statement defined by user

Offset to tail

Translator flags:

X'lO' = locked function

X'30' = embedded VS APL function

X'OI' = quad-input temporary function

X'02' = execute temporary function

X'OO' = imm~diate execution temporary function
or unlocked permanent function; distinguished by
primary descriptor in address table entry

Byte count for function call block (FeB);
equal to 40 plus 8 times the number of locals
including labels.

Internal name of result; rightmost bits: 01 if none

Internal name of left argument; rightmost
bits = 01 if none

Internal name of right argument; rightmost
bits = 01 if none

First, the internal name of each local variable in the
seQuence defined by the user in the function header;
if name is a duplicate of a prior name, rightmost
bits = 01. Then, a pair of halfwords fo~ each label
in statement number sequence. The first halfword
contains the statement number in bits 0 through 13;
rightmost bits = 11. The second halfword contains the
lnternal name of the l~bel.

m Value of X'0002' (rightmost bits = 10)
indicates end of locals.

Figure 28. Function Header

l; censed Mater; aI-Property of IBM
24!- VS APl Program Logi c

J

J

J

L

Free Space Hanagement

In a clear workspace, free space contains a dummy block at each
end and an unallocated block in the middle. A dummy block looks
like an active block with no interior; it consists of contiguous
count words whose value is 5. The dummy blocks delimit free
space; their use is described later. The boundaries of free
space are contained in a pair of control words in the '
interpreter transient area: WSMFREES contains the offset from
WSMATAAA to the word following the beginning dummy block;
WSMFREET contains the offset to the word following the ending
dummy block. '

The unallocated block is the free space that is unused but
available for storing of objects. There is always just one
unallocated block in the workspace. It has a count word at each
end with a block type flag of 2; the interior is undefined.
Whenever sp~ce for an active block is allocated, the space is
taken alternately from the bottom and top end of the unallocated
block. Thus, the used part of free space grows from each end
toward the middle.

There are three control words in the translator and interpreter
transient areas that point to the unallocated block. WSMFREEU
contains the absolute address of the beginning count word. The
rightmost bit of WSMFREEU is an allocation flag. It is flipped
each time a block is allocated; if 0, space is allocated from
the bpttom (low address end) of the unallocated block; if 1.
space is allocated from the toP. WSMFREEA and WSNFREEZ contain,
respectively, the offset from the beginning of the workspace to
the word following the beginning count word and to the ending
count word. These two control words are used primarily by
certain translator and appendage routines that use the
unallocated block as a work area. WSMFREEA and its contents also
serve to delimit that part of the workspace that is written to
disk.

There are three routines that may be called by exarch routines
to get a block of free space. IEFIND takes a byte count as
input. IEGTSPAC takes a data type descriptor, rank, and element
count as input; IESPACST takes a model variable as input. All
three routines allocate a block of the requested size and update
the unallocated block count words and pointers; they also call
IEHAME to get a temporary internal name for the block.
Translator and appendage routines communicate with IEFIHD via
the IESFIHD service routine or the APLSFHD macro. These allow
the option of getting an internal name or providing one as
input. The macro also provides the option of requesting that
space be allocated from the top or bottom end of the unallocated
block.

The IEFREE routine is called by ex~rch routines to free an
active block and its internal name (if temporary). An active
block is freed by setting the block type flag in each of its
count words to 0 (inactive block). The preceding and following
blocks are then checked. If either is unused (inactive or
unallocat~d) the newly freed block is merged with it. Thus, if
possible. the f~eed space is immediately recovered; if not, the
presence of a few large inactive blocks rather than many small
ones speeds up the collection of discarded material. The
presence of the dummy blocks. which are flagged as active,
obviates sDecial h~ndling when the first or last block is freed.
Translator and a~pendage routines communicate with IEFREE via
the IESFRE~ service routine or the APlSFREE macro.

The IATIDY routine is called to collect the discarded material
when the amount of space requested for a block is not a~ailable,
when the workspace is saved, and when system variable quad-WA ;s
referenced. IATIDY goes through free space. block by block.
deleting all inactive blocks and collecting all active blocks
into the low address end of free space. The area to be examined
is delimited by the dummy blocks and by WSMFREES and WSMFREET.
During this process, IATIDYupdates all the items that contain

Licensed Material--Property of IBM
Section 5. Data 'Areas 247

R13 STACK

VSPC WORKSPACE

~bsolute free space ~ddresses: the ~d'dres9 t~ble entry for each
relocated active block. WSMFREEU, WSMNXINS, ZADDR, LADDR, and
RADDR •. It also updates the unallocated block c'ount words and
relative pointers (WSMFREEA andWSMFREEZ). Note that active J'
blocks are simply moved; there is no need to examine or modify
their contents since they contain no absolute addresses.

The R13 stack extends from the end of free space to the end of
the workspace. It is 1024 bytes in length; the relative location
of its low address end is contained in WSMWORK (a control word
in the executor transient area).

This area is used as a pushdown stack of variable-sized save
areas. A save area (or level) is added to the stack whenever a
routine is entered via macro APLEHTRY. The level is removed when
the routine returns to its caller via macro APLEXIT. It is known
as the R13 stack because register 13 is used to point to the
beginning of the current level; register 14 is used to point to
the current level's end.

Each level is used as a save area for the calling routine's
registers and. optionally, as a work area for the called
routine. Execution of the APlEHTRY macro always causes register j
12 through register 15 of the calling routine to be saved in the ~
new current level. Optional parameters cause other registers to
be saved and a work area of the requested size to be appended to
the current level.

All translator and appendage routines and all exarch service
routines (those which are called by translator or appendage
routines) begin with an APlENTRY macro and terminate with an
APLEXIT macro. Each call to one of these routines, therefore,
adds a level to the R13 stack. Potentially the R13 stack can
overflow. However, the interpreter is designed so that calls are
never nested to such a depth.

The remaining exarch routines execute as one routine in the
sense that they share a single level of the R13 stack. This
level is created when exarch is called by the translator at
entry point IEXARCH; it is removed when exarch returns to the
translator at lEXIT. Most exarch routines do not use the R13
stack as a work area; those that do use macros APlGET13 and
APLDRP13 to extend and restore exarch's R13 stack level.

When VS APL is runn1ng under VSPC, it has a VSPC workspace as
its datu area. The first 2048 bytes of the VSPC workspace 4
contain the control blocks and work areas described below. The ~
remainder of the VSPC workspace contains the VS APL workspace
described in the preceding section. If data has been placed in
the alternate input stack, the stack follows the VS APL
workspace. and if the user has a shared-Variable connection with
the FSM auxil1ary processor or the GDDM auxiliary processor, an
auxiliary-processor work ar.ea follows the alternate input stack.

At the beginning of the VSPC workspace is a 256-byte VSPC
control block called the workspace header (WSH). Following the
WSH is a 24-byte VSPC control block called the standard file
name (SFN). The VS APL executor ~ses these control blocks in its
communications with VSPC. They are described in VS Pp.rsonal
Computing (VSPC): IoJr1t1ng Procp.!'sors, SH20-9074. and in VSPC
Version 2: Writing Processors, SH20-9203.

Following the SFN is a 72-byte APL control block called the
PERTERM header (PTH) that can be referenced. but not modified,
by the translator and interpreter. The address of the PTH is
contained in control work WSMPTHPT 1n the executor transient
area of the VS APL workspace. Following the PTH is a 1556-byte

licensed Material--Property of IBM
248 VS APL ProgrDm log; c

L

executor w~rk area that is for the exclusive use"of the
executor. The last 140 bytes preceding the VS APL workspace are
used to contain a 132-byte buffer which must immediately precede
WSMBUFF. Thi s buffer is used to hold !!l output whi ch may later
be written to the terminal input area (display terminals only).
See "Control Block Formats" for a detailed description of the
PTH and the executor work area (ECA).

EXECUTOR DATA AREAS

CMS EXECUTOR GLOBAL TABLE

When VS APL is running under CMS. the executor has a 4096-byte
work area called the global table. The address of the global
table is contained in absolute storage location X'440' (symbolic
location GLBLTABL in CMS macro HUCOH).

At the beginning of the global table is a 72-byte APL control
block called the PERTERM header (PTH) which can be referenced,
but not modified, by the translator and the interpreter. The
address of the PTH is contained in control word WSMPTHPT in the
executor transient area of the VS APl workspace. The remainder
of the global table is for the exclusive use of the executor.
See "Control Block Formats" for a detailed description of the
PTH and the global table (CMSGL).

PTH is immediately followed by a PTX which is available for use
by only the eMS executor.

TSO EXECUTOR GLOBAL TABLE

When VS APL is running under TSO, the executor uses a work area
called the global table. The address of the global table is
contained in the first four bytes of the PRB save area, which is
addressed by the TCBFSA field for all of the VS APL tasks.

At the beginning of the global table ;s a 72-byte APL control
block called the PERTERM header (PTH) which can be referenced,
but not modified, by the translator and interpreter. The address
of the PTH is contained in control word WSMPTHPT in the executor
transient area of the VS APl workspace. The remainder of the
global table is for the exclusive use of the executor. See
"Control Block Formats" for a detailed description of the PTH
and the global table TSOGL.

VS APL EXECUTOR STACK FOR CICS

Most CICS executor routines use a special set of entry and exit
codes that saves registers and provides working storage from a
processing stack. The following list shows which modules create
stacks, which routines use stacks, and where the stacks are
located:

Module Stack use Location of Stack
Creating
stack

APLKASOH Used by user signon and In the transaction work area (TWA)
library services routines provided by CICS for the signon

(APl) transaction

APLKADSP Used by the process dis- In the TWA for the user (APLU)
patcher routines transaction

licensed Material--Property of IBM
Section 5. Data Areas 249

Hodule stack Use Location of stack
creating
stack

APlKIFIX Used by all YY code serv- In tran5~ction storage for the
ice routines--it is the user (APlU) transaction
primary executor stack
for the user session

APlKLIBG Used by the library serv- In the TWA for the library (APLL)
ice routines transaction

APlKTCTL Used by terminal I/O rou- In the TWA for the terminal (APLT)

APL121K

'.PL124K

AP1132K

tines transaction or (on attention) the
sign on (APL) transaction

Used by library ~ervices In transaction storage for the
routines user (APlU) transaction

Used by terminal manager In tran5action storage for the
routines user (APlU) transaction

Used by destination rnan- In trclr;sact ion storage for the
ager routines user (APlU) transaction

APLKSSUS Used by sharpd storage
manNg~r r9utines

In shared memory

stac~s are made UP of ~ ~erie~ of variable-length entries, with
register 11 alw~Y5 poir.ting to the current entry. Stacks are
used beginning at the high address end And filling toward the
low address end. Space within the stack is allocated in
fullwords, and the stack may be of any size.

The format and content of a stack entry are shown in Figure 29.

Licensed Material--Property OT IBM
250 VS APL Program Logic

J

J

Dec

o

4

8

12

Hex

o

4

8

C

Length

4

4

4

4Xn

Name

STKP

STKI

STKR

STKS

Description

Pointer to a word at the low address
end of the stack area.
The word contains th~ address of the
stack overflow routine provided by
the module that owns the stack.
stack.

Four characters identifying the
routine for which this stack
entry is provid~d. When exit is
m~da from this routine, the second
bit in this field is turned off,
providing easy identification of
recent control flow when analyzing
dumps.

The contents of register 14 when
this routine was entered.

The contents of any other registers
saved when this routine was entered.
Contains registers 2 through 10 for
stack entries representing
module entry points.
For internal subroutines, STKS may
be omitted or m~y contain a
subset of registers 2 through 10.

Varies Routines, when entered, mDY request
additional stack space formatted
in any way th€y rpquir~.
For the format of this nrea and
the total length of the stack entry,
consult the individual routine.

Figure 29. Format and Content of a Stack Entry

CICS/VS EXECUTOR DATA AREA INTERRELATIONSHIPS

Figure 30 shows the relationships between major data areas used
by the CICS/VS executor.

Licensed Material--Property of IBM
Section 5. Data Areas 251

C1CS:\'S COSTROL BLOCK STORA(il

I

:\C)t\,; Th,' 'fC:\ sh"\'·11 is a-iSt,,:iat\'d with an AI'I.t:
\;"k. Til,' ~am,' lI~cr\ TCTIT is JssoC"iah:d
\',1111 an :\1'1.. :\I'I.T. "T API.X task.

T('..\ :\TWI'TII
.\TW
:\1·:13

AT\\"l;t~L

))PDs

~ IClll I I
I I

-- --- - --- -- ~
I (iBI

I SV\S

SC:'>.ICTTL I

:-.lote: Th~rl.' h ,'n~ fiBI. in :11\' ("K5:'\'S S~'SICI11. It
p"inl\ hI til ... ht';td "f til.: S(;:-; tabl.:. Th.:rc is
PI1\.' ;.lI.:th'c: S{~:\ \!nlr~ f\lr ..:a~h U!\l·r.

AI'1.U TRA:-;S:\CnOi'\ STORA(;)·.

I
PTXSMTBP I

PTXGXTBP I
PTKTCA I

PTH
PIX

PTKGBL PTK PTKSSPST .1
PRO PTKSSPAL 1

PTKS(iN PTKWSM

---- ---

I
\VS~II'TJlPT

\\'5~1

~TII

Figure 30. CICS/VS Executor Data Area Interrelationships

Licensed Material--Property of IBM
252 VS APL Program Logi c

OS\1 I

GST I
TSS J

(ifGDD\I,

(if non
GDmf) J

J

VS APL COHHOH EXECUTOR STACK

Executor modules which are common to multiple environments,
including most "APLA .•. and APLX ... modul~s, use a special set of
entry and exit code that saves registers and provides working
storage from a processing stack. Some of the mod\lles which are
unique to a single subsystem have also adopted this convention.
All of these modules are referred to as "SP-modulcs", and can be
identified by their use of an APLXPROC macro at the beginning of
the executable cede.

The APLXPROC macro generates an ID string at the module entry
point that not only names the module and provides a compile
data, but also contains a field indicating the amount of stack
storage required by the module.

SP-modules are never called directly. !nste~d, a stack linkage
routine is used which s~ves registers and provides the requirp.d
working storage. The APLCALLS macro is normally used for this
purpose. A single register (normally R13) is used to point to a
stack entry which includes:

• a pointer to the linkage routine,

• a standard 18-word save area, and

• the required working storage.

The stack entry also has a prefix which identifies the module
cUrrently using the stack entry. In addition, stack services
provides for abend exits at each level in the stack. These are
also recorded in the stack entry prefix.

Typically, then, a stack entry will appear as follows:

-10 -> abend exit routine

- C caller's R13 I

- 8 module name I
I

R13---> I branch to linkage routine

4 I -> previous stack entry I

8

C

48

------------------------------------I -> next stack entry I ------------------------------------
I
/
/
I

save R14-R12 when this
module issues a call.
(First byte is X'FF' if
~ontrol has returned.)

I
/
/

I ------------------------------------
I
/

working area for this module.
(variable size)

I
/

Licensed Material--Property of IBM
Spction 5. Dnta Arp~5 253

CONTROL BLOCK FOR HATS

Control blocks are given, in this subsection, in alphabetic J
'order. Each control block heading shows the name of the control .
block followed (within parenthesis) by the components which use
the control block. Acronyms are employed in place of the actual
component names and have the following meanings: '

All

AP

CICS

CMS

CONY

NTRP

5ERV

T50

VSPC

XSY5

All the principal components

Auxiliary Processors

CICS/VS Executor

CMS Executor

Conversion Programs

Interpreter including the translator exarch and
appendage routines

CICS/VS Service Programs

T50 Executor

VSPC Executor

Cross-system components including the session manager,
common auxiliary processor services, and common service
support routines)

Licensed Material---Property of IBM
254 VS APl Program Logic

J

J

APe (XSYS. AP)

This is the common AP services interface request' block. It
contains the typ~ of the shared storage mnnager r~quest ~nd the
return code from the request. (The formnt of this layout is the
one used in publications titled "Data Areas and Symbolic Names
Cross-Reference Table," usuDlly distributed on microfiche.) This
control block is mapped by the APLXAPC macro.

OFFSETS TYPE LENGTH NAME DESCRIPTION

o
o
2

4

4
5
6

8
10
10

11

12

16

20

24

28

28
30
31

32

36

40

40

92

(0) STRUCTURE

(0) SIGNED
(2) SIGNED

(4) CHARACTER

(4) BITSTRING
(5) BITSTRING
(6) SIGNED

(8) SIGNED
(A) CHARACTER
(A) BITSTRIHG

1
.1 •.
.. 11 1111

(8) BITSTRING

(C) A-ADDRESS

(10) SIGNED

(14) SIGNED

(18) SIGNED

(lC) SIGNED

(IC) SIGNED
(IE) BITSTRING
(IF) UIISIGHED

,(20) A-ADDRESS

(24) A-ADDRESS

(28) CHARACTER

(28) SIGNED

(5C) CHARACTER

92 APC

2 APCRQTYP
2 APCRQVAR

6 APCRC

1 APCRET
1
2 APCSSMRC

2 APCSSMRS
2 APCFL AGS
1 APCFLAGI

APCEBCD
APCIGNOR

1

4 APCEAT

4 APCPARMI

4 APCPARr12

4 APCPARM3

4 APCPARM4

2 APCNAMEl
1 APCATYf'E
1 APCALEVL

't APCANCH

4 APCPSCV

52 APCI.JORKA

52 APCREGS

o APCEND

REQUEST CODE SET BY AP
WHICH SH VAR III SET THIS

AP DESIGNATED RETURH CODE
UNUSED
RETURN COOE FROM SSM

REASON CODE FROM SSM
MISCELLANEOUS FLAGS
flAG BYTE 1
EBCDIC TRANSLATION FLAG
Ir.~lORE UtIREF'O WAITHIG VALUE
RESER'lED
RESERVED

ERROR TABLE ADDRESS SET BY AP

GENERAL IHPUT/OUTPUT VALUE 1

GENERAL INPUT/OUTPUT VALUE 2

GENERAL INrUT/OUTPUT VALUE 3

GENERAL INPUT/OUTPUT VALUE 4

LENGTH OF RESOURCE NAME

FLAG

TYPE OF RESOURCE FOR AUTHCHECK
ACCESS LEVEL FOR AUTHCHECK

At/CHOR BLOCK ADDRESS

PRIMARY SHARED VARIABLE SCV

WORK/REG SAVE AREA FOR AP COMMOH

REGISTER SAVE AREA

END OF PLS APC MAPPING

Licensed Material--Property of IBM
Section 5. Data Areas 255

CROSS REFERENCE

APC 0 eo)
APCAlEVl 31 elF)
APCANCH 32 (20)
APCATYPE 30 (1E)
APCEAT 12 ec)
APCE8CD 10 X'80'
APCEtm 92 esc)
APCFLAGS 10 (A)
APCFlAG1 10 (A)
APCIGHOR 10 X'40'
APCNAMEl 28 (lC)
APCPARM1 16 (10)
APCPARM2 20 Cl4)
APCPARM3 24 (18)
APCPARM4 28 (lC)
APCPSCV 36 (24)
APCRC 4 (4)
APCREGS 40 (28)
APCRET 4 (4)
APCRQTYP 0 (0)
APCRQVAR 2 (2)
APCSSMRC 6 (6)
APCSSMRS 8 (8)
APCWORKA 40 (28)

r

licensed Material--Property of IBM
256 VS APl Program logi c

J

APFT (VSPC)

This is the information table fo"~ auxiliary processors
distributed with VS APL for VSPC. There are 15 of these blocks
defined within the VSPC executor work area (ECA). This control
block is mapped by the APLPFT macro.

OFFSETS TYPE

o
o
4

S
10

12

12
14

16

(0) STRUCTURE

(0) SIG~ED

(4) SIGHED

(8) SIGNED
CA) SIGHED

(C) SIGNED

(C) SIGNED
(E) SIGNED

(10) HEX

LENGTH NAME

o APFT

4 APCTl

4 APDAT

2 APCIN
2 APDIN

4 APAPRCOD

2 APAPRET
2 APAPREA

1 APLAcr

DESCRIPTION

CTl SHARE ID

DATA SHARE ID

CTL INTERNAL NAME
DATA INTER~AL NAME

AP RETURN,REASON CODES

AP RETURN CODE
AP REASON CODE

SAVE LAST AP ACTION.
------------_ .. _---APLACT DEFINITIONS=APFIFO DEFINITIONS

17 (11) HEX 1 APSACT SAVE CURRENT USER/AP ACTION -- .. _--APSACT FLAGS DEFINED BY APACVS DEFINITIONS
18 (12) SIGNED 2 APSVRCOD
18 (12) HEX 1 APSVRET
19 (13) HEX 1 APSVREA

20

20

20
21

(14) A-ADDRESS

(14) SIGNED

Cl4) HEX
Cl5) A-ADDRESS

4 APGDDXCO

4 APSFN

1 APSFNID
.) APSFNAD

SHRVAR RETURN, REASON CODES
SV RETURH CODE
SV REASON CODE

OFFSET OF GDDX COMrtON AREA AP126

SFT/SET ADDRESS, 10

SFT/SET 10
SFT/~Er ADDRESS (NON-RELOCATABlE)

--~--GENERAL FLAGS

24 (18) HEX 1 APDsr1S DUMMY SHARE MEMORY(DSM) STATUS
--APDSMS FLAG DEFINI TIONS

11..

· 1 ..
· .11

· .. 1
· .. 1

25 Cl9) HEX

APDDSM

APDlISPEC
APCDSM

APCUSPEC
APSVCMP

1 APACVS

"x'cn'". DATA STATUS: 01=USER
SPECIFIED II=AP SPECIFIED OO=DATA
REFERENCED
"X'40'". USER SPECIFIED
"X'30'". CTL STATUS: 01=USER
SPECIFIED 11=AP SPECIFIED OO=CTL
REFEREIlCED
"X'10'". USER SPECIFIED
"X'Ol'". USER SV REQUEST COMPLETED
ACCESS CONTROL FLAGS

==================================:====~~======================================
APACVS FLAG DEFINITIONS

1 ... APADSP
· 1 .. APACSP
· . 1 . APADRF
· .. 1 APf.CRF

1 ... APUDSP
.1 .. APUCSP
· .1. APUDRF
· .. 1 APUCRF

26 CIA) HEX I APAPID

"X'80'". AP SPEC DATA
"X'40"'. AP SPEC CTl
"X' 20 "'. AP REF DATA
"X'lO'''. AP REF CTl
"X'OS'". USER SPEC DATA
"X'04"'. USER SPEC eTl
"X'02'''. USER REF DATA
"X'Ol'". USER REF CTl
PSEUDO-AP IDENTIFICATION

l"i censedMater i ai-Property of IBM
Section 5. Data Areas 257

APFT (VSPC) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

===============================~===
APAPID ~EFINITIONS

· .. 1
· .1.
· 1 ..
1 ...

27 (18) HEX

· .. 1
· . 1 .
· 1 ..
1 •..

APVSAM
APAPL
APBCD
APlolSA
APFSI'1
APGDDM
APALT
APCMD

1 APFLG

"X'Ol'". VSAM AP
"X'02'". VSPC APL AP
"X'04'". VSPC EBCDIC AP
"X'08'". WORKSPACE ACCESS AP
"X'10'". FSM AP PCM2045P
"X'20'". GDDM AP AP 126
"X'40'". ALTERNATE INPUT AP
"X'80'". VSPC COMMAND AP
APFT ENTRY FLAGS ---.~-- --------------------------APFLG DEFINITIONS

1 ...
· 1
11 .• . .••

APCACT
APDACT
APFTACT

"X'80'". CTl PARTNER ACTIVE
"X'40'". DATA PARTHER ACTIVE
"APCACT+APDACT".APFT ENTRY ACTIVE
MASK ---.--------------------~------------------ --------------------------AP FIFO ACTION STACK (APFIFO)

28 (lC) SIGNED 4 APFIFO --
APFIFO ENTRY DEFINITIONS

BYTE ENTRY PER AP ACTION
ACTION ENTRY FLAGS:APACSP,APADSP,APADRF,APACRF

.•.. 1... APAPDT "X'08'". DATA TYPE FLAG:

32

40
41

(20) CHARACTER

(28) HEX
(29) HEX

8 APSUFFIX

1 APSUFL TH
1 APINFO

O=CODE(RETURN,COMr1AND) I=DATA

CTL/DAT SUFFIX

CTL/DAT SUFFIX LENGTH

--- ------------------------~
VSPC COMMAND AP AND ALTERNATE INPUT AP INFO~MATION

41 (29) HEX 1 APCFLG COMMAND. ALTERNATE INPUT AP FLAGS --
APCFLG FLAG DEFINITIONS

1 ...

.11 .
· . 1 .
· .. 1

APCIBAD

APCALL
APCERR
APCLIFO

"X'80'". INITIAL VALUE NOT YET
ACCEPTED
"X'60'". COMMAND AP 'ALL' OPTION
"X'20'". COM~AHD AP 'ERROR' OPTION
"X'lO'". ALTERNATE INPUT AP 'LIFO'
OPTION ---~----------------------------- --------------------------WORKSPACE ACCESS AP INFORMATION

41 (29) HEX 1 APWFLG WORKSPACE ACCESS AP FLAGS ----------------------_._--
APWFLG FLAG DEFINITIONS

11.. APWVWS
.1.. APWPiC

42 (2A) SIGHED ·2

44 (2C) SIGtlED 4 APWOFSET

(30) SIGNED 4 APWLEHG

"X'CO'". DISPLAY VSPC WORKSPACE
"X'40'". DISPLAY VSPC PTC

OFFSET OF AREA TO BE EXAMINED

LENGTH OF AREA TO BE EXAMIHED ---~------- -------------------------VSPC FILE AP INFORMATION
41 (29) HEX 1 APPCOF
41 (29) HEX 1 . APPFLG

Licensed Materisl--Property of IBM
258 VS APL Program Logi c

VSPC AP FLAGS

J

L

APFT (VSPC) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

--APPFLG FLAG DEFINITIONS
1 ...

· 1 ..
· . 1 .
· .. 1

1111
1. . ;

· 1 ..
· . 1 .

· .. 1

42 (2A) SIGNED

44 (2C) SIGNED

48 (30) SIGNED
· . .. 1 •. 1

APPSI.

APPSO
APPDI
APPDIO

APPOPEN
APPMODE

APPFIlUN
APPFILDR

APPLINE

2 APPREC

4 APPRECNO

2 APPLRECL
APPLTH

"X'80'". OPEN MODES:SEQUE.NTIAL
INPUT
"X'40'''. SEQ.OUTPUT
"X'20'". DIRECT INPUT
"X'lO'''. DIRECT INPUT/OUTPUT VSPC
FILE OPEN MASK
"APPSI+APPSO+APPDI+APPDIO"
"X'08'". I-VARIABLE PROTOCOL MODE:
O=COMMAND MODE l=DATA TRANSFER
MODE VSPC FILE TYPE:
"X'04'''. O=DEFINED, l=UND~FINED
"X'02'''. O=SEQUENTlhL, l=DIRECT
SEQUENTIAL I/O SUBMODE:
"X'Ol'''. O=DATAONLY,I=LINEI AND
DATA
I/O BUFFER DISPLMT TO CURRENT ITEM

LOGICAL RECORD NUMBER

DIRECT FILE RECORD LTH SAVE
"M-APPCOF"

--VSAM FILE AP INFORMATION
50 (32) HEX 1 APVSAMF
50 (32) HEX t APVFLGl v5AM AP FILE OPEN MODE FLAGS

===
APVFLG1 DEFINITIONS

· .. 1 APVIN "X'Ol'". OPEN INPUT
· . 1 . APVOUT "X'02'''. OPEN OUTPUT
· 1 .. APVUP "X'04'''. OPEN UPDATE
.111 APVOPEN "APVIN+APVOUT+APVUP"VSAM FILE OPEN

MASK
51 (33) HEX 1 APVFLG2 VSAM AP ACTION FLAGS --APVFLG2 DEFINITIONS=CURRENT

· .. 1

· .. 1
· . 1 .
· 1 ..
1 ...

· •. 1 ... 1
· . 1 .
· 1 ..
1 ...
1 •••

· . 1 .

I/O ACTION
APVR
APVRU
APVWRT
APVERA
APVPOS
APVKF
APVOPN
APVCLS
APVKEY
APVWRTI

APVLTH

"X' 0 1 '''. REA D
"X'02'''. READ UPDATE
"X' 04"'. WRITE
"X'08'". ERASE
"X'10'". POSITION
"X'II'''. KEY FEEDBACK
"X' 20 "'. OPEN
"X'40'". CLOSE
"X'80'". KEYED REQUEST
"X'80'''. WRITE NEW RECORD (OPEN
UPDATE)
"M-APVSAMF" --FULL SCREEN MANAGER (FSM) AP INFORMATION

41 (29) HEX I APFSMF
41 (29) HEX 1 APFFLAG WORK FLAG

=== APFFLAG DEFINITIONS
· .. 1 APFIDXF

· • 1 • APFPENDF
· 1 .• APFBUZZR

1 ... APFCURSR
· . 1 . APFFINIT
· •. 1 APFMEMP

42 (ZA) HEX 1 APFCMDR

"X'OI'". INDEX INTO FSMFLD FOR FlD
NO.
"X'02"'. PENDING FORMAT
"X'04'''. SET ALARM ON NEXT
READ,WRITE
"X'08'''. SET CURSOR ON WRITE
"X'20'''. FSMWORK INITIALIZED
"X'lO'". DAT VARIABLE EMPTY
LAST READ-TYPE COMMAND

Licensed Material--Property of IBM
Section 5. Data Areas 259

APFT (VSPC) continued

OFFSETS TYPE LEtlGTH MAttE DESCRIPTION

--APFCMDR VALUES = APFREAD,APFGET,APFRFORM,APFWRITE
43 (2B) HEX 1 APFSMCMD CURRENT FSM eMD --APFSt1CMD VALUES

· .• 1
· . 1 .
· .11
.1.1
.11.
.111
1. .1
1.1.
1.11
11. ~.

11 ..

44 (2C) SIGHED

48 (30) SIGNED
· . .. 1.11

APFFORMT
APFWRITE
APFREAD
APFGET
APFMTYPE
APFMMINT
APFRFORM
APFHCOPY
APFBUZZ
APFSETC
APFCMDH

4 APDATVAL

4 APFSMD
APFl TH

"1". FORMAT
"2". WRITE
"3". READ
"5". GET
"6". MODIFY-TYPE
"7". MODIFY-INTENSITY
"9". READ-FORMAT
"10". HARDCOPY
"11". SOUND ALARM
"12". SET CURSOR
"12". HIGH CQrlMAND VALUE

DISPLMT FROM WS TO OAT VALUE BLK

DISPLMT FROM WSH TO FSMWORK
"*-APFSMF" --GDDM AP INFORMATION

41 (29) HEX
41 (29) HEX

1 APGDDMF
1 APGCTYPE DATA TYPE OF CTL VARIABLE --APGCTYPE VALUES

· . .. • •. 1
• . .. •. 1 .

42 (2A) SIGNED

44

48

(2C) A-ADDRESS

(30) A-ADDRESS
1.11

.. 11 .1..

APGFIXED
APGFlOt.T

2 APGINDEX

4 APGCTlBO

4 APGDATBO
APGLTH
APFTl TH

Licensp-d Material--Property of IBM
260 VS APL Program Log; c

"1". INTEGER
"2". FLOATING POINT
INDEX OF GDDX PATH UNIQUE BLOCK

OFFSET OF OUTPUT CTl BUFFER

OFFSET OF OUTPUT OAT BUFFER AP126
"l'E-APGDDMF" AP126
"l'E-APFT"

J

J

J

CROSS REFERENCE

APACRF 25 X'10' APFRFORM
APACSP 25 X'40' APFSETC
APACVS 25 (19) APFSM
APADRF 25 X'20' APFSMCMD
APADSP 25 X'80' APFSMD
APALT 26 X'40' APFSMF
APAPDT 28 X' 08' APFT
APAPID 26 (lA) APFTACT
APAPL 26 X'02' APFTl TH
APAf'RCCD 12 {C) APFWRITE
APAPREA 14 (e) APGCTlBO
APAPRET 12 (C) APGCTYPE
APBCD 26 X'04' APGDATBO
APCACT 27 X'80' APGDDM
APCALL 41 X'60' APGDDMF
APCDSM 24 X'30' APGOOXCO
APCERR 41 X'20' APGFIXED
APCFLG 41 (29) APGFLOAT
APCIBAO 41 X'80' APGINDEX
APCIN 8 (8) APGLTH
APCLIFO 41 X' 10' APINro
APc~m 26 X'80' APLACT
APCH 0 (0) APPCOF
APCUSPEC 24 X'10' APPOI
APDACT 27 X'40' APPDIO
APDAT 4 (4) APPFIlDR
APDATVAL 44 (2C) APPFIlUN
APDDSf1 24 X'CO' APPFlG
APDIN 10 (A) APPLINE
APDSMS 24 (18) APPLRECl
APDUSPEC 24 X'40' APPLTH
APFBUZZ 43 X'08' APPMODE
APFBUZZR 41 X'04' APPOPEN
APFCMDH 43 X'OC' APPREC

\.
APFCMDR 42 (2A) APPRECNO
APFCURSR 41 X'08' APPSI
APFFINIT 41 X'20' APPSO
APFFlAG 41 (29) APSACT
APFFORMT 43 X' 01' APSFN
APFGET 43 X'OS' APSFNAD
APFHCOPY 43 X'OA' APSFNIO
APFIDXF 41 X'Ol' APSUFFIX
APFIFO 28 (lC) APSUFI. TH
APFLG 27 (lB) Arsvcr1P
APFLTH 48 X'OS' APSVRCOD
APFMEMP 41 X' 10' APSVREA
APFMMINT 43 X'07' APSVRET
APFMTYPE 43 X'06' APUCRF
APFPEHOF 41 X'02' APUCSP
APFREAD 43 X' 03' APUORF

43 X'09'
43 X'OC'
26 X' 10'
43 (2B)
48 (30)
41 (29)

0 (0)
27 X'CO'
48 X'34'
43 X'02'
44 (2C)
41 (29)
48 (30)
26 X'20'
41 (29)
20 (14)
41 X'Ol'
41 X'02'
42 (2A)
48 X'OB'
41 (29)
16 (10)
(t 1 (29)
41 X'20'
41 X' 10'
41 X'02'
41 X'04'
41 (29)
41 X'Ol'
48 (30)
48 X' 09'
41 X'08'
41 X'FO'
42 (2A)
44 (2C)
41 X'80'
41 X'40'
17 (11)
20 (14)
21 (15)
20 (14)
32 (20)
40 (28)
24 X' 01'
18 (12)
19 (13)
18 (12)
25 X'Ol'
25 X'04'
25 X'02'

APUDSP 25 X' 08'
APVCLS 51 X'40'
APVERA 51 X'08'
APVFLG1 50 (32)
APVFL02 51 (33)
APVIN 50 X'Ol'
APVKEY 51 X'80'
APVKF 51 X'll'
APVLTH 51 X'02.'
APVOPEN 50 X'07'
APVOPN 51 X'20'
APVOUT 50 X'02'
APVPOS 51 X'10'
APVR 51 X' 0 1 '
APVRU 51 X'02'
APVSAM 26 X'Ol'
APVSAMF 50 (32)
APVUP 50 X'04'
APVWRT 51 X'04'
APVHRTI 51 X'80'
APL~FLG 41 (29)
APWlENG 48 (30)
ArlolOFSET 44 (2C)
APWPTC 41 X'40'
APWSA 26 X'08'
APWVWS 41 X'CO'

Licensed Materia1--Property of IBM
Section 5. Data Areas 261

APH (CICS, XS VS)

lhi~ is the r~qUe5t control blbck for authorization check in
CICS/VS. It is mapp~d by the APLKAPMmacro.

OFFSETS TYPE LENGTH NAHE DESCRIPTION

-----------~---o (0) STRUCTURE 13 APM ACHK PARAMETER LIST
---------------_._---_ _--~---------o

3

4
5

(0) DITSfRING
(3) BITSTRIIIG

(it ~ !l I f S TP. P1G
(5) CH,\R.\CTER

CP.OSS REFERENCE

APM 0 (0)
APMAMASK 0 U\)
APr-mAriE 5 (r; ,

J ,

APMREl.BY 3 (3 ,
AP~lR[SOR 4 ; it)

3 APMAMASI(
1 Arr1RELBV

1 APMRESOR
8 APMNUIE

Li censed Materi al-P,'operty of IBI1
262 'o1SftPl Program Log; c

USER AUTHORIZATION MASK
WIIICH TI'.BlE BYTE TO CHECK

THE RESOURCE TYPE TO CHECK
THE RESOURCE NAME TO CHECK

J

~

ATW (CICS, AP)

Thi sis the CICS/VS executor user task TWA !T'CllJPi ng area which·
contains register save areas and di5patch blocks for VS APL
processes. It is mapped by the APLKATW macro.

OFFSETS TYPE LENGTH NAME DESCRIPTION

---_ .. _-------- ---ABOVE FIELDS MUST RErtUN AT THE BEGItHIHIG OF t.HI, f',<") THEY
ARE USED BY APLKWAIT, APLKEXIT, ~.HD THE ssr1 REQUEST M".:~rW5.
--_._---PROGRAM CHECK SAVE AREA
APLXBHD DSECT=NO,P=ATB GENERhTE XBEND AREA --_. --------------------
THE FOLLOWING FIELDS ARE SET ONLY FOR PROGRAM CHECK
TYPE ABENDS. THE AREAS ARE DEFINED FOR SYSTEM ABE~DS
BUT ARE NOT SET OR USED BY ABEND RECOVERY SERVICES.
--THE FOLLOWING 16 WORDS ARE THE REGISTERS AT THE POtN'
OF THE PROGRAM CHECK, STORED FROM REGISTER 0 TO 15
---DEPENDENT PROCESS CONTROL
--.----------------------------------
STACK FOR APLKAOSP
==========================~==============~======~~=~==:====~=~======~=~=:=====:

BEGINNING OF OPOS ------------------------------_. ----------_._-- .. _-----------------------
OPD - DEPENDENT PROCESS DISPATCH ENTR~

THE OPD'S ARE LOCt.TED IN THE TI,IA FOLLOlolItW THE AHl H::f:.DF_~.
ONE ENTRY IS USED PER PROCESS. THIS ItICLUD[S HIE lIn EKF~ETER
INTERFACE PROCESS AND THE VARIOUS DEPENDENT AF PROCESSES.
EACH ENTRY CONTAINS ALL INFORMATION REQUIRED TO RESUME EXECUTION
OF THE PROCESS, AS WELL AS ABEND EXtT AND AP NUMBER DATA.

o (0) STRUCTURE o OPD ------------------------------------ -------------------------------_._---_._---------
0 (0) HEX 1 DPl)FLAG !.!:.:' GE FL I>GS

1 ... DPDFWAIT ";<'BO'" THIS PROCESS IS WAIT1H~
· 1 .. OPDFSIHG "X'4Q'" WAITING O~ A SINGLE Eea
· .1. DrOf"AP!. "X'20'tI WAITING ON APL EC1HS) ONLY
· .. 1 DPDFSY5 ")('10'" WA IT ItIG ON SYS (tlON eICS)

(eBCS)
1111 Of'DFWALL "DfDFWAIT+DPDFSIHG+DPDFAPL+DPDFSYS"

ALL L~t-. IT FLGS
1 ... DPDFXBX ";('08'" AB~W EXIT HEEDS FULL B~D
.. 1- DrDFS1RT "X'02'" PROCESS BEING STARTED
... 1 DPDFACT "X'OI'" THIS E:ITRY 1" ACTIVE

1 (1) HEX 1 DPDtlR RELATIVE DPD NU~~B ER
2 (2) SIGNED 2 OPDOFFST OFFSET IN DAP TABLE OF Ai) 1--;1:'

" ---
4 (4) CHARACTER

4 (4) A-ADDRESS

8 (8) SIGNED

12 (C) A-ADDRESS

16 (10) CHARACTER

32 (20) CHARACTER

8 DPDXIT

4 DPDXADR

4 DPDXPRf1

4 DPm.sKA

16 DPDECBl

64 DPDSAVE

ACEtW EXIT INFORMATION

EP TO EXIT ROUTINE

FARM TO PAS} TO EXIT ROUTINE

AODR OF WORK AREA PASSED TO AP

PTR5 TO UP TO 4 ECBS, T USfD FOR
DEBUGG!NG

SAVE ALL PROCESS REGS

Licenserl Material--Property of IBM
Sectio" 5_ Data Are~s 263

ATU (CICS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

32 (20) SIGHED 4 DPDPRO REG 0

36 (24) SIGNED 4 DPDPREG(13) REGS 1 THRU 13
---------------------------------~---

88 (58) SIGHED REG 14 T

n (SC) SIGHED 4 DPDPR15 REG 15 T --NOTE THAT REG 1 IS A POINTER TO THE ECBLIST.
IF IT IS ZERO, THE PROCESS IS AUTOMATICALLY DISPATCHABLE .

. 11. DPDLEH "~-DPf)" LENGTH OF ONE CPD ENTRY

CROSS REFERENCE

DPO 0 (0)
DPDECBL 16 (10)
DPOFACT 0 X'OI'
DPDFAPL 0 X'20'
DPDFLt.G . 0 (0)
DPDFSIHG 0 X'40'
DPDFSTRT 0 X'02'
OPDFSYS 0 X' 10'
DPDFloJAIT 0 X'80'
DPDF1,JAL l. 0 X'FO'
DPDFXBX C X'08'
OPDLEti 92 X' 60'
DPDNR 1 (1)

DPDOFFST i (2)
DPDPREG 36 (24)
DPDPRO 32 (20)
OrOPR14 88 (58)
DPDrR15 92 (SC)
DPD5AVE 32 (20)
Dpm~KA 12 (C~
DPDXAOR 4 (4)
DPDXIT 4 (4)
DPDXPRM 8 (8)

.'

Licensed Material---Property of JBM
264 VS APL Program l 09; c

J

BND (XSYS, AP)

This is the common executor services abend interface block for
abend exits. It is mapped by the APLXBND macro.

OFFSETS

o
o
o

1

4

8

8

8
10

12

TYPE

(0) STRUCTURE

(0) SIGNED

(0) BITSTRING
1
. 1•

(1) BITSTRING

(4) SIGNED

(8) BITSTRING

(8) SIGNED

(8) BITSTRING
(A) SIGNED

(C) SIGNED

LENGTH NAME

80 BND

4

1 BNDTYPE
BNDPROG
BNDSYS

3

4 BNDCODE

8 BNDPSW

4 BNDPS~<JDl

2 BNDBCMKC
2 BNDBCINT

4 BNDPSWD2

DESCRIPTION

ABEND TYPE WORD

ABEND TYPE BYTE
PROGR\M CHECK INDICATOR
SYSTEM ABEND INDICATOR
RESERVED

SYSTEM PROVIDED ABEND CODE,

PROGRAM CHECK PSW

WORD ONE OF PSW

BC MODE MASKS, KEY AND CMWP
BC MODE INTERRUPT CODE

WORD TWO OF PSL<J
---~-----------

12

12

13

16

16

20

24

28

32

36

40

44

48

52

56

60

64

68

(C) A-ADDRESS

(C) BITSTRING
11
.. 11
.... 1111

(D) A-ADDRESS

(10) CHARACTER

(10) SIGNED

(14) SIGNED

(18) SIGNED

(lC) SIGNED

(20) SIGNED

(24) SIGNED

(28) SIGNED

(2C) SIGNED

(30) SIGNED

(34) SIGNED

(38) SIGNED

(3C) SIGNED

(40) SIGNED

(44) SIGNED

4 BNDECADR

1 BNDBCICP
BNDBCILC
BNDBCCC
BNDBCl'lSK

3 BNDBCADR

64 BNDREGS

4 BNDREGO

4 BNDREGI

4 BNDREG2

4 BtmREG3

4 BNDREG4

4 BNDREG5

4 BNDREG6

4 BNDREG7

4 BNDREG8

4 BNDREG9

. 4 BNDREGA

4 BNDREGB

4 BNDREGC

4 BNDREGD

EC MODE INTERRPUT ADDRESS

BC MODE FIRST BYTE OF WORD 2
BC MODE INSTURCTION LENGTH
BC MODE CONDITION CODE
BC MODE PROGRAM MASK
BC MODE INTERRUPT ADDRESS

BEGINNING OF REGISTER SAVE AREA

REGISTER 0 AT PROGRAM CHECK

REGISTER 1 AT PROGRAM CHECK

REGISTER 2 AT PROGRAM CHECK

REGISTER 3 AT PROGRAM CHECK

REGISTER 4 AT PROGRAM CHECK

REGISTER 5 AT PROGRAM CHECK

REGISTER 6 AT PROGRAM CHECK

REGISTER 7 AT PROGRAM CHECK

REGISTER 8 AT PROGRAM CHECK

REGISTER 9 AT PROGRAM CHECK

REGISTER 10 AT PROGRAM CHECK

REGISTER 11 AT PROGRAM CHECK

REGISTER 12 AT PROGRAM CHECK

REGISTER 13 AT PROGRAM CHECK

Licensed Material--Property of IBM
Section 5. Data Areas 265

IND (XSYS. AP) continued

OFFSETS TYPE LEUGTH NAME

72 (48) SIGNED 4 BtlDREGE

76 (4C) SIGNED 4 BNDREGF

CROSS REFERENCE

BND 0 (0)
BNDBCADR 13 (D)
BNDI3CCC 12 X'30'

, BtlDBCICP 12 (C)
BtlDBCILC 12 X'CO'
BtWBCINT 10 (A)
BNDBCt1KC 8 (8)
BNDDCl'lSl(12 X' OF'
BlmeODE 4 (4)
BtlDEeADR 12 (e)
BNDPROG 0 X'80'
BNDPS1.J 8 (8)
BIIDPSL.JDl 8 (8)
BNDPSWD2 12 (C) .
BNDREGA 56 (38)
BNDREGB 60 (3C)
BNDREGC 64 (40)
BtlDREGD 68 (44)
BNDREGE 72 (48)
BNDREGF 76 (4C>
BNDREGS 16 <10)
BNDREGO 16 (10)
BNDREG1 20 (14)
BNDREG2 24 (18)
BtlDREG3 28 (lC)
BNDREG4 32 (20)
BNDREG5 36 (24)
BNDREG6 40 (28)
BNDREG7 44 (2e)
BNDREG8 48 (30)
BtIDREG9 52 (34)
BNDSYS 0 X'40'
BNDTYPE 0 (0)

Li censed Material-Property of IBM
266 VS APL Program Logi c

DESCRIPTION

REGISTER 14 AT PROGRAM CHECK J
REGISTER 15 AT PROGRAM CHECK

J

J

~

CIT (CICS, SERV)

This is the VSAM control interval trailer written by the CICS/VS
executor library services and the CICS/VS service program. It is
mapped by the APLKCIT macro.

OFFSETS TYPE LENGTH NAME DESCRIPTION

o
o
4
6

8

o
o
2

o
o
0
3
3
:3

11
14

15

(0) 5 TRUCTURE

(0) SIGNED

(4) SIGNED
(6) SIGHED

(8) SIGHED

(0) STRUCTURE

(0) SIGNED
(2) SIGHED

(0) STRUCTURE

(0) C~fARACTER

(0) UNSIGNED
(3) CHARACTER
(3) CHARACTER
(3) CHARACTER
(B) l'NSIGNED
(E) BITSTRING

111.
... 1

1. ..
.1 ..
.. 1 .
... 1

(F) CHARACTER

10 CITS

4 CITSBLOK

2 CnSLINE
2 CITSSEGN

2 CITSSEGL

4 CITW

2 CITL~SEGN
2 CITWOFFS

32 CIT

14 CITKEY

3 CIllIBNO
11 CITMBRA

8 CIHtEtlBR
8 C IT C Ltl Al'1
3 CITHllN
1 CITFTYPE

CITCUIRD
CITOBJ

CITRO
CITOIR

1 CITCATTR

SCROLL BLOCK SEQUENCE, NR OF

NR OF LOGICAL LINES IH CI
NR OF LINE SEGMENTS IN CI

LENGTH USED FOR SEGN CALC

SCROLL LINE DESCRIPTOR

HR SCREEN SEGMENTS IN LINE
OFFSET IN CI TO LINE DATA

FILE LOCATOR KEY

LIBRARY NUMBER

MEMBER NAME
eLlST HAf'lE
HIrHEST L HIE HUMBER
FILE TYPE
RESERVED
CI.IST IS NOREAD
OBJECT PROGRAM
RESERVED
RECORD ORIENTED
DIRECT
CONTEHT ATTRIBUTE

----------------------------_._---
16
16

20
22
22

24
25
25
25
26

28

28

30

(0) UNSIGNED
(10) A-ADDRESS

(14) SIGNED
(16) SIGrIED
(16) A-ADDRESS

(18) CHARACTER
(19) CHARACTER
(19) UNSIGNED
(19) BITSTRING
(IA) SIGNED

(lC) UNSIGHED

ClC) A-ADDRESS

(IE) SIGNED

4 CITNRBA
4 CITNEXT

2 CITNl.R
2 eITDL EN
2 CITCLDSP

1
7 CITVSAM
3 CITVRDF
1 CITRDFF
2 CITRECL

4 CITVCIDF

2 CITCI FSD

2 CITCIFSL

NEXT CONTROL INTERVAL RBA
NEXT 4K BLOCK ADDRESS

NUMBER OF LOGICAL RECORDS
DHA LENGTH
DISP IN BLOCK TO NEXT LINE

RESERVED
VSAM CONTROL INFORMATION
V5,A,M RDF
VSAM RDF FLAG BYTE
VSAM RECORD LENGTH

VSAM CIDF

CONTROL INTERVAL FREE SPACE
DISPLACHlENT
CONTROL INTERVAL FREE SPACE LENGTH

Licens~d Material--Property of IBM
S~ction 5. D~ta Are~s 267

CROSS REFERENCE

CIT 0 (0) J CITCATTR 15 (F)
CITCIFSD 28 <1C)
CITCIFSL 30 <1E)
CITCLDSP 22 (16)
CITCLNAM 3 (3)

CITCLNRD 14 X' 10'
CITDIR 14 X'01'
CITDLEN 22 (16)
CITFTYPE 14 eE)
CITHILN 11 (B)
CITKEY 0 (0)
CITLIBNO 0 (0)
CITMBRA 3 (3)

CITMEMBR 3 (3)
CITNEXT 16 (10)
CITNLR 20 (14)
ClntRI)A 16 (10)
CITOBJ 14 X'08'
CITRDFF . 25 09)
CITRECL 26 <1A)
CITRO 14 X'02' J CITS 0 eO)
CITSBLOK 0 (0)
CITSLINE 4 (4)
CITSSEGl 8 (8)
CITSSEGN 6 (6)
CITVCIDF 28 (lC)
CITVRDF 25 (19)
CITV5AI"1 25 (19)
CITW 0 (0)
CITWOFFS 2 (2)
CITWSEGN 0 (0)

J

J

Licensed Material--Property of IBM
268 VS APL Program Logi c

CtlSGl (CMS, XSYS, AP)

This 1S the CMS executor global table mapping. For a more
detailed description. see "Executor Data Areas." It is mapped by
the APLCMSGL macro.

OFFSETS TYPE LENGTH NAME DESCRIPTION

o (0) STRUCTURE o CMSGL

o (0) FLOATING 8 PTH --THE PERTERM HEADER PROVIDES INFORMATION ABOUT THE ACTIVE
USER WITH REGARD TO THE SYSTEM ENVIRONMENT. AND COMPLETES

o (0) SIGNED 4 PTHWORDl

o

1
3

(0) HEX
1 .•.

· 1 •.
· .1 .

(1) HEX
(3) HEX

1 ..•
.1 ..
· . 1 .

· 1 ..

• • 1 .
· •. 1

1 PTHASYNC
PTHDATTN

PTHQEND
PTHCPULM
PTHtmoUT

PTHFOFF
PTHATTN

1 (Z)
1 PTHSUSP1

PTHCWBIT
PTHWABIT
PTHSVBIT

"X'80'". DOUBLE-ATTENTION
SIGNALLED
"X'40'''. QUANTUM-END REQUESTED
"X'20'" CPU LIMIT EXCEEDED.
"X'04'" 'CANCEL OUTPUT' SIGNAL
RECEIVED.
"X'OZ'''. LINE-DROP OR BOUNCE
"X'Ol'". SINGLE ATTENTION
SIGNALLED
RESERVED
SUPERVISOR SUSPENSION BITS
"X'80'". CLOCK WAIT BIT
"X'40'''. YYWATE BIT
"X'ZO'". SH. VAR. WAIT BIT --PTHWSTAT HOLDS THE PROCESSING STATE OF THIS WS

4 (4) HEX
1 ...

· . 1 .
· .. 1

1 PTHWSTAT
PTHSVON

PTHSItlK
PTHSORS

"X'80'". THIS USER SIGNED ON TO
SVP
"X'02'". THIS IS A COPY SINK
"X'Ol'". THIS IS A COpy SOURCE --PTHUSTAT RECALLS THINGS WE'RE DOING FOR OR TO THIS USER

5 (5) HEX 1 PTHUSTAT
1... PTHLOCKB "X'80'". WE KEEP HIS KBD LOCKED
.1.. PTHMDY "X'40'". DATE FORr1AT FLAG --PTHMDY=l='MM/DD/YY'

PTHMDY=O='DD-MM-YY'
· . 1 .
· .. 1

1 ...

· 1 ..

PTHMSBLK
PTHMICRO

PTHFSAVL

PTHUEXTN

"X'20'". WE BLOCK HIS MESSAGES
"X'10'". APL MICROCODE WILL BE
USED.
"X'Oa'" RESERVED FOR FULlSCREEH
EDIT
"X'04'" PTH EXTENSION (PTX) EXISTS

===
PTHQVAR IS THE MAXIMUM NUMBER OF VARIABLES HE MAY SHARE

6 (6) SIGNED Z PTHQVAR --PTHYYCOD CONTAINS THE YYCODE OF THE LAST SVCC ISSUED
PTHSRCOD CONTAINS THE RETURN CODE THAT RESULTED.

8 (8) SIGNED . 4 PTHYYRC

a

10

(8) SIGNED
1

(A) SIGNED

2 PTHYYCOD
PTHSPCLY

2 PTHSRCOD

"X'80'"HI-ORDER BIT ON IF
'SPECIAL' YYCODE

licensed Material--Property of IBM
Section 5. Data Areas 269

CMSGL (CMS, XSYS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

--- --------------~----------
PTHWIDTH IS THIS TERMINAL'S CURRENT LINE-WIDTH SETTING

12
14

(C) SIGNED
(E) SIGNED

2 RESERVED
2 PTHWIDTH --

PTHCURSR IS THE TYPEBALL POSITION RESULTING FROM THE LAST
TYO OR TYI. PTHCURSR=O='AT THE LEFT MARGIN'.

16
18

(10) SIGNED
(12) SIGNED

2 RESERVED
2 PTHCURSR --

PTlIQSIZE IS THE MAXIMUM SIZE A SHARED VARIABLE MAY OBTAIN

20 (14) SIGNED 4 PTHQSIZE --
PTHPARM1, PTHPARM2 ARE RETURN PARAMETER FIELDS FOR
SOME SVCC FUHCTIONS.

24 (18) FlOATING 8

24 (18) SIGNED· 4 PTHPARMI

28 (IC) SIGNED 4 PTHPAR~'2 --
PTHWSLEN CONTAINS THE SIZE OF THE WS ADDRESS SPACE

32 (20) SIGNED 4 PTHl.oJSLEN --
PTHAcCNO CONTAINS THE BINARY ACCOUNT NUMBER OF THIS USER

36 (24) SIGNED 4 PTHACCNO --
TIME FIELDS: ALL ARE IN APL-STANDARD TIME FORMAT

IE A FLOATING POINT NUMBER OF MICROSECONDS,
POSSIBLY FRACTIONAL. TIME-OF-DAY VALUES
ARE FROM THE BEGINNING OF THE APL EPOCH.
INTERVALS ARE SIMPLY MICROSECOND COUNTS.

PTHlOCAL IS THE OFFSET OF THIS USER FROM GMT.
PTHCPUTM IS THE CPU TIME THIS SESSION.
PTHKEYTM IS THE UNLOCKED-KBD TIME THIS SESSION.
PTHCNCT~ IS THE DATE/TIME HE SIGNED ON.

40 (28) FLOATING

40 (28). FlOATING

48 (30) FlOATING

56 (38) FLOATING

64 (40) FlOATING
.1 .. 1 ...

8

8 PTHLOCAL

8 PTHCPUTM

8 PTHKEYTM

8 PTHCNCTM
PTHSIZE "M-PTH" SIZE OF PERTERM HEADER. --

APLXXPTX DSECT=NO

72 (48) FLOATING 8 PTX

72 (48) A-ADDRESS 4 PTXWSM

76 (4C) A-ADDRESS 4 PTXVCT

80 (50) A-ADDRESS 4 PTXSTACK

(54) A-ADDRESS 4 PTXSMTBP

Licensed Material--Property of IBM
270 VS APL Program Logic .

PERTERM EXTENSION FOR EXECUTOR
COMMON SERVICES

ADDR OF ACTIVE WORKSPACE

ADDR OF VECTOR TABLE

ADDR OF SP STACK

ADDR OF SESSION TABLE

J

J

J

CMSGL (eMS, XSYS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

88 (58) .A.-ADDRESS 4 PTXGXTBP AODR OF GDDX CONTROL TABLE

---~---------
92
96

lOO

(5C) A-ADDRESS
(60) A-ADDRESS

(64) A-ADDRESS

4 PTXGXGDM
4 PTXPRTBP

4 PTXFSTBP

ADDR OF CURRENT GDM
ADDR OF PRINT SERVICES TABLE

ADDR OF FILE SERVICES TABLE

104 (68) A-ADDRESS 4 PTXATTN ADOR OF ACTIVE ATTENTION ROUTINE

108 (6C) SIGNED 4 PTXFLAG DEFINE WORD OF FLAGS

108 (6C) HEX 1 PTX~,UBSY SUBSYSTEM FLAGS
1 ... PTXTSO "X' 80 It, THIS IS A TSO USER
· ! .. PTXCMS "X'40'" TItIS IS A CMS USER
· .1. PTXCtCS "X'20'" THIS IS A CICS USER
o .. 1 P TXV::·PC "X'lO'" THIS IS A VSPC USER

109 (6D) Hex 1 PTXDEBUG VARIOUS DEBUG OPTIOIIS
1. 0 0 DElGt1ICRO "X'BO'" DEBUG CANCEL MICROCODE

TEST DEBUG
01.. f)BGNSU,E "X'40'" nEBUG CAtJCEL ESTAE EXITS

DEBUG
.. t DBGECHO "X'02'" D!::8IJG ECHO STACK (CMD

PARM) DEBUG
•• 0 1 DBr;MSG "X' 01 to, DEBUG ERROR MESSAGES DEBUG

110 C6E) HEX 1 P TXF U ~;s GENERAL USE FLAGS
1. 0 . P1XJl.TPU~~ "X'80'" PURGE THE ALTERNATE INPUT

STACK
· 1 .. PTXFSR<)T "X' (t 0 ' " FULLSCREEN RESTORE

REQUIRED
1 ... PTXADSM "X'08'" ADSM OWNS THE SESSION

111 (6 F) HEX 1 RESERVED

112 (70) A-ADDRESS (t PTXDXTBP DUMP SERVICES TABLE POINTER

116 (74) SIGNED 4 PTXLfVEL VS APL RELEASE LEVEL

120 (78) SIGHED 4 PTXCODE TERMINAL TYPE (GDDM) CODE
-----------------------------------_._--_ .. _--COMMON WOPK AREA, USED ~OR/BY ADSM AND IS
IS AVAILABLE FOR OTHER uSERS AS A SCRATCH

124 (7C) CHARACTER 28 PTXSCRTH

124 (o7C) CHARACTER 8 PTxsr1F'SD

124 (7C) CHARACTfR 8 PTXSMP~O

PC) A-ADI")RESS 4 PTXSMPl

128 (80) A-ADDRESS 4 r.rXSI1P2

132 (84) A-ADDRESS

136 (88) A-ADDRESS 4 PTXSMP4

140 (SC) A-ADDRESS 4 P1XSM!""5

144 (90) .'-ADDRESS 4 P1 XSI1P6

148 (94) A-ADDRESS 4 PTXSMPl

152 (98) SIGNED 4 PTXHIl!T

7 WORD SCRATCH PAD AREA

ADSM PASSWORD RETURN AREA

ADSM PROFILE OPTION (OR BLANKS)

ADSM PARM! FIELD

ADSM PARM2 ~IELD

ADSM PARM3 FIELD

ADSM PARM4 FIELD

ADSM PARMS FIELD

ADSM PARM6 FIELD

ADSM PARM7 FIELD

ID,II.OO.FO
SF.OUT-ATTR.IN-ATTR,FLAGS HILITE

Licensed Material--Property of IBM
Section 5. Data Areas 271

CHSGL (CMS, XSYS, AP) continued

OFFSETS TYPE

152
153
154
155

156

160

164

168

172
176

(98) HEX
(99) HEX
(9A) HEX
(9B) HEX

1 ...

. 1 ..

(9C) A-ADDRESS

(AO) A-ADDRESS

(A4) SIGNED

(A8) SIGNED

(AC) SIGNED
(BO) SIGNED

1.11 .1..
.11. 11..

LEtfGTH NAME

1 PTXHISF
1 PTXHIAOT
1 PTXHIIOT
1 PTXHIFlG

PTXHIOHI

PTXHIIHI

4 PTXHELPQ

4 PTXUSRWA

4 PTXRSV01

4 PTXRSV02

4 PTXRSV03
4 PTXRSV04

PTXEND
PTXLEN

DESCRIPTION

START FIELD 3270 ORDER HILITE
OUTPUT ATTRIBUTE BYTE HIlITE
INPUT ATTRIBUTE BYTE HI LITE
FLAGS (OUTPUT.INPUT HILITE) HIlITE
"X'80'" OUTPUT HILITING REQUESTED
HIlITE
"X'40'" INPUT HILITING REQUESTED
HIlITE

ADDRESS OF MESSAGE QUEING RTN

ADDR OF INST EXIT WORK AREA

RESERVED

RESERVED

RESERVED
RESERVED
"*" END OF THE PTX
"*-PTX" SET THE LENGTH OF THE PTX --THE CMS GLOBAL TABLE DEFINES THE STATE OFVS APL

IN THE CURRENT MACHINE
---180 (B4) CHARACTER 8 CMSGLID LITERAL TO VERIFY CONTROL BLOCK

188 (BC) A-ADDRESS 4 CMSGRING ROUND AND ROUND ... --NEXT 4 WORDS WILL NEVER BE USED BY VS APL
HOWEVER, OFFSET MAY CHANGE DUE TO PTH,PTX ETC. ABOVE

192 (CO) SIGNED 4 CMSUSERO AND NOW,

196 (C4) SIGt~ED 4 CMSUSER1 A FEW WORDS

200 (CS) SIGNED 4 CMSUSER2 TO OUR SPONSOR •••

204 (CC) SIGNED 4 CMSUSER3 --NEXT 8 WORDS RESERVED FOR IBM USE WITH OPTIONAL FEATURES

208 100) SIGNED

212

216

220

224

228

232
236

240

240

248
251

252
254

(04) SIGNED

(D8) SIGNED

(DC) SIGNED

(EO) SIGNED

(E4) SIGNED

(E8) SIGNED
(EC) SIGNED

(FO) FLOATING

(FO) CHARACTER

(F8) HEX
(FB) HEX

(FC) HEX
(FE). HEX

4 IBMOPTl

4 IBMOPT2

4IBr10PT3

4 IBMOPT4

4 IBMOPT5

4 IBMOPT6

4 IBMOPT7
. 4 IBMOPT8

8 CMSDIAGO

8 CMSDSYS

3 CMSDVERS
1 CMSDCODE

2
2

Licensed Material--Property of IBM
272 VS APL Program Logi c

CP EXTENDED IDENTIFICATION

SYSTEM NAME ('VM/370')

VERSION. LEVEL, PLC
SnDP

MCEl
STAP

J

J

~

CMSGL (CMS, XSYS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

256 (100) CHARACTER 8 CMSDUSER USERID

264 (108) HEX 8 CMSDPP PP BIT MAP

272 (110) A-ADDRESS 4 CMSSOPT ACOPTIONS) MAPPED BY ArlS0~! --_._----------------- ... _._--_._--ACTIVE WORKSPACE STATUS.

276 (114) A-ADDRESS

280 (118) SIGNED

4 CMSWSADR

4 CMSMAXWS

ADDRESS OF INCORE WORKSPACE

MAXIMUM ALLOWED WS SIZE. 'SEE
PTHWSLEN FOR CURR SIZl)

-- -- ----.- -----_ ... -ACTIVE WORKSPACE 10.

284 (lIC) HEX 2 ft CMSAWSID

284 (1IC) SIGNED 4 CMSALl B

288 (120) CHARACTER 12 CMSANAM

300 (12C) CHARACTER 8 CMSAPAS

3 08 (1 34) H EX 24 C1"'SAVACT

332 (14C) SIGNED 4 CMSRS01F(3)

ACTIVE WSIO.

LIB Nur1BER.

W5 NAME (Z-COOES).

PASSWORD FROM LAST)SAVE OR)~GpD.

SAVE ACTIVE WS£D THRU)CCPV OR
)1-1SIO.

RESE~VED

-- - ----... --- - -.' ------- - --------------_. ------ ---- ----_ ... ------ --- --- --.- --_ .. - - - ~ .. ~ .. --.. -
LIDRARY MANAGEM[NT PARAMETERS AND CONTROL FIELDS.

344 (158) HEX 1 CMSL IBFl LIBRARY MI:MT I="LA'iS.
1 ... cr1SNOL IB "BITO" LIBRARY TAnt E IS EMrT·~· - s~ , "_I

PUBLIC G? PROJECT LI BS .
. 1 .. CMSPRIVT "BIT1" =1 IF CUR~ENT LIB orUU.l:0N

ACCESSES PRIVATE LIB. =0 IF P'J3L I~
OR PROJ EeT .

· • 1 . CMSPUBLC "BIT2" (USED ONL'f IF LIBrl-!!~:=~.)
:.1 IF CURR LIB OP IS FOR PlJaLI C
LIB. =0 IF CURR LIB IS P~OJE.CT.

· •. 1 C~SOU:-WS "BIT3" DURING)<;AVE, I·JS EXISTS IN
, LIBRARY BEFCRE)SflVE.

... 1 C!'1SLTPiH "'BTi i" ::1 IF DEPAUL T LIB
(f' T r:f\CCNO) IS HI LIB TADLE

345 (;'5?~ HEX 1 CMSYYlr-L FLAGS FOR Y'fLI D HANDl.TNG.
i ... CMSYYUH "BITO" STORAGE GOTTEN FOR FIl ENM'lE

-,tIME TABLE. (ALSO t1lANS, IF = 1 •
THAT YYLIB HAS BEEN REISSlIED
BECAUSE tJF OVF.RFlOW OF t.1Sr-:['UFF QR
Nt-ME TABLE ON PREVIOUS YYL IS.)

• C"1SYYLHO "BIT1" NAME TABL E HAS OVEP.FLOlt!ED. • .a. ••
(HIE~E ARE MORE QUALIFIED WS NM~ES
FOUND THMI THERE P.RE TADlE
ENTRIES.)

· . 1 . CMSYYLBO "BIT2" WSMBUFF OVERFlOl·!ED. (WE
COULDN'T FIT ALL FILENAt1ES IN NAME
TABLE INTO !tJSI1SUFF.)

346 (15A) HEX 1 CMSRS02X(2) RESERVED
==============~=========:=====:==============~====~:~= =========================
LI8RARY TMLE POHPERS.

348 (lSC) SIGNED
.. 1. 11 ..

348 (ISC) A-ADDRESS

4 CMSLIBXL
CMSL TL

4 CMSLTADR

HEXT 3 WORDS MUST BE CONTIGUOUS .
"44" SIZE OF LIBRARY TABLE ENTRY.

ADDRESS OF LIBRARY TABLE. DEFAULTS
TO A (CMS LI B T B) •

:. i (';'",nsed Mcd.eri al-Property of IBM
~~ction 5. Data A~eas 273

CMSGL (CMS. XSYS. API continued

OFFSETS TYPE LEtiGTH NAME DESCRIPTION

352 (160) A-ADDRESS 4 CMSL Tl F WORD CONTAINING CMSLTL.
--~--------------------------------356 (164) SIGNED 4 CMSlTSIZ HUMBER OF LIB TABLE ENTRIES IN

USE, TIMES CMSLTL.
---_ .. _._--
FOLLOWING EQUATES DEFINE FORMAT OF ENTRY IN INCORE
LIBRARY TABLE.

1. •.

· 1 ..

· . 1 .

· .. 1

· .. 1

... 1

.. 11

.1 ...

1 ...
11 ..
111.

· .. 1 . 1 •.

... 1 1. ..
· .. 1 11..
· .1.
· .1. .1 ..

CMS~. T FLG
CMSLTPRV

CMSLTPRJ

CMSLTRNG

CMSLTACC

CM5LTDSK

CMSLTD~L
CMSL TO~.JN

CMSLTOWL
CMSlTLMO
CMSLTAMO
CMSL TLBl

CMSLTLB2

CM5LTCUU
CMSLTlC
CMSlTWC
CMSLTRPW

"0" OFFSET TO FLAG FIELD (1 BYTE)
"BITO" =0 IF LIB IS PUBLIC OR
PROJECT =1 IF LIB IS PRIVATE
"BIT1" =0 IF LIB IS PUBLIC.
=1 IF LIB IS PROJECT.
"BIT2" =0 IF SINGLE LIB NUMBER.
=1 IF RANGE OF LIB NUMBERS.
"BIT3" =0 IF DYNAMltALLY LINKED
DISK =1 IF PERMANENT ACCESS
"1.3" OWNER DISK ADDRESS, IN
EBCDIC. BLANKS IF NOT
USED. THREE BYTES.
"3" LENGTH OF DISK ADDR.
"4.8" OWNER USERID, IN EBCDIC.
BLANKS IF NOT USED. 8
B(JES
"8" LENGTH OF OWNER'S USERID.
"12,2" WRITE LINK MODE FOR DISK
"14.2" ACCESS MODE FOR DISK
"16.4" LIB NUMBER, OR LOWER LIMIT
OF LIB NUMBER RANGE.
FULLWRD INTEGER.
"20,4" UPPER LIMIT OF RANGE OF
LIB NUMBERS. FULLWORD
INTEGER. USED OHLY IF
CMSLTFLG.CMSLTRNG=l.
"24,4" LINKED ADDRESS 'CUU '
"28,4" TOTAL LINK COUNT
"32,4" WRITE LINK COUNT
"36.8" READ PASSWORD --- --------------------------_._--------_ .. _--

DATE/TIME WORKSPACE WAS SAVED. TO BE RETURNED TO INTERP.
VIA PDSHSS.

360 (168) FLOATING 8 Cr1SAIJDAT TIME/DATE IN FLOATING PT.
-,---
WORK AREA FOR BUILDING PARMLISTS

USED FOR CP + eMS COMMA~DS. FlO
MAY BE USED BY ANY MODULE BETWEEN APL~~LL'S
APLSCFID WILL NOT USE THIS AREA

368 (170) FLOATING 8 CMSWORK(l6) 128 BYTES OF ALIGNED STORAGE --
WORK AREAS FOR BUILDING FSCB'S.

CMSFSCBl FSCB 'FILENAME FILETYPE FM',RECFM=F,HOREC=1,BSIZE=4096

496 (IFO) SIGNED . 4 CMSFSCB1

496 (lFO) CHARACTER B

504 (lF8) CHARACTER 8

512 (200) CHARACTER B

520 (208) CHARACTER
522 (20A) A-ADDRESS

524 (20C) A-ADDRESS

2 .., ..
4

Licensed Material--Pr~p~rty of IBM
274 VS APL Program Logi c

J

J

J

J

CMSGL (CMS, XSYS, AP) continue~

OFFSETS TYPE LENGTH NAttE DESCRIPTION

---~---------
528 (210) SIGHED 4

532 (214) CHARACTER 2
534 (216) A-ADDRESS 2

536 (218) A-ADDRESS 4
-----------------------------------~---540 (21C) SIGHED

.. 11 11..
4 (4)

CMSFSCBL
ADDITIONAL SPACE FOR FORM=EFSCBS
"*-CMSFSCB1" LENGTH OF FSCB.

===
SECOND FSCB USED UNLY BY SCOPY FOR WORK FILE

CMSFSCB2 FSCB 'FILENAME FILETYPE FM'.RECFM=F.NOREC=I,BSIZE=1026

556 (22C) SIGNED 4 CMSFSCB2

556 (22C) CHARACTER 8

564 (234) CHARACTER 8

572 (23C) CHARACTER 8

580 (244) CHARACTER 2
582 (246) A-ADDRESS 2

584 (248) A-ADDRESS 4

588 (24C) SIGNED 4

592 (250) CHARACTER 2
594 (252) A-ADDRESS 2

596 (254) A-ADDRESS 4

600 (258) SIGNED 4 (4) (AS ABOVE FOR FORM=E)
===:=================================
THE FOLLOWING GROUP OF FIELDS IS USED BY YYLIB.

616 (268) A-ADDRESS

620 (26C) SIGNED

624 (i70) A-ADDRESS

628 (274) SIGNED

632 (278) A-ADDRESS

636 (27C) CHARACTER

636 (27C) CHARACTER

644 (284) CHARACTER

647 (287) CHARACTER

4 CI'lSNTPTR

4 CMSNTSIZ

4 CMSNTZ

4 CMSYYlNP

4 CMSNTHI

11 CMSYYlNL

,8 CMSYYlNN

3 CMSYYLNS

1 CMSLIBMD

ADDR OF NAME TABLE FOR YYLI8

SIZE OF NAME TABLE (DBLWORDS

ADDR OF END OF NAME TABLE.

NUMBER OF ENTRIES IN NAME TABLE
THAT HAVE NOT YET BEEN PUT INTO
WSMBUFF TO BE PRINTED.

ADDR OF NEXT AVAILABLE ENTRY IN
NAME TABLE.

CURRENT NAME. INCLUDING SUFFIX OF
3 BLANKS. FOR COMPARISON TO
PDSNAME.
NEW NAME. AS OBTAINED FROM FST AND
TRANSLATED TO Z-CODES.

NAME SUFFIX FOR CMSYYLNN (THREE
ZBLANKS) .
ACCESS MODE FOR ANY LIB REQUEST

---~---------------------------'648 (288) CHARACTER 8 CMSNTONM NAME TABLE OVERFLOW NAME. THIS IS
THE LOWEST ALPHABETIC NAME WHICH
WAS NOT PUT INTO THE NAME TABLE,
DUE TO OVERFLOW. ALL NAMES IN THE
TABLE ARE LOWER THAN THIS.

Licensed Material--Property of IBM
Section 5. Data Areas 275

CMSGL (CMS, XSYS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

===
WORK AREAS FOR COPY.

656 (290) SIGNED 4 CMSCOPSA NUMBER OF RECORDS IN SINKWS FILE
USED TO SAVE AREA BETWEEN (1)
BEGINNING OF WS AND (2) SPOT
POINTED TO BY WSMFREEA. (PART A.>

660 (294) SIGNED 4 CMSCOPSB NUMBER OF RECORDS IN SINKWS FILE
USED TO SAVE AREA BETWEEN (1) SPOT
POINTED TO BY WSMFREEZ AND (2) END
OF WORKSPACE. (PART B.>

---664 (298) A-ADDRESS

668 C29C) SIGNED

672 (2AO) SIGNED

676 (2A4) SIGNED

680 (2AS) SIGNED

684 (2AC) SIGNED

688 (2BO) SIGNED

690 (282) SIGNED

4 CMSCOPSZ

4 CMSAVSIZ

4 CMSICTR

4 CMSOCTR

4 CMSIREC

4 CMSOREC

2 CMSCOPLL

2 CMSNKMOD

ADDRESS OF SPOT IN WORKSPACE AREA
WHERE PART B OF SINKW5 FILE
STARTS.

SAVE SIZE OF ACTIVE (SINK) WS HERE
WHILE SOURCE IS LOADED.

COUNT OF RECORDS READ FROM
COPYDATA FILE.

COUNT OF RECORDS WRITTEN TO
COPYDATA FILE.

RECNO PARAMETER FOR NEXT FSREAD OF
COPYDATA FILE

REGNO PARAMETER FOR NEXT FSWRITE
OF COPYDATA FILE.

SAVE LENGTH OF COPIED- OBJECTS
LIST HERE.
MODE OF SINKWS FILE IS SAVED HERE. --FIELDS USED DURING)SAVE FOR MANIPULATION OF

TEMPORARY WS FILE.

616 (26S) CHARACTER

624 (270) FLOATING

624 (270) CHARACTER

632(278) CHARACTER

640 . (280) CHARACTER

648 (288) CHARACTER
650 (28A) CHARACTER

656 (290) CHARACTER

664 (298) CHARACTER

8 CMSNTYPE

8

8 CMSREHAM

8 CMSOLDN

8 CMSOLDT

2 CMSOLDM1
6 CMSOLDM2

8 CMSHEWN

8 CM$NEWT

672 (2AO) CHARACTER . 2 CMSNEWMl
674 (2A2) CHARACTER 6 CMSNEWM2

6S0 (2A8) HEX 8 CMSRENZ

692 (2B4) SIGNED 4 CMSRS03F(4)

SAVE FILETYPE OF SAVED WS.

PARMS FOR RENAME OF SAVED WS.

'RENAME' .

OLD FlL ENAME.

OLD FILETYPE.

OLD FILEMODE (FIRST 2 CHARS)
OLD FILEMODE (LAST 6 CHARS)

NEW FILENAME.

NEW FILETYPE.

NEW FILEMODE (FIRST 2 CHARS)
NEW FILEMODE (LAST 6 CHARS)

EHD OF PARMS (HEX F'S)

RESERVED --PROGRAM MANAGEMENT.
ADDRESS OF APLMAIN MODULE.
----------------~--708 (2C4) A-ADDRESS 4 CMSAMAIN

Licensed Material--Property of IBM
276 VS APL Program log; c

J

CMSGL (CMS, XSYS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

--REGISTER SAVE AREAS FOR SUPERVISOR.

112 (2C8) SIGNED

928 (3AO) A-ADDRESS
· 1.. 1 ...

932 (3A4) HEX
1 ...

.1. .

· .1 .

1 ...

· 1 ..

· . 1 .
· .. 1

933 (3A5) HEX

4 CMSAVE
CMSAVEZ

4 CMSAVEZP
CMSBMPSV

1 CMSPGMFl
CMSHRSYS

CMSINSVP

CMSCOPER

CMSABEX

CMSCSUB

CMSBSEPP
CMSVMSP

1 C~lSRS04X

THREE SAVE AREAS
"*" MARKS END OF SAVE AREAS.

ADDR OF END OF SAVE AREAS.
"18*4" TO BUMP TO NEXT SAVE AREA.

PROGRAM MANAGEMENT FLAGS.
"BITO" =1 IF THIS IS SHARED APL
SYS
"BIT1" =1 IF PROGRAM CONTROL HAS
BEEN GIVEN TO THE SVP (WHICH IN
TURN GIVES CONTROL TO AN AP).
"BIT2" SYSTEM ERROR OCCURRED WHILE
IN COpy STATUS. SET BY YYSYSER,
CHECKED BY YYCOPZ.
"BIT4" =1 IF COMMON STAE EXIT
EXISTS
"BITS" =1 IF eMS CMDS MUST BE
SUBSET
"BIT6" =1 IF SYSTEM IS BSEPP
"BIT7" =1 IF SYSTEM IS VM/SP
RESERVED

--_._--CMSASTOP WILL CONTAIN A 'BeR' INSTRUCTION WHEN IT IS
NECESSARY TO STOP THE VIRTUAL MACHINE (VIA ADSTOP) ON
INTERPRETER SYSTEM ERRORS OR SUPERVISOR ABENDS.

934 (3A6) SIGNED 2 CMSASTOP SEE COMMENT ABOVE.
--LIST FORM OF STAE MACRO GOES HERE.
CMSTAE STAE ,MF=L,PURGE=QUIESCE,ASYNCH=NO

936 . (3A8) SIGNED 4

936 (3AS) A-ADDRESS
937 (3A9) A-ADDRESS

940 (3AC) A-ADDRESS

1 CMSTAE
3

4

FLAGS FOR TeB, PURGE AND ASYNCH
EXIT ADDR. HOT SPECIFIED

PARM. LIST ADDR. NOT SPECIFIED

944 (380) A-ADDRESS 4 TCB NOT SPECIFIED
.... 11.. CMSTAEL "*-CMSTAE" LENGTH OF STAE LIST

FORM.
---~--~-LIST FORM OF SPIE (PICA) GOES HERE.

948 (384) SIGHED 4
· . " .11. CMSPICAL "6" LENGTH OF PICA.

948 (3B4) HEX 1 CMSPICA OUR PICA. --THIS IS THE EC8 AND ASSOCIATED FLAGS USED WHEN
PUTTING THE APL PROGRAM TO SLEEP ON YYDELAY AND YYRWAIT.

956 (3BC) SIGNED 4 CMSECB THE WAIT ECB.

Li censed Mater; a1-Property of IBM
Section 5. Data Areas 277

CMSGL (eMS, XSYS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

960 (3CO) HEX 1 CMSWAITF SHOWS WHY WE ARE WAITING ON
CMSECB.

1 ... WAITRPL Y "BITO" WAITING FOR ATTENTION TO
UNLOCK KEYBOARD AFTER SENDING
MESSAGE.

.1. . WAITIMER "BIT1" WAITING FOR ATTENTION OR
TIMER POP FOR YYDELAY.

· . 1 . CMSTIMEP "BIT2" INSPECTED BY YYDELAY AFTER
FALLING OUT OF WAIT MACRO. =1 IF
TIMER EXIT POSTED ECB. =0 IF ATTN
EXIT POSTED ECB.

· .. 1 · ... CMSVWAIT "BIT3" WAITIMG FOR DOUBLE ATTN TO
BREAK SHARED VARIABLE DEADLOCK.

CMSMINDL "1000000" MINIMUM WAIT TIME FOR
YYDElAY. IN MICROSECONDS.

--CMSENDRT CONTAINS THE ADDRESS OF THE APL TERMINATION
ROUTINE IN MODULE APLSCINI. IT IS CALLED BY YYOFF.

964 (3C4) A-ADDRESS 4 CMSENDRT SEE COMMENT ABOVE.
------------------~--~------------CMSPSTIM IS WHERE CP PUTS THE THE RESULT OF THE PSEUDO
TIMER DIAGNOSE INSTRUCTION. THIS FOR THE YYDUMP SERVICE

968 (3C8) FLOATING 8 CMSPSTIM(4) DIAG OOC NEEDS 4 DOUBLE

968 (3C8) CHARACTER 16 CMSPSDT

968 (3C8) CHARACTER 8 CMSPDATE

976 (300) CHARACTER 8 Cl'lSPTIME

984 (3D8) FLOATING 8 CMSPVIRT

992 (3EO) FLOATING 8

MM/DD/YYHH:MM:SS (EXACTLY).

PSEUDO DATE.

PSEUDO TIME.

VIRTUAL CPU TIME USED SINCE LOGON,
IN MICROSECONDS. UNSIGNED 64-BIT
INTEGER.

IGNORED. SEE VM MANUAL.
====================~==
CMSDM~NO CONTAINS THE DUMP HUMBER THAT IS PUT INTO SYSTEM
ERROR MESSAGES BY THE INTERPRETER. IT IS RETURNED BY
1000 ~3E8) SIGNED 4 CMSDMPNO SEE ABOVE.

1004 (3EC) SIGNED 4 CMSRSOSF(4) RESERVED ---_ .. _--TERMINAL MANAGEMENT.

1020 OFC) HEX 1 CMSIDLSW
1021 (3FD) HEX 1 CMSNLSW

1022 (3FE) HEX 1 CMSFlAGS
1 ... CMSSEGZ

· 1 .. CMSRFLAG
· . 1 . CMSTYOI
· .. 1 CMSLAST

• CMSOUT .L •••

· 1 .. CMSNLREQ

· . 1 . CMSQUIET
· .. 1 CMSDSMAV

· 1 .. 1111 CMS3270W
. 111 1 ... CMS2741W

licensed Material---Property of- IBM
278 VS APL Program Log; c

=ENL IF IDLES REQ'D. elSE O.
=ENL IF NEW-LINE SEEN. ELSEX'OO'.
USED FOR WSMPARM2 CHECK ON YYTYO.
TERMINAL MANAGEMENT FLAGS
"BITO" SEGMENT IS LAST ONE IN
CMSBF
"BIT1" READING FROM TERMINAL
"BIT2" TYO CALLED FROM TYOI
"8IT3" FINAL TYO OUTPUT
"BIT4" O-U-T SIGNALLED ON DISPLAY
TERMINAL.
"BITS" ON YYTYO FOR DISPLAY TERM.
INPUT PARM SAYS NEW-LINE CHAR MUST
BE AT END OF OUTPUT.
"BIT6" RUNNING WITHOUT A TERMINAL
"BIT7" DISPLAY SESSION MG
AVAILABLE
"79" DEFAULT WIDTH IF 3270.
"120" DEFAULT WIDTH IF 2741 OR
OTHER TYPEWRITER TERMINAL.

J

J

CMSGL (CMS, XSYS, AP) continued

OFFSETS TYPE LENGTH NAt'lE DESCRIPT~ON

~---.. _---~MSBUFF POINTERS. USED DURING TYO ib KEEP TRACK OF .
WHAT HAS BEEN PUT IN CMSBUFF.

1024 (400) A-ADDRESS

t028 (404) A-ADDRESS

4 CMSBFLIH

CMSHELD

4 CMSBFSEG

CMSINBUF

BEGINNING OF CURRENT LINE IN
CMSBUFF (TYPEWRITER ONLY)
"CMSBFLIH" FOR DISPLAY TERMINALS,

. CONTAINS LENGTH OF DATA HELD FROM
PREVIOUS YYTYO.

BEGINNING OF CURRENT SEGMENT IN
CMSBUFF. (FOR TYPEWRITER TERMINAL
ONLY.) .
"CMSBFSEG" LENGTH OF INPUT BUFFER
FOR DISPLAY TERMINAL (=135 IF
USING 3270) .

. ---
a ___ _

PARMLISTS FOR RDTERM AND WRTERM MACROS.

1032 (408) SIGNED 4 CMSXPLST

:032 (408) CHARACTER 8

1040 (410) HEX
1041 (411) A-ADDRESS

:'044
1045
).046

(414) CHARACTER
(415) HEX
(416) SIGNED

· .. 1

1048 (418) SIGNED

1
3 CMSXADDR

1
1
2 CMSXLGTH

CMSXPLL

4 CMSWPLST

1048 (418) CHARACTER 8

1 0 56 (42 0) HEX
1057 (421) A-ADDRESS

1060
1061
1062

(424) CHARACTER
(425) HEX
(426) SIGNED

· .. 1

1064 (428) SIGNED

1
3 CMSWADDR

1
1
2 CMSWLGTH

CMSWPLL

4 CMSRPLST

1064 (428) CHARACTER 8

1072
1073

1.076
1077
1078

(430) HEX
(431) A-ADDRESS

(434) CHARACTER
(435) HEX
(436) SIGNED

· .. 1

1
3

1
1

CMSRADDR

2 CMSRLGTH
CMSRPLL

WRTERM PLIST USED BY ATTENTION
(STAX) EXIT.

UNUSED HISTORIC BIT.
OUTPUT ADDRESS.

BLACK RIBBON.
LONG WRITE. EDIT=NO.
OUTPUT LENGTH.
"*-CMSXPlST" LENGTH OF PLIST.

WRTERM PLIST.

UNUSED HISTORIC BIT.
OUTPUT ADDRESS.

BLACK RIBBON.
LONG WRITE, EDIT=NO.
OUTPUT LENGTH.
"*-CMSWPLST" LENGTH WRTERM PLIST.

RDTERM PLIST.

UNUSED HISTORIC BIT.
INPUT BUFFER ADDRESS.

ATTREST=NO OPTION.
UNUSED.
INPUT LENGTH.
"*-CMSRPLST" LENGTH OF RDTERM
PLIST.

Licensed Materia1--Property of IBM
Section 5. Data Areas 279

CMSGL (CMS, XSYS, AP) contfnuod
..

OFFSETS TYPE LENGTH tMrfE DESCRIPTION

--'CMSDCCW' DEFINES A SPECIAL PS~UDO-CCW USED WITH
DIAGNOSE X'58' TO DISPLAY PROMPTS IN THE INPUT AREA
OF A SCREEN. ALL FIELDS EXCEPT THE LENGTH FIELD ARE
INITIALIZED BY APLSCINI; THE CCW IS USED IN MODULE
APLSCDPY.

1032 (408) FLOATING

1032 (408) HEX
1033 (409) A-ADDRESS

1036
1037
1038

(40C) HEX
(40D) 'HEX
(40E) SIGNED

8 Cr1SDCCW

1
3 CMSDCCWA

1.
1
2 CMSDCCWL

OP-CODE.
ADDR OF DATA.

STANDARD CCW FLAGS.
LINE NUMBER ON SCREEN.
DATA LEt/GTH --

TERMINAL DEVICE INFORMATION.
DESCRIPTOR BITS FOR REAL CONSOLE DEVICE, AS RETURNED
BY DIAGNOSE 24.

1080 (438) SIGNED 4 CMSTYCON DESCRIP BITS ARE PUT HERE.
RDEVTYPC "0" OFFSET OF BYTE IN TYCON GIVING

DEVICE CLASS.
1 ... · .' .. CLASTERM "BITO" CLASS IS TYPEWRITER DEVICE.

(CLASTERM BIT SET IF REMOTE 3270.
APLSCIHI WILL RESET BITS TO LOOK
LIKE LOCAL 3270).

· 1 .. CLASDPY "BIT1" CLASS IS DISPLAY (GRAPHICS)
DEVICE.

· .. 1 RDEVTYPE "I" OFFSET OF BYTE IN TYCON GIVING
DEVICE TYPE.

· .11 RDEVllEN "3" OFFSET TO BYTE CONTAINING LINE
LENGTH.

· .. 1 1 ... CMS2741 "BIT3+BIT4" TYPE IS 2741.
· •. 1 · 1 .. CMSI050 "BIT3+BIT5" TYPE IS 1050.

· 1 .. cr1S3270 "BITS" TYPE IS 3270.
1 ... CMSR3270 "BITO" TYPE IS REMOTE 3270 (BIT

'CLASTERM' IS ALSO SET>.
===

PARMLIST FOR STAX MACRO.
CMSTAXPL STAX O,MF=LIST FORM OF STAX. MOVED TO
THIS SPOT BY INITIALIZATION.

1084 '43C) SIGNED

1084 (43C) A-ADDRESS

1088 (440) A-ADDRESS
1090 (442) A-ADDRESS

1092 (444) A-ADDRESS

4 CMSTAXPL

2
2

4

ADDRESS OF EXIT ROUTIHE

LENGTH OF INPUT BUFFERS
LENGTH OF OUTPUT BUFFERS

ADDRESS OF OUTPUT BUFFERS
----------------------------------~------------------------------~-------------1096 (448) A-ADDRESS

1100 (44C) A-ADDRESS
1101 (44D) A-ADDRESS

· .. 1 . 1 .•

4

1
3

CMSTAXl

STXEXIT

Licensed Mate"'; aI-Property of IBM
280 VS APL Program Logi c

ADDRESS OF INPUT BUFFERS

REPLACE/NO REPLACE, DEFERRAL IND
ADDRESS OF USER PARAMETERS
"~-CMSTAXPL" lEHGTHE OF STAX
PARMLIST.
"0" OFFSET TO FIELD IN CMSTAXPL
CONTAINING ADD~ OF STAX EXIT
ROUTHlE.

J

J

J

J

CMSGL (CMS, XSYS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

--PLIST FOR 'ASVPHIHT' MACRO. THE SSM 'ASVPHINT' MACRO
IS EXECUTED IF THIS IS A DISPLAY (3270) TERMINAL.
IF 'TERM APL ON' IS SET AND THIS IS A DISPLAY
TERMINAL, VM/370 WILL GIVE AN EXTERNAL INTERRUPT
WHENEVER THE PA2 KEY IS STRUCK. APL USE~ THE
PA2 TO SIGNAL CANCEL-OUTPUT.

1084 (43C) HEX

1084 (43C) A-ADDRESS

1J88 (440) V-ADDRESS

1092 (444) A-ADDRESS

. . .. 11 ..
1104 (450) HEX

12 CMSEXTPL

4 CMSEXTID

4 CMSEXTAD

1 (4)

CMSEXPLL
256 CMSTABS

PLIST FOR 'ASVPHIHT' MACRO.

ACCOUNT NUMBER FROM PTHACCNO.

"V(SCDPA2)" ADDR OF EXTERNAL
INTERRUPT EXIT HANDLER. HANDLER
SETS CANCEL-OUTPUT BIT.

SEE ASVICV FOR FIRST TWO BYTES
ASYN LAST TWO BYTES ARE EXT INT
CODE.
"~-CMSEXTPL" LENGTH OF PlIST.
CURRENT TAB SETTING. (ALL 0 IF NO
TABS.) -------------------------_._---ADDRESSES OF DEVICE-DEPENDENT SERVICE REQUEST

HANDLERS. THE ADDRESSES IN THESE FIELDS DEPEND ON
WHETHER THE TERMINAL IS A TYPEWRITER OR A
DISPLAY (3270). APLSCINI STORES THE ADDRESSES HERE,
APLSCFXI USES THEM. .

1360 (550) SIGNED 4 CMSDDADR
-----~---1360 (550) A-ADDRESS 4 CMSXTYI ADDRESS OF YYTYI HANDLER.

1364 (554) A-~DDRESS 4 CMSXTYO ADDRESS OF YYTYO HANDLER.

1368 (558) A-ADDRESS 4 CMSXTYOI ADDRESS OF YYTYOI HANDLER.
--CONSOLE ADDRESS. NEEDED FOR DIAGNOSE 58 IF THIS IS
A 3270. SET BY APLSCINI. USED BY APLSCDPY.

1372 (S5C) A-ADDRESS 4 CMSCONAD SEE COMMENT ABOVE. 2143

1376 (560) SIGHED 4 CMSRS06F(4) RESERVED ---~--STORAGE MANAGEMENT.
THE ENTRY-POINT AND WORKAREA ADDRESSES FOR THE FIRST TEN
AUXILIARY PROCESSORS ARE KEPT HERE. THE FIRST WORD OF
EACH WORD-PAIR HAS THE ENTRY POINT ADDRESS, THE SECOND
WORD HAS THE WORKAREA ADDRESS.
---1392 (570) A-ADDRESS

. . .. 1. 1 .
4 CMSAPAL(20)

CMSAPALL
SEE COMMENT ABOVE.

. "(*-CMSAPAL)/8" NUMBER OF ENTRIES. ------------------------------.--~---KEEP ADDRESS AND LENGTH OF AREA WE GOT IN USER
PROGRAM AREA FOR WORKSPACE. SHARED MEM AND AP WORK
AREAS. WE USE THESE TO FREE THE SPACE AT YYOFF.
-------------------------~---1472 (SCO) SIGHED

1476 (5C4) SIGNED

4 CMSFRADR

4 CMSFRSIZ
CMSAPWKL

ADDRESS OF WS. ETC. AREA.

LENGTH OF AREA. IN DOUBlEWORDS.
"512" WORK AREA FOR EACH AP

---1480 (SC8) SIGHED 4 CMSRS07F(4) RESERVED

Licensed Material--Property o~ IBM
Section 5. Data Areas 281

CMSGL (CMS, XSYS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

--
SHARED VARIABLES.
---~-----------
1496 (5D8) HEX

1 ...

1 ...

. 1 ..

14 97 (5 D 9) HEX

1 CMSSHVFL
SHVAVAIL

SHVRPEAT

SHVHOAP

1 CMSRS08X(3)

SHARED VARIABLE FLAGS.
"BITO" =1 IF SHARED VARIABLES CAN
BE USED DURING THIS SESSION.
"BIT4" IF =1, WE REPEAT A
REFERENCE OR OFFER REQUEST ONCE TO
PREVENT FALSE RESULTS WITH CERTAIN
DISTRIBUTED AUX. PROCESSORS. IF
=0, REQUEST HAS NOT BEEN REPEATED
AND MAY HAVE TO BE FOR CERTAIN
RETURN/REASON CODES.
~BITS" A.P.'S NOT LOADABLE 2018

RESERVED --
THIS IS THE ECB LIST INFORMATION THAT WE PASS TO THE SVP
WHEN WE DO A SHARED VARIABLE WAIT.

1500 (SOC) A-ADDRESS 4 CMSECBlA ADDR OF ECB LIST.

1504 (SEO) A-ADDRESS 4 CMSVECBA ADDR OF ECB AREA.
------------------~--1508 (5E4) SIGHED

. 1 ..

1512 (SE8) A-ADDRESS

1516 (SEC) SIGHED
1520 (5FO) SIGNED

1S24 (5F4) A-ADDRESS

1528 (SF8) A-ADDRESS

1532 (SFC) SIGNED

4 CMSVPECB
CMSECBSP

4 CMSSSMAD

4 CM5IOE14
4 CMSEIR13

4 CMSEIOLD

4 CMSTSKBL

4 CMSRS09F(2)

pev ECB FOR SH VAR WAIT.
"4" SIZE OF ECB OR ECB LIST ELMT

ADDR OF SHARED STORAGE MANAGER.

I/O INTERRUPT RETURN REG
EXT INT. R13 POINTER

ADDRESS OF OLD EXT INT EXIT

ADDRESS OF INT TSK BLOCK

RESERVED --
SHARED VARIABLE INFORMATION THAT IS PASSED TO THE SVP AT
APL STARTUP TO INITIALIZE THE SHARED VARIABLE FACILITY.

1540 (604) SIGNED 4 CMSSVPIN THE FOLLOWING 3 WORDS MUST BE
CONTIGUOUS.

------~--- -------------------------
1540 (604) SIGNED

1544 (608) SIGNED

1548 (60C) A-ADDRESS

15S2 (610) SIGNED

1568 (620) A-ADDRESS

2768 (ADO) FLOATING

4 CMSNUMAP NUMBER OF AP'S LOADED.

4 CMSSMSIZ SIZE OF SHARED MEMORY.

4 CMSSMADR THE ADDRESS OF SHARED MEMORY

4 CMSRSIOF(4) RESERVED

4 CMSAPADA(300) 60 S-WORDS FOR SVP PARMS. ONE
SET FOR EACH AP. SEE MODULE
APLSCINI FOR DEFINITION OF SETS.
(CMSBUFF IS AT SAME LOCATION

8 CMSINIBF

AS CMSAPADA.)

LABEL USED FOR BUFFER SPACE
DURING INITIALIZATION ---_._--~-------------------.----------------- --------------------------THE TERMINAL I~O BUFFER.

1568 (620) CHARACTER 2048 CMSBUFF
CMSBUFFZ

L;censed Mater;al--Property of IBM
282 VS APL Progr-llm Log; c

THE BUFFER.
"*" MARKS END OF CMSBUFF.

J

J

CHSGL (CMS, XSVS, AP) contfnued

OFFSETS TYPE LENGTH NAME DESCRIPTION

--MISCELLANEOUS.

3616 (f20) FLOATING

3624 eE28) SIGNED

3628 (E2C) SIGNED

8 CMSPACK

4 CMSRECNO

2 CMSCLISL

CONVERTS LIB NUMBERS TO EBCD

RECORD NO. FOR FSWRITE OF FILE FOR
YYCOPO.

HOLD COPY LIST LENGTH. --WORK AREA USED FOR EDITING SUPERVISOR MESSAGES WITH
LINEDlT MACRO.

CMSLINED LINEDIT MF=L,MAXSUBS=S
3630 (E2E) HEX 1 CMSLINED(47)
--CMSINITF IS USED ONLY DURING INITIALIZATION (SEE APLSCINI)

AFTER INITIALIZATION, CMSWORKF IS AVAILABLE TO
TO ANY ROUTINE WHICH DOES NOT GIVE UP CONTROL
VOLUNTARILY. (I.E. HANDS OFF, ASYNCH ROUTINES)

3677 (ESD) HEX
3677 (E5D) HEX

1 CMSINITF
1 CMSWORKF --THESE FOUR DOUBLEWORDS CONTAIN TIMES, FOR QUAD-AI'S USE.

---. .
3680 (E60) FLOATING 8 CMSTRTUP

3688 (E68) FLOATING 8 CMSKEYTM

3696 CE70) FLOATING 8 CMSCPUAC

3704 (E78) FLOATING 8 CMSHOlDT

TIME OF DAY THAT APL WAS STARTED,
IN APL STANDARD TIME FORMAT.

PTHKEYTM IS NOW USED INSTEAD OF
THIS FIelD.

ACCUMULATED VIRTUAL CPU TIME FOR
INTERPRETER. IN MILLISECONDS.

HOLD AREA FOR SAVING CPU TIME WHEN
INTERP IS DISPATCHED OR TIME OF
DAY WHEN KEYBOARD IS UNLOCKED. --THE GLOBAL-TABLE-RESIDENT LIBRARY TABLE. LIB

TABLE IS HERE IF THERE ARE NO MORE THAN
CMSLLTMX/CMSLTL LOGICAL RECORDS IN THE LIBRARY TABLE

3712 (E80) SIGHED 4
CMSLLTMX

3712 CE80) HEX 1 CMSLIBTB

LIB TABLE MUST BE ON FULLWRD
"(CCMSGL+CMSML-*)/CMSLTL-I)*CMSLTL"
AMOUNT OF SPACE AVAILABLE IN
GLOBAL TABLE FOR LIB TABLE
ENTRIES.

THE LIBRARY TABLE. --GLOBAL EQUATES.
• . . ' 1. 1 . CMSR "RIO" GLOBAL TABLE BASE REGISTER .

Licensed Material--Property of IBM
Section S. Data Areas 283

CROSS REFERENCE

CLASDPY 1080 X'40' CMSIHIBF 2768(ADO) CMSPVIRT 984<3D8)
CLASTERM lOaD x'ao' CMSINITF 3677(E5D) CMSQUIET 1022 X'02' J CMSABEX 932 x'oa' CMSINSVP 932 X'40' CMSR 3712 X'OA'
CMSALIB 284(l1C) CMSIOE14 1516(SEC) CMSRADDR 1073(431)
CMSAMAIH 708(2C4) CMSIREC 680C2A8) CMSRECHO 3624CE28"l
CMSANAM 288(120) CMSKEYTM 3688CE68) CMSREHAM 624(270)
CMSAPADA 1568(620) CMSLAST 1022 X'10' CMSRENZ 680(2A8)
CMSAPAl 1392(570) CMSLIBFl 344(158) CMSRFLAG 1022 X'40'
CMSAPAll 1392 X'OA' CMSLIBMD 647(287) CMSRlGTH 1078(436)
CMSAPAS 300C12C) CMSLIBTB 3712(E8C) cr'1SRPLl 1078 X'10'

.CMSAPWKL 512 CMSLIBXl 348C15C) CMSRPLST 1064(428)
CMSASTOP 934<3A6) CMSLINED 3630CE2E) CMSRS01F 332C14C)
CMSAVACT 308(134) CMSllTMX = 308 Cf'ISRS02X 346C15A)
CMSAVDAT 360(168) CMSlTACC 356 X'10' CMSRS03F 692(2B4)
CMSAVE 712(2C8) CMSlTADR 348<15C) CMSRS04X 933(3A5)
CMSAVEZ 928 CMSL TM10 356 X'OE' CMSRS05F 1004(3EC)
CMSAVEZP 928(3AO) CMSlTCUU 356 X'18' Cf'lSRS06F 1376(560)
CMSAVSIZ 668(29C) CMSLTDSK 356 X'Ol' CMSRS07F 1480(5C8)
CMSAWSID 2M(llC) CMSLTDSL 356 X'03' CMSRS08X 1497(5D9)
CMSBFLIN 1024(400) CMSl TFLG 356 X'OO' CMSRS09F 1532(5FC)
CMSBFSEG 1028(404) CMSL Tl 348 X'2C' CMSRS10F 1552(610)
CMSBMPSV 928 x'48' CMSL TlB! 356 X'IO' CMSR3270 1080 X'80'
CMSBSEPP 932 X'02' CMSL HB2 356 X'14' CMSSEGZ 1022 X'80'
CMSBUFF 1568(62Q) CMSl TLC 356 X'lC' CMSSHVFl 1496(5D8)
CMSBUFFZ 3616 CI'1SL Tl F 352(160) CMSSMADR 1548(60C)
CMSCLISL 3628(E2C) CMSl HMO 356 X'OC' CMSSMSIZ 1544(608)
CMSCONAD 1372(55C) CMSL Tm~l 356 X'08' CMSSOPT 272(110)
CMSCOPER 932 X'20' CMSlTOWN 356 X'04' CMSSSMAD 1512(5E8)
CMSCOPLl 688(2BO) CMSlTPRJ 356 X'40' CMSSVPIH 1540(604)
CMSCOPSA 656(290) CMSLTPRV 356 X'80' C~'STAB5 1104(4S0)
CM5COPSB 660(294) CMSLTPTH 344 X'Ol' CMSTAE 936(3A8)
CMSCOPSZ 664(298) Cf15L TRNG 356 X'20' CMS TAEL 944 X'OC'

.CMSCPUAC 3696(E70) Cf'lSL TRPW 356 X'24' cr'IS T AXl 1101 X'14'
CMSCSUB 932 X'04' CMSLTSIZ 356(164) CMSTAXPl 1084(43C)
CMSDCCW 1032(408) CMSLTWC 356 X'20' CMSTH1EP 960 X'20'
CMSDCCWA 1033(409) CMSMAXWS 280(118) CMSTRTUP 3680CE60)

J CMSDCCWL 1038(40E) CMSMIHDl 1000000 CMSTSKBl 1528CSF8)
CMSDCODE 251 (FB) CMSMl 4096 01STYCOH 1080(438)
CMSDDADR 1360(550) CMSHE\lJM1 672C2AO) Ct1STYOI 1022 X'20'
CMSDIAGO 240 (FO) CMSNEL-l~12 674(2A2) CtlSUSERO 192 (CO)
CMSortPHO 1000(3E8) CMSNHlN 656(290) CMSUSERI 196 (C4)
CMSDPP 264(08) C~tSNEWT 664(298) C~15I,JSER2 200 (C8)
CMSDSMAV 1022 X'Ol' Cr-1SHKMOD 690(2B2) CMSUSER3 204 (CC)
CMSDSYS 240 (FO) CMSNLP.EQ 1022 X'04' CMSVECBA 1504(5EO)
CMSDUSER 256(100) C~ISNL 5W lO21(3FD) CMS'/r1SP 932 X'Ol'
CMSDVERS 248 (F8) CMSHOLIB 344 X'80' CMSVPECB 15()8(5E4)
CMSECB 956(3BC) CI'lSNTHI 632(278) 01SVWAIT 960 X'10'
CMSECBlA lSOOCSDC) CMSNTONM 648(288) CMSl~ADDR 1057<421>
CMSECBSP 1508 X'C4' CMSNTPTR 616(268) CtlSWAlTF 960(3CO)

J CMSEIOLD 1524(SF4) CrtSNTSIZ 620(26C) CMSWL3TIi 1062(426)
CMSEIR13 1520(5FO) CMSNTVPE 616(268) Cr1S~JORK 368(170)
CMSENDRT 964(3C4) CMSNTZ 624(270) CMSL.JORKF 3677 (E5D)
CMSEXPLl 1092 X'OC' CMSNur1AP 1540(604) CMSLJPL L 1062 X'10'
CMSEXTAD 1088(440) CMSOCTR 676(2A4) C~lSWPLST 1048(418)
CMSEXTID 1084(43C) CMSOLDM1 648(288) CMSWSADR 276(114)
CMSEXTPL 1084(43C) CMSOLDM2 650C28A) CMSXADDR 1041(411)
CMSFlAGS 1022(3FE) CMSOLDN 632(278) CMSXlGTH 1046(416)
CMSFRADR 1472(5CO) CMSOlDT 640(280) CMSXPll 1046 X'10'
CMSFRSIZ 1476(5C4) CMSOlDWS 344 X'10' CMSXPLST 1032(408)
CMSFSCBl 540 X'3C' CMSOREC 684(2AC) CMSXTYI 1360(550)
CMSFSCB1 4960FO) CMSOUT 1022 X'OS' CMSXTYO 1364(554)
CMSFSCB2 556(22C) CMSPACK 3616(E20) CMSXTYOI 1368(558)
CMSGl 0 (0) CMSPDATE 968<3C8) CMSYYlBO 345 X'20'
CMSGLID 180 (B4) Cl'lSPGMFl 932(3A4) CMSYYlFl 345(159)
CMSGRIHG 188 (BC) Ct'15PICA 948(3B4) CMSYYlNl 636(27C)
CMSHElD 1024 CMSPICAl 948 X'06' Cf1SYYlNN 636(27C)
CMSHOlDT 3704CE78) CMSPRIVT 344 X'40' 01SYYlNO 345 X'40'
CMSHRSYS 932 X'80' Ct'lSPSDT 968 nC8) CMSYYlNP 628(274)
CMSICTR . 672(2AO) CMSPS TIM 968(3C8) CMSYYlNS 644(284)
CMSIDLSW lO20(3FC) CMSPTIME 976(300) CMSYVLNT 345 X'80'
CMSINBUF 1028 CMSPUBlC 344 X'2()' CMS1050 1080 X'14' J
Licensed Materia1-P rClpel"'ty 01' IBM
284 VS APL Progr~m Logic

CROSS REFERENCE

CMS2741 1080 X'18' PTHQVAR
CMS2741W 1022 X'78' PTHSINK

L
CMS3270 1080 X'04' PTHSIZE
CMS3270W 1022 X' 4F' PTHSORS
OBGECHO 109 X'02' PTHSPCLY
DBGMICRO 109 X'80' PTHSRCOD
DBGMSG 109 X'Ol' PTHSUSP1
OBGNSTAE 109 X'40' PHISVBIT
IBMOPTl 208 (DO) PTHSVON
IB~10PT2 212 (D4) PTHUEXTN
IBMOPB 216 (D8) PTHUSTAT
IBMOPT4 220 (DC) PTH~.JABIT
IBMOPT5 224 (EO) PTHl.JIDTH
IBI'10PT6 228 (E4) PTHl·JORDl
IBMOPT7 232 (E8) PTHt.JSl EN
ISMOPT8 236 (EC) PTHWSTAT
PTH 0 (0) PTHYYCOO
PTHACCHO 36 (24) PTHYYRC
PTHASYHC 0 (0) PTX
PTHATTN 0 X'Ol' PTXADSM
PTHCNCTM 64 (40) PTXAIPUR
PTHCPULM 0 X'20' PTXATTH
PTfiCPUTM 48 (30) PTXCICS

\.."
PTHCURSR 18 (12) PTXCMS
PTHCWBIT 3 X'80' PTXCOOE
PTHDATTH 0 X'80' PTXOEBUG
PTHFOFF 0 X'02' PTXDXTRP
PTHFSAVL 5 X'08'· PTXEtlD
PTHKEYTM 56 (38) PTXFLAG
PTHlOCAL 40 (28) PTXFLAGS
PTHLOCKB 5 X'80' PTXFSRST
PTHMDY 5 X'40' PTXFSTBP
PTHMICRO 5 X' 10' PTXGXGDM
PTHMSBLK 5 X'20' PTXGXTBP
PTHNOOUT 0 X'04' PTXUELPQ
PTHPARM1 24 <18) PTXHIAOT
PTHPAR~12 28 (lC) PTXHIFlG
PTHQEND 0 X'40' PTXHIIHI
PTHQSIZE 20 (14)

6 C 6)
4 X'02'

64 X'48'
4 X' 01'
8 X'80'

10 CA)
3 (3)
3 X'20'
4 X'80'
5 X'04'
5 (5)
3 X'40'

14 (E)
0 (0)

32 (20)
4 (4)
8 (8)
8 (8)

72 (48)
110 X'08'
110 X'80'
104 (68)
108 X'20'
108 X'40'
120 (78)
109 (6D)
112 (70)
176 X'B4'
108 (6C)
110 (6 E)
110 X'40'
100 (64)

92 (SC)
88 (58)

156 (9C)
153 (99)
155 (9B)
155 X'40'

PTXHIIOT 154 C9A)
PTXHILIT 152 (98)
PTXHIOHI 155 X'80'
PTXHISF 152 (98)
PTXlEN 176 X'6C'
PTXlEVEL 116 (74)
PTXPRTBP 96 (60) .
PTXRSVOI 164 (A4)
PTXRSV02 168 (A8)
PTXRSV03 172 (AC)
PTXRSV04 176 (BO)
PTXSCRTH 124 (7C)
PTXSMPRO 124 (7C)
PTXSMPSD 124 C7C)
P TXSf1P 1 124 C7C)
PTXSMP2 128 (80)
PTXSMP3 132 (84)
PTXSMP4 136 (88)
PTXS~lP5 140 (8C)
PTXSMP6 144 (90)
PTXSMP7 14~ (94)
PTxsrnBP 84 (54)
PTXSTACK 80 (50)
PTXSUBSY 108 (6C)
PTXTSO 108 X'80'
PTXUSRWA 160 (AO)
PTXVCT 76 (4C)
PTXVSPC 108 X'10'
PTXL·JSM 72 (48)
RDEVLlEH 1080 X'03'
RDEVTYPC . 1080 X'OO'
RDEVTYPE 1080 X'Ol'
SHVAVAlL 1496 X'80'
SHVNOAP 1496 X'04'
SHVRPEAT 1496 X'08'
STXEXIT 1101 X' 00'
WAITIMER 960 X'40'
WAITRPl Y 960 X'80'

Licensed Mater;a1--Property of IBM
Section 5. Data Areas 285

DEse (eIeS, XSYS, AP)

This is the VS APL variable milpping descriptor uspd lo descrih"
object types as a numeric, scalar, vector, etc. It is mopped by"
the APLDESC macro. ~

OFFSETS

o
o

1

2

4

TYPE

COl STRUCTURE

(0) BITSTRING
1111
· . .. 1 ..•

(1) BITSTRING
1 ...
.1 ..
· .1.
· •. 1

· 1 ..
· .11
· .1.
· .. 1

(2) SIGNED

(4) CHARACTER

CROSS REFERENCE

APLDATA
APLDESC
APlDESCD
APLDESCI
APLDNN
APLDAPV
APLlARRY
APLlCHAR
APLlEXTN
APLlINTE
APLlNOTS
APLlNOTl
APLIREAL

4 (4)
o (0)
o (0)
1 (1)
2 (2)
OX' 08'
1 X'20'
1 X'04'
1 X'80'
1 X'Dl'
1 X'10'
1 X'40'
1 X'03'

LENGTH NAME

4 APLDESC

1 APLDESCO

APLOAPV
1 APLDESCI

APLlEXTN
APLlNOTl
APllARRY
APLlNOTS
APLlCHAR
APLlREAL

APLl INTE
2 APLDNN

o APlDATA

Licensed Material--Property of IBM
286 VS APL Program Logic

DESCRIPTION

APL DESCRIPTOR WORD

FIRST DESCRIPTOR BYTE
RESERVED
ARITH PROGRESSION VECTOR
SECOND DESCRIPTOR BYTE
TYPE IS DEFINED BY DESCO
OFF=1 ELEM, ON=O OR >1
ON=ARRAY. OFF=SCALAR/VECTOR
OFF=SCALAR, ON=VECTOR/ARRAY
CHARACTER DATA
REAL (FLOATING) NUMERIC

INTEGER (BINARY) NUMERIC
FOR APL INTERPRETER USE ONLY

V •. V BEGINS HERE J

DIB (CICS, XSYS)

This is the destination interface block. It controls a CICS/VS
transient data destination or a 3270 printer that has been
opened by the destination manag~r. The DIB is passed to the
destination manager by the terminal manag~r, the screen format
manager, and auxiliary processor 132. The user perterm.points to
a chain of DIBs. This control block is mapped by the APLKDIB
macro.

OFFSETS TYPE LENGTH NAME DESCRIPTIotl

o
o

4

5

6

7

8

12

16

20
22

24

28

32

36

(0) STRUCTURE

(0) A-ADDRESS

(4) CHARACTER
1 ...
· 1 •. . •..
· . 1.
· .. 1

(5) CHARACTER
11..
· . I .
· .. I

1 ...
· 1 •.
· . 1 .
• •. 1

(6) CHARACTER
1 ...
• 1 ..
· . 1 .
· .. 1

1 .••
· 1 ..
· . 1 .

(7) BITSTRING

(8) CHARACTER

(C) CHARACTER

(10) A-ADDRESS

(14) SIGNED
(16) SIGHED

(18) A-ADDRESS

(IC) A-ADDRESS

(20) SIGNED

(24) CHARACTER

36 DIB

4 DIBCHAIN

1 DIBREQ
DIBOPEN
DIBCLOSE
DIBREAD
DIB!'!RITE

1 DIBOPTH

DIBOREAD
DIBOl.JRIT
DIBEHQOP
DIBEHQRQ
DIDZCODE
DIDNFORM

1 DIBFLGS
DIBPRINT
DIDFXLEN
DIBCTlA
DIBCTlM
DIBSYNCP
DIBPLIr1
DIBINTRA

1 DIBFLG2

4 DIDDEST

4 DIBXLATE

4 DIDAREA

2 DIBRLEN
2 DIBtlAXLN

4 DIBRESRC

4 DIBTDOA

4 DIBCNT

o

DESTINATION INTERFACE BLOCK

CHAIN OF DIBS FOR USER

REQUEST TYPE
OPEN THE DIB
CLOSE THE DIB
READ l\ RECORD
l-JRITE A RECORD
OPTIONS KEPT WHILE OPEN
RESERVED
OPEN FOR READ
OPE~~ FOR WRITE
ENQ FROM OPEN TILL CLOSE
ENQ FOR I/O ONLY
CONVERT FROM/TO ZCODE
BYPASS FORMATTING
PROCESSING STATE
OUTPUT TO PRINT TERMINAL
FIXED LENGTH RECORDS
ANSI CONTROL CHARACTERS
MACHINE COtITROl CIf."lRACTERS
SY~CPOINT HAS FO~CED DEQ
PRINT LIMIT IS I~ EFFECT
IHTRAPARTITION DESTIN.
RESERVED

DESTINATION/TERMINAL NAME

TRANSLATE TABLE SUFFIX

ADDR OF DATA AREA

LENGTH OF RECO~D
MAXIMUM RECORD LENGTH

ADDR OF TeTTE OR OCT ENTRY

ADDR OF A TDOA FOR OUTPUT

NR OF I/O S SINCE OPEN

END OF DIB

Licensed Material--' Property of IBM
Section 5. Data Areas 287

CROSS REFERENCE

DIB 0 (0)
DIBAREA 16 ClO)
DIBCHAIN 0 (0)
DIBClOSE 4 X'.40'
DIBCNT 32 (20)
DIBCllA 6 X'20'
DIBCHM 6 X'lO'
DIBDEST 8 (8)
DIBENQOP 5 X'08'
DIBENQRQ 5 X'04'
DIBFLGS 6 (6)
DIBFlG2 7 (7)

DIBFXlEN 6 X'40'
DIBINTRA 6 X'02'
DIBMAXlN 22 Cl6)
DIBNFORM 5 X' 01'
DIBOPEH 4 X'80'
DIBOPTN 5 (5)
DIBOREAD 5 X'20'
DIBOWRIT 5 X' 10'
DIBPLIM 6 X'04'
DIBPRINT 6 X'SO'
DIBREAD 4 X'20'
DIBREQ 4 (4)
DIBRESRC 24 (18)
DIBRlEN 20 (14)
DIBSYNCP 6 X' 08'
DIBTDOA 28 (lC)
DIBWRITE 4 X'lO'
DIBXlATE 12 ee)
DIBZCODE 5 X' 02'

licensed Material--Property of IBM
288 VS APL Program Logic

J

J

DIR (CICS, SERV)

This is the APL library directb~~ entry. It is a keyed logical
record that generally resid~s in a VSAM KSDS (the APl
directory). A DIR may describe either an APL workspace or a
file. Special forms of the DIR describe APL users (m~pped by the
APLKPRO macro), the library freespace map (mapped by the APLKFSP
~acro), file extents (mapped by the APlKFEB macro), and'signon
messages (no special mapping). This control block is mapped by
the APLKDIR macro.

OFFSETS TYPE LENGTH NAHE DESCRIPTION

o
o
o
2

4

4
7
7

8
15

16
17
18

19

(0) STRUCTURE

(0) CHARACTER

(0) SIGNED
(2) SIGNED

(4) CHARACTER

(4) UNSIGNED
(7) CHARACTER
(7) UNSIGNED

(8) CHARACTER
(F) UNSIGNED

(10) CHARACTER
(11) UNSIGNED
(12) CHARACTER

1 ...
· 1 ..
· . 1 .
· .. 1

1 ...
· 1 ..
· .1.
· .. 1

<13) CHf...RACT ER
11. .
· . 1 .
· .. 1

11..
· . 1 .
· .. 1

64 OIR

4 DIRHEI\DR

2 DIRLENHW
2

14 DIRKEY

3 DIRLIBHO
11 DIRWSNAM

1 DIRCODE

7
1 DIRFEBID

1
1 DIRHICNT
1 DIRTYPE

PIRFREE

DIRUPROF

DIRCICS
DIRPUB

DIRPRIV
1 DIP.FLAGl

DIRSHP.
DIP-SCFlG

DIRPASW
DIRLOCK

HEADER TO DIRECTORY ENTRY

DIRECTORY ENTRY LENGTH
RESERVED

14 BYTE VSAM KEY

USER LIBRARY NUMBER
WORKSPACE OR FILE NAME
CODE FIELD

REST OF 8 BYTE FILE/WS NAME
LOCATION OF FEB IDENTIFIER

RESERVED FOR HI AND FEE
HI MSG SEQUENCE HUMBER
TYPE BYTE
FREE SPACE RECORD 80
RESERVED
USER PROFILE BIT 20
RESERVED
CICS DIRECTORY ENTRY 08
PUBLIC LIBRARY 04
RESERVED
PRII} f TE LIBRARY 01
FlAG BYTE 1
RESERVED
FILE C,~N BE SHARED 20
ACTIVE SCROLL FILE FlAG 10
RESERVED
WS O~ FILE HAS PASSWORD 02
USER IS LOCKED 01

---20 (14) CHAP.ACTE~

28 (IC) BITS TRING

36 (24) SIGHED

(28) SIGNED

44 (2C)
45 (20)

46 (2E)

CHARACTER
CHARAlTER
1111

1 ...
· " .. .1 ..
· · . 1 .

... 1
SIGNED

8 DI RF'!=t.!D

8 DIRSWTS

4 DIRHCI

4 DIRlCIDl

1 DIRCATTR
1 DIRFTYPE

DIRWS

DIRSF
DIRDF

2

WS OR FILE PASSWORD

SAVE WRITE APL SrD TIME

NUMBER OF ALLOCATED CI-S

DATA WRITTEN IN LAST CI

CONTENT ATTRIBUTE
TYPE OF ENTRY
RESERIJED
THIS IS A WORKSPACE 08
RESERVED
THIS IS A SEQ FILE 02
THIS IS A DIRECT FILE 01
RESERVED

Licensed Mater;al--Propgrty of IBM
Section 5. Data Areas 289

DIR (CICS, SERV) contfnued

OFFSETS TYPE

48

52

56

60
S2

52

55
58

(30) SIGNED

(34) SIGNED

(38) SIGNED

(3C) UNSIGNED
(34) STRUCTURE

(34) CHARACHR

(37) CHARACTER
(3A) S!GNED

LENGTH NAME

4 DIRCFl SZ

4 DIRNlR

4 DIRlRS

4 OIR!.CH1R
12 OIRFONlY

3 DIROPRO

3 DIRlDSIZ
,. ..

DESCP.IPTIOt~

CURRENT FILE SIZE

NU~·1BER OF I. OGICAl RECORD!>

lOGIC~l RFcnRO SIZE

LAST CI WRIrTEN INTO ~EOF)
REOE~!NE UNIQUE FIELDS

VSPC OBJECT PROG OFFSET
=2048+WSMFRfEA-W5M
SIZE OF GE1MAIH F~R)LOAD
RI:-~)[RVED

--
60 (3C) UNSIGNED 4 DIRFRBA

CROS':: REFEREt~CE

OJR 0 (0)
D!~CA TTR 44 (2C)
DIReFL 5Z 48 (30)
DIRCICS 18 X'()8'
DIPCODE 7 (7)

DIRDF 45 X' 01.'
DIRFEBID 1!.i (F)
DIRFLAG1 19 <13)
DJRFOHlY 52 <34 ;
DIRFRBA 60 (3C)
DIRFRE.E 18 X'~~O'
DIRFTYPE 45 !: :)
DIRHEADR 0 (n .,

v,

DIRHIC!'iT 17 (ll)

DIRKEY 4 (4)
lJIRlCIDl 40 (28)
DIRl Cn.!R 60 DC)
DIRlDSIZ 55 (37)
DIRl ENH1.J 0 (0)
DIRLIBrW 4 (4)
DIRLOCK 19 X' 01 '
DIRlRS 56 (3B)
DIRtleI 36 (24)
DIRtH R 52 (34)
DIROPRO 52 <34)
DIRPASW 1.9 X'02'
DlRPRIV 18 X' 01'
DIRPSWD ,0 (14)
DIRPUB 18 X'O'.'
DIRSCFlG 19 X' I 0 '
DIRSF 45 X'02'
DIRSHR 19 X' 20'
DIRSWTS 28 (Ie)
DIRTYPE 18 (12)
DIRUPROF 18 X'20'
DIRWS 45 X'DS'
DIRl./SHAM 7 (7)

li censed Mater i Cl!-Proper·ty oT IBM
290 VS APl Progr~", logic

F~RST AlLOCATED RBA

DMP (CICS. XSYS, AP)

This is the common system executor services dump request block
which describes areas of storage to be dumped. It is mapped by
the APLXDMP macro.

OFFSETS TYPE LENGTH NAME DESCRIPTION

o (0) STRUCTURE IDS DMP DUMP REQUE5T BLOCK

o (0) SIGHED 32 DMPWRK WORK AREA FOR DMP RTH

32 (20) CHARACTER 4 DMPID IV FOR DUMP

36 (24) CHARACTER 64 DMPREG REGISTERS TO DUMP

36 (24) SIGNED 4 DMPRO REG 0

40 (2S) SIGNED 4 DMPR1 REG 1

44 (2C) SIGHED 4 DMPR2 REG "
48 (30) SIGNED 4 DMPR3 REG 3

52 (34) SIGNED 4 DMPR4 ~EG 4

56 (3S) SIGHED 4 DMPR5 REG 5

60 (3C) SIGHED 4 DMPR6 REG 6

(40) SIGHED 4 DtlPR 7 REG 7

68 (44) SIGNED 4 DMPR8 REG 8

72 (4S) SIGHED 4 DMPR9 REG 9

76 (4C) SIGtlED 4 DMPRIO REG 10
-----------------------------~---

80 (50) SIGHED

84 (54) SIGHED

88 (SS) SIGNED

92 (SC) SIGHED

96 (60) SIGHED

100 (64) A-ADDRESS

IDS (6C) CHARACTER

4 DMPR11

4 DI'lPR12

4 DMPR13

4 DMPR14

4 DMPR15

8 DMPLHDR

o DMPLlS T

REG 11

REG 12

REG 13

REG 14

REG 15

USED BY DUMP SERVICES

START OF DUMP LIST

Licensed Material--Property of IBM
5ection 5. Data Areas 291

CROSS REFERENCE

DMP 0 (0)
DMPID ',- "32' (20)
DMPLHDR 100 (64)
DMPLIST 108 (6C)
DMPREG 36 (24)
DMPRO 36 (24)
DMPRI 40 (28)
DMPRIO 76 (4C)
DMPRll 80 (50)
DMPR12 84 (54)
DMPR13 88 (58)
DMPR14 92 (SC)
DM~R15 96 (60)
DMPR2 44 (2C)
DMPR3 48 (30)
DMPR4 52 (34)
DMPR5 56 (38)
DMPR6 60 (3C)
DMPR7 64 (40)
DMPR8 68 (44)
DMPR9 72 (48)
DMPWRK 0 (0)

Licensed Mater;al--Property of IBM
292 VS A,PL Program Logi c

,J

DRS nso, xs YS)

This is the request block for DA1R services used by the TSO
executor. It is mapped by the APlYDRB macro.

OFFSETS TYPE

o
o
o

4

12

16

24

32

36

40

42

44

44

48

52

(0) STRUCTURE

(0) CHARACTER

(0) SIGNED

(4) CHARACTER

(C) A-ADDRESS

C1 0) CHARACT ER

(18) CHARACTER

(20) SIGHED

(24) SIGHED

(28) SIGNED

(2A) SIGHED

(2C) CHARACTER

(2C) SIGNED

(30) SIGNED

(34) SIGNED

LENGTH NAME

54 DRB

44 DRBMAIH

4 DRBREQ

8 DRBDDNAM

4 DRBaDSN

8 DRBSER

8 DRBUNIT

4 DRBRC

4 DRBRS

2 DRBDARC

2 DRBCTRC

10 DRBAPRMS

4 DRBPRMRY

4 DRBSCNDY

2 DRBBLKSZ

DESCRIPTION

TYPE OF REQUEST, SEE BELOW

DD NAME WHEN REQUIRED BY REQUEST

ADDRESS OF DSN WHEN REQUIRED BY
REQUEST. THE DSN AT THE ADDRESS IS
MAPPED BY DRBDSN, DESCRIBED BELOW

FOR "ALLOCATE NEW" REQUESTS, A
SERIAL NUMBER PADDED WITH BLANKS,
OR BLANKS. FOR "ALLOC OLD" OR
"ALLOC SHR" THE SERIAL WHERE THE
DS WAS FOUND

FOR "ALlOC NEW" REQUESTS A UNIT
TYPE PADDED WITH BLANKS, OR
BLANKS. FOR "ALLOC OLD" OR "ALLOC
SHR" THE UNIT TYPE WHERE THE DS
WAS FOUND

RETURN CODE AFTER REQUEST IS
COMPLETE. SEE BELOW

WHEN DRBRC=DRBDAIRC, THE RETURN
CODE FROM DAIR

WHEN DRBRC=DRBDAIRC, THE DARC FROM
DAIR
WHEN DRBRC=DRBDAIRC, THE CTRC FROM
DAIR

NUMBER OF UNITS FOR PRIMARY
ALLOCATION IN NEW DATASETS

NUMBER OF UNITS FOR SECONDARY
ALLOCATION IN NEW DATASETS

AVG. BLKSIZE FOR NEW DATASETS

Licensed Material--Property of IBM
Section 5. Data Areas 293

CROSS REFERENCE

DRB 0 (0)
DRB.mSN 12 (e)
DRBAPRMS 44 (2C)
DRBBLKSZ S2 (34)
DRBCTRC 42 (2A)
DRBDARC 40 (28)
DRBDDHAM 4 (4)
DRBMAIN 0 (0)
DRBPRMRY 44 (2C)
DRBRC 32 (20)
DRBREQ 0 (0)
DRBRS 36 (24)
DRBSCNDY 48 (30)
DRBSER 16 (10)
DRBUNIT 24 (18)

li censed Material-Property of IBM
294 VS APL Program logic

J

ECA (VSPC)

This is the VS APL executor work area for VSPC. This control
block is mapped by the APLPECA macro.

OFFSETS TYPE LENGTH NAHE DESCRIPTION

o (0) FLOATING 8 ECA
--WORK AREAS

o (0) FLOATING

8 (8) FLOATING

16 (10) CHARACTER

· .. 1 ...•
· . 1. . 1 ..

8 ECAWORK1

8 ECAWORK2

320 ECAWKBF
ECABFLN
ECASCV
ECASCVL

WORKAREA FOR ARITHMETIC

ANOTHER WORKAREA

WORK BUFFER TO ZCODE-EBCDIC TRAN
"320" LENGTH OF WORK BUFFER
"ECAWKBF" EXECUTOR SCV-BUILD AREA
"SCVFLAG2+L'SCVFLAG2-SCVENTRY LTH
OF SCV --._--SAVE AREA

· 1 .. 1 ...

336 (150) SIGNED

696 (2B8) SIGNED "

ECASVLN

4 ECASAVE
ECASVEND

4 ECASVPTR

"18*4" LENGTH OF EACH ENTRY

5 SAVE AREAS
"*"
RELATIVE PTR TO CURRENT SV --

EC~ MISCELLANEOUS FIELDS

700 (2BC) SIGNED

704 (2CO) SIGNED

708 (2C4) SIGNED

712 (2C8) CHARACTER
723 (2D3) CHARACTER

724 (2D4) SIGNED

728 (208) SIGNED
730 (2DA) SIGNED
732 (2DC) SIGNED

4 ECAWSPTR

4 ECAPTC

4 ECADUMP

11 ECAWSNAM
1

4 ECALIBNO

2 ECAf1M
2 ECAHH
2 ECASS

PTR TO CURRENT WORKSPACE

PTC PTR

DUMP NUMBER

ACTIVE WSNAME
MUST FOLLOW ECAWSNM

ACTIV LIBNO

MINUTES
HOURS
SECONDS --WORKSPA~E EQUATES

ECAWKLN "2048" LENGTH OF CONTROL AREAS
;;;:;:;;;;;;;:;:;;;:::::;:::::;;;;:::;:::::::;:;:;::::::::::::::::::::::::::::;
PCO REQUEST CODE SAVED WHEN UNEXPECTED ERROR RETURN

734 (2DE) SIGNED 2 ECARQER PCO REQUEST CODE ON ERROR --GENERAL RETURN CODE DEFINITIONS FOR peo
.1.. ECAWARN

· • .. 1... ECABORT
· ... 11.. ECAFAIL
... 1 ECAREJ

"4" WARNING
"8" ABORTED, UNUSUAL CONDITION
"12" NOT DONE, INVALID SITUATION
"16" REQUEST REJECTED

=== EXECUTOR CONTROL BIT

736 (2EO) HEX "1 ECACNTRL EXECUTOR CONTROL BITS

Licensed Material--Property of " IBM
Section 5. Data Areas 295

ECA (VSPC) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

===
DEFINITION OF ECACNTRl

1 . "
· 1 .. . •••

131 (2 E1) HEX
138 (2E2) SIGNED

1

ECAMICRO
ECASTAT

2 ECAPATHN

"BITO" MICRO CODE AVAILABLE
"BIT1" O=SUPERVISOR,I=INTERPRETER
RESERVED
GDDX ACTIVE PATH COUNTER AP126 --VSPC PSEUDO-AP FILE TABLE ENTRIES (APFT)

740 (2E4) SIGNED 4 APFTENT

740 (2E4) HEX 1
APFTEND "M"

1520 (SFO) FLOATING 8 ECACNTME TERMINAL CONNECT TIME FOR INVOC

1528 (SF8) FLOATING 8 ECAKEYTM USER KEYING TIME FOR INVOCATION --.----------------------FOLLOWING FIELDS ARE FOR DISPLAY TERMINAL I/O

1536 (600) SIGNED 4 ECADBFLN BUFFER LENGTH (DISPLAY)

1540 (604) SIGNED 4 ECADDTPT HOLD RELATIVE DATA PTR --THE NEXT TWO FIELDS· ARE FOR THE AP 101 PSEUDO-INPUT STACK

1544 (608) SIGNED
1546 (60A) SIGNED

2 ECASTCKL
2 ECAFENCL

LENGTH OF DATA IN AP 101 STACK
LENGTH OF STACK DATA PAST FENCE --FOLLOWING FIELDS ARE FOR DISPLAY TERMINAL I/O

1548 (60C) SIGNED
1550 (60E) SIGNED

1552 (610) HEX
1 ...

• 1 ••

· . 1 .

1553 (611) HEX
1 ...
· 1 ..
· . 1 .

· .. 1

· 1 ..

· .1.
· .. 1

1 ...
.1 ..

· .. 1

1554 (612) SIGNED

1556 (614) SIGNED

2 ECADDATl
2 ECADCURS

1 ECADFLAG
EcAcFSAP

ECAAPSSA

ECACFSXE

ECASPURG

ECADFlNL
ECADCANC

1 ECAFSFLG
FSEDINIT
FSMSGFUL
FSMBFLSH

FSMSCSTK
FSEDOPEN
FSLPROT

FSMALARM

2 ECADBSCT

4 ECAEND
ECALEN

LENGTH OF DATA HELD
HOLD REAL CURSR POSITION

FLAGS
"X'80'" CURRENT FULL SCREEN IS AP
124
"X'40'" AP 124 FULL SCREEN SSA
EXISTS
"X'20'" CURRENT FULL SCREEN IS
XEDn
"X'04'" AP 101 STACK MUST BE
PURGED
"X'02'" NL NOT EXPECTED IF ON
"X'OI'" 0 U T CONDITION
FULL SCREEN EDITOR FLAGS 37123
"X'80'" FS EDITOR INITIALIZED
"X'40'" FS MSG AREA IS FULL
"X'20'" FS MSG AREA HAS BEEN
FLUSHED
"X'lO'" SCREEN 'STACK' IN USE
"X'08'" FS EDITOR CURRENTLY OPEN
"X'04'" FS ED LINE NUMBERS
PROTECTED
"X'OI'" FS ED MESSAGE REQUIRES
ALARM
COUNT OF BACKSPACES HELD

"*-ECA" LENGTH OF ECA
===

NOTE: 132 BYTES JUST BEFORE THE START OF THE WSM HAS BEEN
BROUGHT INTO USE AS A 3270 BUFFER. THEREFORE THERE ARE ONLY A
FEW EXPANSION BYTES BEYOND THE ECA SINCE THE SPACE FROM THE WSH
TO THE WSM MUST REMAIN AT 2K TOTAL

Licensed Mater;al--Property of IBM
296 VS APL Program Log} c

J

J

CROSS REFERENCE

APFTEHD 1520
APFTEHT 740(2E4)
ECA 0 (0)
ECAAPSSA 1552 X'40'
ECABFLH 320
ECABORT 734 X'08'
ECACFSAP 1552 X'80'
ECACFSXE 1552 X'20'
ECACHTME 1520(5FO)
ECACHTRl 736(2EO)
ECADBFlH 1536(600)
ECADBSCT 1554(612)
ECADCANC 1552 X'Ol'
ECADCURS 1550(60E)
ECADDATl 1548(60C)
ECADDTPT 1540(604)
ECADFlAG 1552(610)
ECADFlHl 1552 X'02'
ECADUMP 708(2C4)
ECAEHD 1556(614)
ECAFAIl 734 X'OC'
ECAFENCl 1546(60A)

\.., ECAFSFlG 1553(611)
ECAHH 730(2DA)
ECAKEYTM 1528(5F8)
ECALEH 1556
ECAlIBHO 724(2D4)
ECAMICRO 736 X'80'
ECAMM 728(2D8)

ECAPATHH
ECAPTC
ECAREJ
ECARQER
ECASAVE
ECASCV
ECASCVl
ECASPURG
ECASS
ECASTAT
ECASTCKl
ECASVEHD
ECASVlN
ECASVPTR
ECAl-lARtt
ECAWKBF
ECAWKlH
ECAWORKI
ECAWORK2
ECAl.sSI~AM
ECAWSPTR
FSEDINIT
FSEDOPEH
FSlPROT
FSr-1ALARM
FSMBFlSH
FSM5CSTK
FSMSGFUl

738(2E2)
704(2CO)
734 X'10'
734(2DE)
336(150)

16 X'l'O'
16 X'24'

1552 X'04'
732(2DC)
736 X'40'

1544(608)
696

16 X'48'
696(2B8)
734 X'04'

16 (10)
2048

0 (0)
8 (8)

712(2CS)
700(2BC)

1553 X'80'
1553 X'08'
1553 X'04'
1553 X'01'
1553 X'20'
1553 X'10'
1553 X'40'

licensed Material--Property of IBM
Section 5. Data Areas 297

FAB (CICS. XSVS. AP)

This is the APl file access block. It mairitains the current
processing options and position of APL files that are open. It
is used to pass requests and records between the library manager
and either auxiliary processor 121 or the scrolling routines of
the screen format manager. All auxiliary processor FABs are
chained from the GBL. FABs associated with scrolling are also
pointed to by the PTK. This control block is mapped by the
APLKFAB macro.

OFFSETS TYPE LENGTH NAHE DESCRIPTION

o (0) STRUCTURE

o (0) CHARACTER

o . . (0) CHARACT ER .

o
4

8
9

10
10

12

16

20

20

24

28

32

36

40
42
42

43

C-O) BITSTRING

(4) A-ADDRESS

(8) UNSIGNED
(9) UNSIGNED
(A) BITSTRING
(A) BITSTRH!G

(C) SIGNED

(10) SIGNED

(14) A-ADDRESS

(14) SIGNED

(18) A-ADDRESS

(lC) A-ADDRESS

(20) A-ADDRESS

(24) SIGtlED

(28) SIGNED
(2A) BITSTRING
(2A) B ITSTRING

1. __
_ 1 __

· . 1 .
· .. I

1. ..
.1 ..
· . 1 .

· .. 1

(28) BITSTRING
1 .. _
· 1 ..
· . 1 .
· .. 1

1 ...
· 1 ..
· . 1 .
· .. 1

144 FAB

24 FABGRE

8 FABNPSWD

4

4

1
1
2 FABGRERC
2 FABVSERR

4 FABGREPM

4 FABLPRMI

4 FABLPRM2

2 FABLRCOD

4 FABOPCHN

4 FABCHAIN

4 FABFEBPT

4 FABCURCI

2 FABREOST
2 FABSTAT
1 FABSTATl

FABNEW
FABFIRD
FABCLOSE
FABOPEN
FABOPRD
FABOPWR
FABOPSQ

FABOPDR

1 FABSTAT2
FABl-JRLST
FABCIUP
FABDIRUP
FABCHNED
FABEOF
FABOPNW
FABNXEOF

Licensed Materi al--Property of IBM
298 VS APL Program Logi c

GRE FOR GLOBAL SERVICES

NEW PASSWORD FOR CHANGE PWD

ECB POSTED AT COMPLETION

tlEXT GRE ON CHAIN OR 0

SERVICE REQUEST CODE FIELD
TYPE QUALIFIER
GLOBAL SERVICE RETURN CODE
NOT SUPPORTED ERROR MSGHERE

GRE INPUT PARAMETER

FIRST LIBRARY SERVICES PARM

SECOND LIBRARY SERVICES PRM

ALSO USED FOR RETURN CODE

OPEN FILE CHAIN-ANCHORED IN GLOBAL
TABLE-O AT CHAIN END

FAB CHAIN POINTER FOR USER >SCRSG
FOR SCROLL FILES

FEB POINTER IN BUFFER

CURRENT CI NUMBER (LOGICAL)

FAB REQUEST CODES
FILE STATUS INDICATORS
FIRST STATUS BYTE
NEW FILE, NOT YET OPEN 80
FIRST READ OPEl! FLI.G 40
FILE IS CLOSED 20
FILE IS OPEN 10
READ IS ACTIVE ON FILE 08
WRITE IS ACTIVE ON FILE 04
FILE IS BEING PROCESSED 02
SEQUENTIALLY
FILE IS BEING PROCESSED 01
DIRECTL Y
SECOND STATUS BYTE
LAST OPERAT WAS A WRITE 80
CI HAS NEW DATA 40
DIRECTORY REC-NEW DATA 20
FAB CURRENTLY CHAINED 10
LAST REQUEST CAUSED EOF 08
FILE OPENED ORIG FOR WR 04
RET EOF ON NEXT REQUEST 02
RESERVED

FAB (CJCS, XSYS, AP) continued

OFFSETS TYPE

44

48

52

56

60

60

60
62

(2C) SIGNED

(30) A-ADDRESS

(34) A-ADDRESS

(38) A-ADDRESS

(3C) CHARACTER

(3C) CHARACTER

(3C) SIGHED
(3E) SIGNED

LENGTH NAt1E

4 FABCRREC

4 FABCIPTR

4 FABDATAP

4 FABBFPTR

84 FABDIR

4 FABHEADR

2 FABLEtlHW
2

DESCRIPTION

CURRENT RECORD NUMBER, POSITION IN
THE rILE

CI BUFFER ADDRESS

ACTIVE DATA POINTER

CURREtH LOCATJO~1 IN BUFFER >DUt1f1f
CITW FOR SCROLL BELOW IS THE
DIRECTORY REC

BEGINNING OF DIR ENTRY

HEADER TO DIRECTORY ENTRY

DIRECTORY ENTRY L EtlGTH
RESERVED

----------.------------------------~--64

64
67
67
75
78

79

80

88

88

96

96

100

104
105
105

106

(40) CHARACTER

(40) UNSIGNED
(43) CHARACTER
(43) CHAR.~CTER
(4B) CHAR.~cTER
(4E) CHARACTER

1 ...
. 1 ..
· . 1 .
· .. 1

1. ..
· 1 ..
· . 1 .
· .. 1

(4F) CHARACTER
11. .
· . 1 .
· .. 1

11..
· . 1 .
· .. 1

(50) CHARACTER

(58) CHARACTER

(58) BITSTRING

(60) SIGHED

(60) SIGNED

(64) UNSIGNED

C 68) CHARACTER
(69) CHARACTER
(69) BITSTRING

1111
1 ...

· 1 ..
· 1 •
· 1

C6A) SIGHED

14 FABKEY

3 FABLIBNO
11 FABWSNAM

8 F.~BFtlAr1E
3 FABRSVDN
1 FABTYPE

FABFREE

FABUPROF

FABCICS
FABPUB

FABPRIV
1 FABFLAGI

FABSHR
FAASCFlG

FABPASW
FABLOCK

8 FABPSll!D

12 FAI3TFLDI

8 F.'H~SW1S

4 FABNCI

4 FABMXSZ

4 FABLCIDL

1 FABCA TTR
15 FAB TFlD2

1 FABFTYPE

FASt"S

FABSF
FABDF

2 FABt1AXSZ

14 BYTE VSAM KEY

DDNAME FOR AP121 FILE
loJot::KsrACE NAME
OR FILE NM-1E
RESF.P.VED
TYPE BYTE
FREE SPACE RECORD 80
RESE.RVED
USER PROFILE BIT 20
RESERVED
CICS DIRECTORY ENTRY 08
PUBLIC LIBRARY 04
RESERVED
PRIVATE LIBRARY 01
FLAG BYTE 1
RESERVED
FILE C~H BE SHARED 20
ACTIVE SCROLL FILE FLAG 10
RESERVED
WS O~ FILE HAS PASSWORD 02
USER IS LOCKED 01

WS O~ FILE PASSWORD

MAP FOR TSO RECD USAGE

SAVE WRITE APL STC TIME

NUMBER OF ALLOCATED CIS

MAX SIZE FOR TSO USAGE

DATA LEHGTIf IN LAST CI

CONTENT ATTRIBUTE
TRY TO KEEP PlS HAPPY
TYPE OF ENTRY
RESERVED
THIS IS A WORKSPACE 08
RESERVED
THIS IS A SEQ FILE 02
THIS IS A DIRECT FILE 01
MAX FILE SIZE IN CONTROL INTERVAL
IHCR C6K-LEHCCIT»

Licensed Material--Property of IBM
Sect; on 5. DatE! Areils 299

FAB (CICS, XSYS, AP) continued

OFFSETS TYPE LENGTHNAHE

108 (6C) SIGHED 4 FABCFLSZ

112 (70) SIGNED 4 FABNlR

116 (74) SIGHED 4 FABLRS

120 (78) BIT STRING 8 FABTCDT

120 (78) SIGNED 4 FABlCIWR

124 DC)" SIGNED 4

128 (80) SIGHED 4 FABBUFSZ

132 (84) A-ADDRESS 4 FABAFBI

136 (88) A-ADDRESS 4 FABRDBUF

140 (8C) A-ADDRESS 4 FABRECOC

CROSS REFERE~ICE

FAB 0 (0) FABMAXSZ 106
FABAFBI 132 (84) FAIH1XSZ 96
FABBFPTR 56 (38) FABNCI 96
FABBUFSZ 128 (80) FABNEW 42
FABCA TTR 104 (68) FABNlR 112
FABCFl SZ 108 (6C) FABHPSLIID 0
FABCti.UN 28 (IC) FABHXEOF 43
F.~BCHNED 43 X'lO' FABOPCHN 24
FABCICS 78 X' 08' FABOPDR 'i2
FABCIrTR 48 (30) FABOPEH 42
FABCIUP 43 X'40' FABOPNLoI 43
FABClOSE 42 X'20' FABOPRD 42
FABCRREC 44 (2C) FABOPSQ 42
FABCl!~CI 36 (24) FABOPL~R 42
FABDATAP. 52 (34) FABPASW 79
FABDF 105 X' 01' FABPRIV 78
FABDIR 60 (3C) FABP5WD 80
FABDIRUP 43 X'20' FABPUB 78
FABEOF 43 X'OB' FABRDBUF 136
FABFEBPT 32 (20) FABRECOC 140
FABFIRD 42 X'40' FABREQST 40
FABFlAGl 79 (4F) FABRSVDN 75
FABFNM1E 67 Ut3) FABSCFlG 79
FABFREE 78 X'80' FABSF 105
FABFTYPE 105 (69) FABSHR 79
FABGRE 0 (0) FABSTAT 42
FABGREPM 12 (C) FABSTATl 42
FABGRERC 10 (A) FABSTAT2 43
FABHEADR 60 (3C) FABSWTS 88
FABKEY 64 (40) FABTeDT 120
FABlCIDL 100 (64) FABTFlDl 88
FABLCWR 120 (78) F.4BTFlD2 105
FABlENHW .60 (3C) FABT,(PE 78
FABLIBNO 64 (4D) FABUPROF 78
FABlOCK 79 X'Dl' FABVS£:RR 10
FABlPRMl 16 Cl 0) FABI·JRlST 43
FABl PR~12 20 (14) FAB~JS 105
FABLRCOD 2.0 (14) FABWSNAM 67
FABlRS 116 (74)

Licensed Material--Property of IBM
300 VS APl Program logi c

(6A)
(60)
(60)

DESCRIPTION

CURRENT FILE SIZE

NUMBER OF LOGICAL RECORDS,

LOGICAL RECORD SIZE-DIRECT C=
FABCIDAT FOR SCROLL) MAX RECORD
SIZE-SEQUENTIAL

DATE FILE CREATED

LAST CI WRITTEN INTO (REl CI
NUMBER, ORIGIN 1), IS END OF
RECORD AND FILE

KEEP PLACE FOR TSO TSO DEFINES FOR

BUFFER SIZE

ADDRESS OF ABF FOR FILE

SEQUENTIAL READ BUFFER PTR

COUNTER WHEN TO WRITE REC 0

X'80'
(70)

CO)
X'02'
(18)
X'Ol'
X'10'
X'04'
X'08'
X'02'
X'04'
X'02'
X'OI'
(50)
X'04'
(88)
(8C)
(28)
(4B)
X'IO'
X'02'
X'20'
(2A)
(2A)
(2B)
(58)
(78)
(58)
(69)
C4E)
X'20'

CA)
X'BO'
X'08'
(43)

'-.,

FB (CONV, NTRP)

This is the interpreter definition of the function close
parameter list. It 15 mapped by the APLFBLST macro.

OFFSETS TYPE.

o (0) STRUCTURE

o
4

8

12

16
18

20

24

24
26

28
30

31

(0) HEX

(4) HEX

(8) HEX

(C) HEX

(10) HEX
(12) HEX

(14) HEX

CI8) HEX

(18) HEX
(lA) ~EX

CIC) HEX
<1E) HEX

(IF) HEX

.. 1 .

CROSS REFERENCE

FBDNWORD 20 (14)
FBFlAG 30 (IE)
FBFUNA~lE 28 CIC)
FBLABELS 16 CI 0)
FBLABLO' 24 (18)
FBlBlOFF 18 (12)
FBLIST 0 (0)
FBLISTL 31 X'20·
FBSRCE 0 (0)
FBSRCEL 4 (4)
FBSYNT 31 (IF)
FBTHISLB 24 (18)
FBTHISLN 26 (lA)
FBUIlD 8 (8)
FBUIlDL 12 (C)

LENGTH NAME

(I FBLIST

4 FBSRCE

4 FBSRCEL

4 FBUILD

4 FBUIlDL

2 FBLABElS
2 FBlBLOFF

4 FBDt~WORD

o FBlABLO

2 FBTHISl.B
2 FBTHISI.N

2 FBFUHAME
1 FBFUG

4 FBSYNT

FBLlSTl

DESCRIPTION

o

SEMI-REL ADDR OF THIS SOURCE LINE

COUNT OF BYTES IN SOURCE LI~E
(WHEN ITCLOSET CALLED, SIZE OF
LONGEST)

SEMI-REL BUILD-AREA POJ~T[R

BYTE LENGTH OF BUILD AREA
REMAINING

COUNT OF LABELS IN THIS FUNCTION
OFFSET TO (LABELS) IN FN. HEADER

SEMI-REl ADDRESS OF FN. ON-WORD

LABEL HEADER ENTRY

THIS LINE'S LABEL'S NAME

NAME OF THIS FUNCTION OBJECT
USED BY ITLINEO TO SIGNAL COUNT OF
t~AMES FOUND. O:FU~CTION-NAME ONLY.
USED BY ITlINEO TO RETURN SYHT~X
CLASS; SET TO SBITFUHO, SBITFmll ,
OR SBITF'UN2
"~-FBLIST" LENGTH OF LIST FOR
CLEARING

I.icensed Material--Property of IBM
Section 5. Data Areas 301

-----------------------------_._-_.

FEB (CICS, SERV)

This is the file extent block used by the CICS/VS executor which
describes the library extents for AP 121 and scroll fil~s. It is
mapped by the APLKFEB macro.

OFFSETS TYPE LENGTH NAME DESCRIPTION

---'------------------------------------o (0) STRUCTURE 152 FEB
---'------------------------------------o (0) CHARACTER 4 FEBHEADR HEADER TO DIRECTORY ENTRY
---'------------------------------------o

2
CO) SIGNED
(2) SIGNED

2 FEBLENHW
2

DIRECTORY ENTRY LENGTH
RESERVED

---------------------------------~---------,------------------------------------
4

4
7
7

15
15

16
18

19

(4) CHARACTER

(4) UNSIGNED
(7) CHARACTER
(7) CHARACTER
(F) CHARACTER
(F) UNSIGNED

(10) SIGNED
(12) CHARACTER

1 ...
· 1 ..
· . 1 .
· .. 1

1 ...
· 1 ..
· . 1 .
· .. 1

(13) CHARACTER
11..
· .1.
· .. 1 11..
· . ,. .. · . 1 . · ... ,. · .. 1

14 FEBKEY

3 FEBL'IBNO
11 FEBWSNAM
8 FEBFNAME
3 FEBIDENT
1 FEBCODE

2 FEBSEQ
1 FEBTYPE

FEBFREE
FEB FEB
FEBUPROF

FEBCICS
FEBPUB

FEBPRIV
1 FEBFlAGI

FEBSHR

FEBPASW
FEBLOCK

14 BYTE VSAM KEY

USER LIBRARY NUMBER
FILE NAME 11 CHARACTERS
TRUE FILE NAME 8 CHARS
FEB IDENTIFIER HEX FFXXXX
UNIQUE FEB CODE HEX FF

SEQUENTIAL FEB NUMBER
TYPE BYTE
FREE SPACE RECORD
THIS IS A FEB
USER PROFIL E BIT
RESERVED
CICS DIRECTORY ENTRY
PUBLIC LIBRARY
RESERVED
PRIVATE LIBRARY
flAG BYTE 1
RESERVED
FILE CAN BE SHARED
RESERVED
WS OR FILE HAS PASSWORD
USER IS LOCKED

---20 (14) SIGNED 4 FEBNUMEX

24 (18) CHARACTER 128 FEBEXTNT

24 (18) SIGNED 4 FEBNUMCI

28 (IC) UNSIGNED 4 FEBFCRBA

licensed Material--Property of IBM
302 VS APL Program Logi c

NUMBER OF 8 BYTE EXTENTS

16 ALLOCATION EXTENTS

NUMBER OF CONTIGUOUS CIS

FIRST RBA IN THE ALLOCATION

J

CROSS REFERENCE

FEB
FEBCICS
FEB CODE
FEBEXTHT
FEBFCRBA
FEBFEB
FEBFlAGI
FEBFHAME
FEB FREE
FEBHEADR
FEBIDENT
FEBKEY
FEBlEHHW
FEBLIBHO
FEBlOCK
FEBNUMCI
FEBHIJMEX
FEBPASW
FEBPRIV
FEBPUB
FEBSEQ
FEBSHR
FEB TYPE
FEBUPROF
FEBWSNAM

o (0)
18 X'08'
15 (F)
24 (18)
28 (1C)
18 X'40'
19 (13)

7 (7)
18 X'80'
o (0)

15 (F)
4 (4)
o (0)
4 (4)

19 X'Ol'
24 (18)
20 (14)
19 X'02'
18 X'Ol'
18 X'04'
16 (10)
19 X'20'
18 (12)
18 X'20'

7 (7)

licensed Material--Property of IBM
Sect ion 5. Data Areas 303

FFLD (VSPC)

This is the display screen field information table entry for the J
FSM internal auxiliary processor for VSPC. Each display screen ;
field defined by the user to the FSM auxiliary processor i~
described in an FFLD entry in the FSMFlD table. The FSM work
~rea contains the variable size FSMFLD table. This control block
is mapped by the APLPFSM macro.

OFFSETS

o
o
2

TYPE

(0) STRUCTURE

(0) SIGNED
(2) SIGHED

LENGTH NAHE

o FSMWORK

2 FSMSCRNL
2

4 (4) CHARACTER 3836 FSMSCRN

3840 (FOO) SIGHED
3842 (F02) SIGHED

3844 (F04) SIGNED

3844 (F04) SIGHED
3846 (F06) SIGNED

3848 (F08) SIGNED

3852 (FOe) SIGNED

3856 (FlO) SIGNED

3860 (FI4) SIGHED

3864 (FI8) A-ADDRESS

3904 (F40) A-ADDRESS

3908 (F44) SIGNED

3908 (F44) SIGNED

2 FMAXROW
2 FI'IAXCOL

4 FSMCURSR

2 FSMCROW
2 FStlCCOL

4 FSMPARMD

4 FSMPARMN

4 FSMPARMR

4 FSMVFN

4 FSMWFLD(lO)

4 FSMSSAVE

FWORKl

4 FSMFLD

4 FSMPARM

DESCRIPTION

LTH OF DATA IN SCREEN BUFFER
RESERVED

FSM AP SCREEN BUFFER

FSM SCREEN MAX ROW
FSM SCREEN MAX COLUMN

CURSOR SETTING FOR WRITE COMMAND

ROW
COL

DISPLMT TO FSMPARM

I ELEMENTS IN FSMPARM

REMAINING FSMPARM SLOTS

FLO NUMBER INTEGERS IN VF-SAVE

FSM SUBROUTINE WORK AREA

BASE REGISTER SAVE FOR LEVEl-E
SUBROUTINES:FSMSUBI,FSMSUB3
"*-FSMWORK" lTH FSMWORK HEADER

FORMAT FIELD DESCRIPTION TABLE
(SEE FFlD DSECT)

PARAMETER LIST FOR VSPC TFSCRN
SERVICE REQUESTS. ALSO USED AS
V-SAVE AND VF-SAVE AREA --

FFLD DSEeT
DESCRIBE~ FSMFLD ENTRY CONTAINED IN FSMWORK.FSMFLD LIST
-------------------------~---o

o
o
2

4

4
6

8

(0) STRUCTURE

(0) SIGNED

(0) SIGNED
(2) SIGNED

(4) SIGNED

(4) SIGtiED
(6) SIGHED

(8) SIGNED

o FFLD

4 FLOC

2 FROW
2 FCOl

4 FSIZE

2 FWID
2 FHT

4 FFlDNO

licensed Material---Property of IBM
304 VS APl Program Logi c

FLD POSITION (UPPER LEFT CORNER)

ROW
COLUMN

FlD SIZE.

FlD WIDTH (NUMBER OF COLUMNS)
FLO HEIGHT OWr1BER OF ROWS>

FlD IDENTIFICATION NUMBER. FOR
FlDIO. FFlDNO=TOTAL NUMBER OF FFlD
ENTRIES IN FSMFlD.

J

FFLD (VSPC) continued

OFFSETS TYPE

12
14

21

(C) SIGNED
(E) HEX

(15) HEX

LENGTH NAME

2 FMROW
7 FSHORTR

1 FA TTR

DESCRIPTION

OAT ROW NUMBER ASSOCIATED WITH FLO
SHORT-ROW BIT FLAGS O=ROW
LTH=FLD WIDTH l=ROW LTH=FLD
WIDTH-l
FIELD ATTRIBUTE FLAGS --FATTR DEFINITIONS

· .• 1
· . 1 .
.1 ..
1 ...

· .. 1
· .1.

· 1 ..

1 ...

FDISPN
FDISPH

FDISPC

FAPPEN
FNUM
FPROHT
FAPPENA
FFSMPEN

"X'OI'" DISPLAY INTENSITY NORMAL
"X'02'" DISPLAY INTENSITY
HIGHLIGHT
"X'04'" DISPLAY INTENSITY
CONFIDENTIAL
"X'OS'" LIGHT PEN SENSITIVE
"X'10'H NUMERIC INPUT
"X'20'". PROTECTED
"X'40'" LIGHT PEN ATTENTION
"X'80,n LIGHT PEN SENSITIVE

--IF FFlAG.FFPENDA=PENDING ATTRIBUTE-CHANGE. THEN
FATTR.FAPPEN INDICATES USER REQUEST TO CHANGE FIELD
TO OR FROM PEN-SENSITIVE. AND FATTR.FFSMPEN INDICATES
CURRENT PEN ATTRIBUTE STATE OF FIELD.

22 (16) HEX 1 FFLAG FLAG
--FFlAG

23

24

24
26

DEFINITIONS
· .. 1
· . 1 .
· 1 ..
1 ...

· .. 1

(17) HEX

(18) SIGNED

(18) SIGNED
(1A) SIGNED

· .. 1 11..

FFU~tDF
FFPENDA
FFSHORTR
FFMAXWID
FFVF

1 FBADGEL

4 FBADGE

2 FBROW
2 FBCOL

FSMFlDL

"X'Ol,rr UNDEFINED flO
"X'02,rr PENDING ATTRIBUTE CHANGE
"X'04'" FLD CONTAINS SHORT ROW(S)
rrX'08'" FLD WIDTH=SCREEN MAXIMUM
"X'10,rr FLO NUMBER NAMED IN CTl VF
VECTOR FOR WRITE COMMAND
lTH(BADGE DATA)

BADGE DATA POSITION

ROW
COLUMN
"*-FFLD" --TFSCRN-READ FIELD SPECIFICATION DSECT

o (0) STRUCTURE o TRFPARM
------~--o (0) SIGNED 4 TRFOPT FLO SPECIFICATION FLAGS --TRFOPT VALUES

4 (4) SIGNED

8 (S) SIGNED

12 ec) SIGNED

16 (10) SIGNED

20 (14) SIGNED
· •• 1 1 ...

TRHtDT

4 TRFROW

4 TRFCOl

4 TRFWID

4 TRFDAT

4 TRFDATl
TRFPARML

"X'200'H MODIFIED DATA (MDT)

FLD POSITION ROWCUPPER lEFT
CORNER)

FLO POSITION COLUMN

FlD WIDTH

DATA POSITION

FlD AREA=TOTAl DATA LENGTH
"*-TRFPARM"

licensed Material--Property of IBM
Section 5. Data Areas 305

FFLD (VSPC) continued

OFF&ETS TYPE LENGTH NAHE DESCRIPTION

-- .. -TFSCRN-READ REQUEST HEADER DSECT

o (0) STRUCTURE o TRRPARM

o (0) SIGNED 4 RESERVED

4 (4) SIGNED 4 TRRCURSR CURSOR SETTING AFTER READ

4 (4) SIGtlED 4 TRRCR014 ROll!

8 (8) SIGNED 4 TRRCCOL COLUMN

12 (C) SIGNED 4 TRROPT REQUEST OPTION FLAGS
--.~---TRROPT VALUES

· .• 1

· .1.
11..

TRRGET

TRRREAD
TRRCODE

"X'Dl'" GET DATA FROM VSPC
I,JO~K AR EA
"X'02'" READ DATA FROM SCREEN
"TRROPT" COMPLETION CODE --TRRCODE VALUES

· .. i
· . 1 .
· .11
· 1 ..
.1.1

16 (10) SIGNED

20 (14) SIGHED
· .. 1 1 •..

TRRPROG
TRRENT
TRRPEN
TRRCLEAR
TRRBADGE
TRRPF1
TRRPF2
TRRPF3
TRRPF4
TRRPF5
TRRPF6
TRRPF7
TRRPF8
TRRPF9
TRRPFI0
TRRPR11
TRRPR12
TRRPA1
TRRPA2
TRRPA3

4 TRRMROW

4 TRRMCOL
TRRPARML

"1" PROGRAM REQUEST
"2" ENTER KEY
"3" SELECTOR PEN ATTENTION
"4" CLEAR KEY
"5" BADGE
"1001" PF-1 KEY
"1002" PF-2 KEY
"1003" PF-3 KEY
"1004" PF-4 KEY
"1005" PF-5 KEY
"1006" PF-6 KEY
"1007" PF-7 KEY
"1008" PF-8 KEY
"1009" PF-9 KEY
"1010" PF-10 KEY
" 1 011" P F -11 KEY
"1012" PF-12 KEY
"2001" PA-l KEY
"2002" PA-2 KEY
"2003" PA-3 KEY

DISPLAY SIZE (MAX ROW)

DISPLAY SIZE (MAX COLUMN)
"~-TRRPARM" --TFSCRN-WRITE FIELD SPECIFICATION DSECT

o (0) STRUCTURE o TWFPARM

o (0) SIGNED 4 TWFOPT FLD SPECIFICATION FLAG
=== TWFOPT DEFINITIONS

· .. 1

· . 1 .

· 1 ..
1 ...

· .. 1
• • 1 •
• 1 ..
1 ...

TWFDATA
TWFERASE
TWFATTR
TWFDISPN
n.lFDISPH

TWFDISPC

TWFPEN
TWFNUM
TWFPROHT

Licensed Material--Property of IBM
306 VS APL Program Logic

"X'Ol'" FILL FLD WITH DATA
"X'02'" ERASE FLD
"X'04'" SET FLD CHARACTERISTICS
"X'08'" DISPLAY INTENSITY NORMAL
"X'10'" DISPLAY INTENSITY
HIGHLIGHT
"X'20'" DISPLAY INTENSITY
CONFIDENTIAL
"X'40'" SELECTOR PEN SENSITIVE
"X'80'" NUMERIC INPUT FlD
"X'100'" PROTECTED FLD

J

J

FFLD (VSPCJ continued

OFFSETS TYPE

4 (4) SIGHED

LENGTH NAHE

4 TWFROW

DESCRIPTION

FLO POSITION ROW(UPPER LEFT
CORNER)

---8 (8) SIGNED. 4 TWFeOL FLO POSITION COLUMN
-------------------~---12 (e) SIGNED

16 (10) SIGNED

20 (14) SIGNED
· .. 1 ! ...

4 TWFWID

4 TWFDAT

4 TWFDATl
TWFPARML

FLO WIDTH

DATA POSITION INDEX(ORIGIN 1)

FLD AREA=TOTAl DATA LENGTH
tt*-TWFPARM"

--TFSCRH-WRITE REQUEST HEADER DSECT

o (0) STRUCTURE o TWRPARM

o (0) SIGHED 4 RESERVED

4 (4) SIGHED 4 TWRCURSR CURSOR SETTING AFTER WRITE , ---
4 (4) SIGNED 4 TWRCROW ROW

8 (8) SIGNED 4 TWRCCOL COLUMN

12 (C) SIGNED 4 TWROPT REQUEST OPTION FLAGS --TWROPT DEFINITIONS
· 1 ..
· . .. 1 ...

16 (10) SIGNED

20 (14) SIGNED
· .. 1 1 ...

4

4

TWRMDTR
TWRBUZZ

TWRPARMl

"X'04,n RESET MDT
"X'08'" SOUND ALARM

RESERVED

RESERVED
"*-TWRPARM" --TFSCRH-PAGE REQUEST HEADER DSECT

o (0) STRUCTURE o TPRPARM

o (0) SIGNED 4 RESERVED

4 (4) SIGNED i 4 RESERVED

8 . (8) SIGNED 4 RESERVED

12 (e) SIGNED 4 TPROPT REQUEST OPTION --TPROPT DEFINITIONS
• • •. . .. 1

16 (10) SIGNED

20 (14) SIGNED
· .. 1 1. to •

TPRHCOPY

4

4
TPRPARML

"X'O!'" MAKE HARDCOPY OF SCREEN

RESERVED

RESERVED
"*-TPRPARM"

Licensed Material--Property of IBM
Section S. Data Areas 307

CROSS REFERENCE

FAPPEN 21 X'08' TPRPARML
FAPPENA 21 X'40' TRFCOL
FATTR 21 (15) TRFDAT
FBADGE 24 (18) TRFDATL
FBADGEL 23 <17) TRFMDT
FBCOL 26 (lA) TRFOPT
FBROW 24 (18) TRFPARM
FeOL 2 (2) TRFPARML
FDISPC 21 X' 04' TRFROW
FDISPH 21 X' 02' TRFWID
FDISPH 21 X'D1' TRRBADGE
FFlAG 22 (16) TRRCCOL
FFlD 0 (0) TRRCLEAR
FFLDNO 8 (8) TRReODE
FFMAXWID 22 X'08' TRReROW
FFPENDA 22 X' 02' TRReURSR
FFSHORTR 22 X'04' TRREHT
FFSf1PEN 21 X'80' TRRGET
FFUHDF 22 X'Ol' TRRMCOl
FFVF 22 X' 10' TRRMROW
FHT 6 (6) TRROPT
FLOC 0 (0) TRRPARM
FMAXCOL 3842(F02) TRRPARML
FMAXROW 3840(FOO) TRRPA1
FMROl~ 12 (e) TRRPA2
FNUM 21 X'10' TRRPA3
FPROHT 21 X'20' TRRPEN
FROW 0 (0) TRRPF1
F5HORTR 14 eE) TRRPFIO
FSIZE 4 (4) TRRPF2
FSMCCOl 3846(F06) TRRPF3
FSMCROW 3844(F04) TRRPF4
FSttCURSR 3844(F04) TRRPF5
FStlFlD 3908(F44) TRRPF6
FSMFlDL 26 X 'I e' TRRPF7
FSttPARM 3908(F44) TRRPF8
FSMPARMD 384S(FOS) TRRPF9
FSMPARMH 3S52(FOC) TRRPROG
FSttPARtlR 3856(FIO) TRRPRll
FSttSCRN 4 (4) TRRPR12
FSMSCRHL 0 (0) TRRREAD
FSMSSAVE 3904(F40) TWFATTR
FSMVFH 3860(F14) TWFeOl
FSMloJFlD 3864(FI8) TWFDAT
FSf':toJORK 0 (0) TWFDATA
FWID 4 (4) TWFDATL
FWORKl 390S TWFDISPC
TPRHCOPY 12 X'OI' TloJFDISPH
TPROPT 12 (C) TWFDISPN
TPRPARM 0 (0) TWFERASE

Licensed Material--Property of IBM
30S VS APl Program logi c

20 X' 18' TWFNUM 0 X'80'
8 (8) TWFOPT 0 (0) J 16 (10) TWFPARM 0 (0)

20 (14) TWFPARML 20 X '18'
512 TWFPEN 0 X'40'

0 (0) TWFPROHT 256
0 (D) TWFROW 4 (4)

20 X'18' TWFWID 12 ec)
4 (4) HJRBUZZ 12 X'08'

12 ec) TWRCCOL 8 (8)
12 X'05' TWRCROW 4 (4)
8 (8) TWRCURSR 4 (4)

12 X'04' nolRtIDTR 12 X'04'
12 X'OC' TWROPT 12 (C)

4 (4) TWRPARM 0 (0)
4 (4) TWRPARML 20 X' 18'

12 X'02'
12 X'Ol'
20 (14)
16 (10)
12 (C)

0 (0)
20 X'18'

2001
2002
2003

12 X'03'
1001
1010
1002
1003
1004
1005
1006
100i
1008 J 1009

12 X'D!'
1011
1012

12 X'02'
0 X'04'
S (S)

16 (l ()

0 X' 0 I'
20 (14)

0 X'20'
0 X' 10'
0 X'OS'

J 0 X'02'

\...

FHED (CONV, NTRP)

This is used by the interpreter and defines the fixed fields of
VS APL function headers. It is mapped by the APLFHED macro. This
control block is mapped by the APLFHED mncro. The fixed fields
of the header of a defined function are shown below.

OFFSETS

o
o
4
6

8

10

TYPE

(0) STRUCTURE

CO) SIGNED

(4) SIGNED
(6) SIGNED

(8) SIGNED
1. . 1

· .. 1
· .11

· .. 1
· .1.
.1. .

CA) SIGNED

LENGTH NAME

o FHED

4 FHEDDN

2 FHEDM
2 FHEDT

2 FHEDS
FHEDBITS
FIlEDLOCK
F=HEDt'i.!lG
FIiEDQUAD
FHEDEXEC
FHEDTSOK

2 FHEDK

DESCRIPTION

DESCRIPTOR, BACK POINTER

LItlE COUtlT
OFFSET, FHEDDN TO TAIL

TRANSLATOR FLAGS
"FHEDS+l" FLAG BITS FOR TRANSLATOR
"X'lO'". LOCKED FUNCTION
"X'30'". MAGIC FUNCTION
"X'Dl'". QUAD-INPUT TEMPORARY
"X'02'". EXECUTE TEMPORARY
"X'C(t'" TIMESTArlP PRESENT BEFORE
TAIL
40+8*NUM3ER OF LOCALS _____ u __ _

-------------._---
A LABEL COUNTS AS A LOCAL HERE

12
14

(C) SIGliED
CE) SIGNED

16 (10) SIGNED
· .. 1 · . 1 .

CROSS REFEREt~CE

FHED 0 (0)
FHEDBITS 8 X'09'
FHEDDN 0 (0)
FHEDEXEC S X'C2'
FHE;)K' 10 (A)
FHEDL 14 (E)
FHEi)LOCK 8 X' 10'
FHEDLOCL 16 X' 12 '
FHErM 4 (4)
FHEC:"1AG 8 X'30'
FHEi)~UAD 8 X' 01'
FHEDR 16 (10)
FHEDS e (0)
F~EDT G (6)
FHEDTSOK 3 X'Ol.'
FHEDZ 12 (C)

2 FHEDZ
2 FHEDL

2 FHEDR
FHEDLOCL

NAME OF RESULT; 0001 IF NONE
N:"i'iE OF L. ARG; 0001 IF NOt·:E

NAME OF R. ARGi 0001 IF NONE
":-E". START OF LOCAL NAMES

Licensed Material--Property of IBM
Section 5. Data Areas 309

FSP (CICS. SERVJ

This i5 the free space descriptor used by the CICS/VS executor, .J ..
and describes the VS APL library data set with the number of
control intervals allocated, etc. It is mapped by the APLKFSP
macro.

OFFSETS TYPE

o
o
2

4

4
7

8
18

19

(0) STRUCTURE

(0) CBARACTER

(0) SIGNED
(2) SIGNED

(4) CHARACTER

(4) CHARACTER
(7) BITSTRING

(8) CHARACTER
(12) CHARACTER

1 ...
.1 ..
· .1.
· .. I ·

1. ..
.1. .
· .1.
· .. 1

(13) CHARACTER
1 ~ . .
· 1 .. ·

LEtlGTH NAME

30 FSP

4 FSPHEADR

2 FSPLENHW
2

14 FSPKEY

3 FSPLIBNO
1 FSPNAr1E

10
1 FSPFTYPE

FSPFREE
FSPFEB
FSPUPROF

FSPCICS
FSPPlJB

FSPPRIV
1 FSPFLAGI

FSPINVlD
FSPHIQED

DESCRIPTION

HEADER TO DIRECTORY ENTRY

DIRECTORY ENTRY LENGTH
RESERVED

FILE LOChTER KEY

LIBRARY NUMBER 'OOOOOO'X
'OI'X FOR FREE SPACE RECORD

ALL ZEROS
FILE TYPE:
FREE SPACE RECORD
FILE EXTENT RECORD
USER PROFILE BIT
RESERVED
CICS DIRECTORY ENTRY
PUBLI C LIBRARY
RESERVED
PRIVATE LIBRARY
FLAG BYTE 1
LIBRARY IS INVALID FLAG
LIBRARY ENQUEUE FLAG

20

24
26

(14) SIGHED

(18) SIGNED
(IA) SIG~IED

4 FSPLIBCI

2 FSP FSCI
2 FSPlCIBY

TOTAL LIBRARY CI COUNT

LIBRARY FREE SPACE CI COUNT
NO. OF BYTES IN LAST FREE SPACE
CONTROL INTERVAL

--_.-------------------
28 (IC) SIGNED 2 FSPlBYTB

CROSS REFERENCE

FSP 0 (0)
FSPCICS 18 X'08'
FSPENQED 19 X'40'
FSPFEB 18 X'40'
FSPFLAGI 19 (13)
FSPFREE 18 X'80'
FSPFSCI 24 (13)
FSPFTYPE 18 (12)
FSPHEAOR 0 (0)
rSPINVlD 19 X"SO'
FSPKEY 4 (4)
FSPLBYTB 28 (Ie)
FSPLCIBY 26 (1 A)
FSPLENH!J 0 (0)
FSPLIBCI 21) (14)
FSPLIfWO ~ (4)
FSPHt··;E 7 (7)

FSPPRl'J 18 X'O!'
FSPPUB 18 X'04'
FSPUPROF 18 X'20'

licensed Materic"l!.-Property 01' IBM
310 VS APL Program logic

NO. OF BITS IN LAST FREE SPACE
BYTE

J

GBl (CICS, XSYS, AP)

This is the CICS/VS APl global table. It is the primary anchor
for all CICS/VS APL control blocks. The GBL is located at the
beginning of module APtKASTB and is pointed to by the PTK ~nd
the user task TWA (the CICS/VS transaction work area). This
control block is mapped by the APlKGBL macro.

OFFSETS TYPE

o (0) STRUCTURE

o (0) A-ADDRESS

4 (4) CHARACTER

4 (4) A-ADDRESS

8 (8) A-ADDRESS

12 (C) A-ADDRESS

16 (10) A-ADDRESS

20 (14) A-ADDRESS

24 (18) CHARACTER

24 (18) A-ADDRESS

28 (IC) A-ADDRESS

32 (20) A-ADDRESS

36 (24) A-ADDRESS

40 (28) A-ADDRESS

44 (2C) A-ADDRESS

48 (30) A-ADDRESS

52 (34) A-ADDRESS

56 (38) CHARACTER

56 '(38) CHARACTER
1 ••.
· 1 ..
· . 1 .
· •• 1

1 ...
. 1 ..

57 (39) BITSTRING
58 (3A) CHARACTER
58 (3A) SIGNED

60 (3C) A-ADDRESS

64 (40) A-ADDRESS

68 (44) A-ADDRESS

72 (48) CHARACTER

72 (48) A-ADDRESS

76 (4C) A-ADDRESS

LENGTH NAHE

168 GBl

4 GBLSSM

20

4 GBLINIT

4 GBlHIST

4 GBlADEF

4 GBlDEST

4

28

4 GBLV:T

4 GBlOPSYS

4 GBLTRQ

4 GBLPRM

4 GBLHISTD

4 GBLTRAN

4 GBlCSA

4 GBlAICBA

2

1 GBlFLAGl

GBLGUP
GBLINTRP
GBlNMICR
GBlMICRO
GBlPFO

1 GBlFLAG2
14

2 GBlCSGN

4 GBLSGN

4 GBLLSGN

4

16

4 GBLBSERV

4 GBlDSERV

DESCRIPTION

EP TO SSM SERVICE REQ

COMMON SERVICES

ROUTINE SETS UP GBl TAnL

EP TO HISTOGRAM RECORDER

AUTHORIZATION CHECKS

EP TO DESTINATION MGR

RESERVED

PTRS TO OTHER TABLES

VCT: X-SYSTEM ROUTINES

OPS: OPSYS DEPENDENT

NON-GDDM TERM VECT TABLE

PRM: INSTALLATION PARMS

HISTOGRAMS (ADMIN WS)

TRANSLATE TABLESCAPLKTCD)

ADDR OF CICS CSA

>DFHAICBA IN DFHEAI

FI.AG BYTES

MISC FLAGS
RESERVED
GLOBAL TABLE IS INIT-D
INTERPRETER IN CONTROL
UCODE ASSIST UNAVAILABLE
MICROCODE ASSIST AVAILABLE
PAGE FAULT BEING HANDLED
RESERVED
SIGNON CONTROL
NR OF USERS CURRENTLy ON

ADDR OF APL SIGNOH TABLE

LAST ACTIVE ENTRY IN SGN

RESERVED

DISPATCHER SERVICES

APlKWAIT/KEXIT SERVICES

ADSP SERVICE ENTRY POINT T

Licensed Material--Propertyof IBM
Section 5. Data Areas 311

GBl (CICS, XSYS, APJ cont;nued

OFFSETS TYPE LENGTH NAME DESCRIPTION

80 (50) A-ADDRESS 4 GBLBEXIT ASHD EXIT ROUTINE IHTRFC
---~---------84 (54) A-ADDRESS 4 GBLBSTRT NEW PROCESS START INTRFC

88 (58) CHARACTER 20 LIB SERVICES FIELDS

88 (58) A-ADDRESS 4 GBLRDIR EP TO READ-DIRECTORY RTN

92 (SC) A-ADDRESS 4 GBLLIBF EP TO LIB FILE SERVICES

96 (60) A-ADDRESS 4 GBLFRSPC ADDR OF FREESPACE MAP

100 (64) A-ADDRESS 4 GBLFSDES TO FREESPACE DESCRIPTOR

104 (68) A-ADDRESS 4 GSLFILEC HEAD OF FAB CHAIN

108 (6C) CHARACTER 12 LIBRARY TASK FIELDS

108 (6C) A-ADDRESS 4 GBUIBS ROUTINE STARTS LIB TASKS

112 (70) BITSTRING 4 GBLNQECB STRING ENQUEUE ECB
1 ... OS/VS WAIT BIT
.1 .. GBLNQECO OS/VS POST BIT
.. 11 1111

113 (71) 1111 1111 UNUSED
114 (72) 1 GBLNQECD DOs/VS POST BIT

---------------------------------_._--116 (74) SIGNED 2 GBLMXSTR
118 (76) SIGNED 2 GBLCSTR

120 (78) CHARACTER 40

120 (78) CHARACTER 8 GBLINTRA

120 (78) A-ADDRESS 4 GBLINTl

124 (7C) A-ADDRESS 4 GBLINTH

128 (80) A-ADDRESS 4 GBLADSPl

132 (84) A-ADDRESS 4 GBLIRESM

136 (88) A-ADDRESS 4 GBLQUEND

140 (8C) A-ADDRESS 4 GBLIRET

144 (90) 8ITSTRING 8 GBLOLDIT

152 (98) SIGNED 4 GBL TTIME

156 (9C) A-ADDRESS 4

160 (AO) CHARACTER 8

160 (AO) A-ADDRESS 4 GBLPFC

164 (A4) A-ADDRESS 4 GBLPFAP

168 (A8) CHARACTER o

Licens~d Material--Property of IBM
312 VS APL Program Log; c

TOT # OF APLDIR STRINGS
APLDIR STRINGS IN USE

INTERPRETER INTERFACE

INTERPRETER ADDRESSES

LOW END OF INTERPRETER

HIGH END OF INTERPRETER

LOW END OF APLKADSP

EP TO INTERPRETER RESUME

QUANTUM END ENTRY POINT

R14 ON ENTRY TO KIFIX

OLD ITT AB ENTRY

TIMER RESIDUE

RESERVED

DOS/VS ONLY FIELDS

PAGE FLT CONTROL AREA

EP TO PG FLT APPENDAGE

END OF GLOBAL TABLE

J

CROSS

GBL
GBLADEF
GBLADSPL
GBLAICBA
GBLBEXIT
GBLBSERV
GBLBSTRT
G8LCSA
GBLCSGN
GBLCSTR
GBLDEST
GBLDSERV
GBLFILEC
GBLFLAG1
GBLFLAG2
GBlFRSPC
GBlFSDES
GBlGUP
GBUtIST
GBlHISTD
GBLHUT
GBLINTH
GBLIHTL
GBLIHTRA
GBlIHTRP
GBlIRESM
GBLIRET
GBLLIBF
GBl LIBS
GBLLSGN
GBLMICRO
GBlf'lXSTR
GBLNMICR
GBlHQECB
GBlNQECD
GBlNQECO
GBlOLDIT
GBLOPSYS
GBLPFAP
GBlPFC
GBlPFO
GBlPRM
GBLQUEND
GBlRDIR
GBlSGN
GBl SSM'
GBLTRAN

\. GBlTRQ
GBl TTIME
GBLVCT

REFERENCE

0 (0)
12 (C)

128 (80)
52 (34)
80 (50)
72 (48)
84 (54)
48 (30)
58 C3A)

118 <76)
16 (10)
76 (4C)

104 (68)
56 C38)
57 (39)
96 (60)

100 (64)
56 X'40'

8 (8)
40 (28)

4 (4)
124 C7C)
120 (78)
120 <78)

56 X'20'
132 (84)
140 (8C)

92 (5C)
108 (6 C)

64 (40)
56 X'OS'

116 C74)
56 X' 10'

112 C' O}
114 ~C.~O'
112 X'40'
144 (90)

28 (1C)
164 (A4)
160 (AO)

56 X'04'
36 (24)

136 (88)
88 (58)
60 C3C}

0 (0)
44 (2C)
32 (20)

152 {98 }
24 (13)

Licensed Matf!rial-Property of IBM
Sp.c~ion 5. Dat~ Areas 313

-------------- -----

GDe (VSPC. XSVS, AP)

This is the VSPC AP 126 and GDDM interface common area format.
It is m~pped by the APLPGDC macro.

OFFSETS TVPE

o (0) STRUCTURE

a (0) A-ADDRESS

4 (4) A-ADDRESS

8 (8) A-ADDRESS

36 (24) BITSTRING
1 ... · ...
.1 .. · ...
. . 1 . · ...

37 (25) UNSIGNED
38 (26) SrmlED

40 (28) A-ADDRESS

44 (2C) SIGNEO

48 (30) SImlED .

52 (34) A-ADDRESS

56 (38) SIGHED

60 (3C) SIGNED

64 (f. 0) SIGNED

64 UtO) BITSTRING

68 (44) SIGNED

72 (48) A-ADDRESS

76 (4C) A-ADDRESS

80 (50) SIGNED

84 "(54) A-ADDRESS

88 (58) .6. -.\DDRESS

92 (SC) SIG~lED

96 (60) A-AD~RESS

100 (64) SIGNED

104 (68) A-ADDRESS

108 (6C) A-ADDRESS

112 C/O) A-ADDRESS

116 (74) SIGNED

120 (78) SIGNED

136 (S8) SIGNED

LEt~GTH NAME

480 GDCOMMON

4 GDCAPFTO

4 GDCPATCU

28 GDCPATPT

1 GDCFLAGS
ERRS TOP
GETHOAT
PERFORM
GDCOTYPE

2 GDCREACD

4 GDCICTlO

4 GDCHlElM

4 GDeIHCHT

4 GDCIDATO

" GDCIDATH

(t GDCDIHLN

G GDCCONVI

4 GDCCONVF

4 G[;CREQCD

<t ODCENT?T

4 GDeDCn 0

4 GDCSZCTl

4 GDCOUTPT

4 GDCRCI/PT

4 GDCOUTCT

4 CDCODATO

4 GDCSZDAT

4 GDCDOUTP

4 GDCQSAVE

4GDCNSAVE

4

16 GDCTWORK

4 GDCVWORK

licensed Materf ;:tl-Property of ISM
314 VS APL Progri':l~'1 Log; c

DESCRIPTION

OFFSET OF APFT

CURRENT PATH BLOCK OFFSET

ARRAY OF PATH POINTERS

FlAG BYTE
TERMIHATING ERROR STOP
RETURN NEXT ITEM AS FLOAT
FOR ASQFlD. DO REQUEST
OUTPUT eTL VAR DATA TYPE
AP 126 ERROR: REASON CODE

OFFSET OF INPUT eTl VAR

NUMBER OF INPUT CTl ELEM

INPUT CTl ELEMENT COUNTER

OFFSET OF INPUT OAT ELEM

ACTUAL lENGTH OF INPUT OAT

EXPECTED LENGTH OF INP OAT

CONVERT RTN INTEGER OUTPUT

CONVERT RTH OUTPUT (FLOAT)

GDDM FUNCTION REQUEST CODE

ADDRESS OF TABLE ENTRY

OFFSET OF CTL OUTPUT BUFF

lENGTH OF CTL OUTPUT BUFF

OFFSET OF CTl OUTPUT ElEM

OFFSET OF CTl RETURN CODE

OUTPUT CTl ELEMENT COUNTER

OFFSET OF OAT OUTPUT BUFF

LENGTH OF OAT OUTPUT BUFF

OFFSET OF OAT OUTPUT ElEM

R14 SAVE AREA FOR QFlD RTN

R14 SAVE AREA FOR NEXT RTN

SPARE

TEMPORARY VAR WORK ARRAY

TEMPORARY VAR WORK WORD

J

GDC (VSPC, XSYS, AP) continued

OFFSETS TYPE

144

148

152

156

160

192

193

194

196

200

204

208

240

248

(SC) BITSTRIHG
(80) UNSIGNED
(8E) SIGNED

(90) SImlED

(94) SIGHED

(98) A-ADDRESS

(9C) A-ADDRESS

(AO) SIGHED

(CO) BnSTRIt~G
1

(C1) BITSTRItIG
1 ...
· 1 ..
· . 1.
· .. 1
· ... 1111

(C2) SIGNED

(C4) A-ADDRESS

(C8) A-ADDRESS

(CC) A-ADDRESS

(DO) A-ADDRESS

(FO) CHARACTER

(F8) CHARACTER

256 (100) SIGNED

260 (104) SIGNED

264 (108) SIGNED

296 (128) CHARACTER

304 (130) CHARACTER

464 (100) SIGHED
466 (102) SIGNED

468 (104) A-ADDRESS

472 (108) SIGNED

LENGTH NAME

1 GDCWBYTE
1
2

4

4 GDCXtH-tAX

4 GDCXNPBO

<% GDCXUHPO

32 GDCXPCtH

1 GDCXFLGS
GVCX/iorN

1 GDCXROPT

GOCXPASS

GDCXtlOPG

2 GOCXRtlUM

4 GDCXPSNP

4 GDCXI'SPP

4 GDCXREQP

32 GDCXRPTR

8 GDCXREQU

8 GDCXPSRN

4 GDCXPGCU

4 GDCXHOPC

32 GDCXHOPT

8 GOCXHARD

160 GDCXtlOER

2 GOCXRC
2 GOCXRS

4 GDCtmERE

4 GDCSPACE

DESCRIPTION

WORK BYTE FOR BIT MASKING
SPARE
Srf·.RE

SPARE

MAXIMUM NUMERIC PARAMET[RS

NUMERIC PARM BUFFER OFFSET

NExr NUMERIC PARM OFFSET

ARRAY or COUNTS FOR PARMS

GDDX FLAG BYTE
fi.\i;,DCOPY DESTINATION OPEN
GCUX OPTION FLAGS
RESERVED
TlUS IS A PASS THROUGH REQ
RESERVED
NO PAGE SELECTION REQUIRED
RESERVED
NU:lBER OF GDDM PARMS

PAGE SEL REQ NM1E OFFSET

PAGE SEL PAGE NO. OFFSET

GDDM REQUEST NAME OFFSET

GDDM PARM OFFSETS

GDDM REQUEST NAME

PAGE SEL REQUEST NAME

CURRENr GDDM PAGE NU~BER

HARDCOPY OPTION COUNT

FSOPEti HARDCOPY OPTIONS

HARDCOPY DESTINATION NAME

DUMMY NO-ERROR FEEDBACK

GDDM RETURN CODE
GDDM REASON CODE

OFFSET OF AREA REQUESTED

LENGTH TO GET OR FREE

476 (lDC) A-ADDRESS 4 GDCFIRST OFFSET OF FIRST FREE AREA
------------)---

480 (lEO) CHARACTER 0 GOCFREE FREE SPACE BEGINS

licensed Material--Property of IBM
Section 5. Data Areas 315

CROSS REFERENCE

ERRS TOP
GDCAPFTO
GDCCONVF
GDCCONVI
GDCDINLN
GDCDOUTP
GDCENTPT
GDCFIRST
GDCFLAGS
GDCFREE
GDCICTLO
GDCIDATH
GOCIOATO
GOCIHCHT
GDCINELM
GDCNSAVE
GOCOCTLO
GDCODATO
GOCDr1NON
GOCOTYPE
GOCOUTCT
GDCOUTPT
GDCPATCU
GDCPATPT
GOCQSAVE
GDCRCVPT
GDCREACD
GOCREQCD
GOCSPACE
GDCSZCTL
GOCSZDAT
GDCTWORK
GDCVWORK
GDCI>IBYTE
GOCl>JHERE
GOCXFLGS
GOCXHARD
GOCXHOPC
GDCXHOPN
GOCXHOPT
GOCXNMAX
GOCXNNPO
GDCXtWER
GDCXNOPG
GDCXHPDO
GOCXPASS
GOCXPCNT
GDCXPGCU
GDCXPSHP
GDCXPSPP

36 X'80'
o (0)

64 (40)
64 (40)
60 (3C)

104 (68)
72 (48)

476C1DC)
36 (24)

4800EO)
40 (28)
56 (38)
52 (34)
48 (30)
44 (2C)

112 (70)
76 (4C)
96 (60)
o (0)

37 (25)
92 (5C)
84 (54)

4 (4)
8 (8)

108 (6C)
88 (58) .
38 (26)
68 (44)

472(1D8)
80 (50)

100 (64)
120 (78)
136 (88)
140 (8C)
468(04)
192 (CO)
296C128}
260(104)
192 X'80'
264(108)
148 (94)
156 (9C)
304(130)
193 X'10'
152 (98)
193 X'40'
160 (AO)
256(100)
196 (C4)
200 (C8)

GOCXPSRH
GDCXRC
GDCXREQH
GDCXREQP
GOCXRNUM
GDCXROPT
GDCXRPTR
GOCXRS
GETFlOAT
PERFORM

Licensed Materia1--Property of IBM
316 VS APL Progr<l'11 log; c

248 (F8)
464<1DO)
240 (FO)
204 (ec)
194 (C2)
193 (Cl)
208 (DO)
466(102)

36 X'40'
36 X'20'

J

J

GD" (XSYS, AP)

This is the common system services GDDM request block interface
for VS APL. It is mapped by the APLXGDM macro.

OFFSETS TYPE

o
o
4

8

12

16

20

21
22

24

28

32

36

40

44

48

52

56

60

(0) STRUCTURE

(0) A-ADDRESS

(4) A-ADDRESS

(8) BITSTRING

(C) A-ADDRESS

(10) SIGNED

(14) BITSTRING
1 ...
· 1 ..
· . 1 .
· .. 1

1 ...
.111

(15) BITSTRlNG
(16) SIGNED

(18) SIGNED

(1C) SIGNED

(20) A-ADDRESS

(24) A-ADDRESS

(28) A-ADDRESS

(2C) A-ADDRESS

(30) A-ADDRESS

(34) A-ADDRESS

(38) A-ADDRESS

(3C) A-ADDRESS

LENGTH NAME

64 GDM

4 GDMRLIHK

4 GDMRECBP

4 GDMREQCD

4 GDMRPATH

4 GDMRPAGE

1 GDMROPT
GDf1Rl.JAIT
GDMRPASS
GDMRAPl
GDMRNOPG
GDMRDOWN
GDMRORS

1
2 GDMRNUM

4 GDMRC

4 GDMRS

4 GDf1RPTRl

4 GDMRPTR2

4 GDMRPTR3

4 GDMRPTR4

4 GDMRPTR5

4 GDMRPTR6

4 GDMRPTR7

4 GDMRPTR8

DESCRIPTION

USED WITH APLXG MACRO

GOOM LINK PTR

ECB ADDRESS FOR POST

GDDM OR APL TYPE CODE

PATH IDENTIFICATION PTR

PAGE NUMBER

OPTION FLAGS
ON FSFRCE.WAIT FOR COMPL
THIS IS A PASS THROUGH REQ
GDMREQCD IS APL UNIQUE
NO PAGE SELECTION REQD
ON GDMRTRM. BRING DOWN GDDX
RESERVED
RESERVED
NUt1BER OF FIELDS

RETURN CODE

REASON CODe

POINTER TO FIRST PARM

POINTER TO SECOND PARM

POINTER TO THIRD PARM

POINTER TO FOURTH PARM

POINTER TO FIFTH PARM

POINTER TO SIXTH PARM

RESERVED

RESERVED

.Licensed Mater;al--Property of IBM
Section 5. Dat~ Areas 317

CROSS REFERENCE

GDM 0 (0)
GDMRAPL 20 X'20'
GDMRC 24 <18)
GDMRDOWH 20 X' 08'
GDMRECBP 4 (4)
GD~lREQCO 8 (8)
GDtlRLINK 0 (0)
GDtlRNOPG 20 X' 10'
GDMRNUM 22 (16)
GOtlROPT 20 (14)
GDMRORS 20 X' 07.'
GDMRPAGE 16 (10)
GDl1RPASS 20 X'40'
GDr1RPATH 12 (e)
GDMRPTR1 32 (20)
GDMRPTR2 36 (24)
GDMRPTR3 40 (28)
GDMRPTR4 44 C2C)
GDMRPTR5 48 (30)
GDMRPTR6 52 (34)
GDMRPTR7 56 (38)
GDMRPTR8 60 (3C)
GDMRS 28 (lC)
GDMRWAIT 20 X'80'

Licensed Material--Property of IBM
318 VS APL Program Log; c

J

J

LSC (CICS, SERV)

This is the library services constants for CICS/VS, and maps the
elTs from the bit map CIs in the VS APl library. It is mapped by
the APLKlSC macro.

OFFSETS TYPE LENGTH NAME DESCRIPTION

o (0) STRUCTURE 22 LSCAPLIB CIT FOR BIT MAP CIS

o (0) SIGNED Ll BNO AND IDENT
-- ------------------------~

4
14
15
18

(4) CHARACTER
(E) CHARACTER
(F) BITSTRING

(12) BITSTRIHG

CROSS REFERENCE

lSCAPLIB o (0 ,

•

10
1
3
4

OUR 10
FREE SPACE IDENTIFIER
RDF
4K CrDF

licensed Material--Property of rPM
Section 5. Data Areas 319

HAl (XSYS, AP)

This is the common system services main storage request bleck.
It is mapped by the APLXMAI macro.

OFFSETS TYPE LENGTH NAf1E DESCRIPTION

0 (0) STRUCTURE 28 MAl

0 (0) BITSTRING 2 MAIREQ REQUEST CODE
1 ... MAIRQTYP REQUEST TYPE, O=GETMAIN,l=FREE
· 1 •. MAIRVAR GETMAHI FIXED=O, VARIABLE=1
· .1. MAIINlTF =1, Mil IINIT HAS INIT BYTE
· .. 1 R[SERIJED

1111
1 (1) 1111 1111 MAISYS SYSTEM REQUEST f'lAGS

1 ... MAIIJPAGE GETMAIN BNDRY PAGE=l. DWORD=O
· 1 .. MAICHIGH ALLOCATE FROM HIGH AREA
· . 1. MAIClOW ALLOCATE FROM LOW AREA
· .. 1 RESERVED

1 (1) l. ... MAIKSYS USE OPERATING SYSTEM SERVICES
.1 .. MAIKTERM TEPMINAL CI.ASS GETMAIN
· . 1 . MAIKTRAN TRM~SIENT DATA CLASS GETMAIN
· .. 1 M.'UK TEt1P TEr~PORARY STORAGE CLASS GETMAn"

1 ... MAIKPROG PROGR!,M CLASS GETMAIN
.1. . MAIKSHR 3~~.~RED TYPE GETf1AIN
.. 11 r€'s~rved

2 (2) SIGNED 2 MAIGMOPT V,\RIOUS OrTION FIELDS ., (2) UNSIG~IED 1 MAIVSUBP SUSPOOL NUt7B ER FOR OS GETMAINS <.

3 (3) Ut~S I GNED 1 MAIHlIT HH TI AUl.ATIOI-! BYTE ---
4 (4) A"ADDRESS 4 MAIADDR ~.DDR OF GETMAIN OR FREEMAIN AREA

-----------------------._--
8 (8) SIGNED c. MAISIZE

8 (8) SIGNED 4 ~AIMAX

12 (C) CHARAC TER 16 MAIWORK

ec) SI(;t~ED 4 MAHlORK1

16 (10) SIGNED 4 MAHJORK2

20 4 M,ut.JORK3

24 (18) SIGNEr; 4 MAIWORK4

Licens<:?d Ml.lter'al-·-Prope,.",:y 01' IBM
320 1S APL Progrem Logic

GETMAHI/FREE~'.\IN SIZE. IN BYTES

VARIABLE GETMAIN MAXIMUM VALUE

STORAGE SERVICES WORK AREA

WORK AREA I':ORD 1

l,JORK AREA WORD 2

I-JORK ft.RE" WORD 3

W:.JRK AREA WORD it

J

CROSS

~ MAl
MAIADDR
MAICHIGH
MAICLOW
MAIGMOPT
MAIINIT
MAIINITF
MAIKPROG
MAIKSliR
MAIKSYS
MAIKTEMP
MAIKTERM
MAIKTRAH
MAIMhX
MAIREQ
MAIRQTYP
MAIRVAR
MAl SIZE
MAISYS = MAIVPAGE
MAIVSUBP
MAHJORK
MAlWORKl
MAIWORK2
MAIWORK3
MAIWORK4

L

REFERENCE

0 (0)
4 (4)
0 X'04'
0 X'02'
2 (2)
3 (3)
0 X'20'
1 X'08'
1 X'04'
1 X'80'
1 X' 10'
1 X'40'
1 X'20'
8 (8)
0 (0)
0 X'80'
0 X'40'
8 (8)

12
0 X'08'
2 (2)

12 (0
12 ee)
16 (10)
20 (14)
24 (18)

Lic~n5ed M~terlal--Property of IBM
Spci: ion 5. D~t:a l\"~(]S ~?1

OPS (CICS, AP)

This is the system-dependent services branch table in CICS/VS
system-dependent modules. It is mapped by the APLKOPS macro.

OFFSETS TYPE

o (0) STRUCTURE

o (0) CHARACTER

o (0) A-ADDRESS

4 (4) A- DDRESS

8 (8) A-ADDRESS

12 (C) CHARACTER

12 (C) A-ADDRESS

16 (10) A-ADDRESS

20 (14) A-ADDRESS

24 (18) A-ADDRESS

28 (10 CHARACTER

28 lIe) A-AlJDRESS

32 (20) CHARACTER

32 (20) A-ADDRESS

36 (24) CHARACTER

36 (24) A-ADDRESS

40 (28) A-ADDRESS

44 (2C) CHARACTER

CROSS REFERENCE

OPS
OPSDATTR
OPSDPFAP
OPSERI23
OPSINIEX
OPSLCLOS
OPSLGET
OPSLOPEN
OPSLPUT
OPSPCREG
OPSRSTEX
OPSSETEX

o (0)
28 (IC)
40 (28)
36 (24)
o (0)

16 (10)
20 (14)
12 (el
24 (18)
32 (20)

8 (8)
4 (4)

LENGTH NAHE

44 OPS

12

4 OPSINIEX

4 OPSSETEX

4 OPSRSTEX

16

4 OPSLOPEN

4 OPSLClOS

4 OPSlGET

4 OPSLPUT

4

0+ Or-SUAI 1 R

4

(, OPSPCREG

8

4 OPSER123

4 OPSDPFAP

o

Licensed Material--Fropertv of IBM
322 IJS APL Progra!'!'l Logi c

DESCRIPTION

INTERPRETER INTERFACE

INIT TIMER EXIT AND PAGE

SET PROGRAM CHECK AND

RESTORE THE OLD EXITS

LIBRARY SERVICES

VSAM OPEN

VSAM CLOSE

VSAM GET

IJSAM PUT

DESTINATION MGR

EXTRH FILE ATTRIBUTES

DISPATCHER

PROGRAM CHECK REGISTERS

AP 123

VSAM/ISAM ERROR ANALYSIS

DISCONNECT PAGE FAULT

END OF LIST

J

PCV (ALL)

This is the processor control vector (PCV), which contains
information about an auxiliary processor. It is used in
communication between auxiliary processor and shared storage
manager. This control block is mapped by the APLPeV macro.

OFFSETS TYPE LENGTH NAME DESCRIPTION

o (0) STRUCTURE

o (0) SIGNED

4 (4) SIGNED

8 (8) SIGHED

12 (e) A-ADDRESS

16 (10) CHARACTER

24 (18) CHARACTER

o (0) STRUCTURE

o (0) CHARACTER

o (0) SIGNED

4 (4) SIGNED

8 (8) SIGNED

12 (C) A-ADDRESS

16 (10) CHARACTER

24 (18) CHARACTER

CROSS REFERENCE

APLPCV
pev
PCVEeB
PCVEHD
PCVID
PCVPASS

o (0)
o (0)

12 (C)
24 (18)
o (0)

16 (10)

24 PCV

4 PCVID

4 PCVQUOTA

4 PCVSPACE

4 PCVECB

8 PCVPASS

o PCVEND

24 APLPCV

24 PCV

4 PCVID

4 PCVQUOTA

4 PCVSPACE

4 PCVECB

8 PCVPIISS

o PCVEND

THIS IS THE BEGINNING OF THE PCV

ID FOR THIS PROCESSOR

QUOTA OF SHARED VARIABLES

BYTES OF SHARED MEMORY THIS

Eca ADDR FOR THIS PROCESSOR

PASSWORD FOR THIS PROCESSOR

END OF PLS PCV MAPPING

Licensed Material--Property of IBM
Section 5. Data Areas 323

PRD (XSYS, AP)

This is the common system services print request block
d~scriptor. It is mapped by the APLXPRD macro.

OFFSETS TYPE LENGTH NAME DESCRIPTION

---o
o
1

2

4
6

8

12

(D) STRUCTURE

(D) UNSIGNED
(1) BITSTRING

1 . •.
(2) SIGNED

(4) SIGNED
(6) SIGNED

(8) A-ADDRESS

(C) CHARACTER

20 (14) CHARACTER

CROSS REFERENCE

PRD
PRDBUFP
pRDDEST
PRDEND
PRDHDR
PRDLEN
PRDOPT
PRDRETCD
PRDTCODE
PRDTYPE

o (0)
8 (8)

12 (C)
20 (14)

1 X'SO'
2 (2)
1 (1)
4 (4)
6 (6)
o (0)

20 PRO

1 PRDTYPE
1 PRDOPT

PRDHDR
2 PRDLEN

2 PRDRETCD
2 PRDTCODE

4 PRDBUFP

8 PRDDEST

o PRO END

Licensed Material--Property of IBM
324 VS APL P.rogram logic

PRINT REQUEST DESCRIPTOR

REQUEST TYPE AS FOR GDDM REQ
OPTIONS
OPEN HEADER GENERATION
LENGTH OF DATA IN BUFFER

RETURN CODE
TYPE CODE (TRANSLATION CONTROL)

ADDR OF BUFFER

DESTINATION NAME

END OF PRD

J

J

PRtt (CICS, XSYS, AP)

This is the installation parameter list. It contains the
installation-specified variables used in initializing the APL
transaction. The PRM is located at the beginning of module
APLKPARM and is pointed to by the GBL. This control block is
mapped by the APLKPRM macro.

OFFSETS TYPE LENGTH NAME DESCRIPTION

o
o
2

4

6

(0) STRUCTURE

(0) SIGNED
(2) SIGNED

(4) SIGHED

(6) SIGNED

172 PRM

2 PRMUSERS
2 PRMSSMSZ

2 PRMSPMAX

2 PRMSVM~X

IHSTALLATION PARAMETERS

MAX SIGH-ON COUNT
MAX SHARED STORAGE SIZE IN K-BYTES

MAXIMUM PROCESSORS SHARING
INCLUDES USERS. DEP-APS, AND
IHDEPEHDENT-APS
MAXIMUM SHARED VARIABLES

--
8

10

12

16

16

20

24

28

32

36

40

44

48
49
50

52

56

60

.. " .
(8) SIGNED

(A) SIGHED

ee) SIGHED

(10) CHI\RACTER

(10) CHARACTER

(14) CHARACTER

(18) CHARACTER

(lC) CHARACTER

(20) CHARACTER

(24) CHARACTER

(28) CHARACTER

(2C) CHARACTER

(30) CHARACTER
(31) CHARACTER
(32) SIGNED

(34) SIGHED

(38) A-ADDRESS

e3C) A-ADDRESS

2 PRMCHAP

2

4 PRMLIM

28 PRMTRANS

4 PRMSOH

4 PRMSES

4 PRMLIB

4 PRMTERM

4 PRMHCP

4 PRMDYN

4 PRMTERX

4 PRMXLEVL

1 PRMSYS
1 PRMCREl
2 PRMAPCNT

4 PRMSLICE

4 PRMDAPPT

4 PRMSGH

LOWER PRIORITY FOR FUll USE OF ONE
QUAHTUM
RESERVED

HARDCOPY PRINT lIMIT

APl TRANSACTIONS

APL SIGN-ON TRANSACTION

APL USER SESSION TRAN

LIBRARY TRANSACTION

APL TERMINAL I/O TRAN

APl HARDCOPY TRANSACTION

APl AP 100 DYHAMIC TRA~

GDOM TRMHL I/O TRAN

RELEASE #: OOVVRRMM

SYSTEM TYPE, I-VSl.2-MVS, 3-DOS/VS
CICS VERSION/RELEASE
ENTRY COUNT IN AP TABLE

APL TIME SLICE SYS DEP

ADDRESS OF DEPENOEHDT APS

ADR OF SIGHON TABLE

Licensed Materiel--Property of IBM
Section 5. Data Areas 325

PRM (CICS, XSVS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

---_. CICS RELEASE DEPENDENT OFFSETS

NOTICE
THE FOLLOWING TABLE MUST BE USED TO DEFINE ALL FIELDS IN
CICS CONTROL BLOCKS WHICH ARE USED BY APL CODE. EXCEPT FOR
FIELDS DOCUMENTED IN THE CICS APPLICATION PROGRAMMER'S
REFERENCE MANUAL (MACRO LEVEL) AS BEING PART OF THE
APPLICATION PROGRAMMER INTERFACE (API).

DCL WRKP PTR * POINTS DIRECTLY TO FIELD
DCl FLO BASED(WRKP) .. . * GIVE APPROPRIATE ATTRIBUTES * POINT TO REQUIRED FIELD WRKP= ... PIR + PRM .. .
FLD=FlD' PRM .. .
FLD=FLD & (PRM ... &&
DCl WRK BlT(8)
WRK= PRM ... & FlD

64

66

68

70

72

76
78
79

CSA

(40) SIGNED

(42) SIGHED

(44) SIGNED

(46) SIGNED

(48) SIGNED

(4C) SIGNED
(4E) CHARACTER
(4F) CHARACTER

* OR IN MASK TO TURN IT ON
'FF'X) * AHD COMPlEM TO TURN IT OFF * TEMPORARY WORK AREA * REMOVE ALL OTHER BITS

2 PRMCSAPN

2 PRMCSAPP

2 PRMCShPL

2 PRMCSAPU

4

2 PRMCSADA
I PRMCSAMD
I

PINI C(2) NUMBER PGM
CHKS(PACK)
PIPSW P(31) PGMCHK PSW

PLBA P(31) CICS LOW
BOUNDARY
PUBA P(31) CICS HIGH
BOUNDARY

RESERVED

DATFT C(l) FORMAT OF DATE
DATFM FORMAT AS MMDDYY
RESERVED

--------------------------------~--80
82

84

86
87

(50) SIGNED
(52) SIGNED

(54) SIGHED

(56) CHARACTER
(57) CHARACTER

88 . (58) CHARACTER
89 (59) CHARACTER
qo (SA) SIGNED

92 (5C) SIGNED
94 (SE) SIGNED

FCT

96 (60) SIGNED
98 (62) SIGNED

2 PRMDCTBA
2 PRMDCTID

2 PRMDCTDT

I PRMDCINT
1 PRMDCEXT

I PRMDCIND
1
2

2 PRMFIODC
2

2 PRMFCID
2 PRMFCKL

DCTBA P(31) DTF/DCB PTR
DCTIDI C(4) INDIRECT
DESTID

DCTTDT C(l) DESTINATION
TYPE
INDTBM INTRA- PARTITION
EXTRBM EXTRA- PARTITION

INDBM INDIR DESTINATION
RESERVED
RESERVED

DCB POl) > DCB
RESERVED

DSlD Cn) DLBl
DSKL F(8)

DDNAME

---100
102

104
106

108
110
111

<64) SIGNeD
(66) SIGNED

(68) SIGNED
(6A) SIGNED

(6C) SIGNED
(6E) CHARACTER
(6F) CHARACTER

2 PRMFCREC
2 PRMFCRKP

2 PRMFCACB
2

2 PRMFCOPN
1 PRMFCOP
1

L i ce"sed Mated 1I1-Property of IBM
326 VS APL Program log i c

DSREC F(lS) RECORD LENGTH
DSRKP F(1S) REl
POSITION
DSACB C(O) START
RESERVED

DSOPN C(1) OPEN
OPNIM .. OPEN BIT
RESERVED

KEY

OF ACB

J

PRH (CICS, XSYS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

112 (70) SIGNED 2 PRMFCOBM OSBDM C(l) BDAM INDICATOR
114 C 72) CHARACTER 1 PRMFCDAl1 BDAI'lI BDAM BIT
115 0:\) CHARACTER 1 RESERVED

116 (74) SIGNED 2 PRMFCISM DSISM C(l) ISAM INDICATOR
118 (76) CHARACTER 1 PRrlFCISA ISAMI ISAM BIT
119 (77) CHARACTER RESERVED
120 (78) SIGNED 2 PRMFCVLI OSVLI C(l) RECOR , ",') -, '- (7 A) CHARACTER 1 PRMFCFIX FIXIM FIXED LNG
123 (7B) CHARACTER 1 PRMFCVRL VRLlM VAR LNGTH
124 (7C) SIGNED 2 PRMFCDLI DSDU CO) OU1
126 (7 E) CHARACTER 1 PRMFCDLI OLII DVI BIT
127 OF) CHMACTER 1 RESERVED

.--
128
130
131

132

134
135

136

138
.39

140

142
143

144
146

148
150

152
154
155

156
158
159

160
162

164
166

168
170

172

172

180

184

(80) SIGNED
(82) CHARACTER
(83) CHARACTER

(84) SIGHED

(S6) CHARACTER
(an CUARACT~R
~a8) SIGNED

(SA) CHARACTER
(SB) CHARACTER

(SC) SIGNED

(SE) CHARACTER
(SF) CHARACTER

(90) SIGNED
(92) SIGNED

(94) SIGNED
(96) SIGNED

(98) SIGNED
(9A) CHARACTER
(9B) CHII.RACTc;R

(9C) SIGNED
(9E) CHARACTER
(9F) CHARACTER

(AD) SIGNED
(A2) SIGNED

(M) SIGHED
(A6) SIGNED

(A8) SIGHED
(AA) SIGNED

(Ae) CHARACTER

(Ae) CHARACTER

(84) SIGHED

(B8) A-ADDRESS

2 PRMFCVSM
1 PRMFCVSA
1

2 PRMFCESD

1 PRMFCES
1

2 PRMFCKS()

1 PRMFCKS
!

2 PRMFrR~O

1 PRMFCRR
1

2 PRMPCTOF
2 PRr'~PCTPF

2 PRMPCTTI
2

2 PRMPCTFF
1 PRMFASRA
1

r_

1
1

PRMPCTOG
PR11DSAB L

2 PRMTATlR
2 PRMTASYA

2 PRMTATPC
2 PRMTATKA

2 PRMTCTTC
2 PRMTCTOI

o PRMDAP

8 PRMAPNAM

4 PRMAPHUM

" PRMAPPTR

DSVSM C(l) VSAM
VSAMI VSAM BIT
RESERVED

DSESD CO) VSAM
l!mICATOR
ESDS ENTRY SEQ
~:[SERVED

INDICATOR

DSKSO C(l) VSAM KSDS
lNDICATOR
KSDS KEY SEQ
RESERVED

OSRRO C(l) VSAM RRDS
INDICATOR
RRDS REL REC
RESERVED

TWA F(15) TWA SIZE
IPIA e(8) PROG HAM

Tl C(4) TRANS HAM
RESERVED

FDPOP C(l) FORMAT DUMP
FASRA DUMP ON ASRA
RESERVED

FLAG C(l) TRANSACTION
DSABL DISABLED
RESERVED

TPLRC F(8) TC LOCATE RC
SYAA PC3l) PREFIX POINTER

TCPC P(31) peT PTR
KCTTA C(3) TASK # (PACK)

TETC C(4) NEXT TRANID
TERMINAL OP 10

MULTIPLE OEP-AP'S DEFINED

PROGRAM NAME FOP. LOAD

DEPENDENT AP NUMBER

ENTRY POINT OF AP-IF LOADED

Licensed Material--Property of IBM
Section 5. Data Areas 327

CROSS REFERENCE

PRM 0 (0) PRMLIB 24 (18) ...) PRMAPeNT 50 (32) PRI'1LIM 12 (e)
PRMAPNflM 172 (AC) PRMPCTFF 152 (98)
PRMAPNUM 180 (84) PRMPCTOF 144 (90)
PRMAPPTR 184 (BB) PRt1PCTOG 156 (9C)
PRMCHAP 8 (8) PRMPCTPF 146 (92)
PRMCREl 49 (31> PRr1PCTTl 148 (94)
PRMCSADA 76 (4C) . PRMSES 20 (14)
PRMCSAMD 78 (4E) PRMSGN 60 eSC)
PRMCSAPl 68 (44) PRMSLICE 52 (34)
PRMeSAPN 64 (40) PRMSON 16 (10)
PRMCSAPP 66 (42) PRMSPMAX 4 (4)
PRMCSAPU 70 (46) PRMSSMSZ 2 (2)
PRMDAP 172 (AC) PRMSVMAX 6 (6)
PRMDAPPT 56 (38) PRl"lSYS 48 (30)
PRMDCEXT 87 (57) PRMTASYA 162 (A2)
PRMDCIND 88 (58) PRMTATKA 166 (A6)
PRMDCINT 86 (56) PRMTATlR 160 (AO)
PRMDCTBA 80 (50) PRMTATPC 164 (A4)
PRMDCTOT 84 (54) PR~1TCTOI 170 (AA)
PRMDCTID 82 (52) PRMTCTTC 168 (A8)
PRMDSABl 158 C9E) PRMTERM 23 (1C)
PRMDYN 36 (24) PRMTERX 40 (28)
PRMFASRA 154 (9A) PRMTRANS 16 (10)
PRMFCAC8 104 (68) PRf>'USERS 0 (0)
PRMFCDAM 114 (72) PRMXlEVl 44 (2C)
PRMFCDBM 112 (70)
PRMFCOlI 124 (7C)
PRMFCDL1 126 (7 E)
PRMFCES 134 (136)
PRMFCESD 132 (84)
PRMFCFIX 122 C7 A)
PRMFCID 96 (60)
PRMFCISA 118 (76~

PR~'FCISM 116 (74)

..) PRMFCKl 98 (62)
PRMFCKS 138 (8A)
PRMFCKSD 136 (88)
PRMFCOP 110 (6E)
PRMFCOPN 108 (6e)
PRr1FCREC 100 (64)
PRMFCRKP 102 (66)
PRMFCRR 142 (8E)
PRMFCRRD 140 (8C>
PRMFCVlI 120 (7~)
PRMFCV~L 123 OR)
PRMFCVSA 130 (82)
PRMFCVSM 128 (80)
PRMFIODC 92 (50 J .P'RMHCP 32 (20)

/ ...

L;cen~ed Material--Property of IBM
328 VS APL Progr;lm logic

~

PRO (CICS, SERV)

This is the APL user profile. This is a special form of the DIR
containing the user'~ quotas and authorization, accounting
information, and session attributes. The PRO resides in main
storage as an extension of the PTH and PTK while the user is
sign~d on to the system. This control block is mapped by the
APLKPRO macro.

OFFSETS TYPE LENGTH NAME DESCRIPTION

o (0) STRUCTURE 116 PRO

o
o
2

4

4
7

8

12

16
18

19

(0) CHARACTER

(0) SIGNED
(2) SIGNED

(4) CHARACTER

(4) UNSIGNED
(7) CHARACTER

(8) SIGNED

(C) SIGNED

(10) SIGNED
(12) CHARACTER

1 • . . .
• 1 ..
• • 1 •
• •• 1

1 ...
· 1 ..
· .1.
· .. 1

(13) CHARACTER
11.. · .. \-
• .1. • •• I.

· .• 1 111. · ... · .. 1

4 PROHEADR

2 PROlENHW
2

14 PROKEY

3 PROLIBNO
1 PROCODE

4 PRODEFWS

4 PROSSMAX

2 PROSSOBMI
1 PROTYPE

PRO FREE
PRO FEB
PROUPROF

PROCICS
~ROPUB

PROPRIV
1 PROFLAG1

PROCWS

PROLOCK

PROFILE HEADER FOR CICS

PROFILE LENGTH
RESERVED

14 BYTE VSAM KEY

USER LIBRARY NUMBER
PROFILE ENTRY CODE-X'OO'

DEFAULT WS SIZE

SHARED STORAGE SIZE LIMIT IN BYTES

SHARED VARIABLE MAXIMUM
TYPE BYTE
FREE SPACE RECORD
FILE EXTENT RECORD
USER PROFILE BIT
RESERVED
CICS PROFILE FLAG
PUBLIC LIBRARY
RESERVED
PRIVATE LIBRARY
FLAG BYTE 1
RESERVED
CONTINUE WORKSPACE SAVED
RESERVED
USER IS LOCKED

---20 (14) CHARACTER

28 (IC) BITSTRING
31 HF) CHARACTER
31 (1F) CHARACTER

1 •..
· 1 ..

• .11
1 ...

· 1 .•
• ; 11

32 (20) CHARACTER

36 (24) CHARACTER

40 (28) SIGNED

44 (2C) SIGNED

8 PROPS('ID

3 PROAUTH
9
1 PROFLAG2

PROCOf'-ICY
PRODSES

PROHCDEF

PROPWCNG

4 PROXLATE

. 4 PRODEST

4 PROMAXWS

4 PRODEFIl

LOGON PASSWORD

USER AUTHORIZATION MASK
SESSION MODIFIABLE FIELDS
FLAG BYTE 2
CONTINUOUS COPY FLAG
DISPLAY APL SESSION ON USER
TERMINAL
RESERVED
HARDCOPY DESTINATION IS DEFINED
FOR THIS USER
LOGON PASSWORD CHANG~D
RESERVED

COPY OUTPUT TRANSLATE TABLE

CICS HARDCOPY DESTINATION

MAXIMUM WS SIZE THIS USER

AP121 DEFAULT FILE SIZE IN INCRS
4K-LENCCI TRAILER)

licensed Material--Property of IBM
Section 5. Data Areas 329

PRO (CICS, SERV) continued

OFFSETS TYPE LENGTH NAHE

48 (30) SIGNED 4 PRODASMX

52 (34) SIGNED 4 PRODASU

56 (38) SIGNED 4

60 (3C) SIGNED 4 PRONLATD

64 (40) SIGNED 4 PRONLATS

68 (44) SIGNED 4 PROCPUTD

72 (48) SIGNED 4 PROCPUTS

76 (4C) SIGNED 4 PROTCTD

80 (50) SIGNED 4 PROTCTS

84 (54) SIGNED 4 PROSCRLS

88 (58) CHARACTER 28 PRONAME

Licensed Material--Property o~ IBM
330 VS APL Program Logic

DESCRIPTION

DASD SPACE LIMIT (IN IHCR OF
4K-lENGTHCCI TRAILER»

DASD SPACE USED (AS ABOVE)

RESERVED

NO. OF LIBRARY ACCESSES TO DATE

NO. OF LIBRARY ACCESSES THIS
SESSION

CPU TIME TO DATE M SECS

CPU TIME THIS SESSION-MSECS

TERM CONNECT TIME TO DATE IN
SECONDS (AS IN TCTS)

TERM CONNECT TIME THIS SESS

SCROLL FILE SIZE IN LINES

INSTALLATION DEFINED NAME FIELD

CROSS REFERENCE

PRO
PROAUTH
PROCICS
PROCODE
PROCOHCY
PROCPUTD
PROCPUTS
PROCWS
PRODASMX
PRODASU
PRODEFIL
PRODEFWS
PRODEST
PRODSES
PRO FEB
PROFLAGI
PROFLAG2
PRO FREE
PROHCDEF
PROHEADR
PROKEY
PROLEHHW
PROLIBHO
PROLOCK
PROMAXWS
PROHAME
PROHLATD
PRONLATS
PROPRIV
PROPSWD
PROPUB
PROPWCNG
PROSCRLS
PROSSMAX
PROSSOBM
PROTCTD
PROTCTS
PROTYPE
PROUPROF
PROXLATE

o (0)
28 (lC)
18 X'08'

7 (7)
31 X'80'
68 (44)
72 (48)
19 X'20'
48 (30)
52 (34)
44 (2C)

8 (8)
36 (24)
31 X'40'
18 X'40'
19 (13)
31 (IF)
18 X'80'
31 X'08'
o (0)
4 (4)
o (0)
4 (4)

19 X'Ol'
40 (28)
88 (58)'
60 (3C)
64 (40)
18 X'01'
20 (14)
18 X'04'
31 X'04'
84 (54)
12 (C)
16 (10).
76 (4C)
80 (50)
18 (12)
18 X'20'
32 (20)

licansad Material--Property of IBM
Saction 5. Data Araas 331

PTH (ALL)

This is the PERTERM header. PTH provides information about the
active user with regard to the system environment. and completes J:
the communication path between interpreter and executor. This
con~rol block is mapped by the APLPTH macro.

OFFSETS

o
o
o

1
3

4

5

6

TYPE

(0) STRUCTURE

(0) CHARACTER

(0) CHARACTER
1 •..
.1 ..
• . 1 •
· .. 1 1 ...

· 1 •.
· .1.
· .. 1

(1) CHARACTER
(3) CHARACTER

1 ...
• 1 .. • .••
• • 1 • . •••
• .. 1 1111

(4) CHARACTER
1 ...
.111 11 ..
· • 1 •
· . .• . .. 1

(5) CHARACTER
1 ...
· 1 ..
· . 1 .
· •. 1

1 ...
• 1 ••
· .11

(6) SIGNED

72 PTH

4 PTHWORD1

1 PTHASYNC
PTHDATTN
PTHQEND
PTHCPULM

2

PTHNOOUT
PTHFOFF
PTHATTN

1 PTHSUSP1
PTHCWBIT
PTHWABIT
PTHSVBIT

1 PTHWSTAT
PTHSVON

PTHSINK
PTHSORS

1 PTHUSTAT
PTHLOCKB
PTHMDY
PTHMSBLK
PTHMICRO
PTHFSAVL
PTHUEXTN

2 PTHQVAR

DESCRIPTION

DOUBLE-ATTENTION SIGNALLED
QUANTUM-END REQUESTED
CPU LIMIT EXCEEDED.
UNUSED
'CANCEL OUTPUT' SIGNAL RECEIVED
LINE-DROP OR BOUNCE
SINGLE ATTENTION SIGNALLED
RESERVED
EXECUTOR SUSPENSION BITS
CLOCK WAIT BIT
YYWATE BIT
SHe VAR. WAIT BIT
UNUSED

THIS USER SIGNED ON TO SVP
RESERVED
THIS IS A COPY SINK
THIS IS A COPY SOURCE

WE KEEP HIS KBD LOCKED
DATE FORMAT FLAG
WE BLOCK HIS MESSAGES
APL MICROCODE WILL BE USED.
RESERVED FOR FULLSCREEN EDIT
PTH EXTENSION (PTX) EXISTS
RESERVED

-------------------~---8

8

10

12
14

(8) CHARACTER

(8) BITSTRING
1 . .• • •••

(A) BITSTRING

ec) CHARACTER
(E) SIGNED

16 (10) BITSTRING
18 (12) SIGNED

20 (14) SIGNED

24 (18) BITSTRING

4 PTHYYRC

2 PTHYYCOD
PTHSPCLY

2 PTHSRCOD

2
2 PTHWIDTH

2
2 PTHCURSR

4 PTHQSIZE

4 PTHPARM1

HI-ORDER BIT ON IF 'SPECIAL'
YYCODE

RESERVED

RESERVED

------------------------~--28 <1C) BITSTRING 4 PTHPARM2

32 (20) SIGNED : 4 PTHWSLEN

36 (24) SIGNED. 4 PTHACCNO

Licensed Material--Property of IBM
332 VS APt Program Logi c

J

PTH (ALL) continued

OFFSETS 'TYPE DESCRIPTION

===
IE A FLOATING POINT. NUMBER OF MICROSECONDS,
POSSIBLY FRACTIONAL. TIME-OF-DAY VALUES
ARE FROM THE BEGINNING OF THE APl EPOCH.
INTERVALS ARE SIMPLY MICROSECOND COUNTS.

40
48

(28) CHARACTER
(30) CHARACTER

56 (38) CHARACTER

64 (40) CHARACTER

72 (48) CHARACTER

CROSS REFERENCE

PTH
PTHACCNO
PTHASYNC
PTHATTN
PTHCNCTM
PTHCPUlM
PTHCPUTM
PTHCURSR
PTHCWBIT
PTHDATTN
PTHEND
PTHFOFF
PTHFSAVl
PTHKEYTM
PTHLOCAL
PTHlOCKB
PTHMDY
PTHMICRO
PTHMSBlK
PTHHOOUT
PTHPARMl
PTHPARM2
PTHQEND
PTHQSIZE
PTHQVAR .
PTHSINK
PTHSORS
PTHSPClY
PTHSRCOD
PTHSUSPl
PTHSVBIT
PTHSVON
PTHUEXTH
PTHUSTAT
PTHWABIT
PTHWIDTH
PTHWORDl
PTHWSlEN
PTHWSTAT
PTHYYCOD
PTHYYRC

o (0)
36 (24)
o (0)
o X'Ol'

64 (40) ,
o X'20'

48 (30)
18 (12)

3 X'80'
o X'80'

72 (48)
o X'02'
5 X'OS'

56 (3S)
40 (28)

5 X'80'
5 X'40'
5 X'lO'
5 X'20'
o X'04'

24 (1S)
2S (1C)
o X'40'

20 (14)
6 (6)
4X'02',
4 X'Ol'
8 X'SO'

10 (A)
3 (3)
3 X'20'
4 X'SO'
5 X'04'
5 (5)
3 X'40'

14 (E)
o (0)

32 (20)
4 (4)
S (S)
S (S)

8 PTHlOCAl
8 PTHCPUTM

8 PTHKEYTM

8 PTHCHCTM

o PTHEND END OF PERTERM HEADER.

licensed Material--Property of IBM
Section S. Data Areas 333

PTK (CICS, XIYI, AP)

This is the CICS/VS extension to the APL perterm header (the
PTH). It contains CICS/VS-unique information about the user ..) ...
session. The PTK ;s the primary anchor for all storage and
control blocks associated with the user session. In CICS/VS, the
PTH is pointed to by the WSM, the user task CICS/VS TWA (which
is an extension to the CICS/VS task control area), and the SGN
entries. This control block is mapped by the APLKPTK macro.

OFFSETS TYPE I LENGTH NAJ1E
I

DESCRIPTION

APLXXPTX - APL EXE·CUTOR COMMON PERTERM EXTENTION
THE PERTERM PROVIDES PRIMARY CONTROL OF THE USER SESSION.
IT CONTAINS A SYSTEM INDEPENDENT HEADER, FOLLOWED THIS
COMMON EXECUTOR CONTROL BLOCK, THEN FOLLOWED BY THE
SUBSYSTEM DEPENDENt CONTROL BLOCKS.
THIS IS A PLS EXPAN~ION OF THE EXECUTOR COMMON PER TERM
EXTENTION (PTX). THE FOLLOWING ARE THE FIELDS:

72 (48) STRUCTURE 108 PTX ADDR OF ACTIVE WORKSPACE

72 (48) A-ADDRESS 4 PTXWSM ADDR OF VECTOR TABLE

76 (4C) A-ADDRESS 4 PTXVCT ADDR OF SP STACK

80 (50) A-ADDRESS 4 PTXSTACK ADDR OF SESSION TABLE

84 (54) A-ADDRESS 4 PTXSMTBP ADDR OF GDDX CONTROL TABLE
---88 (58) A-ADDRESS

92 (5C) A-ADDRESS

96

100

104

108

108

109

110

111

112

116

120

(60) A-ADDRESS

(64) A-ADDRESS

(68) A-ADDRESS

(6C) BITSTRING

(6C) BITSTRING
1 ••.
• 1 •• • ••.
· . 1.
• •• 1 ••.•

(6D) BITSTRING
1 •.•
.1 ..
• .1.
• •• 1 · ...

1 •••
.1 ..
· .1.
• •• 1 (6E) BITSTRING

1. .. • ••.
• 1 .• • •••
· . 11
· . •• 1 .••

(6F) BITSTRING

(70) A-ADDRESS

(74) SIGNED

(78) SIGNED

4 PTXGXTBP

4 PTXGXGDM

4 PTXPRTBP

4 PTXFSTBP

4 PTXATTN

4 PTXFLAG

1 PTXSUBSY
PTXTSO
PTXCMS
PTXCICS
PTXVSPC

1 PTXDEBUG
DBGMICRO
DBGNSTAE

DBGECHO
DBGMSG

1 PTXFLAGS
PTXAIPUR
PTXFSRST

PTXADSM
1

4 PTXDXTBP

4 PTXlEVEL

4 PTXCODE

Licensed Mater i al-Property of IBM
334 VS APl Program logi c

ADDR OF CURRENT GDM

ADDR OF PRINT SERVICES TABLE

ADDR OF FILE SERVICES TABLE

ADDR OF ACTIVE ATTENTIO ROUTINE

SUBSYSTEM IDENTIFYER

THIS IS A TSO USER X'80'
THIS IS A CMS USER X'40'
THIS IS A CICS USER X'20'
THIS IS A VSPC USER X'10'
DEBUG OPTIONS
DEBUG NO MICROCODE TEST X'80'
DEBUG CANCEL ESTAE EXITS X'40'
DEBUG RESERVED X'20'
DEBUG RESERVED X'10'
DEBUG RESERVED x'oa'
DEBUG RESERVED X'04'
DEBUG ECHO STACK (CMD PARM)X'02'

GENERAL USE FLAGS
PURGE ALTERNAT INPUT STACK x'ao'

ADSM OWNS THE SESSION X'08'
RESERVED
DUMP SERVICES TABLE POINTER

VS APL RELEASE lEVEL

GDDM TERMINAL TYPE CODE KIC0381

J

PTK (CICS, XSVS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

124 (7C) CHARACTER 28 PTXSCRTH ADSM PASSWORD RETURN AREA

124 (7C) CHARACTER 8 PTXSMPSD INDICATE ON WORD BOUNDARY

124 (7C) SIGNED 4 PTXSMPI ADSM PARM2 FIELD

128 (80) SIGNED 4 PTXSMP2 ADDITIONAL ADSM PARM FIELDS

132 (84) CHARACTER 20 INDICATE ON WORD BOUNDARY

132 (84) SIGNED 4 PTXSMP3 ADSM PARM4 FIELD

136 (88) SIGNED 4 PTXSMP4 ADSM PARM5 FIELD

140 (8C) SIGNED 4 PTXSMP5 ADSM PARM6 FIELD

144 (90) SIGNED 4 PTXSMP6 ADSM PARM7 FIELD

148 (94) SIGNED 4 PTXSMP7 SF,OUT-ATTR,IN-ATTR,FLAGS HILITE

152 (98) SIGNED . 4 PTXHIlIT

152 (98) CHARACTER 1 PTXHISF OUTPUT ATTRIBUTE BYTE HILITE
153 (99) CHARACTER 1 PTXHIAOT INPUT ATTRIBUTE BYTE HILITE
154 (9A) CHARACTER 1 PTXHIIOT FLAGS FOR SESSION MANAGER HILITE
155 (98) BITSTRING 1 PTXHIFlG

1 PTXHIOHI INPUT HILITE REQUESTED HILITE
. 1 PTXHIIHI ADDRESS OF MSQ QUEUING RTN)MORE

156 (9C) A-ADDRESS 4 PTXHELPQ

160 (AD) A-ADDRESS 4 PTXUSRWA RESERVED

164 (A4) SIGNED 4 PTXRSV01 RESERVED

168 (AS) SIGNED 4 PTXRSV02 RESERVED

172 (AC) SIGNED 4 PTXRSV03 RESERVED

176 (BO) SIGNED 4 PTXRSV04 END OF PTX
---176 (BO) STRUCTUR~ 416 PTK IMMEDIATELY FOLLOWS PTX

176 (BO) CHARACTER 40

176 (BO) A-ADDRESS 4 PTKSGN

180 (B4) A-ADDRESS 4 PTKGBL

ISO (B4) CHARACTER o PTXEND

184 (B8) A-ADDRESS 4 PTKWSM

la8 (BC) A-ADDRESS 4 PTKRSVOI

192 (CO) CHARACTER 12 PTKRSAVE

192 (CO) A-ADDRESS 4 PTKSTKP

196 (C4) A-ADDRESS 4 PTKTCA

200 (ca) A-ADDRESS 4 PTKCSA

204 (CC) CHARACTER 12 PTKIECBL

204 (CC) A-ADDRESS 4 PTKECBl

COMMON FIELDS

ADDR OF SIGNON TABLE ENTRY

ADDR OF GLOBAL TABLE

ADDR OF WORKSPACE

RESERVED

SAVE REGS ACROSS INTERP

STACK POINTER

TCA POINTER

CSA POINTER

ECB LIST FOR INTERP PROCESS

PTR TO DOUBLE ATTN ECB

Licensed Material--Property of IBM
Section 5. Data Areas 335

PTK (CICS, XSYS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

208 (DO) A-ADDRESS 4 PTKECB2 PTR TO REQUESTOR ECB
--~----------212 (D4) SIGNED· 4 PTKECBZ ALL FFFF END OF LIST

216 (D8) CHARACTER 56 HISTOGRAM CLOCKS (ALL STCK)

216 (D8) CHARACTER 8 PTKTUNLK LAST KEYBOARD UNLOCK
---224 (EO) CHARACTER 8 PTKTDPND LAST DEPEND PROCESS DSPCH·

232 (E8) CHARACTER 8 PTKTLOAD LAST)lOAD START

240 (FO) CHARACTER 8 PTKTSAVE LAST)SAVE START

248 (F8) CHARACTER 8 PTKTCOPY LAST)COPY START

256 (100) CHARACTER 8 PTKISTIM TIMESLICE INTERRUPT TIME

256 (100) CHARACTER 8 PTKTENTR ALSO INPUT COMPLETE TIME

264 (108) CHARACTER 8 PTKTSON SIGN ON TIME

272 (110) CHARACTER 104 PTKXISAV TRANSPARENT INTERRUPT SAVE AREA

272 (110) CHARACTER 8 PTKXPSW PRCORA~ Si~TUS WORD

272 (110) CHARACTER 4 PTKXWRD1 PSW 1ST WORD

276 (114) CHARACTER 4 PTKXWRD2
---276, (114) BITSTRING

277 (lIS) A-ADDRESS
1 PTKXFLGS
3 PTKXADDR

ILC,CC,PROGRAM MASK
INSTRUCTION ADDR

--~--~---280 (118) CHARACTER 64 PTKXREGS GENERAL REGISTERS
----------------_ .. _--280 (118) UNSIGNED 4 PTKXRO
---284 (11C) UNSIGNED 60 PTKXREG
---284 (11C) BITSTRING

285 (lID) A-ADDRESS

344 'lS8) BITSTRING

35'2 (160) BITSTRING

360 (168) BITSTRING

368 (170) BITSTRING

1
3 PTKXREGP

8 PTKXFPRO FLOATING POINT REGS

8 PTKXFPR2

8 PTKXFPR4

8 PTKXFPR6

376 (178) CHARACTER 16 INTERP INTERFACE FIELDS
---376 (178) BITSTRING

377 (179) BITSTRING
378 (17A) CHARACTER

1 ...
· 1 ..
· . 1 .
· .. 1

1 ...
· 1 ..
· . 1 .
· .. 1

1 PTKPCOP

1 PTKPMASK
, 1 PTKMFLG

PTKMXUSE
PTKIWAIT
PTKMINEX
PTKINTRP
PTKMNDMP
PTKMEXA
PTKTIMEO
PTKMTPOP

Licensed Material-Property of IBM
336 VS APL Program Logi c

OP CODE SAVED BY TIMER

SAVED CICS/INTERP PROGRAM MASK
MISCELLANEOUS FLAGS
PTKXISAV IN USE (TIMER/PGFLT)
IFIX HAS ISSUED APLKWAIT
APL TIMER EXIT SET
IN INTERPRETER CODE
NOP YYDUMP <rOOK EXEC DUMP)
ABEND EXIT IN CONTROL
TIMER EXIT IN CONTROL
TIMER POP OUTSIDE INTERPRETER

J

L

PTK (CICS, XSVS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION
. ,

---379 (17B) CHARACTER
1 •.•
· 1 .• • ••.
· . 1.
· .• 1

380 (17C) UNSIGNED
381 (17D) CHARACT~R
382 (17E) SIGNED

384 (180) SIGNED

388 (184) SIGNED

392 (188) CHARACTER

392 (188) SIGNED
394 (18A) CHARACT~R
422 (lA6) CHARACTER

1 . .• • ...
· 1 .. . •..

423 (lA7) CHARACTER

424 (lA8) CHARACTER

1 PTKDFlG
PTKDMAC
PTKDWAIT
PTKDELAY
PTKDL\lTED

1 PTKOPRIO
1 PTKRSV31
2 PTKXDCNT

4 PTKITCNT

4 PTKIPROC

32

2 PTKTABN
28 PTKTABS

1 PTKSYNC
PTKSYDST
PTKSY125

1 PTKRSV41

24

DISPATCHER FLAG BYTE
DISPATCHER MACRO WAS ISS~ED
DISPATCHER IN A CICS WAIT
INITIATING A TASK FOR QUAD-DELAY
WAIT DONE SINCE DISPATCH

OLD PRIORITY (BEFORE CHAP)
RESERVED .
EXEC DUMP COUNTER, RESET AT TYI

HOG TIME SLICE CNTR

INTERP TIME PER INPUT

MISCELLANEOUS SERVICES

NUMBER OF TABS
SESSION TABS
SYNCPOINT FLAGS ALL TURNED

I TURNED OFF BY DESTINATION MGR
TURNED OFF BY AP125 CDL/I)
RESERVED

SCREEN FORMAT FIELDS . . ---424 (lA8) SIGNED i
426 (lAA) SIGNED

428 (lAC) SIGNED
430 (lAE) SIGNED
432 (lBO) CHARACTER

1 •••
· 1 ..
· • 1 .
· .. 1

1 ...
• 1 .; •
.• 1 •

433 (lB1) UNSIGNED
434 (lB2) SIGNED

2 PTKCURSR
2 PTKCURSC

2 PTKSESST
2 PTKSESSC
1 PTKFFLGI

PTKFMSG
PTKFINPT
PTKFPROF
PTKFDEST
PTKFXLAT
PTKNOGDM
PTKUZGDM

1 PTKFMODE
2 PTKFPRIM

CURSOR ROW ON SCREEN
CURSOR COLUMN ON SCREEN

SESSION LINE AT SCREEN TOP
SESSION RELATIVE CURS LINE
SCREEN FORMAT FLAG BYTE
RECAll LINE NOT DISPLAYED
INPUT PROVIDED BY SIGNON
SCREEN REFORMATTED FOR PROFILE
ON IF PRODEST WAS CHANGED
ON IF PROXLATE WAS CHANGED
ON IF NO GDDM OPTION
ON IF YES GDDM OPTION
CURRENT SCREEN MODE
LEN OF DATA IN QPRIME BUFFER

---436 (lB4) A-ADDRESS 4 PTKPRIME TO QPRIME (TERMINAL I/O) BUFFER
-------------------~---440 (lB8) A-ADDRE~S 4 PTKFECB TO AP139 ECB

444 (lBC) A-ADDRESS 4 PTKFFABS PTR TO FILE ACCESS BLOCKS

448 (ICO) CHARACTER 8 COMMON ECBS

448 (lCO) BITSTRING 4 PTKT2ECB ECB FOR DOUBLE ATTN
---448 (ICO) CHARACTER 3

451 (IC3) UNSIGNE~ I PTKT2RET POST CODE FOR SIGNON
---452 (IC4) BITSTRING 4 PTKALECB DISPATCHER ECB FOR CICS
---452 (lC4) BITSTRING

1 • .. • •..
• 1 •• • •..•

454 (IC6) BITSTRING
1 . •. .• 'to •

2

PTKALECO
2 PTKALEC2

PTKALECD

OS/VS ONLY PORTION
OS/VS WAIT BIT
OS/VS POST BIT
DOS/VS ECB STARTS HERE
DOS/VS POST BIT

---456 (lC8) CHARACTER 48 TERMINAL MANAGER FIELDS

l;censed Mater;a1--Property of IBM
Section S. Data Areas 337

PTK (CICS, XSYS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

---. .
456 (lC8) A-ADDRESS

460 (ICC) SIGNED
462 (ICE) SIGNED

it PTKRSV51

2 PTKTlEN
2 PTKTWID

RESERVED

LINES ON SCREEN
CHARACTERS PER LINE

---464

465

466

(lDO) CHARACTER
1 , ...
.. 1
.... 1
...... 1
.. 1

<101> CHARACTER
1 .••
.. 1
.. .. 1 ..
...... 1

1
• 1 .•
.... 1 ..

<1D2) SIGNED

468 (104) A-ADDRESS

472 (lD8) A-ADDRESS

476 (lDC) A-ADDRESS

480 (lEO) A-ADDRESS

1 PTKTTYPE
PTKT327E
PTKTAPTX
PTKTTXKB
PTKTAPKB
PTKTTXPR

1 PTKSTAT
PTKPACT
PTKTABND
PTKTRIP
PTKDOWT
PTKTINWT
PTKPINWT
PTKAINWT

2 PTKRSV61

4 PTKBUFST

4 PTKBUFAL

4 PTKTSFST

4 PTKTSFAL

TERMINAL TYPE AND FEATURES
NDS TYPE TERMINAL
APL/TEXT FEATURE (DAF)
TEXT KEYBOARD
APL KEYBOARD
TEXT PRINTER
STATUS flAGS
TMGR ACTIVE (PRIM SCR)
TCTL HAS ABENDED
REQUEST IN PROGRESS
TERM TASK WAIT NEEDED
TERM TASK IN WAIT .
PRIM SCR PROCESS IN WAIT
ALT SCREEN PROCESS IN WAIT
RESERVED

BUFFER FOR STD LOG SCREEN

BUFFER FOR ALT LOG SCREEN

SCREEN FORMAT STANDARD

SCREEN FORMAT ALTERNATE

484 (lE4) A-ADDRESS 4 PTKSSPST STATUS FOR STD LOG DISPLY
---488 (lE8) A-ADDRESS 4 PTKSSPAL STATUS FOR ALT LOG DISPLY

492 (IEC) A-ADDRESS

496 (lFO) A-ADDRESS.

500 (lF4) BITSTRIHG

504 (lF8) CHARACTER

504 (lF8) A-ADDRESS

508 (lFC) A-ADDRESS

512 (200) CHARACTER

512 (200) A-ADDRESS

516 (204) A-ADDRESS

520 (208) CHARACTER

528 (210) CHARACTER

528 (210) CHARACTER
1
.. 1
... 1.
.. 1

........

....... ' ..
1 •..
.1 ..

529 (211) CHARACTER
530 (212). UNSIGNED
533 (215) CHARACTER

4 PTKTOWN

it PTKRSV62

4 PTKTWECB

8

4 PTKSECBS

it PTKRSV71

16

4 PTKDIB

4 PTKCCDIB

8 PTKSLCTM

.64

1 PTKCSFlG
PTKCSSRZ
PTKCSSKZ
PTKCSFEF
PTKCSSYS
PTKCSPAS
PTKCSDIR

1 PTKRSV91
3 PTKLIBHO

11 PTKLNAME

L;censed Mater;al--Property of IBM
338 VS APL Program Log; c

I

CURRENT SCREEN STATUS PTR

RESERVED

ECB FOR TERM TRANS WAIT

SHARED VARIABLE INTERFACE FLDS

SET OF SSM ECBS FOR INTERPRETER

RESERVED

DESTINATION MANAGER FIELDS

HEAD OF DEST INTRFC BLOCK QUEUE

ADDR OF DIB FOR CaNTIN COPY

STORE CLOCK LIMIT

LIBRARY MANAGER FIELDS

LIBRARY SERVICES FLAGS
COPZ INVOKED FOR SOURCE
COPZ INVOKED FOR SINK
COP! FIRST ENTRY
SYSTEM ERROR DURING COpy
ACTIVE WS HAS PASSWORD
AP123 IS USING APLDIR FILE
RESERVED
CURRENT LIB NR (BINARY)
CURRENT WS NAME

PTK (CrCS, XSYS, AP) continued

OFFSETS TYPE LENGTH NAHE

544 (220) CHARACTER 8 PTKLPASS

552 (228) SIGNED 4 PTKHEWSZ

556 (22C) SIGNED 4 PTKCSRLH

560 (230) A-ADDRESS 4 PTKCSWSM

564 (234) A-ADDRESS 4 PTKCSIHK

568 (238) SIGNED 4 PTKTRMID

572 C23C) A-ADDRESS 4 PTKGKTBP

576 (240) SIGNED 4 PTKGOECB

580 (244) SIGHED 4 PTKSOECB

584 (248) A-ADDRESS 4 PTKUEIBP

588 (24C) A-ADDRESS 4 PTKRSV92

592 (250) CHARACTER o PTKPRO

592 (250) STRUCTURE 116 PRO

592 (250) CHARACTER

592 (250) SIGHED
594 (252) SIGNED

596 (254) CHARACTER

596 (254) UNSIGNED
599 (257) CHARACTER

600 (258) SIGNED

604 (25C) SIGNED

608 (260) SIGNED
610 (262) CHARACTER

1 •..
· 1 ..
· .1. · ...
• •• 1

1 •..
.1 ..
· .1.
· .• 1

611 (263) CHARACTER
11.. .
· . 1. . ••.
••• 1 111.
· • 1

612 (264) CHARACTER

4 PROHEADR

2 PROLENHW
2

14 PROKEY

3 PROLIBNO
1 PROCODE

4 PRODEFWS

4 PROSSMAX

2 PROSSOBM
1 PRO TYPE

PRO FREE
PRO FEB
PROUPROF

PROCICS
PROPUB

PROPRIV

1 PROFLAGI

PROCW$

PROLOCK

8 PROPSWD

DESCRIPTION

CURRENT PASSWORD

SIZE OF NEW WS (LOAD)

LEN OF COPY WS

ADDR OF COPY WS

ADDR OF SINK WS DURING COpy

TERMINAL ID

ADDR OF GDDX CNTROl BLK

SIGNOFF ECB FOR GDDX

SIGNOFF ECB FOR ADSM

ADDR OF USER TASK EIB

RESERVED

PROFILE RECORD

PROFILE HEADER FOR CICS

PROFILE LENGTH

RESERVED
14 BYTE VSAM KEY

USER LIBRARY NUMBER

ALSO USER SIGN ON NUMBER
DEFAULT WS SIZE

SHARED STORAGE SIZE LIMIT IN BYTES

TYPE BYTE
FREE SPACE RECORD
FILE EXTENT RECORD
USER PROFILE BIT
RESERVED
CICS PROFILE FLAG
PUBLIC LIBRARY
RESERVED
PRIVATE LIBRARY
FLAG BYTE 1

RESERVED
CONTINUE WORKSPACE SAVED
RESERVED
USER IS LOCKED
LOGON PASSl>IORD

USER AUTHORIZATION MASK

L;censed Mater;al---Proparty of IBM
Sect;on 5. Data Areas 339

PTK (CICS, XSYS, AP) continued

OFFSETS TYPE LENGTH NAHE DESCRIPTION

620 (26C) BITSTRING
623 (26F) CHARACTER
623 (26F) CHARACTER

1 ... -: ...
. 1 ••
.. 11

1 ...
. 1 ..
.. 11

624 (270) CHARACTER

628 (274) CHARACTER

632 (278) SIGNED

636 (27C) SIGNED

640 (280) SIGNED

644 (284) SIGNED

648 (2S8) SIGNED

652 (28C) SIGNED

656 (290) SIGNED

660 (294) SIGNED

664 (298) SIGNED

668 (29C) SIGNED

672 (2AO) SIGNED

676 (2A4) SIGNED
680 (2AS) CHARACTER

CROSS REFERENCE

DBGECHO 109 X'02'
DBGMICRO 109 X'SO'
DBGMSG 109 X'OI'
DBGNSTAE 109 X'.40'
PRO 592(250)
PROAUTH 620(26C)
PROCICS 610 X'08'
PRO CODE 599 (257)
PROCONCY 623 X'80'
PROCPUTD 660(294)
PROCPUTS 664(298)
PROCWS 611 X'20'
PRODASMX 640(280)
PRODASU 644(284)
PRODEFIL 636(27C)
PRODEFWS 600(25S)
PRODEST 628(274)
PRODSES 623 X'40'
PRO FEB 610 X'40'
PROFLAGI 611(263)

3 PROAUTH
9
1 PROFLAG2

PROCONCY

PRODSES

PROHCDEF
PROPWCNG

4 PROXLATE

4 PRODEST

4 PROMAXWS

4 PRODEFIl

4 PRODASMX

4 PRODASU

4

4 PRONLATD

4 PRONLATS

4 PROCPUTD

4 PROCPUTS

4 PROTCTD

4 PROTCTS

4 PROSCRLS
28 PRONAI'1E

PROFLAG2 623(26F)
PROFREE 610 X'80'

SESSION MODIFIABLE FIELDS
flAG BYTE 2
CONTINUOUS COPY FLAG
DISPLAY APL SESSION ON USER
TERMINAL

HARDCOPY DESTINATION IS DEFINED
FOR THIS USER

RESERVED
COPY OUTPUT TRANSLATE TABLE

CICS HARDCOPY DESTINATION

MAXIMUM WS SIZE THIS USER

AP121 DEFAULT FILE SIZE IN INCRS
4K-LEN(CI TRAILER)

RESERVED

NO. OF LIBRARY ACCESSES TO DAT~

CPU TIME THIS SESSION-MSECS

TERM CONNECT TIME TO DATE IN
SECONDS (AS IN TCTS)

SCROLL FILE SIZE IN LINES

INSTALLATION DEFINED NAME FIELD

PROTCTS 672(2AO)
PROTYPE 610(262)

PROHCDEF 623 X'08' PROUPROF 610 X'20'
PROHEADR 592(250) PROXLATE 624(270)
PROKEY 596(254) PTH 0 (0)
PROLENHW 592(250) PTHACCNO 36 (24)
PROLIBNO 596(254) PTHASYNC 0 (0)
PROLOCK 611 X'OI' PTHATTN o X'OI'
PROMAXWS 632(278) PTHCNCTM 64 (40)
PRONAME 680(2A8) PTHCPULM o X'20'
PRONLATD 652(28C) PTHCPUTM 48 (30)
PRONLATS 656(290) PTHCURSR 18 (12)
PROPRIV 610 X'OI' PTHCWBIT 3 X'80'
PROPSWD 612(264) PTHDATTN o X'80'
PROPUB 610 X'04' PTHEND 72 (48)
PROPWCNG 623 X'04' PTHFOFF o X'02'
PROSCRLS 676(2A4) PTHFSAVL 5 X'08'
PROSSMAX 604(25C) PTHKEYTM 56 (38)
PROSSOBM 608(260) PTHLOCAL 40 (28)
PROTCTD 668(29C) PTHLOCKB 5 X'80'

Licensed Material---Property of IBM
340 VS APL Program Logic

J

CROSS REFERENCE

PTHMDY 5 X'40'
PTHMICRO 5 X' 10'
PTHMSBLK 5 X'20'
PTHNOOUT 0 X' 04,'
PTHPARMl 24 Cl8),
PTHPARM2 28 ClC)
PTHQEND 0 X'40'
PTHQSIZE 20 Cl4)
PTHQVAR 6 (6)
PTHSINK 4 X'02'
PTHSORS 4 X'Ol'
PTHSPClY S X'80'
PTHSRCOD 10 (A)
PTHSUSPl 3 (3)
PTHSVBIT 3 X'20'
PTHSVON 4 X'SO'
PTHUEXTH 5 X'04'
PTHUSTAT 5 (5)·
PTHWABIT 3 X'40'
PTHWIDTH 14 (E)
PTHWORDl 0 (0)
PTHWSlEN 32 (20)

~
PTHWSTAT 4 (4)
PTHYYCOD 8 (8)
PTHYYRC S (8)
PTKAIHWT 465 X'02'
PTKAlECB 452ClC4)
PTKAlECD 454 X'80·'
PTKALECO 452 X'40'
PTKAlEC2 454ClC6)
PTKBUFAl 472ClD8)
PTKBUFST 46S(lD4)
PTKCCDIB 516(204)
PTKCSDIR 528 X'04'
PTKCSFEF 528 X'20'

\.
PTKCSFLG 52S(210)
PTKCSIHK 564(234)
PTKCSPAS 528 X'08'
PTKCSRlH 556(22C)
PTKCSSKZ 528 X'40'
PTKCSSRZ 528 X'80~
PTKCSSYS 528 X'10'
PTKCSWSM 560(230)
PTKCURSC 426(lAA)
PTKCURSR 424ClA8)
PTKDIB 512(200)
PTKDOWT 465 X'10r
PTKFDEST 432 X'10'

~
PTKFECB 440ClBS)
PTKFFABS 444ClBC)
PTKFFLGl 432ClBO)
PTKFIHPT 432 X'40'

PTKFMODE 433ClB1>
PTKFMSG 432 X'80'
PTKFPRIM 434(lB2)
PTKFPROF 432 X'20'
PTKFXlAT 432 X'08'
PTKGKTBP 572(23C)
PTKGOECB 576(240)
PTKLIBNO 530(212)
PTKLNAME 533(215)
PTKlPASS 544(220)
PTKNEWSZ 552(228)
PTKHOGDM 432 X'04'
PTKPACT 465 X'SO'
PTKPINWT 465 X'04'
PTKPRIME 436ClB4)
PTKPRO 592(250)
PTKRSV41 423(lA7>
PTKRSV51 456ClC8)
PTKRSV61 466ClD2)
PTKRSV62 496ClFO)
PTKRSV71 508ClFC)
PTKRSV81 524(20C)
PTKRSV91 529(211)
PTKRSV92 588(24C)
PTKSECBS 504ClFS)
PTKSESSC 430(lAE)
PTKSESST 428(lAC)
PTKSOECB 580(244)
PTKSSPAl 488(lE8)
PTKSSPST 4S4ClE4)
PTKSTAT 465ClD1>
PTKSYDST 422 X'80'
PTKSYNC 422(1A6)
PTKSY125 422 X'40'
PTKTABN 392Cl88)
PTKTABHD 465 X'40'
PTKTABS 394Cl8A)
PTKTAPKB 464 X'lO'
PTKTAPTX 464 X'40'
PTKTIHWT 465 X'08'
PTKTlEH 460ClCC)
PTKTOWN 492(lEC)
PTKTRIP 465 X'20'
PTKTRMID 56S(23S)
PTKTSFAl 480ClEO)
PTKTSFST 476ClDC)
PTKTTXKB 464 X'20'
PTKTTXPR 464 X'OS'
PTKTTYPE 464ClDO)
PTKTWECB 500ClF4)
PTKTWID 462(lCE)
PTKT2ECB 44SClCO)

PTKT2RET 451 ClC3)
PTKT327E 464 X'80'
PTKUEIBP 584(248)
PTKUZGDM 432 X'02'
PTKXlTAB 520(20S)
PTX 72 (4S)
PTXADSM 110 X'08'
PTXAIPUR 110 X'80'
PTXATTN 104 (68)
PTXCICS 108 X'20'
PTXCMS lOS X'40'
PTXCODE 120 (8)
PTXDEBUG 109 (6D)
PTXDXTBP 112 (70)
PTXEND 180 (B4)
PTXFlAG 108 (6C)
PTXFlAGS 110 (6E)
PTXFSRST 110 X'40'
PTXFSTBP 100 (64)
PTXGXGDM 92 (5C)
PTXGXTBP 8S (58)
PTXHElPQ 156 (9C)
PTXHIAOT 153 (99)
PTXHIFLG 155 (9B)
PTXHIIHI 155 X'40'
PTXHIIOT 154 (9A)
PTXHIlIT 152 (98)
PTXHIOHI 155 X'SO'
PTXHISF 152 (98)
PTXLEVEL 116 (4)
PTXPRTBP 96 (60)
PTXRSVOl 164 (A4)
PTXRSV02 168 (AS)
PTXRSV03 172 (AC)
PTXRSV04 176 (BO)
PTXSCRTH 124 OC)
PTXSMPSD 124 OC)
PTXSMPl 124 OC)
PTXSr-tP2 128 (80)
PTXSMP3 132 (84)
PTXSMP4 136 (S8)
PTXSMPS 140 (SC)
PTXSMP6 144 (90)
PTXSMP7 148 (94)
PTXSMTBP 84 (54)
PTXSTACK 80 (50)
PTXSUBSY lOS (6C)
PTXTSO 108 X'80'
PTXUSRWA 160 (AD)
PTXVCT 76 (4C)
PTXVSPC 108 X'10'
PTXWSM 72 (48)

licensed Material--Property of IBM
Section 5. Data Areas 341

PTX (ALL)

This is the executor common services extension of the PTH. and \
contains session information associated with a single user. (The ~
format of this layout is the one used in publications titled
"Data Areas and Symbolic Names Cross-Reference Table", usually
distributed on microfiche.) This control block is mapped by the
APlXXPTX macro.

OFFSETS TYPE LENGTH NAME DESCRIPTION

o (0) STRUCTURE lOS PTX IMMEDIATELY FOllOWS PTH

o (0) A-ADDRESS ~ PTXWSM ADDR OF ACTIVE WORKSPACE

4 (4) A-ADDRESS 4 PTXVCT ADDR OF VECTOR TABLE

S (S) A-ADDRESS 4 PTXSTACK ADDR OF SP STACK

12 (C) A-ADDRESS ~ PTXSMTBP ADDR OF SESSION TABLE

16 (10) A-ADDRESS ~ PTXGXTBP ADDR OF GDDX CONTROL TABLE

20 (14) A-ADDRESS 4 PTXGXGDM ADDR OF CURRENT GDM

24 (IS) A-ADDRESS 4 PTXPRT8P ADDR OF PRINT SERVICES TABLE
-----------~-------.---2S

32

36

36

37

3S

39

(IC) A-ADDRESS

(20) A-ADDRESS

(24) 8ITSTRING

(24) BITSTRING
1. • ~
· 1 .. • .•.
· . 1.
· .• 1 ••..

(25) BITSTRING
1 ...
· 1 ..
· . 1 .
· .. 1

1 .••
· 1 ••
· . 1 •
· .• 1

(26) BITSTRING
1 .•.
· 1••
· .11 ..•.
· . •. 1 •..

(27) BITSTRING

4 PTXFSTBP

4 PTXATTN

4 PTXFlAG

1 PTXSUBSY
PTXTSO
PTXCMS
PTXCICS
PTXVSPC

1 PTXDEBUG
DBGMICRO
DBGNSTAE

DBGECHO
DBGMSG

1 PTXFlAGS
PTXAIPUR
PTXFSRST

PTXADSM
1

li censed Material-Property of IBM
342 VS· APl Program logi c

ADDR OF FILE SERVICES TABLE

ADDR OF ACTIVE ATTENTIO ROUTINE

PTX flAG WORD

SUBSYSTEM IDENTIFYER
THIS IS A TSO USER X'SO'
THIS IS A CMS USER X'40'
THIS IS A CICS USER X'20'
THIS IS A VSPC USER X'10'
DEBUG OPTIONS
DEBUG NO MICROCODE TEST X'SO'
DEBUG CANCEL ESTAE EXITS X'40'
DEBUG RESERVED X'20'
DEBUG RESERVED X'10'
DEBUG RESERVED X'OS'
DEBUG RESERVED X'04'
DEBUG ECHO STACK (CMD PARM)X'02'
DEBUG ERROR MESSAGES X'Ol'
GENERAL USE FLAGS
PURGE AlTERNAT INPUT STACK X'80'
FUllSCREEN RESTORE REQUIREDX'40'
RESERVED X'30'
ADSM OWNS THE SESSION X'OS'
RESERVED

J

L

PYX (ALL) continued

OFFSETS TYPE

40 (28) A-ADDRESS

44 (2C) SIGNED

48 (30) SIGNED

52 (34) CHARACTER

52 (34) CHARACTER

52 (34) SIGNED

56 (38) SIGNED

60 (3C) CHARACTER

60 (3C) SIGNED

64 (40) SIGNED

68 (44) SIGNED

72 (48) SIGt4ED

76 (4C) SIGNED

80 (50) SIGNED

80 (50) CHARACTER
81 (51) CHARACTER
82 (52) CHARACTER
83 (53) BITSTRING

1 •
.. 1 .. •

84 (54) A-ADDRESS

88 (58) A-ADDRESS

92

96

100
104

108

(5C) SIGNED

(60) SIGHED

(64) SIGNED
(68) SIGNED

(6C) CHARACTER

LENGTH NAttE

4 PTXDXTBP

4 PTXLEVEL

4 PTXCODE

28 PTXSCRTH

8 PTXSMPSD

4 PTXSMPI

4 PTXSMP2

20

4 PTXSMP3

4 PTXSMP4

4 PTXSMP5

4 PTXSMP6

4 PTXSMP7

4 PTXHILIT

1 PTXHISF
1 PTXHIAOT
1 PTXHIIOT
1 PTXHIFlG

PTXHIOHI
PTXHIIHI

4 PTXHELPQ

4 PTXUSRWA

4 PTXRSVOI

4 PTXRSV02

4 PTXRSV03
4 PTXRSV04

o PTXEND

DESCRIPTION

DUMP SERVICES TABLE POINTER

VS APL RELEASE LEVEL

GDDM TERMINAL TYPE CODE KIC0381

7 WORD SCRATCH PAD AREA

ADSM PASSWORD RETURN AREA

ADSM PARMI FIELD

ADSM PARM2 FIELD

ADDITIONAL ADSM PARM FIELDS

ADSM PARM3 FIELD

ADSM PARM4 FIELD

ADSM PARM5 FIELD

ADSM PARM6 FIELD

ADSM PARM7 FIELD

SF,OUT-ATTR,IN-ATTR,FLAGS HILITE

START FIELD 3270 ORDER HILITE
OUTPUT ATTRIBUTE BYTE HI LITE
INPUT ATTRIBUTE BYTE HI LITE
FLAGS FOR SESSION MANAGER HI LITE
OUTPUT HILITE REQUESTED HILITE
INPUT HILITE REQUESTED HI LITE

ADDRESS OF MSQ QUEUING RTM)MORE

USER GETMAIN AREA ADDR EXIT

RESERVED

RESERVED

RESERVED
RESERVED

END OF PTX

Licensed Material--Property of IBM
Section 5. Data Areas 343

CROSS REFERENCE

DBGECHO 37 X'02'
DBGMICRO 37 X'80'
DBGMSG 37 X'Ol'
DBGNSTAE 37 X'40'
PTX 0 (0)
PTX 72 (48)
PTXADSM 38 X'08'
PTXADSM 110 X'08'
PTXAIPUR 38 X'80'
PTXAIPUR 110 X'80'
PTXATTN 32 (20)
PTXCICS 36 X'20'
PTXCMS 36 X'40'
PTXCODE 48 (30) i
PTXDEBUG 37 (25)
PTXDXTBP 40 (28)
PTXEHD 108 (6C)
PTXFLAG 36 (24)
PTXFLAGS 38 (26)
PTXFSRST 38 X'40'
PTXFSTBP 28 <1C)
PTXGXGDM 20 (14)
PTXGXTBP 16 (10)
PTXHElPQ 84 (54)
PTXHIAOT 81 (51)
PTXHIFlG 83 (53) ,
PTXHIIHI 83 X'40'
PTXHIIOT 82 (52)
PTXHIlIT 80 (50)
PTXHIOHI 83 X'80'
PTXHISF 80 (50)
PTXlEVEl 44 (2C)
PTXPRTBP 24 (18)
PTXRSVOl 92 (SC)
PTXRSV02 96 (60)
PTXRSV03 100 (64)
PTXRSV04 104 (68)
PTXSCRTH 52 (34)
PTXSMPSD 52 (34)
PTXSMPl 52 (34)
PTXSMP2 56 (38)
PTXSMP3 60 (3C)
PTXSMP4 64 (40)
PTXSMP5 68 (44)
PTXSMP6 72 (48)
PTXSMP7 . 76 (4C)
PTXSMTBP 12 (C)
PTXSTACK 8 (8)
PTXSUBSY 36 (24)
PTXTSO 36 X'80'
PTXUSRWA 88 (58)
PTXVCT 4 (4)
PTXVSPC 36 X'lO'
PTXWSM o (0)

LicQnsQd MatQrial--Proparty of IBM
344 VS APL Program Logi c

J

.J

,..)

SCV (ALL)

Share contro'l vector (SCV), which con·tains information about a
shared variable. It is used in communication between auxiliary
processor and shared storage manager. This control block is
mapped by the APlSCV macro.

OFFSETS TYPE

o

o
4

8
10

12

16

20

(0) STRUCTURE

(0) SIGNED

(4) SIGNED

(8) SIGNED
(A) SIGNED

(C) A-ADDRESS

(10) A-ADDRESS

(14) A-ADDRESS

LENGTH NAME

36 SCV

4 SCVID

4 SCVPART

2 SCVNO
2 SCVINAME

4 SCVECB

4 SCVVAlUE

4 SCVIiAME

DESCRIPTION

PROCESSOR ID

PARTNER'S PROCESSOR 10

OFFER SEQUENCE NUMBER
PERSHARE INDEX

eCB POINTER

POINTER TO VALUE BUFFER

POINTER TO NAME
-------------------------------~.==,~--

24 (18) SIGNED SIZE OF BUFFER IN BYTES
----------------------------~=w.~==:~---

28 (tC) SIGNED· 4 SCVl.EN lENGTH OF VARIABLE

32 (20) UNSIGNED 1 SCVATVPE TYPE OF AUTH. CHECK
-----------------------------------.---

32 (20) CHARACTER
1 •.•
· 1
· . 1.
• .. 1

33 (21) UNSIGNED
33 (21) CHARACTER

1 •..
· 1 ..
· . 1 .
· .. 1

1 .•.
· 1 ..
· . 1.
· .. 1

34 (22) UNSIGNED
35 ·(23) BITSTRING

1
36 (24) CHARACTER

1 SCVACV
SCVAMip(;
SCVAPSPC
SCVAMREF
SCVAPREF

1 SCVALEVl
1 SCVFLAGS

SCVAlLID
SCVNAt1ES
SCVFHOLD
SCVFGOFR
SCVFISPC
SCVFOFR2
SCVFSHR
SCVFOFR1

1 SCVNAMEl
1 SCVFLAG2

SCV2EBCD
o SCVEND

ACCESS CONTROL VECTOR
CONTROL MY SPECIFICATION
CONTROL PARTNER'S SPEC
CONTROL MY REFERENCE
CONTROL PARTNER'S REFER
lEVEL OF AUTH. CHECK
flAGS
QUERY FOR ALL ID'S
QUERY FOR All NAMES
HOLD AFTER COpy
gEtiERAL OFFER
l~tlORE VALUE WAITING
OFFERED BY PARTNER
VARIABLE IS SHARED
OFFERED BY THIS USER
LENGTH OF NAME
FLAGS
MAP CHAR DATA TO/FROM EBCDIC
END OF SCV

-------------------------------------.---
o (0) STRUCTURE 36 SCV BEGINNING OF SCV

o (0) SIGNED 4 SCVID THIS PROCESSOR'S NUMERIC ID
-----------------------~---

4 (4) SIGNED 4 SCVPART NUMERIC 10 FOR PARTNER
---------------------------------------.-~~------------------------------------

8 (8) SIGHED 4 SCVNO NUMERIC OFFER SEQUENCE NUMBER
--------------------------------------.~-~ __ w--------------------------_______ _

12 (C) A-ADDRESS 4 SCVECB POINTER TO THIS SVC'S ECB
------------------------~-----------------~.-~---------------------------------

16 (10) A-ADDRESS 4 SCVVALUE POINTER TO BUFFER CONTAINING VAL

Licensed Materia1--Property of IBM
Section 5. Data Areas 345

SCV (ALL) continued

OFFSETS TYPE

20

24

28

32

32

33

34
35

o
o
o
4

8

12

16

20

24

(14) A-ADDRESS

(18) SIGNED

(IC) SIGHED

(20) SIGHED

(20) CHARACTER
1 .•.
· 1
· . 1.
· .. 1

(21) CHARACTER
1 ...
· 1 ..
• • 1 .
· .. 1

1. . ;
· 1 ..
· . 1 .
· .. 1

(22) BITSTRING
(23) CHARACTER

1

(0) STRUCTURE

(0) CHARACTER

(0) SIGHED

(4). SIGHED

(8) SIGNED

(C) A-ADDRESS

(10) A-ADDRESS

(14) A-ADDRESS

(,18) SIGNED

LENGTH NAME

4 SCVNAME

4 SCVSIZE

4 SCVLEN

4 SCVMISC

1 SCVACV
SCVAMSPC
SCVAPSPC
SCVAMREF
SCVAPREF

1 SCVFlAGS
SCVALLID
SCVNAMES
SCVFHOLD
SCVFGOFR
SCVFISPC
SCVFOFR2
SCVFSHR
SCVFOFR1

1 SCVNAMEL
1 SCVFlAG2

SCVFDOFR

36 APLSCV

36 SCV

4 SCVID

4 SCVPART

4 SCVNO

4 SCVECB

4 SCVVAlUE

4 SCVNAME

4 SCVSIZE

DESCRIPTION

POINTER TO NAME"nF VALUE

SIZE OF SCVVALUE IN BYTES

LENGTH WANTED BY COPY, REF, SPEC

MISC LENGTH AND FLAG BYTES

LOGICAL ACCESS CONTROL VECTOR
ON TO CONTROL MY SPECS X'80'
ON TO CONTROL PRTRS SPECS X'40'
ON.TO CONTROL MY REFS X'20'
ON TO CONTROL PARTNER REFS X'10'
LOGICAL FLAGS
QUERY FOR ALL PARTNER ID'S X'80'
QUERY FOR ALL NAMES X'40'
HOLD AFTER SCOPY, NEXT OP X'20'
GENERAL OFFER X'IO'
IQNOR VALUE WAITING ON SPC X'08'
VARBLE IS OFFERED BY PART X'04'
VARIABLE IS SHARED X'02' "
VARIABLE OFFERED-THIS USER X'D1'
NUMBER OF CHARACTERS IN NAME
RESERVED ALL BUT ONE
DOUBLE OFFER X'8D'

VS APL TSO/CMS SCV PLS MAPPING

BEGINNING OF SCV

THIS PROCESSOR'S NUMERIC ID

NUMERIC 10 FOR PARTNER

POINTER TO THIS SVC'S ECB

POINTER TO BUFFER CONTAINING VAL
---~------.-----------------------------28 (lC) SIGNED 4 SCVlEN

32 (20) SIGNED 4 SCVMISC

li censed Materhill-Property of IBM
346 VS APL Program Logic

POINTER TO THIS SVC'S ECB

~

SCV (ALL) continued

OFFSETS TYPE

32 (20) CHARACTER
1 ...
· 1 .. • ..•
· . 1.
· .. 1

33 (21) CHARACTER
1 ...
.1 ..
· .1.
· .. 1

1 ...
· 1 ..
· . 1 •
· .. 1

34
35

(22) BITSTRING
(23) CHARACTER

1

36 (24) CHARACTER

CROSS REFERENCE

APlSCV 0 (0)
SCV 0 (0)
SCVACV 32 (20)
SCVALEVL 33 (21)
SCVULID 33 X'SO'
SCVAMREF 32 X'20'
SCVAMSPC 32 X'80'
SCVAPREF 32 X'!O'
SCVAPSPC 32 X'40'
SCVATYPE 32 (20)
SCVECB 12 ec)
SCVEND 36 (24)
SCVFDOFR 35 X'80'
SCVFGOFR 33 X'10'
SCVFHOLD 33 X'20'
SCVFISPC 33 X'08'
SCVFlAGS 33 (21)
SCVFlAG2 35 (23)
SCVFOFIU 33 X'O!'
SCVFOFR2 33 X'04'
SCVFSHR 33 X'02'
SCVID 0 (0)
SCVINAME 10 (A)
SCVLEN 28 ClC)
SCVMISC 32 (20)
SCVNAME 20 (14)
SCVNAMEl 34 (22)
SCVNAMES 33 X'40'
SCVNO 8 (8)
SCVPART 4 (4)
SCVSIZE 24 (Un
SCVVAlUE 16 C1 0)
SCV2EBCD 35 X'SO'

LENGTH NAKE

1 SCVACV
SCVAMSPC
SCVAPSPC
SCVAMREF
SCVAPREF

1 SCVFlAGS
SCVALLID
SCVNAMES
SCVFHOlD
SCVFGOFR
SCVFISPC
SCVFOFR2
SCVFSHR
SCVFOFRI

1 SCVNAMEl
1 SCVFlAG2

SCVFDOFR

0 SCVEND

DE41CRIPTION

POINTER TO NAME OF VALUE
SIZE OF SCVVALUE IN BYTES
LENGTH WANTED BY COpy, REF. SPEC
MISC LENGTH AND FLAG BYTES
LOGICAL ACCESS CONTROL VECTOR
ON TO CONTROL PRTRS SPECS X'40'
ON TO CONTROL MY REFS X'20'

LOGICAL FLAGS

QUERY FOR ALL NAMES X'40'

IQNOR VALUE WAITING ON SPC X'OS'

VARIABLE OFFERED-THIS USER X'O!'
VARBLE IS OFFERED BY PART X'04'
DOUBLE OFFER X'80'

END OF BASIC SCV

licensed Material--Property of IBM
Section 5. Data Areas 341

SGN (CICS, XSVS, AP)

OFFSETS

o

o

4

8

This is the APl signon table. It contains an entry for each user
signed on to APl. It identifies the user's terminal and points J ...
to the perterm. The SGN is pointed to by the GBl; individual
entries 1n the SGN are pointed to by the PTK. This control block
is mapped by the APlKSGN macro.

TVPE

(0) SrRUCTURE

(0) A-ADDRESS
1

(4) SIGNED

(8) A-ADDRESS

LENGTH NAME

12 SGN

4 SGNPTH
SGNFREE

4 SGNUSID

4 SGNTCTTE

DESCRIPTION

ADDR OF USER PERTERM
ON FOR A FREE ENTRY

USER ID

ADDR OF CICS TERM ENTRY

CROSS REFERENCE

SGN
SGNFREE
SGNPTH
SGNTCTTE
SGNUSID

o (0)
o X'80'
o (0)
8 (8)
4 (4)

Licensed Material--Prop~rty of IBM
348 VS APt Program Logi c

<w

L

SHVAB (XSVS)

Thi 5 ; s the shared vari able block. ; n shared memory, used wi thi n
the shared storage manager. This control block is mapped by the
APLSHVAB macro.

OFFSETS TYPE LENGTH NA.ME DESCRIPTION
. . . ---o (0) STRUCTURE o APlSHVAB

o (0) SIGHED 4 VABEHTRY

o (0) SIGNED 4 VABPIDI FIRST PROCESSOR 10 OR ACPBl).

4 (4) SIGNED 4 VABPID2 SECOtW PROCESSOR 10 OR A(PRB2) .
--~---

8
9

10

11

12

16

20

. 24

28
29
30

(8) HEX
(9) HEX

(A) HEX

(B) HEX

ec) SIGNED

(10) SIGNED

(14) SIGNED'

(18) SIGNED

(IC) HEX
(10) HEX
C1 E) HEX

• • 1 .
•.. 1 111.

1 VABACV
1 VABACVl

1 VABACV2

1 VABFLAGS

4 VABECBl

4 VABECB2

4 VABDATA

4 VABDSIZE

1 VABFlAG2
1 VABNAMEL
1 VABNMIE

VABTYPE
"ABSIZE

CURRENT ACCESS CONTROL VECTOR.
ACCESS CONTROL VECTOR FOR 1ST
PARTNER.
ACCESS CONTROL VECTOR FOR 2~W
PARTNER.
flAGS AS DEFINED BELOW.

POINTER TO ECB FOR 1ST PARTHER.

POINTER TO EeB FOR 2ND PARTNER.

POINTER TO DATA IN SHARED MEflORY.

SIZE OF DATA ENTRY IN BYTES.

FLAGS AS DEFINED BELOW.
LENGTH OF NAME IN BYTES.
NAME.
"2"IDENTIFIER FOR VAB ENTRIES.
"VABNAME-VABENTRY" --_ .. _---DEFWITIONS FOR VABFlAGS:

1 ... VABFOFRI

· 1 .. VABFOFR2

· • 1 . VABFSPCl

· .. 1 VABFSPC2

1 ... VABFPIDI

· 1 .. VABFPID2

· .1. VABFLCK1

· .. 1 VABFLCK2

"X' 80' "VARI ABL E OFf' E.R ED BY 1ST
PARTHER.
"X' 40 "'VARIABl E OFFERED BY 2ND
P~RTNER.
"X' 20 "'VARIABLE LAST SPECIFI ED BY
1ST PARTHER.
"X'10"'VARIABLE LAST SPECIFIED BY
2NO PARTNER.
"X'08'''VABPIDI CONTAIHS ADDRESS OF
PRBl.
"X'04"'VABPID2 CONTAINS ADDRESS OF
PRB2.
"X'02'''VARTABLE HELD BY 1ST
PARTNER.
"X'Ol'''VARIABLE HELD BY 2HD
PARTNER.

Licensed Material---Property of IBM
Sect;on 5. Data Areas 349

SHVAB (XSYS) contfnued

OFFSETS T.YPE LENGTH NAHE DESCRIPTION

--DEFINITIONS FOR THE ACCESS CONTROL VECTORS (VABACV, VABACVl
AND VABACV2):

1 ..• VABASPCl "X'80'"CONTROl FOR SPECIFICA nONS
BY PARTNER 1.

· 1 .. VABASPC2 "X'40'''CONTROl FOR SPECIFICATIONS
BY PARTNER 2.

· . 1 . VABAREFI "X'20'''CONTROl FOR REFERENCES BY
PARTNER 1.

· .. 1 VABAREF2 "X'10'''CONTROl FOR REFERENCES BY
PARTNER 2. --_ .. _---DEFINITIONS FOR VABFlAG2:

1 ... VABFSINI

· 1 .. VABFSIN2

· . 1 . VABFRINI

· .. 1 VABFRIN2

CROSS REFERENCE

APLSHVAB 0 (0)
VABACV 8 (8)
VABACVl 9 C 9)
VABACV2 10 CA)
VABAREFI 30 X'20'
VABAREF2 30 X'10'
VABASPCl 30 X'80'
VABASPC2 30 X'40'
VABDATA 20 CI4)
VABDSIZE 24 CIS)
VABECBl 12 (C)
VABECB2 16 CIO)
VABENTRY 0 (0)
VABFlAGS 11 (B)
VABFlAG2 28 (IC)
VABFLCKI 30 X'02'
VABFlCK2 30 X'OI'
VABFOFRI 30 X'80'
VABFOFR2 30 X'40'
VABFPIDI 30 X'OS'
VABFPID2 30 X'04'
VABFRINI 30 X'20'
VABFRIN2 30 X' I 0 '
VABFSINI 30 X'SO'
VABFSIH2 30 X'40'
VABFSPCI 30 X'20'
VABFSPC2 30 X'10'
VABHAr-tE 30 (IE)
VABtlAMEl 29 (10)
VABPIDI 0 (0)
VABPID2 4 (4)
VABSIZE 30 X' 1 E'
VABTYPE 30 X'02'

Licensed Material--Property of IBM
350 VS APl Program logi c

"X'80'"lST PARTNER'S
SPECIFICATIONS INTERLOCKED.
"X'40'''2ND PARTNER'S
SPECIFICATIONS INTERLOCKED.
"X'20'''IST PARTNER'S REFERENCES
INTERLOCKED.
"X'10'''2ND PARTHER'S REFERENCES
INTERLOCKED.

'-.

J

STK (CICS, XSYS, AP)

OFFSETS

o

This is the stack entry and stack block control block. It
describes an entry in a work staek~nd control information at
the beginning of a stack block. (The format of this layout is
the one used in pUblications titled '"OataAteas and "Symbolic
Names Cross-Reference Table," usually distributed on .
microfiche.) This control block is mapped by the APLXSTK macro.

TYPE LENGTH NAt1E DESCRIPTION

(0) STRUCTURE 16 STK
--~--------------------------o

4

4
6

8

(0) A-ADDRESS
1 • •• . ..•

(4) A-ADDRESS

(4) SIGNED
(6) SIGNEO

(8) CHARACTER

CROSS REFERENCE

STK
STKBLENI
STK8SIZE
STKPEXIT
STKPEXI
STKPNAME
STKP13

o (0)
6 (6)
4 (4)
o (0)
o X'80'
8 (8)
4 (4)

4 STKPEXIT
5 TKPEXI

4 STKP13

2 STK8SIZE
2 STK8LENl

8 STKPNAME

ADDR OF ABEND EXIT ROUTINE
FLAG IS ON AT OWNER LEVEL

SAVED VALUE OF REG13 AS USED AT

SIZE OF ENTIRE BLOCK (OWNER)
LEN. OF 1ST STACK ENTRY (OW~ER)

ENTRY POINT NAME (OR OWNER NAME)

Licensed Material--Property of IBM
Section 5. Data Areas 351

TBL (VSPC, APJ

This is the VSPC AP t2~ ~ddress and request table. It is mapped
by the APlXGTBl ma~ro~

OFFSETS TYPE LENGTH NAME DESCRIPTION

o (0) STRUCTURE o TBl
---o (0) SIGHED

4 (4) CHARACTER

12 (C) A-ADDRESS

CROSS REFERENCE

TBl
TBlRQNAM
TBlRQPT
TB1126RQ

o (0)
4 (4)

12 (C)
o (0)

4 TBL126RQ

8 TBlRQNAM

4 TBLRQPT

Licensed Materi aI-Property of IBM
352 VS APl Program logic'

AP 126 REQUEST CODE

GDDM CAll NAME

POINTER TO TABLE ENTRY

J

TCD (CICS, AP)

This is the CICS/VS executor translation routine request block.
It is mapped by the APlKTCD macro.

OFFSETS

o
o
1
2

4

TYPE

(0) STRUCTURE

(0) HEX
(1) HEX
(2) SIGNED

(4) A-ADDRESS
· . .. 1 ...

LENGTH NAME

o TRAN

1 TRANCD
1 TRAHOPT
2 TRANDLEN

4 TRANDPTR
TRANENDM

DESCRIPTION

PARM LIST PTR IN Rl

REQUES T CODES
OP TIONS
LENGTH DATA TO TRANSLATE

PTR TO SOURCE DATA
"M" END OF MINIMUM LIST

-- ._--------------------------END OF MINIMUM LIST, OPTION FLAGS INDICATE PRESEHCE OF OTHER VALS

8 (8) A-ADDRESS

12 (C) A-ADDRESS

16 (10) A-ADDRESS

· .. 1 .1 ..

"t TRANiPTR

4 TRANT END

4 TRAHTBL

TRAHEHD

PTR TO TARGET AREA IF MOVE
REQUESTED

PTR, END TARGET AREA(EXP/CONT) FOR
CALL, PASS MAX END ON RETURN, PTR
TO NEXT UNUSED BYTE

PTR TO CALLER-PROVIDED
TABLE(I-FOR-l)
"M" END OF TRAN PARM LIST --TRANSLATE TABLE REQUEST

· .. 1
· .1.
· .11

.1.1

.11.

.1I.

1 ...
1 ...

1.1.
1.1.

1 ...

conES (USED WITH
TRAt~lS
TRANSl
TRANSO
TRANSOPl

TRANS88

TRANOS
TRANOSPI

TRANSN
TRANSNPl

TRAHNS
TRANNSPl

TRANUSR

TRAN ROUTINE)
"0" lCODE TO STANDARD EBCDIC
"1" STANDARD EBCDIC TO lCODE
"2" STANDARD EBC TO OLD 3270 BASIC
"3" STANDARD EBC TO OLD 5270
APLTEXT,PG 1 RESERVE ONE CODE.
PAGE 2
"5" STANDARD EBC TO OLD 3288 TEXT
FEATURE
"6" OLD 3270 TO STANDARD EBC
"6" SAME TABLE FOR PAGEl RESERVE
ONE CODE, PAGE 2
"8" STANDARD EBC TO HEW 3270
"8" NEW 3270 APLTEXT PGl ; BASIC
PG 1 RESERVE ONE CODE FOR PAGE 2
"10" HDS 3270 TO STANDARD EBC
"10" USE SAME TABLE FOR APLTEXT PG
1 RESERVE ONE CODE, PAGE 2
"X'80'" USER-PROVIDED TRANSLATION --OPTION FLAGS USED WITH TRAN ROUTINE (0 IF

1... TRANAPlT

· 1 .•
· . 1.

· .. 1

TRAt/MOVE
TRANEXP

TRANCONT

NOT APPLICABLE)
"X'80'" APLTEXT DOUBLE TABLE, ONLY
WITH TRANSO,TRANOS.TRAHSN,TRANNS
"X'40'" DO MOVE. WITH ANY
"X'20'" EXPANSION MAY OCCUR (TLEN
REQUIRED) ONLY WITH TRANSO,TRANSN
"X'10'" CONTR MAY OCCUR (TLEN REQD
IF MOVE) ONLY WITH TRANOS,TRANNS

--_ .. _---RETURN CODES FROM TRAN ROUTINE
TRANRCOK

.. 11 .1.1 TRANRCLE

.11 .. 1.1 TRANRCSE

"0" OK
"53" LENGTH ERROR (SAME AS
TRCNOSP)
"101" INVALID PARMS (SAME AS
TRCBAD)

licensed Material--Property of IBM
Section 5. Data Areas 353

TCD (CICS, AP) continued

OFFSETS TYPE LENGTH NAHE DESCRIPTION

===
EQUATES WHICH GOVERN PAGEl. PAGE2 TABLE ORDER IN TRAN RTH AND TBLS

CROSS

TRAN
TRAHAPLT
TRANCO
TRANCONT
TRANDLEN
TRANDPTR
TRANEND
TRANENDM
TRANEXP
TRAHMOVE
TRANNS
TRANNSPI
TRANOPT
TRAUOS
TRAt/OSP1
TRAHPG1
TRAHPG2 = TRAURCLE
TRAtlRCOK
TRANRCSE
TRANSH
TRAUSNPI
TRANSO
TRANSOPI
TRAt45l
TRAHS88
TRANTBL
TRANT END
TRAHTPTR
TRANUSR
TRAHZS

. TRAHPGl "0" DISP FROM BASIC PTR, PA.GE
lTABLE

TRANPG2 "TRAHPGl+256" DISP FROM BASIC PTR.
PAGE2 TABLE

REFERENCE

0 (0)
16 X'SO'

0 (0)
16 X'lO'
2 (2)
4 (4)

16 X' 14'
4 X' OS'

16 X'20'
16 X'40'
16 X'OA'
16 X' OA'

1 (1)
16 X'06'
16 X'06'
16 X' 00'

256
16 X'35'
16 X'OO'
16 X'65'
16 X' 08'
16 X'OS'
16 X'02'
16 X'03'
16 X'OI'
16 X'OS'
16 (10)
12 ec)

8 (8)
16 X'SO'
16 X'OO'

Licensed Material--Property of IBM
354 VS APL Program Log; c

\.

TRD (XSYS, AP)

This is the common system services translation request
descriptor. It is mapped by the APLXTRD macro.

OFFSETS

o
o
1
2

4

8

12

TYPE

(0) STRUCTURE

(0) UNSIGNED
(1) UNSIGNED
(2) SIGNED

(4) SIGNED

(8) A-ADDRESS

(e) A-ADDRESS

16 (10) A-ADDRESS

20 (14) SIGNED

24 (18) SIGNED

CROSS REFERENCE

TRD 0 (0)
TRDRC 2 (2)
TRDREGS 24 (18)
TRDREQCD 0 (0)
TRDR14 20 (14)
TRDSDLEN 4 (4)
TRDSDPTR 8 (8)
TRDTDPTR 12 (C)
TRDUTRAN 16 (10)

LENGTH NAME

48 TRD

1 TRDREQCD
1
2 TRDRC

4 TRDSDLEN

4 TROSDPTR

4 TRDTDPTR

4 TRDUTRAN

4 TRDR14

24 TRDREGS

DESCRIPTION

PARM LIST PTR IN Rl

REQUEST CODE
RESERVED
RETURN CODE

LENGTH DATA TO TRANSLATE

PTR TO SOURCE DATA

PTR TO TARGET DATA (MAY=SRCE)

USER TRANSLATE TABLE (OPT)

R14 SAVE AREA

WORK REG SAVE AREA (R2-7)

Licensed Material-----Property of IBM
Section 5. Data Areas 355

TRQ (CICS, XSYS)
. : -

This is theCICS/VS executor terminal request descriptor for
non-GOOM terminal services. It ;s m~pped by the APLKTRQD macro.

OFFSETS TYPE LENGTH NAME DESCRIPTION

0 (0) STRUCTURE 20 TRQO USED WITH APLKTERM MACRO
---,----------------------------

0 (0) BITSTRING 1 TRQTYPl MAIN TYPE CODE-SEE BElOW
1 (1) BITS TRING 1 TRQTYP2 SECONDARY TYPE FLAGS

1111 RESERVED
1 ... TRQREST RESTORE SCREEN

·1 .. TRQALARM RING ALARM
.. · .1 . T~QCUR SET CURSOR POSITIOtl

· .. 1 TRQHC HARDCOPY
2 (2) BITSTRING 1 TRQOPT OPTION FLAGS

1 ... TRQEBC ON RO/WR, DATA IN EBCDIC
.. 1 .. TRQWAIT ON WRITE, WAIT FOR COMPL
· . 1 . TRQRFOR ON FORf1AT, REFORMAT
· .. 1 lRQFCHK ON FORMAT, DO FORMAT CHECK

1 ... TRQl·!t-f ON RD, WRITE TO FOLLm.J
· 1 .. TRQNUI.L ON WR, TRAILING BL NKS =~iU LL S
· .1. TRQHODAT ON RD,PASS NO DATALEN INFO ON

GD,PASS FLOLEN, NO DATA
· .. 1 TRQALT ALTERNATE SCREEN

3 (3) UNSIGNED 1 lRQFLAG RESERVED FOR MORE FLAGS

4
6

8

(4) SIGNED
(6) S I Gt~ ED

(8) A-ADDRESS

2 TRQFNUM
2 TRQLEN

4 TRQBUF

NUMBER OF FIELDS
BUFFER/DATA LEN

BUFFER PTR
--------------------------------_._---

12
13
14

16
18

20

(C) UNSIGNED
(D) UNSIGNED
(E) SIGHED

CI0) SIGNED
(12) SIGNE"D

(14) CHARACTER

1 n'tiCODI
1 TRQCOD2
2 TRQCFIO

2. TRQCROW
2 TRIJCCOL

o TRQEND

Licensed Mater i <II-Property O'F !~M
356 VS APL Program Log; c

. .
RHO COr1PL CODE
READ COMPL CODE MODIFIER
CURSOR FIELD tiC

~OW ADDR, CURSOR
COL ADDR, CURSOR

END OF TRQD

J

CROSS

TRQAlARM
TRQAlT
TRQBUF
TRQCCOl
TRQCFID
TRQCODI
TRQCOD2
TRQCROW
TRQCUR
TRQD
TRQEBC
TRQEHD
TRQFCHK
TRQFlAG
TRQFNUM
TRQHC
TRQlEH
TRQHODAT
TRQHUll
TRQOPT

\.
TRQREST
TRQRFOR
TRQTYPI
TRQTYP2
TRQWAIT
TRQWW

REFERENCE

1 X'04'
2 X'OI'
8 (8)

18 (12)
14 (E)
12 (C)
13 (D)
16 ClO)

1 X'02'
0 (0)
2 x'ao'

20 (14)
2 X' 10'
3 0)
4 (4)
1 X'Ol'
6 (6)
2 X'02'
2 X'04'
2 (2)
1 X' 08'
2 X'20'
0 (0)
1 (1)
2 X'40'
2 X' 08'

..

licensed Material--Property of IBM
Section 5. Data Areas 357

TSOGL (TSO, XSYS, AP)

This is the TSO executor global table mapping. For more detailed
description, see "Executor Data Areas." It is mapped by the
APLTSOGL macro.

OFFSETS TYPE LENGTH NAHE DESCRIPTION

o (0) STRUCTURE o TSOGL

o (0) FLOATING 8 PTH
--THE PERTERM HEADER PROVIDES INFORMATION ABOUT THE ACTIVE

USER WITH REGARD TO THE SYSTEM ENVIRONMENT, AND COMPLETES
THE COMMUNICATION PATH BETWIXT INTERPRETER AND EXECUTOR.

o (0) SIGHED 4 PTHWORDI

o

1
3

(0) HEX
1 ...

• 1 ..
· .1.

(1) HEX
(3) HEX

1 ...
.1 ..
· . 1 .

.1 ..

· . 1 .
· .. 1

1 PTHASYNC
PTHDA TTN

PTHQEND
PHICPULM
PTHNOOUr

PTHFOFF
PTHA TTN

1 (2)
1 PTHSUSPI

PTHCWBIT
PTHWABIT
PTHSVBIT

"X'80'". DOUBLE-ATTENTION
SI<:NALLED
"X'40'". QUANTUM-END REQUESTED
"X'20'" CPU LIMIT EXCEEDED.
"X'04'" 'CANCEL OUTPUT' SIGNAL
RECEIVED.
"X'02'". LINE-DROP OR 80UNCE
"X'01'". SINGLE ATTENTION
SIGNALLED
RESERVED
SUPERVISOR SUSPENSION BITS
"X'80'". CLOCK WAIT BIT
"X'40'". YYWATE BIT
"X'20'". SH. VAR. WAIT BIT

--_._---PTHWSTAT HOLDS THE PROCESSING STATE OF THIS WS

4 (4) HEX
1
·1.
o • •• • •• 1

1 PTHWSTAT
PTHSVON
PTHSINK
PTHSORS

"X'80'". THIS USER SIGNED ON TO SVP
"X'02'". THIS IS A COpy SINK
"X'01'". THIS IS A COpy SOURCE -- ______ 0. _____ ------------------------------------ _________________________ _

PTHUSTAT RECALLS THINGS WE'RE DOING FOR OR TO THIS USER
5 (5) HEX 1 PTHUSTAT

1... PTHLOCKB "X'80'''. WE KEEP HIS KBD LOCKED
.1.. PTHMDY "X'40"'. DATE FORMAT FLAG --PTHMDY=I='MM/DD/YY'

PTHMDY=O~'DD-MM-YY'
· .1.
· .. 1

1 ...

· 1 ..

PTHMSBLK
PTHf'lICRO

PTHFSAVL

PTHUEXTN

"X'20'". WE BLOCK HIS MESSAGES
"X'10'''. APL MICROCODE WILL BE
USED.
"X'08'" RESERVED FOR FUlLSCREEN
EDIT
"X'04'" PTH EXTENSION (PTX) EXISTS --PTHQVAR IS THE MAXIMUM NUMBER OF VARIABLES HE MAY SHARE

6 (6) SIGNED 2 PTHQVAR
===
PTHYYCOD CONTAINS THE YYCODE OF THE LAST SVCC ISSUED
PTHSRCOD CONTAINS THE RETURH CODE THAT RESULTED.

8 (8) SIGNED

8 (8) SIGNED
1

10 (A) SIGNED

4 PTHYYRC

2 PTHYYCOD
PTHSPCLY

2 PTHSRCOD

Licensed Material--Propertyof IBM
358 VS APt Program log; c

"X'80'"HI-ORDER BIT ON IF
'SPECIAL' YYCODE

L

TSOGL (TSO, XSYS, AP) contfnued

OFFSETS TYPE LENGTH NAME DESCRIPTION

===
PTHWIDTH IS THIS TERMINAL'S CURRENT LINE-WIDTH SETTING
---12

14
(C) SIGNED
(E) SIGNED

2 RESERVED
2 PTHWIDTH

===
PTHCURSR IS THE TYPEBALL POSITION RESULTING FROM THE LAST
TYO OR TYI. PTHCURSR=O='AT THE LEFT MARGIN'.

16
18

(10) SIGNED
(12) SIGNED

2 RESERVED
2 PTHCURSR

===
PTHQSIZE IS THE MAXIMUM SIZE A SHARED VARIABLE MAY OBTAIN

20 (14) SIGNED 4 PTHQSIZE --PTHPARM1, PTHPARM2 ARE RETURN PARAMETER FIELDS FOR
SOME SVCC FUNCTIONS.

24 (18) FLOATING 8

24 (8) SIGNED 4 PTHPARMI
--.-----------28 (IC) SIGNED· 4 PTHPARM2
===
PTHWSLEN CONTAINS THE SIZE OF THE WS ADDRESS SPACE

32 (20) SIGNED 4 PTHWSLEN
===
PTHACCNO CONTAINS THE BINARY ACCOUNT NUMBER OF THIS USER

36 (24) SIGHED 4 PTHACCtm
===~=========================
TIME FIELDS: ALL ARE IN APL-STANDARD TIME FORMAT

IE A FLOATING POINT NUMBER OF MICROSECONDS,
POSSIBLY FRACTIONAL. TIME-OF-DAY VALUES
ARE FROM THE BEGINNING OF THE APL EPOCH.
INTERVALS ARE SIMPLY MICROSECOND COUNTS.

PTHLOCAL IS THE OFFSET OF THIS USER FROM GMT.
PTHCPUTM IS THE CPU TIME THIS SESSION.
PTHKEYTM IS THE UHLOCKED-KBD TIME THIS SESSION.
PTHCNCTM IS THE DATE/TIME HE SIGHED ON.

40 '(28) FLOATING 8

40 (28) FLOATING

48 (30) FlOATIN'G

56 (38) FlOATING

64 (40) FLOATING
. 1 .. 1 ...

8 PTHLOCAL

8 PTHCPUTM

8 PTHKEYTM

8 PTHCNCTM
PTHSIZE "*-PTH" SIZE OF PERTERM HEADER. --PTX

THE 'COMMON EXECUTOR PERTERM EXTENTION' IMMEDIATELY
FOLLOWS THE PTH IN THE GLOBAL TABLE. THIS CONTROL
BLOCK FACILITATES COMMUNICATION BETWEEN THE COMMON
EXECUTOR MODULES.

72 (48) FLOATING 8 PTX PERTERM EXTENSION FOR EXECUTOR
COMMON SERVICES

Licensed Material--Property of IBM
Section 5. Data Areas 359

TSOGL (TSO, XSYS, APJ continued

OFFSETS TYPE LENGTH NAHE DES.CRIPTION ..

--OTHER TABLE POINTERS

72

76

so
84

88

92

96

100

104

108

108

109

110

111
112

116

120

(48) A-ADDRESS

(4C) A-ADDRESS

(50) A-ADDRESS

(54) A-ADDRESS

(58) A-ADDRESS

(5C) A-ADDRESS

(60) A-ADDRESS

(64) A-ADDRESS

(68) A-ADDRESS

(6C) SIGNED

(6C) HEX
1 ...
· 1 ..
· • 1 .
· .. 1

(60) HEX
1 ...

.1 ..

(6E) HEX
1 ...

.1 ..

(6F) HEX

.. 1.

... 1

1 ..•

(70) A-ADD~ESS

(74) SIGNED

(78) SIGHED

4 PTXWSM

4 PTXVCT

4 PTXSTACK

4 PTXSMTBP

4 PTXGXTBP

4 PTXGXGDM.

4 PTXPRTBP

4 PTXFSTBP

4 PTXATTN

4 PTXFlAG

1 PTXSUBSY
PTXTSO
PTXCMS
PTXCICS
PTXVSPC

1 PTXDEBUG
DBGMICRO

DBGNSTAE

DBGECHO

DBGMSG
1 PTXFLAGS

PTXAIPUR

1

PTXFSRST

PTXADSM.

4 PTXDXTBP

4 PTXLEVEL

4 PTXCODE

ADDR OF ACTIVE WORKSPACE

ADDR OF VECTOR TABLE

ADDR OF SP STACK

ADDR OF SESSION TABLE

ADDR OF GDDX CONTROL TABLE

ADDR OF CURRENT GDM

ADDR OF PRINT SERVICES TABLE

ADDR OF FILE SERVICES TABLE

ADDR OF ACTIVE ATTENTION ROUTINE

DEFINE WORD OF FLAGS

SUBSYSTEM FLAGS
"X'80'" THIS IS A TSO USER
"X'40~" THIS IS A CMS USER
"X'20'" THIS IS A CICS USER
"X'lO'" THIS IS A VSPC USER
VARIOUS DEBUG OPTIONS
"X'80'" DEBUG CANCEL MICROCODE
TEST DEBUG
"X'40'" DEBUG CANCEL ESTAE EXITS
DEBUG
"X'02'" DEBUG ECHO STACK (CMD
PARM) DEBUG
"X'OI'" DEBUG ERROR MESSAGES DEBUG
GENERAL USE FLAGS
"X'SO'" PURGE THE ALTERNATE INPUT
STACK
"X'41'" FULLSCREEN RESTORE
REQUIRED
"X'OS'" ADSM OWNS THE SESSION
RESERVED
DUMP SERVICES TABLE POINTER

VS APL RELEASE LEVEL

TERMINAL TYPE (GDDM) CODE
===
COMMON WORK AREA, USED FOR/BY ADSM AND IS
IS AVAILABLE FOR OTHER USERS AS A SCRATCH

124 (7C) CHARACTER 28 PTXSCRTH

124 (7C) CHARACTER S PTXSMPSD

124 (7C) CHARACTER S PTXSMPRO

7 WORD SCRATCH PAD AREA

ADSM PASSWORD RETURN AREA

ADSM PROFILE OPTION (OR BLANKS)

124 (7C) A-ADDRESS 4 PTXSMP1 ADSM PARMI FIELD
---128 (80) A-ADDRESS 4 PTXSMP2

132 (S4) A-ADDRESS 4 PTXSMP3

136 (88) A-ADDRESS 4 PTXSMP4

140 (SC) A-ADDRESS 4 PTXSMPS

Licensed Mater;al--Property of IBM
360 VS APL Program Log; c

ADSM PARM2 FIELD

ADSM PARM3 FIELD

ADSM PARM4 FIELD

ADSM PARM5 FIELD

J

TSOGL (TSO, XSYS, APJ continued

OFFSETS TYPE LENGTH NAME

144 (90) A-ADDRESS 4 PTXSMP6

148 (94) A-ADDRESS 4 PTXSMP7

152 (98) SIGNED 4 PTXHILIT

DESCRIPTION

ADSM PARM6 FIElD

ADSM PARM7 FIELD

ID,II.OO,FO
SF,OUT-ATTR.IN-ATTR.FLAGS HILITE

---'-------~----------------152
153
154
155

152
153
154
155

156

160
164

168

172

176

(98) HEX
(99) HEX
(9A) HEX
(9B) HEX

1 ...

(98) HEX
(99) HEX
(9A) HEX
(98) HEX

1 ...

. 1 ..

(9C) A-ADDRESS

(AD) A-ADDRESS
(A4) SIGNED

(A8) SIGNED

(AC) SIGHED

(BO) SIGNED
1.11 .1 ..
.11. 11..

1 PTXHISF
1 PTXHIAOT
1 PTXHIIOT
1 PTXHIFLG

PTXHIOHI

1 PTXHISF
1 PTXHIAOT
1 PTXHIIOT
1 PTXHIFLG

PTXHIOHI

PTXHIIHI

4 PTXHELPQ

4 PTXUSRWA
4 PTXRSVOl

4 PTXRSV02

4 PTXRSV03

4 PTXRSV04
PTXEND
PTXLEN

START FIelD 3270 ORDER HIlITE
OUTPUT ATTRIBUTE BYTE HILITE
INPUT ATTRIBUTE BYTE HIlITE
FLAGS (OUTPUT,INPUT HILITE) HILITE
"X'80'" OUTPUT HILITING REQUESTED
HILITE

START FIELD 3270 ORDER HILITE
OUTPUT ATTRIBUTE BYTE ~ILITE
INPUT ATTRIBUTE BYTE HILITE
FLAGS (OUTPUT,INPUT HILITE) HILITE
"X'80'" OUTPUT HILITING REQUESTED
HIL ITE
"X'40'" INPUT HILITING REQUESTED
HIl ITE

ADDRESS OF MESSAGE QUEING RTN

ADDR OF INST EXIT WORK AREA
RESERVED

RESERVED

RESERVED

RESERIJED
"*" END OF THE PTX
"*-PTX" SET THE LENGTH OF THE PTX --_._--.--DATA AREA IDENTIFIER

184 (B8) F:'OATING 8

184 (B8) CHARACTER 8 TSOGLID
---.---_.-------------------------------MACRO NAME = APLOPTHS.
DESCRIPTIVE NAME = VSAPL/TSO INSTALLATION OPTIONS.
COPYRIGHT = REFER TO MODULE APLCOIBM.
STATUS = RELEASE 4. MODIFICATION LEVEL O.
FUNCTION = ALL VARIABLE VSAPL/TSO INSTALLATION OPTIONS
ARE LOCATED HERE FOR EASY REFERENCE.

192 (CO) SIGNED 4 APLOPTNS (DSECT)/ALIGNMENT --THE FOLLOWING VALUES ESTABLISH THE APPROPRIATE
WORKSPACE LIBRARY QUALIFIERS TO BE USED BY
APLYULIB.

192
194
202

204

212
214

(CO> SIGNED
(C2) CHARACTER
(CA) SIGNED

(CC) CHARACTER

(D4) SIGNED
(06) CHARACTER

2 OPTID
8 APLID
2 OPT~Q

8 PUBQLFR

2 OPTLQ
8 LIBQLFR

SIGNIFICANT LENGTH OF APlID
WORKSPACE IDENTIFIER
SIGNIFICANT LENGTH OF PUBQLFR

PUBLIC LIBRARY IDEHTIFIER

SIGNIFICANT LENGTH OF LIBQLFR
PRIVATE-SHAREABLE LIBRARY IHDEX
IDENTIFIER

Licensed Material--Property of IBM
Section 5. Data Areas 361

TSOGL (TSO, XSYS, AP) continued

OFFSETS TYPE LENGTH HAttE DESCRIPTION

======;==
THE FOLLOWING VALUES ESTABLISH DEFAULT INFORMATION
USED FOR ALLOCATING WORKSPACE DATA SETS.
--------------------~~------~--224 (EO) SIGNED 4 OPTBLKSI DCB=BLKSIZE= VALUE

228 (E4) CHARACTER 8 UBUNlT UNIT = VALUE

236 (EC) CHARACTER 8 LIBSER VOL=SER= VALUE -- . ---THE FOLLOWING OPTION BITS ARE DEFINED.

244

245
246
247

(F4) BITSTRING
1

· . 1.

· .. 1 •.••

· . .. 1 ...

(F5) A-ADDRESS
(F6) A-ADDRESS
(F7> A-ADDRESS

1 OPTBlTSl
OPTDLTX

OPTBCH19

OPTMICRO

OPTMDY

1 OPTBITS2
1 OPTBITS3
1 OPTBITS4

OPTION BITS
"B'10000000'" 1: SHAREABLE LIBRARY
OWNERSHIP IS KEPT EVEN WHEN ALL
WORKSPACES IN THAT LIBRARY ARE
DROPPED. 0: SHAREABLE LIBRARY
OWNERSHIP IS DROPPED WHEN ALL
WORKSPACES IN THE LIBRARY ARE
DROPPED.
"B'00100000'" 1: WHEN VSAPL/TSO IS
BEING EXECUTED IN THE BACKGROUND
BATCH, 192 TRANSLATION IS USED FOR
APLIN AND APLPRINT. 0: 256
TRANSLATION IS USED.
"B'OOQI0000'" 1: WHEN MICROCODE
CHECK IS TO BE PERFORMED TO TEST
EXISTENCE OF APL MICROCODE. 0:
ASSUME MICROCODE IS NOT AVAILABLE
(THE DEFAULT FOR MVS CLASS
MAt;HINES).
"B'00001000'" 0: DATE FORMAT
DD-MM-YY 1: DATE FORMAT
MfVDO/yY
OPTION BITS
OPTION BITS
OPTION BITS

===
MISCELLANEOUS VALUES.

248 (FS) BITSTRIHG 1 OPTTPUT

249 U9) A-ADDRESS 3 OPTRSVl

252 (FC) SIGNED 4 OPTFRS

256 (100) SIGHED 4 ,OPTSMSIZ

260 (104) V-ADDRESS 4 OPTEXIT

264 (lOS) SIGHED 4 OPTUSR

280 (118) SIGNED . 4 OPTUSRl

284 (llC) SIGHED 4 OPTUSR2

288 (120) SIGNED 4 OPTUSR3

292 (124) SIGNED 4 OPTUSR4

296 (128) SIGHED 4 MINAI

t; censed Mat,eri ai-Property of IBM
362 VS APl Program Log; c

TPUT TYPE FOR PROMPTING OUTPUT
TPUT=ASIS ==> B'OOOO~OOl'
TPUT=CONTROL ==> B'00000010'
RESERVED

DEFAULT FREESIZE VALUE

DEFAULT GDDM FREESIZE

"V(APLYUUSR)" INSTALLATION EXIT
ROUTINE THIS ADDRESS WILL RESOLVE
AT LINKEDIT TIME. IF NO EXIT IS
DESIRED, OMIT APlYUUSR.

RESERVED FOR INSTALLATION

MINIMUM Ali INPUT SIZE

J

TSOGL (TSO, XSYS, AP) continued

OFFSETS TYPE

300 (12C) SIGNED

304 (130) A-ADDRESS

308 (134) SIGNED

312 (138) SIGNED

316 (13C) SIGNED

320 (140) SIGHED

324 (144) SIGHED
328 (148) CHARACTER

LENGTH NAME

4 STCKLEN

4 WSSIZMX

4 MINWS

4 MINSH

4 DFl TSM

4 FRSIZMN

4 MAX DEBUG
S OPTSVPNM

DESCRIPTION

DEFAULT LENGTH OF STACK

MAX SIZE WS ALLOWED.
WORKSPACE.

MINIMUM ACCEPTABLE WS SIZE.

MINIMUM SHARED MEM SIZE

MINIMUM SHARED MEM SIZE.

AT LEAST 20K FREESPACE

ONE BYTE MAXIMUM (8 BITS)
SVP IDENTIFY NAME FOR AP'S

--LIST OF RESIDENT AUXILIARY PROCESSORS.

336 (150) SIGNED

336 (150) HEX

• 1. ••

11 .•

336 (150) V-ADDRESS

340 (154) CHARACTER

348 (15C) V-ADDRESS

352 (160) CHARACTER

360 (168) V-ADDRESS

364 (16C) CHARACTER

372 (174) V-ADDRESS

376 (178) CHARACTER

384 (180) V-ADDRESS

388 (184) CHARACTER

396 (18C) V-ADDRESS

400 (190) CHARACTER

408 (198) V-ADDRESS

412 C19C) CHARACTER
420 (lA4) V-ADDRESS

424 CIAS) CHARACTER

4 MAINAPS
MAINAPAD
MAINAPHM

MNAPENT

184 (15)

4

8

8

4

8

4

8

4

8

4

8

4

8
4

8

"0,4" ADDRESS OF THE AP
"MAINAPAD+L'MAINAPAD.8 NAME OF THE
AP
"MAINAPNM+L'MAINAPNM LIST ENTRY
LENGTH

DEFAULT LIST SPACE

"V(APLI00)" ADDRESS OF THE AP OR
ZERO

NAME OF THE AP

"V(APLI01)" ADDRESS OF THE AP OR
ZERO

NAME OF THE AP

"V(APL102)" ADDRESS OF THE AP OR
ZERO

NAME OF THE AP

"V(APLll1)" ADDRESS OF THE AP OR
ZERO

NAME OF THE AP

"V(APL120)" ADDRESS OF THE AP OR
ZERO

NAME OF THE AP

"V(APL121)" ADDRESS OF THE AP OR
ZERO

NAME OF THE AP

"VCAPL126)" ADDRESS OF THE AP OR
ZERO

NAME OF THE AP
"VCAPl123)" ADDRESS OF THE AP OR
ZERO

NAME OF THE AP

licensed Material---Property of IBM
Section 5. Data Areas 363

TSOGL (TSO, XSYS, AP) continued

OFFSETS TYPE LEtlGTH NAHE

432 (lBO) V~ADDRESS 4

436 (lB4) CHARACTER 8

444 (lBC) SIGNED 4

DESCRIPTION

"V(APL210)" ADDRESS OF THE AP OR
ZERO

NAME OF THE AP

LIST DELIMITER
===
END OF INSTALLATION OPTIONS

520 (20S) SIGNED 4 OPTEND
OPTLEN

END OF OPTIONS
"OPTEND-APLOPTNS" LENGTH OF
OPTIONS --PROGRAM MANAGEMENT.

MISCELLANEOUS MODULE POINTERS
--~----------------------520 (208) A-ADDRESS 4 CMSDAIR POINTER TO DAIR --EXECUTER SAVE AREA STACK AND OTHER SAVE AREAS

524 (20C) SIGHED 4 CMSAVE
CMSAVEZ

SIX SAVE AREAS
"*" MARKS END OF SAVE AREAS.

---956 (30C) A-ADDRESS
. 1 .. 1 ...

960 (3CO) A-ADDRESS

1020 (3FC) A-ADDRESS

1032 (408) A-ADDRESS

4 CMSAVEZP
C~lSBtlPSV

4 TER~lSAVE(15)

4 STCKSAVE(3)

4 SCANSAVE(16)

AOOR OF END OF SAVE AREAS.
"18*4" TO BUMP TO HEXT SAVE AREA;

USED BY APlYUTIO

USED BY AP1101

USED BY APLYUSCH --THE FOLLOWING IS THE ECB TO BE USED FOR GDDX
SUBTASK CONTROL. IT IS MANAGED COMPLETELY BY GDDX.

1096 (448) SIGNED 4 TSOGYTBP GDDX SUBTASK CONTROL BLOCK
===
ABEND EXIT WORK AREA, INCLUDES 16 WORD REG SAVE AREA.
THIS AREA USED FOR SAVE AREA FOR ALL ABENDING TASKS.

1100 (44C) SIGNED

1100 (4'4C) HEX
1•
. 1..

11 0 1 (44 D) H EX

1104 (450) SIGNED

4 CMSXBND

1 CMSBTYPE
cr1SBTPRG
C~lSBTSYS

3

4 CMSBCODE

ENSURE ON WORD BOUNDARY

ABEND TYPE CODE
"X'SO'" PROGRAM CHECK
"X'40'" SYSTEM ABEND
RESERVED

SYSTEM PROVIDED ABEND CODE --THE FOLLOWING TWO FIELDS ONLY VALID WITH PROGRAM CHECKS

110S (454) SIGNED' 4 CMSBPSW(2) PSW AT POINT OF ABEND

1116 (45C) SIGNED 4 CMSBREGS(16) REGISTERS AT POINT OF ABEND
=== STORAGE MANAGEMENT.
KEEP ADDRESS AND LENGTH OF AREA WE GOT IN USER
PROGRAM AREA FOR WORKSPACE, SHARED MEM AND AP WORK
AREAS. WE USE THESE TO FREE THE SPACE AT YYOFF.

11S0 (49C) SIGNED 4 CMSFRAOR

li censed Mater; aI-Property of IBM
364 VS APl Program Log; c

ADDRESS OF WS, ETC. AREA.

TSOGL (TSO, XSYS, AP) contfnued

OFFSETS TYPE

1184 (4AO) SIGNED

1188 (4A4) A-ADDRESS

LENGTH NAttE

4 CMSFRSIZ
CMSGIV8K

CMSAPWKL

4 TSOLOADL

DESCRIPTION

LENGTH OF AREA. IN BYTES.
"32*1024" GIVEBACK AT LEAST THIS
MUCH SPACE TO TSO.
"512" EACH AP GETS THIS MUCH CORE
(IN BYTES) TO USE AS A WORK AREA.
ADDRESS OF LOADLIB DCB LOADMD

--ACTIVE WORK SPACE IDENTIFICATION

1192 (4A8) A-ADDRESS 4 CMSWSADR ADDRESS OF INCORE WORKSPACE --HOTE: STARTING WITH RELEASE 4, PTXWSM MUST ALSO ALWAYS
CONTAIN THE ADDRESS OF THE ACTIVE WORKSPACE.

1196 (4AC) SIGNED 4 CMSMAXWS

CMSMINWS

MAXIMUM ALLOWED WS SIZE. (SEE
PTHWSLEN FOR CURR SIZE)
"WSMMINWS" MINIMUM ALLOWED WS
SIZE. SEE APLWSM --ACTIVE WORKSPACE 10.

1200 (480) SIGNED

1204 (484) CHARACTER

1216 C4CO) CHARACTER

1224 (4C8) HEX

1248 (4EO) FLOATING

1256 C4E8) FLOATING

4 CMSALIB

12 CMSANAM

8 CMSAPAS
CMSAWSID

24 CMSAVACT

8 TSOWSTIM

8 TSOWSUSR

LIB NUMBER.

WS NAME (Z-CODES).

PASSWORD FROM LAST)SAVE OR)LOAD.
"CMSALIB.*-CMSALIB" ACTIVE
WORKSPACE IDENTIFICATION

)COPY OR)WSID. ALSO FOR)SAVE

TIME WS WAS SAVED. WSTIME

USERID THAT SAVED WS WSTIME --SHARED VARIABLES.

1264 (4FO) BITSTRING
1 ...

. . .. 1 ...

1 CMSSHVFL
SHVAVAIl

SHVRPEAT

SHARED VARIABLE FLAGS.
"BITO" =1 IF SHARED VARIABLES CAN
BE USED DURING THIS SESSION.
"BIT4" IF =1. WE REPEAT A
REFERENCE OR OFFER REQUEST ONCE TO
PREVENT FALSE RESULTS WITH CERTAIN
DISTRIBUTED AUX. PROCESSORS. IF
=0. REQUEST HAS NOT BEEN REPEATED
AND MAY HAVE TO BE FOR CERTAIN
RETURN/REASON CODES. --THIS IS THE ECB LIST INFORMATION THAT WE PASS TO THE SVP

WHEN WE DO A SHARED VARIABLE WAIT.

1268 C4F4) SIGNED 4 CMSECBL

1268 C4F4) A-ADDRESS 4 CMSECBll

1272 (4F8) SIGNED . 4 CMSECBL2

1276 (4FC) SIGNED 4 CMSVPECB

1280 (500) A-ADDRESS 4 CMSSSMAD

FOLLOWING TWO WORDS ARE ECB LIST.

ADDR OF ECB.

WORD OF X'FF' TO MARK END.

ECB FOR SH VAR WAIT.

ADDR OF SHARED STORAGE MANAGER.

L;c~n5ed Material--Property of IBM
Section 5. Data Areas 365

TSOGL (TSO, XSYS, AP) contfnued

OFFSETS TYPE LENGTH ',NAME DESCRIPTION

--.--SHARED VARIABLE INFORMATION THAT IS PASSED TO THE SVP AT
APL STARTUP TO INITIALIZE THE SHARED VARIABLE FACILITY.

1284 (504) SIGNED '4 CMSSVPIN THE FOLLOWING 3 WORDS MUST BE
CONTIGUOUS.

---~---1284 (504) SIGNED 4 CMSNUMAP NUMBER OF AP'S LOADED.

1288 (508) SIGNED 4 CMSSMSIZ SIZE OF SHARED MEMORY.

1292 (SOC) A-ADDRESS 4 CMSSMADR THE ADDRESS OF SHARED MEMORY

1296 (510) SIGNED 4 CMSSMSZ2 SIZE OF 2ND SHARED MEMORY

1300 (514) A-ADDRESS 4 CMSSMAD2 ADDRESS OF 2ND SHARED MEMORY --YYDELAY AND YYRWAIT CONTROL DATA

1304 (518) SIGNED

1308 (51C) BITSTRIHG

1 ...

· 1 ..

· . 1 .

· .. 1

1 ••.

1309 (51D) A-ADDRESS

4 CMSECB

1 CMSWAITF

WAITRPL Y

WAITIMER

CMSTIMEP

CMSVWAIT

TSOCMDAT

3 TSOCTCB
CMSMINDL

THE WAIT ECB.

SHOWS WHY WE ARE WAITING ON
CMSECB.
"BITO" WAITING FOR ATTENTION TO
UNLOCK KEYBOARD AFTER SENDING
MESSAGE.
"BIT1" WAITING FOR ATTENTION OR
TIMER POP FOR YYDELAY.
"BIT2" INSPECTED BY YYDELAY AFTER
FALLING OUT OF WAIT MACRO. =1 IF
TIMER EXIT POSTED ECB. =0 IF ATTN
EXIT POSTED ECB.
"B1T3" WAITING FOR DOUBLE ATTN TO
BREAK SHARED VARIABLE DEADLOCK.
"BIT4" TSO COMMAND ACTIVE UNDER
APllOO
ADDRESS OF COMMAND TCB
"1000000" MINIMUM WAIT TIME FOR
YYDELAY, IN MICROSECONDS. --QUAD-AI DATA

1312 (520) FLOATING 8 CMSTRTUP TIME OF DAY THAT APL WAS STARTED,
IN APL STANDARD TIME FORMAT.

------~--1320 (528) FLOATING 8 CMSCPUST

1328 (530) FLOATING' 8 CMSHOLDT

STARTING CPU TIME FOR APL MVSCPU
SESSION, IN MILLISECONDS MVSCPU

HOLD AREA FOR SAVING CPU TIME WHEN
INTERP IS DISPATCHED OR TIME'OF
DAY WHEN KEYBOARD IS UNLOCKED.

===
MISCEllANEOUS.

1336 (538) FLOATING 8

1336 (538) CHARACTER ,16 CMSPSDT

1336 (538) CHARACTER 8 CMSPDATE

1344 (540) CHARACTER 8 CMSPTIME

1352 (548) FLOATING 8 CMSPACK

Licensed Material---Property of IBM
366 VS APL Program Logi c

ALIGNMENT

MM/DD/YYHH:MM:SS (EXACTLY).

PSEUDO DATE.

PSEUDO TIME.

CONVERTS LIB NUMBERS TO EBCD

J

J

TSOGL (TSD, XSYS. APJ continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

--~-------------------~----------1360 (550) HEX 1 (31) WORK AREA
.. 1. .111 CMSPACKL "*-CMSPACK" LENGTH OF WORK AREA

1392 (570) A-ADDRESS 4 LDSNSAVE SAVE AREA FOR LIBDSN ROUTIN
---~------------~--------1396 (574) SIGNED 4 USRACTNO USER SUPPLIED ACCOUNT NUMBER

1400 (578) SIGNED 4 CMSOLDTE PREVIOUSLY RESOLVED DATE

1404 (57C) A-ADDRESS 1 CMSMONTH(12)
--MISCELLANEOUS PROGRAM CONTROL AND STATE FLAGS

1416 (588) BITSTRING
· 1 ..

· . 1 .

1417 (589) BITSTRING
· 1 ..
· .1.

· •. 1
1 ...
· 1 ..

· • 1 .
· .. 1

1418 (58A) BITSTRING
.1. .

· .1.
· .. 1

1 ...

1419 (58B) BITSTRING

1 CMSPGMFL
CMSINSVP

CMSCOPER

1 CMSPGMF2
CMSXEQTR
CMSABND2

CMSSTAE
CMSNSTAE
CMSABEND

CMSCANCL
CMSABORT

1 CMSPGMF3
CMSlo,lSZVN

CMSNOAUT
CMSCONTX

CMSAPLSM

1 OSSYSTYP

PROGRAM MANAGEMENT FLAGS.
"BIT1" =1 IF PROGRAM CONTROL HAS
BEEN GIVEN TO THE SVP (WHICH IN
TURN GIVES CONTROL TO AN AP).
"BIT2" SYSTEM ERROR OCCURRED WHILE
IN COpy STATUS. SET BY YYSYSER,
CHECKED BY YYCOPZ.
FLAG BYTE
"BITl" CONTROL HAS PASSED TO XQTR
"BIT2" ABEND RECURSION HAS
OCCURRED
"BIT3" AN (E)S1AE HAS BEEN ISSUED
"BIT4" NO (E)S1AE IS TO BE ISSUED
"BITS" A SERIOUS ABEND HAS
OCCURRED
"BIT6" VSAPL HAS BEEN CANCELLED
"BIT7" EXECUTION ABORTED BY
APLYUINI
FLAG BYTE
"BITl" WORKSPACE OPERAND GIVEN ON
THE INVOCATION COMMAND
"BIT2" SUPPRESS LOAD OF CONTINUE
"BIT3" CONTINUE WORKSPACE DOES
EXIST
"BI14" APLSM ON SPECIFIED OR
ASSUI"IED
COpy OF CVTDCB

==:==
TSO PROFILE DATA

1420
1421
1422

(5SC) CHARACTER
(58D) CHARACTER
(58E) CHARACTER

1 TSOLDCC
1 TSOCDCC
8 TSOTRAN

OLD LINE DELETE CHAR
OLD CHARACTER DELETE CHAR
STTRAN TRANSLATE NAME

--ERROR RECOVERY DATA
SPIE DATA

1432 (598) A-ADDRESS

1436 (59C)

1436 (59C) BITSTRING
1437 (590) A-ADDRESS

1440 (5AO) BIT STRING
• 11 .

4 OLDPICA

o
1 OURPICA

. 3

2
OURPICAL

POINTER TO PRE-APL PICA

ALIGN PICA TO FULLWORD BOUNDARY

PROGRAM MASKS
EXIT ROUTINE ADDRESS S

THE INTERRUPT MASK BYTES 1 AND 2
"*-OURPICA" LENGTH OF OUR PICA

licensed Material--Property of IBM
Sect;on 5. Data Areas 367

lS0GL (lSD, XSYS, AP) continued

OFFSETS TYPE LENGTH 'NAME DESCRIPTION

--
STAE/ESTAE DATA
------------~------~---
1444 (5A4) SIGNED 4

1444 (5A4) A-ADDRESS
1445 (5AS) A-ADDRESS'

1448 (5A8) A-ADDRESS

1~52 (5AC) A-ADDRESS

1456 (5BO) A-ADDRESS
1457 (581) A-ADDRESS

... 1

1460 (5B4) A-ADDRESS

1 OURESTAE
3

4

4

1
3

TSOES TAL

4 STAEREGS(5)

FLAGS FOR TCB,PURGE,ASYNCH
STAE EXIT ROUTINE ADDR.

STAE EXIT PARM. LIST ADDR.

TCB NOT SPECIFIED

FLAGS
RESERVED
"*-OURESTAE" LENGTH OF THE ESTAE
AREA

CRITICAL STAE EXIT REGS (R13 > R1)
---------~---1480 (5e8) A-ADDRESS 4 RTRYREGS(7) CRITICAL STAE RETRY REGS (R9 >

R14)
--CMSDMPNO CCNTAINS THE DUMP NUMBER THAT IS PUT INTO SYSTEM
ERROR MESSAGES BY THE INTERPRETER. IT IS R~TURHED BY
1508 (5E4) SIGHED 4 CM5DMPNO SEE ABOVE. --COHSTRUCTION AREA FOR T50 AND OTHER MVS PARAMETER
ADDRESSES' OF IMPORTANT TSO CONTROL BLOCKS. SEE
'IKJCPPL' rOR A DISCRIPTION OF ITS CONTENTS.
-------~---1512 (5E8) SIGNED 4

1512 (5E8) HEX 1 CPPLS"fG SEE IKJCPPL --
THE DAPL IS BUILT BY A' COMMAND PROCESSOR AS A
PARAMETER LIST FOR DYNAMIC ALLOCATION (DAIR).'
SEE 'IKJDAPL' FOR A DISCRIPTION OF ITS CONTENTS.

1528 (5F8) SIGNED 4

1528 (SF8) HEX 20 DAPLSTG SEE IKJDAPL

1548 (60C) SIGNED 4 DFRC DAIR ~UNCTION CODE SAVE AREA
--THE FOLLOWING DATA AREA CONTAINS ROOM FOR ANY OF
SEVERAL OS OR TSO INTERFACE CONTROL BLOCKS. IT
M~Y BE USED BY ANY EXECUTOR COMPONENT INTERFACING
WITH TSO OR THE OPERATING SYSTEM, BUT CARE SHOULD BE
TAKEN TO AVOID ITS USE WHEN PASSING COHTROL TO
ANOTHER EXECUTOR COMPONENT WHICH MIGHT REUSE IT
BEFORE RETURNIHG CONTROL. ANY CONTROL BLOCK WHICH
MAY OVERL~Y THIS AREA SHOULD BE EXPLICITLY DECLARED
MAPPED BY THE 'IKJDAPXX' MAPPING MACROS WHERE 'XX'
IS REPLACED WITH 04, 08, OC, 18, AND 2C.

1552 (610) SIGNED

1552
1554
1555

(610) HEX
(612) 8ITSTRING
(613) HEX

1556 (614) SIGNED
1558 (616) SIGNED

1552 (610) HEX

1552 (610) HEX

4 DAPBS

2 DAPBCD
1 DAPBFLG
1

2 DAPBDARC
2 DAPBCTRC

20

16

L;cens~d Material--Property of IBM
368 VS APL Progrcllll Log; c

DAIR CALL CODE
FUNCTIONS PERFORMED IF RC=O
RESERVED

DYNfM RC WHEN DAIR RC=8
CATLG RC WHEN DAIR RC=4

SEE IKJDAPOO

SEE IKJDAP04

J

J

TSOGL (TSO, XSYS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

1552 (610) HEX SEE IKJDAP08
---1552 (610) HEX 16 SEE IKJDAP14
---~---------------1552 (610) HEX

1552 (610) HEX

1552 (610) SI~HED

1552
1553
1554
1555

(610) A-ADDRESS
(611) A-ADDRESS
(612) A-ADDRESS
(613) A-ADDRESS

1556 (614) A-ADDRESS

1560 (618) A-ADDRESS

1564 (61C) A-ADDRESS

1552 (610) SIGHED

40

16

4 S26PLIST

1
1
1
1

4

4

4

4 APATTACH

SEE IKJDAP18

SEE IKJDAP2C

ALIGN ON FULL WORD

THREE BYTES OF FLAGS
INDICATING THE FUNC
TION TO BE PERFORMED
NO OPTION THREE

PARAMETER TWO

PARAM. THREE OMMITTED

PARAMETER FOUR

-------------------~---1552 (610) A-ADDRESS

1556 (614) A-ADDRESS
1557 (615) A-ADDRESS

1560 (618) A-ADDRESS
1561 (619) A-ADDRESS

1564 (61C) A-ADDRESS

1568 (620) A-ADDRESS

1572 (624) A-ADDRESS
1573 (625) A-ADDRESS

1576
1578
1579

(628) A-ADDRESS
(62A) A-ADDRESS
(62B) A-ADDRESS

1580 (62C) A-ADDRESS

1588 (634) A-ADDRESS
1589 (635) A-ADDRESS

1592 (638) A-ADDRESS
1593 (639) A-ADDRESS

1596 (63C) A-ADDRESS
1597 (63D) A-ADDRESS

1600 (640) A-ADDRESS

1604 (644) A~ADDRESS

1608 (648) A-ADDRESS
.. 11 11..

1552 (610) A-ADDRESS

1556 (614) A-ADDRESS

4

1
3

1
3

4

4

1
3

2
1
1

4 (2)

1
3

1
3

1
3

4

·4

4
APATCHLN

4 TSOTRTBL

4 TSOTRNM

POINTER TO SYMB NAME

DCB ADDRESS LeS1

FLAGS
ECB ADDRESS

GSPL OR GSPV

SHSPV VALUE

EXIT ROUT. ADDRESS RORI

DPMOD VALUE
LPMOD VALUE

EP NAME SPACE

NO LSQA

NO TID
STAI/ESTAI PARAMETER LIST

STAI/ESTAI FLAGS
STAI/ESTAI EXIT ROUTINE ADDR

TASKLIB.

FLAGS AND PARM LIST LENGTH

NO NSHSPV OR NSHSPL PARM
"M-APATTACH" PLIST LENGTH

STTRAN PARM BLOCK

STTRAN TABLE NAME

Licensed Mater;al--Property of IBM
Section 5. Data Areas 369

TSDGl (TSO, XSYS, AP) continued

OFFSETS TYPE LENGTH . NAME DESCRIPTION.

1560 (618) A-ADDRESS 4 TSOTROPT STTRAN LIST OPTION LIST

1564 (61C) CHARACTER 8 TRNNAME TRANSLATE NAME

1572 (624) A~ADDRESS 4 TSOVTBL A(TRANSLATE NAME)

1576 (628) A-ADDRESS 4 TSOVTSB ACTSB BUFFER = CMSBUFF)
--LIBRARY MANAGEMENT DATA
BSAM CONTROL BLOCKS

• • •• . 1 • 1

1636 (664) SIGNED

1636
1637
1640

(664) A-ADDRESS
(665) A-ADDRESS
(~68) SIGNED

1640 (668) BITSTRING

16~6 (678) A-ADDRESS

1660 (67e) A-ADDRESS
1661 . (67b) A-ADDRESS

1664 (680) A-ADDRESS
1666 (682) BITSTRING

1668 (684) A-ADDRESS

1672 (688) BITSTRING
1673 (689) A-ADDRESS

1676 (68C) BITSTRING
1677 (680) A-ADDRESS

1680 (690) CHARACTER

1688
1689
1690

(698) BITSTRING
(699) BITSTRING
t69A) BITSTRING

1692 (69C) BITSTRING
1693 (690) A-ADDRESS

1696 (6AO) A-ADDRESS

1700 (6A4) SIGNED
1702 (6A&) A-ADDRESS

LIBHCP

4 LIBOPEN

1
3
4 LIBDCB

16

4

1
3

2
2

4

1
3

1
3

8

1
1
2

1
3

4

2
2

"5" I ICB'S FOR OPTCD=C

ALIGN LIST TO FULLWORD

OPTION BYTE
DCB ADDRESS
ORIGIN ON WORD BOUNDARY DIRECT
ACCESS DEVICE INTERFACE

FDAD.DVTBL

. KEYLE.DEVT.TRBAL COMMON ACCESS
METHOD INTERFACE

BUFNO
BUFCB

BUFL
DSORG

IOBAD FOUNDATION EXTENSION

BFTEK.BFLN.HIARCHY
EODAD

RECFM
EXLST FOUNDATION BLOCK

DDNAME

OFLGS
IFLG
MACR BSAM-BPAM-QSAM INTERFACE

RER1
CHECK. GERR. PERR

SYNAD

CIND1. CIND2
BLKSIZE

-----------------~---1704 (6A8) SIGHED 4 wepo. WCPL. OFFSR. OFFSW

1708 (6AC) A-ADDRESS 4 IOBA
------------------------~--1712 (6BO) A-ADDRESS
171i (6B1) A-ADDRESS

1716 (6B4) A-ADDRESS

1720 (6B8) SIGNED
1722 (6BA) A-ADDRESS

1
3

4

2
2

Licensed Material--Property of IBM
370 VS APL Program Logic

NCP
EOBR. EOBAD BSAM-BPAM INTERFACE

EOBW

DIRCT
LRECL

L

TSOGL (TSO, XSYS, AP) continued

OFFSETS TYPE

1724 (6BC) A-ADDRESS
.1.11. ..

1728 (6CO) SIGNED

1732
1733
1734

(6C4) HEX
(6CS) HEX
(6C6) A-ADDRESS

1736 (6C8) A-ADDRESS

1740 (6CC) A-ADDRESS

1744 (600) A-ADDRESS

1748 (604) A-ADDRESS
... 1 1 ...

1752 (60S) HEX

LEtlGTH NAME

4
LI8DC8L

4 LIBDECB

1
1
2

4

4

4

4 LIBDECBN
LIBDECBL

4

DESCRIPTION.

CNTRL. NOTE. POINT
"*-LIBDCB" DCB LENGTH

EVENT CONTROL 8LOCK

TYPE FIELD
TYPE FIELD
LENGTH

DCB ADDRESS

AREA ADDRESS

RECORD POINTER WORD

DECB RING CHAIN FIELD
"*-LIBDECB" RING ENTRY LENGTH

REMAINING RING ENTRIES --.------------------
MISCELLANEOUS OTHER LIBRARY MANAGEMENT DATA

DATE/TIME WORKSPACE WAS SAVED. TO BE RETURNED TO INTERP.
VIA PDSPASS.

1848 (738) HEX

1856 (740) HEX

. . .. 1 ...

1860 (744) HEX

1864 (748) HEX

1868 (74C) HEX

1872 (7 SO) HEX

1884 C7SC) HEX
1886 C7SE) HEX
1930 C78A) HEX

· .. 1
· . 1 .
· .11
.1 ..
.1.1
.11.

8 CMSAVDAT

4 LIBUIST

LIB#LEN

4 MAXLIBNO

4 LIBDA TLN

4 CHTALlB

12 CNThNAM

2
44 L I B!'JSDSN

4 LIBFU::TN
LIBDROP
LIBLIB
LIBLOAD
LIDSAVE
LISCONT
LIncoPY

TIME/DATE IN FLOATING PT.

POINTER TO AN INSTALLATION
PROVIDED LIST OF LIBRARY NUMBERS
~lHICH THIS USER IS PERt1ITTED TO
CREATE. NOTE. ACCESS IS NOT HEREBY
LIMITED, ONLY CREATION.
"8" LENGTH OF EACH ENTRY OF THE
LIBILIST OF LIBRARIES

MAX LEGAL LIBRARY NUMBER (THIS
VALUE IS DEPENDENT ON THE LENGTH
OF APLID)

BYTE LEHGTH OF DATA TO BE WRITTEN
TO DISK BY EITHER SCSAVE OR
SCCOPA.

CONTINUE WORKSPACE'S ORIGINAL
LIIlRARY tWr:BER
COHTI~UE WORKSPACE'S ORIGINAL NAME
(ZCODES)

I DSN SIGNIFICANT LENGTH
V DSN
LIBRARY MGMT FUNCTION CODE
"1" SCOROP
"2" SCLIB
"3" SCLOAD
"4" SCSAVE
"5" SCCONT
"6" SCCOPA. SCCOPO. SCCOP!. OR
SCCOPZ

Licensed Material--Property of IBM
Section 5. Data Areas 371

TSOGl (TSO, XSYS, AP) contfnued

OFFSETS TYPE LENGTH NAME

1931 (78B) HEX 4 LIBLOCAL
1 ..• ' ...• llBOURS

· 1 .. LIBSHR

· . 1 . LIBPUB

· .. 1 LlBCONTU

1 ... LIBNWLIB

. 1 .. LIBNEW05

. 1 .• LIBL BERR

· 1 .. LIBSORSD

· 1 . LIBPWDKN

· 1 LIBAUTH

1932 (7SC) HEX 4 LIBGLOBL
1•. LIBLBOFL

· 1 •• LIBLDCPY

• • 1 . LIBABEND

1936 (790) HEX o
1 936 (7 9 0) HEX 4 WSHSAVE

DESCRIPTION

LIBRARY MANAGEMENT FLAG
"BITO" THE CURRENT LIBRARY IS
OWNED BY THE CURRENT USER. IT MAY
STILL BE EITHER PROJECT OR
PRIVATE.
"BIT1" THE CURRENT LIBRARY IS
PROJECT. IT MAY OR MAY NOT BE
OURS.
"BIT2" THE CURRENT LIBRARY IS
PUBLIC. I.E. ITS NUMBER IS LESS
THAN 1000. IT MAY OR MAY NOT BE
OURS. 11 MUST BE SHARABLE.
"BIT3" THE WORKSPACE aEIHG
REFERENCED IS THE PRIVATE CONTINUE
\lIORKSPACE.
"BIT4")SAVE IS CAUSIHG A NEW
PROJECT LIBRARY TO BE DEFINED.
"BITS")SAVE ONLY WORKSPACE DATA
SET IS NEW
"BITS")LIB ONLY A CATALOG
MANAGEMENT ERROR HAS OCCURRED. IF
THIS IS rHE INTERPRETER'S LAST
CALL TO SCLIB FOR THIS)LIB
COMMAND, THEN QUEUE UP A WARNING
MESSAGE FOR THE USER.
"BITS")COPY ONLY COP~ HAS SAVED
THE SINK AND LOADED THE SOURCE.
I. E. THE SINK IS DESTROYED HI CORE
BUT PRESERVED ON DISK.
"8IT6")SAVE ONLY THE CURRENT
PASSWORD FOR THIS W~RKSPACE IS
KNOW" FROM THE PREVIOUS)LOAD
CQiI11ANO.
"BIT7" ALL THE USER IS NOT
AUTHORIZED TO)SAVE OR)DROP.

GLOBAL LIB MGMNT FL~G
"BITO~)LIB ONLY WSMBUFF HAS
OVERFLOWED DURING PROCESSING OF
THE)LIB CO~MAND. AS A RESULT, THE
INTERPRETER WILL RE-CALL SCLIB FOR
THE ADDITIONAL WORKSPACE NAMES.
"BIT1")COPY ONLY THIS SIGNALS
)LOAD THAT IT IS BEING CALLED BY
)COPY INITIALIZATION.
"BIT2" DCB ABEND THE DCB ABEND
EXIT HAS BEEN RACF TAKEN. AND AN
ERROR NOTED. RACF THE DCB WILL BE
CLOSED. RACF

ALIGNMENT

WSHEADER BUFFER SAVE AREA
===
THE FOLLOWING DATA MUST BE CONTIGUOUS SINCE IT IS
INITIALIZE AS A SINGLE BLOCK

2024 (7 E8) HEX 4 LIBDATAA START OF BLOCK
--DEFAULi LIBRARY NUMBER PERMISSION LIST.

2024 (7 ES) HEX 4 DFlTlIBN

l;cen~ed Material--Property of IBM
372. VS APL Program Log; c

USED IFF APLYUUSR -EXIST

TSOGL (TSO. XSYS, AP) continued .,

OFFSETS TYPE LEtlGTH NAME DESCRIPTION

--CATALOG MANAGEMENT LISTS USED TO MANAGE LIBRARY
IDENTIFICATION CATALOG ENTRIES

2032 C7FO) HEX

2032
2033
2034
2035

<7FO) HEX
(7F!) HEX
<7F2) HEX
<7F3) HEX

2036 <7F4) HEX

2040 <7F8) HEX

2044 (7FC) HEX

2048 (800) HEX

2048
2049
?050
2051

(800) HEX
(SOl) HEX
(S02) HEX
(S03) HEX

o APLBLDX

1
1
1
1

4

4

4

o APLDLTX

1
1
1
1

ALIGN ON FULL WORD

THREE BYTES OF FLAGS
INDICATING THE FUHC
TION TO BE PERFORMED
NO OPTIOtl THREE

PARAMETER TWO

PARAM. THREE OMMITTED

PARAMETER FOUR

ALIGN ON FULL WORD

THREE BYTES OF FLAG3
INDICATING THE FUNC
TION TO BE PERFORMED
NO OPTION THREE

-------------------~---2052 (S04) HEX 4 PARAMETER TWO

2056 (808) HEX 4 PARAM. THREE OMMITTED ---~~---WORKSPACE DATA SET NAME CONSTRUCTION DATA
--------------------------~~-~a~---2060 (80 C) HEX
2062 (80E) HEX

2 0 7 0 (81 6) H EX

.. 11 .1.1

~ ~np.REFL
IS I.lBPREFX

4 l aUlD
LIBDATAZ
LIBDATAL

SIGNIFICANT L'LIBPREFX
1ST L~VEL DSHANE QUALIFIER
(USUALLY THE USERID)
USERID
,.~" END MARKER
"LIBDATAZ-LIBDATAA" AREA LENGTH

===:=============================
END OF CONTIGUOUS DATA
)COPY MANAGEMEHT DATA
BSAM CONTROL BLOCKS

2080 (820) HEX o j.,IORKOPEN ALIGN LIST TO FULLWORD
----------------------------.. ---2080 (820) HEX
2081 (821> HEX

2084 (824) HEX

2084 (824) HEX

2 1 0 0 (S 3 4) HEX

1
4

o WORKDCB

16

4

OPTION BYTE
DCB ADDRESS

ORIGIN ON WORD BOUNDARY DIRECT
ACCESS DEVICE INTERFACE

FDftD,DVTBL

KEYLE,DEVT,TRBAL COMMON ACCESS
METHOD INTERFACE

-------------------------~.-~~~--2104 (S38) HEX
21 05 (839) HEX

1
3

BUFNO
BUFCB

------------------------~-----~-~--2108 (83C) HEX
2110 (83E) HEX

2
2

BUFL
DSORG

----------------------------~Wft~._---
2112 (840) HEX 4 IOBAD FOUNDATION EXTENSION
---------------------------.~--~~~---2116 (844) HEX
2 11 7 (8 4 5) H EX

1
3

BFTEK,BFLN,HIARCHY
EODAD

Licensed Material--Property of IBM
Section 5. Date Areas 373

TSOGL (TSO, XSYS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

------~~-~---2120 (848) HEX
2121 (849) HEX

1
3

RECFM
EXLST FOUNDATION BLOCK

---~-------------2124 (84C) HEX

2132
2133
2134

(854) HEX
(855) HEX
(856) HEX

2136 (858) HEX
2137 (859) HEX

2140 (85C) HEX

2144 (860) HEX
2146 (862) HEX

2148 (864) HEX

2152 (868) HEX

2156 (86C) HEX
2157 (86D) HEX

216 0 (870) HEX

2164 (874) HEX
2166 (876) HEX

2168 (878) HEX
.1.1 1. ..

1
1
2

1
3

4

. 2
2

4

4

1
3

4

2
2

4
WORKDCBL

DDNAME

OFLGS
IFLG
MACR BSAM-BPAM-QSAM INTERFACE

RERI
CHECK, GERR, PERR

SYNAD

CHIDI, CIHD2
BLKSIZE

WCPO, wePL, OFFSR, OFFSW

IOBA

NCP
EOBR, EOBAD BSAM-BPAM INTERFACE

EOBloi

DIReT
LRECL

CNTRL, NOTE, POINT
"*·-WORKDCB"

===
)COPY SINK CONTROL DATA

2172 (87C) HEX 4 CPYDATA DATA START

2172 (87 C) HEX 4 CPYGETMH ADDR. OF LENGTH LIST

2176 (880) HEX 4 ADDR. OF ADDP.. LIST
---------------------------------------~---------------------------------------2180 (884) HEX
2181 (885) HEX

1
3

MODE AND OPTION FLAGS
SUBPOOL VALUE

------~--2184 (888) HEX 8 CPYGMQTY VARIABLE GETMAIN LIMITS
-----~------------------ .. --2192 (890) HEX 4 CPYMAXL MAX HEEDED SAVE SPACE SIZE
--~.------------------------------------2196 (894) HEX

2200 (898) HEX

2204 (89C) HEX

2208 (8AO) HEX

2216 (8A8) HEX

2224 (8BO) HEX
.11

2232 (8B8) HEX

4 CPYRSDUL

4 CPYHEADL

4 CPYTAILL

8 CPYSLOT1

. 8 CPYSLOT2

4 CPYSLOT3
CPYSLOTI

o

MAX NEEDED SAVE DATA SET SZ

SINK WS HEAD SAVE SIZE

SINK WS TAIL SAVE SIZE

I 1ST SAVE SLOT DESCRIPTER

I 2ND SAVE SLOT DESCRIPTER

I 3RD SAVE SLOT DESCRIPTER
"(*-CPYSLOT1)/8" V SAVE SLOT COUNT

I ALIGNMENT
-----------------------------~---
2232 (8BB) HEX 28 CPYAVAIl

Licensed Material---Property of IBM
374 VS APL Program logi c

AVAIL SPACE DESCRIPTERS

J

J

J

L
TSOGL (TSO, XSYS, AP) continued

OFFSETS TYPE LENGTH NAME
. . .

.. --2260 (8D4) HEX

2264 (8D8) HEX

· 11.

4 CPYHXAVL

4 CPYSAVEA
CPYDATZ
CPYDATL

> H~XT AVAIL DE~CRIPTE~

MISC SAVE AREA
"*" DATA END
"CPYDATZ-CPYDATA" DATA LENGTH --MISCELLANEOUS OTHER)COPY DATA

2268 (8DC) HEX 4 CMSAVSIZ

2272 (8EO) HEX 4 COPARET

2276 (8E4) HEX 4 CMSICTR

2280 (SES) HEX 4 CMSOC1R

SAVE SIZE OF ACTIVE (SINK) WS HERE
WHILE SOURCE IS LoADED.

RETURN ADDRESS TO THE INTERPRETER
AFTER CALL TO YYCOPA. THIS IS ALSO
USED AS THE RETURN ADDRESS AFTER
THE CALL TO YYCOPZ THAT CONVERTS
FROM COPY-SOURCE MODE TO COPY-SINK
MODE. IT IS ALSO USED FOR ALL
NOH-SYSTEM-ERROR TYPE ERROR
RECOVERY RETURNS.

COUNT OF RECORDS READ FROM
COPYDA TA FIL E,

COUNT OF RECORD5 WRITTEN 10
COPYDATA FIL E. --TERMINAL MANAGEMENT.

2284 (SEC) HEX 1
22S5 (SED) HEX 1

22S6 (SEE) HEX 4
1 ...

.1 ..
· . 1 .
· .. 1

1 ...

· 1 ..

• . 1 •
· .. 1

CMSIDLSW
CMSNLSW

CMSFLAGS
CMSSEGZ

TSORFlAG
CMSTYOI
CMSLAST
CMSOUT

CMSNLREQ

CMSTYOII
CMS4S0UT

=ENL IF IDLES REQ'D. ELSE O.
=ENL IF NEW-LINE SEEN, ELSE X'OO'.
USED FOR WSMPARM2 CHECK ON YYTYO.
TERMINAL MANAGEMENT FLAGS
"BITO" SEGMENT IS LAST ONE IN
CMSSF
"BIT1" READING FROM TERMINAL
"BIT2" TYO CALLED FROM TYOI
"BIT3" FINAL TYO OUTPUT
"BIT4" O-U-T SIGNALLED ON DISPLAY
TERMINAL.
"BITS" ON YYTYO FOR DISPLAY TERM,
INPUT PARM SAYS NEW-LINE CHAR MUST
BE AT END OF OUTPUT.
"BIT6" TYOI CALLING TYI
"BIT7" OUTPUT THIS MESSAGE IN
SPITE OF ATTENTIOHS ---._--CMSBUFF POINTERS. USED DURING TYO TO KEEP TRACK OF

WHAT HAS BEEN PUT IN CMSBUFF.

2288 (SFO) HEX

2292 (8F4) HEX

4 CMSBFLIH

CMSHEL D

·4 CMSBFSEG

CMSINBUF

BEGINNING OF CU~RENT LINE IN
CMSBUFF (TYPEWRITER 'ONLY)
"CMSBFLIN" FOR DISPL~Y TERMINALS,
CONTAINS LENGTH OF DATA HELD FROM
PREVIOUS YYTYO.

BEGINNING OF CURRENT SEGMENT IN
CMSBUFF. (FOR TYPEWRITER TERMINAL
ONLY,)
"CMSBFSEG" LENGTH OF INPUT BUFFER
FOR DISPLAY TERMINAL (=135 IF
USING 3270).

Licpns~d Material--Property of IBM
Section 5. Data Areas 375

TSOGL nso, XSYS, AP) continued

OFFSETS TYPE LENGTH NAME DESCRIPTION

--- ---------- - -.-.------ -------------------- --------------------------------
PARMLISTS FOR RDTERM AND WRTERMMACROS.
---2296 (SFS) HEX

2296 (SFS) HEX

2304 (900) HEX
2305 (9011 HEX

230S
23.09
2310

(904) HEX
(905) HEX
(906) HEX

• •• 1

2312 (90S) HEX

2312 (90S) HEX

2320 (910) HEX
2321 (911) HEX

2324
2325
2326

(914) HEX
(915) HEX
(916) HEX

· .. 1

232S (918) HEX
232S (918) HEX

2336 (920) HEX
2337 (921) HEX

2340
2341
2342

(924) HEX
(925) HEX
(926) HEX

· .. 1

o CMSXPLST

S

1
3 CMSRADDR

1
1
4 CMSRLGTH

CMSXPLL

o CMSWPLST

S

1
3 CMSWADDR

1
1
4 CMSWLGTH

CMSWPLL

S
o TSORPLST

1
3 TSORADDR

1
1
4 TSORLGTH

TSORPLL

WRTERM PLIST USED BY ATTENTION
(STAX) EXIT.

UNUSED HISTORIC BIT.
OUTPUT ADDRESS.

BLACK RIBBON.
LONG WRITE, EDIT=NO.
OUTPUT LENGTH.
"*-CMSXPLST" LENGTH OF PLIST.

WRTERM PLIST.

UNUSED HISTORIC BIT.
OUTPUT ADDRESS.

BLACK RIBBON.
LONG WRITE, EDIT=NO~
OUTPUT LENGTH.
"*-CMSWPLST" LENGTH WRTERM PLIST.

RDTERM PLIST.

UNUSED HISTORIC BIT.
INPUT BUFFER ADDRESS.

ATTREST=NO OPTION.
UNUSED.
INPUT LENGTH.
"*-TSORPLST" LENGTH OF RDTERM
PLIST.

--TERMINAL DEVICE INFORMATION.

2344 (928) HEX 4 TSODTYPE TERMINAL DEVICE TYPE
1 ... TS03270 "BITO" 327D DISPLAY
· 1 .• TS03217 "BIT1" 3277 DISPLAY
· . 1 . TS03278 "BIT2" 3278 DISPLAY
· .. 1 TSOAPLFC "BIT3" APL FEATURED TERMINAL

1 ... TSOBATCH "BIT4" APL RUNNING IN BACKGROUND
· 1 .. TSOIDLES "BITS" TERMINAL START-STOP W/

IDLES
· .1. TSOVTAM "BIT6" LINE IS VTAM
· .. 1 TSOTCAM "BIT7" LINE IS TCAM

2345 (929) HEX 1 TS0327CC 327X GRAPHIC ESCAPE X'ID' FOR 3277
X'08' FOR 3278

2346 (92A) HEX 4 TSODPYFL FLAGS USED BY APLYUDPY
1 ..• TSODPHLD "BITO" HELD INPUT IN CMSBUFF2
· 1 .. TSODPFUL "BITl" BUFFER OVERFLOW ON TGET
· . 1 . TSODPECO "BIT2" ECHO INPUT (MU L TIll N E)
· .. 1 TSODSMAV "BIT3" DISPLAY SESSION MGR

AVAIlABL R4ADSM
2347 (92B) HEX 1 RESERVED
---2348 (92C) HEX 4 TSOPFKAD

Licensed Material--Property of IBM
376 VS APL Program Logi c

PFK DEFINITION TABLE ADDR

L

TSOGL (TSO, XSVS, AP) continued

OFFSETS TVPE LENGTH NAME DESCRIPTION

--PARMLIST FOR STAX MACRO.
---~---------2352 (930) HEX

2352 (930) HEX

2356 (934) HEX
2358 (936) HEX

2360 (938) HEX

2364 (93C) HEX

2368 (940) HEX
2369 (941) HEX

· .. 1 . 1 ..

2 37 2 (944) H EX

o CMSTAXPL

4

2
2

4

4

1
4

CMSTAXL

STXEXIT

4 CMSTABS

ADDRESS OF EXIT ROUTINE

LENGTH OF INPUT BUFFERS
LENGTH OF OUTPUT BUFFERS

ADDRESS OF OUTPUT BUFFERS

ADDRESS OF INPUT BUFFERS

REPLACE/NO REPLACE, DEFERRAL IHD
ADDRESS OF USER PARAMETERS
"*-CMSTAXPL" LENGTH OF STAX
PARMLIST.
"0" OFFSET TO FIELD IN CMSTAXPL
CONTAINING ADDR OF STAX EXIT
ROUTINE.

CURRENT TAB SETTING. (ALL 0 IF NO
TABS.) --ADDRESSES OF DEVICE-DEPENDENT SERVICE REQUEST

HANDLERS. THE ADDRESSES IN THESE FIELDS DEPEND ON
WHETHER THE TERMINAL IS A TYPEWRITER OR A
DISPLAY (3270). APLYUINI STORES THE ADDRESSES HERE,
APLYUFXI USES THEM.

2628 (A44) HEX o CMSDDADR

2628 (A44) HEX 4 CMSXTYI

2632 (A48) HEX 4 CMSXTYO

26 36 (A 4 C) HEX 4 CMSXTYOI

ADDRESS OF YYTYI HANDLER. (EITHER
SCTYI OR SCDTYI.)

ADDRESS OF YYTYO HANDLER. (EITHER
SCTYO OR SCDTYO.)

ADDRESS OF YYTYOI HANDLER. (EITHER
SCTYOI OR SCDTYOI.)

--.-------------------------STACK P~OCESSING (APLIOl) SUPPORT.

2640 (A50) HEX

2644 (A54) HEX

2648 (A58) HEX

2652 CA5C) HEX

2656 (A60) HEX

4 STCKPURG

4 STCKPOP
LENSTACK

4 NEXTITEM

4 STACKBEG

4 STACKEHD

> STACK PURGE (IF ANY)

> STACK POP (IF ANY)
"512" LENGTH OF STACK

(STACKTXT+lENSTACK) START OF USED
PART

(STACKTXT) CONSTANT

(STACKTXT+LENSTACK) CONSTANT
===
STCKLEN DS F . DEFAULT SIZE IS IN APLOPTNS AISIZE

2660 CA64) HEX
1 .•.
· 1 .•
· . 1.

2661 (A65) HEX

2664 (AU) HEX

4 STCKSTAT
PURGING
NOFEHCE
STCKDATA

3 APllOlWK

4 TERMTRAC

STATUS OF STACK
"X'80'" ITS BEING PURGED
"x.' 4 0 ' "
"X'20'" LAST DATA FROM STACK
STACK FENCE ADDRESS

> TERMINIAL 10 TRACE

Licensed Meterls1--Property of IBM
Section 5. Data Areas 377

TSOGL (TSO, XSYS, AP) cDntinued

OFFSETS TYPE LENGTH NArtE DESCRIPTION

===
TERMINAL I/O TESTING AND TRANSLATING TABLES

2668 (A6C) HEX

2924 (B 6 C) HEX

318 0 (C 6 C) H EX

3184 (C70) HEX'

3188 (C74) HEX

3192 e C7S) HEX

3196
3197
3200
3202

3204

(C7C) UEX
(C7D) HEX
(C80) HEX
(C82) HEX

(C84) HEX

1 ...
.1 ..
· .1.

· .. 1

3208 (C88) HEX

3212 (CSC) HEX

3216 (C90) HEX

. 1 ..

. . . .

1 ...
.1 ..

256 CMSXOUT

256 CMSXIN

4 CMSYOUT

4 CMSYIN

4 TSOTRZE

4 TSOTREZ

1 TSOQTT
3
2 TSODH
4 TSODW

4

TCAl'lFUDG

CMSFSAWA
CMSFSFlG
FSEDINIT
FSMSGFUL
FSMBFLSH

FSMSCSTK
FSEDOPEN
FSMODE

FSWALEN

4 CMSFSMWK

4 CMSFSGWK

o GTTERM . .

OUTPUT TRANSLATE FOR DEVICE NTO--

INPUT TRANSLATE FOR DEVICE NTO--

A(OUTPUT) CTRT FOR ESCAPE)

A(INPUT) eTR AFTER ESCAPE)

ZCODE TO EBCDIC TRANSLATE H10--

EBCDIC TO ZCODE TRANSLATE NTO--

TERMINAL TYPE
RESERVED
TERMINAL HEIGHT
TERl'lIHAL WIDTH
"4" ATTRIB OVERHEAD

FS EDIT WORK AREA
"CMSFSAWA" FIRST BYTE IS FLAG.
"X'80'" FS EDITOR INITIALIZED.
"X'40'""FS MSG ~REt IS r~L~.
~~'lU'" FS MSG AREA HAS BEEW
FLUSHED.
"X'10'" SCREEN 'STACK' IN USE.
"X'08'" FS EDITOR CURR~HTLY OPEN.
"X'04'" CURRENT SCREEN IS FUll
SCREEN
"X'4000'" MAXIMUM THAT MIGHT BE
NEEDED

FULL SCREEN MGR WORK~AREA

FULL SCREEN GRAF DRIVER AREA

----------------------------_ .. _--3216 (C90) HEX 4 ADDRESS OF PRIMARY PARM ADDR

322 0 (C 9 4) . HEX 4 " ADDR OF ALTERNATE
-------------------_._--3224 (C98) HEX 4 L-FORM--ATTRIB BYTE

3228 (C9C) HEX 4 FSEWRC FUll SCREEN ERASE WRITE
· . 1 . .111 $ESC "X'27'" ESCAPE
1111 .1.1 $ELoIR "X' F5 It, ERASE WRITE
.111 111. $EWRA "X' 7E'" ERASE WRITE ALTERNATE

3230 (C9E) HEX 6 FSTCAM " TCAM FULL SCREEN EXIT STRING
---3236 (CA4) HEX 4 IBMOPTl RESERVED FOR IBM USE

3240 (CA8) HEX 4 IBMOPT2 RESERVED FOR IBM USE
---3244 (CAC) HEX 4 IBMOPT3

llcensed Materlal--Property of IBM
378 VS APL Program Logi c

RESERVED FOR IBM USE

J

L

TSOGL (TSO, XSYS, AP) continued

OFFSETS TYPE

3248 (CBO) HEX

3252 (CB4) HEX

3256 (CB8) HEX

3260 (CBC) HEX
3264 (CeO) HEX

3268 (CC4) HEX

LENGTH NAME

4 IBMOPT5

'+ IBMOPT6

'. IBmWT7
~ JBtlUPT~

4 HDS(.~f)j

DESCRIPTION

RfsrR~ED FOR IBM USE

RESERVED FOR IBM USE RSVD

RESERVED FOR IBM USE R5VD

RESERVED FOR IBM USE RSVD
RE~fRVEU FOR IBM USE RSVD

RESEPV~D rOR tBM USE HDSC ---------------- -- _ '- .. ,'.- - ---- -- _ ... ' - ... ~. " -- '.- - - ", -.- ---- ---- -- _._---- -- ---------__________ ... __ ... __ •• _. ____ • _. __ • _ •• _ •• ___ ... _ • _, __ • 0 •• __ , ____ •• •• .. _ k ,_ .. ___ _ ... __ • _____ • __________ ... _ ... _

APl BATCH-I/O MANA~FM[~T
THE FOLLOWING DATA MUST B~ cnHT1GUOUS SI~~E IT IS
INITIALIZED AS A SINGlE BLCC~.

3272 (eC8) HEX 4 DATOATAA srARl OF CONTIG DATA I I -- -_. --------------_._-- ---------------------------------QSAM CONT~OL Bl~CKS

3272 (CC8) HEX

3272 (CCS) HEX
3273 (CC9) HEX

3276 (CCC) HEX
3277 (CCD) HEX

3280 (CDO'> HEX

3280 (COO) HEX

o I}ATOPfN

1

ALIGN LIST TO FUllWORD

() P TI 0 tl BYTE
DCB ADDRE~iS

OPTION BYTE
Dcn ADDRESS

ORIGIN ON WORD BOUNDARY DIRECT
ACCESS DEVICE INTERFACE

rn,\I).DIJTBL

3296 (CEO) HEX 4 KE~LE.DEVT,TRBAl COMMON ACCESS
1'1crw')) INTERFACE

3300 (CE4) HEX
3301 (CES) W;-(

3304 (CE8' HFX
3306 (CeA) HEX.

330S (eEC) tl::::'.

3312 (CFO) Hf:X
3313 (eFl) HEX

3316 (CF4) HF.X
3317 (CF5) HEX

3320 (CFS) HEX

332S
3329
3330

(DOD) HEX
(001) HEX
(002) HEX

3332 (004) HEX
3333 (005) HEX

3336 (DOS) HEX

3340 (DOC) HEX
3342 (DOE) HEX

3344 (010) HEX

...

1
.~

!.
1
I.:

. 1

BiJFNO
BUFer,

Bl/F L

IO~AD FOUNDATIOH EXTENSION

er TEK.3FI.N,HIARCHY

RE.CFM
EXLSl FOUNDATION BLOCK

DDNIlf1E

OFlGS
I FL r,
MACR B5AM-BPAM-QSAM INTERFACE

RERI
CHECK, GERR, PERR

SYNAD

cnmI, CIN02
BLKSIZE

wcpo, WCPL, OFFSR, OFFSW

~. ; l:".t"\ <;<'0 Mccter i '" l-Property of IBM
SpctiDn~. Data Areas 379

TSOGL (TSO, XSYS, AP) continued

OFFSETS TYPE

3348 (014) HEX

3352 (018) HEX
3353 (019) HEX

3356 (Ole) HEX

3360 (020) HEX
3362 (022) HEX

3364 (D24) HEX
3365 (025) HEX

3368 (028) HEX

3372 (D2e) HEX
3376 (030) HEX

3376 (030) HEX

3392 (040) HEX

3396 (044) HEX
3397 (045) HEX

3400 (048) HEX
3402 (04A) HEX·

3404 (04C) I-IEX

3408 (050) HEX
3409 (051) HEX

3412 C 054) HEX
3413 (055) HEX

3416 (058) HEX

3424
3425
3426

(060) HEX
(061) HEX
(-062) HE:X

3428 (C64) HEX
3429 (D65) HEX

3432 (068) HEX

3436 (06C) HEX
3438 (06E) HEX

344 0 (07 0) H EX

3444 (D74) fiEX

3448 (078) HEX
3449 (079) HEX

3452 (07e) HEX

3456 (080) HEX
3458 (082) HEX

3460 (084) HEX
3461 (085)· HEX

LENG.TH NAHE

4

1
3

4

2
2

1
3

4

4
o APLPRINT

16

4

1
3

2
2

4

1
3

1
3

8

1
1
2

1
3

4

2
2

4

1
3

2
2

1
3

Licensed Material--Property of IBM
380 VS APl Progr"am Log; c

DESCRIPTION

IOBA

NCP
EOBR, EOBAO QSAM INTERFACE

RECAD

QSWS
LRECL

EROPT
CNTRl

PRECL

EOB
ORIGIN ON ~ORD BOUNDARY DIRECT
ACCESS DEVICE INTERFACE

FDAD,DVTBl

KEYLE,DEVT,TRBAL COMMON ACCESS
METHOD INTERFACE

BUFNO
BUFCn

SUFL
DSORG

IOBAD FOUNDATION EXTENSION

BFTEK,BFLH,HIARCHY
EODAO

RECFM
EXLST FOUNDATION BLOCK

DDNM1E

OFlG5
IFlG
MACR BSAM-BPAM-QSAM !~TERFACE

P.ERI
CHECK, GERR, PERR

SYNAD

CHIDI, CIND2
BLKSIZE

WCPO, wePL. OFFSR, OFFSW

IOBA

NCP
EOBR, EOBAO QSAM INTERFACE

RECAD

QSWS
LRECL

EROPT
CtHRl

J

~

TSOGL (TSO, XSYS, AP) continued

OFFSETS TYPE

3464 (D88) HEX

3468 (D8 C) HEX

11.. 1. ..

LENGTH HAHE

4

4
BATDATAZ
BATDATAl

DESCRIPTtaN .

PRECL

E08 .
"*" END OF CONTIG DATA
"BATDATAZ-BATDATAA". LEN OF eOtiTIG
D.A T A

--END OF CONTIGUOUSLY INITIALIZED DATA
MISCELLANEOUS OTHER BATCH I/O MANAGEMEHT DATE

3472 (D90) HEX 4 BINSAVE

3476 (D94) HEX 4 BOUTADDR

ADDR OF NEXT INPUT BUFFER OR ZERO.
THIS IS USED TO SAVE THE NEXT LINE
WHEN ATTN IS PRESSED FOR THE
PREVIOUS LINE (WHICH CAN HAPPEN
WHEN APL IS RUN IN BATCH MODE
UNDER TSO).

I) NEXT BYTE IN OUTPUT RCD
--~----------------3480 (098) HEX 4 BOUTlEN V REMAINING LEN OF OUTPUT RCD -----------------_._---_ .. _---MESSAGE EDITTIHG ROUTINE WORK AREA

3488 (DAD) HEX o ERDSECT APLYULNE (APLEDIT) WORK AREA

3(.88 (DAO) HEX 8 ERTl DOUBLE-WORD WORKSPACE

3496 (DA8) HEX 4 ERT2 TWO DOUBLE-WORDS WORKSPACE
--_ .. _---SAVE AREAS

3512 (DB8) HEX

3576 (DF8) HEX

64 ERSAVE

4 ERPAS13 PASS THIS SAVE AREA IN REG 13 TO
BALR'ED-TO ROUTINES

--------------------------------------.--RECONSTRUCTED PLrST AREA

3648 (E40) HEX 4 ERPFl FIRST FLAG BYTE
1. .. ERFITX "X'80'" TEXT ADDRESS IN PlIST
.1 .. ERFIHO "X'40'" HEADER IN PLIST
· . 1 . ERFIBF "X'20'" BUFFER ADDRESS IN PLIST
· .. 1 ERFISB1 "X'10'" ONE SUBS T !TUn ON

1 ... ERFlSBN "X'08'" MUL TIPL E SUBSTITUTIONS (>
1)

3649 (E41> HEX 4 ERPF2 SECOND FLAG BYTE
1 ... ERF2CM "X'80'" BLANK COMPRESSION WANTED
· 1 .. ERF2DT "X'40'" DOT AT END OF LINE WANTED
· . 1 . ERF2DI "X'20'" 'DIE = YES' WANTED

===
LAST THREE BITS INDICATE 'DISP' FIELD

ERF2ER
· .. 1 ERF2TY
· . 1 . ERF2SI
· .11 ERF2NO
· 1 .. ERF2PR
.1.1 ERF2cr

3652 (E44) HEX 4 ERPTXA

"0 " ERRMSG
"1" TYPE
"2" SIO
"3" NONE
"4" PRINT
"5" cpcmlM

TEXT ADDRESS

:..; cer''Sed Mated al-Property of IBM
S~~tion 5. Data Areas 381

TSOGL (TSO, XSYS, APJ continued

OFFSETS TYPE

3656 (E48) HEX

3656
3658
3659

(E48) HEX
(E4A) HEX
(E4B) HEX

3664 (E50) HEX

LENGTH NAME

o ERPHDR

2 ERPNUM
1 ERPLET
5 ERPCS

4 ERP8FA

DESCRIPTION

ERROR MESSAGE HEADER

MESSAGE NUMBER
MESSAGE LETTER
CSECT NAME

BUFFER ADDRESS (FOR 'BUFFA') --FIELDS FOR SUBSTITUTION

3668 (ES4) HEX

3672 CES8) HEX

3676 (E5C) HEX
1 ..•

.1 ..

.. 1.

4 ERPSBA

4 ERSBD

4 ERSBF
ERSFlST

ERSFA
ERSFl

POINTER TO FIRST (NEXT) GROUP OF
SUB PARAMS IN ORIGINAL PlIST

DATA ADDR/VAlUE OR CURRENT SUB

SUB FLAG BYTE FOR CURRENT SUB
"X'80'" THE LAST SUBSTITUTION
PARAM
"X'40'" 'A'-TYPE OPTION
"X'20'" LENGTH SPECIFIED ---._------LAST THREE BITS GIVE OPTION TYPE

ERSFH "0" HEX OR HEXA
· .. 1 ERSFD "1" DEC OR DECA
· . 1 . ERSFC "2" CHARA
· .11 ERSFH4 "3" HEX4A
· 1 .. ERSFC8 "4" CHAR8A

3677 (ESD) HEX 3 ERSBL SUB LENGTH BYTE FOR CURRENT SUB

3680 (E60) HEX 4 ERSSZ SIZE OF SUB FIELD CI DOTS 1)
--MESSAGE CONSTRUCTION AREA

3688 (E68) HEX 8 NEED DOUBLE WORD BEFORE TEXT

3696 (E70) HEX 3 ERMESS FIRST LETTERS OF HEADER
3699 (E73) HEX 3 ERSECT DSECT NAME
3702 (E76) HEX 3 ERNUM MESSAGE NUMBER
3705 (E79) HEX 1 ERLET MESSAGE LEVEL LETTER
3706 (E7 A) HEX 4 ERBL BLANK

1 ... · . 1 . ERTSIZE "130" MAX TEXT SIZE
3707 (E7B) HEX 4 ERTEXT MESSAGE TEXT AREA --'TYPlIN'/'PRINTR' PLIST CONSTRUCTION AREA

3840 (FOO) HEX o
3840 (FOO) HEX 8 ERTPL

3848 (FO!) HEX 4 ERTPLA (ERMESS) MESSAGE TEXT ADDR

3852 (FOC) HEX 4 ERTPlL MESSAGE LENGTH
--WORK AREA USED FOR EDITING SUPERVISOR MESSAGES WITH
APLEDIT MACRO.

3856 (FlO) HEX 4 CMSLINED

licensed Material--Property of IBM
382 VS APL Program Logi c

TSOGL (TSO, XSYS, AP) continued

OFFSETS TYPE LENGTH NAHE DESCRIPTION

--SECOND LEVEL (HELP) MESSAGE CONTROL DATA

3896 (F38) HEX

3900 (F3C) HEX
3 9 0 3 (F 3 F) HEX

3904 (F40) HEX
1 •..

• 1 •.
· • 1 .

3908 (F44) HEX

3912 (F48) HEX

3916 (F4C) HEX
3911 (F4D) HEX

4 ERMOREQ

:5 ERMQHEAD
4 ERMQDLEN

ERMNOINF

4 ERMFLAGI
ERM~oJANTD

ERM4CED
ERMPLSD

4 ERMGMNL

4

1
4

ADDR OF)MORE MSG QUEUE)MORE

HEAD OF HELP MESSAGE QUEUE
DUMMY LEN FOR FAKE 1ST MSG
"0" ZERO LENGTH MEANS NO INFO.
)MORE

FLAG BYTE
"BITO" DISPLAY OF HELP MESSAGES
HAS BEEN REQUESTED BY THE USER.
"BITl" FORCE DISPLAY OF WHOLE Q
"BIT2" MESSAGE WAS PLUSED)MORE

LENGTH

ADD~. OF ADDR. LIST

MODE AND OPTION FLAGS
SUBPOOL VALUE --MESSAGE BUFFER FIELD DISPLACEMENTS

ERMCHAIN
·11 ERML EN
..... 1.. ERMTEXT
..... 1.. ERMPFXLN

"0" QUEUE CHAIN FIELD
"ERMCHAIH+3" MSG TEXT LENGTH
"ERMLEN+l" MSG TEXT BUFFER
"ERMTEXT" MSG BUFFER PREFIX LENGTH

==================================:==
THE FOLLOWING IDENTIFIES THE END OF THE
MISCELLANEOUS DATA AREA AND SETS THE START OF THE
BUFFER AREA AND ENSURES THAT THE TWO DO NOT

TAILSTAR "TSOGL+X'1000'-X'20'-6"B
MINUS 6 MINUS SOME MORE

3918 (FifE) HEX 4
===
DEFINE THE TERMINAL BUFFER HERE AND OVERLAY IT WITH
VARIOUS TRANSIENT DATA. ENSURE THAT THE BUFFER
STARTS SUFFICIENTLY SHORT OF TSOGL+X'lOOO' SO THAT
THE TRANSIENT DATA REMAINS ADDRESSABLE.
TERMINAL BUFFER
4058 ·(FDA) HEX if BUFPRFX ROOM FOR AID,ADDR,SBA,ADDR

4064 (FEO) HEX

4064 (FEO) HEX

6112 (11EO) HEX

if

4 CMSBUFF
Cf1SBUFFZ
CMSBUFFL

4 CMSBUFF2

"*"
"CMSBUFFZ-CMSBUFF" BUFFER LENGTH

BUFFER FOR KEYBOARD TRANSLATIONS
BY APLYUS93 OF TPUT MESSAGES TO
NON-DISPLAY TERMI"AlS.

Licensed Material--Property of IBM
Section S. Data Areas 383

TSOGl (TSO, XSYS, AP) continued

OFFSETS TYPE LENGTH NAME DEseRI PTION

=======~==============~~~==:===========~=
INVOCATION OPERAND'PARSING DATA

4 0 6 4 (FE 0) HEX 4 IOPODEFI PTR 21ST OPND DSCPTR NTRY
---------------------------~------------------------------------~--------------
4 0 68 (FE 4) U EX 4 IOPODElA PTR 2 lAST ODE
-------------------~---4072 (FE8) HEX

4076 (FEC). HEX

4080 (FFO) HEX

4088 (FF8) HEX
1 ...

4090 (FFA) HEX
4094 (FFE) HEX

4 CMSAPADA

4 IOPERMBU

8 IOPSAVE

4 IOPFlAG
IOPlOADl

4 IOPBUFF
o

SVP PARMS

PTR 2 ERR MSG BUF

MISC SAVE AREA

flAG BYTE
"BITO" A lOADlIB DDNAME HAS BEEN
CREATED VIA THE LOADLI8S OPERAND.
PARSING BUFFER

===
GLOBAL EQUATES.

. . .. 1.1.

CROSS REFERENCE

$ESC 3228 X'27'
$EWR 3228 X'F5'
$EWRA 3228 X'7E'
APATCHLH 1608 X'3C'
APATTACH 1552(610)
APLBlDX 2032(7FO)
APLDlTX 2048(800).
APlDTLX 0 (0)
APLID 194 (C2)
APLIN 3280(CDO)
APLOPTNS 192 (CO)
APlPRIHT 3376(D30)
APl101WK 2661(A65)
BATDATAA 3272(CCB)
BATDATAl 346B X'C8'
BATDATAZ = 3472
BATOPEN. 3272(CC8)
BIHSAVE 3472(D90)
80UTADDR 3476(D94)
BOUTLEN 3480(D98)
BUFPRFX 4058(FDA)
CMSABEND 1417 X'04'
CMSABHD2 1417 X'20'
CMSABORT 1417 X'OI'
CMSAlIB 1200(4BO)
CMSANAM 1204(484)
CMSAPADA 4072(FEB)
CMSAPAS 1216(4CO)
CMSAPlSM 1418 X'08'
CMSAPWKL = 512
CMSAVACT 1224(4C8)
CMSAVDAT 1848(738)
CMSAVE 524{20C)
CMSAVEZ = 956
CMSAVEZP 956(3BC)
CMSAVSIZ 2268(8DC)
CMSAWSID = 1200
CMSBCODE 1104(450)
CMSBFlIN 2288(8FO)
CMSBFSEG 2292(8F4)
CMSBMPSV 956 X'48'
CMSBPSW 1108(454).

TSOR
TSOML

"RIO" GLOBAL TABLE BASE REGISTER.
"*-TSOGl" GLOBAL TABLE lENGTH

CMSBREGS 1116(45C)
CMSBTPRG 1100 X'80'
CMSBTSYS 1100 X'40'
CMSBTYPE 1100(44C)
CMSBUFF 4064(FEO)
CMSBUFFL = 2048
CMSBUFFZ = 6112
CMSBUFF2 611(17EO)
CMSCAHCL 1417 X'02'
CMSCOHTX 1418 X'10'
CMSCOP~R 1416 X'20'
CMSCPUST .1320(528)
CMSDAIR 520(208)
CMSDDAOR 262~(A44)
cr1S0flPNO 1508(5E4)
CMSECB 1304(518)
CMSECBL 126BC4F4)
CMSECBLI 1268(4F4)
CMSECBl2 1272(4F8)
CMSFLAGS 2286(8EE)
CMSFRADR 1180(49C)
CMSFRSIZ 1184(4AO)
CMSFSAWA 3204(C84)
CMSFSFlG = 3204
CMSFSGWK 3212(CBC)
CMSFSMWK 3208(C88)
CMSGIVBK = 32768
CMSHElD = 2288
CMSHOlDT 1328(530)
.CMSICTR 2276(8E4)
CMSIDLSW 2284(8EC)
CMSINBUF = 2292
CMSIHSVP 1416 X'40'
CMSLAST 2286 X'10'
CMSLINED 3856(FI0)
CMSMAXWS 1196(4AC)
CMSMIHDL = 1000000
CMSMIHWS. = 20480
CMSMONTH 1404(57C)
CMSNlREQ 2286 X'04'
CMSHlSW 2285(BED)
CMSNOAUT 1418 X'20'

CMSNSTAE
CMSNU~lAP
CMSOCTR
CMSOlDTE
CMSOUT
CMSPACK
CMSPACKl
CMSPDATE
CMSPGMFl
CMSPGMF2
CMSPGMF3
CMSPSDT
CMSPTIME
CMSRADDR
CMSRLGTH
CMSSEGZ
CMSSHVFL
CMSSMADR
CMSSM.A.D2
CMSSMSIZ
CMSSMSZ2
CMSSSMAD
CMSSTAE
CMSSVPIH
CMSTABS
CMSTAXl
CMSTAXPL
CMSTIMEP
CrlS TRTUP
CMSTYOI
CMSTYOII
Cr·1SVPECB
CMSVWAIT
CMS~JADDR
CMS~J"ITF
CMSl'JlGTH
CMS~'IPL L
CMSWPLST
CMSHSADR
CMSWSZVN
CMSXBND
CMSXEQTR

1417 X'08'
1284(504)
2280(8EB)
1400(578):
2286 X'08'
1352(548)
1360 X'27'
1336(538)
1416(588)
141H 589)
1418(58A)
1336(538)
1344(540)
2305(901)
2310(906)
2286 X'BO'
1264(4FO)
1292(SOC)
1300(514)
1288(508)
1296(510)
1280(500)
1417 X'10'
1284C 504)
2372(944)
2369 X'14'
2352(930)
130B X'20'
1312(520)
2286 X'20'
2286 X'02'
1276(4FC)
1308 X'10'
2321(911)
1308(51C)
2326(916)
2326 X'10'
2312(908)
1192(4A8)
141B X'40'
1100(44C)
1417 X'40'

licensed Material--Property of IBM
384 VS APl Program log; c

J

CROSS REFERENCE

CMSXIN 2924(B6C) ERr14CEO 39.04 X'40' LISDA TLN 186(1(748)
Ci1SXOUT 2668(A6C) ERtWi" 37.02(E76) LIilDCB 1640(66e)

L cr'iSXPLL 2310 X' 10' ERPA513 3S76(DFS) L IBDCtlL 1i2(; X'58'
Cl'lSXPLsT 2296(8F8) ERPBFA 3664(E50) LIBDEC!} 172t;(6C()
Cf',SXTYI 2628{A44) Ef:PCS 3659(E4B) LIBDECBL 1743 X'18'
Ci"lSXTYO 2632(A(.8) ERPFI 3648(E40) LIBDECBN 1748(604)
CilSXTYOI 2636(A'.C) ERPF2 3649CE41) LIBDROP 1930 X'Ol-'
C~iSYIN 31S4(C70) ERPHDR 3656(E4S) LIEFNCTN 1930C78A)
Ci'iSYOUT 3180(C6C) ERPL ET 3658(E(iA) L IBGLOBL 1932(7SC)
C~iS4S0UT 2286 X'OI' ERPtlUM 3656 C E48) LIBLBERR 19·31 X'04'
CNTALIB 1868C74C) EP.PSBA 3668(E54) L IBLBOFL 1932 X'80'
CNT AIlM1 1372(750) ERPTXA 3652(E44) LI3LDCPY 1932 X'40'
COPAI\ET 2272(SEO) ERSAVE 3512CD38) LISLIB 1930 X'02'
CP?LSTG 1512C5E3) ERSBD 3672CESS) LIBLOAD 1930 X'03'
CPYAVAIL 2232(8B5) ERSBF 3676{E5C) LIBLOCAl 1931C 78B)
CPYDATA 2172C37C) ER5Bl 3677(E5D) LIB~CP 1576 X'05'
CPYDATL 2264 X'60' ERSECT 3699(E73) lIBNEWDs 1931 X'04'
CnD/HZ = 2268 ERSFA 3676 X'40' LIBt:!~LIB 1931 X'OS'
C?YGETMN 2172(S7C) ERSFC 3676 X'02' LInO?EN 1636(664)
CPYGilQTY 2184(888) ERSFCS 3~76 X'04' LIBOURS 1931 X'SO'
CPYHEAOl 2200(S98) ERSFO 3676 X'01' lIBPP-EFl 2060{00C)
CPYMAXL 2192(890) ERSFH 3676 X' 00' LIBPREFX 2062(SOE)
CPYNXAVl 2260(8D4) ERSFH4 3676 X' 03' L IEPUrl 1931 X'20'

~
CPYRSDUl 2196CS94) ERSFL 3676 X'20' LIS?t·:DKH 1931 X'C2'
CPysAVEA 2264C8D3) ERSFlST 3676 X'SO' LIOQl FR 214 (05)
C?YSlOH 2224 X'03' ERSSZ 3680(E60) LIBSAVE 1930 X'C4'
CPYSlOTl 220S(8AO) ERTEXT 3707(E7B) LIBsER 236 (EC)
CPYSLOT2 2216CSA8)' ERTPl 3B40{FOO) lI!3SHR 1931 X'40'
CPYSlOT3 2224(8BO) ERTPlA 3S48(FOlD LIBSORSO 1931 X' 1)4'
C?YTAIll 2204(S9C) ERTPll 3S52(F()C) lIBUID 2070(816)
D.!l.PBCD 1552(610) ERTSIZE 3706 X'82' LIBUSIT 2n (E4)
DAPBCTRC 1558(616) ERT1 3488(0)'0) l Bt..!SDSN 18~6C75E)
D4PBDARC 1556(614) ERT2 3496 (D;".3) MAINAPAD 336 X'~O'
D.~PSFlG 1554(612) FRSIZMN 320(40) MAU;APHi1 336 X'04'
DAPBS 1552(610) FSEDWIT 3204 X'SO' MAINAPS 336(150)
MPlSTG 1528(5F8) FSEDOPEH 3204 X'C·S' MAXDEBUG 324(144)
DBGECHO 109 X'02' FsEt·nc 322SCC9C) MAXLIBNO 1860(744)
DBGMICRO 109 X'80' FSflBFlSH 3204 X'20' MINAI 296 (128)
DuGMSG 109 X'01' FSi:ODE 3204 X'04' MItlSH 312(133)
L'DGNSTAE 109 X'40' FS~1SCS TK 3204 X'10' MIN:.JS 308(134)
DPl TLISH 2024 C7E8) FS:':SGFUl 3204 X'40' MNAPEHT 336 X' OC'
DFl TSM 316(13C) FsTCM1 3230(C9E) NEXTITEM 2648(A58)
DrRC 154S(60C) FS~'JAl EN = 16384 NOFENCE 2660 X'40'
ERBL 3706(E7A) GTTEF:i1 3216(C90) OlDPICA 1432(593)
ERDSECT 343S(D!\0) HDSC403 3268(CC4) OPTaCP.19 2't4 X'20'
ERF1BF 3648 X'20' HCi~DE~:D = 3918 OPTBITS1 244 (F4)
ERF1HD 3643 X'40' IBr:or'Tl 3236(CA4) OPTBITS2 245 (FS)
ERFlSBN' 3648 X'OS' IBi~CF'T2 3240CCAS) OPTBITS3 246 (F6)
ERF1SBI 3648 X'lO' H:~10PT3 3244(Ct,C) OPTBITs4 247 (F7)

L
ERF1TX 3648 X'80' IBtlOPT4 324S(CBO) OPTBlKSI 224 (EO)
ERF2C~1 3649 X'80' IBri(lPT5 3252(CB4) OPTDlTX 244 X'80'
E~F2CP 3649 X'OS' IBi:OPT6 3256CC38) O?TEND 520(208)
ERF2DI 3649 X'20' rmlOPT7 3260(CBC) OPTEXIT 260(104)
ERF2DT 3649 X'40' IIH10PTS 3~64(CCO) OPT FRS 252 (FC)
ERF2ER 3649 X'OO' IOPBUFF 4090CFFA) OPTID 192 (CO)
ERF2110 3649 X'03' IClPE::iiBU 4076(FEC) opn EN = 328
ERF2PR 3649 X' 04' ICPFlt,G 40S3CFFS) OPTlQ 212 (O4)
ERF2S1 3649 X'02' IOPlOADL (·ass X'SO' ormoY 244 X'08'
ERF2TY 3649 X'Ol' IO?OD!:FI 4C64{FEO) OPTtiICRO 24(~ X'lO'
ERLET 3705(E79) IOPODElA 4063CFE4) OPTPQ 202 (C:'I)
E~~iCHAIN 3917 X'OQ' 'IOPSAVE 4080(FFO) QPTRSV1 2(,9 (F9)
E~;'lESS 3696(E70) lDSN5AVE 1392(570) OPTS;1S lZ 256(100)
E~~lFlAGI 3904(F40) lEf{STACK = 512 OPTsVPtl~ 3~8(148)
ERi-.;G:iN l 390SCF44) LIBlllEN 1856 X' 08' QPTTPUT 248 (FS)
E~~ilEN 3917 X'03' LIB:ttLIST 1856(740) O?TUSR 264(108)
ERI:~:O I H F 3903 X'OO' LIBAB=~ID 1932 X'20' OPTUSR1 230(118)
ERtiOREQ 3396(F38) LIBAUTH 1931 X'Ol' OPTUSR2 23'l(llC)
ERi"IPFXLN 3917 X' 04' LInCONT 1930 X'05' OPTUSR3 238(20)
Ef:.i·l?lSD 3904 X'20' LI BCONTU 1931 X'10' OPTUSR4 292<12.4)
ERilQDlEN 3903(F3F) LISCOPY 1930 X'06' OSSYSTYP 1419CSetD
E;;:r'iQHEAD 3900(F3C) LIBDH AA 2024(7E3) Cl!!:ESTAE 1444CS/\(t)

\...
E?-mEXT 3917 X' 04' LIDDATAl 2070 X'35' OU;:PICA 1436(59C)
ERi':WANTD 3904 X'80' LI3DAHZ = 2077 OURPICAl 1440 X'06'

licensed M~terial--Property of IBM
Section 5. Data Areas 385

CROSS REFERENCE

PTH 0 (0) PTXGXGDM
PTHACCHO 36 (24) PTXGX1Bf>
PTHASYHC 0 (0) PTXHElPQ
PTHATHI 0 X' 01' PTXHIAOT
PTHCNCTM 64 (40) PTXHTFLG
PTHCPUlM 0 X'20' PTXH!HIJ
PTHCPUTM 48 (30) PTXHIIOT
PTHCURSR 18 (12) prXHILIT
PTHCWB IT 3 X'80' PTXHIOHI
PTHOA TTN 0 X'80' PTXIH Sf-
PTHFOFF 0 X'02' PTXI.Etl
PTHFSAVl 5 X'08' PTXlEVEl
PTHKEYTM 56 (38) PTXPRT np
PTlll DCAl 40 (28) PTXRSVOI
PTHI.DCKB '5 X'80' PTXR5V02
PTHMDY 5 X'40' PTXRSVtl3
PTHMICRO 5 X' 1 0 ' PTXR5V04
PTlH15BlK 5 X'20' PTXSCR': H
P T 1l~IOOUT 0 X' 04' PTXSMPIW
PTHPARMI 24 CI8) f'TXSrlr~)!)
PT liP ,'\P.M2 28 (lC) f'lXS~;Pl

PTIIQEND 0 X"tO' PTX5tll'2
PTHQSJZE 20 (14) rTXS~1p "\
PTHQVAR 6 (6) PTx~r1r4
PTtISINK 4 X'02' prXSr1?5
PTH5IZE 64 X'48' P"J:-'. ~)l'iP 6
PTtl50RS 4 X' 01' PTXSMP7
PTHSPCLY 8 X'80' pTxSmnp
PTHSRCOD 10 <.1\) PTXSTACI{
PTHSUSP1 3 (3) PTXSUBSY
PTH5VBIT 3 X'ZO' PTXTSD
PTli5VON 4 X'80' PTXIJ5Rl~A
PTHUEXTN 5 X'04' PTXVCl
PTlIUSTAT 5 (5) PTXVSPC
PTHL~AB IT 3 X'40' PT XI~SM
PTHLHDTH 14 (E) rURQlF~
P T HL·JOP. 01 0 (0) PURG PH,
PTHLJSlEH 32 (20) RTRYRf::C;
PTHWSTAT 4 (4) SC,V4,)AVE
PlIiYYCOD 8 (S) 51111.1\ \1 A I l
PTHYYRC 8 (8) SHVRrf:.,~ 1
PTX 72 (48) SI.t.CK6LG
PTXADSM 110 X'OB' SHCld?tHl
PTX.AIFllR 110 X'80' Sr.AERf.(;S
PTXA TTN 104 (68) S T r: K !).\ 1 !l.
PTXCICS 108 X'2(1t SICKlf:N
PTXCl'lS 108 X' (, (l • SEKP'1!'
PTXCODE 120 (n; S TCKPLiRr;
PTXOEBUG 109 (6D) 5 ICK~,'\VE
PTXDXTBP 112 (70) STC~")T.t.T
PTXEND 176 X' Bf. ' STXl)'rr
PTXFlAG 108 (6C) S26f', rs I
PTXFlAGS 11.11 (ISE) T ~ I 1~ I:, r :\ P
PTXFSRST 110 X'40' TCAMf'UJ)(3
PTXFSTBP 100 (64) TERM5AVE

licensed Materi£ll-Propedy of"IB",!
386 VS APl Progr''''''', logic

=

92 . t5C) TERMl RflC ~664(A68)
S·g (5R) T Rt!N4r!E 1564(61C)

.156 C9C) T50AP!..FC 2344 X'10' .-J 15.) (99) 'r SOBA T ct-/ ;~344 X'08'
1~5 (9B) TSOCDCC 1421(580)
155)('40' TSCCMD.f\ T 130B X'08'
154 (9A) TSOCTCB 1309(51D)
152 (98) TSOOH 3200(C80)
155 X'8e' TSODPE:CO 2~46 X'20'
I ') 2 (98) 150DPFUI. 2346 X'40'
ll6 X'6C' TSOI1P~LD 23(t6 X'BO'
1 16 (7 (,) T SODPYFt 2346(92A)

96 (6 (') TSODsr1AV 2 :346 X' 10'
164 ~ Aft) TSO!)fYPE 2344(928)
168 {/',8) T Sf1 U~.J 3202(C82)
]72 i A(:) T5(lr,) TAl 14.57 X '·1 0 '
1'76 'BO) rSCGl I] (0)
124 (7e) T5~JHID 184 (B8)
124 Or.) TSilGYTI1P 1096(448)
124 (7 c:) TS:JIDlES 234:' X'04'
1 -, (~. t \7C) TSOLDCC J(,2G~58C)
12~ (8n) TSf11.0ADL 118F,f4A4)
132 (8(1) TsmlL = 8160
1 3 (, (88) T:30r Fr.. ,~,D 2348(92C) J 1 <'l 0 (BC; iSOQTr 319&(C7C)
1 (1 4 (90) TSOR 4094 X'OA'
14~ (94) T50RADDR 2.537(921)

8 f• (5(+) TSORFI ':'J 2::'86 X'40'
8·J (5 0 ~ r~,"Rl r.1 H 2:1(12 (926)

108 (60 lSfHif"U 2342 X' 10'
108 X'80' TSORF'1 S r 2328(918)
l.6:l (A C) TSOl':!.M 2344 X' 01 '

76 «(.C) T~)lJT R:\N J.422(58E)
108 >: ' J 0 ' T'lGTREZ 3192(C78)

72 (4~) T SfHRNM 1556(614)
204 (CC) l;)i~TP'OPT 15'iO(618)

2660 X'80' rSflTRTBL 155':!(10)

-J 14'30'5C8) lSOTRlE 3181H C74)
1 0 .3 ;! ('/ n 8) TSr,VlAM 23"; ':, X'02'
1.264 X' ·?oO' : ':'}\.IT o!. '572(624)
1264 X'08' 'r ~" ;',:V r c. n .15'16«:28)
2 (; ~ ;> (A ,~;) 1 :.I'ln'.iN ;;;48«·EO)
2656(A(,i); To': O!,JS U ' .. ~ R ! :: 5 6 Ut EB)
146C(~"rt; r,;;.:' 527Cr: ?3'"+5(929)
26~O X ' :~ t) , T5!d270 234 c. X'80'

200(1;;(:; T S () 3 2 J 7 2344 '>:'40'
264'i(,~54) 15(132 :'e 2344 X'20'
2f. C,O(ASO) !J':'I?AC p:a 1396(574)
; c;~ 0 (3 Fe; WA ITH:rR 1308 X'40'
2 6 6 C (i\ 6 (,) Wt~!TRfL"(1308 X'80'

J 2369 X'OO' WOP I((Ie;! 2CM(B24)
15:j 2 (610) WOI-?KDf,1ll 2j68 X'SB'

4058 LllnRKOPf;N 2080(82.0)
320< X' P.':" L~S!lSt," E 1936 (790)

960\3CO) WS5IZMX 304(30)

VCT (ALL)

This is the executor common services vector table, and cont~ins
addresses of scrvice routines av~il~ble with the executor b~ing
used (CICS/VS, C~S, or TSO). (The format of this layout is th~
one used in publications titled "Data Arens and Sy~bolic Nan"s
Cross-Reference T~ble," usually distribut€d on microfiche.) This
control block is mapped by the APLXXVCT m~cro.

OFFSETS TYPE LENGTH N!\ME D!:SCRIPTlO~

o

o
4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

SO
84

88

(0) STRUCTURE

(0) A-ADDRESS

(4) A-ADDRESS

(8) A-ADDRESS

(C) A-ADDRESS

(10) A-ADDRESS

(14) A-ADDRESS

(18) A-ADDRESS

(IC) A-ADDRESS

(20) A-ADDRESS

(24) A-ADDRESS

(28) A-ADDRESS

(2C) A-ADDRESS

(30) A-ADDRESS

(34) A-.lIDDRESS

(38) A-ADDRESS

(3C) A-ADDRESS

(40) A-ADDRESS

(44) A-ADDRESS

(48) A-ADDRESS

(4C) A-ADDRESS

(50) A-ADDRESS
(54) A-ADDRESS

(58) A-ADDRESS

92 VCT

4 VCTMAItlS

4 VCTFILES

4 VCTGDDXS

4 VCTGDDXE

4 VCTSTKIN

4 VCTCAPS

4 VCTCAPCN

(+ VCTXTRAN

4 VCTXTRZE

4 VCTXTREZ

4 VCTXBXIT

4 VCTDUr-:PX

4 VCHJTPST

4 VCTSiKAB

4 VCTXBEND

4 VCTPRTX

4 VClL EDIT

4 VCTXIJERS

4 VCHiSGNQ

4 VCTRSVOI

4 VCTRSV02
4 VCTRSV03

4 VCTR~V04

cum~ON VECTOR TABL E

ADDR OF MAIN STO~AGE SERVICES

ADDR OF FILE SERVICES

ADDR OF GDDX SERVICES

ADDR OF GDDX ENVIRO~MENT DEP MOD

ADDR OF STACK INITIALIZATION

ADDR OF CO~~QN AP SERVICES

t-DDR OF COi~no~~ ft.? SERVICES SIG';Q

ADDR OF TR~~SLATE SERVICES

ADDR OF TR~NSLATE ZCODE->EBCDIC

AD~R OF TRA~SLATE EBCDIC->lCODE

ADDr. OF ABEND EXIT ROUTINE

ADDR OF DU~P SERVICE ROUTINE

ADDR OF ~AIT/POST ROUTINE

ADDR OF STACK ABEND EXIT SERVICE

ENTRY FOR APl ABEND REQUEST

ENTRY FOR PRINT SERVICES

ENTRY POINT FOR APLEDIT ROUTINE

ENTRY PT FOR CONVERSION SERVICES

ENTRY POINT FOR IIElPENQ ROUTINE

RESERVED

RESERVED
RESE~VED

RESERVED

Licensed Material--Pro~erty of IBM
Section 5. Dnta Arl''JS 387

CROSS REFERENCE

VCT 0 (0)
VCTCAPON 24 (18)
VCTCAPS 20 (14)
VCTDUMPX 44 (2C)
VCTFILES 4 (4)
VCTGDDXE 12 ec)
VCTGDDXS 8 (8)
VCTlEDIT 64 (40)
VCTMAINS 0 (0)
VCTMSGNQ 72 (48)
VCTPRTX 60 (3C)
VCTRSVOI 76 (4C)
VCTRSV02 80 (50)
VCTRSV03 84 (54)
VCTRSV04 88 (58)
VCTSTKAB S2 (34)
VCTSTKIN 16 (10)
VCTWTPST 48 (30)
VCTXBEND 56 (38)
VCTXBXIT 40 (28)
VCTXTRAN 28 (IC)
VCTXTREZ 36 (24)
VCTXTRZE 32 (20)
VCTXVERS 68 (44)

licensed Material--Property of IBM
388 VS APl Program Logi c

J

J

VRD (XSVS, AP)

This is the common system services conversion services request
block. It is mapped by the APLXVRD macro.

OFFSETS TYPE

o
o
1
2
3

4

8

12

16

20

24

(0) STRUCTURE

(0) UNSIGNED
(1) UNSIGNED
(2) UNSIGNED
(3) UNSIGNED

(4) A-ADDRESS

(8) SIGNED

(C) SIGNED

(10) A-ADDRESS

(14) A-ADDRESS

(8) CHARACTER

CROSS REFERENCE

VRD 0 (0)
VRDEND 24 (18)
VRDKElM 12 (C)
VRDLOU 20 (14)
VRDPIN 4 (4)
VRDPOU 16 <10)
VRDRC 0 (0)
VRDRES 1 (1)
VRDTIN 2 (2)
VRDTOU 3 (3)
VRDXIN 8 (8)

LENGTH NAME

24 VRD

1 VRDRC
1 VRDRES
1 VRDTIN
1 VRDTOU

4 VRDPIN

4 VRDXIN

4 VRDKELM

4 VRDPOU

4 VRDLOU

0 VRDEND

DESCRIPTION·

CONVERSION REQUEST DESCRIPTOR

RETURN CODE
RESERVED
TYPE OF INPUT PROVIDED
TYPE OF OUTPUT DESIRED

POINTER TO INPUT

INPUT INDEX (ORIGIN 0)

COUNT OF ELEMENTS IN/OUT

POINTER TO OUTPUT AREA

LENGTH OF OUTPUT AREA

END OF VRD

Licensed Material--Property of IBM
Section 5. Data Areas 389

WSH (ALLJ

The VS APl workspace (WSM) represents the state of one user's VS \
APL machine. It contains all data, functions, processor ~
transipnt memory, and the interpreter side of all
interpreter/executor communications. This control block is
mapped ,by the APLWSM macro.

OFFSETS,' TYPE' LENGTH NAME DESCRIPTION

o (0) STRUCTURE 2049 WSM
, . ---

o (0) CHARACTER 1956 WSMSIZDF PREFIX NOT SAVED IN LIB

o (0) CHARACTER 1024 WSMBUFF GENERAL BUFFER
'---
1024 (400) 'CHARACTER

1024 (400) BITSTRING

1032 (408) UNSIGNED

1096 (448) CHARACTER

1096 (448) UNSIGNED
1098 (44A) SIGNED

1100 (44C) SIGNED
1102 (44E) SIGNED

1104 (450) CHARACTER

1104 (450) A-ADDRESS

1108 (454) A-ADDRESS

1112 (458) CHARACTER

1112 (458) CHARACTER

1176 (498) CHARACTER

1176 (498) UNSIGNED

1180 (49C) UNSIGNED

1184 (4AO) UNSIGNED

1188 (4A4) lI~~SIm!ED

72

8 WSMSUPSW

64 WSr'SU~GS

'8

2 WSMRSV02
2 WSMCURSR

2 WSMBFLIM
2 WSMBFPTR

8

4 WSMPARMl

4 WSMPARM2

64 WSMSVlRQ

36 WSMPDSD

96 WSMREGSV

4 WSMREGOO

4 I·JS~~REGO 1

4 WSMREG02

4 WSMREG03

SAVE AREA FOR EXECUTOR USE

POSITION INFORMATION'

PRINT ELEMENT INDEX

LEN OF WSMBUFF LESS)WIDTH
LEN OF DATA IN WSMBUFF

PARAMETER WORDS

AREA FOR TRANSMITTING BLOCKS OF
DATA TO AND FROM THE EXECUTOR ALSO
USED FOR SCV TO SS!1

FOR PDSD (SEE BELOW) SEE MORE
DEFNS BELOW

GENERAL REGISTERS

-------------------------------------~---------------- -------------------------
1192 (4A8) UNSIGNED 4 WSMREG04

1196 (4AC) UNSIGNED 4 WSMREG!!5

1200 (4BO) UNSIGNED 4 WSMREG06

1204 (4B4) UNSIGNED . 4 WSMREG07

1208 (488) UNSIGNED 4 WSr1REG08

1212 (4BC) UNSIGNED 4 WSMREG09

1216 (4CO) UNSIGNED 4 WSMREGI0

1220 (4C4) UNSIGNED 4 WSMREGll

Licensed M~terial--Prop~rty of I~M
390 VS APL Program Log! c:

WSH (ALL) continued

OFFSETS TYPE LENGTH NAHE DESCRIPTION

1224 (4C8) UNSIGNED 4 WSMREG12

1228 (4CC) UNSIGNED 4 WSMREG13

1232 (4DO) UNSIGNED 4 WSMREG14

1236 (4D4) UNSIGNED 4 WSMREG15

1240 (4D8) BITSTRING 8 WSMREGFO FLOATING REGS

1248 (4EO) BITSTRING 8 WSr-1REGF2

1256 (4E8) 8ITSTRING 8 WSMREGF4

1264 (4FO) 8ITSTRIHG 8 WSMREGF6
------------------------~~---1272 (4F8) CHARACTER 8 WSMPCPSW 8C MODE RESUME PSW
----------------------~~~~---1272 (4F8) BITSTRING 4 HIGH-ORDER HALF

1276 (4FC)· A-ADDRESS 4 WSMNSI CC/PMASK/RESUME ADDR
---1280 (500) A-ADDRESS 4 WSMPTHPT ADDR OF PERTERM HEADER

1284 (504) SIGHED 4 WSMWORK M-REL OFFSET TO WSM STACK

1288 (508) CHARACTER 664 (INTERPRETER USE)

1952 (7AO) SIGNED 4 WSMFREEZ OFFSET TO HIGH UNUSED

1956 (7A4) CHARACTER 93 WSMLI8A START OF loiS IN LIBRARY

1956 (7A4) SIGNED 4 WSMFREEA OFFSET TO LOW UNUSED

1960 (7AS) CHARACTER 4 WSMCHECK WORKSPACE FORMAT

1964 (7AC) SIGNED 4 WSMSYMX USED IN SYMTA8 SEARCH

1968 (7BO) SIGHED 4 WSMSn18L CURRENT)SYMBOLS VALUE

1972 (784) A-ADDRESS 4 WSf'10LDMR ADDR OF loiS BEFORE YY-REQ

1976 (1B8) CHARACTER 64 WSMLIBRS RESERVED IN LIB RECORD

2040 (7F8) BITSTRIHG 8 INTERPRETER TOGGLES

2048 (800) CHARACTER 1 WSMASYNC INTERRUPT flAGS
1 ... WSMASIST MICROCODE ASSIST
.1 .. WSMLHHLT HALT AT LINE END
.. 1 . WSMNOOUT SUPPRESS OUTPUT
... 1

1 ... WSMIMHLT IMMEDIATE HALT
1 ... WSMDATTH SAME AS IMHLT

1112 (458) STRUCTURE 36 PDSD LIB OP CONTROL BLOCK
---1112 (458) SIGNED

1116 (45C) CHARACTER
1127 (467) CHARACTER

1128 (468) CHARACTER

. 4 PDSLIBHO

11 PDSHAME
1

8 PDSPASS

LIB NUMBER

WS NAME

loiS PASSWORD

Licensed Material--Property of IBM
Section 5. Data Areas 391

WSM (ALL) continued

OFFSETS TYPE LENGTHNAHE DESCRIPTION

---~---1136 (470) CHARACTER 1 PDSMOD FLAG BYTE
1 ... PDSAUTO SAVE OF CONTINUE
. 1 .. PDSDFSIZ USE ACTIVE WS SIZE
.. 11

1 ... PDSDFNAM USE ACTIVE WS NAME
· 1 .. PDSDFPAS USE ACTIVE WS PASS
· . 1 . PDSDFlIB USE LIB AS PER DFLIB
· .. 1 PDSDFACL LIB FROM ACTIVE WS

1137 (471) CHARACTER 3 RESERVED

1140 (474) SIGHED

1144 (478) SIGNED
1112 (458) STRUCTURE

1112 (458) BITSTRING

1120 (460) BITSTRING

1128 (468) BITSTRING

4 PDSSIZE

4 PDSSlOP
28

8 WSMYYCH1

8 WSMYYTTM

8 WSMYYKTM

SIZE OF WORKSPACE

MIN FOR STACK AND FREE
YYQAI

COMPUT E T WE

TERMINAL TIME

KEYING TIME
---1136 (470) SIG~ED
1112 (458) STRUCTURE

1120 (460) BITSTRING
1112 (458) STRUCTURE

1112 (458) SIGNED
1112 (458) STRUCTURE

1112 (458) SIGNED

1116 (45C) SIGNED

1120 (460) SIGNED

1124 (464) SIGNED

1128 (468) SIGNED

1132 (46C) SIGHED

4 WSM'(YUHO
16

8 !"~M.YY!)LI'.

8 WSMYYOLZ
4

4 WSMYYDHM
24

4 WSMYYQLS

4 WSMYYQSR

4 WSMYYQDW

4 WSMYYQMW

4 WSMYYQVM

4 WSMYYQVV

Licensed Material--Property of IBM
392 VS APt Program l ogi c

SIGN-ON 10
YYDElAY

TuD AT DELAY START

TOO AT DELAY END
YYDUMP

HUMBER OF LAST DUMP
YYQUOTA

TOTAL USER LIB SPACE

REMAIN UNUSED SPACE

DEFAULT WS SIZE

MAXIMUM WS SIZE

SHARED MEMORY SPACE

NUMBER OF SHARED VARS

J

CROSS REFERENCE

PDSAUTO 1136 X'80'
PDSD 1112 (4'58)
PDSDFACL 1136 X'OI'
PDSDFLIB 1136 X'02'
PDSDFHAM 1136 X'OS'
PDSDFPAS 1136 X'04'
PDSDFSIZ 1136 X'40'
PDSLIBNO 1112(458)
PDSMOD 1136(410)
PDSNAME 1116(45C)
PDSPASS 1128(468)
PDSSIZE 1140(414)
PDSSlOP 1144(418)
WSM 0 (0)
wsr1ASIST 2048 X'80'
WSMASYNC 2048(800)
WSMBFlIM 1100(44C)
WSMBFPTR 1102(44E)
WSMBUFF 0 (0)
WSMCHECK 1960C1A8)
WSMCURSR 1098(44A)
WSMDA TTN 2048 X'OS'
WSf1FREEA 1956C1A4)
WSMFREEZ 1952C1AO)
WSMIMHLT 2048 X'OS'
WSMLIBA 1956 C1 A4)
WSMLIBRS 1976(788)
WSMLNHlT 2048 X'40'
WSMNOOUT 2048 X'20'
WSMNSI 1276(4FC)
WSMOLDMR 1912(7B4)
WSMPARMI 1104(450)
WSMPARI12 1108(454)
WSMPCPSW 1272(4F8)
WSMPDSD 1112(458)

L WSMPnlPT 1280(500)
WSMREGFO 1240(408)
WSMREGF2 1248(4EO)
WSMREGF4 1256(4E8)
WSMREGF6 1264(4FO)
WSMREGSV 1176(498)
WSMREGOO 1176(498)
WS/,1REGO 1 1180(49C)
WSMREG02 1184(4AO)
WSMREG03 1188(4A(t}
WSMREG04 1192(4A8)
WSMREG05 1196(4AC)
WSMREGf)6 1200(480)
WSMREG07 1204(4B4)
WSMREG08 1208(4B8)

L

WSMREG09
WSMREGI0.
WSMREGll
WSMREG12
WSMREG13
WSMREG14
WSf1REG15
WSMRSV02

.WSMSIZDF
WSMSUPSW
WSMSURGS
WSMSVlRQ
WSMSYMBl
WSMSYMX
WSMWORK
WSMYYCTM·
WSMYYDlA
'WSMYYDLZ
WSMYYDNM
WSMYYKTM.
WSMYYQDW
WSMYYQLS
WSMYYQI'1W
WSMYYQSR
WSMYYQVM
WSMYYQVV
WSMYYTTM
WSMYYUNO

1212(4BC).
1216 (4CO.)'
1220(4C4)
1224(4C8)
122S(4CC)
1232(4DO)
1236(4D4)
1096(448)

0 (0)
1024(400)
1032(408)
1112(458)
1968(7BO)
1964C1AC)
1284(504)
1112(458)
1112(458)
1120(460)
1112(458)
1128(468)
1120(460)
1112(45S)
1124(464)
1116(45C)
1128 (468)
1132(46C)
1120(460)
1136(470)

, .. r' •.

.'

Licensed Mate.r i aI-Property of IBM
Section 5. Data Areas 393

WSX (ALL)

Thi s control block de,fi nes the format of the 80-byte header
record for an export'ed workspace in all systems. It is mapped by
APlWSX macro.

OFFSETS TYPE LENGTH NAHE

WSXDR DSECT
o (0) SIGNED 4 WSXAR13

4 (4) SIGNED 4 WSXAX

8 (8) SIGNED 4 WSXAOFFS

12 (C) SIGNED 4

16 (10) FLOATING 8 WSXDATE

24 (18) SIGHED 4 WSXLIB

28 (IC) CHARACTER 8 WSXENAME

36 (24) CHARACTER 11 WSXZNAME

47 (2F) HEX 3,3

licensed Material--Property of IBM
394 VS APl Program Log; c

DESCRIPTION

OFFSET TO END OFWS SLOT
FROM WSMFREEA.

OFFSET TO END OF WRITTEN
DATA FROM WSMFREEA.

OFFSET OF WSMFREE FROM
BEGINNING. OF I"S.

UNUSED.

DATE AND TIME WS WAS SAVED
IN APl STANDARD TIME FORMAT.

LIBRARY HUMBER.

WS NAME IN EBCDIC. 8 BYTES.

WS NAME IN Z-CODES.

RESERVED

L

SECTION 6. DIAGNOSTIC AIDS

This section contains information useful in determining the
causes of VS APl processor errors. It contains the following
items:

• Descriptions of linkage conventions

• Expansions of calling macros

• A list of executor service calls for CICS/VS, CMS, TSO, and
VSPC

• lists of error messages generated by the processor

• Directions for reading and analyzing dumps issued after
system errors

• Descriptions of miscellaneous diagnostic .aids

COMPONENT LINKAGE CONVENTIONS

The components of the VS APl processor use several linkage .
conventions. The types of linkage conventions used betwaen and
within components are summarized in Figure 31. The remDinder of
this subsection describes the component linkage conventions
listed there.

Licensed Material--Property of IBM
Section 6. Diagnostic Aids 395

TO

FROtt A B C D E F

A. Host .' - 13 - - - -
B. Executor 13 4,5 7 - - 12 - -

6

C. Translator - 7 1 1 1 -
D. Exarch - - - 3 1 -
E. Appendage - 7 1 3 1 -
F. Shared storage mgr. 13 - - - - 9,10

G.

H.

I.

J.

Auxiliary processor 13 - - - -
Conversion program 13 - - - -
library service prog. 13 - - - -
Stack protocol exec. 13 4,5 - - -

Notes

1
2
3
4
5
6
7
8
9

6

component Linkage convention Used

VS APt interpreter linkage
APt library service program linkage
Nonstandard linkage to and within exarch
eMS/TSO executor linkage
VSPC executor linkage
CICS/VS executor linkage
Service re~uest calls
Conversion program linkage
CMS/TSO shared storage manager
CICS/VS shared storage manager
Common executor linkage

12

-
-

12

G H I

13 13 13

12 - -

- - -
- - -
- - -

--. - - -
- - -
- 8 -
- - 2.

12 8 -

10
11
12 Auxiliary processor linkage: see the applicable manual on

writing auxiliary processors
13 Standard linkage using host system macros

Does not occur or does not apply

Figure 31. Component linkage Conventions

licensed Material-Property of IBtt
396 VS AP~ Program logi c

J

-
11

-
-
-
-

11

-
-

11

L

L

1. VS APL INTERPRETER LINKAGE'

Register Usage

Save Areas

calling Hacros

The register usage implemented by the VS APL processor is shown
in Figure 32.

Register Use

1

11

12

Reason code

Value M~ani ng

0 good

4 error

8 severe error

Address of active workspace

Program base register

13 Address of current R13 stack level

14 Address of end of current R13 stack level

15 Return register

Figure 32. VS APL Processor Register Usage

Since VS APL standard linkage does not use par~meter lists,
other registers are used to pass parameters betw~9n calling and
called routines. These conventions are document€d in the
listings of the routines or their prologs.

VS APL standard linkage uses a pushdown stack of contiguous save
areas that are kept in the user's workspace. The current save
area is always pointed to by register 13. See "R13 St~ck" in
"Data Areas" for a complete discussion of how the R13 stack
functions.

There are several macros used by VS APL standard linkage in
making calls and returns. These macros are expanded and
described below.

The APLCALL macro instruction, which calls a routine, is written
as follol"s:

APLCALL routine
·CERRO!U=lbl1J, ERD.O~2=lbI2]J

label
is an optional statement label.

routine
is the name of the global routine defined by use of
APLENTRY.

licensed Material--Property of IBM
Section 6. Diagnostic Aids 397

ERROR1= lbll .
causes assembly of a branch instruction to this label
immediately following the call of the routine.!h!l .. ~ :
receives control if the called routine returns reason-code ~
4.

ERROR2= .l.!;!ll
causes assembly of a second branch instruction immediately
following the call of the routine. ~ receives control if
the called routine returns reason-code 8.

The APlENTRY macro instruction, which defines an entry point. is
written as follows:

[entry-ptl APLENTRY lel-begin,lcl-end
[,reg-listl[,~OCALLl

entry-pt
is the entry point name.

leI-begin
is the name of the DSECT that describes this routine's R13
stack work area; 0 if no work area.

lcl-end
\s the name of the address immediately following the last
field in the DSECT; 0 if no work area.

reg-Ii st
is the list of caller's registers to be saved. A single
value causes a store instruction to be generated; multiple
values cause a store-multiple instruction.

NOCALL
defines a terminal routine; that is, no subsequent APlCAlls
may be used. If this option is specified, no registers are
saved. The called routine may explicitly save one or more
registers at register 14 plus O.

The APlEXIT macro instruction, whieh returns to the caller, is
. wri tten as follows:

I[label] IAPLEXIT Ir,REASON:regno]

label
is an optional statement label.

REASON=regno
causes an exit to the point of invocation plus' a
displacement equal to the contents of register regno.
Register regno should contain only 0, 4, or 8.

Code.generated for APlCALl and APLEXIT is described in
Figure 33. In each example, the APlEXIT is from the routine
called by the APlCALL.

Code generated for APlENTRY with various parameter options is
described in Figure 34.

licensed Material--Property of IBM
398 VS APl Program Logi c

L

L

Wi th ·:~o error return:

+
+

+
+
+ ..
.;-

+

With error

SPQPW20
+SPQPW20
+
+

CVEXIT
+CVEXIT
+
+

+

Figure 33.

APlCAll IAHTSPEC
l Rl5.=V(IAHTSPEC)
BAlR R15.R15

APlEXIT
OS OH
lM R12.R15.0(R13)
STM R:. :; , R 14 , WSf'1R EG 13
lM RC.R7.16(R14)
Registers (l-7 specified in APlENTRY macro.
BR R15

return:

APlCAll IARTOI,ERRORl=SPQPW30
l Rl5,=V(IARTOI)
BAlR R15,Rl5
B SPQPW30 FIRST ERROR RETURN (R15+0)
APlEXIT REASON=l
OS OH
lM R12,R15,O(R13)
STM R13.Rl4.WSMREG13
No registers specified in APlENTRY macro.
S OCR1,R15) RETURN + 0, 4, OR 8

APLCAlt ~nd ArL~XII: Generated Code

licensed Material--Property of IBM
Section 6. Diagnostic Aids 399

IASYSPST APlENTRY 0,0
+ DS JD
+ DC Cl8'IASYSPST'
+ ENTRY IASVSPST
+IASYSPST EQU IE
+ STM R12,R15,OCR14)
+ lR R13,R14
+ lA R14,(O-O+«16+7)/8M8)+7)/8IE8(O,R13)
+ STM R13,R14,WSMREG13
+ BALR R12,0
+ USING IE,RI2

IARABREF APlENTRY 0,O,(2,1j.)
+ DS 00
+ DC CL8'IATABREF'
+ ENTRY IATABREF
+IATABREF EQU IE
+ STM R12,R15,O(R14)
+ STM R2,R4,16(R14)
+ LR R13,R14
+ LA RI4,(O-0+«28+7)/8M8)+7)/8M8(O,R13)
+ STM R13,R14,WSMREG13
+ BAlR RI2,O
+ USING M,R12

IASYSREF APLENTRY SRWORK,SRWORKZ
+ DS 00
+ DC CL8'IASYSREF'
+ ENTRY IASYSREF
+IASYSREF EQU IE
+ STM R12.R15,O(R14)
+ lR R13,RI4
+ . LA RI4,(SRWORKZ-SRWORK+«16+7)/3M8)+7)/8M8CO,R13)
+ STM R13,R14,WSMREG13
+ USING SRWORK-C16+7)/8*8,R13
+ BAlR R12, ° + USING IE,R12

IAFACT APlENTRY TRSWORK,TRSWORKZ,(1,3)
+ DS OD
+ DC Cl8'IAFACT'
+ ENTRY IAFACT
+IAFACT EQU IE
+ STM R12.R15,O(R14)
+ STM Rl.R3,16(R14)
+ lR R13. R14
+ LA R14,(TRSWORKZ-TRSWORK+«28+7)/8~8)+7)/8*8(O,R13)
+ STM R13.R14,WSMREGI3
+ USING TRSWORK-(28+7)/81E8,RI3
+ ·BAlR R12,0
+ USING H,R12

Figure 34. APlENTRY: Generated Code

licensed Mater;al--Property of IBM
400 VS APl Program log; c

j

..J

~

L

2. APL LIBRARV SERVICE PROGRAM LINKAGE

Register Usage

Save Areas

The register usage implemented by the APl library service
program is shown in Figure 35.

Register

0

11

13

14

15

Figure 35.

Use

Reason code returned to the calling routine

Address of the APl library service program
global table

Address of the register save area

Return address to the calling routine

Entry point address of called routine or return
code returned to calling routine

APl library Service Program Register Usage

Registers are saved in an 18-word area pointed to by register
13.

3. NONSTANDARD LINKAGE TO AND WITHIN EXARCH

Register Usage

save Areas

The register usage implemented by nonstandard linkage to and
within exarch is shown in Figure 36.

Use Register

11 Address of workspace

12 Base register

13 Address of exarch's R13 stack level

14 Address of end of exarch's R13 stack level

15 Subroutine linkage

Figure 36. Nonstandard Exarch Register Usage

Hone

Licensed Material--Property of IBM
Section 6. Diagnostic Aids 401

calling Hacros

GOGOMN4
+GOGOf'lN4
+
+
+
+
+

Calls to subroutines within the same module 85 the calling
routine use a branch-and-link instruction using register 15.

The APLXCALL macro instruction. which calls a subroutine outside
of the module of the calling routine, is written as follows:

routine

label
is an optional statement label.

routine
is the name of the called routine defined by use of
APLXNTRY.

Code generated for APLXCALL is described in Figure 37.

APLXCALL
L

IEGINITI
BASEREG,=ACIEGINITI)
RI5,BASEREG

GET 1ST ELEMENT INTO RVALUE
LOAD ADDRESS OF SUBROUTINE
CAll SUBROUTINE BAlR

USING
L
DROP
USING

*,R15
BASEREG,=A(APLIEFNM)
R15
APLIEFNM,BASEREG

RETURN
RELOAD BASE REGISTER

Figure 37. APLXCALL: Generated Code

IEGOGOMN
+
+IEGOGOMN
+

IEGOGOSC
+
+IEGOGOSC
+
+

Figure 38.

The APLXNTRY macro instruction, which defines an entry point, is
written as follows:

I [~ntrypt] I APLXNTRY entrY-Clddre.!ss

entry-pt
is the entry point name.

entry-ElQdre~
is the optional entry-address register; .if omitted,
register 12 (equated to BASEREG) is assumed.

Code generated for APLXNTRY is described in Figure 38.

APLXNTRY
USING *,BASEREG
L BASEREG,=A(APLIEFNM) LOAD BASE REGISTER
USING APLIEF~M,BASEREG

APLXNTRY R15
USING *,R15
L BASEREG,=ACAPLIEFNM) LOAD BASE REGISTER
DROP R15
USING APLIEFHM,BASEREG

APLXNTRY: Generated Code

Transfer of control when return is not expected uses no set
convention. The address of the routine is loaded in some
register and a branch is taken.

Licensed Material--Property of IBM
402 VS APL Program Logi c .

Some of the exarch subroutines may also be called by appendage
and translator routines. A two-level linkage is used to effect
these calls as described below.

Appendage APLCALL Service Branch Exarch
----------> Routine or > Routine

Translator
<-------- <-----

~--------~APLEXIT '--------' Retu rn

entry-point APLENTRY Save caller's registers

BALR15.routine Call exarch routine

APLEXIT Register caller's registers
and return

The names of all service routines begin with IES.

4. CHS/TSO EXECUTOR LINKAGE

Register Usage

The eMS and TSO executors use similar linkage conventions.
Unless otherwise noted, the following information applies to
both.

The register usage implemented by the eMS or TSO executor is
shown in Figure 39.

Register Use

10 CMS/TSO: address of global area (PERTERM control
block followed by executor work area)

11 Address of VS APL workspace

12 Base register

13 Address of register save area

14 Return address

15 Entry point address

Figure 39. Executor Linkage Register Usage (CMS or ISO)

Parameters, when required, are passed in the workspace and, in
eMS and 150. the global area.

A return code is passed in PTHSRCOD (two-byte field in the
PERTERM). Return codes are described under "Service RequQst
Calls."

Licensed Material--Property of IBM
Section 6. Diagnostic Aids 403

Save Areas

Registers are saved in an la-word area pointed to by register
13. There are three such areas or levels reserved in the eMS or
TSO eXQcutor work ~rea. When a routina is Culled, the calling
routine's registers are saved in the current level. Regjster 13
is then set to the address of the next level.

calling Macros (CMS and TSO)

SCTYO!
+
+SCTYOI
+
+
+
+
+
+
+
+ENT0040
+
+
+
+
+

There are three macros used by the CMS or TSO executor in
calling and returning to routines within itself: APLCENTR,
APLCCALL, and APLCEXIT.

The APLCENTR macro instruction, which defines an entry point, is
written as follows:

A?LCENTnI

c.!ntry-ot
is the entry point name. ~

Code generated for APLCENTR is described in Figure 40.

APLCENTR
E~! TRY
DS
USING
STM
LA
C
BL
L
BALR
5T
5T
LR
L
USING
DROP

SCTYOI
OH
SCTYOr ,RIS
IU4,R12,12(R13)
R14,CMSDMPSV(,R13)
R14, C:"15AVEZP
ENTO 04 (l
Rl,=V(SCSAVOFL)
RO,RI
R14,8(,R13)
R13,4(,R14)
:Z13,RI4
RI2,=A(APLSCTYP)
APl5CTYP,R12
R15

R15+IS ENTRY POINT REG.
SAVE CALLER'S REGISTE~S.
GUMP TO NEXT A~EA IN STACK.
IF END OF STACK REACHED,
(WE DIDN'T REACH IT.)
IT'S A SUPERVISOR BUG.
BRANCH TO ERRQR ROUTINE.
LINK FORWARD TO NEW SAVE.
AND BACKWARDS TO CALLERS SAY
SET NEW SAVE AREA ADDR.
SET PROGRAM BASE

Figure 40. APlCENTR: Generated Code

The APLCCAll macro instruction, which calls a routine, is
written as follcws:

IClbel
is an optional statement label.

rOll~
name of called routine; must be defined by APlCENTR macro.

Code generated for APlCCAlL is described in Figure 41.

l i censl;!d Materi al-'Property of IBM
404 VS APt Program logi c

L

L

+
+
+

TYOI2
+TYOI2
+

APLCCALL
L
BAlR

SCTYI
R15,=ACSCTYl)
R14,R15

GET ADDR OF CALLED ROUTINE.
BRANCH TO ROUTINE.

Figure 41. APLCCALL: Generated Code

The APLCEXIT macro instruction, which returns to the caller, is
written as follows:

label
is an optional statement label.

Code generated for APLCEXIT is described in Figure 42.

APLCEXIT
L
LM
BR

R13,4(,R13)
R14,R12,12(R13)
R14

ADDR OF CALLER'S SAVE AREA.
RESTORE CALLER'S REGISTERS.
RETURN TO CALLER.

Figure 42. APlCEXIT: Generated Code

S. VSPC EXECUTOR LINKAGE

Register Usage

The register usage implemented by the VSPC executor is shown in
Figure 43.

Register

9

10

11

12

13

14

15

Figure 43.

Use

Address of PTC--VSPC control block

Address of workspace defined by VSPC
(includes PERTERM and executor work area)

Address of VS APL workspace

Base register

Address of register save area

Return address

Entry point address

Executor Linkage Register Usage (VSPC)

Parameters, when required, are passed in the workspace.

A return code is passed in PTHSRCOD (two-byte field in the
PERTERM). Return codes are described under "Service Request
Calls."

Licensed Material--Property of IBM
Section 6. Diagnostic Aids 405

Save Areas

Registers are saved in an la-word area printed to by register \
13. There are five such areas or levels reserved in the ~
executor work area. When a routine is called, the calling
routine's registers are saved in the current level. Register 13
is then set to the address of the next level. The pointer to
the save area is saved as a relative address to the workspace.

Calling Macros (VSPC)

relY!
+
+
+PCTYI
+
+
+
+
HE
+*
+
+
+
+
+
+
+
+APLP0062
+
+
+
+
+
+
+
+
+
+

Figure 44.

There are two macros used by the VSPC executor in calling and
returning to routines within itself: APLPENTR and APLPEXIT.

The APLPENTR macro instruction, which defines an entry point, is
written as follows:

I [entry-ptl APLPENTRI

entry-pt
is the entry point name.

Code generated for APLPENTR is described in Figure 44.

APLPENTR
OS
DC
EQU
ENTRY
USING
USING
USING

STM
lA
LA
CR
BL
L
BAlR
EQU
lR
SR
ST
lR
SR
ST
lR
l
DROP
USING

00
Cl8'PCTYI'
* PCTYI

PCTYI.RI5
PTC.R9
WSH,RlO

R14.RI2.12CRI3)
R2.ECASVlNCR13)
RI,ECASVEND
R2.RI
APLP0062
RI5,=VCERSAVEAR)
R14.R15
IE

RI.R13
Rl. RIO
RI.4CR2)
RI.R2
RI,RIO
RI.8(.R13)
R13.R2
RI2.=ACAPLPTYIO)
R15
APLPTYIO,R12

APlPENTR: Generated Code

ADDRESSABIl ITY
R9 HAS ADDR OF PTC
RIO HAS ADDR OF TOTAL WS
PROVIDES ADDRESSABIlITY TO
WSH.SFN.PTH,ECA
SAVE CALLERS REGISTERS
BUMP TO NEXT SAVE AREA
COMPARE TO END OF SAVE AREA
ANY ROOM lEFT ?
YES,SET UP
NO.GO TO ERROR
ROUTINE

CALLER'S SAVE ADDR
RElATIVIZE ADDR TO THE WS
SAVE IN OUR SAVE AREA
OUR SAVE ADDR
RELATIVIZE ADDR TO THE WS
LINK SAVE AREAS
SAVE AODR IN R13
ADDRESSABIlITY IN CSECT

The APlPEXIT macro instruction, which returns to the caller. is
written as follows: .

I Uabell I APLPEXIT I
label

is an optional statement label.

Licensed Material--Property of IBM
406 VS APL Program Logi c

J

L
+
+
+
+
HE
+

Code generated for APLPEXIT is described in Figure 45.

APLPEXIT
L
AR
LM
L

BR

R13,4C,R13)
R13,RI0
R 14 , R8 , 12 <13)
R12,12+14*4C,RI3)

R14

CALLER'S SAVE AREA
OBTAIN ABSOLUTE ADDR PTR .
RESTORE R14-R8
AND Rl2
RI0,Rli HAVE BEEN RELOCATED
RETURN TO CALLER

Figure 45. APLPEXIT: Generated Code

6. CICS/VS EXECUTOR LINKAGE

Register usage

Save Areas

The register usage implemented by the CICS/VS executor is shown
in Figure 46.

Register Use

7 Address of VS APL workspace

8 Address of global table (GBL)

9 Base Register

10 Address of perterm (PTH, PTK, and PRO control
blocks)

11 Address of stack

12 Address of CICS/VS TCA

13 Address of CICS/VS CSA

14 Return address

15 Entry point address or return code

Figure 46. Executor Register Usage (CICS/VS)

Parameters are passed in either register 1 or the user perterm.
Register 0 is destroyed by the linkage.

A return code is passed to PTHSRCOD (two-byte field in the
PERTERM). Return codes are described under "Service Request
Calls."

The CICS/VS executor uses a processing stack as a save area. See
"VS APL Executor Stack for CICS/VS" in "Section 5. Data Areas"
for a complete discussion of how the processing stack functions.

Licensed Material--Property of IBM
Section 6. Diagnostic Aids 407

Calling Macros
CICS/VS executor modules use three macros to generate entry and
exit code: APLKPOP, APLKSTAK, and APLKPROC. In addition, the
following macros are used in calling routines: APLKG, APLKHIST,
APLKT, APLKMAIN, APLKMILA, APLKPOST, APLKTERM, and APLKTRCE.

The APLKPOP macro. which defines an exit point from a routine,
is written as follows:

I[labell APLKPOP entry-pt[,retcodel

label
is an optional statement label.

entry-pt
is the entry point name; must match the label on the most
recently issued APLKSTAK or APLKPROC macro; multiple exits
from a routine may be used.

ret code
is a return code to be placed in register 15; if omitted.
register 15 is not modified.

The APLKSTAK macro defines the beginning of a work area to be
used by the routine that follows it. The work area is described
by a series of DS statements placed between the APLKSTAK macro
and the APLKPROC macro following it. If no work area (other than
a register save area) is required, the APLKSTAK macro can be
omitted. The APLKPROC macro (or, if present, the APLKSTAK macro)
defines an internal or external routine entry point and what
registers are to be saved. If the APLKSTAK macro is used, the
APLKPROC macro will have no operands.

The APLKSTAK AND APLKPROC macros are written as follows:

[entry-ptl APLKSTAK
or APLKPROC

entry-pt
is the entry point name; it will be an external entry point
if TYPE=ENTRY is specified. The CSECT name may be used for
the first routine in a CSECT.

regname

J

can be used to provide unique names for registers used J'
within this routine; register equates are provided by the
macro; and registers are saved and restored on entry to and
exit from this routine; registers are assigned from a pool
defined as RLOCALA ••. RLOCALG at the beginning of the
module; pool registers must be consecutive and named in
order, the numbering normally beginning with register 2.

TYPE=ENTRY
indicates that all registers are to be saved at the
beginning of this routine and that module addressability is
to be'established: register 10, the base register, is
always set to the address at the beginning of the CSECT.

SAVE= (.c...~9.' reg)
indicates the range of registers to be saved on entry to
and restored at exit from this routine; if this operand is
omitted and if TYPE=EHTRY was specified, registers 2
through 10 are saved; otherwise, as many registers as are
listed in the reQna~ parameter are saved; in either case,
register 14 is always saved and restored.

Licensed Material--Property of IBM
408 VS APL Program Logi c

L
APlKAHST

HE
+
+
+
+ENTOO03
+
+STKDOO03
+STKPOO03
+STKROOO3
+STKROOO3
+STKSOO03
+RDIFF

ClOCKNEW
ClOCKO
ClOCKl

HE
+STKDOO03
+
+
+STKlOO03
+APLKAHST
+
+
+
+
+
+
+

L +
+
+
+
+
+
+
+
+
+

Figure"47.

\.

CALC8
+*
+CALC8
+
+
+
+
+

Figure 48.

An example of code generated for the APtKSTAK and APlKPROC macro
when an external routine has been specifi'ed ;s described in
Figure 47.

APlKSTAK RDIFF,TYPE=ENTRY

USING
B
DC
OS
DROP
DSECT
OS
OS
OS
OS
EQU
OS
OS
OS
APlKPROC

DSECT
ORG
OS
EQU
CSECT
USING
l
lA
SR
lR
l
CR
BNHR
ST
ST
STM
BAlR
USING
LA
SR
USING
MVC

*,15
ENT0003
All(ENT0003-*-1),C'APlKAHST'.C'05/11/78'
OH
15

A
CL4
A
9F
RLOCALA
D
F
F

OF
*-STKD0003

STKD0003.11
15. STKP0003
0,STKl0003
11,0
0,15
15,0(15)
11.0
15
0,STKP0003
14,STKR003
2,10,STKS0003
10,0
*,10
O.lf-APLKAHST
10,0

PTR to TOP OF STACK AREA
PROCEDURE ID
REG 14
OTHER SAVED REGS

HIGH ORDER CLOCK WORD
lOW ORDER CLOCK WORD

ROUND UP TO WORK BOUNDARY

PTR TO END OF STACK
BACK UP STACK PTR
BY LENGTH OF STACK ENTRY
SAVE END-OF-STACK PTR
PTR TO ERROR ROUTINE
IS THERE EHOUGH SPACE?
(NO - GOTO ERROR ROUTINE)
IF SO, SAVE ENT PTR
SAVE REGISTER(S)

MODULE ADDRESSABllITY

APlKAHST,10
STKI0003,=C'AHST' SET 10 FOR DEBUG

APLKSTAK and APLKPROC: Generated Code for External Routines

An example of code generated for the APlKPOP macro is described
in Figure 48.

APLKPOP APlKAHST

OS OH
NI 4(11) .X'BF'
l '14 ,8(11)
lM 2.10.12(11)
lA 11. STlKOOO3(11)
BR 14

APlKPOP: Generated Code

RETURN TO CALLER

OVERLAY 10 WITH EXIT flAG
RESTORE REGS

POP STACK
RETURN TO CALLER

licensed Material----Property of IBM
Section 6. OiagnosticAids 409

Code generated for the APLKPROC macro when an internal routine
has been specified is described in Figure 49.

HISTUP APLKPROC
HE
HE
+HISTUP
+STKD0009
+STKP0009
+STKI0009
+STKR0009
+STKS0009
+STKD0009
+

DS
DSECT
DS
OS
DS
DS
OSECT
ORG
OS
EQU
CSECT
USING
L

ON

A
Cl4
A
OF

PTR TO TOP OF STACK AREA
PROCEDURE ID
REG 14
OTHER SAVED REGS

+
+STKl0009
+APlKAHST
+

OF
JE-STK00009

STKD0009,11

ROUND UP TO WORD BOUNDARY

+
+
+
+
+
+
+
+
+
+

LA
SR
LR
L
CR
BHHR
ST
ST
MVC

15,STKP0009 PTR TO END OF STACK
O,STKl0009 BACK UP STACK PTR
11,0 BY LENGTH OF STACK ENTRY
0,15 SAVE ENO-OF-STACK PTR
15,O(15) PTR TO ERROR ROUTINE
11,0 IS THERE ENOUGH SPACE?
15 (NO - GOTO ERROR ROUTINE)
0,STKP0009 PTR TO END OF STACK
14,STKR0009 PTR TO END OF STACK
STKI0009,=C'HIST' SET 10 FOR DEBUG

Figure 49. APLKPROC: Generated Code for Internal Routines

The APlKEXIT macro defines an exit routine to be entered if a .\
program check or abend interrupt is encountered. It is written ~
as folloNs:

ENTRY=

PAR..,=

gives the name of the exit routine entered. Only one exit
routine may be in effect for a given process. On return,
if a previous exit definition has been overridden, RO
contains its entry point, and Rl contains its parameter.
Exits may be "stacked" by saving this information, and ..J'
using it later as APLKEXIT ENTRY = CO), PARM = (1) to
restore the previous exit.

specifies a value to be passed to the exit routine in Rl if
it is entered. It is an optional field. Frequently, the
address of the current stack entry (Rl1) is employed.

The Exit Routine
On entry to the abend exit routine, R1 contains the
parame~~r specified on the APLKEXIT macro, and RO points to
an abend exit block described below. R15 contains the
entry point address. and R14 is an abend return address.
All other registers are set as they existed at the last
time an APLKEXIT or APLKWAIT was issued by the process.
CNote that an APLKWAIT may have been issued by a different
module from that issuing the APLKEXIT.)

The routine is actually dispatched as a retry routine, and
does not normally return to its caller. If it should
return. the abend condition is raised again. Since the
exit is implicitly cancelled when it is invoked, a return
from the retry routine will termi~ate the process unless

Licensed Material----Property of IBM
410 VS APL Program Logi c

L

L

L

the retry routine has set a new APLKEXIT or restored a
previous APLKEXIT.

A pointer to an abend exit block is passed to the routine
in RO. The data in that block ;s valid only until the next
program check or abend in the APLU task. The block
contains space for a PSW. registers 0-15. and floating
point registers 0-8. in that order (there is no mapping
macro for this block). The high order bit of the PSW
should first be checked. If it is off. a program check has
occurred. and the PSW and register save areas contain valid
information. If the high order bit is on. an abend has
occurred. and the first four bytes contain an EBCDIC
CICS/VS abend code. In this case. no additional
information (PSW or register) is available.

The APLKG macro. which invokes library services by queueing a
request for the library task. is written as follows:

libserve.LISTA=area.TVPE=.code

libserve
states the library service requested.

is a pointer to a global request element (GRE). GREs
contain four words which are formatted by the APLKG macro
expansion, and a two-word extension which must be set up by
the caller before issuing the request.

Codes and their meanings follow:

Code

LOAD

SAVE

DROP

WDIR

WLIB

UDIR

CFIlE

DFIlE

UFIlE

RLIB

l1eaning

load a workspace

Save a workspace

Drop a workspace

Add a directory entry to the
APL directory

Write a control interval in the
APL library

Update an entry in the
APL directory

Create an auxiliary processor
121 file

Drop an auxiliary processor
121 file

Extend an auxiliary processor
121 file

Read a control interval from
the APl library

Licensed Material--Property of IBM
Section 6. Diagnostic Aids 411

The APLKHIST macro, which is used to invoke the histogram data
recorder routine, is written as follows:

I[labell IAPLKHIST tvpe,oldclock

label
is an optional statement label.

is one of the following names:

• INPUT1-the time between APL issuing a terminal read
request to CICS/VS and notification to APL of
completion of the request.

• INPUT2-the interevent time between two read operations

• REACT1--the elapsed time between first recognition of
the input by APL and the time when the input is passed
to the interpreter.

• INTERPl--interpreter processing time per input
operation. This time is not precisely processor time,
because it may include time, of which VS APL or CICS/VS
has not been notified, that was used by the operating
system or higher priority partitions.

• INTERP2--the length of time that processing is
interrupted for a user when the interpreter is stopped
at the end of a time slice.

• DEPENDI-the elapsed time between auxiliary processor
dispatch and the next auxiliary processor wait
operation.

•

•

DEPEND2--the time between two auxiliary processor
dispatch operations.

CALC--the difference in time between current time and
oldclock time. This time is returned without making
any histogram update.

• LOADI--the time it takes for a)LOAD operation to be
processed.

• LOAD2--the time elapsed between two successive)LOAD
requests for the same user.

•

•

SAVEl-the time it takes for a)SAVE operation to be
processed.

SAVE2--the time elapsed between two successive)SAVE
requests for the same user.

• COPY I-the time it takes for a)COPY operation to be
processed.

• COPY2--the time elapsed between two successive)COPY
requests for the same user.

• LOGON1-the elapsed time between logon and when
interpreter code is first entered.

• LOGOH2--the time between the beginning and end of the
user session.

Licensed Material-Property of IBM
412 VS APL Program Logi c

J

L

L

oldclock
is the name of a doubleword containing output from the STCK
hardware instruction. Register notation may be used.

When control is returned from the APlKHIST macro. floating point
register 0 contains the newclock value (as it was provided by
the STCK hardware instruction. not as a floating point number).
The caller may use the STD hardware instruction to save this
value to use when ~ssuing a subsequent APLKHIST macro. Register
15 will contain the difference in time between oldclock time and
current time in milliseconds. If. however. register 15 contains
a negative value. it will be one of the following return codes:

-4 The oldclock value is zero. No histogram update is made in
this case. but the newclock value is returned.

-8 The clock is not running. Note that a clock that is running
but not set is acceptable.

The APlKMAIN macro invokes CICS/VS DFHSC GETMAIN and FREEMAIN
routines. If ClASS=USER is specified or is the default. the
macro gets enough storage to allow for the SSA (storage
accounting area) affixed by CICS/VS; that is. the address
returned by the GETMAIN routine and passed to the FREEMAIN
routine point~ beyond the SAA.

The APlKMAIH macro is written as follows:

label
is an optional statement label.

GET, length
requests storage, the 19n9th being the number of bytes of
storage requested. If register notation is used, it
indicates that the length is in the specified register. The
storage address is returned in register 1.

FREE, !Utsl!:
requests that the storage acquired by the GET parameter be
freed. addr being the address of that storage.

CLASS=,COND=,INITIHG=
These parameters are d9fined in the CICS/VS Application
Programmer's Reference Manual (Macro Level).

The APlKT macro, which provides linkage between terminal manager
routines, is written as follows:

..l.§.lutl

APLKT TARGETl,G][,G=gblptr]
[.P=parm]

is an optional statement label.

Licensed Material--Property of IBM
Section 6. Diagnostic Aids 413

TARGET

G

is either the label (within the module currently executing)
of the routine to be called or a keyword identifying that
routine. Valid keywords and the entry points to which
control is routed are:

Keyword Entry Point

CLEAR KTSCLEAR

FCHECK KTSFCHK

FIHDF KTSFHDF

HLINE KTSLINE

LOCID KTSLOCID

LOCREQ KTSLOCR

SCHED KTSSCHED

SETCUR KTRCU

TRAN KTRTRAN

indicates that the TARGET operand specifies a keyword
rather than a label. In this case. the entry point to which
control is to be passed will be located through the GBL
(global) table. If the GBL table is not addressable. see
the G=9blptr operand.

P:parm
the address of a fullword parameter to be passed in
register 1 to the entry point getting control. If register
notation is used. it indicates that the parameter is in the

. i dent i fi ed regi ster.

The APLKTERM macro. which passes control to terminal manager
entry points. is written as follows:

I APLKTERM trqdaddr.TYPE=tlist.OPT:~

trgdaddr
gives the address of the TRQD (terminal request descriptor)
parameter list. This parameter is required and positional.

TYPE=~ j
Indicates the type of request.· A single type keyword may be ~
used. or a list of type keywords may be enclosed in
parentheses. Type keywords and their meanings follow:

• FORMAT--define the screen format.

• WRITE--write or erase data by field.

• READ--wait for input <if necessary) and summarize it.

• GETDATA--gat data by field.

• FLDATTR--set field attributes.

• GETFORM--get the current screen format.

• HCOPY--request hardcopy output of the screen image.

• ALARM--ring the alarm.

• SETCUR--set the cursor.

Licen~ed Material--Property of IBM
414 VS APt Program Logic

L

L

• RESTORE--restore the screen.

•
•

INIT--indicates this is the initial service request.

FINAL--indicates this is the final service request.

• YES--i ndi cates that type bi ts have been set i.n TRQ
fields TRQTYPI and TRQTYP2.

The following type keywords are mutually exclusive: INIT.
FINAL, FORMAT, WRITE. READ. GETDATA, FLDATTR, and GETFORM.
They are considered major requests and result in control
being passed to one of the following entry points:

Keywor-d Entr-y Point

INIT KTRIN
FINAL KTRFI
FORMAT KTRFM
WRITE KTRWR
READ KTRRD
GETDATA KTRGD
FlDATTR KTRFA
GETFORM KTRGA

The following type keywords may be specified alone or with
. others: HCOPY, ALARM, SETCUR, and RESTORE. (HCOPY and
RESTORE may be used only with the WRITE keyword.) These
keywords are considered minor requests. If they are
specified with major request keywords, control is passed to
the entry point listed previously for major request
keywords. Otherwise, control is passed to the KTRRT entry
point.

OPT=olis~
indicates what options are desired on requests. A single
OPT keyword may be used, or a list of OPT keywords may be
enclosed in parentheses and separated by commas. OPT
keywords and their meanings follow:

• ALT--use the alternate screen.

• REFORM--is specified with the type keyword FORMAT.
Requests a reformat of the screen.

• FCHECK--is specified with the type keyword FORMAT.

•

Requests verification of the screen format given on the
FORMAT request.

WAIT--is specified with the type keyword WRITE.
Requests that the system wait for the results of a
write operation.

• NULL--is specified with the type keyword WRITE.
Requests that the trailing blanks be treated as null.

• NODAT--is specified with READ or GETDATA. If the
keyword ;s READ, requests that no data information be
returned. If the keyword is GETDATA. requests that
~ield lengths be returned instead of data.

• WILLWR--is specified with the type keyword READ.
Specifies that a write operation will immediately
follow the read operation.

• YES--means that option bits have been set in the TRQOPT
field in the TRQD. If the OPT keyword is not specified,
the TRQOPT field will be cleared.

Licensed Material--Property of IBM
Section 6. Diagnostic Aids 415

The APLKTRCE macro, which invokes the CICS/VS DFHTR trace
routine for. a user 193 trace, is written as follows:

label

ddddd

APLKTRCE

is an optional statement label.

is two hexadecimal digits identifying what was traced. An.
Sn, and Cn indicate the traced data was associated with
executor routines, operating system calls. and shared
storage manager services respectively.

is the address of three (or if the BYTE operand is omitted.
four) bytes of traced data. If register notation is used,
the traced data is in the specified register.

BYTE=.l22
allows the high-order byte of the traced data word (ddddd)
to be overlaid with the data specified in bb. If register
notation is used, the data to be overlaid is in the
low-order byte of the register.

Rl4=rrrrr
-rs-the caller's address. If this parameter is specified,

.r.r..t.cr overr·ides the default caller's address that's
specified in the register save area in the stack.

The trace records generated by the APLKTRCE macro have the
following format:

dddddd id rrrrrr

7. SERVICE REQUEST CALLS (CICS/VS, CMS, TSO, OR VSPC)

Register Usage

Save Areas

Service request calls are made from the interpreter or
translator to the executor (CICS/VS. CMS, TSO. or VSPC).

Register

o
1

11

Use

Address of parameter (service request code)

Entry point address

Address of workspace

Parameters other than service request codes are passed in the
~Jorkspace .

Return codes are passed in PTHSRCOD.

The interpreter's or translator's registers are saved in the
workspace at location WSMREGSV.

Licensed Material---Property of IBM
416 VS APL Program Logi c

J

Calling Macros

The interpreter or translator passes control to the executor by
issuing a service request using the APlSVCC macro.

The APlSVCC macro instruction is written as follows:

Irlabell IAPLSVCC I id,yycode,

The yycod~ is implicitly the first parameter of any s~rv;ce
request. It specifies exactly what service is desired. The
yycode is a 16-bit constant aligned on a halfword boundary. The
high-order bit of the yycode is a flag used by the interpreter
to determine if the last request issued marked the end of one
work session and the start of another. The r~main;ng 15 bits
represent a positive numeric value that specifies the service
requested. The value assigned to a particular service is
arbitrary. In the interpreter, ~ode values are always referred
to by name; the numeric value of the low-order 15 bits of the
yycode has meaning only to the executor.

Code generated for APlSVCC is described in Figure 50.

+
+
+
+SVCC0020

APlSVCC
l
BAlR
DC
EQU

YYQAI
Rl,=VCAPlFXIIM)
RO,Rl
Al2(YYQAI)

*
Figure 50. APlSVCC: Generated Code

Values, Parameters, and Return Codes for service Requests

REGULAR SERVICE REQUESTS: Regular service requests are those
that do not invoke library operations, and are not concerned
with shared variables.

Value 0001 - YYQZ

Service: Relinqu;sh control at end of quantum.
Parameters: Hone

Return Codes:

Continue 0000

8000 Illegal: issued when executor had not requested
quantum end.

CICS/VS Routine: APLKMSCB, KCQZ
CMS Routine: APlSCMSC, SCQZ
TSO Routine: APlYUMSC, SCQZ
VSPC Routine: APlPMISC. PCQZ

Value 0002 - YYTYO

Service: Send output to terminal.

Parameters:

WSMPARMI Absolute address of data string

licensed Material--Property of IBM
Section 6. Diagnostic Aids 417

WSMPARM2 Length of data string (negative value if last byte
of string not a new-line character)

Return Codes:

0000

8000

Completed

WSMPARMI (or sum of WSMPARMI and WSMPARM2) addresses
an area not in the workspace or interpreter; WSMPARM2
positive and last character not a new line; absolute
value of WSMPARM2 greater than 1024.

CICS/VS Routine: APLKIFIX. KYYTYOI
CMS Routine: APLSCTYP. SCTYO. APLSCDPY. SCDTYO
TSO Routine: APLYUTYF. SCTYO, APLYUDPY, SCDTYO
VSPC Routine: APLPTYIO, PCTYO, PCDTYO
Session manager routine: APlACPRO

Value OOOl - YYTYI

Service: Get input from terminal.

Parameters:

WSMBUFF String of prepared input

WSMBFPTR Length of prepared input in bytes at this time

Return Codes:

0000 Completed

0001

0002

0003

8000

Buffer overflow

Character error

O-U-T discovered

WSMBFPTR or WSMCURSR less than 0; WSMCURSR greater
than WSMBFPTR; issuing workspace is in copy status;
WSMCURSR not equal to PTHCURSR when request issued.

CICS/VS Routine: APLKIFIX, KYYTYOI
CMS Routine: APLSCTYP, SCTYI, APLSCDPY. SCDTYI
TSO Routine: APLYUTYP, SCTYI, APLYUDPY, SCDTYI
VSPC Routine: APLPTYIO, PCTYI. PCDTYO
Session manager routine: APLACPRO

Value 0004 - YYTYOI

Service: Output prompt, then get input from terminal.

Parameters:

WSMPARMI Addresses WSMBUFF

WSMPARM2 Contains length of string in WSMBUFF

WSMBUFF Contains short character string containing no
terminal-control Z-codes

WSMBFPTR Contains length of string in WSMBUFF

WSMCURSR Equal to WSMBFPTR

Return Codes: See "YYTYI."
CICS/VS Routi~e: APLKIFIX. KYYTYOI
CMS Routine: APLSCTYP, SCTYOI, APLSCDPY, SCDTYOI
TSO Routine: APLYUTYP, SeTYOI

Licensed Material--Property of IBM
418 .. VS APL Program Logic

VSPC Routine: APlPTYIO, PCTYOI, PCDTYOI
Session manager routine: APlACPRO

Value OOOS - YYATOFF

Service: Turn off attention 'and cancel bits in PERTERM.
Parameters: Hone
Return Codes: Always 0000
CICS/VS Routine: APlKMSC8, KCATOFF
CMS Routine: APLSCTYP, SCATOFF
TSO Routine: APlYUMSC, SCATOFF
VSPC Routine: APlPMISC. PCATOFF

Value 0006 - YYTIME

Service: Send date and time of day in VS APL standard time
format.
Parameters: Hone

Return Codes:

0000 Completed

8000 Workspace in copy status

CICS/VS Routine: APlKMSCA. KCATOFF
CMS Routine: APlSCMSC. SCTIME
TSO Routine: APLYUMSC, SCTIME
VSPC Routine: APLPMISC. PCTIME

Value 0007 - YYQAI

Service: Send account information.
Parameters: Hone

Return Codes:

0000 Completed

8000 Workspace in copy status

CICS/VS Routine: APLKMSCA. KCQAI
CMS Routine: APLSCMSC. SCQAI
TSO Routine: APLYUMSC. SCQAI
VSPC Routine: APlPMISC. PCQAI

Value 0008 - YYRWAIT

Service: Wait for response to message.
Parameters: Hone

Return Codes:

0000 Completed

8000 Illegal: workspace in copy status; PTHCURSR not equal
to O.

CICS/VS Routine: not supported
CMS Routine: APlSCMSG. SCRWAIT
T50 Routine: APLYUM5C. SCRWAIT
VSPC Routine: APlPTYIO. PCRWAIT

Value 0009 - YYDELAY

Service: Set delay interval.

Licensed Material---Property of IBM
Section 6. Diagnostic Aids 419

------------------------------------ -----

Parameters:

WSMPARMI The desired delay interval in VS APl

WSMPARM2 standard time format.

Return CO,des:

0000 Completed

8000 Workspace in copy status

CICS/VS Routine: APlKMSCA. KCDElAY
CMS Routine: APlSCMSC. SCDElAY
TSO Routine: APlYUMSC. SCDElAY
VSPC Routine: APLPTYIO. PCDELAY

Value OOOA - YYTABS

Service: Set or send tab settings.

Parameters:

WSMBUFF Parameter string

WSMBFPTR 0 = ~eference tabs; non-O = set tabs

Return Codes:

0000 Completed

0001 Tabs not supported

8000 Illegal: invalid parameter string; WSMBFPTR less than
o or greater than 255; workspace in coPy status.

CICS/VS Routine: APLKMSCB. KCTABS
CMS Routine: ~PlSCTYP. SCTABS
TSO Routine: APlYUMSC. SCTABS
VSPC Routine: APlPTYIO. PCTABS

Value OOOB - YYWIDTH

Service: Accept specified line width.

Parameters:

WSMPARMI Hew width setting

Return codes:

0000 Accepted

8000 Illegal: WSMPARMI greater than 255 or less than 30;
,workspace in copy status.

CICS/VS Routine: APLKMSCB. KCWIDTH
CMS Routine: APlSCTYP. SCWIDTH
T50 Routine: APlYUTYP. SCWIDTH
VSPC Routine: APlPTYIO. PCWIDTH

Value oooe - VVMBL

Service: Block or unblock messages.

licensed Material--Property of IBM
420 VS APl Program Log; c

Parameters:

WSMPARMl Contains signal value; 0 = no change; 1 = block; 2
= unblock

Parameters:

0000 Accepted

0001 Hot supported

0002 Invalid for this user

8000 Illegal: WSMPARMl is not 0, 1, or 2; this
workspace is in copy status.

CICS/VS Routine: APlKMSCB, KCMBl
CMS Routine: APlSCMSG, SCMBl
TSO Routine: APlYUMSG, SCMBl
VSPC Routine: APlPTYIO, PCMBl

Value OOOD - YYTRAH

Service: Transmit message.

Parameters:

WSMPARM1 Absolute address of the first nonblank character
following the verb of an OPR or MSG command. the
text of which is in WSMBUFF.

WSMPARM2 Bit 0=1 if command verb was OPR or OPRH Bits 1-31
= length of string addressed by WSMPARM1

Return Codes:

0000

0000 Sent

0001 Message lost

0002 User not receiving

0003 Target not signed on

0004 Target undecipherable

8000 Illegal: WSMPARM1. or W5MPARMl plus WSMPARM2 (1-31)
do not fall in WSMBUFF; WSMPARM2 (1-31) greater than
1024; this workspace in copy status.

CICS/VS Routine: APlKMSCB, KCTRAH
CMS Routine: APlSCMSG. SCTRAH
T50 Routine: APlYUMSG. SCTRAH
VSPC Routine: APlPTYIO, PCTRAH

Value 0010 - YYCOPI

Service: Accept a buffer of copy data from copy source
workspace to copy sink workspace.

Parameters: Hone

Return Codes:

0000 Data supplied

licensed Material--Property of IBM
Section 6. Diagnostic Aids 421

0001 No data available

8000

CICS/VS Routine: APLKLIBU, KCOPI
CMS Routine: APLSCOPY, SCCOPI
TSO Routine: APLYUOPY, SCCOPI
VSPC Routine: APLPMISC, PCCOPI

Value 0011 - YYCOPO

Service: Offer a buffer of copy data to copy sink workspace.

Parallleters:

WSMBUFF Block of copy data

WSMBFPTR Length of data in WSMBUFF

Return Codes:

0000

0001

-8000

Completed

Partner has terminated

Illegal: WSMBFPTR less than or equal to zero, or
greater than the maximum length of WSMBUFF; this
workspace not copy source.

CICS/VS Routine: APLKLIBU, KCOPU
CMS Routine: APLSCOPY, SCCOPO
TSO Routine: APLYUOPY, SCCOPO
VSPC Routine: APLPMISC, PCCOPO

Value 0012 - YYCOPZ

Service: Take the issuing-workspace out of copy status.

Parallleters: None

Return Codes:

0000 Completed

0001 This workspace is copy sink and not all copy data has
been consumed.

8000 Illegal: workspace not in copy status.

CICS/VS Routine: APLKLIBU, KCOPZ
CMS Routine: APLSCOPY, SCCOPZ
TSO Routine: APLYUDPY, SCCOPZ
VSPC Routine: APLPMISC, PCCOPZ

Value 0013 - YYDUMP

Service: Dump active workspace and PERTERM.
Parameters: None
Return Code: Always 0000
CICS/VS Routine: APLKMSCA, KCDUMP
CMS Routine: APLSCERR, SCDUMP
TSO Routine: APLYUERR, SCDUMP
VSPC Routine: APLPSERR, PCDUMP

Value 0014 - YYOFF

Service: Terminate session.

Licensed Material--Property of IBM
422 VS APL Program Logi c

J

J

L

L

Parameters:

WSMPARM1 Bit 31; 0 = no hold. 1 = hold

Return Codes: None
CICS/VS Routine: APLKMSCB, KYYOFF
CMS Routine: APLSCMSC. SCOFF
T50 Routine: APlYUMSC, SCOFF
VSPC Routine: APLPMISC, PCOFF

Value 0015 - YYSYSER

Parameters:

WSMBUFF Character string (error message)

WSMBFPTR Length of string

Return Codes: Always 0000
CICS/VS Routine: APLKMSCB, KCSYSER
CMS Routine: APLSCERR, SCSYSER
TSO Routine: AP(YUERR, SCSYSER
VSPC Routine: APLPSERR, PCSYSER

Value 0016 - YYQUOTA

Service: Print information concerning workspace, library,
and shared variable quotas.
Parameters: Hone

Return Cades:

0000

8000 Illegal: workspace in copy status.

CICS/VS Routine: APLKMSCB. KCQUOTA
CMS Routine: APLSCMSC, SCQUOTA
TSO Routine: APLYUMSC, SCQUOTA
VSPC Routine: APLPMISC, PCQUOTA

Value 0017 - YYCMD

Service: Pass all commands to supervisor before they are
processed by the interpreter.

Parameters:

WSMPARMI Points to command verb block

WSMPARM2 Points to command operand block

Both blocks are of the form

DC X(LEN-l), CLCLEN) , ...• ,

On return. WSMBUFF may contain z-code output data with
embedded new-line characters; WSMBFPTR must contain either
the length of this data, or. if no data is to be displayed,
O.

Return Cades:

0000 Completed

licensed Material--Property of IBM
Section 6. Diagnostic Aids 423

0001 WSMBUFF full: clear and restart

0002

0003

Provide standard error message

let the interpreter process the command

CICS/VS Routine: APLKMSCB, KYYCMD
CMS Routine: APLSCMSC, SCCMD
TSO Routine: APLYUMSC, SCCMD
VSPC Routine: APlPMISC, PCMD

LIBRARY REQUESTS: library requests are those that entail a
reference to the workspace library or the user directory. All
the library requests share a common parameter list. called the
PDSD, and a common set of return codes.

Parameters:

PDSLIBHO Library number

PDSHAME Workspace namCi

PDSPASS Password

PDSMOD Flag bi ts

PDSSIZE Workspace size

Return codes:

0000

0002

0004

0006

0008

OOOA

OOOC

OOOE

0010

0012

0014

0016

0018

0020

0022

0024

Good completion

library not found

Workspace not found

Incorrect password

Improper library request

Hame already exists (SAVE)

Workspace too large

li brary is full

Hame in use (non-VS APl workspace)s=

System resources full

library locked

Space not available

Size quota exceeded

Library not available

Filesize maximum exceedad

Hot supported

The following codes indicate hardware or software failure=

Return Codes:

0081 Directory read I/O failure

licensed Material--Property of IBM
424 VS APl Program Log; c

J

L
0082 library read I/O failure

0085 Directory write I/O failure

0086 library write I/O failure

8000 Illegal: bad PDSD, or this workspace in copy status.

Value 8020 - YYLOAD

Service: load the specified workspace.
CICS/VS Routine: APlKLIBU. KlOAD
CMS Routine: APlSClIB, SClOAD
TSO Routine: APlYUlIB, SClOAD
VSPC Routine: APlPlIBS, PClOAD

Value 8021 - YYCOPA

Service: load copy source workspace and dispatch it to
generate copy output.
CICS/VS Routine: APLKlIBU. KCOPA
CMS Routine: APlSCOPY, SCCOPA
TSO Routine: APlYUOPY, SCCOPA
VSPC Routine: APlPLIBS, PCCOPA

Value 0022 - YYSAVE

Service: Save a workspace.
CICS/VS Routine: APlKLIBU, KSAVE
CMS Routine: APLSClIB. SCSAVE
TSO Routine: APlYUlIB, SCSAVE
VSPC Routine: APlPLIBS, PCSAVE

Value 0023 - YYDROP

Service: Drop a workspace.
CICS/VS Routine: APlKlIBU. KDROP
CMS Routine: APLSCLIB. SCDROP
TSO Routine: APlYUlIB, SCDROP
VSPC Routine: APlPlIBS, PCDROP

Value 0024 - YYLIB

Service: Send library and workspace information.
CICS/US Routine: APLKlIBU. KLIB
CMS Routine: APlSCLIB, SClIS
TSO Routine: APLYULIB. SClIS
VSPC Routine: APLPLIBS. PClIB

Value 8025 - YYCLEAR

Service: Clear the workspace.
CICS/VS Routine: APLKlIBU, KCLEAR
CMS Routine: APlSCMSC, SCClEAR
TSO Routine: APLYUMSC, SCClEAR
VSPC Routine: APlPlIBS, PCClEAR

Value 0026 - YYWSID

Serv~ce: Change workspace identification.
CICS/VS Routine: APlKlIBU. KWSID
CMS Routine: APLSCMSC, SCWSID
TSO Routine: APLYUMSC, SCWSID
VSPC Routine: APlPLIBS. PCWSID

licensed Material--Property of IBM
Section 6. Diagnostic Aids 425

,I
I,
" 'I

1

\

Value 0028 - YYPASS

Service: Change signon p~ssword.
CICS/VS Routine: APlKlIBU, KPASS
CMS Routine: APlSCMSC, SCPASS
TSO Routine: APLYUMSC. SCPASS
VSP~. Rou~ine: APlPLIBS. PCPASS

SHARED VARIABLE ORIENTED REQUESTS: Shared variable services are
not performed by the executor but by the shared storage manager.
The executor, however. provides the communication medium between
the interpreter and the shared storage manager.

The parameter for each·shared variable request is a control
block, the processor control vector (PCV) for YYSOH and YYSOFF,
the share control vector (SCV) for all others. The interpreter
builds the appropriate control block in WSMSVLRQ in the
workspace. The executor places the shared storage manager return
code in byte 0 of PTHSRCOD and the reason code in byte 1 of
PTHSRCOD .. In addition. the executor may generate this return

. code:

Return Code:

8000 Illegal: this workspace in copy status.

Value 0030 - YYSON

Service: Sign on to shared storage manager.
CICS/VS Routine: APLKISUI
CMS Routine: APLSCSHV. SCSVON
TSO Routine: APLYUSHV, SCSVON
VSPC Routine: APLPSHVR, PCSON

Value 0031 - YYSOFFER

Service: Offer to share a variable.
CICS/VS Routine: APlKISUI
CMS Routine: APLSCSHV, SCSVOFFR
1S0 Routine: APLYUSHV, SCVOFFR
VSPC Routine: APlPSHVR, PCSOFFER

Value 0032 - YYSRET

Service: Retract a· variable.
CICS/VS Routine: APLYUSHV, SCURE1R
CMS Routine: APlSCSHV, SCSVRETR
TSO Routine: APlYUSHV, SCURETR
VSPC Routine: APLPSHVR. PCSRET

Value 0033 - YYSQUERY

Service: Send information about shared variables and
partners.
CICS/VS Routine: APlYUSHV. SCSVQUER
CMS Routine: APlSCSHV, SCSVQUER
TSO Routine: APlYUSHV, SCSVQUER
VSPC Routine: APLPSHVR. PCSQUERY

Value 0034.- YYSACC

Service: Change access control vector.
CICS/VS Routine: APlYUSHV, SCSVACC
CMS Routine: APlSCSHV, SCSVACC
TSO Routine: APlYUSHV, SCSVACC
VSPC Routine: APlPSHVR, PCSACC

Value 0035 - YYSSPEC

Service: Accept new value for shared variable.
CICS/VS Routine: APLYUSHV. SCSVSPEC
CMS Routine: APLSCSHV, SCSVSPEC

Licensed Materi ai-Property of IBM
426 VS APL Pro.gram log; c

J

L
T50 Routine: APlYUSHV. SCSV5PEC
VSPC Routine: APlPSHVR. PC5SPEC

Value 0036 - YYSREF

Service: Send current value of shared variable.
CICS/VS Routine: APlYUSHV. SCSVReF
CMS Routine: APlSCSHV. SCSVREF
TSO Routine: APlYUSHV. SCSVREF
VSPC Routine: APlPSHVR. PCSREF

Value 0037 - YYSCOPY

Service: Send current value of shared variable, regardless
of access state.
CICS/VS Routine: APlYUSHV. SCSVCOPY
CMS Routine: APlSCSHV, SCSVCOPY
TSO Routine: APlYUSHV. SCSVCOPY
VSPC Routine: APlPSHVR. PCSCOPY

Value 0038 - YYSOFF

Service: Signoff of shared storage manager.
CICS/VS Routine: APlYUSHV, SCSVOFF
CMS Routine: APlSCSHV. SCSVOFF
TSO Routine: APlYUSHV, SCSVOFF
VSPC Routine: APlPSHVR. PCSOFF

IMPLIED SERVICE REQUESTS: Implied service requests are the means
by which control is passed to the interpreter when an
unpredictable event has occurred.

Value 80FO - YYON

Event: User has signed on.

Return Codes:

0000 No continue

0001 Continue needed

Value 80Fl - YYPRGX

Event: Program check has occurred.
Return Codes: Hone

licensed Materiel--Property of IBM
Section 6. Diagnostic Aids 427

8. CONVERSION PROGRA" LINKAGE

Save Areas

Calling "aeros

The conversion program uses the conventions shown in Figure 51
for calls within itself.

Register

o

10

11

12

13

Use

Parameter (word of flag bits defined by macro
APLFLAGS)

Address of source workspace (VS APL communication)

Address of sink (converted) workspace (VS APL
communication)

NOTE: Registers 10 and 11 are reversed for OS/VS1.
OS/VS2. or DOS/VS communication.

Base register

Address of register save area

14 Return address

15 Entry point address and return code register

Figure 51. Conversion Program Register Usage

Registers are saved in an IS-word area pointed to by register
13.

Two sets of calling macros are used in the conversion programs.
The first consists of the ACENTRY macro and the OS/VSI. OS/VS2.
DOS/VS CAll and RETURN macros. With these, APlFLAGS is used for
communication between modules. but is not passed as a parameter.
The second consists of the ACENTRY2, ACCALl, and ACEXIT macros.
With these. APlFLAGS is passed as a parameter.

The ACENTRY macro instruction. which defines an entry point, is
written as follows:

I [entry-ptl I ACENTRY save-area

entry-pt
is tha name of the entry point.

save-area
is the name of the called routine's IS-word regtster save
araa.

Li censed Mater.i aI-Property of IBM
428 VS APL Program Logi c

L CVINIT
+CVINIT
+
+
+
+
+
+
+
+
+
+

Figure 52.

CVDIRE
+CVDIRE
+
+
+
+
+
+
+
+
+
+
+

Figure 53.

Code generated for ACEHTRY is described in Figure 52.

ACENTRY SAVEIHIT
CSECT
B 12(0,15) BRANCH AROUND ID
DC ALI(6)
DC CL6' CVIHIT' IDENTIFIER
STM 14,12,12(13) SAVE REGISTERS
BALR R12,0 PROGRAM ADDRESSABILITY
USING *,RI2
ST RI3,SAVEINIT+4 SAVE CALLER SAVE AREA PTR
LR R15,R13
LA R13, SAVEINIT PROGRAM SAVE AREA PTR
ST RI3,8(,RI5) BACK CHAIN NEW SAVE PTR

ACENTRY: Generated Code

The ACENTRY2 macro instruction, which defines an entry point, is
written as follows:

1[IZlbeIJ IACENTRY2 J save-area

entry-pt
;s the name of the entry point.

save-area
is the name of the called routine's 18-word register save
area.

Code generated for ACENTRY2 is described in Figure 53.

ACENTRY2 SAVDIRE
CSECT
B 12(0,15) BRANCH AROUND ID
DC ALI(6)
DC CL6'CVDIRE' IDENTIFIER
STM 14,12,12(13) SAVE REGISTERS
BALR R12,0 PROGRAM ADDRESSABILITY
USING M,R12
ST R13,SAVDIRER+4 SAVE CALLER SAVE AREA PTR
lR R15,R13
LA R13,SAVDIRER PROGRAM SAVE AREA PTR
ST R13,8(,Rl,5) BACK CHAIN NEW SAVE PTR
ST RO,APlFI,.AOS SAVE COMMUNICATION FLAGS

ACEHTRY2: Generated Code

The ACCALL macro instruction, which calls a routine, is written
as follows:

I [labell IACCALL =--1 routi ne

lebel
is the optionol statement label.

routine
is the name of the called routine as defined by ACENTRY or
ACENTRY2.

licensed Material--Property of IBM
Section 6. Diagnostic Aids 429

+
+
+
+

Figure

+
+
+
+
+
+

54.

Register 13 contains the address of the calling routine's save
area.

Code' generated for ACCALL is described in Figure 54.

ACCALL CVPARM
L RO,APLFLAGS SEND COMMUNICATIONS FLAGS
L R15,=V(CVPARM) GET ENTRY POINT
BALR R14,R15 GO TO ROUTIt-!E
ST RO,APLFLAGS SAVE RETURNED FLAGS

ACCALL: Generated Code

The ACEXIT macro instruction, which returns to the caller, is
written as follows:

Irlabell IACEXIT IRc:return-code

label
is the optional statement label.

return-code

Return Codes:

o
4 or 8

4

32

Normal return

Abnormal return; occurs only in communication
between conversion program routines; specific
meanings defined by each routine.

Workspace could not be converted; used in
communication with OS/VSI, OS/VS2, or DOS/VS.

System error routine; used in communication with
OS/VSl, OS/VS2, or DOS/VS.

Code generated for ACEXIT is described in Figure 55.

The conversion program also uses the APLCALL macro to call
exarch and translator routines that are contained within it.

ACEXIT
L
L
L
LM
LA
BR

RC=O
RO,APLFLAGS
R13,4(,R13)
R14,12(,R13)
2.12,28(R13)
R15,O
R14

RETURN COMMUNICATION FLAGS
RESTORE CALLER'S SAVE PTR
RESTORE RETURN '
RESTORE CALLER REGS
RETURN CODE
RETURN TO CALLER

Figure 55. ACEXIT: Generated Code

Licensed Material--Property of IBM
430 VS APL Program Logi c

9. CHS/TSO SHARED STORAGE HANAGER

Save Areas

Control is passed from the interpreter to the shared storage
manager as follows:

1. Interpreter issues a service request (APlSVCC) which passes
control to the executor. .

2. Under CMS or TSO, the executor passes control to the shared
storage manager using registers 0, 14, and 15 as shown in
Figure 56.

3. Under VSPC, the executor passes control to the shared
storage manager using the host system linkage conventions.

Under CMS or TSO, each auxiliary processor is an independent
program. They initially receive control when VS APL is
initialized. They ~ubsequently receive control wh~n the
interpreter issues a shared variable request that satifies
an auxiliary processor's wait. The auxiliary processor
passes control to the shared storage manager using the
ASVPxxxx macros. In all th~se cases, the linkage uses
registers 0, 14, and 15 as shown in Figure 56.

Under VSPC, the auxiliary processors are a collection of
executor routines. They receive control, and pass control to
each other, using the linkage conventions described in
section "Executor Linkage." They pass control to the ~hared
storage manager using the host system linkage conventions.

Shared storage manager routines pass control to each other
with register usage as shown in Figure 56.

Register

o
Use

Parameter and reason code (return)

12

13

14

15

Base register (all shared storage manager
routines)

Address of shared memory

Return address

Entry point address and return code

Figure 56. Shared Storage Manager and Auxiliary Processor
Register Usage

The shared storage manager has four save areas or levels
reserved in the beginning of shared memory. Each shared storage
manager routine operates on one of these levels in that, when it
is called, the calling routine's registers are saved in the
appropriate save area.

licensed Material--Property of IBM
Section 6. Diagnostic Aids 431

10. CICS/VS SHARED STORAGE MANAGER

Register Usage

Save Areas

The register usage implemented by the shared storage manager is
shown in Figure 57.

Register

9

10

11

12

13

14

15

Use

Address of shared storage manager storage

Base register

Pointer to stack entry

Address of TCA

Address of CSA

Return address

Entry point address and return code

Figure 57. Shared Storage Manager Register Usage

The shared storage manager has a save area for saving caller
registers 2 through 13 and a stack area for use by the shared

J

storage manager subroutines. The APLKPROC. APLKSTAK. and APLKPOP\
macros are used to manage the stack area. ~

11. COMMON EXECUTOR LINKAGE

There is a set of service routines that produce the same effects
in any operating system. but that vary their method of execution
according to the operating system. For example. storage
management services is called to get more virtual storage. Under
TSO, it issues an OS GETMAINi under eMS. it issues a DMSFREEi
and under CICS/VS, it initiates a DFHSC request. These service
routines are called cross-sytpm ex~cutor services routines.

Cross-system executor services routines can use a special entry
and exit logic for obtaining and returning dynamic work areas.
The logic is called a stack protocol linkage, and an entry point
re~uiring this linkage is a st~ck protocol entry ·point. A module
calling a stack protocol entry point does not call the entry
point directly. but transfers control to a stack processing
routine in module APLXSTAK. which in turn calls the entry point.

Licensed Material--Property of IBM
432 VS APl Program Logic

Register usage

L

Save Areas

Calling Macros

Register use

o
1

10

13

14

15

Entry point to a stack protocol module

Standard parameter register

Pointer to PTX and PTH

Pointer to the stack work area (any unused register
may be specified by the stack protocol module)

Pointer to the stack processor routine

Entry point of the stack routine

An IS-word save area is generated'in the stack, and is used for
other linkages as well as stack protocol linkages.

There are three macros used by VS APl in stack protocol linkage:
APlCAllS, APlXEHD, and APlXPROC. These macros are expanded and
described below.

The APlCAllS macro instruction, which calls a module that uses
the stack protocol linkage, is written as follows:

label

APLCALLS !!ntry point
[,PARH=parmlistJ[,STKPTR=rQgl

is an optional statement label.

entry point
is the name of the entry point to be called. Entries from
the cross-system vector table (VeT) will cause an assembler
load from the VCT; otherwise, a literal VeON is loaded to
fetch the target address.

PAR"= parm-list
specifies the parameter to be passed to the entry point. An
LA instruction is generated for this parameter.

STKPTR= .r..G
identifies the stack register for this stack call. If
specified, this parameter sets the stack register for all
future APLCAllS invocations.

licensed Material---Property of IBM
Section 6. Diagnostic Aids 433

Code generated for APLCALLS with various parameter options is
described in Figure 58.

When entry

+

point begins
APLCAlLS
l

with VCT:
VCTEHTRY
14,PTXVCT
O,VCTEHTRY-VCT(,14) + l

+ LA 1,PARMlIST IF PARM= IS USED

When ~ntry point does not begin with VCT:
APlCAlLS ENTRYPT

+ lR 15,RSTK (OR REG, IF USED)
+ l O=V(EHTRYPT)
+ lA I,PARMlIST IF PARM= IS USED
+ BAlR 14,15

Figure 58. APlCAlLS: Generated Code

The APlXEND macro instruction, which generates exit code for a
module that uses the stack protocol linkage, is written as
fo11o",s:

label

ENTRY

FINAL

SUB

APLXEND [ENTRYIFINALISUS]
[CODE=code-parm]

is an optional statement laber.

causes assembly of a branch instruction to the address in
STKPREV.

causes assembly of the exit code for the end of a module.

causes assembly of a branch instruction to the address in
SUB14SV.

If neither ENTRY, FINAL, nor SUB is specifi~d, the function
performed is the function of both ENTRY and FINAL.

CODE=code-parm
causes assembly of an instruction to load a return code in
register 15.

licensed Material---Property of IBM
434 VS APl Progrllnl logi c

Code generated for APlXEND with various parameter options is
described in Figure 59.

When ENTRY is specified:
APLXEND ENTRY CODE=CDPRM

+ l R14,STKPREV
+ l R14.STKPOP-STKENTRY(R14)
+ l R15.CDPRM IF CODE= IS USED
+ BR R14

When FINAL is specified:
APlXEND FINAL

+STK DSECT
+STKLEN EQU H-STKENTRY
+SYSECT CSECT

When SUB is specified:
APLXEND

+ l
SUB CODE=CDPRM
R14.SUB14SV
R15.CDPRM + L IF CODE: IS USED

+ BR R14

Figure 59. APLXEHD: Generated Code

The APlXPROC macro instruction, which defines a stack protocol
entry point. is written as follows:

[labell APLXPROC [ENTRVISUBl

label

ENTRY

SUB

[,PASSB=C15.prgnm)]
[.DATAREGCdrgnm)][.CODEREGCcrgnm)]

;s an optional statement label.

causes assembly of code for a stack protocol entry point in
a module.

is used for internal subroutine linkage for the assembler.

If neither ENTRY nor SUB is specified, the function
performed is that of ENTRY.

PASSBK=(15.prgnm)
specifies a list of registers to be returned unchanged. The
default list is 15,0.

DATAREG=(drgnm)
specifies a register to contain data. The default register
is 13.

CODEREG=(crgom)
specifies a list of base registers. In assembler, there
may be no more than five of these.

licensed Material--Property of IBM
Section 6. Diagnostic Aids 435

When ENTRY
LABEL
+
+
+
+
+
+
+
+
+
+@PROLOG
+
+:i)PSTART
+
+
+

When ENTRY
LABEL
+
+
+
+
+
+
+
+
+XPRIHDX
+
+
+
+

When sun is

+SUB14SV
+STK
+SUB14SV
+SYSECT
+<LABEL>

Code generated for APLENTRY with various parameter options is
de5cribed in Figure 60.

is speci fi ed
I\PlXPROC
CSECT
USING
B
DC
DC
DC
DC
DC
DROP
OS
BALR
DS
USING
LA
USING

is sp~cified
APLXPROC
OS
USING
B
DC
DC
DC
DC
DROP
DS
LR
LA
5R
LA

specified:
APLXF'ROC
SETC
DSECT
OS
CSECT
5T

(first entry point):
ENTRY
DO
*,15
O'lrROLOG
ALl(length of id)
ALl(16*ORGNM+PRGNM)
AL2(length of stack needed)
Cl8'LABEl'
CL8'MM/OD/YY'
15
OH LAST STMT IF CODEREG=D
CRGNI1(1) ,0
OH
;;)PSTART,CRGNM
CRGNMCN),4D95(.CRGNM(H-l» IF CODEREG=
O'lPSTART+4D9S*CN-1),CRGNMCN) WAS USED

(subsequent entry point):
SUB
OH
LABEL ,ellS
XPRINDX XPRINDX HAS UNIQUE SUFFIX
All(length of id)
ALl(16~DRGHM+PRGNM)
Al2Clength of stack needed)
CL8' LABEL'
15
DH LAST STMT IF COOEREG=O
CRGNM(I),lS
lABEl-OlPSTART
CRGNM(1),15
CRGNMCN).409SC,CRGNM(N-l»

SUB
unique save-area name

F

R14,SUB14SV

Figure 60. APLXPROC: Generated Code

Licensed Material---Property of IBM
436 VS APL Program logi c

J

DIAGNOSING ERRORS

ERROR MESSAGE TO MODULE CROSS-REFERENCE INFORMATION

Figure 62 lists the message number, issuing module, and text for
messages produced by the executor for e~ror conditions arising
within the processor it~elf. Under CICS/VS, CMS. and TSO. the
error messages are displayed at the uSQr'~ terminal. Under VSPC
the errors are printed on the VSPC online log, and the following
message is displayed at the terminal:

date time SYSTEM ERROR n

Here n corresponds to the online log error message number.

The broad source of the error message can bo deter~inQd from the
message identifier, according to the list in Figure 61.

Message Identifiers

APlAOOO-APLA049
APLC050-APLC073
APLK300-APLK349
APLL350-APLL399
APLM400-APLM499
APLP500-APLP549
APLS600-APLS699
APLW700-APLW749
APLW750-APLW799
APLY800-APLY949

Source of Messages

Auxiliary processors
TSO workspace conversion messages
CICS/VS executor
CICS/VS service program
Session IT:Clnager
VSPC executor
Cf1S executor
GRAPHPAK workspace
TSO Service program worKspace
TSO executor

Figure 61. Message Identifiers and Sources

licensed Material--Property of IBM
Diagnosing Errors 437

** * AUXILIARY PROCESSOR MESSAGES *
**
Message Issued
ID by

APlAOOOE APlXAC

APlAOOIS APLXAC
APLXAK

APLA002S APLXAC
APLXAK

APLA003E APLXAC

APLA004W APLXAC

APLA005S APLXAC
APLXAK

Text

INVALID SIGNON PARAMETER LIST - APxxx.

INSUFFICIENT STORAGE FOR SIGNON - APxxx.

UNRECOVERABLE ERROR FROM SSM. TERMINATION OF
APxxx. RC=xx RS=yy

ERROR IN TRANSLATE SERVICES - APxxx.

INVOCATION PARAMETERS EXCEEDED MAXIMUM - APxxx.

ABEND. SHARED VARIABLE SET RETRACTED FOR APxxx.

APLA006E APLYUIOO, AUXILIARY PROCESSOR APxxx ALREADY SIGNED ON.
APLYUIOI
APL YUIll
APLl 00
APLl 0 I
APlllO
APL1ll
APL123
APLXAK

APLA007I APLYUIOO
APLYUIOI
APLYUIll
APll 0 0
APll 0 I
APL110
APL111
APL123

APLA020E APLIOOKO

APLA02IE APLIOOKO

APLA022E APLIOOKO

APLA023E APLlOOKO

APLA024E APLlOOKO

APLA030I APllOO

APLA040S APLYUERR

APLA04lE APLYUIOI

APLA042E APLYUIOI

APLA043S APLYUll1
APLYU210

APLA044E APLYU210

APLxxx ABENDED AT xxxxxx, RETURN CODE IS xx.
REASON CODE IS yy.

ICP GET FAILED: TCAICTR=X'

TRANSACTION NOT FOUND

INVALID TRANSACTION NAME

UNSUPPORTED TERMINAL TYPE

APlOO TWA SIZE IS TOO MSALL TO RUN TRANSACTION

CP/CMS COMMAND xxxxxxxx ABENDED, CODE=xxxx.

ERROR OCCURRED IN AN AUXILIARY PROCESSOR.

APlOI STACK OVERFLOW, APL STACK PURGED.

APIOl STACK CLEARED DUE TO INVALID DATA.

APxxx IS BEING MISUSED, AP RC = xxxxxx.

UNUSUAL END TO FORMAT, xxxxxx RECORDS FORMATTED,
DCB ABEND xxxxxx

Figure 62 (Part 1 of 13). Message-to-Module Cross-Reference

Licensed Material--Property of IBM
438 VS APL Program Logi c

Message Issued
ID by

APLA045S APLYU100

Text

TSO COMMAND xxxxxxxx ABEND SYSTEM CODE xxx. USER
CODE xxx ISSUED BY CICS/VS SERVICE PROGRAM

** * TSO WORKSPACE CONVERSION MESSAGES *
**
Messago Issued
ID by

APLC050E APLYUCHV

APLC051I APLYUCHV

APLC052E APLYUCNV

APLC053E APLYUCNV

APLC054E APLYUCNY

APLC055E APLYUCNV

APLC056I APLYUCNY·

APLC057E APLYUCNV

APLC058E APLYUCNV

APLC059I APLYUCNV

APLC060E APLYUCNV

APLC061I APLYUCNV

APLC062E APLYUCNV

APLC063E APLYUCNV

APLC064I APLYUCNV

APLC065I APLYUCNV

APlC066I APLYUCHV

APLC067I APLYUCHV

APlC068E APLYUCNV

APLC069I APLYUCHV

APLCD70I APLYUCHV

APlC071W APLYUCNV

APLC072E APLYUCNV

APLC073E APLYUCNV

Text

OPEN FAILED FOR FILE APLIN

OPEN FAILED FOR FILE SYSPRINT

INPUT PARAMETER INVALID

NO DDNAMES SUITABLE FOR OUTPUT WORKSPACE ALLOCATION

WORKSPACE HEADER SPECIFIES NO DATA RECORDS

HEADER SPECIFIES WORKSPACE SIZE OF ZERO

WILL TRY ALLOCATION ON NEXT VOLUME

CATALOG ERROR xxxx

SCRATCH DATA SET FAILED xxx x

DATA SET SCRATCHED

OPEN FAILED FOR WORKSPACE

WORKSPACE PROTECTIOH NOT IMPLEMENTED IN APLYUCNV

PREMATURE END OF DATA ON WORKSPACE INPUT FILE APLIN

UNCATALOG DATA SET FAILED xxxx

DATA SET UNCATALOGED

END OF WORKSPACE CONVERSION PROGRAM

SKIP TO NEXT WORKSPACE

WORKSPACE DATA SET NAME -- xxxx ON VOLUME xxxx

XXXX VOLUME DATA SeT ALLOCATION FAILED

WORKSPACE CONVERTED. xxxx INPUT RECORDS. xxxx OUTPUT
BLOCKS.

WORKSPACE NAME IS xxxx

OPEN FAILED FOR SYSIN. ONLY PUBLIC LIBRARIES WILL BE
ALLOCATED.

SYNTAX ERROR. CARD IGNORED -- xxxx

MEMORY SHORTAGE. CARD IGNORED -- xxx x

Figure 62 (Part 2 of 13). Message-to-Module Cross-Reference

Licensed Material--Property of IBM
Diagno.ing Errors 439

** * CICS/VS EXECUTOR MESSAGES *
***********~~***

tlcssaga Issued
ID by Text

APlK300S APLKASON MAX USERS SIGNED ON

APlK301S APLKASON INCORRECT SIGNON

APlK302S APLKASON NUMBER NOT IN SYSTEM

APLK303S APLKASON NUMBER LOCKED OUT

APLK304S APLKASON NUMBER IN USER

APLK30SS APLKASON FORCING OFF USER. TRY AGAIN

APLK306S APlKASON NO SIGNON MESSAGE AVAILABLE

APlK307S APLKASON SIGNOH TERMINATED BY SYSTEM

APLK308S APLKASON CANNOT INITIALIZE APL

The following error message will occur:

4 APllIB CLOSE FAILED

8 APllIB OPEN FAILED

12 APLDIR OR APLLIB READ FAILED

APLK309S APLKASON

APlK310S APLKLIBC

TERMINAL NOT SUPPORTED BY APL

NO WS STORAGE AVAILABLE--SESSION TERMINATED

*~~***
M CICS/VS SERVICE PROGRAM MESSAGES *
**
r~~::;sa9c
10

APLl350S

Issued
by

APLKVMSG

APLL351E' APLKVMSG

APLL352E APLKVMSG

Text

INSUFFICIENT REAL OR VIRTUAL STORAGE AVAILABLE.

UNABLE TO OPEN APL LIBRARY.

UNKNOWN CONTROL STATEMENT TYPE.

APLL353E APLKVMSG INVALID REQUEST.

APLL354E APLKVMSG INVALID OPERAND.

APLL355E APLKVMSG DUPLICATE OPERAND.

APLL356E APLKVMSG CONFLICTING OPERANDS.

APLL357E APLKVMSG REQUIRED OPERAND NOT SPECIFIED.

APLL358E APLKVMSG INPUT APL LIBRARY REQUIRED BUT NOT SPECIFIED.

Figure 62 (Part 3 of 13). Message-to-Module Cross-Reference

Licensed Material--Property of IBM
,440 VS APL Program Log; c

J

J

L

L

Message Issued
ID by Text

APLL359E APLKVMSG OUTPUT APL LIBRARY REQUIRED BUT NOT SPECIFIED.

APLL360E APLKVMSG UNABLE TO OPEN 'DDNAME'.

APLL361E APLKVMSG I/O ERROR IN 'DDNAME'; RETURN CODE=xx, REASO~
CODE=xxx.

APLL362E APLKVMSG OUTPUT APL LIBRARY 'DDNAME' FULL.

APLL363E APLKVMSG USER 'USERNAM' HOT FOUND IN INPUT APl LIBRARY.

APLL364E APLKVMSG USER 'USERHUM' HOT FOUND IN OUTPUT API lIeRARY.

APLL365E APLKVMSG LIBRARY 'lIBNUM' NOT AVAILABLE.

APLL366E APLKVMSG LIBRARY 'LIBNUM' FULL.

APLL367W APLKVMSG USER 'USERNUM' REMOVED (NOT COPIED).

APlL368E APLKVMSG UNABLE TO IMPORT FILE 'FILEHAME. SIZE IS xxxxxxxx
K-BYTES.

APLL369E APLKVMSG WORKSPACE I FILE 'WORKSPACEHAME' I 'FILENAME'
NOT FOUND IH LIBRARY 'USERNUM'.

APLL370E APLKVMSG IHVALID PASSWORD FOR fItE I wUK~~fACE 'FILENAME'
I 'WORKSPACENAME' IN LIBRARY 'LIBNUM'.

APLL371E APLKVMSG FILE HOT TRANSFERRED: INTERACTIVE PROGRAM IN USE.

APLL3721 APLKVMSG FILE I WORKSPACE 'FILENAME' I 'WORKSPACEHAME'
REPLACED IH LIBRARY 'LIBNUM'.

APLL373W APLKVMSG FILE I WORKSPACE 'FILENAME' I 'WORKSPACEHAME'
EXISTS, TEMP NAME 'TEMPNAME' ASSIGNED FOR
LIBRARY 'LIBNUM'.

APLL374E APLKVMSG FILE I WORKSPACE 'FILENAME' I 'WORKSPACENAME'
EXISTS IN LIBRARY 'LIBNUM', TEMP NAME ASSIGNMENTS
EXHAUSTED.

APLL37SE APLKVMSG FILE I WORKSPACE 'FILENAME' I 'WORKSPACENAME'
ALREADY EXISTS IN LIBRARY 'LIBNUM'.

APLL376E APLKVMSG FILE TYPE OF 'FILENAME I 'WORKSPACENAME' CONFLICTS
WITH TYPE IN LIBRARY 'LIBHUM'.

APLL377I APLKVMSG COPIED FILE I WORKSPACE 'FILENAME' I 'WORKSPACENAME'
TO LIBRARY 'LIBNUM'.

APLL378E APLKVMSG INPUT DATA SET FOR IMPORT HAS INVALID FORMAT.

APLL379E APLKVMSG OUTPUT DATA SET FOR EXPORT HAS INVALID FORMAT.

APLL380S APLKVMSG AUTH CONTROL STATEMENT ERROR.

APLL381E APLKVMSG AUTHORIZATION MISSING OR INVALID FOR THIS REQUEST.

APlL382S APLKVMSG AUTHORIZATION MISSING FOR LIBRARY FORMAT.

APLl383S APLKVMSG MODULE IKQVDTPE COULD HOT BE LOADED. PROGRAM
TERMINATED.

Figure 62 (Part 4 of 13). Message-to-Module Cross-Reference

L;censed Material--Property of IBM
Diagnosing Errors 441

Issued
by Text

APLL384I APLKVMSG .RETURN CODE = xxxx.

APLL385I APLKVMSG END OF SERVICE PROGRAM JOB STEP.

APLL386I APLKVMSG

APLL387E APLKVMSG

HIGHEST RETURN CODE ENCOUNTERED = xxxx.

ERROR IN LIBRARY SERVICE PROGRAM.

**
~ VS ~PL SESSION MANAGER MESSAGES *
*******~**

~~~5age Issued 
ID by Text 

APLM401E APLACXCM COMMAND REJECTED BY EXIT 

APLM402E APLACOPY COPY DESTINATION NOT AUTHORIZED 

APLM403E APLACOPY COPY DESTINATION NOT FREE 

APLM404E APLACOPY COpy DESTINATION NOT IN SERVICE 

APLM405E APLACOPY COPY DESTINATION NOT SUPPORTED 

APLM406E APLACOPY COPY DESTINATION NOT KNOWN 

APLM407W APLACOPY COPY LIMIT EXCEEDED 

APLM408W APLACOPY . COpy QUEUE FULL, REQUEST ENDED 

APLM409E APLACOPY COPY CODE UNKNOWN 

APLM410E APLACXCM DUPLICATE OR CONFLICTING OPERANDS 

APLM411I APLACXCM END OF DATA REACHED 
APLALINE 

APLM412A APLACPRO ENTER PASSWORD 

APLM413I 

APLM414E 

APLACPRO 
APLACXCM 
~?LALINE 
APLACOPY 

APLACXCM 

APLM415E APlACXCM 
APLALINE 
APLACCPY 

APLM416E APlACOPY 

APLM417E APLACPRO 

APLM418E APLACPRO 

APLM419E APLACPRO 

APLM420E APLALINE 
APLACOPY 

APLM421E APLACPRO 

IN-STORAGE LOG FILE IN USE 

INVALID COMMAND NAME 

INVALID, MISSING, OR EXTRA OPERANDSa 

I/O ERROR ON COPY DESTINATION 

INVALID PASSWORD. ENTER PASSWORD 

LINE EXCEEDS DISPLAY SIZE 

LINE NUMBERS EXHAUSTED 

LINE NOT IN LOG FILE 

LOG FILE FULL. 

Figure 62 (Part 5 of 13). Message-to-Module Cross-Reference 

Licensed Material--Property of IBM 
442 VS APLProgram Logic 

" 

~ 



Hessage Issued 
ID by Text 

APLM422E APLACOPY NO COPY ID SPECIFIED 

APLM423E APLACXCM NOT ENOUGH FREESPACE 

APLM424E APlACXCM PROFILE FILE NOT FOUND 

APlM425E APLACXCM DISPLAY CODE UNKNOWN 

APLM426E APLACqRY PROFILE FILE I/O ERROR 

APLM427E APLACqRY PROFILE FILE ATTRIBUTES INVALID 
APLACXCM 

APLM428E APLACqRY PROFILE FILE NOT AVAILABLE 
APLACXCM 

APLM429E APlACOPY COpy ID ALREADY EXISTS 

APLM430E APLACOPY NOT WITH COPY ON 

APLM431W APLACPRO LOG SIZE REDUCED 

APLM432W APLACXCM LOG SIZE HOT AVAILABLE 

APlM433W APLACPRO SESSION MANAGER RESTARTING DUE TO 
ERROR hh:mm:ss mm/dd/yy 

APLM434W APLACPRO BEGGINING OF SESSION hh:mm:ss mm/dd/yy 

APLM435S APLACXCM PROFILE RECORD ATTRIBUTES INVALID 

APLM436S APLACPRY INTERNAL PROFILE PROCESSING ERROR 

M***M**H*MMM**H*M*M******M*MM**HH**H**M*HHH*HH*HH*HH** HH*HHH 
M VSPC EXECUTOR MESSAGES H 
H**HMHHMHMHMMMMMHHMMHMMMMHHHHMHHMMHMHHMHHHHHHMHHMHHHMHHHMHMM 

Hessage Issued 
ID by Text 

APLP500I APLPCOEX PGM CHECK lOOP IN APl PROCESSOR. 

APLP50fI APLPCOEX PGM CHECK IN EXECUTOR. 

APLP502I APLPCOEX EXECUTOR SAVE AREA BLOCK FULL. 

APLP503I APLPCOEX INVALID ASSIST CHECK CONDITION CODE. 

APLP504I APLPSERR UNEXPECTED SYSTEM ERROR CODE RECEIVED. 
RET: xxx, REAS: yyy, SYS: www, APL:zzzzz. 

APLP505I APLPCOEX NO SYSTEM INDICATOR ON ASYNCH ENTRY. 

APLP506I APLPCOEX MULTIPLE UNEXPECTED ERROR CODES FROM SYSTEM. 

APLP507I APLPCOEX APL'ASSIST INCOMPATIBLE WITH APL PROCESSOR. 

APLP508I APLPCOEX INSUFFICIENT STORAGE FOR MINIMUM WS. 

Figure 62 (Part 6 of 13). Message-to-Module Cross-Reference 

Licensed Material--Property of IBM 
Diagnosing Errors 443 



"essage Issued 
ID by Text 

APlP509I APLPCOEX PSW: xxxxxxxx xxxxxxxx, REGS: 

APLP5101 APLPCOEX UNEXPECTED ERROR IN APL INTERNAL AP. 

************************************************************ * CMS EXECUTOR MESSAGES * 
**********************************************************M* 
"essage Issued 
ID by Text 

APlS600I APLSCINI 

APLS601S APLSCINI 

APlS602I APLSCINI 

APLS603S APLSCINI 

APLS604W APLSCINI 

APLS605W APLSCINI 

APLS606W APLSCINI 

APLS607E APLSCINI 

APLS608I APLSCINI 

APlS609I APLSCINI 

APLS610S APlSCINI 

APlS611W APLSCINI 

APLS61ZE APLSCINI 

APLS613E APLSCINI 

APLS614E APLSCINI 

ERROR X INITIALIZING APL ASSIST. ASSIST NOT IN USE. 

ERROR X FROM SSM INITIALIZATION. SESSION 
TERMINATED. 

APL ASSIST INCOMPATIBLE WITH APL PROCESSOR. 
ASSIST NOT USED. 

ERROR WHILE GETTING SPACE FOR GLOBAL TABLE. 
OP=X,RC=Y. 

LIBRARY TABLE FILE NOT FOUND. NO PUBLIC OR 
PROJECT LIBS. 

ERROR X ON FSREAD OF LIB TABLE FILE. NO 
PUBLIC/PROJECT LIBS. 

SYNTAX ERROR X ON CARD Y OF lIB TABLE FILE. CARD 
IGNORED. 

AP NAME 'xxxxxx' INVALID OR TeXT FILE NOT FOUND. 

ERROR X IN DMSFRET DURING YYOFF,RC=Y. 

ERROR X FROM DMSFRET RETURNING STORAGE. 

INSUFFICIENT STORAGE TO INITIALIZE 

CANNOT LOAD AP--A-DISK IS NOT READ/WRITE 

UNKNOWN OPTION - xxxxxxxx. 

SYNTAX ERROR AT xxxxxxxx DURING xxxx. 

LENGTH ERROR AT xxxxxxxx DURING xxxx. 

APlS615E APLSCINI INVALID VALUE - xxxxxxxx DURING xxxx. 

APlS620E APLSCSVI PROCESSOR xxxx ABENDED WITH CODE(xxxx). 

APLS630S APLSCERR PGM iNTERRUPT LOOP IN APL PROCESSOR. 

APLS631S APlSCERR PGM INTERRUPT IN EXECUTOR. 

APLS632D APLSCERR TYPE 'DUMP O-END' FOR DUMP, OR 'BEGIN' TO 
CONTINUE 

APLS633I APLSCERR PSW=xxxxxxxx xxxxxxxx 

APLS6341 APLSCERR· RO-7= xxx 

Figure 62 (Part 7 of 13). Message-to-Module Cross-Reference 

Licen-!,ed Material-Property of IBM 
444 VS APL Program Logi c 

J 

J 



Message Issued 
ID by Text 

APLS6351 APLSCERR R8-15= xxx 

APLS636S APLSCERR SAVE AREA OVERFLOW. CALLEE=xxxxxx, CALLER=yyyyyy. 

APLS637S APLSCERR SYSTEM ERROR IN APL PROCESSOR. 

APLS638I APLSCERR TYPE 'BEGIN xxxxxxx' TO TAKE WORKSPACE DUMP ON 
PRINTER. 

APLS639A APlSCERR TYPE 'BEGIN' TO SKIP WORKSPACE DUMP. 

APLS640I APLSCERR WORKSPACE AND PERTERM DUMP NUMBER X 

APlS641I APlSCERR THIS IS DUMP OF ACTIVE WORKSPACE AREA 

APLS642I APlSCERR THIS IS A DUMP OF THE PERTERM HEADER 

APLS643W APLSCERR PROGRAM INTERRUPT IN SSM OR AUXILIARY PROCESSOR 

APlS644E APlSCERR 

APLS650I APLSCLIB 

APLS651I APLSCLIB 

APLS652I APLSCLIB 

APLS653I APlSClIB 

APLS654I APLSCLIB 

APLS655I APLSCLIB 

APLS656I APLSCLIB 

APL HAS ABENDED. 

UNKNOWN RETURN CODE FROM CMS, OP=x, RC=y. 

CMS FILE ERROR, OP=x, RC=y. 

LIBRARY xxx x UNAVAILABLE, RC=y. 

ERROR x FROM FST LOOKUP DURING YYLIB CRC=x). 

ERROR x FROM DMSFRET FOR )LIB NAME TABLE (RC=x). 

INTERNAL ERROR x lOADING WS FILE COP=x). 

FILE 'x APLTMPWS' ALREADY EXISTS. WS NOT SAVED~ 

APLS660I APlSCOPY ERROR DURING COPY, OP=x. RC=y. 

APLS670E APLSCSSI APL MODULE (xxxxxxxx) NOT FOUND 

APLS671E APLSCSSI 

APLS67ZE APLSCSSI 

DIAGNOSE 64. ERROR (CODE = xxx) WHILE LOADING APL 
SEGMENT - yyyy 

APL CANNOT INITIALIZE - GLOBAL TABLE POINTER IN USE 

************************************************************ * WORKSPACE MESSAGES * 
************************************************************ 

tfessage Issued 
ID by 

APlW701E GRAPHPAK 

APLW702E GRAPHPAK 

APLW703E GRAPHPAK 

APLW704E GRAPHPAK 

APLW705E GRAPHPAK 

Figure 62 (Part 8 of 

Text 

"AND" LENGTH ERROR 

RIGHT ARGUMENT OF "AND" MUST BE A HOMOGENEOUS 
GROUP 

IF RT ARG OF "AND" IS A "VS" GRP, LEFT CANNOT BE A 
MATRIX 

o IS AN INVALID ATTRIBUTE PARAMETER 

ATTRIBUTE LENGTH ERROR 

13L Message-to-Module Cross-Reference 

Licensed Material--Proparty of IBM 
Diagnosing Errors 445 



Message Issued 
ID by Text 

APlW706E GRAPHPAK NOT ABLE TO PRODUCE FUNCTION "FITFUN" 

APlW707E GRAPHPAK CURSOR OUTSIDE OF WINDOW 

APlW708W GRAPHPAK SYMBOL SETS DO NOT EXIST ON AUXILIARY STORAGE 

APlW709E GRAPHPAK DEVICE NOT SUPPORTED 

APlW710E GRAPHPAK ARGUMENTS OF "WITH" MUST BE OF OPPOSITE TYPE 

APlW711E GRAPHPAK LEFT ARGUMENT OF "USE" MUST HAVE RANK LESS THAN 3 

APLW712E GRAPHPAK LEFT ARGUMENT OF "USING" MUST BE A MATRIX 

APlW713E GRAPHPAK "VS" ERROR 

APlW714E GRAPHPAK CANNOT DO LOG PLOT OF NON-POSITIVE NUMBERS 

APLW715E GRAPHPAK "B" ON LEFT ONLY POSSIBLE IN "STEP WITH 3 COLUMNS 
ON RIGHT 

APLW721E GRAPHPAK GDDM AP RETURN CODE ERROR 

APLW722E GRAPHPAK GDDM RETURN CODE ERROR: 

APlW723W GRAPHPAK GDDM RETURN CODE WARNING 

APLW724E GRAPHPAK SESSION MANAGER AP RETURN CODE ERROR 

APLW725E ·G.RAPHPAK GDDM AP NOT SHARING 

APLW750I SERVICE 

APLW751E SERVICE 

APLW752E SERVICE 

APLW753E SERVICE 

APlW754E SERVICE 

APlW755E SERVICE 

APLW756E SERVICE 

APLW757E SERVICE 

APLW758E SERVICE 

APLW759I SERVICE 

APLW760E SERVICE 

APLW761W SERVICE 

APLW762E SERVICE 

APLW763I SERVICE 

APlW764I SERVICE 

APLW765I SERVICE 

'CONTROL STATEMENT' 

UNABLE TO OPEN SYSIN 

UNKNOWN CONTROL STATEMENT TYPE 'STMT' 

INVALID OPERAND 'OPERAND' 

REQUIRED OPERAND NOT SPECIFIED 

UNABLE TO OPEN LIBRARY 'LIBRARY' 

FILE ALREADY EXISTS 

FILE DOES NOT.EXIST 

DATASET 'DDNAME' HAS INVALID FORMAT 

LIBRARY 'LIBRARY' IS FULL 

UNABLE TO OPEN DDNAME 'DDNAME' 

FILE IS EMPTY 

I/O ERROR IN DDNAME; RETURN CODE 'RC' 

RECORD HUMBER 'RECNO'; SEGMENT NUMBER 'SEGNO' 

FILE 'FILENAME' IMPORTED I EXPORTED I REPLACED 
LIBRARY 'LIB' 

END OF SERVICE PROGRAM 

Figure 62 (Part 9 ~r 13). Message-to-Module Cross-Reference 

Licensed Mated aI-Property of IBM 
446- VS APL Program Logic 



************************************************************ * TSO EXECUTOR MESSAGES * 
************************************************************ 
tfessage Issued 
ID by Text 

APLY800I APLYUINI 

APLY801S APLYUINI 

APLY802I APLYUINI 

APLY803S APLYUINI 

APLY8041 APLYUINI 

APLY8051 APLYUINI 

APLY806E APLYUINI 

APLY807S APLYUINI 

APLY808S APLYUINI 

APLY809S APLYUINI 

APLY810S APLYUINI 

APLY8115 APLYUINI 

APLY812S APLYUINI 

APLY8135 APLYUINI 

APLY814S APLYUINI 

APLY815S APLYUINI 

APLY816S APLYUINI 

APLY817S APLYUINI 

APLY818W APLYUINI 

APLY819W APLYUINI 

APLY820W APLYUINI 

APLY821W APLYUINI 

APLY822S APLYUINI 

APLY824W APLYUINI 

APLY825W APLYUINI 

APLY826W APLYUINI 

APLY827W APLYUINI 

ERROR 1 INITIALIZING APL ASSIST. ASSIST NOT IN USE. 

ERROR CODE xx FROM SSM INITIALIZATON. SESSION 
TERMINATED. 

APL ASSIST INCOMPATIBLE WITH APL PROCESSOR. 
ASSIST NOT USED. 

YOU ARE NOT AUTHORIZED TO USE VSAPL FOR TSO. 

USING THE APL CHARACTER SET, ENTER OVERBAR - I.E. 
SHIFT-6 

NULL LINE, UNRECOGNIZED, OR TOO MANY CHARACTERS ENTERED 

UNRECOGNIZED TERMINAL CODE - x. 

UNRECOGNIED OPERAND - x. 

AMBIGUOUS OPERAND - x. 

REDUNDANT OPERAND - x. 

INVALID DSNAME - x. 

INVALID PASSWORD - x. 

ALLOCATION ERROR - RC=rc, DARC=darc, CTRC=ctrc - x. 

CONCATENATION FAILURE - RC=rc. DARC=darc - x. 

OPEN FAILURE - x. 

INVALID AUxILIARY PROCESSOR NAME - X. 

AUxILIARY PROCESSOR NOT FOUND - X. 

INVALID SIZE OPERAND - x. 

NO AUxILIARY PROCESSORS LOADED. VALUE IGNORED- X. 

LESS THAN MINIMUM SHRSIZE. VALUE IGNORED - x. 

LESS THAN MINIMUM WSSIZE. VALUE IGNORED - x. 

LESS THAN MINIMUM AISIZE. VALUE IGNORED - x. 

VIRTUAL STORAGE ALLOCATION ERROR. 

INVALID DEBUG OPTION - IGNORED. 

INVALID INPUT OPTION INVALID, ALL ENTRIES 
MUST BE IN QUOTES. 

INVALID PROFILE NAME - IGNORED. 

CONTINUE WS EXISTS BUT WILL NOT BE LOADED 

Figure 62 (Part 10 of 13). Message-to-Module Cross-Reference 

Licensed Material--Property of IBM 
Diagnosing Errors 447 



Message Issued 
ID by Text 

APLY828W APLYUINI INVALID SMAPL OPTION - IGNORED. 

APLY829W APLYUINI INPUT OPTION INTERNAL ERROR - SINK GETMAIN. 

APLY830WAPLYUINI APLI0l ENCOUNTERED ERROR TRYING TO STACK INPUT 
DATA. 

APLY831W APLYUINI INVALID HILIGHT OPTION. IGNORED. 

APLY836S APLYUERR SAVE AREA OVERFLOW. CAllEE=xxxxxx. CALlER=xxxxxx. 

APlY837S APLYUERR SYSTEM ERROR IN APL PROCESSOR. 

APLY850E APLYULIB AN I/O ERROR HAS OCCURRED WHILE READING (WRITING) 
THE WORK DATA SET. 

APLY851E APLYULIB ERROR DATA - CCHHR cccchhhhrr, CCW cc-aaaaaa-ffff
nnnn. CSWSTAT/COUNT nnnnnnnn. SENSE xxyy. 

APlY8521 APLYULIB YOU MAY DROP FROM OR SAVE INTO ONLY YOUR OWN 
LIBRARIES 

APLY8531 APLYULIB LIBRARY NOT FOUND 

APLY8541 APLYULIB THE LIBRARY IS EMPTY 

APLY855W APLYULIB MORE WORKSPACE DATA SETS EXIST IN THIS LIBRARY 
THAN CAN BE lISTED. 

APLY856E APLYULIB SYSTEM CATALOG SEARCH ERROR - DISPLAY ABORTED. 

APLY857E· APLYULIB THE WORKSPACE DATA SET DOES NOT CONTAIN A VALID 
APL WORKSPACE 

APLY858E APLYULIB WORKSPACE SAVE DURING ABEND. USE )COPY 

APLY859E APLYULIB WORKSPACE DATA SET OPEN FAILURE. 

APLY8601 APLYULIB THE WORKSPACE WAS SAVED BY userid 

APlY861I APLYULIB THE WORKSPACE SIZE IS LARGER THAH THE AVAILABLE 
SPACE IH YOUR REGION. 

APL Y·862E APL YULIB THE SIZE OF THE WORKSPACE TO BE lOADED IS 
SMALLER THAN THE SYSTEM DEFINED MINIMUM. 

APLY8631 APLYULIB THE USED PORTION OF THE WORKSPACE TO BE LOADED 
IS TOO LARGE. 

APlY864E APLYUlIB THE WORKSPACE DATA SET IS EMPTY. 

APLY865E APLYULIB THE WORKSPACE SIZE IS LARGER THAH THE WORKSPACE 
DATA SET. 

APLY8661 APLYULIB YOU ARE NOT AUTHORIZED TO SAVE WORKSPACES IN 
THIS LIBRARY. 

APLY867I APLYULIB THE WORKSPACE MUST BE NAMED BEFORE IT CAN BE 
SAVED. 

APLY8681 APLYULIB A CONTINUE WORKSPACE CAN ONLY BE SAVED VIA THE 
)CONTINUE COMMAND. 

Figure 62 <Part 11 of 13). Message-to-Module Cross-Reference 

Licensed Material--Property of IBM 
448 VS APL Program Log; c 



Message Issued 
ID by Text 

APLY869I APLYULIB YOU ARE CHANGING THE NAME OF YOUR WORKSPACE TO 
AN EXISTING NAME. 

APLY870I APLYULIB IF THIS IS REALLY WHAT YOU WANT TO DO, THEN USE 
)WSID TO CHANGE THE WORKSPACE NAME BEFORE 
ATTEMPTING )SAVE. 

APLY871E APLYULIB WORK DATA SET ALLOCATION FAILURE. 

APLY872E APLYULIB WORK DATA SET OPEN FAILURE. 

APLY873E APLYULIB WORK DATA SET TOO SMALL. 

APLY874I APLYULIB MAXIMUM LIBRARY NUMBER EXCEEDED. 

APLY875W APLYULIB MULTIPLE OWNERSHIPS OF THIS LIBRARY EXIST. 

APLY876W APLYULIB ACCESS IS RESTRICTED TO THE FIRST, AND THAT IS 
CATALOGED UNDER xxxxxxxx. 

APLY877E APLYULIB A SECONDARY ERROR HAS OCCURRED DURING LIBRARY 
CREATION DELETION PROCESSING. 

APLY878E APLYULIB 

APLY879I APLYULIB 

APLY880I APLYULIB 

APLY881I APLYULIB 

CREATION DELETION OF CATALOGED LIBRARY IDENTIFIER 
FAILURE - CATLG RC xx, SECONDARY RC yy. 

DATA SET NOT FOUND - xxxxxxxx.xxxxxxxx 

DATA SET NAMING CONFLICT. 

INVALID WORKSPACE NAME. WSID MUST CONTAIN NO MORE 
8 CHARACTERS. 

~ APLY882I APLYULIB WORKSPACE DATA SET NOT YET EXPIRED. 

APLY883I APLYULIB 

APLY8841 APLYULIB 

APLY885E APLYULIB 

APLY886E APLYULIB 

APLY887E APLYULIB 

APLY888W APLYULIB 

APLY889W APLYULIB 

APLY890E APLYULIB 

APLY891E APLYULIB 

APLY892E APLYULIB 

THE WORKSPACE DATA SET IS IN USE BY SOMEONE ELSE. 
TRY AGAIN LATER. 

THE WORKSPACE DATA SET RESIDES ON A CURRENTLY 
UNAVAILABLE VOLUME. 

THERE IS INSUFFICIENT DIRECT ACCESS STORAGE SPACE 
TO SAVE THIS WORKSPACE. 

THE WORKSPACE DATA SET IS CATALOGED BUT 
NON-EXISTENT. 

DYNAMIC ALLOCATION FAILURE - FUNCTION CODE fe, 
DAIR RC dr, CATLG RC cr, DYNAM RC dynm. 

POSSIBLE DAMAGE TO YOUR WORKSPACE DATA SET. TRY 
TO SAVE WORKSPACE AGAIN. . 

ERROR OCCURRED DURING ATTEMPT TO DROP THE 
CONTINUE WORKSPACE. 

SCRATCH FAILURE - CODE XX 

SCRATCH FAILURE - VOLUME volser, 
INCORRECT PASSWORD (CODE 08 - xx). 

UNCATALOG FAILURE - CODE xx. 

Figure 62 (Part 12 of 13). Message-to-Module Cross-Reference 

Licensed Material--Property of IBM 
Diagnosing Errors 449 



Message Issued 
ID by 

APLY893E APLYULIB 

APLY894E APLYULIB 

APLY895E APLYULIB 

APLY896E APLYULIB 

APLY897I APLYUERR 

APLY910S APLYUERR 

APLY911S APLYUERR 

APLY920S APLYUSVI 

APLY921E APLYUSVI 

APLY922E APLYUSVI 

APLY923W APLYUSVI 

APLY924W APLYUSVI 

APLY925W APLYUSVI 

APLY926W APLYUSVI 

Text 

LIBRARY NOT EMPTY. 

YOUR PREFIX IS NOT DEFINED. DSNAMES REQUIRING 
IT CANNOT BE CONSTRUCTED. 

ISSUE THE PROFILE PREFIX COMMAND PRIOR TO THE 
VSAPL COMMAND. 

YOUR TSO USER IDENTIFICATION IS NOT DEFINED. 
ACCESS AUTHORITY CANNOT BE VERIFIED. 

PASSWORD PROTECTION NOT AVAILABLE IN THE 
SYSTEM 

ABEND - SYSTEM CODE - sys, USER CODE - usr. 

THE ATTEMPT TO SAVE A CONTINUE WORKSPACE HAS 
FAILED. 

AUXILIARY PROCESSOR APxxxx ABENDED 

UNRESOLVABLE SHARED VARIABLE INTERLOCK 

COMMAND FAILED BY INSTALLATION EXIT 

ABEND RECOVERY SET-UP FAILURE (CODE xx) 

DYNAMIC ALLOCATION FAILURE -- NO DDNAMES FREE 

TO EXIT VS APL, TYPE )OFF HOLD 

UNRECOGNIZED CHARACTER OR TOO MANY CHARACTERS 
ENTERED 

Figure 62 (Part 13 of 13). Message-to-Module Cross-Reference 

UGH CODES 

The translator and interpreter issue codes, called UGH codes, if 
a severe internal error condition occurs. Some unforeseen event 
may have arisen, and the workspace may have been damaged. Error 
recovery routines will clear the workspace, issue the message: 

APLS637S SYSTEM ERROR IN APL PROCESSOR 

and offer the user, in the case of CMS, the option of taking a 
snapshot dump of the workspace before resuming VS APL processing 
with a clear workspace. In the case of TSO, a dump is taken if 
you have allocated a dump data set. In the case·of CICS/VS, a 
dump is automatically taken of the data set. In the case of 
VSPC, an automatic dump of the work space and associated control 
blocks is produced on the VSPC snap dump data set. 

Regardless of the user's option, a mini-dump is produced at the 
terminal. See "How to Interpret the Terminal Mini-Dump." 

Licensed Material--.Property of IBM 
450 VS APL Program Logic 



Dec 

2 

3 

13 

50 

104 

105 

109 

123 

124 

125 

126 

127 

128 

132 

134 

Hex 

0002 

0003 

0000 

0032 

0068 

0069 

0060 

007B 

007C 

0070 

007E 

007F 

0080 

0084 

0086 

The system error code for an interpreter or translator error 
contains the hexadecimal UGH code. The UGH codes appear in 
Figure 63. 

Module 

APLIESCA 

APLIEFHM 

APLIEPSI 

APLITIDS 

APlITFCH 

APlITSUB 

APlITINP 

APlITIHI 

APLITCME 

APl ITCME 

APlITCME 

APLITIHI 

APLITCMI 

APLITCMI 

Reason 

Result of dyadic operation is niladic 
or monadic function. 

Result of monadic operation 
is dyadic function. 

On operation stack. the word following 
a branch statement entered in immediate 
the word following a branch statement 
entered in immediate execution is not 
a stop word. 

Illegal data type bits in argument block. 

1. ITBLOID called with register CT 
(text length) is o. 

2. ITSTSRCH called with regrster PT 
(text address) not addressing 
an alphabetic. 

3. ITSTSRCH computed space-available as 
sufficient. but IESFIND reported 
workspace full. 

Invalid index parameter input to ITFETCH. 

Invalid input to ITFNLHOi register 5 not 
a valid offset to body of function, 
or register 4 not the name of a function. 

O-U-T indicated after TYI or TYOI, 
but input line is blank. 

In newly loaded workspace, 
WSMFREEA and WSMFREEZ overlap. 

Input length is greater than 255, 
or buffer size is not 1024. 

Object to be erased has 
invalid syntax class. 

Error return from ITSTSRCH. 

On winding back the R13 stack following a 
program check, the level which issued 
the APlOH macro is not found. 

Name of unknown system variable found 
in function call block. 

Unknown object found 
on operation stack. 

Figure 63 (Part 1 of 3). Hexadecimal UGH Codes 

li censed Mater i aI-Property of IBM 
Diagnosing Errors 451 



Dec 

135 

136 

137 

138 

139 

140 

152 

153 

155 

159 

160 

161 

162 

164 

170 

Hex 

0087 

0088 

0089 

008A 

0088 

008C 

0098 

0099 

009B 

009F 

OOAO 

OOAI 

OOA2 

OOA4 

OOAA 

l'Iadule 

APlITCMS 

APLITINI 

APLITCMT 

APlITCMl 

APlITCMT 

APlITIHI 

APlITERR 

APlITEX 

APlITPRl 

APlITCPI 

APLITCMC 

APLIAQFN 

APLIAQFN 

APlITCMG 

APl ITFDC 

Reason 

Humber of system variable address table 
entries does not equal number of in-use 
entries. 

Unexpected reason code on error return 
from IA TABREF. 

Unknown return code from IASVOFF. 

Unknown reason code on error return 
from IA5COPY. 

Control returned following call to ITCMOFF 

Error return from IT5HV. 

Invalid data found on stack when 
cleaning up after user error. 

Operation stack should contain "null. 
level" and it does not. 

Undefined token found while 
preparing a statement for display. 

1. Unknown syntax class found. 

2. Unknown error condition; expect 51 
damage, stack full, workspace full. 
expect 51 damage, stack full, 
workspace full. or symbol table full. 

3. ITCOPIN computed space-available 
as sufficient, but IESFIND reported 
workspace full. 

4. ITCOPIN knows that function line 
o is valid, but ITlINEO reported 
invalid syntax. 

5. ITCOPIN and ITOKENIZ disagree 
on number of labels in a function. 

Nonzero return code from YYCOAz. 

1. Error return from IRPRlINE. 

2. IAQCR computed space-available 
as sufficient, but IESFIHD reported 
workspace full. 

1. Error return from IT5TSRCH. 

2. IAQFX and ITOKENIZ disagree 
on number of labels in a function. 

Internal name of group not found. 

Function statement should have a label 
but does not. or it should not 
have a label but does. 

Figura 63 (Part 2 of 3). Hexadecimal UGH Codes 

licensed Material-Property of IBM 
452 V5 APl Program logi c 

J 

J 



L Dec Hex 

171 OOAB 

175 OOAF 

205 OOCD 

206 OOCE 

208 0000 

210 0002 

211 0003 .".1 

212 0004 

213 0005 

214 0006 

L 216 0008 

225 OOEI 

226 00E2 

230 00E6 

231 o OE7 

232 OOE8 

240 OOFO 

251 OOFB 

270 OIOE 

Figure 63 (Part 3 of 

Module Reason 

APLITFDC Address table entry for function 
is already in use. 

APLITCPO Invalid syntax class found during copy. 

APLIASHV Unexpected reason code on error return 
from YYSREF. 

APLIASHV Unexpected reason code·'On error return 
from YYSPEC. 

APLIASHV Unexpected reason code on error return 
from YYSRET. 

APLIATRN Error return from ITINPUT on 
quote-quad input. 

APLIATRN Invalid input to IAPLFUN; 
address of embedded VS APL 
function is zero. 

APLIATRN Incorrect internal name found 
in ON word of block by IATIOY. 

APLIASHV Reason code on error return from 
YYSOFF indicates that user is 
not signed on. 

APLIASHV Unexpected reason code on error return 
from YYSOFF. 

APLIASHV Unexpected reason code on error return 
from YYSON. 

APLIASHF Unexpected reason code on error return 
from ·YYSACC. 

APLIASHF Unexpected reason code on error return 
from YYSQUERY (while executing 
quad-5VC) . 

APLIASHF Unexpected reason code on error return 
from YYSOFFER. 

APLIASHF Unexpected shared variable quota 
of 0 on normal return from YYSOFFER. 

APLIASHF Unexpected reason code on error return 
from YYSQUERY (while executing quad-SVO). 

APLIASHF Unexpected reason code on error return 
from YYSQUERY (while executing quad-SVq). 

APLIAGOU Cursor unexpectedly exceeds line width. 

APLIAROT AP vector routine entered during 
matrix rotation. 

3L Hexadecimal UGH Codes 

Licensed Material--Property of IBM 
Diagnosing Errors 453 



ABNORMAL TERMINATION AND DUMPS UNDER COMMON SERVICES OR APS 

Under certain internal error conditions, VS APL modules will 
intentionally generate abends. These abends are trapped by VS 
APL in abend exits, and, in many cases, a dump is then taken by 
the abend exit. These intentional abends are describe.d in 
Figure 64. 

Abend 
Code 

1002 
1004 . 
1010 
1020 
1022 

.1030 
1032 
1040 
1050 
1060 
1070. 
1072 
1074 
1081 

1301 

2001 

2010 

Issuing 
Module 

APLACPRO 
APlACPRO 
APLACDSL 
APLACXCM 
APLACXCM 

APlACRDA 
APLACRDA 
APLACRSA 
AP(ACHDP 
APLADMSG 
APLACPRM 
APLACPRM 
APLACPRM 
APLACQRY 

APLXSTAK 

APLXAC 

AP1126 

Source 01 Error 

APLACSF 
APLACQUE 
GDDM 
GDDM 
APLACSF 
Also generated if APLACOPY gets a bad 
RC from APLACSF (also APLALIHE) 
GDDM 
APLACSF 
GDDM 
GDDM 
GDDM 
GDDM 
APlACSF 
APLACQUE 
Environment-dependent code for profile 
input and output 
Stack requirement exceeds maximum 
stack available 
Sign off requested before successful 
sign on 
Abend in GDDX 

Figure 64. Abends Intentionally Generated by VS APL 

Licensed Ma~rial--Property of IBM 
454 VS APL Program Logic 



~ 

L 

As a result of unexpected return codes or entry into abend 
exits. some components issue a dump of selected areas of 
storage. Figure 65 lists the du~p codes given with these dumps. 
the module that caused the dump to be issued, and the areas 
dumped. 

Dump 
Code 

CPRO 

CRCP 

FYFl 
KAPS 

SSM and CAPS 

SSMK 

XGDA 
XGDD 
XGDY 
120X 
121X 
Al26 

Figure 65. 

Issuing 
Module 

APlACPRO 

APlACRCP 

APlXFYFl 
APlXAK 

APlXAC 

APlXAK 

Areas Dumped 

Beginning of SHD. DSM. area addressed 
by DSMYGM~ 
Beginning of SHD. PTH/PTX, first 
stack block, first SMR 
FAB, registers, local stack 
Common control blocks followed by 
BHD, 128-byte work area, APC, ECBs. 
SCVs, APLXAK work area 
BND, ANC. PCV, PCV ECB, MAl. error 
block DMP. ECS address list. SCV 
ECBs, APLXAC storage area. 
invocation parameters <if any). 
APCs, AP work areas 
Common control blocks followed by 
BND, 128-byte work area, APC, ECBs. 
SCVs. APlXAK work area 
BND, caller's GDM 
GST, GSTX, ANY active GSTPATs 
GTS. caller's GDM 
BHD. AP workarca 
BHD, AP WORKAREA 
AP work area, BND 

Common pvmp Services Dumps and Issuing Modules .-

pROGRAM CHECKS AND DUMPS UNDER CICS/VS 

DUMPS 

General information on type~ of CICS/VS dumps. their content and 
format, and how to invQke them is contained in the CICS/VS 
Problem Determi~ation 9uide. 

Two types of dumps ar@ produ~ed when VS APl is running under 
CICS/VS: 

1. CICS/VS Formatted Dump~ 

. Formatted dumps may b~ requested by the CICS/VS master 
terminal operator, or may be produced automatically as a 
result of program gh~~k~ §r operating system abends. 
Frequently, the mo~t usef~l information is in the CICS/VS 
internal trace tabl~. (See CICS/VS Trace Information.> 

In addition. the AP~. APLL. and APLT transactions each 
maintain an executQr ,tack in the user extension to the 
CICS/VS TCA. Offsets to the stacks vary, but since the 
stacks contain EBCOIC routine IDs, visual identification of 
the stacks ;5 normal.ly straightforward. 

Program checks are • no~mal occurrence in the VS APL 
interpreter. so the FeT for the APlU transaction should 
never specify FDUMP. ASRA. 

Licensed Material--Property of IBM 
Diagnosing Errors 455 



2. CICS/VS Storage Dumps 

These may be produced as a result of any abend issued by 
CICS/VS (including ASRA and ASRB which are the secondary 
effects of program checks and system abends), or due to 
abends or dump requests issued by APl. 

The APlU transaction attempts to recover from error 
conditions. However, if a VS APl system error is suspected, 
the transaction, before attempting recovery. issues a 
request to produce a storage dump. 

In some cases, the storage dump request produced will have 
the same dump code as the CICS/VS abnormal termination code 
that alerted VS APL to the problem. However, th~ storage 
areas that are dumped will have been modified. In other 
cases. the storage dump request produced will have a unique 
VS APl dump code. 

All CICS/VS storage dumps produced by APL are taken in 
module APLXDKMP, which dumps a series of COmmon areas in 
addition to the individual storage segments explicitly 
requested for a given dump code. 

The dumps produced by APlXDKMP for a given dump code contain .~ 
the following: ~ 

a. A "DFHDC TYPE=PARTIAl" dump including the CSA, the TCA, 
the Trace table, and the particular storage segments 
specified in the request. 

b. A "DFHDC TYPE=PARTIAL" dump of the GBl, if available. 

c. A "DFHDC TYPE=PARTIAL" dump of the PRM, if available. 

d. A "DFHDC TYPE=PARTIAL" dump of the user's PTH, PTX. PTK. 
and PRO, if available. 

e. A "DFHDC TYPE=PARTIAL" dump of the user's SGH, if 
available. 

f. If DEBUG(1) is on, a "DFHDC TYPE=PARTIAL" dump.of shared 
storage. 

g. A "DFHDC TYPE=PARTIAL" dump of the VCT. if available. 

h. A DEBUG(I) is on, a "DFHDC TYPE=PARTIAL" dump of 
complete user's workspace. if available. 

or 

If DEBUGCI) is not on, a "DFHDC TYPE=PARTIAL" dump of 
the fixed-length beginning of user's workspace Cas 
mapped by WSM) if available. 

i. A "DFHDC TYPE=PARTIAL" dump of the transaction storage 
for the transaction in which the dump is "being taken. 

j. A "DFHDC TYPE=CICS" dump, which includes many of the 
tables used by CICS such as the PCT, the PPT, and the 
TCT. 

k. And. if DEBUGCl) is on, a "DFHDC TYPE=PARTIAL" dump of 
program storage. 

Because the DFHDC macro is invoked multiple times, multiple 
dumps are produced for each dump request. All of the dumps 
produced for a given dump request will have the requesting 
dump code. This, together with the sequence of areas dumped, 
allows the dumps for a given dump request to be identified. 

Following are descriptions of the types of storage dumps and 
the information contained in them. 

Licensed Material---Property of IBM 
456 VS APl Program logic 



L 

L 

APLU DUmpS with CICS/VS Abnormal Termination Cod~s 

This type of dump will be produced if a dependent auxiliary 
processor abnormally terminates without having a defined 
abnormal termination exit routine or if that exit routine is 
unable to recover from the failure. 

Transaction storage is dumped, but p~ogram storage is not. The 
global table, parm table, and first 4K bytes of the workspace 
are dumped as segment storage. On program checks, offset 288 
(118) in the TCA contains the PSW and all register contents at 
the time the failure occurred. 

APLU Dumps with a NXIT Dump Code 

This type of dump will be produced for recursive errors. 
Transaction storage is dumped, but program storage is not. The 
global table, parm table, and first 4K bytes of the workspace 
are dumped as segment storage. On program checks, offset 288 
(118) in the TCA contains the PSW and all register contents at 
the time the failure occurred. 

After the dump is produced, the user will be forced to sign off 
VS APt. 

APLU DumpS with an EXEC Dump Code 

This type of dump will be produced if a problem occurs in 
handling YY service requests that is suspected to be a VS APt 
executor system error. Transaction storage is dumped, but 
program storage is not. 

The global table, parm table, and first 4K of the workspace are 
dumped as segment storage. For program checks, offset 288 (118) 
in the TCA contains the PSW and all register contents at the 
time the program check occurred. For conditions other than 
program checks, the first word of the PSW contains a VS APt or 
CICS/VS abnormal termination code. 

Possible VS APt abnormal termination codes and their meanings 
are: 

FIXS The primary user task stack overflowed. 

DSPS The dispatcher stack overflowed. 

APlT The terminal transaction is not properly defined. 

APLU Dumps with an NTRP Dump Code 

This type of dump will be produced if a VS APt interpreter 
system error is suspected. 

This dump consists of segment storage only. It contains the 
user's workspace and perterm (PTH, PTX, PTK, and PRO control 
blocks). 

APLU Dumps with a REGS Dump Code 

This is a I-page dump containing register information that is 
taken when corresponding dump information is displayed at the 
user's terminal. It generally indicates that either an 
interpreter or executor system error occurred, and it is 
normally accompanied by an EXEC or NTRP dump. 

Note that since this register dump contains all the information 
as it was formatted for display, only the right hand portion of 
the dump should be conSUlted. 

licensed Material--Property of IBM 
Diagnosing Errors 457 



APLU Dumps with a Knnn Dump Code 

This·dump fs produced if an auxiliar.y processor has terminated .j 
abnormally. It indicates .either that a program check has 
occurred within the auxiliary processor or that the host system 
requested the dump while performing a service for the auxiliary 
processor. In the dump code, 'nnn' is the numeric identifier of 
the auXiliary processor. see dumps) ~ dumps) 

APLU Dumps with an· nnnS Dump Code 

This dump is produced if an auxiliary processor overflows its 
stack. In the dump code, 'nnn' is the numeric ·identifier of the 
auxiliary processor. 

other Dump Codes 

Figure 66 is a list of the codes that may be received as a 
result of the execution of the DFHDC or DFHPC macros, with the 
names of the modules responsible for the abend and an indication 
of the possible cause. These are in addition to those in j 
Fi gure 6S. ..." 

Coda 

ArCA 
AMTX 
AP* 

APlS 
APlT 
ASRA 
DSPS 
ECBl 
EXEC 
FIXS 
LIBS 
ICER 
rCIO 
lENE 

LIBE 
LIBT 
NOTR 
NTRP 
NTWA 
RDIR 
RESM 
RGRE 
SSNA 
SSTK 
STAK 

UNSP 
XSGN 
YOFF 

Module 

APlKADSP 
APlKADSP 
APlKADSP 

APlKASTB 
APlKTSRV 
APlKADSP 
APlKADSP 
APlKADSP 
APlKIFIX 
APlKIFIX 
APlKLIBG 
APlKEHCP 
APlKEHCP 
APLKEHCP 

APLKLIBV 
APLKAGSL 
APLKTSRV 
APLKMSCA 
APLKTCTL 
APLKASON 
APLKASTB 
APLKAGBL 
APlKSSUB 
APLKSSUB 
APLKASON 
APLKEHCP 
APlKTCTL 
APlKEHCP 
APlKASON 
AP-lKFSCL 

possible Cause 

Runaway task timer 
(See CICS/VS M~ssages and Codes.) 
An auxiliary processor has a nonzero return 
code 
Bootstrap stack overflow 
Nonzero return code from DFHIC 
Program check 
Despatcher stack overflow 
Logic failure in processing ECBs 
Stack overflow 
Primary user task stack overflow 
Library task stack overflow 
Unsuccessful I/O GET operation 
Unrecoverable I/O error 
Inadequate TWA (record from GET was too 
long) 
Library Error 
Library termination failure 
Terminal out of service 
APL interpreter error (YY-dump) 
TWA inadequate for minimum stack 
Read directory error 
Work area full 
Global request element invalid 
Shared storage damage 
Stack overflow 
Stack overflow 

Unsupported terminal type 
Signon table invalid 
Abend exit for KFOFF processing 

Figure 66. Codes from DFHDC or DFHPC 

licensed Material--Property of IBM 
458'. VS APl Program log; c 



L 

CICS/VS TRACE INFORMATION 

+ 8 + 9 

Key type 

Key type 

GDDM Request 

The CICS/VS executor issues "user 193" trace calls to CICS/VS 
using CICS/VS macro DFHTR. 

Fi9ure 67 shows the format of the rightmost two words in x'Cl' 
(User 193) CICS/VS trace table entries. These two words. are 
titled "Field A" and "Field B" in CICS/VS trace table listings. 
Following is an expanded description of somo of the fields, 
indexed by the hexadecimal value in byte '+C'. 

1+ A 1+ B + C + D 1+ E Creator Function 

x'80' Key number APLXGKT Asynch. 
Input 

x'81' Key number APlXGKT Synch. 
Input 

Code x'82' Not Used APlXGKU Calling 
APlXGKT GDDM 

GDDM Error Code x'83' GDDM Severity APlXGKT GDDM 
Code APlXGKU returned 

Abend Code x'84' Abend count APlXGKT In abend 
exH 

Abend Code x'85' Abend count APlXGKU In abend 
exit 

IGDDX request code x'86' Return point APlXGKR APLXGKR 
I called 

GDDX error code x'87' GDDX severity APlXGKR APLXGKR 
Code returns 

First 4 characters in name x'88' Last 3 characters APlXGKU GDDM PGM 
in name being 

released 

Address of storage block x'89' Address of next APlXGKU GDDM 
storage block storage 

being 
released 

Ecb processl AP Offset x'AO' Entry Point APlKADSP Dispatch 
Offset number in Parm 

Wait Ecb/li st pointer x'A!' Return Point DPlKADSP APlKWAIT 
type 

Parm value x'A2' Return Point APlKADSP APlKEXIT 

Intrrpt PSW address x'A3' Entry Point APlKADSP Call 
code Exit 

YY code Routine EP x'A5' WSMHSI APlKIFIX YYroute 

ASYNC YYcode ISRCOD x'A6' PTKPCOP,PMSK,MFlG APlKIFIX To Intrp 

Return MAl address x'A7 Return point APlXMKSG APlXMKSG 
exit 

TRQD TRQD ITRQD Ix'OO' x'AA' Return Point APlKTREQ APlKTERM 
TYPI TYP2 OPT 

Figure 67 (Part 1 of 2). Format of CICS/VS Trace Table 

licensed Materia!--Property of IBM 
Diagnosing Errors 459 



+ 8 + 9 + A + B + C + 0 1+ E Creator Function 

TSSRQ TSS address x'AB' Return Point APLKTSRV TSRSCHED 
APlKTREQ 
APLKTRQO 

WREQCD TSS address x'AC' Write length APlKTCWR CTl Wrte 

TSS address x'AD' AID Read length APLKTCTl CTl Read 

Not Used x'AE' TCT Hot used APlKTCTL Asynch. 
aid Input 

Reg 15 ACBOFlG ACBSTRN ACBER- x'BD' Return point APlKVOPS Lib Open 
FlG APlKDOPS 

Rog 15 RPlRTNC RPlFDB2 RPLER- x'B1' 3-byte RBA APLKVOPS Lib Get 
RCD APLKDOPS 

Reg 15 RPLRTNC RPLFDB2 RPLER- x'B2' 3-byte RBA APLKVOPS Lib Put 
RCD APLKDOPS 

Reg 15 ACBOFlG ACBSTRN ACBER- x'B3' Return point APLKVOPS Lib 
FLG APLKDOPS Close 

GRELR- Type Re~urn x'B4' Perterm (PTH) APLKLIBG APLKLIBG 
code code code address exit 

SSM Shared Pershare Index x'C3' Return poirit APlKSSVP SSM Call 
Request Var No. 

x'03' x'OO' Return Reason x'C4' Perproc APLKSSVP SSM Exit 
Code Code location 

Rcode Read T~/pe flags x'DO' Return point APlKEMGR Dest Mgr 
length 

Request FAB address x'FO' Return Point APlKLIBF LIBF 
byte Call 

FABlRCOD FABSTAT x'F1' FABCRREC APlKLIBF LIBF ret 

Check word x'FF' Intrrpt I IlC/CC/ APlKIFIX Micro 
Code Pgm mask Code chk 

Figure 67 (Part 2 of 2). Format of CICS/VS Trace Table 

The contents of these fields, for values of '+C', are listed 
below. 

x' 80' in' +C' 

Creator: APlXGKT. 

Function: Traces asynchronous input when GDDM is being used to 
manage the user's terminal. Asynchronous input is input 
generated ~y one of the interrupt key at the terminal when APl 
is not waiting for input. 

Field values: 

'+8': Key type: 

x'DO': ENTER 

x'D!': PF 

x'02': Light pen 

Licensed Material---Property of IBM 
460 VS APl Program Logi c 



L 
x'03': Badge reader 

x'04': PA 

x'05': CLEAR 

x'06': Any other type of interrupt 

'+D': Value, if any, associated with key type: 

If key type=x'Ol', the key number in hex 

If keytype=x'03', x'OO' (success), or x'Ol' (failure) 

If key type=x'04', the key number in hex 

x'81' in '+C' 

Creator: APLXGKT. 

Function: Traces synchronous input when GDDM is being used to 
manage the user's terminal. Synchronous input is input generated 
by one of the interrupt keys at the terminal when APL is waiting 
for input. 

Field values: 

'+8' : Key type: 

x'OO': ENTER 

x'01': PF 

x'02': light pen 

x'03': Badge reader 

x' 04' : PA 

x'05': CLEAR 

x'06': Any other type of interrupt 

'+D': Value, if any, associated with key type: 

If key type=x'Ol', the key number in hex 

If key type=x'03', x'OO' (success), or x'Ol' (failure> 

If key type=x'04', the key number in hex 

x'82' in '+C' 

Creator: APlXGKT or APlXGKU 

Function: One of these modules is about to call GDDM 

Field values: 

'+8': GDDM request code. See the GDDM User's Guide. 

X t 83' in':" C ' 

Creator: APlXGKT or APlXGKU 

Function: Control has just returned from GDDM to one of these 
modules. 

Field values: 

'+8': GDDM error code. If nonzero, this code indentifies an 
error message listed in the GDDM User's Guide. 

Licensed Material--Property of IBM 
Diagnosing Errors 461 



'+D': GDDM severity code. If the error code is non-zero, the 
severity of the error as returned by GDOM. 

x'14' in '+C' 

Creator: APLXGKT 

Function: Traces abend codes trapped in the APLXGKT ab~nd exit. 

Field values: 

'+8': The abend code trapped. 

'+0': The number of abends trapped since APLXGKT last 
started processing a request from APLXGKU. 

x'IS' in '+C' 

Creator: APLXGKU 

Function: Traces abend codes trapped in the APLXGKU abend exit. 

Field values: 

'+8': The abend code trapped. 

'+0': The number of abends trapped since APLXGKU last 
started processing a request from APLXGKRR. 

x'16' in '+C' 

Creator: APLXGKR 

Function: Traces requests passed to APLXGKR from APLXGKRR. 

Field values: 

'+8': GDOX request code. The same as the GOOM request codes 
identified in the GODM User's Guide, except that two 
additional codes are possible: 

x'OOOOOOOl': Initialize a GOOX path. 

x'00000002': Terminate a GDDX path. 

'+0': Return point in module calling APLXGKR. 

x'17' in '+C' 

Creator: APLXGKR 

Function: Traces error and severity code about to be returned by 
APLXGKR to it's caller. 

Field values: 

.'+8': GOOX error code. Meaning depends on value in the GDOX 
severity code field. 

'+0': GODX severity code. 

If"x'OOOOOO', request successfully processed. 

If x'OOOOOl', an error has been detected by APL. The 
GOOX error code indicates what error has been detected, 
as defined in the mapping macro for the GDM request 
block. 

If x'000002', an abend occurred and was trapped. The 
GDOX error code is the ABEND which was trapped. 

Licensed Material--Property of IBM 
462 VS APL Program Logic 



If x'000004', x'000008', orx'OOOOOC', then an error has 
occurred during a part of the processing which would be 
handled by GDDM if GDDM were controlling the session but 
has actually been handled by APl because GDDMCOFF) was 
specified when APl was invoked or because GDDM is not 
available. The error code identifies an error message 
from the GDDM User's Guide which explains the error that 
occurred. . 

x'88' in '+C' 

Creator: APlXGKU 

Function: Traces the names of the GDDM programs as they are 
released, when an abend occurs during GDDM termination 
processing and GDDM has not released all of its loaded programs. 

Field values: 

'+8': The first 4 characters of the 8-character program 
name. 

'+D': The last 3 characters of the 8-character program name. 

x'89' in '+C' 

Creator: APLXGKU 

Function: Traces the addresses of GDDM shared storage blocks as 
they are being freed, when an abend occurs during GDDM 
termination processing and GDDM has not freed all of its shared 
storage. 

Field values: 

X'AO' in '+C'. 

'+8': ECB Offset 

'+9': process number, which is equal to the DPD number 

'+A'= 2-byte AP offset into PARM 

'+D': 3-byte EP for the module issuing APlKTRCE macro 

X'Al' in '+C'. 

'+8': APlKWAIT Codes: 

x'80': On unless stop AP 

x'40': Single ECB 

x'20': APl ECB(s) only 

x'10': System ECBs 

'+9': 3-byte ECB/ECB list pointer 

'+B'= 3-byte Return address for module issuing APLKTRCE 
macro 

x'A2' in '+C'. 

'+8': APLKEXIT 3-byte Parm value 

'+0': 3-byte return address for module issuing APLKTRCE 
macro 

Licensed Material--Property of IBM 
Diagnosing Errors 463 



x' Al' in' +C' . 

'+8': CALlEXIT Interrupt Code 

'+9': 3-byte Address from PSW 

'+D': 3-byte EP for the module issuing APLKTRCE macro 

x'AS' in '+C'. 

'+8' : 

'+9': YYROUTE Code 

'+A': 3-byte EP address for module issuing YYcode 

'+D': 3-byte WSMNSI 

X'A6' in '+C'. 

'+8': ASYHC: 

x'80' DATTN 

x'40' QEHD 

x'20' CPULM 

x'04' HOOUT 

x'02' FOFF 

x'Ol' ATTN 

'+9' : YY Code 

'+A': 2-byte SRCOD 

'+D': PTKPCOP 

'+E': PMSK 

'+F': PFLG 

x'A7' in '+C' 

Creator: APLXMKSG 

Function: Traces calls to common main storage services under 
CICS/VS. 

Field values: 

'+8': Return code. 

'+9': Address of MAl for request. 

'+D': Return point in calling routine. 

x' AA' in' +C' . 

'+8': APlKTERM TYPl Codes: 

x'Ol' Format 

x'02' Write 

x'03' Read 

Licensed Material--Property of IBM 
464 VS APL Program Logi c 



x'05' Getdata 

x'06' Fldattr 

'+9': TYP2 Codes 

'+A': OPT 

'+8': x'OO' 

'+0': 3-byte return address for the module issuing APlKTRCE 
macro 

x'AB' in '+C'. 

'+8': TSSRQ: 

x'80' Pending Format 

x'40' Write 

x'20' Read 

x'10' New Fld Attr 

x'08' Alarm Pending 

x'04' Set Cursor 

x'02' Restore 

x'01' Hardcopy 

'+9': 3-byte TSS address 

'+0': 3-byte return address for the module issuing APLKTRCE 
macro 

'+8': Control Write WREQCO Codes: 

x'80' Restore in listen 

x'40' Any form restore 

x'20' APl task waiting 

x'08' Hormal schedule 

'+9': 3-byte TSS address 

'+0': 3-byte write length 

x' AD' in' +C' . 

'+8': Control Read 4-byte TSS address 

'+0':" AIO Codes: 

x'70' Enter 

x'60' Clear 

x'6C' PAL 

x'6E' PA2 

x'F1-F10' PF keys 1-10 

licensed Material--Property of IBM 
Oiagnosing Errors 465 



'+0': 2-byte read length 

X'AE' in '+C' 

Creator: APlKTCTl 

Function: Traces asynchronous input when GDDM is not being used 
to manage the user's terminal. Asynchronous input is input 
generated by one of the interrupt keys at the terminal when APl 
is not waiting for input. 

Field values: 

'+0': TCT AID byte. See the one of the CICS/VS application 
programmer's reference guides. 

x'BO' in '+C'. 

'+8': R15 from library Open 

'+9': ACBOFlG byte 

'+A': ACBSTRH byte 

'+B': ACBERFlG byte 

~+O': 3-byte return address for the module issuing APlKTRCE 
macro 

x'Bl' in '+C'. 

'+8': R15 from library Get 

'+9': RPlRTNC byte 

'+A': RPlFOB2 byte 

'+B': RPlERRCD byte 

'+0': 3-byte RBA 

x'B2' in '+C'. 

'+8': R15 from library Put 

'+9': RPlRTHC byte 

'+A': RPlFOB2 byte 

'+B': RPlERRCO byte 

'+D': 3-byte RBA 

x'Bl' in '+C'. 

'+8': R15 from library Close 

'+9': ACBOFlG byte 

'+A': ACBSTRN byte 

'+B': ACBERFlG byte 

'+0': 3-byte return address for the module issuing APlKTRCE 
macro 

X'B4' in '+C' 

licensed Material-Property of IBM 
466 VS APl Program logi c 

J 



Creator: APLKLIBG 

Function: Traces librsry requests. 

Field values: 

'+8': GRELRCOD (2nd byte). 

'+9': APLKG type codes: 

x'OO' load 

x'Ol' Save 

)('02' Drop 

x'03' WDIR 

x'04' WLIB 

x'05' UDIR 

x'06' CFIl 

x'07' WFIL 

x'08' UFIL 

x'09' RUB 

'+A': 2~byte r~turn code. 

'+0': Perterm (PTH) address. 

x'C3' in '+C' . 

'+8' : SSM Call Request 

x'OO' Cleanup 

x'Ol' Ace 

x'02' CPY 

x'03' OFR 

x'04' QRY 

x'05' REF 

x'06' RET 

x'07' SOF 

x'08' SOH 

x'09' spe 

x'OA' ACHK 

Byte: 

'+9': Shared variable number 

'+A': 2~byte x'FFFF' minus shared variable number 

'+0': 3-byte return address for the module issuing APlKTRCE 
macro 

x'C4' in '+C'. 

'+8': x' 03' 

Licensed Material--Property of IBM 
Diagnosing Errors 467 



'+9': x'OO' 

'+A': Return Code 

'+B': Reason Code 

'+D': 3-byte PERPROC location 

x'DO' in '+C'. 

'+8': Destination manager return code 

'+9': Rlen byte 

'+A': Type byte 

'+B': Flags byte 

'+D': 3-byte return address for the module issuing APlKTRCE 
Set Timer PTKMFlG: 

x'80' MXUSE 

x'40' IWAIT 

x'20' MINEX 

x'10' INTRP 

x'08' MNDMPF 

x'04' MEXA 

x'02' TIMEO 

x'O!' MTPOP 

'+9': 3-byte exit address (replaced) 

'+D': 3-byte return address 

X'FO' in '+C'. 

'+8' : lIBF Call 

x'OI' OPSW 

x'02' OPSR 

x'03' OPDR 

x'04' CSEQ 

x'05' CDIR 

x'06' DEL 

x'01' SHRY 

x'08' SHRH 

x'09' CFSZ 

x'OA' SEQW 

x'OB' SEQR 

x'OC' DIRU 

x'OD' DIRD 

licensed Material--Property of IBM 
468 VS APL Program logi c 

Req. byte: 



L 

x'OE' PWCH 

x'Of' ClOS 

'+9': 3-byte FAB address 

'+0': 3-byte return address for the module issuing APlKTRCE 
macro 

x'Fl' in '+C'. 

'+8': LIBf Return FABlRCOO (2-bytes) 

'+A': 2-byte FABSTAT 

'+0': 3-byte FABCRREC 

X'FF' in '+C'. 

'+8': Microcode check word (4 bytes) 

'+0': INT code 

'+E': 2-byte IlC, ee, PGM mask 

PROGRA" CHECKS AND DUMPS UNDER CMS 

If e severe error of unexpected nature occurs, the VS APL 
processor or CMS routines receive control, perform limited error 
handling, produce messag~s, ~nd provide dumps either 
automatically or at user option. The following information is 
useful in interpreting these diagnostics. 

DURING INITIALIZATION OF THE VS APL PROCESSOR 

If a severe error occurs during initialization of VS APl, the 
APl008I error message is printed at the terminal, abnorm~l 
termination occurs, and a dump is automatic~lly taken of all of 
virtual storage. The STAE exit routine produces the dump by 
simulating a DUMP O-END CP command. 

contents of the Dump 

In the dump, register 1 points to the STAE work area. This area 
contains the abend code, PSW, and g~neral registers at abnorm~l 
termination. The abend codes issued for VS APl appear in 
Figure 68. 

licensed Material--Property of IBM 
Diagnosing Errors 469 



Code 

1 VS APL initialization has discovered an error. 
A previous message has explained the problem. 

2 Same as user code 1, except that because of the 
nature of the error the VS APL processor was 
unable to type an error message. 

lxx An unexpected program check caused the abnormal 
termlnation. xx is the decimal program check code. 

system CMS has invoked the abnormal termination. 

Figure 68. VS APL Abend Codes 

Addttional Informatton for Program Check 

If a program check was responsible for the abnormal termination 
(user code lxx), message APL018I is printed at the terminal. It 
contains the address and program check code from the program 
check PSW. Register 2, at the time of the abnormal termination, 
cont~ins the address of the PIE. The PIE in turn contains the 
program check PSW and registers 14 through 2 as they were at the 
time of the program check. Registers 3 through 13 at the time of 
the program check are stored as registers 3 through 13 in the 
STAE work area. 

AFTER INITIALIZATION 

If an error occurs during operation of the VS APL processor, 
error messages are issued, and dumps may be produced at the 
system printer at the user's optian. 

system Error in the Interpreter or Translator 

When a system error occurs in the interpreter, messages APLI08I, 
APLI091, and APLll0D are issued. They identify the error as a 
system error and prompt the user on what action to take to 
produce a dump. If the dump is taken, it contains a dump of the 
active workspace area and the PERTERM header block. Headings 
within the dump explain its contents. See also "How to Interpret 
the Terminal Mini-Dump" and "How to Interpret the Snapshot 
Workspace Dump Prodticed at the Printer." 

Whether a dump is taken or not, a system error message is issued 
at the terminal. It contains the PSW and register information. 

Program Check tn the Executor 

When a program check occurs in the executor, messages APLI02I, 
APLI04I, APLI0SI, and APLI061 are issued at the terminal. These 
messages provide information about the PSW and registers at the 
time of the program check. The processor forces an abnormal 
termination with an AaEND code of lxx, where xx is the program 
interrupt code. 

After abnormal termination, a STAE exit routine receives 
control. This routine issues message APL115I and prompts the 
user with message APLI03D on how to produce a full storage dump 
at the prfnter. The full storage dump contains the contents of 
the active registers at the time of the interrupt. The registers 
contain the following information: 

Licensed Material--Property of IBM 
470 VS APL Program Logic 

J 



Register 2 contains the address of the 104-byteSTAE work area. 
The format of the STAE work area is described in OS/VS2 Sys~~~ 
Proaramming Library: S~~rvis~. The work area con~ains the 
registers and PSW at the time of abnormal termination. 

Register 8 in the dump contains the ABEND code. The ABEND code 
is either the hexadecimal equivalent of decimal lxx (program 
check) or 001 (for abnormal termination issued by the executor). 
For the latter case, the previous message has explained the 
problem. 

Register 10 contains the address of the executor global table. 

Register 11 contains the address of the active workspace area. 

Program Interrupt in the Shared storage Manager or Auxiliary Processor 

If program interrrupt has occurred in the shared storage manager 
or one of the auxiliary processors, the processor issues message 
APllI4I. The error is handled in the same manner as an 
interpreter or translator system error (described above), except 
that the user is prompted to request a full storage dump instead 
of a snapshot workspace dump. If a dump is taken, it contains 
the contents of the registers at the time of the interrupt. 
Register 10 in the dump points to the global table, which 
contains the addresses of the auxiliary processors, shared 
memory, and the auxiliary processor work areas. 

Abnormal Termination in the Executor 

If abnormal termination occurs in the executor, the messages 
issued and STAE exit routine processing are the same as for 
Program Check in the Executor (see above). 

Program Check Loop in the VS APL Processor 

During error recovery, a second program check may occur in the 
processor. In this case, the processor issues messages APLI01I, 
APLI04I, APLI05I, and APl106I. Then it prints at the terMinal 
the PSW and the contents of the registers at the time of the 
second program check. Then it issues message APllI5I. To obtain 
a full storage dump in this case, follow the procedure described 
in "How to Produce a Dump." 

This dump will contain information about the first and second 
program checks that have occurred. The registers and PSW that 
are printed are those at the time of the second program check. 

To obtain information about the first progr~m check, find the 
address of the global table at absolute address X'440' in NUCOH. 
The global tabl~ contains the address of the WSM at a 
displacement of X'48'. WSMREGSV contains the contents of 
registers 0 through 15. The doubleword at WSMPCPSW contains the 
PSW at the time of the first program check. 

HOW TO PRODUCE A DUMP 

Three types of dumps are possible: an ordinary full system dump 
of all of virtual storage, a snapshot dump of the active 
workspace, or a mini-dump of the registers and other 
information. 

In certain ca~es the processor prompts the user on which dump to 
request and how to request it. If, however, the processor loses 
control, the user may request a full systgm dump, using the 
facilities of CP, in the manner described below. 

licensed Material--Property of IBM 
Diagnosing Errors 471 



Full System Dump 

Fo~ a full system dump, type: 

DUMP O-END 
CLOSE PRINT 
BEGIN 

snapshot Workspace Dump 

Fo~ a snapshot wo~kspace dump, type: 

BEGIN xxxxxx 

whe~e xxxxxx is an add~ess p~ovided in the p~ompt line that 
appea~s at the te~m;nal afte~ a system erro~ has occurred ;n the 
VS APl p~ocessor. 

The mini-dump is produced automaticallY at the te~minal for 
ce~tain system errors. 

licensed Material--Prope~ty of IBM 
472 VS APl Program log; c 



-
sample Prompting Sequence 

An example of the prompting sequence is shown in Figure 69. 

APlI081 SYSTEM ERROR IN APl PROCESSOR. 

To take a workspace dump on the printer, type: 

BEGIN 0216AE 

To skip a workspace dump, type: 

BEGIN 
ADSTOP AT 17728E 
CP 

If you want a snapshot dump of the active workspace. type at the keyboard: 

BEGIN 216AE 

The system wlll respond like this: 

DUMPING LOC 050000 
DUMPING lOC 060000 
DUMPING LOC 070000 
DUMPING lOC 080000 
DUMPING lOC 0900~0 
DUMPING lOC OAOODO 
DUMPING lOC 080000 
DUMPING LOC OCOOOD 
DUMPING LOC ODOOOO 
DUMPING LOC OEOOOO 
DUMPING LOC oFOOOO 
DUMPING LOC 100000 
DUMPING LOC 110000 
DUMPING LOC 120000 
DUMPING LOC 130000 
DUMPING LaC 140000 
DUMPING lOC 150000 
DUMPING LaC 160000 
DUMPING LaC 170000 
COMMAND COMPLETE 
COMMAND COMPLETE 

The snapshot workspace dump will be produced at the system printer. 
Followi~g the above response is a mini-dump, as described below. 

If you do not want the snapshot workspace dump, simply type: 

BEGIN 

The system will respond with a mini-dump like this: 

10:31:16 04/11/81 SYSTEM ERROR DO 0002 0000 0001 5C02D9DC 

00000000 00000000 00000010 0012C15E 000008CC 00000028 2B04A9AO 0002ECA2 

00000008 00000020 00000004 00049000 0002CFD8 00176C60 00176C80 5C02D9C4 

42FC6000 00000000 00000000 00000000 00000000 00000000 000000000 

CLEAR WS 

Figure 69. Sample Prompting Sequence 

licensed Material--Property of IBM 
Diagnosing Errors 473 



HOW TO INTERPRET THE TERMINAL MINI-DUMP 

The terminal rili"-i;;':dump consists of five lines. The first line 
conta\ns the time-and date: 

10:31:16 04/11/81 

the indication: 

SYSTEM ERROR 

two characters of meaningless data: 

00 

the dump number: 

0002 

the system error code: 

0000 0001 

and the right half of the PSW (the address of the instruction 
where the error was detected). 

The second and third lines contain the contents of registers 0 
through 15 at the time the error occurred. 

The fourth line contains the contents of the floating-point 
registers. 

The fifth line contains the message: 

CLEAR WS 

indicating that the user's workspace has been cleared and is 
ready for new input. 

How to Determine the Type of VS APL System Error 

Error Code 

0000 xxxx 

nnnn 8000 

There are three types of system errors for the VS APL processor; 
they may be distinguished by examining the system error code. 

The three types appear in Figure 70. 

Meaning 

If the first word of the system error code is 
0000, it is a system error in the interpreter or translator. 
xxxx is the hexadecimal UGH code. For a description of the 
UGH codes, see Figure 63. 

If the 5e~ond word is 8000 ·(first bit is 1). it isa system 
error in the executor. nnnn is the s~rvice request code value. 
The servi ce request 'codes ;are listed under 
"Service Request Calls" in "Linkage Conventions" 

at .the begi'."ning of this section. 

xxxx yyyy Program check. The two words are the left half of the PSW. 
whereyyyy is the program check code as documented in 
IBM System/370 Principles of Operatjon. 

Figure 70. VS APL Processor System Errors. 

Li"censed Material-Property of IBM 
474 VS APl Program logi c 

J 



HOW TO INTERPRET THE SNAPSHOT WORKSPACE DUMP PRODUCED AT THE PRINTER 

The snapshot workspace dump contains the contents of the active 
workspace area and the PERTERM header. The dump of the active 
workspace contains: the general and floating-point registers of 
the executor at the time the dump was requested (not relevant 
for debugging purposes), the keys (always provided by·CP in a 
dump), the executor's PSW (no~ relevant), and the contents of 
the workspace. 

Where to Find Information in the snapshot Workspace Dump and the Hini-Dump 

Register 10 in the dump contains the address of the executor 
global table. With the aid of the global table format in "Data 
Areas," the global table can be used to locate the WSM and other 
control blocks useful for debugging. . 

HOW TO LOCATE THE TOP TOKEN ON THE OPERATION STACK: The top 
token on the operation stack is at the address in WSMTSADR plus 
four bytes. WSMTSADR is at the address contained in register 11 
plus X'0954' bytes. 

HOW TO DETERMINE THE ROUTINE/MODULE WHERE THE ERROR OCCURRED: 
Obtain a link edit map. It shows the load address of each 
module. In the mini-dump produced at the terminal. register 12 
contains the address of the routine/module (CSECT) that was 
functioning when the dump occurred. 

PROGRAM CHECKS AND DUMPS UNDER TSO 

When a severe error occurs under TSO, the following actions are 
taken: 

1. If the data set APLDUMP ;s allocated, a dump is taken. 

2. The command )COHTIHUE is issued. 

3. The command )OFF HOLD is issued. 

ABNORMAL TERMINATION/SYSTEM ERROR/PROGRAM CHECK UNDER VSPC 

When a severe error in the VS APL processor occurs. the 
processor or VSPC routines receive control, perform limited 
error handling, produce messages, and provide dumps. 

When a severe error occurs in the executor. one of the above 
messages is logged. a dump is taken, and VS APL is terminated 
abnormally. The dump is a VSPC dump as described in VS Personal 
Computing (VSPC) Program Logic. 

When a severe error ocCUrs in the interpreter or translator, a 
mini-dump is printed at the terminal. See "How to Interpret the 
Terminal Mini-Dump," above. All dumps and the system log are 
sent to the operator. In all cases. a 'SYSTEM ERROR' message is 
received. 

When an error occurs during operation of the VS APL processor, 
error messages are issued. and dumps are produced at the system 
printer. 

SYSTEM ERROR IN THE INTERPRETER OR TRANSLATOR: Errors in the 
interpreter or translator that cannot be handled by these 
routines will produce the common CMS/VSPC message at the 
terminal: 'xx SYSTEM ERROR xyz - REGS xx' followed by clear 
workspace. A dump and a log message are produced. 

Licensed Material---Property of IBM 
Diagnosing Errors 475 



VS APL MICROCODE ASSIST 

Some systems use theVS APl microcode assist. If an error 
persists that may involve this assist (or its software 
interface), the following can be used to determine this 
irivol~ement: Perform the same VS APl procedure that is ·causing 
the error, without using the assist. (The test for microcode can 
be cancelled by an option of the DEBUG operand of the APl 
command.) If the error does not occur, it is probably in the 
assist or in the VS APl software interface (although it may be a 
user error); if the error continues to occur, it is probably not 
in either the assist or the VS APl software interface. 

DEBUG OPERAND OF THE APL COMMAND 

DEBUG is an optional operand of the APl or VSAPl command; it 
alters the normal error recovery actions of VS APl so that 
abnormal operating situations may be recorded and isolated for 
debUgging. For a description of its options and their effects, 
see VS APL for eMS: Tqrminal User's Guide or VS APL for TSO: 
Terminal User's Guide. 

INFORMATION NEEDED FOR PROBLEM DETERMINATION AND DIAGNOSIS 

If you submit an APAR or contact IBM central service about an 
apparent error in the VS APL processor, you will be asked to 
supply information that is needed to diagnose and correct 
problems. Please be ready to do the following: 

1. Identify the operating system, with the versions and release 
levels that apply; for example: 

• VM/370, CMS Version 2, PlCIS 

• OS/V52 MVS, Release 3.8, T50 

• DOS/VSE, Release 36, CICS/VS Release 1.5.0 

2. Identify the VS APL release level; for example: VS APL, 
Release 4.0. 

3. Identify the processor; for example: 5/370. Model 145. 

4. Tell whether or not your processor has the APl microcode 
assist featUre; if it has, give its Engineering Change <EC) 
level. Tell also whether the error is in VS APl or in the 
microcode assist. (For suggestions, see the sections above 
on "VS APl Microcode Assist" and "DEBUG Operand of the APL 
Command.") 

5. Describe any modifications made to VS APl by your 
iristallation. Tell the names of object modules and routines 
that have been modified locally. 

6. Tell how reproducible the error is: 

• e.an it be reproduced always? 

• Can it be reproduced only sometimes? 

• Have you not been able to reproduce it? 

If the error is reproducible. reproduce it in the most 
di rec't way possi ble. For example, reduce the number of 
statements within a user-defined function to the fewest 
needed to cause the error to occur. 

Licensed Material--Property of IBM 
4 1 6 VS .I\PL Program logi c 

J 

J 



L 
7. Identify and describe any auxiliary processors that were 

active when the error occurred. 

8. If possible, provide a printout of a terminal session 
showing the error and how to reproduce it. 

9. Provide a current linkage editor map of all VS APl load 
modules. (This map is generated when VS APL is installed and 
when maintenance updates are made.> 

10. If the error is a system error or an abnormal termination, 
provide a dump of the active workspace. 

11. For VSPC, provide a copy of the user profile. 

12. For CIC5/VS. if an abend occurred, provide a listing of the 
CICS/VS dump data set. (If the error occurs in the VS APL 
APlT or APlX transaction, take a CICS/VS partition dump; in 
other cases. a CICS/VS Snap dump will suffice. 

13. For CICS/VS, provide a CICS/VS auxiliary trace when the 
CICS/VS incore trace does not show the sou~ce of a problem 
and the error appears to be in a VS APL executor module. 

Licensed Material--Property of IBM 
Diagnosing Errors 477 



(Names of individual entry points 
can be 2asily found in Section 3. 
Program Organi~ation, organi~ed in 
alphabetic order. 

Entry points and modules sorted 
either by ~odule name or by entry 
point can be found in Section 4. 
Directory. 

Because of their ease of search. 
entry points and module names are 
excluded from this index.) 

abend services 5 
abends 

CICS/VS 455-469 
Cr'lS 469-475 
TSO 475 
VSPC 475 

abnormal termination and dumps 
454-477 

ACCALL 
generated code 430 
macro 429 

ACENiRY 
gonerated code 429 
m.ncro 428 

ACENTRY2 
gnnarated code 429 
m~cro 429 

ACEXIT 
generated code 430 
m.!!cro 430 

active blocks 
descriptor conventions 241 
format of variables 241 

address' table 
(~~ £150 workspace, address 
table) 

immediate and remote objects 224 
ma"a~ement 228 
permanent and temporary objects 

223 
reserved entries 227 
sections 227 
SYMbol table 228 
system variables 227 
temporary entries 228 

APC (XSYS, AP) 255 
APFT (VSPC) 257 
APLCALL 

generated code 399 
macro 397 

APLC,\LLS 
g~nerated code 434 
macro 433 

APLCCAll 
generated code 405 
macro 404 

APLCENTR 
generated code 404 
macro 404 

Licensed Material--Property of IBM 
478 VS APL Program Logic 

APLENTR 
generated code 406 
macro 406 

APLENTRY 
generated code 400 
mClcro 398 

APLEXIT 
generated code 399,405 
mClcro 398,405 

APLKEXIT macro 410 
APLKG macro 411 
A?LKHIST macro 412 
APLKMAIH macro 413 
APLKPOP 

generated code 409 
mClcro 408 

APLKPROC 
generated code 409 
macro 408 

APLKSTACK 
generated code 409 
macro 408 

APLKT macro 413 
APLKTERM macro 414 
APLKTRCE macro 416 
APLPEHTR 

generated code 406 
mClcro 406 

APLPEXIT 
generated code 407 
mClcro 406 

APLSVCC 
generated code 417 
macro 417 

APLXCALL 
generated cod~ 402 
mElcro 402 

APLXEND 
generated code 435 
macro 434 

APLXNTRY 
generated code 402 
macro 402 

APLXPROC 
generated code 436 
rnacro 435 

APM (CICS, XSYS) 262 
argument blocks 222 
arithmetic progression vector 240 
ATW (CICS, AP) 263 
auxiliary processors 

CICS/VS 6,48 
CMS 7,39 
common auxiliary processor 
sorvices 

CICS/VS 111 
Cf'lS 108 
TSO 108 

data file 
CMS 117 
TSO 117 

error message/module 
cross-reference 438-453 

GDDM 
CICS/VS 115 
CMS 115 
TSO· 115 



program interrupt 471 
session manager, VS APl 

CMS 113 
TSO 113 

TSO 7,53 
VSPC 8 

available name chain 228 

bit meanings 234 
BND (XSYS. AP) 265 
branch processing 77-79 
buffer (interpreter) data area 220 

CICS/VS 
abend codes 457-458 
abends 455-458 
auxiliary processors 6,48 
co~mon auxiliary processor 

serv ices 111 
communication with 43-45 
conversion program 8 
dumps 455-453 
error handling 455-469 
error message/module 
cross-reference 440-442 

error message, CICS/VS service 
program 440-442 

executor data area 
intorrelationships 251 

Qxecutor linkage conventions 
407-416 

GDDM 115 
program checks 455 
service program library 
8.100-101 
shar~d storage manager 

general description 6.46-47 
register usage 432 
save areas 432 

trace information 459-469 
CIT (CICS, SERV) 267 
CMS (Conversational Monitor System) 

abend codes 470 
asynchronous handling 33 
auxiliery processors 

common auxiliary processor 
services 108-110 

data file 117-118 
GDDM 115-116 
general description 7 
session manager, VS APl 

113-114 
communication with 32 
conversion under CMS 96 
dumps 469-475 . 
error handling 15 
error message/module 
cross-reference 444-445 

executor "global table 249 
executor linkage conventions 403 
initialization 33 

problem determination 476-477 
program check 469-473 
prompting sequence 473 
service request handling 34 
shared storage manager 36-38 
sn~pshot workspace dump 472 
systom errors 474 

CMSGL (CMS. XSYS. AP) 269 
common auxiliary processor services 

(See also GDDM auxiliary processor) 
CICS/VS 111 
C~'S 108 
TSO 108 

common executor linkage 432-436 
communication 

with CICS/VS 43-45 
with cr·ts 32-35 
with TSO 50-52 
with VSPC 24-26 

component linkage 
APl library service program 401 
CICS/VS 407-416 
CICS/VS shared storage manager 

432 
CMS executor 403 
CMS shared storage manager 431 
common executor 432-436 
conversion program 428-430 
EXClrch 401-403 
service request calls (all 
systc~s) 416-427 

TSO executor 35 
TSO shared storage manager 431 
VS APL interpreter 397-400 
VSPC 407 

eomponent naming conventions 
general description 16-17 

control block formats 
acronym meanings 254 
APC (XSYS. AP) 255-256 
APFT (VSPC) 257-261 
APM (CICS. XSYS) 262 
ATW (CICS, AP) 263-264 
BND (XSYS. AP) 265-266 
CIT (CICS. SERV) 267-268 
CMSGL (eMS, XSYS. AP) 269-285 
OESC (eICS, XSYS. AP) 286 
DIB (CICS. XSYS) 287-288 
DIR (CICS. SERV) 289-290 
DilP (CICS, XSYS. AP) 291-292 
DRB (TSO. XSYS) 293-294 
ECA (VSPC) 295-297 
FAB (CICS, XSYS, AP) 298-300 
FB (COHV. NTRP) 301 
FEB (CICS, SERV) 302-303 
FFLO (VSPC) 304-308 
FHED (CONV. NTRP) 309 
FSP (CICS, SERV) 310 
GBL (CICS. XSYS. AP) 311-313 
GOC (VSPC. XSYS, AP) 314-316 
GOM (XSYS, AP) 317-318 
LSC (CICS. SERV) 319 
MAl (XSYS, AP) 320-321 
OPS (CICS, AP) 322 
PCV (Al L> 323 
PRD (XSYS, AP) 324 
PRM (CICS, XSYS, AP) 325-328 
PRO (CICS, SERV) 329-331 
PTH (ALL) 332-333 
PTK (CICS, XSYS, AP) 334-341 
PTX (ALL) 342-344 
SCV (ALL) 345-347 
SGN (CICS. XSYS. AP) 348 

Licensed Material--Property of IBM 
Index 479 



SHVA8 (XSYS) 349-350 
STK (CICS. XSYS. AP) 351 
TBL (CICS. AP) 352 
Teo (CICS) 353-354 
TRO (XSYS. AP) 355 
TRQ (CICS. XSYS) 356-357 
TSOGL (TSO. XSYS, AP) 358-386 
VCT (ALL) 387-388 
VRD (XSYS. AP) 389 
WSM (ALL) 390-393 
WSX (AL L> 394 

conversion program 8,428-430 
conversion workspace 96-100 
cross-system executor services 4-5 
current operator (interpreter 
transient area) 221 

data areas 
acronym meanings 254 
APC (XSYS. AP) 255-256 
APFT (VSPC) 257-261 
APM (CICS, XSYS) . 262 
ATW (CICS, AP) 263-264 
BNO (XSYS, AP) 265-266 
CrT (CICS,SERV) 267-268 
CMSGL (CMS, XSYS, AP) 269-285 
control block formats 254 
OESC (CICS, XSYS, AP) 286 
OIB (CICS, XSYS) 287-288 
DIR (CICS, SERV> 289-290 
DMP (CICS, XSYS, AP) 291-292 
ORB (TSO. XSYS) 293-294 
ECA (VSPC) 295-297 
executor 249-251. 253 
FAB (CICS, XSYS, AP) 298-300 
FB (CONV, HTRP) 301 
FEB (CICS, SERV) 302-303 
FFLO (VSPC) 304-308 
FHED (CONV. NTRP) 309 
FSP (CICS, SERV) 310 
GBL (CICS. XSYS, AP) 311-313 
GDC (VSPC. XSYS. AP) 314-316 
GDM (XSYS. AP) 317-318 
interpreter 219-247 
LSC (CICS. SERV) 319 
MAl (XSYS. AP) 322 
MAl (XSYS, AP) 320-321 
PCV (ALL> 323 
PRO (XSYS, AP) 324 
PRM (CICS. XSYS, AP) 325-328 
PRO (CICS. SERV) 329-331 
PTH (ALL) 332-333 
PTK (CICS. XSYS, AP) 334-341 
PTX (ALL) 342-344 
SCV (ALL) 345-347 
SGN celes, XSYS, AP) 348 
SHVAB (XSYS) 349-350 
STK (elCS, XSYS, AP) 351 
TBL celes, AP) 352 
TCD (eIeS) 353-354 
TRO (XSYS, AP) 355 
TRQ (CICS, XSYS) 356-357 
TSOGL (TSO, XSYS. AP) 358-386 
VCT (ALL) 387-388 
VRO CXSYS, AP) 389 
WSM CALL) 390-393 
WSX (ALL> 394 

Licensed Material--Property of IBM 
480 VS APL Program Logi c 

data file auxiliary processor 
(CMS/TSO) 117-118 

DESC (CICS, XSYS, AP) 286 
diagnosing errors 437-477 
diagnosis and problem determination 

476-477 
diagnostic aids 395-477 
DIB (CICS, XSYS) 287 
DIR (CICS, SERV) 289 
directory, module 207-218 
distributed workspaces 9 
DMP (CICS, XSYS, AP) 291 
ON word bit meanings 240-241 
DRB (TSO, XSYS) 293 
dumps 

CICs/VS 

CMS 

APLU 457-458 
dump codes 458 
formatted trace 459-469 
general description 455-469 
program checks 455-458 
storage dumps 457 
trace table information 

459-469 

abnormal termination 471 
full system dump 472 
initialization of processor 
469-471 

interpreter or translator 
error 470 

producing a dump 471-475 
program check of dumps 

469-475 
sample prompting sequence 473 
snapshot workspace 472-475 
terminal mini-dump 474-475 
type of processor system 
errors 474 

TSO, actions taken 475 
VSPC 

abnormal termination 475 
interpreter or translator 
error 475 

ECA (VSPC) 295 
error handling 

CICs/VS 15 
CMS 15 
TSO 15 
VSPC 16 

error message/module cross-reference 
auxiliary processors 438 
CICS/VS executor 440 
CICS/VS service program 440-442 
CMS executor 444-445 
identifiers and sources 437 
session manager 442-443 
TSO executor 447-450 
TSO workspace conversion 439 
VSPC executor 443 
workspaces 445-446 

exarch routines 
appendage routines 4 
component identifier 17 
definition 1 
general description 1,3-4,8 

J 



linkage calling macros 401-403 
modules 3 
names of service routines prefix 

403 
nonstandard linkage 401-403 
reference to R13 stack 248 
register usage 401 
tr~nsfer of control 402 

exarch/append~ge connunication 222 
execution 

statement scan 69-73 
syntax analysis 69-73 

executor 
abcnd (CMS) 469 
general description 4 
progr~m checks 

C~iS 470 
T50 475 
VSPC 475 

executor data areas 249 
executor global table <TSO) 249 
executor linkage calls 

APLCCALL 404 
APLCEHTR 404 
APLCEXIT 405 
APlKEXIT 410 
APLKG 411 
APLKHIST 412 
APLKi1AIN 413 
APLKPOP 408 
APLKPROC 408 
I.PLKSTAK 403 
APLKT ·413 
APLKTERM 414 
APLKTRACE 416 

executor linkage conventions 
register usage 403 

executor services, cross-system 4 
executor stack for CICS 

content 250 
formut 249 
general description 249 

executor stack for VS APL 249 
executor transient area 220 

FAB (eICS, XSYS, AP) 298 
fast branch operators 236 
FB (CONV, NTRP) 301 
FEB (CICS, SERV) 302 
FFLD (VSPC) 304 
FHED (CONV, HTRP)· 309 
free space 

block format 240 
general description 240 
groups 245 
mllnagc::ment 247 
printnames 245 

freespace 
descriptor conventions 241 
vClriables 241 

FSM (full screen management). 27 
FSP (CICS, 5ERV) 310 
function call 

build function call block 74 
general description 74 

function control block (FCB) 
dummy entries format 237 

format 238 
general description 237 
pendant functions 238 

function definition 
function reader 64 
gener~l description 64 

function edit 
build internal tokens 59 
general dascription 59 
new ~nd existing function 59 

function editing 61 
function exit processing 2 
function headet 64,245,246 

GBL (CICS, XSYS, AP) 311 
GDC 314 
GDDM auxiliary processor 
(~ a~~ common auxiliary 
processor services) 

for CICS/VS 115-116 
for O'1S 115-116 
for T50 !15-116 

GDM (XSYS, AP) 317 
general literals 231 
graphic symbols used 21 

hexadecimal UGH codes 450-453 

immediate objects format 224 
implied service requests (all 
systems) 427 

indirect operators 237 
initialize for communication with 

eMS 32 
input recognition 57 
interface services component 

(GDDM) 4 , 
internal/external names 223 
interpreter functions 3-4 
interpreter transient area 221 
interpreter/translator communication 

222 
invalid literals 233 

libraries, VS APL 8-9 
library requests 424-426 
library service 

register usage 401 
literals 231 

Licensed Material--Property of IBM 
Index 481 



common executor stack 253 
components, table of 19-20 
distributed workspaces· 8-9 
environment 2 
executor 4 
general description 1-3 
interpreter 3 
interpreter linkage 397-401 
libraries 8-9 
operation considerations 13-14 
overview 1-2 
overview diagr~m 22 
physical characteristics 

flow of control 11,13 
load modules 10 
object modules 10 

program check loop 471 
purpose and function 

auxiliary processors 6-8 
executor 4 
general description 3-10 
interpreter 3 
program library 8 
register usage 397 
shared storage manager 5-6 
system configuration 13-14 
translator 3 
workspace 9,219 

(s~p. also workspace, VS 
APl)--

V5 APL session manager 
auxiliary processor (CMS/TSO and 

CICS/VS) 113-114 
executor processor 106-107 
executor schedule 104-105 
general description 5 

VSPC (VS Personal Computing) 
auxiliary processors 8 
communication with 24-26 
component 1 
component identifiers 17 

Licensed Material--Property of IBM 
484 VS APL Program logi c 

dumps 469 
environment 2 
error handling 16 
executor function 1 
executor linkage conventions 407 
executor messages 443 
load modules 11 
modules 4 
operational considerations 13 
service programs 8 
shared variable processing 27-31 
storage manager reference 5,431 
system configuration 13-14 
workspace 8 
workspace conversion program 
details 96-100 

workspace 
conversion 96-100 
distributed 9 
free space, management 247-248 
interpreting the snapshot 475 
libraries 9 
messages 445-446 
problem determination 476-477 
relocation (translator) 221 
R13 stack 248 
T50 conversion messages 439 
UGH codes 450 
values for service requests Call 

systems) 417-427 
VS APL 219 
VSPC 248 

WSM (ALL) 390 
WSX (ALL> 394 

J 



\.,." 



L Y20·8032·3 

---- ------- ----- ~--- ~ -~-- - - ------_ ... -
-~-.-® 
International Business Machines Corporation 
Data Processing Division 
1\33 Westchester Avenue White Plains. N.Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant. Route 9. North Tarrytown. N.Y .• U.S.A. 10591 

IBM World Trade EuropelMiddle!=.m/Afrlca Co~poration 
360 Hamilton Avenue. White Plains. N.Y .• U.S.A. 10601 

< 
CJ') 

» 
"0 
r-
"0 .., 
0 
ttl .., 
Ql :'*" 
3 ."", r-
0 
ttl o· -." 
iii 
Z 
? 
CJ') 
Co) 
...... 
C 
,;.;, 
~ 

~ J 5· ... a 
5· 
c 
en 
~ 
r-
oo( 

'" c 
Co c 
~ 
W 



L 

... E c .. 

.. 0 
Ec, .. . ~:s 
:'1 c .. 
'f S o ., 
"'c, 

~; 
iE .. E 
E il. g .. 
::J ., 

'''is .c 0 

'i ~ 
E .g ., .- .. SJC e 21 
c,., 
21 ;; 
i '" ... ! 
cc, 
::I 21 
rl ;: 

- WI c,,,, 
S.!! 
lila. 

! o 
Z 

VS APL Program Logic 
LY20-8032·3 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of 
IBM systems. You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, 'are deemed 
appropriate. Comments may be written in your own language; English is not required. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any 
requests for copies of publications, or for assistance in using your IBM system. to your IBM representative or to 
the IBM branch office serving your locality. 

Ust TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

ustTNL __________________ _ 

Previous TNL ________________ _ 

.Previous TNL _______________ _ 

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A .. 
(Elsewhere. an IBM office or representative will be happy to forward your comments or you 
may mall directly to the address in the Edition Notice on the back of the title page.) 'I1WIJc ' 
you for your cooperation. 

, 
• , ,d 



LY20·8032·3 

Reader's Comment Form 

Fold and tape Ple_ do not staple FOld and tape 

............................................................................................................... : 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK. N. Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

IBM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

IIIIII NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

· ................................................................................................................ 
FOld and tape 

.. ·'f ..... _. = -' ---.-. - ...... ---'-_ ... .. -----= " .. :-::=' 
!. 

1i'ltiimat1oMt ............... CIN ... atkM 
D .. P~.~' 

Pr- do not ate .. 

1133WestchatWA ...... wtIite ...... ; N'.Y. 10104 

IBMWOtfdTrede AIIMIrieaIFer EaltC'oqtoratIOft 
TOWItof MOuntPleaunt. R .... 9, NorthTerrytOwtt. N..y .... U.&A. 101S91 

IIMWorI6T,.. ~ IMIAfricI ~ 
360 Hamilton' ........ ' White P'alns, N.y ••. U.s.A. T0601 

Fold and tape 
· 

· . · , 
• , . 
• • • • · 

J 

J 


