
GC26-3758-3
File No. S360-21 (OS)

Program Product

--...------- ----- - -- -. ---- --------------- ·-(D

GC26-3758-3
File No. 8360-21 (OS)

OS Assembler H
Program Product General Information Manual

Program Number 5734-AS1

----------- ----- - -- -. ---------------~-·-I>

Fourth Edition (January, 1974)

This is a reprint of GC26-3758-2 incorporating changes
released in the following Technical Newsletter: GN33-8151
(dated September 29, 1972).

This edition applies to version 4 of the Assembler H
Program Product (Program Number 5734-ASl) and to all
subsequent modifications until otherwise indicated in new
editions or Technical Newsletters.

Changes are continually made to the information herein;
before using this publication in connection with the operation
of IBM syste~s, consult the latest IBM System/360 and System/370
Bibliography, Order No. GA22-6822, for the editions that are
applicable and current.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 printer using a special print chain.

Requests for copies of IBM publications should be made to
your IBM representative or to the branch office serving your
locality.

Forms are provided at the back of this publication for
readers' comments. If the forms have been removed, comments
may be addressed to IBM Nordic Laboratory, Programming
Publications, Box 962, S-181 09 Lidingo 9, Sweden. Comments
become the property of IBM.

(§>Copyright International Business Machines Corporation 1970, 1971, 1972, 1974

ii

Read This First

This manual is divided into two independent parts. You should only read
one of the parts.

If your installation uses OS/VS, you should read the first part,
'Part I: For the VS User•. This part assumes that you are familiar with
the language supported by the OS/VS Assembler as described in OS/VS and
DOS/VS Assembler Language, Order No. GC33-4010. That manual is a
corequisite for this part.

If your installation uses OS/MFT or OS/MVT, you should read the
second part, 'Part II: For the MFT or MVT User•. This part assumes that
you are familiar with the language supported by the OS Assembler F as
described in OS Assembler Language, Order No. GC28-6514. That manual is
a corequisite for this part.

iii

Part I: For the VS User

v

Pref ace

This manual is an introduction to the language and facilities of OS
Assembler H. It is for system programmers who are already familiar with
the assembler language.

The manual highlights the features of the language supported by
Assembler H compared with the language supported by the OS/VS Assembler.
The major subjects are:

• Basic structure and features of Assembler H.

• System requirements for Assembler H.

• Additions and extensions to the basic assembler language supported
by Assembler H.

• Additions and extensions to the macro and conditional assembly
facilities supported by Assembler H.

• Additions and extensions to the diagnostic services supported by
Assembler H.

The reader should be familiar with the assembler language supported by
the VS Assembler, as described in OS/VS and DOS/VS Assembler Language,
GC33-4010. More detailed information about the language supported by
Assembler H may be found in OS Assembler H Language, GC33-3771.

The reader should also have a general idea of the basic concepts of OS.
Such information can be found in OS Introduction, GC28-6534.

vii

INTRODUCTION • • • • • •
Language Compatibility •
Language Changes • • • • • •
Performance . • • •
System Requirements
Internal Design • • • •

Resolving Symbol Attribute References • • • •
Internal Text Processing • • • • •

Contents

Modifying Assembler H when Adding It to Your System
Defaults for Assembler Options • • • . • •

1
1
1
1
1
2
2
2
5
5
5
6

Data Definition Names for Assembler H Data Sets
Instruction Set Options • • • • • • • • •

EXTENSIONS TO MACRO AND CONDITIONAL ASSEMBLY LANGUAGE • • • • 7
General Advantages in Using Macros • • • • • • • • 7
Extensions to the Macro Language • • • • . 7

Placement of Macro Definitions • • • • • • • 7
Editing Macro Definitions • • • • • • 7
Redefining Macros • • • • • • • • • • • • • • • • 8
Nesting Macro Definitions • • • • • • • • • • • • 9
Generated Macro Instruction Operation Codes • • • • • • • • • • 10
Arbitrary Language Input - AREAD • • • • • • • • • • • • • 11
Multilevel Sublists in Macro Instruction Operands • 13
Redefining Conditional Assembly Operation Codes • 14
Other Extensions • • • • • • • • • • • • • • • • • 15

Extensions to Conditional Assembly Instructions • • • • • 15
Extended AGO Statements • • • • • 15
Extended AIF Statements • • • • • • • • • 16
Extended SETx Statements • • • • • • • • • 16
SET Symbol Format and Definition Changes • • • • • • 17
Created SET Symbols • • • • • • • • • • • • 18
Using SETC Variables in Arithmetic Expressions •••••• 19
Attribute References • • . • • • • • • • • • • • • • • 20
Alternate Format in Conditional Assembly • • • • • • 21
New System Variable Symbol • • • • • • • • • • • 22

EXTENSIONS TO BASIC ASSEMBLER LANGUAGE • • • • • • 23
Revised Ass~mbler Operations • 23

OPSYN Instruction Extension • • • • • • • • • • • • • • 23
EQU Instruction Extension • • • • 23
COPY Instruction Extension • • • • • • • • • • • 23
CNOP Instruction Extension • • • • • • • • • • • 23
!SEQ Instruction Extension • • • • • • • • • • • • • • • • • 24

Assembler Language Syntax Extensions • • • • • • • • • • • 24
Continuation Lines • • • • • • • • • • • • • 24
Symbol Length • • • • • • • • • • • • • • • 24
Levels Within Expressions • • • • • • • • • 24

Changes to Program Sectioning and Linking Controls • • 25
Use of Multiple Location Counters • 25
Revision of Q-type Address Constants • • • • • • • • • 26
Number of ESD Symbols • • • • • • • • • • • 26

PERFORMANCE IMPROVEMENTS • • • • • • 27
Elapsed Time Measurement • • • • • • • • • • • • 27
Factors Influencing Improved Performance • • 27

ix

EXTENSIONS TO DIAGNOSTICS . • • . •
Diagnostic Extensions in Regular Assembly

Error Messages • . • • • • • • • • • •
Diagnostic Messages in Macro Assembly
Macro Trace Facility (MHELP) • •
Abnormal Termination of Assembly •

INDEX

x

• 29
• 29

• • 29
• • 29
• • 31

32

• • 33

Figure 1. Processing Steps of Assembler Hand the VS Assembler 4
Figure 2. LOCTR Instruction Application . 25
Figure 3. MHELP Control on &SYSNDX 32

xi

Introduction

OS Assembler H is an assembler language processor with major extensions
to the language and performance of the VS Assembler.

Language Compatibility

Any program successfully assembled with no warning or diagnostic
messages by the VS Assembler will be assembled correctly by Assembler H.
Programs using features supported only by Assembler H will not be
assembled correctly by the VS Assembler.

Language Changes

Many limitations of the assembler language supported by the VS Assembler
are relaxed or eliminated in the language supported by Assembler H.
Changes and additions to the language fall into the following
categories:

• Conditional assembly instructions have expanded functions and
flexibility.

• Many assembler instructions have fewer restrictions and allow
improved programmer control.

• New assembler instructions are added to the language.

Performance

The high-speed assembly capability of Assembler H is a result of the
following factors:

• All text processing is performed in virtual storage if the region
allocated to the assembler is sufficiently large.

• The number of source text passes is reduced.

• Multiple assemblies can be performed under the control of one set of
job control cards (in one job step) •

• You can use conditional assembly instructions to bypass macro
definitions included in the source text.

System Requirements

Central Processing Unit: Assembler H operates on an IBM System/370
MOdel 135 or higher.

Operating Environments: Assembler H operates under OS/VS.

Introduction 1

V'irtual Storage: Assembler H operates in a minimum region size of 192K
bytes of virtual storage. However, the recommended size is 256K bytes.

Data Sets: System input and output device requirements are roughly the
same as those of the VS Assembler. The only difference is that
Assembler H requires only one utility data set.

Library Space: In terms of the IBM 2314 Direct Access Storage
Facility, cataloged procedures for Assembler H require a maximum of one
track on SYS1.PROCLIB and the Assembler H load modules need
approximately 30 tracks on SYS1.LINKLIB or a private link library.

Internal Design

The internal organization of Assembler H is an entirely new design.
There are only two source text passes, as opposed to three for the vs
Assembler. Pass one of the source text by Assembler H edits and expands
macros, and builds dictionaries and the symbol table. Pass two
completes the assembly and produces the desired output. Figure 1 shows
the general processing steps of the VS Assembler and Assembler H.

RESOLVING SYMBOL ATTRIBUTE'REFERENCES

The symbol table is built as symbols are encountered in macro generation
and open-code assembly. If an attribute reference is made to a
previously undefined symbol, Assembler H proceeds ~th a forward scan of
the source text, called "lookahead" mode. It continues the forward scan
until the symbol that initiated the scan is resolved or until the end of
the source program is encountered. During the scan, the assembler
conditionally places all other symbols that are encountered into the
symbol table, so further forward scans are avoided unless a forward
reference is made to a symbol, at some point beyond the pr~vious forward
reference. The symbol attributes established by the forward scan are
not fixed, however, and can be overridden when the symbol is placed in
the symbol table as a result of regular assembly. If the symbol that
initiated the forward scan is not found, a diagnostic message is issued.

INTERNAL TEXT PROCESSING

Because the VS Assembler is designed to process intermediate text using
external workfiles, it cannot use region sizes larger than 40K bytes as
effectively as Assembler H. Assembler H processes all intermediate
assembly text in virtual storage, if the region allocated to the
assembler is large enough to contain the text. There is no limit to the
region size that can be used efficiently by Assembler H, provided that
the source module is large enough.

Within the region allocated for an assembly of a source program, the
amount of working storage Assembler H uses to perform an operation can
dynamically expand to meet the storage requirements of that operation.
When one block of working storage is filled with processed text,
processing continues with the allocation of another block from within
the region acquired for the assembly.

2

As blocks of working storage are filled with processed text, they are
flagged to indicate whether they can be written out to the external
workfile (SYSUT1). Partially filled blocks and those blocks taken up by
the symbol table must remain in virtual storage at all times during the
assembly. Those blocks that can be written out are put on the workfile,
but the blocks of text are also retained in working storage and continue
to be effective for all assembly purposes. Only when all unallocated
workspace within the region is exhausted are the written-out text blocks
in working storage reinitialized and overlaid with newly processed text.
Then, when needed, the overlaid blocks of text must be accessed from
the workfile.

NOTE: If all blocks of working storage are allocated and flagged as
resident when an operation requires additional workspace, the assembly
is terminated. Such assemblies must either be broken down into
subroutines or be assembled in a larger region.

Introduction 3

Assembler XF:

Source deck

Symbol
records

Symbol
records

Assembler H:

Source deck

Edit

Textpass 3

Generate macros
Collect symbols

Pass 1

Assemble

Pass2

Macro
Library

Text

Text

System
Library

Secondary
storage-accessed
only when
assembly region
exhausted

Figure 1. Processing Steps of Assembler H and the VS Assembler

Modifying Assembler H when Adding It to Your System

There are several optional modifications that you can make to Assembler
H to tailor it to fit the requirements of your installation. These
modifications allow you to alter the default values for assembler
options, to change the DD names for assembler data sets, and to choose
the machine instruction set you want the assembler to support. You make
the modifications when the assembler is added to your system, using an
option-setting routine that is provided with the assembler. This routine
is used only if you want to specify default options other than the
standard options specified in the assembler when it is delivered to you.
This section describes in detail the modifications you can make to the
Assembler H.

DEFAULTS FOR ASSEMBLER OPI'IONS

When you call the assembler with the EXEC job control statement, you can
specify values for assembler options in its PARM field to override the
standard values set in the assembler. Standard values for the options
are set at delivery. However, they can be respecified by your
installation when the assembler is added to your system. The options
are:

r---------------------------T--,
!Standard Value !Alternate Value I
I I I
~---------------------------+--1
DECK NO DECK
NOOBJECT OBJECT
LIST NOLI ST
XREF (FULL) XREF (SHORT) , NOXREF
NORE NT RENT
NOTEST TEST
NOBATCH BATCH
ALIGN NOALIGN
~D OOE~
RLD NORLD
LINECOUNT(55) LINECOUNT(a value in the range 1 - 99)
FLAG (0) FLAG (a value in the range 0 - 255)
SYSPARM () (null string) SYSPARM (a character string 1 - 255

characters long)
L---------------------------~--1
~: If you use the PARM field of the EXEC statement to specify a
SYSPARM value, the maximum length you can use is 56 characters because
of job control language restrictions.

Your installation can also remove certain options, so that they cannot
be specified. For example, you may want to change the standard value
from DECK to NODECK and remove DECK so that it cannot be specified.

DATA DEFINITION NAMES FOR ASSEMBLER H DATA SETS

Assembler H requires the following data set DD names:

SYSIN
SYSLIB (if library members are called by macro instructions or COPY

statements)

Introduction 5

SYSLIN
SY SPRINT
SYSPUNCH
SYSUT1

(if OBJECT is specified)
(if LIST is specified)
(if DECK is specified)

Any of these names can be changed when the assembler is added to your
system. For example you may wish to replace SYSUT1 with WORI<001. SYSIN
with SYSINPUTr etc.

INSTRUCTION SET OPTIONS

The instruction set, or operation code table available to the Assembler
H can be specified when the assembler is added to your system. There
are four instruction sets available. as shown below.

Commercial
Instruction
Set

6

struction Set r
Standard In- {

Ordinary and extended
- precision floating point
instructions

Fixed-point binary arithmetic
and logic instructions

Decimal arithmetic and
editing instructions

Storage protection
instructions

Scientific
Instruction
Set

Universal
Instruction
Set

Extensions to Macro and Conditional Assembly Language

The macro and conditional assembly language supported by Assembler H
offers significant extensions over the language supported by the vs
Assembler. Many restrictions are relaxed or eliminated to increase
flexibility and extend language functions. For example, many ordering
restrictions are removed from conditional assembly statements in macro
definitions and in open code.

General Advantages in Using Macros

You can think of a macro definition as a subroutine which can be
modified each time it is called by a macro instruction. In modifying
this subroutine, the assembler uses values passed in the macro
instruction (for symbolic parameters). Further, the assembler uses
values passed from other macros or from open code (global SET symbols)
and data attribute references. The modified subroutine is included in
your program in basic assembler language format; the assembler then
processes it in the same way as any other source statements. By varying
the symbolic parameters and global SET symbols, you can vary the
generated assembler instructions and the sequence in which they are
generated.

Using macros gives you a scope similar to what you have when using a
problem-oriented language. In fact, you can use macros to create your
own language, tailored to your specific applications.

Extensions to the Macro Language

The extended functions of the macro definition and the macro instruction
in Assembler H improve programmer control and coding flexibility. For
example, macro definitions can appear anywhere in your source module;
they can even be nested within other macro definitions. They can also
be redefined at a later point in your program, and macro instruction
operation codes can be generated by substitution.

PLACEMENT OF MACRO DEFINITIONS

The VS Assembler allows macro definitions only at the very beginning of
a source module. Under Assembler H, the only restriction is that the
macro definition must be encountered before it is called.

EDITING MACRO DEFINITIONS

The initial processing of a macro definition is called editing. Editing
of a macro involves, among other things, checking of the syntax of the
instructions and changing the source statements to special edited text
used throughout the remainder of the assembly. The edited version of
the macro definition is used to generate assembler language statements

Extensions to Macro and Conditional Assembly Language 7

when the macro is called by a macro instruction. Therefore, a macro
must always be edited before it can be called by a macro instruction.

Under the VS Assembler all source macros must appear at the beginning.
They cannot be bypassed using conditional assembly instructions. Under
Assembler H, however, you can use conditional assembly statements to
avoid editing of certain macros. In the following example, the macro
definition for MACSHOW is bypassed and not edited, if the value of the
system parameter (&SYSPARM) is NOTMACSHOW. '/my macro instructions
calling the macro are invalid.

r-------r-----------T--, I Name I Operation I Operand I
I I I I
~-------+-----------+---~ I IAIF I ('&SYSPARM' EQ 'NOTMACSHOW') .PASS I
I I MACRO I I
I I MACSHOW I I
I I · I I
I I MEND I I
, .PASS I ANOP I I
l-------~-----------L--J

REDEFINING MACROS

A macro definition can be redefined at any point in your source module.
When a macro is redefined, the new definition is effective for all
subsequent macro instructions that call it.

Once a macro has been redefined by a macro defini~ion, its previous
function is lost, unless prior to redefinition, the operation is
assigned to another symbol with an OPSYN instruction. Later, if you
wish the initial function of the operation code to be reestablished, you
can include another OPSYN instruction to redefine it. The following
example illustrates this:

Name Operation Operand

MACRO
MACl The symbol MACl is assigned as the . name of this macro definition .
MEND .

MAC2 OP SYN MACl MAC2 is assigned as an alias for MACl
MACRO
MACl MACl is assigned as the name of this . macro definition .
MEND .

MACl OP SYN MAC2 MACl is assigned to the first
definition. The second definition is
lost.

8

You can also reestablish a previous source macro definition by issuing a
conditional assembly branch (AGO or AIF) to a point prior to the initial
definition of the macro. Then that definition will be edited and
effective for subsequent macro instructions calling it. Consider the
following example:

Name Operation Operand

.UP ANOP
MACRO
MACl Assign MACl to first macro definition . .
MEND .
MACRO
MACl Assign MACl to second definition • .
MEND .
AGO .UP Branch to a point prior to first

definition.

NESTING MACRO DEFINITIONS

In the VS Assembler, macro definitions can contain inner macro
instructions but not inner macro definitions. Assembler H allows both
inner macro instructions and inner macro definitions. The inner macro
definition is not edited until the outer macro is generated as the
result of a macro instruction calling it, and then only if the inner
macro definition is encountered during the processing of the outer
macro. Thus, if the outer macro is not called, or if the inner macro is
not encountered in the generation of the outer macro, the inner macro
definition is never edited. The following figure illustrates the
editing of inner macro definitions.

Extensions to Macro and Conditional Assembly Language 9

MACRO

MAC3

•
•
•
•

MEND

Edited when
MAC 2 is

1--called and
generated

Edited when
MAC 1 is
called and
generated

Edited when
first encountered

First MAC1 is edited, and MAC2 and MAC3 are not. When MAC1 is called
MAC2 is edited (unless it is passed by an AIF or AGO branch) and when
MAC2 is called, MAC3 is edited. No macros can be accessed by a macro
instruction until they have been edited.

There is no limit to the number of nestings allowed for inner macro
definitions.

GENERATED MACRO INSTRUCTION OPERATION CODES

The VS Assembler does not allow the operation code of a macro
instruction to be generated by substitution. That restriction does not
apply to Assembler H. Macro instruction operation codes can be
generated by substitution, either in open code or inside macro
definitions.

10

consider the following example:

r-------------T---~------T--, I Name I Operation I Operand I
I I I I
~-----·-------+-----------+--1 I MACRO

IMAC &X
I .
I •
l&X A,B,C inner macro instruction
I .
!MEND
I MACRO
I MACALL
I •
f MEND
IMAC MACALL outer macro instruction

L-------------L-----------L--1
The outer macro instruction calls the macro MAC. If the inner macro
instruction is encountered during the processing of MAC, MACALL is
substituted for &X, and an inner macro instruction calling MACALL is
processed.

ARBITRARY LANGUAGE INPUT - AREAD

An entirely new concept is introduced by a macro language instruction
that reads source deck data directly into macro processed text. The
AREAD assembler operation permits a macro to •read cards• directly from
the source stream into SETC variable symbols. The card image is
assigned in the form of an 80-byte character string to the symbol
specified in the name field of the instruction. The following
illustrates how the instruction is used:

I The macro instruction MAC

. causes the macro MAC to be

processed. When the AREAD

instruction is encountered,

I
the next sequential card

following the macro instruction

is read and assigned to the

SETC symbol &S.

Open Code

0 MAC

8 JOHN L. SMITH

e

Macro Definition

8

O&s

MACRO

MAC

ARE AD

MEND

&S: tJ.OH.N, b· I ,Sf1./, T.H. J
0 6 12 80

Extensions to Macro and Conditional Assembly Language 11

Repeated AREAD Statements read successive cards:

Name Ol?eration Operand

MACRO
MAC &N .

• LOOP ANOP
&K SETA &K+l Increment loop counter
&S (&K) AREAD

AIF (&K LT &N).LOOP Check loop counter .
MEND
MAC 2

JOHN L. SMITH
HECTOR S.BROWN

END

The coding in this example assigns to the SETC symbol element &S(1) an
SO-character-long string of JOHN L. SMITH follo"Wed by 67 blanks, and to
&S(2), HECTOR s. BROWN followed by 65 blank characters.

When macro instructions are nested, the cards read by AREAD always have
to follow the outermost macro instruction regardless of the level of
nesting in which the AREAD instruction is found. Consider the
following:

r----~--1

&F

THIS

MACRO
MACIN

AREAD

MEND
MACRO
MACO UT

MACIN
CARD IS NOT READ

MEND
MACO UT

BY AREAD

jTHIS CARD IS READ BY AREAD IN MACIN
L--1
If the macro instruction containing the AREAD instruction is found in
code included by the COPY instruction, source cards are read from the
code brought in by the COPY instruction until end of file is reached,
then from the input stream.

NOTE: Cards that are read in by the AREAD instruction are not checked by
the assembler. Therefore, no diagnostic will be issued if your AREAD
statements read cards that are meant to be part of your source program.
For example, if a macro containing an AREAD statement appears
immediately before the END instruction, the END instruction is lost to
the assembler.

LISTING OPTIONS: Normally the AREAD input cards are printed in the
assembler listing and assigned statement numbers. However, if you do
not want them printed or assigned statement numbers you can specify
NOPRINT or NOSTMT in the operand of the AREAD instruction.

12

AREAD/PUNCH INPUT/OUTPUT CAPABILITY: The AREAD facility complements the
PUNCH facility to provide macros with direct I/0 capability. The total
I/0 capability of nacros can be described as follows:

Implied Input: Parameter values and global SET symbol values that
are passed to the macro.

Implied Output: Generated statements passed to the assembler for
later processing and global SET symbol values set
for use in other macros or open code.

Direct Input: AREAD.
Direct Output: MNOTE for printed messages; PUNCH for punched cards.

For example, you can use AREAD and PUNCH to write card conversion
programs. The following macro interchanges the left and right halves of
cards placed immediately after a macro instruction calling it. End of
input is indicated with the word FINISHED in the first columns of the
last card in the input to the macro.

r-------------T-----------T--,
I Name I Operation I Operand I
I I I I
~-------------+-----------+---~
I I MACRO I I
I I SWAP I I
I .LOOP I ANOP I I
I &CARD I AREAD I I
I IAIF I ('&CARD' (1,8) EQ 'FINISHED') .MEND I
l&CARD ISETC l'&CARD(41,40) .'&CARD' (1,40) I
I I PUNCH I &CARD I
I I AGO I . LOOP I
I .MEND I MEND I I
l-------------~-----------~--'

MULTILEVEL SUBLISTS IN MACRO INSTRUCTION OPERANDS

Multilevel sublists (sublists within sublists) are permitted in macro
instruction operands and in the keyword default values in prototype
statements, as shown in the following:

MAC1
MAC2

(A,B, (W,X, (R,S,T) ,Y,Z) ,C,D)
&KEY=(1,12, (8,4) ,64)

The depth of this nesting is limited only by the constraint that the
total length of an individual operand cannot exceed 255 characters.

To access individual elements at any level of a multilevel operand you
use additional subscripts after &SYSLIST or the symbolic parameter name.
For example, if &P is the first positional parameter and the value
assigned to it in a macro instruction is (A, (B, (q) ,D) , then:

r--1
&P = &SYSLIST (1) =(A, (B, (q) ,D)
&P(1) = &SYSLIST(1,1) =A
&P (2) = &SYSLIST (1, 2) = (B, (C))
&P (2, 1) = &SYSLIST (1, 2, 1) =B
&P(2,2) = &SYSLIST(1,2,2) =(C)
&P (2,2, 1) = &SYSLIST (1,2,2, 1) =C
&P(2,2,2) = &SYSLIST(1,2,2,2) =null
N'&P(2,2) = N'&SYSLIST(1,2,2) =1
N' &P (2) = N ' & SYSLIST (1, 2) =2
N'&P(3) = N'&SYSLIST(1,3) =1
N'&P = N'&SYSLIST(1) =3

l--
Extensions to Macro and Conditional Assembly Language 13

REDEFINING CONDITIONAL ASSEMBLY OPERATION CODES

Under Assembler H, you can use the OPSYN instruction to redefine
operation codes anywhere in your source module. The new definitions of
operation codes then remain in effect for all subsequent statements,
including those generated from macros. However, the definitions of
conditional assembly statements are fixed when the macro definition is
edited. Thus, OPSYN statements placed after a definition of a macro
have no effect on the conditional assembly statements of that macro, if
it is called later in the source code. Consider the following example:

Name Operation Operand Comment

MACRO macro header
MAC macro prototype
AIF
MVC
MEND macro trailer .

AIF OP SYN AGO assign AGO properties to AIF
MVC OP SYN MVI assign MVI properties to MVC .

MAC macro call
[AIF evaluated as AIF instruction

generated AIFs not printed]
+ MVC evaluated as MVI instruction . . open code· started at this point

AIF evaluated as AGO instruction
MVC evaluated as MVI instruction

In this example, AIF and MVC instructions are used in a macro
definition. OPSYN statements are used to assign the properties of AGO
to AIF and to assign the properties of MVI to MYC· In subsequent
generations of the macro involved, AIF is still defined as an AIF
operation, and MVC is treated as an MVI operatiqn. In open code
following the macro call, the operations of both instructions are
derived from their new definitions assigned by the OPSYN statements. If
the macro is redefined (by another macro definition) , the new
definitions of AIF and MVC (that is, AGO and MVI) are fixed for any
further expansions.

NOTE: Because the assembler does not edit inner macro definitions until
rt"encounters them during the processing of a macro instruction calling

14

the outer macro, this description does not apply to nested macro
definitions. An OPSYN statement placed before the outer macro
instruction will affect conditional assembly statements in the inner
macro definition.

OTHER EXTENSIONS

The following rules apply to further language extensions of Assembler H
relative to the vs Assembler:

• Macro names, variable symbols (including the ampersand) , and
sequence symbols (including the period) , can be a maximum of 63
alphameric characters. The first character, excluding ampersands
and periods, must be alphabetic.

• Internal conunents (.•) can be inserted between the macro header and
the prototype. Such comments are not printed with the generation of
the macro.

• Any mnemonic operation code of the IBM Systern/360 and 370 Standard
Instruction Set or any assembler operation code can be defined as a
macro instruction. When any of the operation codes is redefined as
a macro instruction, subsequent use is interpreted as a macro call.

• Any instruction, except ICTL, is permitted within a macro
definition.

Extensions to Conditional Assembly Instructions

The flexibility of the AIF, AGO, SETA, SETB, and SE'l'C instructions is
increased in Assembler H. In Assembler H, multiple AIF statements can
be merged in one AIF statement, the AGO statement has an expanded
interpretive function, and a single SETx instruction (SETx is either
SETA, SETB, or SETC) can assign values to more than one element of a SET
symbol array. Format and ordering restrictions are also revised, and a
new system variable symbol is introduced. In addition, generated
statements have new functions, and the availability of symbol attributes
is increased.

EXTENDED AGO STATEMENTS

In ASsembler H, one AGO instruction can contain computed branch sequence
information. The extended AGO statement has the following format:

r-------------T--, I Operation I Operand I
I I I
~-------------+--1 I AGO I (k) • s 1 , • s 2, ••••• , • Sn , I
L-------------~--1
where •k• is a SETA arithmetic expression. If the value of •k• lies
between 1 and •n• inclusive, then the branch is taken to the k-th
sequence symbol in the list. If •k• is outside that range, no branch is
taken. The statement is exactly equivalent to the following sequence of
AIF instructions:

Extensions to Macro and Condttional Assembly Language 15

r-------------T--, I Operation I Operand I
I I I
~-------------+--f I AIF I (arithmetic expression EQ 1) • S1 I
I AIF I (arithmetic expression EQ 2) • S2 I
I · I I
I · I I
I · I , I
I AIF I (arithmetic expression EQ n) • Sn I
L-----~-------L--'

EXTENDED AIF STATEMENTS

The AIF statement in Assembler H can include a string of logical
expressions and related sequence symbols. There is no limit to the
number of expressions and symbols that you can use in an extended AIF
statement. The format is:

r-------------T-------------------------------------T------------------, !Operation !Operand !Column 72 I
I I I J
~-------------+-------------------------------------+------------------f I AIF I (logical expression) • S1, IX I
I I (logical expression) • S2, IX I
I I· , (logical expression) .Sn I I
L-------------L-------------------------------------J.------------------'
This is equivalent to •n• successive AIF statements. The branch is
taken to the first sequence symbol (scanning left to right) that
corresponds to a true logical expression. If none of the logical
expressions is true, control passes to the next sequential instruction.

EXTENDED SETx STATEMENTS

The SETA, SETB, and SETC statements are used to assign arithmetic,
binary, and character values, respectively to SET variable symbols. In
Assembler H, you can use the SET statement to assign lists, or arrays,
of values to subscripted SET symbols. In the VS Assembler, a separate
SETx statement is required for each element of an array. For example, a
list of 100 SETx values requires 100 SETx statements. In Assembler H,
such a list can be coded in one extended SETx statement. The extended
SETx statement has the following format:

r-------------T-----------T--, !Name fOperation !Operand I
I I I I
~-------------+-----------+--f I &SYM (k) I SETX I X1, X2,, X4, •••••• , Xn I
L-------------L-----------i--1
The form of the name and operation fields is the same as that used in
the VS Assembler for assignment of a dimensioned variable SET symbol:
&SYM is a dimensioned SET symbol, •k• is a SETA arithmetic expression,
and SETx is SETA, SETB, or SETC. Each of the operands (•Xn•) has the
form of an ordinary SETx operand, or may be omitted. Whenever an
operand is omitted, the corresponding element of the dimensioned
variable SET symbol (&SYM) is left unchanged.

16

When none of the operands is omitted, the extended SETx statement is
equivalent to the following sequence of statements:

r-------------T-----------T--,
I Name I Operation I Operand I
I I I I
~-------------+-----------+--1
I &SYM (k) I SETx I X1 I
I &SYM (k+ 1) I SETx I X2 I
I · I I I
I · I I I
I · I I I
I &SYM (k+n-1) I SETx I xn I
L-------~-----L-----------L--1

Following are examples of the use of extended SETx statements:

1. &X (3) SETA 3,,5,, 1

This is equivalent to the sequence:

&X (3) SETA 3
&X (5) SETA 5
&X (7) SETA 1

2. &X (1) SETA 1, &X (1) + 1, &X (2) + 1

This is equivalent to the sequence:

&X (1) SETA 1
&X (2) SETA 2
&X (3) SETA 3

3. &Y (1) SETC I I I I , ,
This sets &Y (1) and &Y (3) to null values and leaves &Y (2)
unchanged.

SET SYMBOL FORMAT AND DEFINITION CHANGES

Extensions in Assembler H to SETx statements, and local and global
definition statements, are discussed in the following list.

• In Assembler H, global and local SET symbol declarations are
processed at generation time in the assembly process, not edit time
as in the VS Assembler. Either a macro definition or open code can
contain more than one declaration for a given SET symbol, as long as
only one is encountered during a given macro expansion or
conditional assembly of open code.

• A SET symbol that has not been declared in a LCLx or GBLx statement
is implicitly declared by appearing in the name field of a SEI'x
statement. Such a declaration is interpreted as local, with the
type determined by the SETx operator, and the dimensionality is
determined by the occurrence of a subscript in the name field. Any
explicit declaration encountered thereafter is flagged as a
duplicate declaration. Undeclared SET symbols are not valid in the
VS Assembler; they cause error messages to be generated.

Extensions to Macro and Conditional Assembly Language 17

• A SET symbol can be defined as an array of values by adding a
subscript after it, when it is declared, either explicitly or
implicitly. Under the VS Assembler, the subscript specified in the
declaration determines the maximum number of elements that the SET
symbol array can contain. Under Assembler H, however, all SET
symbol arrays are open-ended; the subscript value specified in the
declaration does not limit the size of the array. Thus the
following set of statements is allowed under Assembler H but not
under the VS Assembler:

r-------------T-----------T--, I Name I Operation I Operand I
I I I I
~-------------+---------~-+--f I f LCLA I &J (50) I
I &J (45) I SETA I 415 Allowed under both assemblers I
f &J(89) fSETA 138 Allowed only under H I
l-------------L-----------i---...J

CREATED SET SYMBOLS

Assembler H allows SET symbols to be created during the generation of a
macro. A created SET symbol has the form & (e) where •e• represents one
or more of the following:

• Variable symbols, optionally subscripted
• Strings of alphameric characters
• Created SET symbols

After substitution and concatenation, •e• must consist of a string of 1
to 62 alphameric characters, the first being alphabetic. This string is
then used as the name of a SETx variable. For example:

r-------------T-----------T--~-, I Name I Operation I Operand I
I I I I
~-------------+-----------+--~
l&Y(1) ISETC l'A1','A2','A3','A4' I
f&(&Y(3)) ISETA 15 I
l-------------L-----------~---...J

These statements have an effect similar to: &A3 SETA 5.

Created SET symbols can be used wherever ordinary SET symbols are
permitted, including declarations; they can even be nested in other
created SET symbols. The following nested variable could generate a
valid created SET symbol:

& (& (&X (& (&Y))))

The created SET symbol can be thought of as a form of indirect
addressing. Thus, in the first example above, &Y is a variable whose
value is the name of the variable to be updated. With nested created
SET symbols, you can get such indirect addressing to any level.

Created SET symbols can also offer an •associative memory• facility.
For example, a symbol table of numeric attributes can be referenced by
an expression of the form &(&SYM) (&!) to yield the •1th• element of the
symbol substituted for &SYM.

18

A related application is illustrated in the following macro definition.
This macro is designed to push an item into the specified push-down
stack. A new stack is created for each new stack name given as a
parameter in the macro call. Note that &LIST becomes as long as
required.

r---~ I MACRO I
I PUSHDOWN & STAK, & ITEM I
I GBLA & (&STAI<) (1) , 'f&STAK.SIZE) I
, , (&STAK.SIZE) SETA & (&STAK.SIZE) +1 I
I & (&STAI<) (& (&STAI<. SIZE)) SETA &ITEM I
I M~D I
L--1
The macro call "PUSHDOWN LIST,25" is logically equivalent to:

r---~ I GBLA &LIST (1) , &LISTSIZE I
I LISTSIZE SETA &LISTSIZE+l I
I LIST (&LISTSIZE) SETA 25 I
I I
L--1
Created SET symbols also enable you to get some of the effect of
multidimensional arrays by creating a separate named item for each
element of the array. For example, a three-dimensional array of the
form &X(&I,&J,&K) can be addressed as &(X&I.$&J.$&K). Then &X(2,3,4)
would be represented as a reference to the symbol &X2$3$4.

Note that what is being created here is a SET symbol. Both creation and
recognition occur at macro generation time. In contrast, parameters are
recognized and encoded (fixed) at macro edit time. Consequently, if a
created SET symbol name happens to coincide with a parameter name, the
fact is ignored, and there is no interaction between the two.

USING SETC VARIABLES IN ARITHMETIC EXPRESSIONS

You can use a SETC variable as an arithmetic term if its character
string value represents a valid self-defining term. A null value is
treated as zero. A subset of this facility is available in the VS
Assembler, which allows character strings that represent decimal
self-defining terms.

This expanded facility in Assembler H allows you to associate numeric
values with EBCDIC or hexadecimal characters; this can be used for such
applications as indexing, code conversion, translation or sorting.

For example, the following set of instructions converts a hexadecimal
value in &X into the decimal value 243 in &VAL.

r-------------T-----------T---~ I Name I Operation I Operand I
I I I I
~-------------+-----------+---~ f&X ISETC l'X''F3''' I
I &VAL I SETC I & x I
L-------------L-----------L--1

Extensions to Macro and Conditional Assembly Language 19

ATTRIBUTE REFERENCES

Under the VS Assembler, attributes of symbols in generated statements
are never accessible. Under Assembler H, attributes of symbols
produced by macro expansion or substitution in open code are available
immediately after the statement referenced is generated.

Forward Attribute References

If an attribute reference is made to a symbol that has not yet been
encountered, the assembler scans the source code either until it finds
the referenced symbol in the name field of a statement in open code, or
until it reaches the end of the source module. The assembler makes
entries for the symbol, as well as any other not previously defined
symbols it encounters during the scan, in the symbol table. The
assembler does not completely check the syntax of the statements for
which it makes entries in the symbol table. Therefore, a valid
attribute reference may result from a forward scan, even though the
statement is later found to be in error and therefore not accepted by
the assembler. Further, you must be careful with the contents of any
AREAD input in your source module. If the first word of an AREAD input
card conflicts with an attribute reference, the forward scan will
attempt to evaluate that card instead, if it appears before the •true•
symbol.

Attribute References Using SETC Variables

The symbol referenced by an attribute reference of type length (L'),
type (T'), scaling (S'), integer (I'), and defined (D', see below) can
only be an ordinary symbol. The name of the ordinary symbol can,
however, be specified in three different ways:

• the name of the ordinary symbol itself.
• the name of a symbolic parameter whose value is

the name of the ordinary symbol.
• the name of a SETC symbol whose value is the name

of the ordinary symbol.

Consider the following examples:

r-------------r-----------T--,
!Name !Operation f Operand I
I I I I
~-------------+-----------+---------------------------------------~---~
l&F ISETC IT'ORDSYM I
IORDSYM IDC IH'3' I
L-------------~-----------i----------------------•---------------------1
In this example, the symbol in the attribute specification
(T'ORDSYM) is the ordinary symbol itself.

20

r-------------r-----------T--,
I Name I Operation I Operand I
I I I I
~-------------+-----------+--1
I &K I SETC I 'ORDSYM' I
I &F I SETC IT'&K I
I ORDSYM I DC I H. 3 • I
L-------------L-----------L--1
In this example, however, the symbol in the attribute reference (T'&K)
is a variable symbol whose value is the name of the referenced symbol
(ORDSYM) • The type attribute in both examples will be the type
attribute of the DC instruction named ORDSYM.

Under the VS Assembler, you can only use ordinary symbols and symbolic
parameters in attribute specifications of types L', T', s•, and I'.

The Defined Attribute (D')

The defined attribute (D') is introduced in Assembler H. It can be used
in conditional assembly statements to determine if a given symbol has
been defined at a prior point in the source module. If the symbol is
already defined, the value of the defined attribute is one; if it has
not been defined, the value is zero. By testing a symbol for the
defined attribute, you can avoid a forward scan of the source code.

Number Attribu~es for SET Symbols

The number attribute can be applied to SETx variables to determine the
highest subscript value of a SE!' symbol array to which a value has been
assigned in a SETx instruction. For example, if the only occurrences of
the SETA symbol &A are:

r-------------T-----------T--,
I Name I Operation I Operand I
I I I I
~-------------+-----------+--1
l&A(1) ISETA 10 I
I &A (2) I SETA I 0 I
I &A (3) I SETA I &A (2) I
I iA (5) I SETA I 5 I
liA(10) !SETA 10 I
L-------------L-----------L--1
then N'iA is 10.

The number attribute is zero for a SE!' symbol that has not been assigned
any value. In the VS Assembler, the N' attribute can only refer to
symbolic parameters.

ALTERNATE FORMAT IN CONDITIONAL ASSEMBLY

Alternate format allows a group of operands to be spread over several
lines of code. Each line, except the last, is followed by a comma, one
or more blanks, and a character in column 72. Remarks are inserted

Extensions to Macro and Conditional Assembly Language 21

optionally between the blank and column 72. The last line terminates
the series with a blank in column 72.

In the vs Assembler, alternate format can be used only in macro
prototype and macro call statements. In Assembler H, the extended AGO,
extended AIF, GBLx, LCLx, and extended SETx statements can also be
written in alternate format, as shown in the following examples:

r-------r-----------r-------------------~-----------------------------. f Name f Operation f Operand fRemark I
I I I I I
~-------+-----------+-------------------+~-----------------------------1 AGO I (&A).S1, fremark X

I . S2,. S3, I x
f .S4 I
I I

AIF f (&L1).S1, fremark X
I (&L2) • S2, I x
f (&L3).S3 I
I I

GBLA l&A1, I x
I &B (5) I
I I

LCLC IL1, fremark X
f L2,L3, fremark X
f L4 fremark
I I

&B(1) SETB fO, fremark x
I (&A NE 3), fremark X
I ('SC' EQ 'XYZ') I

L-------L-----------L-------------------..L.-----------------------------1

NEW SYSTEM VARIABLE SYMBOL

System variable symbols are local variable symbols that are assigned
values by the assembler when they are encountered. A new system
variable symbol is provided in Assembler H for use in macro definitions.

&SYSLOC: &SYSLOC is identical in function to ·&SYSECT, except that its
value is the character string that represents the location counter (as
controlled by the LOCTR statement) that is in effect at the time the
macro is called. &SYSECT gets the value of the current CSECT, DSECT, or
COM section. If no LOCTR statement is in effect, the value of &SYSLOC
is the same as the value of &SYSECT. &SYSLOC can be used only in macro
definitions. The LOCTR instruction is described in the section of this
manual entitled "Changes to Program Sectioning and Linking Controls.•

For example, when the following statements occur in a source program,
&SYSLOC will have the character string value XYZ during expansion of
MAC1.
r-------------r-----------r--, !Name f Operation f Operand I
I I I I
~-------------+-----------+--1 I l~OO I I
I fMAC1 I I
I &C I SETC I. &SYSLOC' I
I I I I
I I~~ I I
I XYZ I LOCTR I I
I f MAC1 I I
L-------------~-----------L--1

22

Extensions to Basic Assembler Language

This section covers the extensions to the basic assembler language
supported by Assembler H.

Revised Assembler Operations

Several assembler operations used in the VS Assembler are extended in
Assembler H. The revised operations are described in the following.

OPSYN INSTRUCTION EXTENSION

You can code OPSYN instructions anywhere in your source module. This
offers an advantage over the VS Assembler which only allows OPSYN
statements at the beginning of source modules.

EQU INSTRUCTION EXTENSION

Under the VS Assembler, any symbols appearing in the first operand of
the EQU instruction must be previously defined. This is not required
under Assembler H. Thus in the following example, both WIDTH and LENGTH
can be defined later in the source code:

r-------------r-----------T--.
I Name I Operation I Operand I
I I I I
~-------------+-----------+--~ I VAL I EQU 140-WIDTH+LENGTH, 4 ,F I
L-------------L-----------L--1

COPY INSTRUCTION EXTENSION

The VS Assembler allows COPY instructions within code that has been
brought into your program by another COPY instruction. However, there
is a limit of five such nestings. Under the Assembler H no such limit
exists. Any number of nestings is permitted.

CNOP INSTRUCTION EXTENSION

The restriction that symbols in the operand field of a CNOP instruction
must be pr~viously defined does not exist under Assembler H.

Extensions to Basic Assembler Language 23

ISEQ INSTRUCTION EXTENSION

Assembler H allows sequence checking of columns that are placed anywhere
on the input cards. The VS Assembler allows checking only of columns
that fall outside the statement field, that is, the columns checked
cannot appear between the begin and end columns.

Assembler Language Syntax Extensions

The syntax of the assembler language deals with the structure of
individual elements of an instruction statement and with the order in
which the elements are presented in that statement. Several syntactical
elements of the language supported by the VS Assembler are extended in
the language supported by Assembler H.

CONTINUATION LINES

Assembler H allows a maximum of nine continuation lines in an ordinary
assembler language statement. The VS Assembler allows only two
continuation lines for ordinary assembler language statements.

The alternate format, which allows as many continuation lines as needed,
is allowed for certain instructions. The VS Assembler allows the
alternate format only for macro prototype statements and macro
instruction statements. In addition to those instructions, the
Assembler H allows the alternate format for AIF, AGO, SETx, LCLx, and
GBLx instructions.

SYMBOL LENGTH

Assembler H allows a maximum of 63 characters for a symbol. This limit
includes the ampersand for variable symbols and the period for sequence
symbols. The VS Assembler allows only 8 characters.

Because the linkage editor does not accept symbols longer than
characters, external symbols are limited to eight characters.

eight
External
and DXD symbols are those used in the name field of START, CSECT, COM,

statements and in the operand field of ENTRY, EXTRN, and WXTRN
statements. Symbols used in V- and Q-type address constants are also
restricted to eight characters.

LEVELS WITHIN EXPRESSIONS

Assembler H allows any number of terms or levels of parentheses in an
expression. The VS Assembler allows only 35 operators including left
parentheses.

24

Changes to Programming Sectioning and Linking Controls

Operations controlling program sectioning and linking are extended in
Assembler H to allow increased freedom of program organization. A new
instruction is introduced, and several instructions in the language
supported by the VS Assembler are revised.

USE OF MULTIPLE LOCATION COUNTERS

The assembler instruction LOCTR allows multiple location counters to be
defined within a control section during the assembly. The format of
this new instruction is:

r--------------r-----------T---, I Name I Operation I Operand I
I I I I
~--------------+-----------+---'I I Any ordinary I LOCTR I Blank I
I or variable I I I
I symbol I I I
L--------------L-----------~-------------------------------~-----------'

The assembler assigns consecutive addresses to all segments of a
location counter in a control section before it continues address
assignment with the first segment of the next location counter. By
using the LOCTR instruction, you can cause your program•object-code
structure to differ from the logical order appearing in the listing.
You can code sections of a program as independent logical and sequential
units. For example, you can code work areas and constants within the
section of code that requires them, without branching around them.
Figure 2 illustrates this procedure.

MAI NC ODE LOCTR

.

.

WORKAREA LOCTR

xxx DC

xxx DS

MAINCODE LOCTR

.

.

Addresses follow

xxx combined
I-- sections of

xxx MAINCODE.

t--
Assembled with
consecutive
addresses

Figure 2. LOCTR Instruction Application

Extensions to Basic Assembler Language 25

The following rules govern applications of the LOCTR instruction:

• A location counter can be interrupted by a CSECT, DSECT, COM, or
another LOCTR instruction.

• A control section name that is defined by th~ CSECT, COM, DSECT, or
START instruction automatieally names the first location counter in
that section.

• A LOCTR instruction with the same name as a control section resumes
the first location counter in that section.

• A LOCTR instruction with the same name as a previous LOCTR
instruction forces a return to the control section in which it was
first defined and resumes the particular counter involved.

• Resumption of a control section causes resumption of the last
active, not necessarily the highest valued, location counter under
that control section.

• A control section name defined for the first time is in error if it
is identical to a previously defined IOCTR instruction name.

• A LOCTR instruction•occurring before the first control section will
initiate an unnamed CSECT before the LOCTR instruction is processed.

• LOCTR instructions do not force location counter alignment.

REVISION OF Q-TYPE ADDRESS CONSTANTS

Q-type address constants reserve storage for the offset of an external
dummy section. Some restrictions imposed by the language supported by
the VS Assembler are relieved under Assembler H:

• DXD or DSECT names referenced in Q-type address constants do not
require previous definition~

• If the relocatable symbol in a DXD statement is not used in a Q-type
address constant, the DXD symbol is not placed in the external
symbol dictionary (ESD) • DXD statements without a Q•type address
constant reference are not addressable by the program.

NUMBER OF ESD SYMBOLS

The Assembler H does not restrict the number of symbols that can be
contained in the external symbol dictionary (ESD) • The maximum number
of entries depends on the amount of main storage available to the
linkage editor.

26

Performance Improvements

The assembly of source modules by Assembler H is considerably faster
than assembly of the same modules by the VS Assembler. The performance
of Assembler H is superior primarily because the Assembler H needs fewer
input/output operations and machine instructions to assemble a program.
The following figures are system independent and give the ratio between
the VS Assembler and Assembler H:

Number of SIO instructions used by XF

Number of SIO instructions used by H

Number of machine instructions used by XF

Number of machine instructions used by H

between 5 and 10

between 1.5 and 1.8

The actual ratio for a given program will depend on the source program
itself and on the region allocated to the assemblers.

Elapsed Time Measurement

Elapsed time is relevant only when running one job at a time. The
figures on elapsed time below serve only to give you an idea of how the
different System/360 models affect Assembler H performance relative to
the VS Assembler performance.

The following ratios are a conservative measure of elapsed time for an
assembler job step when using Assembler H relative to the VS Assembler
running under OS on 360 machines. The figures do not apply to very
small programs because system overhead for the execution of a job step
is constant for both a$semblers.

H step-time
XF step-time

Model 40

1:1.5

Model 50

1:1.9

Model 65 Model 75 ---
1:3.5 1:4.0

Factors Influencing Improved Performance

Model 85

1:4.5

The following list summarizes the factors that influence the number of
1/0 operations and machine instructions used by Assembler H in
comparison to the vs Assembler:

• Logical text stream and tables that are a result of the internal
assembly process remain resident in virtual storage, whenever
possible, throughout the assembly.

• Two or more assemblies can be performed under the control of one set
of job control language (JCL) cards.

Performance Improvements 27

• Assembler H edits only the macro definitions that it encounters
during a given macro expansion or during conditional assembly of
open code, as controlled by AIF and AGO statements.

• Source-text assembly passes are consolidated. The edit and
expansion of macro text is done on a demand basis in one pass of the
source text, instead of two distinct passes as in the VS Assembler,
as shown in Figure 1.

RESIDENT TABLES AND SOURCE TEXT: Performance over the vs Assembler is
improved by keeping intermediate text, macro-definition text,
dictionaries, and symbol tables in main storage whenever possible. This
reduce~ the I/O time required by assemblers that rely heavily on
secondary storage throughout the assembly process. Less I/O reduces
system overhead and frees channels and I/O devices for other uses.

Certain portions must remain in virtual storage throughout the assembly
process. The symbol table must remain resident, and it has no overflow
capacity. Also, all partially filled blocks of text must remain
resident.

MULTIPLE ASSl!MBLY: Multiple or batch assemblies can be done under the
control of a single set of JCL cards. Source decks are placed together
with no intervening •;•• card.

Batch assembly improves performance by eliminating job and step overhead
for each assembly. It is especially advantageous for processing related
assemblies such as a main program and its subroutines.

MACRO-EDITING PROCESS: New methods of macro processing improve
performance. The VS Assembler edits all source-program macro
definitions and library macro definitions that are contained or
referenced in the source program. This often results in editing macro
definitions that are never called. Assembler H edits only those macro
definitions that are encountered during a given macro expansion or
during conditional assembly of open code, as controlled by AIF and AGO
statements.

A good example of potential savings by this feature is the process of
system generation. During system generation, Assembler H edits only the
set of library macro definitions that are expanded, whereas the vs
Assembler edits all library macro definitions referenced in the
system-generation source stream and the library macro definitions for
all inner macro calls (to any level). As a result, Assembler H may edit
25 percent fewer library macro definitions than the VS Assembler.

CONSOLIDATING SOURCE TEXT PASSES: In comparison to the vs Assembler,
consolidating assembly source text passes and other new organization
procedures reduce by approximately 30 percent the number of internal
processor instructions used to handle source text in Assembler H. This
is represented in proportionate savings in CPU time. The saving is
independent of the size or speed of the system CPU involved; it is a
measure of the relative efficiency of the processor.

28

Extensions to Diagnostics

The Assembler H has many diagnostic features to aid in the location and
analysis of program errors. Refinement of macro and conditional
assembly diagnostics is particularly significant. This section describes
the diagnostic facilities offered by Assembler H.

Diagnostic Extensions in Regular Assembly

ERROR MESSAGES

Assembler H prints error messages in line in the listing and includes at
the end of the listing a total of the errors and a table of their line
numbers. Certain in-line messages include a copy of the segment of the
statement that is in error. Thus, error conditions are spelled out as
they occur with direct reference to a specific error. The following
illustrates this.

CSE CT

•
COMM

•••ERROR .. •UNDEFINED OP CODE- COMM

•
OS (•+SIF

•••ERROR• .. RELOCATABILITY ERROR· (•+5)F

1 NAME DC F'O'
•••ERROR•" SYMBOL TOO LONG, OR 1ST CHARACTER NOT A LETTER - 1NAME

&C
•
SETC

&C

'AGO'

.x
"•ERROR• .. OP CODE NOT ALLOWED TO BE GENERATED-AGO

•
END

Diagnostic Messages in Macro Assembly

In Assembler H, diagnostic messages printed in macro-generated text are
much more descriptive than those in the VS Assembler. In addition, the
macro level and the statement number of the macro definition are printed
for each programmer macro instruction. The macro level and the first
five characters (or fewer) of the macro name are printed for library
macro expansions.

Extensions to Diagnostics 29

SEQUENCE FIELD IN MACRO-GENERATED TEXT: When a library macro definition
is processed as a result of a macro call, the sequence field .(columns 73
through 80) of the generated statements contains the level of the macro
call in the first two columns, a hyphen in the third column, and the
first five letters of the macro-definition name in the remaining five
columns. When a line is generated from a source-program .macro or a
copied library macro, the last five columns contain the line number of
the model statement in the definition from which the generated statement
is derived. This information can be an important diagnostic aid when
analyzing output dealing with macro calls within macro calls.

PORMAT OF MACRO GENERATED TEXT: Whenever possible, a generated
statement is printed in the same format as the corresponding
macro-definition (model) statement. The starting columns of the
operation, operand, and comments fields are preserved unless they are
displaced by field substitution, as shown in the following example:

source Statements:

Generated Statement:

&C SEl'C
&C LA
ABCDEFGHIJK

'ABCDEFGHIJK'
1,4
LA 1,4

ERROR MESSAGES FOR A LIBRARY MACRO DEFINITION: Format errors within a
particular library macro definition are listed directly following the
first call of that macro. Subsequent calls on the library macro do not
result in this type of diagnostic. If the appropriate option of the
PRINT instruction is in effect, errors arising in the generated text of
a library macro are listed in line within the generated text. The
following shows the placement of error messages.

&B

••ERROR••

••ERROR••

MACRO

LIBMAC

•
LCLA A Library Macro

•
SETA &A

•
MEND

LIBMAC
INVALID LCLA OPERAND

•
•

UNDECLARED VARIABLE SYMBOL

•
LIBMAC

•
•

UNDECLARED VARIABLE SYMBOL

•

First
LIBMAC
call

Second
LIBMAC
call

ERROR MESSAGES FOR SOURCE PROGRAM MACRO DEFINITIONS: Macro definitions
contained in the source program are printed in the listing, provided
that the appropriate PRINT options are in effect. Edit diagnostics are
inserted in line in the listing directly following the statement in
error. Errors analyzed during macro generation produce messages in line
in the generated text.

30

ERROR MESSAGES IN MACRO-GENERATED TEXT: Diagnostic messages in
generated text generally include:

• A description of the error.
• The recovery action.
• The model statement number at which the error occurred.
• A SET symbol name, parameter number, or value string associated with

the error.

Macro Trace Facility (MHELP)

The MHELP instruction controls a set of trace and dump facilities.
Options are selected by an absolute expression in the MHELP operand
field. MHELP statements can occur anywhere in open code or in macro
definitions. MHELP options remain in effect continuously until
superseded by another MHELP statement. MHELP options are:

MACRO CALL TRACE: (MHELP B'1' or MHELP 1). This option provides a
one-line trace for each macro call, giving the name of the called macro,
its nested depth, and its &SYSNDX (total number of macro calls) value.
This trace is provided upon entry into the macro. No trace is provided
if error conditions prevent entry into the macro.

MACRO BRANCH TRACE: (MHELP B'10', or MHELP 2). This option provides a
one-line trace for each AGO and true AIF conditional assembly statement
within a macro. It gives the model statement numbers of the "branched
from" and "branched to", statements, and the name of the macro in which
the branch occurs. This trace option is suppressed for library macros.

MACRO ENTRY DUMP: (MHELP B'10000', or MHELP 16). This option dumps
parameter values from the macro dictionary immediately after a macro
call is processed.

MACRO EXIT DUMP: (MHELP B'1000', or MHELP 8). This option dumps SET
symbol values from the macro dictionary upon encountering a MEND or
MEX IT statement.

MACRO AIF DUMP: (MHELP B'100', or MHELP 4). This option dumps SET
symbol values from the macro dictionary immediately before each AIF
statement that is encountered.

GLOBAL SUPPRESSION: (MHELP B'100000', or MHELP 32). This option
suppresses global SET symbols in the two preceding options, MHELP 4 and
MHELP 8.

MHELP SUPPRESSION: (MHELP B'10000000', or MHELP 128). This option
suppresses all currently active MHELP options.

MHELP CONTROL ON &SYSNDX: MHELP operands are assembled into a signed
fullword. See the sample hexadecimal values for MHELP operand in Figure
3.

Extensions to Diagnostics 31

:S {;-
~((; ~'li
~ <i;

4869 13 05 Macro call trace,
Macro AIF dump;
&SYSNDX 4869

65536 0001 00 00 No effect

16777232 0100 00 10 Macro entry dump

28678 0000 70 06 Macro branch trace,
Macro Al F dump;
&SYSNDX 28678

Figure 3. MHELP Control on &SYSNDX

MHELP and &SYSNDX values are determined according to the following
rules:

1. If there are any non-zero bits present in the low-order six bits of
the MHELP field (see Figure 3) , the corresponding options are turned on.

2. &SYSNDX values are set only if the &SYSNDX field has any non-zero
bits in it. The value of &SYSNDX is the value of the entire fullword.
If the &SYSNDX field contains only zeros, the &SYSNDX value is not set,
even if there is a value in the high-order bytes to the left of the
&SYSNDX field.

When &SYSNDX (the total number of macro calls) exceeds the value of the
fullword which contains the MHELP operand value, control is forced to
stay at the open-code level, by (in effect) making every statement in a
macro behave like a MEXIT. Open-code macro calls are honored, but with
an immediate exit back to open code.

When the value of the &SYSNDX reaches its limit, a diagnostic message is
issued.

COMBINING OPTIONS: Multiple options can be obtained by combining the
option codes in one MHELP operand. For example, call and branch traces
can be invoked by MHELP B'11', MHELP 2+1, or MHELP 3.

Abnormal Termination of Assembly

The assembler produces a specially formatted dump whenever an assembly
cannot be completed. This may help you in determining the nature of the
error. The dump is also useful if the abnormal termination was caused
by an error in the assembler itself.

32

II
&SYSLIST
&SYSLOC
&SYSNDX,
&SYSPARM

with multilevel sublists
22
MHELP control on 31-32

5

13-14

Abnormal termination of assembly 32
AGO instruction

Alternate format 21-22
Extended 15-lG
Tracing (See Macro branch trace)

AIF instruction
Alternate format 21-22
Extended 16
Macro AIF dump 31
Tracing (See Macro branch trace)

Alternate format 21-22,24
Arbitrary language input (AREAD) 11-13
AREAD instruction 11-13
AREAD input affecting forward scan

(See Forward attribute reference)
Arithmetic expressions, using SETC
variables in 19

Assembler data set names, changing at
system generation 6

Assembler H internal design 2-4
Assembler options

Determining at system generation
Standard default values 5
Removing options 5

Associative memory facility
(See Created SET symbols)

Attribute reference 20-21
Defined attribute (D') 21
Forward 20
Number attribute (N') for SET

symbols 21
To generated statements 20
With SETC symbols 20-21
Resolving (See Internal design)

Basic assembler language extensions
Revised assembler operations

CNOP instruction 23
COPY instruction 23
EQU instruction 23
!SEQ instruction 24
OPSYN instruction 23

Index

Character variables used in arithmetic
expressions 19

CNOP instruction 23
Combining MHELP options 32
Commercial instruction set 6
Computed AGO instruction

(See Extended AGO instruction)
Conditional assembly extensions

(See also Macro language extensions)
Alternate format 21-22, 24
Attribute reference 20-21

Defined attribute (D') 21
Forward 20
Number attribute (N') for SET

symbols 21
With SETC symbols 20-21

Created SET symbols 18-19
Extended AGO instruction 15-16,21-22
Extended AIF i.nstruction 16, 21-22
Extended SETx instruction 16-17,21-22
SET symbol format and definition changes

Dimensioned SET symbols 18
Implicit declaration 17
Multiple declaration 17

System variable symbols
&SYSLIST with multilevel
sublists 13-14

&SYSLOC 22
&8YSNDX, MHELP control on 31-32
&SYSPARM 5

Continuation lines, number of 24
COPY instruction 23
CPU requirements

(See System requirements)
CPU time 28
Created SET symbols · 18-19

m
Data definition names for Assembler H
data sets 5-6

Changing DD names 6
Data set requirements 2
DD names

(See Data definition names for Assembler
H data sets)

Declaration of SET symbols
Dimensioned 18
Implicit I7
Multiple 17

Default values for assembler options 5
Defined attribute (D') 21

Index 33

Page of GC26-3758-2
Replaced September 29, 1972
By TNL GN33-81St

Design, internal 2-4
Diagnostics in macro assembly 29-30

Error messages for library macros 30
Error messages for source macros 30

Diagnostics in regular assembly 29
Dimension of SET symbol, maximum 18
DSECT, referenced in Q-type address
constant 26

DXD, referenced in Q-type address
constant 26

II
Editing macro definitions 7-8
Editing inner macro definitions 9-10
Elapsed time 27
EQU instruction 23
Error messages

In general 29
In lib,rary macros 30
In source macros 30

ESD
(See External symbol dictionary)

EXEC statement default options 5
Expressions, levels of parentheses in 24
Extended AGO instruction 15-16,21-22
Extended AIF instruction 16,21-22
Extended SETx instruction 16-17,21-22
Extension to basic assembler language

(See Basic assembler language extensions)
Extensions to conditional assembly
instructions
(See Conditional assembly extensions)

Extensions to macro language instructions
(See Macro l~nguage extensions)

External symbol dictionary (ESD),
restrictions on 26

External symbols, length of 24
External workfile 2-3

II
Forward attribute reference 20
Forward scan 2

DJ
GBLx instruction

(See Global SET symbol)
Generated macro operation codes 10-11
Generated statement

Attribute reference for 20
Error messages for 30
Format of 30
Sequence field of 29

Global SET symbol
Declaration 17
Suppression of (in MHELP options) 31

D
Implicit declaration of SET symbols 17

34

Indirect addressing facility
(See Created SET symbols)

Inner macro definition 9-10
Inner macro instruction 9
Input/output capability of macros 13
Instruction sets 6
Internal design 2-4
Internal macro comments 15
ISEQ instruction 24

II
Language compatibility 1
LCLx instruction

(See Local SET symbol)
Library macro, error messages for 30
Library space requirements 2
Local SET symbol

Declaration 17
(See also Implicit declaration of
SET symbols)

Location counter, multiple 25-26
LOCTR instruction 25-26
Logic of Assembler H

(See Internal design)
Lookahead mode

(See Forward attribute reference)

II
Macro

Input (See AREAD instruction)
Input/output capability of 13
Use of 7

Macro AIF dump 31
Macro branch trace 31
Macro call trace 31
Macro calls by substitution 10-11
Macro definition

Bypassing 8
Editing 7-8
Instructions allowed in 15
Nested 9-10
Placement 7
Redefinition of 8-9

Macro editing
Affecting performance 28
For inner macro definitions 9~10
In general 7-8

Macro entry dump 31
Macro exit dump 31
Macro input (See AREAD instruction)
Macro input/output capability 13
Macro instruction

Nested 9
With AREAD instructions 12

Macro instruction operation code,
generated 10-11

Macro language extensions
Arbitrary language input, AREAD 11-13
Declaration of SET symbols 17-18
Instructions permitted in body of macro
definition 15

Mnemonic operation codes redefined as
macros 15

Macro language extensions (cont.)
Nesting definitions 9-10
Placement of definitions 7
Redefinition of macros 8-9
Sequence symbol length 15
SET symbol length

(See Variable symbol length)
Substitution, macro calls by 10-11
Symbolic parameter length

(See Variable symbol length)
Variable symbol length 15

Macro name·, length of 15
Macro trace (See MHELP instruction)
Main storage requirements

(See Virtual storage requirements)
MHELP instruction 31-32
Mnemonic operation codes used as macro
operation codes 15

Model statements permitted in macro
definitions
(See Macro definition, instructions
allowed in)

Multilevel sublists 13-14
Multiple assembly 28
Multiple declaration of SET symbols 17
Multiple location counters 25-26

II
Nested COPY instructions

(See COPY instruction)
Nested macro definitions 9-10
Nested sublists

(See Multilevel sublists)
Number attribute (N') for SET symbols 21

m
Operation codes

For macros
Length of 15
Redefining 8-9

Redefining conditional assembly
operation codes 14-15
(See also Instruction sets)

OPSYN instruction
Placement 23
To redefine conditional assembly
operations 14-15

To rename macro 8
Options

AREAD listing 12
MHELP 31-32
Setting defaults for assembler options 5

Parentheses, levels of in expressions 24
PARM field options

(See Assembler options)
Performance 1,27-28
Performance factors 27-28
Programmer macro (See Source macro)
PUNCH output capability 13

m
Q-type address constant 26

m
Redefinition of conditional assembly
operation codes 14-15

Redefinition of macro names 8-9
Redefinition of standard operation codes
as macro names 15

Scientific instruction set 6
Sectioning and linking extensions

Multiple location counters 25-26
Q-type address constants 26
Restriction on ESD items 26

Sequence checking (See !SEQ instruction)
Sequence field in macro-generated text 29
Sequence symbol .length 15
SET symbol

Created 18-19
Declaration

Implicit 17
Multiple 17

Dimension
Maximum 18
Specification 18

SETC symbol
In AREAD name field

(See AREAD instruction)
In arithmetic expression 19
Attribute reference with 20-21

SETx instruction, extended 16-17,21-22
Source macro, error messages for 30
Standard instruction set 6
Sublists, multilevel 13-14
Substitution in macro instruction
operation code 10-11 ·

Symbol length 24
Symbol table 2-3
Symbolic parameter

Conflicting with created SET symbol 19
Length of (See Variable symbol length)

Syntax extensions
Character variables in arithmetic

expressions 19
Continuation lines, number of 24
Levels of parentheses

In macro instruction
(See multilevel sublists)

In ordinary assembler expression 24
Number of terms in expression 24
Symbol length 24

SYSLIST (See &SYSLIST)
SYSLOC (See &SYSLOC)
SYSNDX (See &SYSNDX)
SYSPARM (See &SYSPARM)

Index 35

Page of GC26-3758-2
Replaced September 29, 1972
By TNL GN33-8151

System generation, modifying the assembler
at 5-6

System macro (See Library macro)
System requirements 1-2
System variable symbols

&SYSLIST with multilevel sublists 13-14
&SYSLOC 22
&SYSNDX, MHELP control on 31-32
&SYSPARM 5

SYSUTl 3

a
Terms, number of in expression 24
Text passes, number of 2
Text processing 2-3

36

•
Universal instruction set 6
Utility file (See SYSUTl, workfile)

Variable symbol length 15
Virtual storage requirements 2

II
Workf ile 2-3
Working storage 2-3

Part II: For the MFT or MVT User

i

Preface

This publication is an introduction to the OS Assembler H. It.describes:

• Basic structure and features of Assembler H.

• System requirements and the operating environment of Assembler H.

• Additions and extensions to the basic assembler language support by
Assembler H.

• Extensions to the macro and conditional assembly facilities supported
by Assembler H.

• Estimates of Assembler H performance.

• Additions and extensions to the assembler language diagnostic
services supported by Assembler H.

To use this publication effectively, you should be familiar with the OS
Introduction, Order Number GC28-6534, or have the equivalent knowledge.
You are also assumed to be generally familiar with assembler language
and with macro and conditional-assembly processing. Such information
may be found in the:

OS Assembler Language, Order Number GC28-6514

Other publicat!ons containing pertinent information are the following:

OS Assembler H Language, Order Number GC26-3771.

The Assembler H Language manual tells you the instructions available
to program with Assembler H. It is supplemental to the Assembler
Language manual above.

OS Assembler H Programmer's Guide, Order Nu~ber SC26•3759

The Assembler H Programmer's Guide gives detailed information about
programming with Assembler H, including assembler options and job
control language procedures applicable to Assembler H. It also explains
the listing produced by the assembler.

OS Assembler H Messages, Order Number SC26-3770

The Assembler H Messages manual provides an explanation of each of the
diagnostic and abnormal termination messages issued by Assembler H and
suggests how you should respond in each case.

OS Assembler H System Information, Order Number GC26-3768

The System Information manual consists of three self-contained
chapters on performance estimates, storage estimates, and system
generation of Assembler H.

OS Job Control Language Reference, Order Number GC28-6704

The Job Control Language manual tells you how to code the job control
language necessary to initiate and control the processing of any
program, and contains a discussion of cataloged procedures.

iii

OS Loader and Linkage Editor, Order Nwnber GC28-6538

The Loader and Linkage Editor manual provides information on the
operation and use of the loader and linkage editor, which are two
programs that prepare the output of language translators for execution.

iv

Contents

INTRODUCTION • • • . • •
Language Compatibility • • • • • • • • •
Language Changes •

1
1
1
1
1
2
2
2
3
5
5
5

Performance • • • • • • • • • • •
System Requirements • • • •
Internal Design • • • • • • • • • • •

Resolving Symbol Attribute References
Internal Text Processing • • • • • • •

Optional Modifications to Assembler H • • • •
Execute (EXEC) Statement Default Options • • • • •
Data Definition (DD) Statement Default Options
Instruction Set Options • • • • • • • • •

EXTENSIONS TO MACRO AND CONDITIONAL ASSEMBLY LANGUAGE • • • • 7
General Advantages in the Use of Macros • • • • 7

Extensions to the Macro Language • • • • • • • • • • 7
Macro Definitions in Open Code • • • •

1
• • • • • • • 8

Redefinition of Macro Instructions ••
1

. . · • • · · 8
Editing Operation Codes • • • • • • 8
Nesting Macro Definitions • • • • • • • • • • 9
Macro Calls by Substitution • • • 1 · 10
Arbitrary Language Input - AREAD • • • • • • • • 11
Format Changes in Macro Statements • • 1 • • • • • • 13
Other Revisions • • • • • • • • • • • • • • • • • • • 14

Extensions to Conditional Assembly Instructions • • • • • 15
Extended AGO Statements • • • • • • • • • • • • 15
Extended AIF Statements • • • • • • • • • • • • • • • • • • • 16
Extended SET Statements • • • • • • • • • • 16
SET Symbol Format and Definition Changes • • • • • • 17
Created SET Symbols • • • • • • • • • • • • • • • • 18
Generated Comments • 19
Availability of Attribute References • • • • ••••••••• 20
Alternate Format in Conditional Assembly • • • • • • • 22

New System Variable Symbols • • • • • • • • • • • • • 22

CHANGES TO BASIC ASSEMBLER LANGUAGE • • • • • • • • • • 24
New Assembler Opera.tions • • • • • • • • • • • • • • 24

Retention of PRINT and USING Status • • • • • • • • 24
Changing Operation Code Definitions. • ••••••••••• 24

Revised Assembler Operations • • • • • • • • • • 25
EQU Instruction Extensions • • • • • • • • 25
DROP Instruction Extensions • • • • • • • • • • • • • • 26
COPY Instruction Extensions • • • • • • • • • • • • • • • • • 26
PRINT Instruction Extensions • • • • • • • • • • • • • • 27
CNOP Instruction Extensions • • • • • • • • • • • • 27
ORG Instruction Extensions • • • • • • • • • • • • 27
Literal Instruction Extensions • • • • • 27

Assembler Language Syntax Extensions • • • • • • • • 28
Continuation Lines • • • • • • • • • • • • • • • • • • • 28
Symbol Length • • • • • • • • • • • • • • • 28
Treatement of Signed Values • • • • • • • • • 28
Symbol Values • 29
Levels Within Expressions ••••• 29
Character Variables Used in Arithmetic Expressions • • • 29

Mnemonic Operation Code Extensions • • • • r • • • • • • • ~fr
Changes to Programming Sectioning and Linking Controls • • • • 30

Use of Multiple Location Counters • • • • • • • • • • • • • • 30

v

Linking Conunon Storage Areas • • • • •
Revision of Q-Type Address Constants •
Other Revisions

PERFORMANCE IMPROVEMENTS
Elapsed Time Measurement •
CPU Time Measurement . • •
Weighted Time Measurement
Factors Influencing Improved Performance •

EXTENSIONS TO LISTING CONTROLS AND DIAGNOSTICS •
Diagnostic Changes in Regular Assembly • •
Diagnostic Messages in Macro Assembly
Macro Trace Facility - MHELP •••••

INDEX

vi

• • 32
• 32

• • 33

• • 34
34

• 34
• 35

• • • • 3 5

• • • 37
• • 37

• • • 38
40

• 43

Figures

Figure 1. Processing Stepp of Assembler H and Assembler F . 4
Figure 2. Instruction Set Options 6
Figure 3. Redefinition of Macro Instructions 8
Figure 4. Redefined Operation Codes in Macro Definitions 9
Figure 5. Editing Nested Macro Definitions 10
Figure 6. Mixed Parameters in Macro Prototypes 13
Figure 7. Attribute References to Generated Code . . 21
Figure 8. LOCTR Instruction Application 31
Figure 9. Sample Diagnostic Messages 38
Figure 10. Library Macro Definition Diagnostics 39

vii

Introduction

The OS Assembler H is an assembler language processor with major
extensions to the language and performance of OS Assembler F.

Language Compatibility

Any program successfully assembled with no warning or diagnostic message
by Assembler F will assemble correctly with Assembler H. If Assembler F
restrictions have been used to get a certain result, Assembler H might
give a different result. Programs which use features supported only on
Assembler H will not assemble correctly with Assembler F.

Language Changes

Many limitations of the F-level assembler language are relaxed or
eliminated in the H-level assembler language. Changes and additions to
the language fall into the following categories.

• Conditional assembly instructions have expanded functions and
flexibility.

• Many assembler instructions have fewer restrictions and allow
improved programmer control. New assemb~er instructions are also
added to the language. !

• Branch-on-condition register (BCR) exteq~ed mnemonic operation codes
are added to the assembler instruction set.

Performance

The high-speed assembly capability of Assembler H is a result of the
following factors:

• All text processing is performed in main storage if the assembly
region is sufficiently large.

• Assembler source-text passes are consolidated. This reduces the
number of internal processor instructions used for text handling.

• Multiple, or batch, assemblies can be performed under the control of
one set of job control language (JCL) cards.

• Macro definitions referenced in the source text are not automatically
edited; they must be called or encountered in the assembly process.

System Requirements

Central Processing Units: Assembler H operates on an IBM System/360
Model 40 or higher, and on an IBM System/37~ Model 135 or highe~.

I

Operating Environments: Assembler H operat$s under OS. It can/operate
under two types of control program. The following lis~ show~ the two
control programs and the minimum central processing unit (CPU) size
required by each.

Introduction 1

• Multiprogramming with a Fixed number of Tasks (MFT) - 384K byte CPU.
• Multiprogramming with a Variable number of Tasks (MVT) - 384K byte

CPU.

Main Storage: Recommended minimum region size of the Assembler H is
180K bytes of main storage.

Data Sets: System input and output device requirements are the same as
those of Assembler F except that the number of workf iles is reduced to
one direct-access storage device. In terms of the IBM 2314 Direct
Access Storage Facility, or an equivalent device, cataloged procedures
for Assembler H require a maximum of one track on SYS1.PROCLIB, and load
modules need approximately 30 tracks on SYS1.LINKLIB, or the
user-defined library.

Internal Design

The internal organization of Assembler H is an entirely new design.
There are only two source-text passes, as opposed to four for Assembler
F. Pass one of the source text by Assembler H edits and expands macros,
and builds dictionaries and the symbol table. Pass two completes the
assembly and produces the desired output. Figure 1 shows the general
processing steps of Assembler F and Assembler H.

RESOLVING SYMBOL ATTRIBUTE REFERENCES

The symbol table is built as symbols are encountered in macro generation
and open-code assembly. If an attribute reference is made to a
previously undefined symbol, Assembler H proceeds with a forward scan of
the source text, called •1ookahead• mode. It continues the forward scan
until the symbol that initiated the scan is resolved or until the end of
the source program is encountered. During the scan, the assembler
conditionally places all other symbols that are encountered into the
symbol table, so further forward scans are avoided unless a forward
reference is made to a symbol at some point beyond the previous forward
reference. The symbol attributes established by the forward scan are not
fixed, however, and can be overridden when the symbol is placed in the
symbol table as a result of regular assembly. If the symbol that
initiated the forward scan is not found, a diagnostic message is issued.

INTERNAL TEXT PROCESSING

Assembler F cannot make significantly more efficient use of region sizes
larger than its original design criterion of 44K bytes, because it is
designed to process intermediate assembly text using external workfiles.
Assembler H processes all intermediate assembly text internally in
working storage if the assembly region will contain the text. If a
source program is sufficiently large, Assembler H will use any
additional amount of main storage that can be allocated as a region, up
to the maximum region size of a system.

Within the region allocated for an assembly of a source program, the
amount of working storage Assembler H uses to perform an operation can
dynamically expand to meet the storage requirements of that operation.

2

When one block of working storage is filled with processed text,
processing continues with the allocation of another block from within
the region acquired for the assembly.

As blocks of working storage are filled with processed text, they are
flagged to indicate whether they can be written out to the external
workfile (SYSUT1). Partially filled blocks and those blocks taken up by
the symbol table must remain resident at all times during the assembly.
Those blocks that can be written out are put on the workfile, but the
blocks of text are also retained in working storage and continue to be
effective for all assembly purposes. Only when all unallocated
workspace within the region is exhausted are the written-out text blocks
in working storage reinitialized and overlaid with newly processed text.
For continuing assembly purposes, the blocks of text on the workfile
must then be accessed.

~: If all blocks ofrworking storage are allocated and flagged as
resident when an operation requires additional workspace, the assembly
is terminated. Such assemblies must either be partitioned (that is,
broken down into subroutines) or be assembled in a larger main-storage
region.

Optional Modifications to Assembler H

There are several changes that can be made to the assembler to tailor it
to fit requirements of an installation. These can be set at the time
the assembler is added to the system by means of an option-setting
routine provided with the assembler. This routine is only used when you
wish to change the standard settings, or defaults.

Introduction 3

Assembler F:

So rce deck

Assembler H:

, Source deck

Figure 1.

Collect attributes
and edit macros

Pass 1

Generate macros

Pass 4

Edit macros
Generate macros
Collect symbols

Pass 1

Assemble

Pass 2

System
Library

Intermediate
data transfer
--secondary
storage

Intermediate
data transfer
-sacondary
storage

Intermediate
data transfer
-secondary
storage

System
Library

Secondary
storage--accessad
only when
assambly region
exhausted

Processing Steps of Assembler H and Assembler F

EXECUTE (EXEC) STATEMENT DEFAULT OPTIONS

The default options in Assembler H are as follows (the alternate option
is in parentheses) :

DECK
NOOBJECT
LIST
XREF (FULL)
NORE NT
NOTE ST
NO BATCH
ALIGN
ESD
RLD
LINECOUNT (55)
FLAG (0)

(NOD ECK)
(OBJECT)
(NOLIST)
(XREF (SHORT) , NOXREF)
(RENT)
(TEST)
(BATCH)
(NOALIGN)
(NOESD)
(NORLD)
(range 1 - 99)
(range 0 - 255)

SYSPARM 0 (empty) (a character string 0 - 255 characters long)

These default options can be respecified when Assembler H is added to
your system. For example, your installation may wish to modify the
default options in the EXEC card as follows:

NODECK
RENT
LINECOUNT (40)

In addition to modifying the default options when adding the assembler
to your system, you can delete selected options so that a programmer
cannot override the options you select. If you modify the default
options as immediately above and delete DECK and NORENT, then NODECK and
RENT are the default options and cannot be overridden. Unless an option
is deleted, however, a programmer can specify it in the PARM field of
his EXEC statement.

DATA DEFINITION (DD) STATEMENT DEFAULT OPTIONS

Assembler H requires the following data set DD names:

SYSIN
SYSLIB
SYSLIN
SYSPRINT
SYSPUNCH
SYSUT1

(if there are library macro references)
(if OBJECT is specified)
(if LIST is specified)
(if DECK is specified)

Any of these names can be changed when the assembler is added to your
system. For example, your installation may wish to replace SYSUT1 with
WORK001, or even SYSUT2.

INSTRUCTION SET OPTIONS

The instruction set, or operation-code table, available to the assembler
can be specified optionally. Four instructions sets are available, as
shown in Figure 2.

Introduction 5

Commercial l
Instruction
Set

Figure 2.

6

Standard In·
struction Set I

Ordinary and extended
-precision floating point
instructions

Fixed-point binary arithmetic
and logic instructions

Decimal arithmetic and
editing instructions

Storage protection
instructions

I&·-Instruction
Set

I

Instruction Set Options

Universal
Instruction
Set

Extensions to Macro and Conditional Assembly Language

The macro and conditional assembly language for Assembler H relaxes many
of the language limitations of Assembler F. Many restrictions are
altered or eliminated to increase flexibility and extend language
functions. All ordering restrictions are removed for conditional
assembly statements in macro definitions and in open code.

GENERAL ADVANTAGES IN THE USE OF MACROS

The macro definition is a subroutine that allows you to define the
attributes of your data and define your manipulation of that data.
Macro definitions are flexible; that is, by means of interpretive
testing and substitutions, they can modify themselves internally in
response to parameters that are passed to them. The macro definition is
accessed, or called, by a macro instruction. When encountered by the
assembler, the instruction causes execution of conditional assembly
instructions and generation of assembler language instructions contained
in the macro definition. By varying the values in the operand field of
the macro instruction, you can generate the desired sequence of
assembler language instructions. This gives the programmer strong local
control of the program environment. For example, by introducing a new
data test into the macro definition, you can readily adjust to a change
in data type or·structure. Using extensible macro language definitions
has the following advantages over using basic assembler langauge
subroutines:

• Macros give you a logical perspective similar to that of a high-level
language. In basic assembler language, logical concepts may become
lost in coding sequences that are difficult to understand, and errors
may develop in coding and strategy.

• You plan the logic once and do not rethink it every time you need it.
When you need it, you simply call it out. In this sense, macros

become a language - a language you control and tailor to your local
application.

• Macros allow you to code your own debugging aids and to set global
switches. These devices can then be called out at will within your
program.

Extensions to the Macro Language

The macro instruction and the macro definition have extended
capabilities in Assembler H. The extensions improve programming control
and coding flexibility. For example, macro definitions can be freely
intermixed with open-code statements in the source-program text, and
macro definitions can be nested within macro definitions. In addition,
macro instructions can be redefined, macro instruction call statements
can be generated by substitution, and keyword and positional parameters
can be freely combined in macro instruction prototype and call
st at ements.

Extensions to Macro and Conditional Assembly Language 1

MACRO DEFINITIONS IN OPEN CODE

In Assembler H, the only restriction on placement of a macro definition
is that it must occur in the source text and be edited before it is
called. This enables you to organize a source program into a logical
text flow. In Assembler F, macro definitions must be grouped at the
start of a program, preceding all statements except those pertaining to
listing coHtrol, and ICTL and !SEQ instructions.

REDEFINITION OF MACRO INSTRUCTIONS

In Assembler H, a macro instruction can be redefined at
source program. When a macro instruction is redefined,
definition is effective for all subsequent expansions.
instructions cannot be redefined in Assembler F.

any point in a
the new
Macro

Once a macro instruction is redefined, its initial definition is lost
unless, prior to redefinition, its meaning is assigned to another symbol
by an OPSYN statement. For further information concerning OPSYN, refer
to the section in this manual entitled •New Assembler Operations•.

The initial definition can also be reestablished by returning to a pojnt
in the program prior to the first definition, ard by reediting the
initial definition. Both procedures are demonstrated in Figure 3.

Name Operation Operand Conunent

.L ANOP
MACRO macro header
AMAC macro prototype . .
MEND macro trailer

BMAC OPSYN AMAC BMAC assigned definition
of AMAC .

MACRO macro header
AMAC redefine AMAC . . .
MEND macro trailer .
AIF (T' xxx EQ 'U') .L .

AMAC OP SYN BMAC reestablish first AMAC
definition

Figure 3. Redefinition of Macro Instructions

EDITING OPERATION CODES

When conditional assembly statements within macro definitions are edited,
the current, definitions of their operation codes are fixed for all
future expansions of the macro definition. All other model statements
in the edited definition use the operation code definitions in effect
whenever the macro definition is expanded (generated) as a result of a

8

macro call (instruction). Figure q illustrates this distinction between
the effect of redefinition of operation codes on conditional assembly
statements and on assembler language model statements within macro
definitions.

Name Operation Operand Comment

MACRO macro header
MAC macro prototype
AIF
MVC
MEND macro trailer / .

AIF OP SYN AGO assign AGO properties to AIF
MVC OP SYN MVI assign MVI properties to MVC .

MAC macro call
[AIF evaluated as AIF instruction,

generated AIFs not printed]
+ MVC evaluated as MVI instruction . . open code started at this point

AIF evaluated as AGO instruction
MVC evaluated as MVI instruction .

Figure q. Redefined Operation Codes in Macro Definitions

In Figure q, AIF and MVC instructions are used in a macro definition.
OPSYN statements are used to assign the properties of AGO to AIF and to
assign the properties of MVI to MVC. In subsequent generations of the
macro involved, A1F is still defined as an AIF operation, and MVC is
treated as an MVI operation. In open code following the macro call, the
operations of both instructions are derived from their new definitions
assigned by the OPSYN statements. If the macro is reedited, the new
definitions of AIF and MVC (that is, AGO and MVI) are fixed for any
further expansions.

NESTI?G MACRO DEFINITIONS

In Assembler F, macro definitions can contain inner macro calls, but not
inner macro definitions. Assembler H allows both inner macro calls and
inner macro definitions. The inner macro definition is edited and bound
for a particular assembly if it is encountered when the outer macro is
generated. If the outer macro is not called or if the inner macro
definition is not encountered in the generation of the outer macro, the
inner definition is never edited. Figure 5 illustrates inner macro
definition and the editing process.

Extensions to Macro and Conditional Assembly Language 9

MACRO

MAC3

•
•
•
•

MEND

Edited when
MAC2is
called and
generated

Edited when
MAC 1 is
called and
generated

Edited when
fir:st encountered

Figure 5. Editing Nested Macro Definitions

In Figure 5, MAC1 is edited, and MAC2 and MAC3 are passed over. When
MAC1 is called, MAC2 is edited; and when MAC2 is called, MAC3 is edited.
Until the containing (outer) macro definition is called, the contained
(inner) macro definition cannot be accessed by a macro call.

MACRO CALLS BY SUBSTITUTION

In Assembler
open code or
performed by
macro call.

10

H, macro calls can be created by substitution, ·either in
as an inner macro call. For example, substitution can be
including a macro instruction in the operand field of a
This is demonstrated in the following example:

Name Operation Operand Comment

MACRO
MAC &X . .
AIF ..
AGO
&X A,B,C .
MEND
MAC MACALL macro call .

If the statement "&X A,B,C" is encountered in the generation of MAC,
MACALL is substituted for &X. If MACALL is a macro name, the macro
definition is expanded inline. If MACALL has been made a machine
operation through the use of OPSYN, it is processed by the assembler.
Otherwise, it is an undefined operation and a diagnostic is issued.

The following operation codes cannot be created by substitution:

ACTR
AGO
AGOB
AIF
AIFB
ANOP
A READ
COPY

GBLA
GBLB
GBLC
ICTL
!SEQ
LCLA
LCLB
LCLC

MACRO
MEND
MEX IT
RE PRO
SETA
SETB
SETC

ARBITRARY LANGUAGE INPUT - AREAD

An entirely new concept is introduced by a new macro language
instruction that reads source-deck data cards directly into
macro-generated text. The AREAD assembler operation permits a macro
instruction to •read cards" directly from the source-text input stream
by putting SO-character images into SETC symbols; that is, it permits
statements in an arbitrary language to occur in the assembler input
stream, and to be read and processed by a macro at assembly time. AREAD
cannot be used in open code. The format of AREAD is:

Name Operation Operand

Any SETC AREAD [NOSTMT]
variable NOPRINT
symbol

If neither option is selected, the card is printed following the macro
call which contains the AREAD statement, and the printed card is
assigned the next sequential statement number. If the NOSTMT option is
selected, the card is printed, but no statement number is assigned. If
the NOPRINT option is selected, the card is not printed, and no
statement number is assigned. The name field can contain any SETC
variable (optionally subscripted) • If the variable is not previously
declared, the AREAD statement serves as a default SETC declaration. In
this sense, AREAD has the logical effect of the statement:

Extensions to Macro and Conditional Assembly L~guage 11

Name Operation Operand

&X SETC •card image•

If there are no more source cards (that is, end-of-file on sYSIN) , then
the AREAD assigns a null string value. Processing continues. normally,
and null assignments can continue with additional AREAD statements in
the macro definition. Note that it is always source cards that are
read. Thus, even though AREAD can occur in an inner macro, the cards
read are the source cards immediately following the outermost macro
call. If control passes through a given section of code repeatedly
because of AIF and AGO statements, then the same source cards are
available to be reread.

The AREAD statement assigns to the variable symbol the SO-character
image of the next source card in the source text stream or in code
generated by a COPY statement. Repeated AREAD statements read
successive cards. Cards so read are printed in the assembly listing
(unless operand is NOPRINT) with statement numbers (unless operand is

NOSTMT) , but are otherwise unprocessed by the assembler, in much the
same fashion as the card following a REPRO instruction. For example:

Name Operation Operand Comment

MACRO
READER &N macro prototype

.LOOP ANOP
&K SETA &K+1
&CARD (&K) AREAD read a card record

AIF (&K LT &N).LOOP
MEND
READER 2 macro call

A
B

END

This example has the effect of assigning to &CARD(1) an "A" followed by
79 blanks, and to &CARD(2) a •a• followed by 79 blanks. Upon exit from
the ~aero, the next card processed by the assembler is the END card.

AREAD I(<? Capabilitr: The AREAD facility complements the PUNCH Facility
to provide macros with direct I/O capability. The total I/O capability
of macros can be described as follows:

Implied Input: Parameter values and global SET symbol values that
are passed to the macro.

Implied Output: Generated statements are passed to the assembler, and
global values are set by the macro.

Direct Input: AREAD.

Direct Output: MNOTE for printed messages, PUNCH for punched cards.

For example, the AREAD and PUNCH statements can be used to write card
conversion programs. The following macro interchanges the left and
right halves of the input cards.

12

Name Operation Operand

MACRO
SWAP

.LOOP ANOP
&CARD AREAD

AIF ('&CARD'EQ'').MEND
&CARD SETC '&CARD' (41 ,40). '&CARD' (1,40)

PUNCH '&CARD'
AGO .LOOP

.MEND MEND

AREAD Within COPY Code: If the AREAD statement occurs in a macro called
within COPY code, then the cards are read from the COPY file.
Procedures at the end of a file are automatic for AREAD on COPY files;
AREAD continues reading from the outer COPY file in case of nested COPY,
or from the source stream.

FORMAT CHANGES IN MACRO STATEMENTS

Within the operand field of macro prototype and macro call statements,
keyword and positional format dependencies are relaxed in Assembler H.
All macro prototypes are mixed mode. Mixed mode in Assembler F requires
all positional parameters to precede keyword parameters. In Assembler
H, however, keyword and positional parameters can be freely intermixed
in the operand field, as shown in Figure 6.

Name Operation Operand Comment

MACRO
&NAME MASTER &A, &KEY1=, &B, intermixed parameter types. x

&KEY2=, &KEY3=, alternate coding format. x
&C, allows open-ended list Of x
&KEY4=, positional parameters that x
&D, can easily be inserted without x
&E reworking the entire operand field. x

xxx any instruction.
MEND

Figure 6. Mixed Parameters in Macro Prototype

POsitional parameters within operands containing keyword and positional
parameters can be accessed by a system variable, &SYSLIST(n), where •n•
is a subscript corresponding to the number of that particular positional
parameter that you wish to access. &SYSLIST evaluates the overall
operand field by passing over the field from left to right and ignoring
any keyword parameters it encounters.

Example: If the operands of a macro call are: A,KEY=B,C
Then &SYSLIST(2)=C

A maximum of 240 positional and keyword parameters is permitted in a
prototype statement. There is no limit to the number of positional
parameters you can put in the operand of a macro call.

For example, you could have 20 positional parameters in a macro
prototype and have 400 positional parameters in the corresponding macro
call. You could then reference any one of the parameters in the macro
call by &SYSLIST(n), where •n• is 1 to 400.

Extensions to Macro and Conditional Assembly Language 13

Multi-Level Sublists In Macro Calls And Protot es: Multi-level sublists
su ists wit in sub ists) are permitte in macro-instruction operands

and in keyword default values in the prototype statement, as shown in
the following sample prototypes:

MAC1
MAC2

(A,B, (W,X, (R,S,T) ,Y,Z) ,C,D)
&KEY= (1 , 12 , (8 , 4) I 6 4,

The depth of this nesting is limited only by the constraint that the
total length of an individual operand cannot exceed 255 characters.

N•&SYSLIST with an n-element subscript array gives the number of
operands in the indicated n-th level sublist. N' of an operand name
with an n-element subscript array gives the number of operands in the
indicated (n+1)th level sublist. For example, if &Pis the first
positional parameter and the value assigned to it in a macro instruction
is (A, (B, (C)) ,D) , then:

&P = &SYSLIST (1) = (A, (B, (C)) , D)
&P (1) = &SYSLIST (1 , 1) = A
&P (2) = &SYSLIST (1 ,2) = (B, (C))
&P(2,1) = &SYSLIST (1,2,1) = B
&P (2, 2) = &SYSLIST (1 ,2 ,2) = (C)
&P92, 2, 1) = &SYSLIST(1,2,2,1) = c
&P (2, 2, 2) = &SYSLIST(1,2,2,2) = null

N' &P (2, 2) = N'&SYSLIST(1,2,2) = 1
N' &P (2) = N' &SYSLIST (1,2) = 2
N' &P (3) = N' &SYSLIST (1,3) = 1
N' &P = N' &SYSLIST (1) = 3

OTHER REVISIONS

The following rules apply to further language extensions of Assembler H
relative to Assembler F.

•

•

•

•

•

14

Macro names, variable symbols (including the ampersand), and sequence
symbols (including the period) can be a maximum of 63 alphameric
characters. The first character, excluding ampersands and periods,
must be alphabetic.

Macro definitions can be copied from a library by issuing the
statement: COPY XX (where XX is the macro name) • The library
definition must include a MEND statement.

Comments (both'*' and'·*' types) can be inserted between the macro
header and the prototype. Any such comments are discarded by the
macro-edit phase and are not printed with the generation of the macro.

Any mnemonic operation code of the IBM System/360 and 370 Standard
Instruction Set or any conditional assembly operation code can be
used as a macro instruction. When any of the operation codes is
redefined as a macro instruction, subsequent use is interpreted as a
macro call.

Any instruction, except ICTL, is permitted within a macro definition •

An equals sign can be embedded in a positional or keyword parameter
in a macro call. The positional operand will be accepted and handled

properly; however, a warning message will appear if the equals sign
is preceded by an alphanumeric string that appears to be a keyword.
For example:

Name Operation Operand Comment

MACRO
&NAME MAC &A=,&B=,&C macro prototype . .

MEND .
MAC A=X=Y,D=T macro call .

The first expression in the macro call is a keyword parameter with an
embedded equals sign (X=Y) , and the second expression is a positional
parameter also containing an embedded equals sign (D=T) • The second
expression is evaluated as a positional parameter because there is no
corresponding keyword parameter ('&D=') in the prototype statement in
the macro definition.

• MNOI'E statements are permitted in open code with all of the
substitution options.

• An implicit or explicit SE!' variable declaration must be encountered
before the corresponding SET variable is used in the operand field.
Otherwise there is no ordering restriction on statements following
the prototype statement. LCLx, GBLx, and ACTR instructions can
appear anywhere in the definition.

• An ACTR count is halved when an error is detected during macro
expansion. This rapidly shortens any loops that may be caused by
repeated erroneous statements.

Extensions to Conditional Assembly Instructions

The flexibility of the AIF, AGO, SETA, SETB, and SEl'C instructions is
increased in Assembler H. In Assembler H, multiple AIF statements can
be merged in one AIF statement, the AGO statement has an expanded
interpretive function, and a single SETx instruction (SETx is either
SETA, SETB, or SEl'C) can assign values to more than one element of a SET
symbol array. Format and ordering restrictions are also revised, and
new system variable symbols are introduced. In addition, generated
statements have new functions, and the availability of symbol attributes
is increased.

EXTENDED AGO STATEMENTS

In Assembler H, one AGO instruction can contain computed branch sequence
information. The extended AGO statement has the following format:

Operation Operand

AGO '(k) • S 1 , • S 2 •••• , • Sn

Extensions to Macro and Conditional Assembly Language 15

Where •k• is a SETA arithmetic expression. If the value of •k• lies
between 1 and •n• inclusive, then the branch is taken to the k-th
sequence symbol in the list. If •k• is outside that range, no branch is
taken. The statement is exactly equivalent to the following sequence of
AIF instructions:

Operation Operand

AIF (arithmetic expression EQ 1) .S1
AIF (arithmetic expression EQ 2) .S2 . . .
AIF (arithmetic expression EQ n) .Sn

!iKTENDEp AIF STATEMENTS

The AIF statement in Assembler H can include a string of logical
expressions and related sequence symbols. There is no limit on the
number of expressions and symbols that you can use in an extended AIF
statement. The format is:

Operation Operand Column 72

AIF (logical expression) .S1, x
(logical expression) • S2, x
•••••••• ,(logical expression) .Sn

This is equivalent to •n• successive AIF statements. The branch is
taken to the first sequence symbol (scanning left to right) that
corresponds to a true logical expression. If none of the logical
expressions is true, control passes to the next sequential instruction.

EXTENDED SET STATEMENTS

The SETA, SETB, and SETC statements are used in IBM System/360 assemblers
to assign arithmetic, binary, and character values, respectively, to SET
variable symbols. In Assembler H, the SET statement can be used to
assign lists, or arrays, of values to subscripted SET symbols. In
Assembler F, each element of a list requires.a single SET statement to
assign its value to a symbol. For example, a list of 100 SETx values
requires 100 SETx coded statements. In Assembler H, such a list can be
coded in one extended SETx statement. The extended SETx statement has
the following format:

Name Operation Operand

&SYM (k) SETx X1,X2,,X4, ••••• ,xn

The form of the name and operation fields is the same as that used in
Assembler F for assignment of a dimensioned variable SET symbol: &SYM is
a dimensioned SET symbol, •k• is a SETA arithmetic expression, and SETx
is SETA, SETB, or SETC. •

16

Each of the operands (•xn•) has the form of an ordinary SETx operand, or
it may be omitted. Whenever an operand is omitted, the corresponding
element of the dimensioned variable SET symbol (&SYM) is left unchanged.

When none of the operands is omitted, the extended SETx statement is
equivalent to the sequence of statements:

&SYM (k)
&SYM (k+1)

&SYM (k+n-1)

SETx
SETx

SETx

X1
X2

Xn

Following are examples of the use of extended SETx statements:

a. &X (3) SETA 3,,5,,7

This is equivalent to the sequence:

&X (3) SETA 3
&X (5) SETA 5
&X (7) SETA 7

b. &X (1) SETA 1,&X (1) +1,&X (2) +1

This is equivalent to the sequence :

&X (1) SETA 1
&X (2) SETA 2
iX (3) SETA 3

c. &Y (1) SETC I I I I , ,

This sets &Y (1) and &Y (3) to null values and leaves &Y (2) unchanged.

SET SYMBOL FORMAT AND DEFINITION CHANGES

Extensions in Assembler H to SETx statements, and local and global
definition statements, are discussed in the following list.

• Dimensioned SET symbol list sizes are effectively unlimited.
Dimensioned SET symbols, declared implicitly (see belowt-or
explicitly, are open ended. The declared limit can be exceeded without
being flagged as an error. In Assembler F, the sizes are limited to
2500 elements.·

• Global (GBLx) and local (LCLx) definitions of SET symbols can occur
anywhere in open code or in macros.

• In Assembler H, global and local declarations are processed at
generation time in the assembly process, not edit time as in
Assembler F. Either a macro definition or open code can contain more
than one declaration for a given SET symbol, as long as only one is
encountered during a given macro expansion or conditional assembly of
open code, as controlled by AIF and AGO statements.

• A SET symbol that has not been declared in a LCLx or GBLx statement
is implicitly declared by appearing in the name field of a SETx

Extensions to Macro and Conditional Assembly Language 17

statement. The declaration defaults to LCLx, with the type determined
by the SETx operator, and the dimensionality is determined by the
occurrence of a subscript in the name field. Any explicit declaration
encountered thereafter is flagged as a duplicate declaration.
Undeclared SET symbols are not valid in Assembler F, and error
messages are generated when encountered.

• SETC values, substring values, and character-relation terms can be up
to 255 characters long. A SETC value can be the same size as a macro
parameter. With its 8-character limit, Assembler F may require a
controlled loop to accomplish what is typically done by one statement
by Assembler H.

• No fixed limit is placed on local and global symbol dictionary sizes.
The dictionaries will grow as long as space is available in the
region provided for the assembly.

• Any SETC expression can be preceded by a dupllication factor that is a
SETA expression enclosed in parentheses. For example:

iC SETC (2) 'XYZ'. (iJ*2) 'ABC'

If the value of iJ is 2, the above statement is equivalent to

iC SETC 1 XYZXYZ'.'ABCABCABCABC'

• SETA variables can be used anywhere a SETB value is permitted. Its
Boolean value is 0 if its ar~thmetic value is zero and 1 if its
arithmetic value is nonzero. For example:

&A
iB
iC

SETA
SETA
SETA

0
1
47

Given these SETA declarations, SETB statements produce the following
results:

iX SETB (SA)
·* iX=O

iY SETB (iB)
·* iY=1

iZ SETB (iC)
. * iZ=1

CREATED SET SYMBOLS

Created.SET symbols are produced in open code and macro definitions by
su:o-stitutfi>ii at generation time in the assembly process. Created SET
symbols cannot be used in Assembler F because the actual SET symbol
names are discarded by the macro edit phase, and are not available at
generation time. A created SET symbol has the form f; (e) where •e•
represents a sequence of one or more of the following:

• Variable symbols, optionally subscripted and optionally followed by a
period for concatenation.

• Strings of alphameric characters.

After substitution and concatenation, •e• must consist of a string of 1
to 62 alphameric characters, the first being alphabetic. This string is
then used as the name of a SETx variable. For example:

18

&Y (1)
& (&Y (3))

SETC
SETA

I A 1 I , I A2 I , I A3 I , I A4 I

5

These statements have an effect similar to: &A3 SETA 5.

Created SET symbols can be used wherever ordinary SET symbols are
permitted, including declarations; they can even be nested in other
created SET symbols. The following nested variable could generate a
valid created SET symbol:

& (& (&X (& (&Y))))

The created SET symbol can be thought of in one sense as a form of
indirect addressing. Thus, in the first example above, &X is a variable
whose value i~ the name of the variable to be updated. With nested
created SET symbols, you can get such indirect addressing to any level.

In another sense, created SET symbols offer an "associative memory•
facility. For example, a symbol table of numeric attributes can be
referenced by an expression of the form & (&SYM) (&I) to yield the •i •
attribute of the symbol substituted for &SYM.

A related application is illustrated in the following macro definition,
This macro is designed to push an item into the specified push-do~n
stack. A new stack is created for each new stack name given as·~
parameter in the macro call. Note that &LIST becomes as long as
required.

& (&STAK.SIZE)
& (&STAK) (& (&STAK.SIZE))

MACRO
PUSH
GBLA
SETA
SETA
MEND

&STAK, &ITEM
& (&STAK) (1) , & (&STAK.SIZE)
& (& STAK. SIZE) + 1
&ITEM

The macro call •pusH LIST,25• is logically equivalent to:

&LISTSIZE
&LIST (&LISTSIZE)

GBLA
SETA
SETA

&LIST{1) ,&LISTSIZE
&LISTSIZE+1
25

Created SET symbols also enable you to get some of the effect of
multidimensional arrays by creating a separate name item for each
element of the array. For example, a three-dimensional array of the
form &X(&I,&J,&K) can be addressed as & (X&I.$&J.$&K). Then &X(2,3,4)
would be represented as a reference to the symbol &X2$3$4.

Note that what is being created here is a SET symbol. Both creation and
recognition occur at macro expansion time. In contrast, parameters are
recognized and encoded (fixed) at macro edit time. Consequently, if a
created SET symbol name happens to coincide with a parameter name, the
fact is ignored, and there is no interaction between the two. ·

GENERATED COMMENTS

You can generate a comment field by embedding blanks in a generated
operand field. Anything following the blank becomes the comment. For
example:

Extensions to Macro and Conditional Assembly Language 19

Name Operation Operand Comment

MACRO
MAC1 &A macro prototype

&C SETC ' ' • '&A' (2 ,K' &A-2)
LA 2, 10&C
MEND . .
MAC1 'GENERATED COMMENT' macro call

+ LA 2,10 GENERATED COMMENT

In addition, variable symbols in a comment can be evaluated and replaced
in certain special cases, for example, when the operation code takes no
operand or an optional operand, or when the operand'and comments-field
format coincides with macro-call alternate format.

AVAILABILITY OF ATTRIBUTE REFERENCES

In Assembler H, attributes of symbols produced by macro expansion or
open-code substitution are available immediately after the defining
statement is generated. In Assembler F, attributes of symbols in
generated statements are never accessible; the attributes of symbols are
fixed when a macro is edited. In Assembler H, only syntactic validity is
checked during the macro edit.

Forward Attribute References: If an attribute reference is made to an as
yet undefined symbol, or if an open-code AIF or AGO instruction effects
a forward branch to a previously undefined sequence symbol, the source
text is scanned forward until the referenced symbol is encountered in
the name field of an open-code statement. This operation is terminated
when the symbol is found, or when the end of source text is reached.
Attribute entries are made in the symbol table for this symbol if it is
found, and for all other previously undefined symbols encountered during
the forward scan. Attributes established for a given symbol by the
forward scan may be overridden by the first occurrence of the symbol in
the name field of a statement that the assembler is actually processing.

Attribute references in Assembler H always involve a direct reference to
the symbol table. As a result, attributes are always available for
parameter values, regardless of the manner in which the values are
passed to the parameter. Assembler F cannot obtain attributes for
parameters of inner macro calls unless the parameter value is passed
directly from an outer call parameter. Figure 7 demonstrates attribute
references to symbols in generated code.

The type (T') attribute of &R is not available in Assembler F because &R
is generated within a macro, MAC1. In Assembler H, both type-attribute
references are recognized as valid and return valid types. The improved
availability of attributes in Assembler H results in many instances in
which Assembler H returns true attributes of symbols where Assembler F
would return U (undefined) or M (macro) •

New Symbol Attribute: The defined (D') attribute is introduced in
Assembler H. It can be used on conditional-assembl~ statements to
determine if a given ordinary symbol has been defined at a prior point
in the source program. If the symbol has been defined, the value of the
D' attribute is one; if it has not been defined, the value is zero. By
testing a symbol for the D' attribute, you can avoid a forward scan of
the source text.

20

K' Attribute for SET Symbols: K' can be applied to SETx variables to
dete:rnu.ne the length of the named item in characters (after conversion
to a character-string value in the case of SETA and SETB variables) • For
example:

&A SETA 0100

then K'&A equals 3 (the leading zero is lost in the conversion process).
In Assembler F, K' can be used only to refer to parameter names.

Name Operation Operand Comment

MACRO
MAC1 &P macro prototype . .

&A SETC 'ABC' .
MAC2 &P,&A inner macro call . .
MEND .
MACRO
MAC2 &Q,&R macro prototype . .

&C1 SETC T'&Q
&C2 SETC T' &R .

MEND
MAC1 XYZ macro call .

Figure 7. Attribute References to Generated Code

N' Attributes for SET Symbols: N' can be applied to SETx variables to
determine the highest subscript value that has been used on the left
side of a SETx instruction. For example, if the only occurrences of the
SET symbol &A were:

Name Operation Operand

&A (1) SETA 0
&A (2) SETA 0
&A (3) SETA &A (2)
&A (10) SETA 0

then N'&A would be 10.

N' is zero if the SET symbol has not been assigned a value. In Assembler
F, the N' attribute of a symbol can only refer to parameter names.

Attribute References to SETC Variables: Assembler H permits T', D', L',
S', and I' attribute references to SETC variables in open code and in
macro definitions. In Assembler F, you can only refer to the attributes
of symbolic parameters in macros, and to the attributes of ordinary
symbols in open code.

Extensions to Macro and Conditional Assembly Language 21

ALTERNATE FORMAT IN CONDITIONAL ASSEMBLY

Alternate format allows a group of operands to be spread over several
lines of code. Each line, except the last, is followed by a comma, one
or more blanks, and a character in column 72. Comments are inserted
optionally between the blank and column 72. The last line terminates the
series with a blank in column 72.

In Assembler F, alternate format can be used only in macro prototype and
macro call statements. In Assembler H, the extended AGO, extended AIF,
GBLx, LCLx, and extended SETx statements can also be written in
alternate format, as shown in the following examples:

Name Operation Opera rid Comment

AGO (&A) .S1, cow.ment x
.S2,.S3, x
.S4

AIF (&L1) .S1, comment x
(&L2). S2, x
(&L3) .S3

GBLA &Al, x
&B (5)

LCLC L1, comment x
L2,L3, comment x
L4 comment

&B (1) SETB 0, comment x
(&A NE 3) , comment x
('SC' EQ 'XYZ I)

New System Variable Symbols

System variable symbols are local variable symbols that are assigned
values by the assembler when they are encountered. Four new system
variable symbols are provided in Assembler H for use in macro
definitions.

&SYSLOC: &SYSLOC is identical in function to &SYSECT, except that its
value is the character string that represents the location counter (as
controlled by the LOCTR statement) that is in effect at the time the
macro is called. &SYSECT gets the value of the character string that
represents the current CSECT, DSECT, or START section. If no LOCTR
statement is in effect, the value of &SYSLOC is the same as the value of
&SYSECT. &SYSLOC can be used only in macro definitions. The LOCTR
instruction is described in the section of this manual entitled •Changes
to Programming Sectioning and Linking Controls•.

For example, when the following statements occur in a source program,
&SYSLOC will have the character string value XYZ during expansion of
MAC1.

22

Name Operation Operand

XYZ LOCTR
MACRO
MAC1

&C s~c '&SYSLOC'

MEND
MAC1

&SYSTIME: The value of &SYSTIME is the time of assembly as it appears in
the heading of the assembly listing. The value remains constant
throughout the assembly. The value of &SYSTIME is the 5-character string
•hh.mm• (hours.minutes). &SYSTIME can be used in macro definitions or
open code.

&SYSDATE: The value of &SYSDATE is the date of assembly, exactly as it
appears in the heading of theia.ssembly listing. The value of &SYSDATE is
the a-character string •mm/dd/yy• (month/day/year) • &SYSDATE can be
used in macro definitions or open code.

&SYSPARM: The system variabl~ &SYSPARM has the character-string value
specified by the SYSPARM parameter in the PARM field of the EXEC
statement in a JCL card. &SYSPARM can be used in macro definitions or
open code.

Extensions to Macro and Conditional Assembly Language 23

Changes to Basic Assembler Language

This section discusses the changes and extensions to the basic assembler
language. These include several new assembler operation codes, extended
mnemonics for branch instructions, and language syntax changes. Also,
program sectioning and linking controls have been expanded.

New Assembler Operations

New assembler operations extend programming controls and flexibility in
several areas of assembler-language programming. A pair of new
instructions allows you to protect your USING status and your PRINT
status from being lost because of changes made by autonomous macros and
subroutines that are used in your program. Another new instruction
allows you to change or delete operation code definitions at any point
in a source program.

RETENTION OF PRINT AND USING STATUS

Two new assembler instructions, PUSH and POP, are introduced to save and
restore the PRINT status or USING status of a segment of an assembly.
When entering a macro, a subroutine, or code generated by a COPY
instruction, unknown conditions may cause the altering of your PRINT
status or USING status before control is returned to your routine. To
avoid this, you can save your PRINT or USING status by issuing one of
the following instructions:

Operation Operand

PUSH USING
PUSH PRINT
PUSH PRINT,USING
PUSH USING,PRINT

The PUSH instruction does not alter the PRINT or USING status; it stores
the status. When control is returned to your program, you can restore
your USING and PRINT status by issuing a POP instruction. The format of
the POP instruction is the same as that of PUSH. A POP instruction
restores the condition· retained by the last PUSH operation. Sequence
symbols can be used in the name field of PUSH and POP statements •

. CHANGING OPERATION CODE PEFINITIONS

The new assembler operation OPSYN adds or deletes entries in the
operation code table. OPSYN is also supported by Assembler F. In
Assembler F, the OPSYN statement must appear in the source program
before any machine-operation instructions, macro instructions, or any
macro definitions. These restrictions are eliminated in Assembler H.
The OPSYN statement has the following format:

24

Name Operation Operand

opname1 OP SYN (opname2)

The following rules apply to the application of OPSYN:

• If no operand is present, the operation code in the name field is
deleted from the operation code table.

• If an operand is present, the operation code in the name field is
defined (or redefined) as equivalent to the operation code in the
operation field. The newly-defined operation code acquires all
attributes of its prototype. For example, if the prototype is a macro
instruction, then the new operation code is also a macro instruction,
calling on the same macro definition.

Revised Assembler Operations

Several assembler operations used in Assembler F are extended in
Assembler H. The following operations are changed:

Operation

EQU

DROP

COPY

PRINT

ORG

CNOP

Literal

General Function

EQU assigns the length, value, and relocatability attri
butes of an expression in the operand to the symbol in the
name field.

DROP causes the release of base registers that are estab
lished by USING statements.

COPY obtains source-language coding from a library and
inserts the copied code in the source program immediately
after the COPY statement is encountered.

PRINT controls the printing options that effect the
assembly listing.

ORG alters the location counter for the current control
section.

CNOP aligns an instruction at a specific halfword boundary.

Literals introduce data into a program. They are simply
constants preceded by an equals sign.

The Assembler H changes to the assembler operations that are listed here
are discussed under the headings that follow.

EQU INSTRUCTION EXTENSIONS

• With Assembler F, all symbol attributes are set by the assembler. The
function of the EQU statement is extended in Assembler H to allow a
wider range of potential attribute references and to permit direct
programmer control of attributes. The extended EQU statement allows a

Changes to Basic Assembler Language 25

..

wide range of T' and L' attributes to be assigned to symbols used as
EQU statement names.

• A second operand can be used in an EQU statement to define explicitly
the length attribute of the symbol in the name field, and a third
operand can be used to override the normal type attribute assigned to
the EQU statement name. The extended EQU statement permits you to
establish your own attributes for your source data. This is a very
powerful tool in macro-language implementations.

• Previous definition of symbols used in the first operand of the EQU
statement is not required. Symbols used in the second and third
operand fields, however, must be previously defined.

• 32-bit positive or negative values are kept for EQU statements, and
printed in the assembly and cross-reference listing.

• Complexly relocatable first operands are allowed in EQU statements.

• The format of the EQU instruction statement is as follows:

Name Operation Operand

A SET EQU Expression 1 [l•Expressi?n 2 [,Expression 3)}]
variable , ,Expression 3
or ordinary
symbol

Expression 1 can be any relocatable or absolute expression.
Expression 2 can be an absolute expression with a value range of 1
through 65536. Expression 3 can be an absolute expression with a
value range of 0 through 255.

Note: Operands aligned within brackets, [), are optional. Operand
stacked within braces,{}, must have one operand chosen.

DROP INSTRUCTION EXTENSION

• A DROP instruction with a blank operand can be issued. This causes
the release of all currently active base registers. In Assembler F,
all base registers to be released have to be specified in the operand
field.

COPY INSTRUCTION EXTENSIONS

• COPY can occur within COPY code. If an internal COPY refers to code
that is being copied by an external COPY, the internal COPY is passed
over, and a diagnostic message is issued.

• Copied code can contain MACRO and MEND instructions. ·A COPY
containing a MACRO statement must contain a corresponding MEND
statement.

• An END statement can occur in copied code, and it can be produced by
a copied macro definition when the copied macro is generated. An END
model statement in a macro definition is only effective when the

26

macro is generated; it is not effective when the macro is edited. If
an END statement is encountered in copied macro-generated code, or
any other copied code, the assembly is terminated. If BATCH-mode is
in effect, the next assembly begins with the next card in the
source-text input stream, and the copy or macro nest is abandoned.

PRINT INSTRUCTION EXTENSIONS

• The PRINT instruction is effective within macro definitions. In
Assembler F, PRINT status could be altered only in open code.

• The PRINT statement is always printed, except when PARM=NOLIST,
regardless of print options in effect.

CNOP INSTRUCTION EXTENSIONS

• The label field of a CNOP can contain a symbol. If the CNOP
instruction does not fall on a halfword boundary, the value of the
symbol is the first halfword address greater than the location-counter
value before operation of the CNOP. If the CNOP is on a halfword
boundary, the value of the symbol is the current location-counter
setting. If an "*" is used as a term in the operand field, it will
have the same value as the symbol.

• Symbols in the operand field of CNOP do not require previous
definition.

ORG INSTRUCTION EXTENSIONS

• A symbol can be used in the name field of an ORG statement. The
symbol is assigned the value of the location counter prior to the
operation of the ORG. If an "*" is used as a term in the operand
field, it will have the same value as the symbol.

• The location-counter values, both before and after the operation of
the ORG, appear in the assembly listing.

• An ORG statement cannot specify a location outside or before the
beginning of the LOCTR in which it appears. This disallows a negative
value; the value is no longer truncated to a high positive value.

• An ORG statement with a blank operand causes the current location
counter to be reset to its highest previous setting within the CSECT
or LOCTR.

LITERAL INSTRUCTION EXTENSIONS

• Modifier expressions can be used in literals. Any symbol occurring in
a duplication factor or length modifier expression must be defined
prior to the literal reference. For example, in the following
statement, the use of L'SYM requires previous definition of SYM.

MVC SYM,=CL(L'SYM) '$'

Changes to Basic Assembler Language 27

• Q- and s-type address constants can be used in literals. This
increases the power of literals serving to make coding easier and to
improve diagnostic capability by allowing the progranuner to code a
constant within the logic sequence in which it is used. With s-type
address constants, the address decomposition in terms of base
register and displacement is based on the USING statements in effect
at the beginning of the associated literal pool.

Assembler Language Synta:x: E:x:tensions

The syntax of an assembler language deals with the structure of
individual elements of an instruction statement and with the order in
which the elements are presented in the statement. Several important
syntactical elements of the F-level assembler language are extended in
the H-level assembler language.

CONTINUATION LINES

A maximum of 9 continuation lines can be used in an ordinary assembly
statement in Assembler H. This allows a total of 10 lines per statement
- 9 continuation lines (with a character in column 72) plus 1 final line
(with a blank in column 72). The Assembler F limit is a total of 3 lines
per ordinary assembly statement~ In Assembler F and Assembler H, there
is no limit on continuation lines in a macro or conditional-assembly
statement.

SYMBOL LENGTH

In Assembler H, a maximum of 63 characters can be used for a valid
symbol. This limit includes the ampersand for variable symbols and the
period for sequence symbols. The corresponding limit in Assembler F is 8
characters.

External assembly symbols are restricted to 8 characters as in Assembler
F. Restricted symbols are those used in the name fields of START, CSECT,
COM, and DXD statements, and in the operand fields of EXTRN, WXTRN, and
ENTRY statements. Symbols used in V-type and Q-type address constants
are also restricted to 8 characters.

TREATMENT OF SIGNED VALUES

Unlike Assembler F, Assembler H can use unary + and - operators in
expressions. This allows greater freedom in formulating arithmetic
expressions. A unary operator can precede a:

• Term
• Left Parenthesis
• Unary Operator

A unary operator can begin an expression or can follow a:

• Left Parenthesis

28

• Unary Operator
• Binary Operator

The following expressions are valid in Assembler H, but not in Assembler
F:

• -1
• 1+-10
• A-+B
• A--B
• A*-B

Unary operations are performed before binary operations, and an
expression cannot contain two terms or two binary operators in
succession. Two successive minus signs are equivalent to a plus sign.

SYMBOL VALUES

Self-defining terms are restricted to three-byte values in Assembler F.
In Assembler H, four-byte values can be used for self-defining terms.
The value of a symbol can lie in the range -23 1 through 23 1 -1. For
example, the following equate statements assign fullword negative values
to the symbols in the name fields:

SYMBOL
SYM2
SYM3

EQU
EQU
EQU

X'FFFFFFFF'
C'ABCD'
-1

Note: In Assembler H, a sel,f-defining term with a 1 in the sign bit is
treated as a negative number in expression evaluation. Thus, the values
of SYMBOL and SYM3 in the example are equivalent.

LEVELS WITHIN EXPRESSIONS

Extending the freedom in expression evaluation, any number of terms or
levels of parentheses can be used in an expression. The artificial
limits established in Assembler F restrict expressions to 16 terms, or 5
levels of parentheses.

CHARACTER VARIABLES USED IN ARITHMETIC EXPRESSIONS

A SETC variable can be treated as an arithmetic term if its
character-string value represents any valid self-defining term. A null
value is treated as zero. This facility is available in Assembler F, but
the characters of the self-defining term are restricted to 1 through 9.

The expanded facility in Assembler H allows you to associate numeric
values with EBCDIC or hexadecimal characters which can be used in such
applications as indexing, code conversion, translation, or sorting.

For example, the following set of instructions converts a hexadecimal
value in X'F3' into a decimal value in &VAL:

&X
&VAL

SETC
SETA

Ix. I F3 I I I

&X

Changes to Basic Assembler Language 29

Mnemonic Operation Code Extensions

Assembler H provides extended mnemonic operation codes for conditional
branch instructions in the RR (register-to-register) format, that is,
BCR (branch-on-condition-register) instructions. This instruction set
complements the existing set of conditional branches used in Assembler F
for RX (register-to-storage) operations.

The following extended mnemonic operation codes for the BCR instruction
are effective in Assembler H:

Extended Code Meaning Machine Instruction

Used After Compare Instructions

BHR R2 Branch on High BCR 2,R2
BLR R2 Branch on Low BCR 4,R2
BER R2 Branch on Equal BCR 8,R2
BNHR R2 Branch on Not High BCR 13,R2
BNLR R2 Branch on Not Low BCR 11 ,R2
BNER R2 Branch on Not Equal BCR 7,R2

Used After Arithmetic Instructions

BOR R2 Branch on Overflow BCR 1, R2
BPR R2 Branch on Plus BCR 2, R2
BMR R2 Branch on Minus BCR 4,R2
BZR R2 Branch on Zero BCR 8,R2
BNPR R2 Branch on Not Plus BCR 13,R2
BNMR R2 Branch on Not Minus BCR 11 ,R2
BNZR R2 Branch on Not Zero BCR 7,R2

Used After Test Under Mask Instructions

BOR R2 Branch if Ones BCR 1,R2
BMR R2 Branch if Mixed BCR 4,R2
BZR R2 Branch if Zeros BCR 8,R2
BNOR R2 Branch if Not Ones BCR 14,R2

Changes to Program Sectioning and Linking Controls

Operations controlling program sectioning and linking are extended in
Assembler H to allow increased freedom of program organization. A new
instruction is introduced, and several instructions in the F-level
assembler language are revised.

USE OF MULTIPLE LOCATION COUNTERS

The assembler instruction LOCTR allows multiple location counters to be
defined within a control section during the assembly. The format of this
new instruction is:

30

Name Operation Operand

Any ordinary LOCTR Blank
or variable
symbol

The assembler assigns consecutive addresses to all segments of a
location counter in a control section before it continues address
assignment with the first segment of the next location counter. By using
the LOCTR instruction, you can cause your program object-code structure
to differ from a logical order appearing in the listing. You can code
sections of a program as independent logical and sequential units. For
example, you can code work areas and constants within the section of code
that requires them, without branching around them. Figure 8 illustrates
this procedure.

MAINCODE LOCTR

•
•

WORKAREA LOCTR

xxx DC

xxx OS

MAINCODE LOCTR

•
•

Addresses follow

xxx 1-- combined
sections of

xxx MAINCODE.

1---
Assembled with
consecutive
addresses

Figure 8. LOCTR Instruction Application

The following rules govern applications of the LOCTR instruction:

• A location counter can be interrupted by a CSECT, DSECT, COM, or
another LOCTR instruction.

• A control-section name that is defined by the CSECT, COM, DSECT, or
START instruction automatically names the first location counter in
that section.

• A LOCTR instruction with the same name as a control section resumes
the first location counter in that section.

• A LOCTR instruction with the same name as a previous LOCTR
instruction forces a return to the control section in which it was
first defined and resumes the particular counter involved.

• Resumption of a control section causes resumption of the last active,
not necessarily the highest valued, location counter under that
control section.

• A control section name defined for the first time is in error if it
is identical to a previously defined LOCTR instruction name.

• A LOCTR instruction occurring before the first control section will
initiate an unnamed CSECT before the LOCTR instruction is processed.

• LOCTR instructions do not force location counter alignment.

Changes to Basic Assembler Language 31

LINKING COMMON STORAGE AREAS

In Assembler F, the COM assembler instruction cannot be labeled, and it
reserves one common area of storage that can be referenced by
independent assemblies. In Assembler H, COM statements can be labeled by
inserting a symbol reference in the name field. This allows multiple
labeled common sections, instead of the one continuous unnamed section
of Assembler F, and enhances the programmer's ability to link
independent assemblies. The revised format is:

Name Operation Operand

Any symbol COM Blank
or blank

When a problem cannot be handled by a high-level language, or can be
more efficiently handled by assembler language, an assembler language
subroutine can be used. Variables can be passed between the subroutine
program and the higher-level language problem program by storing them in
a common area defined by the COM instruction.

In Assembler H, the following rules apply to the use of the common
sections:

• A storage area is reserved for each named common section. An unnamed
common section is treated the same as in Assembler F. Within one
assembly, when the same COM instruction name is used on one or more
COM instructions, COM instructions subsequent to the first result in
resumption and expansion of the initial common section. The resulting
common section is a sum of these sections.

• Within multiple independent assemblies, duplication of a COM
instruction name results in a reserved common storage area equal to
the largest common section by that name.

• A common section can be interrupted by a CSECT instruction, a DSECT
instruction, a COM instruction with a different name, or a LOCTR
instruction that is defined prior to initiation of the common section
in control at that point in the assembly.

REVISION OF Q-TYPE ADDRESS CONSTANTS

Q-type address constants reserve storage for the off set of an external
dummy section. In Asse~bler H, they are relieved of several F-level
language restrictions:

• DXD or DSECT names referenced in Q-type address constants no longer
require previous definition.

• Q-type address constants can be generated in literals.

• DXD instructions define external dummy sections. If the relocatable
symbol in a DXD statement is not used in a Q-type address constant,
the DXD symbol is not placed in the external symbol dictionary (ESD) •
DXD statements without a Q-type address constant are no~ addressable
by the program.

32

OTHER REVISIONS

Two additional extensions that relate to program sectioning
considerations are developed in Assembler H. Their discussions follow.

ESD and ENTRY Symbols: The number of ESD and ENTRY symbols is not
restricted by Assembler H. The maximum number of entries is dependent
on the amount of main storage space available to the linkage editor.

Dummy Control Sections (DSECTs) : Unnamed DSECTs are valid in Assembler
H. The general format of the DSECT statement is:

Name Operation Operand

Any symbol, DSECT Not used;
or blank can contain a comment

In Assembler F, an unnamed DSECT generates a diagnostic message. The
Assembler H option frees the programmer of the necessity of inventing a
DSECT name when it is not needed. If the name field contains a sequence
symbol, the DSECT is unnamed.

Changes to Basic Assembler Language 33

Performance Improvements

The assembly of source programs by Assembler H is 1.5 to 10 times faster
than assembly of the same programs by Assembler F, depending on the
source program, and the system configuration and environment.

Assembly time is usually measured in terms improvised for accounting
purposes, and these terms can vary with every installation. For
conceptual purposes, assembly time can be defined in the following terms:

• Elapsed Time: The time involved in the processing of a program from
source-deck input to object-deck output.

• CPU Time: The time required to do a job, exclusive of 1/0
requirements and wait time.

• Weighted Time: The CPU time required to do a job plus a fixed amount
(for example, 25 milliseconds) for each start 1/0 operation and each
wait that is incurred pending completion of an I/0 operation.

Elapsed Time Measurement

This measure of time required to assemble a given program assumes no
interference from any other program. Elapsed time is most significant in
an operating system environment where the entire system is dedicated to
each job step. The following ratios are a conservative measure of
elapsed time under Assembler H relative to elapsed time under Assembler
F. They do not necessarily apply to programs of fewer than 400
statements with no macros.

Model 40 Model 50 Model 65 Model 75 Model 8 5 and up

H step-time
----------- 1:1.5 1:1.9 1: 3. 5 1:4.0 1:4.5
F step-time

CPU Time Measurement

This is a measure of net CPU time, disregarding time spent for starting
or completion of 1/0. Such a measure may be used in scientific centers
where a typical job may involve reading in a few cards of data,
performing computation for several minutes or hours with no 1/0, and
eventually printing out only 5 lines of output. In such a situation
where 1/0 usage is discounted, performance for assemblies under
Assembler H is not markedly improved over similar assemblies under
Assembler F. However, internal organization of the Assembler H processor
reduces the net CPU assembly time by approximately 30 percent over
Assembler F.

Using a test case involving a moderate use of macros, the following
figures are a measure of the CPU time. The ratio remains constant for
all CPUs that support Assembler H.

34

Assembler F H

IBM System/360 Model 40 61 seconds 44 seconds

Weighted Time Measurement

Most installations have a mixture of jobs, some involving light I/O
usage and others involving heavy I/O usage. Under MFT or MVT, this I/0
is essentially free; that is, another application is being charged for
CPU time while your I/O is being performed. Therefore, many accounting
routines keep count of start I/O and wait operations and charge a fixed
amount of time for each operation. This approach recognizes that I/O
usage, just as CPU time, is a resource. Weighted time may also include
an extra charge, usually a percentage, for region sizes over and above a
standard region size established by an installation. In a weighted-time
environment, the ratios shown under "Elapsed Time Measurement" are
improved.

Factors Influencing Improved Performance

The following list summarizes the factors that influence the improved
timing performance of Assembler H in comparison to Assembler F:

• Logical text stream and tables that are a result of the internal
assembly process remain resident in main storage, whenever possible,
throughout the assembly.

• Two or more assemblies can be performed under the control of one set
of job control language (JCL) cards.

• Assembler H edits only the macro definitions that it encounters
during a given macro expansion or during conditional assembly of open
code, as controlled by AIF and AGO statements.

• Source-text assembly passes are consolidated. The edit and expansion
of macro text is done on a demand basis in one pass of the source
text, instead of two distinct passes as in Assembler F, as shown in
Figure 1.

Resident Tables and Source Text: Performance over lower-level
assembly-language processors is improved by keeping intermediate text,
macro-definition text, dictionaries, and symbol tables in main storage
whenever possible. This reduces the I/O time required by assemblers that
rely heavily on secondary storage throughout the assembly process. Less
I/O reduces system overhead and frees channels and I/0 devices for other
uses.

Certain portions must remain in main storage throughout the assembly
process. The symbol table must remain resident, and it has no overflow
capacity. Also, all partially filled blocks of text must remain resident.

Multiple Assembly: Multiple or batch assemblies can be done under the
control of a single set of JCL cards. Source decks are placed together
with no intervening "/*" card. The EXEC card must declare the following:

//STEPONE EXEC ASMHC,PARM=BATCH

Performance Improvements 35

Batch assembly improves performance by eliminating job and step overhead
for each assembly. It is especially advantageous for processing related
assemblies such as a main program and its subroutines.

Macro-Editing Process: New methods of macro processing improve
performance. Assembler F edits all source program macro definitions and
library macro definitions that are contained or referenced in the source
program. This often results in editing macro definitions that are never
called. Assembler H edits only those macro definitions that are
encountered during a given macro expansion or during conditional
assembly of open code, as controlled by AIF and AGO statements.

A good example of potential savings by this feature is the process of
system generation. During system generation, Assembler H edits only the
set of library macro definitions that are expanded, whereas Assembler F
edits all library macro•definitions referenced in the system-generation
soiree stream and the library macro definitions for all inner macro
ca ls (to any level) • As a result, Assembler H may edit 25 percent
fe er library macro definitions than Assembler F.

Consolidating source Text Passes: In comparison to Assembler F,
consolidating assembly source text passes and other new organization
procedures reduces by approximately 30 percent the number of internal
processor instructions used to handle source text in Assembler H. This
is represented in a proportionate saving in CPU time. The saving is
independent of the size of speed of the system CPU involved; it is a
measure of the relative efficiency of the processor.

36

Extensions to Listing Controls and Diagnostics

Many diagnostic features are added to Assembler H to aid the location
and analysis of program errors. Refinement of macro and
conditional-assembly diagnostics is particularly significant. Also, new
options governing program listings and object decks are introduced.

Diagnostic Changes in Regular Assembly

New assembler options are available in Assembler H to improve control of
source-program diagnostics. Certain diagnostics can be optionally called
out or suppressed. Also, new diagnostic information is automatically
printed out in the listing, and error messages are generally improved
over those of ASsembler F.

Literal Cross-Reference Table: Literals are cross-referenced, enabling
you to locate the address of references to literal symbols within a
program. A literal reference that is repeated throughout a program can
thereby be easily identified, located, and changed when necessary. If
you wish to change a literal reference that is made repeatedly in a
program, this eliminates an exhaustive and error-prone visual scan of
the source program.

Suppre$sing Cross Reference Entries for Non-referenced Symbols: By
specifying the option XREF(SHORT), it is possible to suppress the
listing in the cross reference table of symbols that are defined but not
referenced in the program.

Dictionary Listing Qptions: The Relocation Dictionary (RLD) and
External Symbol Dictionary (ESD) printouts can be suppressed by means of
PARM options in the EXEC statement: PARM='NOESD', PARM='NORLD', or
PARM='NOESD,NORLD'.

Option to Check Reentrant Status of Program Modules: A reentrant module
can be executed by more than one task at a time. It is not modified by
itself or by any other module during execution. You can confirm the
reentrant status of your modules by declaring in the EXEC statement:
PARM='RENT'. This causes every detected occurrence of non-reentrant
coding to be flagged in line in your program listing. This option is
available in Assembler F; however, the diagnostic message in ASsembler F
comes at the end of the program listing and cannot be traced to a
particular statement. Without this option, extensive testing is the
only method of testing a module's reentrant status.

Error Message Suppression: Messages below a specified severity level
can be optionally suppressed by declaring in the EXEC statement:

IPARM='FLAG(n)' (where •n• is the selected severity level). If you are
not concerned with warning and error messages in a specific assembly,
utilizing this option provides a cleaner listing.

Identification of Object Decks: The name field of a TITLE statement can
be blank or can contain 1 to 8 nonblank characters. The contents of
this name field are punched into all the output cards that make up an
object deck, except for those cards produced by PUNCH or REPRO
statements. The name is punched into the cards starting in column 73,
and any remaining columns are used for deck sequencing. In Assembler F,
the name field can contain 1 to 4 nonblank characters that are punched
in columns 73-76.

Extensions to Listing Controls and Diagnostic 37

Printout of counter Settings (ORG) : The ORG instruction sets a location
counter value. In tfie H ASsembler, the setting of the counter prior to
an OFG instruction and the counter setting generated by the instruction

I are printed in the listing. Thus, you can analyze the program object
code and have a direct reference to the location of program segments
that are intermixed as a.__x~~ult of ORG counter settings.

When a section is resumed by a CSECT, DSECT, COM, or LOCTR, the resumed
location counter is also printed in the object code.

Error Messages: Assembler H prints error messages in line in the
listing and includes at the end of the listing a total of the errors and
a table of their line numbers. Certain in line messages include a copy
of that segment of the statement that is in error. Thus, error
conditions are spelled out as they occur with direct reference to a
specific error. Figure 9 illustrates this.

CSE CT

•
COMM

ERROR UNDEFINED OP CODE -COMM

•
OS (*+5)F

ERROR RELOCATABILITY ERROR·· (*+5)F

1NAME DC F 'O'

***ERROR ***SYMBOL TOO LONG ,OR 1ST CHARACTER NOT A LETTER- 1NAME

•
&C SETC 'AGO'

&C .X

*** ERROR ***OP CODE NOTALLOWED TO BE GENERATED·· AGO

•
END

Figure 9. Sample Diagnostic Messages

Diagnostic Messages in Macro Assembly

In Assembler H, diagnostic messages printed in macro-generated text are
much more descriptive than those in Assembler F. In addition, the macro
level and the statement number of the macro definition are printed for
each programmer hiacro instruction. The macro level and the first five
characters (or fewer) of the macro name are printed for library macro
expansions. ·

Sequence Field in Macro-Generated Text: When a library macro definition
is processed as a .result of a macro call, the sequence field (columns 73
through 80) of the generated statements consists of the level of the
macro call in the first two columns, and the first five letters of the
macro definition name in the remaining five columns. When a line is

38

generated from a source program macro or a copied library macro, the
last five columns contain the line number of the model statement in the
definition from which the generated statement is derived. This
information can be an important diagnostic aid when analyzing output
dealing with macro calls within macro calls.

Format of Macro Generated Text: Whenever possible, a generated
statement is printed in the same format as the corresponding macro
definition (model) statement. The starting columns of theioperation,
operand, and comments fields are preserved unless they are displaced by
field substitution, as shown in the following example:

Source Statements:

Generated Statement:

&C SETC
&C LA
ABCDEFGHIJK LA

I ABCDEFGHIJK I
1,4
1,4

Error Messa~es for a Librarf Macro Definition: Format errors within a
particularibrary macro de inition are listed directly following the
first call of that macro. Subsequent calls on the library macro do not
result in this type of diagnostic. If the appropriate PRINT option is
in effect, errors arising in the generated text of a library macro are
listed in line within the generated text. Figure 10 shows the placement
of error messages.

MACRO

LIBMAC

•
LCLA A

• Library macro

&B SETA &A

•
MEND

LIBMAC

ERROR INVALID LCLA OPERAND

•
•

ERROR UNDECLARED VARIABLE SYMBOL

•

LIBMAC

•
•

ERROR UNDECLARED VARIABLE SYMBOL

•

First
LIBMAC
call

1 Second
LIBMAC
call

J

Figure 10. Library Macro Definition Diagnostics

Extensions to Listing Controls and Diagnostic 39

Error Messages for Source Program Macro Definitions: Macro definitions
contained in the source program are printed in the listing, provided
that the appropriate PRINT options are in effect. Edit diagnostics are
inserted in line in the listing directly following the statement in
error. Errors analyzed during macro generation produce messages in line
in the generated text.

Error Messages in Macro-Generated 1ext: Diagnostic messages in
generated text generally include:

• A description of the error.
• The recovery action.
• The model statement number at which the error occurred.
• A SET symbol name, parameter number, or value string associated with

the error.

Macro Trace Facility - MHELP

The MHELP instruction controls a set of trace and dump facilities.
Options are selected by an absolute expression in the MHELP operand
field. MHELP statements can occur anywhere in open code or in macro
definitions. MHELP options remain in effect continuously until
superceded by another MHELP statement. MHELP options are:

Macro Call Trace: (MHELP B'1' or MHELP 1). This option provides a
one-line trace for each macro call, giving the name of the called macro,
its nested depth, and its iSYSNDX (total number of macro calls) value.
Note: This trace is provided upon entry into the macro. No trace is
provided if error conditions prevent entry into the macro.

Macro Branch Trace: (MHELP B'10', or MHELP 2). This option provides a
one-line trace for each AGO and true AIF conditional-assembly statement
within a macro. It gives the model-statement numbers of the •branched
from" and "branched to• statements, and the name of the macro in which
the branch occurs. This trace option is suppressed for library macros.

Macro Entry Dump: (MHELP B'10000', or MHELP 16). This option dumps
parameter values from the macro dictionary immediately after a macro
call is processed. ·

Macro Exit Dump: (MHELP B 1 1000 I , or MHELP 8) • This option dumps SET
symbol values from the macro dictionary upon encountering a MEND or
MEXIT statement.

Macro AIF Dump: (MHELP B'100', or MHELP 4). This option dumps SET
sYinboI values from the macro dictionary immediately before each AIF
statement that is encountered.

Global Suppression: (MHELP B' 100000 • , or MHELP 32) • This option
suppresses global SET symbols in the two preceding options, MHELP 4 and
MHELP 8.

MHELP Suppression: (MHELP B'10000000', or MHELP 128). This option
suppresses all currently active MHELP options.

MHELP Control on &SYSNDX: The MHELP operand field is actually mapped
into a fullword. Previously-defined MHELP codes correspond to the
fourth byte of this fullword.

iSYSNDX control is turned on by any bit in the third byte (operand values
256-65536 inclusive). Then, when &SYSNDX (total number of macro calls)
exceeds the value of the fullword which contains the MHELP operand

40

value, control is forced to stay at the open-code level, by in effect
making every statement in a macro behave like a MEXIT. Open code macro
calls are honored, but with an inunediate exit back to open code.

Examples:

MHELP 256
MHELP 1
MHELP 256+1
MHELP 65536
MHELP 65792

Limit &SYSNDX to 256.
Trace macro calls.
Trace calls and limit &SYSNDX to 25 7.
No effect. No bits in bytes 3, 4.
Limit &SYSNDX to 65792.

When the value of &SYSNDX reaches its limit, the diagnostic message
"ACTR EXCEEDED &SYSNDX" is issued.

Combining Options: Multiple options can be obtained by combining the
option codes in one MHELP operand. For example, call and branch traces
can be invoked, by MHELP B'11', MHELP 2+1, or MHELP 3.

Abnormal Assembly Termination Processing: The assembler provides a
specially formatted dump whenever an assembly cannot be completed.

When the abnormal termination is caused. by an unprocessable assembly,
the diagnostic dump can aid you in debugging or correcting the problem.
In other cases, such as program checks in the assembler itself, the dump
provides information useful for assembler maintenance.

Extensions to Listing Controls and Diagnostic 41

•
&SYSDATE
&SYSLIST
&SYSLOC
&SYSPARM

_&SYSTIME

23
13-14

22-23
23
23

Abnormal assembly termination processing 41
ACTR 15
AGO extensions 15-16
AIF extensions 16
ALIGN 5
Alternate format 22
AREAD 11-13
Assembly passes 4
Associative memory facility

(See Created SET symbols)
Attribute reference 20-21
Attribute reference to SETC variables 21

Basic assembler language extensions 24-33
New assembler operations

Changing operation code definitions
OPSYN 24-25

Retention of PRINT and USING status
PUSH 24
POP 24

Revised assembler operations 25-28
CNOP 27
COPY 26-27
DROP 26
EQU 25-26
Literals 27-28
ORG 27
PRINT 27

BATCH 5
BER 30
BHR 30
Binary operators 28-29
BLR 30
BMR 30
BNER 30
BNHR 30
BNLR 30
BNMR 30
BNOR 30

. BNPR 30
BNZR 30
BOR 30
BPR 30
BZR 30

Central processing unit (CPU)
Requirements 1.
Time 34-35

Indez:

Changing operation code definitions 24-25
Character variables used in arithmetic

expressions 29
CNOP 27
COM 31-32
Combining MHELP options 41
Comments 14
Commercial instruction set 5-6
Conditional-assembly extensions 15-23

(See also Macro language extensions)
Alternate format in conditional

assembly 22
Availability of attribute

reference 20-21
Forward attribute reference 20
Defined (D') attribute 20
Count (K') attribute for SET

symbols 21
Number (N') attribute for SET

symbols 21
Attribute reference to SETC
variables 21

Created SET symbols 18-19
Extended AGO statements 15-16
Extended AIF statements 16
Extended SET sta;tements 16-17
Generated comments 19-20
SET symbol format and definition

changes 17-18
Dictionary sizes 18
Dimensioned SET symbols 17
Global and local definitions of SET

symbols 17
Implicit declaration of SET

symbols 17-18
Length of SETC values 18
Multiple declarations of SET

symbols 17
SETA duplication factor in SETC
expression 18

SETA variables replacing SETB
variables 18

System variable symbols
(See also Macro language extensions)

&SYSDATE 23
&SYSLIST 13-14
&SYSLOC 22-23
&SYSPARM 23
&SYSTIME 23

Extensions to conditional-assembly
instructions
(See Conditional-assembly extensions)

Consolidating source text passes 36

Index 43

Page of GC26-3758-2
Replaced September 29, 1972
By TNL GN33-8151

Continuation lines, number of 28
COPY 26-27
Count (K') attribute for SET symbols 21
CPU (Central Processing Unit)

Requirements l
Time 34-35

Created SET symbols 18-19

m
Data definition (DD) statement default
options 5

SYSIN 5
SYSLIB 5
SYSLIN 5
SYSPRINT 5
SYSPUNCH 5
SYSUTl 5

Data set requirements 2
DECK 5
Declaration of SET variable symbols 15
Defined (D') attribute 20
Diagnostics in macro assembly 38-39

Error messages for library macro
definitions 39

Error messages for source program
macro definitions 40

Format of macro generated text 39
MHELP 40-41

Combining options 41
Macro branch trace 40
Macro AIF dump 40
Macro call trace 40
Macro entry dump 40
Macro exit dump 40
Global suppression 40
MHELP control on &SYSNDX 40-41
MHELP suppression 40

Sequence field in macro generated
text 38-39

Diagnostics in regular assembly 37-38
Cross reference entries 37
Dictionary listing options 37
Error messages 38
Error message suppression 37
Identification of object deck 37
Literal cross-reference table 37
Printout of counter setting (ORG) 38
Reentrant status check option 37

Dictionary listing options 37
Dictionary iizes 18
Dimensioned SET symbols 17-18
DROP 26
DSECT 32-33
Dummy control section 32-33

II
Elapsed time 34
ENTRY symbols

Restriction on 32
EQU 25-26
Equal sign 14-15

44

Error messages 38
In library macro definitions 39
In source program macro definitions 40

Error message suppression 37
ESD 5
Execute (EXEC) statement default options 5
Extensions to conditional assembly
instructions

(See Conditional assembly extensions)
Extensions to macro language instructions

(See Macro language extensions)
External Symbol Dictionary (ESD) items

Option 5
Restrictions on 32

External workfile 3

II
FLAG 5
Format of macro-generated text 39
Forward attribute reference 20

Generated comments 19-20
Global definition of SET symbols 17
Global suppression 40

D
Identification of object deck 37
Implicit declaration of SET symbols 17-18
Indirect addressing facility

(See Created SET symbols)
Inner macro definitions 9-10
Instruction set options 5-6

Commercial instruction set 6
Scientific instruction set 6
Standard instruction set 6
Universal instruction set 6

Internal design 2-4
Assembly passes 4
Language capability l
Resolving symbol attribute references
Text processing 2-3

External workfile 3
Workfile blocks, resident 2-3

II
Language compatibility l
Length of SETC values 18
LINECOUNT 5
Linking of common storage areas 31-32
LIST 5
Literals 27-28
Literal cross-reference
Local definition of SET
LOCTR 30-31

table
symbols

37
17

2

•
Macro AIF dump 40
Macro branch trace 40
Macro calls by substitution 10-11
Macro definitions

Instructions permitted in 14-15
Macro definitions

in open code 8
redefinition of 8
nested 9-10
parameters, type of 13

Macro-editing process 36
Macro entry dump 40
Macro call trace 140
Macro exit dump 40
Macro language extensions 7-15

Arbitrary language input, AREAD 11-13
AREAD I/O capability 12-13
AREAD within COPY code 13

Editing operation codes 8-9
Format changes in macro statements 13-14

Intermixing of positional and ··keyword
prototypes and parameters 13

Multi-level sublists in macro calls
and prototypes 14

General advantages of macro use 7
Macro definitions in open code 8
Other revisions 14-15

ACTR 15
Character length

Macro names 14
Sequence symbols 14
Variable symbols 14

Comments 14
Declaration of SET variable

symbols 15
Embedded equals sign 14-15
Instructions permitted in macro
definitions 14-15

Mnemonic operation codes as macro
instructions 14

MNOTE statements 15
Nesting macro definitions 9-10
Redefinition of macro instructions 8
Substitution, macro calls by 10-11

Macro prototype statement
Format, changes in 13-14

Macro usage
General advantages of 7

MHELP control on &SYSNDX 40-41
MHELP suppression 40
Minimum region size 2
Mnemonic operations code extensions 30

BER 30
BHR 30
BLR 30
BMR 30
BNER 30
BNHR 30
BNLR 30
BNMR 30
BNOR 30
BNPR 30

BNZR 30
BOR 30
BPR 30
BZR 30

Mnemonic operation codes used as macro
instructions 14

MNOTE 15
Multiple assembly 35-36
Multiple declaration of SET symbols 17
Multiple location counters 30-31

m
Nested macro definitions 9-10
NOALIGN 5
NOBATCH 5
NODECK 5
NOESD 5
NOLIST 5
NOOBJECT 5
NORENT 5
NORLD 5
NOTEST 5
NOXREF 5
Number (N') attribute for SET symbols 21

m
Operating system environments 1-2
Operation codes

Editing of 8-9
OPSYN 24-25
Ordering restrictions of SETx, GBLx, and

LCLx statements 17
ORG 27,38

Parentheses, levels of 29
Performance 34-36

CPU time 34-35
Elapsed time 34
Factors influencing performance 35-36

Consolidating source-text passes 36
Macro-editing process 36
Multiple assembly 35-36
Resident tables and source text 35

Weighted time 35
Performance factbrs 35-36
POP 24 I
PRINT 27
Printout of location counter setting 38
PUSH 24

Q-type address constant 32

Index 45

Page of GC26-3758-2
Replaced September 29, 1972
ByTNL GN33-8151

m
Reentrant status check option 37
RENT 5
Resident tables and source text 35
Retention of PRINT and USING status 24
Revised assembler operations 25-28
RLD 5

Scientific instruction set 6
Sectioning and linking extensions

Dummy control sections
DSECT 32-33

ENTRY symbols
Restriction on 32

External Symbol Dictionary (ESD) items
Restriction on 32

Linking common storage areas
COM 31-32

Multiple location counters
LOCTR 30-31

Revision of Q-type address constants 32
Sequence field in macro-generated
text 38-39

SET ex~ensions 16-19
SET symbol format and definition
changes 17-18

SETA statement as SETC duplication
factor 18

SETA variable replacing SETB variable 18
Short cross-reference table 37
Standard instruction set 6
Symbol attribute reference resolution 2
Symbols, length of 14,28
Syntax extensions 28-29

46

Continua.tion lines, number of 28
Expressions

Binary operators 28-29
Character variables used in
arithmetic expressions 29

Levels of parentheses 29
Number of terms 29
Unary operators 28-29

Symbol length 28
Value of symbol 29

SYSIN 5
SYSLIB 5
SYSLIN 5
SYSPARM 5
SYSPRINT 5
SYSPUNCH 5
SYSUTl 5
System variable symbols 22-23
System requirements 1-2

Central processing units (CPU) 1
Data set requirements 2
Minimum region size 2
Operating environments 1-2

a
Terms, number of 29
TEST 5
Text processing 2-3

m
Unary Operators 28-29
Universal instruction set 5-6

Value of symbol 29

II
Weighted time 35
Workfile blocks, resident 2-3

II
XREF 5,37

GC26-3758-3

-~------- ----- _.. -- -.. ---- -----------_ _.,._' -
Cl>

(')
c
-;
)>
r
0 z
C)

0
0
-;
-4
m
0

c
z
m

OS Assembler H
Gen. Info. Man.

GC26-3758-3

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such request, please contact your
IBM representative or the IBM Branch Office serving your locality.

Reply requested: Name:

READER'S
COMMENT
FORM

Yes D
No D Job Title:-------------------

Address: ---------------------
---------~ Zip ________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

GC26-3758-3

Your comments, please •••

Your answers to the questions on the back of this fo,rm, together with your comments, will
help us to produce better publications for your u8e. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material. All comments and suggestions
become the property of IBM.

~ Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

•

Fold Fold

(")

!:j
0
21 .,,
0
r c
>
6 z ••• C>

11111 I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

lnt~rnational Business Machines Corporation
Department 813 L
1133 Westchester Avenue
White Plains, New York 10604

NO POSTAGE
NECESSARY
IF MAILED
INTHE

UNITED STATES

... '

Fold Fold

--------- ------ ~ -- ~---- -- ----_.._, __ _
._~-·-®

r z
m

(')
c
-j

)>
r
0 z
(;)

0
0
-j
-j
m
0

c
. ~

OS Assembler H
Gen. Info. Man.

GC26-3758-3

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such request, please contact your
IBM representative or the IBM Branch Office serving your locality.

Reply requested: Name:

READER'S
COMMENT
FORM

Yes D
No D Job Title:--------------------

Addre~: --------------------
-----------~ Zip _________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

GC26-3758-3

Your comments, please ..•

Your answers to the questions on the back of this form, together with your comments, will .
help us to produce better publications for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material. All comments and suggestions
become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Fold Fold

n
~
0
::u

~
r
e
)>

0 z
• C)

11111 I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 813 L
1133 Westchester Avenue
White Plains, New York 10604

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

..

Fold Fold

--...------- ----- - -- ---- -----------_ _..._,_
®

r-z m

GC26-3758-3

-~------- - ---- _,. -- -. ---- -----------_ _.._ ._
<I>

0
en
)>

"' "' co
3
O""
~

0
en

"'O
:!.
:J
i;
a.
:J

c
en

~

